path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
Deep-Learning-Notebooks/notebooks/Mozilla_TTS_WaveRNN.ipynb
###Markdown Text-to-Speech with Mozilla Tacotron+WaveRNNThis is an English female voice TTS demo using open source projects [mozilla/TTS](https://github.com/mozilla/TTS/) and [erogol/WaveRNN](https://github.com/erogol/WaveRNN).For other deep-learning Colab notebooks, visit [tugstugi/dl-colab-notebooks](https://github.com/tugstugi/dl-colab-notebooks). Install Mozilla TTS and WaveRNN ###Code import os import time from os.path import exists, join, basename, splitext git_repo_url = 'https://github.com/mozilla/TTS.git' project_name = splitext(basename(git_repo_url))[0] if not exists(project_name): !git clone -q {git_repo_url} !cd {project_name} && git checkout Tacotron2-iter-260K-824c091 !pip install -q gdown lws librosa Unidecode==0.4.20 tensorboardX git+git://github.com/bootphon/phonemizer@master localimport !apt-get install -y espeak git_repo_url = 'https://github.com/erogol/WaveRNN.git' project_name = splitext(basename(git_repo_url))[0] if not exists(project_name): !git clone -q {git_repo_url} !cd {project_name} && git checkout 8a1c152 && pip install -q -r requirements.txt import sys sys.path.append('TTS') sys.path.append('WaveRNN') from localimport import localimport from IPython.display import Audio, display ###Output _____no_output_____ ###Markdown Download pretrained models ###Code # WaveRNN !mkdir -p wavernn_models tts_models wavernn_pretrained_model = 'wavernn_models/checkpoint_433000.pth.tar' if not exists(wavernn_pretrained_model): !gdown -O {wavernn_pretrained_model} https://drive.google.com/uc?id=12GRFk5mcTDXqAdO5mR81E-DpTk8v2YS9 wavernn_pretrained_model_config = 'wavernn_models/config.json' if not exists(wavernn_pretrained_model_config): !gdown -O {wavernn_pretrained_model_config} https://drive.google.com/uc?id=1kiAGjq83wM3POG736GoyWOOcqwXhBulv # TTS tts_pretrained_model = 'tts_models/checkpoint_261000.pth.tar' if not exists(tts_pretrained_model): !gdown -O {tts_pretrained_model} https://drive.google.com/uc?id=1otOqpixEsHf7SbOZIcttv3O7pG0EadDx tts_pretrained_model_config = 'tts_models/config.json' if not exists(tts_pretrained_model_config): !gdown -O {tts_pretrained_model_config} https://drive.google.com/uc?id=1IJaGo0BdMQjbnCcOL4fPOieOEWMOsXE- ###Output _____no_output_____ ###Markdown Initialize models ###Code # # this code is copied from: https://github.com/mozilla/TTS/blob/master/notebooks/Benchmark.ipynb # import io import torch import time import numpy as np from collections import OrderedDict from matplotlib import pylab as plt import IPython %pylab inline rcParams["figure.figsize"] = (16,5) import librosa import librosa.display from TTS.models.tacotron import Tacotron from TTS.layers import * from TTS.utils.data import * from TTS.utils.audio import AudioProcessor from TTS.utils.generic_utils import load_config, setup_model from TTS.utils.text import text_to_sequence from TTS.utils.synthesis import synthesis from TTS.utils.visual import visualize def tts(model, text, CONFIG, use_cuda, ap, use_gl, speaker_id=None, figures=True): t_1 = time.time() waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, truncated=True, enable_eos_bos_chars=CONFIG.enable_eos_bos_chars) if CONFIG.model == "Tacotron" and not use_gl: mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T if not use_gl: waveform = wavernn.generate(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0).cuda(), batched=batched_wavernn, target=11000, overlap=550) print(" > Run-time: {}".format(time.time() - t_1)) if figures: visualize(alignment, mel_postnet_spec, stop_tokens, text, ap.hop_length, CONFIG, mel_spec) IPython.display.display(Audio(waveform, rate=CONFIG.audio['sample_rate'])) #os.makedirs(OUT_FOLDER, exist_ok=True) #file_name = text.replace(" ", "_").replace(".","") + ".wav" #out_path = os.path.join(OUT_FOLDER, file_name) #ap.save_wav(waveform, out_path) return alignment, mel_postnet_spec, stop_tokens, waveform use_cuda = True batched_wavernn = True # initialize TTS CONFIG = load_config(tts_pretrained_model_config) from TTS.utils.text.symbols import symbols, phonemes # load the model num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols) model = setup_model(num_chars, CONFIG) # load the audio processor ap = AudioProcessor(**CONFIG.audio) # load model state if use_cuda: cp = torch.load(tts_pretrained_model) else: cp = torch.load(tts_pretrained_model, map_location=lambda storage, loc: storage) # load the model model.load_state_dict(cp['model']) if use_cuda: model.cuda() model.eval() print(cp['step']) model.decoder.max_decoder_steps = 2000 # initialize WaveRNN VOCODER_CONFIG = load_config(wavernn_pretrained_model_config) with localimport('/content/WaveRNN') as _importer: from models.wavernn import Model bits = 10 wavernn = Model( rnn_dims=512, fc_dims=512, mode="mold", pad=2, upsample_factors=VOCODER_CONFIG.upsample_factors, # set this depending on dataset feat_dims=VOCODER_CONFIG.audio["num_mels"], compute_dims=128, res_out_dims=128, res_blocks=10, hop_length=ap.hop_length, sample_rate=ap.sample_rate, ).cuda() check = torch.load(wavernn_pretrained_model) wavernn.load_state_dict(check['model']) if use_cuda: wavernn.cuda() wavernn.eval() print(check['step']) ###Output _____no_output_____ ###Markdown Sentence to synthesize ###Code SENTENCE = 'Bill got in the habit of asking himself “Is that thought true?” And if he wasn’t absolutely certain it was, he just let it go.' ###Output _____no_output_____ ###Markdown Synthetize ###Code align, spec, stop_tokens, wav = tts(model, SENTENCE, CONFIG, use_cuda, ap, speaker_id=0, use_gl=False, figures=False) ###Output 216000/217800 -- batch_size: 18 -- gen_rate: 17.9 kHz -- x_realtime: 0.8 > Run-time: 20.5927996635437
Starter-Code/Recommendation-System-FM-KNN.ipynb
###Markdown IntroductionThis notebook outlines how to build a recommendation system using SageMaker's Factorization Machines (FM). The main goal is to showcase how to extend FM model to predict top "X" recommendations using SageMaker's KNN and Batch Transform.There are four parts to this notebook:1. Building a FM Model2. Repackaging FM Model to fit a KNN Model3. Building a KNN model4. Running Batch Transform for predicting top "X" items Part 1 - Building a FM Model using movie lens datasetJulien Simon has written a fantastic blog about how to build a FM model using SageMaker with detailed explanation. Please see the links below for more information. In this part, I utilized his code for the most part to have continutity for performing additional steps.Source - https://aws.amazon.com/blogs/machine-learning/build-a-movie-recommender-with-factorization-machines-on-amazon-sagemaker/ ###Code import sagemaker import sagemaker.amazon.common as smac from sagemaker import get_execution_role from sagemaker.predictor import json_deserializer from sagemaker.amazon.amazon_estimator import get_image_uri import numpy as np from scipy.sparse import lil_matrix import pandas as pd import boto3, io, os ###Output _____no_output_____ ###Markdown Download movie rating data from movie lens ###Code #download data !wget http://files.grouplens.org/datasets/movielens/ml-100k.zip !unzip -o ml-100k.zip ###Output --2019-01-06 19:26:30-- http://files.grouplens.org/datasets/movielens/ml-100k.zip Resolving files.grouplens.org (files.grouplens.org)... 128.101.34.235 Connecting to files.grouplens.org (files.grouplens.org)|128.101.34.235|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 4924029 (4.7M) [application/zip] Saving to: ‘ml-100k.zip.1’ ml-100k.zip.1 100%[===================>] 4.70M 12.9MB/s in 0.4s 2019-01-06 19:26:31 (12.9 MB/s) - ‘ml-100k.zip.1’ saved [4924029/4924029] Archive: ml-100k.zip inflating: ml-100k/allbut.pl inflating: ml-100k/mku.sh inflating: ml-100k/README inflating: ml-100k/u.data inflating: ml-100k/u.genre inflating: ml-100k/u.info inflating: ml-100k/u.item inflating: ml-100k/u.occupation inflating: ml-100k/u.user inflating: ml-100k/u1.base inflating: ml-100k/u1.test inflating: ml-100k/u2.base inflating: ml-100k/u2.test inflating: ml-100k/u3.base inflating: ml-100k/u3.test inflating: ml-100k/u4.base inflating: ml-100k/u4.test inflating: ml-100k/u5.base inflating: ml-100k/u5.test inflating: ml-100k/ua.base inflating: ml-100k/ua.test inflating: ml-100k/ub.base inflating: ml-100k/ub.test ###Markdown Shuffle the data ###Code %cd ml-100k !shuf ua.base -o ua.base.shuffled ###Output /home/ec2-user/SageMaker/AmazonSageMaker-rama-ml/fm-based-recommendation-system/ml-100k ###Markdown Load Training Data ###Code user_movie_ratings_train = pd.read_csv('ua.base.shuffled', sep='\t', index_col=False, names=['user_id' , 'movie_id' , 'rating']) user_movie_ratings_train.head(5) ###Output _____no_output_____ ###Markdown Load Test Data ###Code user_movie_ratings_test = pd.read_csv('ua.test', sep='\t', index_col=False, names=['user_id' , 'movie_id' , 'rating']) user_movie_ratings_test.head(5) nb_users= user_movie_ratings_train['user_id'].max() nb_movies=user_movie_ratings_train['movie_id'].max() nb_features=nb_users+nb_movies nb_ratings_test=len(user_movie_ratings_test.index) nb_ratings_train=len(user_movie_ratings_train.index) print " # of users: ", nb_users print " # of movies: ", nb_movies print " Training Count: ", nb_ratings_train print " Test Count: ", nb_ratings_test print " Features (# of users + # of movies): ", nb_features ###Output # of users: 943 # of movies: 1682 Training Count: 90570 Test Count: 9430 Features (# of users + # of movies): 2625 ###Markdown FM InputInput to FM is a one-hot encoded sparse matrix. Only ratings 4 and above are considered for the model. We will be ignoring ratings 3 and below. ###Code def loadDataset(df, lines, columns): # Features are one-hot encoded in a sparse matrix X = lil_matrix((lines, columns)).astype('float32') # Labels are stored in a vector Y = [] line=0 for index, row in df.iterrows(): X[line,row['user_id']-1] = 1 X[line, nb_users+(row['movie_id']-1)] = 1 if int(row['rating']) >= 4: Y.append(1) else: Y.append(0) line=line+1 Y=np.array(Y).astype('float32') return X,Y X_train, Y_train = loadDataset(user_movie_ratings_train, nb_ratings_train, nb_features) X_test, Y_test = loadDataset(user_movie_ratings_test, nb_ratings_test, nb_features) print(X_train.shape) print(Y_train.shape) assert X_train.shape == (nb_ratings_train, nb_features) assert Y_train.shape == (nb_ratings_train, ) zero_labels = np.count_nonzero(Y_train) print("Training labels: %d zeros, %d ones" % (zero_labels, nb_ratings_train-zero_labels)) print(X_test.shape) print(Y_test.shape) assert X_test.shape == (nb_ratings_test, nb_features) assert Y_test.shape == (nb_ratings_test, ) zero_labels = np.count_nonzero(Y_test) print("Test labels: %d zeros, %d ones" % (zero_labels, nb_ratings_test-zero_labels)) ###Output (90570, 2625) (90570,) Training labels: 49906 zeros, 40664 ones (9430, 2625) (9430,) Test labels: 5469 zeros, 3961 ones ###Markdown Convert to Protobuf format for saving to S3 ###Code #Change this value to your own bucket name bucket = 'recommendation-system-12-06' prefix = 'fm' train_key = 'train.protobuf' train_prefix = '{}/{}'.format(prefix, 'train') test_key = 'test.protobuf' test_prefix = '{}/{}'.format(prefix, 'test') output_prefix = 's3://{}/{}/output'.format(bucket, prefix) def writeDatasetToProtobuf(X, bucket, prefix, key, d_type, Y=None): buf = io.BytesIO() if d_type == "sparse": smac.write_spmatrix_to_sparse_tensor(buf, X, labels=Y) else: smac.write_numpy_to_dense_tensor(buf, X, labels=Y) buf.seek(0) obj = '{}/{}'.format(prefix, key) boto3.resource('s3').Bucket(bucket).Object(obj).upload_fileobj(buf) return 's3://{}/{}'.format(bucket,obj) fm_train_data_path = writeDatasetToProtobuf(X_train, bucket, train_prefix, train_key, "sparse", Y_train) fm_test_data_path = writeDatasetToProtobuf(X_test, bucket, test_prefix, test_key, "sparse", Y_test) print "Training data S3 path: ",fm_train_data_path print "Test data S3 path: ",fm_test_data_path print "FM model output S3 path: {}".format(output_prefix) ###Output Training data S3 path: s3://recommendation-system-12-06/fm/train/train.protobuf Test data S3 path: s3://recommendation-system-12-06/fm/test/test.protobuf FM model output S3 path: s3://recommendation-system-12-06/fm/output ###Markdown Run training jobYou can play around with the hyper parameters until you are happy with the prediction. For this dataset and hyper parameters configuration, after 100 epochs, test accuracy was around 70% on average and the F1 score (a typical metric for a binary classifier) was around 0.74 (1 indicates a perfect classifier). Not great, but you can fine tune the model further. ###Code instance_type='ml.m5.large' fm = sagemaker.estimator.Estimator(get_image_uri(boto3.Session().region_name, "factorization-machines"), get_execution_role(), train_instance_count=1, train_instance_type=instance_type, output_path=output_prefix, sagemaker_session=sagemaker.Session()) fm.set_hyperparameters(feature_dim=nb_features, predictor_type='binary_classifier', mini_batch_size=1000, num_factors=64, epochs=100) fm.fit({'train': fm_train_data_path, 'test': fm_test_data_path}) ###Output INFO:sagemaker:Creating training-job with name: factorization-machines-2019-01-06-19-27-02-023 ###Markdown Part 2 - Repackaging Model data to fit a KNN ModelNow that we have the model created and stored in SageMaker, we can download the same and repackage it to fit a KNN model. Download model data ###Code import mxnet as mx model_file_name = "model.tar.gz" model_full_path = fm.output_path +"/"+ fm.latest_training_job.job_name +"/output/"+model_file_name print "Model Path: ", model_full_path #Download FM model %cd .. os.system('aws s3 cp '+model_full_path+ './') #Extract model file for loading to MXNet os.system('tar xzvf '+model_file_name) os.system("unzip -o model_algo-1") os.system("mv symbol.json model-symbol.json") os.system("mv params model-0000.params") ###Output Model Path: s3://recommendation-system-12-06/fm/output/factorization-machines-2019-01-06-19-27-02-023/output/model.tar.gz /home/ec2-user/SageMaker/AmazonSageMaker-rama-ml/fm-based-recommendation-system ###Markdown Extract model data to create item and user latent matrixes ###Code #Extract model data m = mx.module.Module.load('./model', 0, False, label_names=['out_label']) V = m._arg_params['v'].asnumpy() w = m._arg_params['w1_weight'].asnumpy() b = m._arg_params['w0_weight'].asnumpy() # item latent matrix - concat(V[i], w[i]). knn_item_matrix = np.concatenate((V[nb_users:], w[nb_users:]), axis=1) knn_train_label = np.arange(1,nb_movies+1) #user latent matrix - concat (V[u], 1) ones = np.ones(nb_users).reshape((nb_users, 1)) knn_user_matrix = np.concatenate((V[:nb_users], ones), axis=1) ###Output _____no_output_____ ###Markdown Part 3 - Building KNN ModelIn this section, we upload the model input data to S3, create a KNN model and save the same. Saving the model, will display the model in the model section of SageMaker. Also, it will aid in calling batch transform down the line or even deploying it as an end point for real-time inference.This approach uses the default 'index_type' parameter for knn. It is precise but can be slow for large datasets. In such cases, you may want to use a different 'index_type' parameter leading to an approximate, yet fast answer. ###Code print('KNN train features shape = ', knn_item_matrix.shape) knn_prefix = 'knn' knn_output_prefix = 's3://{}/{}/output'.format(bucket, knn_prefix) knn_train_data_path = writeDatasetToProtobuf(knn_item_matrix, bucket, knn_prefix, train_key, "dense", knn_train_label) print('uploaded KNN train data: {}'.format(knn_train_data_path)) nb_recommendations = 100 # set up the estimator knn = sagemaker.estimator.Estimator(get_image_uri(boto3.Session().region_name, "knn"), get_execution_role(), train_instance_count=1, train_instance_type=instance_type, output_path=knn_output_prefix, sagemaker_session=sagemaker.Session()) knn.set_hyperparameters(feature_dim=knn_item_matrix.shape[1], k=nb_recommendations, index_metric="INNER_PRODUCT", predictor_type='classifier', sample_size=200000) fit_input = {'train': knn_train_data_path} knn.fit(fit_input) knn_model_name = knn.latest_training_job.job_name print "created model: ", knn_model_name # save the model so that we can reference it in the next step during batch inference sm = boto3.client(service_name='sagemaker') primary_container = { 'Image': knn.image_name, 'ModelDataUrl': knn.model_data, } knn_model = sm.create_model( ModelName = knn.latest_training_job.job_name, ExecutionRoleArn = knn.role, PrimaryContainer = primary_container) print "saved the model" ###Output ('KNN train features shape = ', (1682, 65)) uploaded KNN train data: s3://recommendation-system-12-06/knn/train.protobuf ###Markdown Part 4 - Batch TransformIn this section, we will use SageMaker's batch transform option to batch predict top X for all the users. ###Code #upload inference data to S3 knn_batch_data_path = writeDatasetToProtobuf(knn_user_matrix, bucket, knn_prefix, train_key, "dense") print "Batch inference data path: ",knn_batch_data_path # Initialize the transformer object transformer =sagemaker.transformer.Transformer( base_transform_job_name="knn", model_name=knn_model_name, instance_count=1, instance_type=instance_type, output_path=knn_output_prefix, accept="application/jsonlines; verbose=true" ) # Start a transform job: transformer.transform(knn_batch_data_path, content_type='application/x-recordio-protobuf') transformer.wait() #Download predictions results_file_name = "inference_output" inference_output_file = "knn/output/train.protobuf.out" s3_client = boto3.client('s3') s3_client.download_file(bucket, inference_output_file, results_file_name) with open(results_file_name) as f: results = f.readlines() import json test_user_idx = 89 u_one_json = json.loads(results[test_user_idx]) print "Recommended movie Ids for user #{} : {}".format(test_user_idx+1, [int(movie_id) for movie_id in u_one_json['labels']]) print print "Movie distances for user #{} : {}".format(test_user_idx+1, [round(distance, 4) for distance in u_one_json['distances']]) ###Output Recommended movie Ids for user #90 : [268, 89, 23, 923, 655, 165, 423, 192, 509, 28, 87, 193, 69, 493, 176, 208, 269, 705, 482, 527, 180, 183, 966, 166, 173, 216, 211, 520, 489, 124, 96, 9, 83, 246, 168, 1, 659, 185, 194, 56, 251, 519, 196, 132, 190, 316, 197, 204, 510, 302, 210, 484, 435, 134, 496, 285, 641, 181, 478, 170, 654, 963, 136, 523, 187, 223, 275, 1142, 313, 100, 1039, 651, 22, 408, 480, 498, 515, 178, 603, 79, 272, 191, 199, 114, 169, 127, 172, 427, 657, 357, 511, 318, 12, 174, 513, 98, 479, 50, 483, 64] Movie distances for user #90 : [2.5401, 2.5459, 2.5539, 2.5628, 2.5637, 2.5671, 2.5817, 2.583, 2.5832, 2.5901, 2.5923, 2.5979, 2.6317, 2.6386, 2.6395, 2.6731, 2.677, 2.6853, 2.6866, 2.6995, 2.6997, 2.7006, 2.7317, 2.7437, 2.7449, 2.7922, 2.8071, 2.8205, 2.8214, 2.8386, 2.839, 2.8512, 2.8675, 2.8778, 2.8779, 2.8942, 2.9031, 2.9307, 2.9561, 2.9647, 2.9713, 2.9755, 2.9921, 2.9982, 2.9991, 3.0015, 3.0291, 3.0665, 3.0714, 3.0882, 3.0998, 3.1148, 3.1159, 3.1234, 3.1323, 3.1589, 3.1631, 3.2076, 3.2336, 3.2404, 3.2407, 3.2466, 3.2897, 3.3141, 3.3157, 3.3169, 3.3232, 3.3453, 3.4406, 3.4503, 3.4703, 3.4873, 3.4876, 3.5185, 3.5436, 3.5827, 3.6038, 3.6049, 3.6562, 3.6751, 3.7038, 3.7189, 3.7386, 3.769, 3.8471, 4.2482, 4.2502, 4.263, 4.2964, 4.3168, 4.3831, 4.3927, 4.416, 4.4293, 4.4504, 4.6206, 4.7173, 4.8195, 4.8528, 5.2139]
content/posts/ut/ut3/pd/pd5/notebook.ipynb
###Markdown Parte 1: carga de datos y preparación Crear un archivo Python y agregar las dependencias necesarias ###Code import matplotlib import matplotlib.pyplot as plt import pandas as pd import seaborn as sn from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, classification_report from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder def plot_confusion_matrix(test_y, y_pred, printMode=True): cm = confusion_matrix(test_y, y_pred) if printMode: print(cm) sn.heatmap(cm, annot=True) def load_data(path,printMode=True): df = pd.read_csv(path, header=0) if printMode: print(df.values) return df ###Output _____no_output_____ ###Markdown Leer el dataset desde el archivo CSV utilizando la librería Pandas. Y ver como esta compuesto. ###Code df = load_data("./sample.csv") ###Output [[2.7810836 2.550537 0. ] [1.46548937 2.36212508 0. ] [3.39656169 4.40029353 0. ] [1.38807019 1.85022032 0. ] [3.06407232 3.00530597 0. ] [2.2810836 2.950537 0. ] [1.86548937 2.86212508 0. ] [3.89656169 4.00029353 0. ] [1.08807019 1.15022032 0. ] [3.96407232 3.00530597 0. ] [7.62753121 2.75926224 1. ] [5.33244125 2.08862677 1. ] [6.92259672 1.77106367 1. ] [8.37541865 0.52068655 1. ] [7.67375647 3.50856301 1. ] [6.62753121 2.99262235 1. ] [6.33244125 1.08862678 1. ] [5.92259672 1.88106367 1. ] [8.67541865 0.30206866 1. ] [7.67375647 1.50856301 1. ]] ###Markdown Graficar los datos utilizando la librería. ###Code colors = ("orange", "blue") plt.scatter(df['x'], df['y'], s=300, c=df['label'], cmap=matplotlib.colors.ListedColormap(colors)) plt.show() ###Output _____no_output_____ ###Markdown Obtener a partir del dataset los datos y las clases. ###Code attributes = ['x', 'y'] labels = ['label'] X = df[attributes].values y = df[labels].values ###Output _____no_output_____ ###Markdown Parte 2: entrenamiento y testing Dividir el conjunto de datos en 2, uno para entrenamiento y otro para prueba. ###Code train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.25, random_state=0, shuffle=True) ###Output _____no_output_____ ###Markdown Crear el un modelo de LDA y entrenarlo. ###Code lda = LinearDiscriminantAnalysis() lda = lda.fit(train_X, train_y) ###Output /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:760: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). y = column_or_1d(y, warn=True) ###Markdown Parte 3: evaluación Predecir las clases para los datos del conjunto de prueba y ver los resultados. ###Code y_pred = lda.predict(test_X) print("Predicted vs Expected") print(y_pred) print(test_y) ###Output Predicted vs Expected [1 0 1 0 1] [[1] [0] [1] [0] [1]] ###Markdown Probar el modelo y ver el reporte. Observar las columnas y que significan. ###Code print(classification_report(test_y, y_pred, digits=3)) ###Output precision recall f1-score support 0 1.000 1.000 1.000 2 1 1.000 1.000 1.000 3 accuracy 1.000 5 macro avg 1.000 1.000 1.000 5 weighted avg 1.000 1.000 1.000 5 ###Markdown Ver la matriz de confusión y analizar los resultados. ###Code plot_confusion_matrix(test_y, y_pred) ###Output [[2 0] [0 3]] ###Markdown Parte 4 (opcional): Regresión Logística ###Code lr = LogisticRegression() lr = lr.fit(train_X, train_y) y_pred = lr.predict(test_X) print("Predicted vs Expected") print(y_pred) print(test_y) print(classification_report(test_y, y_pred, digits=3)) plot_confusion_matrix(test_y, y_pred) ###Output [[2 0] [0 3]] ###Markdown Ejercicio 2 - Dataset sport-training.csvRealizar nuevamente el ejercicio del trabajo de aplicación 6 para la clasificación de deportistas utilizando scikit-learn. En cada paso comparar los resultados con los obtenidos utilizando RapidMiner. ###Code df = load_data("./sports_Training.csv") ###Output [[15.1 3 2 ... 29 4 'Futbol'] [15.4 3 2 ... 18 8 'Rugby'] [13.6 5 5 ... 27 28 'Voleibol'] ... [17.0 5 1 ... 54 40 'Futbol'] [17.3 5 1 ... 65 29 'Basketball'] [15.5 1 1 ... 22 29 'Rugby']] ###Markdown Eliminar filas cuyo valor para el atributo 'CapacidadDecision' estan fuera de los limites. Estose puede hacer de la siguiente forma utilizando la libreria Pandas ###Code df = df[(df['CapacidadDecision'] >= 3) & (df['CapacidadDecision'] <= 100)] ###Output _____no_output_____ ###Markdown Transformar atributos en string a numeros ###Code le = LabelEncoder() y_encoded = le.fit_transform(y) attributes = ['Edad', 'Fuerza', 'Velocidad', 'Lesiones', 'Vision', 'Resistencia', 'Agilidad', 'CapacidadDecision'] labels = ['DeportePrimario'] X = df[attributes].values y = df[labels].values print(df[labels].value_counts()) train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.25, random_state=0, shuffle=True) lr = LinearDiscriminantAnalysis() lr = lr.fit(train_X, train_y) y_pred = lr.predict(test_X) print("Predicted vs Expected") print(y_pred) print(test_y) print(classification_report(test_y, y_pred, digits=3)) plot_confusion_matrix(test_y, y_pred) ###Output [[ 3 7 12 6] [ 1 26 6 5] [ 3 6 15 3] [ 2 13 8 5]] ###Markdown Usar los datos del archivo sports_Scoring.csv para clasificar los nuevos individuos uilizando elmodelo entrenado anteriormente. Comparar los resultados con los obtenidos en el TA6. ###Code df_test = load_data("./sports_Scoring.csv") df_test = df_test[(df_test['CapacidadDecision'] >= 3) & (df_test['CapacidadDecision'] <= 100)] x_test = df_test[attributes].values y_pred = lr.predict(x_test) print("Predicted vs Expected") print(y_pred) print(df_test) df_test["prediction(DeportePrimario)"] = y_pred df_test.to_csv("output_python.csv") output_rapidminer = load_data("./output_rapidminer.csv") output_python = load_data("./output_python.csv") print(output_python["prediction(DeportePrimario)"].head()) print(output_rapidminer["prediction(DeportePrimario)"].head()) print(len(output_python["prediction(DeportePrimario)"])) print(len(output_rapidminer["prediction(DeportePrimario)"])) comparison = output_python["prediction(DeportePrimario)"] == output_rapidminer["prediction(DeportePrimario)"] print(comparison) comparison.value_counts() ###Output _____no_output_____
dissecting-neural-odes/image_classification/cifar_zero_aug.ipynb
###Markdown CIFAR Image Classification with 0-augmented Neural ODEs ###Code import torch import torch.nn as nn from torch.utils.data import DataLoader from torchvision import datasets, transforms import pytorch_lightning as pl from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.metrics.functional import accuracy from utils import get_cifar_dloaders, CIFARLearner from torchdyn.models import *; from torchdyn import * device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") trainloader, testloader = get_cifar_dloaders(batch_size=64) ###Output Files already downloaded and verified ###Markdown Define the model ###Code func = nn.Sequential(nn.GroupNorm(42, 42), nn.Conv2d(42, 42, 3, padding=1, bias=False), nn.Softplus(), nn.Conv2d(42, 42, 3, padding=1, bias=False), nn.Softplus(), nn.GroupNorm(42, 42), nn.Conv2d(42, 42, 1) ).to(device) nde = NeuralDE(func, solver='dopri5', sensitivity='adjoint', atol=1e-4, rtol=1e-4, s_span=torch.linspace(0, 1, 2)).to(device) # NOTE: the first noop `Augmenter` is used only to keep the `nde` at index `2`. Used to extract NFEs in CIFARLearner. model = nn.Sequential(Augmenter(1, 0), # does nothing Augmenter(1, 39), nde, nn.Conv2d(42, 6, 1), nn.AdaptiveAvgPool2d(4), nn.Flatten(), nn.Linear(6*16, 10)).to(device) learn = CIFARLearner(model, trainloader, testloader) trainer = pl.Trainer(max_epochs=20, gpus=1) trainer.fit(learn) ###Output _____no_output_____
Jour 4/resolution exercices.ipynb
###Markdown Résolution des équations du second dégré. ###Code import math def resoudre(**equation): a = equation['a'] b = equation['b'] c = equation['c'] #calcul du discriminant delta =( b*b) - (4*a*c) if delta > 0 : x1 = (-b + math.sqrt(delta))/(2*a) x2 = (-b - math.sqrt(delta))/(2*a) return (x1, x2) elif delta == 0: x12 = -b/(2*a) return (x12,) else : print(f'Solution impossible dans R') resoudre(c=1,b=2,a=1) ###Output _____no_output_____
Courses/TensorFlow in Practice/Convolutional Neural Networks in TensorFlow/Week 4/Multiclass Classifications/Exercise_8_Answer.ipynb
###Markdown The data for this exercise is available at: https://www.kaggle.com/datamunge/sign-language-mnist/homeSign up and download to find 2 CSV files: sign_mnist_test.csv and sign_mnist_train.csv -- You will upload both of them using this button before you can continue. ###Code uploaded=files.upload() def get_data(filename): with open(filename) as training_file: csv_reader = csv.reader(training_file, delimiter=',') first_line = True temp_images = [] temp_labels = [] for row in csv_reader: if first_line: # print("Ignoring first line") first_line = False else: temp_labels.append(row[0]) image_data = row[1:785] image_data_as_array = np.array_split(image_data, 28) temp_images.append(image_data_as_array) images = np.array(temp_images).astype('float') labels = np.array(temp_labels).astype('float') return images, labels training_images, training_labels = get_data('sign_mnist_train.csv') testing_images, testing_labels = get_data('sign_mnist_test.csv') print(training_images.shape) print(training_labels.shape) print(testing_images.shape) print(testing_labels.shape) training_images = np.expand_dims(training_images, axis=3) testing_images = np.expand_dims(testing_images, axis=3) train_datagen = ImageDataGenerator( rescale=1. / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') validation_datagen = ImageDataGenerator( rescale=1. / 255) print(training_images.shape) print(testing_images.shape) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(64, (3, 3), activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation=tf.nn.relu), tf.keras.layers.Dense(26, activation=tf.nn.softmax)]) model.compile(optimizer = tf.train.AdamOptimizer(), loss = 'sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit_generator(train_datagen.flow(training_images, training_labels, batch_size=32), steps_per_epoch=len(training_images) / 32, epochs=15, validation_data=validation_datagen.flow(testing_images, testing_labels, batch_size=32), validation_steps=len(testing_images) / 32) model.evaluate(testing_images, testing_labels) import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'r', label='Training accuracy') plt.plot(epochs, val_acc, 'b', label='Validation accuracy') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'r', label='Training Loss') plt.plot(epochs, val_loss, 'b', label='Validation Loss') plt.title('Training and validation loss') plt.legend() plt.show() ###Output _____no_output_____
Packt-Maths-Data-Scientist/CHAPTER 2 - Functions, equations, plots, and limit.ipynb
###Markdown HEADING 1: Algebraic, trigonometric, and transcendental functions Polynomial functionWe enocunter polynomial functions in everyday computations. For example, if we say that the cost (___C___) of an industrial product is proportional to the raw material (___M___) it consumes (plus a fixed cost ___F___), then we can write the total cost as,$$C = k.M+F\text{ where } k\text{ is the constant of proportionality}$$Here This cost function (and the type of the equation) is polynomial because it contains the HEADING 2: Python libraries for numerical computing and visualization `NumPy` library In the daily work of a data scientist, reading and manipulating arrays is one of the most important and frequently encountered jobs. These arrays could be a one-dimensional list or multi-dimensional table or matrix, full of numbers. An array could be filled with integers, floating point numbers, Booleans, strings, or even mixed type. However, in the majority of cases, numeric data types are predominant.In this regard, __NumPy arrays__ will be the most important object in Python that you need to know in depth. `NumPy` and `SciPy` are open-source libraries within the Python ecosystem that provide common mathematical and numerical routines in fast (and often pre-compiled) functions. One of the main objects of the `NumPy` module is to handle or create __single- or multi-dimensional arrays__. We will use this advanced data structure more extensively in the Part-III of this book when we discuss linear algebra. For this chapter, however, we will focus on the basic mathematical operations that can be performed using the NumPy library. ###Code import numpy as np ###Output _____no_output_____ ###Markdown Create an array from a Python list ###Code my_list = [2,4,5] my_array = np.array(my_list) print(my_array) lst1 = [1,2,3] array1 = np.array(lst1) lst2 = [10,11,12] array2 = np.array(lst2) list_sum = lst1+lst2 array_sum = array1 + array2 print("Sum of two lists:",list_sum) print("Sum of two numpy arrays:",array_sum) ###Output Sum of two lists: [1, 2, 3, 10, 11, 12] Sum of two numpy arrays: [11 13 15] ###Markdown Basic mathematical operations using arrays ###Code print("array1 multiplied by array2: ",array1*array2) print("array2 divided by array1: ",array2/array1) print("array2 raised to the power of array1: ",array2**array1) ###Output array1 multiplied by array2: [10 22 36] array2 divided by array1: [10. 5.5 4. ] array2 raised to the power of array1: [ 10 121 1728] ###Markdown More advanced mathematical operations on Numpy arrays ###Code print ("Sine of 0.5:", np.sin(0.5)) print("Exponential of 2.2:", np.exp(2.2)) print("Natural logarithm of 5:", np.log(5)) print("10-base logarithm of 100:", np.log10(100)) print("Inverse cosine of 0.25:", np.arccos(0.25)) print("Hyperbolic sine of 2.5:", np.sinh(2.5)) ###Output Sine of 0.5: 0.479425538604203 Exponential of 2.2: 9.025013499434122 Natural logarithm of 5: 1.6094379124341003 10-base logarithm of 100: 2.0 Inverse cosine of 0.25: 1.318116071652818 Hyperbolic sine of 2.5: 6.0502044810397875 ###Markdown Proving a mathematical identity using NumPy operations ###Code a = [i for i in range(1,21)] arr = np.array(a) x = [0.5]*20 x_arr = np.array(x) log = ((-1)**(arr+1))*x_arr**arr/arr print("Result using summation of the NumPy array:",np.sum(log)) print("Result using direct NumPy function:",np.log(1+0.5)) ###Output Result using direct NumPy function: 0.4054651081081644 ###Markdown Visualization using Matplotlib library Creating a basic plotTo create a simple one-dimensional plot we need some data. Let us first generate the data using a NumPy function as we learned in the previous section. ###Code import matplotlib.pyplot as plt x = np.arange(1,50.1,0.1) print(x) sinx = np.sin(x) plt.plot(sinx) ###Output _____no_output_____ ###Markdown Advanced features of the plotting function ###Code plt.figure(figsize=(10,5)) plt.title("Plot of sin(x) vs. x\n",fontsize=20) plt.xlabel("x values",fontsize=16) plt.ylabel("Trigonometric function, sin(x)",fontsize=16) plt.grid (True) plt.ylim(-1.5,1.5) plt.xticks([i*5 for i in range(55)],fontsize=15) plt.yticks(fontsize=15) plt.scatter(x=x,y=sinx,c='orange',s=50) plt.text(x=25,y=1.1,s="A vertical blue dashed line \nis drawn at x=21",fontsize=15) plt.vlines(x=21,ymin=-1.5,ymax=1.5,linestyles='dashed',color='blue',lw=3) plt.legend(['Plot of sin(x)'],loc=2,fontsize=14) plt.show() ###Output _____no_output_____ ###Markdown Plots of few common functions ###Code x = np.arange(0,10,0.1) def plotx(x,y, title): plt.figure(figsize=(6,4)) plt.title (title, fontsize=20) plt.plot(x,y,lw=3,c='blue') plt.grid(True) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.xlabel("x-values",fontsize=15) plt.ylabel("Function values",fontsize=15) plt.show() y = x title = "Linear function" plotx(x,y,title) y = x**2 title = "Quadratic function" plotx(x,y,title) y = np.exp(x) title = "Exponential function" plotx(x,y,title) y = np.log(x) title = "Natural logarithm function" plotx(x,y,title) y = np.cos(x) title = "Cosine function" plotx(x,y,title) y = np.exp(-0.3*x)*np.sin(2*x) title = "Exponentially decayed sine function" plotx(x,y,title) ###Output _____no_output_____ ###Markdown Quadratic equation solve ###Code def solve_quad(a=1,b=2,c=1): """ Solves a quadratic equation and returns the roots (real or complex) as a tuple """ from math import sqrt z= b**2-4*a*c if z >= 0: x1 = (-b+sqrt(z))/(2*a) x2 = (-b-sqrt(z))/(2*a) return (x1,x2) else: x1 = complex((-b/2*a),sqrt(-z)/(2*a)) x2 = complex((-b/2*a),-sqrt(-z)/(2*a)) return (x1,x2) solve_quad(1,-2,1) solve_quad(2,-5,4) ###Output _____no_output_____ ###Markdown Solving $$2x^2-7x+4=0$$ ###Code x1,x2=solve_quad(2,-7,4) x1 x2 ###Output _____no_output_____ ###Markdown Product of the roots ###Code x1*x2 ###Output _____no_output_____ ###Markdown Sum of the roots ###Code x1+x2 ###Output _____no_output_____ ###Markdown Growth of functions ###Code logx = [] linx = [] quadx = [] for x in range(1,21): logx.append(15*np.log10(x)) linx.append(2*x-6) quadx.append(x**2-100) logx=np.array(logx) linx=np.array(linx) quadx=np.array(quadx) plt.figure(figsize=(8,6)) plt.plot(logx,c='r') plt.plot(linx) plt.plot(quadx) plt.grid(True) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.legend(['Logarithmic function','Linear function','Quadratic function'],fontsize=15) plt.show() ###Output _____no_output_____
tutorials/notebook/cx_site_chart_examples/heatmap_4.ipynb
###Markdown Example: CanvasXpress heatmap Chart No. 4This example page demonstrates how to, using the Python package, create a chart that matches the CanvasXpress online example located at:https://www.canvasxpress.org/examples/heatmap-4.htmlThis example is generated using the reproducible JSON obtained from the above page and the `canvasxpress.util.generator.generate_canvasxpress_code_from_json_file()` function.Everything required for the chart to render is included in the code below. Simply run the code block. ###Code from canvasxpress.canvas import CanvasXpress from canvasxpress.js.collection import CXEvents from canvasxpress.render.jupyter import CXNoteBook cx = CanvasXpress( render_to="heatmap4", data={ "z": { "Type": [ "Pro", "Tyr", "Pho", "Kin", "Oth", "Pro", "Tyr", "Pho", "Kin", "Oth", "Pro", "Tyr", "Pho", "Kin", "Oth", "Pro", "Tyr", "Pho", "Kin", "Oth", "Pro", "Tyr", "Pho", "Kin", "Oth", "Pro", "Tyr", "Pho", "Kin", "Oth", "Pro", "Tyr", "Pho", "Kin", "Oth", "Pro", "Tyr", "Pho", "Kin", "Oth" ], "Sens": [ 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4 ] }, "x": { "Treatment": [ "Control", "Control", "Control", "Control", "Control", "TreatmentA", "TreatmentB", "TreatmentA", "TreatmentB", "TreatmentA", "TreatmentB", "TreatmentA", "TreatmentB", "TreatmentA", "TreatmentB", "TreatmentA", "TreatmentB", "TreatmentA", "TreatmentB", "TreatmentA", "TreatmentB", "TreatmentA", "TreatmentB", "TreatmentA", "TreatmentB" ], "Site": [ "Site1", "Site1", "Site1", "Site1", "Site1", "Site2", "Site2", "Site2", "Site2", "Site2", "Site2", "Site2", "Site2", "Site2", "Site2", "Site3", "Site3", "Site3", "Site3", "Site3", "Site3", "Site3", "Site3", "Site3", "Site3" ], "Dose-Type": [ "", "", "", "", "", "Dose1", "Dose1", "Dose2", "Dose2", "Dose3", "Dose3", "Dose4", "Dose4", "Dose5", "Dose5", "Dose1", "Dose1", "Dose2", "Dose2", "Dose3", "Dose3", "Dose4", "Dose4", "Dose5", "Dose5" ], "Dose": [ 0, 0, 0, 0, 0, 5, 5, 10, 10, 15, 15, 20, 20, 25, 25, 5, 5, 10, 10, 15, 15, 20, 20, 25, 25 ] }, "y": { "smps": [ "S1", "S2", "S3", "S4", "S5", "S6", "S7", "S8", "S9", "S10", "S11", "S12", "S13", "S14", "S15", "S16", "S17", "S18", "S19", "S20", "S21", "S22", "S23", "S24", "S25" ], "vars": [ "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20", "V21", "V22", "V23", "V24", "V25", "V26", "V27", "V28", "V29", "V30", "V31", "V32", "V33", "V34", "V35", "V36", "V37", "V38", "V39", "V40" ], "data": [ [ 0.784, 1.036, -0.641, 1.606, 2.208, 3.879, 0.333, 2.265, -1.55, 1.678, -0.639, -0.533, -0.078, 0.433, 0.391, 1.013, 0.928, 0.812, 0.072, 3.564, 0.47, 1.836, 0.351, 3.139, -2.207 ], [ 0.222, 0.716, 0.993, -0.913, 0.996, 1.235, 1.396, 1.817, 0.162, 1.137, -0.126, 1.56, 1.003, 1.86, 0.43, 0.696, 0.777, 1.6, 0.175, 2.423, 0.044, 3.881, -0.757, 1.486, 0.01 ], [ 0.486, 2.15, -0.069, -0.468, 0.402, 0.725, -1.697, 0.653, 0.101, 2.852, -0.27, 0.414, -0.789, 1.877, 1.555, 2.511, 0.07, 0.244, -0.41, 2.345, 2.401, -0.033, 0.951, 2.053, 0.725 ], [ -1.857, 0.698, 0.528, 1.024, -0.035, 2.181, -0.015, 3.68, -1.13, -0.842, -1.759, 1.784, -0.673, 0.147, 0.765, 1.585, 0.33, 1.481, -0.362, 1.456, -0.719, 0.961, 1.296, 2.375, 0.208 ], [ -1.19, 1.564, -2.407, 0.642, -0.51, 4.116, -0.379, 0.786, 1.508, 3.119, 1.011, 1.54, 1.184, 1.821, -0.217, 2.752, 0.083, 1.663, 0.568, 2.48, -1.207, 1.222, 0.296, 1.055, 1.078 ], [ 0.256, 1.214, 1.919, 0.577, 1.07, 1.53, 1.537, 3.063, 0.481, 2.332, -1.466, 0.167, 0.428, 1.401, -1.716, 3.524, -0.822, 1.073, -1.825, 3.923, -0.542, 2.637, -1.296, 0.759, 0.836 ], [ -0.443, 0.286, 0.379, 1.076, 0.478, 3.443, -0.287, 1.206, -1.275, 2.275, 1.101, 2.821, -0.638, 0.922, -0.205, 2.318, 0.494, 1.648, -0.585, 1.963, -0.636, 1.229, 0.998, 1.523, -1.01 ], [ 1.023, -0.417, 0.865, 1.645, 0.324, 1.94, 0.122, -0.171, 0.352, 1.42, -0.436, 3.076, 0.434, 0.986, -1.912, 3.899, -0.212, 0.716, 0.782, 0.534, 1.939, 1.374, -0.083, 2.318, 0.982 ], [ -2.33, 0.575, -0.543, -0.38, -2.153, 1.717, -1.219, 0.725, 0.273, 1.908, 0.488, 1.426, 0.108, 2.586, 0.653, 0.317, 0.112, 3.138, 0.212, 1.393, -0.506, 1.87, 0.332, 1.893, 1.017 ], [ 0.841, 0.146, 0.716, -0.233, -0.206, 0.237, -0.307, 2.499, -1.619, 1.957, -0.12, 3.058, 0.511, 3.598, 0.286, 0.922, 0.164, 0.782, -3.468, 0.262, 0.812, 0.798, 1.209, 2.964, -1.47 ], [ -0.099, 1.666, -1.635, 1.475, -0.186, 0.781, -1.919, 1.472, -0.109, 1.588, -0.379, 0.862, -1.455, 2.386, 2.783, 0.98, -0.136, 1.042, 0.532, 1.778, 0.463, 0.647, 0.92, 2.427, -0.07 ], [ 0.663, -1.411, -0.69, -0.216, -0.735, 1.878, -0.073, 1.568, -1.254, 3.792, -0.345, 3.384, 0.206, 1.572, 0.134, 2.035, -0.26, 2.42, 0.437, 2.164, -0.063, 5.027, -0.166, 3.878, -1.313 ], [ -0.647, -1.152, 3.437, -0.3, 0.358, 1.766, 0.067, 0.149, -1.005, 1.191, -1.299, 1.326, -2.378, 1.8, -0.858, 2.019, -1.357, 2.278, -0.711, 2.196, -0.243, 3.326, -0.215, 2.25, -0.504 ], [ -0.264, -1.328, 1.228, 1.247, 0.692, 1.763, -0.978, 2.781, -0.058, 2.223, 0.796, 2.414, -1.834, 3.203, 0.459, 2.914, 0.375, 3.309, 0.946, 0.943, -1.365, 2.452, 0.474, 0.503, 0.025 ], [ 0.253, -0.529, -0.429, -1.111, 0.398, 2.332, -1.334, 2.202, -0.585, 1.885, 0.398, 1.788, 0.972, 2.025, -0.835, 0.622, 0.001, 0.837, -0.776, 2.257, 0.682, 1.304, 2.407, 4.038, 0.518 ], [ -0.876, -1.41, 0.538, -1.04, -0.717, -0.889, 3.129, 1.202, 3.398, 0.398, 3.857, 1.372, 4.813, -1.311, 4.029, -0.432, 3.01, 0.756, 4.688, 0.294, 4.61, 0.859, 4.498, 1.794, 3.319 ], [ -0.363, 0.042, -0.253, -0.076, -1.27, -0.904, 2.931, -0.119, 2.669, -0.165, 6.023, -0.65, 2.031, 1.424, 2.844, -1.019, 4.062, -0.025, 2.637, -0.317, 4.228, -0.142, 3.013, 0.611, 3.74 ], [ -1.674, -0.318, -0.726, -1.271, 1.753, -1.678, 3.341, -1.772, 3.814, -1.391, 2.622, 0.677, 3.307, -0.92, 3.545, 0.305, 2.808, 0.836, 4.532, -0.378, 4.87, -0.044, 4.061, 1.684, 5.486 ], [ -0.288, 0.165, -0.468, 1.219, -3.353, -0.578, 3.414, -0.674, 4.755, 0.033, 4.025, 0.44, 4.186, 1.136, 2.505, 0.436, 3.293, -0.868, 4.746, -0.545, 3.666, -0.295, 3.206, -0.966, 4.678 ], [ -0.558, -0.855, -1.114, -0.623, 0.368, -0.182, 4.37, 0.563, 3.75, 0.189, 2.717, -1.708, 5.274, 0.741, 2.537, -1.583, 2.832, -1.515, 3.829, 0.358, 5.306, 0.388, 3.284, 0.661, 3.804 ], [ 1.693, -1.53, 0.057, -0.217, 0.511, 0.309, 3.998, 0.925, 1.045, 0.379, 2.024, 0.331, 3.612, 0.151, 5.808, -1.429, 3.402, -0.297, 4.692, -0.439, 4.521, -0.816, 4.693, 0.323, 2.869 ], [ -0.234, 1.999, -1.603, -0.292, -0.91, -0.766, 6.167, 1.242, 4.219, -1.291, 6.974, -0.443, 4.039, 0.72, 3.808, 1.465, 2.86, 2.736, 4.675, -0.554, 3.091, 0.057, 4.311, -0.005, 2.605 ], [ 0.529, -1.721, 2.207, -0.873, -1.364, 1.139, 3.146, 1.277, 3.963, -0.234, 4.581, -1.266, 3.743, -0.84, 3.682, -0.566, 4.249, 0.599, 4.202, 0.125, 4.136, -0.67, 3.433, -0.954, 3.97 ], [ -0.529, 0.375, 0.204, -0.529, 1.001, 0.244, 3.922, -0.904, 3.479, -0.926, 4.171, -0.047, 2.158, 0.467, 2.277, 0.429, 3.903, -1.013, 3.182, 0.73, 3.318, -1.663, 4.222, 0.264, 3.538 ], [ 2.302, -0.218, -1.184, -0.644, 0.118, -1.35, 4.497, 1.262, 5.131, -1.095, 4.354, -1.364, 4.376, -0.936, 3.278, 0.753, 4.903, -2.193, 3.336, 0.722, 3.92, -1.341, 4.762, 1.756, 4.032 ], [ 0.957, 1.309, -1.317, 1.254, -0.397, 0.004, 3.34, 1.233, 4.681, -0.875, 2.497, 0.207, 1.703, -0.614, 3.171, -0.034, 2.59, 0.968, 3.576, 0.946, 3.85, 1.128, 4.015, 0.633, 3.148 ], [ -0.789, -1.139, 0.066, 0.418, 0.366, -0.932, 3.982, 0.151, 4.018, 0.74, 5.374, 0.067, 6.07, 1.178, 6.316, 1.948, 3.389, 0.383, 5.084, -0.251, 3.874, -0.715, 3.101, -0.172, 4.867 ], [ -0.26, -0.005, -0.12, -0.422, 0.629, 1.242, 3.954, -0.027, 4.352, -0.074, 4.369, 0.196, 4.847, -0.763, 3.042, -1.643, 3.952, -1.358, 4.105, -0.257, 4.168, 0.047, 1.782, -0.585, 5.465 ], [ 1.882, 0.869, -1.305, 1.095, 1.002, -0.897, 3.248, 1.113, 5.83, 0.298, 4.811, -0.128, 3.263, 0.186, 4.244, 1.314, 2.832, 0.222, 3.899, -1.279, 4.133, -1.523, 4.49, 0.966, 4.658 ], [ -1.052, 0.429, 0.646, 0.642, 1.037, -1.046, 1.724, -0.698, 5.316, -0.403, 2.821, -0.108, 5.52, -0.352, 3.298, -0.716, 2.672, 1.499, 3.919, 0.202, 3.409, 0.841, 5.47, 1.225, 1.988 ], [ -1.862, -0.589, 0.205, 1.281, -1.256, 0.924, 4.189, -1.219, 3.137, 0.142, 5.869, 0.529, 2.138, -0.034, 3.921, -1.097, 5.402, 1.468, 5.034, 0.088, 3.055, 1.587, 3.374, 0.377, 2.939 ], [ -0.315, -0.369, 0.634, 0.495, -1.059, -0.481, 1.329, 1.105, 5.3, 0.135, 6.515, 0.001, 4.161, 1.686, 4.747, -0.911, 3.24, -1.461, 4.64, 0.698, 5.006, -1.072, 4.608, -0.317, 5.208 ], [ 0.558, 0.793, -1.713, 0.055, 2.242, 0.588, 3.785, 2.949, 2.175, 2.055, 3.328, 0.236, 3.549, -0.009, 1.477, 0.538, 3.116, -0.621, 5.203, 0.736, 3.606, -0.313, 4.402, -1.039, 3.894 ], [ -1.332, -1.134, 0.153, 0.66, 1.764, -0.588, 3.417, -0.547, 3.849, -1.521, 3.332, 0.88, 5.449, 0.179, 4.596, 0.626, 4.006, 0.33, 2.969, -0.42, 2.606, -0.485, 4.581, -0.199, 5.008 ], [ 0.29, 0.228, 0.117, -0.587, -2.116, 0.188, 4.009, 0.551, 3.127, 0.682, 3.858, -1.053, 4.388, -1.46, 1.468, 0.434, 4.221, 0.782, 2.992, 0.056, 5.223, -0.747, 6.549, -0.959, 3.714 ], [ -0.015, -1.665, 1.007, 0.278, -0.091, 1.919, 3.861, -0.318, 3.026, -1.642, 5.379, 2.097, 4.396, 0.802, 3.66, 0.544, 2.156, 0.87, 4.044, 0.3, 4.422, -0.788, 4.677, -0.215, 4.643 ], [ -0.984, 0.915, 0.944, -1.975, -1.717, 0.16, 4.748, 1.521, 4.091, -0.386, 3.802, -1.134, 5.701, -0.402, 5.682, -0.987, 4.281, 0.844, 3.427, 1.368, 3.358, -1.748, 3.792, 2.125, 5.137 ], [ -0.399, -0.613, 2.211, 0.238, 2.799, 0.687, 5.522, 0.534, 5.233, -0.395, 4.387, -1.733, 4.494, -1.26, 4.693, 1.679, 4.477, 0.399, 2.508, 1.683, 3.185, 0.865, 4.958, 0.602, 4.371 ], [ 1.205, -0.562, 1.134, 0.202, 0.209, 0.692, 2.419, 0.397, 2.429, 0.911, 6.341, 0.713, 4.548, -0.688, 3.947, 0.439, 4.69, -0.324, 3.07, 0.265, 3.757, -1.535, 5.434, -0.017, 4.125 ], [ -0.298, 0.118, 1.653, 1.519, -0.821, -0.85, 4.602, 1.073, 5.087, 0.155, 6.987, -0.716, 2.912, 0.581, 2.112, -0.426, 3.523, 0.188, 4.548, 0.155, 4.256, 0.775, 2.607, -0.697, 5.338 ] ] } }, config={ "colorSpectrum": [ "magenta", "blue", "black", "red", "gold" ], "graphType": "Heatmap", "heatmapCellBox": False, "samplesClustered": True, "showSmpDendrogram": False, "showVarDendrogram": False, "title": "Cluster Heatmap Without Trees", "variablesClustered": True }, width=613, height=613, events=CXEvents(), after_render=[], other_init_params={ "version": 35, "events": False, "info": False, "afterRenderInit": False, "noValidate": True } ) display = CXNoteBook(cx) display.render(output_file="heatmap_4.html") ###Output _____no_output_____
pytorch/DeepLearningwithPyTorch_Code/DLwithPyTorch-master/Chapter03/Image Classification Dogs and Cats.ipynb
###Markdown Peep look into the downloaded data ``` chapter3/ dogsandcats/ train/ dog.183.jpg cat.2.jpg cat.17.jpg dog.186.jpg cat.27.jpg dog.193.jpg `````` chapter3/ dogsandcats/ train/ dog/ dog.183.jpg dog.186.jpg dog.193.jpg cat/ cat.17.jpg cat.2.jpg cat.27.jpg valid/ dog/ dog.173.jpg dog.156.jpg dog.123.jpg cat/ cat.172.jpg cat.20.jpg cat.21.jpg``` Create validation data set ###Code path = '../chapter3/dogsandcats/' files = glob(os.path.join(path,'*/*.jpg')) print(f'Total no of images {len(files)}') no_of_images = 25000 no_of_images = len(files) no_of_images*0.8 shuffle = np.random.permutation(no_of_images) os.mkdir(os.path.join(path,'valid')) for t in ['train','valid']: for folder in ['dog/','cat/']: os.mkdir(os.path.join(path,t,folder)) for i in shuffle[:2000]: #shutil.copyfile(files[i],'../chapter3/dogsandcats/valid/') folder = files[i].split('/')[-1].split('.')[0] image = files[i].split('/')[-1] os.rename(files[i],os.path.join(path,'valid',folder,image)) for i in shuffle[2000:]: #shutil.copyfile(files[i],'../chapter3/dogsandcats/valid/') folder = files[i].split('/')[-1].split('.')[0] image = files[i].split('/')[-1] os.rename(files[i],os.path.join(path,'train',folder,image)) ###Output _____no_output_____ ###Markdown Check if GPU is present ###Code if torch.cuda.is_available(): is_cuda = True ###Output _____no_output_____ ###Markdown Load data into PyTorch tensors ###Code simple_transform = transforms.Compose([transforms.Resize((224,224)) ,transforms.ToTensor() ,transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) train = ImageFolder('dogsandcats/train/',simple_transform) valid = ImageFolder('dogsandcats/valid/',simple_transform) print(train.class_to_idx) print(train.classes) imshow(train[50][0]) ###Output _____no_output_____ ###Markdown Create data generators ###Code train_data_gen = torch.utils.data.DataLoader(train,shuffle=True,batch_size=64,num_workers=3) valid_data_gen = torch.utils.data.DataLoader(valid,batch_size=64,num_workers=3) dataset_sizes = {'train':len(train_data_gen.dataset),'valid':len(valid_data_gen.dataset)} dataloaders = {'train':train_data_gen,'valid':valid_data_gen} ###Output _____no_output_____ ###Markdown Create a network ###Code model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, 2) if torch.cuda.is_available(): model_ft = model_ft.cuda() model_ft # Loss and Optimizer learning_rate = 0.001 criterion = nn.CrossEntropyLoss() optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) def train_model(model, criterion, optimizer, scheduler, num_epochs=5): since = time.time() best_model_wts = model.state_dict() best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'valid']: if phase == 'train': scheduler.step() model.train(True) # Set model to training mode else: model.train(False) # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for data in dataloaders[phase]: # get the inputs inputs, labels = data # wrap them in Variable if torch.cuda.is_available(): inputs = Variable(inputs.cuda()) labels = Variable(labels.cuda()) else: inputs, labels = Variable(inputs), Variable(labels) # zero the parameter gradients optimizer.zero_grad() # forward outputs = model(inputs) _, preds = torch.max(outputs.data, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.data[0] running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'valid' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = model.state_dict() print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=2) ###Output Epoch 0/1 ---------- train Loss: 0.0013 Acc: 0.9666 valid Loss: 0.0006 Acc: 0.9875 Epoch 1/1 ---------- train Loss: 0.0005 Acc: 0.9887 valid Loss: 0.0005 Acc: 0.9890 Training complete in 1m 49s Best val Acc: 0.989000
notebooks/02_Getz_EDA_First_Pass.ipynb
###Markdown Exploratory Data Analysis (EDA)conduct EDA on the Starcraft 2 Data to examine the relationship between variables and other trends in the data. Imports ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown Load the data ###Code starcraft_loc = '../data/interimStarcraft_cleaned.csv' #using index_col = 0 to drop the uncessary number column added by saving the data from the previous notebook. starcraft = pd.read_csv(starcraft_loc,index_col = 0) starcraft.info() starcraft.head() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 3338 entries, 0 to 3339 Data columns (total 20 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 GameID 3338 non-null int64 1 LeagueIndex 3338 non-null int64 2 Age 3338 non-null int64 3 HoursPerWeek 3338 non-null int64 4 TotalHours 3338 non-null int64 5 APM 3338 non-null float64 6 SelectByHotkeys 3338 non-null float64 7 AssignToHotkeys 3338 non-null float64 8 UniqueHotkeys 3338 non-null int64 9 MinimapAttacks 3338 non-null float64 10 MinimapRightClicks 3338 non-null float64 11 NumberOfPACs 3338 non-null float64 12 GapBetweenPACs 3338 non-null float64 13 ActionLatency 3338 non-null float64 14 ActionsInPAC 3338 non-null float64 15 TotalMapExplored 3338 non-null int64 16 WorkersMade 3338 non-null float64 17 UniqueUnitsMade 3338 non-null int64 18 ComplexUnitsMade 3338 non-null float64 19 ComplexAbilitiesUsed 3338 non-null float64 dtypes: float64(12), int64(8) memory usage: 547.6 KB ###Markdown Data StoryGetting to high rank in Starcraft II is hard. So hard in fact that there is large amounts of content produced on the internet targeted towards helping you get "better" at the game. Yet "better" at the game is a pretty hard idea to quantify in a meaningful way. Given that your rank in Starcraft II is often used as a measure of your overall skill, we aren't particularly interested in some empirically "true" measure of being good at the game and are more interested in what particular game actions and habits are done more often by higher ranking players. Therefore we will be exploring the relationship between League Index and the other independant variables. ###Code #Given that League Index is a categorical variable, not a continous one #It is useful for us to find a continous variable with a high correlation to League Index for future predicitive modeling starcraft.corr() sns.heatmap(data=starcraft.corr()) ###Output _____no_output_____ ###Markdown At first glance, it appears that APM (actions per minute) and NumberOfPACs seem to be highly positively correlated to league index while ActionLatency and GapBetweenPACs seem to be highly negatively correlated. It may be interesting to plot these values with each other. A PAC is simply a way of measureing a shift in focus. In this case a single PAC is counted when the screen is shifted to a new area for a minimum amount of time and at least one action is performed. ###Code colsOfInterest = ['APM','NumberOfPACs','ActionLatency','GapBetweenPACs'] for i in range(len(colsOfInterest)): for j in colsOfInterest[i+1:]: _ = sns.scatterplot(x=colsOfInterest[i],y=j,data=starcraft,hue='LeagueIndex') _ = plt.legend() _ = plt.xlabel(colsOfInterest[i]) _ = plt.ylabel(j) _ = plt.title(j+ ' vs ' +colsOfInterest[i]) plt.show() ###Output _____no_output_____ ###Markdown We find that Number of PACs and APM seem to have similar relationships with our other, negative predictors and that our correlation assesment from the above heatmap and table seems to hold true. Given that we have more information about PACs, for example information about the number of actions within a PAC in a given game, of the two high correlation predictors of league it makes the most sense to use NumberOfPACs as our continous variable when moving forward. Lets continue to explore how other factors may effect the number of PACs. ###Code #We look at age and hours per week compared to Number of PACs #We want to categorize data into low high numbers of hours per week so first we find summary statistics for the hour column starcraft['HoursPerWeek'].describe() #We are going to choose to split our hours around the median, so as to reduce the effect of outliers starcraft['HoursType']=starcraft['HoursPerWeek'].apply(lambda x: 'High' if x>12.0 else 'Low') starcraft.head() _ = sns.scatterplot(y='NumberOfPACs',x='Age',hue='HoursType',data=starcraft,alpha=.5) _ = plt.title('Number Of PACs vs age, grouped by Low or High weekly hours') plt.show() ###Output _____no_output_____ ###Markdown Given that yellow and blue dots are dispersed relatively evenly it doesn't seem as if hours per week has a huge impact on number of PACs. We do notice a relatively steep drop off in number of PACs after about 25 years of age. This is worth keeping an eye on, lets check to see if this is a meaningful factor or if it is mostly impacted by the number of responses we have from younger players. ###Code #Get summary statistics for age starcraft['Age'].describe() #check the summary statistics for number of PACs for players above our 75% old_craft = starcraft[starcraft['Age'] > 24] old_craft['NumberOfPACs'].describe() #compare to number of PACs summary stats of the whole data set starcraft['NumberOfPACs'].describe() ###Output _____no_output_____ ###Markdown We do find that while hours per week don't appear to have a consistent impact on number of PACs, as players become 25 years or older they do seem to have a reduced number of PACs.Lets explore how hotkey management might effect our Number of PACs stat. We have 3 hotkey related columns. We will also color by age to see if we continue to find a difference in age. ###Code hotkey_vars = ['SelectByHotkeys','AssignToHotkeys','UniqueHotkeys'] for i in hotkey_vars: _ = sns.scatterplot(x=i,y='NumberOfPACs',data=starcraft,hue='Age',alpha=.8) _ = plt.legend() _ = plt.title('Number of PACs vs ' + i) plt.show() ###Output _____no_output_____ ###Markdown In these figures, it does not appear as if age is a meaningful contributor, though we do see that they all have a slight positive relationship to PACs, AssignToHotkeys has the most noteable positive relationship.So far, we have found that Number of PACs appears to be a good predictor of League Index, and that APM has the largest positive correlation on Number of PACS followed by Assign To Hotkeys while Action Latency seemed to have the greatest negative impact on Number of PACs. Finally we will check these variables effects on League Index to confirm that Number of PACs is a good continous variable substitute for our categorical variable of interest in League Index. ###Code _ = sns.boxplot(y='NumberOfPACs',x='LeagueIndex',data=starcraft) plt.show() _ = sns.boxplot(y='APM',x='LeagueIndex',data=starcraft) plt.show() _ = sns.boxplot(y='AssignToHotkeys',x='LeagueIndex',data=starcraft) plt.show() _ = sns.boxplot(y='ActionLatency',x='LeagueIndex',data=starcraft) plt.show() ###Output _____no_output_____ ###Markdown The above figures confirm what we suspected, those stats that have a meaningful impact on Number of PACs also have a similar impact on Leage Index. This seems to suggest that to increase in league rating, a player should be taking more actions and moving their camera around the map more frequently and assigning more units to hotkeys. However these gaps in stats appear to get more extreme beyond League Index 4, lets subset our data and see if there are higher correlations for other categories at lower ranks. ###Code bad_craft = starcraft[starcraft['LeagueIndex'] <= 4] bad_craft.shape sns.heatmap(data=bad_craft.corr()) bad_craft.corr() ###Output _____no_output_____ ###Markdown We can see that in general our correlations have moved towards 0, this is expected as we have less variation in league index. Due to this expected decrease, any categories with correlation numbers that increased are worth exploring deeper. In this case, total hours and complex units made. We will plot them as bar plots across all 7 league indexes below. ###Code _ = sns.barplot(y='TotalHours',x='LeagueIndex',data=starcraft,ci=None) plt.show() _ = sns.barplot(y='ComplexUnitsMade',x='LeagueIndex',data=starcraft,ci=None) plt.show() ###Output _____no_output_____
code/EDA/1.EDA_Session.ipynb
###Markdown Session : 분석기간(18.04~18.09)내 상품구매한 방문자의 세션에 관한 정보- 비회원 / 수집과정에서 누락된 정보 등은 제외되었다고 함. - CLNT_ID : 방문자의 쿠키하나에 부여된 고유 ID (브라우저, 기기가 다르면 ID도 다름) - SESS_ID : 세션 ID, 하나의 CLNT_ID에 여러 세션 ID 발급가능 - SESS_SEQ : 세션 일련번호, 해당 SESS_ID가 CLNT_ID의 몇번째 세션인지 - SESS_DT : 세션일자 (YYYYMMDD 형식) - TOT_PAG_VIEW_CT : 총 페이지조회건수, 세션내 총 페이지 뷰 수, 해당 페이지에 몇번 들어왔냐 - TOT_SESS_HR_V : 총 세션 시간값(단위: 초), 세션 내 총 시간, 해당 페이지에 머무른 시간..? - DVC_CTG_NM : 기기유형, desktop=1 / mobile=2 / tablet=3 - ZON_NM : 지역 대분류(세션기준), 광역단위 - CITY_NM : 지역 중분류(세션기준), 도시단위 ###Code sess = pd.read_csv("../../data/05_Session.csv") sess.tail() for i in sess.columns[2:]: print("column : {}, unique count : {}, data-type : {}".format(i, sess[i].nunique(), sess[i].dtype)) print(sess[i].unique()) print() sess[sess.CLNT_ID==3573758] ###Output _____no_output_____ ###Markdown 궁금증- 세션ID의 순서를 알 수 있다면, SESS_SEQ=37일때 1~37까지 나와야하는거 아닌가? 중간에 없는건 뭐지? $\rightarrow$ 상품구매한 세션만 기록된 것임(해결)- 연령대별로 어떤 기기에서 접속했는지 custom과 조인해보면 알 수 있지 않을까?, 지역도 마찬가지!- SESS_DT를 가지고 구매주기를 계산해볼 수 있지 않을까?- 위 테이블에서 약 1시간(3,711초)동안 총 26개의 페이지를 보고 구매에 이르렀다는 말인가? - SESS_SEQ가 의미가 있을까? 필요할까? ###Code # TOT_PAG_VIEW_CT, TOT_SESS_HR_V 분포를 보자 # TOT_PAG_VIEW_CT 내에 NaN값 처리 어떻게 할 것 인가? # TOT_SESS_HR_V의 type 형변환 object --> float(NaN 때문에) sess['TOT_SESS_HR_V'] = sess['TOT_SESS_HR_V'].map(lambda x: float(''.join(x.split(','))) if ',' in str(x) else float(x)) pd.options.display.float_format = '{:.2f}'.format sess[['TOT_PAG_VIEW_CT', 'TOT_SESS_HR_V']].describe() # NaN 처리 ###Output _____no_output_____
ipea/iterative-phase-estimation-algorithm.ipynb
###Markdown Iterative Phase Estimation SetupFirst, make sure that you have the latest version of Qiskit installed. To upgrade your Qiskit package, run the following command:```bashpip install --upgrade qiskit```Get an API key from IonQ. This will be used by the IonQ provider inside Qiskit to submit circuits to the IonQ platform.After securing an API key, install the python package `qiskit_ionq` using `pip`:```bashpip install qiskit_ionq```(IonQ's adapter for Qiskit is currently in private beta -- your feedback is welcomed!) (Optional) Extra DependenciesSome examples use additional Python dependencies; please make sure to `pip install` them as needed.Dependencies:* `matplotlib`: To run `qiskit.visualization.plot_histogram`.**NOTE**: The provider expects an API key to be supplied via the `token` keyword argument to its constructor. If no token is directly provided, the provider will check for one in the `QISKIT_IONQ_API_TOKEN` environment variable.Now that the Python package has been installed, you can import and instantiate the provider: ###Code #import Aer here, before calling qiskit_ionq_provider from qiskit import Aer from qiskit_ionq import IonQProvider #Call provider and set token value provider = IonQProvider(token='my token') ###Output _____no_output_____ ###Markdown The `provider` instance can now be used to create and submit circuits to IonQ. Backend TypesThe IonQ provider supports two backend types:* `ionq_simulator`: IonQ's simulator backend.* `ionq_qpu`: IonQ's QPU backend.To view all current backend types, use the `.backends` property on the provider instance: ###Code provider.backends() ###Output _____no_output_____ ###Markdown Why do I care about the Iterative Phase Estimation Algorithm (IPEA)? What can you do with it?Recall your linear algebra knowledge. More specifically, recall the concepts of eigenvalues and eigenvectors. Once you have these two notions solified, consider a unitary operator $U$ and a state $\left|\psi\right>$ such that the following relation is true : $$U\left|\psi\right>=e^{2\pi i\phi}\left|\psi\right>$$In other words, $U$ has eigenvector $\left|\psi\right>$ with corresponding eigenvalue $e^{2\pi i\phi}$. $\phi$ is a real number, and it is our job to find out what its value is. That's it! That's the problem we are trying to solve. And we will solve it using this algorithm known as Iterative Phase Estimation. Okay, what is this algorithm and how do we use it to solve this problem?At this point, I will provide a peripheral explanation of what the algorithm essentially does. The detailed explanation will follow as I actually code the algorithm. Before I give the basic summary though, keep the following point in mind - IMPORTANT : We assume that $\phi$, the value we are trying to find, can be expressed as $\frac{\phi_1}{2} + \frac{\phi_2}{4} + \frac{\phi_3}{8} + ... + \frac{\phi_n}{2^n}$. Here each of the $\phi_k$'s are either 0 or 1. Another way of thinking about this key assumption is that $\phi_1\phi_2\phi_3...\phi_n$ is the binary representation of $2^n\phi$ and $n$ is the number of iterations that we do Now for the general working : as the name of the algorithm suggests, there will be several iterations. Consider iteration k. The goal of this iteration will be to determine $\phi_{n-k+1}$ in the expression for $\phi$ above. To do this, the algorithm uses a circuit with two qubits : an auxiliary qubit and a main qubit. What will end up happening in every iteration is that $U$ will be acted on the main qubit in such a way that the auxiliary qubit's state, upon measurement, will collapse into $\phi_{n-k+1}$. Isn't there the standard Quantum Phase Estimation algorithm that does the same thing with just one iteration?Before we start, let me answer this good question. Yes, there is the standard Quantum Phase Estimation algorithm (often shortened to QPE) that solves this very problem with one iteration. Why aren't we using that algorithm if it will get the job done faster?Well, there is a trade-off one has to consider while choosing between the two algorithms. Essentially, the QPEA uses a larger circuit with more qubits, and with more qubits comes more cost in the form of hardware and noise. In contrast, the IPEA just uses two qubits (auxiliary and main). But, of course, where this algorithm loses out is in the number of iterations.Okay, now let us see how the IPEA works exactly! We are going to try to deduce the phase of the T-gate (our $U = T$). This gate has the following matrix - $$T = \begin{bmatrix}1 & 0\\0 & e^{i\frac{\pi}{4}}\end{bmatrix}$$which clearly tells you that the state $\left|1\right>$ is an eigenstate with eigenvalue $e^{i\frac{\pi}{4}}$. Let's see how our algorithm tells us this. Keep in mind that $\phi = \frac{1}{8}$ in this case because the algorithm gives us $\phi$ in the expression $2\pi i \phi$, and for the T-gate, $2\pi i \phi = i\frac{\pi}{4} \implies \phi = \frac{1}{8}$ First, we import every library/module that will be needed. ###Code from qiskit import * #import qiskit.aqua as aqua #from qiskit.quantum_info import Pauli #from qiskit.aqua.operators.primitive_ops import PauliOp from qiskit.circuit.library import PhaseEstimation from qiskit import QuantumCircuit from matplotlib import pyplot as plt import numpy as np from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry.drivers import Molecule ###Output /Users/abhay/opt/anaconda3/lib/python3.8/site-packages/qiskit/chemistry/__init__.py:170: DeprecationWarning: The package qiskit.chemistry is deprecated. It was moved/refactored to qiskit_nature (pip install qiskit-nature). For more information see <https://github.com/Qiskit/qiskit-aqua/blob/main/README.md#migration-guide> warn_package('chemistry', 'qiskit_nature', 'qiskit-nature') ###Markdown Now, we write the function `buildControlledT`. As the name suggests, it creates our T-gate and applies it in that special way I alluded to earlier in the basic summary of the IPEA. An even simpler way of describing this function would be that this function performs one iteration of the IPEA. Let's go into more detail and take a look at what happens within one iteration (this description is meant not only to delineate the working of the IPEA, but also to help tracing the code below easier. I highly suggest you read each bullet point, and then find in the code below where this is being implemented before moving on to the next point)- - The first thing this function does is create and initialise the circuit. In every iteration, the auxiliary qubit ($q_0$ in our case) will be initialized in the state $\left |+\right> = \frac{1}{\sqrt{2}}(\left|0\right> + \left|1\right>)$, and the other qubit ($q_1$) will be initialised in the state $\left|\psi\right>$ (this is the eigenvector of $U$ from above; in our case, $U=T$ and $\left|\psi\right>=\left|1\right>$). So at this point, our collective state is $\left |+\right> \otimes \left|\psi\right>$ with $\left|\psi\right> = \left|1\right>$ in our case- It then applies the CT (controlled-T) gate to the circuit 2m times, where the input m is a number that will range from 0 to $n - 1$, where $n$ is the index of the last $\phi_k$ in the expression $\phi = \frac{\phi_1}{2} + \frac{\phi_2}{4} + \frac{\phi_3}{8} + ... + \frac{\phi_n}{2^n}$. In the kth iteration, we will apply the T-gate $2^{n-k}$ times. The CT gate functions exactly like a CNOT gate - the only difference is that if the control qubit, in this case always $q_0$, is in state $\left|1\right>$, the $T$ gate will be applied to the target qubit instead of the $X$ gate. The target qubit in our case will be $q_1$. Now, let's see what happens when this gate is applied 2m times in terms of the quantum mechanics: We were in the state $\left |+\right> \otimes \left|\psi\right> = \frac{1}{\sqrt{2}}(\left|0\right> + \left|1\right>)\otimes \left|\psi\right>$. Let's see what happens to that state for different values of m - If m = 0, then the T gate is applied $2^0 = 1$ time. So $\frac{1}{\sqrt{2}}(\left|0\right> + \left|1\right>)\otimes \left|\psi\right>$ becomes $\frac{1}{\sqrt{2}}(\left|0\right> \otimes \left|\psi\right>+ \left|1\right> \otimes e^{2\pi i\phi}\left|\psi\right>) = \frac{1}{\sqrt{2}}(\left|0\right> + e^{2\pi i\phi}\left|1\right>) \otimes \left|\psi\right> = \frac{1}{\sqrt{2}}(\left|0\right> + e^{2\pi i(\frac{\phi_1}{2} + \frac{\phi_2}{4} + \frac{\phi_3}{8} + ... + \frac{\phi_n}{2^n})}\left|1\right>) \otimes \left|\psi\right>$ If m = 1, $\frac{1}{\sqrt{2}}(\left|0\right> + \left|1\right>)\otimes \left|\psi\right>$ becomes $\frac{1}{\sqrt{2}}(\left|0\right> \otimes \left|\psi\right>+ \left|1\right> \otimes e^{2\times2\pi i\phi}\left|\psi\right>) = \frac{1}{\sqrt{2}}(\left|0\right> + e^{2\times2\pi i\phi}\left|1\right>) \otimes \left|\psi\right> = \frac{1}{\sqrt{2}}(\left|0\right> + e^{2\pi i(\phi_1 + \frac{\phi_2}{2} + \frac{\phi_3}{4} + ... + \frac{\phi_n}{2^{n-1}})}\left|1\right>) \otimes \left|\psi\right> = \frac{1}{\sqrt{2}}(\left|0\right> + e^{2\pi i\phi_1}e^{2\pi i(\frac{\phi_2}{2} + \frac{\phi_3}{4} + ... + \frac{\phi_n}{2^{n-1}})}\left|1\right>) \otimes \left|\psi\right> = \frac{1}{\sqrt{2}}(\left|0\right> + e^{2\pi i(\frac{\phi_2}{2} + \frac{\phi_3}{4} + ... + \frac{\phi_n}{2^{n-1}})}\left|1\right>) \otimes \left|\psi\right>$ If m = n - 1, $\frac{1}{\sqrt{2}}(\left|0\right> + \left|1\right>)\otimes \left|\psi\right>$ becomes $\frac{1}{\sqrt{2}}(\left|0\right> \otimes \left|\psi\right>+ \left|1\right> \otimes e^{2^{n-1}\times2\pi i\phi}\left|\psi\right>) = \frac{1}{\sqrt{2}}(\left|0\right> + e^{2^{n-1}\times2\pi i\phi}\left|1\right>) \otimes \left|\psi\right> = \frac{1}{\sqrt{2}}(\left|0\right> + e^{2\pi i(2^{n-2}\phi_1 + 2^{n-3}\phi_2 + 2^{n-4}\phi_3 + ... + 2^{-1}\phi_n})\left|1\right>) \otimes \left|\psi\right> = \frac{1}{\sqrt{2}}(\left|0\right> + e^{2^{n-2}\times2\pi i\phi_1}e^{2^{n-3}\times2\pi i\phi_2}...e^{2^{-1}\times2\pi i\phi_n}\left|1\right>) \otimes \left|\psi\right> = \frac{1}{\sqrt{2}}(\left|0\right> + e^{2^{-1}\times2\pi i\phi_n}\left|1\right>) \otimes \left|\psi\right> $- The function then performs a phase correction. Why do we need this phase correction? Well, first note the following important point, and then we'll get back to that question : if we apply the T-gate to the main qubit $2^{n - 1}$ times, as we will in the first iteration of the IPEA, then m = $n-1$, and as shown above, our circuit's quantum state will be $\frac{1}{\sqrt{2}}(\left|0\right> + e^{2^{-1}\times2\pi i\phi_n}\left|1\right>) \otimes \left|\psi\right>$. In this iteration, our goal is to find $\phi_n$. If $\phi_n = 0$, then this state is just $\left |+\right> \otimes \left|\psi\right>$, and if $\phi_n = 1$, then it's $\left |-\right> \otimes \left|\psi\right>$. This means that if we measure the auxiliary qubit in the x-basis (the basis {$\left |-\right>, \left |+\right>$}), the auxiliary qubit will become $\phi_n$. This is exactly what the "inverse QFT" in the code below is. It is using a Hadamard gate to convert the state $\frac{1}{\sqrt{2}}(\left|0\right> + e^{2^{-1}\times2\pi i\phi_n}\left|1\right>) \otimes \left|\psi\right>$ to either $\left |1\right> \otimes \left|\psi\right>$ if $\phi_n = 1$ (in which case measuring qubit 0 will yield 1), or $\left |0\right> \otimes \left|\psi\right>$ if $\phi_n = 0$ (in which case measuring qubit 0 will yield 0).Now, back to the original question - why do we need this phase correction? Imagine we apply the T-gate to the main qubit not $2^{n - 1}$ times, but $2^{n - 2}$ times, as we will in the second iteration of the IPEA. Note that in this iteration, our goal will be to find $\phi_{n-1}$. The state will go from $\frac{1}{\sqrt{2}}(\left|0\right> + \left|1\right>)\otimes \left|\psi\right>$ to $\frac{1}{\sqrt{2}}(\left|0\right> + e^{2\pi i (\frac{\phi_{n-1}}{2} + \frac{\phi_n}{4})}\left|1\right>)\otimes \left|\psi\right>$. But ideally, we would like the state to be $\frac{1}{\sqrt{2}}(\left|0\right> + e^{2\pi i (\frac{\phi_{n-1}}{2})}\left|1\right>)\otimes \left|\psi\right>$. That's because if that were the state, all it would take is a simple measurement in the x-basis for the auxiliary qubit to collapse to whatever value $\phi_{n-1}$ held (as shown above in the case of the first iteration). So, how do we get the state of the circuit into the ideal state? We can just apply the rotation operator $R_z(\theta)$ with $\theta = \frac{-2\pi\phi_n}{4}$. You can work out the effect of applying this operator to qubit 0. The state that will result will be $e^{i\frac{\pi\phi_n}{4}}\frac{1}{\sqrt{2}}(\left|0\right> + e^{2\pi i \frac{\phi_{n-1}}{2}}\left|1\right>)$. The overall phase can be ignored, and we have the ideal state. This is why we need the phase correction. To remove these unwanted phases and create the state to which only a measurement in the x-basis is necessary to complete the iteration. Generally speaking, for iteration k, $\theta = -2\pi\times(\frac{\phi_{n-k+2}}{4} + \frac{\phi_{n-k+3}}{8} + ... + \frac{\phi_n}{2^n})$- Finally, the function does this inverse Quantum Fourier Transform (QFT), which is nothing but a measurement in the Hadamard basis as described in previous bullet point. It then returns the circuit ready for execution on a quantum computer. ###Code def buildControlledT(p, m): # initialize the circuit qc = QuantumCircuit(2, 1) # Hardmard on ancilla, now in |+> qc.h(0) # initialize to |1> qc.x(1) # applying T gate to qubit 1 for i in range(2**m): qc.cp(np.pi/4, 0, 1) # phase correction qc.rz(p, 0) # inverse QFT (in other words, just measuring in the x-basis) qc.h(0) qc.measure([0],[0]) return qc ###Output _____no_output_____ ###Markdown The next function, as the name once again suggests, performs the IPEA algorithm. The above function just performed one iteration, and as you can see in the body of this function, there is a `for` loop in which `buildControlledT` is called, which implies that one iteration of this `for` loop represents one iteration of the IPEA. The `for` loop iterates k times (the input of the function). This tells us that the input k of the function signifies the number of iterations in the algorithm. But how many iterations do we want to feed in? Well, as long as $2^n\phi$ can be expressed in binary, we should be good. Remember that each iteration gives you one of the $\phi_k$'s (in particular, the kth iteration gives you $\phi_{n-k+1}$). This function does its iterations, and in each iteration, it is basically just creating the circuit with the two qubits, doing what it needs to do (the four bullet points above) to the circuit, running the circuit, recovering the result (the $\phi_k$ for that iteration), and appending it to the bits list. Once we get the bits, we can use the expression $\phi = \frac{\phi_1}{2} + \frac{\phi_2}{4} + \frac{\phi_3}{8} + ... + \frac{\phi_n}{2^n}$ to find $\phi$. ###Code def IPEA(k, backend_string): # get backend if backend_string == 'qpu': backend = provider.get_backend('ionq_qpu') elif backend_string == 'qasm': backend = Aer.get_backend('qasm_simulator') # bits bits = [] # phase correction phase = 0.0 # loop over iterations for i in range(k-1, -1, -1): # construct the circuit qc = buildControlledT(phase, i) # run the circuit job = execute(qc, backend) if backend_string == 'qpu': from qiskit.providers.jobstatus import JobStatus import time # Check if job is done while job.status() is not JobStatus.DONE: print("Job status is", job.status() ) time.sleep(60) # grab a coffee! This can take up to a few minutes. # once we break out of that while loop, we know our job is finished print("Job status is", job.status() ) print(job.get_counts()) # these counts are the “true” counts from the actual QPU Run # get result result = job.result() # get current bit this_bit = int(max(result.get_counts(), key=result.get_counts().get)) print(result.get_counts()) bits.append(this_bit) # update phase correction phase /= 2 phase -= (2 * np.pi * this_bit / 4.0) return bits ###Output _____no_output_____ ###Markdown If you have made it this far, then you are doing very well! This algorithm is complicated. Good job! The final function that we will have to define is `eig_from_bits`, which will take in the list of $\phi_k$'s that the above function will return, and return the eigenvalue associated with $\left|\psi\right>$ ###Code def eig_from_bits(bits): eig = 0. m = len(bits) # loop over all bits for k in range(len(bits)): eig += bits[k] / (2**(m-k)) #eig *= 2*np.pi return eig ###Output _____no_output_____ ###Markdown You have now understood the IPEA! Let's actually perform it and see if we can get our $\frac{1}{8}$ ###Code # perform IPEA backend = 'qasm' bits = IPEA(5, backend) print(bits) # re-construct energy eig = eig_from_bits(bits) print(eig) ###Output {'0': 1024} {'0': 1024} {'1': 1024} {'0': 1024} {'0': 1024} [0, 0, 1, 0, 0] 0.125 ###Markdown It worked! Let's see if we can understand the effect of the choice of input `n` on the result obtained. ###Code #perform IPEA with different values of n n_values = [] eig_values = [] for i in range(1, 8): n_values.append(i) # perform IPEA backend = 'qasm' bits = IPEA(i, backend) # re-construct energy eig = eig_from_bits(bits) eig_values.append(eig) n_values, eig_values = np.array(n_values), np.array(eig_values) plt.plot(n_values, eig_values) plt.xlabel('n (bits)', fontsize=15) plt.ylabel(r'$\phi$', fontsize=15) plt.title(r'$\phi$ vs. n', fontsize=15) ###Output {'1': 147, '0': 877} {'1': 521, '0': 503} {'1': 147, '0': 877} {'1': 1024} {'0': 1024} {'0': 1024} {'0': 1024} {'1': 1024} {'0': 1024} {'0': 1024} {'0': 1024} {'0': 1024} {'1': 1024} {'0': 1024} {'0': 1024} {'0': 1024} {'0': 1024} {'0': 1024} {'1': 1024} {'0': 1024} {'0': 1024} {'0': 1024} {'0': 1024} {'0': 1024} {'0': 1024} {'1': 1024} {'0': 1024} {'0': 1024} ###Markdown Now, let's try the same thing on actual IonQ hardware ###Code # perform IPEA backend = 'qpu' bits = IPEA(5, backend) print(bits) # re-construct energy eig = eig_from_bits(bits) print(eig) #perform IPEA with different values of n n_values = [] eig_values = [] for i in range(1, 8): n_values.append(i) # perform IPEA backend = 'qpu' bits = IPEA(i, backend) # re-construct energy eig = eig_from_bits(bits) eig_values.append(eig) n_values, eig_values = np.array(n_values), np.array(eig_values) plt.plot(n_values, eig_values) plt.xlabel('n (bits)', fontsize=15) plt.ylabel(r'$\phi$', fontsize=15) plt.title(r'$\phi$ vs. n', fontsize=15) ###Output _____no_output_____
m3_presentation.ipynb
###Markdown We would like to work with a prediction / classification problem. We are interested in seeing which font color to use on different background colors (in RGB values).Say we choose a specific color like this one, we would like to make a model which can predict which font type is best suited for it in regards to it's luminence (we are only working with white or black font).![alt text](https://i.imgur.com/JG2DfkA.png)There is a formula for solving this problem. The correct font color for the background is decided by how bright the background color is and if background color luminance > 0.5 then you should choose a dark font and of course if the background color luminance < 0.5 you should choose a white font. This formula can be found on StackOverflow: https://stackoverflow.com/questions/1855884/determine-font-color-based-on-background-color1855903![Formel](https://i.imgur.com/IHgj5A9.png)But what if we didn't have this formula, or it simply hasn't been discovered yet? In that case, a neural network can help us. We therefore try to make a model, which can solve this prediction problem for us using a neural network. ![alt text](https://i.imgur.com/XDs6kM6.png)Credits for idea and illustrations go to: Thomas Nield (Youtube: https://www.youtube.com/watch?v=tAioWlhKA90) ###Code #First we imported the needed libraries import pandas as pd import numpy as np from keras.layers import Dense from keras.models import Sequential from keras.callbacks import EarlyStopping ###Output _____no_output_____ ###Markdown Here, we download our training dataset. ###Code # Download the color training dataset !wget https://raw.githubusercontent.com/thomasnield/kotlin_simple_neural_network/master/src/main/resources/color_training_set.csv predictors = pd.read_csv('color_training_set.csv') predictors.columns = ['r', 'g', 'b'] predictors.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 1344 entries, 0 to 1343 Data columns (total 3 columns): r 1344 non-null int64 g 1344 non-null int64 b 1344 non-null int64 dtypes: int64(3) memory usage: 31.6 KB ###Markdown As can be seen, the training dataset consists of 1344 different background colors in RGB values. We will use these to train our model.Next up, we define a function to calculate the optimal font color using the formula we described before. This will be used to classify which font color is optimal for each of our 1344 background colors.Of course, this is a bit of a cheat since we supposedly haven't discovered this formula yet, but the equivalent would be to manually classify each background color by hand. We simply do this to save time, yay for being lazy! 😏 ###Code # Predict the optimal shade using the formula. This function takes a list as its input. def FormulaicPredict(color): r = color[0] g = color[1] b = color[2] d = 0 l = 0 luminance = (0.299 * r + 0.587 * g + 0.114 * b)/255 if luminance > 0.5: d = 1 # bright background, black font l = 0 else: d = 0 # dark background, white font l = 1 return pd.Series([d,l]) ###Output _____no_output_____ ###Markdown We will now apply the above formula to each row in our training dataset. With this, we create a new DataFrame with the predictions for each background color. ###Code target = predictors.apply(FormulaicPredict, axis=1) target.columns = ['dark', 'light'] target.head() ###Output _____no_output_____ ###Markdown We start building the architecture for our model, first we set up our model with the Sequential() function.We add our first layer using 3 nodes, using the 'relu' activation which is one of the most commonly used activation functions.![alt text](https://i.imgur.com/6xZdwAk.png)Here is a picture of some of the other activation functions just to give a understanding of how they work.![alt text](https://i.imgur.com/wz34AGD.png)Here we see a picture of how the idea of our different layers of the model should work with the relu activation function, we take our nodes value and they are multiplied by the weights and added in the next layer and then again multiplied and added for a sum. This should give the network the value to predict which font color to use based on which background color it see's. These weights can change over time as the model get's more information. ###Code np.random.seed(10) # Set to 10 for a good result, 8 for a worse one model = Sequential() model.add(Dense(3, activation='relu', input_dim=3)) model.add(Dense(3, activation='relu')) model.add(Dense(2, activation='sigmoid')) # Compile the model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) early_stopping_monitor = EarlyStopping(patience=3) # Fit the model history = model.fit(predictors, target, validation_split=0.3, epochs=250, callbacks=[early_stopping_monitor]) model.summary() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_85 (Dense) (None, 3) 12 _________________________________________________________________ dense_86 (Dense) (None, 3) 12 _________________________________________________________________ dense_87 (Dense) (None, 2) 8 ================================================================= Total params: 32 Trainable params: 32 Non-trainable params: 0 _________________________________________________________________ ###Markdown Let's plot the results of our trained model. Here we plot the accuracy and loss over time. ###Code import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn') # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() ###Output _____no_output_____ ###Markdown There is room for optimizing the model, where you can think about different things. How many layers are needed, how many nodes are needed in every layer and which activation function should you use.You can also tweek the model on learning rate and how to measure for error.Let's quickly try predicting with a black background color. ###Code bgcolor = pd.DataFrame([[0,0,0]]) prediction = model.predict(bgcolor) prediction ###Output _____no_output_____ ###Markdown The left value is dark, the right value is light. Ideally, the preferred font color would be 1, but it would require a lot of optimization to reach that, as that would be a perfectly trained model. To evaluate which font color we should go with, we simply check which of these values is the highest instead. Interactive prediction The following code won't run without Jupyter Notebook since we use some features specific to that. ###Code from IPython.core.display import display, HTML def predictColor(r, g, b): bgcolor = pd.DataFrame([[r,g,b]]) bgcolor_hex = '#%02x%02x%02x' % (r, g, b) black = '#000' white = '#fff' fontcolor = '' prediction = model.predict(bgcolor) if prediction[0][0] > prediction[0][1]: fontcolor = black else: fontcolor = white display(HTML('<div style="background-color:{0}; color:{1};">SOME TEXT</div>'.format(bgcolor_hex, fontcolor))) from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets colorpicker = widgets.ColorPicker( concise=False, description='Pick a color', value='blue', disabled=False ) display(colorpicker) out = widgets.Output() display(out) @out.capture() def on_change(change): if change['type'] == 'change' and change['name'] == 'value': h = colorpicker.value rgb = tuple(int(h.lstrip('#')[i:i+2], 16) for i in (0, 2 ,4)) predictColor(rgb[0], rgb[1], rgb[2]) colorpicker.observe(on_change) ###Output _____no_output_____
jupyter_notebooks/on_model.ipynb
###Markdown ON Model ###Code import numpy as np import pandas as pd from pystatplottools.pdf_env.loading_figure_mode import loading_figure_mode fma, plt = loading_figure_mode(develop=True) # develop=False will export the generated figures as pngs into "./data/RectangleData" plt.style.use('seaborn-dark-palette') if 'root_dir' not in locals(): # Navigate to simulations/ONModel directory as simulation root directory import os os.chdir("../simulations/ONModel") root_dir = os.getcwd() # To be able to compute custom measures import sys sys.path.append("./../../python_scripts") mcmc_model_dir = "ONModelMetropolis/" mcmc_data_dir = root_dir + "/data/" + mcmc_model_dir mcmc_results_dir = root_dir + "/results/" + mcmc_model_dir data_dir = root_dir + "/data/" + mcmc_model_dir results_dir = root_dir + "/results/" + mcmc_model_dir ###Output _____no_output_____ ###Markdown MCMC Results Expectation Values ###Code from mcmctools.modes.expectation_value import load_expectation_value_results expectation_values = load_expectation_value_results(files_dir="ONModelMetropolis") # Insert Kappa as column (as floating number) expectation_values.insert(0, "Kappa", expectation_values.index.values.astype(np.float)) expectation_values = expectation_values.sort_values("Kappa") expectation_values # Computation of the total mean and of the two point correlator total_mean = expectation_values.loc[:, ("ExpVal", "Mean", slice(None))].values.mean(axis=1) mean = expectation_values.loc[:, ("ExpVal", "Mean", slice(None))].values two_point_correlator = expectation_values["ExpVal", "TwoPointCorrelation", ""].values - np.power(mean, 2.0).sum(axis=1) fig, axes = fma.newfig(1.4, ncols=4, figsize=(15, 4)) axes[0].plot(expectation_values["Kappa"], total_mean, "o-") axes[0].set_xlabel("Kappa") axes[0].set_ylabel("Mean") axes[1].plot(expectation_values["Kappa"], expectation_values["ExpVal", "SecondMoment", ""], "o-") axes[1].set_xlabel("Kappa") axes[1].set_ylabel("SecondMoment") axes[2].plot(expectation_values["Kappa"], expectation_values["ExpVal", "Energy", ""], "o-") axes[2].set_xlabel("Kappa") axes[2].set_ylabel("Energy") axes[3].plot(expectation_values["Kappa"], two_point_correlator, "o-") axes[3].set_xlabel("Kappa") axes[3].set_ylabel("Two Point Correlator") plt.tight_layout() fma.savefig(results_dir, "expectation_values") ###Output _____no_output_____ ###Markdown Configurations as Pytorch Dataset We show how the mcmc configurations can be stored and loaded as a .pt file.(See also python_scripts/loading_configurations.py and python_scripts/pytorch_data_generation.py) Preparation ###Code data_generator_args = { # ConfigDataGenerator Args "data_type": "target_param", # Args for ConfigurationLoader "path": mcmc_data_dir, "total_number_of_data_per_file": 10000, "identifier": "expectation_value", "running_parameter": "kappa", "chunksize": 100 # If no chunksize is given, all data is loaded at once } # Prepare in memory dataset from pystatplottools.pytorch_data_generation.data_generation.datagenerationroutines import prepare_in_memory_dataset from mcmctools.pytorch.data_generation.datagenerationroutines import data_generator_factory prepare_in_memory_dataset( root=data_dir, batch_size=89, data_generator_args=data_generator_args, data_generator_name="BatchConfigDataGenerator", data_generator_factory=data_generator_factory ) ###Output Random seed is set by np.random.seed() Write new data_config into file - Data will be generated based on the new data_config file ###Markdown Generating and Loading the Dataset ###Code # Load in memory dataset from pystatplottools.pytorch_data_generation.data_generation.datagenerationroutines import load_in_memory_dataset # The dataset is generated and stored as a .pt file in the data_dir/data directory the first time this function is called. Otherwise the .pt is loaded. data_loader = load_in_memory_dataset( root=data_dir, batch_size=128, data_generator_factory=data_generator_factory, slices=None, shuffle=True, num_workers=0, rebuild=False # sample_data_generator_name="ConfigDataGenerator" # optional: for a generation of new samples ) # Load training data for batch_idx, batch in enumerate(data_loader): data, target = batch # print(batch_idx, len(data)) ###Output Processing... Random seed is set by np.random.seed() Done! ###Markdown Inspection of the Dataset - Sample Visualization ###Code from pystatplottools.visualization import sample_visualization config_dim = (8, 8) # Dimension of the data num_std=1 # Random samples config, label = data_loader.dataset.get_random_sample() batch, batch_label = data_loader.dataset.get_random_batch(108) # Single Sample sample_visualization.fd_im_single_sample(sample=config, label=label, config_dim=config_dim, num_std=num_std, fma=fma, filename="single_sample", directory=results_dir, figsize=(10, 4)); # Batch with labels sample_visualization.fd_im_batch(batch, batch_labels=batch_label, num_samples=25, dim=(5, 5), config_dim=config_dim, num_std=num_std, fma=fma, filename="batch", directory=results_dir, width=2.3, ratio=1.0, figsize=(12, 12)); # Batch grid sample_visualization.fd_im_batch_grid(batch, config_dim=config_dim, num_std=num_std, fma=fma, filename="batch_grid", directory=results_dir); ###Output _____no_output_____
examples/KnativeModOps/manage_model_publish_privateDockerdest.ipynb
###Markdown This notebook helps manage SAS Model publish Destinations. Handles Private Docker destinations. This cell sets default values ###Code import sys sys.path.append('..') import mmAuthorization import getpass import requests import json, os, pprint import base64 ###Output _____no_output_____ ###Markdown Following defines few methods and config values for later resuse ###Code def list_destinations(destination_url, auth_token): headers = { mmAuthorization.AUTHORIZATION_HEADER: mmAuthorization.AUTHORIZATION_TOKEN + auth_token } print("List the destinations...") try: response = requests.get(destination_url, headers=headers,verify=False) jsondata = response.json() destinations = jsondata['items'] if len(destinations) > 0: for destination in destinations: print(destination["id"]) print(destination["name"]) print("===========") except: raise RuntimeError("ERROR: Could not get a destination list.") public_ip = "PUBLIC_IP" host_name = "fsbuwlm.fsbudev-openstack-k8s.unx.sas.com" port = "PORT" host_url="https://" + host_name destination_url = host_url + "/modelPublish/destinations/" modelrepo_url = host_url + "/modelRepository/models/" publishmodel_url = host_url + "/modelPublish/models" domains_url = host_url + "/credentials/domains" print(host_url) ###Output _____no_output_____ ###Markdown Following gets Auth token ###Code mm_auth = mmAuthorization.mmAuthorization("myAuth") admin_userId = 'whoami' user_passwd = getpass.getpass() admin_auth_token = mm_auth.get_auth_token(host_url, admin_userId, user_passwd) credential_admin_headers = { mmAuthorization.AUTHORIZATION_HEADER: mmAuthorization.AUTHORIZATION_TOKEN + admin_auth_token } credential_domain_headers = { "If-Match":"false", "Content-Type":"application/json", mmAuthorization.AUTHORIZATION_HEADER: mmAuthorization.AUTHORIZATION_TOKEN + admin_auth_token } credential_user_headers = { "If-Match":"false", "Content-Type":"application/json", mmAuthorization.AUTHORIZATION_HEADER: mmAuthorization.AUTHORIZATION_TOKEN + admin_auth_token } destination_harbor_headers = { "If-Match":"false", "Content-Type":"application/vnd.sas.models.publishing.destination.privatedocker+json", mmAuthorization.AUTHORIZATION_HEADER: mmAuthorization.AUTHORIZATION_TOKEN + admin_auth_token } print(admin_auth_token) ##### create Domain domain_name = "fsbu_domain_1" description = 'fsbu domain 1' my_domain_url = domains_url + "/" + domain_name domain_attrs = { "id":domain_name, "type":"base64", "description": description } domain = requests.put(my_domain_url, data=json.dumps(domain_attrs), headers=credential_domain_headers, verify=False) print(domain) pprint.pprint(domain.json()) ### Create credential #### user_credential_name = admin_userId my_credential_url = my_domain_url + "/users/" + user_credential_name userId = "fsbu_modeluser" password = "fsbu_modeluser" encoded_userId = str(base64.b64encode(userId.encode("utf-8")), "utf-8") encoded_password = str(base64.b64encode(password.encode("utf-8")), "utf-8") credential_attrs = { "domainId":domain_name, "identityType":"user", "identityId":user_credential_name, "domainType":"base64", "properties":{"dockerRegistryUserId":encoded_userId}, "secrets":{"dockerRegistryPasswd":encoded_password} } #credential_attrs = { # "domainId":domain_name, # "identityType":"user", # "identityId":user_credential_name, # "domainType":"base64" #} credential = requests.put(my_credential_url, data=json.dumps(credential_attrs), headers=credential_user_headers,verify=False) print(credential) pprint.pprint(credential.json()) # Creates a new destination, expecting a response code of 201. dest_name = "fsbu_dest_docker_1" domainName = "fsbu_domain_1" baseRepoUrl = "docker-repo.company.com:5003" # no need of docker host in 1.1.4 since we have kaniko. destination_attrs = { "name":dest_name, "destinationType":"privateDocker", "properties": [{"name": "credDomainId", "value": domainName}, {"name": "baseRepoUrl", "value": baseRepoUrl} ] } destination = requests.post(destination_url, data=json.dumps(destination_attrs), headers=destination_harbor_headers, verify=False) print(destination) list_destinations(destination_url, admin_auth_token) deletedURL = destination_url + dest_name destination = requests.delete(deletedURL, headers=credential_admin_headers) print(deletedURL) print(destination) pprint.pprint(destination.json()) ###Output _____no_output_____
project1_main.ipynb
###Markdown Code of "Things you need to know to raise your Airbnb review score in Seattle" projectThree business questions investigated by this code: Question 1: are the review scores affected by how the hosts described their Airbnbs? Question 2: are the review scores affected by how the hosts described the neighborhood of their Airbnbs? Question 3: are the review scores affected by objective factors of the listings like price, room type, bed type, etc.? ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error from collections import defaultdict %matplotlib inline # import dataset df_listings = pd.read_csv('./listings.csv') # run this cell to take a look at the first 5 rows of the data df_listings.head() ###Output _____no_output_____ ###Markdown The whole project cares about what affects the **rating scores** of a Airbnb listing, so the first step is deleting the listings with missing values in **'review_scores_rating'**. ###Code df_new = df_listings.dropna(subset = ['review_scores_rating'], axis = 0) # run this cell to take a look at the ditribution of the rating scores of all the Airbnb listings in Seattle. df_new.review_scores_rating.plot(kind = 'hist'); plt.title('Review scores distribution'); plt.ylabel('Counts'); plt.xlabel('Scores') # uncomment the following line if you want to save the figure # plt.savefig('Rating_distribution.png', dpi = 100) ###Output _____no_output_____ ###Markdown Comparing high rating score listings vs low rating score listingsI will first compare whether the Airbnb listings have higher rating scores are different from those with lower scores in some subjective factors -- such as how they describe the listing and the neighborhood (Question 1 & 2). To have two groups to compare, I extract those listings with higher scores (> 75% percentile) and lower scores(< 25% percentile). Solving Question 1To simplify the question, I will only focus on the **adjectives** used in the descriptions. By looking through the descriptions in column **'description'** (a desciption of the Airbnb listing), I got some possible adjectives listing in the following variable **possible_adj**. ###Code # We don't have NaN value in the 'description' variable df_new.description.isnull().sum() # separate data directly y = df_new.review_scores_rating df1_high = df_new[y > np.percentile(y,75)] df1_low = df_new[y < np.percentile(y,25)] possible_adj = ['charming', 'private', 'elegant', 'cozy', 'comfortable', 'clean', 'wonderful', 'beautiful', 'modern', 'great', 'functional', 'fresh', 'close', 'historic', 'quiet', 'gorgeous', 'safe', 'convenient', 'lovely', 'vintage', 'amazing', 'walkable', 'adorable', 'bright', 'light', 'new', 'spacious', 'large', 'desirable', 'popular', 'special', 'fantastic', 'fabulous'] ###Output _____no_output_____ ###Markdown Here I use (modify) a code from Udacity class to count the number of above words showing in a column of a dataframe. ###Code def count_word(df, col1, col2, look_for): ''' Modified based on code from Udacity Data Scientist Nanodegree Lession 1. INPUT: df - the pandas dataframe you want to search col1 - the column name you want to look through col2 - the column you want to count values from look_for - a list of strings you want to search for in each row of df[col1] OUTPUT: new_df - a dataframe of each look_for with the count of how often it shows up ''' new_df = defaultdict(int) #loop through list of ed types for val in look_for: #loop through rows for idx in range(df.shape[0]): #if the ed type is in the row add 1 if val in df[col1][idx].lower(): new_df[val] += int(df[col2][idx]) new_df = pd.DataFrame(pd.Series(new_df)).reset_index() new_df.columns = [col1, col2] new_df.sort_values('count', ascending=False, inplace=True) return new_df ###Output _____no_output_____ ###Markdown The following function preprocess the dataframe you want to use and count the words (e.g. adjectives) of interest by calling the **count_word** function. ###Code def get_count(df, col = 'description', search_for = possible_adj): ''' Modified based on code from Udacity Data Scientist Nanodegree Lession 1. ''' df_group = df[col].value_counts().reset_index() df_group.rename(columns={'index': 'key_words', col: 'count'}, inplace=True) df_key_word = count_word(df_group, 'key_words', 'count', search_for) df_key_word.set_index('key_words', inplace = True) return df_key_word # plot out the adjective usage in high score listings and low score listings adj_high = get_count(df1_high) adj_low = get_count(df1_low) count_adj = pd.concat([adj_high, adj_low], axis=1, join='inner') ax1 = count_adj.plot.bar(legend = None, subplots=True, figsize = (10,10), grid = True) ax1[0].set_xlabel('adjectives', fontsize = 14) ax1[0].set_ylabel('Counts', fontsize = 14) ax1[0].set_title("High review score listings' adjectives usage in description", fontsize = 16); ax1[1].set_xlabel('adjectives', fontsize = 14) ax1[1].set_ylabel('Counts', fontsize = 14) ax1[1].set_title("Low review score listings' adjectives usage in description", fontsize = 16); # uncomment the following two lines to save figure #fig = ax1[0].get_figure() #fig.savefig('Description_difference.png', dpi = 100) ###Output _____no_output_____ ###Markdown Answer of Question 1It seems there is no significant difference in the adjective usage in the listing description between high rating score listings and low rating score listings -- at least the top three adjectives are the same between two groups. Only the word "modern" seems to be used more in high rating listings. Solving Question 2Next, I will explore whether the **description of the neighborhood** (column **'neighborhood_overview'**) affects the rating score. Similar to question 1, I will compare the adjectives usage between high rating listings and low rating listings. ###Code # There are NaN values in 'neighborhood_overview' df_new.neighborhood_overview.isnull().sum() # Delete rows with NaN in 'neighborhood_overview' df_q2 = df_new.dropna(subset = ['neighborhood_overview'], axis = 0) # separate data into high rating group and low rating group y_q2 = df_q2.review_scores_rating df2_high = df_q2[y_q2 > np.percentile(y_q2,75)] df2_low = df_q2[y_q2 < np.percentile(y_q2,25)] # use get_count funtion to sort out the adjective usage adj_high_neighbor = get_count(df2_high, col = 'neighborhood_overview') adj_low_neighbor = get_count(df2_low, col = 'neighborhood_overview') count_adj_neighbor = pd.concat([adj_high_neighbor, adj_low_neighbor], axis=1, join='inner') ax2 = count_adj_neighbor.plot.bar(legend = None, subplots=True, figsize = (10,10), grid = True) ax2[0].set_xlabel('adjectives', fontsize = 14) ax2[0].set_ylabel('Counts', fontsize = 14) ax2[0].set_title("High review score listings' adjectives usage in neighborhood description", fontsize = 16); ax2[1].set_xlabel('adjectives', fontsize = 14) ax2[1].set_ylabel('Counts', fontsize = 14) ax2[1].set_title("Low review score listings' adjectives usage in neighborhood description", fontsize = 16); # uncomment the following two lines to save figure #fig = ax2[0].get_figure() #fig.savefig('Neighborhood_description_difference.png', dpi = 100) ###Output _____no_output_____ ###Markdown Again, it seems the adjectives used in neighborhood overview between these two groups are not quite different from each other. And the top three adjectives are the same in the description of listings. Another factor of the description of neighborhood is nouns related to the entertainment and daily life, such as "shopping" and "coffee". By looking through the column **'neighborhood_overview'** I extract some daily life related nouns in the variable **possible_noun**. I will plot out the noun usage between high rating score listings and low rating score listings. ###Code possible_noun = ['restaurants', 'food', 'bars', 'coffee', 'cafes', 'shopping', 'grocery', 'mall', 'park', 'movie', 'music'] # use get_count funtion to sort out the noun usage n_high_neighbor = get_count(df2_high, col = 'neighborhood_overview', search_for = possible_noun) n_low_neighbor = get_count(df2_low, col = 'neighborhood_overview', search_for = possible_noun) count_n_neighbor = pd.concat([n_high_neighbor, n_low_neighbor], axis=1, join='inner') ax3 = count_n_neighbor.plot.bar(legend = None, subplots=True, figsize = (10,10), grid = True) ax3[0].set_xlabel('nouns', fontsize = 14) ax3[0].set_ylabel('Counts', fontsize = 14) ax3[0].set_title("High review score listings' nouns usage in neighborhood description", fontsize = 16); ax3[1].set_xlabel('nouns', fontsize = 14) ax3[1].set_ylabel('Counts', fontsize = 14) ax3[1].set_title("Low review score listings' nouns usage in neighborhood description", fontsize = 16); # uncomment the following two lines to save fig #fig = ax3[0].get_figure() #fig.savefig('Neighborhood_noun_difference.png', dpi = 100) ###Output _____no_output_____ ###Markdown It seems subjective factors did not affect the review score rating. The next step is to explore the objective factors. Solving Question 3All the objective factors of interests include: **Quantitive variables:** 1) **'price_per_person'**: a new column I will create by dividing 'price' by 'accommodates' for each row 2) 'security_deposit' 3) 'cleaning_fee' **Categorical variables:** 1) 'host_response_time': within an hour, within a few hours, within a day, a few days or more 2) 'host_is_superhost': whether the host is a superhost or not, boolean variable 3) 'host_has_profile_pic': whether the host provides a profile picture or not, boolean variable 4) 'host_identity_verified': whether the host's identity is verified or not 5) 'is_location_exact': whether the location provided is accurate or not 6) 'room_type': entire home/apt, private room, shared room 7) 'bed_type': real bed, futon, pull_out sofa, airbed, couch 8) 'cancellation_policy': strict, moderate, flexible 9) 'instant_bookable': boolean 10) 'require_guest_profile_picture': boolean 11) 'require_guest_phone_verification': boolean **Special varibales:** whether the row is null or not is the information we care about. 1) 'transit': whether transportation method is provided 2) 'host_about': whether the host provides self introduction ###Code # use this cell to take a look at what variables have NaN values df_new.isnull().sum().sort_values(ascending=False) ###Output _____no_output_____ ###Markdown Dealing with NaN ###Code # for 'security_deposit' and 'cleaning_fee', replace NaN by $0, then clean the data format to make them into float df_new.fillna(value = {'security_deposit': '$0', 'cleaning_fee': '$0'}, inplace=True) df_new.security_deposit = df_new.security_deposit.str.lstrip('$'); df_new.cleaning_fee = df_new.cleaning_fee.str.lstrip('$'); df_new.security_deposit = df_new.security_deposit.str.replace(',', '').astype(float) df_new.cleaning_fee = df_new.cleaning_fee.str.replace(',', '').astype(float) # for 'price', first make it into float, then create a column "price per person" df_new.price = df_new.price.str.lstrip('$'); df_new.price = df_new.price.str.replace(',', '').astype(float) df_new['price_per_person'] = df_new.price/df_new.accommodates # for 'transit' and 'host_about', use NaN information to recode them into 1 = provided (not NaN) and 0 = not provided (is NaN) df_new.transit = df_new.transit.notnull().astype(int) df_new.host_about = df_new.host_about.notnull().astype(int) # for 'host_response_time', I will delete rows with NaN df_new = df_new.dropna(subset = ['host_response_time'], axis = 0) ###Output _____no_output_____ ###Markdown Convert categorical variables to dummy variables, recode boolean variables to '1 vs 0' ###Code # convert boolean variables (t = true, f = false) to 1 vs 0 coding (1 = true, 0 = false) bool_process_col = ['host_is_superhost', 'host_has_profile_pic', 'host_identity_verified', 'is_location_exact', 'instant_bookable', 'require_guest_profile_picture', 'require_guest_phone_verification'] df_new[bool_process_col] = (df_new[bool_process_col] == 't').astype(int) # a list of categorical variables of interest cat_cols_lst = ['host_response_time', 'room_type', 'bed_type', 'cancellation_policy'] # function to create dummy variables for categorical variables # this code is from Udacity Data Scientist Nanodegree class def create_dummy_df(df, cat_cols, dummy_na): ''' INPUT: df - pandas dataframe with categorical variables you want to dummy cat_cols - list of strings that are associated with names of the categorical columns dummy_na - Bool holding whether you want to dummy NA vals of categorical columns or not OUTPUT: df - a new dataframe that has the following characteristics: 1. contains all columns that were not specified as categorical 2. removes all the original columns in cat_cols 3. dummy columns for each of the categorical columns in cat_cols 4. if dummy_na is True - it also contains dummy columns for the NaN values 5. Use a prefix of the column name with an underscore (_) for separating ''' for col in cat_cols: try: # for each cat add dummy var, drop original column df = pd.concat([df,pd.get_dummies(df[col], prefix=col, prefix_sep='_', dummy_na=dummy_na)], axis=1) except: continue return df # select data from columns we need for question 3 col_list_needed = [ 'host_has_profile_pic', 'host_identity_verified', 'price_per_person', 'security_deposit', 'cleaning_fee', 'host_response_time', 'host_is_superhost', 'is_location_exact', 'room_type', 'host_about', 'bed_type', 'cancellation_policy', 'instant_bookable', 'require_guest_profile_picture', 'require_guest_phone_verification', 'review_scores_rating'] # select data in these columns df_needed = df_new[col_list_needed] # convert categorical variables into dummy variables df_dummy = create_dummy_df(df_needed, cat_cols_lst, False) df_dummy = df_dummy.drop(cat_cols_lst, axis = 1) # linear regression model y = df_dummy.review_scores_rating X = df_dummy.drop('review_scores_rating', axis = 1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) lm_model = LinearRegression(normalize = True) lm_model.fit(X_train, y_train) #Predict using your model y_test_preds = lm_model.predict(X_test) y_train_preds = lm_model.predict(X_train) #Score using your model test_score = r2_score(y_test, y_test_preds) train_score = r2_score(y_train, y_train_preds) print('R2 of training data is {}'.format(train_score)) print('R2 of testing data is {}'.format(test_score)) ###Output R2 of training data is 0.10459122853704617 R2 of testing data is 0.04454226708445119 ###Markdown It seems the model is a little bit overfitting. Try ridge regression and see if it helps. ###Code # try rdige regression ridge_model = Ridge(alpha = 100) ridge_model.fit(X_train, y_train) y_test_ridge = ridge_model.predict(X_test) y_train_ridge = ridge_model.predict(X_train) #Score using your model test_score2 = r2_score(y_test, y_test_ridge) train_score2 = r2_score(y_train, y_train_ridge) print('R2 of training data in ridge regression is {}'.format(train_score2)) print('R2 of testing data in ridge regression is {}'.format(test_score2)) ###Output R2 of training data in ridge regression is 0.0900991732534504 R2 of testing data in ridge regression is 0.06736978959022533 ###Markdown Ridge regression helps to improve the situation a bit. Since the trend of the impact of these variables reflected by the coeffients does not change too much, I will use the result from linear regression model. Statsmodels library provides a traditional regression method which returns the significance of the coeffients ###Code # use the following two lines to take a look of the coeffients of two regression models #ridge_model.coef_ #lm_model.coef_ # get the linear regression result summary from statsmodels OLS function X_OLS = sm.add_constant(X_train) mod = sm.OLS(y_train, X_OLS) fii = mod.fit() fii.summary2() ###Output /Users/yeli/anaconda3/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2389: FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. return ptp(axis=axis, out=out, **kwargs) ###Markdown Plot out group comparisonUse the same method in the following to plot the group comparison on any variable you are interested. In this notebook I only keep the code for variable that have an obvious review score difference. ###Code # separate data into two groups y_q3 = df_needed.review_scores_rating df3_high = df_needed[y_q3 > np.percentile(y_q3,50)] df3_low = df_needed[y_q3 < np.percentile(y_q3,50)] # plot numeric results first labels = ['price/person', 'superhost percentage'] y_price = [df3_high.price_per_person.mean(), df3_low.price_per_person.mean()] y_superhost = [df3_high.host_is_superhost.mean()*100, df3_low.host_is_superhost.mean()*100] high_value = [y_price[0], y_superhost[0]] low_value = [y_price[1], y_superhost[1]] high_value_round = [round(h) for h in high_value] low_value_round = [round(r) for r in low_value] x = np.arange(len(labels)) # the label locations width = 0.2 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(x - width/2, high_value_round, width, label='High review score group') rects2 = ax.bar(x + width/2, low_value_round, width, label='Low review score group') # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Values') ax.set_title('Group comparison') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend(loc = 3) ax.set_ylim(0,50) def autolabel(rects): """Attach a text label above each bar in *rects*, displaying its height.""" for rect in rects: height = rect.get_height() ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom') autolabel(rects1) autolabel(rects2) #fig.tight_layout() plt.savefig('Numeric_comparison.png', dpi = 100) ###Output _____no_output_____ ###Markdown let's compare the home type, room type and cancellation policy difference between groups. ###Code # function to make comparison plot def plot_compare(labels, high_vect, low_vect, title): fig, ax = plt.subplots() x = np.arange(len(labels)) width = 0.3 high_bar = ax.bar(x - width/2, high_vect, width, label = 'High review score group') low_bar = ax.bar(x + width/2, low_vect, width, label = 'Low review score group') ax.set_ylabel('Counts') ax.set_title(title) ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend(loc = 'best') autolabel(high_bar) autolabel(low_bar) save_name = title + '.png' plt.savefig(save_name, dpi = 100) # plot room type comparison # labels labels_room = ['Entire home/apt','Private room','Shared room'] # value vectors for room_type in two groups high_vect_room = [df3_high[df3_high.room_type == col].shape[0] for col in labels_room] low_vect_room = [df3_low[df3_low.room_type == col].shape[0] for col in labels_room] # plot plot_compare(labels_room, high_vect_room, low_vect_room, 'Room type comparison') # plot bed type comparison # labels of bed_type labels_bed = ['Real Bed','Futon','Pull-out sofa', 'Airbed', 'Couch'] # value vectors for bed_type in two groups high_vect_bed = [df3_high[df3_high.bed_type == col].shape[0] for col in labels_bed] low_vect_bed = [df3_low[df3_low.bed_type ==col].shape[0] for col in labels_bed] plot_compare(labels_bed, high_vect_bed, low_vect_bed, 'Bed type comparison') # labels for host_response_time labels_response = ['within an hour', 'within a few hours', 'within a day', 'a few days or more'] high_response = [df3_high[df3_high.host_response_time == col].shape[0] for col in labels_response] low_response = [df3_low[df3_low.host_response_time == col].shape[0] for col in labels_response] plot_compare(labels_response, high_response, low_response, 'Response time comparison') # cancellation policy labels_cancel = ['strict', 'moderate', 'flexible'] high_cancel = [df3_high[df3_high.cancellation_policy == col].shape[0] for col in labels_cancel] low_cancel = [df3_low[df3_low.cancellation_policy == col].shape[0] for col in labels_cancel] plot_compare(labels_cancel, high_cancel, low_cancel, 'Cancellation policy comparison') ###Output _____no_output_____
ai2/lectures/AI2_02_word_embeddings.ipynb
###Markdown CS4619: Artificial Intelligence IIWord Embeddings Derek Bridge School of Computer Science and Information Technology University College Cork Initialization$\newcommand{\Set}[1]{\{1\}}$ $\newcommand{\Tuple}[1]{\langle1\rangle}$ $\newcommand{\v}[1]{\pmb{1}}$ $\newcommand{\cv}[1]{\begin{bmatrix}1\end{bmatrix}}$ $\newcommand{\rv}[1]{[1]}$ $\DeclareMathOperator{\argmax}{arg\,max}$ $\DeclareMathOperator{\argmin}{arg\,min}$ $\DeclareMathOperator{\dist}{dist}$$\DeclareMathOperator{\abs}{abs}$ ###Code %load_ext autoreload %autoreload 2 %matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.initializers import Constant from tensorflow.keras import Input from tensorflow.keras import Model from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Embedding from tensorflow.keras.optimizers import SGD from tensorflow.keras.callbacks import EarlyStopping # This OneHot layer comes from https://fdalvi.github.io/blog/2018-04-07-keras-sequential-onehot/ from tensorflow.keras.layers import Lambda from tensorflow.keras import backend as K def OneHot(input_dim=None, input_length=None): # Check if inputs were supplied correctly if input_dim is None or input_length is None: raise TypeError("input_dim or input_length is not set") # Helper method (not inlined for clarity) def _one_hot(x, num_classes): return K.one_hot(K.cast(x, 'uint8'), num_classes=num_classes) # Final layer representation as a Lambda layer return Lambda(_one_hot, arguments={'num_classes': input_dim}, input_shape=(input_length,)) ###Output _____no_output_____ ###Markdown Acknowledgements Part of the code comes from chapter 6 of: Fran&ccedil;ois Chollet: Deep Learning with Python, Manning Publications, 2018 Natural Language Processing In the previous lecture, we represented each document as a single vector (bag-of-words). This is OK for some applications, e.g. spam filtering. But for many applications of natural language processing (NLP), we may need to treat documents as sequences (lists) of words (and maybe of punctuation symbols also): Sentiment analysis, e.g. of movie reviews or tweets; Machine translation; Image captioning; Question-answering and chatbots. There are other applications where each example is a sequence of features too, e.g.: processing speech; processing genomic data; timeseries prediction; clickstream prediction Sequences of integers Now, each word will be given a unique integer (an index, e.g. "a" might be word number 1, "the" might be word number 2, and so on). It is common to restrict to a certain vocabulary, e.g. in the code below, we restrict to the most common 1000 words, so the indexes are from 1 to 1000. In real applications, this might be tens-of-thousands or even 100s-of-thosuands of the most common words. If someone uses words that are not within the vocabulary, then either these words are ignored or they are all treated as a special token UNK and hence are all assigned to the same unique integer (e.g. they are all word number 1000). A document will be a sequence of these integers. We may add special symbols to the start and end of the document, also given an index. If we have a batch of documents, we may prefer them all to be the same length (e.g. maxlen = 200 words). In which case, we will need to: truncate documents that are longer than 200 words; and pad documents that have fewer than 200 words using a separate index, e.g. 0. IMDB Reviews, Again Let's read in our small IMDB reviews dataset again and turn it into sequences of integers. ###Code df = pd.read_csv("../datasets/dataset_5000_reviews.csv") # Dataset size m = len(df) # We'll keep only the 1000 most common words in the reviews. vocab_size = 1000 # We'll truncate/pad so that each review has 200 words maxlen = 200 tokenizer = Tokenizer(num_words=vocab_size) tokenizer.fit_on_texts(df["review"]) sequences = tokenizer.texts_to_sequences(df["review"]) padded_sequences = pad_sequences(sequences, maxlen=maxlen) # Let's look at the first review padded_sequences[0] # Let's look at how the indexes relate to words tokenizer.word_index # Train/test split split_point = int(m * 0.8) dev_X = padded_sequences[:split_point] test_X = padded_sequences[split_point:] # Target values, encoded and converted to a 1D numpy array label_encoder = LabelEncoder() label_encoder.fit(df["sentiment"]) dev_y = label_encoder.transform(df["sentiment"][:split_point]) test_y = label_encoder.transform(df["sentiment"][split_point:]) ###Output _____no_output_____ ###Markdown One-Hot Encoding We probably should not use the indexes directly. Why not? So we could one-hot encode each word. IMDB In our IMDB example, each review will now be represented by a list (of length 200) of binary-valued vectors (where the dimenion of the vector is 1000. Why?) Converting from integer indexes to binary vectors can be done in many ways. We will do it using a layer in our network using some code given earlier. Then we will flatten the input into a single vector (maxlen * vocab_size) and then use a few dense layers. ###Code inputs = Input(shape=(maxlen,)) x = OneHot(input_dim=vocab_size, input_length=maxlen)(inputs) x = Flatten()(x) x = Dense(32, activation="relu")(x) outputs = Dense(1, activation="sigmoid")(x) one_hot_model = Model(inputs, outputs) one_hot_model.compile(optimizer=SGD(lr=0.001), loss="binary_crossentropy", metrics=["acc"]) one_hot_model.summary() one_hot_history = one_hot_model.fit(dev_X, dev_y, epochs=10, batch_size=32, validation_split=0.25, callbacks=[EarlyStopping(monitor="val_loss", patience=2)], verbose=0) pd.DataFrame(one_hot_history.history).plot() ###Output _____no_output_____ ###Markdown Not great results but not surprising: Small dataset One-hot encoding is a poor choice. ###Code # An illustration of why one-hot encoding is not great. def cosine_similarity(x, xprime): # Assumes x and xprime are already normalized # Converts from sparse matrices because np.dot does not work on them return x.dot(xprime.T) # Word indexes print("like: ", tokenizer.word_index["like"] ) print("love: ", tokenizer.word_index["love"] ) print("hate: ", tokenizer.word_index["hate"] ) # One hot encodings one_hot_like = np.zeros(vocab_size) one_hot_like[ tokenizer.word_index["like"] ] = 1 one_hot_love = np.zeros(vocab_size) one_hot_love[ tokenizer.word_index["love"] ] = 1 one_hot_hate = np.zeros(vocab_size) one_hot_hate[ tokenizer.word_index["love"] ] = 1 # Similarities print("like and love: ", one_hot_like.dot(one_hot_love) ) print("like and hate: ", one_hot_like.dot(one_hot_hate) ) ###Output like: 37 love: 120 hate: 818 like and love: 0.0 like and hate: 0.0 ###Markdown Word Embeddings One-hot encoding uses large, sparse vectors. Word embeddings are small, non-sparse vectors, e.g. the dimension might be 100 or 200. To illustrate the ideas, we will use vectors of size 2 (so we can draw 2D diagrams). Perhaps we will have the following word embeddings: Dog: $\langle 0.4, 0.3\rangle$ Hound: $\langle 0.38, 0.32\rangle$ Wolf: $\langle 0.4, 0.8\rangle$ Cat: $\langle 0.75, 0.2\rangle$ Tiger: $\langle 0.75, 0.7\rangle$ The word embeddings we choose should reflect semantic relationships between the words: Words with similar meanings should be close together (as with Dog and Hound) and in general the distance between embeddings should reflect how closely related the meanings are. Geometric transformations might encode semantic relationships, e.g.: Adding $\langle 0, 0.5\rangle$ to the word embedding for Dog gives us the word embedding for Wolf; adding the same vector to the embedding for Cat gives the embedding for Tiger; $\langle 0, 0.5\rangle$ is the "from pet to wild animal" transformation. Similarly $\langle 0.35, -0.1\rangle$ is the "from canine to feline" transformation. Why? There is a Google visiualization here: https://pair.withgoogle.com/explorables/fill-in-the-blank/ Learning word embeddings We learn the word embeddings from the dataset of documents. Conceptually, The values in the vectors are initialized randomly; Then they are adjusted during learning. But Keras does it using a network layer: During learning, the weights of the layer are adjusted. The activations of the units in the layer are the word embeddings. IMDB ###Code # Throughout the code, we will use 100-dimensional word embeddings (including the pretrained GloVe embeddings later) embedding_dimension = 100 inputs = Input(shape=(maxlen,)) embedding = Embedding(input_dim=vocab_size, input_length=maxlen, output_dim=embedding_dimension)(inputs) x = Flatten()(embedding) x = Dense(32, activation="relu")(x) outputs = Dense(1, activation="sigmoid")(x) embedding_model = Model(inputs, outputs) embedding_model.compile(optimizer=SGD(lr=0.001), loss="binary_crossentropy", metrics=["acc"]) embedding_model.summary() embedding_history = embedding_model.fit(dev_X, dev_y, epochs=10, batch_size=32, validation_split=0.25, callbacks=[EarlyStopping(monitor="val_loss", patience=2)], verbose=0) pd.DataFrame(embedding_history.history).plot() ###Output _____no_output_____ ###Markdown Possibly worse in this case! Perhaps because so little training data. Pretrained Word Embeddings Above, we got our neural network to learn the word embeddings. Advantage: they are based on our IMDB data and therefore tailored to helping us to predict the sentiment of restaurant reviews. Disadvantage: the IMDB dataset (and especially the subset that we are using) is probably too small to learn really powerful word embeddings. To some extent, word embeddings are fairly generic, so it can make sense to reuse pretrained embeddings from very large datasets, as we did with image data. word2vec (https://code.google.com/archive/p/word2vec/): This is Google's famous algorithm for learning word embeddings. The URL contains code and also pretrained embeddings learned from news articles. GloVe (Global Vectors for Word Representation, https://nlp.stanford.edu/projects/glove/): This is a Stanford University algorithm. The URL has code and pretrained embeddings learned from Wikipedia. Although we'll use GloVe, let's briefly explain how Google learns its word2vec word embeddings: It takes a large body of text (e.g. Wikipedia) and builds a model (a two-layer neural network classifier) that predicts words. E.g. in what is known as CBOW (continuous bag-of-words), it predicts the current word from a window of surrounding words. Or e.g. in what is know as continuous skip-gram, it predicts the surrounding words from the current word. IMDB To run the code that follows, you need to download and unzip the file called glove.6B.zip (&gt;800MB) from the URL above; save space by deleting all files except glove.6B.100d.txt (it's still &gt;300MB) The code comes from Chollet's book &mdash; details are not important in CS4619 ###Code # Parse the GloVe word embeddings file: produces a dictionary from words to their vectors path = "../datasets/glove.6B.100d.txt" # Edit this to point to your copy of the file embeddings_index = {} f = open(path) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype="float32") embeddings_index[word] = coefs f.close() # Create a matrix that associates the words that we obtained from the IMDB reviews earlier # (in the word_index) with their GloVe word embeddings embedding_matrix = np.zeros((vocab_size, embedding_dimension)) for word, i in tokenizer.word_index.items(): if i < vocab_size: word_embedding = embeddings_index.get(word) if word_embedding is not None: embedding_matrix[i] = word_embedding # Let's take a look at some of the embeddings glove_like = embedding_matrix[ tokenizer.word_index["like"] ] glove_love = embedding_matrix[ tokenizer.word_index["love"] ] glove_hate = embedding_matrix[ tokenizer.word_index["hate"] ] print("like: ", glove_like) # Similarities print("like and love: ", glove_like.dot(glove_love) ) print("like and hate: ", glove_like.dot(glove_hate) ) # A similar neural network to earlier but this time the embedding layer's weights come from GloVe and are # not adjusted during training inputs = Input(shape=(maxlen,)) x = Embedding(input_dim=vocab_size, input_length=maxlen, output_dim=embedding_dimension, embeddings_initializer=Constant(embedding_matrix), trainable=False)(inputs) x = Flatten()(x) x = Dense(32, activation="relu")(x) outputs = Dense(1, activation="sigmoid")(x) pretrained_embedding_model = Model(inputs, outputs) pretrained_embedding_model.compile(optimizer=SGD(lr=0.001), loss="binary_crossentropy", metrics=["acc"]) pretrained_history = pretrained_embedding_model.fit(dev_X, dev_y, epochs=10, batch_size=32, validation_split=0.25, callbacks=[EarlyStopping(monitor="val_loss", patience=2)], verbose=0) pd.DataFrame(pretrained_history.history).plot() ###Output _____no_output_____
sampling/00 - Inverse transform sampling.ipynb
###Markdown Inverse Transform sampling Rationale**Inverse transform sampling** allows to transform samples from uniform distribution $U$ to any other distribution $D$, given the $CDF$ of $D$.How can we do it?Let's take$$\large T(U) = X$$where:* $U$ is a uniform random variable* $T$ is some kind of a transformation* $X$ is the target random variable (let's use **exponential** distribution as an example)Now, we said that to perform **inverse transformation sampling**, we need a $CDF$.By definition $CDF$ (we'll call it $F_X(x)$ here) is given by: $$\large F_X(x) \triangleq P(X \leq x)$$We said before that to get $X$, we'll apply certain transformation $T$ to a uniform random variable.We can then say, that:$$\large P(X \leq x) = P(T(U) \leq x)$$Now, let's apply an ibnverse of $T$ to the both sides of the inequality:$$\large = P(U \leq T^{-1}(x))$$Uniform distribution has a nice property that it's $CDF$ at any given point $x$ is equal to the value of $x$.Therefore, we can say that:$$\large = T^{-1}(x)$$and conclude that:$$\large F_X(x) = T^{-1}(x)$$ ConclusionWe demonstrated how to sample from any density $D$ using a sample from a uniform distribution and an inverse of $CDF$ od $D$. Now, let's apply it in practice! CodeLet's see how to apply this in Python. We'll use **exponential distribution** as an example. ###Code # Define params SAMPLE_SIZE = 100000 N_BINS = np.sqrt(SAMPLE_SIZE).astype('int') // 2 LAMBDA = 8 ###Output _____no_output_____ ###Markdown Let's instantiate distributions.We will instantiate an exponential distribution expicitly for comparison purposes.___________Note that **`scipy.stats`** has a slightly **different parametrization** of exponential than the populuar $\lambda$ parametrization. In the [documentation](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html), we read:*A common parameterization for expon is in terms of the rate parameter lambda, such that pdf = lambda * exp(-lambda * x). This parameterization corresponds to using scale = 1 / lambda.*____________Therefore, we're going to use **`scale=1/LAMBDA`** to parametrize our test **exponential distribution**. ###Code # Instantiate U(0, 1) unif = stats.uniform(0, 1) # Instantiate Exp(8) for comparison purposes exp = stats.expon(loc=0, scale=1/LAMBDA) ###Output _____no_output_____ ###Markdown Now, we need to define the inverse transformation $T^{-1}(x)$ that will allow us to translate between uniform and exponential samples.The $CDF$ of exponential distribution is defined as:$$\large\begin{equation} F_X(x) \triangleq \begin{cases} 1 - e^{-\lambda x} \ \text{ for }\ x \geq 0\\ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{for }\ x<0 \\ \end{cases} \end{equation}$$Let's take the inverse of this function (solve for $x$):$$\large y = 1 - e^{-\lambda x}$$* subtract $1$ from both sides:$$\large 1 - y = - e^{-\lambda x}$$* take $ln$ of both sides:$$\large ln(1 - y) = \lambda x$$* divide both sides by $\lambda$:$$\large x = \frac{ln(1 - y)}{\lambda}$$**Et voilà!** 🎉🎉🎉 We've got it! 💪🏼Let's translate it to Python code: ###Code # Define def transform_to_exp(x, lmbd): """Transoforms a uniform sample into an exponential sample""" return -np.log(1 - x) / lmbd ###Output _____no_output_____ ###Markdown Take samples: ###Code # Sample from uniform sample_unif = unif.rvs(SAMPLE_SIZE) # Sample from the true exponential sample_exp = exp.rvs(SAMPLE_SIZE) # Transform U -> Exp sample_transform = transform_to_exp(sample_unif, LAMBDA) ###Output _____no_output_____ ###Markdown A brief sanity check: ###Code # Sanity check -> U(0, 1) plt.hist(sample_unif, bins=N_BINS, density=True) plt.title('Histogarm of $U(0, 1)$') plt.ylabel('$p(x)$') plt.xlabel('$x$') plt.show() ###Output _____no_output_____ ###Markdown ..and let's compare the resutls: ###Code plt.hist(sample_exp, bins=N_BINS, density=True, alpha=.5, label='Exponential') plt.hist(sample_transform, bins=N_BINS, density=True, alpha=.5, label='$T(U)$') plt.legend() plt.title('Histogram of exponential and transformed distributions', fontsize=12) plt.ylabel('$p(x)$') plt.xlabel('$x$') plt.show() ###Output _____no_output_____
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization/Regularization.ipynb
###Markdown RegularizationWelcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that **overfitting can be a serious problem**, if the training dataset is not big enough. Sure it does well on the training set, but the learned network **doesn't generalize to new examples** that it has never seen!**You will learn to:** Use regularization in your deep learning models.Let's first import the packages you are going to use. ###Code # import packages import numpy as np import matplotlib.pyplot as plt from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters import sklearn import sklearn.datasets import scipy.io from testCases import * %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' ###Output _____no_output_____ ###Markdown **Problem Statement**: You have just been hired as an AI expert by the French Football Corporation. They would like you to recommend positions where France's goal keeper should kick the ball so that the French team's players can then hit it with their head. **Figure 1** : **Football field** The goal keeper kicks the ball in the air, the players of each team are fighting to hit the ball with their head They give you the following 2D dataset from France's past 10 games. ###Code train_X, train_Y, test_X, test_Y = load_2D_dataset() ###Output _____no_output_____ ###Markdown Each dot corresponds to a position on the football field where a football player has hit the ball with his/her head after the French goal keeper has shot the ball from the left side of the football field.- If the dot is blue, it means the French player managed to hit the ball with his/her head- If the dot is red, it means the other team's player hit the ball with their head**Your goal**: Use a deep learning model to find the positions on the field where the goalkeeper should kick the ball. **Analysis of the dataset**: This dataset is a little noisy, but it looks like a diagonal line separating the upper left half (blue) from the lower right half (red) would work well. You will first try a non-regularized model. Then you'll learn how to regularize it and decide which model you will choose to solve the French Football Corporation's problem. 1 - Non-regularized modelYou will use the following neural network (already implemented for you below). This model can be used:- in *regularization mode* -- by setting the `lambd` input to a non-zero value. We use "`lambd`" instead of "`lambda`" because "`lambda`" is a reserved keyword in Python. - in *dropout mode* -- by setting the `keep_prob` to a value less than oneYou will first try the model without any regularization. Then, you will implement:- *L2 regularization* -- functions: "`compute_cost_with_regularization()`" and "`backward_propagation_with_regularization()`"- *Dropout* -- functions: "`forward_propagation_with_dropout()`" and "`backward_propagation_with_dropout()`"In each part, you will run this model with the correct inputs so that it calls the functions you've implemented. Take a look at the code below to familiarize yourself with the model. ###Code def model(X, Y, learning_rate = 0.3, num_iterations = 30000, print_cost = True, lambd = 0, keep_prob = 1): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (input size, number of examples) Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (output size, number of examples) learning_rate -- learning rate of the optimization num_iterations -- number of iterations of the optimization loop print_cost -- If True, print the cost every 10000 iterations lambd -- regularization hyperparameter, scalar keep_prob - probability of keeping a neuron active during drop-out, scalar. Returns: parameters -- parameters learned by the model. They can then be used to predict. """ grads = {} costs = [] # to keep track of the cost m = X.shape[1] # number of examples layers_dims = [X.shape[0], 20, 3, 1] # Initialize parameters dictionary. parameters = initialize_parameters(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. if keep_prob == 1: a3, cache = forward_propagation(X, parameters) elif keep_prob < 1: a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob) # Cost function if lambd == 0: cost = compute_cost(a3, Y) else: cost = compute_cost_with_regularization(a3, Y, parameters, lambd) # Backward propagation. assert(lambd==0 or keep_prob==1) # it is possible to use both L2 regularization and dropout, # but this assignment will only explore one at a time if lambd == 0 and keep_prob == 1: grads = backward_propagation(X, Y, cache) elif lambd != 0: grads = backward_propagation_with_regularization(X, Y, cache, lambd) elif keep_prob < 1: grads = backward_propagation_with_dropout(X, Y, cache, keep_prob) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 10000 iterations if print_cost and i % 10000 == 0: print("Cost after iteration {}: {}".format(i, cost)) if print_cost and i % 1000 == 0: costs.append(cost) # plot the cost plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (x1,000)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown Let's train the model without any regularization, and observe the accuracy on the train/test sets. ###Code parameters = model(train_X, train_Y) print ("On the training set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6557412523481002 Cost after iteration 10000: 0.16329987525724213 Cost after iteration 20000: 0.13851642423253263 ###Markdown The train accuracy is 94.8% while the test accuracy is 91.5%. This is the **baseline model** (you will observe the impact of regularization on this model). Run the following code to plot the decision boundary of your model. ###Code plt.title("Model without regularization") axes = plt.gca() axes.set_xlim([-0.75,0.40]) axes.set_ylim([-0.75,0.65]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The non-regularized model is obviously overfitting the training set. It is fitting the noisy points! Lets now look at two techniques to reduce overfitting. 2 - L2 RegularizationThe standard way to avoid overfitting is called **L2 regularization**. It consists of appropriately modifying your cost function, from:$$J = -\frac{1}{m} \sum\limits_{i = 1}^{m} \large{(}\small y^{(i)}\log\left(a^{[L](i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right) \large{)} \tag{1}$$To:$$J_{regularized} = \small \underbrace{-\frac{1}{m} \sum\limits_{i = 1}^{m} \large{(}\small y^{(i)}\log\left(a^{[L](i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right) \large{)} }_\text{cross-entropy cost} + \underbrace{\frac{1}{m} \frac{\lambda}{2} \sum\limits_l\sum\limits_k\sum\limits_j W_{k,j}^{[l]2} }_\text{L2 regularization cost} \tag{2}$$Let's modify your cost and observe the consequences.**Exercise**: Implement `compute_cost_with_regularization()` which computes the cost given by formula (2). To calculate $\sum\limits_k\sum\limits_j W_{k,j}^{[l]2}$ , use :```pythonnp.sum(np.square(Wl))```Note that you have to do this for $W^{[1]}$, $W^{[2]}$ and $W^{[3]}$, then sum the three terms and multiply by $ \frac{1}{m} \frac{\lambda}{2} $. ###Code # GRADED FUNCTION: compute_cost_with_regularization def compute_cost_with_regularization(A3, Y, parameters, lambd): """ Implement the cost function with L2 regularization. See formula (2) above. Arguments: A3 -- post-activation, output of forward propagation, of shape (output size, number of examples) Y -- "true" labels vector, of shape (output size, number of examples) parameters -- python dictionary containing parameters of the model Returns: cost - value of the regularized loss function (formula (2)) """ m = Y.shape[1] W1 = parameters["W1"] W2 = parameters["W2"] W3 = parameters["W3"] cross_entropy_cost = compute_cost(A3, Y) # This gives you the cross-entropy part of the cost ### START CODE HERE ### (approx. 1 line) L2_regularization_cost = (1/m) * (lambd/2) * ( np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3)) ) ### END CODER HERE ### cost = cross_entropy_cost + L2_regularization_cost return cost A3, Y_assess, parameters = compute_cost_with_regularization_test_case() print("cost = " + str(compute_cost_with_regularization(A3, Y_assess, parameters, lambd = 0.1))) ###Output cost = 1.78648594516 ###Markdown **Expected Output**: **cost** 1.78648594516 Of course, because you changed the cost, you have to change backward propagation as well! All the gradients have to be computed with respect to this new cost. **Exercise**: Implement the changes needed in backward propagation to take into account regularization. The changes only concern dW1, dW2 and dW3. For each, you have to add the regularization term's gradient ($\frac{d}{dW} ( \frac{1}{2}\frac{\lambda}{m} W^2) = \frac{\lambda}{m} W$). ###Code # GRADED FUNCTION: backward_propagation_with_regularization def backward_propagation_with_regularization(X, Y, cache, lambd): """ Implements the backward propagation of our baseline model to which we added an L2 regularization. Arguments: X -- input dataset, of shape (input size, number of examples) Y -- "true" labels vector, of shape (output size, number of examples) cache -- cache output from forward_propagation() lambd -- regularization hyperparameter, scalar Returns: gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables """ m = X.shape[1] (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y ### START CODE HERE ### (approx. 1 line) dW3 = 1./m * np.dot(dZ3, A2.T) + ((lambd/m)*W3) ### END CODE HERE ### db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True) dA2 = np.dot(W3.T, dZ3) dZ2 = np.multiply(dA2, np.int64(A2 > 0)) ### START CODE HERE ### (approx. 1 line) dW2 = 1./m * np.dot(dZ2, A1.T) + ((lambd/m)*W2) ### END CODE HERE ### db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) dA1 = np.dot(W2.T, dZ2) dZ1 = np.multiply(dA1, np.int64(A1 > 0)) ### START CODE HERE ### (approx. 1 line) dW1 = 1./m * np.dot(dZ1, X.T) + ((lambd/m)*W1) ### END CODE HERE ### db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients X_assess, Y_assess, cache = backward_propagation_with_regularization_test_case() grads = backward_propagation_with_regularization(X_assess, Y_assess, cache, lambd = 0.7) print ("dW1 = "+ str(grads["dW1"])) print ("dW2 = "+ str(grads["dW2"])) print ("dW3 = "+ str(grads["dW3"])) ###Output dW1 = [[-0.25604646 0.12298827 -0.28297129] [-0.17706303 0.34536094 -0.4410571 ]] dW2 = [[ 0.79276486 0.85133918] [-0.0957219 -0.01720463] [-0.13100772 -0.03750433]] dW3 = [[-1.77691347 -0.11832879 -0.09397446]] ###Markdown **Expected Output**: **dW1** [[-0.25604646 0.12298827 -0.28297129] [-0.17706303 0.34536094 -0.4410571 ]] **dW2** [[ 0.79276486 0.85133918] [-0.0957219 -0.01720463] [-0.13100772 -0.03750433]] **dW3** [[-1.77691347 -0.11832879 -0.09397446]] Let's now run the model with L2 regularization $(\lambda = 0.7)$. The `model()` function will call: - `compute_cost_with_regularization` instead of `compute_cost`- `backward_propagation_with_regularization` instead of `backward_propagation` ###Code parameters = model(train_X, train_Y, lambd = 0.7) print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6974484493131264 Cost after iteration 10000: 0.2684918873282239 Cost after iteration 20000: 0.26809163371273015 ###Markdown Congrats, the test set accuracy increased to 93%. You have saved the French football team!You are not overfitting the training data anymore. Let's plot the decision boundary. ###Code plt.title("Model with L2-regularization") axes = plt.gca() axes.set_xlim([-0.75,0.40]) axes.set_ylim([-0.75,0.65]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The value of $\lambda$ is a hyperparameter that you can tune using a dev set.- L2 regularization makes your decision boundary smoother. If $\lambda$ is too large, it is also possible to "oversmooth", resulting in a model with high bias.**What is L2-regularization actually doing?**:L2-regularization relies on the assumption that a model with small weights is simpler than a model with large weights. Thus, by penalizing the square values of the weights in the cost function you drive all the weights to smaller values. It becomes too costly for the cost to have large weights! This leads to a smoother model in which the output changes more slowly as the input changes. **What you should remember** -- the implications of L2-regularization on:- The cost computation: - A regularization term is added to the cost- The backpropagation function: - There are extra terms in the gradients with respect to weight matrices- Weights end up smaller ("weight decay"): - Weights are pushed to smaller values. 3 - DropoutFinally, **dropout** is a widely used regularization technique that is specific to deep learning. **It randomly shuts down some neurons in each iteration.** Watch these two videos to see what this means!<!--To understand drop-out, consider this conversation with a friend:- Friend: "Why do you need all these neurons to train your network and classify images?". - You: "Because each neuron contains a weight and can learn specific features/details/shape of an image. The more neurons I have, the more featurse my model learns!"- Friend: "I see, but are you sure that your neurons are learning different features and not all the same features?"- You: "Good point... Neurons in the same layer actually don't talk to each other. It should be definitly possible that they learn the same image features/shapes/forms/details... which would be redundant. There should be a solution."!--> Figure 2 : Drop-out on the second hidden layer. At each iteration, you shut down (= set to zero) each neuron of a layer with probability $1 - keep\_prob$ or keep it with probability $keep\_prob$ (50% here). The dropped neurons don't contribute to the training in both the forward and backward propagations of the iteration. Figure 3 : Drop-out on the first and third hidden layers. $1^{st}$ layer: we shut down on average 40% of the neurons. $3^{rd}$ layer: we shut down on average 20% of the neurons. When you shut some neurons down, you actually modify your model. The idea behind drop-out is that at each iteration, you train a different model that uses only a subset of your neurons. With dropout, your neurons thus become less sensitive to the activation of one other specific neuron, because that other neuron might be shut down at any time. 3.1 - Forward propagation with dropout**Exercise**: Implement the forward propagation with dropout. You are using a 3 layer neural network, and will add dropout to the first and second hidden layers. We will not apply dropout to the input layer or output layer. **Instructions**:You would like to shut down some neurons in the first and second layers. To do that, you are going to carry out 4 Steps:1. In lecture, we dicussed creating a variable $d^{[1]}$ with the same shape as $a^{[1]}$ using `np.random.rand()` to randomly get numbers between 0 and 1. Here, you will use a vectorized implementation, so create a random matrix $D^{[1]} = [d^{[1](1)} d^{[1](2)} ... d^{[1](m)}] $ of the same dimension as $A^{[1]}$.2. Set each entry of $D^{[1]}$ to be 0 with probability (`1-keep_prob`) or 1 with probability (`keep_prob`), by thresholding values in $D^{[1]}$ appropriately. Hint: to set all the entries of a matrix X to 0 (if entry is less than 0.5) or 1 (if entry is more than 0.5) you would do: `X = (X > 0.5)`. Note that 0 and 1 are respectively equivalent to False and True.3. Set $A^{[1]}$ to $A^{[1]} * D^{[1]}$. (You are shutting down some neurons). You can think of $D^{[1]}$ as a mask, so that when it is multiplied with another matrix, it shuts down some of the values.4. Divide $A^{[1]}$ by `keep_prob`. By doing this you are assuring that the result of the cost will still have the same expected value as without drop-out. (This technique is also called inverted dropout.) ###Code # GRADED FUNCTION: forward_propagation_with_dropout def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5): """ Implements the forward propagation: LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID. Arguments: X -- input dataset, of shape (2, number of examples) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3": W1 -- weight matrix of shape (20, 2) b1 -- bias vector of shape (20, 1) W2 -- weight matrix of shape (3, 20) b2 -- bias vector of shape (3, 1) W3 -- weight matrix of shape (1, 3) b3 -- bias vector of shape (1, 1) keep_prob - probability of keeping a neuron active during drop-out, scalar Returns: A3 -- last activation value, output of the forward propagation, of shape (1,1) cache -- tuple, information stored for computing the backward propagation """ np.random.seed(1) # retrieve parameters W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] W3 = parameters["W3"] b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID Z1 = np.dot(W1, X) + b1 A1 = relu(Z1) ### START CODE HERE ### (approx. 4 lines) # Steps 1-4 below correspond to the Steps 1-4 described above. D1 = np.random.rand(A1.shape[0], A1.shape[1]) # Step 1: initialize matrix D1 = np.random.rand(..., ...) D1 = D1 < keep_prob # Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the threshold) A1 = A1 * D1 # Step 3: shut down some neurons of A1 A1 = A1 / keep_prob # Step 4: scale the value of neurons that haven't been shut down ### END CODE HERE ### Z2 = np.dot(W2, A1) + b2 A2 = relu(Z2) ### START CODE HERE ### (approx. 4 lines) D2 = np.random.rand(A2.shape[0], A2.shape[1]) # Step 1: initialize matrix D2 = np.random.rand(..., ...) D2 = D2 < keep_prob # Step 2: convert entries of D2 to 0 or 1 (using keep_prob as the threshold) A2 = A2 * D2 # Step 3: shut down some neurons of A2 A2 = A2 / keep_prob # Step 4: scale the value of neurons that haven't been shut down ### END CODE HERE ### Z3 = np.dot(W3, A2) + b3 A3 = sigmoid(Z3) cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) return A3, cache X_assess, parameters = forward_propagation_with_dropout_test_case() A3, cache = forward_propagation_with_dropout(X_assess, parameters, keep_prob = 0.7) print ("A3 = " + str(A3)) ###Output A3 = [[ 0.36974721 0.00305176 0.04565099 0.49683389 0.36974721]] ###Markdown **Expected Output**: **A3** [[ 0.36974721 0.00305176 0.04565099 0.49683389 0.36974721]] 3.2 - Backward propagation with dropout**Exercise**: Implement the backward propagation with dropout. As before, you are training a 3 layer network. Add dropout to the first and second hidden layers, using the masks $D^{[1]}$ and $D^{[2]}$ stored in the cache. **Instruction**:Backpropagation with dropout is actually quite easy. You will have to carry out 2 Steps:1. You had previously shut down some neurons during forward propagation, by applying a mask $D^{[1]}$ to `A1`. In backpropagation, you will have to shut down the same neurons, by reapplying the same mask $D^{[1]}$ to `dA1`. 2. During forward propagation, you had divided `A1` by `keep_prob`. In backpropagation, you'll therefore have to divide `dA1` by `keep_prob` again (the calculus interpretation is that if $A^{[1]}$ is scaled by `keep_prob`, then its derivative $dA^{[1]}$ is also scaled by the same `keep_prob`). ###Code # GRADED FUNCTION: backward_propagation_with_dropout def backward_propagation_with_dropout(X, Y, cache, keep_prob): """ Implements the backward propagation of our baseline model to which we added dropout. Arguments: X -- input dataset, of shape (2, number of examples) Y -- "true" labels vector, of shape (output size, number of examples) cache -- cache output from forward_propagation_with_dropout() keep_prob - probability of keeping a neuron active during drop-out, scalar Returns: gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables """ m = X.shape[1] (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y dW3 = 1./m * np.dot(dZ3, A2.T) db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True) dA2 = np.dot(W3.T, dZ3) ### START CODE HERE ### (≈ 2 lines of code) dA2 = dA2 * D2 # Step 1: Apply mask D2 to shut down the same neurons as during the forward propagation dA2 = dA2 / keep_prob # Step 2: Scale the value of neurons that haven't been shut down ### END CODE HERE ### dZ2 = np.multiply(dA2, np.int64(A2 > 0)) dW2 = 1./m * np.dot(dZ2, A1.T) db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) dA1 = np.dot(W2.T, dZ2) ### START CODE HERE ### (≈ 2 lines of code) dA1 = dA1 * D1 # Step 1: Apply mask D1 to shut down the same neurons as during the forward propagation dA1 = dA1 / keep_prob # Step 2: Scale the value of neurons that haven't been shut down ### END CODE HERE ### dZ1 = np.multiply(dA1, np.int64(A1 > 0)) dW1 = 1./m * np.dot(dZ1, X.T) db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients X_assess, Y_assess, cache = backward_propagation_with_dropout_test_case() gradients = backward_propagation_with_dropout(X_assess, Y_assess, cache, keep_prob = 0.8) print ("dA1 = " + str(gradients["dA1"])) print ("dA2 = " + str(gradients["dA2"])) ###Output dA1 = [[ 0.36544439 0. -0.00188233 0. -0.17408748] [ 0.65515713 0. -0.00337459 0. -0. ]] dA2 = [[ 0.58180856 0. -0.00299679 0. -0.27715731] [ 0. 0.53159854 -0. 0.53159854 -0.34089673] [ 0. 0. -0.00292733 0. -0. ]] ###Markdown **Expected Output**: **dA1** [[ 0.36544439 0. -0.00188233 0. -0.17408748] [ 0.65515713 0. -0.00337459 0. -0. ]] **dA2** [[ 0.58180856 0. -0.00299679 0. -0.27715731] [ 0. 0.53159854 -0. 0.53159854 -0.34089673] [ 0. 0. -0.00292733 0. -0. ]] Let's now run the model with dropout (`keep_prob = 0.86`). It means at every iteration you shut down each neurons of layer 1 and 2 with 14% probability. The function `model()` will now call:- `forward_propagation_with_dropout` instead of `forward_propagation`.- `backward_propagation_with_dropout` instead of `backward_propagation`. ###Code parameters = model(train_X, train_Y, keep_prob = 0.86, learning_rate = 0.3) print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6543912405149825 ###Markdown Dropout works great! The test accuracy has increased again (to 95%)! Your model is not overfitting the training set and does a great job on the test set. The French football team will be forever grateful to you! Run the code below to plot the decision boundary. ###Code plt.title("Model with dropout") axes = plt.gca() axes.set_xlim([-0.75,0.40]) axes.set_ylim([-0.75,0.65]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____
example/h3/h3demo.ipynb
###Markdown Match traj to hex ###Code from fmm import H3MM,hexs2wkt traj = "LINESTRING (18.024101257324215 59.337523121884225, 18.03852081298828 59.34391321930451, 18.042125701904297 59.35353986273416, 18.056459426879883 59.36080179623859, 18.065214157104492 59.34964577662557)" hex_level = 9 interpolate = False result = H3MM.match_wkt(traj, hex_level, interpolate) print result.traj_id print list(result.hexs) print hexs2wkt(result.hexs) ###Output 0 [618737091877535743, 618737091842146303, 618737091929178111, 618737091479863295, 618737091474358271] MULTIPOLYGON(((18.0228898614 59.3354770125,18.0215924168 59.3365311866,18.0216285645 59.3383172704,18.0229621748 59.3390492484,18.0242596721 59.3379950872,18.0242235064 59.3362089351,18.0228898614 59.3354770125)),((18.0375257823 59.3417433897,18.0362279618 59.3427977119,18.036264136 59.3445842599,18.0375981486 59.3453165539,18.0388960218 59.3442622446,18.0388598297 59.3424756284,18.0375257823 59.3417433897)),((18.0430068757 59.3518196531,18.0417088444 59.3528739237,18.0417449583 59.3546607271,18.0430791214 59.3553933281,18.0443772054 59.3543390705,18.0443410735 59.3525521988,18.0430068757 59.3518196531)),((18.057648911 59.3580921665,18.0563505038 59.3591465851,18.056386644 59.3609338529,18.0577212093 59.3616667704,18.0590196693 59.3606123647,18.0589835112 59.3588250286,18.057648911 59.3580921665)),((18.065330875 59.3464027176,18.0640324062 59.3474574216,18.0640686964 59.349244775,18.0654034733 59.3499774928,18.0667019948 59.3489228018,18.0666656867 59.3471353801,18.065330875 59.3464027176))) ###Markdown Plot result ###Code %matplotlib inline import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib from shapely import wkt def plot_traj_hex(traj_geom, hex_geom, margin = 0.01): fig,ax = plt.subplots(1,1,figsize=(6,4)) patches = [] tc = "C1" hc = "C4" x,y = traj_geom.xy ax.plot(x,y,c=tc,marker="o",ms=6,lw=2,markeredgewidth=4, markeredgecolor=tc) for geom in hex_geom.geoms: x,y = geom.exterior.xy ax.fill(x, y, fc = hc, ec="w",linewidth=2, alpha = 0.8) ax.tick_params(axis='both',left=False, top=False, right=False, bottom=False, labelleft=False, labeltop=False, labelright=False, labelbottom=False) minx, miny, maxx, maxy = traj_geom.envelope.buffer(margin).bounds ax.set_xlim(minx,maxx) ax.set_ylim(miny,maxy) # ax.set_aspect(1.0) return fig,ax level = 8 interpolate = False result = H3MM.match_wkt(traj, level, interpolate) traj_geom = wkt.loads(traj) hex_geom = wkt.loads(hexs2wkt(result.hexs)) fig,ax = plot_traj_hex(traj_geom,hex_geom) # plt.tight_layout() ax.set_title("H{} Interpolate {}".format(level,interpolate),fontsize=16) fig.savefig("h{}{}.png".format(level,("","i")[interpolate]),dpi=300,bbox_inches='tight',pad_inches=0) level = 9 interpolate = True result = H3MM.match_wkt(traj, level, interpolate) traj_geom = wkt.loads(traj) hex_geom = wkt.loads(hexs2wkt(result.hexs)) fig,ax = plot_traj_hex(traj_geom,hex_geom,margin=0.005) ax.set_title("H{} Interpolate {}".format(level,interpolate),fontsize=16) fig.savefig("h{}{}.png".format(level,("","i")[interpolate]),dpi=300,bbox_inches='tight',pad_inches=0) level = 8 interpolate = True result = H3MM.match_wkt(traj, level, interpolate) traj_geom = wkt.loads(traj) hex_geom = wkt.loads(hexs2wkt(result.hexs)) fig,ax = plot_traj_hex(traj_geom,hex_geom) ax.set_title("H{} Interpolate {}".format(level,interpolate),fontsize=16) fig.savefig("h{}{}.png".format(level,("","i")[interpolate]),dpi=300,bbox_inches='tight',pad_inches=0) level = 7 interpolate = True result = H3MM.match_wkt(traj, level, interpolate) traj_geom = wkt.loads(traj) hex_geom = wkt.loads(hexs2wkt(result.hexs)) fig,ax = plot_traj_hex(traj_geom,hex_geom,margin=0.03) ax.set_title("H{} Interpolate {}".format(level,interpolate),fontsize=16) fig.savefig("h{}{}.png".format(level,("","i")[interpolate]),dpi=300,bbox_inches='tight',pad_inches=0) ###Output _____no_output_____ ###Markdown Plot as a whole ###Code levels = [8, 8, 9, 7] interpolates = [False, True, True, True] fig,axes = plt.subplots(2,2,figsize=(8,6.1)) patches = [] tc = "C1" hc = "C4" for level,interpolate,ax in zip(levels,interpolates,axes.flatten()): result = H3MM.match_wkt(traj, level, interpolate) traj_geom = wkt.loads(traj) hex_geom = wkt.loads(hexs2wkt(result.hexs)) x,y = traj_geom.xy ax.plot(x,y,c=tc,marker="o",ms=5,lw=2,markeredgewidth=4) for geom in hex_geom.geoms: x,y = geom.exterior.xy ax.fill(x, y, fc = hc, ec="w",linewidth=2, alpha = 0.8) ax.tick_params(axis='both',left=False, top=False, right=False, bottom=False, labelleft=False, labeltop=False, labelright=False, labelbottom=False) ax.set_aspect(1.0) ax.set_title("H{} {}".format(level,("","Interpolate")[interpolate]),position=(0.5, 0.9),fontsize=16) minx, miny, maxx, maxy = traj_geom.envelope.buffer(0.015).bounds yoffset = 0.003 ax.set_xlim(minx,maxx) ax.set_ylim(miny+yoffset,maxy+yoffset) plt.tight_layout() plt.subplots_adjust(wspace=0, hspace=0) fig.savefig("h3demo.png",dpi=300,bbox_inches='tight',pad_inches=0) ###Output _____no_output_____
Data_science_Project.ipynb
###Markdown ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import nltk nltk.download('stopwords') from nltk.corpus import stopwords import string from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import accuracy_score from sklearn.neural_network import MLPClassifier %matplotlib inline %config InlineBackend.figure_format='retina' yelp_df = pd.read_csv('https://raw.githubusercontent.com/rabin1323/Data_Set/main/yelp_review_csv1.csv') yelp_df ###Output _____no_output_____ ###Markdown **EXPLORING DATASET** ###Code yelp_df.info() yelp_df.describe() #to check if we have any null values sns.heatmap(yelp_df.isnull(), yticklabels=False, cbar= False, cmap="Blues") #if there is any dot on the plot that means we have null values yelp_df=yelp_df.drop(['useful','funny','cool','review_id','user_id','business_id','date'], axis=1) yelp_df #data cleaning def preprocess(review_text): remove_pctn=[char for char in review_text if char not in string.punctuation] remove_pctn= ''.join(remove_pctn) lwr = [word.lower() for word in remove_pctn.split()] final_word = [word for word in lwr if word not in stopwords.words('english')] return final_word ###Output _____no_output_____ ###Markdown For the sentiment analsysis we want to consider only two types of stars here i.e, one star for negative reviews and fives stars for positive reviews.We will also use count vectorizer to make a model which will be used to understand the review text. After that we will transform the vectorized text and assign to variable x. Lastly, we will split the entire data to train and test model using train_test_split() ###Code #Filtering Data filtered_data = yelp_df[(yelp_df['stars']==1) | (yelp_df['stars']==5)] x = filtered_data['text'] #assigning review text to variable x y=filtered_data['stars'] #assigning stars to variable y vectorizer=CountVectorizer(analyzer=preprocess).fit(x) x=vectorizer.transform(x) #transforming the vectorized text X_train, X_test, y_train, y_test= train_test_split(x, y, random_state=42) sns.countplot(filtered_data['stars']) model= MLPClassifier() model.fit(X_train, y_train) y_predict = model.predict(X_test) #plotting the reviews using confusion matrix def conf_matrix(y, y_predict, reviews, title= 'Confusion_Matrix'): c_matrix = confusion_matrix(y, y_predict) clsfn_report = classification_report(y, y_predict) ticks = np.arange(len(reviews)) score = accuracy_score(y, y_predict) score=round(score*100,2) print("Accuracy_score:", score) print('classification_report', clsfn_report) sns.heatmap(c_matrix, cmap= 'PuBu', annot= True, fmt='g', annot_kws={'size':20}) plt.xticks(ticks, reviews) plt.yticks(ticks, reviews) plt.xlabel('predicted', fontsize=20) plt.ylabel('actual', fontsize=20) plt.title(title, fontsize=20) plt.show conf_matrix(y_test, y_predict, reviews=['negative(1)', 'positive(5']) ###Output Accuracy_score: 93.86 classification_report precision recall f1-score support 1 0.94 0.76 0.84 234 5 0.94 0.99 0.96 873 accuracy 0.94 1107 macro avg 0.94 0.87 0.90 1107 weighted avg 0.94 0.94 0.94 1107
TDDualControl.ipynb
###Markdown ###Code ! git clone https://github.com/3ammor/Weights-Initializer-pytorch.git import sys sys.path sys.path.append('/content/Weights-Initializer-pytorch') import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import PIL.Image from weight_initializer import Initializer class Dynamics: def __init__(self, environment, g = 1., noise=0.05, lam=0.01, control=None): self.environment = environment self.g = g self.noise = noise self.xt = [] self.yt = [] self.control = control self.lam = lam self.cost = 0. def compute_force(self, r, t): upscaled_h_cells = torch.nn.functional.interpolate(environment.h_cells, scale_factor=environment.scale, mode="bilinear", align_corners=True) _, Gx, Gy = environment.extrapolate(r[:,0], r[:,1], upscaled_h_cells, activation=lambda x: x, derivative=True, d_activation=lambda x: x) if self.control is not None: Ux = environment.extrapolate(r[:,0], r[:,1], self.control[t][0], activation=lambda x: x, derivative=False, std=.5, normalized=True) Uy = environment.extrapolate(r[:,0], r[:,1], self.control[t][1], activation=lambda x: x, derivative=False, std=.5, normalized=True) control_force = torch.cat((Ux, Uy), 1) else: control_force = 0. grad = torch.cat((Gx.unsqueeze(1), Gy.unsqueeze(1)), 1) env_x_repulsion = 3*torch.sigmoid(-10*r[:,0]) - 3*torch.sigmoid(-10*(environment.resolution - r[:,0])) env_y_repulsion = 3*torch.sigmoid(-10*r[:,1]) - 3*torch.sigmoid(-10*(environment.resolution - r[:,1])) repulsion_force = torch.stack((env_x_repulsion, env_y_repulsion),1) F = (self.g * grad + control_force + repulsion_force) if self.control is not None: control_cost = self.lam*torch.sum(control_force**2,1) else: control_cost = 0. return F, control_cost def compute_reward(self, r): R = environment.extrapolate(r[:,0], r[:,1], environment.r, activation=lambda x: x, derivative=False, std=.5, normalized=True) return torch.sum(R, 1) def integrate(self, r, dt, N): #Midpoint integration num_samples = self.environment.num_samples for n in range(N): F0, control_cost0 = self.compute_force(r, n) F, control_cost = self.compute_force(r + 0.5*dt*F0, n) r = r + (F * dt + torch.normal(0., self.noise, (self.environment.num_samples,2)) * dt**(1/2.)) self.xt += [r.detach().numpy()[:, 0]] self.yt += [r.detach().numpy()[:, 1]] self.cost += 0.5*(control_cost0 + control_cost) self.cost += - 0.0001*self.compute_reward(r) return r def sample(self, dt, num_iter): r0 = torch.empty(self.environment.num_samples, 2).uniform_(10, self.environment.resolution-10) r = self.integrate(r0, dt, num_iter) return r def reset(self): self.xt = [] self.yt = [] self.cost = 0. def logit(x): return np.log(x) + np.log(1 - x) class GaussianEnvironment: def __init__(self, resolution, std, num_samples, scale = 5): if resolution % scale != 0: raise(ValueError)("The resulition should have {} as a factor".format(scale)) latent_resolution = int(resolution/scale) self.distribution_mean = torch.zeros([num_samples, 1, latent_resolution, latent_resolution]) self.distribution_std = torch.ones([num_samples, 1, latent_resolution, latent_resolution]) self.r_distribution_logits = logit(3./(latent_resolution*latent_resolution))*torch.ones([num_samples, latent_resolution*latent_resolution]) self.num_samples = num_samples self.resolution = resolution self.latent_resolution = latent_resolution self.scale = scale self.std = std self.environment_hardness = 0.01 self.reward_hardness = 0.01 self.is_generated = False self.colors = [(torch.tensor([0., 0., 1.]).unsqueeze(1).unsqueeze(2).expand(1,3,resolution, resolution), 0, 0.2), (torch.tensor([0., 1., 0.]).unsqueeze(1).unsqueeze(2).expand(1,3,resolution, resolution), 0.2, 0.4), (torch.tensor([0.58824, 0.29412, 0]).unsqueeze(1).unsqueeze(2).expand(1,3,resolution, resolution), 0.4, 0.6), (torch.tensor([0.5, 0.5, 0.5]).unsqueeze(1).unsqueeze(2).expand(1,3,resolution, resolution), 0.6, 0.8), (torch.tensor([1., 1., 1.]).unsqueeze(1).unsqueeze(2).expand(1,3,resolution, resolution), 0.6, 0.8)] self.halfsize = None self.kernel = None self.set_kernel() self.c = None self.h = None self.dxh = None self.dyx = None def visibility_map(self, x0, y0, v0, k0): arange = torch.arange(0., self.resolution).float() x, y = torch.meshgrid([arange, arange]) h = self.extrapolate(x0, y0, self.h, activation=lambda x: x, derivative=False, normalized=True) x0 = x0.unsqueeze(1).unsqueeze(2).unsqueeze(3).expand(self.num_samples,1,self.resolution,self.resolution) y0 = y0.unsqueeze(1).unsqueeze(2).unsqueeze(3).expand(self.num_samples,1,self.resolution,self.resolution) h = h.unsqueeze(2).unsqueeze(3).expand(self.num_samples,1,self.resolution,self.resolution) d_map = torch.sqrt(((x0 - x) ** 2 + (y0 - y) ** 2)) visibility_mask = 1./(1. + F.relu(d_map - h*k0 + 1)**2) hard_mask = 1. - torch.sigmoid(10000*(d_map - h*k0 + 1)) likelihood_variance = v0 + F.relu(d_map - h*k0 + 1)**3 return likelihood_variance, visibility_mask, hard_mask def env_bayesian_update(self, inference_net, x0, y0, v0 = 0.00001, k0 = 30., data=None): prior_mean = self.distribution_mean prior_std = self.distribution_std likelihood_variance, visibility_mask, hard_mask = self.visibility_map(x0, y0, v0, k0) if data is None: mean = self.h distribution = torch.distributions.normal.Normal(mean,torch.sqrt(likelihood_variance)) sample = distribution.rsample() data = hard_mask*sample posterior_mean, posterior_var = inference_net.get_posterior_parameters(data, likelihood_variance, prior_mean, prior_std) self.distribution_mean = posterior_mean self.distribution_std = torch.sqrt(posterior_var) variational_loss1 = inference_net.neg_ELBO_loss(data, prior_mean, prior_std, self, likelihood_variance,hard_mask) latent = self.h_cells variational_loss2 = inference_net.FAVI_loss(data, latent, prior_mean, prior_std, likelihood_variance) return variational_loss1 + variational_loss2 def rew_bayesian_update(self, inference_net, x0, y0, v0 = 0.001, k0 = 20., data=None): prior_logits = self.r_distribution_logits likelihood_variance, visibility_mask, hard_mask = self.visibility_map(x0, y0, v0, k0) if data is None: mean = self.r distribution = torch.distributions.normal.Normal(mean,torch.sqrt(likelihood_variance)) sample = distribution.rsample() data = hard_mask*sample posterior_logits = inference_net.get_posterior_parameters(data, likelihood_variance, prior_logits, hard_mask) self.r_distribution_logits = posterior_logits #variational_loss = inference_net.neg_ELBO_loss(data, prior_logits, self, likelihood_variance) latent = self.r_cells variational_loss = inference_net.FAVI_loss(data, latent, prior_logits, likelihood_variance, hard_mask) return variational_loss def dsigmoidd(self, x): sigmoid = torch.sigmoid(x); return sigmoid * (1 - sigmoid) def get_statistics(self): return self.distribution_mean, self.distribution_std, self.r_distribution_logits def filter_environment(self, cells): upscaled_cells = torch.nn.functional.interpolate(cells, scale_factor=self.scale, mode="bilinear", align_corners=True) pre_map = torch.nn.functional.conv2d(upscaled_cells, self.kernel.unsqueeze(0).unsqueeze(0), padding = self.halfsize) env_map = torch.sigmoid(self.environment_hardness * pre_map) dxh = torch.nn.functional.conv2d(upscaled_cells, self.dxkernel.unsqueeze(0).unsqueeze(0), padding = self.halfsize) dyh = torch.nn.functional.conv2d(upscaled_cells, self.dykernel.unsqueeze(0).unsqueeze(0), padding = self.halfsize) dxh = dxh * self.environment_hardness * self.dsigmoidd(self.environment_hardness * pre_map) dyh = dyh * self.environment_hardness * self.dsigmoidd(self.environment_hardness * pre_map) return env_map, dxh, dyh def filter_reward(self, r_cells): upscaled_r_cells = torch.nn.functional.interpolate(r_cells.view((self.num_samples,1,self.latent_resolution, self.latent_resolution)), scale_factor=self.scale, mode="bilinear", align_corners=True) reward = (0.1/3)*torch.nn.functional.conv2d(upscaled_r_cells, self.kernel.unsqueeze(0).unsqueeze(0), padding = self.halfsize) return reward def generate(self): mean = self.distribution_mean std = self.distribution_std distribution = torch.distributions.normal.Normal(mean, std) cells = distribution.rsample() r_logits = self.r_distribution_logits r_distribution = torch.distributions.bernoulli.Bernoulli(logits=r_logits) r_cells = r_distribution.sample() env_map, dxh, dyh = self.filter_environment(cells) reward = self.filter_reward(r_cells) self.c = self.paint(env_map) self.h_cells = cells self.h = env_map self.r = reward self.r_cells = r_cells self.dxh = dxh self.dyh = dyh self.is_generated = True def set_kernel(self): self.halfsize = 4*int(np.ceil(2 * self.std)) arange = torch.arange(-self.halfsize, self.halfsize + 1).float() x, y = torch.meshgrid([arange, arange]) self.kernel = torch.exp(-(x ** 2 + y ** 2) / (2 * self.std ** 2)) self.dxkernel = -self.kernel.detach() * x / self.std **2 self.dykernel = -self.kernel.detach() * y / self.std **2 def extrapolate(self, x0, y0, image, activation, derivative=False, d_activation = None, std=None, normalized=False): if std is None: # std = self.std arange = torch.arange(0., self.resolution).float() x, y = torch.meshgrid([arange, arange]) x = x.unsqueeze(0).unsqueeze(0).expand(self.num_samples,1,self.resolution,self.resolution) y = y.unsqueeze(0).unsqueeze(0).expand(self.num_samples,1,self.resolution,self.resolution) x0 = x0.unsqueeze(1).unsqueeze(2).unsqueeze(3).expand(self.num_samples,1,self.resolution,self.resolution) y0 = y0.unsqueeze(1).unsqueeze(2).unsqueeze(3).expand(self.num_samples,1,self.resolution,self.resolution) weights = torch.exp(-((x0 - x) ** 2 + (y0 - y) ** 2) / (2 * std ** 2)) if derivative: dx_weights = -(x - x0)*weights / self.std **2 dy_weights = -(y - y0)*weights / self.std **2 if normalized: weights = weights/torch.sum(weights, (1,2,3), keepdim=True).expand(self.num_samples,1,self.resolution,self.resolution) extr = torch.sum(image * weights, (1,2,3)) if derivative: dx_extr = d_activation(extr)*torch.sum(image * dx_weights, (1,2,3)) dy_extr = d_activation(extr)*torch.sum(image * dy_weights, (1,2,3)) return activation(extr), dx_extr, dy_extr else: extr = activation(torch.sum(image * weights, (2,3))) return activation(extr) def soft_indicator(self, lower, upper, soft): indicator = lambda height: torch.sigmoid(soft * (height - lower)) * (1 - torch.sigmoid(soft * (height - upper))) return indicator def paint(self, x): return sum([color.expand(self.num_samples,3,self.resolution,self.resolution) * self.soft_indicator(lower, upper, 10.)(x) for color, lower, upper in self.colors]) class HJB(torch.nn.Module): def __init__(self, image_size, x_force, y_force, noise_map, reward, lam, dt, intermediate_reward=False): super(HJB, self).__init__() self.image_size = image_size self.x_force = x_force self.y_force = y_force self.noise_map = noise_map self.reward = reward self.lam = lam self.dt = dt self.kx, self.ky, self.k_laplace = self._get_derivative_filters() self.intermediate_reward = intermediate_reward #self.kx_minus, self.kx_plus, self.ky_minus, self.ky_plus = self._get_derivative_filters() def _get_derivative_filters(self): #Upwind method ky = torch.tensor([[1., 2. , 1.], [0., 0., 0.], [-1., -2. , -1.]])/4. ky = ky.expand(1,1,3,3) kx = torch.transpose(ky, 3, 2) k_laplace = torch.tensor([[1., 1. , 1.], [1., -8. , 1.], [1., 1. , 1.]]) k_laplace = k_laplace.expand(1,1,3,3) return kx, ky, k_laplace def backward_update(self, V, control=False): Vpad = torch.nn.functional.pad(V, (1,1,1,1), "reflect") dVx = torch.nn.functional.conv2d(Vpad, self.kx, padding = 0) dVy = torch.nn.functional.conv2d(Vpad, self.ky, padding = 0) LV = torch.nn.functional.conv2d(Vpad, self.k_laplace, padding = 0) if self.intermediate_reward: r = self.reward else: r = 0. update = (-r - dVx**2/(2*self.lam) - dVy**2/(2*self.lam) + self.x_force * dVx + self.y_force * dVy + self.noise_map**2*LV) if control: Ux = -(1/self.lam)*dVx Uy = -(1/self.lam)*dVy return update, Ux, Uy else: return update def backward_step(self, V): update, Ux, Uy = self.backward_update(V, control=True) Vprev = V + self.dt*update return Vprev, Ux, Uy def RK_backward_step(self, V): k1, Ux, Uy = self.backward_update(V, control=True) k1 *= self.dt k2 = self.dt*self.backward_update(V + k1/2) k3 = self.dt*self.backward_update(V + k2/2) k4 = self.dt*self.backward_update(V + k3) return V + (k1 + 2*k2 + 2*k3 + k4)/6., Ux, Uy def compute_value(self, N, RK = False, plot=False): Vn = -self.reward V_list = [-Vn] U_list = [None] for n in reversed(range(N)): if n % 20 == 0: if plot: x,y = (np.arange(0, resolution), np.arange(0, resolution)) plt.imshow(Vn[0,:,:,:].detach().numpy().squeeze(), extent = [0, resolution, 0, resolution], origin="lower") plt.quiver(x, y, environment.dyh[0,:,:,:].detach().numpy().squeeze(), environment.dxh[0,:,:,:].detach().numpy().squeeze()) #plt.quiver(x, y, Ux[0,:,:,:].detach().numpy().squeeze(), Uy[0,:,:,:].numpy().squeeze(), color="red") fig = plt.gcf() fig.set_size_inches(18.5, 18.5) plt.show() if not RK: Vn, Ux, Uy = self.backward_step(Vn) else: Vn, Ux, Uy = self.RK_backward_step(Vn) V_list.append(-Vn) U_list.append((-Uy, -Ux)) #TODO: flipped/sign flipped return list(reversed(V_list)), list(reversed(U_list)) class EnvInferenceNet(nn.Module): def __init__(self, gain, h_size=30, k_size=3, var_k_size=3, latent_resolution = 8, scale_factor = 5): super(EnvInferenceNet, self).__init__() self.conv_in = nn.Conv2d(h_size, h_size, k_size, padding=0) #Input: h_mean, h_std, r_mean, r_std times h_size self.out = nn.Linear(latent_resolution*latent_resolution*h_size*scale_factor**2, latent_resolution*latent_resolution) self.var_l1 = nn.Conv2d(1, h_size, 1, padding=0, bias=False) self.var_out = nn.Conv2d(h_size, 1 , 1, padding=0, bias=False) # Parameters self.h_size = h_size self.k_size = k_size self.k_pad = int((k_size - 1)/2) self.var_k_pad = int((var_k_size - 1)/2) self.latent_resolution = latent_resolution self.scale_factor = scale_factor self.gain = gain def forward(self, data, likelihood_var): activation = lambda x: torch.relu(x) b_size = data.shape[0] x = data.repeat(1,self.h_size,1,1) x_pad = torch.nn.functional.pad(x, (self.k_pad,self.k_pad,self.k_pad,self.k_pad), "reflect") h = activation(self.conv_in(x_pad)).view(b_size, self.h_size*self.latent_resolution*self.latent_resolution*self.scale_factor**2) latent_data = self.out(h) latent_data = latent_data.view(b_size,1,self.latent_resolution,self.latent_resolution) x = F.interpolate(likelihood_var, scale_factor=1/self.scale_factor, mode="bilinear", align_corners=True) x = activation(self.var_l1(x)) x = self.var_out(x)**2 return self.gain*latent_data, x def get_posterior_parameters(self, data, likelihood_var, prior_mean, prior_std): latent_data, latent_variance = self(data, likelihood_var) posterior_var = 1/(1/prior_std**2 + 1/latent_variance) posterior_mean = (prior_mean/prior_std**2 + latent_data/latent_variance)*posterior_var return posterior_mean, posterior_var def neg_ELBO_loss(self, data, prior_mean, prior_std, environment, lk_variance, mask): prior_distribution = torch.distributions.normal.Normal(prior_mean, prior_std) posterior_mean, posterior_var = self.get_posterior_parameters(data, lk_variance, prior_mean, prior_std) post_distribution = torch.distributions.normal.Normal(posterior_mean,torch.sqrt(posterior_var)) posterior_sample = post_distribution.rsample() lik_filter = lambda x: environment.filter_environment(x)[0] avg_log_lik = torch.mean(-0.5*mask*(data - lik_filter(posterior_sample))**2/lk_variance) KL_regularization = torch.distributions.kl.kl_divergence(post_distribution, prior_distribution) return torch.mean(-avg_log_lik + KL_regularization) def FAVI_loss(self, data, latent, prior_mean, prior_std, lk_variance): posterior_mean, posterior_var = self.get_posterior_parameters(data, lk_variance, prior_mean, prior_std) loss = torch.mean(0.5*(latent - posterior_mean)**2/posterior_var + 0.5*torch.log(2*np.pi*posterior_var)) return loss class RewInferenceNet(nn.Module): def __init__(self, gain, h_size=60, k_size=5, latent_resolution = 8, scale_factor = 5): super(RewInferenceNet, self).__init__() self.l = nn.Linear(latent_resolution*latent_resolution*scale_factor**2, latent_resolution*latent_resolution) #self.var_l1 = nn.Conv2d(1, h_size, 1, padding=0, bias=False) #self.var_out = nn.Conv2d(h_size, 1 , 1, padding=0, bias=False) # Parameters self.h_size = h_size self.k_size = k_size self.k_pad = int((k_size - 1)/2) self.latent_resolution = latent_resolution self.scale_factor = scale_factor self.gain = gain def forward(self, data, likelihood_var, hard_mask): b_size = data.shape[0] mask = F.interpolate(hard_mask, scale_factor=1/self.scale_factor, mode="bilinear", align_corners=True).view((b_size,self.latent_resolution*self.latent_resolution)) x = mask*(0.1*F.softplus(self.l(data.view(b_size, self.latent_resolution*self.latent_resolution*self.scale_factor**2))) - 2.) return x def get_posterior_parameters(self, data, likelihood_var, prior_logits, hard_mask): latent_logits = self(data, likelihood_var, hard_mask) posterior_logits = prior_logits + latent_logits return posterior_logits def neg_ELBO_loss(self, data, prior_logits, environment, lk_variance): prior_distribution = torch.distributions.categorical.Categorical(logits=prior_logits) posterior_logits = self.get_posterior_parameters(data, lk_variance, prior_logits) post_distribution = torch.distributions.categorical.Categorical(logits=posterior_logits) enumeration = post_distribution.enumerate_support(expand=False) log_probs = post_distribution.log_prob(enumeration).transpose(1,0) probs = torch.exp(log_probs).unsqueeze(2).unsqueeze(3) log_lk = torch.sum(-0.5*(data - environment.filter_reward(enumeration[:,0]).transpose(1,0))**2/lk_variance, (2,3)) avg_log_lik = torch.mean(probs*log_lk.detach()) # KL_regularization = torch.distributions.kl.kl_divergence(post_distribution, prior_distribution) return torch.mean(-avg_log_lik + KL_regularization) def FAVI_loss(self, data, latent, prior_logits, lk_variance, hard_mask): b_size = data.shape[0] weights = F.interpolate(hard_mask, scale_factor=1/self.scale_factor, mode="bilinear", align_corners=True).view((b_size,self.latent_resolution*self.latent_resolution)) loss_fn = torch.nn.BCEWithLogitsLoss(weight=weights.detach()) posterior_logits = self.get_posterior_parameters(data, lk_variance, prior_logits, hard_mask) loss = loss_fn(posterior_logits, latent.detach()) if False and iteration % 10 == 0: plot_map(data) mean_r_cells = torch.sigmoid(torch.nn.functional.interpolate(posterior_logits.view((b_size,1,self.latent_resolution, self.latent_resolution)), scale_factor=self.scale_factor, mode="bilinear", align_corners=True)) r_mean = (0.1/3)*torch.nn.functional.conv2d(mean_r_cells, environment.kernel.unsqueeze(0).unsqueeze(0), padding = environment.halfsize) r_var = r_mean*(1 - r_mean) plot_map(r_mean) plot_map(r_var) return loss # Policy network TODO: Work in progress class ValueNet(nn.Module): def __init__(self, environment, smoothing_std=2, h_size=40, k_size=1): super(ValueNet, self).__init__() self.conv_in = nn.Conv2d(3, h_size, k_size, padding=0, bias=False) self.out = nn.Linear(environment.latent_resolution*environment.latent_resolution*h_size, environment.latent_resolution*environment.latent_resolution, bias=False) self.conv_out = nn.Conv2d(h_size, 1, k_size, padding=0, bias=False) # Smoothing layer self.smoothing_std = smoothing_std # Parameters self.h_size = h_size self.k_size = k_size self.k_pad = int((k_size - 1)/2) self.halfsize = 4*int(np.ceil(2 * smoothing_std)) arange = torch.arange(-self.halfsize, self.halfsize + 1).float() x, y = torch.meshgrid([arange, arange]) self.smoothing_ker = torch.exp(-(x ** 2 + y ** 2) / (2 * smoothing_std ** 2)) self.environment = environment self.V_trace = None def forward(self, h_mean, h_std, r_logits, N, g, dt, exploit=False): activation = lambda x: F.softplus(x) predicted_reward = 0.1*environment.filter_reward(torch.sigmoid(r_logits)) x = torch.cat((h_mean, h_std, r_logits.view((environment.num_samples, 1, environment.latent_resolution, environment.latent_resolution))), 1) x = activation(self.conv_in(x)) y = x.view((environment.num_samples, self.h_size*environment.latent_resolution**2)) z = self.conv_out(x) x = z #+ 0.1*self.out(y).view((environment.num_samples, 1, environment.latent_resolution, environment.latent_resolution)) x = F.interpolate(x, scale_factor=environment.scale, mode="bilinear", align_corners=True) x_pad = torch.nn.functional.pad(x, (self.halfsize,self.halfsize,self.halfsize,self.halfsize), "reflect") output = torch.nn.functional.conv2d(x_pad.view(environment.num_samples, 1, x_pad.shape[2], x_pad.shape[3]), self.smoothing_ker.unsqueeze(0).unsqueeze(0)).view(environment.num_samples, 1, environment.resolution, environment.resolution) value = 0.01*F.softplus(output) if exploit is False: hjb_input = value else: hjb_input = predicted_reward hjb = HJB(image_size=environment.resolution, x_force= -g*environment.dyh, #TODO: this should be changed y_force= -g*environment.dxh, #TODO: this should be changed noise_map= 0.25, #TODO: this should be changed reward=hjb_input, lam= 0.02, dt=dt) _, Ulist = hjb.compute_value(N, RK=True) return value, Ulist def TDloss(self, reward, value, future_value, kernel, gamma=0.9): reward = reward.unsqueeze(1).unsqueeze(2).unsqueeze(3) future_value = future_value.unsqueeze(2).unsqueeze(3) # TD_target = (reward + gamma*future_value).detach() loss = torch.mean(kernel*(value - TD_target)**2) return loss def TD_lambda_loss(self, reward, value, future_value, kernel, step, gamma=0.95, lam = 0.2): if step == 0: self.V_trace = 0. else: self.V_trace = gamma*lam*self.V_trace + value future_value = future_value.unsqueeze(2).unsqueeze(3) loss = torch.mean(kernel*(reward + gamma*future_value.detach() - value).detach()*V_trace) return loss def plot_trajectories(Ulist, environment, dynamics, value): x0_range = [20., 40.] y0_range = [20., 40.] _, _, r_logits = environment.get_statistics() r_map = environment.filter_reward(torch.sigmoid(r_logits)) x,y = (np.arange(0, environment.resolution), np.arange(0, environment.resolution)) #plt.imshow(environment.h[0,0,:,:].detach().numpy().squeeze(), extent = [0, environment.resolution, 0, environment.resolution], origin="lower") #plt.contour(x, y, environment.h[0,0,:,:].detach().numpy().squeeze(), colors='red') plt.imshow(r_map[0,0,:,:].detach().numpy().squeeze(), extent = [0, environment.resolution, 0, environment.resolution], origin="lower") plt.quiver(x, y, environment.dyh[0,0,:,:].detach().numpy().squeeze(), environment.dxh[0,:,:,:].detach().numpy().squeeze()) plt.plot(np.array(dynamics.yt)[:,0], np.array(dynamics.xt)[:,0], linewidth=4, color = "red") plt.plot(np.array(dynamics.yt)[0,0], np.array(dynamics.xt)[0,0], "xb") plt.colorbar() fig = plt.gcf() fig.set_size_inches(18.5, 18.5) plt.show() def plot_map(mp, norm=False, lim=1.): x0_range = [20., 40.] y0_range = [20., 40.] x,y = (np.arange(0, environment.resolution), np.arange(0, environment.resolution)) plt.imshow(mp[0,0,:,:].detach().numpy().squeeze(), extent = [0, environment.resolution, 0, environment.resolution], origin="lower") plt.colorbar() fig = plt.gcf() fig.set_size_inches(18.5, 18.5) #plt.clim(0,1.) if norm: plt.clim(0,1.) plt.show() import pickle def save_network(net, name): pickle.dump(net, open( "{}.p".format(name), "wb" )) def load_network(name): return pickle.load( open( "{}.p".format(name), "rb" ) ) # Train N_iters = 2000 RL_batch_size = 3 VI_batch_size = 20 N_steps = 5 N_intergration_steps = 400 #200 N_VI_iterations = 400 resolution = 40 #40 scale = 8 #5 std = 7.5 g = 0.0005 #0.005 noise = 0.3 dt = 0.1 environment = GaussianEnvironment(resolution=resolution, std=std, num_samples=VI_batch_size, scale=scale) net = ValueNet(environment) #TODO: Multiple networks #Initializer.initialize(model=net, initialization=nn.init.xavier_uniform, gain=nn.init.calculate_gain('relu')) optimizer = optim.Adam(net.parameters(), lr=0.00001) env_inference_net = EnvInferenceNet(gain=1., scale_factor = scale, latent_resolution = int(resolution/scale)) #TODO: Multiple networks #Initializer.initialize(model=env_inference_net, initialization=nn.init.xavier_uniform, gain=nn.init.calculate_gain('relu')) env_VI_optimizer = optim.Adam(env_inference_net.parameters(), lr=0.00001) reward_inference_net = RewInferenceNet(gain=1., scale_factor = scale, latent_resolution = int(resolution/scale)) #TODO: Multiple networks #Initializer.initialize(model=reward_inference_net, initialization=nn.init.xavier_uniform, gain=nn.init.calculate_gain('relu')) reward_VI_optimizer = optim.Adam(reward_inference_net.parameters(), lr=0.0001) loss_list = [] env_VI_loss_list = [] reward_VI_loss_list = [] load_value_net = False try: env_inference_net = load_network("env_net") reward_inference_net = load_network("reward_net") print("Loading inference networks") N_VI_itr = 0 except: print("Training inference networks") N_VI_itr = N_VI_iterations if load_value_net: try: net = load_network("value_net") optimizer = optim.Adam(net.parameters(), lr=0.0001) print("Loading value networks") except: print("Training value network") for iteration in range(N_iters): if iteration > N_VI_itr: batch_size = RL_batch_size else: batch_size = VI_batch_size print("Iteration: {}".format(iteration)) environment = GaussianEnvironment(resolution=resolution, std=std, num_samples=batch_size, scale=scale) dynamics = Dynamics(environment, g=g, noise=noise, lam=0.0000) environment.generate() r = dynamics.sample(dt, 1) if iteration > N_VI_itr: environment.env_bayesian_update(env_inference_net, r[:,0], r[:,1]) environment.generate() total_loss = 0. total_reward = 0. total_env_VI_loss = 0. total_reward_VI_loss = 0. reward = torch.zeros((batch_size,)) for step in range(N_steps): print("Step: {}".format(step)) # zero the parameter gradients optimizer.zero_grad() env_VI_optimizer.zero_grad() env_VI_optimizer.zero_grad() ## Control ## if step == N_steps - 1: exploit = True else: exploit = False if iteration > N_VI_itr: h_mean, h_std, r_logits = environment.get_statistics() value, Ulist = net.forward(h_mean, h_std, r_logits, N_intergration_steps, g, dt, exploit=exploit) dynamics.control = Ulist print(value.max()) old_r = r if iteration > N_VI_itr: r = dynamics.integrate(r, dt, N_intergration_steps).detach() else: r = dynamics.sample(dt, 1) if np.any(np.isnan(r.detach().numpy())): print("not a number found in the new coordinates") break if np.any(r.detach().numpy() > resolution + 8) or np.any(r.detach().numpy() < -8): print("The agent has left the environment") break if iteration % 1 == 0 and iteration > N_VI_itr: plot_trajectories(Ulist, environment, dynamics, value) save_network(net, "value_net") ## Reward ## new_reward = -dynamics.cost # Bayesian update env_VI_loss = environment.env_bayesian_update(env_inference_net, r[:,0], r[:,1]) reward_VI_loss = environment.rew_bayesian_update(reward_inference_net, r[:,0], r[:,1]) ## Information gain ## if iteration > N_VI_itr: if step < N_steps - 1: new_h_mean, new_h_std, new_r_logits = environment.get_statistics() future_value_map,_ = net.forward(new_h_mean, new_h_std, new_r_logits, N_intergration_steps, g, dt, exploit=exploit) future_value = environment.extrapolate(r[:,0], r[:,1], future_value_map, activation=lambda x: x, derivative=False, std=.5, normalized=True).detach() else: future_value = new_reward.unsqueeze(1) ## TD kernel ## arange = torch.arange(0, environment.resolution).float() x, y = torch.meshgrid([arange, arange]) x = x.unsqueeze(0).unsqueeze(0).expand(environment.num_samples,1,environment.resolution,environment.resolution) y = y.unsqueeze(0).unsqueeze(0).expand(environment.num_samples,1,environment.resolution,environment.resolution) x0 = old_r[:,0].unsqueeze(1).unsqueeze(2).unsqueeze(3).expand(environment.num_samples,1,environment.resolution,environment.resolution) y0 = old_r[:,1].unsqueeze(1).unsqueeze(2).unsqueeze(3).expand(environment.num_samples,1,environment.resolution,environment.resolution) kernel = torch.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * 3. ** 2)) ## TD learning ## loss = net.TDloss(reward, value, future_value, kernel, gamma=0.95) #loss = net.TD_lambda_loss(reward, value, future_value, kernel, step, gamma=0.95, lam = 0.2) if not np.isnan(loss.detach().numpy()): loss.backward(retain_graph=True) optimizer.step() environment.generate() total_loss += float(loss.detach().numpy()) total_reward += float(torch.sum(reward).detach().numpy()) else: break ## Reward ## reward = new_reward ## VI update ## if iteration < N_VI_itr: env_VI_loss.backward(retain_graph=True) reward_VI_loss.backward(retain_graph=True) env_VI_loss.backward(retain_graph=True) reward_VI_loss.backward(retain_graph=True) env_VI_optimizer.step() reward_VI_optimizer.step() total_env_VI_loss += float(env_VI_loss.detach().numpy()) total_reward_VI_loss += float(reward_VI_loss.detach().numpy()) if iteration == N_VI_itr: save_network(env_inference_net, "env_net") save_network(reward_inference_net, "reward_net") if iteration > N_VI_itr: print("Reward: {}".format(total_reward)) else: print("VI env loss: {}".format(total_env_VI_loss)) print("VI rew loss: {}".format(total_reward_VI_loss)) #loss_list += [loss.detach().numpy()]# env_VI_loss_list += [total_env_VI_loss] reward_VI_loss_list += [total_reward_VI_loss] if iteration == N_VI_itr: plt.plot(env_VI_loss_list) plt.show() plt.plot(reward_VI_loss_list) plt.show() ###Output Training inference networks Iteration: 0 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 422241042432.0 VI rew loss: 0.22977444529533386 Iteration: 1 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 363338297344.0 VI rew loss: 0.3573695085942745 Iteration: 2 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 406224902144.0 VI rew loss: 0.31365251168608665 Iteration: 3 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 503899504640.0 VI rew loss: 0.2277168594300747 Iteration: 4 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 463332421632.0 VI rew loss: 0.4688900001347065 Iteration: 5 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 406449203200.0 VI rew loss: 0.3349279426038265 Iteration: 6 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 329373618176.0 VI rew loss: 0.2615988291800022 Iteration: 7 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 324248328192.0 VI rew loss: 0.2598825991153717 Iteration: 8 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 320889317376.0 VI rew loss: 0.1518800612539053 Iteration: 9 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 431204198400.0 VI rew loss: 0.27514977008104324 Iteration: 10 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 599227244544.0 VI rew loss: 0.3366161994636059 Iteration: 11 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 466830008320.0 VI rew loss: 0.41192008554935455 Iteration: 12 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 372196616192.0 VI rew loss: 0.26207133010029793 Iteration: 13 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 345649184768.0 VI rew loss: 0.3933437168598175 Iteration: 14 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 379572883456.0 VI rew loss: 0.32232655584812164 Iteration: 15 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 334715971584.0 VI rew loss: 0.1281099859625101 Iteration: 16 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 410146734080.0 VI rew loss: 0.17513592913746834 Iteration: 17 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 556987813888.0 VI rew loss: 0.4188919775187969 Iteration: 18 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 387728510976.0 VI rew loss: 0.21109209023416042 Iteration: 19 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 284152754176.0 VI rew loss: 0.2820042371749878 Iteration: 20 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 328891977728.0 VI rew loss: 0.23192789778113365 Iteration: 21 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 428531464192.0 VI rew loss: 0.2512397300451994 Iteration: 22 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 327167698944.0 VI rew loss: 0.18166988529264927 Iteration: 23 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 245095751680.0 VI rew loss: 0.1800212450325489 Iteration: 24 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 325475930112.0 VI rew loss: 0.2476208209991455 Iteration: 25 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 495919110144.0 VI rew loss: 0.1512489002197981 Iteration: 26 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 422691186688.0 VI rew loss: 0.32298579812049866 Iteration: 27 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 431805562880.0 VI rew loss: 0.1584992278367281 Iteration: 28 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 331360634880.0 VI rew loss: 0.284047894179821 Iteration: 29 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 347667103744.0 VI rew loss: 0.29103031381964684 Iteration: 30 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 279597538304.0 VI rew loss: 0.1230550967156887 Iteration: 31 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 356742987776.0 VI rew loss: 0.13152461126446724 Iteration: 32 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 302686150656.0 VI rew loss: 0.19945281837135553 Iteration: 33 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 364370180096.0 VI rew loss: 0.1612131418660283 Iteration: 34 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 253777700864.0 VI rew loss: 0.10448094364255667 Iteration: 35 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 326113239040.0 VI rew loss: 0.25995614007115364 Iteration: 36 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 400469547008.0 VI rew loss: 0.17383521422743797 Iteration: 37 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 384482287616.0 VI rew loss: 0.26000647619366646 Iteration: 38 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 352392280064.0 VI rew loss: 0.09234283957630396 Iteration: 39 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 372837822464.0 VI rew loss: 0.22625005431473255 Iteration: 40 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 355142504448.0 VI rew loss: 0.15506913792341948 Iteration: 41 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 386779097088.0 VI rew loss: 0.16782874427735806 Iteration: 42 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 257879505920.0 VI rew loss: 0.12468079291284084 Iteration: 43 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 504999710720.0 VI rew loss: 0.22793004289269447 Iteration: 44 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 345266546688.0 VI rew loss: 0.3645718451589346 Iteration: 45 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 362712178688.0 VI rew loss: 0.10626564174890518 Iteration: 46 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 307597252608.0 VI rew loss: 0.1544069554656744 Iteration: 47 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 299287117824.0 VI rew loss: 0.3075915165245533 Iteration: 48 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 218964445184.0 VI rew loss: 0.12400176282972097 Iteration: 49 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 314679769088.0 VI rew loss: 0.27946700528264046 Iteration: 50 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 290103347200.0 VI rew loss: 0.26787421852350235 Iteration: 51 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 317938165760.0 VI rew loss: 0.1698973085731268 Iteration: 52 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 266827040768.0 VI rew loss: 0.22994031198322773 Iteration: 53 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 288600600576.0 VI rew loss: 0.14216136373579502 Iteration: 54 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 387605450752.0 VI rew loss: 0.16833274438977242 Iteration: 55 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 280434954240.0 VI rew loss: 0.3196103163063526 Iteration: 56 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 297720780800.0 VI rew loss: 0.24131536297500134 Iteration: 57 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 338474053632.0 VI rew loss: 0.3960975222289562 Iteration: 58 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 291983589376.0 VI rew loss: 0.23704572021961212 Iteration: 59 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 383311239168.0 VI rew loss: 0.548185508698225 Iteration: 60 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 243736281088.0 VI rew loss: 0.22616184502840042 Iteration: 61 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 325990029312.0 VI rew loss: 0.41880902647972107 Iteration: 62 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 250841183232.0 VI rew loss: 0.37355637177824974 Iteration: 63 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 296662966272.0 VI rew loss: 0.11925788037478924 Iteration: 64 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 208515145728.0 VI rew loss: 0.14472386240959167 Iteration: 65 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 271639558144.0 VI rew loss: 0.044586863834410906 Iteration: 66 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 342637772800.0 VI rew loss: 0.20737509429454803 Iteration: 67 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 275305840640.0 VI rew loss: 0.17766628228127956 Iteration: 68 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 299629541376.0 VI rew loss: 0.26301489770412445 Iteration: 69 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 311327367168.0 VI rew loss: 0.40310613438487053 Iteration: 70 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 323407099904.0 VI rew loss: 0.16575668193399906 Iteration: 71 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 292913217536.0 VI rew loss: 0.08973224135115743 Iteration: 72 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 300654759936.0 VI rew loss: 0.2280220314860344 Iteration: 73 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 265091639296.0 VI rew loss: 0.15607992466539145 Iteration: 74 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 311091361792.0 VI rew loss: 0.23023258335888386 Iteration: 75 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 243729571840.0 VI rew loss: 0.2135176956653595 Iteration: 76 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 252062138368.0 VI rew loss: 0.21704638563096523 Iteration: 77 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 263157078016.0 VI rew loss: 0.10274959355592728 Iteration: 78 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 209720863744.0 VI rew loss: 0.09429359808564186 Iteration: 79 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 278086975488.0 VI rew loss: 0.12100488226860762 Iteration: 80 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 277860771840.0 VI rew loss: 0.3146333023905754 Iteration: 81 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 252288149504.0 VI rew loss: 0.0729137696325779 Iteration: 82 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 251148991488.0 VI rew loss: 0.16064060665667057 Iteration: 83 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 388054022144.0 VI rew loss: 0.16084175743162632 Iteration: 84 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 320258871296.0 VI rew loss: 0.15457004494965076 Iteration: 85 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 311282382848.0 VI rew loss: 0.1759900562465191 Iteration: 86 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 210271819776.0 VI rew loss: 0.08436768176034093 Iteration: 87 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 347898050560.0 VI rew loss: 0.2945910058915615 Iteration: 88 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 250873032704.0 VI rew loss: 0.09418028965592384 Iteration: 89 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 224809363456.0 VI rew loss: 0.12277084775269032 Iteration: 90 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 313884364800.0 VI rew loss: 0.1169918766245246 Iteration: 91 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 260794517504.0 VI rew loss: 0.15752853825688362 Iteration: 92 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 259567470592.0 VI rew loss: 0.1794869713485241 Iteration: 93 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 254978786304.0 VI rew loss: 0.14608252700418234 Iteration: 94 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 304380997632.0 VI rew loss: 0.0948259886354208 Iteration: 95 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 246424089600.0 VI rew loss: 0.12562525551766157 Iteration: 96 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 235872679936.0 VI rew loss: 0.1546556055545807 Iteration: 97 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 177659305984.0 VI rew loss: 0.12247939733788371 Iteration: 98 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 186939974656.0 VI rew loss: 0.126647075638175 Iteration: 99 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 200215781376.0 VI rew loss: 0.0741526186466217 Iteration: 100 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 235366174720.0 VI rew loss: 0.16793852858245373 Iteration: 101 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 197952548864.0 VI rew loss: 0.20960192382335663 Iteration: 102 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 218434132992.0 VI rew loss: 0.12977863289415836 Iteration: 103 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 226767673344.0 VI rew loss: 0.13524346705526114 Iteration: 104 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 224943609856.0 VI rew loss: 0.14345323853194714 Iteration: 105 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 195309808640.0 VI rew loss: 0.1665120478719473 Iteration: 106 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 188563872768.0 VI rew loss: 0.07744942884892225 Iteration: 107 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 251534471168.0 VI rew loss: 0.07055568415671587 Iteration: 108 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 264792907776.0 VI rew loss: 0.09083531238138676 Iteration: 109 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 273540591616.0 VI rew loss: 0.15185515582561493 Iteration: 110 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 220999151616.0 VI rew loss: 0.12703965418040752 Iteration: 111 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 157107107840.0 VI rew loss: 0.13024388067424297 Iteration: 112 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 205792893952.0 VI rew loss: 0.16463632136583328 Iteration: 113 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 232634999808.0 VI rew loss: 0.14512335322797298 Iteration: 114 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 223813782528.0 VI rew loss: 0.15403230674564838 Iteration: 115 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 197662590976.0 VI rew loss: 0.19239988923072815 Iteration: 116 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 261058787328.0 VI rew loss: 0.19355552829802036 Iteration: 117 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 318425749504.0 VI rew loss: 0.24338914081454277 Iteration: 118 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 259062024192.0 VI rew loss: 0.15762257017195225 Iteration: 119 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 137693451264.0 VI rew loss: 0.11716791056096554 Iteration: 120 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 223001248768.0 VI rew loss: 0.189112838357687 Iteration: 121 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 173881904128.0 VI rew loss: 0.20825589448213577 Iteration: 122 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 237359257600.0 VI rew loss: 0.09055909235030413 Iteration: 123 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 221920707584.0 VI rew loss: 0.1466216128319502 Iteration: 124 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 238442391552.0 VI rew loss: 0.14865458011627197 Iteration: 125 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 251549864960.0 VI rew loss: 0.17364568449556828 Iteration: 126 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 210052461568.0 VI rew loss: 0.09903262555599213 Iteration: 127 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 291537330176.0 VI rew loss: 0.2197326086461544 Iteration: 128 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 292872159232.0 VI rew loss: 0.423222903162241 Iteration: 129 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 219923607552.0 VI rew loss: 0.237300094217062 Iteration: 130 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 203433575424.0 VI rew loss: 0.10616797022521496 Iteration: 131 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 255351126016.0 VI rew loss: 0.11670284625142813 Iteration: 132 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 263147750400.0 VI rew loss: 0.2487430591136217 Iteration: 133 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 237638004736.0 VI rew loss: 0.14700455404818058 Iteration: 134 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 154095174656.0 VI rew loss: 0.14485059678554535 Iteration: 135 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 230348187648.0 VI rew loss: 0.08348592184484005 Iteration: 136 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 274861852672.0 VI rew loss: 0.18045745603740215 Iteration: 137 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 163953880064.0 VI rew loss: 0.04714646772481501 Iteration: 138 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 177214498816.0 VI rew loss: 0.11933653615415096 Iteration: 139 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 242643411968.0 VI rew loss: 0.21889785304665565 Iteration: 140 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 231277849600.0 VI rew loss: 0.1936682015657425 Iteration: 141 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 267530881024.0 VI rew loss: 0.20375876873731613 Iteration: 142 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 222792286208.0 VI rew loss: 0.15997080132365227 Iteration: 143 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 212910878720.0 VI rew loss: 0.15422696247696877 Iteration: 144 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 276364955648.0 VI rew loss: 0.12787541188299656 Iteration: 145 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 200667377664.0 VI rew loss: 0.13114825822412968 Iteration: 146 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 177303565312.0 VI rew loss: 0.14015917479991913 Iteration: 147 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 194966250496.0 VI rew loss: 0.15553545951843262 Iteration: 148 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 161703487488.0 VI rew loss: 0.046514492481946945 Iteration: 149 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 162743533568.0 VI rew loss: 0.1256493367254734 Iteration: 150 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 180307544064.0 VI rew loss: 0.13028662092983723 Iteration: 151 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 143436824576.0 VI rew loss: 0.0729379877448082 Iteration: 152 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 158047774720.0 VI rew loss: 0.13202457502484322 Iteration: 153 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 160865912832.0 VI rew loss: 0.11977975815534592 Iteration: 154 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 243217292288.0 VI rew loss: 0.338142529129982 Iteration: 155 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 190414811136.0 VI rew loss: 0.13180006109178066 Iteration: 156 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 211875233792.0 VI rew loss: 0.13611100055277348 Iteration: 157 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 211724924928.0 VI rew loss: 0.14755660854279995 Iteration: 158 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 159070516224.0 VI rew loss: 0.036795263178646564 Iteration: 159 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 205586465792.0 VI rew loss: 0.14636026788502932 Iteration: 160 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 176324969472.0 VI rew loss: 0.12976064160466194 Iteration: 161 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 188818952192.0 VI rew loss: 0.1015365794301033 Iteration: 162 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 159882921984.0 VI rew loss: 0.09688875824213028 Iteration: 163 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 142191460352.0 VI rew loss: 0.0834064818918705 Iteration: 164 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 193941487616.0 VI rew loss: 0.14115168899297714 Iteration: 165 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 187716227072.0 VI rew loss: 0.13645023480057716 Iteration: 166 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 201279457280.0 VI rew loss: 0.14414941146969795 Iteration: 167 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 166751292416.0 VI rew loss: 0.1092663798481226 Iteration: 168 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 202776832000.0 VI rew loss: 0.11920296214520931 Iteration: 169 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 172753268736.0 VI rew loss: 0.10153256356716156 Iteration: 170 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 152422607872.0 VI rew loss: 0.07899864763021469 Iteration: 171 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 194046680064.0 VI rew loss: 0.13171088136732578 Iteration: 172 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 181543312384.0 VI rew loss: 0.08212419878691435 Iteration: 173 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 215730048000.0 VI rew loss: 0.1836035344749689 Iteration: 174 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 189160587264.0 VI rew loss: 0.1037248931825161 Iteration: 175 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 151342760960.0 VI rew loss: 0.0796581357717514 Iteration: 176 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 169695935488.0 VI rew loss: 0.09321767557412386 Iteration: 177 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 187097515008.0 VI rew loss: 0.197247426956892 Iteration: 178 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 165082457088.0 VI rew loss: 0.2014260347932577 Iteration: 179 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 180271771648.0 VI rew loss: 0.15344606153666973 Iteration: 180 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 172187925504.0 VI rew loss: 0.07085285754874349 Iteration: 181 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 168501903360.0 VI rew loss: 0.12880539149045944 Iteration: 182 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 240736499712.0 VI rew loss: 0.23562602326273918 Iteration: 183 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 214326153216.0 VI rew loss: 0.14820203557610512 Iteration: 184 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 116309394432.0 VI rew loss: 0.09848964959383011 Iteration: 185 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 111974277120.0 VI rew loss: 0.0717665278352797 Iteration: 186 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 223457343488.0 VI rew loss: 0.16117745079100132 Iteration: 187 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 199779919872.0 VI rew loss: 0.11707193963229656 Iteration: 188 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 145722027008.0 VI rew loss: 0.09165756683796644 Iteration: 189 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 182713269248.0 VI rew loss: 0.11017641052603722 Iteration: 190 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 170021246976.0 VI rew loss: 0.21075423434376717 Iteration: 191 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 134302699520.0 VI rew loss: 0.08830343699082732 Iteration: 192 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 168613201920.0 VI rew loss: 0.13336113281548023 Iteration: 193 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 166641993728.0 VI rew loss: 0.10129086952656507 Iteration: 194 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 131544517632.0 VI rew loss: 0.09604766219854355 Iteration: 195 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 223332646912.0 VI rew loss: 0.12269244901835918 Iteration: 196 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 211613865984.0 VI rew loss: 0.047410584054887295 Iteration: 197 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 160052350976.0 VI rew loss: 0.09252642188221216 Iteration: 198 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 162992409600.0 VI rew loss: 0.09809926757588983 Iteration: 199 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 221051548672.0 VI rew loss: 0.3039240464568138 Iteration: 200 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 167057232896.0 VI rew loss: 0.13129697181284428 Iteration: 201 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 163935376384.0 VI rew loss: 0.11697721853852272 Iteration: 202 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 188907688960.0 VI rew loss: 0.2334849312901497 Iteration: 203 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 193946085376.0 VI rew loss: 0.20327800326049328 Iteration: 204 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 181984690176.0 VI rew loss: 0.12707754410803318 Iteration: 205 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 110849291264.0 VI rew loss: 0.05485659744590521 Iteration: 206 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 186725289984.0 VI rew loss: 0.19602025486528873 Iteration: 207 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 163301622784.0 VI rew loss: 0.14630595594644547 Iteration: 208 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 182152700928.0 VI rew loss: 0.28762832656502724 Iteration: 209 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 145919255552.0 VI rew loss: 0.16769177466630936 Iteration: 210 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 165326085120.0 VI rew loss: 0.06580573692917824 Iteration: 211 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 180111609856.0 VI rew loss: 0.13163764774799347 Iteration: 212 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 157638571008.0 VI rew loss: 0.13601440843194723 Iteration: 213 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 252460478464.0 VI rew loss: 0.08851789310574532 Iteration: 214 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 157396128768.0 VI rew loss: 0.08676579035818577 Iteration: 215 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 246121678848.0 VI rew loss: 0.224672494456172 Iteration: 216 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 228339559424.0 VI rew loss: 0.12695945799350739 Iteration: 217 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 163975071744.0 VI rew loss: 0.20647362247109413 Iteration: 218 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 194859476992.0 VI rew loss: 0.15751700475811958 Iteration: 219 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 202465806336.0 VI rew loss: 0.19170633144676685 Iteration: 220 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 133770531840.0 VI rew loss: 0.10051118582487106 Iteration: 221 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 129822797824.0 VI rew loss: 0.18532654829323292 Iteration: 222 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 136019631104.0 VI rew loss: 0.08428459474816918 Iteration: 223 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 189418385408.0 VI rew loss: 0.09865020588040352 Iteration: 224 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 173184151552.0 VI rew loss: 0.18365289829671383 Iteration: 225 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 127852124160.0 VI rew loss: 0.2313352096825838 Iteration: 226 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 179202219008.0 VI rew loss: 0.07749115861952305 Iteration: 227 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 148518419456.0 VI rew loss: 0.14466810785233974 Iteration: 228 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 132018975744.0 VI rew loss: 0.17731979116797447 Iteration: 229 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 173103526912.0 VI rew loss: 0.18274514749646187 Iteration: 230 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 149813666816.0 VI rew loss: 0.09398133913055062 Iteration: 231 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 196948517888.0 VI rew loss: 0.11534114368259907 Iteration: 232 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 196643662848.0 VI rew loss: 0.1786652859300375 Iteration: 233 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 133529669632.0 VI rew loss: 0.09851820580661297 Iteration: 234 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 183093883904.0 VI rew loss: 0.1578165302053094 Iteration: 235 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 165705619456.0 VI rew loss: 0.2236646618694067 Iteration: 236 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 132358703104.0 VI rew loss: 0.1223121676594019 Iteration: 237 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 203255888896.0 VI rew loss: 0.29121827706694603 Iteration: 238 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 147219161088.0 VI rew loss: 0.09123740158975124 Iteration: 239 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 177358277632.0 VI rew loss: 0.11394925601780415 Iteration: 240 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 112963330560.0 VI rew loss: 0.07142686937004328 Iteration: 241 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 149064308736.0 VI rew loss: 0.11055933870375156 Iteration: 242 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 160167857152.0 VI rew loss: 0.14458773285150528 Iteration: 243 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 145258217472.0 VI rew loss: 0.09411309938877821 Iteration: 244 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 133913212416.0 VI rew loss: 0.06532234698534012 Iteration: 245 Step: 0 Step: 1 Step: 2 Step: 3 Step: 4 VI env loss: 142535607296.0 VI rew loss: 0.06529761338606477 Iteration: 246
notebooks/10_pivotacion_tablas.ipynb
###Markdown Pivotación de tablasVamos a ver cómo transformar las tablas de formato ancho a largo y viceversa ###Code import pandas as pd air = pd.read_csv("dat/airquality.csv") air.head() ###Output _____no_output_____ ###Markdown Melt: de ancho a largoPara pasar de formato ancho a largo, podemos usar [`melt`](https://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.melt.html) ###Code air_long = air.melt(id_vars=['month', 'day']) air_long.head() ###Output _____no_output_____ ###Markdown Vemos que, para cada mes y día, ahora contamos con dos columnas: la variable medida y su valor.En el formato largo, cada fila cuenta con el índice (en este caso, mes y día), un valor, y etiquetas del valor. Pivot: de largo a anchoPara pasar de formato largo a ancho, podemos usar [`pivot_table`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot_table.html) ###Code air_wide = air_long.pivot_table(index=['month', 'day'], columns='variable', values='value') air_wide.head() ###Output _____no_output_____ ###Markdown Los índices jerárquicos suelen ser incómodos para tratar la tabla. Podemos quitarlo con `reset_index()` ###Code air_wide = air_wide.reset_index() air_wide.head() ###Output _____no_output_____
bdc-samples/data-virtualization/mssql_spark_connector_sparkr.ipynb
###Markdown Using MsSQLSpark Conenctor from SparkR The following notebook demostrates usage of MSSQLSpark connector in sparkR. For full set of capability supported by MSSQLSpark Connector refer **mssql_spark_connector_non_ad_pyspark.ipynb** PreReq ------- - Download [AdultCensusIncome.csv]( https://amldockerdatasets.azureedge.net/AdultCensusIncome.csv ) to your local machine. Upload this file to hdfs folder named *spark_data*. - The sample uses a SQL database *connector_test_db*, user *connector_user* with password *password123!* and datasource *connector_ds*. The database, user/password and datasource need to be created before running the full sample. Refer **data-virtualization/mssql_spark_connector_user_creation.ipynb** on steps to create this user. Load a CSV file to a dataframe ###Code people <- read.df("/spark_data/AdultCensusIncome.csv", "csv") head(people) ###Output Starting Spark application ###Markdown User MSQL Spark connector to save the dataframe as a table in SQL Server ###Code #Using deafault JDBC connector #Using MSSQLSpark connector dbname = "connector_test_db" url = paste("jdbc:sqlserver://master-0.master-svc;databaseName=", "connector_test_db", sep="") print(url) dbtable = "AdultCensus_test_sparkr" user = "connector_user" password = "password123!#" # Please specify password here saveDF(people, dbtable, source = "com.microsoft.sqlserver.jdbc.spark", url = url, dbtable=dbtable, mode = "overwrite", user=user, password=password) ###Output [1] "jdbc:sqlserver://master-0.master-svc;databaseName=connector_test_db"
ACMMM.ipynb
###Markdown Deep Neural Network Model (AlexNet) ###Code class KitModel(nn.Module): def __init__(self): super(KitModel, self).__init__() self.conv1 = nn.Conv2d(3, 96, (11, 11), stride=4, padding=0) self.conv2 = nn.Conv2d(in_channels=96, out_channels=256, kernel_size=5, stride=1, groups=2, padding=2) self.conv3 = nn.Conv2d(in_channels=256, out_channels=384, kernel_size=3, stride=1, groups=1, padding=1) self.conv4 = nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1, groups=2, padding=1) self.conv5 = nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, stride=1, groups=2, padding=1) self.fc6_1 = nn.Linear(in_features = 9216, out_features = 4096) self.fc7_1 = nn.Linear(in_features = 4096, out_features = 4096) self.ip_1 = nn.Linear(in_features = 4096, out_features = 1) self.relu = nn.ReLU() self.drop = nn.Dropout() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2) def forward(self, x): conv1 = self.conv1(x) relu1 = self.relu(conv1) pool1 = self.maxpool(relu1) norm1 = self.LRN(size = 5, alpha=0.0001, beta=0.75)(pool1) conv2 = self.conv2(norm1) relu2 = self.relu(conv2) pool2 = self.maxpool(relu2) norm2 = self.LRN(size = 5, alpha=0.0001, beta=0.75)(pool2) conv3 = self.conv3(norm2) relu3 = self.relu(conv3) conv4 = self.conv4(relu3) relu4 = self.relu(conv4) conv5 = self.conv5(relu4) relu5 = self.relu(conv5) pool5 = self.maxpool(relu5) fc6_0 = pool5.view(pool5.size(0), -1) fc6_1 = self.fc6_1(fc6_0) relu6 = self.relu(fc6_1) drop6 = self.drop(relu6) fc7_1 = self.fc7_1(drop6) relu7 = self.relu(fc7_1) ip_0 = self.drop(relu7) ip_1 = self.ip_1(ip_0) return ip_1 class LRN(nn.Module): def __init__(self, size=1, alpha=1.0, beta=0.75, ACROSS_CHANNELS=True): super(KitModel.LRN, self).__init__() self.ACROSS_CHANNELS = ACROSS_CHANNELS if self.ACROSS_CHANNELS: self.average=nn.AvgPool3d(kernel_size=(size, 1, 1), stride=1, padding=(int((size-1.0)/2), 0, 0)) else: self.average=nn.AvgPool2d(kernel_size=size, stride=1, padding=int((size-1.0)/2)) self.alpha = alpha self.beta = beta def forward(self, x): if self.ACROSS_CHANNELS: div = x.pow(2).unsqueeze(1) div = self.average(div).squeeze(1) div = div.mul(self.alpha).add(1.0).pow(self.beta) else: div = x.pow(2) div = self.average(div) div = div.mul(self.alpha).add(1.0).pow(self.beta) x = x.div(div) return x class PandasDataset(Dataset): def __init__(self, list_images, list_targets, transform=None): self.list_images = list_images self.list_targets = list_targets # add transforms as well self.transform = transform def __getitem__(self, idx): image = Image.open(self.list_images[idx]).convert('RGB') image = image.resize((227,227), Image.BILINEAR) image = np.array(image, dtype='f4') # Convert RGB to BGR image = image[:, :, ::-1] image = image.astype('float32') # add transforms if self.transform: image = self.transform(image) return image, self.list_targets[idx] def __len__(self): return len(self.list_images) model = KitModel() model.load_state_dict(torch.load('generated_files/pytorch_state.npy')) model.train(False) model.eval() batch_size = 30 file_list = [ 'streetview_image.jpg', ] # I'm interested only in testing the predictions, so label=0 labels = [ 0 ] ###Output _____no_output_____ ###Markdown Example of image ###Code image = Image.open(file_list[0]).convert('RGB') imshow(np.array(image)) means = np.load('generated_files/places205CNN_mean_filtered.npy') transformations = transforms.Compose([lambda x: x - means, # Subtracts image means transforms.ToTensor(), lambda x: x*255] # Restore the input range to [0, 255] ) dataset = PandasDataset(file_list, labels, transformations) load = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=10) preds = np.zeros((len(file_list), 1)) for i, data in enumerate(load): inputs, labels = data n = len(inputs) ifrom = i*batch_size ito = i*batch_size+n inputs, labels = Variable(inputs), Variable(labels) outputs = model(inputs) preds[ifrom:ito] = outputs.data.numpy() print("Predicted:", preds) ###Output Predicted: [[4.77279186]]
Submissions/Archive/Project 1 -Attempt 1/Your_first_neural_network.ipynb
###Markdown Your first neural networkIn this project, you'll build your first neural network and use it to predict daily bike rental ridership. We've provided some of the code, but left the implementation of the neural network up to you (for the most part). After you've submitted this project, feel free to explore the data and the model more. ###Code %matplotlib inline %config InlineBackend.figure_format = 'retina' import numpy as np import pandas as pd import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Load and prepare the dataA critical step in working with neural networks is preparing the data correctly. Variables on different scales make it difficult for the network to efficiently learn the correct weights. Below, we've written the code to load and prepare the data. You'll learn more about this soon! ###Code data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) rides.head() ###Output _____no_output_____ ###Markdown Checking out the dataThis dataset has the number of riders for each hour of each day from January 1 2011 to December 31 2012. The number of riders is split between casual and registered, summed up in the `cnt` column. You can see the first few rows of the data above.Below is a plot showing the number of bike riders over the first 10 days or so in the data set. (Some days don't have exactly 24 entries in the data set, so it's not exactly 10 days.) You can see the hourly rentals here. This data is pretty complicated! The weekends have lower over all ridership and there are spikes when people are biking to and from work during the week. Looking at the data above, we also have information about temperature, humidity, and windspeed, all of these likely affecting the number of riders. You'll be trying to capture all this with your model. ###Code rides[:24*10].plot(x='dteday', y='cnt') ###Output _____no_output_____ ###Markdown Dummy variablesHere we have some categorical variables like season, weather, month. To include these in our model, we'll need to make binary dummy variables. This is simple to do with Pandas thanks to `get_dummies()`. ###Code dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides = pd.concat([rides, dummies], axis=1) fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr'] data = rides.drop(fields_to_drop, axis=1) data.head() ###Output _____no_output_____ ###Markdown Scaling target variablesTo make training the network easier, we'll standardize each of the continuous variables. That is, we'll shift and scale the variables such that they have zero mean and a standard deviation of 1.The scaling factors are saved so we can go backwards when we use the network for predictions. ###Code quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed'] # Store scalings in a dictionary so we can convert back later scaled_features = {} for each in quant_features: mean, std = data[each].mean(), data[each].std() scaled_features[each] = [mean, std] data.loc[:, each] = (data[each] - mean)/std data.head() ###Output _____no_output_____ ###Markdown Splitting the data into training, testing, and validation setsWe'll save the data for the last approximately 21 days to use as a test set after we've trained the network. We'll use this set to make predictions and compare them with the actual number of riders. ###Code # Save data for approximately the last 21 days test_data = data[-21*24:] # Now remove the test data from the data set data = data[:-21*24] # Separate the data into features and targets target_fields = ['cnt', 'casual', 'registered'] features, targets = data.drop(target_fields, axis=1), data[target_fields] test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] ###Output _____no_output_____ ###Markdown We'll split the data into two sets, one for training and one for validating as the network is being trained. Since this is time series data, we'll train on historical data, then try to predict on future data (the validation set). ###Code # Hold out the last 60 days or so of the remaining data as a validation set train_features, train_targets = features[:-60*24], targets[:-60*24] val_features, val_targets = features[-60*24:], targets[-60*24:] ###Output _____no_output_____ ###Markdown Time to build the networkBelow you'll build your network. We've built out the structure and the backwards pass. You'll implement the forward pass through the network. You'll also set the hyperparameters: the learning rate, the number of hidden units, and the number of training passes.The network has two layers, a hidden layer and an output layer. The hidden layer will use the sigmoid function for activations. The output layer has only one node and is used for the regression, the output of the node is the same as the input of the node. That is, the activation function is $f(x)=x$. A function that takes the input signal and generates an output signal, but takes into account the threshold, is called an activation function. We work through each layer of our network calculating the outputs for each neuron. All of the outputs from one layer become inputs to the neurons on the next layer. This process is called *forward propagation*.We use the weights to propagate signals forward from the input to the output layers in a neural network. We use the weights to also propagate error backwards from the output back into the network to update our weights. This is called *backpropagation*.> **Hint:** You'll need the derivative of the output activation function ($f(x) = x$) for the backpropagation implementation. If you aren't familiar with calculus, this function is equivalent to the equation $y = x$. What is the slope of that equation? That is the derivative of $f(x)$.Below, you have these tasks:1. Implement the sigmoid function to use as the activation function. Set `self.activation_function` in `__init__` to your sigmoid function.2. Implement the forward pass in the `train` method.3. Implement the backpropagation algorithm in the `train` method, including calculating the output error.4. Implement the forward pass in the `run` method. ###Code class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate #### TODO: Set self.activation_function to your implemented sigmoid function #### # # Note: in Python, you can define a function with a lambda expression, # as shown below. self.activation_function = lambda x : 1/(1+np.exp(-x)) # Replace 0 with your sigmoid calculation. ### If the lambda code above is not something you're familiar with, # You can uncomment out the following three lines and put your # implementation there instead. # #def sigmoid(x): # return 0 # Replace 0 with your sigmoid calculation here #self.activation_function = sigmoid def train(self, features, targets): ''' Train the network on batch of features and targets. Arguments --------- features: 2D array, each row is one data record, each column is a feature targets: 1D array of target values ''' n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): #### Implement the forward pass here #### ### Forward pass ### # TODO: Hidden layer - Replace these values with your calculations. hidden_inputs = np.dot(X,self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with your calculations. final_inputs = np.dot(hidden_outputs,self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer #### Implement the backward pass here #### ### Backward pass ### # TODO: Output error - Replace this value with your calculations. error = y-final_outputs # Output layer error is the difference between desired target and actual output. # TODO: Calculate the hidden layer's contribution to the error hidden_error = np.dot(self.weights_hidden_to_output,error) # TODO: Backpropagated error terms - Replace these values with your calculations. output_error_term = error hidden_error_term = hidden_error*hidden_outputs*(1-hidden_outputs) # Weight step (input to hidden) delta_weights_i_h += hidden_error_term*X[:,None] # Weight step (hidden to output) delta_weights_h_o += output_error_term*hidden_outputs[:,None] # TODO: Update the weights - Replace these values with your calculations. self.weights_hidden_to_output += self.lr*delta_weights_h_o/n_records # update hidden-to-output weights with gradient descent step self.weights_input_to_hidden += self.lr*delta_weights_i_h/n_records # update input-to-hidden weights with gradient descent step def run(self, features): ''' Run a forward pass through the network with input features Arguments --------- features: 1D array of feature values ''' #### Implement the forward pass here #### # TODO: Hidden layer - replace these values with the appropriate calculations. hidden_inputs = np.dot(features,self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with the appropriate calculations. final_inputs = np.dot(hidden_outputs,self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs def MSE(y, Y): return np.mean((y-Y)**2) ###Output _____no_output_____ ###Markdown Unit testsRun these unit tests to check the correctness of your network implementation. This will help you be sure your network was implemented correctly befor you starting trying to train it. These tests must all be successful to pass the project. ###Code import unittest inputs = np.array([[0.5, -0.2, 0.1]]) targets = np.array([[0.4]]) test_w_i_h = np.array([[0.1, -0.2], [0.4, 0.5], [-0.3, 0.2]]) test_w_h_o = np.array([[0.3], [-0.1]]) class TestMethods(unittest.TestCase): ########## # Unit tests for data loading ########## def test_data_path(self): # Test that file path to dataset has been unaltered self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self): # Test that data frame loaded self.assertTrue(isinstance(rides, pd.DataFrame)) ########## # Unit tests for network functionality ########## def test_activation(self): network = NeuralNetwork(3, 2, 1, 0.5) # Test that the activation function is a sigmoid self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5)))) def test_train(self): # Test that weights are updated correctly on training network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets) self.assertTrue(np.allclose(network.weights_hidden_to_output, np.array([[ 0.37275328], [-0.03172939]]))) self.assertTrue(np.allclose(network.weights_input_to_hidden, np.array([[ 0.10562014, -0.20185996], [0.39775194, 0.50074398], [-0.29887597, 0.19962801]]))) def test_run(self): # Test correctness of run method network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() self.assertTrue(np.allclose(network.run(inputs), 0.09998924)) suite = unittest.TestLoader().loadTestsFromModule(TestMethods()) unittest.TextTestRunner().run(suite) ###Output ..... ---------------------------------------------------------------------- Ran 5 tests in 0.008s OK ###Markdown Training the networkHere you'll set the hyperparameters for the network. The strategy here is to find hyperparameters such that the error on the training set is low, but you're not overfitting to the data. If you train the network too long or have too many hidden nodes, it can become overly specific to the training set and will fail to generalize to the validation set. That is, the loss on the validation set will start increasing as the training set loss drops.You'll also be using a method know as Stochastic Gradient Descent (SGD) to train the network. The idea is that for each training pass, you grab a random sample of the data instead of using the whole data set. You use many more training passes than with normal gradient descent, but each pass is much faster. This ends up training the network more efficiently. You'll learn more about SGD later. Choose the number of iterationsThis is the number of batches of samples from the training data we'll use to train the network. The more iterations you use, the better the model will fit the data. However, if you use too many iterations, then the model with not generalize well to other data, this is called overfitting. You want to find a number here where the network has a low training loss, and the validation loss is at a minimum. As you start overfitting, you'll see the training loss continue to decrease while the validation loss starts to increase. Choose the learning rateThis scales the size of weight updates. If this is too big, the weights tend to explode and the network fails to fit the data. A good choice to start at is 0.1. If the network has problems fitting the data, try reducing the learning rate. Note that the lower the learning rate, the smaller the steps are in the weight updates and the longer it takes for the neural network to converge. Choose the number of hidden nodesThe more hidden nodes you have, the more accurate predictions the model will make. Try a few different numbers and see how it affects the performance. You can look at the losses dictionary for a metric of the network performance. If the number of hidden units is too low, then the model won't have enough space to learn and if it is too high there are too many options for the direction that the learning can take. The trick here is to find the right balance in number of hidden units you choose. ###Code import sys ### Set the hyperparameters here ### iterations = 3500 learning_rate = 0.5 hidden_nodes = 25 output_nodes = 1 N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train':[], 'validation':[]} for ii in range(iterations): # Go through a random batch of 128 records from the training data set batch = np.random.choice(train_features.index, size=128) X, y = train_features.ix[batch].values, train_targets.ix[batch]['cnt'] network.train(X, y) # Printing out the training progress train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values) val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values) sys.stdout.write("\rProgress: {:2.1f}".format(100 * ii/float(iterations)) \ + "% ... Training loss: " + str(train_loss)[:5] \ + " ... Validation loss: " + str(val_loss)[:5]) sys.stdout.flush() losses['train'].append(train_loss) losses['validation'].append(val_loss) plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() _ = plt.ylim() ###Output _____no_output_____ ###Markdown Check out your predictionsHere, use the test data to view how well your network is modeling the data. If something is completely wrong here, make sure each step in your network is implemented correctly. ###Code fig, ax = plt.subplots(figsize=(8,4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features).T*std + mean ax.plot(predictions[0], label='Prediction') ax.plot((test_targets['cnt']*std + mean).values, label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.ix[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) ###Output _____no_output_____
jupyter_interactive_widgets/notebooks/reference_guides/.ipynb_checkpoints/guide-flex-box-checkpoint.ipynb
###Markdown The Flexbox layoutThe `HBox` and `VBox` classes above are special cases of the `Box` widget.The `Box` widget enables the entire CSS flexbox spec as well as the Grid layout spec, enabling rich reactive layouts in the Jupyter notebook. It aims at providing an efficient way to lay out, align and distribute space among items in a container.Again, the whole flexbox spec is exposed via the `layout` attribute of the container widget (`Box`) and the contained items. One may share the same `layout` attribute among all the contained items. AcknowledgementThe following flexbox tutorial on the flexbox layout follows the lines of the article [A Complete Guide to Flexbox](https://css-tricks.com/snippets/css/a-guide-to-flexbox/) by Chris Coyier, and uses text and various images from the article [with permission](https://css-tricks.com/license/). Basics and terminologySince flexbox is a whole module and not a single property, it involves a lot of things including its whole set of properties. Some of them are meant to be set on the container (parent element, known as "flex container") whereas the others are meant to be set on the children (known as "flex items").If regular layout is based on both block and inline flow directions, the flex layout is based on "flex-flow directions". Please have a look at this figure from the specification, explaining the main idea behind the flex layout.![Flexbox](../images/flexbox.png)Basically, items will be laid out following either the `main axis` (from `main-start` to `main-end`) or the `cross axis` (from `cross-start` to `cross-end`).- `main axis` - The main axis of a flex container is the primary axis along which flex items are laid out. Beware, it is not necessarily horizontal; it depends on the flex-direction property (see below).- `main-start | main-end` - The flex items are placed within the container starting from main-start and going to main-end.- `main size` - A flex item's width or height, whichever is in the main dimension, is the item's main size. The flex item's main size property is either the ‘width’ or ‘height’ property, whichever is in the main dimension.cross axis - The axis perpendicular to the main axis is called the cross axis. Its direction depends on the main axis direction.- `cross-start | cross-end` - Flex lines are filled with items and placed into the container starting on the cross-start side of the flex container and going toward the cross-end side.- `cross size` - The width or height of a flex item, whichever is in the cross dimension, is the item's cross size. The cross size property is whichever of ‘width’ or ‘height’ that is in the cross dimension. Properties of the parent![Container](../images/flex-container.svg) display`display` can be `flex` or `inline-flex`. This defines a flex container (block or inline). flex-flow`flex-flow` is a shorthand for the `flex-direction` and `flex-wrap` properties, which together define the flex container's main and cross axes. Default is `row nowrap`.- `flex-direction` (column-reverse | column | row | row-reverse ) This establishes the main-axis, thus defining the direction flex items are placed in the flex container. Flexbox is (aside from optional wrapping) a single-direction layout concept. Think of flex items as primarily laying out either in horizontal rows or vertical columns.![Direction](../images/flex-direction1.svg)- `flex-wrap` (nowrap | wrap | wrap-reverse) By default, flex items will all try to fit onto one line. You can change that and allow the items to wrap as needed with this property. Direction also plays a role here, determining the direction new lines are stacked in.![Wrap](../images/flex-wrap.svg) justify-content`justify-content` can be one of `flex-start`, `flex-end`, `center`, `space-between`, `space-around`. This defines the alignment along the main axis. It helps distribute extra free space left over when either all the flex items on a line are inflexible, or are flexible but have reached their maximum size. It also exerts some control over the alignment of items when they overflow the line. ![Justify](../images/justify-content.svg) align-items`align-items` can be one of `flex-start`, `flex-end`, `center`, `baseline`, `stretch`. This defines the default behaviour for how flex items are laid out along the cross axis on the current line. Think of it as the justify-content version for the cross-axis (perpendicular to the main-axis). ![Items](../images/align-items.svg) align-content`align-content` can be one of `flex-start`, `flex-end`, `center`, `baseline`, `stretch`. This aligns a flex container's lines within when there is extra space in the cross-axis, similar to how justify-content aligns individual items within the main-axis.![Items](../images/align-content.svg)**Note**: this property has no effect when there is only one line of flex items. Properties of the items![Item](../images/flex-items.svg)The flexbox-related CSS properties of the items have no impact if the parent element is not a flexbox container (i.e. has a `display` attribute equal to `flex` or `inline-flex`). orderBy default, flex items are laid out in the source order. However, the `order` property controls the order in which they appear in the flex container. flex`flex` is shorthand for three properties, `flex-grow`, `flex-shrink` and `flex-basis` combined. The second and third parameters (`flex-shrink` and `flex-basis`) are optional. Default is `0 1 auto`. - `flex-grow` This defines the ability for a flex item to grow if necessary. It accepts a unitless value that serves as a proportion. It dictates what amount of the available space inside the flex container the item should take up. If all items have flex-grow set to 1, the remaining space in the container will be distributed equally to all children. If one of the children a value of 2, the remaining space would take up twice as much space as the others (or it will try to, at least). ![Grow](../images/flex-grow.svg) - `flex-shrink` This defines the ability for a flex item to shrink if necessary. - `flex-basis` This defines the default size of an element before the remaining space is distributed. It can be a length (e.g. `20%`, `5rem`, etc.) or a keyword. The `auto` keyword means *"look at my width or height property"*. align-self`align-self` allows the default alignment (or the one specified by align-items) to be overridden for individual flex items.![Align](../images/align-self.svg) The VBox and HBox helpersThe `VBox` and `HBox` helper classes provide simple defaults to arrange child widgets in vertical and horizontal boxes. They are roughly equivalent to:```Pythondef VBox(*pargs, **kwargs): """Displays multiple widgets vertically using the flexible box model.""" box = Box(*pargs, **kwargs) box.layout.display = 'flex' box.layout.flex_flow = 'column' box.layout.align_items = 'stretch' return boxdef HBox(*pargs, **kwargs): """Displays multiple widgets horizontally using the flexible box model.""" box = Box(*pargs, **kwargs) box.layout.display = 'flex' box.layout.align_items = 'stretch' return box``` Examples **Four buttons in a VBox. Items stretch to the maximum width, in a vertical box taking `50%` of the available space.** ###Code from ipywidgets import Layout, Button, Box items_layout = Layout( width='auto') # override the default width of the button to 'auto' to let the button grow box_layout = Layout(display='flex', flex_flow='column', align_items='stretch', border='solid', width='50%') words = ['correct', 'horse', 'battery', 'staple'] items = [Button(description=word, layout=items_layout, button_style='danger') for word in words] box = Box(children=items, layout=box_layout) box ###Output _____no_output_____ ###Markdown **Three buttons in an HBox. Items flex proportionally to their weight.** ###Code from ipywidgets import Layout, Button, Box, VBox # Items flex proportionally to the weight and the left over space around the text items_auto = [ Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'), button_style='danger'), Button(description='weight=3; auto', layout=Layout(flex='3 1 auto', width='auto'), button_style='danger'), Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'), button_style='danger'), ] # Items flex proportionally to the weight items_0 = [ Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'), button_style='danger'), Button(description='weight=3; 0%', layout=Layout(flex='3 1 0%', width='auto'), button_style='danger'), Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'), button_style='danger'), ] box_layout = Layout(display='flex', flex_flow='row', align_items='stretch', width='70%') box_auto = Box(children=items_auto, layout=box_layout) box_0 = Box(children=items_0, layout=box_layout) VBox([box_auto, box_0]) ###Output _____no_output_____ ###Markdown **A more advanced example: a reactive form.**The form is a `VBox` of width '50%'. Each row in the VBox is an HBox, that justifies the content with space between.. ###Code from ipywidgets import Layout, Button, Box, FloatText, Textarea, Dropdown, Label, IntSlider form_item_layout = Layout( display='flex', flex_flow='row', justify_content='space-between' ) form_items = [ Box([Label(value='Age of the captain'), IntSlider(min=40, max=60)], layout=form_item_layout), Box([Label(value='Egg style'), Dropdown(options=['Scrambled', 'Sunny side up', 'Over easy'])], layout=form_item_layout), Box([Label(value='Ship size'), FloatText()], layout=form_item_layout), Box([Label(value='Information'), Textarea()], layout=form_item_layout) ] form = Box(form_items, layout=Layout( display='flex', flex_flow='column', border='solid 2px', align_items='stretch', width='50%' )) form ###Output _____no_output_____ ###Markdown **A more advanced example: a carousel.** ###Code from ipywidgets import Layout, Button, Box, Label item_layout = Layout(height='100px', min_width='40px') items = [Button(layout=item_layout, description=str(i), button_style='warning') for i in range(40)] box_layout = Layout(overflow_x='scroll', border='3px solid black', width='500px', height='', flex_flow='row', display='flex') carousel = Box(children=items, layout=box_layout) VBox([Label('Scroll horizontally:'), carousel]) ###Output _____no_output_____ ###Markdown *Compatibility note*The `overflow_x` and `overflow_y` options are deprecated in ipywidgets `7.5`. Instead, use the shorthand property `overflow='scroll hidden'`. The first part specificies overflow in `x`, the second the overflow in `y`. A widget for exploring layout optionsThe widgets below was written by ipywidgets user [Doug Redden (@DougRzz)](https://github.com/DougRzz). If you want to look through the source code to see how it works, take a look at this [notebook he contributed](cssJupyterWidgetStyling-UI.ipynb).Use the dropdowns and sliders in the widget to change the layout of the box containing the five colored buttons. Many of the CSS layout optoins described above are available, and the Python code to generate a `Layout` object reflecting the settings is in a `TextArea` in the widget. ###Code #from layout_preview import layout #layout ###Output _____no_output_____
Chapter06/ProductRecommendation.ipynb
###Markdown 1. Load Data ###Code #May take a minute to run df = pd.read_excel(io='../data/Online Retail.xlsx', sheet_name='Online Retail', engine='openpyxl') #engine needed to be updated df.shape df.head() df = df.loc[df['Quantity'] > 0] ###Output _____no_output_____ ###Markdown 2. Data Preparation - Handle NaNs in CustomerID field ###Code df['CustomerID'].describe() df['CustomerID'].isna().sum() df.loc[df['CustomerID'].isna()].head() df.shape df = df.dropna(subset=['CustomerID']) df.shape df.head() ###Output _____no_output_____ ###Markdown - Customer-Item Matrix ###Code customer_item_matrix = df.pivot_table( index='CustomerID', columns='StockCode', values='Quantity', aggfunc='sum' ) customer_item_matrix.loc[12481:].head() customer_item_matrix.shape df['StockCode'].nunique() df['CustomerID'].nunique() customer_item_matrix.loc[12348.0].sum() customer_item_matrix = customer_item_matrix.applymap(lambda x: 1 if x > 0 else 0) customer_item_matrix.loc[12481:].head() ###Output _____no_output_____ ###Markdown 3. Collaborative Filtering ###Code from sklearn.metrics.pairwise import cosine_similarity ###Output _____no_output_____ ###Markdown 3.1. User-based Collaborative Filtering - User-to-User Similarity Matrix ###Code user_user_sim_matrix = pd.DataFrame( cosine_similarity(customer_item_matrix) ) user_user_sim_matrix.head() user_user_sim_matrix.columns = customer_item_matrix.index user_user_sim_matrix['CustomerID'] = customer_item_matrix.index user_user_sim_matrix = user_user_sim_matrix.set_index('CustomerID') user_user_sim_matrix.head() ###Output _____no_output_____ ###Markdown - Making Recommendations ###Code user_user_sim_matrix.loc[12350.0].sort_values(ascending=False) items_bought_by_A = set(customer_item_matrix.loc[12350.0].iloc[ customer_item_matrix.loc[12350.0].to_numpy().nonzero() #update was required ].index) items_bought_by_A items_bought_by_B = set(customer_item_matrix.loc[17935.0].iloc[ customer_item_matrix.loc[17935.0].to_numpy().nonzero() #update was required ].index) items_bought_by_B items_to_recommend_to_B = items_bought_by_A - items_bought_by_B items_to_recommend_to_B df.loc[ df['StockCode'].isin(items_to_recommend_to_B), ['StockCode', 'Description'] ].drop_duplicates().set_index('StockCode') ###Output _____no_output_____ ###Markdown 3.2. Item-based Collaborative Filtering - Item-to-Item Similarity Matrix ###Code item_item_sim_matrix = pd.DataFrame(cosine_similarity(customer_item_matrix.T)) item_item_sim_matrix.columns = customer_item_matrix.T.index item_item_sim_matrix['StockCode'] = customer_item_matrix.T.index item_item_sim_matrix = item_item_sim_matrix.set_index('StockCode') item_item_sim_matrix ###Output _____no_output_____ ###Markdown - Making Recommendations ###Code top_10_similar_items = list( item_item_sim_matrix\ .loc[23166]\ .sort_values(ascending=False)\ .iloc[:10]\ .index ) top_10_similar_items df.loc[ df['StockCode'].isin(top_10_similar_items), ['StockCode', 'Description'] ].drop_duplicates().set_index('StockCode').loc[top_10_similar_items] ###Output _____no_output_____
04. Performing Analysis with the Python API/04 - geoenrichment/05 - Geoenrichment.ipynb
###Markdown GeoEnrichment GeoEnrichment provides the ability to * get facts about a location or area. * information about the people, places, and businesses * in a specific area or * within a certain distance or drive time from a location.* large collection of data sets including population, income, housing, consumer behavior, and the natural environment.* Site analysis is a popular application Login ###Code from arcgis.gis import GIS from arcgis.geoenrichment import * gis = GIS(profile='agol_profile', verify_cert=False) ###Output _____no_output_____ ###Markdown GeoEnrichment coverage ###Code countries = get_countries() print("Number of countries for which GeoEnrichment data is available: " + str(len(countries))) #print a few countries for a sample countries[0:10] ###Output _____no_output_____ ###Markdown Filtering countries by properties ###Code [c.properties.name for c in countries if c.properties.continent == 'Oceania'] ###Output _____no_output_____ ###Markdown Discovering information for a country* Data collections, * Sub-geographies and * Available reports for a country ###Code aus = Country.get('Australia') ###Output _____no_output_____ ###Markdown Commonly used properties for the country are accessible using `Country.properties`. ###Code aus.properties.name ###Output _____no_output_____ ###Markdown Data collections and analysis variables ###Code df = aus.data_collections df.head() # call the shape property to get the total number of rows and columns df.shape ###Output _____no_output_____ ###Markdown Query the `EducationalAttainment` data collection and get all the unique `analysisVariable`s under that collection ###Code df.loc['EducationalAttainment']['analysisVariable'].unique() # view a sample of the `Age` data collection df.loc['EducationalAttainment'].head() ###Output _____no_output_____ ###Markdown Enriching an address ###Code sdf = enrich(study_areas=["Parliament Dr, Canberra ACT 2600, Australia"], data_collections=['EducationalAttainment']) sdf.spatial.plot() ###Output _____no_output_____ ###Markdown Reports ###Code aus.reports.head(6) # total number of reports available aus.reports.shape ###Output _____no_output_____ ###Markdown Creating Reports ###Code import tempfile report = create_report(study_areas=["Parliament Dr, Canberra ACT 2600, Australia"], report="AustraliaFoodAndBeverageSpendingMDS", export_format="PDF", out_folder=tempfile.gettempdir(), out_name="FoodAndBeverageSpending.pdf") print(report) ###Output _____no_output_____ ###Markdown Finding named statistical areasEach country has several named statistical areas in a hierarchy of geography levels (such as states, counties, zip codes, etc). ###Code %config IPCompleter.greedy=True de = Country.get("Germany") de.subgeographies.states['Hamburg'] de.subgeographies.states["Hamburg"].districts['Hamburg,_Freie_und_Hansestadt'] de.subgeographies.postcodes2['Berlin'] ###Output _____no_output_____ ###Markdown The named areas can also be drawn on a map, as they include a `geometry` property. ###Code m1 = gis.map('Hamburg, Germany', zoomlevel=9) m1 m1.draw(de.subgeographies.states["Hamburg"].districts['Hamburg,_Freie_und_Hansestadt'].geometry) ###Output _____no_output_____ ###Markdown Different geography levels for different country ###Code india = Country.get('India') india.subgeographies.states['Uttar_Pradesh'].districts['Baghpat'].subdistricts['Baraut'] ###Output _____no_output_____ ###Markdown Searching for named areas within a country ###Code riversides_in_usa = usa.search('Riverside') print("number of riversides in the US: " + str(len(riversides_in_usa))) # list a few of them riversides_in_usa[:10] ###Output _____no_output_____ ###Markdown For instance, you can make a map of all the riversides in the US ###Code usamap = gis.map('United States', zoomlevel=4) usamap for riverside in riversides_in_usa: usamap.draw(riverside.geometry) ###Output _____no_output_____ ###Markdown Filtering named areas by geography level ###Code [level['id'] for level in usa.levels] usa.search(query='Riverside', layers=['US.Counties']) ###Output _____no_output_____ ###Markdown Study Areas Accepted forms of study areas- **Street address locations** - Locations can be passed as strings of input street addresses, points of interest or place names. + **Example:** `"380 New York St, Redlands, CA"`- **Multiple field input addresses** - Locations described as multiple field input addresses, using dictionaries. + **Example:** {"Address" : "380 New York Street", "City" : "Redlands", "Region" : "CA", "Postal" : 92373} - **Point and line geometries** - Point and line locations, using `arcgis.geometry` instances. + **Example Point Location: ** `arcgis.geometry.Geometry({"x":-122.435,"y":37.785})` + ** Example Point location obtained using find_businesses() above: ** `arcgis.geometry.Geometry(businesses.iloc[0]['SHAPE'])`- **Buffered study areas** - `BufferStudyArea` instances to change the ring buffer size or create drive-time service areas around points specified using one of the above methods. BufferStudyArea allows you to buffer point and street address study areas. They can be created using the following parameters: * area: the point geometry or street address (string) study area to be buffered * radii: list of distances by which to buffer the study area, eg. [1, 2, 3] * units: distance unit, eg. Miles, Kilometers, Minutes (when using drive times/travel_mode) * overlap: boolean, uses overlapping rings/network service areas when True, or non-overlapping disks when False * travel_mode: None or string, one of the supported travel modes when using network service areas + **Example Buffered Location: ** `pt = arcgis.geometry.Geometry({"x":-122.435,"y":37.785}) buffered_area = BufferStudyArea(area=pt, radii=[1,2,3], units="Miles", overlap=False)` - **Network service areas** - `BufferStudyArea` also allows you to define drive time service areas around points as well as other advanced service areas such as walking and trucking. + **Example: ** `pt = arcgis.geometry.Geometry({"x":-122.435,"y":37.785}) buffered_area = BufferStudyArea(area=pt, radii=[1,2,3], units="Minutes", travel_mode="Driving")` - **Named statistical areas** - + **Example:** `usa.subgeographies.states['California'].zip5['92373']` - **Polygon geometries** - Locations can given as polygon geometries. + **Example Polygon geometry: ** `arcgis.geometry.Geometry({"rings":[[[-117.185412,34.063170],[-122.81,37.81],[-117.200570,34.057196],[-117.185412,34.063170]]],"spatialReference":{"wkid":4326}})` Example: Enriching a named statistical areaEnriching zip code 92373 in California using the 'Age' data collection: ###Code redlands = usa.subgeographies.states['California'].zip5['92373'] enrich(study_areas=[redlands], data_collections=['Age'] ) ###Output _____no_output_____ ###Markdown Example: Enrich all counties in a state ###Code ca_counties = usa.subgeographies.states['California'].counties counties_df = enrich(study_areas=ca_counties, data_collections=['Age']) counties_df.head(10) m2 = gis.map('California') m2 item = gis.content.import_data(df=counties_df, title="CA county population") item m2.add_layer(item.layers[0], {'renderer': 'ClassedColorRenderer', 'field_name':'FEM0'}) item.delete() ###Output _____no_output_____ ###Markdown Example: Using comparison levels ###Code enrich(study_areas=[redlands], data_collections=['Age'], comparison_levels=['US.Counties', 'US.States']) ###Output _____no_output_____ ###Markdown Example: Buffering locations using non overlapping disks The example below creates non-overlapping disks of radii 1, 3 and 5 Miles respectively from a street address and enriches these using the 'Age' data collection. ###Code buffered = BufferStudyArea(area='380 New York St Redlands CA 92373', radii=[1,3,5], units='Miles', overlap=False) enrich(study_areas=[buffered], data_collections=['Age']) ###Output _____no_output_____ ###Markdown Example: Using drive times as study areas The example below creates 5 and 10 minute drive times from a street address and enriches these using the 'Age' data collection. ###Code buffered = BufferStudyArea(area='380 New York St Redlands CA 92373', radii=[5, 10], units='Minutes', travel_mode='Driving') drive_time_df = enrich(study_areas=[buffered], data_collections=['Age']) drive_time_df ###Output _____no_output_____ ###Markdown Visualize results on a map The returned spatial dataframe can be visualized on a map as shown below: ###Code redlands_map = gis.map('Redlands, CA') redlands_map.basemap = 'dark-gray-vector' redlands_map drive_time_df.spatial.plot(redlands_map, renderer_type='c', # for class breaks renderer method='esriClassifyNaturalBreaks', # classification algorithm class_count=3, # choose the number of classes col='bufferRadii', # numeric column to classify cmap='prism', # color map to pick colors from for each class alpha=0.7) # specify opacity ###Output _____no_output_____ ###Markdown Saving GeoEnrichment Results ###Code gis.content.import_data(df=drive_time_df, title="Age statistics within 5,10 minutes of drive time from Esri") ###Output _____no_output_____
03 Exception Handling/00_Exception_Handling_A.ipynb
###Markdown Fast Python3 For Beginners___ ```try...except...finally...``` 1.try ###Code try: print('try...') r = 10/0 print('result:', r) except ZeroDivisionError as e: print('except:', e) finally: print('finally') print('END') ###Output try... except: division by zero finally END ###Markdown **logging error**> Python内置的`logging`模块可以非常容易地**记录错误信息**: > Python's built-in `logging` module makes it very easy to record error messages: ###Code # err_logging.py import logging def foo(s): return 10 / int(s) def bar(s): return foo(s) * 2 def main(): try: bar('0') except Exception as e: logging.exception(e) main() print('END') ###Output ERROR:root:division by zero Traceback (most recent call last): File "<ipython-input-2-16a5e7b57b85>", line 12, in main bar('0') File "<ipython-input-2-16a5e7b57b85>", line 8, in bar return foo(s) * 2 File "<ipython-input-2-16a5e7b57b85>", line 5, in foo return 10 / int(s) ZeroDivisionError: division by zero ###Markdown **raising error** ###Code try: a = input("type a number") r = 10 / int(a) if int(a) < 0: raise ValueError print('r:', r) except ZeroDivisionError as e: logging.exception(e) finally: print("finally") print("END") ###Output type a number-1 finally ###Markdown 2.Debug **Method_1: `print()`**> 用print()把可能有问题的变量打印出来看看: > Use `print()` to print out variables that may be problematic. **Method_2: `assert`**> 凡是用print()来辅助查看的地方,都可以用断言(assert)来替代: assert的意思是,表达式n != 0应该是True,否则,根据程序运行的逻辑,后面的代码肯定会出错。如果断言失败,assert语句本身就会抛出AssertionError > `print()` can be replaced with `assert`: Assert means that the judgement expression like `n != 0` should be True, otherwise, according to the logic of the program, the following code will definitely make mistakes. If the assertion fails, the assert statement itself throws an `Assertion Error` ###Code def foo(s): n = int(s) assert n != 0, 'n is zero!' return 10 / n def main(): foo('0') main() ###Output _____no_output_____ ###Markdown **Method_3: `logging`**> 和assert比,logging不会抛出错误,而且可以输出到文件: > Compared with `assert`, `logging` won't through `errors`, and can write error messages to file. ###Code import logging logging.basicConfig(level=logging.INFO) s = '0' n = int(s) logging.info('n = %d' % n) print(10 / n) 'Done!\N{Cat}' ###Output _____no_output_____
notebooks/context_design/pymc3_samplers.ipynb
###Markdown Using PyMC3 samplers on PyMC4 models ###Code %load_ext autoreload %autoreload 2 import pymc4 as pm import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # Create simple pymc4 model @pm.model(auto_name=True) def t_test(): mu = pm.Normal(0, 1) model = t_test.configure() model._forward_context.vars func = model.make_log_prob_function() # Create function to evaluate logp and dlogp over array of inputs @tf.function def logp_array(array): #mu = array[0] with tf.GradientTape() as tape: tape.watch(array) logp = func(array) grad = tape.gradient(logp, array) return logp, grad # As the above function expects TF inputs and outputs, wrap it as PyMC3's samplers want numpy def logp_wrapper(array): logp, grad = logp_array(tf.convert_to_tensor(array)) return logp.numpy(), grad.numpy() from pymc4.hmc import HamiltonianMC size = 1 n_samples = 500 tf.random.set_seed(123) np.random.seed(123) hmc = HamiltonianMC(logp_dlogp_func=logp_wrapper, size=size, adapt_step_size=False) curr = np.ones(size, dtype='float32') * .05 posterior_samples = [] stats = [] # %%time # NB: uncommenting cell magic %%time will prevent variable from escaping local cell scope for i in range(n_samples): curr, stat = hmc.step(curr) posterior_samples.append(curr) stats.append(stat) if i % 10 == 0: print(i) print(hmc.step_size) trace = np.array(posterior_samples) ###Output 0 0.25 10 2.4338525715809687 20 0.8835782022550135 30 2.1327029448576513 40 0.6636198591746387 50 0.7703623177523709 60 1.8082085533140866 70 2.016802124717785 80 0.6217015104339201 90 1.207940992513313 100 1.3240099603905968 110 1.346048853571611 120 1.4427577775129503 130 0.8565491707334623 140 0.9624691955794613 150 2.4720718932582906 160 1.5805445755750056 170 2.1380879550318665 180 1.420551901927288 190 1.772666882095104 200 1.4909935183397898 210 0.9564664645510188 220 1.0094633430712847 230 0.9415898885107509 240 0.9789093380505235 250 1.006542783540078 260 0.9103849564026153 270 1.55622156748228 280 3.088911988511081 290 1.4383936543460296 300 1.1121804701838218 310 1.424086887611018 320 2.20499869286127 330 1.519518011454376 340 1.3419589165701242 350 1.9586890867688238 360 1.6645487485996129 370 0.9915868782338413 380 1.0335682127160022 390 2.580381765734188 400 0.8539483762542414 410 1.6204564049940595 420 1.7482972684183884 430 1.0932177164504921 440 1.1029667164138135 450 1.2918166766210588 460 1.2928383047613468 470 1.6941335213881863 480 2.3599326552982838 490 1.3764049670244904 ###Markdown Compare with `PyMC3` ###Code import pymc3 as pm3 with pm3.Model() as model3: pm3.Normal('x', 0, 1) np.random.seed(123) with model3: hmc3 = pm3.HamiltonianMC(adapt_step_size=True) point = {'x': np.array(.05)} trace3 = [] %%time for i in range(n_samples): point, _ = hmc3.step(point) trace3.append(point['x']) if i % 10 == 0: print(i) print(hmc3.step_size) import seaborn as sns sns.distplot(trace) sns.distplot(trace3) ###Output _____no_output_____ ###Markdown There still seems to be a problem here where in the PyMC4 implementation, the step_size keeps getting smaller and smaller, causing the sampler to take very long. Haven't figured it out yet. ###Code hmc.step_size hmc3.step_size hmc.potential._stds hmc3.potential._stds ###Output _____no_output_____
mdn-tf2.ipynb
###Markdown MDN Hands On TutorialThis notebook demonstrates the construction of a simple MDN, and compares it to a regular neural network.Read about MDNs on the [original paper](https://publications.aston.ac.uk/373/1/NCRG_94_004.pdf) by C. Bishop. > This revision has been adapted to work with Tensorflow 2. Note that `tensorflow_probability` has been moved from the main code to it's own package (`pip install tensorflow_probability`) ###Code import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf import tensorflow_probability as tfp import matplotlib.pyplot as plt from sklearn.utils import shuffle from tensorflow import keras from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dense, Activation, Layer, Input ###Output Using TensorFlow backend. ###Markdown The network we'll construct will try to learn the following relation between $x$ and $f(x)$: $$f(x) = x^2-6x+9$$Note that this simply $y = x^2$ shifted three steps to the left (global minimum is at $x=3$). ###Code def f(x): return x**2-6*x+9 ###Output _____no_output_____ ###Markdown In order to make the data a little bit more realistic, we'll add a normally-distributed noise, which will be location-dependent - the larger $x$ is, the larger the noisier the data will be. So, our data generator will obey the following relation:$$g(x) = f(x) + \epsilon(x) $$ $$ \text{where}: \epsilon(x) = N(0,\sigma_0 x)$$Where $N(\mu,\sigma)$ is the normal distribution with mean $\mu$ and STD of $\sigma$.The `data_generator` below function creates $n$ nosiy data samples for a given `x`, where $n$ is defined by `samples`. Notice that technically, `data_generator` yields $g(x) = N(f(x),\sigma_0 x)$, as mathematically that's the same thing. ###Code def data_generator(x,sigma_0,samples): return np.random.normal(f(x),sigma_0*x,samples) ###Output _____no_output_____ ###Markdown We'll now generate our dataset for $1<x<5$.The purple line in the plot presents the "clean" function $f(x)$ for this range. ###Code sigma_0 = 0.1 x_vals = np.arange(1,5.2,0.2) x_arr = np.array([]) y_arr = np.array([]) samples = 50 for x in x_vals: x_arr = np.append(x_arr, np.full(samples,x)) y_arr = np.append(y_arr, data_generator(x,sigma_0,samples)) x_arr, y_arr = shuffle(x_arr, y_arr) x_test = np.arange(1.1,5.1,0.2) fig, ax = plt.subplots(figsize=(10,10)) plt.grid(True) plt.xlabel('x') plt.ylabel('g(x)') ax.scatter(x_arr,y_arr,label='sampled data') ax.plot(x_vals,list(map(f,x_vals)),c='m',label='f(x)') ax.legend(loc='upper center',fontsize='large',shadow=True) plt.show() ###Output _____no_output_____ ###Markdown Regular neural networkWe'll now train a neural network which will receive $x$ as input and our noisy $g(x)$ but will have to learn the relation $x \rightarrow f(x)$.The network is constructed of two hidden layers, each with 12 nodes and the $\tanh(x)$ activation function (note we use a linear activation on the last output layer which is the same as no activation function at all, since keras defaults to sigmoid if none is given for Dense layers).We set the learning rate $\alpha=0.0003$, 50 examples per mini-batch and a total of 500 epoches. ###Code epochs = 500 batch_size = 50 learning_rate = 0.0003 model = Sequential() model.add(Dense(12,input_shape=(1,),activation="tanh")) model.add(Dense(12,activation="tanh")) model.add(Dense(1,activation="linear")) adamOptimizer = optimizers.Adam(learning_rate=learning_rate) model.compile(loss='mse',optimizer=adamOptimizer,metrics=['mse']) history_cache = model.fit(x_arr, y_arr, verbose=0, # write =1 if you wish to see the progress for each epoch epochs=epochs, batch_size=batch_size) y_pred = model.predict(x_test) fig, ax = plt.subplots(figsize=(10,10)) plt.grid(True) plt.xlabel('x') plt.ylabel('y') ax.scatter(x_arr,y_arr,c='b',label='sampled data') ax.scatter(x_test,y_pred,c='r',label='predicted values') ax.plot(x_vals,list(map(f,x_vals)),c='m',label='f(x)') ax.legend(loc='upper center',fontsize='large',shadow=True) plt.show() print('Final cost: {0:.4f}'.format(history_cache.history['mse'][-1])) ###Output _____no_output_____ ###Markdown It seems to be doing quite good in predicting $f(x)$, but we can clearly see that the network learnt nothing about the size of the noise. Mixture density network (MDN)Let's try an MDN now. We'll use the same network as in the previous section, with one important change:the output layer now has two nodes (which are constructed as two layers of 1 node for technical simplicity), which we named `mu` and `sigma`Note the new cost function: we create a normal distribution out of the predicted `mu` and `sigma`, and then minimize the negative log-likelihood of this distribution yielding the target value `y`. Mathematically, our cost function is the negative logarithm of the normal distribution's probability density function (PDF):$$Cost = -\log (PDF) = -\log\left(\frac{1}{\sqrt{2\pi}\sigma}\cdot\exp{\left[-\frac{(y-\mu)^{2}}{2\sigma^{2}}\right]}\right)$$ ###Code def mdn_cost(mu, sigma, y): dist = tfp.distributions.Normal(loc=mu, scale=sigma) return tf.reduce_mean(-dist.log_prob(y)) ###Output _____no_output_____ ###Markdown We'll use `elu + 1` as the activation function for `sigma`, as it must always be non-negative. The Exponential Linear Unit (ELU) is defined as:$$ ELU(x) = \begin{cases} x & x\ge0 \\ \exp{(x)}-1 & x < 0 \end{cases} $$ ###Code epochs = 500 batch_size = 50 learning_rate = 0.0003 InputLayer = Input(shape=(1,)) Layer_1 = Dense(12,activation="tanh")(InputLayer) Layer_2 = Dense(12,activation="tanh")(Layer_1) mu = Dense(1, activation="linear")(Layer_2) sigma = Dense(1, activation=lambda x: tf.nn.elu(x) + 1)(Layer_2) y_real = Input(shape=(1,)) lossF = mdn_cost(mu,sigma,y_real) model = Model(inputs=[InputLayer, y_real], outputs=[mu, sigma]) model.add_loss(lossF) adamOptimizer = optimizers.Adam(learning_rate=learning_rate) model.compile(optimizer=adamOptimizer,metrics=['mse']) history_cache = model.fit([x_arr, y_arr], #notice we are using an input to pass the real values due to the inner workings of keras verbose=0, # write =1 if you wish to see the progress for each epoch epochs=epochs, batch_size=batch_size) print('Final cost: {0:.4f}'.format(history_cache.history['loss'][-1])) mu_pred, sigma_pred = model.predict(list((x_test,x_test))) # the model expects a list of arrays as it has 2 inputs fig, ax = plt.subplots(figsize=(10,10)) plt.grid(True) plt.xlabel('x') plt.ylabel('y') ax.errorbar(x_test,mu_pred,yerr=np.absolute(sigma_pred),c='r',ls='None',marker='.',ms=10,label='predicted distributions') ax.scatter(x_arr,y_arr,c='b',alpha=0.05,label='sampled data') ax.errorbar(x_vals,list(map(f,x_vals)),yerr=list(map(lambda x: sigma_0*x,x_vals)),c='b',lw=2,ls='None',marker='.',ms=10,label='true distributions') ax.plot(x_vals,list(map(f,x_vals)),c='m',label='f(x)') ax.legend(loc='upper center',fontsize='large',shadow=True) plt.show() ###Output Final cost: 0.2591
.ipynb_checkpoints/7-Extraindo uma imagem PNG do GEE com o Pillow-checkpoint.ipynb
###Markdown Extraindo uma imagem PNG do GEE com o PillowNeste notebook, utilizando o exemplo anterior de extração de máscaras, iremos exibir as imagens diretamente no notebook utilizando a biblioteca Pillow e o Request e, posteriormente, savá-la em disco.Primeiramente, vamos importar as bibliotecas e inicializar o GEE: ###Code # importação da bibliotecas import ee import PIL import requests from PIL import Image from io import BytesIO # inicialização do GEE ee.Initialize() ###Output _____no_output_____ ###Markdown Funções principais utilizadas por esse notebook (comentadas no notebook anterior): ###Code # Função para aplicar à imagem vinda da coleção a máscara de água def mascara_agua(imagem): qa = imagem.select('pixel_qa') return qa.bitwiseAnd(1 << 2).eq(0) # Função para aplicar à imagem vinda da coléção a máscara de nuvem/sombra de nuvem def mascara_nuvem(imagem): qa = imagem.select('pixel_qa') return qa.bitwiseAnd(1 << 3).eq(0) and (qa.bitwiseAnd(1 << 5).eq(0)) and (qa.bitwiseAnd(1 << 6).eq(0)) and (qa.bitwiseAnd(1 << 7).eq(0)) # função para aplicar as máscaras def aplicar_mascaras(imagem): # criar uma imagem em branco/vazio para evitar problemas no fundo ao gerar um PNG # usamos valores dummies (neste caso, branco) vazio = ee.Image(99999) # máscara de água agua = vazio.updateMask(mascara_agua(imagem).Not()).rename('agua') # máscara de nuvem (criará uma imagem com apenas nuvens) # caso a imagem não tenha nuvens, ela ficará toda branca nuvem = vazio.updateMask(mascara_nuvem(imagem).Not()).rename('nuvem') # podemos ainda, ao contrário da linha anterior, REMOVER as nuvens # notem que retiramos a função .Not (negação) sem_nuvem = vazio.updateMask(mascara_nuvem(imagem)).rename('sem_nuvem') # aplicar o indice NDVI ndvi = imagem.expression('(nir - red) / (nir + red)',{'nir':imagem.select('B5'),'red':imagem.select('B4')}).rename('ndvi') # assim como fizemos para o NDVI, retornamos uma imagem com as novas bandas return imagem.addBands([ndvi,agua,nuvem,sem_nuvem]) # função para aplicar uma máscara em uma banda específica # A mascará a ser aplicada def aplicar_mascara_banda(imagem, banda_mascara, banda_origem, band_destino): # Primeiramente, temos que aplicar a máscara desejada na banda de origem, que será nomeada para a banda de destino # Podemos, inclusive, sobscrever a banda de origem, sem problemas imagem_mascara = imagem.select(banda_origem).updateMask(imagem.select(banda_mascara)).rename(band_destino) # Depois, temos que criar uma imagem em branco que receberá a máscara, renomeando também para banda de destino imagem_mascara = ee.Image(99999).blend(imagem_mascara).rename(band_destino) # Retornar a imagem com a nova banda nomeada com a string da banda_destino return imagem.addBands([imagem_mascara]) ###Output _____no_output_____ ###Markdown Agora, vamos definir a geometria e as datas (baseada na Latitude e Longitude) da nossa área de estudo e consultá-la no GEE (mesmo do notebook anterior): ###Code # Notem que foi criada uma coordenada (Latitude e Longitude) através de uma string, posteriormente repartida pelas virgulas # Essa abordagem é importante para quando utilizarmos a linha da comando coordenadas = "-48.53801472648439,-22.503806214013736,-48.270222978437516,-22.7281869567509" # Aqui, usamos uma ferramenta do Python chamada de unpacking x1,y1,x2,y2 = coordenadas.split(",") # Criamos a geometria com base nas coordenadas 'quebradas' acima geometria = geometry = ee.Geometry.Polygon( [[[float(x1),float(y2)], [float(x2),float(y2)], [float(x2),float(y1)], [float(x1),float(y1)], [float(x1),float(y2)]]]) # String de datas datas = "2014-10-13,2014-10-14" # Divisão das duas datas pela vírgula, novamente usando a técnica de unpacking inicio,fim = datas.split(",") # Consultando a coleção com base na área de estudo e datas selecionadas colecao = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR').filterBounds(geometria).filterDate(inicio,fim).filterMetadata('CLOUD_COVER','less_than', 30) # aplicar a função 'aplicar_mascaras' em todas as imagens (irá adicionar as bandas 'agua', 'nuvem', 'sem_nuvem' nas imagens): colecao = colecao.map(aplicar_mascaras) # extraindo a imagem mediana da coleção imagem = colecao.median() ###Output _____no_output_____ ###Markdown Agora, vamos aplicar as máscaras individualmente na banda NDVI: ###Code # Aplicamos as três máscaras individualmente na banda NDVI # A função irá adicionar as já mencionadas bandas de origem a medida que for sendo executada, linha a linha imagem = aplicar_mascara_banda(imagem, 'agua', 'ndvi', 'ndvi_agua') imagem = aplicar_mascara_banda(imagem, 'nuvem', 'ndvi', 'ndvi_nuvem') imagem = aplicar_mascara_banda(imagem, 'sem_nuvem', 'ndvi', 'ndvi_sem_nuvem') imagem = aplicar_mascara_banda(imagem, 'agua', 'ndvi_sem_nuvem', 'ndvi_agua_sem_nuvem') # Depois, cortamos a imagem # scale = escala do sensor. No caso do Landsat-8/OLI são 30 metros imagem_corte = imagem.clipToBoundsAndScale(geometry=geometria,scale=30) ###Output _____no_output_____ ###Markdown Utilizando o Pillow e o Request, iremos exibir extrair uma imagem da banda 'ndvi_agua_sem_nuvem' através da plataforma GEE: ###Code # Exibindo a imagem com o Pillow, Requests e BytesIO diretamente no notebook PIL.Image.open(BytesIO(requests.get(imagem_corte.select(['ndvi_agua_sem_nuvem']).getThumbUrl({'min':-1, 'max':1})).content)) ###Output _____no_output_____ ###Markdown Essa imagem pode ser, inclusive, salva em um arquivo com o comando: ###Code # Salvar imagem em um arquivo imagem_pillow = PIL.Image.open(BytesIO(requests.get(imagem_corte.select(['ndvi_agua_sem_nuvem']).getThumbUrl({'min':-1, 'max':1})).content)) imagem_pillow.save('images/7-ndvi_bbhr.png') ###Output _____no_output_____
notebooks/.ipynb_checkpoints/completeness_and_contamination-checkpoint.ipynb
###Markdown This demonstrates all the steps in my candidate selection before conducting visual inspection ###Code import numpy as np import splat import wisps.data_analysis as wispd from wisps.data_analysis import selection_criteria as sel_crt import shapey import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from scipy import stats import wisps import matplotlib as mpl from tqdm import tqdm import random import matplotlib.pyplot as plt %matplotlib inline #some functions def get_indices(x): if x is None : return pd.Series({}) else: return pd.concat([pd.Series(x.indices), pd.Series(x.mags), pd.Series(x.snr)]) def get_spt(x): if x is None: return np.nan else: return x.spectral_type[0] #change f-test definition def f_test_fx(x, df1, df2): return stats.f.cdf(x, df1, df2) def box_parameters(idx, spt_range): bs=idx.shapes b=[x for x in bs if x.shape_name==spt_range][0] print ('{} {} m: {} b: {} s:{}, comp : {}, cont: {}'.format(spt_range, idx, round(b.coeffs[0], 2), round(b.coeffs[1], 2), round(b.scatter, 2), round(idx.completeness[spt_range], 2), round(idx.contamination[spt_range], 3))) cands=pd.read_pickle(wisps.LIBRARIES+'/new_real_ucds.pkl') #use the same columns for all data sets alldata=wisps.get_big_file() spex=wisps.Annotator.reformat_table(wisps.datasets['spex']) cands['line_chi']=cands.spectra.apply(lambda x : x.line_chi) cands['spex_chi']=cands.spectra.apply(lambda x: x.spex_chi) cands['f_test']=cands.spectra.apply(lambda x: x.f_test) spex_df=wisps.Annotator.reformat_table(wisps.datasets['spex']).reset_index(drop=True) manj=wisps.Annotator.reformat_table(wisps.datasets['manjavacas']).reset_index(drop=True) schn=wisps.Annotator.reformat_table(wisps.datasets['schneider']).reset_index(drop=True) ydwarfs=(manj[manj['spt'].apply(wisps.make_spt_number)>38].append(schn)).reset_index(drop=True) spex_df['spt']=np.vstack(spex_df['spt'].values)[:,0] manj['spt']=np.vstack(manj['spt'].values)[:,0] schn['spt']=np.vstack(schn['spt'].values)[:,0] cands.grism_id=cands.grism_id.apply(lambda x: x.lower()) cands['spt']=np.vstack(cands['spt'].values) #add x values spex['x']=spex.spex_chi/spex.line_chi alldata['x']=alldata.spex_chi/alldata.line_chi cands['x']=cands.spex_chi/cands.line_chi spex['f_test']=f_test_fx(spex.x.values, spex.dof.values-1, spex.dof.values-2) alldata['f_test']=f_test_fx(alldata.x.values, alldata.nG141.values-1, alldata.nG141.values-2) alldata=alldata.sort_values('x') spex=spex.sort_values('x') cands=cands.sort_values('x') alldata['datalabel']='alldata' spex['datalabel']='spex' cands['datalabel']='ucds' combined_ftest_df=pd.concat([cands, spex, alldata[(alldata.snr1>=3.) & (alldata.mstar_flag !=0)]]) #stats.f.cdf(.85564068, 108-1, 108+2) #list(spex[['x', 'dof']][spex.f_test.values >0.2].values) len(spex[np.logical_and(spex.f_test.values > 0.9, np.vstack(spex.spt.values)[:,0] >=17.)])/len(spex) len(spex[np.logical_and(spex.f_test.values < 0.02, np.vstack(spex.spt.values)[:,0] >=17.)])/len(spex) len(cands[np.logical_and(cands.f_test.values > 0.9, np.vstack(cands.spt.values)[:,0] >=17.)])/len(cands) len(cands[np.logical_and(cands.f_test.values < 0.02, np.vstack(cands.spt.values)[:,0] >=17.)])/len(cands) #star_ids=alldata[alldata['class_star'] !=0] #stars=wisps.Annotator.reformat_table(star_ids).reset_index(drop=True) #cy=stars[stars.grism_id.isin(cx.grism_id)] plt.plot(cands.x[cands.x<1.], '.') dt=alldata[(alldata.f_test<0.02) & (alldata.snr1>=3.) & (alldata.mstar_flag !=0)].reset_index(drop=True) dt['spt']=(dt['spt']).apply(wisps.make_spt_number).apply(float) dt=wisps.Annotator.reformat_table(dt).reset_index(drop=True) len(alldata[(alldata.f_test<0.02) & (alldata.snr1>=3.) & (alldata.mstar_flag !=0)]) wisps.datasets.keys() #wisps.Annotator.reformat_table(wisps.datasets['subd']) #get criteria ##only run this if new data gbhio=sel_crt.save_criteria(conts=dt) crts=sel_crt.crts_from_file() contamns=pd.DataFrame([ x.contamination for x in crts.values()]) compls=pd.DataFrame([ x.completeness for x in crts.values()]) contamns.index=[x for x in crts.keys()] compls.index=[x for x in crts.keys()] %%capture ''' contamns.style.apply(lambda x: ["background-color: #7FDBFF" if (i >= 0 and (v < 0.1 and v > 0. )) else "" for i, v in enumerate(x)], axis = 1) ''' def get_toplowest_contam(subtype, n): top=contamns.sort_values('L5-T0')[:n] return {subtype: [x for x in top.index]} ordered={} for k in ['M7-L0', 'L0-L5', 'L5-T0', 'T0-T5', 'T5-T9', 'Y dwarfs', 'subdwarfs']: ordered.update(get_toplowest_contam(k, 6)) to_use= ordered spex['spt']=np.vstack(spex.spt.values)[:,0] from tqdm import tqdm def multiplte_indices_selection(k): stat_dict={} indices= [crts[index_name] for index_name in to_use[k]] #make selections for each index separately cand_bools=[] spex_bools=[] trash_bools=[] for idx in indices: xkey=idx.xkey ykey=idx.ykey bx=[x for x in idx.shapes if x.shape_name==k][0] _, cbools=bx._select(np.array([cands[xkey].values,cands[ykey].values])) _, spbools=bx._select(np.array([spex[xkey].values,spex[ykey].values])) _, trbools=bx._select(np.array([dt[xkey].values, dt[ykey].values])) cand_bools.append(cbools) spex_bools.append(spbools) trash_bools.append(trbools) cands_in_that_class_bool=cands.spt.apply(lambda x: wisps.is_in_that_classification(x, k)) spex_in_that_class_bool=spex.spt.apply(lambda x: wisps.is_in_that_classification(x, k)) cand_bools.append(cands_in_that_class_bool) spex_bools.append(spex_in_that_class_bool) cands_selected=cands[np.logical_and.reduce(cand_bools, axis=0)] spexs_selected=spex[np.logical_and.reduce(spex_bools, axis=0)] print (' {} selected {} out of {} UCDS'.format(k, len( cands_selected), len(cands[cands_in_that_class_bool]))) print ('overall completeness {}'.format( len(spexs_selected)/len(spex[spex_in_that_class_bool]))) print ('total contaminants {}'.format(len(dt[np.logical_and.reduce(trash_bools)]))) print ('-------------------------------------------') #for k in ['M7-L0', 'L0-L5', 'L5-T0', 'T0-T5', 'T5-T9', 'Y dwarfs']: # multiplte_indices_selection(k) contamns.idxmin(axis=0) from collections import OrderedDict ordered=[(k, contamns.idxmin(axis=0)[k]) for k in ['M7-L0', 'L0-L5', 'L5-T0', 'T0-T5', 'T5-T9', 'Y dwarfs', 'subdwarfs']] to_use= [ (y, x) for x, y in ordered] to_use import pickle #save the random forest output_file=wisps.OUTPUT_FILES+'/best_indices_to_use.pkl' with open(output_file, 'wb') as file: pickle.dump(to_use,file) fp={} cands=cands[cands.grism_id.isin(dt.grism_id)] def plot_index_box(index_name, box_name, ax): #get the index and the box idx=crts[index_name] bx=[x for x in idx.shapes if x.shape_name==box_name][0] xkey=idx.xkey ykey=idx.ykey to_use_df=spex_df if box_name.lower()=='y dwarfs': to_use_df=ydwarfs if box_name.lower()=='subdwarfs': to_use_df=wisps.Annotator.reformat_table(idx.subdwarfs) to_use_df['spt']=17 xlim=[ bx.xrange[0]-.5*abs(np.ptp(bx.xrange)), bx.xrange[1]+.5*abs(np.ptp(bx.xrange))] ylim=[ bx.yrange[0]-.5*abs(np.ptp(bx.yrange)), bx.yrange[1]+.5*abs(np.ptp(bx.yrange))] if box_name.upper()=='T5-T9': print ('changin scale') print (bx.xrange[1]) xlim=[ bx.xrange[0]-0.2*abs(np.ptp(bx.xrange)), np.round(bx.xrange[1]+0.2*abs(np.ptp(bx.xrange)))] #remove nans from background bckgrd= dt[[xkey, ykey]].replace(-np.inf, np.nan).replace(np.inf, np.nan).dropna() # ax.scatter(bckgrd[xkey], bckgrd[ykey], s=1, c='#111111', label='Background') bckgrd=bckgrd[(bckgrd[xkey].between(xlim[0], xlim[1])) & (bckgrd[ykey].between(ylim[0], ylim[1]))] h=ax.hist2d(bckgrd[xkey].apply(float).values, bckgrd[ykey].apply(float).values, \ cmap='gist_yarg', vmin=50, vmax=1000) cands_slctd, cands_bools=bx._select(np.array([cands[xkey].values,cands[ykey].values])) trash_slctd, trsh_bools=bx._select(np.array([dt[xkey].values, dt[ykey].values])) #simul_slctd, simul_bools=bx._select(np.array([simulated_data[xkey].values, simulated_data[ykey].values])) print (len(cands_slctd[0]), len((cands))) cands_in_that_class_bool=(cands).spt.apply(lambda x: wisps.is_in_that_classification(x, box_name)) spexs_slctd_in_that_class_bool= (to_use_df).spt.apply(lambda x: wisps.is_in_that_classification(x, box_name)) #simulated_in_that_class_bool=(simulated_data[simul_bools]).spt.apply(lambda x: wisps.is_in_that_classification(x, box_name)) if box_name.lower()=='subdwarfs': spexs_slctd_in_that_class_bool=np.ones(len(to_use_df), dtype=bool) cands_in_that_class=np.array([cands_slctd[0], \ cands_slctd[1]]) #simulated_in_that_class= np.array([simul_slctd[0][simulated_in_that_class_bool], simul_slctd[1][simulated_in_that_class_bool]]) spexs_slctd_in_that_class=np.array([to_use_df[xkey][spexs_slctd_in_that_class_bool], to_use_df[ykey][spexs_slctd_in_that_class_bool]]) #ax.scatter( simulated_in_that_class[0], simulated_in_that_class[1], facecolors='none', s=10, # edgecolors='#001f3f', label='simulated') ax.scatter(spexs_slctd_in_that_class[0], spexs_slctd_in_that_class[1], facecolors='none',\ edgecolors='#0074D9', label='Templates', s=50.) #ax.scatter(cands[xkey], cands[ykey], marker='x', facecolors='#FF851B', s=40., alpha=0.5) ax.scatter( cands_in_that_class[0], cands_in_that_class[1], marker ='+', s=150., alpha=1., facecolors='#FF851B', label='Discovered UCDs') ax.scatter(cands[xkey].values, cands[ykey].values, marker='+', s=150., alpha=0.3, facecolors='#FF851B') bx.color='None' bx.alpha=1. bx.linewidth=3 bx.linestyle='-' bx.edgecolor='#0074D9' bx.plot(ax=ax, only_shape=True, highlight=False) #cb = plt.colorbar(h[3], ax=ax, orientation='horizontal') #cb.set_label('Counts in bin', fontsize=16) plt.tight_layout() ax.set_xlabel(r'$'+str(idx.name.split(' ')[0])+'$', fontsize=14) ax.set_ylabel(r'$'+str(idx.name.split(' ')[1])+'$', fontsize=14) ax.set_title(box_name, fontsize=18) xbuffer=np.nanstd(to_use_df[[xkey,ykey]]) ax.minorticks_on() if (trash_slctd.shape[1])==0: fprate=0.0 else: fprate=(trash_slctd.shape[1]- cands_slctd.shape[1])/trash_slctd.shape[1] if box_name.lower()=='subdwarfs': fprate=1. fp[box_name]= fprate ax.set_xlim(xlim) ax.set_ylim(ylim) plt.tight_layout() print (' {} selected {}'.format(box_name, len(bx.select( bckgrd)))) return {str(box_name): bx} to_use ###Output _____no_output_____ ###Markdown cands ###Code idx=crts[to_use[1][0]] import matplotlib fig, ax=plt.subplots(nrows=3, ncols=3, figsize=(12, 14)) bxs=[] for idx, k in enumerate(to_use): print (idx, k) b=plot_index_box( k[0], k[1], np.concatenate(ax)[idx]) bxs.append(b) plt.tight_layout() cax = fig.add_axes([0.5, 0.1, .3, 0.03]) norm= matplotlib.colors.Normalize(vmin=50,vmax=1000) mp=matplotlib.cm.ScalarMappable(norm=norm, cmap='gist_yarg')# vmin=10, vmax=5000) cbar=plt.colorbar(mp, cax=cax, orientation='horizontal') cbar.ax.set_xlabel(r'Number of Contaminants', fontsize=18) fig.delaxes(np.concatenate(ax)[-1]) fig.delaxes(np.concatenate(ax)[-2]) np.concatenate(ax)[-4].set_title(r'$\geq$ T9 ', fontsize=18) #subdindx_index_crt=crts['H_2O-1/J-Cont H_2O-2/H_2O-1'] #subdrfs=wisps.Annotator.reformat_table(dummy_index_crt.subdwarfs) #tpls=wisps.Annotator.reformat_table(spex_df[spex_df.metallicity_class.isna()]) #a=np.concatenate(ax)[-1] #tpls=tpls[tpls.spt>16] #a.scatter(dt[subdindx_index_crt.xkey], dt[subdindx_index_crt.ykey], s=1., c='#111111', alpha=0.1) #a.scatter(tpls[subdindx_index_crt.xkey], tpls[subdindx_index_crt.ykey], marker='+', facecolors='#0074D9', label='SpeX', s=5.) #a.scatter(subdrfs[subdindx_index_crt.xkey], subdrfs[subdindx_index_crt.ykey], marker='+', facecolors='#2ECC40', label='SpeX', s=30.) #a.set_xlim([0., 1.35]) #a.set_ylim([0., 1.25]) #a.set_title('subdwarfs', fontsize=18) #a.set_xlabel(r'$'+str(subdindx_index_crt.name.split(' ')[0])+'$', fontsize=15) #a.set_ylabel(r'$'+str(subdindx_index_crt.name.split(' ')[1])+'$', fontsize=15) np.concatenate(ax)[-3].legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.savefig(wisps.OUTPUT_FIGURES+'/index_index_plots.pdf', bbox_inches='tight', rasterized=True, dpi=150) #.grism_id.to_csv('/users/caganze/desktop/true_brown_dwarfs.csv') bx_dict={} for b in bxs: bx_dict.update(b) #invert to use inv_to_use = {v: k for k, v in to_use} ncandidates=[] for spt_range in bx_dict.keys(): idx_name=inv_to_use[spt_range] idx=crts[idx_name] s, bools=(bx_dict[spt_range])._select(np.array([dt[idx.xkey].values, dt[idx.ykey].values])) ncandidates.append(dt[bools]) candsss=(pd.concat(ncandidates).drop_duplicates(subset='grism_id')) cands.grism_id=cands.grism_id.apply(lambda x: x.lower().strip()) good_indices=[crts[x] for x in inv_to_use.values()] len(candsss), len(candsss[candsss.grism_id.isin(cands.grism_id.apply(lambda x: x.lower().strip())) & (candsss.spt.apply(wisps.make_spt_number)>16)]) len(candsss.drop_duplicates('grism_id'))/len(alldata) len(candsss[candsss.grism_id.isin(cands.grism_id) & (candsss.spt.apply(wisps.make_spt_number).between(35, 40))]) len(candsss), len(dt), len(alldata[alldata.mstar_flag !=0]) len(dt)/len(alldata) candsss.to_pickle(wisps.OUTPUT_FILES+'/selected_by_indices.pkl') #print out table def round_tuple(tpl, n=2): return round(tpl[0], n), round(tpl[1],n) for index, k in to_use: spt_range=k sindex=crts[index] bs=sindex.shapes bs=[x for x in bs if x.shape_name==spt_range] bx=bs[0] print (" {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\\ ".format(spt_range,sindex.xkey, sindex.ykey, round_tuple(bx.vertices[0]), round_tuple(bx.vertices[1]) , round_tuple(bx.vertices[2]), round_tuple(bx.vertices[3]), round(sindex.completeness[spt_range], 2), round(sindex.contamination[spt_range], 7), round(fp[spt_range],6))) len(candsss) #ghjk stars= alldata[alldata.mstar_flag !=0] cands_dff=(cands[np.logical_and(cands['snr1'] >=3., cands['spt'] >=17)]).sort_values('spt') spex_df=spex_df.sort_values('spt') star_snr=stars[['snr1', 'snr2', 'snr3', 'snr4']].apply(np.log10).dropna() star_snr=(star_snr[star_snr.snr1.between(-1, 4) & star_snr.snr3.between(-1, 4) & star_snr.snr4.between(-1, 4)]).reset_index(drop=True) fig, (ax, ax1)=plt.subplots(ncols=2, figsize=(12, 6)) h=ax.hist2d(star_snr['snr1'], star_snr['snr3'], cmap='gist_yarg', bins=10, label='Point Sources') #ax.scatter(star_snr['snr1'], star_snr['snr3'], c='#111111', s=1, alpha=0.1) cb = plt.colorbar(h[3], ax=ax, orientation='horizontal') cb.set_label('Counts in bin', fontsize=16) plt.tight_layout() #ax.scatter(star_snr['snr1'], star_snr['snr4'], s=1., c='k', alpha=0.1, # label='3D-HST or WISP') ax.scatter(spex_df['snr1'].apply(np.log10), spex_df['snr3'].apply(np.log10), s=10, c=spex_df.spt, cmap='coolwarm', marker='o', alpha=0.1, vmin=15, vmax=40) ax.scatter(spex_df['snr1'].apply(np.log10)[0], spex_df['snr3'].apply(np.log10)[0], s=10, c=spex_df.spt[0], cmap='coolwarm', label='Templates', marker='o', alpha=1., vmin=15, vmax=40) ax.scatter(cands_dff['snr1'].apply(np.log10), cands_dff['snr3'].apply(np.log10), c=cands_dff['spt'], s=40, marker='*', cmap='coolwarm', label='UCDs' , vmin=15, vmax=40) ax.set_xlim([-0.5, 4]) ax.set_ylim([-0.5, 4]) ax.set_xlabel('Log J-SNR', fontsize=18) ax.set_ylabel('Log H-SNR', fontsize=18) ax.legend(fontsize=18, loc='upper left') ax.axhline(np.log10(3), c='k', xmin=np.log10(3)-0.2, linestyle='--') ax.axvline(np.log10(3), c='k', ymin=np.log10(3)-0.2, linestyle='--') #ax1.scatter(stars['snr1'].apply(np.log10), stars['snr4'].apply(np.log10), s=1., c='k', alpha=0.1, # label='3D-HST or WISP') #ax1.scatter(star_snr['snr1'], star_snr['snr4'], c='#111111', s=1, alpha=0.1) h1=ax1.hist2d(star_snr['snr1'], star_snr['snr4'], cmap='gist_yarg', bins=10, label='Point Sources') mp=ax1.scatter(spex_df['snr1'].apply(np.log10), spex_df['snr4'].apply(np.log10), s=10, c=spex_df.spt, cmap='coolwarm', label='Templates', marker='o', alpha=0.1, vmin=15, vmax=40) ax1.scatter(cands_dff['snr1'].apply(np.log10), cands_dff['snr4'].apply(np.log10), c=cands_dff['spt'], s=40, marker='*', cmap='coolwarm', label='UCDs', vmin=15, vmax=40) ax1.set_xlim([-0.5, 4]) ax1.set_ylim([-0.5, 4]) ax1.set_xlabel(' Log J-SNR', fontsize=18) ax1.set_ylabel('Log MEDIAN-SNR', fontsize=18) #ax.legend(fontsize=18) ax1.axhline(np.log10(3), c='k', xmin=np.log10(3)-0.2, linestyle='--') ax1.axvline(np.log10(3), c='k', ymin=np.log10(3)-0.2, linestyle='--') cb1 = plt.colorbar(h1[3], ax=ax1, orientation='horizontal') cb1.set_label('Counts in bin', fontsize=16) #plt.tight_layout() import matplotlib cax = fig.add_axes([1.01, 0.21, .03, 0.7]) norm= matplotlib.colors.Normalize(vmin=15,vmax=40) mp=matplotlib.cm.ScalarMappable(norm=norm, cmap='coolwarm') cbar=plt.colorbar(mp, cax=cax, orientation='vertical') cbar.ax.set_ylabel(r'Spectral Type', fontsize=18) ax.minorticks_on() ax1.minorticks_on() cbar.ax.set_yticks([ 17, 20, 25, 30, 35, 40]) cbar.ax.set_yticklabels(['M5', 'L0', 'L5', 'T0', 'T5', 'Y0']) plt.tight_layout() plt.savefig(wisps.OUTPUT_FIGURES+'/snr_cutplots.pdf', \ bbox_inches='tight',rasterized=True, dpi=100) #import wisps big=wisps.get_big_file() bigsnr=big[big.snr1>=3.] # fig, ax=plt.subplots(figsize=(10, 6)) h=ax.hist(big.snr1.apply(np.log10).values, range=[-3, 4], bins=32, histtype='step', linestyle=':', label='All', log=True, linewidth=3) h=ax.hist(stars.snr1.apply(np.log10).values, range=[-3, 4], bins=32, histtype='step', linewidth=3, label='Point Sources', linestyle='--', log=True) h=ax.hist(stars[stars.snr1>3].snr1.apply(np.log10).values, range=[-3, 4], bins=32, histtype='step', linewidth=3, label='Selected', log=True) #h=ax.hist(bigsnr.snr1.apply(np.log10).values, range=[-3, 4], bins=32, histtype='step', linewidth=3, log=True) ax.minorticks_on() plt.xlabel('Log SNR') plt.ylabel('Number') plt.legend() plt.savefig(wisps.OUTPUT_FIGURES+'/snr_distribution.pdf', bbox_inches='tight', facecolor='white', transparent=False) #s3=wisps.Source(filename='goodss-01-G141_47749') #s4=wisps.Source(filename='goodss-01-G141_45524') bools=np.logical_and(stars.snr1.between(3, 1000), stars.f_test.between(1e-3, 1)) #s4._best_fit_line ###Output _____no_output_____ ###Markdown fig, ax=plt.subplots(figsize=(8, 8))plt.plot(s4.wave, s4.flux, color='111111', label='Flux')plt.plot(s4.wave, s4.noise, '39CCCC', label='Noise')std=splat.getStandard(s4.spectral_type[0])std.normalize(range=[1.2, 1.5])chi, scale=splat.compareSpectra(s4.splat_spectrum, std, comprange=[[1.2, 1.5]], statistic='chisqr', scale=True) std.scale(scale)plt.plot(std.wave, std.flux, color='y', label='Best fit template')plt.plot( s4._best_fit_line[0], color='FF4136', label='Best fit line')plt.xlim([1.1, 1.7])plt.ylim([0, 0.1])plt.xlabel('Wavelength (micron)')plt.ylabel('Normalized Flux')plt.legend()plt.savefig(wisps.OUTPUT_FIGURES+'/example_line_fit.pdf', bbox_inches='tight', facecolor='white', transparent=False) ###Code compls.keys() fig, ax=plt.subplots(figsize=(8,6)) #for k in ['L0-L5', 'L5-T0', 'M7-L0', 'T0-T5', 'T5-T9','subdwarfs']: ax.scatter(compls['M7-L0'].values, contamns['M7-L0'].values, facecolors='none', edgecolors='#0074D9', label='M7-L0') ax.scatter(compls['L0-L5'].values, contamns['L0-L5'].values, marker='^', facecolors='none',\ edgecolors='#FF851B', label='L0-L5') ax.scatter(compls['L5-T0'].values, contamns['L5-T0'].values, marker='s', facecolors='none', edgecolors='#2ECC40', label='L5-T0') ax.scatter(compls['T0-T5'].values, contamns['T0-T5'].values, marker='$...$', facecolors='none', edgecolors='#FF4136', label='T0-T5') ax.scatter(compls['T5-T9'].values, contamns['T5-T9'].values, marker='X', facecolors='none', edgecolors='#111111', label='T5-T9') #h=plt.hist(contams[k].values, bins='auto', histtype='step', # label='All', log=True, linewidth=3) ax.set_xlabel('Completeness') ax.set_ylabel('Contamination') plt.legend() ax.set_yscale('log') plt.savefig(wisps.OUTPUT_FIGURES+'/completeness_contam.pdf', bbox_inches='tight', facecolor='white', transparent=False) compl_contam_table=pd.DataFrame(columns=contamns.columns, index=contamns.index) for k in compl_contam_table.columns: for idx in compl_contam_table.index: compl_contam_table.loc[idx, k]=(round(compls.loc[idx, k], 2), \ round(contamns.loc[idx, k], 3)) (compl_contam_table[['M7-L0', 'L0-L5', 'T0-T5',\ 'T5-T9', 'Y dwarfs', 'subdwarfs']]).to_latex() ###Output _____no_output_____
Notebook/stalkroot_rooted_0.5.ipynb
###Markdown MUSHROOMS Binary Classification Imports ###Code import os import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Load Data ###Code DATA_PATH = '../DATA/' FILE_NAME = 'mushrooms.csv' def load_data(data_path=DATA_PATH, file_name=FILE_NAME): csv_path = os.path.join(data_path, file_name) return pd.read_csv(csv_path) dataset = load_data() ###Output _____no_output_____ ###Markdown View Data and Informations ###Code dataset.head() dataset.info() edible, poisonous = dataset['class'].value_counts() print("Edible:\t ", edible,"\nPoisonous:", poisonous) # Categorical to numerical labels = {'e': 0, 'p': 1} dataset['class'].replace(labels, inplace=True) edible, poisonous = dataset['class'].value_counts() print("0 - Edible: ", edible,"\n1 - Poisonous:", poisonous) ###Output 0 - Edible: 4208 1 - Poisonous: 3916 ###Markdown Split Dataset Get the Labels ###Code X, y = dataset.drop('class', axis=1), dataset['class'].copy() print("X:",X.shape,"\ny:",y.shape) ###Output X: (8124, 22) y: (8124,) ###Markdown Train Set and Test Set ###Code from sklearn.model_selection import train_test_split X_white = pd.DataFrame() X_not_white = pd.DataFrame() y_white = pd.Series(dtype='float64') y_not_white = pd.Series(dtype='float64') for i in range(0,len(X)): if X.loc[i,"stalk-root"] == "r": X_white = X_white.append(X.iloc[i,:]) y_white = y_white.append(pd.Series(y.iloc[i])) else: X_not_white = X_not_white.append(X.iloc[i,:]) y_not_white = y_not_white.append(pd.Series(y.iloc[i])) X_train_not_white, X_test_not_white, y_train_not_white, y_test_not_white = train_test_split(X_not_white, y_not_white, test_size=1-(6905/(8124-len(X_white))), random_state=37) # print(X_test_white) X_train_white = (X_train_not_white) X_test_white = X_white.append(X_test_not_white) y_train_white = (y_train_not_white) y_test_white = y_white.append(y_test_not_white) from sklearn.utils import shuffle X_train_full = shuffle(X_train_white, random_state=37) X_test = shuffle(X_test_white, random_state=37) y_train_full = shuffle(y_train_white, random_state=37) y_test = shuffle(y_test_white, random_state=37) # print(X_test[:5]) # print(y_test.loc[:,"0"]) # from sklearn.model_selection import train_test_split # X_train_full, X_test, y_train_full, y_test = train_test_split(X, y, test_size=0.15, random_state=37) # print("85% - X_train size:", X_train_full.shape[0], " y_train size:", y_train_full.shape[0]) # print("15% - X_test size: ", X_test.shape[0], " y_test size: ", y_test.shape[0]) ###Output _____no_output_____ ###Markdown Validation Set ###Code X_valid, X_train = X_train_full[:500], X_train_full[500:] y_valid, y_train = y_train_full[:500], y_train_full[500:] print("X_train:", X_train.shape[0], "y_train", y_train.shape[0]) print("X_valid: ", X_valid.shape[0], "y_valid ", y_valid.shape[0]) print("X_test: ", X_test.shape[0]) ###Output X_train: 6404 y_train 6404 X_valid: 500 y_valid 500 X_test: 1220 ###Markdown Prepare the Data Data Transformation ###Code from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.compose import ColumnTransformer cat_attr_pipeline = Pipeline([ ('encoder', OrdinalEncoder()) ]) cols = list(X) pipeline = ColumnTransformer([ ('cat_attr_pipeline', cat_attr_pipeline, cols) ]) X_train = pipeline.fit_transform(X_train) X_valid = pipeline.fit_transform(X_valid) X_test = pipeline.fit_transform(X_test) ###Output _____no_output_____ ###Markdown Neural Network Model ###Code from tensorflow.keras.models import Sequential from tensorflow.keras.layers import InputLayer, Dense tf.random.set_seed(37) model = Sequential([ InputLayer(input_shape=(22,)), # input layer Dense(45, activation='relu'), # hidden layer Dense(1, activation='sigmoid') # output layer ]) model.summary() ###Output Model: "sequential_3" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_6 (Dense) (None, 45) 1035 dense_7 (Dense) (None, 1) 46 ================================================================= Total params: 1,081 Trainable params: 1,081 Non-trainable params: 0 _________________________________________________________________ ###Markdown Compile the Model ###Code model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Prepare Callbacks ###Code from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping checkpoint_cb = ModelCheckpoint('../SavedModels/best_model.h5', save_best_only=True) early_stopping_cb = EarlyStopping(patience=3, restore_best_weights=True) ###Output _____no_output_____ ###Markdown Training ###Code train_model = model.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb, early_stopping_cb]) ###Output Epoch 1/100 201/201 [==============================] - 1s 3ms/step - loss: 0.3921 - accuracy: 0.8370 - val_loss: 0.4117 - val_accuracy: 0.8040 Epoch 2/100 201/201 [==============================] - 0s 2ms/step - loss: 0.2996 - accuracy: 0.8857 - val_loss: 0.3193 - val_accuracy: 0.8620 Epoch 3/100 201/201 [==============================] - 0s 2ms/step - loss: 0.2714 - accuracy: 0.8980 - val_loss: 0.3075 - val_accuracy: 0.8800 Epoch 4/100 201/201 [==============================] - 1s 3ms/step - loss: 0.2504 - accuracy: 0.9040 - val_loss: 0.2786 - val_accuracy: 0.8900 Epoch 5/100 201/201 [==============================] - 1s 3ms/step - loss: 0.2318 - accuracy: 0.9113 - val_loss: 0.2519 - val_accuracy: 0.8860 Epoch 6/100 201/201 [==============================] - 0s 1ms/step - loss: 0.2147 - accuracy: 0.9199 - val_loss: 0.3326 - val_accuracy: 0.8740 Epoch 7/100 201/201 [==============================] - 0s 1ms/step - loss: 0.1979 - accuracy: 0.9288 - val_loss: 0.2303 - val_accuracy: 0.9280 Epoch 8/100 201/201 [==============================] - 0s 2ms/step - loss: 0.1822 - accuracy: 0.9383 - val_loss: 0.2055 - val_accuracy: 0.9320 Epoch 9/100 201/201 [==============================] - 0s 1ms/step - loss: 0.1683 - accuracy: 0.9432 - val_loss: 0.1909 - val_accuracy: 0.9220 Epoch 10/100 201/201 [==============================] - 0s 1ms/step - loss: 0.1565 - accuracy: 0.9461 - val_loss: 0.1807 - val_accuracy: 0.9420 Epoch 11/100 201/201 [==============================] - 0s 2ms/step - loss: 0.1447 - accuracy: 0.9505 - val_loss: 0.1908 - val_accuracy: 0.9560 Epoch 12/100 201/201 [==============================] - 0s 2ms/step - loss: 0.1345 - accuracy: 0.9542 - val_loss: 0.2237 - val_accuracy: 0.9420 Epoch 13/100 201/201 [==============================] - 0s 2ms/step - loss: 0.1259 - accuracy: 0.9583 - val_loss: 0.2921 - val_accuracy: 0.8960 ###Markdown Learning Curves ###Code pd.DataFrame(train_model.history).plot(figsize=(8,5)) plt.grid(True) plt.gca().set_ylim(0,1) plt.show() ###Output _____no_output_____ ###Markdown Evaluate the Best Model on Test Set ###Code results = model.evaluate(X_test, y_test) print("test loss, test acc:", results) ###Output 39/39 [==============================] - 0s 2ms/step - loss: 0.2619 - accuracy: 0.8811 test loss, test acc: [0.2618843913078308, 0.881147563457489] ###Markdown Confusion Matrix ###Code import seaborn as sns #Parameters title = 'Confusion Matrix' custom_color = '#ffa600' #Function for drawing confusion matrix def draw_confusion_matrix(cm, title = title, color = custom_color): palette = sns.light_palette(color, as_cmap=True) ax = plt.subplot() sns.heatmap(cm, annot=True, ax=ax, fmt='d', cmap=palette) # Title ax.set_title('\n' + title + '\n', fontweight='bold', fontstyle='normal', ) # x y labels ax.set_xlabel('Predicted', fontweight='bold') ax.set_ylabel('Actual', fontweight='bold'); # Classes names x_names = ['Poisonous', 'Edible'] y_names = ['Poisonous', 'Edible'] ax.xaxis.set_ticklabels(x_names, ha = 'center') ax.yaxis.set_ticklabels(y_names, va = 'center') from sklearn.metrics import confusion_matrix y_test_pred = (model.predict(X_test) > 0.5).astype("int32") cm = confusion_matrix(y_test, y_test_pred) draw_confusion_matrix(cm) ###Output _____no_output_____ ###Markdown ROC Curve ###Code #Function for plotting the ROC curve def plot_roc_curve(fpr, tpr, roc_auc): plt.plot(fpr, tpr, custom_color, label='Area: %0.3f' %roc_auc, linewidth=2) plt.plot([0, 1], [0, 1], 'k--') plt.title('ROC Curve') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate - Recall') plt.legend(loc='lower right') plt.show() from sklearn.metrics import roc_curve, auc y_test_prob = model.predict(X_test) fpr, tpr, _ = roc_curve(y_test, y_test_prob) roc_auc = auc(fpr, tpr) plot_roc_curve(fpr, tpr, roc_auc) ###Output _____no_output_____ ###Markdown Make Some Predictions ###Code X_new = X_test[:5] y_prob = model.predict(X_new) # print(y_prob.round(3)) y_pred = (model.predict(X_new) > 0.5).astype("int32") # print(y_pred) ###Output _____no_output_____ ###Markdown KL Divergence ###Code # X_new = X_test[:5] X_df = pd.DataFrame(model.predict(X_test)) y_test_pred = pd.DataFrame(y_test_pred).reset_index(drop=True) X_df = pd.concat([X_df, y_test_pred], axis=1) y_test = y_test.reset_index(drop=True) X_df = pd.concat([X_df, y_test], axis=1) X_df.columns = ["X_pred","y_pred","y_actual"] print(X_df) import math table = pd.DataFrame(columns=["KL_div","abs distance","correctness"]) for i in range(0,len(X_df)): # KL divergence p = X_df.loc[i,"X_pred"] kl = -(p*math.log(p) + (1-p)*math.log(1-p)) table.loc[i,"KL_div"] = kl # absolute distance abs_dist = 2*abs(0.5-p) table.loc[i,"abs distance"] = abs_dist # correctness y_pred = X_df.loc[i,"y_pred"] y_act = X_df.loc[i,"y_actual"] if y_pred == y_act: table.loc[i,"correctness"] = 1 # correct prediction else: table.loc[i,"correctness"] = 0 # wrong prediction print(table) table["count"] = 1 correctness = table[["correctness","count"]].groupby(pd.cut(table["KL_div"], np.arange(0, 0.8, 0.1))).apply(sum) correctness["percent"] = 100*(correctness["correctness"]/correctness["count"]) print(correctness) index = [] for i in (correctness.index): index.append(str(i)) plt.bar(index,correctness["percent"], width=0.7) for index,data in enumerate(correctness["percent"]): plt.text(x=index , y =data+1 , s=f"{round(data,2)}" , fontdict=dict(fontsize=15),ha='center') plt.ylim(0,110) plt.xlabel("KL Divergence") plt.ylabel("% correct") ###Output _____no_output_____ ###Markdown Confidence ###Code kl = table[["correctness","count"]].groupby(pd.cut(table["KL_div"], np.arange(0, 0.8, 0.05))).apply(sum) kl["percent"] = (kl["correctness"]/kl["count"]) kl.dropna(inplace=True) plt.scatter(np.arange(0, 0.70, 0.05), kl["percent"]) # print(kl) # print(np.arange(0, 0.7, 0.05)) # Linear Regression from sklearn.linear_model import LinearRegression x = np.arange(0, 0.70, 0.05).reshape((-1, 1)) y = kl["percent"] model = LinearRegression().fit(x,y) print('intercept(alpha):', model.intercept_) print('slope(theta):', model.coef_) ###Output intercept(alpha): 1.0645665973511222 slope(theta): [-0.70525649]
analysis/ENGR418_project_group_31_stage_2.ipynb
###Markdown ENGR418 Project Stage 2 Group 31By: Jared Paull (63586572), Liam Ross (75469692) ###Code import numpy as np import pandas as pd import os from sklearn.metrics import confusion_matrix from PIL import Image, ImageFilter import PIL from sklearn.neighbors import KNeighborsClassifier import sklearn ###Output _____no_output_____ ###Markdown Single Function CallThe function in the cell below can be called to run the entire algorithm. Before running, be sure to run the cells containing the functions at the bottom of this page, or else errors will be thrown. ###Code import numpy as np import pandas as pd import os from sklearn.metrics import confusion_matrix from PIL import Image, ImageFilter import PIL from sklearn.neighbors import KNeighborsClassifier import sklearn # first param is the relative training data directory # second param is the relative testing data directory training_data_relative_dir = "../data/training" testing_data_relative_dir = "../data/testing" # this will take a 1-2 minutes to run (depending on device capabilities) test_function(training_data_relative_dir, testing_data_relative_dir) ###Output Shape Predicted Circle Rectangle Square Shape Actual Circle 27 0 0 Rectangle 0 27 0 Square 0 0 27 Percentage of correct classification from model on training data set: 100.00% Shape Predicted Circle Rectangle Square Shape Actual Circle 24 0 3 Rectangle 0 27 0 Square 0 0 27 Percentage of correct classification from model on testing data set: 96.30% ###Markdown Setting Tuning Parameterspefore starting, these parameters must be set, they can be tuned to optimize performance though. The optimal values found are considered as default below ###Code # image_size=64, filter_value=4, angles=0->180 increments by 2, 100% & 96.30% # image size will dictate the size each image will be reshapet to later, used for tuning image_size = 64 # filter value sets a threshold value on the edge detection image, used for tuning filter_value = 4 # list of angles that the algorithm will rotate though, used for tuning angles = [] for i in range(90): angles.append(2*i) ###Output _____no_output_____ ###Markdown Feature EngineeringNext, all image data is scrapped from the image files in their respective relative directory. Refer to get_image_feature_data function for line by line description. In essense, each image will have 4 feature vectors. One for maximum Lego brick length, one for minimum lego brick length, and one for both average and median Lego brick length. These values will come from the rotated image, which is further discussed in their own respective functions ###Code # gets all training data from relative directory. # refer to functions at bottom for line-by line commenting x,y = get_image_feature_data("../data/training", image_size, filter_value, angles) # gets all testing data from relative directory. xt, yt = get_image_feature_data("../data/testing", image_size, filter_value, angles) ###Output _____no_output_____ ###Markdown Classifier TrainingNow with the feature vectors selected and image data collected, a classifier can be trained. After testing, we opted to use a k neighbors classifier which provided the best results. The classifier will classify a point based on the classification of points near it, making it simple and quick to calcualte. With strong engineered features, the k neighbors classifier provides a high accuracy solution. ###Code # creates a non linear k-nearest neighbor classifier that considers the 8th nearest neighbors where each neighbor is weighted by distance from sklearn.neighbors import KNeighborsClassifier k_neighbors = KNeighborsClassifier(n_neighbors=8, weights="distance") # fits data to the classifier k_neighbors.fit(x,y); ###Output _____no_output_____ ###Markdown **Prediction, Confusion Matrices, and Accuracy of Classifier** Classifier Prediction: Training DataNow, the classifier can be tested. First it is tested with the training image data. The results of the confusion matrix, as well as the accuracy of the algorithm are shown below. ###Code # feeds the training data back into the classifier for predicition pred = k_neighbors.predict(x) # formats the prediction values to string labels (refer to function below) predicted = confusion_format(pred) # foramts the actual labels to string labels (refer to function below) actual = confusion_format(y) # prints the confusion matrix using string labels print(pd.crosstab(actual, predicted, rownames=["Shape Actual"], colnames=["Shape Predicted"])) # prints the error percentage (refer to function below) print(f"Percentage of correct classification from model on training data set: {100-error_percentage(pred,y):.2f}%\n") ###Output Shape Predicted Circle Rectangle Square Shape Actual Circle 27 0 0 Rectangle 0 27 0 Square 0 0 27 Percentage of correct classification from model on training data set: 100.00% ###Markdown Classifier Prediction: Testing DataNext it is tested with the testing image data. The testing image is a better recognition of the classifiers accuracy since it is being fed images that it has never seen before. The results of the confusion matrix, as well as the accuracy of the algorithm are shown below. ###Code # feeds the testing data into the classifier for prediction pred = k_neighbors.predict(xt) # formats the prediction values to string labels (refer to function below) predicted = confusion_format(pred) # formats teh actual labels to string values (refer to function below) actual = confusion_format(yt) # prints the confusion matrix using string labels print(pd.crosstab(actual, predicted, rownames=["Shape Actual"], colnames=["Shape Predicted"])) # prints the error percentage (refer to function below) print(f"Percentage of correct classification from model on testing data set: {100-error_percentage(pred,y):.2f}%") ###Output Shape Predicted Circle Rectangle Square Shape Actual Circle 24 0 3 Rectangle 0 27 0 Square 0 0 27 Percentage of correct classification from model on testing data set: 96.30% ###Markdown ------------ **Functions**All of these functions **must** be ran before anything else. Each function has its purpose discussed, and are each well commented on. edge_imageThis function takes in a raw Lego brick image, then exports a filtered, binary, edge detected version. This means, it will output an image that only contains 0/1 in monochrome. All 1's will dictate edges of the Lego brick, while 0's indicate blank space that is not useful. All noise outside of the lego bricks edge should be filtered to allow the get_len to get the correct brick length. Noise going into the get_len function will make the classifier unrealiable. The function is commented on in detail below. ###Code # returns image that is the filtered, reshaped, edge detection version def edge_image(image, image_size, filter_value): # takes input image and converts to monochrome image = image.convert("L") # converts the monochrome image to an edge detection version (note this image is ripe with noise) image = image.filter(ImageFilter.FIND_EDGES) # Compress image down to 18x18 image, will blur specific noise in the image to make lego brick obvious image = image.resize((16 + 2,16 + 2)) # simply slices off the outter pixel of the image, border/edge pixels are recognized as ... # a "change" in colour, thus are labeled as an edge, the next line will slice out this edge error. # will output a 16x16 image image = PIL.Image.fromarray(np.array(image)[int(1) : int(image.height -1), int(1) : int(image.width - 1)]) # resizes image from 16x16 to desizered image size, return information to the plot. # resizing down then back up was to blur out and specific noise, so all noise can be easily filtered later. image = image.resize((image_size,image_size)) # converts the image to a numpy array data = np.asarray(image) # filters out any noise in the image data[data <= filter_value] = 0 # converts image from monochrome values to binary (for ease of interpretation) data[data > 0] = 1 # converts the image data back to a Pillow image object for further use image = PIL.Image.fromarray(data) return image ###Output _____no_output_____ ###Markdown get_lenused to get the length between the top-most pixel, and the bottom-most pixel in the image. Takes image from edge_image function and will return a single integer representing the lenght described above by rotating slowly, and taking length at each step. We can piece together what the lego brick is by examining the values it takes as it rotates. Function takes image from edge_image function above, thus requires very little background noise to work effectively.Expect circles to remain similar in value as it rotates. Expect rectangles to have a large maximum value. Expect circles to have a maximum value greater than circle but less then rectangle. Will use max/min/avg/med later to examine the changes over angle ###Code def get_len(image): # converts image to numpy array data = np.array(image) # represents the lowest pixel index (index represents height where bottom of image is zero) # initialize quantity to top of image to guarantee it will decrease (assuming image has a non-zero pixel) min_index = image.height # represents the highest pixel index (index represents height where top of image is maximum value, i.e. image height) # initialize quantity to bottom of image to guarantee it will increase (assuming image has a non-zero pixel) max_index = 0 # first loop starts from bottom of image and will crawl upwards for i in range(image.height): # nested loop will examing each pixel from left to right by height for j in range(image.width): # if a edge is detected (lego brick is found) if( data[i][j] == 1): # sets min index if current height index is less then smallest index found far if (min_index > i): min_index = i # sets max index if current height index is greater than greatest index found thus far if( max_index < i): max_index = i # finally, return difference between max height and min height to get vertical length the image takes up return max_index - min_index ###Output _____no_output_____ ###Markdown get_image_feature_dataWill iterate through a directory and gather feature data from each image, as well as its corresponding correct label. Is largely an accumulation of edge_image and get_len functions that is iterated for each image. Will return *x*, and *y* which are the feature vectors, and feature labels respectively. ###Code def get_image_feature_data(rel_dir, image_size, filter_value, angles): # initializes feature data and labels for use population later x = [] y = [] # will loop through each file in rel_dir directory for pic in os.listdir(rel_dir): # creates new Pillow image object from pic in relative directory image = PIL.Image.open(f"{rel_dir}/{pic}") # calls function to get filtered, reshaped, edge detection version of image. image = edge_image(image, image_size, filter_value) # initialize list to propogate with lengths for different angles vec = [] # for each loop to rotate through all angles the algorithm considers for angle in angles: # rotates original image by angle in for each loop img = image.rotate(angle) # for specific angle, find the length using the function described above length = get_len(img) # append new length to list containing length for each angle vec.append(length) # converts list to array to make math more efficient vec = np.array(vec) # maximum length recorded between all angles, normalized by height # useful for identifying rectangles max_len = np.max(vec) / img.height # minimum length recorded between all angles, normalized by height min_len = np.min(vec) / img.height # average length recorded between all angles, normalized by height # useful for identifying circles avg_len = np.average(vec) / img.height # median length recorded between all angles, normalized by height # useful for identifying circles med_len = np.median(vec) / img.height # dynamically override vec to be list of 4 key values from list of lengths by angle vec = [max_len, min_len, avg_len, med_len] # examine the name of the picture file, can find correct label based on first letter of the file name. # c indicates the picture is a circle if( str.lower(pic[0]) == "c"): # classify circles as a 0 y.append(0) # r indicates the picture is a rectangle elif (str.lower(pic[0]) == "r"): # classify rectangle as a 1 y.append(1) # only other situation is the image is a square else: # classify square as a 2 y.append(2) x.append(vec) # each image has 1536 features # convert feature vector data/labels from lists to arrays for ease of use in the classifier model x = np.array(x) y = np.array(y) return x,y # This function will convert from decimal label to strings. Very easy to comprehend # 0=>Circle, 1=>Rectangle, 2=>Square def confusion_format(labels): test = [] for i in labels: if i == 0: test.append("Circle") elif i == 1: test.append("Rectangle") else: test.append("Square") test = np.array(test) return test # Used to calculate error percentage by looking at number of differences between prediction and actual labels. def error_percentage(pred, y): # the number of errors is the number of differences between the model's labels and the correct labels errors = 0 for i in range(pred.size): # pred is the predicted array labels, while y is the actual if pred[i] != y[i]: errors = errors + 1 # then the percentage of errors is the number of errors divided by the total number of image samples times 100 for percentage. return errors / pred.size * 100 # Function is exclusively to demonstrate all code in a single function call. Refer to cells above, or functions described for ... # in depth description/line-by-line description. def test_function(training_dir, testing_dir): image_size = 64 filter_value = 4 angles = [] for i in range(90): angles.append(2*i) x,y = get_image_feature_data(training_dir, image_size, filter_value, angles) xt, yt = get_image_feature_data(testing_dir, image_size, filter_value, angles) k_neighbors = KNeighborsClassifier(8, weights="distance") k_neighbors.fit(x,y); pred = k_neighbors.predict(x) predicted = confusion_format(pred) actual = confusion_format(y) print(pd.crosstab(actual, predicted, rownames=["Shape Actual"], colnames=["Shape Predicted"])) print(f"Percentage of correct classification from model on training data set: {100-error_percentage(pred,y):.2f}%\n") pred = k_neighbors.predict(xt) predicted = confusion_format(pred) actual = confusion_format(yt) print(pd.crosstab(actual, predicted, rownames=["Shape Actual"], colnames=["Shape Predicted"])) print(f"Percentage of correct classification from model on testing data set: {100-error_percentage(pred,y):.2f}%") ###Output _____no_output_____
preprocessing_a.ipynb
###Markdown **Obtaining Regional Multi-Year SST Maps from GODAS**by Ding **Section 1 Data Analysis and Visualization** We use the following dataset to forecast marine heatwaves.[GODAS](https://www.cpc.ncep.noaa.gov/products/GODAS/) Connect Google Drive with Colab. ###Code from google.colab import drive drive.mount('/gdrive', force_remount=True) ###Output Mounted at /gdrive ###Markdown Import the data analysis libraries. ###Code !pip install netcdf4 !pip install h5netcdf from netCDF4 import Dataset import matplotlib.pyplot as plt import xarray as xr import glob import h5netcdf.legacyapi as netCDF4 ###Output _____no_output_____ ###Markdown Read one GODAS data file (the global marine potential temperatures in 1980) as an xarray dataset type. ###Code pottmp_1980 = xr.open_dataset('/gdrive/My Drive/GODAS_pottmp/pottmp.1980.nc', decode_times=False) ###Output _____no_output_____ ###Markdown Have a look at the imported data. ###Code pottmp_1980 ###Output _____no_output_____ ###Markdown xarray provides a convinient way to read all files in one directory and combines them into one xarray dataset.Read all data files (the global marine potential temperatures since 1980) as an integrated xarray dataset type. ###Code pottmp_all = xr.open_mfdataset('/gdrive/My Drive/GODAS_pottmp/*.nc', decode_times=False) ###Output /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: In xarray version 0.15 the default behaviour of `open_mfdataset` will change. To retain the existing behavior, pass combine='nested'. To use future default behavior, pass combine='by_coords'. See http://xarray.pydata.org/en/stable/combining.html#combining-multi """Entry point for launching an IPython kernel. /usr/local/lib/python3.7/dist-packages/xarray/backends/api.py:941: FutureWarning: The datasets supplied have global dimension coordinates. You may want to use the new `combine_by_coords` function (or the `combine='by_coords'` option to `open_mfdataset`) to order the datasets before concatenation. Alternatively, to continue concatenating based on the order the datasets are supplied in future, please use the new `combine_nested` function (or the `combine='nested'` option to open_mfdataset). from_openmfds=True, ###Markdown Have a look at it!"time: 492" means 492 months. ###Code pottmp_all ###Output _____no_output_____ ###Markdown Visualize the global potential temperatures at the level 5 and the time 73048. ###Code pottmp_all.pottmp.isel(level=0,time=240).plot() ###Output _____no_output_____ ###Markdown Visualize the potential temperature time series at the lattitude -71.2, the longitude 170.5 and the level 5. ###Code pottmp_all.pottmp.isel(lat=10,lon=170,level=0).plot(marker="o") ###Output _____no_output_____ ###Markdown We select a small area to create a few baseline models.Extract the ocean region next to southeastern Australia.$lat \in (-35, -45)$$lon \in (145, 155)$We also denote the potential temperature at the level 5 as the sea surface temperature (SST).$level = 5$ ###Code pottmp_seau = pottmp_all.where(pottmp_all.lat < -35, drop=True) pottmp_seau = pottmp_seau.where(pottmp_seau.lat > -45, drop=True) pottmp_seau = pottmp_seau.where(pottmp_seau.lon < 155, drop=True) pottmp_seau = pottmp_seau.where(pottmp_seau.lon > 145, drop=True) pottmp_seau = pottmp_seau.where(pottmp_seau.level == 5.0, drop=True) pottmp_seau ###Output _____no_output_____ ###Markdown Visualize the SST in this small region at the time 73048. ###Code pottmp_seau.pottmp.isel(level=0,time=240).plot() ###Output _____no_output_____ ###Markdown There are 492 time points. We select the prvious 394 (80%) for training and the latter 98 (20%) for validation. ###Code pottmp_seau_train = pottmp_seau.where(pottmp_seau.time[0:394], drop=True) pottmp_seau_val = pottmp_seau.where(pottmp_seau.time[394:], drop=True) ###Output _____no_output_____ ###Markdown **Section 2 Data Preprocessing** ###Code import numpy as np ###Output _____no_output_____ ###Markdown Based on the analysis, create (empty) numpy arrays with the shapes for modeling. ###Code train_set = np.zeros((394,1,30,10)) val_set = np.zeros((98,1,30,10)) ###Output _____no_output_____ ###Markdown Load the data from the xarray type to the numpy array type. ###Code train_set[:,:,:,:] = pottmp_seau_train.variables['pottmp'][0:394,:,:,:] val_set[:,:,:,:] = pottmp_seau_val.variables['pottmp'][0:98,:,:,:] ###Output _____no_output_____ ###Markdown Look at their shapes, which is important for machine learning models. ###Code print(train_set.shape) print(val_set.shape) ###Output (394, 1, 30, 10) (98, 1, 30, 10) ###Markdown For convenience, convert "nans" to zeroes. ###Code train_set = np.where(np.isnan(train_set), 0, train_set) val_set = np.where(np.isnan(val_set), 0, val_set) ###Output _____no_output_____ ###Markdown Remove the unnecessary dimension of levels, which contains only one value 5. ###Code train_set = train_set[:,0,:,:] val_set = val_set[:,0,:,:] print(train_set.shape) print(val_set.shape) ###Output (394, 30, 10) (98, 30, 10) ###Markdown Check the matrix at one timepoint.The temperature unit is kelvin. ###Code val_set[1] ###Output _____no_output_____ ###Markdown Exclude the zeros and check the mean. ###Code np.nanmean(np.where(val_set[1]!=0, val_set[1], np.nan)) ###Output _____no_output_____ ###Markdown We want to use the SST maps in three consecutive months to predict the area mean SST (one value) in the fourth month.Convert the sets into the following format.From [Month 1], [Month 2], [Month 3], ..., to [[Month 1], [Month 2], [Month 3]], [[Month 2], [Month 3], [Month 4]], [[Month 3], [Month 4], [Month 5]], ...Create the label sets in the following format accordingly.Month 4 Mean, Month 5 Mean, Month 6 Mean, ... ###Code train_set_3_list = [] train_label_list = [] val_set_3_list = [] val_label_list = [] for i in range(len(train_set) - 3): train_set_3_list.append([train_set[i], train_set[i+1], train_set[i+2]]) train_label_list.append(np.nanmean(np.where(train_set[i+3]!=0, train_set[i+3], np.nan))) for i in range(len(val_set) - 3): val_set_3_list.append([val_set[i], val_set[i+1], val_set[i+2]]) val_label_list.append(np.nanmean(np.where(val_set[i+3]!=0, val_set[i+3], np.nan))) ###Output _____no_output_____ ###Markdown Convert the list type into the numpy array type. ###Code train_set_3 = np.array(train_set_3_list) train_label = np.array(train_label_list) val_set_3 = np.array(val_set_3_list) val_label = np.array(val_label_list) ###Output _____no_output_____ ###Markdown Look at their shapes. ###Code print(train_set_3.shape) print(val_set_3.shape) print(train_label.shape) print(val_label.shape) ###Output (391, 3, 30, 10) (95, 3, 30, 10) (391,) (95,) ###Markdown Put the four tensors into one list for saving. ###Code data_sets = [train_set_3.tolist(), val_set_3.tolist(), train_label.tolist(), val_label.tolist()] ###Output _____no_output_____ ###Markdown Save this list in Google Drive for further use. ###Code import json with open('/gdrive/My Drive/GODAS/data_sets.txt', 'w') as out_file: json.dump(data_sets, out_file) ###Output _____no_output_____
allesfitter/GUI.ipynb
###Markdown ![allesfitter](./_static/_logos/logo_circ.png) ###Code #:::: clean up csv file def clean_up_csv(fname, N_last_rows=0): with open(fname, "r") as f: params_csv = list(csv.reader(f)) with open(fname, "w") as f: writer = csv.writer(f) for i in range(len(params_csv)-N_last_rows): row = params_csv[i] writer.writerow(row) #:::: append a row into csv file def fwrite_params_line(text): with open(INPUT['fname_params'], 'a') as f: f.write(text+'\n') #:::: write params into csv file def fwrite_params(key, label, unit, physical_bounds, return_str=False): if INPUT[key+'_bounds_type'].value == 'uniform': bounds = 'uniform ' \ + str( np.max( [physical_bounds[0], float(INPUT[key+'_median'].value)-float(INPUT[key+'_lerr'].value)] ) ) + ' ' \ + str( np.min( [physical_bounds[1], float(INPUT[key+'_median'].value)+float(INPUT[key+'_uerr'].value)] ) ) elif INPUT[key+'_bounds_type'].value == 'uniform * 5': bounds = 'uniform ' \ + str( np.max( [physical_bounds[0], float(INPUT[key+'_median'].value)-5*float(INPUT[key+'_lerr'].value)] ) ) + ' ' \ + str( np.min( [physical_bounds[1], float(INPUT[key+'_median'].value)+5*float(INPUT[key+'_uerr'].value)] ) ) elif INPUT[key+'_bounds_type'].value == 'trunc_normal': bounds = 'trunc_normal ' \ + str(physical_bounds[0]) + ' ' \ + str(physical_bounds[1]) + ' ' \ + str(INPUT[key+'_median'].value) + ' ' \ + str(np.max( [ float(INPUT[key+'_lerr'].value), float(INPUT[key+'_uerr'].value) ] )) elif INPUT[key+'_bounds_type'].value == 'trunc_normal * 5': bounds = 'trunc_normal ' \ + str(physical_bounds[0]) + ' ' \ + str(physical_bounds[1]) + ' ' \ + str(INPUT[key+'_median'].value) + ' ' \ + str(5*np.max( [ float(INPUT[key+'_lerr'].value), float(INPUT[key+'_uerr'].value) ] )) string = key + ',' + str(INPUT[key+'_median'].value) + ',' + str(int(INPUT[key+'_fit'].value)) + ',' + bounds + ',' + label + ',' + unit if not return_str: fwrite_params_line(string) else: return string #unique def unique(array): uniq, index = np.unique(array, return_index=True) return uniq[index.argsort()] ###Output _____no_output_____ ###Markdown 1. working directory Select the working directory for this fit, for example `/Users/me/TESS-1b/`. Then you can run a fit using `allesfitter.ns_fit('/Users/me/TESS-1b/')`. ###Code BUTTONS['datadir'] = widgets.Button(description='Select directory', button_style='') text_af_directory = widgets.Text(value='', placeholder='for example: /Users/me/TESS-1b/', disable=True) hbox = widgets.HBox([BUTTONS['datadir'], text_af_directory]) display(hbox) def select_datadir(change): root = Tk() root.withdraw() root.call('wm', 'attributes', '.', '-topmost', True) INPUT['datadir'] = filedialog.askdirectory() %gui tk if INPUT['datadir'] != '': text_af_directory.value = INPUT['datadir'] BUTTONS['datadir'].style.button_color = 'lightgreen' INPUT['show_step_2a'] = True display(Javascript('IPython.notebook.execute_cell_range(IPython.notebook.get_selected_index()+1, IPython.notebook.ncells())')) BUTTONS['datadir'].on_click(select_datadir) ###Output _____no_output_____ ###Markdown 2. settings ###Code if 'show_step_2a' in INPUT and INPUT['show_step_2a'] == True: display(Markdown('### General settings')) DROPDOWNS['planet_or_EB'] = widgets.Dropdown(options=['Planets', 'EBs']) display( widgets.HBox([widgets.Label(value='Fitting planets or EBs?', layout=layout), DROPDOWNS['planet_or_EB']]) ) display(Markdown('Give the companion letters and instruments, space-separated. Leave empty if not applicable.')) hbox_list = [] text_companions_phot = widgets.Text(value='', placeholder='for example: b') hbox_list.append( widgets.HBox([widgets.Label(value='Companions in photometry', layout=layout), text_companions_phot]) ) text_companions_rv = widgets.Text(value='', placeholder='for example: b c') hbox_list.append( widgets.HBox([widgets.Label(value='Companions in RV', layout=layout), text_companions_rv]) ) text_inst_phot = widgets.Text(value='', placeholder='for example: TESS NGTS') hbox_list.append( widgets.HBox([widgets.Label(value='Instruments for photometry', layout=layout), text_inst_phot]) ) text_inst_rv = widgets.Text(value='', placeholder='for example: HARPS Coralie') hbox_list.append( widgets.HBox([widgets.Label(value='Instruments for RV', layout=layout), text_inst_rv]) ) display(widgets.VBox(hbox_list)) def confirm(change): #::: set stuff if len(text_inst_phot.value): INPUT['inst_phot'] = str(text_inst_phot.value).split(' ') else: INPUT['inst_phot'] = [] if len(text_inst_rv.value): INPUT['inst_rv'] = str(text_inst_rv.value).split(' ') else: INPUT['inst_rv'] = [] if len(text_companions_phot.value): INPUT['companions_phot'] = str(text_companions_phot.value).split(' ') else: INPUT['companions_phot'] = [] if len(text_companions_rv.value): INPUT['companions_rv'] = str(text_companions_rv.value).split(' ') else: INPUT['companions_rv'] = [] INPUT['companions_all'] = list(np.unique(INPUT['companions_phot']+INPUT['companions_rv'])) #sorted by b, c, d... INPUT['inst_all'] = list(unique(INPUT['inst_phot']+INPUT['inst_rv'])) #sorted like user input button_2a.style.button_color = 'lightgreen' INPUT['show_step_2b'] = True display(Javascript('IPython.notebook.execute_cell_range(IPython.notebook.get_selected_index()+1, IPython.notebook.ncells())')) button_2a = widgets.Button(description='Confirm', button_style='') display(button_2a) button_2a.on_click(confirm) if 'show_step_2b' in INPUT and INPUT['show_step_2b'] == True: display(Markdown('### Advanced settings')) vbox_list = [] #::: Fitting & performance hbox_list = [] max_cores = cpu_count() DROPDOWNS['multiprocessing'] = widgets.Dropdown(options=['No'] + ['on '+str(i)+' of my '+str(max_cores)+' cores' for i in range(2,max_cores)] + ['always on all - 1 cores on any system']) hbox_list.append(widgets.HBox([widgets.Label(value='Multiprocessing', layout=layout), DROPDOWNS['multiprocessing']])) DROPDOWNS['fit_type'] = widgets.Dropdown(options=['Transit (fast)', 'Transit and occultation (fast)', 'Full lightcurve (slow)']) hbox_list.append(widgets.HBox([widgets.Label(value='Fit type', layout=layout), DROPDOWNS['fit_type']])) DROPDOWNS['shift_epoch'] = widgets.Dropdown(options=['Yes', 'No']) hbox_list.append(widgets.HBox([widgets.Label(value='Automatically shift epoch?', layout=layout), DROPDOWNS['shift_epoch']])) DROPDOWNS['mcmc_settings'] = widgets.Dropdown(options=['Default']) hbox_list.append(widgets.HBox([widgets.Label(value='MCMC settings', layout=layout), DROPDOWNS['mcmc_settings']])) DROPDOWNS['ns_settings'] = widgets.Dropdown(options=['Default']) hbox_list.append(widgets.HBox([widgets.Label(value='Nested Sampling settings', layout=layout), DROPDOWNS['ns_settings']])) vbox_list.append( widgets.VBox(hbox_list) ) #::: Limb darkening hbox_list = [] for inst in INPUT['inst_phot']: DROPDOWNS['host_ld_law_'+inst] = widgets.Dropdown(options=['None','Linear','Quadratic','Sing'], value='Quadratic') hbox_list.append( widgets.HBox([widgets.Label(value='Host limb darkening '+inst, layout=layout), DROPDOWNS['host_ld_law_'+inst]]) ) if DROPDOWNS['planet_or_EB'].value == 'EBs': for companion in INPUT['companions_all']: DROPDOWNS[companion+'_ld_law_'+inst] = widgets.Dropdown(options=['None','Linear','Quadratic','Sing']) hbox_list.append( widgets.HBox([widgets.Label(value=companion+' limb darkening '+inst, layout=layout), DROPDOWNS[companion+'_ld_law_'+inst]]) ) vbox_list.append( widgets.VBox(hbox_list) ) #::: Baseline settings hbox_list = [] for inst in INPUT['inst_phot']: DROPDOWNS['baseline_flux_'+inst] = widgets.Dropdown(options=['sample_offset', 'sample_linear', 'sample_GP_Matern32', 'sample_GP_SHO', 'sample_GP_real', 'sample_GP_complex', 'hybrid_offset', 'hybrid_poly_1', 'hybrid_poly_2', 'hybrid_poly_3', 'hybrid_poly_4', 'hybrid_spline'], value='hybrid_offset') hbox_list.append( widgets.HBox([widgets.Label(value='Baseline flux '+inst, layout=layout), DROPDOWNS['baseline_flux_'+inst]]) ) for inst in INPUT['inst_rv']: DROPDOWNS['baseline_rv_'+inst] = widgets.Dropdown(options=['sample_offset', 'sample_linear', 'sample_GP_Matern32', 'sample_GP_SHO', 'sample_GP_real', 'sample_GP_complex', 'hybrid_offset', 'hybrid_poly_1', 'hybrid_poly_2', 'hybrid_poly_3', 'hybrid_poly_4', 'hybrid_spline'], value='hybrid_offset') hbox_list.append( widgets.HBox([widgets.Label(value='Baseline RV '+inst, layout=layout), DROPDOWNS['baseline_rv_'+inst]]) ) vbox_list.append( widgets.VBox(hbox_list) ) #::: Error settings hbox_list = [] for inst in INPUT['inst_phot']: DROPDOWNS['error_flux_'+inst] = widgets.Dropdown(options=['sample', 'hybrid'], value='sample') hbox_list.append( widgets.HBox([widgets.Label(value='Error flux '+inst, layout=layout), DROPDOWNS['error_flux_'+inst]]) ) for inst in INPUT['inst_rv']: DROPDOWNS['error_rv_'+inst] = widgets.Dropdown(options=['sample', 'hybrid'], value='sample') hbox_list.append( widgets.HBox([widgets.Label(value='Error RV '+inst, layout=layout), DROPDOWNS['error_rv_'+inst]]) ) vbox_list.append( widgets.VBox(hbox_list) ) #::: Exposure time interpolation hbox_list = [] for inst in INPUT['inst_all']: DROPDOWNS['t_exp_'+inst] = widgets.Text( placeholder='None' ) hbox_list.append( widgets.HBox([widgets.Label(value='Exposure time '+inst, layout=layout), DROPDOWNS['t_exp_'+inst], widgets.Label(value='days', layout=layout)]) ) for inst in INPUT['inst_all']: DROPDOWNS['t_exp_n_int_'+inst] = widgets.Text( placeholder='None' ) hbox_list.append( widgets.HBox([widgets.Label(value='Interpolation points '+inst, layout=layout), DROPDOWNS['t_exp_n_int_'+inst], widgets.Label(value='(integer)', layout=layout)]) ) vbox_list.append( widgets.VBox(hbox_list) ) #::: Number of spots hbox_list = [] for inst in INPUT['inst_all']: DROPDOWNS['host_N_spots_'+inst] = widgets.Text( placeholder='None' ) hbox_list.append( widgets.HBox([widgets.Label(value='host: Nr. of spots '+inst, layout=layout), DROPDOWNS['host_N_spots_'+inst], widgets.Label(value='(integer)', layout=layout)]) ) vbox_list.append( widgets.VBox(hbox_list) ) #::: Number of flares hbox_list = [] DROPDOWNS['N_flares'] = widgets.Text( placeholder='None' ) hbox_list.append( widgets.HBox([widgets.Label(value='Nr. of flares', layout=layout), DROPDOWNS['N_flares'], widgets.Label(value='(integer)', layout=layout)]) ) vbox_list.append( widgets.VBox(hbox_list) ) #::: Fit TTVs? hbox_list = [] DROPDOWNS['fit_ttvs'] = widgets.Dropdown(options=["yes","no"], value="no") hbox_list.append( widgets.HBox([widgets.Label(value='Fit TTVs?', layout=layout), DROPDOWNS['fit_ttvs']]) ) vbox_list.append( widgets.VBox(hbox_list) ) #::: Stellar grid (e.g. use "sparse" to speed up intense spot computations) hbox_list = [] for inst in INPUT['inst_all']: DROPDOWNS['host_grid_'+inst] = widgets.Dropdown(options=["very_sparse", "sparse", "default", "fine", "very_fine"], value="default") hbox_list.append( widgets.HBox([widgets.Label(value='Host grid '+inst, layout=layout), DROPDOWNS['host_grid_'+inst]]) ) if DROPDOWNS['planet_or_EB'].value == 'EBs': for companion in INPUT['companions_all']: DROPDOWNS[companion+'_grid_'+inst] = widgets.Dropdown(options=["very_sparse", "sparse", "default", "fine", "very_fine"], value="default") hbox_list.append( widgets.HBox([widgets.Label(value=companion+' grid '+inst, layout=layout), DROPDOWNS[companion+'_grid_'+inst]]) ) vbox_list.append( widgets.VBox(hbox_list) ) #::: Stellar shape (e.g. use "roche" for ellipsoidal variablity) hbox_list = [] for inst in INPUT['inst_all']: DROPDOWNS['host_shape_'+inst] = widgets.Dropdown(options=["roche", "roche_v", "sphere", "poly1p5", "poly3p0", "love"], value="sphere") hbox_list.append( widgets.HBox([widgets.Label(value='Host shape '+inst, layout=layout), DROPDOWNS['host_shape_'+inst]]) ) if DROPDOWNS['planet_or_EB'].value == 'EBs': for companion in INPUT['companions_all']: DROPDOWNS[companion+'_shape_'+inst] = widgets.Dropdown(options=["roche", "roche_v", "sphere", "poly1p5", "poly3p0", "love"], value="sphere") hbox_list.append( widgets.HBox([widgets.Label(value=companion+' shape '+inst, layout=layout), DROPDOWNS[companion+'_shape_'+inst]]) ) vbox_list.append( widgets.VBox(hbox_list) ) #::: Flux weighted RVs ("Yes" for Rossiter-McLaughlin effect) hbox_list = [] for inst in INPUT['inst_rv']: for companion in INPUT['companions_rv']: DROPDOWNS[companion+'_flux_weighted_'+inst] = widgets.Dropdown(options=['No', 'Yes']) hbox_list.append( widgets.HBox([widgets.Label(value=companion+' flux weighted RV '+inst, layout=layout), DROPDOWNS[companion+'_flux_weighted_'+inst]]) ) vbox_list.append( widgets.VBox(hbox_list) ) #::: accordion accordion = widgets.Accordion(children=vbox_list) accordion.set_title(0, 'Fitting & performance') accordion.set_title(1, 'Limb darkening laws') accordion.set_title(2, 'Baseline sampling') accordion.set_title(3, 'Error sampling') accordion.set_title(4, 'Exposure time interpolation') accordion.set_title(5, 'Number of spots') accordion.set_title(6, 'Number of flares') accordion.set_title(7, 'TTVs') accordion.set_title(8, 'Stellar grid (e.g. use "very_sparse" to speed up computations)') accordion.set_title(9, 'Stellar shape (e.g. use "roche" for ellipsoidal variablity)') accordion.set_title(10, 'Flux weighted RVs (e.g. use "true" for Rossiter-McLaughlin effect)') display(accordion) #::: confirm button button_2b = widgets.Button(description='Confirm', button_style='') display(button_2b) def confirm(change): button_2b.style.button_color = 'lightgreen' INPUT['show_step_2c'] = True display(Javascript('IPython.notebook.execute_cell_range(IPython.notebook.get_selected_index()+1, IPython.notebook.ncells())')) button_2b.on_click(confirm) if 'show_step_2c' in INPUT and INPUT['show_step_2c'] == True: BUTTONS['2c'] = widgets.Button(description='Create settings.csv', button_style='') checkbox_2c = widgets.Checkbox(description='Overwrite old settings.csv (if existing)', value=False) display(widgets.HBox([BUTTONS['2c'], checkbox_2c])) def create_settings_file(change): clear_output() display(widgets.HBox([BUTTONS['2c'], checkbox_2c])) go_ahead = True if 'datadir' not in INPUT: warnings.warn('No allesfitter woking directory selected yet. Please go back to step 1) and fill in all fields.') go_ahead = False if os.path.exists(os.path.join(INPUT['datadir'],'settings.csv')) and (checkbox_2c.value==False): warnings.warn('The selected working directory '+os.path.join(INPUT['datadir'],'settings.csv')+' already exists. To proceed, give permission to overwrite it.') go_ahead = False if go_ahead: fname_settings = os.path.join(INPUT['datadir'], 'settings.csv') with open(fname_settings, 'w+') as f: f.write('#name,value\n') def fwrite_settings(text): with open(fname_settings, 'a') as f: f.write(text+'\n') fwrite_settings('###############################################################################,') fwrite_settings('# General settings,') fwrite_settings('###############################################################################,') fwrite_settings('companions_phot,'+text_companions_phot.value) fwrite_settings('companions_rv,'+text_companions_rv.value) fwrite_settings('inst_phot,'+text_inst_phot.value) fwrite_settings('inst_rv,'+text_inst_rv.value) fwrite_settings('###############################################################################,') fwrite_settings('# Fit performance settings,') fwrite_settings('###############################################################################,') if DROPDOWNS['multiprocessing'].value=='No': fwrite_settings('multiprocess,False') elif DROPDOWNS['multiprocessing'].value=='always on all - 1 cores on any system': fwrite_settings('multiprocess,True') fwrite_settings('multiprocess_cores,all') else: fwrite_settings('multiprocess,True') fwrite_settings('multiprocess_cores,'+DROPDOWNS['multiprocessing'].value.split(' ')[1]) if DROPDOWNS['fit_type'].value=='Transit (fast)': fwrite_settings('fast_fit,True') fwrite_settings('fast_fit_width,0.3333333333333333') fwrite_settings('secondary_eclipse,False') fwrite_settings('phase_curve,False') elif DROPDOWNS['fit_type'].value=='Transit and occultation (fast)': fwrite_settings('fast_fit,True') fwrite_settings('fast_fit_width,0.3333333333333333') fwrite_settings('secondary_eclipse,True') fwrite_settings('phase_curve,False') elif DROPDOWNS['fit_type'].value=='Full lightcurve (slow)': fwrite_settings('fast_fit,False') fwrite_settings('fast_fit_width,') fwrite_settings('secondary_eclipse,True') fwrite_settings('phase_curve,True') fwrite_settings('phase_curve_style,GP') if DROPDOWNS['shift_epoch'].value=='Yes': fwrite_settings('shift_epoch,True') for companion in INPUT['companions_all']: fwrite_settings('inst_for_'+companion+'_epoch,all') fwrite_settings('###############################################################################,') fwrite_settings('# MCMC settings,') fwrite_settings('###############################################################################,') if DROPDOWNS['mcmc_settings'].value=='Default': fwrite_settings('mcmc_nwalkers,100') fwrite_settings('mcmc_total_steps,2000') fwrite_settings('mcmc_burn_steps,1000') fwrite_settings('mcmc_thin_by,1') fwrite_settings('###############################################################################,') fwrite_settings('# Nested Sampling settings,') fwrite_settings('###############################################################################,') if DROPDOWNS['ns_settings'].value=='Default': fwrite_settings('ns_modus,dynamic') fwrite_settings('ns_nlive,500') fwrite_settings('ns_bound,single') fwrite_settings('ns_sample,rwalk') fwrite_settings('ns_tol,0.01') fwrite_settings('###############################################################################,') fwrite_settings("# Limb darkening law per object and instrument,") fwrite_settings("# if 'lin' one corresponding parameter called 'ldc_q1_inst' has to be given in params.csv,") fwrite_settings("# if 'quad' two corresponding parameter called 'ldc_q1_inst' and 'ldc_q2_inst' have to be given in params.csv,") fwrite_settings("# if 'sing' three corresponding parameter called 'ldc_q1_inst'; 'ldc_q2_inst' and 'ldc_q3_inst' have to be given in params.csv,") fwrite_settings('###############################################################################,') def translate_ld(x): if x=='None': return '' elif x=='Linear': return 'lin' elif x=='Quadratic': return 'quad' elif x=='Sing': return 'sing' for inst in INPUT['inst_phot']: fwrite_settings('host_ld_law_'+inst+','+translate_ld(DROPDOWNS['host_ld_law_'+inst].value)) if DROPDOWNS['planet_or_EB'].value == 'EBs': for companion in INPUT['companions_all']: fwrite_settings(companion+'_ld_law_'+inst+','+translate_ld(DROPDOWNS[companion+'_ld_law_'+inst].value)) fwrite_settings('###############################################################################,') fwrite_settings("# Baseline settings per instrument,") fwrite_settings("# baseline params per instrument: sample_offset / sample_linear / sample_GP / hybrid_offset / hybrid_poly_1 / hybrid_poly_2 / hybrid_poly_3 / hybrid_pol_4 / hybrid_spline / hybrid_GP,") fwrite_settings("# if 'sample_offset' one corresponding parameter called 'baseline_offset_key_inst' has to be given in params.csv,") fwrite_settings("# if 'sample_linear' two corresponding parameters called 'baseline_a_key_inst' and 'baseline_b_key_inst' have to be given in params.csv,") fwrite_settings("# if 'sample_GP' two corresponding parameters called 'baseline_gp1_key_inst' and 'baseline_gp2_key_inst' have to be given in params.csv,") fwrite_settings('###############################################################################,') for inst in INPUT['inst_phot']: fwrite_settings('baseline_flux_'+inst+','+DROPDOWNS['baseline_flux_'+inst].value) for inst in INPUT['inst_rv']: fwrite_settings('baseline_rv_'+inst+','+DROPDOWNS['baseline_rv_'+inst].value) fwrite_settings('###############################################################################,') fwrite_settings("# Error settings per instrument,") fwrite_settings("# errors (overall scaling) per instrument: sample / hybrid,") fwrite_settings("# if 'sample' one corresponding parameter called 'ln_err_key_inst' (photometry) or 'ln_jitter_key_inst' (RV) has to be given in params.csv,") fwrite_settings('###############################################################################,') for inst in INPUT['inst_phot']: fwrite_settings('error_flux_'+inst+','+DROPDOWNS['error_flux_'+inst].value) for inst in INPUT['inst_rv']: fwrite_settings('error_rv_'+inst+','+DROPDOWNS['error_rv_'+inst].value) fwrite_settings('###############################################################################,') fwrite_settings('# Exposure times for interpolation,') fwrite_settings('# needs to be in the same units as the time series,') fwrite_settings('# if not given the observing times will not be interpolated leading to biased results,') fwrite_settings('###############################################################################,') for inst in INPUT['inst_all']: fwrite_settings('t_exp_'+inst+','+DROPDOWNS['t_exp_'+inst].value) fwrite_settings('###############################################################################,') fwrite_settings('# Number of points for exposure interpolation,') fwrite_settings('# Sample as fine as possible; generally at least with a 2 min sampling for photometry,') fwrite_settings('# n_int=5 was found to be a good number of interpolation points for any short photometric cadence t_exp;,') fwrite_settings('# increase to at least n_int=10 for 30 min phot. cadence,') fwrite_settings('# the impact on RV is not as drastic and generally n_int=5 is fine enough,') fwrite_settings('###############################################################################,') for inst in INPUT['inst_all']: fwrite_settings('t_exp_n_int_'+inst+','+DROPDOWNS['t_exp_n_int_'+inst].value) fwrite_settings('###############################################################################,') fwrite_settings('# Number of spots per object and instrument,') fwrite_settings('###############################################################################,') for inst in INPUT['inst_all']: fwrite_settings('host_N_spots_'+inst+','+DROPDOWNS['host_N_spots_'+inst].value) fwrite_settings('###############################################################################,') fwrite_settings('# Number of flares (in total),') fwrite_settings('###############################################################################,') fwrite_settings('N_flares'+','+DROPDOWNS['N_flares'].value) fwrite_settings('###############################################################################,') fwrite_settings('# TTVs,') fwrite_settings('###############################################################################,') if DROPDOWNS['fit_ttvs'].value == 'no': fwrite_settings('fit_ttvs'+',False') elif DROPDOWNS['fit_ttvs'].value == 'yes': fwrite_settings('fit_ttvs'+',True') fwrite_settings('###############################################################################,') fwrite_settings('# Stellar grid per object and instrument,') fwrite_settings('###############################################################################,') for inst in INPUT['inst_all']: fwrite_settings('host_grid_'+inst+','+DROPDOWNS['host_grid_'+inst].value) if DROPDOWNS['planet_or_EB'].value == 'EBs': for companion in INPUT['companions_all']: fwrite_settings(companion+'_grid_'+inst+','+DROPDOWNS[companion+'_grid_'+inst].value) fwrite_settings('###############################################################################,') fwrite_settings('# Stellar shape per object and instrument,') fwrite_settings('###############################################################################,') for inst in INPUT['inst_all']: fwrite_settings('host_shape_'+inst+','+DROPDOWNS['host_shape_'+inst].value) if DROPDOWNS['planet_or_EB'].value == 'EBs': for companion in INPUT['companions_all']: fwrite_settings(companion+'_shape_'+inst+','+DROPDOWNS[companion+'_shape_'+inst].value) fwrite_settings('###############################################################################,') fwrite_settings('# Flux weighted RVs per object and instrument,') fwrite_settings('# ("Yes" for Rossiter-McLaughlin effect),') fwrite_settings('###############################################################################,') for inst in INPUT['inst_rv']: for companion in INPUT['companions_rv']: fwrite_settings(companion+'_flux_weighted_'+inst+','+DROPDOWNS[companion+'_flux_weighted_'+inst].value) BUTTONS['2c'].style.button_color = 'lightgreen' print('Done.') INPUT['show_step_3'] = True display(Javascript('IPython.notebook.execute_cell_range(IPython.notebook.get_selected_index()+1, IPython.notebook.ncells())')) BUTTONS['2c'].on_click(create_settings_file) ###Output _____no_output_____ ###Markdown 3. parameters ###Code if 'show_step_3' in INPUT and INPUT['show_step_3'] == True: #::: placeholder placeholder = widgets.Label(value='', visible=False, layout=layout) #::: helper function def add_row(key, label, hbox_list, median=0, lerr=0, uerr=0, transform='trunc_normal * 5', fit_value=False): INPUT[key+'_median'] = widgets.FloatText(value=median, placeholder='NaN', layout=layout_textbox) INPUT[key+'_lerr'] = widgets.FloatText(value=lerr, placeholder='NaN', layout=layout_textbox) INPUT[key+'_uerr'] = widgets.FloatText(value=uerr, placeholder='NaN', layout=layout_textbox) INPUT[key+'_bounds_type'] = widgets.Dropdown(options=['uniform', 'uniform * 5', 'trunc_normal', 'trunc_normal * 5'], value=transform, layout=layout) INPUT[key+'_fit'] = widgets.Checkbox(value=fit_value, description='fit?', layout=layout_checkbox) buf = placeholder if key in [ companion+'_rsuma' for companion in INPUT['companions_all'] ]: INPUT[key+'_input_type'] = widgets.Dropdown(options=['(R_comp + R_host) / a', 'R_host / a', 'a / R_host'], layout=layout) buf = INPUT[key+'_input_type'] elif key in [ companion+'_cosi' for companion in INPUT['companions_all'] ]: INPUT[key+'_input_type'] = widgets.Dropdown(options=['cos(i)', 'i (degree)', 'i (rad)'], layout=layout) buf = INPUT[key+'_input_type'] hbox_list.append( widgets.HBox([widgets.Label(value=label, layout=layout), INPUT[key+'_median'], widgets.Label(value="-"), INPUT[key+'_lerr'], widgets.Label(value="+"), INPUT[key+'_uerr'], buf, INPUT[key+'_bounds_type'], INPUT[key+'_fit']]) ) #::: start display(Markdown('### Initial guess and error bars')) display(Markdown('These values will be converted into either uniform or truncated normal priors (with physical boundaries). The errors can be blown up by a factor of 5.')) display(Markdown('#### Astrophysical params per companion')) vbox_list = [] for companion in INPUT['companions_all']: # display(Markdown('##### Companion '+companion)) hbox_list = [] add_row(companion+'_rsuma', 'Radii & semi-major axis:', hbox_list) add_row(companion+'_rr', '$R_'+companion+' / R_\star$:', hbox_list) add_row(companion+'_cosi', 'Inclination:', hbox_list) add_row(companion+'_epoch', 'Epoch (d):', hbox_list) add_row(companion+'_period', 'Period (d):', hbox_list) if companion in INPUT['companions_rv']: add_row(companion+'_K', 'K (km/s):', hbox_list) add_row(companion+'_f_c', '$\sqrt{e} \cos{\omega}$:', hbox_list) add_row(companion+'_f_s', '$\sqrt{e} \sin{\omega}$:', hbox_list) vbox_list.append( widgets.VBox(hbox_list) ) tab = widgets.Tab(children=vbox_list) for i, comp in enumerate(INPUT['companions_all']): tab.set_title(i, 'Companion '+comp) display(tab) # else: # print('Complete previous steps first.') if 'show_step_3' in INPUT and INPUT['show_step_3'] == True: display(Markdown('### Advanced params')) vbox_list = [] #::: Dilution per instrument hbox_list = [] for inst in INPUT['inst_phot']: add_row('dil_'+inst, 'Dilution '+inst, hbox_list) vbox_list.append( widgets.VBox(hbox_list) ) #::: Limb darkening per object and instrument hbox_list = [] for inst in INPUT['inst_phot']: if DROPDOWNS['host_ld_law_'+inst].value=='None': pass elif DROPDOWNS['host_ld_law_'+inst].value=='Linear': add_row('host_ldc_q1_'+inst, 'host LD q1 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) elif DROPDOWNS['host_ld_law_'+inst].value=='Quadratic': add_row('host_ldc_q1_'+inst, 'host LD q1 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) add_row('host_ldc_q2_'+inst, 'host LD q2 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) elif DROPDOWNS['host_ld_law_'+inst].value=='Sing': add_row('host_ldc_q1_'+inst, 'host LD q1 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) add_row('host_ldc_q2_'+inst, 'host LD q2 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) add_row('host_ldc_q3_'+inst, 'host LD q3 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) if DROPDOWNS['planet_or_EB']=='EBs': for companion in INPUT['companions_phot']: if DROPDOWNS[companion+'_ld_law_'+inst].value=='None': pass elif DROPDOWNS[companion+'_ld_law_'+inst].value=='Linear': add_row(companion+'_ldc_q1_'+inst, companion+' LD q1 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) elif DROPDOWNS[companion+'_ld_law_'+inst].value=='Quadratic': add_row(companion+'_ldc_q1_'+inst, companion+' LD q1 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) add_row(companion+'_ldc_q2_'+inst, companion+' LD q2 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) elif DROPDOWNS[companion+'_ld_law_'+inst].value=='Sing': add_row(companion+'_ldc_q1_'+inst, companion+' LD q1 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) add_row(companion+'_ldc_q2_'+inst, companion+' LD q2 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) add_row(companion+'_ldc_q3_'+inst, companion+' LD q3 '+inst, hbox_list, median=0.5, lerr=0.5, uerr=0.5, transform='uniform', fit_value=True) vbox_list.append( widgets.VBox(hbox_list) ) #::: Surface brightness ratio per system and instrument hbox_list = [] for inst in INPUT['inst_all']: for companion in INPUT['companions_all']: add_row(companion+'_sbratio_'+inst, companion+' sbratio '+inst, hbox_list) vbox_list.append( widgets.VBox(hbox_list) ) #::: Geometric albedo per object and instrument hbox_list = [] for inst in INPUT['inst_all']: add_row('host_geom_albedo_'+inst, 'host geom. alb. '+inst, hbox_list) for companion in INPUT['companions_all']: add_row(companion+'_geom_albedo_'+inst, companion+' geom. alb. '+inst, hbox_list) vbox_list.append( widgets.VBox(hbox_list) ) #::: Gravity darkening per object and instrument hbox_list = [] for inst in INPUT['inst_all']: add_row('host_gdc_'+inst, 'host grav. dark. '+inst, hbox_list) if DROPDOWNS['planet_or_EB']=='EBs': for companion in INPUT['companions_all']: add_row(companion+'_gdc_'+inst, companion+' grav. dark. '+inst, hbox_list) vbox_list.append( widgets.VBox(hbox_list) ) #::: Stellar spots per object and instrument hbox_list = [] for inst in INPUT['inst_all']: if len(DROPDOWNS['host_N_spots_'+inst].value): N_spots = int(DROPDOWNS['host_N_spots_'+inst].value) for i in range(1,N_spots+1): add_row('host_spot_'+str(i)+'_lat_'+inst, 'host spot '+str(i)+' lat. '+inst+' (deg)', hbox_list) add_row('host_spot_'+str(i)+'_long_'+inst, 'host spot '+str(i)+' long. '+inst+' (deg)', hbox_list) add_row('host_spot_'+str(i)+'_size_'+inst, 'host spot '+str(i)+' size '+inst+' (deg)', hbox_list) add_row('host_spot_'+str(i)+'_brightness_'+inst,'host spot '+str(i)+' brightness '+inst, hbox_list) # To keep the GUI simplistic, spots on companions are only available by manually editing the params.csv and settings.csv files # if DROPDOWNS['planet_or_EB'].value == 'EBs': # for companion in INPUT['companions_all']: # if len(DROPDOWNS[companion+'_N_spots_'+inst].value): # N_spots = int(DROPDOWNS[companion+'_N_spots_'+inst].value) # for i in range(1,N_spots+1): # add_row(companion+'_spot_'+str(i)+'_lat_'+inst, companion+' spot '+str(i)+' lat. '+inst+' (deg)', hbox_list) # add_row(companion+'_spot_'+str(i)+'_long_'+inst, companion+' spot '+str(i)+' long. '+inst+' (deg)', hbox_list) # add_row(companion+'_spot_'+str(i)+'_size_'+inst, companion+' spot '+str(i)+' size '+inst+' (deg)', hbox_list) # add_row(companion+'_spot_'+str(i)+'_brightness_'+inst, companion+' spot '+str(i)+' brightness '+inst, hbox_list) if len(hbox_list)==0: pass #hbox_list.append(widgets.Label(value='N_spots was set to "None" for all objects and instruments.')) vbox_list.append( widgets.VBox(hbox_list) ) #::: Flares hbox_list = [] if len(DROPDOWNS['N_flares'].value): N_flares = int(DROPDOWNS['N_flares'].value) for i in range(1,N_flares+1): add_row('flare_tpeak_'+str(i), 'Flare tpeak '+str(i), hbox_list) add_row('flare_fwhm_'+str(i), 'Flare fwhm '+str(i), hbox_list) add_row('flare_ampl_'+str(i), 'Flare ampl '+str(i), hbox_list) vbox_list.append( widgets.VBox(hbox_list) ) #::: TTV per transit hbox_list = [] if (DROPDOWNS['fit_ttvs'].value)=='yes': for companion in INPUT['companions_all']: add_row(companion+'_ttv_per_transit', 'TTV per transit', hbox_list, median=0, lerr=0.00347222, uerr=0.00347222, transform='uniform', fit_value=True) vbox_list.append( widgets.VBox(hbox_list) ) #::: Errors per instrument hbox_list = [] for inst in INPUT['inst_phot']: if DROPDOWNS['error_flux_'+inst].value == 'sample': add_row('ln_err_flux_'+inst, 'ln err flux '+inst, hbox_list, median=-7, lerr=8, uerr=7, transform='uniform', fit_value=True) else: pass #hbox_list.append(widgets.Label(value='Not applicable, error sampling was set to "hybrid".')) for inst in INPUT['inst_rv']: if DROPDOWNS['error_rv_'+inst].value == 'sample': add_row('ln_jitter_rv_'+inst, 'ln jitter rv '+inst, hbox_list, median=-3, lerr=12, uerr=3, transform='uniform', fit_value=True) else: pass #hbox_list.append(widgets.Label(value='Not applicable, error sampling was set to "hybrid".')) vbox_list.append( widgets.VBox(hbox_list) ) #::: Baselines per instrument hbox_list = [] for inst in INPUT['inst_all']: if inst in INPUT['inst_phot']: key = 'flux' elif inst in INPUT['inst_rv']: key = 'rv' if DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_GP_Matern32': add_row('baseline_gp_matern32_lnsigma_'+key+'_'+inst, 'baseline gp Matern32 lnsigma '+inst, hbox_list, median=0, lerr=15, uerr=15, transform='uniform', fit_value=True) add_row('baseline_gp_matern32_lnrho_'+key+'_'+inst, 'baseline gp Matern32 lnrho '+inst, hbox_list, median=0, lerr=15, uerr=15, transform='uniform', fit_value=True) elif DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_GP_SHO': add_row('baseline_gp_sho_lnS0_'+key+'_'+inst, 'baseline gp SHO lnS0 '+inst, hbox_list, median=0, lerr=15, uerr=15, transform='uniform', fit_value=True) add_row('baseline_gp_sho_lnQ_'+key+'_'+inst, 'baseline gp SHO lnQ '+inst, hbox_list, median=0, lerr=15, uerr=15, transform='uniform', fit_value=True) add_row('baseline_gp_sho_lnomega0_'+key+'_'+inst, 'baseline gp SHO lnomega0 '+inst, hbox_list, median=0, lerr=15, uerr=15, transform='uniform', fit_value=True) elif DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_GP_real': add_row('baseline_gp_real_lna_'+key+'_'+inst, 'baseline gp real lna '+inst, hbox_list, median=0, lerr=15, uerr=15, transform='uniform', fit_value=True) add_row('baseline_gp_real_lnc_'+key+'_'+inst, 'baseline gp real lnc '+inst, hbox_list, median=0, lerr=15, uerr=15, transform='uniform', fit_value=True) elif DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_GP_complex': add_row('baseline_gp_complex_lna_'+key+'_'+inst, 'baseline gp complex lna '+inst, hbox_list, median=0, lerr=15, uerr=15, transform='uniform', fit_value=True) add_row('baseline_gp_complex_lnc_'+key+'_'+inst, 'baseline gp complex lnc '+inst, hbox_list, median=0, lerr=15, uerr=15, transform='uniform', fit_value=True) add_row('baseline_gp_complex_lnb_'+key+'_'+inst, 'baseline gp complex lnb '+inst, hbox_list, median=0, lerr=15, uerr=15, transform='uniform', fit_value=True) add_row('baseline_gp_complex_lnd_'+key+'_'+inst, 'baseline gp complex lnd '+inst, hbox_list, median=0, lerr=15, uerr=15, transform='uniform', fit_value=True) elif DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_offset': add_row('baseline_offset_'+key+'_'+inst, 'baseline offset '+inst, hbox_list, median=0, lerr=0, uerr=0, transform='uniform', fit_value=True) elif DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_linear': add_row('baseline_offset_'+key+'_'+inst, 'baseline offset '+inst, hbox_list, median=0, lerr=0, uerr=0, transform='uniform', fit_value=True) add_row('baseline_slope_'+key+'_'+inst, 'baseline slope '+inst, hbox_list, median=0, lerr=0, uerr=0, transform='uniform', fit_value=True) vbox_list.append( widgets.VBox(hbox_list) ) #::: accordion accordion = widgets.Accordion(children=vbox_list) accordion.set_title(0, 'Dilution') accordion.set_title(1, 'Limb darkening') accordion.set_title(2, 'Surface brightness ratio') accordion.set_title(3, 'Geometric albedo') accordion.set_title(4, 'Gravity darkening') accordion.set_title(5, 'Stellar spots') accordion.set_title(6, 'Flares') accordion.set_title(7, 'TTVs') accordion.set_title(8, 'Errors & jitter') accordion.set_title(9, 'Baselines') display(accordion) if 'show_step_3' in INPUT and INPUT['show_step_3'] == True: nan_fields = False button_create_params_file = widgets.Button(description='Create params.csv', button_style='') checkbox_overwrite_params_file = widgets.Checkbox(description='Overwrite old params.csv (if existing)', value=False) hbox_params_file = widgets.HBox([button_create_params_file, checkbox_overwrite_params_file]) display(hbox_params_file) def create_params_file(change): clear_output() display(hbox_params_file) print('Calculating... this might take a few seconds. Please be patient, you will get notified once everything is completed.') go_ahead = True if 'datadir' not in INPUT: warnings.warn('No allesfitter woking directory selected yet. Please go back to step 1) and fill in all fields.') go_ahead = False if os.path.exists(os.path.join(INPUT['datadir'],'params.csv')) and (checkbox_overwrite_params_file.value==False): warnings.warn('The selected working directory '+os.path.join(INPUT['datadir'],'params.csv')+' already exists. To proceed, give permission to overwrite it.') go_ahead = False if go_ahead: INPUT['fname_params'] = os.path.join(INPUT['datadir'], 'params.csv') with open(INPUT['fname_params'], 'w+') as f: f.write('#name,value,fit,bounds,label,unit\n') def get_median_and_error_strings(text_median, text_lerr, text_uerr): if (text_median.value == ''): median = 'NaN' nan_fields = True else: median = text_median.value if (text_lerr.value == '') or (text_uerr.value == ''): err = 'NaN' nan_fields = True else: err = str( 5.* np.max( [float(text_lerr.value), float(text_uerr.value)] ) ) median, err, _ = round_txt_separately( float(median), float(err), float(err) ) return median, err #:::: astrophysical parameters per system for companion in INPUT['companions_all']: fwrite_params_line('#companion '+companion+' astrophysical params,,,,,') #::: rr fwrite_params(companion+'_rr', '$R_'+companion+' / R_\star$', '', [0,1]) #::: rsuma if INPUT[companion+'_rsuma_input_type'].value=='(R_comp + R_host) / a': pass elif INPUT[companion+'_rsuma_input_type'].value=='R_host / a': Rstar_over_a = [ float(INPUT[companion+'_rsuma_median'].value), float(INPUT[companion+'_rsuma_lerr'].value), float(INPUT[companion+'_rsuma_uerr'].value) ] Rp_over_Rstar = [ float(INPUT[companion+'_rr_median'].value), float(INPUT[companion+'_rr_lerr'].value), float(INPUT[companion+'_rr_uerr'].value) ] INPUT[companion+'_rsuma_median'].value, INPUT[companion+'_rsuma_lerr'].value, INPUT[companion+'_rsuma_uerr'].value \ = get_Rsuma_from_Rstar_over_a(Rstar_over_a, Rp_over_Rstar) INPUT[companion+'_rsuma_input_type'].value = '(R_comp + R_host) / a' elif INPUT[companion+'_rsuma_input_type'].value=='a / R_host': a_over_Rstar = [ float(INPUT[companion+'_rsuma_median'].value), float(INPUT[companion+'_rsuma_lerr'].value), float(INPUT[companion+'_rsuma_uerr'].value) ] Rp_over_Rstar = [ float(INPUT[companion+'_rr_median'].value), float(INPUT[companion+'_rr_lerr'].value), float(INPUT[companion+'_rr_uerr'].value) ] INPUT[companion+'_rsuma_median'].value, INPUT[companion+'_rsuma_lerr'].value, INPUT[companion+'_rsuma_uerr'].value \ = get_Rsuma_from_a_over_Rstar(a_over_Rstar, Rp_over_Rstar) INPUT[companion+'_rsuma_input_type'].value = '(R_comp + R_host) / a' else: raise ValueError('Oops, something went wrong.') fwrite_params(companion+'_rsuma', '$(R_\star + R_'+companion+') / a_'+companion+'$', '', [0,1]) #::: cosi if INPUT[companion+'_cosi_input_type'].value=='cos(i)': pass elif INPUT[companion+'_cosi_input_type'].value=='i (degree)': incl = [ float(INPUT[companion+'_cosi_median'].value), float(INPUT[companion+'_cosi_lerr'].value), float(INPUT[companion+'_cosi_uerr'].value) ] INPUT[companion+'_cosi_median'].value, INPUT[companion+'_cosi_lerr'].value, INPUT[companion+'_cosi_uerr'].value \ = get_cosi_from_i(incl) INPUT[companion+'_cosi_input_type'].value = 'cos(i)' elif INPUT[companion+'_cosi_input_type'].value=='i (rad)': incl = [ float(INPUT[companion+'_cosi_median'].value)/180.*np.pi, float(INPUT[companion+'_cosi_lerr'].value)/180.*np.pi, float(INPUT[companion+'_cosi_uerr'].value)/180.*np.pi ] INPUT[companion+'_cosi_median'].value, INPUT[companion+'_cosi_lerr'].value, INPUT[companion+'_cosi_uerr'].value \ = get_cosi_from_i(incl) INPUT[companion+'_cosi_input_type'].value = 'cos(i)' fwrite_params(companion+'_cosi', '$\cos{i_'+companion+'}$', '', [0,1]) #::: epoch fwrite_params(companion+'_epoch', '$T_{0;'+companion+'}$', '$\mathrm{BJD}$', [-1e12,1e12]) #::: period fwrite_params(companion+'_period', '$P_'+companion+'$', '$\mathrm{d}$', [-1e12,1e12]) #::: RV semi-amplitude if companion in INPUT['companions_rv']: fwrite_params(companion+'_K', '$K_'+companion+'$', '$\mathrm{km/s}$', [-1e12,1e12]) #::: eccentricity f_c fwrite_params(companion+'_f_c', '$\sqrt{e_'+companion+'} \cos{\omega_'+companion+'}$', '', [-1,1]) #::: eccentricity f_s fwrite_params(companion+'_f_s', '$\sqrt{e_'+companion+'} \sin{\omega_'+companion+'}$', '', [-1,1]) #::: dilution per instrument if len(INPUT['inst_phot']): fwrite_params_line('#dilution per instrument,,,,,') for inst in INPUT['inst_phot']: fwrite_params('dil_'+inst, '$D_\mathrm{0; '+inst+'}$', '', [0,1]) #fwrite_params('dil_'+inst+',0,0,trunc_normal 0 1 0 0,$D_\mathrm{0; '+inst+'}$,') #::: limb darkening coefficients per instrument if len(INPUT['inst_phot']): fwrite_params_line('#limb darkening coefficients per instrument,,,,,') for inst in INPUT['inst_phot']: #::: host if DROPDOWNS['host_ld_law_'+inst].value=='None': pass elif DROPDOWNS['host_ld_law_'+inst].value=='Linear': fwrite_params('host_ldc_q1_'+inst, '$q_{1; \mathrm{'+inst+'}}$', '', [0,1]) elif DROPDOWNS['host_ld_law_'+inst].value=='Quadratic': fwrite_params('host_ldc_q1_'+inst, '$q_{1; \mathrm{'+inst+'}}$', '', [0,1]) fwrite_params('host_ldc_q2_'+inst, '$q_{2; \mathrm{'+inst+'}}$', '', [0,1]) elif DROPDOWNS['host_ld_law_'+inst].value=='Sing': fwrite_params('host_ldc_q1_'+inst, '$q_{1; \mathrm{'+inst+'}}$', '', [0,1]) fwrite_params('host_ldc_q2_'+inst, '$q_{2; \mathrm{'+inst+'}}$', '', [0,1]) fwrite_params('host_ldc_q3_'+inst, '$q_{3; \mathrm{'+inst+'}}$', '', [0,1]) #::: companion (if EB) if DROPDOWNS['planet_or_EB']=='EBs': if DROPDOWNS[companion+'_ld_law_'+inst].value=='None': pass elif DROPDOWNS[companion+'_ld_law_'+inst].value=='Linear': fwrite_params(companion+'_ldc_q1_'+inst, '$q_{1; \mathrm{'+inst+'}}$', '', [0,1]) elif DROPDOWNS[companion+'_ld_law_'+inst].value=='Quadratic': fwrite_params(companion+'_ldc_q1_'+inst, '$q_{1; \mathrm{'+inst+'}}$', '', [0,1]) fwrite_params(companion+'_ldc_q2_'+inst, '$q_{2; \mathrm{'+inst+'}}$', '', [0,1]) elif DROPDOWNS[companion+'_ld_law_'+inst].value=='Sing': fwrite_params(companion+'_ldc_q1_'+inst, '$q_{1; \mathrm{'+inst+'}}$', '', [0,1]) fwrite_params(companion+'_ldc_q2_'+inst, '$q_{2; \mathrm{'+inst+'}}$', '', [0,1]) fwrite_params(companion+'_ldc_q3_'+inst, '$q_{3; \mathrm{'+inst+'}}$', '', [0,1]) #::: brightness ratio per system and instrument if len(INPUT['inst_all']): fwrite_params_line('#surface brightness per instrument and companion,,,,,') for companion in INPUT['companions_all']: for inst in INPUT['inst_all']: fwrite_params(companion+'_sbratio_'+inst, '$J_{'+companion+'; \mathrm{'+inst+'}}$', '', [0,1]) #::: geometric albedo per system and instrument if len(INPUT['inst_all']): fwrite_params_line('#albedo per instrument and companion,,,,,') for inst in INPUT['inst_all']: fwrite_params('host_geom_albedo_'+inst, '$A_{\mathrm{geom}; host; \mathrm{'+inst+'}}$', '', [0,1]) for companion in INPUT['companions_all']: for inst in INPUT['inst_all']: fwrite_params(companion+'_geom_albedo_'+inst, '$A_{\mathrm{geom}; '+companion+'; \mathrm{'+inst+'}}$', '', [0,1]) #::: gravity darkening per object and instrument if len(INPUT['inst_all']): fwrite_params_line('#gravity darkening per instrument and companion,,,,,') for inst in INPUT['inst_all']: #::: host fwrite_params('host_gdc_'+inst, '$Grav. dark._{'+companion+'; \mathrm{'+inst+'}}$', '', [0,1]) #::: companion (if EB) if DROPDOWNS['planet_or_EB']=='EBs': for companion in INPUT['companions_all']: fwrite_params(companion+'_sbratio_'+inst, '$Grav. dark._{'+companion+'; \mathrm{'+inst+'}}$', '', [0,1]) #::: spots per object and instrument if len(INPUT['inst_all']): fwrite_params_line('#spots per instrument and companion,,,,,') for inst in INPUT['inst_all']: if len(DROPDOWNS['host_N_spots_'+inst].value): N_spots = int(DROPDOWNS['host_N_spots_'+inst].value) for i in range(1,N_spots+1): #::: host fwrite_params('host_spot_'+str(i)+'_long_'+inst, '$\mathrm{host: spot '+str(i)+' long. '+inst+'}$', '\mathrm{deg}', [0,360]) fwrite_params('host_spot_'+str(i)+'_lat_'+inst, '$\mathrm{host: spot '+str(i)+' lat. '+inst+'}$', '\mathrm{deg}', [-90,90]) fwrite_params('host_spot_'+str(i)+'_size_'+inst, '$\mathrm{host: spot '+str(i)+' size '+inst+'}$', '\mathrm{deg}', [0,30]) fwrite_params('host_spot_'+str(i)+'_brightness_'+inst, '$\mathrm{host: spot '+str(i)+' brightness '+inst+'}$', '', [0,1]) #::: companion (if EB) if DROPDOWNS['planet_or_EB']=='EBs': for companion in INPUT['companions_all']: if len(DROPDOWNS[companion+'_N_spots_'+inst].value): N_spots = int(DROPDOWNS[companion+'_N_spots_'+inst].value) fwrite_params(companion+'_spot_'+str(i)+'_long_'+inst, '$\mathrm{'+companion+': spot '+str(i)+' long. '+inst+'}$', '\mathrm{deg}', [0,360]) fwrite_params(companion+'_spot_'+str(i)+'_lat_'+inst, '$\mathrm{'+companion+': spot '+str(i)+' lat. '+inst+'}$', '\mathrm{deg}', [-90,90]) fwrite_params(companion+'_spot_'+str(i)+'_size_'+inst, '$\mathrm{'+companion+': spot '+str(i)+' size '+inst+'}$', '\mathrm{deg}', [0,30]) fwrite_params(companion+'_spot_'+str(i)+'_brightness_'+inst, '$\mathrm{'+companion+': spot '+str(i)+' brightness '+inst+'}$', '', [0,1]) #::: flares if len(DROPDOWNS['N_flares'].value): fwrite_params_line('#flares,,,,,') N_flares = int(DROPDOWNS['N_flares'].value) for i in range(1,N_flares+1): fwrite_params('flare_tpeak_'+str(i), '$t_\mathrm{peak; flare '+str(i)+'}$', '$\mathrm{BJD}$', [-1e12,1e12]) fwrite_params('flare_ampl_'+str(i), '$A_\mathrm{flare '+str(i)+'}$', '$\mathrm{rel. flux.}$', [-1e12,1e12]) fwrite_params('flare_fwhm_'+str(i), '$FWHM_\mathrm{flare '+str(i)+'}$', '$\mathrm{BJD}$', [-1e12,1e12]) #::: TTV per instrument if (DROPDOWNS['fit_ttvs'].value=='yes'): fwrite_params_line('#TTV per transit,,,,,') warnings.warn('TTV priors in params.csv will not be set until you also complete step 4 (adding the data files).') # for inst in INPUT['inst_phot']: # fwrite_params('ttv_'+inst, '$\mathrm{TTV_'+inst+'}$', '$\mathrm{d}$', [-1e12,1e12]) #::: errors and baselines - keep track of rows INPUT['N_last_rows'] = 0 #::: errors per instrument if any( [ 'sample' in DROPDOWNS['error_flux_'+inst].value for inst in INPUT['inst_phot'] ] ) \ or any( [ 'sample' in DROPDOWNS['error_rv_'+inst].value for inst in INPUT['inst_rv'] ] ): fwrite_params_line('#errors per instrument,') INPUT['N_last_rows'] += 1 for inst in INPUT['inst_phot']: if 'hybrid' not in DROPDOWNS['error_flux_'+inst].value: fwrite_params('ln_err_flux_'+inst, '$\ln{\sigma_\mathrm{'+inst+'}}$', '$\ln{ \mathrm{rel. flux.} }$', [-15,0]) INPUT['N_last_rows'] += 1 for inst in INPUT['inst_rv']: if 'hybrid' not in DROPDOWNS['error_rv_'+inst].value: fwrite_params('ln_jitter_rv_'+inst, '$\ln{\sigma_\mathrm{jitter; '+inst+'}}$', '$\ln{ \mathrm{km/s} }$', [-15,0]) INPUT['N_last_rows'] += 1 #::: baseline if any( [ 'sample' in DROPDOWNS['baseline_flux_'+inst].value for inst in INPUT['inst_phot'] ] ) \ or any( [ 'sample' in DROPDOWNS['baseline_rv_'+inst].value for inst in INPUT['inst_rv'] ] ): fwrite_params_line('#baseline per instrument,') INPUT['N_last_rows'] += 1 for inst in INPUT['inst_all']: if inst in INPUT['inst_phot']: key = 'flux' elif inst in INPUT['inst_rv']: key = 'rv' if DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_GP_Matern32': fwrite_params('baseline_gp_matern32_lnsigma_'+key+'_'+inst, '$\mathrm{gp: \ln{\sigma} ('+inst+')}$', '', [-15,15]) fwrite_params('baseline_gp_matern32_lnrho_'+key+'_'+inst, '$\mathrm{gp: \ln{\\rho} ('+inst+')}$', '', [-15,15]) INPUT['N_last_rows'] += 2 elif DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_GP_SHO': fwrite_params('baseline_gp_sho_lnS0_'+key+'_'+inst, '$\mathrm{gp: \ln{S_0} ('+inst+')}$', '', [-15,15]) fwrite_params('baseline_gp_sho_lnQ_'+key+'_'+inst, '$\mathrm{gp: \ln{Q} ('+inst+')}$', '', [-15,15]) fwrite_params('baseline_gp_sho_lnomega0_'+key+'_'+inst, '$\mathrm{gp: \ln{\omega_0} ('+inst+')}$', '', [-15,15]) INPUT['N_last_rows'] += 3 elif DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_GP_real': fwrite_params('baseline_gp_real_lna_'+key+'_'+inst, '$\mathrm{gp: \ln{a} ('+inst+')}$', '', [-15,15]) fwrite_params('baseline_gp_real_lnc_'+key+'_'+inst, '$\mathrm{gp: \ln{c} ('+inst+')}$', '', [-15,15]) INPUT['N_last_rows'] += 2 elif DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_GP_complex': fwrite_params('baseline_gp_real_lna_'+key+'_'+inst, '$\mathrm{gp: \ln{a} ('+inst+')}$', '', [-15,15]) fwrite_params('baseline_gp_real_lnc_'+key+'_'+inst, '$\mathrm{gp: \ln{c} ('+inst+')}$', '', [-15,15]) fwrite_params('baseline_gp_real_lnb_'+key+'_'+inst, '$\mathrm{gp: \ln{b} ('+inst+')}$', '', [-15,15]) fwrite_params('baseline_gp_real_lnd_'+key+'_'+inst, '$\mathrm{gp: \ln{d} ('+inst+')}$', '', [-15,15]) INPUT['N_last_rows'] += 4 elif DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_offset': fwrite_params('baseline_offset_flux_'+inst, 'offset ('+inst+')', '', [-1e12,1e12]) INPUT['N_last_rows'] += 1 elif DROPDOWNS['baseline_'+key+'_'+inst].value == 'sample_linear': fwrite_params('baseline_a_flux_'+inst, 'lin. a ('+inst+')', '', [-1e12,1e12]) fwrite_params('baseline_b_flux_'+inst, 'lin. b ('+inst+')', '', [-1e12,1e12]) INPUT['N_last_rows'] += 2 #::: continue button_create_params_file.style.button_color = 'lightgreen' print('Done.') INPUT['show_step_4'] = True display(Javascript('IPython.notebook.execute_cell_range(IPython.notebook.get_selected_index()+1, IPython.notebook.ncells())')) if nan_fields: warnings.warn('You left some fields empty. These will be set NaN in params.csv. Make sure to fix this manually later.') button_create_params_file.on_click(create_params_file) ###Output _____no_output_____ ###Markdown 4. data filesPlease put all data files into the selected directory, and click the button to confirm. ###Code if 'show_step_4' in INPUT and INPUT['show_step_4']==True: BUTTONS['confirm_data_files'] = widgets.Button(description='Confirm', button_style='') display(BUTTONS['confirm_data_files']) def check_data_files(change): clear_output() display(BUTTONS['confirm_data_files']) all_data_exists = True for inst in INPUT['inst_all']: if not os.path.exists( os.path.join(INPUT['datadir'], inst+'.csv') ): warnings.warn('Data file '+os.path.join(INPUT['datadir'], inst+'.csv')+' does not exist. Please include the data file into the directory and then repeat this step.') all_data_exists = False if all_data_exists: BUTTONS['confirm_data_files'].style.button_color = 'lightgreen' INPUT['show_step_5'] = True display(Javascript('IPython.notebook.execute_cell_range(IPython.notebook.get_selected_index()+1, IPython.notebook.ncells())')) BUTTONS['confirm_data_files'].on_click(check_data_files) # else: # print('Complete previous steps first.') ############################################################################ #::: time to include those TTV lines into the folder! ############################################################################ if 'show_step_5' in INPUT and INPUT['show_step_5']==True and DROPDOWNS['fit_ttvs'].value=='yes': from allesfitter import config config.init(INPUT['datadir']) new_lines = '' for companion in INPUT['companions_all']: N_observed_transits = len(config.BASEMENT.data[companion+'_tmid_observed_transits']) for i in range(N_observed_transits): string = fwrite_params(companion+'_ttv_per_transit', 'TTV$_\mathrm{'+str(i+1)+'}}$', '$\mathrm{d}$', [-15,15], return_str=True) + '\n' string = string.replace('per_transit', 'transit_'+str(i+1)) new_lines += string with open(INPUT['fname_params'], "r") as f: contents = f.readlines() for i, line in enumerate(contents): line = line.rstrip() # remove '\n' at end of line if line == '#TTV per transit,,,,,': index = i+1 contents.insert(index, new_lines) with open(INPUT['fname_params'], "w") as f: contents = "".join(contents) f.write(contents) print('TTVs per transit were added to params.csv.') print('params.csv and settings.csv are now ready to use.') ###Output _____no_output_____ ###Markdown 5. check ###Code if 'show_step_5' in INPUT and INPUT['show_step_5']==True: from allesfitter.general_output import show_initial_guess import matplotlib.pyplot as plt fig_list = show_initial_guess(INPUT['datadir'], do_logprint=False, return_figs=True) for fig in fig_list: plt.show(fig) if 'show_step_5' in INPUT and INPUT['show_step_5']==True: BUTTONS['confirm_plots'] = widgets.Button(description='Looks good', button_style='') display(BUTTONS['confirm_plots']) def check_plots(change): clear_output() display(BUTTONS['confirm_plots']) BUTTONS['confirm_plots'].style.button_color = 'lightgreen' INPUT['show_step_6'] = True display(Javascript('IPython.notebook.execute_cell_range(IPython.notebook.get_selected_index()+1, IPython.notebook.ncells())')) BUTTONS['confirm_plots'].on_click(check_plots) # else: # print('Complete previous steps first.') ###Output _____no_output_____ ###Markdown 6. tighter priors on errors and baselinesThis will take a couple of minutes. Make sure your initial guess above is very good. This will subtract the model from the data and evaluate the remaining noise patterns to estimate errors, jitter and GP baselines. ###Code if 'show_step_6' in INPUT and INPUT['show_step_6']==True: def estimate_tighter_priors(change): print('\nEstimating errors and baselines... this will take a couple of minutes. Please be patient, you will get notified once everything is completed.\n') #::: run MCMC fit to estimate errors and baselines estimate_noise(INPUT['datadir']) #::: delete the rows containing the default (zero) errors and baselines from the params.csv file clean_up_csv( os.path.join( INPUT['datadir'], 'params.csv' ), N_last_rows=INPUT['N_last_rows'] ) #::: write new rows into params.csv #::: errors fwrite_params_line('#errors per instrument,') for i, inst in enumerate(INPUT['inst_phot']): #::: read in the summary file summaryfile = os.path.join( INPUT['datadir'], 'priors', 'summary_phot.csv' ) priors2 = np.genfromtxt(summaryfile, names=True, delimiter=',', dtype=None) priors = {} for key in priors2.dtype.names: priors[key] = np.atleast_1d(priors2[key]) median = priors['ln_yerr_median'][i] err = 5.*np.max([ float(priors['ln_yerr_ll'][i]), float(priors['ln_yerr_ul'][i]) ]) median, err, _ = round_txt_separately(median,err,err) fwrite_params_line('ln_err_flux_'+inst+','+median+',1,trunc_normal -15 0 '+median+' '+err+',$\ln{\sigma_\mathrm{'+inst+'}}$,') for i, inst in enumerate(INPUT['inst_rv']): #::: read in the summary file summaryfile = os.path.join( INPUT['datadir'], 'priors', 'summary_rv.csv' ) priors2 = np.genfromtxt(summaryfile, names=True, delimiter=',', dtype=None) priors = {} for key in priors2.dtype.names: priors[key] = np.atleast_1d(priors2[key]) median = priors['ln_yerr_median'][i] err = 5.*np.max([ float(priors['ln_yerr_ll'][i]), float(priors['ln_yerr_ul'][i]) ]) median, err, _ = round_txt_separately(median,err,err) fwrite_params('ln_jitter_rv_'+inst+','+median+',1,trunc_normal -15 0 '+median+' '+err+',$\ln{\sigma_\mathrm{jitter; '+inst+'}}$,') #::: write new rows into params.csv #::: baselines fwrite_params_line('#baseline per instrument,') for i, inst in enumerate(INPUT['inst_phot']): #::: read in the summary file summaryfile = os.path.join( INPUT['datadir'], 'priors', 'summary_phot.csv' ) priors2 = np.genfromtxt(summaryfile, names=True, delimiter=',', dtype=None) priors = {} for key in priors2.dtype.names: priors[key] = np.atleast_1d(priors2[key]) median = priors['gp_ln_sigma_median'][i] err = 5.*np.max([ float(priors['gp_ln_sigma_ll'][i]), float(priors['gp_ln_sigma_ul'][i]) ]) median, err, _ = round_txt_separately(median,err,err) fwrite_params_line('baseline_gp1_flux_'+inst+','+median+',1,trunc_normal -15 15 '+median+' '+err+',$\mathrm{gp: \ln{\sigma} ('+inst+')}$,') median = priors['gp_ln_rho_median'][i] err = 5.*np.max([ float(priors['gp_ln_rho_ll'][i]), float(priors['gp_ln_rho_ul'][i]) ]) median, err, _ = round_txt_separately(median,err,err) fwrite_params_line('baseline_gp2_flux_'+inst+','+median+',1,trunc_normal -15 15 '+median+' '+err+',$\mathrm{gp: \ln{\\rho} ('+inst+')}$,') #::: confirm BUTTONS['estimate_tighter_priors'].style.button_color = 'lightgreen' print('Done.') INPUT['show_step_7'] = True display(Javascript('IPython.notebook.execute_cell_range(IPython.notebook.get_selected_index()+1, IPython.notebook.ncells())')) def skip(change): BUTTONS['skip'].style.button_color = 'lightgreen' print('Skipped.') INPUT['show_step_7'] = True display(Javascript('IPython.notebook.execute_cell_range(IPython.notebook.get_selected_index()+1, IPython.notebook.ncells())')) # else: # print('Complete previous steps first.') if 'show_step_6' in INPUT and INPUT['show_step_6']==True: BUTTONS['estimate_tighter_priors'] = widgets.Button(value=False, description='Estimate tighter priors') BUTTONS['skip'] = widgets.Button(value=False, description='Skip') display( widgets.HBox([BUTTONS['estimate_tighter_priors'],BUTTONS['skip']])) BUTTONS['estimate_tighter_priors'].on_click(estimate_tighter_priors) BUTTONS['skip'].on_click(skip) ###Output _____no_output_____ ###Markdown 7. run the fit ###Code if 'show_step_7' in INPUT and INPUT['show_step_7']==True: try: from importlib import reload except: pass try: from imp import reload except: pass import allesfitter reload(allesfitter) button_run_ns_fit = widgets.Button(description='Run NS fit', button_style='') button_run_mcmc_fit = widgets.Button(description='Run MCMC fit', button_style='') hbox = widgets.HBox([button_run_ns_fit, button_run_mcmc_fit]) display(hbox) def run_ns_fit(change): button_run_ns_fit.style.button_color = 'lightgreen' allesfitter.ns_fit(INPUT['datadir']) allesfitter.ns_output(INPUT['datadir']) def run_mcmc_fit(change): button_run_mcmc_fit.style.button_color = 'lightgreen' allesfitter.mcmc_fit(INPUT['datadir']) allesfitter.mcmc_output(INPUT['datadir']) button_run_ns_fit.on_click(run_ns_fit) button_run_mcmc_fit.on_click(run_mcmc_fit) # else: # print('Complete previous steps first.') ###Output _____no_output_____
Build_On_Colab.ipynb
###Markdown ###Code # The basics import numpy as np import pandas as pd import os import subprocess ###Output _____no_output_____ ###Markdown **Mount G-Drive to download or save files** ###Code from google.colab import drive drive.mount('/content/gdrive', force_remount=True) ###Output Mounted at /content/gdrive ###Markdown **Copy Kaggle configuration JSON file to download data from kaggle** ###Code !mkdir /root/.kaggle/ !cp "/content/gdrive/My Drive/Colab Notebooks/.kaggle/kaggle.json" '/root/.kaggle/kaggle.json' ###Output _____no_output_____ ###Markdown **Clone the code from github** ###Code !git clone https://github.com/codefupanda/customer_interaction_summary.git ###Output fatal: destination path 'customer_interaction_summary' already exists and is not an empty directory. ###Markdown **Init step**: Download required data and dependencies ###Code !cd customer_interaction_summary && make requirements && make data ###Output _____no_output_____ ###Markdown **TRAIN**: Train the model, src /models/model_configs.py as the configuration for which models to train ###Code !cd customer_interaction_summary && git pull !cd customer_interaction_summary && python3 src/data/make_dataset.py data/raw data/processed !cd customer_interaction_summary && rm -rf random_search !cd customer_interaction_summary && make train ###Output rm -rf random_search python3 src/models/train_model.py --input_filepath=data/processed --output_filepath=models/ --pad_sequences_maxlen=1000 --max_words=30000 --epochs=20 --batch_size=128 --output_dim=300 2020-10-28 07:29:18.184864: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 2020-10-28 07:29:19,435 - __main__ - INFO - starting the training process 2020-10-28 07:29:19,435 - __main__ - INFO - --input_filepath data/processed 2020-10-28 07:29:19,435 - __main__ - INFO - --output_filepath models/ 2020-10-28 07:29:19,435 - __main__ - INFO - --pad_sequences_maxlen 1000 2020-10-28 07:29:19,435 - __main__ - INFO - --max_words 30000 2020-10-28 07:29:19,435 - __main__ - INFO - --epochs 20 2020-10-28 07:29:19,435 - __main__ - INFO - --batch_size 128 Found 5799 unique tokens. Found 400000 word vectors. Training the model: BiLSTM 2020-10-28 07:29:48.304404: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.1 2020-10-28 07:29:48.341474: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-28 07:29:48.342101: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: pciBusID: 0000:00:04.0 name: Tesla T4 computeCapability: 7.5 coreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.73GiB deviceMemoryBandwidth: 298.08GiB/s 2020-10-28 07:29:48.342188: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 2020-10-28 07:29:48.343944: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10 2020-10-28 07:29:48.345790: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10 2020-10-28 07:29:48.346169: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10 2020-10-28 07:29:48.347800: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10 2020-10-28 07:29:48.348625: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10 2020-10-28 07:29:48.352533: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7 2020-10-28 07:29:48.352657: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-28 07:29:48.353241: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-28 07:29:48.353824: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0 2020-10-28 07:29:48.359627: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2200000000 Hz 2020-10-28 07:29:48.359821: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x1668f40 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2020-10-28 07:29:48.359850: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version 2020-10-28 07:29:48.466938: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-28 07:29:48.467701: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x16692c0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices: 2020-10-28 07:29:48.467733: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Tesla T4, Compute Capability 7.5 2020-10-28 07:29:48.468067: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-28 07:29:48.468661: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: pciBusID: 0000:00:04.0 name: Tesla T4 computeCapability: 7.5 coreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.73GiB deviceMemoryBandwidth: 298.08GiB/s 2020-10-28 07:29:48.468746: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 2020-10-28 07:29:48.468801: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10 2020-10-28 07:29:48.468836: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10 2020-10-28 07:29:48.468861: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10 2020-10-28 07:29:48.468884: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10 2020-10-28 07:29:48.468908: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10 2020-10-28 07:29:48.468934: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7 2020-10-28 07:29:48.469024: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-28 07:29:48.469697: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-28 07:29:48.470232: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0 2020-10-28 07:29:48.470318: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 2020-10-28 07:29:48.980105: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix: 2020-10-28 07:29:48.980184: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263] 0 2020-10-28 07:29:48.980199: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0: N 2020-10-28 07:29:48.980455: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-28 07:29:48.981200: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-28 07:29:48.981795: W tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:39] Overriding allow_growth setting because the TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original config value was 0. 2020-10-28 07:29:48.981861: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 13962 MB memory) -> physical GPU (device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5) INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) 2020-10-28 07:29:48,984 - tensorflow - INFO - Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) [Search space summary]  |-Default search space size: 0 Epoch 1/20 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/multi_device_iterator_ops.py:601: get_next_as_optional (from tensorflow.python.data.ops.iterator_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Iterator.get_next_as_optional()` instead. 2020-10-28 07:29:50,449 - tensorflow - WARNING - From /usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/multi_device_iterator_ops.py:601: get_next_as_optional (from tensorflow.python.data.ops.iterator_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Iterator.get_next_as_optional()` instead. INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2020-10-28 07:29:51,667 - tensorflow - INFO - Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2020-10-28 07:29:51,670 - tensorflow - INFO - Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2020-10-28 07:29:51,674 - tensorflow - INFO - Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2020-10-28 07:29:51,676 - tensorflow - INFO - Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2020-10-28 07:29:51,679 - tensorflow - INFO - Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2020-10-28 07:29:51,680 - tensorflow - INFO - Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2020-10-28 07:29:53,772 - tensorflow - INFO - Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2020-10-28 07:29:53,774 - tensorflow - INFO - Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2020-10-28 07:29:53,776 - tensorflow - INFO - Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2020-10-28 07:29:53,778 - tensorflow - INFO - Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2020-10-28 07:29:55.044013: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10 2020-10-28 07:29:55.438659: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7 162/162 [==============================] - 17s 107ms/step - loss: 2.8539 - accuracy: 0.3444 - f1_m: 0.2791 - val_loss: 1.3751 - val_accuracy: 0.4991 - val_f1_m: 0.4656 Epoch 2/20 162/162 [==============================] - 15s 95ms/step - loss: 0.9914 - accuracy: 0.6442 - f1_m: 0.6160 - val_loss: 1.3410 - val_accuracy: 0.5235 - val_f1_m: 0.5059 Epoch 3/20 162/162 [==============================] - 16s 97ms/step - loss: 0.6011 - accuracy: 0.7996 - f1_m: 0.7846 - val_loss: 1.3610 - val_accuracy: 0.5791 - val_f1_m: 0.5625 Epoch 4/20 162/162 [==============================] - 16s 96ms/step - loss: 0.3726 - accuracy: 0.8881 - f1_m: 0.8793 - val_loss: 1.4406 - val_accuracy: 0.5687 - val_f1_m: 0.5657 Epoch 5/20 162/162 [==============================] - 15s 94ms/step - loss: 0.2572 - accuracy: 0.9322 - f1_m: 0.9281 - val_loss: 1.5078 - val_accuracy: 0.5704 - val_f1_m: 0.5630 Epoch 6/20 162/162 [==============================] - 15s 94ms/step - loss: 0.2022 - accuracy: 0.9486 - f1_m: 0.9464 - val_loss: 1.5801 - val_accuracy: 0.5478 - val_f1_m: 0.5636 Epoch 7/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1689 - accuracy: 0.9598 - f1_m: 0.9589 - val_loss: 1.6309 - val_accuracy: 0.5548 - val_f1_m: 0.5638 Epoch 8/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1533 - accuracy: 0.9644 - f1_m: 0.9642 - val_loss: 1.6619 - val_accuracy: 0.5548 - val_f1_m: 0.5623 Epoch 9/20 162/162 [==============================] - 15s 96ms/step - loss: 0.1351 - accuracy: 0.9700 - f1_m: 0.9692 - val_loss: 1.6869 - val_accuracy: 0.5583 - val_f1_m: 0.5700 Epoch 10/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1317 - accuracy: 0.9726 - f1_m: 0.9714 - val_loss: 1.6953 - val_accuracy: 0.5513 - val_f1_m: 0.5644 Epoch 11/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1283 - accuracy: 0.9739 - f1_m: 0.9731 - val_loss: 1.7081 - val_accuracy: 0.5565 - val_f1_m: 0.5612 Epoch 12/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1258 - accuracy: 0.9751 - f1_m: 0.9739 - val_loss: 1.7157 - val_accuracy: 0.5496 - val_f1_m: 0.5603 Epoch 13/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1240 - accuracy: 0.9747 - f1_m: 0.9747 - val_loss: 1.7213 - val_accuracy: 0.5496 - val_f1_m: 0.5613 Epoch 14/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1199 - accuracy: 0.9753 - f1_m: 0.9750 - val_loss: 1.7238 - val_accuracy: 0.5496 - val_f1_m: 0.5601 Epoch 15/20 162/162 [==============================] - 16s 96ms/step - loss: 0.1205 - accuracy: 0.9753 - f1_m: 0.9761 - val_loss: 1.7275 - val_accuracy: 0.5461 - val_f1_m: 0.5589 Epoch 16/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1195 - accuracy: 0.9766 - f1_m: 0.9758 - val_loss: 1.7294 - val_accuracy: 0.5461 - val_f1_m: 0.5577 Epoch 17/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1191 - accuracy: 0.9739 - f1_m: 0.9750 - val_loss: 1.7306 - val_accuracy: 0.5478 - val_f1_m: 0.5582 Epoch 18/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1203 - accuracy: 0.9731 - f1_m: 0.9732 - val_loss: 1.7310 - val_accuracy: 0.5461 - val_f1_m: 0.5577 Epoch 19/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1183 - accuracy: 0.9756 - f1_m: 0.9751 - val_loss: 1.7310 - val_accuracy: 0.5478 - val_f1_m: 0.5578 Epoch 20/20 162/162 [==============================] - 15s 95ms/step - loss: 0.1204 - accuracy: 0.9720 - f1_m: 0.9741 - val_loss: 1.7313 - val_accuracy: 0.5461 - val_f1_m: 0.5578 [Trial complete] [Trial summary]  |-Trial ID: ecf26268a50275fb20f157773678ac33  |-Score: 0.5699636936187744  |-Best step: 0  > Hyperparameters:  |-default configuration INFO:tensorflow:Oracle triggered exit 2020-10-28 07:35:08,838 - tensorflow - INFO - Oracle triggered exit WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version. Instructions for updating: This property should not be used in TensorFlow 2.0, as updates are applied automatically. 2020-10-28 07:35:17,758 - tensorflow - WARNING - From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version. Instructions for updating: This property should not be used in TensorFlow 2.0, as updates are applied automatically. 2020-10-28 07:35:17.759100: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: This property should not be used in TensorFlow 2.0, as updates are applied automatically. 2020-10-28 07:35:17,768 - tensorflow - WARNING - From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: This property should not be used in TensorFlow 2.0, as updates are applied automatically. INFO:tensorflow:Assets written to: models/BiLSTM/assets 2020-10-28 07:35:23,775 - tensorflow - INFO - Assets written to: models/BiLSTM/assets Training the model: BiLSTM_Glove INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) 2020-10-28 07:35:24,056 - tensorflow - INFO - Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) INFO:tensorflow:Reloading Oracle from existing project random_search/sentiment_analysis_BiLSTMModel/oracle.json 2020-10-28 07:35:24,057 - tensorflow - INFO - Reloading Oracle from existing project random_search/sentiment_analysis_BiLSTMModel/oracle.json INFO:tensorflow:Reloading Tuner from random_search/sentiment_analysis_BiLSTMModel/tuner0.json 2020-10-28 07:35:25,048 - tensorflow - INFO - Reloading Tuner from random_search/sentiment_analysis_BiLSTMModel/tuner0.json [Search space summary]  |-Default search space size: 0 INFO:tensorflow:Oracle triggered exit 2020-10-28 07:35:25,051 - tensorflow - INFO - Oracle triggered exit WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.iter WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_1 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_2 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.decay WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.kernel 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.bias 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.kernel 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.bias 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.kernel 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.bias 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.kernel 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.bias 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.kernel 2020-10-28 07:35:32,045 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel 2020-10-28 07:35:32,046 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.bias 2020-10-28 07:35:32,046 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.kernel 2020-10-28 07:35:32,046 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel 2020-10-28 07:35:32,046 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.bias 2020-10-28 07:35:32,046 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.bias WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. 2020-10-28 07:35:32,046 - tensorflow - WARNING - A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. INFO:tensorflow:Assets written to: models/BiLSTM_Glove/assets 2020-10-28 07:35:39,678 - tensorflow - INFO - Assets written to: models/BiLSTM_Glove/assets Training the model: StackedBiLSTM INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) 2020-10-28 07:35:39,963 - tensorflow - INFO - Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) [Search space summary]  |-Default search space size: 0 Epoch 1/20 162/162 [==============================] - 29s 179ms/step - loss: 4.0378 - accuracy: 0.2344 - f1_m: 0.1258 - val_loss: 1.6648 - val_accuracy: 0.3809 - val_f1_m: 0.2436 Epoch 2/20 162/162 [==============================] - 27s 165ms/step - loss: 1.3185 - accuracy: 0.5157 - f1_m: 0.4444 - val_loss: 1.1971 - val_accuracy: 0.5757 - val_f1_m: 0.5172 Epoch 3/20 162/162 [==============================] - 27s 164ms/step - loss: 0.9975 - accuracy: 0.6453 - f1_m: 0.6091 - val_loss: 1.2398 - val_accuracy: 0.5843 - val_f1_m: 0.5569 Epoch 4/20 162/162 [==============================] - 27s 164ms/step - loss: 0.7774 - accuracy: 0.7269 - f1_m: 0.7070 - val_loss: 1.2887 - val_accuracy: 0.5739 - val_f1_m: 0.5642 Epoch 5/20 162/162 [==============================] - 27s 164ms/step - loss: 0.6239 - accuracy: 0.7770 - f1_m: 0.7742 - val_loss: 1.4014 - val_accuracy: 0.5704 - val_f1_m: 0.5727 Epoch 6/20 162/162 [==============================] - 26s 163ms/step - loss: 0.5218 - accuracy: 0.8206 - f1_m: 0.8149 - val_loss: 1.4973 - val_accuracy: 0.5739 - val_f1_m: 0.5770 Epoch 7/20 162/162 [==============================] - 27s 164ms/step - loss: 0.4332 - accuracy: 0.8496 - f1_m: 0.8489 - val_loss: 1.6805 - val_accuracy: 0.5583 - val_f1_m: 0.5675 Epoch 8/20 162/162 [==============================] - 27s 164ms/step - loss: 0.3804 - accuracy: 0.8726 - f1_m: 0.8668 - val_loss: 1.7069 - val_accuracy: 0.5617 - val_f1_m: 0.5642 Epoch 9/20 162/162 [==============================] - 27s 164ms/step - loss: 0.3488 - accuracy: 0.8806 - f1_m: 0.8823 - val_loss: 1.7975 - val_accuracy: 0.5600 - val_f1_m: 0.5645 Epoch 10/20 162/162 [==============================] - 27s 164ms/step - loss: 0.3258 - accuracy: 0.8875 - f1_m: 0.8866 - val_loss: 1.8373 - val_accuracy: 0.5670 - val_f1_m: 0.5652 Epoch 11/20 162/162 [==============================] - 27s 164ms/step - loss: 0.3164 - accuracy: 0.8947 - f1_m: 0.8936 - val_loss: 1.8705 - val_accuracy: 0.5774 - val_f1_m: 0.5597 Epoch 12/20 162/162 [==============================] - 27s 164ms/step - loss: 0.3020 - accuracy: 0.8939 - f1_m: 0.8997 - val_loss: 1.8819 - val_accuracy: 0.5757 - val_f1_m: 0.5615 Epoch 13/20 162/162 [==============================] - 27s 164ms/step - loss: 0.3048 - accuracy: 0.8947 - f1_m: 0.8965 - val_loss: 1.8870 - val_accuracy: 0.5722 - val_f1_m: 0.5627 Epoch 14/20 162/162 [==============================] - 27s 164ms/step - loss: 0.3016 - accuracy: 0.8945 - f1_m: 0.8982 - val_loss: 1.8880 - val_accuracy: 0.5774 - val_f1_m: 0.5624 Epoch 15/20 162/162 [==============================] - 27s 164ms/step - loss: 0.2962 - accuracy: 0.9016 - f1_m: 0.9040 - val_loss: 1.8935 - val_accuracy: 0.5774 - val_f1_m: 0.5634 Epoch 16/20 162/162 [==============================] - 27s 164ms/step - loss: 0.2964 - accuracy: 0.9009 - f1_m: 0.9012 - val_loss: 1.8957 - val_accuracy: 0.5809 - val_f1_m: 0.5628 Epoch 17/20 162/162 [==============================] - 27s 164ms/step - loss: 0.2932 - accuracy: 0.9026 - f1_m: 0.9036 - val_loss: 1.9015 - val_accuracy: 0.5739 - val_f1_m: 0.5618 Epoch 18/20 162/162 [==============================] - 27s 164ms/step - loss: 0.2887 - accuracy: 0.9034 - f1_m: 0.9000 - val_loss: 1.9037 - val_accuracy: 0.5757 - val_f1_m: 0.5617 Epoch 19/20 162/162 [==============================] - 27s 164ms/step - loss: 0.2904 - accuracy: 0.9039 - f1_m: 0.9044 - val_loss: 1.9045 - val_accuracy: 0.5774 - val_f1_m: 0.5629 Epoch 20/20 162/162 [==============================] - 27s 164ms/step - loss: 0.2937 - accuracy: 0.8972 - f1_m: 0.9004 - val_loss: 1.9056 - val_accuracy: 0.5739 - val_f1_m: 0.5617 [Trial complete] [Trial summary]  |-Trial ID: 0495da558d74bd3048cb2062d941570c  |-Score: 0.5770310163497925  |-Best step: 0  > Hyperparameters:  |-default configuration INFO:tensorflow:Oracle triggered exit 2020-10-28 07:44:46,341 - tensorflow - INFO - Oracle triggered exit WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter 2020-10-28 07:44:54,891 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.iter WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1 2020-10-28 07:44:54,891 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_1 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2 2020-10-28 07:44:54,891 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_2 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay 2020-10-28 07:44:54,891 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.decay WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.kernel 2020-10-28 07:44:54,891 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.bias 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.kernel 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.bias 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.kernel 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.bias 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.kernel 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.bias 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.kernel 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.bias 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.kernel 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.bias 2020-10-28 07:44:54,892 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.bias WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. 2020-10-28 07:44:54,892 - tensorflow - WARNING - A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. INFO:tensorflow:Assets written to: models/StackedBiLSTM/assets 2020-10-28 07:45:12,455 - tensorflow - INFO - Assets written to: models/StackedBiLSTM/assets Training the model: StackedBiLSTM_Glove INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) 2020-10-28 07:45:12,982 - tensorflow - INFO - Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) INFO:tensorflow:Reloading Oracle from existing project random_search/sentiment_analysis_StackedBiLSTMModel/oracle.json 2020-10-28 07:45:12,982 - tensorflow - INFO - Reloading Oracle from existing project random_search/sentiment_analysis_StackedBiLSTMModel/oracle.json INFO:tensorflow:Reloading Tuner from random_search/sentiment_analysis_StackedBiLSTMModel/tuner0.json 2020-10-28 07:45:14,749 - tensorflow - INFO - Reloading Tuner from random_search/sentiment_analysis_StackedBiLSTMModel/tuner0.json [Search space summary]  |-Default search space size: 0 INFO:tensorflow:Oracle triggered exit 2020-10-28 07:45:14,752 - tensorflow - INFO - Oracle triggered exit WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter 2020-10-28 07:45:23,193 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.iter WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1 2020-10-28 07:45:23,193 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_1 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2 2020-10-28 07:45:23,193 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_2 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay 2020-10-28 07:45:23,193 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.decay WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.kernel 2020-10-28 07:45:23,193 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.bias 2020-10-28 07:45:23,193 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.kernel 2020-10-28 07:45:23,193 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel 2020-10-28 07:45:23,193 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.bias 2020-10-28 07:45:23,193 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.kernel 2020-10-28 07:45:23,193 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.bias 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.recurrent_kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.bias 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.recurrent_kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.bias 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.bias 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.bias 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.bias 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.recurrent_kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.bias 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.kernel 2020-10-28 07:45:23,194 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.recurrent_kernel 2020-10-28 07:45:23,195 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.bias 2020-10-28 07:45:23,195 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.bias WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. 2020-10-28 07:45:23,195 - tensorflow - WARNING - A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. INFO:tensorflow:Assets written to: models/StackedBiLSTM_Glove/assets 2020-10-28 07:45:40,624 - tensorflow - INFO - Assets written to: models/StackedBiLSTM_Glove/assets Training the model: HybridModel INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) 2020-10-28 07:45:41,161 - tensorflow - INFO - Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) [Search space summary]  |-Default search space size: 0 Epoch 1/20 162/162 [==============================] - 16s 101ms/step - loss: 1.9590 - accuracy: 0.1651 - f1_m: 0.0129 - val_loss: 1.8140 - val_accuracy: 0.2470 - val_f1_m: 0.0584 Epoch 2/20 162/162 [==============================] - 15s 90ms/step - loss: 1.7634 - accuracy: 0.2551 - f1_m: 0.0822 - val_loss: 1.7133 - val_accuracy: 0.3130 - val_f1_m: 0.0900 Epoch 3/20 162/162 [==============================] - 15s 90ms/step - loss: 1.5604 - accuracy: 0.3690 - f1_m: 0.2404 - val_loss: 1.4380 - val_accuracy: 0.4870 - val_f1_m: 0.3278 Epoch 4/20 162/162 [==============================] - 15s 91ms/step - loss: 1.2609 - accuracy: 0.5193 - f1_m: 0.4588 - val_loss: 1.3027 - val_accuracy: 0.5200 - val_f1_m: 0.4550 Epoch 5/20 162/162 [==============================] - 15s 92ms/step - loss: 1.0770 - accuracy: 0.6026 - f1_m: 0.5731 - val_loss: 1.2508 - val_accuracy: 0.5583 - val_f1_m: 0.4969 Epoch 6/20 162/162 [==============================] - 15s 91ms/step - loss: 0.9633 - accuracy: 0.6448 - f1_m: 0.6215 - val_loss: 1.2544 - val_accuracy: 0.5617 - val_f1_m: 0.5292 Epoch 7/20 162/162 [==============================] - 15s 91ms/step - loss: 0.8894 - accuracy: 0.6772 - f1_m: 0.6584 - val_loss: 1.2533 - val_accuracy: 0.5548 - val_f1_m: 0.5249 Epoch 8/20 162/162 [==============================] - 15s 91ms/step - loss: 0.8231 - accuracy: 0.7029 - f1_m: 0.6859 - val_loss: 1.2567 - val_accuracy: 0.5617 - val_f1_m: 0.5323 Epoch 9/20 162/162 [==============================] - 15s 91ms/step - loss: 0.7918 - accuracy: 0.7157 - f1_m: 0.6968 - val_loss: 1.2810 - val_accuracy: 0.5513 - val_f1_m: 0.5241 Epoch 10/20 162/162 [==============================] - 15s 91ms/step - loss: 0.7702 - accuracy: 0.7190 - f1_m: 0.7074 - val_loss: 1.2772 - val_accuracy: 0.5617 - val_f1_m: 0.5224 Epoch 11/20 162/162 [==============================] - 15s 91ms/step - loss: 0.7474 - accuracy: 0.7337 - f1_m: 0.7193 - val_loss: 1.2811 - val_accuracy: 0.5617 - val_f1_m: 0.5230 Epoch 12/20 162/162 [==============================] - 15s 91ms/step - loss: 0.7511 - accuracy: 0.7364 - f1_m: 0.7224 - val_loss: 1.2835 - val_accuracy: 0.5600 - val_f1_m: 0.5244 Epoch 13/20 162/162 [==============================] - 15s 91ms/step - loss: 0.7451 - accuracy: 0.7302 - f1_m: 0.7209 - val_loss: 1.2840 - val_accuracy: 0.5583 - val_f1_m: 0.5259 Epoch 14/20 162/162 [==============================] - 15s 91ms/step - loss: 0.7295 - accuracy: 0.7397 - f1_m: 0.7265 - val_loss: 1.2848 - val_accuracy: 0.5583 - val_f1_m: 0.5262 Epoch 15/20 162/162 [==============================] - 15s 91ms/step - loss: 0.7462 - accuracy: 0.7354 - f1_m: 0.7222 - val_loss: 1.2847 - val_accuracy: 0.5600 - val_f1_m: 0.5281 Epoch 16/20 162/162 [==============================] - 15s 92ms/step - loss: 0.7453 - accuracy: 0.7373 - f1_m: 0.7198 - val_loss: 1.2850 - val_accuracy: 0.5617 - val_f1_m: 0.5270 Epoch 17/20 162/162 [==============================] - 15s 92ms/step - loss: 0.7245 - accuracy: 0.7439 - f1_m: 0.7306 - val_loss: 1.2857 - val_accuracy: 0.5617 - val_f1_m: 0.5264 Epoch 18/20 162/162 [==============================] - 15s 91ms/step - loss: 0.7333 - accuracy: 0.7414 - f1_m: 0.7251 - val_loss: 1.2856 - val_accuracy: 0.5617 - val_f1_m: 0.5264 Epoch 19/20 162/162 [==============================] - 15s 92ms/step - loss: 0.7357 - accuracy: 0.7329 - f1_m: 0.7179 - val_loss: 1.2859 - val_accuracy: 0.5617 - val_f1_m: 0.5264 Epoch 20/20 162/162 [==============================] - 15s 92ms/step - loss: 0.7289 - accuracy: 0.7439 - f1_m: 0.7289 - val_loss: 1.2861 - val_accuracy: 0.5617 - val_f1_m: 0.5264 [Trial complete] [Trial summary]  |-Trial ID: bbf27746a0e4d5e51888f02742171524  |-Score: 0.5322573781013489  |-Best step: 0  > Hyperparameters:  |-default configuration INFO:tensorflow:Oracle triggered exit 2020-10-28 07:50:46,699 - tensorflow - INFO - Oracle triggered exit WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter 2020-10-28 07:50:52,658 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.iter WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_1 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_2 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.decay WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.kernel 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.bias 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.kernel 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.bias 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.kernel 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.bias 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.kernel 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.recurrent_kernel 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.bias 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.kernel 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.recurrent_kernel 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.bias 2020-10-28 07:50:52,659 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.backward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.kernel 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.bias 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.kernel 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.bias 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.kernel 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.bias 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.kernel 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.recurrent_kernel 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.bias 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.kernel 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.recurrent_kernel 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.bias 2020-10-28 07:50:52,660 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.backward_layer.cell.bias WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. 2020-10-28 07:50:52,660 - tensorflow - WARNING - A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. INFO:tensorflow:Assets written to: models/HybridModel/assets 2020-10-28 07:50:59,863 - tensorflow - INFO - Assets written to: models/HybridModel/assets Training the model: HybridModel_Glove INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) 2020-10-28 07:51:00,144 - tensorflow - INFO - Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) [Search space summary]  |-Default search space size: 0 Epoch 1/20 162/162 [==============================] - 9s 56ms/step - loss: 1.9401 - accuracy: 0.3664 - f1_m: 0.2744 - val_loss: 1.3153 - val_accuracy: 0.4922 - val_f1_m: 0.4705 Epoch 2/20 162/162 [==============================] - 8s 47ms/step - loss: 1.0295 - accuracy: 0.6299 - f1_m: 0.6002 - val_loss: 1.2742 - val_accuracy: 0.5478 - val_f1_m: 0.5248 Epoch 3/20 162/162 [==============================] - 8s 47ms/step - loss: 0.6691 - accuracy: 0.7741 - f1_m: 0.7560 - val_loss: 1.3704 - val_accuracy: 0.5426 - val_f1_m: 0.5370 Epoch 4/20 162/162 [==============================] - 8s 47ms/step - loss: 0.4461 - accuracy: 0.8510 - f1_m: 0.8470 - val_loss: 1.4707 - val_accuracy: 0.5391 - val_f1_m: 0.5402 Epoch 5/20 162/162 [==============================] - 8s 47ms/step - loss: 0.3301 - accuracy: 0.8997 - f1_m: 0.8921 - val_loss: 1.5702 - val_accuracy: 0.5513 - val_f1_m: 0.5534 Epoch 6/20 162/162 [==============================] - 8s 47ms/step - loss: 0.2466 - accuracy: 0.9331 - f1_m: 0.9271 - val_loss: 1.6368 - val_accuracy: 0.5461 - val_f1_m: 0.5502 Epoch 7/20 162/162 [==============================] - 8s 47ms/step - loss: 0.2135 - accuracy: 0.9412 - f1_m: 0.9403 - val_loss: 1.6784 - val_accuracy: 0.5443 - val_f1_m: 0.5474 Epoch 8/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1869 - accuracy: 0.9511 - f1_m: 0.9491 - val_loss: 1.7363 - val_accuracy: 0.5443 - val_f1_m: 0.5458 Epoch 9/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1720 - accuracy: 0.9554 - f1_m: 0.9513 - val_loss: 1.7489 - val_accuracy: 0.5513 - val_f1_m: 0.5447 Epoch 10/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1615 - accuracy: 0.9627 - f1_m: 0.9597 - val_loss: 1.7672 - val_accuracy: 0.5513 - val_f1_m: 0.5449 Epoch 11/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1659 - accuracy: 0.9569 - f1_m: 0.9574 - val_loss: 1.7770 - val_accuracy: 0.5496 - val_f1_m: 0.5457 Epoch 12/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1625 - accuracy: 0.9592 - f1_m: 0.9564 - val_loss: 1.7798 - val_accuracy: 0.5478 - val_f1_m: 0.5479 Epoch 13/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1579 - accuracy: 0.9604 - f1_m: 0.9587 - val_loss: 1.7884 - val_accuracy: 0.5443 - val_f1_m: 0.5481 Epoch 14/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1496 - accuracy: 0.9642 - f1_m: 0.9632 - val_loss: 1.7912 - val_accuracy: 0.5443 - val_f1_m: 0.5479 Epoch 15/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1539 - accuracy: 0.9615 - f1_m: 0.9591 - val_loss: 1.7922 - val_accuracy: 0.5461 - val_f1_m: 0.5463 Epoch 16/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1484 - accuracy: 0.9615 - f1_m: 0.9632 - val_loss: 1.7947 - val_accuracy: 0.5443 - val_f1_m: 0.5470 Epoch 17/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1512 - accuracy: 0.9602 - f1_m: 0.9596 - val_loss: 1.7951 - val_accuracy: 0.5443 - val_f1_m: 0.5476 Epoch 18/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1543 - accuracy: 0.9625 - f1_m: 0.9614 - val_loss: 1.7954 - val_accuracy: 0.5461 - val_f1_m: 0.5476 Epoch 19/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1511 - accuracy: 0.9619 - f1_m: 0.9620 - val_loss: 1.7958 - val_accuracy: 0.5461 - val_f1_m: 0.5476 Epoch 20/20 162/162 [==============================] - 8s 47ms/step - loss: 0.1523 - accuracy: 0.9637 - f1_m: 0.9611 - val_loss: 1.7960 - val_accuracy: 0.5461 - val_f1_m: 0.5476 [Trial complete] [Trial summary]  |-Trial ID: f5c87c7f4f8632f84af7b093cee418e7  |-Score: 0.5533604025840759  |-Best step: 0  > Hyperparameters:  |-default configuration INFO:tensorflow:Oracle triggered exit 2020-10-28 07:53:39,594 - tensorflow - INFO - Oracle triggered exit WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter 2020-10-28 07:53:45,396 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.iter WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1 2020-10-28 07:53:45,396 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_1 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2 2020-10-28 07:53:45,396 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_2 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay 2020-10-28 07:53:45,396 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.decay WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.kernel 2020-10-28 07:53:45,396 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.bias 2020-10-28 07:53:45,396 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.kernel 2020-10-28 07:53:45,396 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.bias 2020-10-28 07:53:45,396 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-3.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-4.kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-4.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-4.bias 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-4.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.bias 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.bias 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.backward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.bias 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.bias 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-3.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-4.kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-4.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-4.bias 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-4.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.bias 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.forward_layer.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel 2020-10-28 07:53:45,397 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.bias 2020-10-28 07:53:45,398 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.backward_layer.cell.bias WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. 2020-10-28 07:53:45,398 - tensorflow - WARNING - A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. INFO:tensorflow:Assets written to: models/HybridModel_Glove/assets 2020-10-28 07:53:46,029 - tensorflow - INFO - Assets written to: models/HybridModel_Glove/assets 1 ... weighted avg BiLSTM precision 0.700730 ... 0.539433 recall 0.655290 ... 0.535733 f1-score 0.677249 ... 0.537299 support 293.000000 ... 1917.000000 BiLSTM_Glove precision 0.700730 ... 0.539433 recall 0.655290 ... 0.535733 f1-score 0.677249 ... 0.537299 support 293.000000 ... 1917.000000 StackedBiLSTM precision 0.744526 ... 0.579933 recall 0.675497 ... 0.574857 f1-score 0.708333 ... 0.575210 support 302.000000 ... 1917.000000 StackedBiLSTM_Glove precision 0.744526 ... 0.579933 recall 0.675497 ... 0.574857 f1-score 0.708333 ... 0.575210 support 302.000000 ... 1917.000000 HybridModel precision 0.649635 ... 0.558832 recall 0.635714 ... 0.549296 f1-score 0.642599 ... 0.551071 support 280.000000 ... 1917.000000 HybridModel_Glove precision 0.784672 ... 0.578038 recall 0.628655 ... 0.557642 f1-score 0.698052 ... 0.564800 support 342.000000 ... 1917.000000 [24 rows x 10 columns] WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter 2020-10-28 07:53:46,262 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.iter WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1 2020-10-28 07:53:46,262 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_1 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2 2020-10-28 07:53:46,262 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.beta_2 WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay 2020-10-28 07:53:46,262 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer.decay WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.kernel 2020-10-28 07:53:46,262 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.bias 2020-10-28 07:53:46,262 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-2.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.cell.kernel 2020-10-28 07:53:46,262 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.cell.recurrent_kernel 2020-10-28 07:53:46,263 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.cell.bias 2020-10-28 07:53:46,263 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-1.cell.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.kernel 2020-10-28 07:53:46,263 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.bias 2020-10-28 07:53:46,263 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-2.bias WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.cell.kernel 2020-10-28 07:53:46,263 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.cell.kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.cell.recurrent_kernel 2020-10-28 07:53:46,263 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.cell.recurrent_kernel WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.cell.bias 2020-10-28 07:53:46,263 - tensorflow - WARNING - Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-1.cell.bias WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. 2020-10-28 07:53:46,263 - tensorflow - WARNING - A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. ###Markdown **Results are ready** ###Code final_report = pd.read_csv("./customer_interaction_summary/models/final_report.csv") final_report[final_report['Unnamed: 1'] == 'f1-score'] final_report[final_report['Unnamed: 1'] == 'recall'] final_report[final_report['Unnamed: 1'] == 'precision'] !cp "./customer_interaction_summary/models/final_report.csv" "/content/gdrive/My Drive/Colab Notebooks/.kaggle/" !ls "/content/gdrive/My Drive/Colab Notebooks/.kaggle/" # from google.colab import files # files.download('./customer_interaction_summary/models/final_report.csv') !ls "./customer_interaction_summary/models/" !cat "./customer_interaction_summary/models/StackedBiLSTM_hyperparameters.json" ###Output _____no_output_____
posts/check-if-duration-affects-spike-sorting.ipynb
###Markdown Does the recording's duration affect the quality of spike sorting?This notebook investigates if and how the duration of the recording affects spike sorting.Obviously, each sorter engine needs a minimum number of events to detect a "cluster", and therefore a unit.If a neuron doesn't fire enough during a recording it won't be detected.The number of event per units depends on the recording duration and the each individual firing rates.In order to test this phenomenon, we use the same dataset (with the same neurons and firing rates), but we vary the duration of the recording.The simulated recording is generated with [MEArec](https://github.com/alejoe91/MEArec) using a Neuronexus-32 probe. This specific dataset seems *relatively* easy to sort. The "SYNTH_MEAREC_NEURONEXUS" dataset in [SpikeForest](https://spikeforest.flatironinstitute.org/) (which uses the same probe), in fact, shows quite good results for all sorters. The original duration is 600s (10 min).Here we have generated a new but similar recording with a duration of 1800s. Then we have shortened it to 60s, 300s, 600s and 1800s (original). The recording can be downloaded from Zenodo: https://doi.org/10.5281/zenodo.4058272The dataset name is: **recordings_10cells_Neuronexus-32_1800.0_10.0uV_2020-02-28.h5**. It contains 10 neurons recorded on a Neuronexus-32 probe. The duration is 1800s and the noise level is 10uV.Let's see if spike sorters are robust to fewer events and if are able to deal with long durations or they end up finding too many events.Author: [Samuel Garcia](https://github.com/samuelgarcia), CRNL, Lyon RequirementsFor this need you will need the following Python packages:- numpy- pandas- matplotlib- seaborn- spikeinterfaceTo run the MATLAB-based sorters, you would also need a MATLAB license.For other sorters, please refer to the documentation on [how to install sorters](https://spikeinterface.readthedocs.io/en/latest/sortersinfo.html). Installation and imports ###Code import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from pathlib import Path import spikeinterface as si import spikeinterface.extractors as se import spikeinterface.sorters as ss import spikeinterface.widgets as sw from spikeinterface.comparison import GroundTruthStudy # clone and install MATLAB sorters # kilosort2 !git clone https://github.com/MouseLand/Kilosort2.git kilosort2_path = './Kilosort2' ss.Kilosort2Sorter.set_kilosort2_path(kilosort2_path) # kilosort !git clone https://github.com/cortex-lab/KiloSort.git kilosort_path = './KiloSort' ss.KilosortSorter.set_kilosort_path(kilosort_path) # ironclust !git clone https://github.com/flatironinstitute/ironclust.git ironclust_path = './ironclust' ss.IronclustSorter.set_ironclust_path(ironclust_path) %matplotlib inline # some matplotlib hack to prettify figure SMALL_SIZE = 12 MEDIUM_SIZE = 14 BIGGER_SIZE = 16 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', figsize=(10.0, 8.0)) # figsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title def clear_axes(ax): ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ###Output _____no_output_____ ###Markdown Check spikeinterface version and sorter version ###Code si.print_spikeinterface_version() ss.print_sorter_versions() ###Output spikeinterface: 0.9.1 * spikeextractor: 0.7.2 * spiketoolkit: 0.5.2 * spikesorters: 0.2.4 * spikecomparison: 0.2.3 * spikewidgets: 0.3.3 herdingspikes: 0.3.7+git.45665a2b6438 ironclust: 5.9.4 kilosort: git-cd040da1963d kilosort2: git-67a42a87b866 klusta: 3.0.16 mountainsort4: unknown spykingcircus: 0.9.2 tridesclous: 1.5.0 ###Markdown Setup global path ###Code # Change this path to point to where you downloaded the dataset p = Path('/home/samuel/Documents/DataSpikeSorting/mearec/') study_folder = p / 'study_mearec_neuronexus_several_durations/' ###Output _____no_output_____ ###Markdown Setup ground truth study ###Code mearec_filename = p / 'recordings_10cells_Neuronexus-32_1800.0_10.0uV_2020-02-28.h5' rec = se.MEArecRecordingExtractor(mearec_filename, locs_2d=True) gt_sorting = se.MEArecSortingExtractor(mearec_filename) fs = rec.get_sampling_frequency() gt_dict = {} durations = [60, 300, 600, 1800] for duration in durations: sub_rec = se.SubRecordingExtractor(rec, start_frame=0, end_frame=int(duration*fs)) sub_sorting = se.SubSortingExtractor(gt_sorting, start_frame=0, end_frame=int(duration*fs)) gt_dict[f'rec{duration}'] = (sub_rec, sub_sorting) study = GroundTruthStudy.create(study_folder, gt_dict) ###Output _____no_output_____ ###Markdown Run all sorters ###Code sorter_list = ['herdingspikes', 'ironclust', 'kilosort2', 'kilosort', 'mountainsort4', 'spykingcircus', 'tridesclous'] study = GroundTruthStudy(study_folder) sorter_params = {} study.run_sorters(sorter_list, sorter_params=sorter_params, mode='keep', verbose=True) ###Output _____no_output_____ ###Markdown Get signal to noise ratio for all unitsUnits are the same in each recording so the snr is the same lets take from the longest one ###Code study = GroundTruthStudy(study_folder) snr = study.get_units_snr(rec_name='rec1800') snr fig, ax = plt.subplots() ax.hist(snr['snr'].values, bins=10) ax.set_xlabel('GT units SNR') ###Output _____no_output_____ ###Markdown Run comparison with ground truth and retreive result tables ###Code # this copy sorting is necessary to copy results from sorter # into a centralize folder with all results study.copy_sortings() # this run all comparison sto GT study.run_comparisons(exhaustive_gt=True, match_score=0.1, overmerged_score=0.2) # this retrieve results comparisons = study.comparisons dataframes = study.aggregate_dataframes() ###Output _____no_output_____ ###Markdown Run times ###Code run_times = dataframes['run_times'] run_times # insert durations run_times['duration'] = run_times['rec_name'].apply(lambda s: float(s.replace('rec', ''))) g = sns.catplot(data=run_times, x='duration', y='run_time', hue='sorter_name', kind='bar') ###Output _____no_output_____ ###Markdown Accuracy vs duration ###Code perf = dataframes['perf_by_units'] perf # insert durations perf['duration'] = perf['rec_name'].apply(lambda s: float(s.replace('rec', ''))) g = sns.catplot(data=perf, x='duration', y='accuracy', hue='sorter_name', kind='bar') ###Output _____no_output_____ ###Markdown Count good, bad, false positive units vs duration ###Code count_units = dataframes['count_units'] count_units # insert durations count_units['duration'] = count_units['rec_name'].apply(lambda s: float(s.replace('rec', ''))) ###Output _____no_output_____ ###Markdown num_well_detected vs durationthe more the better ###Code g = sns.catplot(data=count_units, x='duration', y='num_well_detected', hue='sorter_name', kind='bar') ###Output _____no_output_____ ###Markdown num_false_positive vs durationthe less the better ###Code g = sns.catplot(data=count_units, x='duration', y='num_false_positive', hue='sorter_name', kind='bar') # same as previous but with other limits g = sns.catplot(data=count_units, x='duration', y='num_false_positive', hue='sorter_name', kind='bar') g.fig.axes[0].set_ylim(0, 10) ###Output _____no_output_____ ###Markdown num_redundant vs durationthe less the better ###Code g = sns.catplot(data=count_units, x='duration', y='num_redundant', hue='sorter_name', kind='bar') ###Output _____no_output_____
superseded/Phenolopy_old.ipynb
###Markdown Phenolopy Load packages Set up a dask cluster ###Code %matplotlib inline %load_ext autoreload import os, sys import xarray as xr import numpy as np import pandas as pd import datacube import matplotlib.pyplot as plt from scipy.signal import savgol_filter, wiener from scipy.stats import zscore from statsmodels.tsa.seasonal import STL as stl from datacube.drivers.netcdf import write_dataset_to_netcdf sys.path.append('../Scripts') from dea_datahandling import load_ard from dea_dask import create_local_dask_cluster from dea_plotting import display_map, rgb sys.path.append('./scripts') import phenolopy # initialise the cluster. paste url into dask panel for more info. create_local_dask_cluster() # open up a datacube connection dc = datacube.Datacube(app='phenolopy') ###Output _____no_output_____ ###Markdown Study area and data setup Set study area and time range ###Code # set lat, lon (y, x) dictionary of testing areas for gdv project loc_dict = { 'yan_full': (-22.750, 119.10), 'yan_full_1': (-22.725, 119.05), 'yan_full_2': (-22.775, 119.15), 'roy_sign_1': (-22.618, 119.989), 'roy_full': (-22.555, 120.01), 'roy_full_1': (-22.487, 119.927), 'roy_full_2': (-22.487, 120.092), 'roy_full_3': (-22.623, 119.927), 'roy_full_4': (-22.623, 120.092), 'oph_full': (-23.280432, 119.859309), 'oph_full_1': (-23.375319, 119.859309), 'oph_full_2': (-23.185611, 119.859309), 'oph_full_3': (-23.233013, 119.859309), 'oph_full_4': (-23.280432, 119.859309), 'oph_full_5': (-23.327867, 119.859309), 'test': (-31.6069288, 116.9426373) } # set buffer length and height (x, y) buf_dict = { 'yan_full': (0.15, 0.075), 'yan_full_1': (0.09, 0.025), 'yan_full_2': (0.05, 0.0325), 'roy_sign_1': (0.15, 0.21), 'roy_full': (0.33, 0.27), 'roy_full_1': (0.165209/2, 0.135079/2), 'roy_full_2': (0.165209/2, 0.135079/2), 'roy_full_3': (0.165209/2, 0.135079/2), 'roy_full_4': (0.165209/2, 0.135079/2), 'oph_full': (0.08, 0.11863), 'oph_full_1': (0.08, 0.047452/2), 'oph_full_2': (0.08, 0.047452/2), 'oph_full_3': (0.08, 0.047452/2), 'oph_full_4': (0.08, 0.047452/2), 'oph_full_5': (0.08, 0.047452/2), 'test': (0.05, 0.05) } # select location from dict study_area = 'roy_full_2' # set buffer size in lon, lat (x, y) lon_buff, lat_buff = buf_dict[study_area][0], buf_dict[study_area][1] # select time range. for a specific year, set same year with month 01 to 12. multiple years will be averaged. time_range = ('2016-11', '2018-02') # select a study area from existing dict lat, lon = loc_dict[study_area][0], loc_dict[study_area][1] # combine centroid with buffer to form study boundary lat_extent = (lat - lat_buff, lat + lat_buff) lon_extent = (lon - lon_buff, lon + lon_buff) # display onto interacrive map display_map(x=lon_extent, y=lat_extent) ###Output _____no_output_____ ###Markdown Load sentinel-2a, b data for above parameters ###Code # set measurements (bands) measurements = [ 'nbart_blue', 'nbart_green', 'nbart_red', 'nbart_nir_1', 'nbart_swir_2' ] # create query from above and expected info query = { 'x': lon_extent, 'y': lat_extent, 'time': time_range, 'measurements': measurements, 'output_crs': 'EPSG:3577', 'resolution': (-10, 10), 'group_by': 'solar_day', } # load sentinel 2 data ds = load_ard( dc=dc, products=['s2a_ard_granule', 's2b_ard_granule'], min_gooddata=0.90, dask_chunks={'time': 1}, **query ) # display dataset print(ds) # display a rgb data result of temporary resampled median #rgb(ds.resample(time='1M').median(), bands=['nbart_red', 'nbart_green', 'nbart_blue'], col='time', col_wrap=12) ###Output _____no_output_____ ###Markdown Conform DEA band names ###Code # takes our dask ds and conforms (renames) bands ds = phenolopy.conform_dea_band_names(ds) # display dataset print(ds) ###Output _____no_output_____ ###Markdown Calculate vegetation index ###Code # takes our dask ds and calculates veg index from spectral bands ds = phenolopy.calc_vege_index(ds, index='mavi', drop=True) # display dataset print(ds) ###Output _____no_output_____ ###Markdown Pre-processing phase Temporary - load MODIS dataset ###Code #ds = phenolopy.load_test_dataset(data_path='./data/') # resample to bimonth ds = phenolopy.resample(ds, interval='1M', reducer='median') # interp ds = ds.chunk({'time': -1}) ds = phenolopy.interpolate(ds=ds, method='interpolate_na') # drop years ds = ds.where(ds['time.year'] == 2017, drop=True) ###Output _____no_output_____ ###Markdown Group data by month and reduce by median ###Code # take our dask ds and group and reduce dataset in median weeks (26 for one year) ds = phenolopy.group(ds, group_by='month', reducer='median') # display dataset print(ds) # show times ds = ds.compute() ###Output _____no_output_____ ###Markdown Remove outliers from dataset on per-pixel basis ###Code # chunk dask to -1 to make compatible with this function ds = ds.chunk({'time': -1}) # takes our dask ds and remove outliers from data using median method ds = phenolopy.remove_outliers(ds=ds, method='median', user_factor=2, z_pval=0.05) # display dataset print(ds) ###Output _____no_output_____ ###Markdown Resample dataset down to bi-monthly medians ###Code # takes our dask ds and resamples data to bi-monthly medians ds = phenolopy.resample(ds, interval='1W', reducer='median') # display dataset print(ds) ###Output _____no_output_____ ###Markdown Interpolate missing (i.e. nan) values linearly ###Code # chunk dask to -1 to make compatible with this function ds = ds.chunk({'time': -1}) # takes our dask ds and interpolates missing values ds = phenolopy.interpolate(ds=ds, method='interpolate_na') # display dataset print(ds) ###Output _____no_output_____ ###Markdown Smooth data on per-pixel basis ###Code # chunk dask to -1 to make compatible with this function ds = ds.chunk({'time': -1}) # take our dask ds and smooth using savitsky golay filter ds = phenolopy.smooth(ds=ds, method='savitsky', window_length=3, polyorder=1) # display dataset print(ds) ###Output _____no_output_____ ###Markdown Upper envelope correctiontodo ###Code # todo ###Output _____no_output_____ ###Markdown Calculate number of seasons ###Code # chunk dask to -1 to make compatible with this function ds = ds.chunk({'time': -1}) # take our dask ds and smooth using savitsky golay filter da_num_seasons = phenolopy.calc_num_seasons(ds=ds) # display dataset print(da_num_seasons) ###Output _____no_output_____ ###Markdown Calculate Phenolometrics ###Code # compute ds = ds.compute() print(ds) %autoreload # calc phenometrics via phenolopy! ds_phenos = phenolopy.calc_phenometrics(da=ds['veg_index'], peak_metric='pos', base_metric='vos', method='seasonal_amplitude', factor=0.2, thresh_sides='two_sided', abs_value=0.1) # set the metric you want to view metric_name = 'lios_values' # plot this on map ds_phenos[metric_name].plot(robust=True, cmap='Spectral') from datacube.drivers.netcdf import write_dataset_to_netcdf write_dataset_to_netcdf(ds_phenos, 'roy_2017_1w_phenos.nc') ###Output _____no_output_____ ###Markdown Testing ###Code # set up params import random import shutil # set output filename filename = 'roy_2_p_pos_b_vos_seas_amp_f_015' # set seed random.seed(50) # gen random x and y lists for specified num pixels (e.g. 250 x, 250 y) n_pixels = 200 x_list = random.sample(range(0, len(ds_phenos['x'])), n_pixels) y_list = random.sample(range(0, len(ds_phenos['y'])), n_pixels) def run_test(ds_raw, ds_phen, filename, x_list, y_list): # loop through each pixel pair for x, y in zip(x_list, y_list): # get pixel and associate phenos pixel v = ds_raw.isel(x=x, y=y) p = ds_phen.isel(x=x, y=y) # create fig fig = plt.figure(figsize=(12, 5)) # plot main trend plt.plot(v['time.dayofyear'], v['veg_index'], linestyle='solid', marker='.', color='black') # plot pos vals and times plt.plot(p['pos_times'], p['pos_values'], marker='o', linestyle='', color='blue', label='POS') plt.annotate('POS', (p['pos_times'], p['pos_values'])) # plot vos vals and times plt.plot(p['vos_times'], p['vos_values'], marker='o', linestyle='', color='darkred', label='VOS') plt.annotate('VOS', (p['vos_times'], p['vos_values'])) # plot bse vals plt.axhline(p['bse_values'], marker='', linestyle='dashed', color='red', label='BSE') # add legend # plot sos vals and times plt.plot(p['sos_times'], p['sos_values'], marker='s', linestyle='', color='green', label='SOS') plt.annotate('SOS', (p['sos_times'], p['sos_values'])) # plot eos vals and times plt.plot(p['eos_times'], p['eos_values'], marker='s', linestyle='', color='orange', label='EOS') plt.annotate('EOS', (p['eos_times'], p['eos_values'])) # plot aos vals plt.axvline(p['pos_times'], marker='', color='magenta', linestyle='dotted', label='AOS') # plot los vals plt.axhline((p['sos_values'] + p['eos_values']) / 2, marker='', color='yellowgreen', linestyle='dashdot', label='LOS') # plot sios plt.fill_between(v['time.dayofyear'], v['veg_index'], y2=p['bse_values'], color='red', alpha=0.1, label='SIOS') # plot lios t = ~v.where((v['time.dayofyear'] >= p['sos_times']) & (v['time.dayofyear'] <= p['eos_times'])).isnull() plt.fill_between(v['time.dayofyear'], v['veg_index'], where=t['veg_index'], color='yellow', alpha=0.2, label='LIOS') # plot siot plt.fill_between(v['time.dayofyear'], v['veg_index'], y2=p['bse_values'], color='aqua', alpha=0.3, label='SIOT') # plot liot plt.fill_between(v['time.dayofyear'], v['veg_index'], color='aqua', alpha=0.1, label='LIOT') # add legend plt.legend(loc='best') # create output filename out = os.path.join('testing', filename + '_x_' + str(x) + '_y_' + str(y) + '.jpg') # save to file without plotting fig.savefig(out) plt.close() # export as zip shutil.make_archive(filename + '.zip', 'zip', './testing') # clear all files in dir for root, dirs, files in os.walk('./testing'): for file in files: os.remove(os.path.join(root, file)) # perform test run_test(ds_raw=ds, ds_phen=ds_phenos, filename=filename, x_list=x_list, y_list=y_list) from datacube.utils.cog import write_cog write_cog(geo_im=ds_phenos['lios_values'], fname='lios.tif', overwrite=True) ###Output _____no_output_____ ###Markdown Working ###Code # different types of detection, using stl residuals - remove outlier method #from scipy.stats import median_absolute_deviation #v = ds.isel(x=0, y=0, time=slice(0, 69)) #v['veg_index'].data = data #v_med = remove_outliers(v, method='median', user_factor=1, num_dates_per_year=24, z_pval=0.05) #v_zsc = remove_outliers(v, method='zscore', user_factor=1, num_dates_per_year=24, z_pval=0.1) #stl_res = stl(v['veg_index'], period=24, seasonal=5, robust=True).fit() #v_rsd = stl_res.resid #v_wgt = stl_res.weights #o = v.copy() #o['veg_index'].data = v_rsd #w = v.copy() #w['veg_index'].data = v_wgt #m = xr.where(o > o.std('time'), True, False) #o = v.where(m) #m = xr.where(w < 1e-8, True, False) #w = v.where(m) #fig = plt.figure(figsize=(18, 7)) #plt.plot(v['time'], v['veg_index'], color='black', marker='o') #plt.plot(o['time'], o['veg_index'], color='red', marker='o', linestyle='-') #plt.plot(w['time'], w['veg_index'], color='blue', marker='o', linestyle='-') #plt.axhline(y=float(o['veg_index'].std('time'))) #plt.show() # working method for stl outlier dection. can't quite get it to match timesat results? # need to speed this up - very slow for even relatively small datasets #def func_stl(vec, period, seasonal, jump_l, jump_s, jump_t): #resid = stl(vec, period=period, seasonal=seasonal, #seasonal_jump=jump_s, trend_jump=jump_t, low_pass_jump=jump_l).fit() #return resid.resid #def do_stl_apply(da, multi_pct, period, seasonal): # calc jump size for lowpass, season and trend to speed up processing #jump_l = int(multi_pct * (period + 1)) #jump_s = int(multi_pct * (period + 1)) #jump_t = int(multi_pct * 1.5 * (period + 1)) #f = xr.apply_ufunc(func_stl, da, #input_core_dims=[['time']], #output_core_dims=[['time']], #vectorize=True, dask='parallelized', #output_dtypes=[ds['veg_index'].dtype], #kwargs={'period': period, 'seasonal': seasonal, #'jump_l': jump_l, 'jump_s': jump_s, 'jump_t': jump_t}) #return f # chunk up to make use of dask parallel #ds = ds.chunk({'time': -1}) # calculate residuals for each vector stl #stl_resids = do_stl_apply(ds['veg_index'], multi_pct=0.15, period=24, seasonal=13) #s = ds['veg_index'].stack(z=('x', 'y')) #s = s.chunk({'time': -1}) #s = s.groupby('z').map(func_stl) #out = out.unstack() #s = ds.chunk({'time': -1}) #t = xr.full_like(ds['veg_index'], np.nan) #out = xr.map_blocks(func_stl, ds['veg_index'], template=t).compute() #stl_resids = stl_resids.compute() # working double logistic - messy though # https://colab.research.google.com/github/1mikegrn/pyGC/blob/master/colab/Asymmetric_GC_integration.ipynb#scrollTo=upaYKFdBGEAo # see for asym gaussian example #da = v.where(v['time.year'] == 2016, drop=True) #def logi(x, a, b, c, d): #return a / (1 + xr.ufuncs.exp(-c * (x - d))) + b # get date at max veg index #idx = int(da['veg_index'].argmax()) # get left and right of peak of season #da_l = da.where(da['time'] <= da['time'].isel(time=idx), drop=True) #da_r = da.where(da['time'] >= da['time'].isel(time=idx), drop=True) # must sort right curve (da_r) descending to flip data #da_r = da_r.sortby(da_r['time'], ascending=False) # get indexes of times (times not compat with exp) #da_l_x_idxs = np.arange(1, len(da_l['time']) + 1, step=1) #da_r_x_idxs = np.arange(1, len(da_r['time']) + 1, step=1) # fit curve #popt_l, pcov_l = curve_fit(logi, da_l_x_idxs, da_l['veg_index'], method="trf") #popt_r, pcov_r = curve_fit(logi, da_r_x_idxs, da_r['veg_index'], method="trf") # apply fit to original data #da_fit_l = logi(da_l_x_idxs, *popt_l) #da_fit_r = logi(da_r_x_idxs, *popt_r) # flip fitted vector back to original da order #da_fit_r = np.flip(da_fit_r) # get mean of pos value, remove overlap between l and r #pos_mean = (da_fit_l[-1] + da_fit_r[0]) / 2 #da_fit_l = np.delete(da_fit_l, -1) #da_fit_r = np.delete(da_fit_r, 1) # concat back together with mean val inbetween #da_logi = np.concatenate([da_fit_l, pos_mean, da_fit_r], axis=None) # smooth final curve with mild savgol #da_logi = savgol_filter(da_logi, 3, 1) #fig = plt.subplots(1, 1, figsize=(6, 4)) #plt.plot(da['time'], da['veg_index'], 'o') #plt.plot(da['time'], da_logi) #from scipy.signal import find_peaks #x, y = 0, 1 #v = da.isel(x=x, y=y) #height = float(v.quantile(dim='time', q=0.75)) #distance = math.ceil(len(v['time']) / 4) #p = find_peaks(v, height=height, distance=distance)[0] #p_dts = v['time'].isel(time=p) #for p_dt in p_dts: #plt.axvline(p_dt['time'].dt.dayofyear, color='black', linestyle='--') #count_peaks = len(num_peaks[0]) #if count_peaks > 0: #return count_peaks #else: #return 0 #plt.plot(v['time.dayofyear'], v) # flip to get min closest to pos # if we want closest sos val to pos we flip instead to trick argmin #flip = dists_sos_v.sortby(dists_sos_v['time'], ascending=False) #min_right = flip.isel(time=flip.argmin('time')) #temp_pos_cls = da.isel(x=x, y=0).where(da['time'] == min_right['time'].isel(x=x, y=0)) #plt.plot(temp_pos_cls.time, temp_pos_cls, marker='o', color='black', alpha=0.25) ###Output _____no_output_____
tutorials/test_functions/piston/piston_example.ipynb
###Markdown Active Subspaces Example Function: Piston Cycle Time Ryan Howard, CO School of Mines, Paul Constantine, CO School of Mines, In this tutorial, we'll be applying active subspaces to the function$$C = 2\pi\sqrt{\frac{M}{k+S^2\frac{P_0V_0}{T_0}\frac{T_a}{V^2}}},$$where $$V = \frac{S}{2k}\left(\sqrt{A^2+4k\frac{P_0V_0}{T_0}T_a}-A\right),\\A=P_0S+19.62M-\frac{kV_0}{S},$$as seen on [http://www.sfu.ca/~ssurjano/piston.html](http://www.sfu.ca/~ssurjano/piston.html). This function models the cycle time of a piston within a cylinder, and its inputs and their distributions are described in the table below.Variable|Symbol|Distribution (U(min, max)):-----|:-----:|:-----piston Weight|$M$|U(30, 60)piston Surface Area|$S$|U(.005, .02)initial Gas Volume|$V_0$|U(.002, .01)spring Coefficient|$k$|U(1000, 5000)atmospheric Pressure|$P_0$|U(90000, 110000)ambient Temperature|$T_a$|U(290, 296)filling Gas Temperature|$T_0$|U(340, 360) ###Code import active_subspaces as ac import numpy as np %matplotlib inline # The piston_functions.py file contains two functions: the piston function (piston(xx)) # and its gradient (piston_grad(xx)). Each takes an Mx7 matrix (M is the number of data # points) with rows being normalized inputs; piston returns a column vector of function # values at each row of the input and piston_grad returns a matrix whose ith row is the # gradient of piston at the ith row of xx with respect to the normalized inputs from piston_functions import * ###Output _____no_output_____ ###Markdown First we draw M samples randomly from the input space. ###Code M = 1000 #This is the number of data points to use #Sample the input space according to the distributions in the table above M0 = np.random.uniform(30, 60, (M, 1)) S = np.random.uniform(.005, .02, (M, 1)) V0 = np.random.uniform(.002, .01, (M, 1)) k = np.random.uniform(1000, 5000, (M, 1)) P0 = np.random.uniform(90000, 110000, (M, 1)) Ta = np.random.uniform(290, 296, (M, 1)) T0 = np.random.uniform(340, 360, (M, 1)) #the input matrix x = np.hstack((M0, S, V0, k, P0, Ta, T0)) ###Output _____no_output_____ ###Markdown Now we normalize the inputs, linearly scaling each to the interval $[-1, 1]$. ###Code #Upper and lower limits for inputs xl = np.array([30, .005, .002, 1000, 90000, 290, 340]) xu = np.array([60, .02, .01, 5000, 110000, 296, 360]) #XX = normalized input matrix XX = ac.utils.misc.BoundedNormalizer(xl, xu).normalize(x) ###Output _____no_output_____ ###Markdown Compute gradients to approximate the matrix on which the active subspace is based. ###Code #output values (f) and gradients (df) f = piston(XX) df = piston_grad(XX) ###Output _____no_output_____ ###Markdown Now we use our data to compute the active subspace. ###Code #Set up our subspace using the gradient samples ss = ac.subspaces.Subspaces() ss.compute(df=df, nboot=500) ###Output _____no_output_____ ###Markdown We use plotting utilities to plot eigenvalues, subspace error, components of the first 2 eigenvectors, and 1D and 2D sufficient summary plots (plots of function values vs. active variable values). ###Code #Component labels in_labels = ['M', 'S', 'V0', 'k', 'P0', 'Ta', 'T0'] #plot eigenvalues, subspace errors ac.utils.plotters.eigenvalues(ss.eigenvals, ss.e_br) ac.utils.plotters.subspace_errors(ss.sub_br) #manually make the subspace 2D for the eigenvector and 2D summary plots ss.partition(2) #Compute the active variable values y = XX.dot(ss.W1) #Plot eigenvectors, sufficient summaries ac.utils.plotters.eigenvectors(ss.W1, in_labels=in_labels) ac.utils.plotters.sufficient_summary(y, f) ###Output _____no_output_____ ###Markdown Active Subspaces Example Function: Piston Cycle Time Ryan Howard, CO School of Mines, Paul Constantine, CO School of Mines, In this tutorial, we'll be applying active subspaces to the function$$C = 2\pi\sqrt{\frac{M}{k+S^2\frac{P_0V_0}{T_0}\frac{T_a}{V^2}}},$$where $$V = \frac{S}{2k}\left(\sqrt{A^2+4k\frac{P_0V_0}{T_0}T_a}-A\right),\\A=P_0S+19.62M-\frac{kV_0}{S},$$as seen on [http://www.sfu.ca/~ssurjano/piston.html](http://www.sfu.ca/~ssurjano/piston.html). This function models the cycle time of a piston within a cylinder, and its inputs and their distributions are described in the table below.Variable|Symbol|Distribution (U(min, max)):-----|:-----:|:-----piston Weight|$M$|U(30, 60)piston Surface Area|$S$|U(.005, .02)initial Gas Volume|$V_0$|U(.002, .01)spring Coefficient|$k$|U(1000, 5000)atmospheric Pressure|$P_0$|U(90000, 110000)ambient Temperature|$T_a$|U(290, 296)filling Gas Temperature|$T_0$|U(340, 360) ###Code import active_subspaces as ac import numpy as np %matplotlib inline # The piston_functions.py file contains two functions: the piston function (piston(xx)) # and its gradient (piston_grad(xx)). Each takes an Mx7 matrix (M is the number of data # points) with rows being normalized inputs; piston returns a column vector of function # values at each row of the input and piston_grad returns a matrix whose ith row is the # gradient of piston at the ith row of xx with respect to the normalized inputs from piston_functions import * ###Output _____no_output_____ ###Markdown First we draw M samples randomly from the input space. ###Code M = 1000 #This is the number of data points to use #Sample the input space according to the distributions in the table above M0 = np.random.uniform(30, 60, (M, 1)) S = np.random.uniform(.005, .02, (M, 1)) V0 = np.random.uniform(.002, .01, (M, 1)) k = np.random.uniform(1000, 5000, (M, 1)) P0 = np.random.uniform(90000, 110000, (M, 1)) Ta = np.random.uniform(290, 296, (M, 1)) T0 = np.random.uniform(340, 360, (M, 1)) #the input matrix x = np.hstack((M0, S, V0, k, P0, Ta, T0)) ###Output _____no_output_____ ###Markdown Now we normalize the inputs, linearly scaling each to the interval $[-1, 1]$. ###Code #Upper and lower limits for inputs xl = np.array([30, .005, .002, 1000, 90000, 290, 340]) xu = np.array([60, .02, .01, 5000, 110000, 296, 360]) #XX = normalized input matrix XX = ac.utils.misc.BoundedNormalizer(xl, xu).normalize(x) ###Output _____no_output_____ ###Markdown Compute gradients to approximate the matrix on which the active subspace is based. ###Code #output values (f) and gradients (df) f = piston(XX) df = piston_grad(XX) ###Output _____no_output_____ ###Markdown Now we use our data to compute the active subspace. ###Code #Set up our subspace using the gradient samples ss = ac.subspaces.Subspaces() ss.compute(df=df, nboot=500) ###Output n should be an integer. Performing conversion. ###Markdown We use plotting utilities to plot eigenvalues, subspace error, components of the first 2 eigenvectors, and 1D and 2D sufficient summary plots (plots of function values vs. active variable values). ###Code #Component labels in_labels = ['M', 'S', 'V0', 'k', 'P0', 'Ta', 'T0'] #plot eigenvalues, subspace errors ac.utils.plotters.eigenvalues(ss.eigenvals, ss.e_br) ac.utils.plotters.subspace_errors(ss.sub_br) #manually make the subspace 2D for the eigenvector and 2D summary plots ss.partition(2) #Compute the active variable values y = XX.dot(ss.W1) #Plot eigenvectors, sufficient summaries ac.utils.plotters.eigenvectors(ss.W1, in_labels=in_labels) ac.utils.plotters.sufficient_summary(y, f) ###Output /opt/conda/lib/python3.6/site-packages/matplotlib/font_manager.py:1331: UserWarning: findfont: Font family ['arial'] not found. Falling back to DejaVu Sans (prop.get_family(), self.defaultFamily[fontext]))
AWS/AmazonTranscribe/aws-transcribe.ipynb
###Markdown AWS TranscribeTranscribe an audio file to text.AWS Transcribe DocumentationThis notebook uploads an audio file to S3, transcribes it, and then deletes the file from S3. ###Code import boto3 import time import json import urllib.request def aws_s3_upload(file_name, bucket_name): s3 = boto3.resource('s3') # Create bucket if it doesn't already exist bucket_names = [b.name for b in s3.buckets.all()] if bucket_name not in bucket_names: s3.create_bucket(Bucket=bucket_name, CreateBucketConfiguration={'LocationConstraint': 'EU'}) print("Bucket {} created.".format(bucket_name)) s3.meta.client.upload_file(file_name, bucket_name, file_name) print("{} uploaded to {}.".format(file_name, bucket_name)) return def aws_s3_delete(file_name, bucket_name, del_bucket=False): s3 = boto3.resource('s3') try: s3.meta.client.delete_object(Bucket=bucket_name, Key=file_name) print("{} deleted from {}.".format(file_name, bucket_name)) except: print("Unable to delete {} from {}.".format(file_name, bucket_name)) if del_bucket: try: s3.meta.client.delete_bucket(Bucket=bucket_name) print("Bucket {} deleted.".format(bucket_name)) except: print("Unable to delete bucket {}.".format(bucket_name)) return def aws_transcribe(file_name, bucket_name): client = boto3.client(service_name='transcribe', region_name='eu-west-1', use_ssl=True) job_name = 'example_%s' % round(time.time()) job_uri = 's3://%s/%s' % (bucket_name, file_name) client.start_transcription_job( TranscriptionJobName=job_name, Media={'MediaFileUri': job_uri}, MediaFormat=file_name[-3:], LanguageCode='en-US' ) tic = time.time() while True: status = client.get_transcription_job(TranscriptionJobName=job_name) if status['TranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED', 'FAILED']: break toc = time.time() print("Transcription still processing... cumulative run time: {:.1f}s".format(toc-tic)) time.sleep(10) print("Transcription completed! Total run time: {:.1f}s".format(toc-tic)) json_url = status['TranscriptionJob']['Transcript']['TranscriptFileUri'] with urllib.request.urlopen(json_url) as url: text = json.loads(url.read().decode()) return text['results']['transcripts'][0]['transcript'] file_name = 'the_raven.mp3' bucket_name = 'your_bucket_name' aws_s3_upload(file_name, bucket_name) result = aws_transcribe(file_name, bucket_name) aws_s3_delete(file_name, bucket_name) # Print transcription print(result) ###Output Once upon a midnight dreary, while i pondered, weak and weary over many a quaint and curious volume of forgotten law, while i nodded, nearly napping. Suddenly there came a tapping as of someone gently rapping, rapping at my chamber door. To some visitor, i muttered, tapping at my chamber door. Only this and nothing more.
code/cookie_syncing_heuristic.ipynb
###Markdown Helper function for getting identifiers ###Code def get_identifier_cookies(cookie_string, cookie_length = 8): cookie_set = set() for cookie in cookie_string.split('\n'): cookie = cookie.split(';')[0] if cookie.count('=') >= 1: cookie = cookie.split('=', 1) cookie_set |= set(re.split('[^a-zA-Z0-9_=-]', cookie[1])) cookie_set.add(cookie[0]) else: cookie_set |= set(re.split('[^a-zA-Z0-9_=-]', cookie)) # remove cookies with length < 8 cookie_set = set([s for s in list(cookie_set) if len(s) >= cookie_length]) return cookie_set def get_identifiers_from_qs(url, qs_item_length = 8): qs = URLparse.parse_qsl(URLparse.urlsplit(url).query) qs_set = set() for item in qs: qs_set |= set(re.split('[^a-zA-Z0-9_=-]', item[0])) qs_set |= set(re.split('[^a-zA-Z0-9_=-]', item[1])) qs_set = set([s for s in list(qs_set) if len(s) >= qs_item_length]) return qs_set def get_identifiers_from_uncommon_headers(header_prop, item_length = 8): splitted_header_prop_set = set() splitted_header_prop = set(re.split('[^a-zA-Z0-9_=-]', header_prop)) splitted_header_prop_set = set([s for s in list(splitted_header_prop) if len(s) >= item_length]) return splitted_header_prop_set def get_domain_or_hostname(url): # we stop if we cannot retrieve the domain or hostanmes # we won't be able to link domains/hostnames if they are empty or unavailable current_domain_or_hostname = du.get_ps_plus_1(url) if current_domain_or_hostname == '' or current_domain_or_hostname == None: current_domain_or_hostname = du.urlparse(url).hostname if current_domain_or_hostname == '' or current_domain_or_hostname == None: return False, '' return True, current_domain_or_hostname known_http_headers = set() known_http_headers_raw = utilities.read_file_newline_stripped('common_headers.txt') for item in known_http_headers_raw: if item.strip() != '': known_http_headers.add(item.strip().lower()) def check_csync_events(identifiers, next_identifiers, key, current_domain_or_hostname, next_url, csync_domains): for identifier in identifiers: next_domain_or_hostname = get_domain_or_hostname(next_url) if not next_domain_or_hostname[0]: break next_domain_or_hostname = next_domain_or_hostname[1] domain_domain = current_domain_or_hostname + '|' + next_domain_or_hostname if domain_domain not in csync_domains: csync_domains[domain_domain] = {} csync_domains[domain_domain]['chains'] = [] csync_domains[domain_domain]['b64_chains'] = [] csync_domains[domain_domain]['md5_chains'] = [] csync_domains[domain_domain]['sha1_chains'] = [] base64_identifier = base64.b64encode(identifier.encode('utf-8')).decode('utf8') md5_identifier = hashlib.md5(identifier.encode('utf-8')).hexdigest() sha1_identifier = hashlib.sha1(identifier.encode('utf-8')).hexdigest() if identifier in next_url or identifier in next_identifiers: csync_domains[domain_domain]['chains'].append({'chain': key, 'identifier': identifier}) elif base64_identifier in next_url or base64_identifier in next_identifiers: csync_domains[domain_domain]['b64_chains'].append({'chain':key, 'identifier': identifier, 'encoded': base64_identifier}) elif md5_identifier in next_url or md5_identifier in next_identifiers: csync_domains[domain_domain]['md5_chains'].append({'chain':key, 'identifier': identifier, 'encoded': md5_identifier}) elif sha1_identifier in next_url or sha1_identifier in next_identifiers: csync_domains[domain_domain]['sha1_chains'].append({'chain':key, 'identifier': identifier, 'encoded': sha1_identifier}) return csync_domains ###Output _____no_output_____ ###Markdown Cookie syncing identification code ###Code def run_csync_heuristic(json_representation, known_http_headers, csync_domains): pbar = tqdm(total=len(json_representation), position=0, leave=True) for key in json_representation: pbar.update(1) for idx, item in enumerate(json_representation[key]['content']): current_url = item['url'] current_referrer = item['referrer'] current_identifiers = set() current_domain_or_hostname = get_domain_or_hostname(current_url) if not current_domain_or_hostname[0]: continue current_domain_or_hostname = current_domain_or_hostname[1] sent_cookies = '' for s_item in item['request_headers']: if s_item[0].lower() == 'cookie': current_identifiers |= get_identifier_cookies(s_item[1]) if s_item[0].lower() not in known_http_headers: current_identifiers |= get_identifiers_from_uncommon_headers(s_item[1]) recieved_cookies = '' for s_item in item['response_headers']: if s_item[0].lower() == 'set-cookie': current_identifiers |= get_identifier_cookies(s_item[1]) if s_item[0].lower() not in known_http_headers: current_identifiers |= get_identifiers_from_uncommon_headers(s_item[1]) current_identifiers |= get_identifiers_from_qs(current_url) current_identifiers |= get_identifiers_from_qs(current_referrer) if key.startswith('J|'): end = len(json_representation[key]['content']) else: end = idx + 2 if end > len(json_representation[key]['content']): continue for item_1 in json_representation[key]['content'][idx+1:end]: next_url = item_1['url'] next_headers = item_1['request_headers'] next_identifiers = set() for s_item in next_headers: if s_item[0].lower() == 'cookie': next_identifiers |= get_identifier_cookies(s_item[1]) if s_item[0].lower() not in known_http_headers: next_identifiers |= get_identifiers_from_uncommon_headers(s_item[1]) csync_domains = check_csync_events(current_identifiers, next_identifiers, key, current_domain_or_hostname, next_url, csync_domains) return csync_domains current_csync = {} current_csync = run_csync_heuristic(http_chains, known_http_headers, results_dict, current_csync) current_csync = run_csync_heuristic(js_chains, known_http_headers, results_dict, current_csync) ###Output _____no_output_____ ###Markdown Clean up cysnc events ###Code def cysnc_clean_up(csync_domains): to_delete = set() for domain_domain in csync_domains: if len(csync_domains[domain_domain]['chains']) == 0 and \ len(csync_domains[domain_domain]['b64_chains']) == 0 and \ len(csync_domains[domain_domain]['md5_chains']) == 0 and \ len(csync_domains[domain_domain]['sha1_chains']) == 0: to_delete.add(domain_domain) for key in to_delete: del csync_domains[key] return csync_domains print(len(current_csync)) current_csync = cysnc_clean_up(current_csync) print(len(current_csync)) ###Output _____no_output_____ ###Markdown Helper function for cookie syncing statistics ###Code def count_csync_events(_from, _to, sending_json_obj, receiving_json_obj): if _from not in sending_json_obj: sending_json_obj[_from] = {} sending_json_obj[_from]['count'] = 1 sending_json_obj[_from]['domains'] = set({_to}) else: sending_json_obj[_from]['count'] += 1 sending_json_obj[_from]['domains'].add(_to) if _to not in receiving_json_obj: receiving_json_obj[_to] = {} receiving_json_obj[_to]['count'] = 1 receiving_json_obj[_to]['domains'] = set({_from}) else: receiving_json_obj[_to]['count'] += 1 receiving_json_obj[_to]['domains'].add(_from) return sending_json_obj, receiving_json_obj def get_csynced_chains(chains, chains_synced): for item in chains: if item['chain'] not in chains_synced: chains_synced[item['chain']] = {} chains_synced[item['chain']]['count'] = 1 else: chains_synced[item['chain']]['count'] += 1 # break return chains_synced def get_unique_domains_in_chains(json_representation, khaleesi_detections): all_domains = set() for key in json_representation: if key not in khaleesi_detections: continue for idx, item in enumerate(json_representation[key]['content']): current_domain_or_hostname = get_domain_or_hostname(item['url']) if not current_domain_or_hostname[0]: continue all_domains.add(current_domain_or_hostname[1]) return all_domains ###Output _____no_output_____ ###Markdown Finding cookie syncing stats ###Code def compute_csync_stats(csync_domains, no_of_chains, no_of_domains): all_domains = set() sending_to = {} recieved_from = {} b64_sending_to = {} b64_recieved_from = {} md5_sending_to = {} md5_recieved_from = {} sha1_sending_to = {} sha1_recieved_from = {} chains_synced_simple = {} chains_synced_b64 = {} chains_synced_md5 = {} chains_synced_sha1 = {} for domain_domain in csync_domains: _from = domain_domain.split('|')[0] _to = domain_domain.split('|')[1] if _from == _to: continue if len(csync_domains[domain_domain]['chains']) > 0: sending_to, recieved_from = count_csync_events(_from, _to, sending_to, recieved_from) chains_synced_simple = get_csynced_chains(csync_domains[domain_domain]['chains'], chains_synced_simple) if len(csync_domains[domain_domain]['b64_chains']) > 0: sending_to, recieved_from = count_csync_events(_from, _to, sending_to, recieved_from) b64_sending_to, b64_recieved_from = count_csync_events(_from, _to, b64_sending_to, b64_recieved_from) chains_synced_b64 = get_csynced_chains(csync_domains[domain_domain]['b64_chains'], chains_synced_b64) if len(csync_domains[domain_domain]['md5_chains']) > 0: sending_to, recieved_from = count_csync_events(_from, _to, sending_to, recieved_from) md5_sending_to, md5_recieved_from = count_csync_events(_from, _to, md5_sending_to, md5_recieved_from) chains_synced_md5 = get_csynced_chains(csync_domains[domain_domain]['md5_chains'], chains_synced_md5) if len(csync_domains[domain_domain]['sha1_chains']) > 0: sending_to, recieved_from = count_csync_events(_from, _to, sending_to, recieved_from) sha1_sending_to, sha1_recieved_from = count_csync_events(_from, _to, sha1_sending_to, sha1_recieved_from) chains_synced_sha1 = get_csynced_chains(csync_domains[domain_domain]['sha1_chains'], chains_synced_sha1) # csync domain statistics csync_domains = set(sending_to.keys()).union(set(recieved_from.keys())).\ union(set(b64_sending_to.keys())).union(set(b64_recieved_from.keys())).\ union(set(md5_sending_to.keys())).union(set(md5_recieved_from.keys())).\ union(set(sha1_sending_to.keys())).union(set(sha1_recieved_from.keys())) # csync chain statistics csync_chains = set(chains_synced_simple.keys()).union(set(chains_synced_b64.keys()))\ .union(set(chains_synced_md5.keys()))\ .union(set(chains_synced_sha1.keys())) # csync encoded chain statistics csync_encoded = set(b64_sending_to.keys()).union(set(b64_recieved_from.keys()))\ .union(set(md5_sending_to.keys())).union(set(md5_recieved_from.keys()))\ .union(set(sha1_sending_to.keys())).union(set(sha1_recieved_from.keys())) # encoded cookie syncing stats can also be returned return csync_domains, sending_to, recieved_from csync_domains, sending_to, recieved_from = compute_csync_stats(current_csync) ###Output _____no_output_____ ###Markdown Print top csync domains ###Code def print_table(json_obj, count_limit = 20): count = 0 t = PrettyTable(['Domains', 'Csync count']) for key in json_obj: count += 1 if count <= count_limit: t.add_row([key, json_obj[key]['count']]) print(t) def average_sharing(syncing_domains): total = 0 for key in syncing_domains: total += syncing_domains[key]['count'] print(total / len(syncing_domains)) def get_top_csyncs(sending_to, recieved_from): sending_to_sorted = OrderedDict(sorted(sending_to.items(), key=lambda k: k[1]['count'], reverse=True)) recieved_from_sorted = OrderedDict(sorted(recieved_from.items(), key=lambda k: k[1]['count'], reverse=True)) print_table(sending_to_sorted) average_sharing(sending_to) print_table(recieved_from_sorted) average_sharing(recieved_from) get_top_csyncs(sending_to, recieved_from) ###Output _____no_output_____
notebooks/graph_algos/attrib2vec/corpus 2020 audience_overlap lvl data 2.ipynb
###Markdown Load audience overlap edges for level 2 ###Code level = 2 audience_overlap_sites = load_level_data(os.path.join(_ALEXA_DATA_PATH, 'corpus_2020_audience_overlap_sites_scrapping_result.json'), level=level) audience_overlap_sites_NODES = create_audience_overlap_nodes(audience_overlap_sites) print(audience_overlap_sites_NODES[:5]) edge_df = pd.DataFrame(audience_overlap_sites_NODES, columns=['source', 'target']) edge_df.head() ###Output _____no_output_____ ###Markdown Find all unique nodes in edges ###Code nodes_in_edges = list(set(edge_df.source.unique().tolist() + edge_df.target.unique().tolist())) print('Number of unique nodes in edges:', len(nodes_in_edges), 'Sample:', nodes_in_edges[:5]) ###Output Number of unique nodes in edges: 26573 Sample: ['herasblog.com', '10bestalternatives.com', 'worldfootball.net', 'ksn.com', 'americanbar.org'] ###Markdown 1. Load all node features ###Code node_features_df = load_node_features() node_features_df = node_features_df.set_index('site') node_features_df.head() ###Output _____no_output_____ ###Markdown Subset node_features ###Code node_features_df = node_features_df.loc[nodes_in_edges] node_features_df.info() ###Output <class 'pandas.core.frame.DataFrame'> Index: 26573 entries, herasblog.com to procuresearch.center Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 alexa_rank 17677 non-null float64 1 daily_pageviews_per_visitor 17684 non-null float64 2 daily_time_on_site 11799 non-null float64 3 total_sites_linking_in 25446 non-null float64 4 bounce_rate 10665 non-null float64 dtypes: float64(5) memory usage: 1.2+ MB ###Markdown 2. Fill all missing alexa_rank and total_sites_linking_in with 0 ###Code node_features_df.alexa_rank = node_features_df.alexa_rank.fillna(0) node_features_df.total_sites_linking_in = node_features_df.total_sites_linking_in.fillna(0) node_features_df.info() ###Output <class 'pandas.core.frame.DataFrame'> Index: 26573 entries, herasblog.com to procuresearch.center Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 alexa_rank 26573 non-null float64 1 daily_pageviews_per_visitor 17684 non-null float64 2 daily_time_on_site 11799 non-null float64 3 total_sites_linking_in 26573 non-null float64 4 bounce_rate 10665 non-null float64 dtypes: float64(5) memory usage: 1.2+ MB ###Markdown 3. Normalizing features ###Code import math node_features_df['normalized_alexa_rank'] = node_features_df['alexa_rank'].apply(lambda x: 1/x if x else 0) node_features_df['normalized_total_sites_linked_in'] = node_features_df['total_sites_linking_in'].apply(lambda x: math.log2(x) if x else 0) ###Output _____no_output_____ ###Markdown Create Graph ###Code import stellargraph as sg G = sg.StellarGraph(nodes=node_features_df.loc[nodes_in_edges, ['normalized_alexa_rank', 'normalized_total_sites_linked_in']], edges=edge_df) print(G.info()) ###Output StellarGraph: Undirected multigraph Nodes: 26573, Edges: 49372 Node types: default: [26573] Features: float32 vector, length 2 Edge types: default-default->default Edge types: default-default->default: [49372] Weights: all 1 (default) Features: none ###Markdown Unsupervised Attrib2Vec ###Code from stellargraph.mapper import Attri2VecLinkGenerator, Attri2VecNodeGenerator from stellargraph.layer import Attri2Vec, link_classification from stellargraph.data import UnsupervisedSampler from tensorflow import keras # 1. Specify the other optional parameter values: root nodes, the number of walks to take per node, the length of each walk, and random seed. nodes = list(G.nodes()) number_of_walks = 1 length = 5 # 2. Create the UnsupervisedSampler instance with the relevant parameters passed to it. unsupervised_samples = UnsupervisedSampler(G, nodes=nodes, length=length, number_of_walks=number_of_walks) # 3. Create a node pair generator: batch_size = 50 epochs = 4 num_samples = [10, 5] generator = Attri2VecLinkGenerator(G, batch_size) train_gen = generator.flow(unsupervised_samples) layer_sizes = [128] attri2vec = Attri2Vec(layer_sizes=layer_sizes, generator=generator, bias=False, normalize=None) # Build the model and expose input and output sockets of attri2vec, for node pair inputs: x_inp, x_out = attri2vec.in_out_tensors() prediction = link_classification(output_dim=1, output_act="sigmoid", edge_embedding_method="ip")(x_out) model = keras.Model(inputs=x_inp, outputs=prediction) model.compile( optimizer=keras.optimizers.Adam(lr=1e-3), loss=keras.losses.binary_crossentropy, metrics=[keras.metrics.binary_accuracy], ) history = model.fit(train_gen, epochs=epochs, verbose=2, use_multiprocessing=False, workers=1, shuffle=True) x_inp_src = x_inp[0] x_out_src = x_out[0] embedding_model = keras.Model(inputs=x_inp_src, outputs=x_out_src) node_gen = Attri2VecNodeGenerator(G, batch_size).flow(node_features_df.index.tolist()) node_embeddings = embedding_model.predict(node_gen, workers=1, verbose=1) embeddings_wv = dict(zip(node_features_df.index.tolist(), node_embeddings.tolist())) print('Sample:', embeddings_wv['crooked.com'][:10], len(embeddings_wv['crooked.com'])) ###Output 532/532 [==============================] - 1s 2ms/step Sample: [1.4709429763115622e-07, 0.02666628360748291, 2.755252523911622e-07, 6.192561130546892e-08, 4.340579096151487e-08, 6.282406417312814e-08, 0.041838258504867554, 0.04803630709648132, 0.06210103631019592, 3.0991598123364383e-06] 128 ###Markdown Export embeddings as feature ###Code export_model_as_feature(embeddings_wv, f'attrib2vec_audience_overlap_level_{level}_epochs_{epochs}') run_experiment(features=f'attrib2vec_audience_overlap_level_{level}_epochs_{epochs}') run_experiment(features=f'attrib2vec_audience_overlap_level_{level}_epochs_{epochs}', task='bias') ###Output +------+---------+---------------------+---------------+--------------------+----------------------------------------------+ | task | dataset | classification_mode | type_training | normalize_features | features | +------+---------+---------------------+---------------+--------------------+----------------------------------------------+ | bias | acl2020 | single classifier | combine | False | attrib2vec_audience_overlap_level_2_epochs_4 | +------+---------+---------------------+---------------+--------------------+----------------------------------------------+
MAPS/other/SPCAM5_Other_Visualizations.ipynb
###Markdown Frozen moist static energy$FSME = \int_0^{P_s}c_p*T+g*z+L_v*q-L_f*q_{ice}$ Did not create output in SPCAM for this var - will maybe add to next run? Potential Temperature, $\theta$$\theta = T*(\frac{p_0}{p})^{\frac{R}{c_p}}$ ###Code def theta_gen(t_array, p_array): theta_array = t_array for i in range(len(p_array)): theta_array[:,i] = t_array[:,i]*(1013.25/p_array[i])**(287.0/1004.0) return theta_array theta = theta_gen(T, P) def plotting(datas, varname, title, levels): plt.plot(datas, levels, linewidth = 4) plt.ylabel('Pressure Level', fontsize = 20) plt.xlabel(varname, fontsize = 20) plt.gca().invert_yaxis() plt.title('Snapshot of '+title+' location') var = 'Potential Temperature (K)' location = 'surface' plotting(theta[0, :], var, location, P) ###Output _____no_output_____ ###Markdown Equivelent Potential Temperature, $\theta_e$$\theta_e = \theta e^{\frac{L*q}{c_p*T}}$ ###Code def theta_e_gen(t_array, q_array, p_array): theta_e_array = t_array theta_array = theta_gen(t_array, p_array) for i in range(len(theta_e_array)): for j in range(len(theta_e_array[i])): theta_e_array[i, j] = theta_array[i,j]*math.exp((2501000.0*q_array[i,j])/(1004.0*t_array[i,j])) return theta_e_array theta_e = theta_e_gen(T, Q, P) var = 'Equivelent Potential Temperature (K)' location = 'surface' plotting(theta_e[0, :], var, location, P) ###Output _____no_output_____ ###Markdown Integrated Sensible Heat $\frac{w}{m^2}$$SH = \int_0^{P_s} \frac{dp}{g}*c_p*T$ Not entirely sure if I am using Scipy's built in trapz function correctly, so for now, I will code a function for a numerical implementation of integration via trapziodal rule:$SH = \frac{cp}{g}\sum_{p=0}^{P_s}\frac{T_i+T_{i+1}}{2}*\delta p_i$ ###Code ps = test_ds.PS.values levs = np.squeeze(test_ds.lev.values) hyai = test_ds.hyai.values hybi = test_ds.hybi.values g = 9.81 cp = 1004.0 PS = 1e5 P0 = 1e5 P = P0*hyai+PS*hybi # Total pressure [Pa] dp = P[1:]-P[:-1] # Differential pressure [Pa] #convert from k/s to w/m^2 def vert_integral(values, diffs): integrated = np.zeros(shape=len(values)-1) integrated[:] = np.nan integrate = 0 for i in range(len(values)): for j in range(len(values[i])-1): integrate += 0.5*(values[i,j]+values[i, j+1])*diffs[j]*1004.0/9.81 integrated[i] = integrate integrate = 0 return integrated ###Output _____no_output_____ ###Markdown Integrated Latent Heat $\frac{w}{m^2}$$LH = \int_0^{P_s} \frac{dp}{g}*L_v*q$ Mass Weighted Integral w$W = \int_0^{P_s}dpw$ ###Code W = np.squeeze(test_ds.CRM_W.values) print(W.shape) ###Output (96, 30, 128)
SqlMetrics/Evangelist_Perf_Processing.ipynb
###Markdown Data Cleaning ###Code rawData = pd.read_csv('data/SqlMetric_prepared.csv') rawData.head() rawData.drop(['ActivityID', 'Event Name', 'criteria', 'Process Name'], axis=1, inplace=True) rawData.isnull().sum() rawData.dropna(inplace=True) print(rawData.isnull().sum()) print('Dataset shape: {}'.format(rawData.shape)) rawData.head() rawData['db_state'] = rawData['metrics'].apply(lambda x: x.split(' ')) rawData.drop(['metrics'], axis=1, inplace=True) print('Dataset shape: {}'.format(rawData.shape)) row = rawData.iloc[0,5] print('Metrics: {}'.format(row)) dic = {} for st in row: splitted = st.split(':') key = splitted[0] dic[key] = [] print('Parsing sql metrics') for index, row in rawData.iterrows(): metrics_row = row['db_state'] for i in range(0,4): st = metrics_row[i] splitted = st.split(':') key = 'Table_{}'.format(i+1) val = np.NaN if len(splitted)>1: val = int(splitted[1]) dic[key].append(val) print('Adding new metrics collumns') for key in dic.keys(): rawData[key] = dic[key] print('Drop db_state column') rawData.drop(['db_state'], axis=1, inplace=True) print('Parsing sql metrics finnised') print('Dataset shape: {}'.format(rawData.shape)) print(rawData.isnull().sum()) rawData.dropna(inplace=True) print('Dataset shape: {}'.format(rawData.shape)) rawData = rawData.applymap(lambda x: x.replace(',','') if type(x) is str or type(x) is object else x) rawData['is_cold_start'] = rawData['usn'].apply(lambda x: True if int(x) == 0 else False) rawData.drop(['usn', 'timestamp'], axis=1, inplace=True) rawData.rename(columns={'Time MSec': 'timestamp', 'DURATION_MSEC': 'duration'}, inplace=True) rawData['duration'] = rawData['duration'].apply(lambda x: float(x)) rawData.loc[:, 'second'] = rawData.loc[:, 'timestamp'].apply(lambda x: round(x/1000)) print(rawData.isnull().sum()) rawData.head() rawData.shape ###Output _____no_output_____ ###Markdown Studing data Decalre some helpers ###Code main_color = '#2a6e52' accent_color = '#6e4b2a' plt.rcParams["axes.grid"] = False plt.rcParams["axes.facecolor"] = '#fff' plt.rcParams["axes.edgecolor"] = '#222' plt.rcParams["lines.linewidth"] = 2 plt.rcParams["lines.color"] = main_color def get_top_calling_procedures(df_procedures, limit): top = df_procedures.groupby('viewName')['viewName'].count().sort_values(ascending=False) return df_procedures.loc[df_procedures['viewName'].isin(top[top>= 1000].keys())] def calculate_std(data): procedure_names = df['viewName'].unique() for p in procedure_names: proc = df.loc[df['viewName']== p] median = proc['duaration'].median() def draw_dependency_plot(df, tables): procedure_names = df['viewName'].unique() proc_num = range(len(procedure_names)) table_count = len(tables) proc_count = len(proc_num) rowsCount = table_count + proc_count fig, ax = plt.subplots(rowsCount,1,figsize=(20,rowsCount*5)) current_row = 0 for p in procedure_names: proc = df.loc[df['viewName']== p] x = proc['second'].unique() y = proc[['duration','second']].groupby('second').mean() ax[current_row].set_title(p) ax[current_row].plot(x,y, color = main_color) ax[current_row].set_xlabel('Time (s)') ax[current_row].set_ylabel('Duration (ms)') ax[current_row].grid(True) current_row+= 1 for table in tables: df_table = df.loc[:,[table, 'second']] x2 = df_table['second'].unique() y2 = df_table.groupby('second').max() ax[current_row].set_title(table) ax[current_row].plot(x2,y2, color= accent_color) ax[current_row].set_xlabel('Time (s)') ax[current_row].set_ylabel('Table Count') current_row+=1 plt.show() from tslearn.clustering import KShape from tslearn.datasets import CachedDatasets from tslearn.preprocessing import TimeSeriesScalerMeanVariance #https://towardsdatascience.com/how-to-apply-k-means-clustering-to-time-series-data-28d04a8f7da3 def clusterize(data): start_time = time.time() seed = 0 X_train = data X_train = TimeSeriesScalerMeanVariance().fit_transform(X_train) sz = X_train.shape[1] ks = KShape(n_clusters=3, verbose=True, random_state=seed) y_pred = ks.fit_predict(X_train) plt.figure() for yi in range(3): plt.subplot(3, 1, 1 + yi) for xx in X_train[y_pred == yi]: plt.plot(xx.ravel(), "k-", alpha=.2) plt.plot(ks.cluster_centers_[yi].ravel(), "r-") plt.xlim(0, sz) plt.ylim(-4, 4) plt.title("Cluster %d" % (yi + 1)) plt.tight_layout() plt.show() print('Clustering completed in {:,.2f} secs'.format(time.time()-start_time)) ###Output _____no_output_____ ###Markdown Look at data stats ###Code rawData.describe() ###Output _____no_output_____ ###Markdown Get only changing columns ###Code data = rawData[['viewName','timestamp','second', 'duration', 'is_cold_start','Table_2', 'Table_3']] normal_execution = data.loc[data['is_cold_start']==False, :] cold_execution = data.loc[data['is_cold_start']==True, :] cold_percentage =len(cold_execution)*100/len(data) normal_percentage = 100 - cold_percentage print ("Total executions {} Normal execution {}({:,.2f}% from total, Cold execution {}({:,.2f}% form total))".format(len(data), len(normal_execution),normal_percentage,len(cold_execution),cold_percentage)) top_p = get_top_calling_procedures(cold_execution, 1000) tables = ['Table_2', 'Table_3'] draw_dependency_plot(top_p, tables) top_p = get_top_calling_procedures(cold_execution, 1000) top_frequency = top_p.loc[:,['viewName', 'timestamp', 'second']].groupby(['viewName','second']).count() print(top_frequency.describe()) top_p = get_top_calling_procedures(cold_execution, 1000) parameters = top_p[['second', 'duration']].to_numpy() clusterize(parameters) ###Output Resumed because of empty cluster Resumed because of empty cluster Resumed because of empty cluster Resumed because of empty cluster Resumed because of empty cluster Resumed because of empty cluster Resumed because of empty cluster Resumed because of empty cluster Resumed because of empty cluster Resumed because of empty cluster
RadioClassification_keras.ipynb
###Markdown Downloading Dataset and required Libs (Colab Only) ###Code !wget https://github.com/the-redlord/Space-Radio-Signal-Classification_keras/raw/master/dataset.rar !ls !unrar x -r ./dataset.rar !pip install livelossplot ###Output Requirement already satisfied: livelossplot in /usr/local/lib/python3.6/dist-packages (0.5.1) Requirement already satisfied: bokeh; python_version >= "3.6" in /usr/local/lib/python3.6/dist-packages (from livelossplot) (1.4.0) Requirement already satisfied: matplotlib; python_version >= "3.6" in /usr/local/lib/python3.6/dist-packages (from livelossplot) (3.2.2) Requirement already satisfied: ipython in /usr/local/lib/python3.6/dist-packages (from livelossplot) (5.5.0) Requirement already satisfied: tornado>=4.3 in /usr/local/lib/python3.6/dist-packages (from bokeh; python_version >= "3.6"->livelossplot) (4.5.3) Requirement already satisfied: six>=1.5.2 in /usr/local/lib/python3.6/dist-packages (from bokeh; python_version >= "3.6"->livelossplot) (1.12.0) Requirement already satisfied: PyYAML>=3.10 in /usr/local/lib/python3.6/dist-packages (from bokeh; python_version >= "3.6"->livelossplot) (3.13) Requirement already satisfied: numpy>=1.7.1 in /usr/local/lib/python3.6/dist-packages (from bokeh; python_version >= "3.6"->livelossplot) (1.18.5) Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from bokeh; python_version >= "3.6"->livelossplot) (2.8.1) Requirement already satisfied: Jinja2>=2.7 in /usr/local/lib/python3.6/dist-packages (from bokeh; python_version >= "3.6"->livelossplot) (2.11.2) Requirement already satisfied: packaging>=16.8 in /usr/local/lib/python3.6/dist-packages (from bokeh; python_version >= "3.6"->livelossplot) (20.4) Requirement already satisfied: pillow>=4.0 in /usr/local/lib/python3.6/dist-packages (from bokeh; python_version >= "3.6"->livelossplot) (7.0.0) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib; python_version >= "3.6"->livelossplot) (0.10.0) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib; python_version >= "3.6"->livelossplot) (1.2.0) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib; python_version >= "3.6"->livelossplot) (2.4.7) Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.6/dist-packages (from ipython->livelossplot) (47.3.1) Requirement already satisfied: pickleshare in /usr/local/lib/python3.6/dist-packages (from ipython->livelossplot) (0.7.5) Requirement already satisfied: decorator in /usr/local/lib/python3.6/dist-packages (from ipython->livelossplot) (4.4.2) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.6/dist-packages (from ipython->livelossplot) (0.8.1) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.6/dist-packages (from ipython->livelossplot) (1.0.18) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.6/dist-packages (from ipython->livelossplot) (4.3.3) Requirement already satisfied: pygments in /usr/local/lib/python3.6/dist-packages (from ipython->livelossplot) (2.1.3) Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.6/dist-packages (from ipython->livelossplot) (4.8.0) Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages (from Jinja2>=2.7->bokeh; python_version >= "3.6"->livelossplot) (1.1.1) Requirement already satisfied: wcwidth in /usr/local/lib/python3.6/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython->livelossplot) (0.2.5) Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.6/dist-packages (from traitlets>=4.2->ipython->livelossplot) (0.2.0) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.6/dist-packages (from pexpect; sys_platform != "win32"->ipython->livelossplot) (0.6.0) ###Markdown Classify Radio Signals from Outer Space with Keras ![](Allen_Telescope.jpg)[Allen Telescope Array](https://flickr.com/photos/93452909@N00/5656086917) by [brewbooks](https://www.flickr.com/people/93452909@N00) is licensed under [CC BY 2.0](https://creativecommons.org/licenses/by/2.0/) Task 1: Import Libraries ###Code from livelossplot.inputs.tf_keras import PlotLossesCallback import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from sklearn.metrics import confusion_matrix from sklearn import metrics import numpy as np np.random.seed(42) import warnings;warnings.simplefilter('ignore') %matplotlib inline print('Tensorflow version:', tf.__version__) tf.config.list_physical_devices('GPU') ###Output Tensorflow version: 2.2.0 ###Markdown Task 2: Load and Preprocess SETI Data ###Code train_images = pd.read_csv('dataset/train/images.csv',header=None) train_labels = pd.read_csv('dataset/train/labels.csv',header=None) val_images = pd.read_csv('dataset/validation/images.csv',header=None) val_labels = pd.read_csv('dataset/validation/labels.csv',header=None) train_images.head(3) train_labels.head(3) print("Training set shape: ", train_images.shape, train_labels.shape) print('Validation set shape:',val_images.shape, val_labels.shape) # reshape the data to spectograms (images) x_train = train_images.values.reshape(3200,64,128,1) x_val = val_images.values.reshape(800,64,128,1) y_train = train_labels.values y_val = val_labels.values ###Output _____no_output_____ ###Markdown Task 3: Plot 2D Spectrograms ###Code plt.figure(0, figsize=(12,12)) for i in range(1,4): plt.subplot(1,3,i) img = np.squeeze(x_train[np.random.randint(0, x_train.shape[0])]) plt.xticks([]) plt.yticks([]) plt.imshow(img,cmap='gray') plt.imshow(np.squeeze(x_train[5])) ###Output _____no_output_____ ###Markdown Task 4: Create Training and Validation Data Generators ###Code from tensorflow.keras.preprocessing.image import ImageDataGenerator # image augmentation datagen_train = ImageDataGenerator(horizontal_flip=True) datagen_train.fit(x_train) datagen_val = ImageDataGenerator(horizontal_flip=True) datagen_val.fit(x_val) ###Output _____no_output_____ ###Markdown Task 5: Creating the CNN Model ###Code from tensorflow.keras.layers import Dense, Input, Dropout,Flatten, Conv2D from tensorflow.keras.layers import BatchNormalization, Activation, MaxPooling2D from tensorflow.keras.models import Model, Sequential from tensorflow.keras.optimizers import Adam, SGD from tensorflow.keras.callbacks import ModelCheckpoint # Initialising the CNN model = Sequential() # 1st Convolution model.add(Input(shape=(64,128,1))) model.add(Conv2D(32,(5,5),padding='same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) # 2nd Convolution layer model.add(Conv2D(64,(5,5),padding='same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) # Flattening model.add(Flatten()) # Fully connected layer model.add(Dense(1024)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.4)) model.add(Dense(4,activation='softmax')) ###Output _____no_output_____ ###Markdown Task 6: Learning Rate Scheduling and Compile the Model ###Code initial_learning_rate = 0.005 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate = initial_learning_rate, decay_steps = 5, decay_rate = 0.96, staircase=True ) opt = Adam(learning_rate=lr_schedule) model.compile(optimizer=opt,loss='categorical_crossentropy',metrics=['accuracy']) model.summary() ###Output _____no_output_____ ###Markdown Task 7: Training the Model ###Code checkpoint = ModelCheckpoint('model_weights.h5',monitor='val_loss', save_weights_only=True, mode='min',verbose=0) callbacks = [PlotLossesCallback(), checkpoint] batch_size = 32 history = model.fit( datagen_train.flow(x_train,y_train, batch_size=batch_size,shuffle=True), steps_per_epoch = len(x_train) // batch_size, validation_data = datagen_val.flow(x_val,y_val,batch_size=batch_size,shuffle=True), validation_steps = len(x_val) // batch_size, epochs = 12, callbacks=callbacks ) ###Output _____no_output_____ ###Markdown Task 8: Model Evaluation ###Code model.evaluate(x_val,y_val) from sklearn.metrics import confusion_matrix from sklearn import metrics import seaborn as sns y_true = np.argmax(y_val,1) y_pred = np.argmax(model.predict(x_val),1) print(metrics.classification_report(y_true,y_pred)) print('Classification accuracy: %0.6f' %metrics.accuracy_score(y_true,y_pred)) labels = ["squiggle", "narrowband", "noise", "narrowbanddrd"] ###Output _____no_output_____
Employee_Attrition_notebook_.ipynb
###Markdown Data PreProcessing- ###Code #importing Required Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from datetime import datetime ,timedelta #load the data from google.colab import files #upload the data on the colab notebook uploded = files.upload() #store the data into dataframe df= pd.read_csv('train_MpHjUjU.csv' ) # reading the data #printing the first 10 rows df.head(5) df.shape #checking no. of column & rows df.dtypes #checking datatypes of the column #get count of the empty value of each column df.isna().sum() #check for any missing value df.isnull().values.any() #Checking some statistics df.describe() #Deletig for dublicate values df = df.drop_duplicates(subset=['Emp_ID' ,'Age', 'Gender','City','Education_Level', 'Salary','Dateofjoining'],keep = 'last') df.head() ###Output _____no_output_____ ###Markdown Feature Engineering * Adding two new feature 1. Attrition - From last working date clumn2. Year = Number of years employee worked in the company ###Code #adding one new column attrition form last ''last working date 'column df['Attrition'] = df['LastWorkingDate'] df['Attrition'] = df['Attrition'].fillna(0) #Replacing NAN values to 0 y = pd.DataFrame(df['Attrition'], columns = ['attrition']) y['attrition']= df['Attrition'] y['attrition'] = y['attrition'].str.isnumeric() def datetime_to_int(y): return int(y['attrition'].strftime("%Y-%m-%d")) #replace date to false value y =y.replace(to_replace=False,value = 1) #reaplce false value to the in 1 for all of those who have left the organisation y= y.fillna(0) ##making new feature attrition from lastworkingday column y.head() #Adding new feature attrition from lastworkingday column df['Attrition']=y['attrition'] df['Attrition'].value_counts() #the number of employees that stayed and left the company sns.countplot(df['Attrition']) df.shape ###Output _____no_output_____ ###Markdown * We have unique 3786 data points and 14 column,Out of them 2170 data point belonging to Class NO(0) and 1616 data point belonging to class 'Yes(1)' ###Code plt.subplots(figsize=(12,4)) sns.countplot(x='Age',hue='Attrition',data=df, palette='colorblind') ###Output _____no_output_____ ###Markdown * From 33 onwards age group, most of the employees did not leave job and majority in attrition is contributed by age group of 31 & 32 . **Replacing NaN values to prediction date date so we can calculate number of years employee work** ###Code #filling Na/NaN values df['LastWorkingDate'] = df['LastWorkingDate'].fillna('2018-01-01') #filling nan values to prediction date date so we can calculate number of years employee work df.head(5) ###Output _____no_output_____ ###Markdown **Introducing new feature using first working day and last working day variables** ###Code #Introducing new feature using first working day and last working day variables- df["Dateofjoining"] = pd.to_datetime(df["Dateofjoining"]) #handling timeseries data df["LastWorkingDate"] = pd.to_datetime(df["LastWorkingDate"]) df4 = pd.DataFrame( columns = ['day','year']) #creating 2 new features number of days employee work and number of years employee work df4['day'] = df['LastWorkingDate'] - df['Dateofjoining'] df4['year'] = df4["day"] / timedelta(days=365) print(df4) ###Output day year 2 78 days 0.213699 4 56 days 0.153425 9 141 days 0.386301 12 58 days 0.158904 17 154 days 0.421918 ... ... ... 19082 885 days 2.424658 19090 419 days 1.147945 19096 335 days 0.917808 19097 207 days 0.567123 19103 207 days 0.567123 [3786 rows x 2 columns] ###Markdown Dropping unwanted column from Dataset - ###Code df=df.drop(labels=['MMM-YY','Dateofjoining','LastWorkingDate','Gender','City','Education_Level'],axis=1) # dropping the table because they are useless in our prediction #adding new features to our data df['year'] = df4['year'] df.head() df.to_csv('test matching data.csv') # creating csv before dropping emp_id column so we can merge test csv with train csv for prediction df.isna().sum() #checking the na values ###Output _____no_output_____ ###Markdown **Dropping id table-** ###Code #dropping id table df = df.drop (labels='Emp_ID',axis = 1) df['attrition']= df['Attrition'] df= df.drop(labels='Attrition',axis = 1) #shifting attrition table at last df.head() ###Output _____no_output_____ ###Markdown Visualizing our Variables- ###Code #get the correlation df.corr() #visualize the correlation plt.subplots(figsize=(12,5)) sns.heatmap(df.corr(), annot=True,fmt ='.0%') df.to_csv('processedtrain.csv') # processed trainnig data csv df.shape #checking shape of data ###Output _____no_output_____ ###Markdown Dividing the Data into Two Parts "TRAINING" and "TESTING" - ###Code #split the data x = df.iloc[:,0:7].values # splitting all the rows from column 0 to 6 in x y = df.iloc[: ,7].values #splitting attrtion column in y print('x{}'.format(x)) print('================================================') print('y:{}'.format(y)) ###Output x[[2.80000000e+01 5.73870000e+04 1.00000000e+00 ... 0.00000000e+00 2.00000000e+00 2.13698630e-01] [3.10000000e+01 6.70160000e+04 2.00000000e+00 ... 0.00000000e+00 1.00000000e+00 1.53424658e-01] [4.30000000e+01 6.56030000e+04 2.00000000e+00 ... 0.00000000e+00 1.00000000e+00 3.86301370e-01] ... [2.80000000e+01 6.94980000e+04 1.00000000e+00 ... 0.00000000e+00 1.00000000e+00 9.17808219e-01] [2.90000000e+01 7.02540000e+04 2.00000000e+00 ... 0.00000000e+00 1.00000000e+00 5.67123288e-01] [3.00000000e+01 7.02540000e+04 2.00000000e+00 ... 4.11480000e+05 2.00000000e+00 5.67123288e-01]] ================================================ y:[1. 0. 1. ... 1. 0. 0.] ###Markdown Building The model from "TRAINING DATA SET"- ###Code #split the data into 25% testing and 75% training from sklearn.model_selection import train_test_split #importing train_test_split x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.20,train_size= 0.80 , random_state =0 ) #splitting data , 80-20=train-test split #using KNN Classifier as our model from sklearn.neighbors import KNeighborsClassifier #importing knnClassifier knn =KNeighborsClassifier(n_neighbors=7,weights='uniform',algorithm='auto') # n=7 knn.fit(x_train, y_train) #fitting the model y_pred = knn.predict(x_test) # predicting cross validation test data ###Output _____no_output_____ ###Markdown Evaluating KNNclassifier using macro f1_score metrics - ###Code from sklearn.metrics import f1_score #importing f1_score from sklearn f1 = f1_score(y_test,y_pred) #getting the f1_score print(f1) ###Output 0.7378640776699029 ###Markdown 4. Test data: * Creating test file from given 'test_hXY9mYw.csv' ###Code #Creating test file from given 'test_hXY9mYw.csv' df1=pd.read_csv('/content/test matching data.csv') df2=pd.read_csv('/content/test_hXY9mYw.csv') test_data = pd.merge(df2,df1) #merginf df1 and df2 using EMP_ID column #dropping duplicate values test_data = test_data.drop(labels=['Attrition','Unnamed: 0'],axis=1) test_data=test_data.drop_duplicates(subset= 'Emp_ID',keep='last') test_data.to_csv('test_data.csv') test_data.shape ###Output _____no_output_____ ###Markdown Dropping the Emp_ID column from test data ###Code #dropping the Emp_ID column - test_data= test_data.drop(labels='Emp_ID',axis=1) test_data.head() ###Output _____no_output_____ ###Markdown **Predicting the given test-data point** :- ###Code Final_result= knn.predict(test_data) #Predicting the given test-data point where how many employee will leave the company in given jan-2018 quarter #Creating submission file of the final result- df6=pd.read_csv('/content/test_data.csv') df6=df6.drop(labels='Unnamed: 0', axis=1) test= pd.DataFrame(columns=['Emp_ID','Target']) test['Emp_ID']=df6['Emp_ID'] test['Target']=Final_result test.head(20) test['Target'].value_counts() #checking predicted values_count ###Output _____no_output_____ ###Markdown Conclusion :- * From above result we can assume that out of 741 employees ,we can expect that 160 employees will leave the company in the upcoming two quarters (01 Jan 2018 - 01 July 2018) and 581 employees will be remain at their designation. Suggestion:-* As data scientist i would suggest From above Analysis and Prediction that ,company should offer more salary to more experience 1. company should offer more salary to more experience person.2. Company should give better designation to old employees. Submission File :- ###Code test.to_csv('Final_result.csv') #submission file ###Output _____no_output_____
Natural_PQC_sensing.ipynb
###Markdown Natural parameterized quantum circuit for multi-parameter sensing "Natural parameterized quantum circuit" by T. Haug, M.S. KimThe Natural parameterized quantum circuit is a parameterized quantum circuit which has euclidean quantum geometry. That means that the quantum Fisher information metric is the identity for a particular parameter set, which we call the reference parameter. This NPQC is very useful for various applications.- Training variational quantum algorithms- Multi-parameter quantum sensing- Preparation of superposition statesHere, we study multi-parameter sensing using the NPQC. The goal is determine the unknown parameters of the NPQC by measuring the quantum state. We can sense many parameters at the same time by sampling in the computational basis.The implementation is based on qutip@author: Tobias Haug, github txhaugImperial College London ###Code import qutip as qt from functools import partial import operator from functools import reduce import numpy as np import scipy import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Set parameters for NPQC here ###Code n_qubits=6 #number qubits depth=6 #number of layers, is the number of layers of parameterized single qubit rotations type_circuit=1##0: natural parameterized quantum circuit (NPQC), 1: natural parameterized quantum circuit with y rotations only for sensing initial_angles=1 ##0: random angles 1: reference parameters \theta_r that has QFIM =I distance_parameters_estimation=0.4 # norm of parameters to be estimated random_seed=1#seed of random generator n_samples=10**7 ##number of measurements for sensing def prod(factors): return reduce(operator.mul, factors, 1) def flatten(l): return [item for sublist in l for item in sublist] #tensors operators together def genFockOp(op,position,size,levels=2,opdim=0): opList=[qt.qeye(levels) for x in range(size-opdim)] opList[position]=op return qt.tensor(opList) #construct from parameter 1D list a 2D array with [depth,n_qubits], ignore unused rotations where paulis2d=0 def construct_2d_parameters(angles,paulis2d,extraangles=0): depth,n_qubits=np.shape(paulis2d) angles2d=np.zeros([depth,n_qubits]) counter=0 for i in range(depth): for j in range(n_qubits): if(paulis2d[i,j]>0): #only take parameters where paulis is greater 0, indicating they are variable parameters angles2d[i,j]=angles[counter] counter+=1 if(extraangles==0): return angles2d else: return angles2d,angles[counter:] #take parameters as a 2D array with [depth,n_qubits] to do 1D list, ignore unused rotations where paulis2d=0 def construct_1d_parameters(angles2d,paulis2d): depth,n_qubits=np.shape(paulis2d) angles1d=[] for i in range(depth): for j in range(n_qubits): if(paulis2d[i,j]>0): #only take parameters where paulis is greater 0, indicating they are variable parameters angles1d.append(angles2d[i,j]) return np.array(angles1d) if(n_qubits%2==1): raise NameError("Only even number of qubits allowed") #random generator used rng = np.random.default_rng(random_seed) #define angles for circuit ini_angles=np.zeros([depth,n_qubits]) if(initial_angles==0): ini_angles=rng.random([depth,n_qubits])*2*np.pi elif(initial_angles==1): #choose angles as \theta_r as defined in paper ini_angles[1:depth:2,:]=0 ini_angles[0:depth:2,:]=np.pi/2 #note that not all angles are actually used, the ones where ini_pauli=0 are ignored #define rotations for circuit in each layer, 0: identity, 1: X, 2:Y 3:Z ini_pauli=np.zeros([depth,n_qubits],dtype=int) ##set initial layer of pauli rotations if(type_circuit==0):#NPQC #set first and second layer, rest comes later ini_pauli[0,:]=2 #y rotation if(depth>1): ini_pauli[1,:]=3 #z rotation elif(type_circuit==1): #NPQC with y rotations only for sensing #set first and second layer, rest comes later ini_pauli[0,0:n_qubits:2]=2 #y rotation ini_pauli[0,1:n_qubits:2]=-22 #fix y pi/2 rotation on odd qubit index ##define entangling layers and add more pauli rotations if(type_circuit==0 or type_circuit==1): #construct natural parameterized circuit entangling_gate_index_list=[[] for i in range(depth)] ##stores where entangling gates are placed orderList=[] for i in range(n_qubits//2): if(i%2==0): orderList.append(i//2) else: orderList.append((n_qubits-i)//2) if(n_qubits>1): shiftList=[orderList[0]] else: shiftList=[] for i in range(1,n_qubits//2): shiftList.append(orderList[i]) shiftList+=shiftList[:-1] #this list gives which entangling gates are applied in which layer for j in range(min(len(shiftList),int(np.ceil(depth/2))-1)): entangling_gate_index_list[1+2*j]=[[2*i,(2*i+1+2*shiftList[j])%n_qubits,3] for i in range(n_qubits//2)] #this is the 2 qubit entangling operation, it is a pi/2 y rotation on first qubit with CPHASE gate U_entangling=qt.qip.operations.csign(2,0,1)*qt.tensor(qt.qip.operations.ry(np.pi/2),qt.qeye(2)) for i in range(len(entangling_gate_index_list)-1): if(len(entangling_gate_index_list[i])>0): for j in range(len(entangling_gate_index_list[i])): ini_pauli[i+1,entangling_gate_index_list[i][j][0]]=2 if(i+2<depth and type_circuit==0):##add z rotations, but not for sensing NPQC ini_pauli[i+2,entangling_gate_index_list[i][j][0]]=3 #operators for circuit levels=2# opZ=[genFockOp(qt.sigmaz(),i,n_qubits,levels) for i in range(n_qubits)] opX=[genFockOp(qt.sigmax(),i,n_qubits,levels) for i in range(n_qubits)] opY=[genFockOp(qt.sigmay(),i,n_qubits,levels) for i in range(n_qubits)] opId=genFockOp(qt.qeye(levels),0,n_qubits) opZero=opId*0 zero_state=qt.tensor([qt.basis(levels,0) for i in range(n_qubits)]) #construct unitaries for entangling layer all_entangling_layers=[] for ind in range(len(entangling_gate_index_list)): if(type_circuit==0 or type_circuit==1): entangling_gate_index=entangling_gate_index_list[ind] if(len(entangling_gate_index)==0): entangling_layer=opId else: entangling_layer=prod([qt.qip.operations.gate_expand_2toN(U_entangling,n_qubits,j,k) for j,k,n in entangling_gate_index[::-1]]) all_entangling_layers.append(entangling_layer) #calculate number of parameters n_parameters=len(construct_1d_parameters(ini_angles,ini_pauli)) ##check which paulis at what depth and qubit is identitity or not parameter_where=np.zeros([n_parameters,2],dtype=int) counter=0 for i in range(depth): for j in range(n_qubits): if(ini_pauli[i,j]>0): #count only paulis with entry greater zero, indicating its a parameter parameter_where[counter]=[i,j] counter+=1 #save single qubit rotations unitary with fixed ini_angles. Use them later for the adjoint circuit needed for sensing save_initial_rot_op=[] for j in range(depth): rot_op=[] for k in range(n_qubits): angle=ini_angles[j][k] type_pauli=ini_pauli[j][k] if(type_pauli==1): rot_op.append(qt.qip.operations.rx(angle)) elif(type_pauli==2): rot_op.append(qt.qip.operations.ry(angle)) elif(type_pauli==3): rot_op.append(qt.qip.operations.rz(angle)) elif(type_pauli==0): rot_op.append(qt.qeye(2)) elif(type_pauli==-22): #fixed rotation around y axis rot_op.append(qt.qip.operations.ry(np.pi/2)) save_initial_rot_op.append(qt.tensor(rot_op)) ##H=opZ[0]*opZ[1] #local Hamiltonian to calculate energy and gradient from print("Number of parameters of PQC",n_parameters) ##calc_mode #0: calc all gradients 1: calc frame potential only 2: calc both, 3: only get gradient ##can apply adjoint unitary with fixed angles "add_adjoint_unitary" for sensing def do_calc(input_angles,input_paulis,get_gradients=True,add_adjoint_unitary=False): initial_state_save=qt.tensor([qt.basis(levels,0) for i in range(n_qubits)]) #save here quantum state of gradient for qfi grad_state_list=[] #list of values of gradient gradient_list=np.zeros(n_parameters) save_rot_op=[] #save single-qubit rotations here so we can reuse them for j in range(depth): rot_op=[] for k in range(n_qubits): angle=input_angles[j][k] type_pauli=input_paulis[j][k] if(type_pauli==1): rot_op.append(qt.qip.operations.rx(angle)) elif(type_pauli==2): rot_op.append(qt.qip.operations.ry(angle)) elif(type_pauli==3): rot_op.append(qt.qip.operations.rz(angle)) elif(type_pauli==0): rot_op.append(qt.qeye(2)) elif(type_pauli==-22): rot_op.append(qt.qip.operations.ry(np.pi/2)) save_rot_op.append(qt.tensor(rot_op)) #p goes from -1 to n_parameters-1. -1 is to calculate quantum state, rest for gradient if(get_gradients==True): #calculate gradients by doing n_parameters+1 calcuations n_p=n_parameters else: #without gradient, need only one calculation n_p=0 for p in range(-1,n_p): initial_state=qt.Qobj(initial_state_save) for j in range(depth): apply_rot_op=save_rot_op[j] #for p>=0, we are calculating gradients. Here, we need to add derivative of repsective parameter if(p!=-1 and j==parameter_where[p][0]): which_qubit=parameter_where[p][1] type_pauli=input_paulis[j][which_qubit] if(type_pauli==1): apply_rot_op=apply_rot_op*(-1j*opX[which_qubit]/2) elif(type_pauli==2): apply_rot_op=apply_rot_op*(-1j*opY[which_qubit]/2) elif(type_pauli==3): apply_rot_op=apply_rot_op*(-1j*opZ[which_qubit]/2) #apply single qubit rotations initial_state=apply_rot_op*initial_state #apply entangling layer initial_state=all_entangling_layers[j]*initial_state #after constructing the circuit, apply inverse with parameters fixed to ini_angles if(add_adjoint_unitary==True):#apply inverse of circuit for sensing for j in np.arange(depth)[::-1]: initial_state=all_entangling_layers[j].dag()*initial_state initial_state=save_initial_rot_op[j].dag()*initial_state if(p==-1): #calculate loss circuit_state=qt.Qobj(initial_state)#state generated by circuit if(loss_hamiltonian==True): #loss is hamiltonian loss=qt.expect(H,circuit_state) else: #loss is infidelity with target state H_state loss=1-np.abs(circuit_state.overlap(H_state))**2 else: #calculate gradient grad_state_list.append(qt.Qobj(initial_state))#state with gradient applied for p-th parameter if(loss_hamiltonian==True): gradient_list[p]=2*np.real(circuit_state.overlap(H*initial_state)) else: gradient_list[p]=2*np.real(circuit_state.overlap(initial_state)-circuit_state.overlap(H_state)*H_state.overlap(initial_state)) return circuit_state,grad_state_list,loss,gradient_list #construct parameters of state to be estimated loss_hamiltonian=False #loss is inifidelity 1-F #we shift parameterized quantum circuit from initial parameters by a fixed distance. #we know approximatly what distance corresponds to what fidelity #get random normalized parameter vector random_vector_opt_normed=(2*rng.random(np.shape(ini_pauli))-1)*(ini_pauli>0) random_vector_opt_normed=construct_1d_parameters(random_vector_opt_normed,ini_pauli) random_vector_opt_normed=random_vector_opt_normed/np.sqrt(np.sum(np.abs(random_vector_opt_normed)**2)) random_vector_opt_normed=construct_2d_parameters(random_vector_opt_normed,ini_pauli) #shift parameters by the following distance,. We use resulting state for estimation factor_rand_vector=distance_parameters_estimation #construct parameter of state to be learned target_angles=ini_angles+random_vector_opt_normed*factor_rand_vector H_state=zero_state #set so do_calc runs properly #quantum fisher information metric #calculated as \text{Re}(\braket{\partial_i \psi}{\partial_j \psi}-\braket{\partial_i \psi}{\psi}\braket{\psi}{\partial_j \psi}) ##get gradients for quantum state circuit_state,grad_state_list,energy,gradient_list=do_calc(ini_angles,ini_pauli,get_gradients=True) #first, calculate elements \braket{\psi}{\partial_j \psi}) single_qfi_elements=np.zeros(n_parameters,dtype=np.complex128) for p in range(n_parameters): #print(circuit_state.overlap(grad_state_list[p])) single_qfi_elements[p]=circuit_state.overlap(grad_state_list[p]) #calculcate the qfi matrix qfi_matrix=np.zeros([n_parameters,n_parameters]) for p in range(n_parameters): for q in range(p,n_parameters): qfi_matrix[p,q]=np.real(grad_state_list[p].overlap(grad_state_list[q])-np.conjugate(single_qfi_elements[p])*single_qfi_elements[q]) #use fact that qfi matrix is real and hermitian for p in range(n_parameters): for q in range(p+1,n_parameters): qfi_matrix[q,p]=qfi_matrix[p,q] ##plot the quantum Fisher information metric (QFIM) #should be a diagonal with zero off-diagonal entries for initial_angles=1 plt.imshow(qfi_matrix) if(type_circuit==1): #NPQC with y rotations only for sensing hilbertspace=2**n_qubits ##get reference state and gradients to determine which parameter belongs to which computational state circuit_state_reuse,grad_state_list_reuse,_,gradient_list=do_calc(ini_angles,ini_pauli,get_gradients=True,add_adjoint_unitary=True) ##first, figure out which parameter changes which computational basis state parameter_which_state=np.zeros(n_parameters,dtype=int) #tells us which state belongs to which parameter state_which_parameter=np.ones(hilbertspace,dtype=int)*-1 for i in range(n_parameters): grad_abs=np.abs(grad_state_list_reuse[i].data.toarray()[:,0])**2 index=(np.arange(hilbertspace)[grad_abs>10**-14]) if(len(index)!=1): raise NameError("More than one direction!") else: parameter_which_state[i]=index[0] state_which_parameter[index[0]]=i #check if a computational basis states belongs to more than one parameter if(len(np.unique(parameter_which_state))!=len(parameter_which_state)): raise NameError("Double occupations of computational states for sensing!") #get difference between target angles and reference angles. We now want to estimate this from measurements! exact_sensing_parameters=construct_1d_parameters(target_angles-ini_angles,ini_pauli) norm_sensing_parameters=np.sqrt(np.sum(np.abs(exact_sensing_parameters)**2)) print("Norm of parameters to be sensed",norm_sensing_parameters) ##get state that we use for sensing and want to know its parameters target_state,_,energy,_=do_calc(target_angles,ini_pauli,get_gradients=False,add_adjoint_unitary=True) #sample from target state, then identify parameters probs=np.abs(target_state.data.toarray()[:,0])**2 print("Probability zero state",probs[0]) #get exact probability term assoicate with each parameter prob_parameters=np.zeros(n_parameters) for i in range(n_parameters): prob_parameters[i]=probs[parameter_which_state[i]] #now sample probabilities to simulate measurements with finite number of measurements ##get sampled probabilities for each sensing parameter sampled_probs=np.zeros(n_parameters) sample_index = np.random.choice(hilbertspace,n_samples,p=probs) for k in range(n_samples): index_parameter=state_which_parameter[sample_index[k]] if(index_parameter>=0): sampled_probs[index_parameter]+=1 sampled_probs/=n_samples ##parameters we estimated by sampling state sampled_estimation_parameters=2*np.sqrt(sampled_probs) MSE_bound=n_parameters/n_samples ##parameters as estimated by our protocol for infinite number of shots infinite_shots_estimation_parameters=2*np.sqrt(prob_parameters) ##error for infinite sampling MSE_infinite=np.mean(np.abs(infinite_shots_estimation_parameters-np.abs(exact_sensing_parameters))**2) rel_RMSE_error_infinite=np.sqrt(MSE_infinite)/np.mean(np.abs(exact_sensing_parameters)) MSE_sampled=np.mean(np.abs(sampled_estimation_parameters-np.abs(exact_sensing_parameters))**2) rel_RMSE_error_sampled=np.sqrt(MSE_sampled)/np.mean(np.abs(exact_sensing_parameters)) #MSE_sampled=np.mean(np.abs(sampled_estimation_parameters-np.abs(infinite_shots_estimation_parameters))**2) print("Sensing",n_parameters,"parameters with",n_samples) print("Mean-square error of infinite samples",MSE_infinite) print("MSE of infinite samples relative to exact norm of exact parameters",rel_RMSE_error_infinite) print("Mean-square error of finite samples",MSE_sampled) print("MSE sampled with finite shots relative to norm of exact parameters",rel_RMSE_error_sampled) ###Output Norm of parameters to be sensed 0.39999999999999986 Probability zero state 0.960759461930595 Sensing 9 parameters with 10000000 Mean-square error of infinite samples 6.414871113159221e-06 MSE of infinite samples relative to exact norm of exact parameters 0.022273670207939626 Mean-square error of finite samples 6.599418880539516e-06 MSE sampled with finite shots relative to norm of exact parameters 0.022591791173830828
Phase II/Surrogate Model using VarrImp Plot.ipynb
###Markdown Analysis IIIn this thesis that I am preparing is another method for analyzing the importance of hyperparameter. In this method, my new aproach is considering the below assumption: Assumtion* Why not the Data Base of `Hyperparameter` that will be turned in by the BD team be itself considered as a Individual Dataset - This approach is called as building a `Surrogate Model`* The dataset will consist of MetaData, Algorithm, Leaderboard(collected from H2O), Hyperparameter for the respective Algorithms All arranged as a columns with it's corresponding respective values in it. Now, this I am going o use it to build a model around it.Below are the columns, which are dummy as far now, as I have built it individually according to my assumptions. The DB team is yet to turn in it's DataBase, I am waiting for the good model amongst what they turn in to be considered for my thesis - to build a model.The columns that I have taken till now are as below with it's description:* runid - Run id for a dataset and its iteration* dataset - The dataset and its link from where it's being fetched* problem - if it is a classification/regression* runtime - runtime for which H2O was run on this dataset* columns - number of columns in the dataset* rows - number rows in the dataset* tags - What genre it belongs to* algo - algorithm applied on this dataset by H2O* model_id - the model id generated* ntree - value for n_estimator* max_depth - value for the hyperaparameter* learn_rate - value for the hyperaparameter* mean_residual_deviance - value for the hyperaparameter* rmse - value for the metric* mse - value for the metric* mae - value for the metric* rmsle - value for the metric![image.png](attachment:image.png) ###Code import h2o from h2o.automl import H2OAutoML import pandas as pd from sklearn.model_selection import train_test_split from xgboost import XGBClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import StratifiedKFold import matplotlib.pyplot as plt h2o.init(min_mem_size_GB=2) df = h2o.import_file('./hyperparamter_db_test.csv') ###Output Parse progress: |█████████████████████████████████████████████████████████| 100% ###Markdown This dataset is created on own, and the data are not true. This is just t test the thesis and the hypothesis to check if this will give us a good analysis results ###Code df.head() ###Output _____no_output_____ ###Markdown I am running for a simple AutoML runtime of 100 seconds. The results will be better if I run for more time. ###Code aml = H2OAutoML(max_runtime_secs=100) X=df.columns ###Output _____no_output_____ ###Markdown Below are the predictors we have considered ###Code X = ['runid', 'dataset', 'problem', 'runtime', 'columns', 'rows', 'tags', 'model_id', 'ntree', 'max_depth', 'learn_rate', 'mean_residual_deviance', 'rmse', 'mse', 'mae', 'rmsle'] y='algo' aml.train(x=X,y=y,training_frame=df) ###Output AutoML progress: |████████████████████████████████████████████████████████| 100% ###Markdown On running H2O AutoML for 100 seconds, for this simple Surrogate Dataset, we are getting 68 models generated by H2O ###Code aml_leaderboard_df=aml.leaderboard.as_data_frame() aml_leaderboard_df model_set=aml_leaderboard_df['model_id'] mod_best=h2o.get_model(model_set[0]) mod_best ###Output Model Details ============= H2OGradientBoostingEstimator : Gradient Boosting Machine Model Key: GBM_grid_0_AutoML_20190423_134333_model_32 ModelMetricsMultinomial: gbm ** Reported on train data. ** MSE: 0.005379815592386542 RMSE: 0.07334722620785698 LogLoss: 0.07493269418958665 Mean Per-Class Error: 0.0 Confusion Matrix: Row labels: Actual class; Column labels: Predicted class ###Markdown Now, what we perform here is important and is going to give us a definite result for our analysis. Something called Variable importance is brought into the picture to analysis our thesis. `Variable importance is an indication of which predictors are most useful for predicting the response variable. Various measures of variable importance have been proposed in the data mining literature. The most important variables might not be the ones near the top of the tree.`Below is something that H2O turns in when one of the models except `StackedEnsemble` is called ###Code mod_best.varimp_plot() ###Output _____no_output_____
chapter02-quickstart/chapter2.ipynb
###Markdown 2.2 PyTorch第一步PyTorch的简洁设计使得它入门很简单,在深入介绍PyTorch之前,本节将先介绍一些PyTorch的基础知识,使得读者能够对PyTorch有一个大致的了解,并能够用PyTorch搭建一个简单的神经网络。部分内容读者可能暂时不太理解,可先不予以深究,本书的第3章和第4章将会对此进行深入讲解。本节内容参考了PyTorch官方教程[^1]并做了相应的增删修改,使得内容更贴合新版本的PyTorch接口,同时也更适合新手快速入门。另外本书需要读者先掌握基础的Numpy使用,其他相关知识推荐读者参考CS231n的教程[^2]。[^1]: http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html[^2]: http://cs231n.github.io/python-numpy-tutorial/ TensorTensor是PyTorch中重要的数据结构,可认为是一个高维数组。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)以及更高维的数组。Tensor和Numpy的ndarrays类似,但Tensor可以使用GPU进行加速。Tensor的使用和Numpy及Matlab的接口十分相似,下面通过几个例子来看看Tensor的基本使用。 ###Code from __future__ import print_function import torch as t t.__version__ # 构建 5x3 矩阵,只是分配了空间,未初始化 x = t.Tensor(5, 3) x = t.Tensor([[1,2],[3,4]]) x # 使用[0,1]均匀分布随机初始化二维数组 x = t.rand(5, 3) x print(x.size()) # 查看x的形状 x.size()[1], x.size(1) # 查看列的个数, 两种写法等价 ###Output torch.Size([5, 3]) ###Markdown `torch.Size` 是tuple对象的子类,因此它支持tuple的所有操作,如x.size()[0] ###Code y = t.rand(5, 3) # 加法的第一种写法 x + y # 加法的第二种写法 t.add(x, y) # 加法的第三种写法:指定加法结果的输出目标为result result = t.Tensor(5, 3) # 预先分配空间 t.add(x, y, out=result) # 输入到result result print('最初y') print(y) print('第一种加法,y的结果') y.add(x) # 普通加法,不改变y的内容 print(y) print('第二种加法,y的结果') y.add_(x) # inplace 加法,y变了 print(y) ###Output 最初y tensor([[0.4018, 0.0661, 0.1942], [0.9261, 0.1729, 0.3974], [0.3494, 0.5539, 0.0621], [0.5915, 0.7290, 0.3228], [0.9858, 0.6441, 0.4047]]) 第一种加法,y的结果 tensor([[0.4018, 0.0661, 0.1942], [0.9261, 0.1729, 0.3974], [0.3494, 0.5539, 0.0621], [0.5915, 0.7290, 0.3228], [0.9858, 0.6441, 0.4047]]) 第二种加法,y的结果 tensor([[1.3989, 0.5617, 0.9267], [1.4302, 0.4502, 0.5107], [0.5054, 1.4337, 0.4496], [1.4012, 1.5774, 0.9716], [1.5367, 1.2256, 0.5118]]) ###Markdown 注意,函数名后面带下划线**`_`** 的函数会修改Tensor本身。例如,`x.add_(y)`和`x.t_()`会改变 `x`,但`x.add(y)`和`x.t()`返回一个新的Tensor, 而`x`不变。 ###Code # Tensor的选取操作与Numpy类似 x[:, 1] ###Output _____no_output_____ ###Markdown Tensor还支持很多操作,包括数学运算、线性代数、选择、切片等等,其接口设计与Numpy极为相似。更详细的使用方法,会在第三章系统讲解。Tensor和Numpy的数组之间的互操作非常容易且快速。对于Tensor不支持的操作,可以先转为Numpy数组处理,之后再转回Tensor。c ###Code a = t.ones(5) # 新建一个全1的Tensor a b = a.numpy() # Tensor -> Numpy b import numpy as np a = np.ones(5) b = t.from_numpy(a) # Numpy->Tensor print(a) print(b) ###Output [1. 1. 1. 1. 1.] tensor([1., 1., 1., 1., 1.], dtype=torch.float64) ###Markdown Tensor和numpy对象共享内存,所以他们之间的转换很快,而且几乎不会消耗什么资源。但这也意味着,如果其中一个变了,另外一个也会随之改变。 ###Code b.add_(1) # 以`_`结尾的函数会修改自身 print(a) print(b) # Tensor和Numpy共享内存 ###Output [2. 2. 2. 2. 2.] tensor([2., 2., 2., 2., 2.], dtype=torch.float64) ###Markdown 如果你想获取某一个元素的值,可以使用`scalar.item`。 直接`tensor[idx]`得到的还是一个tensor: 一个0-dim 的tensor,一般称为scalar. ###Code scalar = b[0] scalar scalar.size() #0-dim scalar.item() # 使用scalar.item()能从中取出python对象的数值 tensor = t.tensor([2]) # 注意和scalar的区别 tensor,scalar tensor.size(),scalar.size() # 只有一个元素的tensor也可以调用`tensor.item()` tensor.item(), scalar.item() ###Output _____no_output_____ ###Markdown 此外在pytorch中还有一个和`np.array` 很类似的接口: `torch.tensor`, 二者的使用十分类似。 ###Code tensor = t.tensor([3,4]) # 新建一个包含 3,4 两个元素的tensor scalar = t.tensor(3) scalar old_tensor = tensor new_tensor = old_tensor.clone() new_tensor[0] = 1111 old_tensor, new_tensor ###Output _____no_output_____ ###Markdown 需要注意的是,`t.tensor()`或者`tensor.clone()`总是会进行数据拷贝,新tensor和原来的数据不再共享内存。所以如果你想共享内存的话,建议使用`torch.from_numpy()`或者`tensor.detach()`来新建一个tensor, 二者共享内存。 ###Code new_tensor = old_tensor.detach() new_tensor[0] = 1111 old_tensor, new_tensor ###Output _____no_output_____ ###Markdown Tensor可通过`.cuda` 方法转为GPU的Tensor,从而享受GPU带来的加速运算。 ###Code # 在不支持CUDA的机器下,下一步还是在CPU上运行 device = t.device("cuda:0" if t.cuda.is_available() else "cpu") x = x.to(device) y = y.to(x.device) z = x+y ###Output _____no_output_____ ###Markdown 此外,还可以使用`tensor.cuda()` 的方式将tensor拷贝到gpu上,但是这种方式不太推荐。 此处可能发现GPU运算的速度并未提升太多,这是因为x和y太小且运算也较为简单,而且将数据从内存转移到显存还需要花费额外的开销。GPU的优势需在大规模数据和复杂运算下才能体现出来。 autograd: 自动微分深度学习的算法本质上是通过反向传播求导数,而PyTorch的**`autograd`**模块则实现了此功能。在Tensor上的所有操作,autograd都能为它们自动提供微分,避免了手动计算导数的复杂过程。 ~~`autograd.Variable`是Autograd中的核心类,它简单封装了Tensor,并支持几乎所有Tensor有的操作。Tensor在被封装为Variable之后,可以调用它的`.backward`实现反向传播,自动计算所有梯度~~ ~~Variable的数据结构如图2-6所示。~~![图2-6:Variable的数据结构](imgs/autograd_Variable.svg) *从0.4起, Variable 正式合并入Tensor, Variable 本来实现的自动微分功能,Tensor就能支持。读者还是可以使用Variable(tensor), 但是这个操作其实什么都没做。建议读者以后直接使用tensor*. 要想使得Tensor使用autograd功能,只需要设置`tensor.requries_grad=True`. ~~Variable主要包含三个属性。~~~~- `data`:保存Variable所包含的Tensor~~~~- `grad`:保存`data`对应的梯度,`grad`也是个Variable,而不是Tensor,它和`data`的形状一样。~~~~- `grad_fn`:指向一个`Function`对象,这个`Function`用来反向传播计算输入的梯度,具体细节会在下一章讲解。~~ ###Code # 为tensor设置 requires_grad 标识,代表着需要求导数 # pytorch 会自动调用autograd 记录操作 x = t.ones(2, 2, requires_grad=True) # 上一步等价于 # x = t.ones(2,2) # x.requires_grad = True x y = x.sum() y y.grad_fn y.backward() # 反向传播,计算梯度 # y = x.sum() = (x[0][0] + x[0][1] + x[1][0] + x[1][1]) # 每个值的梯度都为1 x.grad ###Output _____no_output_____ ###Markdown 注意:`grad`在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以反向传播之前需把梯度清零。 ###Code y.backward() x.grad y.backward() x.grad # 以下划线结束的函数是inplace操作,会修改自身的值,就像add_ x.grad.data.zero_() y.backward() x.grad ###Output _____no_output_____ ###Markdown 神经网络Autograd实现了反向传播功能,但是直接用来写深度学习的代码在很多情况下还是稍显复杂,torch.nn是专门为神经网络设计的模块化接口。nn构建于 Autograd之上,可用来定义和运行神经网络。nn.Module是nn中最重要的类,可把它看成是一个网络的封装,包含网络各层定义以及forward方法,调用forward(input)方法,可返回前向传播的结果。下面就以最早的卷积神经网络:LeNet为例,来看看如何用`nn.Module`实现。LeNet的网络结构如图2-7所示。![图2-7:LeNet网络结构](imgs/nn_lenet.png)这是一个基础的前向传播(feed-forward)网络: 接收输入,经过层层传递运算,得到输出。 定义网络定义网络时,需要继承`nn.Module`,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数`__init__`中。如果某一层(如ReLU)不具有可学习的参数,则既可以放在构造函数中,也可以不放,但建议不放在其中,而在forward中使用`nn.functional`代替。 ###Code import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): # nn.Module子类的函数必须在构造函数中执行父类的构造函数 # 下式等价于nn.Module.__init__(self) super(Net, self).__init__() # 卷积层 '1'表示输入图片为单通道, '6'表示输出通道数,'5'表示卷积核为5*5 self.conv1 = nn.Conv2d(1, 6, 5) # 卷积层 self.conv2 = nn.Conv2d(6, 16, 5) # 仿射层/全连接层,y = Wx + b self.fc1 = nn.Linear(16*5*5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # 卷积 -> 激活 -> 池化 x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv2(x)), 2) # reshape,‘-1’表示自适应 x = x.view(x.size()[0], -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() print(net) ###Output Net( (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1)) (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear(in_features=400, out_features=120, bias=True) (fc2): Linear(in_features=120, out_features=84, bias=True) (fc3): Linear(in_features=84, out_features=10, bias=True) ) ###Markdown 只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用`autograd`)。在`forward` 函数中可使用任何tensor支持的函数,还可以使用if、for循环、print、log等Python语法,写法和标准的Python写法一致。网络的可学习参数通过`net.parameters()`返回,`net.named_parameters`可同时返回可学习的参数及名称。 ###Code params = list(net.parameters()) print(len(params)) for name,parameters in net.named_parameters(): print(name,':',parameters.size()) ###Output conv1.weight : torch.Size([6, 1, 5, 5]) conv1.bias : torch.Size([6]) conv2.weight : torch.Size([16, 6, 5, 5]) conv2.bias : torch.Size([16]) fc1.weight : torch.Size([120, 400]) fc1.bias : torch.Size([120]) fc2.weight : torch.Size([84, 120]) fc2.bias : torch.Size([84]) fc3.weight : torch.Size([10, 84]) fc3.bias : torch.Size([10]) ###Markdown forward函数的输入和输出都是Tensor。 ###Code input = t.randn(1, 1, 32, 32) out = net(input) out.size() net.zero_grad() # 所有参数的梯度清零 out.backward(t.ones(1,10)) # 反向传播 ###Output _____no_output_____ ###Markdown 需要注意的是,torch.nn只支持mini-batches,不支持一次只输入一个样本,即一次必须是一个batch。但如果只想输入一个样本,则用 `input.unsqueeze(0)`将batch_size设为1。例如 `nn.Conv2d` 输入必须是4维的,形如$nSamples \times nChannels \times Height \times Width$。可将nSample设为1,即$1 \times nChannels \times Height \times Width$。 损失函数nn实现了神经网络中大多数的损失函数,例如nn.MSELoss用来计算均方误差,nn.CrossEntropyLoss用来计算交叉熵损失。 ###Code output = net(input) target = t.arange(0,10).view(1,10).float() criterion = nn.MSELoss() loss = criterion(output, target) loss # loss是个scalar ###Output _____no_output_____ ###Markdown 如果对loss进行反向传播溯源(使用`gradfn`属性),可看到它的计算图如下:```input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d -> view -> linear -> relu -> linear -> relu -> linear -> MSELoss -> loss```当调用`loss.backward()`时,该图会动态生成并自动微分,也即会自动计算图中参数(Parameter)的导数。 ###Code # 运行.backward,观察调用之前和调用之后的grad net.zero_grad() # 把net中所有可学习参数的梯度清零 print('反向传播之前 conv1.bias的梯度') print(net.conv1.bias.grad) loss.backward() print('反向传播之后 conv1.bias的梯度') print(net.conv1.bias.grad) ###Output 反向传播之前 conv1.bias的梯度 tensor([0., 0., 0., 0., 0., 0.]) 反向传播之后 conv1.bias的梯度 tensor([ 0.1366, 0.0885, -0.0036, 0.1410, 0.0144, 0.0562]) ###Markdown 优化器 在反向传播计算完所有参数的梯度后,还需要使用优化方法来更新网络的权重和参数,例如随机梯度下降法(SGD)的更新策略如下:```weight = weight - learning_rate * gradient```手动实现如下:```pythonlearning_rate = 0.01for f in net.parameters(): f.data.sub_(f.grad.data * learning_rate) inplace 减法````torch.optim`中实现了深度学习中绝大多数的优化方法,例如RMSProp、Adam、SGD等,更便于使用,因此大多数时候并不需要手动写上述代码。 ###Code import torch.optim as optim #新建一个优化器,指定要调整的参数和学习率 optimizer = optim.SGD(net.parameters(), lr = 0.01) # 在训练过程中 # 先梯度清零(与net.zero_grad()效果一样) optimizer.zero_grad() # 计算损失 output = net(input) loss = criterion(output, target) #反向传播 loss.backward() #更新参数 optimizer.step() ###Output _____no_output_____ ###Markdown 数据加载与预处理在深度学习中数据加载及预处理是非常复杂繁琐的,但PyTorch提供了一些可极大简化和加快数据处理流程的工具。同时,对于常用的数据集,PyTorch也提供了封装好的接口供用户快速调用,这些数据集主要保存在torchvison中。`torchvision`实现了常用的图像数据加载功能,例如Imagenet、CIFAR10、MNIST等,以及常用的数据转换操作,这极大地方便了数据加载,并且代码具有可重用性。 小试牛刀:CIFAR-10分类下面我们来尝试实现对CIFAR-10数据集的分类,步骤如下: 1. 使用torchvision加载并预处理CIFAR-10数据集2. 定义网络3. 定义损失函数和优化器4. 训练网络并更新网络参数5. 测试网络 CIFAR-10数据加载及预处理CIFAR-10[^3]是一个常用的彩色图片数据集,它有10个类别: 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'。每张图片都是$3\times32\times32$,也即3-通道彩色图片,分辨率为$32\times32$。[^3]: http://www.cs.toronto.edu/~kriz/cifar.html ###Code import torchvision as tv import torchvision.transforms as transforms from torchvision.transforms import ToPILImage show = ToPILImage() # 可以把Tensor转成Image,方便可视化 # 第一次运行程序torchvision会自动下载CIFAR-10数据集, # 大约100M,需花费一定的时间, # 如果已经下载有CIFAR-10,可通过root参数指定 # 定义对数据的预处理 transform = transforms.Compose([ transforms.ToTensor(), # 转为Tensor transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化 ]) # 训练集 trainset = tv.datasets.CIFAR10( root='/home/cy/tmp/data/', train=True, download=True, transform=transform) trainloader = t.utils.data.DataLoader( trainset, batch_size=4, shuffle=True, num_workers=2) # 测试集 testset = tv.datasets.CIFAR10( '/home/cy/tmp/data/', train=False, download=True, transform=transform) testloader = t.utils.data.DataLoader( testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') ###Output Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to /home/cy/tmp/data/cifar-10-python.tar.gz Files already downloaded and verified ###Markdown Dataset对象是一个数据集,可以按下标访问,返回形如(data, label)的数据。 ###Code (data, label) = trainset[100] print(classes[label]) # (data + 1) / 2是为了还原被归一化的数据 show((data + 1) / 2).resize((100, 100)) ###Output ship ###Markdown Dataloader是一个可迭代的对象,它将dataset返回的每一条数据拼接成一个batch,并提供多线程加速优化和数据打乱等操作。当程序对dataset的所有数据遍历完一遍之后,相应的对Dataloader也完成了一次迭代。 ###Code dataiter = iter(trainloader) images, labels = dataiter.next() # 返回4张图片及标签 print(' '.join('%11s'%classes[labels[j]] for j in range(4))) show(tv.utils.make_grid((images+1)/2)).resize((400,100)) ###Output bird truck truck car ###Markdown 定义网络拷贝上面的LeNet网络,修改self.conv1第一个参数为3通道,因CIFAR-10是3通道彩图。 ###Code import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16*5*5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(x.size()[0], -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() print(net) ###Output Net( (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1)) (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear(in_features=400, out_features=120, bias=True) (fc2): Linear(in_features=120, out_features=84, bias=True) (fc3): Linear(in_features=84, out_features=10, bias=True) ) ###Markdown 定义损失函数和优化器(loss和optimizer) ###Code from torch import optim criterion = nn.CrossEntropyLoss() # 交叉熵损失函数 optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ###Output _____no_output_____ ###Markdown 训练网络所有网络的训练流程都是类似的,不断地执行如下流程:- 输入数据- 前向传播+反向传播- 更新参数 ###Code t.set_num_threads(8) for epoch in range(2): running_loss = 0.0 for i, data in enumerate(trainloader, 0): # 输入数据 inputs, labels = data # 梯度清零 optimizer.zero_grad() # forward + backward outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() # 更新参数 optimizer.step() # 打印log信息 # loss 是一个scalar,需要使用loss.item()来获取数值,不能使用loss[0] running_loss += loss.item() if i % 2000 == 1999: # 每2000个batch打印一下训练状态 print('[%d, %5d] loss: %.3f' \ % (epoch+1, i+1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') ###Output [1, 2000] loss: 2.157 [1, 4000] loss: 1.815 [1, 6000] loss: 1.676 [1, 8000] loss: 1.599 [1, 10000] loss: 1.557 [1, 12000] loss: 1.466 [2, 2000] loss: 1.410 [2, 4000] loss: 1.381 [2, 6000] loss: 1.331 [2, 8000] loss: 1.312 [2, 10000] loss: 1.281 [2, 12000] loss: 1.249 Finished Training ###Markdown 此处仅训练了2个epoch(遍历完一遍数据集称为一个epoch),来看看网络有没有效果。将测试图片输入到网络中,计算它的label,然后与实际的label进行比较。 ###Code dataiter = iter(testloader) images, labels = dataiter.next() # 一个batch返回4张图片 print('实际的label: ', ' '.join(\ '%08s'%classes[labels[j]] for j in range(4))) show(tv.utils.make_grid(images / 2 - 0.5)).resize((400,100)) ###Output 实际的label: cat ship ship plane ###Markdown 接着计算网络预测的label: ###Code # 计算图片在每个类别上的分数 outputs = net(images) # 得分最高的那个类 _, predicted = t.max(outputs.data, 1) print('预测结果: ', ' '.join('%5s'\ % classes[predicted[j]] for j in range(4))) ###Output 预测结果: dog ship plane plane ###Markdown 已经可以看出效果,准确率50%,但这只是一部分的图片,再来看看在整个测试集上的效果。 ###Code correct = 0 # 预测正确的图片数 total = 0 # 总共的图片数 # 由于测试的时候不需要求导,可以暂时关闭autograd,提高速度,节约内存 with t.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = t.max(outputs, 1) total += labels.size(0) correct += (predicted == labels).sum() print('10000张测试集中的准确率为: %d %%' % (100 * correct / total)) ###Output 10000张测试集中的准确率为: 53 % ###Markdown 训练的准确率远比随机猜测(准确率10%)好,证明网络确实学到了东西。 在GPU训练就像之前把Tensor从CPU转到GPU一样,模型也可以类似地从CPU转到GPU。 ###Code device = t.device("cuda:0" if t.cuda.is_available() else "cpu") net.to(device) images = images.to(device) labels = labels.to(device) output = net(images) loss= criterion(output,labels) loss ###Output _____no_output_____
src_optimization/05_openmp_stencil_01/e_plot.ipynb
###Markdown Cache Plots ###Code import matplotlib.pyplot as plt from matplotlib import rcParams import pandas as pd import seaborn as sns PHYSICAL_CORES=64 def plot(p_data, p_yId, p_xId, p_hueId, p_styleId, p_logScale=False, p_smt_marker=False, p_export_filename=None, p_xLabel=None, p_yLabel=None): rcParams['figure.figsize'] = 12,8 rcParams['font.size'] = 12 rcParams['svg.fonttype'] = 'none' plot = sns.lineplot(x=p_xId, y=p_yId, hue=p_hueId, style=p_styleId, data=p_data) if p_logScale == True: plot.set_yscale('log') plot.set_xscale('log') if p_xLabel != None: plot.set(xlabel=p_xLabel) else: plot.set(xlabel=p_xId) if p_yLabel != None: plot.set(ylabel=p_yLabel) else: plot.set(ylabel=p_yId) plt.grid(color='gainsboro') plt.grid(True,which='minor', linestyle='--', linewidth=0.5, color='gainsboro') if(p_smt_marker == True): plt.axvline(PHYSICAL_CORES, linestyle='--', color='red', label='using SMT') plt.legend() if(p_export_filename != None): plt.savefig(p_export_filename) plt.show() ###Output _____no_output_____ ###Markdown Gauss3 Strong Scaling ###Code import pandas as pd data_frame = pd.read_csv('./runtime.csv') data_frame = data_frame[data_frame.region_id == 'apply'] # # NOTE: calc absolute efficiency # ref_runtime = data_frame[data_frame.bench_id == '\Verb{nobind}'][data_frame.threads == 1]['runtime'].values[0] data_frame = data_frame.assign(efficiency_abs=lambda p_entry: ref_runtime/(p_entry.runtime * p_entry.threads)) plot(p_data=data_frame, p_yId='runtime', p_xId='threads', p_hueId='bench_id', p_styleId=None, p_logScale=True, p_smt_marker=True, p_export_filename='runtime.svg', p_xLabel="Threads", p_yLabel="Runtime [s]") plot(p_data=data_frame, p_yId='efficiency_abs', p_xId='threads', p_hueId='bench_id', p_styleId=None, p_logScale=True, p_smt_marker=True, p_export_filename='efficiency.svg', p_xLabel="Threads", p_yLabel="Absolute Efficiency") ###Output /var/folders/zt/h71khkbd7ll9krscx1zncwlc0000gn/T/ipykernel_39266/1546138061.py:9: UserWarning: Boolean Series key will be reindexed to match DataFrame index. ref_runtime = data_frame[data_frame.bench_id == '\Verb{nobind}'][data_frame.threads == 1]['runtime'].values[0]
PUBG/pubg-survivor-kit.ipynb
###Markdown Why this kernel?Why should you read through this kernel? The goal is to implement the full chain (skipping over EDA) from data access to preparation of submission and to provide functional example of LightGBM advanced usage:- the data will be read and **memory footprint will be reduced**;- **missing data** will be checked;- _feature engineering is not implemented yet_;- a baseline model will be trained: - Gradient boosting model as implemented in **LightGBM** is used; - **Mean absolute error (MAE) is used as the loss function** in the training (consistently with the final evaluation metric). **FAIR loss** is also tried and was found to lead similar results - Training is performed with **early stopping based on MAE metric**. - **Learning rate in the training is reduced (decays) from iteration to iteration** to improve convergence (one starts with high and finishes with low learning rate) - The training is implemented in a cross validation (CV) loop and **out-of-fold (OOF) predictions are stored** for future use in stacking. - **Test predictions** are obtained as an **average over predictions from models trained on k-1 fold subsets**.- Predictions are **clipped to `[0,1]` range**See another my kernel showing how to significantly improve the score by using relative ranking of teams within games: https://www.kaggle.com/mlisovyi/relativerank-of-predictions Side note: score of 0.0635 can be achieved with only 50k entries from the train set ###Code # The number of entries to read in. Use it to have fast turn-around. The values are separate for train and test sets max_events_trn=None max_events_tst=None # Number on CV folds n_cv=3 import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt %matplotlib inline import warnings warnings.simplefilter(action='ignore', category=Warning) from sklearn.metrics import mean_squared_error, mean_absolute_error import os print(os.listdir("../input")) ###Output _____no_output_____ ###Markdown Define a function to reduce memory foorprint ###Code def reduce_mem_usage(df): """ iterate through all the columns of a dataframe and modify the data type to reduce memory usage. """ start_mem = df.memory_usage().sum() / 1024**2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) for col in df.columns: col_type = df[col].dtype if col_type != object and col_type.name != 'category' and 'datetime' not in col_type.name: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) elif 'datetime' not in col_type.name: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024**2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df ###Output _____no_output_____ ###Markdown Read in the data ###Code df_trn = pd.read_csv('../input/train.csv', nrows=max_events_trn) df_trn = reduce_mem_usage(df_trn) df_tst = pd.read_csv('../input/test.csv', nrows=max_events_tst) df_tst = reduce_mem_usage(df_tst) ###Output _____no_output_____ ###Markdown How do the data look like? ###Code df_trn.head() df_trn.info(memory_usage='deep', verbose=False) df_tst.info(memory_usage='deep', verbose=False) ###Output _____no_output_____ ###Markdown - The training dataset has 4.3M entries, which is not small and aloows for advanced models like GBM and NN to dominate.- The test dataset is only 1.9M entries- There are 25 features (+ the target in the train dataset) Are there missing data? ###Code df_trn.isnull().sum().sum() ###Output _____no_output_____ ###Markdown Good news: **There are no entries with `np.nan`**, so at the first glance we do not need to do anything fancy about missing data. There might be some default values pre-filled into missing entries- this would have to be discovered. Feature engineering to come here... [tba] Prepare the data ###Code y = df_trn['winPlacePerc'] df_trn.drop('winPlacePerc', axis=1, inplace=True) ###Output _____no_output_____ ###Markdown We will **NOT** use `Id, groupId, matchId`. The first one is a unique identifier and can be useful only in the case of data leakage. The other two would be useful in feature engineering with grouped stats per match and per team. ###Code # we will NOT use features_not2use = ['Id', 'groupId', 'matchId'] for df in [df_trn, df_tst]: df.drop(features_not2use, axis=1, inplace=True) ###Output _____no_output_____ ###Markdown Train and evaluate a modelStart by defining handy helper functions... ###Code from sklearn.model_selection import StratifiedKFold, KFold from sklearn.base import clone, ClassifierMixin, RegressorMixin import lightgbm as lgb def learning_rate_decay_power(current_iter): ''' The function defines learning rate deay for LGBM ''' base_learning_rate = 0.10 min_lr = 5e-2 lr = base_learning_rate * np.power(.996, current_iter) return lr if lr > min_lr else min_lr def train_single_model(clf_, X_, y_, random_state_=314, opt_parameters_={}, fit_params_={}): ''' A wrapper to train a model with particular parameters ''' c = clone(clf_) c.set_params(**opt_parameters_) c.set_params(random_state=random_state_) return c.fit(X_, y_, **fit_params_) def train_model_in_CV(model, X, y, metric, metric_args={}, model_name='xmodel', seed=31416, n=5, opt_parameters_={}, fit_params_={}, verbose=True): # the list of classifiers for voting ensable clfs = [] # performance perf_eval = {'score_i_oof': 0, 'score_i_ave': 0, 'score_i_std': 0, 'score_i': [] } # full-sample oof prediction y_full_oof = pd.Series(np.zeros(shape=(y.shape[0],)), index=y.index) if 'sample_weight' in metric_args: sample_weight=metric_args['sample_weight'] doSqrt=False if 'sqrt' in metric_args: doSqrt=True del metric_args['sqrt'] cv = KFold(n, shuffle=True, random_state=seed) #Stratified # The out-of-fold (oof) prediction for the k-1 sample in the outer CV loop y_oof = pd.Series(np.zeros(shape=(X.shape[0],)), index=X.index) scores = [] clfs = [] for n_fold, (trn_idx, val_idx) in enumerate(cv.split(X, (y!=0).astype(np.int8))): X_trn, y_trn = X.iloc[trn_idx], y.iloc[trn_idx] X_val, y_val = X.iloc[val_idx], y.iloc[val_idx] if fit_params_: # use _stp data for early stopping fit_params_["eval_set"] = [(X_trn,y_trn), (X_val,y_val)] fit_params_['verbose'] = verbose clf = train_single_model(model, X_trn, y_trn, 314+n_fold, opt_parameters_, fit_params_) clfs.append(('{}{}'.format(model_name,n_fold), clf)) # evaluate performance if isinstance(clf, RegressorMixin): y_oof.iloc[val_idx] = clf.predict(X_val) elif isinstance(clf, ClassifierMixin): y_oof.iloc[val_idx] = clf.predict_proba(X_val)[:,1] else: raise TypeError('Provided model does not inherit neither from a regressor nor from classifier') if 'sample_weight' in metric_args: metric_args['sample_weight'] = y_val.map(sample_weight) scores.append(metric(y_val, y_oof.iloc[val_idx], **metric_args)) #cleanup del X_trn, y_trn, X_val, y_val # Store performance info for this CV if 'sample_weight' in metric_args: metric_args['sample_weight'] = y_oof.map(sample_weight) perf_eval['score_i_oof'] = metric(y, y_oof, **metric_args) perf_eval['score_i'] = scores if doSqrt: for k in perf_eval.keys(): if 'score' in k: perf_eval[k] = np.sqrt(perf_eval[k]) scores = np.sqrt(scores) perf_eval['score_i_ave'] = np.mean(scores) perf_eval['score_i_std'] = np.std(scores) return clfs, perf_eval, y_oof def print_perf_clf(name, perf_eval): print('Performance of the model:') print('Mean(Val) score inner {} Classifier: {:.4f}+-{:.4f}'.format(name, perf_eval['score_i_ave'], perf_eval['score_i_std'] )) print('Min/max scores on folds: {:.4f} / {:.4f}'.format(np.min(perf_eval['score_i']), np.max(perf_eval['score_i']))) print('OOF score inner {} Classifier: {:.4f}'.format(name, perf_eval['score_i_oof'])) print('Scores in individual folds: {}'.format(perf_eval['score_i'])) ###Output _____no_output_____ ###Markdown Now let's define the parameter and model in a scalable fashion (we can add later on further models to the list and it will work out-of-the-box). The format is a dictionary with keys that are user model names and items being an array (or tuple) of:- model to be fitted;- additional model parameters to be set;- model fit parameters (they are passed to `model.fit()` call);- target variable. ###Code mdl_inputs = { # This will be with MAE loss 'lgbm1_reg': (lgb.LGBMRegressor(max_depth=-1, min_child_samples=400, random_state=314, silent=True, metric='None', n_jobs=4, n_estimators=5000, learning_rate=0.05), {'objective': 'mae', 'colsample_bytree': 0.75, 'min_child_weight': 10.0, 'num_leaves': 30, 'reg_alpha': 1, 'subsample': 0.75}, {"early_stopping_rounds":100, "eval_metric" : 'mae', 'eval_names': ['train', 'early_stop'], 'verbose': False, 'callbacks': [lgb.reset_parameter(learning_rate=learning_rate_decay_power)], 'categorical_feature': 'auto'}, y ), # 'lgbm45_reg': (lgb.LGBMRegressor(max_depth=-1, min_child_samples=400, random_state=314, silent=True, metric='None', n_jobs=4, n_estimators=5000, learning_rate=0.05), # {'objective': 'mae', 'colsample_bytree': 0.75, 'min_child_weight': 10.0, 'num_leaves': 45, 'reg_alpha': 1, 'subsample': 0.75}, # {"early_stopping_rounds":100, # "eval_metric" : 'mae', # 'eval_names': ['train', 'early_stop'], # 'verbose': False, # 'callbacks': [lgb.reset_parameter(learning_rate=learning_rate_decay_power)], # 'categorical_feature': 'auto'}, # y # ), # 'lgbm60_reg': (lgb.LGBMRegressor(max_depth=-1, min_child_samples=400, random_state=314, silent=True, metric='None', n_jobs=4, n_estimators=5000, learning_rate=0.05), # {'objective': 'mae', 'colsample_bytree': 0.75, 'min_child_weight': 10.0, 'num_leaves': 60, 'reg_alpha': 1, 'subsample': 0.75}, # {"early_stopping_rounds":100, # "eval_metric" : 'mae', # 'eval_names': ['train', 'early_stop'], # 'verbose': False, # 'callbacks': [lgb.reset_parameter(learning_rate=learning_rate_decay_power)], # 'categorical_feature': 'auto'}, # y # ), # 'lgbm90_reg': (lgb.LGBMRegressor(max_depth=-1, min_child_samples=400, random_state=314, silent=True, metric='None', n_jobs=4, n_estimators=5000, learning_rate=0.05), # {'objective': 'mae', 'colsample_bytree': 0.75, 'min_child_weight': 10.0, 'num_leaves': 90, 'reg_alpha': 1, 'subsample': 0.75}, # {"early_stopping_rounds":100, # "eval_metric" : 'mae', # 'eval_names': ['train', 'early_stop'], # 'verbose': False, # 'callbacks': [lgb.reset_parameter(learning_rate=learning_rate_decay_power)], # 'categorical_feature': 'auto'}, # y # ), # This will be with FAIR loss # 'lgbm2_reg': (lgb.LGBMRegressor(max_depth=-1, min_child_samples=400, random_state=314, silent=True, metric='None', n_jobs=4, n_estimators=5000, learning_rate=0.05), # {'objective': 'fair', 'colsample_bytree': 0.75, 'min_child_weight': 10.0, 'num_leaves': 30, 'reg_alpha': 1, 'subsample': 0.75}, # {"early_stopping_rounds":100, # "eval_metric" : 'mae', # 'eval_names': ['train', 'early_stop'], # 'verbose': False, # 'callbacks': [lgb.reset_parameter(learning_rate=learning_rate_decay_power)], # 'categorical_feature': 'auto'}, # y # ), } ###Output _____no_output_____ ###Markdown Do the actual model training ###Code %%time mdls = {} results = {} y_oofs = {} for name, (mdl, mdl_pars, fit_pars, y_) in mdl_inputs.items(): print('--------------- {} -----------'.format(name)) mdl_, perf_eval_, y_oof_ = train_model_in_CV(mdl, df_trn, y_, mean_absolute_error, metric_args={}, model_name=name, opt_parameters_=mdl_pars, fit_params_=fit_pars, n=n_cv, verbose=False) results[name] = perf_eval_ mdls[name] = mdl_ y_oofs[name] = y_oof_ print_perf_clf(name, perf_eval_) ###Output _____no_output_____ ###Markdown Let's plot how predictions look like ###Code k = list(y_oofs.keys())[0] _ = y_oofs[k].plot('hist', bins=100, figsize=(15,6)) plt.xlabel('Predicted winPlacePerc OOF') ###Output _____no_output_____ ###Markdown Note, that predictions are spilled outside of the `[0,1]` range, which is not meaningful for percentage value. **We will clip test predictions to be within the meaningful range.** This will improve the score slightly Visualise importance of features ###Code import matplotlib.pyplot as plt import seaborn as sns def display_importances(feature_importance_df_, n_feat=30, silent=False, dump_strs=[], fout_name=None, title='Features (avg over folds)'): ''' Make a plot of most important features from a tree-based model Parameters ---------- feature_importance_df_ : pd.DataFrame The input dataframe. Must contain columns `'feature'` and `'importance'`. The dataframe will be first grouped by `'feature'` and the mean `'importance'` will be calculated. This allows to calculate and plot importance averaged over folds, when the same features appear in the dataframe as many time as there are folds in CV. n_feats : int [default: 20] The maximum number of the top features to be plotted silent : bool [default: False] Dump additionsl information, in particular the mean importances for features defined by `dump_strs` and the features with zero (<1e-3) importance dump_strs : list of strings [default: []] Features containing either of these srings will be printed to the screen fout_name : str or None [default: None] The name of the file to dump the figure. If `None`, no file is created (to be used in notebooks) ''' # Plot feature importances cols = feature_importance_df_[["feature", "importance"]].groupby("feature").mean().sort_values( by="importance", ascending=False)[:n_feat].index mean_imp = feature_importance_df_[["feature", "importance"]].groupby("feature").mean() df_2_neglect = mean_imp[mean_imp['importance'] < 1e-3] if not silent: print('The list of features with 0 importance: ') print(df_2_neglect.index.values.tolist()) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) for feat_prefix in dump_strs: feat_names = [x for x in mean_imp.index if feat_prefix in x] print(mean_imp.loc[feat_names].sort_values(by='importance', ascending=False)) del mean_imp, df_2_neglect best_features = feature_importance_df_.loc[feature_importance_df_.feature.isin(cols)] plt.figure(figsize=(8,10)) sns.barplot(x="importance", y="feature", data=best_features.sort_values(by="importance", ascending=False)) plt.title(title) plt.tight_layout() if fout_name is not None: plt.savefig(fout_name) display_importances(pd.DataFrame({'feature': df_trn.columns, 'importance': mdls['lgbm1_reg'][0][1].booster_.feature_importance('gain')}), n_feat=20, title='GAIN feature importance', fout_name='feature_importance_gain.png' ) ###Output _____no_output_____ ###Markdown Prepare submission ###Code %%time y_subs= {} for c in mdl_inputs: mdls_= mdls[c] y_sub = np.zeros(df_tst.shape[0]) for mdl_ in mdls_: y_sub += np.clip(mdl_[1].predict(df_tst), 0, 1) y_sub /= n_cv y_subs[c] = y_sub df_sub = pd.read_csv('../input/sample_submission.csv', nrows=max_events_tst) for c in mdl_inputs: df_sub['winPlacePerc'] = y_subs[c] df_sub.to_csv('sub_{}.csv'.format(c), index=False) oof = pd.DataFrame(y_oofs[c].values) oof.columns = ['winPlacePerc'] oof.clip(0, 1, inplace=True) oof.to_csv('oof_{}.csv'.format(c), index=False) !ls ###Output _____no_output_____
sTock_Prediction NSE TATA-GLOBAL.ipynb
###Markdown importing Libraries ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime as dt from matplotlib import pyplot as plt from sklearn import linear_model , model_selection from sklearn.metrics import confusion_matrix , mean_squared_error from sklearn.preprocessing import StandardScaler , MinMaxScaler from sklearn.model_selection import train_test_split , TimeSeriesSplit from keras.models import Sequential from keras.layers import Dense , LSTM , Dropout import math from IPython.display import display ###Output _____no_output_____ ###Markdown importing Dataset | Training Data (Train-Test Split) ###Code data = pd.read_csv('Stock_Data.csv') dataset_train=data.iloc[0:930,1:2] dataset_test=data.iloc[930:,1:2] training_set = data.iloc[0:930, 3:4].values testing_set=data.iloc[930:,3:4].values data.head() ###Output _____no_output_____ ###Markdown Removing uncessary Data ###Code data.drop('Last', axis=1, inplace=True) data.drop('Total Trade Quantity', axis=1, inplace=True) data.drop('Turnover (Lacs)', axis=1, inplace=True) print(data.head()) data.to_csv('tata_preprocessed.csv',index= False) data = data.iloc[::-1] ###Output Date Open High Low Close 0 2018-10-08 208.00 222.25 206.85 215.15 1 2018-10-05 217.00 218.60 205.90 209.20 2 2018-10-04 223.50 227.80 216.15 218.20 3 2018-10-03 230.00 237.50 225.75 227.60 4 2018-10-01 234.55 234.60 221.05 230.90 ###Markdown Visualising Data ###Code plt.figure(figsize = (18,9)) plt.plot(range(data.shape[0]),(data['Close'])) plt.xticks(range(0,data.shape[0],500),data['Date'].loc[::500],rotation=45) plt.xlabel('Date',fontsize=18) plt.ylabel('Close Price',fontsize=18) plt.show() ###Output _____no_output_____ ###Markdown Data Normalization ###Code sc = MinMaxScaler(feature_range = (0, 1)) training_set_scaled = sc.fit_transform(training_set) ###Output _____no_output_____ ###Markdown Incorporating Timesteps Into Data ###Code len(training_set_scaled) X_train = [] y_train = [] for i in range(10,930): X_train.append(training_set_scaled[i-10:i, 0]) y_train.append(training_set_scaled[i, 0]) X_train, y_train = np.array(X_train), np.array(y_train) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) ###Output _____no_output_____ ###Markdown Creating LSTM Model ###Code regressor = Sequential() regressor.add(LSTM(units = 75, return_sequences = True, input_shape = (X_train.shape[1], 1))) regressor.add(Dropout(0.1)) regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.2)) regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.1)) regressor.add(LSTM(units = 75)) regressor.add(Dropout(0.2)) regressor.add(Dense(units = 1)) regressor.compile(optimizer = 'adam', loss = 'mean_squared_error') regressor.fit(X_train, y_train, epochs = 200, batch_size = 64) ###Output Epoch 1/200 15/15 [==============================] - 6s 22ms/step - loss: 0.1147 Epoch 2/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0136 Epoch 3/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0061 Epoch 4/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0042 Epoch 5/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0035 Epoch 6/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0032 Epoch 7/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0041 Epoch 8/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0035 Epoch 9/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0032 Epoch 10/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0031 Epoch 11/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0035 Epoch 12/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0039 Epoch 13/200 15/15 [==============================] - 0s 26ms/step - loss: 0.0031 Epoch 14/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0030 Epoch 15/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0032 Epoch 16/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0035 Epoch 17/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0028 Epoch 18/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0032 Epoch 19/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0030 Epoch 20/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0028 Epoch 21/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0029 Epoch 22/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0029 Epoch 23/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0034 Epoch 24/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0029 Epoch 25/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0027 Epoch 26/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0026 Epoch 27/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0025 Epoch 28/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0027 Epoch 29/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0025 Epoch 30/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0030 Epoch 31/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0032 Epoch 32/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0028 Epoch 33/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0028 Epoch 34/200 15/15 [==============================] - 0s 26ms/step - loss: 0.0026 Epoch 35/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0024 Epoch 36/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0028 Epoch 37/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0021 Epoch 38/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0027 Epoch 39/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0029 Epoch 40/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0025 Epoch 41/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0025 Epoch 42/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0024 Epoch 43/200 15/15 [==============================] - 0s 21ms/step - loss: 0.0027 Epoch 44/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0027 Epoch 45/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0024 Epoch 46/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0024 Epoch 47/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0021 Epoch 48/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0025 Epoch 49/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0023 Epoch 50/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0024 Epoch 51/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0022 Epoch 52/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0023 Epoch 53/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0023 Epoch 54/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0023 Epoch 55/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0029 Epoch 56/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0024 Epoch 57/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0024 Epoch 58/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0021 Epoch 59/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0022 Epoch 60/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0023 Epoch 61/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0024 Epoch 62/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0025 Epoch 63/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0020 Epoch 64/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0021 Epoch 65/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0022 Epoch 66/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0018 Epoch 67/200 15/15 [==============================] - 0s 26ms/step - loss: 0.0021 Epoch 68/200 15/15 [==============================] - 0s 26ms/step - loss: 0.0024 Epoch 69/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0021 Epoch 70/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0024 Epoch 71/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0024 Epoch 72/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0025 Epoch 73/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0017 Epoch 74/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0019 Epoch 75/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0019 Epoch 76/200 15/15 [==============================] - 0s 26ms/step - loss: 0.0019 Epoch 77/200 15/15 [==============================] - 0s 30ms/step - loss: 0.0024 Epoch 78/200 15/15 [==============================] - 0s 31ms/step - loss: 0.0021 Epoch 79/200 15/15 [==============================] - 0s 28ms/step - loss: 0.0018 Epoch 80/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0017 Epoch 81/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0021 Epoch 82/200 15/15 [==============================] - 0s 27ms/step - loss: 0.0018 Epoch 83/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0021 Epoch 84/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0025 Epoch 85/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0019 Epoch 86/200 15/15 [==============================] - 0s 22ms/step - loss: 0.0023 Epoch 87/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0020 Epoch 88/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0020 Epoch 89/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0019 Epoch 90/200 15/15 [==============================] - 0s 23ms/step - loss: 0.0012 Epoch 91/200 15/15 [==============================] - 0s 27ms/step - loss: 0.0019 Epoch 92/200 15/15 [==============================] - 0s 26ms/step - loss: 0.0019 Epoch 93/200 15/15 [==============================] - 0s 27ms/step - loss: 0.0016 Epoch 94/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0016 Epoch 95/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0017 Epoch 96/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0015 Epoch 97/200 15/15 [==============================] - 0s 26ms/step - loss: 0.0017 Epoch 98/200 15/15 [==============================] - 0s 25ms/step - loss: 0.0017 Epoch 99/200 15/15 [==============================] - 0s 24ms/step - loss: 0.0017 Epoch 100/200 15/15 [==============================] - 0s 27ms/step - loss: 0.0023 Epoch 101/200 ###Markdown Making Predictions on Test Set ###Code real_stock_price = testing_set dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis = 0) inputs = dataset_total[len(dataset_total) - len(dataset_test) - 10:].values inputs = inputs.reshape(-1,1) inputs = sc.transform(inputs) X_test = [] for i in range(10,305): X_test.append(inputs[i-10:i, 0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) predicted_stock_price = regressor.predict(X_test) predicted_stock_price = sc.inverse_transform(predicted_stock_price) ###Output _____no_output_____ ###Markdown Plotting The Results ###Code %matplotlib inline plt.plot(real_stock_price, color = 'red', label = 'TATA Stock Price') plt.plot(predicted_stock_price, color = 'green', label = 'Predicted TATA Stock Price') plt.title('TATA Stock Price Prediction') plt.xlabel('Time') plt.ylabel('TATA Stock Price') plt.legend() plt.show() ###Output _____no_output_____
experiments/tl_2/cores_wisig-oracle.run1.framed/trials/2/trial.ipynb
###Markdown Transfer Learning Template ###Code %load_ext autoreload %autoreload 2 %matplotlib inline import os, json, sys, time, random import numpy as np import torch from torch.optim import Adam from easydict import EasyDict import matplotlib.pyplot as plt from steves_models.steves_ptn import Steves_Prototypical_Network from steves_utils.lazy_iterable_wrapper import Lazy_Iterable_Wrapper from steves_utils.iterable_aggregator import Iterable_Aggregator from steves_utils.ptn_train_eval_test_jig import PTN_Train_Eval_Test_Jig from steves_utils.torch_sequential_builder import build_sequential from steves_utils.torch_utils import get_dataset_metrics, ptn_confusion_by_domain_over_dataloader from steves_utils.utils_v2 import (per_domain_accuracy_from_confusion, get_datasets_base_path) from steves_utils.PTN.utils import independent_accuracy_assesment from torch.utils.data import DataLoader from steves_utils.stratified_dataset.episodic_accessor import Episodic_Accessor_Factory from steves_utils.ptn_do_report import ( get_loss_curve, get_results_table, get_parameters_table, get_domain_accuracies, ) from steves_utils.transforms import get_chained_transform ###Output _____no_output_____ ###Markdown Allowed ParametersThese are allowed parameters, not defaultsEach of these values need to be present in the injected parameters (the notebook will raise an exception if they are not present)Papermill uses the cell tag "parameters" to inject the real parameters below this cell.Enable tags to see what I mean ###Code required_parameters = { "experiment_name", "lr", "device", "seed", "dataset_seed", "n_shot", "n_query", "n_way", "train_k_factor", "val_k_factor", "test_k_factor", "n_epoch", "patience", "criteria_for_best", "x_net", "datasets", "torch_default_dtype", "NUM_LOGS_PER_EPOCH", "BEST_MODEL_PATH", } from steves_utils.CORES.utils import ( ALL_NODES, ALL_NODES_MINIMUM_1000_EXAMPLES, ALL_DAYS ) from steves_utils.ORACLE.utils_v2 import ( ALL_DISTANCES_FEET_NARROWED, ALL_RUNS, ALL_SERIAL_NUMBERS, ) standalone_parameters = {} standalone_parameters["experiment_name"] = "STANDALONE PTN" standalone_parameters["lr"] = 0.001 standalone_parameters["device"] = "cuda" standalone_parameters["seed"] = 1337 standalone_parameters["dataset_seed"] = 1337 standalone_parameters["n_way"] = 8 standalone_parameters["n_shot"] = 3 standalone_parameters["n_query"] = 2 standalone_parameters["train_k_factor"] = 1 standalone_parameters["val_k_factor"] = 2 standalone_parameters["test_k_factor"] = 2 standalone_parameters["n_epoch"] = 50 standalone_parameters["patience"] = 10 standalone_parameters["criteria_for_best"] = "source_loss" standalone_parameters["datasets"] = [ { "labels": ALL_SERIAL_NUMBERS, "domains": ALL_DISTANCES_FEET_NARROWED, "num_examples_per_domain_per_label": 100, "pickle_path": os.path.join(get_datasets_base_path(), "oracle.Run1_framed_2000Examples_stratified_ds.2022A.pkl"), "source_or_target_dataset": "source", "x_transforms": ["unit_mag", "minus_two"], "episode_transforms": [], "domain_prefix": "ORACLE_" }, { "labels": ALL_NODES, "domains": ALL_DAYS, "num_examples_per_domain_per_label": 100, "pickle_path": os.path.join(get_datasets_base_path(), "cores.stratified_ds.2022A.pkl"), "source_or_target_dataset": "target", "x_transforms": ["unit_power", "times_zero"], "episode_transforms": [], "domain_prefix": "CORES_" } ] standalone_parameters["torch_default_dtype"] = "torch.float32" standalone_parameters["x_net"] = [ {"class": "nnReshape", "kargs": {"shape":[-1, 1, 2, 256]}}, {"class": "Conv2d", "kargs": { "in_channels":1, "out_channels":256, "kernel_size":(1,7), "bias":False, "padding":(0,3), },}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features":256}}, {"class": "Conv2d", "kargs": { "in_channels":256, "out_channels":80, "kernel_size":(2,7), "bias":True, "padding":(0,3), },}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features":80}}, {"class": "Flatten", "kargs": {}}, {"class": "Linear", "kargs": {"in_features": 80*256, "out_features": 256}}, # 80 units per IQ pair {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm1d", "kargs": {"num_features":256}}, {"class": "Linear", "kargs": {"in_features": 256, "out_features": 256}}, ] # Parameters relevant to results # These parameters will basically never need to change standalone_parameters["NUM_LOGS_PER_EPOCH"] = 10 standalone_parameters["BEST_MODEL_PATH"] = "./best_model.pth" # Parameters parameters = { "experiment_name": "cores+wisig -> oracle.run1.framed", "device": "cuda", "lr": 0.001, "seed": 1337, "dataset_seed": 1337, "n_shot": 3, "n_query": 2, "train_k_factor": 3, "val_k_factor": 2, "test_k_factor": 2, "torch_default_dtype": "torch.float32", "n_epoch": 50, "patience": 3, "criteria_for_best": "target_loss", "x_net": [ {"class": "nnReshape", "kargs": {"shape": [-1, 1, 2, 256]}}, { "class": "Conv2d", "kargs": { "in_channels": 1, "out_channels": 256, "kernel_size": [1, 7], "bias": False, "padding": [0, 3], }, }, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features": 256}}, { "class": "Conv2d", "kargs": { "in_channels": 256, "out_channels": 80, "kernel_size": [2, 7], "bias": True, "padding": [0, 3], }, }, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features": 80}}, {"class": "Flatten", "kargs": {}}, {"class": "Linear", "kargs": {"in_features": 20480, "out_features": 256}}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm1d", "kargs": {"num_features": 256}}, {"class": "Linear", "kargs": {"in_features": 256, "out_features": 256}}, ], "NUM_LOGS_PER_EPOCH": 10, "BEST_MODEL_PATH": "./best_model.pth", "n_way": 16, "datasets": [ { "labels": [ "1-10.", "1-11.", "1-15.", "1-16.", "1-17.", "1-18.", "1-19.", "10-4.", "10-7.", "11-1.", "11-14.", "11-17.", "11-20.", "11-7.", "13-20.", "13-8.", "14-10.", "14-11.", "14-14.", "14-7.", "15-1.", "15-20.", "16-1.", "16-16.", "17-10.", "17-11.", "17-2.", "19-1.", "19-16.", "19-19.", "19-20.", "19-3.", "2-10.", "2-11.", "2-17.", "2-18.", "2-20.", "2-3.", "2-4.", "2-5.", "2-6.", "2-7.", "2-8.", "3-13.", "3-18.", "3-3.", "4-1.", "4-10.", "4-11.", "4-19.", "5-5.", "6-15.", "7-10.", "7-14.", "8-18.", "8-20.", "8-3.", "8-8.", ], "domains": [1, 2, 3, 4, 5], "num_examples_per_domain_per_label": 100, "pickle_path": "/mnt/wd500GB/CSC500/csc500-main/datasets/cores.stratified_ds.2022A.pkl", "source_or_target_dataset": "source", "x_transforms": [], "episode_transforms": [], "domain_prefix": "C_A_", }, { "labels": [ "1-10", "1-12", "1-14", "1-16", "1-18", "1-19", "1-8", "10-11", "10-17", "10-4", "10-7", "11-1", "11-10", "11-19", "11-20", "11-4", "11-7", "12-19", "12-20", "12-7", "13-14", "13-18", "13-19", "13-20", "13-3", "13-7", "14-10", "14-11", "14-12", "14-13", "14-14", "14-19", "14-20", "14-7", "14-8", "14-9", "15-1", "15-19", "15-6", "16-1", "16-16", "16-19", "16-20", "17-10", "17-11", "18-1", "18-10", "18-11", "18-12", "18-13", "18-14", "18-15", "18-16", "18-17", "18-19", "18-2", "18-20", "18-4", "18-5", "18-7", "18-8", "18-9", "19-1", "19-10", "19-11", "19-12", "19-13", "19-14", "19-15", "19-19", "19-2", "19-20", "19-3", "19-4", "19-6", "19-7", "19-8", "19-9", "2-1", "2-13", "2-15", "2-3", "2-4", "2-5", "2-6", "2-7", "2-8", "20-1", "20-12", "20-14", "20-15", "20-16", "20-18", "20-19", "20-20", "20-3", "20-4", "20-5", "20-7", "20-8", "3-1", "3-13", "3-18", "3-2", "3-8", "4-1", "4-10", "4-11", "5-1", "5-5", "6-1", "6-15", "6-6", "7-10", "7-11", "7-12", "7-13", "7-14", "7-7", "7-8", "7-9", "8-1", "8-13", "8-14", "8-18", "8-20", "8-3", "8-8", "9-1", "9-7", ], "domains": [1, 2, 3, 4], "num_examples_per_domain_per_label": 100, "pickle_path": "/mnt/wd500GB/CSC500/csc500-main/datasets/wisig.node3-19.stratified_ds.2022A.pkl", "source_or_target_dataset": "source", "x_transforms": [], "episode_transforms": [], "domain_prefix": "W_A_", }, { "labels": [ "3123D52", "3123D65", "3123D79", "3123D80", "3123D54", "3123D70", "3123D7B", "3123D89", "3123D58", "3123D76", "3123D7D", "3123EFE", "3123D64", "3123D78", "3123D7E", "3124E4A", ], "domains": [32, 38, 8, 44, 14, 50, 20, 26], "num_examples_per_domain_per_label": 2000, "pickle_path": "/mnt/wd500GB/CSC500/csc500-main/datasets/oracle.Run1_framed_2000Examples_stratified_ds.2022A.pkl", "source_or_target_dataset": "target", "x_transforms": [], "episode_transforms": [], "domain_prefix": "ORACLE.run1_", }, ], } # Set this to True if you want to run this template directly STANDALONE = False if STANDALONE: print("parameters not injected, running with standalone_parameters") parameters = standalone_parameters if not 'parameters' in locals() and not 'parameters' in globals(): raise Exception("Parameter injection failed") #Use an easy dict for all the parameters p = EasyDict(parameters) supplied_keys = set(p.keys()) if supplied_keys != required_parameters: print("Parameters are incorrect") if len(supplied_keys - required_parameters)>0: print("Shouldn't have:", str(supplied_keys - required_parameters)) if len(required_parameters - supplied_keys)>0: print("Need to have:", str(required_parameters - supplied_keys)) raise RuntimeError("Parameters are incorrect") ################################### # Set the RNGs and make it all deterministic ################################### np.random.seed(p.seed) random.seed(p.seed) torch.manual_seed(p.seed) torch.use_deterministic_algorithms(True) ########################################### # The stratified datasets honor this ########################################### torch.set_default_dtype(eval(p.torch_default_dtype)) ################################### # Build the network(s) # Note: It's critical to do this AFTER setting the RNG ################################### x_net = build_sequential(p.x_net) start_time_secs = time.time() p.domains_source = [] p.domains_target = [] train_original_source = [] val_original_source = [] test_original_source = [] train_original_target = [] val_original_target = [] test_original_target = [] # global_x_transform_func = lambda x: normalize(x.to(torch.get_default_dtype()), "unit_power") # unit_power, unit_mag # global_x_transform_func = lambda x: normalize(x, "unit_power") # unit_power, unit_mag def add_dataset( labels, domains, pickle_path, x_transforms, episode_transforms, domain_prefix, num_examples_per_domain_per_label, source_or_target_dataset:str, iterator_seed=p.seed, dataset_seed=p.dataset_seed, n_shot=p.n_shot, n_way=p.n_way, n_query=p.n_query, train_val_test_k_factors=(p.train_k_factor,p.val_k_factor,p.test_k_factor), ): if x_transforms == []: x_transform = None else: x_transform = get_chained_transform(x_transforms) if episode_transforms == []: episode_transform = None else: raise Exception("episode_transforms not implemented") episode_transform = lambda tup, _prefix=domain_prefix: (_prefix + str(tup[0]), tup[1]) eaf = Episodic_Accessor_Factory( labels=labels, domains=domains, num_examples_per_domain_per_label=num_examples_per_domain_per_label, iterator_seed=iterator_seed, dataset_seed=dataset_seed, n_shot=n_shot, n_way=n_way, n_query=n_query, train_val_test_k_factors=train_val_test_k_factors, pickle_path=pickle_path, x_transform_func=x_transform, ) train, val, test = eaf.get_train(), eaf.get_val(), eaf.get_test() train = Lazy_Iterable_Wrapper(train, episode_transform) val = Lazy_Iterable_Wrapper(val, episode_transform) test = Lazy_Iterable_Wrapper(test, episode_transform) if source_or_target_dataset=="source": train_original_source.append(train) val_original_source.append(val) test_original_source.append(test) p.domains_source.extend( [domain_prefix + str(u) for u in domains] ) elif source_or_target_dataset=="target": train_original_target.append(train) val_original_target.append(val) test_original_target.append(test) p.domains_target.extend( [domain_prefix + str(u) for u in domains] ) else: raise Exception(f"invalid source_or_target_dataset: {source_or_target_dataset}") for ds in p.datasets: add_dataset(**ds) # from steves_utils.CORES.utils import ( # ALL_NODES, # ALL_NODES_MINIMUM_1000_EXAMPLES, # ALL_DAYS # ) # add_dataset( # labels=ALL_NODES, # domains = ALL_DAYS, # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "cores.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"cores_{u}" # ) # from steves_utils.ORACLE.utils_v2 import ( # ALL_DISTANCES_FEET, # ALL_RUNS, # ALL_SERIAL_NUMBERS, # ) # add_dataset( # labels=ALL_SERIAL_NUMBERS, # domains = list(set(ALL_DISTANCES_FEET) - {2,62}), # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "oracle.Run2_framed_2000Examples_stratified_ds.2022A.pkl"), # source_or_target_dataset="source", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"oracle1_{u}" # ) # from steves_utils.ORACLE.utils_v2 import ( # ALL_DISTANCES_FEET, # ALL_RUNS, # ALL_SERIAL_NUMBERS, # ) # add_dataset( # labels=ALL_SERIAL_NUMBERS, # domains = list(set(ALL_DISTANCES_FEET) - {2,62,56}), # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "oracle.Run2_framed_2000Examples_stratified_ds.2022A.pkl"), # source_or_target_dataset="source", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"oracle2_{u}" # ) # add_dataset( # labels=list(range(19)), # domains = [0,1,2], # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "metehan.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"met_{u}" # ) # # from steves_utils.wisig.utils import ( # # ALL_NODES_MINIMUM_100_EXAMPLES, # # ALL_NODES_MINIMUM_500_EXAMPLES, # # ALL_NODES_MINIMUM_1000_EXAMPLES, # # ALL_DAYS # # ) # import steves_utils.wisig.utils as wisig # add_dataset( # labels=wisig.ALL_NODES_MINIMUM_100_EXAMPLES, # domains = wisig.ALL_DAYS, # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "wisig.node3-19.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"wisig_{u}" # ) ################################### # Build the dataset ################################### train_original_source = Iterable_Aggregator(train_original_source, p.seed) val_original_source = Iterable_Aggregator(val_original_source, p.seed) test_original_source = Iterable_Aggregator(test_original_source, p.seed) train_original_target = Iterable_Aggregator(train_original_target, p.seed) val_original_target = Iterable_Aggregator(val_original_target, p.seed) test_original_target = Iterable_Aggregator(test_original_target, p.seed) # For CNN We only use X and Y. And we only train on the source. # Properly form the data using a transform lambda and Lazy_Iterable_Wrapper. Finally wrap them in a dataloader transform_lambda = lambda ex: ex[1] # Original is (<domain>, <episode>) so we strip down to episode only train_processed_source = Lazy_Iterable_Wrapper(train_original_source, transform_lambda) val_processed_source = Lazy_Iterable_Wrapper(val_original_source, transform_lambda) test_processed_source = Lazy_Iterable_Wrapper(test_original_source, transform_lambda) train_processed_target = Lazy_Iterable_Wrapper(train_original_target, transform_lambda) val_processed_target = Lazy_Iterable_Wrapper(val_original_target, transform_lambda) test_processed_target = Lazy_Iterable_Wrapper(test_original_target, transform_lambda) datasets = EasyDict({ "source": { "original": {"train":train_original_source, "val":val_original_source, "test":test_original_source}, "processed": {"train":train_processed_source, "val":val_processed_source, "test":test_processed_source} }, "target": { "original": {"train":train_original_target, "val":val_original_target, "test":test_original_target}, "processed": {"train":train_processed_target, "val":val_processed_target, "test":test_processed_target} }, }) from steves_utils.transforms import get_average_magnitude, get_average_power print(set([u for u,_ in val_original_source])) print(set([u for u,_ in val_original_target])) s_x, s_y, q_x, q_y, _ = next(iter(train_processed_source)) print(s_x) # for ds in [ # train_processed_source, # val_processed_source, # test_processed_source, # train_processed_target, # val_processed_target, # test_processed_target # ]: # for s_x, s_y, q_x, q_y, _ in ds: # for X in (s_x, q_x): # for x in X: # assert np.isclose(get_average_magnitude(x.numpy()), 1.0) # assert np.isclose(get_average_power(x.numpy()), 1.0) ################################### # Build the model ################################### model = Steves_Prototypical_Network(x_net, device=p.device, x_shape=(2,256)) optimizer = Adam(params=model.parameters(), lr=p.lr) ################################### # train ################################### jig = PTN_Train_Eval_Test_Jig(model, p.BEST_MODEL_PATH, p.device) jig.train( train_iterable=datasets.source.processed.train, source_val_iterable=datasets.source.processed.val, target_val_iterable=datasets.target.processed.val, num_epochs=p.n_epoch, num_logs_per_epoch=p.NUM_LOGS_PER_EPOCH, patience=p.patience, optimizer=optimizer, criteria_for_best=p.criteria_for_best, ) total_experiment_time_secs = time.time() - start_time_secs ################################### # Evaluate the model ################################### source_test_label_accuracy, source_test_label_loss = jig.test(datasets.source.processed.test) target_test_label_accuracy, target_test_label_loss = jig.test(datasets.target.processed.test) source_val_label_accuracy, source_val_label_loss = jig.test(datasets.source.processed.val) target_val_label_accuracy, target_val_label_loss = jig.test(datasets.target.processed.val) history = jig.get_history() total_epochs_trained = len(history["epoch_indices"]) val_dl = Iterable_Aggregator((datasets.source.original.val,datasets.target.original.val)) confusion = ptn_confusion_by_domain_over_dataloader(model, p.device, val_dl) per_domain_accuracy = per_domain_accuracy_from_confusion(confusion) # Add a key to per_domain_accuracy for if it was a source domain for domain, accuracy in per_domain_accuracy.items(): per_domain_accuracy[domain] = { "accuracy": accuracy, "source?": domain in p.domains_source } # Do an independent accuracy assesment JUST TO BE SURE! # _source_test_label_accuracy = independent_accuracy_assesment(model, datasets.source.processed.test, p.device) # _target_test_label_accuracy = independent_accuracy_assesment(model, datasets.target.processed.test, p.device) # _source_val_label_accuracy = independent_accuracy_assesment(model, datasets.source.processed.val, p.device) # _target_val_label_accuracy = independent_accuracy_assesment(model, datasets.target.processed.val, p.device) # assert(_source_test_label_accuracy == source_test_label_accuracy) # assert(_target_test_label_accuracy == target_test_label_accuracy) # assert(_source_val_label_accuracy == source_val_label_accuracy) # assert(_target_val_label_accuracy == target_val_label_accuracy) experiment = { "experiment_name": p.experiment_name, "parameters": dict(p), "results": { "source_test_label_accuracy": source_test_label_accuracy, "source_test_label_loss": source_test_label_loss, "target_test_label_accuracy": target_test_label_accuracy, "target_test_label_loss": target_test_label_loss, "source_val_label_accuracy": source_val_label_accuracy, "source_val_label_loss": source_val_label_loss, "target_val_label_accuracy": target_val_label_accuracy, "target_val_label_loss": target_val_label_loss, "total_epochs_trained": total_epochs_trained, "total_experiment_time_secs": total_experiment_time_secs, "confusion": confusion, "per_domain_accuracy": per_domain_accuracy, }, "history": history, "dataset_metrics": get_dataset_metrics(datasets, "ptn"), } ax = get_loss_curve(experiment) plt.show() get_results_table(experiment) get_domain_accuracies(experiment) print("Source Test Label Accuracy:", experiment["results"]["source_test_label_accuracy"], "Target Test Label Accuracy:", experiment["results"]["target_test_label_accuracy"]) print("Source Val Label Accuracy:", experiment["results"]["source_val_label_accuracy"], "Target Val Label Accuracy:", experiment["results"]["target_val_label_accuracy"]) json.dumps(experiment) ###Output _____no_output_____
examples/tutorial-first-steps-cdqa-rh.ipynb
###Markdown Notebook [1]: First steps with cdQA This notebook shows how to use the `cdQA` pipeline to perform question answering on a custom dataset. ***Note:*** *If you are using colab, you will need to install `cdQA` by executing `!pip install cdqa` in a cell.* ###Code !pip install cdqa import os import pandas as pd from ast import literal_eval from cdqa.utils.filters import filter_paragraphs from cdqa.pipeline import QAPipeline ###Output /usr/local/lib/python3.6/dist-packages/tqdm/autonotebook/__init__.py:18: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console) " (e.g. in jupyter console)", TqdmExperimentalWarning) ###Markdown Download pre-trained reader model and example dataset ###Code from cdqa.utils.download import download_model, download_bnpp_data download_bnpp_data(dir='./data/bnpp_newsroom_v1.1/') download_model(model='bert-squad_1.1', dir='./models') ###Output Downloading BNP data... Downloading trained model... ###Markdown Visualize the dataset ###Code df = pd.read_csv('./data/bnpp_newsroom_v1.1/bnpp_newsroom-v1.1.csv', converters={'paragraphs': literal_eval}) df = filter_paragraphs(df) df.head() df.loc[0].paragraphs ''.join(df.loc[0].paragraphs) ###Output _____no_output_____ ###Markdown Instantiate the cdQA pipeline from a pre-trained reader model ###Code cdqa_pipeline = QAPipeline(reader='./models/bert_qa.joblib') cdqa_pipeline.fit_retriever(df=df) ###Output 100%|██████████| 231508/231508 [00:00<00:00, 901046.84B/s] ###Markdown Execute a query ###Code query = 'Since when does the Excellence Program of BNP Paribas exist?' prediction = cdqa_pipeline.predict(query) ###Output _____no_output_____ ###Markdown Explore predictions ###Code print('query: {}'.format(query)) print('answer: {}'.format(prediction[0])) print('title: {}'.format(prediction[1])) print('paragraph: {}'.format(prediction[2])) query2 = "Who's BNP Paribas' CEO?" prediction2 = cdqa_pipeline.predict(query2) print('query: {}'.format(query2)) print('answer: {}'.format(prediction2[0])) print('title: {}'.format(prediction2[1])) print('paragraph: {}'.format(prediction2[2])) ###Output query: Who's BNP Paribas' CEO? answer: Jean-Laurent Bonnafé title: BNP Paribas continues its commitment in favour of integrating refugees in Europe paragraph: Jean-Laurent Bonnafé, BNP Paribas CEO, declared that, “The refugee drama is a major human catastrophe that is mobilising many organisations and volunteers throughout Europe who are dealing with emergency conditions and providing refugees with the possibility of shelter, work, and a future. BNP Paribas is at their side, not only with financial assistance, but also with help finding employment and, for some, with recruitment. In today’s difficult context, we are committed to pursuing these efforts.”
A14_deep_computer_vision_with_cnns.ipynb
###Markdown Notes- when valid padding is used: the sides are not padded, some rows may get ignored in case of stride not equal to 1- when same paddding is used, left & right may be padded so that no rows get ignored Started with chapter 10. Some references were there in chapter 14 **Perceptron**![perceptron](images/prashant/perceptron.png) ###Code import numpy as np from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() # selected column 2 & 3 X = iris.data[:, (2, 3)] # petal length, petal width y = (iris.target == 0).astype(np.int) # Iris setosa? per_clf = Perceptron() per_clf.fit(X, y) y_pred = per_clf.predict([[2, 0.5]]) print(per_clf.predict([[4, 2.5]])) iris.target iris.data[:,0:3] ###Output _____no_output_____
Faixapreta.ipynb
###Markdown Introdução a Python ###Code # Escopo pai #Escopo filho # Escopo Neto ###Output _____no_output_____ ###Markdown Variáveis ###Code nome = 'elysa' nome n1 = 8 n2 = 7 soma=0 soma=n1+n2 soma ###Output _____no_output_____ ###Markdown Operações Matemáticas ###Code *soma usamos + *subtracao usamos - *multiplicacao usamos * *divisao usamos + / soma = 10+15 soma subtracao = 50-12 subtracao multiplicacao = 4*9 multiplicacao divisao = 5/5 divisao ###Output _____no_output_____ ###Markdown Métodos de Entradaformas de receber dados do usuário ou seja enviar valores para o programaNo python usamos _input()_passamos o texto por parametro ###Code nome input('Qual é o seu nome?') nome = input('oiii ') #conversaodedados de string para int bool(0) ###Output _____no_output_____ ###Markdown Concatenação ###Code nome = 'Elysa rainhaaaaa' print('Olá, eu me chamo', nome) ###Output Olá, eu me chamo Elysa rainhaaaaa ###Markdown Média vamos calcular a média bb ###Code ###Output _____no_output_____ ###Markdown Listasna pegada dos arrays meu amorzinho s2lembre-se que é o índice que determina o rolê ###Code lista=['cachorro', 'gato'] mel = lista[0] pepa = lista[1] print(lista) print(lista[0]) print('Lista dos animais', lista) #todos os valores em um array type(lista) lista_dados = ['1', '2'], ['3','4'] print(f'A matriz de leves {lista_dados[0][1]}') len(lista_dados) ###Output _____no_output_____ ###Markdown Condicionais if =>se elif => senao, se else => senao _lembre de colocar os:_ ex: if nome =='Felipe': else: print('a') Calculadora ###Code print('Informe a operação desejada:') print(' 1. + ') print(' 2. - ') print(' 3. * ') print(' 4. / ') op = input() if op == 1 : print(n1+n2) elif op=='2': resultado = n1-n2 n1 = float(input('Informe o primeiro valor: ')) n2 = float(input('Informe o segundo valor: ')) print('A operação ',op,'gerou o resultado: ', resultado) ###Output _____no_output_____
datasets/versioning/unsupervised/wiai-facility/default-unsupervised.ipynb
###Markdown Creates a dataset version for unsupervised learning tasks. ###Code %load_ext autoreload %autoreload 2 from os import makedirs, symlink, rmdir from os.path import join, dirname, exists, isdir, basename, splitext from shutil import rmtree import math from collections import defaultdict import pandas as pd import numpy as np from glob import glob from tqdm import tqdm from librosa import get_duration from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from termcolor import colored from cac.utils.io import save_yml from cac.utils.pandas import apply_filters random_state = 0 np.random.seed(random_state) # directory where the data resides data_root = '/data/wiai-facility/' save_root = join(data_root, 'processed') version_dir = join(save_root, 'versions') makedirs(version_dir, exist_ok=True) save_audio_dir = join(save_root, 'audio') attributes = pd.read_csv(join(save_root, 'attributes.csv')) annotation = pd.read_csv(join(save_root, 'annotation.csv')) annotation.shape, attributes.shape type(annotation['unsupervised'][0]) annotation['unsupervised'] = annotation['unsupervised'].apply(eval) type(annotation['unsupervised'][0]) ###Output _____no_output_____ ###Markdown Split patients in training and validation sets ###Code all_patients = list(annotation['id'].unique()) len(all_patients) train_ids, val_test_ids = train_test_split(all_patients, test_size=0.2, random_state=random_state) val_ids, test_ids = train_test_split(val_test_ids, test_size=0.5, random_state=random_state) len(train_ids), len(val_ids), len(test_ids) df_train = apply_filters(annotation, {'id': train_ids}, reset_index=True) df_train = df_train.drop(columns=['classification', 'users', 'audio_type', 'id']) df_train.rename({'unsupervised': 'label'}, axis=1, inplace=True) df_train['label'] = df_train['label'].apply(lambda x: {'unsupervised': x}) df_val = apply_filters(annotation, {'id': val_ids}, reset_index=True) df_val = df_val.drop(columns=['classification', 'users', 'audio_type', 'id']) df_val.rename({'unsupervised': 'label'}, axis=1, inplace=True) df_val['label'] = df_val['label'].apply(lambda x: {'unsupervised': x}) df_test = apply_filters(annotation, {'id': test_ids}, reset_index=True) df_test = df_test.drop(columns=['classification', 'users', 'audio_type', 'id']) df_test.rename({'unsupervised': 'label'}, axis=1, inplace=True) df_test['label'] = df_test['label'].apply(lambda x: {'unsupervised': x}) df_all = apply_filters(annotation, {'id': all_patients}, reset_index=True) df_all = df_all.drop(columns=['classification', 'users', 'audio_type', 'id']) df_all.rename({'unsupervised': 'label'}, axis=1, inplace=True) df_all['label'] = df_all['label'].apply(lambda x: {'unsupervised': x}) df_train.shape, df_val.shape, df_test.shape, df_all.shape version = 'default-unsupervised' save_path = join(save_root, 'versions', '{}.yml'.format(version)) description = dict() description['description'] = 'version for unsupervised task(s) with random split' for name, _df in zip(['all', 'train', 'val', 'test'], [df_all, df_train, df_val, df_test]): description[name] = { 'file': _df['file'].values.tolist(), 'label': _df['label'].values.tolist() } # save description makedirs(dirname(save_path), exist_ok=True) save_yml(description, save_path) ###Output _____no_output_____
project_melanomia_keras_tuner.ipynb
###Markdown Install required libraries ###Code !pip install keras-tuner ###Output Collecting keras-tuner [?25l Downloading https://files.pythonhosted.org/packages/a7/f7/4b41b6832abf4c9bef71a664dc563adb25afc5812831667c6db572b1a261/keras-tuner-1.0.1.tar.gz (54kB)  |██████ | 10kB 21.8MB/s eta 0:00:01  |████████████ | 20kB 26.5MB/s eta 0:00:01  |██████████████████ | 30kB 14.9MB/s eta 0:00:01  |████████████████████████ | 40kB 10.5MB/s eta 0:00:01  |██████████████████████████████ | 51kB 7.0MB/s eta 0:00:01  |████████████████████████████████| 61kB 4.6MB/s [?25hRequirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from keras-tuner) (0.16.0) Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from keras-tuner) (1.18.5) Requirement already satisfied: tabulate in /usr/local/lib/python3.6/dist-packages (from keras-tuner) (0.8.7) Collecting terminaltables Downloading https://files.pythonhosted.org/packages/9b/c4/4a21174f32f8a7e1104798c445dacdc1d4df86f2f26722767034e4de4bff/terminaltables-3.1.0.tar.gz Collecting colorama Downloading https://files.pythonhosted.org/packages/44/98/5b86278fbbf250d239ae0ecb724f8572af1c91f4a11edf4d36a206189440/colorama-0.4.4-py2.py3-none-any.whl Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from keras-tuner) (4.41.1) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from keras-tuner) (2.23.0) Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from keras-tuner) (1.4.1) Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from keras-tuner) (0.22.2.post1) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->keras-tuner) (2020.6.20) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->keras-tuner) (1.24.3) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->keras-tuner) (2.10) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->keras-tuner) (3.0.4) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->keras-tuner) (0.17.0) Building wheels for collected packages: keras-tuner, terminaltables Building wheel for keras-tuner (setup.py) ... [?25l[?25hdone Created wheel for keras-tuner: filename=keras_tuner-1.0.1-cp36-none-any.whl size=73200 sha256=4f54b7673d6e5ab3d00bad804e74793798257ae3667adf008f5f391c35e0e4ff Stored in directory: /root/.cache/pip/wheels/b9/cc/62/52716b70dd90f3db12519233c3a93a5360bc672da1a10ded43 Building wheel for terminaltables (setup.py) ... [?25l[?25hdone Created wheel for terminaltables: filename=terminaltables-3.1.0-cp36-none-any.whl size=15356 sha256=fd580f71c11fcd24acedbe7782c9cef07b966de791de60376d671fc0ddb27ac5 Stored in directory: /root/.cache/pip/wheels/30/6b/50/6c75775b681fb36cdfac7f19799888ef9d8813aff9e379663e Successfully built keras-tuner terminaltables Installing collected packages: terminaltables, colorama, keras-tuner Successfully installed colorama-0.4.4 keras-tuner-1.0.1 terminaltables-3.1.0 ###Markdown Download Dataset ###Code !wget 'https://s3.amazonaws.com/isic-challenge-data/2019/ISIC_2019_Training_GroundTruth.csv' !wget 'https://s3.amazonaws.com/isic-challenge-data/2019/ISIC_2019_Training_Metadata.csv' !wget 'https://s3.amazonaws.com/isic-challenge-data/2019/ISIC_2019_Training_Input.zip' !unzip 'ISIC_2019_Training_Input.zip' import pandas as pd import numpy as np import matplotlib.pyplot as plt import keras labels = pd.read_csv('ISIC_2019_Training_GroundTruth.csv') label_df = pd.DataFrame(labels) info = pd.read_csv('ISIC_2019_Training_Metadata.csv') info_df = pd.DataFrame(info) label_df.tail() info_df.head() info_df = info_df.drop('image',axis=1) info_df data = pd.concat([label_df, info_df], axis=1) data.head(10) data['lesion_id'].fillna(method ='bfill', inplace=True) data["age_approx"].fillna(30.0, inplace = True) data["sex"].fillna("male", inplace = True) data["anatom_site_general"].fillna( method ='ffill', inplace = True) data.head(20) rows_with_nan = [] for index, row in data.iterrows(): is_nan_series = row.isnull() if is_nan_series.any(): rows_with_nan.append(index) print(rows_with_nan) data['anatom_site_general'].unique() anatom_site_general = {'anterior torso': 1,'upper extremity': 2,'posterior torso':3,'lower extremity':4, 'lateral torso':5,'head/neck':6,'palms/soles':7,'oral/genital':8} data['anatom_site_general'] = [anatom_site_general[item] for item in data['anatom_site_general']] sex = {'male': 0,'female':1} data['sex'] = [sex[item] for item in data['sex']] len(data['lesion_id'].unique()) data.head(6) data = data.drop(['lesion_id'],axis=1) target = data[['MEL']].values data = data.drop(['image','MEL','NV'],axis=1) data label = target list0 = [data, label] list1 = ['x_train','y_train'] for i in range(2): print('The shape of the {} is {}'.format(list1[i],list0[i].shape)) _,D = data.shape print(D) from google.colab import files import cv2 ###Output _____no_output_____ ###Markdown **I use this part to upload the downloaded images instead of download them in the colab.** ###Code '''uploaded = files.upload() train_image = [] for i in uploaded.keys(): train_image.append(cv2.resize(cv2.cvtColor(cv2.imread(i), cv2.COLOR_BGR2RGB), (32,32)))''' # Upload the images from folder import os def load_images_from_folder(folder): train_image = [] for filename in os.listdir(folder): img = cv2.imread(os.path.join(folder,filename)) if img is not None: train_image.append(cv2.resize(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), (32,32))) return train_image images = load_images_from_folder('ISIC_2019_Training_Input') from sklearn.preprocessing import StandardScaler train_image = images[:20264] test_image = images[20264:] x_train = data[:20264] x_test = data[20264:] y_train = label[:20264] y_test = label[20264:] scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.fit_transform(x_test) i = 2 plt.imshow(train_image[i]) plt.xticks([]) plt.yticks([]) plt.show() print(y_train[i]) i = 0 plt.imshow(test_image[i]) plt.xticks([]) plt.yticks([]) plt.show() print(y_test[i]) train_image = np.asarray(train_image) test_image = np.asarray(test_image) train_image = train_image.astype('float32') test_image = test_image.astype('float32') mean = np.mean(train_image,axis=(0,1,2,3)) std = np.std(train_image,axis=(0,1,2,3)) train_image = (train_image-mean)/(std+1e-7) test_image = (test_image-mean)/(std+1e-7) from keras.utils import np_utils nClasses = 2 y_train = np_utils.to_categorical(y_train, nClasses) y_test = np_utils.to_categorical(y_test, nClasses) print(test_image.shape) print(y_train.shape) print(y_test.shape) input_shape = (32,32,3) from keras import layers from keras.models import Model from keras.models import Sequential from keras.layers import Dense, Dropout , Input , Flatten , Conv2D , MaxPooling2D from keras.layers.merge import concatenate from keras.callbacks import EarlyStopping , ModelCheckpoint from keras.optimizers import Adam, SGD, RMSprop from keras import regularizers from kerastuner.tuners import RandomSearch def build_model(hp): # model_1 model1_in = keras.Input(shape=(32,32,3)) x = layers.Conv2D(64,(2,2),padding='same', activation='relu')(model1_in) x = layers.Conv2D(64,(2,2), activation='relu')(x) x = layers.MaxPooling2D(pool_size=(2, 2))(x) x = layers.Conv2D(128,(2,2),padding='same', activation='relu')(x) x = layers.Conv2D(128,(2,2), activation='relu')(x) x = layers.MaxPooling2D(pool_size=(2,2))(x) x = layers.Conv2D(256,(2,2),padding='same', activation='relu')(x) x = layers.Conv2D(256,(2,2), activation='relu')(x) x = layers.MaxPooling2D(pool_size=(2,2))(x) x = layers.Conv2D(512,(2,2),padding='same', activation='relu')(x) x = layers.Conv2D(512,(2,2), activation='relu')(x) x = layers.MaxPooling2D(pool_size=(2,2))(x) x = layers.Flatten()(x) x = layers.Dense(256, activation='relu')(x) x = layers.Dense(512, activation='relu')(x) x = layers.Dense(1024, activation='relu')(x) model1_out = layers.Dense(2, activation='sigmoid')(x) model1 = keras.Model(model1_in, model1_out) # model_2 model2_in = keras.Input(shape=(D,)) x = layers.Dense(16384, kernel_initializer='normal')(model2_in) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dropout(0.1)(x) x = layers.Dense(8192, kernel_initializer='normal')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dropout(0.1)(x) x = layers.Dense(4096, kernel_initializer='normal')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dropout(0.1)(x) x = layers.Dense(2048, kernel_initializer='normal')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dropout(0.1)(x) x = layers.Dense(1024, kernel_initializer='normal')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dropout(0.1)(x) x = layers.Dense(512, kernel_initializer='normal')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dropout(0.1)(x) x = layers.Dense(128, kernel_initializer='normal')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dropout(0.1)(x) x = layers.Dense(64, kernel_initializer='normal')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dropout(0.1)(x) x = layers.Dense(32, kernel_initializer='normal')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dropout(0.1)(x) x = layers.Dense(16, kernel_initializer='normal')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dropout(0.1)(x) x = layers.Dense(4, kernel_initializer='normal')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dropout(0.1)(x) model2_out = layers.Dense(2, kernel_initializer='normal')(x) model2 = keras.Model(model2_in, model2_out) concatenated = concatenate([model1_out, model2_out]) x = layers.Dense(units=hp.Int('units', min_value=32, max_value=512, step=32), activation='relu')(concatenated) out = Dense(2, activation='sigmoid', name='output_layer',kernel_regularizer=regularizers.l1_l2(l1=1e-5, l2=1e-4))(x) merged_model = Model([model1_in, model2_in], out) merged_model.compile(optimizer=keras.optimizers.Adam(hp.Choice('learning_rate',values=[1e-2, 1e-3, 1e-4])),loss='binary_crossentropy',metrics=['accuracy']) return merged_model tuner = RandomSearch(build_model,objective='val_accuracy',max_trials=5,executions_per_trial=3,directory='my_dir',project_name='helloworld') tuner.search_space_summary() final=tuner.search([train_image, x_train], y=y_train, batch_size=32, epochs=5,verbose=1,validation_data=([test_image,x_test],y_test)) best_model = tuner.get_best_models()[0] tuner.results_summary() best_model.evaluate([test_image,x_test],y_test) ###Output 159/159 [==============================] - 1s 8ms/step - loss: 0.3454 - accuracy: 0.8496
Netflix stock Price Estimation.ipynb
###Markdown ***Netflix stock Price Estimation*** ###Code import numpy as np import pandas as pd from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') from google.colab import files uploaded = files.upload() df = pd.read_csv('NFLX.csv') df.head(10) plt.figure(figsize=(20,10)) plt.title('Netflix', fontsize = 20) plt.xlabel('Days', fontsize= 20) plt.ylabel('Final Price USD ($)', fontsize = 20) plt.plot(df['Close']) plt.show() #We just need the Stock Closing Values df = df[['Close']] df.head(10) #Create a variable to predict 'n' days out into the future, I'm predicting for 50 days fd = 50 #Create a new column (the target or dependent variable) shifted 'n' units/days up df['Estimation'] = df[['Close']].shift(-fd) #print the data df.tail(10) #Create the feature data set((Means X in X,Y pair) X = np.array(df.drop(['Estimation'], 1))[:-fd]# index 1 for estimation column print(X) #Create the target data set((Means Y in X,Y pair) y = np.array(df['Estimation'])[:-fd] print(y) ###Output [ 98.300003 97.610001 97.93 101.580002 95.489998 96.230003 98. 97.360001 97.660004 98.129997 97.860001 99.349998 99.720001 101.120003 101.059998 99.839996 99.589996 98.360001 101.209999 104.129997 102.190002 102.230003 105.699997 104.349998 104.940002 104.830002 104.449997 103.809998 102.68 106.980003 109.650002 110.419998 111.510002 108.400002 94.339996 96.769997 94.980003 95.900002 93.559998 92.43 91.040001 90.279999 90.029999 93.110001 91.540001 90.790001 89.370003 90.839996 90.540001 92.889999 90.019997 87.739998 87.879997 89.120003 88.629997 90.5 89.550003 92.489998 94.889999 97.889999 100.199997 102.809998 103.300003 102.57 101.510002 101.25 99.589996 100.739998 99.889999 97.860001 97.089996 93.75 93.849998 94.120003 94.290001 95.440002 94.449997 93.800003 90.989998 90.010002 91.660004 88.440002 85.330002 87.970001 91.059998 91.480003 96.669998 97.910004 94.599998 95.099998 97.059998 94.669998 95.970001 96.43 98.019997 98.389999 98.809998 85.839996 87.910004 85.989998 85.889999 87.660004 91.410004 92.040001 91.650002 91.25 94.370003 93.559998 93.099998 93.440002 97.029999 95.110001 93.989998 93.93 95.889999 96.589996 95.309998 95.120003 96.370003 96.160004 95.870003 95.260002 95.940002 95.18 97.32 97.580002 97.300003 97.449997 97.449997 97.379997 97.379997 100.089996 99.150002 99.660004 96.5 99.050003 96.089996 97.010002 97.339996 99.480003 98.059998 98.25 94.879997 95.830002 95.940002 94.559998 97.07 97.480003 96.669998 98.550003 102.629997 102.339996 106.279999 105.07 104.82 103.330002 100.589996 99.5 100.230003 101.470001 99.800003 118.790001 121.870003 123.349998 127.5 127.330002 126.510002 126.970001 126.470001 126.57 124.870003 123.300003 122.339996 122.139999 122.029999 124.580002 124.339996 122.190002 115.419998 114.779999 113.379997 113.589996 115.190002 115.029999 115.209999 117.959999 118.040001 117.690002 117.410004 116.93 117.510002 117. 117.220001 120.809998 119.160004 124.57 125.389999 123.239998 122.879997 122.830002 123.779999 123.440002 125. 124.220001 125.449997 125.120003 126.5 125.580002 125.589996 128.350006 125.889999 125.330002 123.800003 127.489998 129.410004 131.809998 131.070007 130.949997 129.889999 130.5 129.179993 133.699997 132.889999 133.259995 138.410004 138.600006 137.389999 140.110001 139.520004 138.960007 142.449997 141.220001 140.710007 140.779999 139.199997 140.25 140.970001 144. 144.740005 144.139999 144.820007 143.199997 140.820007 142.270004 142.009995 142.220001 142.600006 143.860001 142.779999 143.25 143.410004 142.130005 142.649994 139.529999 139.139999 141.940002 141.429993 140.320007 140.529999 140.889999 143.520004 143.190002 145.25 144.389999 145.110001 145.830002 142.419998 142.649994 141.839996 142.020004 144.059998 145.169998 146.470001 148.059998 147.809998 146.919998 145.5 143.619995 143.740005 143.110001 143.850006 144.350006 143.830002 142.919998 147.25 143.360001 139.759995 141.179993 142.869995 143.830002 152.160004 150.169998 153.080002 152.199997 155.350006 156.449997 155.589996 157.25 156.600006 156.380005 157.460007 160.279999 158.539993 160.809998 160.020004 159.410004 153.199997 155.699997 157.020004 157.160004 157.949997 157.75 163.050003 162.429993 163.220001 163.070007 162.990005 165.179993 165.059998 165.169998 165.610001 165.880005 158.029999 151.440002 152.720001 152.199997 151.759995 152.380005 153.399994 152.050003 155.029999 154.889999 158.020004 157.5 151.029999 153.410004 150.089996 149.410004 146.169998 147.610001 146.25 150.179993 152.669998 154.330002 158.75 158.210007 161.119995 161.699997 183.600006 183.860001 183.600006 188.539993 187.910004 186.970001 189.080002 182.679993 184.039993 181.660004 182.029999 180.740005 179.229996 180.270004 181.330002 178.360001 175.779999 169.139999 171.399994 171. 168.5 169.979996 166.089996 166.539993 166.759995 169.339996 169.059998 168.130005 165.949997 167.119995 168.809998 174.690002 174.710007 174.740005 174.520004 179.25 179. 176.419998 181.740005 185.149994 183.639999 182.630005 182.350006 184.619995 185.679993 185.509995 188.779999 187.350006 178.550003 179.380005 181.970001 180.699997 181.350006 177.009995 179.190002 184.449997 194.389999 198.020004 196.869995 195.080002 194.949997 195.860001 199.490005 202.679993 199.479996 195.539993 195.130005 194.160004 192.470001 196.020004 193.770004 195.210007 199.539993 198.369995 196.429993 198. 199.320007 200.009995 200.130005 195.889999 196.440002 193.899994 192.020004 195.080002 195.710007 192.119995 195.509995 193.199997 194.100006 196.229996 196.320007 195.75 195.050003 199.179993 188.149994 187.580002 186.820007 184.039993 184.210007 185.300003 185.199997 188.539993 186.220001 185.729996 187.860001 189.559998 190.119995 190.419998 187.020004 188.820007 188.619995 189.940002 187.759995 186.240005 192.710007 191.960007 201.070007 205.050003 205.630005 209.990005 212.050003 209.309998 212.520004 217.240005 221.229996 221.529999 217.5 220.330002 220.460007 227.580002 250.289993 261.299988 269.700012 274.600006 284.589996 278.799988 270.299988 265.070007 267.429993 254.259995 265.720001 264.559998 250.100006 249.470001 257.950012 258.269989 266. 280.269989 278.519989 278.549988 281.040009 278.140015 285.929993 294.160004 290.609985 291.380005 290.390015 301.049988 315. 325.220001 321.160004 317. 331.440002 321.299988 315.880005 321.549988 321.089996 318.450012 313.480011 317.5 316.480011 306.700012 300.940002 320.350006 300.690002 285.769989 295.350006 280.290009 283.670013 288.940002 293.970001 288.850006 289.929993 298.070007 303.670013 309.25 311.649994 307.779999 336.059998 334.519989 332.700012 327.769989 318.690002 307.019989 305.76001 313.980011 311.76001 312.459991 313.299988 313.359985 311.690002 320.089996 326.26001 326.890015 330.299988 329.600006 326.459991 328.529999 326.130005 328.190002 325.220001 324.179993 331.820007 331.619995 344.720001 349.290009 351.290009 349.730011 353.540009 351.600006 359.929993 361.809998 365.799988 367.450012 361.399994 360.570007 361.450012 363.829987 379.929993 392.869995 391.980011 390.399994 404.980011 416.76001 415.440002 411.089996 384.480011 399.390015 390.390015 395.420013 391.429993 398.179993 390.519989 398.390015 408.25 418.970001 415.630005 418.649994 413.5 395.799988 400.480011 379.480011 375.130005 364.230011 361.049988 362.660004 357.320007 362.869995 363.089996 355.209991 334.959991 337.450012 338.380005 344.5 343.089996 350.920013 351.829987 347.609985 349.359985 345.869995 341.309998 337.48999 326.399994 322.440002 316.779999 327.730011 338.019989 344.440002 339.170013 358.820007 364.579987 368.48999 368.040009 370.980011 367.679993 363.600006 341.179993 346.459991 348.679993 348.410004 355.929993 369.950012 368.149994 364.559998 350.350006 367.649994 366.959991 365.359985 361.190002 369.609985 369.429993 377.880005 380.709991 374.130005 381.429993 377.140015 377.049988 363.649994 351.350006 349.100006 355.709991 325.890015 321.100006 339.559998 333.130005 346.399994 364.700012 346.709991 332.670013 329.540009 333.160004 301.829987 312.869995 299.829987 284.839996 285.809998 301.779999 317.380005 309.100006 315.440002 310.839996 327.5 317.920013 303.470001 294.070007 294.399994 286.730011 290.059998 286.209991 270.600006 266.980011 262.130005 258.820007 261.429993 266.630005 282.649994 288.75 286.130005 290.299988 275.329987 282.880005 265.140015 269.700012 265.320007 274.880005 276.019989 266.839996 262.799988 270.940002 266.769989 260.579987 246.389999 233.880005 253.669998 255.570007 256.079987 267.660004 267.660004 271.200012 297.570007 315.339996 320.269989 319.959991 324.660004 337.589996 332.940002 354.640015 351.390015 353.190002 339.100006 325.160004 321.98999 326.670013 338.049988 335.660004 328.899994 340.660004 339.5 339.850006 351.339996 355.809998 352.190002 344.709991 347.570007 345.730011 359.970001 351.769989 359.070007 356.869995 361.920013 359.910004 356.970001 363.019989 363.910004 364.970001 362.869995 358.100006 357.320007 351.040009 354.299988 359.609985 352.600006 349.600006 358.859985 356.269989 361.209991 358.820007 361.459991 363.440002 358.779999 375.220001 377.869995 361.01001 366.230011 359.970001 353.369995 354.609985 356.559998 366.959991 367.720001 369.75 367.880005 365.48999 361.410004 364.709991 363.920013 367.649994 351.140015 348.869995 359.459991 354.73999 360.350006 377.339996 381.890015 374.230011 368.329987 374.850006 371.829987 370.540009 378.809998 379.059998 385.029999 378.670013 370.459991 364.369995 362.75 361.040009 345.26001 345.609985 354.98999 359.309998 354.450012 348.109985 354.269989 359.730011 352.209991 354.390015 355.059998 349.190002 351.850006 343.279999 336.630005 353.399994 355.730011 357.130005 360.869995 352.01001 351.269989 345.559998 343.429993 339.730011 350.619995 357.119995 363.519989 365.209991 369.209991 371.040009 360.299988 362.200012 370.019989 367.320007 374.600006 375.429993 381.720001 380.549988 376.160004 379.929993 381. 379.5 373.25 366.600006 365.98999 362.440002 325.209991 315.100006 310.619995 307.299988 317.940002 326.459991 335.779999 332.700012 325.929993 322.98999 319.5 318.829987 307.630005 310.100006 304.290009 315.899994 308.929993 310.829987 312.279999 299.109985 295.76001 302.799988 309.380005 298.98999 297.809998 296.929993 291.440002 294.980011 291.029999 291.769989 296.779999 293.75 289.290009 291.519989 293.25 290.170013 294.339996 287.98999 288.269989 288.859985 294.149994 294.290009 298.600006 291.559998 286.600006 270.75 265.920013 254.589996 264.75 263.309998 263.079987 267.619995 269.579987 268.029999 268.149994 272.790009 274.459991 270.720001 267.529999 280.480011 282.929993 285.529999 284.25 286.279999 293.350006 275.299988 278.049988 266.690002 271.269989 271.5 276.820007 281.859985 281.209991 291.450012 287.410004 286.809998 292.859985 288.029999 288.589996 289.570007 291.570007 294.179993 292.01001 283.109985 289.619995 295.029999 302.570007 302.600006 305.160004 311.690002 310.480011 315.549988 312.48999 315.929993 314.660004 309.98999 306.160004 304.320007 302.859985 307.350006 302.5 293.119995 298.929993 298.440002 298.5 304.209991] ###Markdown Now we split the data into 80% training and 20% testing data sets for Maximum Accuracy(Avoid taking 50/50). ###Code x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.20) ###Output _____no_output_____ ###Markdown Here we are testing with 2 different models[tree regressor model, linear regression model]If there is a high non-linearity & complex relationship between dependent & independent variables, a tree model will outperform a classical regression method. If you need to build a model which is easy to explain to people, a decision tree model will always do better than a linear model. ###Code #Create the decision tree regressor model tree = DecisionTreeRegressor().fit(x_train, y_train) #Create the linear regression model lr = LinearRegression().fit(x_train, y_train) #Get the feature data, #AKA all the rows from the original data set except the last 'x' days x_future = df.drop(['Estimation'], 1)[:-fd] #Get the last 'x' rows x_future = x_future.tail(fd) #Convert the data set into a numpy array x_future = np.array(x_future) print(x_future) #Show the model tree prediction tree_prediction = tree.predict(x_future) print( tree_prediction ) print() #Show the model linear regression prediction lr_prediction = lr.predict(x_future) print(lr_prediction) ###Output [274.459991 331.074997 267.529999 280.480011 282.929993 285.529999 284.25 286.279999 293.350006 275.299988 278.049988 266.690002 271.269989 291.450012 276.820007 281.859985 281.209991 291.450012 312.48999 286.809998 292.859985 288.029999 288.589996 289.570007 291.570007 294.179993 292.01001 283.109985 289.619995 339.5 315.549988 302.600006 305.160004 311.690002 310.480011 315.549988 312.48999 315.929993 314.660004 309.98999 306.160004 304.320007 302.859985 307.350006 302.5 293.119995 298.929993 298.440002 298.5 304.209991] [329.38447697 326.68391573 320.74790012 318.17007815 315.11002246 314.52254883 304.70230047 306.86802032 301.77376092 311.95350373 305.84214204 307.50807444 308.77945845 297.23186771 294.29457848 300.46729665 306.23671674 297.12665498 296.09202702 295.32043045 290.50675529 293.6106681 290.14726085 290.79609096 295.18891432 292.53218302 288.62162144 290.57688864 292.09377837 289.39321713 293.049497 287.48175269 287.72725842 288.24457239 292.88290148 293.00566793 296.78471338 290.6119689 286.26300179 272.36556915 268.13059163 258.19632737 267.10471335 265.84210621 265.64043042 269.62115166 271.33969087 269.98064698 270.08585971 274.15426801] ###Markdown Tree prediction model ###Code #Visualize the data estimations = tree_prediction #Plot the data valid = df[X.shape[0]:] valid['Estimations'] = estimations #Create a new column called 'Estimations' that will hold the predicted prices plt.figure(figsize=(40,15)) plt.title('Model') plt.xlabel('Days',fontsize=20) plt.ylabel('Final Price USD ($)',fontsize=20) plt.plot(df['Close']) plt.plot(valid[['Close','Estimations']]) plt.legend(['Train', 'Val', 'Estimation' ], loc='lower right') plt.show() ###Output /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """ ###Markdown Linear regression prediction ###Code #Visualize the data estimations = lr_prediction #Plot the data valid = df[X.shape[0]:] valid['Estimations'] = estimations #Create a new column called 'Estimations' that will hold the predicted prices plt.figure(figsize=(40,15)) plt.title('Model') plt.xlabel('Days',fontsize=20) plt.ylabel('Close Price USD ($)',fontsize=20) plt.plot(df['Close']) plt.plot(valid[['Close','Estimations']]) plt.legend(['Train', 'Val', 'Estimation' ], loc='lower right') plt.show() ###Output /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """
demos/Demo_Notebook.ipynb
###Markdown Example of MoveIt usageThis is an example of MoveIt ###Code import sys import copy import rospy import rospy as rp import moveit_commander import moveit_msgs.msg import geometry_msgs.msg from math import pi from std_msgs.msg import String from moveit_commander.conversions import pose_to_list moveit_commander.roscpp_initialize(sys.argv) rospy.init_node('move_group_python_interface_tutorial', anonymous=True) robot = moveit_commander.RobotCommander() scene = moveit_commander.PlanningSceneInterface() group = moveit_commander.MoveGroupCommander("arm") group group.get_name() # group.set_end_effector_link('gripper_eef') group.has_end_effector_link() print robot.get_current_state() group_variable_values = group.get_current_joint_values() group_variable_values group.set_joint_value_target(group.get_random_joint_values()) plan2 = group.plan() group.execute(plan2) group.get_current_pose() pose_target = geometry_msgs.msg.Pose() pose_target.orientation.w = 1 pose_target.position.x = 0.5 pose_target.position.y = 0.5 pose_target.position.z = 0.5 group.set_start_state_to_current_state() group.set_pose_target(pose_target) planx = group.plan() from matplotlib import pyplot as plt %matplotlib inline import numpy as np plt_list = [] for el in planx.joint_trajectory.points: plt_list.append(el.positions) for i in range(len(plt_list[0])): plt.plot(np.asarray(plt_list)[:, i]) plt.show() ?group.execute group.execute(planx) group.get_random_joint_values() group.compute_cartesian_path([pose_target], 0.1, 0.1) ###Output _____no_output_____
05 Anwendungsbeispiel Importing of image data with augmentation and classification.ipynb
###Markdown Anwendungsbeispiel Import of image data with augmentation and classificationDas Ziel dieses Beispieles ist es die Organisation, den Import und die Vorbereitung von Bilddaten für eine Klassifikation zu erklären. Dabei werden folgende Schritte durchgeführt:- Dynamisches Laden und entpacken der Bilddaten von einer externen Quelle- Review der Organisation auf dem Filesystem- Laden der Daten- Transformationen- Augmentierung- Training- Analyse- VerbesserungDer verwendete Datensatz heisst caltech101[3] mit 101 Klassen und jeweils 40 bis 800 Bildern pro Klasse. Die Bilder haben 200 - 300 Pixel Auflösung in Farbe.Quellen für die Beispiele und Daten:- [1] [https://machinelearningmastery.com/how-to-develop-a-cnn-from-scratch-for-cifar-10-photo-classification/](https://machinelearningmastery.com/how-to-develop-a-cnn-from-scratch-for-cifar-10-photo-classification/)- [2] [https://github.com/bhavul/Caltech-101-Object-Classification](https://github.com/bhavul/Caltech-101-Object-Classification)- [3] [http://www.vision.caltech.edu/Image_Datasets/Caltech101/](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) ###Code # # Abdrehen von Fehlermeldungen # from warnings import simplefilter # ignore all future warnings simplefilter(action='ignore', category=FutureWarning) simplefilter(action='ignore', category=Warning) simplefilter(action='ignore', category=RuntimeWarning) # # Import der Module # import os import logging import tarfile import operator import random from urllib.request import urlretrieve from PIL import Image import numpy as np import matplotlib.pyplot as plt import sklearn from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder # # Tensorflow und Keras # import tensorflow as tf from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Conv2D, Input, Dropout, Activation, Dense, MaxPooling2D, Flatten, GlobalAveragePooling2D from tensorflow.keras.optimizers import Adadelta from tensorflow.keras.callbacks import ModelCheckpoint from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.preprocessing.image import ImageDataGenerator # # Für GPU Support # tflogger = tf.get_logger() tflogger.setLevel(logging.ERROR) tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR ) physical_devices = tf.config.list_physical_devices('GPU') print(physical_devices) if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) # # Einstellen der Grösse von Diagrammen # plt.rcParams['figure.figsize'] = [16, 9] # # Ausgabe der Versionen # print('working on keras version {} on tensorflow {} using sklearn {}'.format ( tf.keras.__version__, tf.version.VERSION, sklearn.__version__ ) ) ###Output _____no_output_____ ###Markdown Hilfsfunktionen ###Code urlDataSource = 'http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz' localExtractionFolder = 'data/caltech101' localDataArchive = 'data/caltech101/caltech101.tar.gz' # # Laden der Daten von einer URL # def download_dataset(url,dataset_file_path): if os.path.exists(localDataArchive): print("archive already downloaded.") else: print("started loading archive from url {}".format(url)) filename, headers = urlretrieve(url, dataset_file_path) print("finished loading archive from url {}".format(url)) def extract_dataset(dataset_file_path, extraction_directory): if (not os.path.exists(extraction_directory)): os.makedirs(extraction_directory) if (dataset_file_path.endswith("tar.gz") or dataset_file_path.endswith(".tgz")): tar = tarfile.open(dataset_file_path, "r:gz") tar.extractall(path=extraction_directory) tar.close() elif (dataset_file_path.endswith("tar")): tar = tarfile.open(dataset_file_path, "r:") tar.extractall(path=extraction_directory) tar.close() print("extraction of dataset from {} to {} done.".format(dataset_file_path,extraction_directory) ) ###Output _____no_output_____ ###Markdown Laden der Daten ###Code # # Laden der Daten ausführen # download_dataset(urlDataSource,localDataArchive) # # Extrahieren der Daten # extract_dataset(localDataArchive,localExtractionFolder) ###Output _____no_output_____ ###Markdown Organisation von Bilddaten auf dem FilesystemEine gute Einführung in das Thema ist zu finden unter- [Brownlee](https://machinelearningmastery.com/how-to-load-large-datasets-from-directories-for-deep-learning-with-keras/) - [Sarkar](https://towardsdatascience.com/a-single-function-to-streamline-image-classification-with-keras-bd04f5cfe6df) Erzeugen der Trainingsdaten ###Code # # Hilfsfunktionen # def get_images(object_category, data_directory): if (not os.path.exists(data_directory)): print("data directory not found.") return obj_category_dir = os.path.join(os.path.join(data_directory,"101_ObjectCategories"),object_category) images = [os.path.join(obj_category_dir,img) for img in os.listdir(obj_category_dir)] return images def return_images_per_category(data_directory): folder = os.path.join(data_directory,"101_ObjectCategories") #print(folder) categories=[d for d in os.listdir(folder) if os.path.isdir(os.path.join(folder,d))] #print(categories) return categories # # Lesen der Bilddaten aus einer Datei. Anpassen der Größe auf 300x200 (Breite x Höhe) Pixel. # def read_image(image_path): #img = cv2.imread(image_path, cv2.IMREAD_COLOR) #img = cv2.resize(img, (300,200), interpolation=cv2.INTER_CUBIC) im = Image.open(image_path).convert("RGB").resize((300,200)) np_img = np.array(im) return np_img # # Sammelfunktion die alle Kategorien durchgeht und die Files sammelt # def create_training_data(data_directory,fraction): i = 0 X = [] Y = [] print("started to read dataset from {}.".format(data_directory) ) for category in return_images_per_category(data_directory): if category == 'BACKGROUND_Google': continue print(".",end='') for image in get_images(category, data_directory): if not image.endswith('.jpg'): continue if random.uniform(0, 1) > fraction: continue X.insert(i, read_image(image) ) Y.insert(i, category ) i += 1 print("finished reading dataset.") X = np.array(X) return X,Y # # Erzeugen der Trainingsdaten. Der Faktor fraction bestimmt, wieviele Daten wirklich in den Speicher geladen werden. # Achtung: diese Funktion kümmert sich nicht um die Gleichverteilung der Klassen. # X, Y = create_training_data(localExtractionFolder,fraction=0.4) print('data X={}, y={}'.format(X.shape, len(Y)) ) print(Y) # # Transformation der Labels in one-hot encoding # label_encoder = LabelEncoder() Y_integer_encoded = label_encoder.fit_transform(Y) Y_one_hot = to_categorical(Y_integer_encoded) Y_one_hot.shape # # Normalisieren der Bilddaten # X_normalized = ( X.astype(np.float64) / 255 ) + 0.001 # # Löschen von X um Speicher gezielt freizumachen # del X # # Split der Daten in Train und Test(validation) Datensätze # X_train, X_validation, Y_train, Y_validation = train_test_split(X_normalized, Y_one_hot, test_size=0.25, random_state=42) del X_normalized # # gültige Werte in X_train, X_validation, Y_train, Y_validation, label_encoder, data_directory # ###Output _____no_output_____ ###Markdown Prüfen der Daten ###Code # # Form der Daten # print('train: X=%s, y=%s' % (X_train.shape, Y_train.shape)) print('test: X=%s, y=%s' % (X_validation.shape, Y_validation.shape)) # # Plot von Bildern # for i in range(9): plt.subplot(330 + 1 + i) plt.imshow(X_train[i]) plt.show() ###Output _____no_output_____ ###Markdown Bauen eines Modelles ###Code # # Erzeugen eines einfache Modelles # def createModel(): model = Sequential() model.add(Conv2D(16, (3,3), activation='relu', input_shape=(200,300,3))) model.add(Conv2D(32, (3,3), activation='relu')) model.add(MaxPooling2D(pool_size=2, strides=2)) model.add(Dropout(0.2)) model.add(Conv2D(64, (3,3), activation='relu')) model.add(Conv2D(128, (3,3), activation='relu')) model.add(MaxPooling2D(pool_size=2, strides=2)) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense(101, activation='softmax')) return model # # Compile und Training des Modelles # model_cnn = createModel() model_cnn.compile(loss='categorical_crossentropy',optimizer='adam', metrics=['accuracy']) # # Callbacks steuern das Speichern von Checkpoints und eine Überwachung gegen Overfitting. # callbacks = [ModelCheckpoint('model_cnn_weights.h5', monitor='val_acc', save_best_only=True), EarlyStopping(monitor='val_loss', patience=4, verbose=1, mode='auto')] history = model_cnn.fit(X_train, Y_train, batch_size=16, epochs=6, verbose=1, validation_data=(X_validation,Y_validation), callbacks=callbacks) # # Evaluierung des Modelles # _, acc = model_cnn.evaluate(X_validation, Y_validation, verbose=0) print('accuracy {:.3f} '.format(acc) ) # # Ausgabe des Trainingsverlaufes # def summarize_diagnostics(history,modelname): plt.subplot(211) plt.title('Cross Entropy Loss') plt.plot(history.history['loss'], color='blue', label='train') plt.plot(history.history['val_loss'], color='lightblue', label='test') plt.subplot(212) plt.title('Classification Accuracy') plt.plot(history.history['accuracy'], color='green', label='train') plt.plot(history.history['val_accuracy'], color='lightgreen', label='test') plt.subplots_adjust(hspace=0.5) plt.savefig( 'results/' + modelname + '_plot.png') plt.show() plt.close() summarize_diagnostics(history,'05_model_cnn') ###Output _____no_output_____ ###Markdown Optimiertes Laden der BilderDie bisherige Ladefunktion hat alle Bilder in den Speicher geladen. Das führt schnell dazu, dass der Hauptspeicher ausgeht. Daher benötigen wir eine Funktion, die Bilder der Reihe nach in den Speicher lädt und für das Training zur Verfügung stellt.Eine solche Funktion kann mit einem python **Generator** implementiert werden. Die Erklärung von Generatoren ist hier zu finden [2]. Das Tutorial zum Laden mit Generatoren ist hier [1] zu finden.Quellen:- [1] [https://towardsdatascience.com/a-single-function-to-streamline-image-classification-with-keras-bd04f5cfe6df](https://towardsdatascience.com/a-single-function-to-streamline-image-classification-with-keras-bd04f5cfe6df)- [2] [https://www.python-kurs.eu/generatoren.php](https://www.python-kurs.eu/generatoren.php) ###Code # # Anlegen eines Generators für Bilder # datagen = ImageDataGenerator() it_train = datagen.flow(X_train, Y_train, batch_size=16) # # Training # model_cnn = createModel() model_cnn.compile(loss='categorical_crossentropy',optimizer='adam', metrics=['accuracy']) # # Neue Funktion fit_generator # steps = int(X_train.shape[0] / 16) history = model_cnn.fit_generator(it_train, steps_per_epoch=steps, epochs=6, validation_data=(X_validation,Y_validation), verbose=1, callbacks=callbacks) # # Evaluierung # _, acc = model_cnn.evaluate(X_validation, Y_validation, verbose=0) print('accuracy {:.3f} '.format(acc) ) summarize_diagnostics(history,'model_cnn_gen') ###Output _____no_output_____ ###Markdown Optimierung durch AugmentierungAugmentierung erweitert den Trainingsdatensatz um künstlich erzeugte Bilder. Damit wird erreicht, dass ein Modell robuster wird und sich nicht auf einzelne Pixel bezieht. Methoden der Augmentierung für Bilder sind:- Breite und Höhe des Bildinhaltes ändern (width_shift_range, height_shift_range)- Spiegelung (flip)- Rotation (rotation_range)- Zoomen (zoom_range)- Helligkeit (brightness_range)- Verzerrung (shear_range)Das Zufügen von Rauschen kann in Keras nicht direkt über den [ImageDataGenerator](https://keras.io/preprocessing/image/) eingestellt werden. Dies wird aber durch die Verwendung von Dropout annähernd simuliert. ###Code # # Anlegen eines Generators für Bilder # datagen = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, rotation_range=5, zoom_range=0.1) # prepare iterator it_train = datagen.flow(X_train, Y_train, batch_size=16) # # Training # steps = int(X_train.shape[0] / 16) model_cnn = createModel() model_cnn.compile(loss='categorical_crossentropy',optimizer='adam', metrics=['accuracy']) history = model_cnn.fit_generator(it_train, steps_per_epoch=steps, epochs=24, validation_data=(X_validation,Y_validation), verbose=1, callbacks=callbacks) # # Evaluierung # _, acc = model_cnn.evaluate(X_validation, Y_validation, verbose=0) print('accuracy {:.3f} '.format(acc) ) summarize_diagnostics(history,'05_model_cnn_aug') ###Output _____no_output_____
jupyter/.ipynb_checkpoints/Momo-checkpoint.ipynb
###Markdown Informes de mortalidadActualizado diariamente, este documento se [visualiza mejor aquí](https://nbviewer.jupyter.org/github/jaimevalero/COVID-19/blob/master/jupyter/Momo.ipynb).Datos del Sistema de Monitorización de la Mortalidad diaria, que incluye las defunciones por todas las causas procedentes de 3.929 registros civiles informatizados, que representan el 92% de la población española. ###Code # Cargamos datos import Loading_data from matplotlib import pyplot as plt import warnings warnings.filterwarnings('ignore') import pandas as pd from IPython.display import display, HTML df = pd.read_csv('https://momo.isciii.es/public/momo/data') df.to_csv('/tmp/momo.csv') df.head() import janitor import datetime def pipeline_basic_with_query(df,query): ''' Basic filtering, using janitor Carga de datos, enriquecimiento de fechas y filtro por query configurable ''' LISTA_COLUMNAS_A_BORRAR = ['Unnamed: 0', 'defunciones_observadas_lim_inf', 'defunciones_observadas_lim_sup', 'defunciones_esperadas', 'defunciones_esperadas_q01', 'defunciones_esperadas_q99'] return ( df # Quitar: columnas .remove_columns(LISTA_COLUMNAS_A_BORRAR) .clean_names() # Enriquecer: fechas con columnas de años, mes y año-mes .rename_column( "fecha_defuncion", "date") .to_datetime('date') .join_apply(lambda x: x['date'].strftime('%Y') , new_column_name="date_year" ) .join_apply(lambda x: x['date'].strftime('%m') , new_column_name="date_month" ) .join_apply(lambda x: x['date'].strftime('%m-%d') , new_column_name="date_month_day" ) .join_apply(lambda x: x['date'].strftime('%U') , new_column_name="date_week" ) .join_apply(lambda x: x['date'].strftime('%Y-%m') , new_column_name="date_year_month" ) .join_apply(lambda x: x['date'].strftime('%Y-%U') , new_column_name="date_year_week" ) # Filtrar:por query .filter_on( query ) .set_index('date') ) def pipeline_basic(df): query = 'ambito == "nacional" & nombre_gedad == "todos" & nombre_sexo == "todos" ' return pipeline_basic_with_query(df,query) def extraer_defunciones_anuales_por_periodo(periodo_de_tiempo,query): '''Extrae el cuadro de comparativa por week, or year ''' def pipeline_agregado_anual(periodo_de_tiempo,df,year): ''' Saca un dataframe de los datos agrupados por año''' return ( df .filter_on('date_year == "'+year+'"' ) .groupby_agg( by='date_'+periodo_de_tiempo, agg='sum', agg_column_name="defunciones_observadas", new_column_name="agregados") .rename_column( "agregados", year) .join_apply(lambda x: x['date_'+periodo_de_tiempo] , new_column_name=periodo_de_tiempo ) .set_index('date_'+periodo_de_tiempo) [[periodo_de_tiempo,year]] .drop_duplicates() ) def pipeline_comparativa_anual(periodo_de_tiempo,df_2018,df_2019,df_2020): ''' Mergea tres dataframes de año, por periodo de tiempo''' return ( df_2018 .merge( df_2019, on=periodo_de_tiempo, how='right') .merge( df_2020, on=periodo_de_tiempo, how='left') .sort_naturally(periodo_de_tiempo) .set_index(periodo_de_tiempo) .join_apply(lambda x: x['2020'] - x['2019'] , new_column_name="resta 2020 y 2019" ) ) # Sacamos los datos y limpiamos df = pd.read_csv('') df_basic = pipeline_basic_with_query(df,query) # Sacamos los datos agrupados por años muertes_2018 = pipeline_agregado_anual(periodo_de_tiempo,df=df_basic,year='2018') muertes_2019 = pipeline_agregado_anual(periodo_de_tiempo,df=df_basic,year='2019') muertes_2020 = pipeline_agregado_anual(periodo_de_tiempo,df=df_basic,year='2020') # Generamos un solo cuadro, con columna por año df_comparativa_años = pipeline_comparativa_anual(periodo_de_tiempo,muertes_2018,muertes_2019,muertes_2020) return df_comparativa_años def debug_extraer_defunciones_anuales_por_periodo(): """ Solo para depurar""" query = 'ambito == "nacional" & nombre_gedad == "todos" & nombre_sexo == "todos" ' df_muertes_anuales_por_semana = extraer_defunciones_anuales_por_periodo("week",query) df_muertes_anuales_por_mes = extraer_defunciones_anuales_por_periodo("month",query) return df_muertes_anuales_por_semana , df_muertes_anuales_por_mes #df1, df2 = debug_extraer_defunciones_anuales_por_periodo() #df1 ###Output _____no_output_____ ###Markdown Sacamos el grafico comparativo de fallecimiento, para los años 2019 y 2020, por semana ###Code from matplotlib import pyplot as plt from IPython.display import display, HTML import pandas as pd import numpy as np periodo_de_tiempo="week" query = 'ambito == "nacional" & nombre_gedad == "todos" & nombre_sexo == "todos" ' df = extraer_defunciones_anuales_por_periodo(periodo_de_tiempo,query) fig = plt.figure(figsize=(8, 6), dpi=80) plt.xticks(rotation=90) for ca in ['2018','2019','2020']: plt.plot(df[ca]) plt.legend(df.columns) plt.xlabel(periodo_de_tiempo) plt.ylabel("Deaths by " + periodo_de_tiempo) fig.suptitle('Comparativa de fallecimientos por año, según MOMO', fontsize=20) plt.show() periodo_de_tiempo="week" query = 'ambito == "nacional" & nombre_gedad == "todos" & nombre_sexo == "todos" ' df = extraer_defunciones_anuales_por_periodo(periodo_de_tiempo,query) df.style.format({"2020": "{:20,.0f}", "2018": "{:20,.0f}", "2019": "{:20,.0f}", "resta 2020 y 2019": "{:20,.0f}", }).background_gradient(cmap='Wistia',subset=['resta 2020 y 2019']) def get_current_year_comparison(query): """Saca muertos del año en curso en el ambito como argumento""" df = pd.read_csv('/tmp/momo.csv') df = pipeline_basic_with_query(df,query) semana_actual = df.tail(1).date_week.values[0] year_actual = df.tail(1).date_year.values[0] date_month_day_actual= df.tail(1).date_month_day.values[0] year_last = str(int(year_actual)-1) death_this_year_today = df.query( f"date_year == '{year_actual}' ").defunciones_observadas.sum() deaht_last_year_today = df.query( f"date_year == '{year_last}' and date_month_day <= '{date_month_day_actual}' ").defunciones_observadas.sum() deaths_this_year_excess = death_this_year_today - deaht_last_year_today return deaths_this_year_excess query = f""" ambito == "nacional" & nombre_gedad == "todos" & nombre_sexo == "todos" """ deaths_this_year_excess = get_current_year_comparison(query) display(HTML(f"<h4 id='excedente'>Excdente de muertes de este año, respecto al año anterior:</h4><h2>{deaths_this_year_excess:,.0f} </h2>")) query = f""" nombre_ambito == "Madrid, Comunidad de" & nombre_gedad == "todos" & nombre_sexo == "todos" """ deaths_this_year_excess = get_current_year_comparison(query) display(HTML(f"<h4 id='excedentemadrid'>Excedente de muertes de este año en Madrid, respecto al año anterior:</h4><h2>{deaths_this_year_excess:,.0f} </h2>")) # Sacamos las muertes en madrid de hombres y de mujeres import numpy as np import seaborn as sns def pipeline_comparativa_semestral_diaria(df): return ( df .filter_on(" defunciones_observadas > 0") .remove_columns(['nombre_gedad','ambito','cod_ambito','cod_ine_ambito','nombre_ambito','cod_sexo','cod_gedad','date_year','date_week','date_month','date_year_week']) .rename_column( "nombre_sexo" , "sexo") .rename_column( "date_year_month", "mes") ) # Sacamos los datos de 2019 df = pd.read_csv('/tmp/momo.csv') query = ' date_year == "2019" & nombre_ambito == "Madrid, Comunidad de" & nombre_gedad == "todos" & nombre_sexo != "todos" & date_month < "13" ' df_madrid_2019 = pipeline_basic_with_query(df,query) df_madrid_2019 = pipeline_comparativa_semestral_diaria(df_madrid_2019) # Sacamos los datos de 2020 df = pd.read_csv('/tmp/momo.csv') query = ' date_year == "2020" & nombre_ambito == "Madrid, Comunidad de" & nombre_gedad == "todos" & nombre_sexo != "todos" & date_month < "13" ' df_madrid_2020 = pipeline_basic_with_query(df,query) df_madrid_2020 = pipeline_comparativa_semestral_diaria(df_madrid_2020) df_madrid_2019 import numpy as np import seaborn as sns import matplotlib.pyplot as plt display(HTML("<h2>Distribucion muertes en Madrid </h2>")) display(HTML("<h3>Comparativa de defunciones, entre el primer semestre de 2019 y el del 2020</h3>")) f, axes = plt.subplots(1 , 2 ,figsize=(16, 7), sharex=True) sns.despine(left=True) # Mismo limites, para poder comparar entre años axes[0].set_ylim([0,500]) axes[1].set_ylim([0,500]) sns.violinplot(x="mes", y="defunciones_observadas", hue="sexo", data=df_madrid_2019, split=True, scale="count", ax=axes[0] ) sns.violinplot(x="mes", y="defunciones_observadas", hue="sexo", data=df_madrid_2020, split=True, scale="count", ax=axes[1]) # Aux functions def print_categorical_variables(df): """ Get a dict with categorical variables""" my_dict = {} cols = df.columns num_cols = df._get_numeric_data().columns # Show categorical values categorical = list(set(cols) - set(num_cols)) for i in categorical : if 'echa' not in i.lower() : my_dict[i] = df[i].unique() return my_dict df = pd.read_csv('/tmp/momo.csv') my_dict = print_categorical_variables(df) my_dict momo2020 = pd.read_csv("/root/scripts/COVID-19/data/momo2019.csv", sep='\t',) periodo_de_tiempo="week" query = 'ambito == "nacional" & nombre_gedad == "todos" & nombre_sexo == "todos" ' df = extraer_defunciones_anuales_por_periodo(periodo_de_tiempo,query) df = pd.read_csv('/tmp/momo.csv') periodo_de_tiempo="week" year=2021 def pipeline_agregado_anual(periodo_de_tiempo,df,year): ''' Saca un dataframe de los datos agrupados por año''' return ( df .filter_on('date_year == "'+year+'"' ) .groupby_agg( by='date_'+periodo_de_tiempo, agg='sum', agg_column_name="defunciones_observadas", new_column_name="agregados") .rename_column( "agregados", year) .join_apply(lambda x: x['date_'+periodo_de_tiempo] , new_column_name=periodo_de_tiempo ) .set_index('date_'+periodo_de_tiempo) [[periodo_de_tiempo,year]] .drop_duplicates() ) pipeline_agregado_anual) ###Output _____no_output_____
notebooks/cancer-pathway2.ipynb
###Markdown Network visualizationThis notebook constructs a network visualization connecting bacterial species to KEGG pathways. ###Code # Parameters d_col = 'C(Advanced_Stage_label)[T.Local]' # node color ew = "rank" # edge weight taxa_level = 'Rank6' # taxonomy level # Preliminaries %matplotlib inline import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt import seaborn as sns from IPython.display import display, HTML def widen_notebook(): display(HTML("<style>.container { width:100% !important; }</style>")) widen_notebook() # data files !ls ../data/edges/lung-cancer edges_txt = "../data/edges/lung-cancer/Cancer_related_path2_edges.txt" kegg_txt = "../data/edges/lung-cancer/LC_KO_metadata.txt" microbes_txt = "../data/edges/lung-cancer/microbe-metadata.txt" full_microbes_biom = "../data/edges/lung-cancer/Microbiome_with_paired_RNA_otu_table.a1.biom.txt" filtered_microbes_biom = "../data/edges/lung-cancer/microbes.txt" # Read data files into lists of dictionaries def split_commas(line): return line.strip().split("\t") def CSVtodicts(filename): f = open(filename) result = [] headers = split_commas(f.readline()) for line in f.readlines(): values = split_commas(line) dictionary = dict(zip(headers, values)) result.append(dictionary) return result edges = CSVtodicts(edges_txt) keggs = CSVtodicts(kegg_txt) microbes = CSVtodicts(microbes_txt) len(edges), len(keggs), len(microbes) import pandas as pd microbes = pd.read_table(microbes_txt) keggs = pd.read_table(kegg_txt) edges = pd.read_table(edges_txt) full_microbe_counts = pd.read_table(full_microbes_biom, skiprows=1, index_col=0) filtered_microbe_counts = pd.read_table(filtered_microbes_biom, skiprows=1, index_col=0) # scrub dataframe featureid = '#SampleID' microbes['abbv_name'] = microbes.apply(lambda x: '%s%d' % (x[taxa_level], x['#SampleID']), axis=1) taxa = full_microbe_counts.iloc[:, -1] microbe_counts = full_microbe_counts.iloc[:, :-1] microbe_counts.shape, filtered_microbe_counts.shape microbe_counts = microbe_counts.loc[:, filtered_microbe_counts.columns] sns.distplot(microbe_counts.sum(axis=0)) microbe_props = microbe_counts.apply(lambda x: x / x.sum(), axis=0) microbe_props = microbe_props.loc[microbes['#SampleID']].T mean_microbe_abundance = np.log(microbe_props.mean(axis=0)) norm_microbe_abundance = (mean_microbe_abundance - mean_microbe_abundance.min()) / (mean_microbe_abundance.max() - mean_microbe_abundance.min()) fontmin = 8 fontmax = 30 fontsize = norm_microbe_abundance * (fontmax - fontmin) + fontmin sns.distplot(norm_microbe_abundance) select_microbes = list(set(edges.src.values)) select_kegg = list(set(edges.dest.values)) microbes.head() def abbreviate(x): return x.split('|')[-1] abbreviate('k__Viruses|p__Viruses_noname|c__Viruses_noname|o__Viruses_noname') edges['src'] = edges.src.apply(lambda x: int(x.replace('\"', ''))) edges['dest'] = edges.dest.apply(lambda x: x.replace('\"', '')) microbe_dicts = microbes.T.to_dict().values() kegg_dicts = keggs.T.to_dict().values() edge_dicts = edges.T.to_dict().values() microbe_metadata = microbes.set_index('#SampleID') # scrub edges, because of R ... edges['src_abbv'] = edges.src.apply(lambda x: microbe_metadata.loc[x, 'abbv_name']) # name abbreviation mappings. def abbreviate(d): return '%s%d' % (d[taxa_level], d[featureid]) def microbe_name_dict(dicts): return dict([abbreviate(d), d] for d in dicts) name2microbe = microbe_name_dict(microbe_dicts) name2microbe.items()[15] def kegg_name_dict(dicts): return dict([d['#OTUID'], d] for d in dicts) name2kegg = kegg_name_dict(kegg_dicts) name2kegg.items()[32] # Construct the network graph from the edges. from jp_gene_viz import dGraph G = dGraph.WGraph() for e in edge_dicts: name = microbe_metadata.loc[e['src'], 'abbv_name'] G.add_edge(name, e["dest"], e[ew], e) # Construct the network widget from the graph from jp_gene_viz import dNetwork dNetwork.load_javascript_support() N = dNetwork.NetworkDisplay() N.load_data(G) import matplotlib.colors as colors class MidpointNormalize(colors.Normalize): def __init__(self, vmin=None, vmax=None, vcenter=None, clip=False): self.vcenter = vcenter colors.Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): # I'm ignoring masked values and all kinds of edge cases to make a # simple example... x, y = [self.vmin, self.vcenter, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) import matplotlib as mpl from matplotlib.colors import rgb2hex # TODO: make parameter # https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html #cmap = plt.get_cmap('RdYlGn') cmap = plt.get_cmap('PiYG') edge_cmap = plt.get_cmap('Greys') microbe_norm = MidpointNormalize(vmin=-2., vcenter=0, vmax=1.5) #microbe_norm = mpl.colors.Normalize(vmin=0, vmax=1) kegg_norm = mpl.colors.Normalize(vmin=-2, vmax=2) edges.head() edge_lookup = edges.set_index(['src_abbv', 'dest']) # Configure and display the network # TODO: remove congested labels N.labels_button.value = True N.size_slider.value = 1000 # TODO: add node size / font size are variable features # TODO: swap circles with squares # TODO: light grey dashed lines for low probability edges # TODO: add edge weight size # TODO: remove labels programmatically # TODO: allow for edges to be colored on a gradient (i.e. greys) # main goals # 1. focus on pathways of interest # 2. advance vs local # 3. weighted by relative abundance # colorize the nodes based on weights (hacky, sorry) dg = N.display_graph for node_name in dg.node_weights: svg_name = dg.node_name(node_name) if node_name in name2microbe: d = name2microbe[node_name] value = name2microbe[node_name][d_col] if np.isnan(value): value = 0 node_color = rgb2hex(cmap(microbe_norm(value))[:3]) value = norm_microbe_abundance.loc[d['#SampleID']] #node_color = rgb2hex(cmap(microbe_norm(value))[:3]) N.override_node(node_name, color=node_color, radius=value*10, shape='circle') N.override_label(node_name, hide=value < 0.3, font_size=value*18) else: N.override_node(node_name, shape='rect', radius=5, color='#6193F7') N.override_label(node_name, font_size=18) for src, dest in dg.edge_weights: m = np.log(edges['rank']).min() p = edge_lookup.loc[(src, dest), 'rank'] width = np.log(p - m)/10 N.override_edge(src, dest, color=rgb2hex(edge_cmap(p+0.1)), stroke_width=width) # show labels N.labels_button.value = True # rerun the layout N.layout_click() # draw the network with the new colors and sizes N.draw() # show the network N.show() sns.distplot(edges['rank']) cmap(microbe_norm(value)) cmap(microbe_norm(-2)) ###Output _____no_output_____
mflix-python/notebooks/.ipynb_checkpoints/cursor_methods_agg_equivalents-checkpoint.ipynb
###Markdown Cursor Methods and Aggregation Equivalents In this lesson we're going to discuss methods we can call against Pymongo cursors, and the aggregation stages that would perform the same tasks in a pipeline. Limiting ###Code import pymongo from bson.json_util import dumps uri = "<your_atlas_uri>" client = pymongo.MongoClient(uri) mflix = client.sample_mflix movies = mflix.movies ###Output _____no_output_____ ###Markdown Here's (point) a collection object for the `movies` collection. ###Code limited_cursor = movies.find( { "directors": "Sam Raimi" }, { "_id": 0, "title": 1, "cast": 1 } ).limit(2) print(dumps(limited_cursor, indent=2)) ###Output _____no_output_____ ###Markdown So this is a find query with a predicate (point) and a projection (point). And the find() method is always gonna return a cursor to us. But before assigning that cursor to a variable, we've transformed it with the limit() method, to make sure no more than 2 documents are returned by this cursor.(run command)And we can see we only got two (point) documents back. ###Code pipeline = [ { "$match": { "directors": "Sam Raimi" } }, { "$project": { "_id": 0, "title": 1, "cast": 1 } }, { "$limit": 2 } ] limited_aggregation = movies.aggregate( pipeline ) print(dumps(limited_aggregation, indent=2)) ###Output _____no_output_____ ###Markdown Now this is the equivalent operation with the aggregation framework. Instead of tacking a .limit() to the end of the cursor, we add $limit as a stage in our pipeline.(enter command)And it's the same output. And these (point to `$match` and `$project`) aggregation stages represent the query predicate and the projection from when we were using the query language. Sorting ###Code from pymongo import DESCENDING, ASCENDING sorted_cursor = movies.find( { "directors": "Sam Raimi" }, { "_id": 0, "year": 1, "title": 1, "cast": 1 } ).sort("year", ASCENDING) print(dumps(sorted_cursor, indent=2)) ###Output _____no_output_____ ###Markdown This is an example of the `sort()` (point) cursor method. `sort()` takes two parameters, the key we're sorting on and the sorting order. In this example we're sorting on year (point), in increasing (point) order.ASCENDING and DESCENDING are values from the pymongo library to specify sort direction, but they're really just the integers 1 and -1.(enter command)And we can see that the movies were returned to us in order of the year they were made. ###Code pipeline = [ { "$match": { "directors": "Sam Raimi" } }, { "$project": { "_id": 0, "year": 1, "title": 1, "cast": 1 } }, { "$sort": { "year": ASCENDING } } ] sorted_aggregation = movies.aggregate( pipeline ) print(dumps(sorted_aggregation, indent=2)) ###Output _____no_output_____ ###Markdown And this is the equivalent pipeline, with a sort (point) stage that corresponds to a dictionary, giving the sort (point) field, and the direction (point) of the sort.(enter command)And the agg framework was able to sort by year here. ###Code sorted_cursor = movies.find( { "cast": "Tom Hanks" }, { "_id": 0, "year": 1, "title": 1, "cast": 1 } ).sort([("year", ASCENDING), ("title", ASCENDING)]) print(dumps(sorted_cursor, indent=2)) ###Output _____no_output_____ ###Markdown So just a special case to note here, sorting on multiple keys in the cursor method is gonna look a little different.When sorting on one key, the `sort()` method takes two arguments, the key and the sort order.When sorting on two or more keys, the `sort()` method takes a single argument, an array of tuples. And each tuple has a key and a sort order.(enter command)And we can see that after sorting on year, the cursor sorted the movie titles alphabetically. ###Code pipeline = [ { "$match": { "cast": "Tom Hanks" } }, { "$project": { "_id": 0, "year": 1, "title": 1, "cast": 1 } }, { "$sort": { "year": ASCENDING, "title": ASCENDING } } ] sorted_aggregation = movies.aggregate( pipeline ) print(dumps(sorted_aggregation, indent=2)) ###Output _____no_output_____ ###Markdown Skipping ###Code pipeline = [ { "$match": { "directors": "Sam Raimi" } }, { "$project": { "_id": 0, "title": 1, "cast": 1 } }, { "$count": "num_movies" } ] sorted_aggregation = movies.aggregate( pipeline ) print(dumps(sorted_aggregation, indent=2)) ###Output _____no_output_____ ###Markdown (enter command)So we know from counting the documents in this aggregation, that if we don't specify anything else, we're getting 15 (point) documents returned to us.Note that the cursor method `count()` that counts documents in a cursor has been deprecated. So if you want to know how many documents are returned by a query, you should use the `$count` aggregation stage. ###Code skipped_cursor = movies.find( { "directors": "Sam Raimi" }, { "_id": 0, "title": 1, "cast": 1 } ).skip(14) print(dumps(skipped_cursor, indent=2)) ###Output _____no_output_____ ###Markdown The `skip()` method allows us to skip documents in a collection, so only documents we did not skip appear in the cursor. Because we only have 15 documents, skipping 14 of them should only leave us with 1.(enter command)And look at that, we've only got 1 document in our cursor. The issue is, we don't really know which documents we skipped over, because we haven't specified a sort key and really, we have no idea the order in which documents are stored in the cursor. ###Code skipped_sorted_cursor = movies.find( { "directors": "Sam Raimi" }, { "_id": 0, "title": 1, "year": 1, "cast": 1 } ).sort("year", ASCENDING).skip(10) print(dumps(skipped_sorted_cursor, indent=2)) ###Output _____no_output_____ ###Markdown So here we've sorted on year (point) and then skipped the first 14. Now we know that when we're skipping 10 documents, we're skipping the 10 oldest Sam Raimi movies in this collection.(enter command)And we only got 5 of those 15 documents back, because we skipped 10 of them.These cursor methods are nice because we can tack them on a cursor in the order we want them applied. It even kinda makes our Python look like Javascript, with this `.sort()` and `.skip()`. ###Code pipeline = [ { "$match": { "directors": "Sam Raimi" } }, { "$project": { "_id": 0, "year": 1, "title": 1, "cast": 1 } }, { "$sort": { "year": ASCENDING } }, { "$skip": 10 } ] sorted_skipped_aggregation = movies.aggregate( pipeline ) print(dumps(sorted_skipped_aggregation, indent=2)) ###Output _____no_output_____
ml_engine_training_walkthrough.ipynb
###Markdown Model Training and Serving Online predictions on Google AI-platform: OverviewFollowing serves as a brief walkthrough along the files and structure of this repository; Aimed towards imparting clarity in process of- writing a keras code, packaging and staging a training job on GCP's ml-engine.What follows are the steps documented to:* Setup a GCP project.* Authenticate GCP service account, creating gcloud bucket with cloud credentials.* Package and Submit a training job to google's ai-platform.a documents the steps to* Towards the end of it, the notebook also highlights method to **Serve prediction from the model**_Keras is a high-level API for building and training deep learning models.Explore more about it at [tf.keras](https://www.tensorflow.org/guide/keras)**Note:** While it assumes you are running this notebook on **google Colab**, just proceed with listed/prompted instructions; Although the same notebook can also be run on local jupyter with minimal changes. 1. Set up your GCP project1. [Select or create a GCP project.](https://console.cloud.google.com/cloud-resource-manager)2. [Make sure that billing is enabled for your project.](https://cloud.google.com/billing/docs/how-to/modify-project)3. [Enable the AI Platform ("Cloud Machine Learning Engine") and Compute Engine APIs.](https://console.cloud.google.com/flows/enableapi?apiid=ml.googleapis.com,compute_component)4. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. * In case you already have a GCP project configured, just enter suitable details. ###Code PROJECT_ID = "nifty-episode-231612" #@param {type:"string"} ! gcloud config set project $PROJECT_ID ###Output Updated property [core/project]. To take a quick anonymous survey, run: $ gcloud alpha survey ###Markdown 2.Authenticate your GCP account* **Run the following cell and do as prompted, when asked to authenticate your account via oAuth.** ###Code import sys if 'google.colab' in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. else: %env GOOGLE_APPLICATION_CREDENTIALS '' !gcloud config list ###Output [component_manager] disable_update_check = True [core] account = [email protected] project = nifty-episode-231612 Your active configuration is: [default] ###Markdown 2.1 Set Up Cloud Storage bucket* To submit a training job through Cloud SDK, it requires uploading a Python packagecontaining your training code files to a Cloud Storage bucket.* Thus ai-platform runs the code from this package.* Also it saves the resulting trained model & configs from your job in the same bucket, which can thenbe versioned to serve online predictions.In case you didn't create a bucket already set the name of your Cloud Storage bucket below (Ensure that its unique). If you've a Bucket already, enter the name of your existing bucket anyway.Enter `REGION` variable, which is needed throughout the process be it training or online prediction.Explore more on availablity region [here](https://cloud.google.com/ml-engine/docs/tensorflow/regions). ###Code BUCKET_NAME="nifty-episode-231612-mlengine" #@param {type:"string"} REGION="asia-east1" #@param {type:"string"} ###Output _____no_output_____ ###Markdown **Note**: Run following cell **ONLY** if you haven't created a bucket already, Or want to create a New one. ###Code ! gsutil mb -l $REGION gs://$BUCKET_NAME ###Output _____no_output_____ ###Markdown * **Finally, validate access to your Cloud Storage bucket by examining its contents:** ###Code ! gsutil ls -al gs://$BUCKET_NAME ###Output 209581009 2019-06-24T12:45:15Z gs://nifty-episode-231612-mlengine/flask_app_git_140619.zip#1561380315059208 metageneration=1 1136 2019-03-14T10:52:42Z gs://nifty-episode-231612-mlengine/img_gcloudpath.txt#1552560762918268 metageneration=1 885 2019-05-06T12:32:48Z gs://nifty-episode-231612-mlengine/my_job_filesconfig.pickle#1557145968875019 metageneration=1 10925 2019-03-20T12:29:13Z gs://nifty-episode-231612-mlengine/preprocessing_test.py#1553084953044119 metageneration=1 87552713 2019-07-24T12:21:59Z gs://nifty-episode-231612-mlengine/train_on_gcloud_bilkul_final.zip#1563970919338895 metageneration=1 32636 2019-03-19T12:12:00Z gs://nifty-episode-231612-mlengine/yeaah.jpg#1552997520104445 metageneration=1 gs://nifty-episode-231612-mlengine/cloud_test_package/ gs://nifty-episode-231612-mlengine/cloud_test_package_2/ gs://nifty-episode-231612-mlengine/dev/ gs://nifty-episode-231612-mlengine/food_data/ gs://nifty-episode-231612-mlengine/keras-frcnn/ gs://nifty-episode-231612-mlengine/keras-frcnn_firebase_database_fetching/ gs://nifty-episode-231612-mlengine/my_job_files/ gs://nifty-episode-231612-mlengine/test_job/ gs://nifty-episode-231612-mlengine/test_job_beta1/ gs://nifty-episode-231612-mlengine/test_job_kaafi_late/ gs://nifty-episode-231612-mlengine/test_job_with_txtfileData6/ gs://nifty-episode-231612-mlengine/train_on_gcloud/ gs://nifty-episode-231612-mlengine/training_data_and_annotations_for_cloud_060519/ gs://nifty-episode-231612-mlengine/training_scripts_collection/ TOTAL: 6 objects, 297179304 bytes (283.41 MiB) ###Markdown 3. Submit a training job on AI PlatformFollowing code is a keras implementation of **FRCNN (an object detection model)** used for detecting food objects in image.google ai-platform is used to package the code and submit as training job on google cloud platform.* It outputs a model.hdf5 file (weights of trained FRCNN model) and a config file holding key model archetecture parameters, and saves them at a specified path in cloud Storage bucket.**Run the following cell to:*** First, download the training code(Clone the repo to get code and dependencies).* Although required dependencies are needed to be installed for model training locally. But this code is to be trained in ai-Platform, therefore dependencies come preinstalled based on the [runtime version](https://cloud.google.com/ml-engine/docs/tensorflow/runtime-version-list) one choses during training.* change the notebook's working directory to core directory containing **setup.py** and **trainer/** directory. ###Code !git clone https://github.com/leoninekev/training-frcnn-google-ml-engine.git #! pip install -r requirements.txt # Set the working directory to the sample code directory %cd training-frcnn-google-ml-engine/move_to_cloudshell/ ! ls -pR ###Output .: annotations.txt setup.py trainer/ ./trainer: config.py __init__.py RoiPoolingConv.py vgg.py data_augment.py losses.py simple_parser_pkl.py data_generators.py resnet.py simple_parser_text.py FixedBatchNormalization.py roi_helpers.py task.py ###Markdown **Now prior to submiting a training job few key variables need to be configured as follows:** * Navigate to **trainer/** directory to modify- bucket_path, output model_name, config_name in **task.py** in accordance with your gcp service account. ###Code %cd trainer !ls ###Output /content/train_on_gcloud/training-frcnn-google-ml-engine/move_to_cloudshell/trainer config.py __init__.py RoiPoolingConv.py vgg.py data_augment.py losses.py simple_parser_pkl.py data_generators.py resnet.py simple_parser_text.py FixedBatchNormalization.py roi_helpers.py task.py ###Markdown * Run **%pycat task.py** (this draws a pop displayinf content of task.py)* Copy all code to local Python IDE, or a cell below and edit the default arguments values in **parsers** for * **--path** * **--config_filename** * **--output_weight_path** * **--bucket_path**and name for **model_weights** before saving. ###Code %pycat task.py #copy the code from popup, paste it to a python IDLE locally, edit it and again copy the whole post edit ###Output _____no_output_____ ###Markdown * Copy the edited code from local IDE in following colab cell beneath the command: **%%writefile task.py** (as shown below)and run the cell - The new edits will be overwritten to a new task.py file(you may also save a new task_file.py, and later delete the older task.py) ###Code %%writefile task.py from __future__ import division import random import pprint import sys import time import numpy as np from optparse import OptionParser import pickle from tensorflow.python.lib.io import file_io from keras import backend as K from keras.optimizers import Adam, SGD, RMSprop from keras.layers import Input from keras.models import Model import config, data_generators import losses as losses import roi_helpers from keras.utils import generic_utils sys.setrecursionlimit(40000) parser = OptionParser() parser.add_option("-p", "--path", dest="train_path", help="Path to training data(annotation.txt file).",default="gs://nifty-episode-231612-mlengine/training_data_and_annotations_for_cloud_060519/annotations.txt")# /data.pickle -- for pickled annotations parser.add_option("-o", "--parser", dest="parser", help="Parser to use. One of simple_text or simple_pickle", default="simple")# simple_pick --for simple_parser_pkl parser.add_option("-n", "--num_rois", type="int", dest="num_rois", help="Number of RoIs to process at once.", default=32) parser.add_option("--network", dest="network", help="Base network to use. Supports vgg or resnet50.", default='resnet50') parser.add_option("--hf", dest="horizontal_flips", help="Augment with horizontal flips in training. (Default=false).", action="store_true", default=False) parser.add_option("--vf", dest="vertical_flips", help="Augment with vertical flips in training. (Default=false).", action="store_true", default=False) parser.add_option("--rot", "--rot_90", dest="rot_90", help="Augment with 90 degree rotations in training. (Default=false).", action="store_true", default=False) parser.add_option("--num_epochs", type="int", dest="num_epochs", help="Number of epochs.", default=1)# deafult=1 --for test parser.add_option("--config_filename", dest="config_filename", help= "Location to store all the metadata related to the training (to be used when testing).", default="config_new.pickle") parser.add_option("--output_weight_path", dest="output_weight_path", help="Output path for weights.",default='gs://nifty-episode-231612-mlengine/my_job_files/') parser.add_option("--input_weight_path", dest="input_weight_path", help="Input path for weights. If not specified, will try to load default weights provided by keras.", default='https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5') parser.add_option("--bucket_path", dest="bucket_path", help="bucket path for stroing weights & configs", default='gs://nifty-episode-231612-mlengine/my_job_files/') (options, args) = parser.parse_args() if not options.train_path:# if filename is not given parser.error('Error: path to training data must be specified. Pass --path to command line') if options.parser == 'simple': from simple_parser_text import get_data elif options.parser == 'simple_pick': from simple_parser_pkl import get_data else: raise ValueError("Command line option parser must be one of 'pascal_voc' or 'simple'") # pass the settings from the command line, and persist them in the config object C = config.Config() C.use_horizontal_flips = bool(options.horizontal_flips) C.use_vertical_flips = bool(options.vertical_flips) C.rot_90 = bool(options.rot_90) C.model_path = options.output_weight_path C.num_rois = int(options.num_rois) if options.network == 'vgg': C.network = 'vgg' import vgg as nn elif options.network == 'resnet50': import resnet as nn C.network = 'resnet50' else: print('Not a valid model') raise ValueError # check if weight path was passed via command line if options.input_weight_path: C.base_net_weights = options.input_weight_path else: # set the path to weights based on backend and model C.base_net_weights = nn.get_weight_path()# 'resnet50_weights_th_dim_ordering_th_kernels_notop.h5' all_imgs, classes_count, class_mapping = get_data(options.train_path) if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) C.class_mapping = class_mapping inv_map = {v: k for k, v in class_mapping.items()} print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) config_output_filename = options.bucket_path + options.config_filename# gs://input-your-bucket-name/train_on_gcloud/my_job_files/config.pickle def new_open(name, mode, buffering=-1):# to open & load files from gcloud storage return file_io.FileIO(name, mode) with new_open(config_output_filename, 'wb') as config_f: pickle.dump(C,config_f, protocol=2)# dumps config.pickle(compatible for python 2) in gcloud bucket print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format(config_output_filename)) random.shuffle(all_imgs) num_imgs = len(all_imgs) train_imgs = [s for s in all_imgs if s['imageset'] == 'trainval'] val_imgs = [s for s in all_imgs if s['imageset'] == 'test'] print('Num train samples {}'.format(len(train_imgs))) print('Num val samples {}'.format(len(val_imgs))) data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C, nn.get_img_output_length, K.image_dim_ordering(), mode='train') data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, C, nn.get_img_output_length,K.image_dim_ordering(), mode='val') if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) else: input_shape_img = (None, None, 3) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(None, 4)) # define the base network (resnet here, can be VGG, Inception, etc) shared_layers = nn.nn_base(img_input, trainable=True) # define the RPN, built on the base layers num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) rpn = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(shared_layers, roi_input, C.num_rois, nb_classes=len(classes_count), trainable=True) model_rpn = Model(img_input, rpn[:2]) model_classifier = Model([img_input, roi_input], classifier) # this is a model that holds both the RPN and the classifier, used to load/save weights for the models model_all = Model([img_input, roi_input], rpn[:2] + classifier) try: print('loading weights from {}'.format(C.base_net_weights)) weights_path = get_file('base_weights.h5',C.base_net_weights)# downloading and adding weight paths model_rpn.load_weights(weights_path) model_classifier.load_weights(weights_path) print('weights loaded.') except: print('Could not load pretrained model weights. Weights can be found in the keras application folder \ https://github.com/fchollet/keras/tree/master/keras/applications') optimizer = Adam(lr=1e-5) optimizer_classifier = Adam(lr=1e-5) model_rpn.compile(optimizer=optimizer, loss=[losses.rpn_loss_cls(num_anchors), losses.rpn_loss_regr(num_anchors)]) model_classifier.compile(optimizer=optimizer_classifier, loss=[losses.class_loss_cls, losses.class_loss_regr(len(classes_count)-1)], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) model_all.compile(optimizer='sgd', loss='mae') epoch_length = 1000 num_epochs = int(options.num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf class_mapping_inv = {v: k for k, v in class_mapping.items()} print('Starting training') vis = True for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose: mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor))/len(rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print('Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print('RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.') X, Y, img_data = next(data_gen_train) loss_rpn = model_rpn.train_on_batch(X, Y) P_rpn = model_rpn.predict_on_batch(X) R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C, K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format X2, Y1, Y2, IouS = roi_helpers.calc_iou(R, img_data, C, class_mapping) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if C.num_rois > 1: if len(pos_samples) < C.num_rois//2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice(pos_samples, C.num_rois//2, replace=False).tolist() try: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] progbar.update(iter_num+1, [('rpn_cls', losses[iter_num, 0]), ('rpn_regr', losses[iter_num, 1]), ('detector_cls', losses[iter_num, 2]), ('detector_regr', losses[iter_num, 3])]) iter_num += 1 if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if C.verbose: print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(mean_overlapping_bboxes)) print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format(loss_class_cls)) print('Loss Detector regression: {}'.format(loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if C.verbose: print('Total loss decreased from {} to {}, saving weights'.format(best_loss,curr_loss)) best_loss = curr_loss model_weights= 'model_frcnn_new.hdf5' model_all.save_weights(model_weights) with new_open(model_weights, mode='r') as infile:# to write hdf5 file to gs://input-your-bucket-name/train_on_gcloud/my_job_files/ with new_open(C.model_path + model_weights, mode='w+') as outfile: outfile.write(infile.read()) break except Exception as e: print('Exception: {}'.format(e)) continue print('Training complete, exiting.') ###Output Overwriting task.py ###Markdown * Exit out of **trainer/**, to the directory containing **setup.py** for initiating dependency packaging before training on gcloud.* Verify the present working directory ###Code %cd .. !pwd !ls ###Output /content/train_on_gcloud/training-frcnn-google-ml-engine/move_to_cloudshell /content/train_on_gcloud/training-frcnn-google-ml-engine/move_to_cloudshell annotations.txt setup.py trainer ###Markdown * Define a **JOB_NAME** for training job ###Code JOB_NAME='test_job_GcloudColab_3' ###Output _____no_output_____ ###Markdown Run the following cell to package the **`trainer/`** directory:* It uploads the package to specified **gs://$BUCKET_NAME/JOB_NAME/**, and instruct AI Platform to run the **`trainer.task`** module from that package.* The **`--stream-logs`** flag lets you view training logs in the cell below (One canalso view logs and other job details in the GCP Console, if you've enbaled **Stackdriver logging service**.)For staging your code to package and further training, ensure that following crucial parameters are defined priorly (given below are dummy bucket, job, region names, you may input as you will):* **BUCKET_NAME** = 'nifty-episode-231612-mlengine'* **JOB_NAME** = 'test_job_GcloudColab_3'* **REGION**= 'asia-east1'* **package-path**= trainer/* **model-name** = trainer.task* **runtime-version**=1.13 Now submit a training job to AI Platform.* Following runs the training module in gcloud and exports the training package and trained model to Cloud Storage. ###Code ! gcloud ai-platform jobs submit training $JOB_NAME --package-path trainer/ --module-name trainer.task --region $REGION --runtime-version=1.13 --scale-tier=CUSTOM --master-machine-type=standard_gpu --staging-bucket gs://$BUCKET_NAME --stream-logs ###Output Job [test_job_GcloudColab_3] submitted successfully. INFO 2019-07-26 10:32:05 +0000 service Validating job requirements... INFO 2019-07-26 10:32:06 +0000 service Job creation request has been successfully validated. INFO 2019-07-26 10:32:06 +0000 service Job test_job_GcloudColab_3 is queued. INFO 2019-07-26 10:32:06 +0000 service Waiting for job to be provisioned. INFO 2019-07-26 10:32:08 +0000 service Waiting for training program to start. INFO 2019-07-26 10:33:44 +0000 master-replica-0 Running task with arguments: --cluster={"master": ["127.0.0.1:2222"]} --task={"type": "master", "index": 0} --job={ "scale_tier": "CUSTOM", "master_type": "standard_gpu", "package_uris": ["gs://nifty-episode-231612-mlengine/test_job_GcloudColab_3/a7c878c3589e08ed0c3fe69b3984abe538c68eaa9b63a69a50f1cdb03be1cd44/frcnn_trainer-0.1.tar.gz"], "python_module": "trainer.task", "region": "asia-east1", "runtime_version": "1.13", "run_on_raw_vm": true} WARNING 2019-07-26 10:34:01 +0000 master-replica-0 From /usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. WARNING 2019-07-26 10:34:01 +0000 master-replica-0 Instructions for updating: WARNING 2019-07-26 10:34:01 +0000 master-replica-0 Colocations handled automatically by placer. INFO 2019-07-26 10:34:26 +0000 master-replica-0 Running module trainer.task. INFO 2019-07-26 10:34:26 +0000 master-replica-0 Downloading the package: gs://nifty-episode-231612-mlengine/test_job_GcloudColab_3/a7c878c3589e08ed0c3fe69b3984abe538c68eaa9b63a69a50f1cdb03be1cd44/frcnn_trainer-0.1.tar.gz INFO 2019-07-26 10:34:26 +0000 master-replica-0 Running command: gsutil -q cp gs://nifty-episode-231612-mlengine/test_job_GcloudColab_3/a7c878c3589e08ed0c3fe69b3984abe538c68eaa9b63a69a50f1cdb03be1cd44/frcnn_trainer-0.1.tar.gz frcnn_trainer-0.1.tar.gz INFO 2019-07-26 10:34:27 +0000 master-replica-0 Installing the package: gs://nifty-episode-231612-mlengine/test_job_GcloudColab_3/a7c878c3589e08ed0c3fe69b3984abe538c68eaa9b63a69a50f1cdb03be1cd44/frcnn_trainer-0.1.tar.gz INFO 2019-07-26 10:34:27 +0000 master-replica-0 Running command: pip install --user --upgrade --force-reinstall --no-deps frcnn_trainer-0.1.tar.gz ERROR 2019-07-26 10:34:29 +0000 master-replica-0 DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 won't be maintained after that date. A future version of pip will drop support for Python 2.7. INFO 2019-07-26 10:34:29 +0000 master-replica-0 Processing ./frcnn_trainer-0.1.tar.gz INFO 2019-07-26 10:34:30 +0000 master-replica-0 Building wheels for collected packages: frcnn-trainer INFO 2019-07-26 10:34:30 +0000 master-replica-0 Building wheel for frcnn-trainer (setup.py): started INFO 2019-07-26 10:34:30 +0000 master-replica-0 Building wheel for frcnn-trainer (setup.py): finished with status 'done' INFO 2019-07-26 10:34:30 +0000 master-replica-0 Stored in directory: /root/.cache/pip/wheels/5f/dc/f1/44f4d4c2d7e4540b60cecc409bf0e8c1347e3d2de9032c76c7 INFO 2019-07-26 10:34:30 +0000 master-replica-0 Successfully built frcnn-trainer INFO 2019-07-26 10:34:30 +0000 master-replica-0 Installing collected packages: frcnn-trainer INFO 2019-07-26 10:34:30 +0000 master-replica-0 Successfully installed frcnn-trainer-0.1 INFO 2019-07-26 10:34:30 +0000 master-replica-0 Running command: pip install --user frcnn_trainer-0.1.tar.gz ERROR 2019-07-26 10:34:31 +0000 master-replica-0 DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 won't be maintained after that date. A future version of pip will drop support for Python 2.7. INFO 2019-07-26 10:34:31 +0000 master-replica-0 Processing ./frcnn_trainer-0.1.tar.gz INFO 2019-07-26 10:34:31 +0000 master-replica-0 Collecting pillow (from frcnn-trainer==0.1) INFO 2019-07-26 10:34:32 +0000 master-replica-0 Downloading https://files.pythonhosted.org/packages/cc/a4/79b5f36d1e1a2b426073bd62217d1530fcd939950c2936651e6b39127a9b/Pillow-6.1.0-cp27-cp27mu-manylinux1_x86_64.whl (2.1MB) INFO 2019-07-26 10:34:32 +0000 master-replica-0 Collecting keras (from frcnn-trainer==0.1) INFO 2019-07-26 10:34:32 +0000 master-replica-0 Downloading https://files.pythonhosted.org/packages/5e/10/aa32dad071ce52b5502266b5c659451cfd6ffcbf14e6c8c4f16c0ff5aaab/Keras-2.2.4-py2.py3-none-any.whl (312kB) INFO 2019-07-26 10:34:32 +0000 master-replica-0 Requirement already satisfied: h5py in /usr/local/lib/python2.7/dist-packages (from frcnn-trainer==0.1) (2.9.0) INFO 2019-07-26 10:34:32 +0000 master-replica-0 Requirement already satisfied: scipy>=0.14 in /usr/local/lib/python2.7/dist-packages (from keras->frcnn-trainer==0.1) (1.2.1) INFO 2019-07-26 10:34:32 +0000 master-replica-0 Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python2.7/dist-packages (from keras->frcnn-trainer==0.1) (1.1.0) INFO 2019-07-26 10:34:32 +0000 master-replica-0 Requirement already satisfied: numpy>=1.9.1 in /usr/local/lib/python2.7/dist-packages (from keras->frcnn-trainer==0.1) (1.16.0) INFO 2019-07-26 10:34:32 +0000 master-replica-0 Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python2.7/dist-packages (from keras->frcnn-trainer==0.1) (1.12.0) INFO 2019-07-26 10:34:32 +0000 master-replica-0 Requirement already satisfied: pyyaml in /usr/local/lib/python2.7/dist-packages (from keras->frcnn-trainer==0.1) (3.13) INFO 2019-07-26 10:34:32 +0000 master-replica-0 Requirement already satisfied: keras-applications>=1.0.6 in /usr/local/lib/python2.7/dist-packages (from keras->frcnn-trainer==0.1) (1.0.8) INFO 2019-07-26 10:34:32 +0000 master-replica-0 Building wheels for collected packages: frcnn-trainer INFO 2019-07-26 10:34:32 +0000 master-replica-0 Building wheel for frcnn-trainer (setup.py): started INFO 2019-07-26 10:34:33 +0000 master-replica-0 Building wheel for frcnn-trainer (setup.py): finished with status 'done' INFO 2019-07-26 10:34:33 +0000 master-replica-0 Stored in directory: /root/.cache/pip/wheels/5f/dc/f1/44f4d4c2d7e4540b60cecc409bf0e8c1347e3d2de9032c76c7 INFO 2019-07-26 10:34:33 +0000 master-replica-0 Successfully built frcnn-trainer INFO 2019-07-26 10:34:33 +0000 master-replica-0 Installing collected packages: pillow, keras, frcnn-trainer INFO 2019-07-26 10:34:34 +0000 master-replica-0 Found existing installation: frcnn-trainer 0.1 INFO 2019-07-26 10:34:34 +0000 master-replica-0 Uninstalling frcnn-trainer-0.1: INFO 2019-07-26 10:34:34 +0000 master-replica-0 Successfully uninstalled frcnn-trainer-0.1 INFO 2019-07-26 10:34:34 +0000 master-replica-0 Successfully installed frcnn-trainer-0.1 keras-2.2.4 pillow-6.1.0 INFO 2019-07-26 10:34:34 +0000 master-replica-0 Running command: python -m trainer.task ERROR 2019-07-26 10:34:35 +0000 master-replica-0 Using TensorFlow backend. WARNING 2019-07-26 10:37:14 +0000 master-replica-0 From /usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. WARNING 2019-07-26 10:37:14 +0000 master-replica-0 Instructions for updating: WARNING 2019-07-26 10:37:14 +0000 master-replica-0 Colocations handled automatically by placer. INFO 2019-07-26 10:37:21 +0000 master-replica-0 Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA INFO 2019-07-26 10:37:21 +0000 master-replica-0 successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero INFO 2019-07-26 10:37:21 +0000 master-replica-0 XLA service 0xa8245b0 executing computations on platform CUDA. Devices: INFO 2019-07-26 10:37:21 +0000 master-replica-0 StreamExecutor device (0): Tesla K80, Compute Capability 3.7 INFO 2019-07-26 10:37:21 +0000 master-replica-0 CPU Frequency: 2200000000 Hz INFO 2019-07-26 10:37:21 +0000 master-replica-0 XLA service 0xa88d090 executing computations on platform Host. Devices: INFO 2019-07-26 10:37:21 +0000 master-replica-0 StreamExecutor device (0): <undefined>, <undefined> INFO 2019-07-26 10:37:21 +0000 master-replica-0 Found device 0 with properties: ERROR 2019-07-26 10:37:21 +0000 master-replica-0 name: Tesla K80 major: 3 minor: 7 memoryClockRate(GHz): 0.8235 ERROR 2019-07-26 10:37:21 +0000 master-replica-0 pciBusID: 0000:00:04.0 ERROR 2019-07-26 10:37:21 +0000 master-replica-0 totalMemory: 11.17GiB freeMemory: 11.11GiB INFO 2019-07-26 10:37:21 +0000 master-replica-0 Adding visible gpu devices: 0 INFO 2019-07-26 10:37:21 +0000 master-replica-0 Device interconnect StreamExecutor with strength 1 edge matrix: INFO 2019-07-26 10:37:21 +0000 master-replica-0 0 INFO 2019-07-26 10:37:21 +0000 master-replica-0 0: N INFO 2019-07-26 10:37:21 +0000 master-replica-0 Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10757 MB memory) -> physical GPU (device: 0, name: Tesla K80, pci bus id: 0000:00:04.0, compute capability: 3.7) WARNING 2019-07-26 10:37:43 +0000 master-replica-0 From /usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. WARNING 2019-07-26 10:37:43 +0000 master-replica-0 Instructions for updating: WARNING 2019-07-26 10:37:43 +0000 master-replica-0 Use tf.cast instead. INFO 2019-07-26 10:37:54 +0000 master-replica-0 successfully opened CUDA library libcublas.so.10.0 locally INFO 2019-07-26 10:37:56 +0000 master-replica-0 Parsing annotation files INFO 2019-07-26 10:37:56 +0000 master-replica-0 Training images per class: INFO 2019-07-26 10:37:56 +0000 master-replica-0 {'bg': 0, 'cake': 439, 'donuts': 218, 'dosa': 119} INFO 2019-07-26 10:37:56 +0000 master-replica-0 Num classes (including bg) = 4 INFO 2019-07-26 10:37:56 +0000 master-replica-0 Config has been written to gs://nifty-episode-231612-mlengine/my_job_files/config_new.pickle, and can be loaded when testing to ensure correct results INFO 2019-07-26 10:37:56 +0000 master-replica-0 Num train samples 235 INFO 2019-07-26 10:37:56 +0000 master-replica-0 Num val samples 37 INFO 2019-07-26 10:37:56 +0000 master-replica-0 loading weights from https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 INFO 2019-07-26 10:37:56 +0000 master-replica-0 Could not load pretrained model weights. Weights can be found in the keras application folder https://github.com/fchollet/keras/tree/master/keras/applications INFO 2019-07-26 10:37:56 +0000 master-replica-0 Starting training INFO 2019-07-26 10:37:56 +0000 master-replica-0 Epoch 1/1 INFO 2019-07-26 10:38:01 +0000 master-replica-0 1/1000 [..............................] - ETA: 10:46:29 - rpn_cls: 0.0355 - rpn_regr: 0.6953 - detector_cls: 1.3863 - detector_regr: 0.0000e+00 INFO 2019-07-26 10:38:07 +0000 master-replica-0 2/1000 [..............................] - ETA: 6:04:33 - rpn_cls: 1.0024 - rpn_regr: 0.3613 - detector_cls: 0.7019 - detector_regr: 0.0000e+00 INFO 2019-07-26 10:38:10 +0000 master-replica-0 3/1000 [..............................] - ETA: 4:36:41 - rpn_cls: 3.8190 - rpn_regr: 0.2634 - detector_cls: 0.4893 - detector_regr: 0.0000e+00 INFO 2019-07-26 10:38:16 +0000 master-replica-0 4/1000 [..............................] - ETA: 3:40:26 - rpn_cls: 4.9847 - rpn_regr: 0.2146 - detector_cls: 0.3670 - detector_regr: 0.0000e+00 INFO 2019-07-26 10:38:19 +0000 master-replica-0 5/1000 [..............................] - ETA: 3:15:55 - rpn_cls: 4.8022 - rpn_regr: 0.2192 - detector_cls: 0.2936 - detector_regr: 0.0000e+00 INFO 2019-07-26 10:38:21 +0000 master-replica-0 6/1000 [..............................] - ETA: 2:51:57 - rpn_cls: 5.5423 - rpn_regr: 0.2010 - detector_cls: 0.5805 - detector_regr: 0.0716 INFO 2019-07-26 10:38:24 +0000 master-replica-0 7/1000 [..............................] - ETA: 2:31:01 - rpn_cls: 5.0106 - rpn_regr: 0.2156 - detector_cls: 1.5031 - detector_regr: 0.2850 INFO 2019-07-26 10:38:26 +0000 master-replica-0 8/1000 [..............................] - ETA: 2:18:44 - rpn_cls: 4.5348 - rpn_regr: 0.2018 - detector_cls: 1.6300 - detector_regr: 0.3100 INFO 2019-07-26 10:38:27 +0000 master-replica-0 9/1000 [..............................] - ETA: 2:05:51 - rpn_cls: 5.1633 - rpn_regr: 0.1902 - detector_cls: 2.0086 - detector_regr: 0.3185 INFO 2019-07-26 10:38:34 +0000 master-replica-0 10/1000 [..............................] - ETA: 1:55:20 - rpn_cls: 5.5111 - rpn_regr: 0.1831 - detector_cls: 1.8563 - detector_regr: 0.2910 INFO 2019-07-26 10:38:42 +0000 master-replica-0 11/1000 [..............................] - ETA: 1:55:25 - rpn_cls: 5.8313 - rpn_regr: 0.1730 - detector_cls: 2.1454 - detector_regr: 0.6538 INFO 2019-07-26 10:38:43 +0000 master-replica-0 12/1000 [..............................] - ETA: 1:56:00 - rpn_cls: 6.1133 - rpn_regr: 0.1651 - detector_cls: 2.3864 - detector_regr: 0.8608 INFO 2019-07-26 10:38:49 +0000 master-replica-0 13/1000 [..............................] - ETA: 1:48:21 - rpn_cls: 5.7041 - rpn_regr: 0.1619 - detector_cls: 2.5128 - detector_regr: 1.2216 INFO 2019-07-26 10:38:50 +0000 master-replica-0 14/1000 [..............................] - ETA: 1:47:53 - rpn_cls: 5.2967 - rpn_regr: 0.1642 - detector_cls: 2.4772 - detector_regr: 1.1579 INFO 2019-07-26 10:38:52 +0000 master-replica-0 15/1000 [..............................] - ETA: 1:42:06 - rpn_cls: 5.5040 - rpn_regr: 0.1593 - detector_cls: 2.3792 - detector_regr: 1.2459 INFO 2019-07-26 10:38:53 +0000 master-replica-0 16/1000 [..............................] - ETA: 1:36:56 - rpn_cls: 5.2784 - rpn_regr: 0.1560 - detector_cls: 2.4131 - detector_regr: 1.2310 INFO 2019-07-26 10:38:55 +0000 master-replica-0 17/1000 [..............................] - ETA: 1:32:45 - rpn_cls: 5.0561 - rpn_regr: 0.1526 - detector_cls: 2.7452 - detector_regr: 1.1951 INFO 2019-07-26 10:38:56 +0000 master-replica-0 18/1000 [..............................] - ETA: 1:28:42 - rpn_cls: 5.2975 - rpn_regr: 0.1537 - detector_cls: 2.5927 - detector_regr: 1.1287 INFO 2019-07-26 10:38:57 +0000 master-replica-0 19/1000 [..............................] - ETA: 1:25:12 - rpn_cls: 5.5923 - rpn_regr: 0.1491 - detector_cls: 2.5440 - detector_regr: 1.1179 INFO 2019-07-26 10:39:03 +0000 master-replica-0 20/1000 [..............................] - ETA: 1:21:57 - rpn_cls: 5.7739 - rpn_regr: 0.1466 - detector_cls: 2.4383 - detector_regr: 1.1887 INFO 2019-07-26 10:39:05 +0000 master-replica-0 21/1000 [..............................] - ETA: 1:22:31 - rpn_cls: 5.6154 - rpn_regr: 0.1432 - detector_cls: 2.4789 - detector_regr: 1.2931 INFO 2019-07-26 10:39:06 +0000 master-replica-0 22/1000 [..............................] - ETA: 1:19:40 - rpn_cls: 5.5576 - rpn_regr: 0.1405 - detector_cls: 2.4947 - detector_regr: 1.3267 INFO 2019-07-26 10:39:12 +0000 master-replica-0 23/1000 [..............................] - ETA: 1:17:23 - rpn_cls: 5.4793 - rpn_regr: 0.1475 - detector_cls: 2.3862 - detector_regr: 1.2690 INFO 2019-07-26 10:39:13 +0000 master-replica-0 24/1000 [..............................] - ETA: 1:17:41 - rpn_cls: 5.3610 - rpn_regr: 0.1453 - detector_cls: 2.3804 - detector_regr: 1.3305 INFO 2019-07-26 10:39:17 +0000 master-replica-0 25/1000 [..............................] - ETA: 1:15:23 - rpn_cls: 5.5078 - rpn_regr: 0.1477 - detector_cls: 2.2855 - detector_regr: 1.2773 INFO 2019-07-26 10:39:19 +0000 master-replica-0 26/1000 [..............................] - ETA: 1:14:54 - rpn_cls: 5.4839 - rpn_regr: 0.1466 - detector_cls: 2.2458 - detector_regr: 1.3036 INFO 2019-07-26 10:39:20 +0000 master-replica-0 27/1000 [..............................] - ETA: 1:13:02 - rpn_cls: 5.6349 - rpn_regr: 0.1445 - detector_cls: 2.2171 - detector_regr: 1.3048 INFO 2019-07-26 10:39:21 +0000 master-replica-0 28/1000 [..............................] - ETA: 1:11:07 - rpn_cls: 5.5244 - rpn_regr: 0.1472 - detector_cls: 2.1757 - detector_regr: 1.3288 INFO 2019-07-26 10:39:27 +0000 master-replica-0 29/1000 [..............................] - ETA: 1:09:21 - rpn_cls: 5.4895 - rpn_regr: 0.1479 - detector_cls: 2.1122 - detector_regr: 1.3315 INFO 2019-07-26 10:39:28 +0000 master-replica-0 30/1000 [..............................] - ETA: 1:09:54 - rpn_cls: 5.6446 - rpn_regr: 0.1455 - detector_cls: 2.0562 - detector_regr: 1.3145 INFO 2019-07-26 10:39:34 +0000 master-replica-0 31/1000 [..............................] - ETA: 1:08:15 - rpn_cls: 5.6011 - rpn_regr: 0.1438 - detector_cls: 2.0176 - detector_regr: 1.2941 INFO 2019-07-26 10:39:35 +0000 master-replica-0 32/1000 [..............................] - ETA: 1:09:05 - rpn_cls: 5.5594 - rpn_regr: 0.1430 - detector_cls: 1.9659 - detector_regr: 1.2888 INFO 2019-07-26 10:39:37 +0000 master-replica-0 33/1000 [..............................] - ETA: 1:07:38 - rpn_cls: 5.7004 - rpn_regr: 0.1433 - detector_cls: 1.9298 - detector_regr: 1.2700 INFO 2019-07-26 10:39:39 +0000 master-replica-0 34/1000 [>.............................] - ETA: 1:06:12 - rpn_cls: 5.5777 - rpn_regr: 0.1403 - detector_cls: 1.8936 - detector_regr: 1.2524 INFO 2019-07-26 10:39:40 +0000 master-replica-0 35/1000 [>.............................] - ETA: 1:05:09 - rpn_cls: 5.5612 - rpn_regr: 0.1403 - detector_cls: 1.8663 - detector_regr: 1.2297 INFO 2019-07-26 10:39:42 +0000 master-replica-0 36/1000 [>.............................] - ETA: 1:03:57 - rpn_cls: 5.5529 - rpn_regr: 0.1434 - detector_cls: 1.8498 - detector_regr: 1.2076 INFO 2019-07-26 10:39:43 +0000 master-replica-0 37/1000 [>.............................] - ETA: 1:02:43 - rpn_cls: 5.4029 - rpn_regr: 0.1425 - detector_cls: 1.8322 - detector_regr: 1.1852 INFO 2019-07-26 10:39:48 +0000 master-replica-0 38/1000 [>.............................] - ETA: 1:01:35 - rpn_cls: 5.4077 - rpn_regr: 0.1447 - detector_cls: 1.8013 - detector_regr: 1.1637 INFO 2019-07-26 10:39:50 +0000 master-replica-0 39/1000 [>.............................] - ETA: 1:02:07 - rpn_cls: 5.2910 - rpn_regr: 0.1441 - detector_cls: 1.7775 - detector_regr: 1.1518 INFO 2019-07-26 10:39:51 +0000 master-replica-0 40/1000 [>.............................] - ETA: 1:01:05 - rpn_cls: 5.1768 - rpn_regr: 0.1424 - detector_cls: 1.7590 - detector_regr: 1.1352 INFO 2019-07-26 10:39:57 +0000 master-replica-0 41/1000 [>.............................] - ETA: 1:00:02 - rpn_cls: 5.2510 - rpn_regr: 0.1410 - detector_cls: 1.7310 - detector_regr: 1.1075 INFO 2019-07-26 10:39:58 +0000 master-replica-0 42/1000 [>.............................] - ETA: 1:00:47 - rpn_cls: 5.2264 - rpn_regr: 0.1411 - detector_cls: 1.6984 - detector_regr: 1.0811 INFO 2019-07-26 10:40:03 +0000 master-replica-0 43/1000 [>.............................] - ETA: 59:44 - rpn_cls: 5.2443 - rpn_regr: 0.1411 - detector_cls: 1.6892 - detector_regr: 1.0687 INFO 2019-07-26 10:40:04 +0000 master-replica-0 44/1000 [>.............................] - ETA: 1:00:08 - rpn_cls: 5.2973 - rpn_regr: 0.1399 - detector_cls: 1.6585 - detector_regr: 1.0566 INFO 2019-07-26 10:40:06 +0000 master-replica-0 45/1000 [>.............................] - ETA: 59:12 - rpn_cls: 5.1897 - rpn_regr: 0.1386 - detector_cls: 1.6395 - detector_regr: 1.0402 INFO 2019-07-26 10:40:07 +0000 master-replica-0 46/1000 [>.............................] - ETA: 58:19 - rpn_cls: 5.1703 - rpn_regr: 0.1385 - detector_cls: 1.6173 - detector_regr: 1.0277 INFO 2019-07-26 10:40:10 +0000 master-replica-0 47/1000 [>.............................] - ETA: 57:32 - rpn_cls: 5.2082 - rpn_regr: 0.1364 - detector_cls: 1.6112 - detector_regr: 1.0145 INFO 2019-07-26 10:40:12 +0000 master-replica-0 48/1000 [>.............................] - ETA: 57:21 - rpn_cls: 5.0998 - rpn_regr: 0.1355 - detector_cls: 1.5910 - detector_regr: 1.0023 INFO 2019-07-26 10:40:13 +0000 master-replica-0 49/1000 [>.............................] - ETA: 56:32 - rpn_cls: 5.0131 - rpn_regr: 0.1343 - detector_cls: 1.5734 - detector_regr: 0.9903 INFO 2019-07-26 10:40:15 +0000 master-replica-0 50/1000 [>.............................] - ETA: 55:53 - rpn_cls: 5.0798 - rpn_regr: 0.1341 - detector_cls: 1.5555 - detector_regr: 0.9805 INFO 2019-07-26 10:40:16 +0000 master-replica-0 51/1000 [>.............................] - ETA: 55:05 - rpn_cls: 5.1948 - rpn_regr: 0.1436 - detector_cls: 1.5276 - detector_regr: 0.9613 INFO 2019-07-26 10:40:17 +0000 master-replica-0 52/1000 [>.............................] - ETA: 54:21 - rpn_cls: 5.2184 - rpn_regr: 0.1429 - detector_cls: 1.5193 - detector_regr: 0.9508 INFO 2019-07-26 10:40:19 +0000 master-replica-0 53/1000 [>.............................] - ETA: 53:40 - rpn_cls: 5.1812 - rpn_regr: 0.1414 - detector_cls: 1.5201 - detector_regr: 0.9407 INFO 2019-07-26 10:40:20 +0000 master-replica-0 54/1000 [>.............................] - ETA: 53:03 - rpn_cls: 5.2213 - rpn_regr: 0.1418 - detector_cls: 1.5265 - detector_regr: 0.9375 INFO 2019-07-26 10:40:21 +0000 master-replica-0 55/1000 [>.............................] - ETA: 52:26 - rpn_cls: 5.1698 - rpn_regr: 0.1414 - detector_cls: 1.5241 - detector_regr: 0.9287 INFO 2019-07-26 10:40:23 +0000 master-replica-0 56/1000 [>.............................] - ETA: 51:46 - rpn_cls: 5.0775 - rpn_regr: 0.1426 - detector_cls: 1.5094 - detector_regr: 0.9189 INFO 2019-07-26 10:40:24 +0000 master-replica-0 57/1000 [>.............................] - ETA: 51:12 - rpn_cls: 5.0335 - rpn_regr: 0.1414 - detector_cls: 1.5075 - detector_regr: 0.9095 INFO 2019-07-26 10:40:31 +0000 master-replica-0 58/1000 [>.............................] - ETA: 50:39 - rpn_cls: 5.0686 - rpn_regr: 0.1433 - detector_cls: 1.5065 - detector_regr: 0.9032 INFO 2019-07-26 10:40:32 +0000 master-replica-0 59/1000 [>.............................] - ETA: 51:31 - rpn_cls: 5.1396 - rpn_regr: 0.1428 - detector_cls: 1.4877 - detector_regr: 0.9025 INFO 2019-07-26 10:40:34 +0000 master-replica-0 60/1000 [>.............................] - ETA: 50:59 - rpn_cls: 5.1352 - rpn_regr: 0.1445 - detector_cls: 1.4815 - detector_regr: 0.8948 INFO 2019-07-26 10:40:35 +0000 master-replica-0 61/1000 [>.............................] - ETA: 50:25 - rpn_cls: 5.0512 - rpn_regr: 0.1435 - detector_cls: 1.4740 - detector_regr: 0.8899 INFO 2019-07-26 10:40:36 +0000 master-replica-0 62/1000 [>.............................] - ETA: 49:53 - rpn_cls: 4.9813 - rpn_regr: 0.1420 - detector_cls: 1.4621 - detector_regr: 0.8808 INFO 2019-07-26 10:40:37 +0000 master-replica-0 63/1000 [>.............................] - ETA: 49:22 - rpn_cls: 5.0011 - rpn_regr: 0.1411 - detector_cls: 1.4494 - detector_regr: 0.8669 INFO 2019-07-26 10:40:39 +0000 master-replica-0 64/1000 [>.............................] - ETA: 48:52 - rpn_cls: 4.9230 - rpn_regr: 0.1401 - detector_cls: 1.4382 - detector_regr: 0.8603 INFO 2019-07-26 10:40:40 +0000 master-replica-0 65/1000 [>.............................] - ETA: 48:23 - rpn_cls: 4.8821 - rpn_regr: 0.1383 - detector_cls: 1.4299 - detector_regr: 0.8523 INFO 2019-07-26 10:40:41 +0000 master-replica-0 66/1000 [>.............................] - ETA: 47:55 - rpn_cls: 4.8082 - rpn_regr: 0.1383 - detector_cls: 1.4243 - detector_regr: 0.8463 INFO 2019-07-26 10:40:50 +0000 master-replica-0 67/1000 [=>............................] - ETA: 47:24 - rpn_cls: 4.7364 - rpn_regr: 0.1377 - detector_cls: 1.4160 - detector_regr: 0.8420 INFO 2019-07-26 10:40:52 +0000 master-replica-0 68/1000 [=>............................] - ETA: 48:36 - rpn_cls: 4.7129 - rpn_regr: 0.1387 - detector_cls: 1.3993 - detector_regr: 0.8297 INFO 2019-07-26 10:40:58 +0000 master-replica-0 69/1000 [=>............................] - ETA: 48:16 - rpn_cls: 4.6824 - rpn_regr: 0.1416 - detector_cls: 1.3866 - detector_regr: 0.8257 INFO 2019-07-26 10:41:00 +0000 master-replica-0 70/1000 [=>............................] - ETA: 48:55 - rpn_cls: 4.6587 - rpn_regr: 0.1418 - detector_cls: 1.3896 - detector_regr: 0.8185 INFO 2019-07-26 10:41:01 +0000 master-replica-0 71/1000 [=>............................] - ETA: 48:33 - rpn_cls: 4.6947 - rpn_regr: 0.1508 - detector_cls: 1.3768 - detector_regr: 0.8070 INFO 2019-07-26 10:41:03 +0000 master-replica-0 72/1000 [=>............................] - ETA: 48:06 - rpn_cls: 4.6295 - rpn_regr: 0.1494 - detector_cls: 1.3657 - detector_regr: 0.8007 INFO 2019-07-26 10:41:04 +0000 master-replica-0 73/1000 [=>............................] - ETA: 47:44 - rpn_cls: 4.5839 - rpn_regr: 0.1495 - detector_cls: 1.3660 - detector_regr: 0.7961 INFO 2019-07-26 10:41:06 +0000 master-replica-0 74/1000 [=>............................] - ETA: 47:25 - rpn_cls: 4.6436 - rpn_regr: 0.1484 - detector_cls: 1.3540 - detector_regr: 0.7853 INFO 2019-07-26 10:41:09 +0000 master-replica-0 75/1000 [=>............................] - ETA: 47:02 - rpn_cls: 4.6948 - rpn_regr: 0.1479 - detector_cls: 1.3395 - detector_regr: 0.7748 INFO 2019-07-26 10:41:11 +0000 master-replica-0 76/1000 [=>............................] - ETA: 47:02 - rpn_cls: 4.7103 - rpn_regr: 0.1485 - detector_cls: 1.3369 - detector_regr: 0.7716 INFO 2019-07-26 10:41:12 +0000 master-replica-0 77/1000 [=>............................] - ETA: 46:44 - rpn_cls: 4.7424 - rpn_regr: 0.1495 - detector_cls: 1.3405 - detector_regr: 0.7671 INFO 2019-07-26 10:41:14 +0000 master-replica-0 78/1000 [=>............................] - ETA: 46:21 - rpn_cls: 4.7338 - rpn_regr: 0.1484 - detector_cls: 1.3360 - detector_regr: 0.7634 INFO 2019-07-26 10:41:19 +0000 master-replica-0 79/1000 [=>............................] - ETA: 46:03 - rpn_cls: 4.7785 - rpn_regr: 0.1474 - detector_cls: 1.3252 - detector_regr: 0.7619 INFO 2019-07-26 10:41:21 +0000 master-replica-0 80/1000 [=>............................] - ETA: 46:25 - rpn_cls: 4.7345 - rpn_regr: 0.1468 - detector_cls: 1.3184 - detector_regr: 0.7577 INFO 2019-07-26 10:41:22 +0000 master-replica-0 81/1000 [=>............................] - ETA: 46:03 - rpn_cls: 4.6878 - rpn_regr: 0.1463 - detector_cls: 1.3195 - detector_regr: 0.7535 INFO 2019-07-26 10:41:23 +0000 master-replica-0 82/1000 [=>............................] - ETA: 45:42 - rpn_cls: 4.7297 - rpn_regr: 0.1464 - detector_cls: 1.3092 - detector_regr: 0.7494 INFO 2019-07-26 10:41:25 +0000 master-replica-0 83/1000 [=>............................] - ETA: 45:22 - rpn_cls: 4.6944 - rpn_regr: 0.1457 - detector_cls: 1.3122 - detector_regr: 0.7464 INFO 2019-07-26 10:41:26 +0000 master-replica-0 84/1000 [=>............................] - ETA: 45:01 - rpn_cls: 4.6652 - rpn_regr: 0.1460 - detector_cls: 1.3086 - detector_regr: 0.7454 INFO 2019-07-26 10:41:32 +0000 master-replica-0 85/1000 [=>............................] - ETA: 44:40 - rpn_cls: 4.6104 - rpn_regr: 0.1454 - detector_cls: 1.3044 - detector_regr: 0.7426 INFO 2019-07-26 10:41:34 +0000 master-replica-0 86/1000 [=>............................] - ETA: 45:13 - rpn_cls: 4.6063 - rpn_regr: 0.1458 - detector_cls: 1.2974 - detector_regr: 0.7402 INFO 2019-07-26 10:41:44 +0000 master-replica-0 87/1000 [=>............................] - ETA: 44:59 - rpn_cls: 4.6577 - rpn_regr: 0.1480 - detector_cls: 1.2863 - detector_regr: 0.7334 INFO 2019-07-26 10:41:46 +0000 master-replica-0 88/1000 [=>............................] - ETA: 46:05 - rpn_cls: 4.6389 - rpn_regr: 0.1479 - detector_cls: 1.2750 - detector_regr: 0.7250 INFO 2019-07-26 10:41:47 +0000 master-replica-0 89/1000 [=>............................] - ETA: 45:50 - rpn_cls: 4.6850 - rpn_regr: 0.1472 - detector_cls: 1.2688 - detector_regr: 0.7224 INFO 2019-07-26 10:41:52 +0000 master-replica-0 90/1000 [=>............................] - ETA: 45:31 - rpn_cls: 4.6469 - rpn_regr: 0.1463 - detector_cls: 1.2720 - detector_regr: 0.7190 INFO 2019-07-26 10:41:54 +0000 master-replica-0 91/1000 [=>............................] - ETA: 45:49 - rpn_cls: 4.6865 - rpn_regr: 0.1452 - detector_cls: 1.2665 - detector_regr: 0.7173 INFO 2019-07-26 10:41:55 +0000 master-replica-0 92/1000 [=>............................] - ETA: 45:30 - rpn_cls: 4.6408 - rpn_regr: 0.1443 - detector_cls: 1.2674 - detector_regr: 0.7136 INFO 2019-07-26 10:41:56 +0000 master-replica-0 93/1000 [=>............................] - ETA: 45:11 - rpn_cls: 4.5980 - rpn_regr: 0.1434 - detector_cls: 1.2635 - detector_regr: 0.7103 INFO 2019-07-26 10:41:59 +0000 master-replica-0 94/1000 [=>............................] - ETA: 44:51 - rpn_cls: 4.5560 - rpn_regr: 0.1432 - detector_cls: 1.2598 - detector_regr: 0.7070 INFO 2019-07-26 10:42:01 +0000 master-replica-0 95/1000 [=>............................] - ETA: 44:50 - rpn_cls: 4.5529 - rpn_regr: 0.1426 - detector_cls: 1.2563 - detector_regr: 0.7054 INFO 2019-07-26 10:42:03 +0000 master-replica-0 96/1000 [=>............................] - ETA: 44:32 - rpn_cls: 4.5149 - rpn_regr: 0.1424 - detector_cls: 1.2522 - detector_regr: 0.7024 INFO 2019-07-26 10:42:04 +0000 master-replica-0 97/1000 [=>............................] - ETA: 44:21 - rpn_cls: 4.5671 - rpn_regr: 0.1445 - detector_cls: 1.2450 - detector_regr: 0.6975 INFO 2019-07-26 10:42:06 +0000 master-replica-0 98/1000 [=>............................] - ETA: 44:03 - rpn_cls: 4.5350 - rpn_regr: 0.1433 - detector_cls: 1.2463 - detector_regr: 0.6958 INFO 2019-07-26 10:42:14 +0000 master-replica-0 99/1000 [=>............................] - ETA: 43:48 - rpn_cls: 4.5178 - rpn_regr: 0.1427 - detector_cls: 1.2481 - detector_regr: 0.6938 INFO 2019-07-26 10:42:20 +0000 master-replica-0 100/1000 [==>...........................] - ETA: 44:32 - rpn_cls: 4.5056 - rpn_regr: 0.1426 - detector_cls: 1.2394 - detector_regr: 0.6868 INFO 2019-07-26 10:42:22 +0000 master-replica-0 101/1000 [==>...........................] - ETA: 45:00 - rpn_cls: 4.4724 - rpn_regr: 0.1434 - detector_cls: 1.2348 - detector_regr: 0.6834 INFO 2019-07-26 10:42:23 +0000 master-replica-0 102/1000 [==>...........................] - ETA: 44:42 - rpn_cls: 4.4286 - rpn_regr: 0.1430 - detector_cls: 1.2295 - detector_regr: 0.6845 INFO 2019-07-26 10:42:25 +0000 master-replica-0 103/1000 [==>...........................] - ETA: 44:27 - rpn_cls: 4.3856 - rpn_regr: 0.1425 - detector_cls: 1.2286 - detector_regr: 0.6828 INFO 2019-07-26 10:42:26 +0000 master-replica-0 104/1000 [==>...........................] - ETA: 44:12 - rpn_cls: 4.4312 - rpn_regr: 0.1413 - detector_cls: 1.2239 - detector_regr: 0.6811 INFO 2019-07-26 10:42:28 +0000 master-replica-0 105/1000 [==>...........................] - ETA: 43:55 - rpn_cls: 4.4300 - rpn_regr: 0.1404 - detector_cls: 1.2173 - detector_regr: 0.6746 INFO 2019-07-26 10:42:29 +0000 master-replica-0 106/1000 [==>...........................] - ETA: 43:39 - rpn_cls: 4.4077 - rpn_regr: 0.1410 - detector_cls: 1.2220 - detector_regr: 0.6724 INFO 2019-07-26 10:42:34 +0000 master-replica-0 107/1000 [==>...........................] - ETA: 43:23 - rpn_cls: 4.3729 - rpn_regr: 0.1401 - detector_cls: 1.2236 - detector_regr: 0.6718 INFO 2019-07-26 10:42:38 +0000 master-replica-0 108/1000 [==>...........................] - ETA: 43:36 - rpn_cls: 4.4032 - rpn_regr: 0.1395 - detector_cls: 1.2169 - detector_regr: 0.6702 INFO 2019-07-26 10:42:39 +0000 master-replica-0 109/1000 [==>...........................] - ETA: 43:41 - rpn_cls: 4.3746 - rpn_regr: 0.1392 - detector_cls: 1.2124 - detector_regr: 0.6672 INFO 2019-07-26 10:42:46 +0000 master-replica-0 110/1000 [==>...........................] - ETA: 43:25 - rpn_cls: 4.3348 - rpn_regr: 0.1404 - detector_cls: 1.2137 - detector_regr: 0.6663 INFO 2019-07-26 10:42:48 +0000 master-replica-0 111/1000 [==>...........................] - ETA: 43:56 - rpn_cls: 4.3766 - rpn_regr: 0.1397 - detector_cls: 1.2065 - detector_regr: 0.6602 INFO 2019-07-26 10:42:49 +0000 master-replica-0 112/1000 [==>...........................] - ETA: 43:45 - rpn_cls: 4.4238 - rpn_regr: 0.1390 - detector_cls: 1.2001 - detector_regr: 0.6544 INFO 2019-07-26 10:42:51 +0000 master-replica-0 113/1000 [==>...........................] - ETA: 43:29 - rpn_cls: 4.3881 - rpn_regr: 0.1383 - detector_cls: 1.1975 - detector_regr: 0.6533 INFO 2019-07-26 10:42:52 +0000 master-replica-0 114/1000 [==>...........................] - ETA: 43:15 - rpn_cls: 4.3615 - rpn_regr: 0.1380 - detector_cls: 1.2010 - detector_regr: 0.6517 INFO 2019-07-26 10:42:54 +0000 master-replica-0 115/1000 [==>...........................] - ETA: 42:59 - rpn_cls: 4.3236 - rpn_regr: 0.1379 - detector_cls: 1.1976 - detector_regr: 0.6528 INFO 2019-07-26 10:42:59 +0000 master-replica-0 116/1000 [==>...........................] - ETA: 42:45 - rpn_cls: 4.3214 - rpn_regr: 0.1376 - detector_cls: 1.1917 - detector_regr: 0.6510 INFO 2019-07-26 10:43:00 +0000 master-replica-0 117/1000 [==>...........................] - ETA: 42:57 - rpn_cls: 4.2845 - rpn_regr: 0.1377 - detector_cls: 1.1882 - detector_regr: 0.6492 INFO 2019-07-26 10:43:01 +0000 master-replica-0 118/1000 [==>...........................] - ETA: 42:43 - rpn_cls: 4.2482 - rpn_regr: 0.1381 - detector_cls: 1.1912 - detector_regr: 0.6479 INFO 2019-07-26 10:43:03 +0000 master-replica-0 119/1000 [==>...........................] - ETA: 42:29 - rpn_cls: 4.2697 - rpn_regr: 0.1484 - detector_cls: 1.1836 - detector_regr: 0.6424 INFO 2019-07-26 10:43:05 +0000 master-replica-0 120/1000 [==>...........................] - ETA: 42:19 - rpn_cls: 4.3071 - rpn_regr: 0.1507 - detector_cls: 1.1760 - detector_regr: 0.6405 INFO 2019-07-26 10:43:07 +0000 master-replica-0 121/1000 [==>...........................] - ETA: 42:04 - rpn_cls: 4.2715 - rpn_regr: 0.1507 - detector_cls: 1.1736 - detector_regr: 0.6397 INFO 2019-07-26 10:43:09 +0000 master-replica-0 122/1000 [==>...........................] - ETA: 42:00 - rpn_cls: 4.3146 - rpn_regr: 0.1531 - detector_cls: 1.1656 - detector_regr: 0.6345 INFO 2019-07-26 10:43:11 +0000 master-replica-0 123/1000 [==>...........................] - ETA: 41:47 - rpn_cls: 4.2867 - rpn_regr: 0.1529 - detector_cls: 1.1661 - detector_regr: 0.6324 INFO 2019-07-26 10:43:12 +0000 master-replica-0 124/1000 [==>...........................] - ETA: 41:37 - rpn_cls: 4.3238 - rpn_regr: 0.1528 - detector_cls: 1.1576 - detector_regr: 0.6273 INFO 2019-07-26 10:43:13 +0000 master-replica-0 125/1000 [==>...........................] - ETA: 41:24 - rpn_cls: 4.3054 - rpn_regr: 0.1528 - detector_cls: 1.1604 - detector_regr: 0.6262 INFO 2019-07-26 10:43:18 +0000 master-replica-0 126/1000 [==>...........................] - ETA: 41:11 - rpn_cls: 4.2877 - rpn_regr: 0.1519 - detector_cls: 1.1568 - detector_regr: 0.6245 INFO 2019-07-26 10:43:20 +0000 master-replica-0 127/1000 [==>...........................] - ETA: 41:25 - rpn_cls: 4.2884 - rpn_regr: 0.1516 - detector_cls: 1.1497 - detector_regr: 0.6246 INFO 2019-07-26 10:43:25 +0000 master-replica-0 128/1000 [==>...........................] - ETA: 41:11 - rpn_cls: 4.2676 - rpn_regr: 0.1514 - detector_cls: 1.1554 - detector_regr: 0.6232 INFO 2019-07-26 10:43:26 +0000 master-replica-0 129/1000 [==>...........................] - ETA: 41:23 - rpn_cls: 4.2345 - rpn_regr: 0.1512 - detector_cls: 1.1516 - detector_regr: 0.6213 INFO 2019-07-26 10:43:27 +0000 master-replica-0 130/1000 [==>...........................] - ETA: 41:10 - rpn_cls: 4.2019 - rpn_regr: 0.1507 - detector_cls: 1.1487 - detector_regr: 0.6203 INFO 2019-07-26 10:43:29 +0000 master-replica-0 131/1000 [==>...........................] - ETA: 40:57 - rpn_cls: 4.1720 - rpn_regr: 0.1503 - detector_cls: 1.1444 - detector_regr: 0.6179 INFO 2019-07-26 10:43:30 +0000 master-replica-0 132/1000 [==>...........................] - ETA: 40:44 - rpn_cls: 4.1496 - rpn_regr: 0.1501 - detector_cls: 1.1444 - detector_regr: 0.6170 INFO 2019-07-26 10:43:32 +0000 master-replica-0 133/1000 [==>...........................] - ETA: 40:34 - rpn_cls: 4.1463 - rpn_regr: 0.1502 - detector_cls: 1.1382 - detector_regr: 0.6124 INFO 2019-07-26 10:43:33 +0000 master-replica-0 134/1000 [===>..........................] - ETA: 40:21 - rpn_cls: 4.1798 - rpn_regr: 0.1500 - detector_cls: 1.1345 - detector_regr: 0.6133 INFO 2019-07-26 10:43:35 +0000 master-replica-0 135/1000 [===>..........................] - ETA: 40:10 - rpn_cls: 4.1639 - rpn_regr: 0.1499 - detector_cls: 1.1364 - detector_regr: 0.6116 INFO 2019-07-26 10:43:36 +0000 master-replica-0 136/1000 [===>..........................] - ETA: 39:58 - rpn_cls: 4.1493 - rpn_regr: 0.1492 - detector_cls: 1.1345 - detector_regr: 0.6099 INFO 2019-07-26 10:43:37 +0000 master-replica-0 137/1000 [===>..........................] - ETA: 39:47 - rpn_cls: 4.1270 - rpn_regr: 0.1489 - detector_cls: 1.1335 - detector_regr: 0.6088 INFO 2019-07-26 10:43:39 +0000 master-replica-0 138/1000 [===>..........................] - ETA: 39:35 - rpn_cls: 4.1053 - rpn_regr: 0.1485 - detector_cls: 1.1316 - detector_regr: 0.6068 INFO 2019-07-26 10:43:40 +0000 master-replica-0 139/1000 [===>..........................] - ETA: 39:24 - rpn_cls: 4.0880 - rpn_regr: 0.1481 - detector_cls: 1.1335 - detector_regr: 0.6055 INFO 2019-07-26 10:43:46 +0000 master-replica-0 140/1000 [===>..........................] - ETA: 39:12 - rpn_cls: 4.0694 - rpn_regr: 0.1483 - detector_cls: 1.1331 - detector_regr: 0.6041 INFO 2019-07-26 10:43:47 +0000 master-replica-0 141/1000 [===>..........................] - ETA: 39:29 - rpn_cls: 4.0649 - rpn_regr: 0.1480 - detector_cls: 1.1266 - detector_regr: 0.5998 INFO 2019-07-26 10:43:49 +0000 master-replica-0 142/1000 [===>..........................] - ETA: 39:17 - rpn_cls: 4.0405 - rpn_regr: 0.1471 - detector_cls: 1.1248 - detector_regr: 0.5978 INFO 2019-07-26 10:43:56 +0000 master-replica-0 143/1000 [===>..........................] - ETA: 39:07 - rpn_cls: 4.0227 - rpn_regr: 0.1465 - detector_cls: 1.1254 - detector_regr: 0.5958 INFO 2019-07-26 10:43:57 +0000 master-replica-0 144/1000 [===>..........................] - ETA: 39:31 - rpn_cls: 3.9990 - rpn_regr: 0.1457 - detector_cls: 1.1261 - detector_regr: 0.5947 INFO 2019-07-26 10:43:59 +0000 master-replica-0 145/1000 [===>..........................] - ETA: 39:21 - rpn_cls: 3.9756 - rpn_regr: 0.1453 - detector_cls: 1.1268 - detector_regr: 0.5933 INFO 2019-07-26 10:44:00 +0000 master-replica-0 146/1000 [===>..........................] - ETA: 39:10 - rpn_cls: 3.9484 - rpn_regr: 0.1457 - detector_cls: 1.1268 - detector_regr: 0.5926 INFO 2019-07-26 10:44:02 +0000 master-replica-0 147/1000 [===>..........................] - ETA: 38:59 - rpn_cls: 3.9407 - rpn_regr: 0.1457 - detector_cls: 1.1268 - detector_regr: 0.5916 INFO 2019-07-26 10:44:03 +0000 master-replica-0 148/1000 [===>..........................] - ETA: 38:48 - rpn_cls: 3.9266 - rpn_regr: 0.1450 - detector_cls: 1.1291 - detector_regr: 0.5904 INFO 2019-07-26 10:44:04 +0000 master-replica-0 149/1000 [===>..........................] - ETA: 38:37 - rpn_cls: 3.9002 - rpn_regr: 0.1446 - detector_cls: 1.1261 - detector_regr: 0.5886 INFO 2019-07-26 10:44:05 +0000 master-replica-0 150/1000 [===>..........................] - ETA: 38:27 - rpn_cls: 3.8742 - rpn_regr: 0.1443 - detector_cls: 1.1285 - detector_regr: 0.5872 INFO 2019-07-26 10:44:09 +0000 master-replica-0 151/1000 [===>..........................] - ETA: 38:15 - rpn_cls: 3.8486 - rpn_regr: 0.1452 - detector_cls: 1.1269 - detector_regr: 0.5870 INFO 2019-07-26 10:44:10 +0000 master-replica-0 152/1000 [===>..........................] - ETA: 38:16 - rpn_cls: 3.8423 - rpn_regr: 0.1446 - detector_cls: 1.1290 - detector_regr: 0.5854 INFO 2019-07-26 10:44:12 +0000 master-replica-0 153/1000 [===>..........................] - ETA: 38:04 - rpn_cls: 3.8222 - rpn_regr: 0.1440 - detector_cls: 1.1284 - detector_regr: 0.5842 INFO 2019-07-26 10:44:13 +0000 master-replica-0 154/1000 [===>..........................] - ETA: 37:58 - rpn_cls: 3.8596 - rpn_regr: 0.1516 - detector_cls: 1.1260 - detector_regr: 0.5804 INFO 2019-07-26 10:44:14 +0000 master-replica-0 155/1000 [===>..........................] - ETA: 37:48 - rpn_cls: 3.8401 - rpn_regr: 0.1508 - detector_cls: 1.1248 - detector_regr: 0.5793 INFO 2019-07-26 10:44:16 +0000 master-replica-0 156/1000 [===>..........................] - ETA: 37:38 - rpn_cls: 3.8217 - rpn_regr: 0.1506 - detector_cls: 1.1264 - detector_regr: 0.5772 INFO 2019-07-26 10:44:17 +0000 master-replica-0 157/1000 [===>..........................] - ETA: 37:30 - rpn_cls: 3.7990 - rpn_regr: 0.1504 - detector_cls: 1.1273 - detector_regr: 0.5755 INFO 2019-07-26 10:44:19 +0000 master-replica-0 158/1000 [===>..........................] - ETA: 37:20 - rpn_cls: 3.7749 - rpn_regr: 0.1507 - detector_cls: 1.1258 - detector_regr: 0.5761 INFO 2019-07-26 10:44:20 +0000 master-replica-0 159/1000 [===>..........................] - ETA: 37:10 - rpn_cls: 3.7783 - rpn_regr: 0.1512 - detector_cls: 1.1235 - detector_regr: 0.5754 INFO 2019-07-26 10:44:21 +0000 master-replica-0 160/1000 [===>..........................] - ETA: 37:02 - rpn_cls: 3.8052 - rpn_regr: 0.1512 - detector_cls: 1.1202 - detector_regr: 0.5718 INFO 2019-07-26 10:44:23 +0000 master-replica-0 161/1000 [===>..........................] - ETA: 36:52 - rpn_cls: 3.7897 - rpn_regr: 0.1514 - detector_cls: 1.1185 - detector_regr: 0.5718 INFO 2019-07-26 10:44:24 +0000 master-replica-0 162/1000 [===>..........................] - ETA: 36:42 - rpn_cls: 3.7707 - rpn_regr: 0.1511 - detector_cls: 1.1182 - detector_regr: 0.5705 INFO 2019-07-26 10:44:29 +0000 master-replica-0 163/1000 [===>..........................] - ETA: 36:33 - rpn_cls: 3.8006 - rpn_regr: 0.1508 - detector_cls: 1.1135 - detector_regr: 0.5670 INFO 2019-07-26 10:44:31 +0000 master-replica-0 164/1000 [===>..........................] - ETA: 36:43 - rpn_cls: 3.8302 - rpn_regr: 0.1503 - detector_cls: 1.1097 - detector_regr: 0.5685 INFO 2019-07-26 10:44:32 +0000 master-replica-0 165/1000 [===>..........................] - ETA: 36:36 - rpn_cls: 3.8607 - rpn_regr: 0.1511 - detector_cls: 1.1088 - detector_regr: 0.5676 INFO 2019-07-26 10:44:38 +0000 master-replica-0 166/1000 [===>..........................] - ETA: 36:27 - rpn_cls: 3.8484 - rpn_regr: 0.1505 - detector_cls: 1.1070 - detector_regr: 0.5671 INFO 2019-07-26 10:44:44 +0000 master-replica-0 167/1000 [====>.........................] - ETA: 36:38 - rpn_cls: 3.8516 - rpn_regr: 0.1508 - detector_cls: 1.1054 - detector_regr: 0.5675 INFO 2019-07-26 10:44:45 +0000 master-replica-0 168/1000 [====>.........................] - ETA: 36:52 - rpn_cls: 3.8351 - rpn_regr: 0.1504 - detector_cls: 1.1091 - detector_regr: 0.5660 INFO 2019-07-26 10:44:48 +0000 master-replica-0 169/1000 [====>.........................] - ETA: 36:44 - rpn_cls: 3.8543 - rpn_regr: 0.1503 - detector_cls: 1.1104 - detector_regr: 0.5657 INFO 2019-07-26 10:44:49 +0000 master-replica-0 170/1000 [====>.........................] - ETA: 36:40 - rpn_cls: 3.8924 - rpn_regr: 0.1506 - detector_cls: 1.1069 - detector_regr: 0.5649 INFO 2019-07-26 10:44:55 +0000 master-replica-0 171/1000 [====>.........................] - ETA: 36:31 - rpn_cls: 3.8697 - rpn_regr: 0.1502 - detector_cls: 1.1049 - detector_regr: 0.5636 INFO 2019-07-26 10:45:02 +0000 master-replica-0 172/1000 [====>.........................] - ETA: 36:44 - rpn_cls: 3.8956 - rpn_regr: 0.1515 - detector_cls: 1.1011 - detector_regr: 0.5603 INFO 2019-07-26 10:45:07 +0000 master-replica-0 173/1000 [====>.........................] - ETA: 37:00 - rpn_cls: 3.8955 - rpn_regr: 0.1512 - detector_cls: 1.1004 - detector_regr: 0.5592 INFO 2019-07-26 10:45:08 +0000 master-replica-0 174/1000 [====>.........................] - ETA: 37:10 - rpn_cls: 3.9126 - rpn_regr: 0.1507 - detector_cls: 1.0995 - detector_regr: 0.5592 INFO 2019-07-26 10:45:10 +0000 master-replica-0 175/1000 [====>.........................] - ETA: 37:01 - rpn_cls: 3.8929 - rpn_regr: 0.1501 - detector_cls: 1.1018 - detector_regr: 0.5583 INFO 2019-07-26 10:45:11 +0000 master-replica-0 176/1000 [====>.........................] - ETA: 36:52 - rpn_cls: 3.8830 - rpn_regr: 0.1496 - detector_cls: 1.1044 - detector_regr: 0.5578 INFO 2019-07-26 10:45:16 +0000 master-replica-0 177/1000 [====>.........................] - ETA: 36:43 - rpn_cls: 3.8611 - rpn_regr: 0.1493 - detector_cls: 1.1026 - detector_regr: 0.5570 INFO 2019-07-26 10:45:21 +0000 master-replica-0 178/1000 [====>.........................] - ETA: 36:53 - rpn_cls: 3.8443 - rpn_regr: 0.1488 - detector_cls: 1.1017 - detector_regr: 0.5555 INFO 2019-07-26 10:45:23 +0000 master-replica-0 179/1000 [====>.........................] - ETA: 37:00 - rpn_cls: 3.8228 - rpn_regr: 0.1485 - detector_cls: 1.1024 - detector_regr: 0.5551 INFO 2019-07-26 10:45:24 +0000 master-replica-0 180/1000 [====>.........................] - ETA: 36:53 - rpn_cls: 3.8307 - rpn_regr: 0.1484 - detector_cls: 1.1016 - detector_regr: 0.5547 INFO 2019-07-26 10:45:26 +0000 master-replica-0 181/1000 [====>.........................] - ETA: 36:45 - rpn_cls: 3.8127 - rpn_regr: 0.1478 - detector_cls: 1.1024 - detector_regr: 0.5538 INFO 2019-07-26 10:45:27 +0000 master-replica-0 182/1000 [====>.........................] - ETA: 36:36 - rpn_cls: 3.7973 - rpn_regr: 0.1475 - detector_cls: 1.1009 - detector_regr: 0.5532 INFO 2019-07-26 10:45:29 +0000 master-replica-0 183/1000 [====>.........................] - ETA: 36:28 - rpn_cls: 3.7811 - rpn_regr: 0.1472 - detector_cls: 1.1004 - detector_regr: 0.5528 INFO 2019-07-26 10:45:30 +0000 master-replica-0 184/1000 [====>.........................] - ETA: 36:21 - rpn_cls: 3.7814 - rpn_regr: 0.1468 - detector_cls: 1.0968 - detector_regr: 0.5498 INFO 2019-07-26 10:45:32 +0000 master-replica-0 185/1000 [====>.........................] - ETA: 36:13 - rpn_cls: 3.7666 - rpn_regr: 0.1469 - detector_cls: 1.0971 - detector_regr: 0.5492 INFO 2019-07-26 10:45:33 +0000 master-replica-0 186/1000 [====>.........................] - ETA: 36:05 - rpn_cls: 3.7508 - rpn_regr: 0.1466 - detector_cls: 1.0993 - detector_regr: 0.5487 INFO 2019-07-26 10:45:34 +0000 master-replica-0 187/1000 [====>.........................] - ETA: 35:56 - rpn_cls: 3.7381 - rpn_regr: 0.1460 - detector_cls: 1.0984 - detector_regr: 0.5483 INFO 2019-07-26 10:45:36 +0000 master-replica-0 188/1000 [====>.........................] - ETA: 35:48 - rpn_cls: 3.7183 - rpn_regr: 0.1459 - detector_cls: 1.0981 - detector_regr: 0.5473 INFO 2019-07-26 10:45:37 +0000 master-replica-0 189/1000 [====>.........................] - ETA: 35:40 - rpn_cls: 3.7043 - rpn_regr: 0.1455 - detector_cls: 1.0972 - detector_regr: 0.5465 INFO 2019-07-26 10:45:39 +0000 master-replica-0 190/1000 [====>.........................] - ETA: 35:31 - rpn_cls: 3.6899 - rpn_regr: 0.1454 - detector_cls: 1.0964 - detector_regr: 0.5458 INFO 2019-07-26 10:45:40 +0000 master-replica-0 191/1000 [====>.........................] - ETA: 35:24 - rpn_cls: 3.7168 - rpn_regr: 0.1463 - detector_cls: 1.0975 - detector_regr: 0.5455 INFO 2019-07-26 10:45:43 +0000 master-replica-0 192/1000 [====>.........................] - ETA: 35:17 - rpn_cls: 3.7463 - rpn_regr: 0.1463 - detector_cls: 1.0944 - detector_regr: 0.5457 INFO 2019-07-26 10:45:45 +0000 master-replica-0 193/1000 [====>.........................] - ETA: 35:17 - rpn_cls: 3.7490 - rpn_regr: 0.1468 - detector_cls: 1.0909 - detector_regr: 0.5429 INFO 2019-07-26 10:45:46 +0000 master-replica-0 194/1000 [====>.........................] - ETA: 35:09 - rpn_cls: 3.7730 - rpn_regr: 0.1467 - detector_cls: 1.0900 - detector_regr: 0.5426 INFO 2019-07-26 10:45:48 +0000 master-replica-0 195/1000 [====>.........................] - ETA: 35:01 - rpn_cls: 3.7634 - rpn_regr: 0.1462 - detector_cls: 1.0932 - detector_regr: 0.5415 INFO 2019-07-26 10:45:50 +0000 master-replica-0 196/1000 [====>.........................] - ETA: 34:55 - rpn_cls: 3.7852 - rpn_regr: 0.1467 - detector_cls: 1.0909 - detector_regr: 0.5414 INFO 2019-07-26 10:45:51 +0000 master-replica-0 197/1000 [====>.........................] - ETA: 34:50 - rpn_cls: 3.8092 - rpn_regr: 0.1478 - detector_cls: 1.0874 - detector_regr: 0.5386 INFO 2019-07-26 10:45:57 +0000 master-replica-0 198/1000 [====>.........................] - ETA: 34:43 - rpn_cls: 3.7913 - rpn_regr: 0.1473 - detector_cls: 1.0875 - detector_regr: 0.5375 INFO 2019-07-26 10:45:59 +0000 master-replica-0 199/1000 [====>.........................] - ETA: 34:53 - rpn_cls: 3.8154 - rpn_regr: 0.1474 - detector_cls: 1.0864 - detector_regr: 0.5368 INFO 2019-07-26 10:46:00 +0000 master-replica-0 200/1000 [=====>........................] - ETA: 34:46 - rpn_cls: 3.7997 - rpn_regr: 0.1470 - detector_cls: 1.0860 - detector_regr: 0.5373 INFO 2019-07-26 10:46:01 +0000 master-replica-0 201/1000 [=====>........................] - ETA: 34:38 - rpn_cls: 3.8014 - rpn_regr: 0.1477 - detector_cls: 1.0833 - detector_regr: 0.5370 INFO 2019-07-26 10:46:03 +0000 master-replica-0 202/1000 [=====>........................] - ETA: 34:31 - rpn_cls: 3.8237 - rpn_regr: 0.1480 - detector_cls: 1.0800 - detector_regr: 0.5344 INFO 2019-07-26 10:46:06 +0000 master-replica-0 203/1000 [=====>........................] - ETA: 34:23 - rpn_cls: 3.8048 - rpn_regr: 0.1480 - detector_cls: 1.0803 - detector_regr: 0.5339 INFO 2019-07-26 10:46:09 +0000 master-replica-0 204/1000 [=====>........................] - ETA: 34:24 - rpn_cls: 3.8062 - rpn_regr: 0.1489 - detector_cls: 1.0831 - detector_regr: 0.5330 INFO 2019-07-26 10:46:13 +0000 master-replica-0 205/1000 [=====>........................] - ETA: 34:22 - rpn_cls: 3.8304 - rpn_regr: 0.1551 - detector_cls: 1.0789 - detector_regr: 0.5304 INFO 2019-07-26 10:46:14 +0000 master-replica-0 206/1000 [=====>........................] - ETA: 34:26 - rpn_cls: 3.8139 - rpn_regr: 0.1546 - detector_cls: 1.0790 - detector_regr: 0.5295 INFO 2019-07-26 10:46:16 +0000 master-replica-0 207/1000 [=====>........................] - ETA: 34:18 - rpn_cls: 3.7955 - rpn_regr: 0.1542 - detector_cls: 1.0786 - detector_regr: 0.5299 INFO 2019-07-26 10:46:22 +0000 master-replica-0 208/1000 [=====>........................] - ETA: 34:10 - rpn_cls: 3.7806 - rpn_regr: 0.1536 - detector_cls: 1.0775 - detector_regr: 0.5290 INFO 2019-07-26 10:46:23 +0000 master-replica-0 209/1000 [=====>........................] - ETA: 34:23 - rpn_cls: 3.7702 - rpn_regr: 0.1530 - detector_cls: 1.0811 - detector_regr: 0.5295 INFO 2019-07-26 10:46:31 +0000 master-replica-0 210/1000 [=====>........................] - ETA: 34:15 - rpn_cls: 3.7592 - rpn_regr: 0.1525 - detector_cls: 1.0818 - detector_regr: 0.5288 INFO 2019-07-26 10:46:32 +0000 master-replica-0 211/1000 [=====>........................] - ETA: 34:31 - rpn_cls: 3.7853 - rpn_regr: 0.1520 - detector_cls: 1.0800 - detector_regr: 0.5284 INFO 2019-07-26 10:46:34 +0000 master-replica-0 212/1000 [=====>........................] - ETA: 34:24 - rpn_cls: 3.8055 - rpn_regr: 0.1525 - detector_cls: 1.0762 - detector_regr: 0.5284 INFO 2019-07-26 10:46:35 +0000 master-replica-0 213/1000 [=====>........................] - ETA: 34:17 - rpn_cls: 3.8268 - rpn_regr: 0.1520 - detector_cls: 1.0737 - detector_regr: 0.5287 INFO 2019-07-26 10:46:41 +0000 master-replica-0 214/1000 [=====>........................] - ETA: 34:11 - rpn_cls: 3.8173 - rpn_regr: 0.1526 - detector_cls: 1.0729 - detector_regr: 0.5283 INFO 2019-07-26 10:46:42 +0000 master-replica-0 215/1000 [=====>........................] - ETA: 34:17 - rpn_cls: 3.8207 - rpn_regr: 0.1530 - detector_cls: 1.0718 - detector_regr: 0.5291 INFO 2019-07-26 10:46:47 +0000 master-replica-0 216/1000 [=====>........................] - ETA: 34:09 - rpn_cls: 3.8062 - rpn_regr: 0.1526 - detector_cls: 1.0710 - detector_regr: 0.5287 INFO 2019-07-26 10:46:51 +0000 master-replica-0 217/1000 [=====>........................] - ETA: 34:17 - rpn_cls: 3.7926 - rpn_regr: 0.1527 - detector_cls: 1.0683 - detector_regr: 0.5262 INFO 2019-07-26 10:46:59 +0000 master-replica-0 218/1000 [=====>........................] - ETA: 34:20 - rpn_cls: 3.7752 - rpn_regr: 0.1529 - detector_cls: 1.0676 - detector_regr: 0.5269 INFO 2019-07-26 10:47:00 +0000 master-replica-0 219/1000 [=====>........................] - ETA: 34:36 - rpn_cls: 3.7579 - rpn_regr: 0.1540 - detector_cls: 1.0640 - detector_regr: 0.5245 INFO 2019-07-26 10:47:02 +0000 master-replica-0 220/1000 [=====>........................] - ETA: 34:28 - rpn_cls: 3.7439 - rpn_regr: 0.1535 - detector_cls: 1.0627 - detector_regr: 0.5240 INFO 2019-07-26 10:47:03 +0000 master-replica-0 221/1000 [=====>........................] - ETA: 34:21 - rpn_cls: 3.7567 - rpn_regr: 0.1551 - detector_cls: 1.0594 - detector_regr: 0.5216 INFO 2019-07-26 10:47:05 +0000 master-replica-0 222/1000 [=====>........................] - ETA: 34:15 - rpn_cls: 3.7558 - rpn_regr: 0.1557 - detector_cls: 1.0596 - detector_regr: 0.5213 INFO 2019-07-26 10:47:07 +0000 master-replica-0 223/1000 [=====>........................] - ETA: 34:08 - rpn_cls: 3.7428 - rpn_regr: 0.1553 - detector_cls: 1.0612 - detector_regr: 0.5208 INFO 2019-07-26 10:47:14 +0000 master-replica-0 224/1000 [=====>........................] - ETA: 34:03 - rpn_cls: 3.7295 - rpn_regr: 0.1550 - detector_cls: 1.0597 - detector_regr: 0.5203 INFO 2019-07-26 10:47:15 +0000 master-replica-0 225/1000 [=====>........................] - ETA: 34:16 - rpn_cls: 3.7129 - rpn_regr: 0.1551 - detector_cls: 1.0568 - detector_regr: 0.5202 INFO 2019-07-26 10:47:17 +0000 master-replica-0 226/1000 [=====>........................] - ETA: 34:09 - rpn_cls: 3.7088 - rpn_regr: 0.1553 - detector_cls: 1.0567 - detector_regr: 0.5199 INFO 2019-07-26 10:47:18 +0000 master-replica-0 227/1000 [=====>........................] - ETA: 34:02 - rpn_cls: 3.7112 - rpn_regr: 0.1561 - detector_cls: 1.0530 - detector_regr: 0.5176 INFO 2019-07-26 10:47:19 +0000 master-replica-0 228/1000 [=====>........................] - ETA: 33:55 - rpn_cls: 3.7154 - rpn_regr: 0.1563 - detector_cls: 1.0545 - detector_regr: 0.5176 INFO 2019-07-26 10:47:21 +0000 master-replica-0 229/1000 [=====>........................] - ETA: 33:48 - rpn_cls: 3.7043 - rpn_regr: 0.1559 - detector_cls: 1.0558 - detector_regr: 0.5171 INFO 2019-07-26 10:47:22 +0000 master-replica-0 230/1000 [=====>........................] - ETA: 33:41 - rpn_cls: 3.6925 - rpn_regr: 0.1558 - detector_cls: 1.0576 - detector_regr: 0.5168 INFO 2019-07-26 10:47:24 +0000 master-replica-0 231/1000 [=====>........................] - ETA: 33:34 - rpn_cls: 3.7136 - rpn_regr: 0.1552 - detector_cls: 1.0562 - detector_regr: 0.5172 INFO 2019-07-26 10:47:25 +0000 master-replica-0 232/1000 [=====>........................] - ETA: 33:28 - rpn_cls: 3.7033 - rpn_regr: 0.1549 - detector_cls: 1.0579 - detector_regr: 0.5169 INFO 2019-07-26 10:47:27 +0000 master-replica-0 233/1000 [=====>........................] - ETA: 33:21 - rpn_cls: 3.6937 - rpn_regr: 0.1548 - detector_cls: 1.0585 - detector_regr: 0.5166 INFO 2019-07-26 10:47:28 +0000 master-replica-0 234/1000 [======>.......................] - ETA: 33:15 - rpn_cls: 3.6779 - rpn_regr: 0.1547 - detector_cls: 1.0559 - detector_regr: 0.5163 INFO 2019-07-26 10:47:29 +0000 master-replica-0 235/1000 [======>.......................] - ETA: 33:09 - rpn_cls: 3.6653 - rpn_regr: 0.1549 - detector_cls: 1.0559 - detector_regr: 0.5159 INFO 2019-07-26 10:47:31 +0000 master-replica-0 236/1000 [======>.......................] - ETA: 33:01 - rpn_cls: 3.6691 - rpn_regr: 0.1550 - detector_cls: 1.0542 - detector_regr: 0.5162 INFO 2019-07-26 10:47:32 +0000 master-replica-0 237/1000 [======>.......................] - ETA: 32:56 - rpn_cls: 3.6536 - rpn_regr: 0.1551 - detector_cls: 1.0517 - detector_regr: 0.5155 INFO 2019-07-26 10:47:34 +0000 master-replica-0 238/1000 [======>.......................] - ETA: 32:49 - rpn_cls: 3.6383 - rpn_regr: 0.1547 - detector_cls: 1.0519 - detector_regr: 0.5152 INFO 2019-07-26 10:47:35 +0000 master-replica-0 239/1000 [======>.......................] - ETA: 32:43 - rpn_cls: 3.6412 - rpn_regr: 0.1545 - detector_cls: 1.0539 - detector_regr: 0.5146 INFO 2019-07-26 10:47:36 +0000 master-replica-0 240/1000 [======>.......................] - ETA: 32:36 - rpn_cls: 3.6261 - rpn_regr: 0.1543 - detector_cls: 1.0532 - detector_regr: 0.5140 INFO 2019-07-26 10:47:38 +0000 master-replica-0 241/1000 [======>.......................] - ETA: 32:30 - rpn_cls: 3.6145 - rpn_regr: 0.1539 - detector_cls: 1.0542 - detector_regr: 0.5134 INFO 2019-07-26 10:47:39 +0000 master-replica-0 242/1000 [======>.......................] - ETA: 32:24 - rpn_cls: 3.5995 - rpn_regr: 0.1535 - detector_cls: 1.0535 - detector_regr: 0.5131 INFO 2019-07-26 10:47:40 +0000 master-replica-0 243/1000 [======>.......................] - ETA: 32:17 - rpn_cls: 3.6022 - rpn_regr: 0.1542 - detector_cls: 1.0506 - detector_regr: 0.5109 INFO 2019-07-26 10:47:41 +0000 master-replica-0 244/1000 [======>.......................] - ETA: 32:11 - rpn_cls: 3.5875 - rpn_regr: 0.1540 - detector_cls: 1.0494 - detector_regr: 0.5104 INFO 2019-07-26 10:47:43 +0000 master-replica-0 245/1000 [======>.......................] - ETA: 32:04 - rpn_cls: 3.5912 - rpn_regr: 0.1540 - detector_cls: 1.0479 - detector_regr: 0.5111 INFO 2019-07-26 10:47:44 +0000 master-replica-0 246/1000 [======>.......................] - ETA: 31:58 - rpn_cls: 3.5766 - rpn_regr: 0.1539 - detector_cls: 1.0468 - detector_regr: 0.5108 INFO 2019-07-26 10:47:46 +0000 master-replica-0 247/1000 [======>.......................] - ETA: 31:52 - rpn_cls: 3.5909 - rpn_regr: 0.1537 - detector_cls: 1.0491 - detector_regr: 0.5112 INFO 2019-07-26 10:47:47 +0000 master-replica-0 248/1000 [======>.......................] - ETA: 31:47 - rpn_cls: 3.6130 - rpn_regr: 0.1535 - detector_cls: 1.0476 - detector_regr: 0.5128 INFO 2019-07-26 10:47:49 +0000 master-replica-0 249/1000 [======>.......................] - ETA: 31:41 - rpn_cls: 3.6004 - rpn_regr: 0.1531 - detector_cls: 1.0481 - detector_regr: 0.5124 INFO 2019-07-26 10:47:50 +0000 master-replica-0 250/1000 [======>.......................] - ETA: 31:35 - rpn_cls: 3.5885 - rpn_regr: 0.1530 - detector_cls: 1.0505 - detector_regr: 0.5117 INFO 2019-07-26 10:47:52 +0000 master-replica-0 251/1000 [======>.......................] - ETA: 31:29 - rpn_cls: 3.5742 - rpn_regr: 0.1527 - detector_cls: 1.0502 - detector_regr: 0.5116 INFO 2019-07-26 10:47:53 +0000 master-replica-0 252/1000 [======>.......................] - ETA: 31:23 - rpn_cls: 3.5644 - rpn_regr: 0.1524 - detector_cls: 1.0510 - detector_regr: 0.5111 INFO 2019-07-26 10:47:54 +0000 master-replica-0 253/1000 [======>.......................] - ETA: 31:18 - rpn_cls: 3.5735 - rpn_regr: 0.1524 - detector_cls: 1.0493 - detector_regr: 0.5109 INFO 2019-07-26 10:47:56 +0000 master-replica-0 254/1000 [======>.......................] - ETA: 31:12 - rpn_cls: 3.5606 - rpn_regr: 0.1523 - detector_cls: 1.0504 - detector_regr: 0.5106 INFO 2019-07-26 10:47:57 +0000 master-replica-0 255/1000 [======>.......................] - ETA: 31:06 - rpn_cls: 3.5512 - rpn_regr: 0.1520 - detector_cls: 1.0519 - detector_regr: 0.5100 INFO 2019-07-26 10:47:59 +0000 master-replica-0 256/1000 [======>.......................] - ETA: 31:00 - rpn_cls: 3.5510 - rpn_regr: 0.1525 - detector_cls: 1.0525 - detector_regr: 0.5094 INFO 2019-07-26 10:48:00 +0000 master-replica-0 257/1000 [======>.......................] - ETA: 30:55 - rpn_cls: 3.5485 - rpn_regr: 0.1522 - detector_cls: 1.0537 - detector_regr: 0.5088 INFO 2019-07-26 10:48:01 +0000 master-replica-0 258/1000 [======>.......................] - ETA: 30:49 - rpn_cls: 3.5366 - rpn_regr: 0.1521 - detector_cls: 1.0539 - detector_regr: 0.5082 INFO 2019-07-26 10:48:03 +0000 master-replica-0 259/1000 [======>.......................] - ETA: 30:43 - rpn_cls: 3.5231 - rpn_regr: 0.1520 - detector_cls: 1.0542 - detector_regr: 0.5078 INFO 2019-07-26 10:48:04 +0000 master-replica-0 260/1000 [======>.......................] - ETA: 30:37 - rpn_cls: 3.5174 - rpn_regr: 0.1518 - detector_cls: 1.0546 - detector_regr: 0.5075 INFO 2019-07-26 10:48:06 +0000 master-replica-0 261/1000 [======>.......................] - ETA: 30:32 - rpn_cls: 3.5350 - rpn_regr: 0.1525 - detector_cls: 1.0535 - detector_regr: 0.5075 INFO 2019-07-26 10:48:07 +0000 master-replica-0 262/1000 [======>.......................] - ETA: 30:27 - rpn_cls: 3.5215 - rpn_regr: 0.1523 - detector_cls: 1.0527 - detector_regr: 0.5073 INFO 2019-07-26 10:48:09 +0000 master-replica-0 263/1000 [======>.......................] - ETA: 30:21 - rpn_cls: 3.5268 - rpn_regr: 0.1524 - detector_cls: 1.0525 - detector_regr: 0.5074 INFO 2019-07-26 10:48:10 +0000 master-replica-0 264/1000 [======>.......................] - ETA: 30:17 - rpn_cls: 3.5171 - rpn_regr: 0.1520 - detector_cls: 1.0541 - detector_regr: 0.5070 INFO 2019-07-26 10:48:11 +0000 master-replica-0 265/1000 [======>.......................] - ETA: 30:11 - rpn_cls: 3.5073 - rpn_regr: 0.1518 - detector_cls: 1.0566 - detector_regr: 0.5066 INFO 2019-07-26 10:48:13 +0000 master-replica-0 266/1000 [======>.......................] - ETA: 30:05 - rpn_cls: 3.4977 - rpn_regr: 0.1516 - detector_cls: 1.0565 - detector_regr: 0.5063 INFO 2019-07-26 10:48:14 +0000 master-replica-0 267/1000 [=======>......................] - ETA: 30:00 - rpn_cls: 3.4901 - rpn_regr: 0.1513 - detector_cls: 1.0576 - detector_regr: 0.5059 INFO 2019-07-26 10:48:16 +0000 master-replica-0 268/1000 [=======>......................] - ETA: 29:55 - rpn_cls: 3.4837 - rpn_regr: 0.1511 - detector_cls: 1.0571 - detector_regr: 0.5055 INFO 2019-07-26 10:48:17 +0000 master-replica-0 269/1000 [=======>......................] - ETA: 29:49 - rpn_cls: 3.5013 - rpn_regr: 0.1526 - detector_cls: 1.0549 - detector_regr: 0.5036 INFO 2019-07-26 10:48:18 +0000 master-replica-0 270/1000 [=======>......................] - ETA: 29:44 - rpn_cls: 3.4883 - rpn_regr: 0.1528 - detector_cls: 1.0544 - detector_regr: 0.5033 INFO 2019-07-26 10:48:20 +0000 master-replica-0 271/1000 [=======>......................] - ETA: 29:39 - rpn_cls: 3.4984 - rpn_regr: 0.1532 - detector_cls: 1.0535 - detector_regr: 0.5027 INFO 2019-07-26 10:48:21 +0000 master-replica-0 272/1000 [=======>......................] - ETA: 29:34 - rpn_cls: 3.4875 - rpn_regr: 0.1531 - detector_cls: 1.0524 - detector_regr: 0.5023 INFO 2019-07-26 10:48:23 +0000 master-replica-0 273/1000 [=======>......................] - ETA: 29:28 - rpn_cls: 3.4747 - rpn_regr: 0.1529 - detector_cls: 1.0533 - detector_regr: 0.5031 INFO 2019-07-26 10:48:24 +0000 master-replica-0 274/1000 [=======>......................] - ETA: 29:23 - rpn_cls: 3.4653 - rpn_regr: 0.1527 - detector_cls: 1.0520 - detector_regr: 0.5032 INFO 2019-07-26 10:48:26 +0000 master-replica-0 275/1000 [=======>......................] - ETA: 29:18 - rpn_cls: 3.4764 - rpn_regr: 0.1532 - detector_cls: 1.0532 - detector_regr: 0.5029 INFO 2019-07-26 10:48:27 +0000 master-replica-0 276/1000 [=======>......................] - ETA: 29:14 - rpn_cls: 3.4755 - rpn_regr: 0.1529 - detector_cls: 1.0551 - detector_regr: 0.5028 INFO 2019-07-26 10:48:29 +0000 master-replica-0 277/1000 [=======>......................] - ETA: 29:08 - rpn_cls: 3.4739 - rpn_regr: 0.1529 - detector_cls: 1.0552 - detector_regr: 0.5026 INFO 2019-07-26 10:48:30 +0000 master-replica-0 278/1000 [=======>......................] - ETA: 29:04 - rpn_cls: 3.4661 - rpn_regr: 0.1535 - detector_cls: 1.0562 - detector_regr: 0.5021 INFO 2019-07-26 10:48:31 +0000 master-replica-0 279/1000 [=======>......................] - ETA: 28:59 - rpn_cls: 3.4691 - rpn_regr: 0.1531 - detector_cls: 1.0545 - detector_regr: 0.5003 INFO 2019-07-26 10:48:32 +0000 master-replica-0 280/1000 [=======>......................] - ETA: 28:53 - rpn_cls: 3.4639 - rpn_regr: 0.1530 - detector_cls: 1.0555 - detector_regr: 0.5005 INFO 2019-07-26 10:48:34 +0000 master-replica-0 281/1000 [=======>......................] - ETA: 28:48 - rpn_cls: 3.4540 - rpn_regr: 0.1527 - detector_cls: 1.0552 - detector_regr: 0.5007 INFO 2019-07-26 10:48:35 +0000 master-replica-0 282/1000 [=======>......................] - ETA: 28:43 - rpn_cls: 3.4417 - rpn_regr: 0.1524 - detector_cls: 1.0548 - detector_regr: 0.5005 INFO 2019-07-26 10:48:36 +0000 master-replica-0 283/1000 [=======>......................] - ETA: 28:38 - rpn_cls: 3.4332 - rpn_regr: 0.1520 - detector_cls: 1.0553 - detector_regr: 0.5005 INFO 2019-07-26 10:48:38 +0000 master-replica-0 284/1000 [=======>......................] - ETA: 28:32 - rpn_cls: 3.4510 - rpn_regr: 0.1518 - detector_cls: 1.0528 - detector_regr: 0.4997 INFO 2019-07-26 10:48:39 +0000 master-replica-0 285/1000 [=======>......................] - ETA: 28:28 - rpn_cls: 3.4407 - rpn_regr: 0.1516 - detector_cls: 1.0543 - detector_regr: 0.4993 INFO 2019-07-26 10:48:41 +0000 master-replica-0 286/1000 [=======>......................] - ETA: 28:23 - rpn_cls: 3.4459 - rpn_regr: 0.1518 - detector_cls: 1.0543 - detector_regr: 0.4989 INFO 2019-07-26 10:48:42 +0000 master-replica-0 287/1000 [=======>......................] - ETA: 28:18 - rpn_cls: 3.4436 - rpn_regr: 0.1519 - detector_cls: 1.0545 - detector_regr: 0.4987 INFO 2019-07-26 10:48:43 +0000 master-replica-0 288/1000 [=======>......................] - ETA: 28:13 - rpn_cls: 3.4600 - rpn_regr: 0.1520 - detector_cls: 1.0530 - detector_regr: 0.4984 INFO 2019-07-26 10:48:45 +0000 master-replica-0 289/1000 [=======>......................] - ETA: 28:08 - rpn_cls: 3.4480 - rpn_regr: 0.1521 - detector_cls: 1.0544 - detector_regr: 0.4980 INFO 2019-07-26 10:48:46 +0000 master-replica-0 290/1000 [=======>......................] - ETA: 28:04 - rpn_cls: 3.4427 - rpn_regr: 0.1521 - detector_cls: 1.0546 - detector_regr: 0.4978 INFO 2019-07-26 10:48:48 +0000 master-replica-0 291/1000 [=======>......................] - ETA: 27:59 - rpn_cls: 3.4423 - rpn_regr: 0.1524 - detector_cls: 1.0540 - detector_regr: 0.4973 INFO 2019-07-26 10:48:49 +0000 master-replica-0 292/1000 [=======>......................] - ETA: 27:54 - rpn_cls: 3.4305 - rpn_regr: 0.1527 - detector_cls: 1.0517 - detector_regr: 0.4985 INFO 2019-07-26 10:48:50 +0000 master-replica-0 293/1000 [=======>......................] - ETA: 27:50 - rpn_cls: 3.4206 - rpn_regr: 0.1523 - detector_cls: 1.0517 - detector_regr: 0.4982 INFO 2019-07-26 10:48:52 +0000 master-replica-0 294/1000 [=======>......................] - ETA: 27:45 - rpn_cls: 3.4389 - rpn_regr: 0.1524 - detector_cls: 1.0509 - detector_regr: 0.4988 INFO 2019-07-26 10:48:54 +0000 master-replica-0 295/1000 [=======>......................] - ETA: 27:41 - rpn_cls: 3.4272 - rpn_regr: 0.1529 - detector_cls: 1.0487 - detector_regr: 0.4971 INFO 2019-07-26 10:48:55 +0000 master-replica-0 296/1000 [=======>......................] - ETA: 27:37 - rpn_cls: 3.4303 - rpn_regr: 0.1528 - detector_cls: 1.0480 - detector_regr: 0.4968 INFO 2019-07-26 10:48:57 +0000 master-replica-0 297/1000 [=======>......................] - ETA: 27:32 - rpn_cls: 3.4280 - rpn_regr: 0.1524 - detector_cls: 1.0484 - detector_regr: 0.4971 INFO 2019-07-26 10:48:58 +0000 master-replica-0 298/1000 [=======>......................] - ETA: 27:28 - rpn_cls: 3.4185 - rpn_regr: 0.1521 - detector_cls: 1.0484 - detector_regr: 0.4971 INFO 2019-07-26 10:49:00 +0000 master-replica-0 299/1000 [=======>......................] - ETA: 27:23 - rpn_cls: 3.4100 - rpn_regr: 0.1516 - detector_cls: 1.0495 - detector_regr: 0.4966 INFO 2019-07-26 10:49:01 +0000 master-replica-0 300/1000 [========>.....................] - ETA: 27:19 - rpn_cls: 3.4033 - rpn_regr: 0.1514 - detector_cls: 1.0496 - detector_regr: 0.4966 INFO 2019-07-26 10:49:03 +0000 master-replica-0 301/1000 [========>.....................] - ETA: 27:15 - rpn_cls: 3.4211 - rpn_regr: 0.1514 - detector_cls: 1.0477 - detector_regr: 0.4967 INFO 2019-07-26 10:49:04 +0000 master-replica-0 302/1000 [========>.....................] - ETA: 27:10 - rpn_cls: 3.4098 - rpn_regr: 0.1513 - detector_cls: 1.0498 - detector_regr: 0.4966 INFO 2019-07-26 10:49:05 +0000 master-replica-0 303/1000 [========>.....................] - ETA: 27:06 - rpn_cls: 3.4033 - rpn_regr: 0.1511 - detector_cls: 1.0492 - detector_regr: 0.4966 INFO 2019-07-26 10:49:07 +0000 master-replica-0 304/1000 [========>.....................] - ETA: 27:01 - rpn_cls: 3.3942 - rpn_regr: 0.1510 - detector_cls: 1.0484 - detector_regr: 0.4963 INFO 2019-07-26 10:49:08 +0000 master-replica-0 305/1000 [========>.....................] - ETA: 26:56 - rpn_cls: 3.3969 - rpn_regr: 0.1509 - detector_cls: 1.0465 - detector_regr: 0.4947 INFO 2019-07-26 10:49:09 +0000 master-replica-0 306/1000 [========>.....................] - ETA: 26:52 - rpn_cls: 3.3858 - rpn_regr: 0.1510 - detector_cls: 1.0453 - detector_regr: 0.4947 INFO 2019-07-26 10:49:11 +0000 master-replica-0 307/1000 [========>.....................] - ETA: 26:48 - rpn_cls: 3.3747 - rpn_regr: 0.1508 - detector_cls: 1.0451 - detector_regr: 0.4950 INFO 2019-07-26 10:49:12 +0000 master-replica-0 308/1000 [========>.....................] - ETA: 26:43 - rpn_cls: 3.3687 - rpn_regr: 0.1507 - detector_cls: 1.0448 - detector_regr: 0.4950 INFO 2019-07-26 10:49:14 +0000 master-replica-0 309/1000 [========>.....................] - ETA: 26:39 - rpn_cls: 3.3839 - rpn_regr: 0.1516 - detector_cls: 1.0424 - detector_regr: 0.4934 INFO 2019-07-26 10:49:15 +0000 master-replica-0 310/1000 [========>.....................] - ETA: 26:35 - rpn_cls: 3.3757 - rpn_regr: 0.1513 - detector_cls: 1.0416 - detector_regr: 0.4931 INFO 2019-07-26 10:49:17 +0000 master-replica-0 311/1000 [========>.....................] - ETA: 26:31 - rpn_cls: 3.3682 - rpn_regr: 0.1512 - detector_cls: 1.0412 - detector_regr: 0.4931 INFO 2019-07-26 10:49:18 +0000 master-replica-0 312/1000 [========>.....................] - ETA: 26:27 - rpn_cls: 3.3623 - rpn_regr: 0.1511 - detector_cls: 1.0424 - detector_regr: 0.4930 INFO 2019-07-26 10:49:20 +0000 master-replica-0 313/1000 [========>.....................] - ETA: 26:22 - rpn_cls: 3.3516 - rpn_regr: 0.1512 - detector_cls: 1.0423 - detector_regr: 0.4932 INFO 2019-07-26 10:49:21 +0000 master-replica-0 314/1000 [========>.....................] - ETA: 26:18 - rpn_cls: 3.3465 - rpn_regr: 0.1509 - detector_cls: 1.0433 - detector_regr: 0.4930 INFO 2019-07-26 10:49:22 +0000 master-replica-0 315/1000 [========>.....................] - ETA: 26:14 - rpn_cls: 3.3637 - rpn_regr: 0.1518 - detector_cls: 1.0411 - detector_regr: 0.4925 INFO 2019-07-26 10:49:24 +0000 master-replica-0 316/1000 [========>.....................] - ETA: 26:09 - rpn_cls: 3.3563 - rpn_regr: 0.1516 - detector_cls: 1.0436 - detector_regr: 0.4922 INFO 2019-07-26 10:49:25 +0000 master-replica-0 317/1000 [========>.....................] - ETA: 26:05 - rpn_cls: 3.3499 - rpn_regr: 0.1513 - detector_cls: 1.0434 - detector_regr: 0.4917 INFO 2019-07-26 10:49:26 +0000 master-replica-0 318/1000 [========>.....................] - ETA: 26:00 - rpn_cls: 3.3394 - rpn_regr: 0.1512 - detector_cls: 1.0423 - detector_regr: 0.4918 INFO 2019-07-26 10:49:27 +0000 master-replica-0 319/1000 [========>.....................] - ETA: 25:55 - rpn_cls: 3.3601 - rpn_regr: 0.1510 - detector_cls: 1.0410 - detector_regr: 0.4922 INFO 2019-07-26 10:49:28 +0000 master-replica-0 320/1000 [========>.....................] - ETA: 25:51 - rpn_cls: 3.3496 - rpn_regr: 0.1510 - detector_cls: 1.0390 - detector_regr: 0.4924 INFO 2019-07-26 10:49:29 +0000 master-replica-0 321/1000 [========>.....................] - ETA: 25:46 - rpn_cls: 3.3392 - rpn_regr: 0.1508 - detector_cls: 1.0379 - detector_regr: 0.4929 INFO 2019-07-26 10:49:31 +0000 master-replica-0 322/1000 [========>.....................] - ETA: 25:41 - rpn_cls: 3.3309 - rpn_regr: 0.1505 - detector_cls: 1.0369 - detector_regr: 0.4925 INFO 2019-07-26 10:49:32 +0000 master-replica-0 323/1000 [========>.....................] - ETA: 25:37 - rpn_cls: 3.3275 - rpn_regr: 0.1504 - detector_cls: 1.0385 - detector_regr: 0.4922 INFO 2019-07-26 10:49:33 +0000 master-replica-0 324/1000 [========>.....................] - ETA: 25:33 - rpn_cls: 3.3231 - rpn_regr: 0.1503 - detector_cls: 1.0386 - detector_regr: 0.4921 INFO 2019-07-26 10:49:35 +0000 master-replica-0 325/1000 [========>.....................] - ETA: 25:29 - rpn_cls: 3.3142 - rpn_regr: 0.1500 - detector_cls: 1.0389 - detector_regr: 0.4920 INFO 2019-07-26 10:49:36 +0000 master-replica-0 326/1000 [========>.....................] - ETA: 25:25 - rpn_cls: 3.3174 - rpn_regr: 0.1500 - detector_cls: 1.0385 - detector_regr: 0.4924 INFO 2019-07-26 10:49:37 +0000 master-replica-0 327/1000 [========>.....................] - ETA: 25:21 - rpn_cls: 3.3091 - rpn_regr: 0.1498 - detector_cls: 1.0376 - detector_regr: 0.4929 INFO 2019-07-26 10:49:39 +0000 master-replica-0 328/1000 [========>.....................] - ETA: 25:17 - rpn_cls: 3.3041 - rpn_regr: 0.1495 - detector_cls: 1.0382 - detector_regr: 0.4925 INFO 2019-07-26 10:49:40 +0000 master-replica-0 329/1000 [========>.....................] - ETA: 25:13 - rpn_cls: 3.2978 - rpn_regr: 0.1492 - detector_cls: 1.0388 - detector_regr: 0.4922 INFO 2019-07-26 10:49:42 +0000 master-replica-0 330/1000 [========>.....................] - ETA: 25:09 - rpn_cls: 3.2878 - rpn_regr: 0.1491 - detector_cls: 1.0381 - detector_regr: 0.4922 INFO 2019-07-26 10:49:43 +0000 master-replica-0 331/1000 [========>.....................] - ETA: 25:04 - rpn_cls: 3.2796 - rpn_regr: 0.1489 - detector_cls: 1.0399 - detector_regr: 0.4922 INFO 2019-07-26 10:49:45 +0000 master-replica-0 332/1000 [========>.....................] - ETA: 25:01 - rpn_cls: 3.2719 - rpn_regr: 0.1486 - detector_cls: 1.0403 - detector_regr: 0.4917 INFO 2019-07-26 10:49:46 +0000 master-replica-0 333/1000 [========>.....................] - ETA: 24:57 - rpn_cls: 3.2879 - rpn_regr: 0.1487 - detector_cls: 1.0381 - detector_regr: 0.4924 INFO 2019-07-26 10:49:47 +0000 master-replica-0 334/1000 [=========>....................] - ETA: 24:53 - rpn_cls: 3.2781 - rpn_regr: 0.1486 - detector_cls: 1.0384 - detector_regr: 0.4926 INFO 2019-07-26 10:49:48 +0000 master-replica-0 335/1000 [=========>....................] - ETA: 24:49 - rpn_cls: 3.2939 - rpn_regr: 0.1483 - detector_cls: 1.0372 - detector_regr: 0.4926 INFO 2019-07-26 10:49:50 +0000 master-replica-0 336/1000 [=========>....................] - ETA: 24:44 - rpn_cls: 3.2841 - rpn_regr: 0.1487 - detector_cls: 1.0360 - detector_regr: 0.4923 INFO 2019-07-26 10:49:51 +0000 master-replica-0 337/1000 [=========>....................] - ETA: 24:41 - rpn_cls: 3.2832 - rpn_regr: 0.1486 - detector_cls: 1.0356 - detector_regr: 0.4922 INFO 2019-07-26 10:49:53 +0000 master-replica-0 338/1000 [=========>....................] - ETA: 24:37 - rpn_cls: 3.2765 - rpn_regr: 0.1486 - detector_cls: 1.0352 - detector_regr: 0.4919 INFO 2019-07-26 10:49:54 +0000 master-replica-0 339/1000 [=========>....................] - ETA: 24:33 - rpn_cls: 3.2923 - rpn_regr: 0.1487 - detector_cls: 1.0332 - detector_regr: 0.4918 INFO 2019-07-26 10:49:57 +0000 master-replica-0 340/1000 [=========>....................] - ETA: 24:29 - rpn_cls: 3.2826 - rpn_regr: 0.1485 - detector_cls: 1.0324 - detector_regr: 0.4917 INFO 2019-07-26 10:49:59 +0000 master-replica-0 341/1000 [=========>....................] - ETA: 24:28 - rpn_cls: 3.2987 - rpn_regr: 0.1522 - detector_cls: 1.0305 - detector_regr: 0.4903 INFO 2019-07-26 10:50:00 +0000 master-replica-0 342/1000 [=========>....................] - ETA: 24:25 - rpn_cls: 3.3137 - rpn_regr: 0.1524 - detector_cls: 1.0321 - detector_regr: 0.4903 INFO 2019-07-26 10:50:01 +0000 master-replica-0 343/1000 [=========>....................] - ETA: 24:21 - rpn_cls: 3.3088 - rpn_regr: 0.1522 - detector_cls: 1.0327 - detector_regr: 0.4898 INFO 2019-07-26 10:50:03 +0000 master-replica-0 344/1000 [=========>....................] - ETA: 24:17 - rpn_cls: 3.3114 - rpn_regr: 0.1520 - detector_cls: 1.0305 - detector_regr: 0.4884 INFO 2019-07-26 10:50:04 +0000 master-replica-0 345/1000 [=========>....................] - ETA: 24:13 - rpn_cls: 3.3227 - rpn_regr: 0.1535 - detector_cls: 1.0292 - detector_regr: 0.4869 INFO 2019-07-26 10:50:05 +0000 master-replica-0 346/1000 [=========>....................] - ETA: 24:10 - rpn_cls: 3.3312 - rpn_regr: 0.1541 - detector_cls: 1.0278 - detector_regr: 0.4855 INFO 2019-07-26 10:50:07 +0000 master-replica-0 347/1000 [=========>....................] - ETA: 24:05 - rpn_cls: 3.3254 - rpn_regr: 0.1538 - detector_cls: 1.0272 - detector_regr: 0.4854 INFO 2019-07-26 10:50:08 +0000 master-replica-0 348/1000 [=========>....................] - ETA: 24:02 - rpn_cls: 3.3349 - rpn_regr: 0.1537 - detector_cls: 1.0283 - detector_regr: 0.4853 INFO 2019-07-26 10:50:09 +0000 master-replica-0 349/1000 [=========>....................] - ETA: 23:58 - rpn_cls: 3.3500 - rpn_regr: 0.1535 - detector_cls: 1.0257 - detector_regr: 0.4839 INFO 2019-07-26 10:50:10 +0000 master-replica-0 350/1000 [=========>....................] - ETA: 23:54 - rpn_cls: 3.3443 - rpn_regr: 0.1532 - detector_cls: 1.0251 - detector_regr: 0.4833 INFO 2019-07-26 10:50:12 +0000 master-replica-0 351/1000 [=========>....................] - ETA: 23:50 - rpn_cls: 3.3376 - rpn_regr: 0.1530 - detector_cls: 1.0252 - detector_regr: 0.4828 INFO 2019-07-26 10:50:14 +0000 master-replica-0 352/1000 [=========>....................] - ETA: 23:47 - rpn_cls: 3.3558 - rpn_regr: 0.1530 - detector_cls: 1.0229 - detector_regr: 0.4830 INFO 2019-07-26 10:50:16 +0000 master-replica-0 353/1000 [=========>....................] - ETA: 23:44 - rpn_cls: 3.3740 - rpn_regr: 0.1534 - detector_cls: 1.0208 - detector_regr: 0.4817 INFO 2019-07-26 10:50:17 +0000 master-replica-0 354/1000 [=========>....................] - ETA: 23:41 - rpn_cls: 3.3670 - rpn_regr: 0.1534 - detector_cls: 1.0209 - detector_regr: 0.4818 INFO 2019-07-26 10:50:19 +0000 master-replica-0 355/1000 [=========>....................] - ETA: 23:37 - rpn_cls: 3.3803 - rpn_regr: 0.1538 - detector_cls: 1.0203 - detector_regr: 0.4818 INFO 2019-07-26 10:50:20 +0000 master-replica-0 356/1000 [=========>....................] - ETA: 23:33 - rpn_cls: 3.3784 - rpn_regr: 0.1540 - detector_cls: 1.0192 - detector_regr: 0.4818 INFO 2019-07-26 10:50:22 +0000 master-replica-0 357/1000 [=========>....................] - ETA: 23:30 - rpn_cls: 3.3798 - rpn_regr: 0.1537 - detector_cls: 1.0195 - detector_regr: 0.4819 INFO 2019-07-26 10:50:23 +0000 master-replica-0 358/1000 [=========>....................] - ETA: 23:28 - rpn_cls: 3.3943 - rpn_regr: 0.1571 - detector_cls: 1.0175 - detector_regr: 0.4805 INFO 2019-07-26 10:50:25 +0000 master-replica-0 359/1000 [=========>....................] - ETA: 23:24 - rpn_cls: 3.3875 - rpn_regr: 0.1570 - detector_cls: 1.0175 - detector_regr: 0.4808 INFO 2019-07-26 10:50:26 +0000 master-replica-0 360/1000 [=========>....................] - ETA: 23:20 - rpn_cls: 3.3985 - rpn_regr: 0.1567 - detector_cls: 1.0182 - detector_regr: 0.4810 INFO 2019-07-26 10:50:27 +0000 master-replica-0 361/1000 [=========>....................] - ETA: 23:16 - rpn_cls: 3.3922 - rpn_regr: 0.1566 - detector_cls: 1.0185 - detector_regr: 0.4809 INFO 2019-07-26 10:50:29 +0000 master-replica-0 362/1000 [=========>....................] - ETA: 23:12 - rpn_cls: 3.3846 - rpn_regr: 0.1564 - detector_cls: 1.0199 - detector_regr: 0.4808 INFO 2019-07-26 10:50:30 +0000 master-replica-0 363/1000 [=========>....................] - ETA: 23:09 - rpn_cls: 3.3780 - rpn_regr: 0.1562 - detector_cls: 1.0214 - detector_regr: 0.4811 INFO 2019-07-26 10:50:32 +0000 master-replica-0 364/1000 [=========>....................] - ETA: 23:06 - rpn_cls: 3.3751 - rpn_regr: 0.1559 - detector_cls: 1.0229 - detector_regr: 0.4808 INFO 2019-07-26 10:50:34 +0000 master-replica-0 365/1000 [=========>....................] - ETA: 23:03 - rpn_cls: 3.3658 - rpn_regr: 0.1559 - detector_cls: 1.0206 - detector_regr: 0.4794 INFO 2019-07-26 10:50:35 +0000 master-replica-0 366/1000 [=========>....................] - ETA: 23:00 - rpn_cls: 3.3586 - rpn_regr: 0.1556 - detector_cls: 1.0213 - detector_regr: 0.4794 INFO 2019-07-26 10:50:36 +0000 master-replica-0 367/1000 [==========>...................] - ETA: 22:56 - rpn_cls: 3.3556 - rpn_regr: 0.1555 - detector_cls: 1.0215 - detector_regr: 0.4793 INFO 2019-07-26 10:50:38 +0000 master-replica-0 368/1000 [==========>...................] - ETA: 22:53 - rpn_cls: 3.3578 - rpn_regr: 0.1556 - detector_cls: 1.0224 - detector_regr: 0.4792 INFO 2019-07-26 10:50:39 +0000 master-replica-0 369/1000 [==========>...................] - ETA: 22:49 - rpn_cls: 3.3536 - rpn_regr: 0.1554 - detector_cls: 1.0221 - detector_regr: 0.4793 INFO 2019-07-26 10:50:40 +0000 master-replica-0 370/1000 [==========>...................] - ETA: 22:45 - rpn_cls: 3.3445 - rpn_regr: 0.1552 - detector_cls: 1.0215 - detector_regr: 0.4794 INFO 2019-07-26 10:50:42 +0000 master-replica-0 371/1000 [==========>...................] - ETA: 22:41 - rpn_cls: 3.3539 - rpn_regr: 0.1581 - detector_cls: 1.0201 - detector_regr: 0.4781 INFO 2019-07-26 10:50:44 +0000 master-replica-0 372/1000 [==========>...................] - ETA: 22:39 - rpn_cls: 3.3708 - rpn_regr: 0.1580 - detector_cls: 1.0189 - detector_regr: 0.4768 INFO 2019-07-26 10:50:45 +0000 master-replica-0 373/1000 [==========>...................] - ETA: 22:36 - rpn_cls: 3.3777 - rpn_regr: 0.1581 - detector_cls: 1.0203 - detector_regr: 0.4767 INFO 2019-07-26 10:50:46 +0000 master-replica-0 374/1000 [==========>...................] - ETA: 22:32 - rpn_cls: 3.3729 - rpn_regr: 0.1578 - detector_cls: 1.0194 - detector_regr: 0.4763 INFO 2019-07-26 10:50:48 +0000 master-replica-0 375/1000 [==========>...................] - ETA: 22:29 - rpn_cls: 3.3693 - rpn_regr: 0.1578 - detector_cls: 1.0201 - detector_regr: 0.4764 INFO 2019-07-26 10:50:49 +0000 master-replica-0 376/1000 [==========>...................] - ETA: 22:25 - rpn_cls: 3.3621 - rpn_regr: 0.1576 - detector_cls: 1.0211 - detector_regr: 0.4765 INFO 2019-07-26 10:50:51 +0000 master-replica-0 377/1000 [==========>...................] - ETA: 22:22 - rpn_cls: 3.3555 - rpn_regr: 0.1575 - detector_cls: 1.0210 - detector_regr: 0.4765 INFO 2019-07-26 10:50:52 +0000 master-replica-0 378/1000 [==========>...................] - ETA: 22:18 - rpn_cls: 3.3680 - rpn_regr: 0.1574 - detector_cls: 1.0200 - detector_regr: 0.4753 INFO 2019-07-26 10:50:53 +0000 master-replica-0 379/1000 [==========>...................] - ETA: 22:15 - rpn_cls: 3.3636 - rpn_regr: 0.1576 - detector_cls: 1.0194 - detector_regr: 0.4751 INFO 2019-07-26 10:50:54 +0000 master-replica-0 380/1000 [==========>...................] - ETA: 22:11 - rpn_cls: 3.3676 - rpn_regr: 0.1574 - detector_cls: 1.0186 - detector_regr: 0.4751 INFO 2019-07-26 10:50:56 +0000 master-replica-0 381/1000 [==========>...................] - ETA: 22:07 - rpn_cls: 3.3619 - rpn_regr: 0.1572 - detector_cls: 1.0192 - detector_regr: 0.4749 INFO 2019-07-26 10:50:57 +0000 master-replica-0 382/1000 [==========>...................] - ETA: 22:04 - rpn_cls: 3.3565 - rpn_regr: 0.1570 - detector_cls: 1.0206 - detector_regr: 0.4748 INFO 2019-07-26 10:50:59 +0000 master-replica-0 383/1000 [==========>...................] - ETA: 22:01 - rpn_cls: 3.3505 - rpn_regr: 0.1567 - detector_cls: 1.0212 - detector_regr: 0.4747 INFO 2019-07-26 10:51:00 +0000 master-replica-0 384/1000 [==========>...................] - ETA: 21:58 - rpn_cls: 3.3418 - rpn_regr: 0.1566 - detector_cls: 1.0201 - detector_regr: 0.4746 INFO 2019-07-26 10:51:03 +0000 master-replica-0 385/1000 [==========>...................] - ETA: 21:55 - rpn_cls: 3.3492 - rpn_regr: 0.1568 - detector_cls: 1.0193 - detector_regr: 0.4734 INFO 2019-07-26 10:51:04 +0000 master-replica-0 386/1000 [==========>...................] - ETA: 21:53 - rpn_cls: 3.3665 - rpn_regr: 0.1568 - detector_cls: 1.0181 - detector_regr: 0.4732 INFO 2019-07-26 10:51:05 +0000 master-replica-0 387/1000 [==========>...................] - ETA: 21:50 - rpn_cls: 3.3615 - rpn_regr: 0.1567 - detector_cls: 1.0185 - detector_regr: 0.4730 INFO 2019-07-26 10:51:07 +0000 master-replica-0 388/1000 [==========>...................] - ETA: 21:46 - rpn_cls: 3.3564 - rpn_regr: 0.1564 - detector_cls: 1.0187 - detector_regr: 0.4731 INFO 2019-07-26 10:51:08 +0000 master-replica-0 389/1000 [==========>...................] - ETA: 21:43 - rpn_cls: 3.3507 - rpn_regr: 0.1565 - detector_cls: 1.0198 - detector_regr: 0.4734 INFO 2019-07-26 10:51:10 +0000 master-replica-0 390/1000 [==========>...................] - ETA: 21:40 - rpn_cls: 3.3454 - rpn_regr: 0.1562 - detector_cls: 1.0193 - detector_regr: 0.4735 INFO 2019-07-26 10:51:11 +0000 master-replica-0 391/1000 [==========>...................] - ETA: 21:36 - rpn_cls: 3.3369 - rpn_regr: 0.1561 - detector_cls: 1.0189 - detector_regr: 0.4736 INFO 2019-07-26 10:51:12 +0000 master-replica-0 392/1000 [==========>...................] - ETA: 21:33 - rpn_cls: 3.3295 - rpn_regr: 0.1559 - detector_cls: 1.0195 - detector_regr: 0.4734 INFO 2019-07-26 10:51:13 +0000 master-replica-0 393/1000 [==========>...................] - ETA: 21:30 - rpn_cls: 3.3320 - rpn_regr: 0.1559 - detector_cls: 1.0184 - detector_regr: 0.4733 INFO 2019-07-26 10:51:15 +0000 master-replica-0 394/1000 [==========>...................] - ETA: 21:26 - rpn_cls: 3.3266 - rpn_regr: 0.1556 - detector_cls: 1.0192 - detector_regr: 0.4732 INFO 2019-07-26 10:51:16 +0000 master-replica-0 395/1000 [==========>...................] - ETA: 21:23 - rpn_cls: 3.3199 - rpn_regr: 0.1554 - detector_cls: 1.0209 - detector_regr: 0.4732 INFO 2019-07-26 10:51:18 +0000 master-replica-0 396/1000 [==========>...................] - ETA: 21:20 - rpn_cls: 3.3130 - rpn_regr: 0.1551 - detector_cls: 1.0213 - detector_regr: 0.4730 INFO 2019-07-26 10:51:19 +0000 master-replica-0 397/1000 [==========>...................] - ETA: 21:16 - rpn_cls: 3.3093 - rpn_regr: 0.1548 - detector_cls: 1.0221 - detector_regr: 0.4730 INFO 2019-07-26 10:51:20 +0000 master-replica-0 398/1000 [==========>...................] - ETA: 21:13 - rpn_cls: 3.3041 - rpn_regr: 0.1546 - detector_cls: 1.0223 - detector_regr: 0.4727 INFO 2019-07-26 10:51:22 +0000 master-replica-0 399/1000 [==========>...................] - ETA: 21:10 - rpn_cls: 3.2958 - rpn_regr: 0.1545 - detector_cls: 1.0220 - detector_regr: 0.4730 INFO 2019-07-26 10:51:23 +0000 master-replica-0 400/1000 [===========>..................] - ETA: 21:06 - rpn_cls: 3.2913 - rpn_regr: 0.1544 - detector_cls: 1.0217 - detector_regr: 0.4724 INFO 2019-07-26 10:51:24 +0000 master-replica-0 401/1000 [===========>..................] - ETA: 21:03 - rpn_cls: 3.2850 - rpn_regr: 0.1541 - detector_cls: 1.0216 - detector_regr: 0.4723 INFO 2019-07-26 10:51:26 +0000 master-replica-0 402/1000 [===========>..................] - ETA: 21:00 - rpn_cls: 3.2808 - rpn_regr: 0.1539 - detector_cls: 1.0220 - detector_regr: 0.4723 INFO 2019-07-26 10:51:27 +0000 master-replica-0 403/1000 [===========>..................] - ETA: 20:57 - rpn_cls: 3.2727 - rpn_regr: 0.1539 - detector_cls: 1.0215 - detector_regr: 0.4723 INFO 2019-07-26 10:51:28 +0000 master-replica-0 404/1000 [===========>..................] - ETA: 20:54 - rpn_cls: 3.2666 - rpn_regr: 0.1536 - detector_cls: 1.0224 - detector_regr: 0.4718 INFO 2019-07-26 10:51:31 +0000 master-replica-0 405/1000 [===========>..................] - ETA: 20:50 - rpn_cls: 3.2602 - rpn_regr: 0.1534 - detector_cls: 1.0228 - detector_regr: 0.4718 INFO 2019-07-26 10:51:32 +0000 master-replica-0 406/1000 [===========>..................] - ETA: 20:48 - rpn_cls: 3.2759 - rpn_regr: 0.1537 - detector_cls: 1.0221 - detector_regr: 0.4711 INFO 2019-07-26 10:51:34 +0000 master-replica-0 407/1000 [===========>..................] - ETA: 20:46 - rpn_cls: 3.2689 - rpn_regr: 0.1537 - detector_cls: 1.0210 - detector_regr: 0.4712 INFO 2019-07-26 10:51:36 +0000 master-replica-0 408/1000 [===========>..................] - ETA: 20:42 - rpn_cls: 3.2609 - rpn_regr: 0.1535 - detector_cls: 1.0204 - detector_regr: 0.4711 INFO 2019-07-26 10:51:37 +0000 master-replica-0 409/1000 [===========>..................] - ETA: 20:40 - rpn_cls: 3.2738 - rpn_regr: 0.1541 - detector_cls: 1.0191 - detector_regr: 0.4700 INFO 2019-07-26 10:51:38 +0000 master-replica-0 410/1000 [===========>..................] - ETA: 20:37 - rpn_cls: 3.2677 - rpn_regr: 0.1539 - detector_cls: 1.0200 - detector_regr: 0.4696 INFO 2019-07-26 10:51:40 +0000 master-replica-0 411/1000 [===========>..................] - ETA: 20:34 - rpn_cls: 3.2598 - rpn_regr: 0.1538 - detector_cls: 1.0199 - detector_regr: 0.4698 INFO 2019-07-26 10:51:41 +0000 master-replica-0 412/1000 [===========>..................] - ETA: 20:31 - rpn_cls: 3.2519 - rpn_regr: 0.1538 - detector_cls: 1.0202 - detector_regr: 0.4699 INFO 2019-07-26 10:51:42 +0000 master-replica-0 413/1000 [===========>..................] - ETA: 20:27 - rpn_cls: 3.2441 - rpn_regr: 0.1539 - detector_cls: 1.0196 - detector_regr: 0.4701 INFO 2019-07-26 10:51:44 +0000 master-replica-0 414/1000 [===========>..................] - ETA: 20:24 - rpn_cls: 3.2390 - rpn_regr: 0.1539 - detector_cls: 1.0213 - detector_regr: 0.4702 INFO 2019-07-26 10:51:45 +0000 master-replica-0 415/1000 [===========>..................] - ETA: 20:21 - rpn_cls: 3.2318 - rpn_regr: 0.1537 - detector_cls: 1.0225 - detector_regr: 0.4701 INFO 2019-07-26 10:51:46 +0000 master-replica-0 416/1000 [===========>..................] - ETA: 20:18 - rpn_cls: 3.2240 - rpn_regr: 0.1534 - detector_cls: 1.0224 - detector_regr: 0.4704 INFO 2019-07-26 10:51:48 +0000 master-replica-0 417/1000 [===========>..................] - ETA: 20:15 - rpn_cls: 3.2302 - rpn_regr: 0.1535 - detector_cls: 1.0235 - detector_regr: 0.4706 INFO 2019-07-26 10:51:49 +0000 master-replica-0 418/1000 [===========>..................] - ETA: 20:12 - rpn_cls: 3.2323 - rpn_regr: 0.1533 - detector_cls: 1.0229 - detector_regr: 0.4710 INFO 2019-07-26 10:51:50 +0000 master-replica-0 419/1000 [===========>..................] - ETA: 20:09 - rpn_cls: 3.2264 - rpn_regr: 0.1530 - detector_cls: 1.0234 - detector_regr: 0.4710 INFO 2019-07-26 10:51:51 +0000 master-replica-0 420/1000 [===========>..................] - ETA: 20:05 - rpn_cls: 3.2187 - rpn_regr: 0.1531 - detector_cls: 1.0237 - detector_regr: 0.4710 INFO 2019-07-26 10:51:53 +0000 master-replica-0 421/1000 [===========>..................] - ETA: 20:02 - rpn_cls: 3.2110 - rpn_regr: 0.1532 - detector_cls: 1.0235 - detector_regr: 0.4707 INFO 2019-07-26 10:51:55 +0000 master-replica-0 422/1000 [===========>..................] - ETA: 19:59 - rpn_cls: 3.2034 - rpn_regr: 0.1531 - detector_cls: 1.0230 - detector_regr: 0.4707 INFO 2019-07-26 10:51:56 +0000 master-replica-0 423/1000 [===========>..................] - ETA: 19:57 - rpn_cls: 3.1958 - rpn_regr: 0.1529 - detector_cls: 1.0230 - detector_regr: 0.4707 INFO 2019-07-26 10:51:58 +0000 master-replica-0 424/1000 [===========>..................] - ETA: 19:54 - rpn_cls: 3.1901 - rpn_regr: 0.1526 - detector_cls: 1.0229 - detector_regr: 0.4709 INFO 2019-07-26 10:51:59 +0000 master-replica-0 425/1000 [===========>..................] - ETA: 19:51 - rpn_cls: 3.1826 - rpn_regr: 0.1526 - detector_cls: 1.0231 - detector_regr: 0.4709 INFO 2019-07-26 10:52:00 +0000 master-replica-0 426/1000 [===========>..................] - ETA: 19:48 - rpn_cls: 3.1752 - rpn_regr: 0.1529 - detector_cls: 1.0231 - detector_regr: 0.4710 INFO 2019-07-26 10:52:02 +0000 master-replica-0 427/1000 [===========>..................] - ETA: 19:45 - rpn_cls: 3.1700 - rpn_regr: 0.1527 - detector_cls: 1.0232 - detector_regr: 0.4711 INFO 2019-07-26 10:52:03 +0000 master-replica-0 428/1000 [===========>..................] - ETA: 19:42 - rpn_cls: 3.1626 - rpn_regr: 0.1526 - detector_cls: 1.0230 - detector_regr: 0.4711 INFO 2019-07-26 10:52:05 +0000 master-replica-0 429/1000 [===========>..................] - ETA: 19:39 - rpn_cls: 3.1647 - rpn_regr: 0.1530 - detector_cls: 1.0236 - detector_regr: 0.4711 INFO 2019-07-26 10:52:06 +0000 master-replica-0 430/1000 [===========>..................] - ETA: 19:36 - rpn_cls: 3.1595 - rpn_regr: 0.1530 - detector_cls: 1.0241 - detector_regr: 0.4711 INFO 2019-07-26 10:52:07 +0000 master-replica-0 431/1000 [===========>..................] - ETA: 19:33 - rpn_cls: 3.1534 - rpn_regr: 0.1529 - detector_cls: 1.0236 - detector_regr: 0.4708 INFO 2019-07-26 10:52:09 +0000 master-replica-0 432/1000 [===========>..................] - ETA: 19:30 - rpn_cls: 3.1560 - rpn_regr: 0.1528 - detector_cls: 1.0230 - detector_regr: 0.4709 INFO 2019-07-26 10:52:10 +0000 master-replica-0 433/1000 [===========>..................] - ETA: 19:27 - rpn_cls: 3.1685 - rpn_regr: 0.1530 - detector_cls: 1.0219 - detector_regr: 0.4717 INFO 2019-07-26 10:52:11 +0000 master-replica-0 434/1000 [============>.................] - ETA: 19:24 - rpn_cls: 3.1636 - rpn_regr: 0.1528 - detector_cls: 1.0217 - detector_regr: 0.4717 INFO 2019-07-26 10:52:12 +0000 master-replica-0 435/1000 [============>.................] - ETA: 19:21 - rpn_cls: 3.1596 - rpn_regr: 0.1526 - detector_cls: 1.0213 - detector_regr: 0.4716 INFO 2019-07-26 10:52:14 +0000 master-replica-0 436/1000 [============>.................] - ETA: 19:18 - rpn_cls: 3.1732 - rpn_regr: 0.1525 - detector_cls: 1.0206 - detector_regr: 0.4716 INFO 2019-07-26 10:52:15 +0000 master-replica-0 437/1000 [============>.................] - ETA: 19:15 - rpn_cls: 3.1690 - rpn_regr: 0.1522 - detector_cls: 1.0209 - detector_regr: 0.4713 INFO 2019-07-26 10:52:18 +0000 master-replica-0 439/1000 [============>.................] - ETA: 19:09 - rpn_cls: 3.1577 - rpn_regr: 0.1518 - detector_cls: 1.0208 - detector_regr: 0.4708 INFO 2019-07-26 10:52:19 +0000 master-replica-0 440/1000 [============>.................] - ETA: 19:06 - rpn_cls: 3.1539 - rpn_regr: 0.1517 - detector_cls: 1.0201 - detector_regr: 0.4708 INFO 2019-07-26 10:52:21 +0000 master-replica-0 441/1000 [============>.................] - ETA: 19:03 - rpn_cls: 3.1469 - rpn_regr: 0.1515 - detector_cls: 1.0211 - detector_regr: 0.4705 INFO 2019-07-26 10:52:22 +0000 master-replica-0 442/1000 [============>.................] - ETA: 19:01 - rpn_cls: 3.1436 - rpn_regr: 0.1512 - detector_cls: 1.0204 - detector_regr: 0.4704 INFO 2019-07-26 10:52:24 +0000 master-replica-0 443/1000 [============>.................] - ETA: 18:58 - rpn_cls: 3.1377 - rpn_regr: 0.1513 - detector_cls: 1.0207 - detector_regr: 0.4703 INFO 2019-07-26 10:52:25 +0000 master-replica-0 444/1000 [============>.................] - ETA: 18:55 - rpn_cls: 3.1320 - rpn_regr: 0.1512 - detector_cls: 1.0199 - detector_regr: 0.4703 INFO 2019-07-26 10:52:26 +0000 master-replica-0 445/1000 [============>.................] - ETA: 18:52 - rpn_cls: 3.1279 - rpn_regr: 0.1510 - detector_cls: 1.0212 - detector_regr: 0.4702 INFO 2019-07-26 10:52:28 +0000 master-replica-0 446/1000 [============>.................] - ETA: 18:49 - rpn_cls: 3.1348 - rpn_regr: 0.1509 - detector_cls: 1.0211 - detector_regr: 0.4706 INFO 2019-07-26 10:52:30 +0000 master-replica-0 447/1000 [============>.................] - ETA: 18:47 - rpn_cls: 3.1278 - rpn_regr: 0.1508 - detector_cls: 1.0200 - detector_regr: 0.4695 INFO 2019-07-26 10:52:31 +0000 master-replica-0 448/1000 [============>.................] - ETA: 18:44 - rpn_cls: 3.1333 - rpn_regr: 0.1508 - detector_cls: 1.0196 - detector_regr: 0.4698 INFO 2019-07-26 10:52:32 +0000 master-replica-0 449/1000 [============>.................] - ETA: 18:41 - rpn_cls: 3.1268 - rpn_regr: 0.1506 - detector_cls: 1.0198 - detector_regr: 0.4695 INFO 2019-07-26 10:52:33 +0000 master-replica-0 450/1000 [============>.................] - ETA: 18:38 - rpn_cls: 3.1199 - rpn_regr: 0.1505 - detector_cls: 1.0191 - detector_regr: 0.4695 INFO 2019-07-26 10:52:35 +0000 master-replica-0 451/1000 [============>.................] - ETA: 18:35 - rpn_cls: 3.1145 - rpn_regr: 0.1502 - detector_cls: 1.0191 - detector_regr: 0.4692 INFO 2019-07-26 10:52:37 +0000 master-replica-0 452/1000 [============>.................] - ETA: 18:32 - rpn_cls: 3.1076 - rpn_regr: 0.1503 - detector_cls: 1.0182 - detector_regr: 0.4695 INFO 2019-07-26 10:52:40 +0000 master-replica-0 453/1000 [============>.................] - ETA: 18:30 - rpn_cls: 3.1084 - rpn_regr: 0.1502 - detector_cls: 1.0164 - detector_regr: 0.4685 INFO 2019-07-26 10:52:42 +0000 master-replica-0 454/1000 [============>.................] - ETA: 18:29 - rpn_cls: 3.1016 - rpn_regr: 0.1501 - detector_cls: 1.0161 - detector_regr: 0.4687 INFO 2019-07-26 10:52:43 +0000 master-replica-0 455/1000 [============>.................] - ETA: 18:27 - rpn_cls: 3.1017 - rpn_regr: 0.1502 - detector_cls: 1.0142 - detector_regr: 0.4677 INFO 2019-07-26 10:52:44 +0000 master-replica-0 456/1000 [============>.................] - ETA: 18:25 - rpn_cls: 3.0965 - rpn_regr: 0.1500 - detector_cls: 1.0135 - detector_regr: 0.4677 INFO 2019-07-26 10:52:46 +0000 master-replica-0 457/1000 [============>.................] - ETA: 18:22 - rpn_cls: 3.0917 - rpn_regr: 0.1498 - detector_cls: 1.0127 - detector_regr: 0.4673 INFO 2019-07-26 10:52:47 +0000 master-replica-0 458/1000 [============>.................] - ETA: 18:19 - rpn_cls: 3.0877 - rpn_regr: 0.1499 - detector_cls: 1.0126 - detector_regr: 0.4671 INFO 2019-07-26 10:52:50 +0000 master-replica-0 459/1000 [============>.................] - ETA: 18:16 - rpn_cls: 3.0810 - rpn_regr: 0.1501 - detector_cls: 1.0136 - detector_regr: 0.4671 INFO 2019-07-26 10:52:52 +0000 master-replica-0 460/1000 [============>.................] - ETA: 18:15 - rpn_cls: 3.0942 - rpn_regr: 0.1506 - detector_cls: 1.0119 - detector_regr: 0.4661 INFO 2019-07-26 10:52:53 +0000 master-replica-0 461/1000 [============>.................] - ETA: 18:12 - rpn_cls: 3.0875 - rpn_regr: 0.1511 - detector_cls: 1.0101 - detector_regr: 0.4651 INFO 2019-07-26 10:52:55 +0000 master-replica-0 462/1000 [============>.................] - ETA: 18:10 - rpn_cls: 3.0847 - rpn_regr: 0.1510 - detector_cls: 1.0109 - detector_regr: 0.4651 INFO 2019-07-26 10:52:56 +0000 master-replica-0 463/1000 [============>.................] - ETA: 18:07 - rpn_cls: 3.0781 - rpn_regr: 0.1508 - detector_cls: 1.0106 - detector_regr: 0.4650 INFO 2019-07-26 10:52:58 +0000 master-replica-0 464/1000 [============>.................] - ETA: 18:05 - rpn_cls: 3.0751 - rpn_regr: 0.1508 - detector_cls: 1.0113 - detector_regr: 0.4651 INFO 2019-07-26 10:53:00 +0000 master-replica-0 465/1000 [============>.................] - ETA: 18:02 - rpn_cls: 3.0684 - rpn_regr: 0.1510 - detector_cls: 1.0107 - detector_regr: 0.4651 INFO 2019-07-26 10:53:01 +0000 master-replica-0 466/1000 [============>.................] - ETA: 18:00 - rpn_cls: 3.0838 - rpn_regr: 0.1510 - detector_cls: 1.0098 - detector_regr: 0.4653 INFO 2019-07-26 10:53:02 +0000 master-replica-0 467/1000 [=============>................] - ETA: 17:57 - rpn_cls: 3.0772 - rpn_regr: 0.1511 - detector_cls: 1.0086 - detector_regr: 0.4660 INFO 2019-07-26 10:53:04 +0000 master-replica-0 468/1000 [=============>................] - ETA: 17:54 - rpn_cls: 3.0719 - rpn_regr: 0.1510 - detector_cls: 1.0097 - detector_regr: 0.4660 INFO 2019-07-26 10:53:05 +0000 master-replica-0 469/1000 [=============>................] - ETA: 17:51 - rpn_cls: 3.0740 - rpn_regr: 0.1508 - detector_cls: 1.0092 - detector_regr: 0.4662 INFO 2019-07-26 10:53:06 +0000 master-replica-0 470/1000 [=============>................] - ETA: 17:48 - rpn_cls: 3.0767 - rpn_regr: 0.1509 - detector_cls: 1.0083 - detector_regr: 0.4664 INFO 2019-07-26 10:53:08 +0000 master-replica-0 471/1000 [=============>................] - ETA: 17:46 - rpn_cls: 3.0716 - rpn_regr: 0.1507 - detector_cls: 1.0088 - detector_regr: 0.4662 INFO 2019-07-26 10:53:09 +0000 master-replica-0 472/1000 [=============>................] - ETA: 17:43 - rpn_cls: 3.0687 - rpn_regr: 0.1505 - detector_cls: 1.0094 - detector_regr: 0.4660 INFO 2019-07-26 10:53:11 +0000 master-replica-0 473/1000 [=============>................] - ETA: 17:40 - rpn_cls: 3.0644 - rpn_regr: 0.1504 - detector_cls: 1.0093 - detector_regr: 0.4661 INFO 2019-07-26 10:53:13 +0000 master-replica-0 474/1000 [=============>................] - ETA: 17:38 - rpn_cls: 3.0595 - rpn_regr: 0.1501 - detector_cls: 1.0096 - detector_regr: 0.4659 INFO 2019-07-26 10:53:14 +0000 master-replica-0 475/1000 [=============>................] - ETA: 17:36 - rpn_cls: 3.0732 - rpn_regr: 0.1502 - detector_cls: 1.0085 - detector_regr: 0.4658 INFO 2019-07-26 10:53:16 +0000 master-replica-0 476/1000 [=============>................] - ETA: 17:33 - rpn_cls: 3.0667 - rpn_regr: 0.1501 - detector_cls: 1.0095 - detector_regr: 0.4659 INFO 2019-07-26 10:53:18 +0000 master-replica-0 477/1000 [=============>................] - ETA: 17:31 - rpn_cls: 3.0812 - rpn_regr: 0.1500 - detector_cls: 1.0088 - detector_regr: 0.4661 INFO 2019-07-26 10:53:19 +0000 master-replica-0 478/1000 [=============>................] - ETA: 17:29 - rpn_cls: 3.0762 - rpn_regr: 0.1498 - detector_cls: 1.0092 - detector_regr: 0.4657 INFO 2019-07-26 10:53:20 +0000 master-replica-0 479/1000 [=============>................] - ETA: 17:26 - rpn_cls: 3.0800 - rpn_regr: 0.1498 - detector_cls: 1.0084 - detector_regr: 0.4656 INFO 2019-07-26 10:53:21 +0000 master-replica-0 480/1000 [=============>................] - ETA: 17:23 - rpn_cls: 3.0873 - rpn_regr: 0.1504 - detector_cls: 1.0070 - detector_regr: 0.4646 INFO 2019-07-26 10:53:24 +0000 master-replica-0 481/1000 [=============>................] - ETA: 17:20 - rpn_cls: 3.0809 - rpn_regr: 0.1502 - detector_cls: 1.0067 - detector_regr: 0.4645 INFO 2019-07-26 10:53:26 +0000 master-replica-0 482/1000 [=============>................] - ETA: 17:19 - rpn_cls: 3.0950 - rpn_regr: 0.1506 - detector_cls: 1.0051 - detector_regr: 0.4635 INFO 2019-07-26 10:53:27 +0000 master-replica-0 483/1000 [=============>................] - ETA: 17:16 - rpn_cls: 3.1045 - rpn_regr: 0.1509 - detector_cls: 1.0042 - detector_regr: 0.4637 INFO 2019-07-26 10:53:28 +0000 master-replica-0 484/1000 [=============>................] - ETA: 17:14 - rpn_cls: 3.0981 - rpn_regr: 0.1508 - detector_cls: 1.0045 - detector_regr: 0.4638 INFO 2019-07-26 10:53:30 +0000 master-replica-0 485/1000 [=============>................] - ETA: 17:11 - rpn_cls: 3.1097 - rpn_regr: 0.1505 - detector_cls: 1.0042 - detector_regr: 0.4641 INFO 2019-07-26 10:53:31 +0000 master-replica-0 486/1000 [=============>................] - ETA: 17:08 - rpn_cls: 3.1052 - rpn_regr: 0.1505 - detector_cls: 1.0037 - detector_regr: 0.4638 INFO 2019-07-26 10:53:33 +0000 master-replica-0 487/1000 [=============>................] - ETA: 17:06 - rpn_cls: 3.1012 - rpn_regr: 0.1503 - detector_cls: 1.0041 - detector_regr: 0.4637 INFO 2019-07-26 10:53:34 +0000 master-replica-0 488/1000 [=============>................] - ETA: 17:03 - rpn_cls: 3.0971 - rpn_regr: 0.1502 - detector_cls: 1.0039 - detector_regr: 0.4635 INFO 2019-07-26 10:53:36 +0000 master-replica-0 489/1000 [=============>................] - ETA: 17:01 - rpn_cls: 3.1041 - rpn_regr: 0.1501 - detector_cls: 1.0042 - detector_regr: 0.4636 INFO 2019-07-26 10:53:37 +0000 master-replica-0 490/1000 [=============>................] - ETA: 16:59 - rpn_cls: 3.1005 - rpn_regr: 0.1506 - detector_cls: 1.0036 - detector_regr: 0.4635 INFO 2019-07-26 10:53:39 +0000 master-replica-0 491/1000 [=============>................] - ETA: 16:56 - rpn_cls: 3.0941 - rpn_regr: 0.1504 - detector_cls: 1.0032 - detector_regr: 0.4637 INFO 2019-07-26 10:53:40 +0000 master-replica-0 492/1000 [=============>................] - ETA: 16:53 - rpn_cls: 3.0896 - rpn_regr: 0.1502 - detector_cls: 1.0043 - detector_regr: 0.4638 INFO 2019-07-26 10:53:42 +0000 master-replica-0 493/1000 [=============>................] - ETA: 16:51 - rpn_cls: 3.0834 - rpn_regr: 0.1501 - detector_cls: 1.0037 - detector_regr: 0.4638 INFO 2019-07-26 10:53:43 +0000 master-replica-0 494/1000 [=============>................] - ETA: 16:48 - rpn_cls: 3.0818 - rpn_regr: 0.1500 - detector_cls: 1.0036 - detector_regr: 0.4635 INFO 2019-07-26 10:53:44 +0000 master-replica-0 495/1000 [=============>................] - ETA: 16:45 - rpn_cls: 3.0777 - rpn_regr: 0.1498 - detector_cls: 1.0032 - detector_regr: 0.4634 INFO 2019-07-26 10:53:45 +0000 master-replica-0 496/1000 [=============>................] - ETA: 16:43 - rpn_cls: 3.0736 - rpn_regr: 0.1496 - detector_cls: 1.0031 - detector_regr: 0.4633 INFO 2019-07-26 10:53:47 +0000 master-replica-0 497/1000 [=============>................] - ETA: 16:40 - rpn_cls: 3.0683 - rpn_regr: 0.1493 - detector_cls: 1.0024 - detector_regr: 0.4633 INFO 2019-07-26 10:53:48 +0000 master-replica-0 498/1000 [=============>................] - ETA: 16:37 - rpn_cls: 3.0630 - rpn_regr: 0.1492 - detector_cls: 1.0032 - detector_regr: 0.4632 INFO 2019-07-26 10:53:49 +0000 master-replica-0 499/1000 [=============>................] - ETA: 16:34 - rpn_cls: 3.0583 - rpn_regr: 0.1491 - detector_cls: 1.0031 - detector_regr: 0.4634 INFO 2019-07-26 10:53:51 +0000 master-replica-0 500/1000 [==============>...............] - ETA: 16:32 - rpn_cls: 3.0607 - rpn_regr: 0.1493 - detector_cls: 1.0024 - detector_regr: 0.4634 INFO 2019-07-26 10:53:52 +0000 master-replica-0 501/1000 [==============>...............] - ETA: 16:29 - rpn_cls: 3.0580 - rpn_regr: 0.1495 - detector_cls: 1.0018 - detector_regr: 0.4633 INFO 2019-07-26 10:53:53 +0000 master-replica-0 502/1000 [==============>...............] - ETA: 16:27 - rpn_cls: 3.0585 - rpn_regr: 0.1495 - detector_cls: 1.0013 - detector_regr: 0.4633 INFO 2019-07-26 10:53:55 +0000 master-replica-0 503/1000 [==============>...............] - ETA: 16:24 - rpn_cls: 3.0684 - rpn_regr: 0.1494 - detector_cls: 1.0000 - detector_regr: 0.4630 INFO 2019-07-26 10:53:56 +0000 master-replica-0 504/1000 [==============>...............] - ETA: 16:21 - rpn_cls: 3.0623 - rpn_regr: 0.1492 - detector_cls: 0.9994 - detector_regr: 0.4633 INFO 2019-07-26 10:53:57 +0000 master-replica-0 505/1000 [==============>...............] - ETA: 16:19 - rpn_cls: 3.0563 - rpn_regr: 0.1491 - detector_cls: 0.9997 - detector_regr: 0.4631 INFO 2019-07-26 10:53:59 +0000 master-replica-0 506/1000 [==============>...............] - ETA: 16:16 - rpn_cls: 3.0514 - rpn_regr: 0.1490 - detector_cls: 1.0014 - detector_regr: 0.4633 INFO 2019-07-26 10:54:00 +0000 master-replica-0 507/1000 [==============>...............] - ETA: 16:13 - rpn_cls: 3.0469 - rpn_regr: 0.1488 - detector_cls: 1.0022 - detector_regr: 0.4632 INFO 2019-07-26 10:54:02 +0000 master-replica-0 508/1000 [==============>...............] - ETA: 16:11 - rpn_cls: 3.0444 - rpn_regr: 0.1486 - detector_cls: 1.0027 - detector_regr: 0.4630 INFO 2019-07-26 10:54:03 +0000 master-replica-0 509/1000 [==============>...............] - ETA: 16:09 - rpn_cls: 3.0384 - rpn_regr: 0.1486 - detector_cls: 1.0018 - detector_regr: 0.4627 INFO 2019-07-26 10:54:05 +0000 master-replica-0 510/1000 [==============>...............] - ETA: 16:06 - rpn_cls: 3.0347 - rpn_regr: 0.1484 - detector_cls: 1.0010 - detector_regr: 0.4627 INFO 2019-07-26 10:54:06 +0000 master-replica-0 511/1000 [==============>...............] - ETA: 16:04 - rpn_cls: 3.0306 - rpn_regr: 0.1482 - detector_cls: 1.0012 - detector_regr: 0.4626 INFO 2019-07-26 10:54:08 +0000 master-replica-0 512/1000 [==============>...............] - ETA: 16:01 - rpn_cls: 3.0263 - rpn_regr: 0.1481 - detector_cls: 1.0008 - detector_regr: 0.4629 INFO 2019-07-26 10:54:09 +0000 master-replica-0 513/1000 [==============>...............] - ETA: 15:59 - rpn_cls: 3.0254 - rpn_regr: 0.1479 - detector_cls: 1.0016 - detector_regr: 0.4625 INFO 2019-07-26 10:54:10 +0000 master-replica-0 514/1000 [==============>...............] - ETA: 15:56 - rpn_cls: 3.0195 - rpn_regr: 0.1479 - detector_cls: 1.0017 - detector_regr: 0.4623 INFO 2019-07-26 10:54:12 +0000 master-replica-0 515/1000 [==============>...............] - ETA: 15:54 - rpn_cls: 3.0154 - rpn_regr: 0.1478 - detector_cls: 1.0018 - detector_regr: 0.4624 INFO 2019-07-26 10:54:13 +0000 master-replica-0 516/1000 [==============>...............] - ETA: 15:51 - rpn_cls: 3.0105 - rpn_regr: 0.1476 - detector_cls: 1.0021 - detector_regr: 0.4623 INFO 2019-07-26 10:54:14 +0000 master-replica-0 517/1000 [==============>...............] - ETA: 15:49 - rpn_cls: 3.0055 - rpn_regr: 0.1473 - detector_cls: 1.0021 - detector_regr: 0.4620 INFO 2019-07-26 10:54:16 +0000 master-replica-0 518/1000 [==============>...............] - ETA: 15:46 - rpn_cls: 3.0019 - rpn_regr: 0.1473 - detector_cls: 1.0025 - detector_regr: 0.4619 INFO 2019-07-26 10:54:17 +0000 master-replica-0 519/1000 [==============>...............] - ETA: 15:44 - rpn_cls: 3.0074 - rpn_regr: 0.1474 - detector_cls: 1.0031 - detector_regr: 0.4620 INFO 2019-07-26 10:54:18 +0000 master-replica-0 520/1000 [==============>...............] - ETA: 15:41 - rpn_cls: 3.0099 - rpn_regr: 0.1474 - detector_cls: 1.0021 - detector_regr: 0.4621 INFO 2019-07-26 10:54:19 +0000 master-replica-0 521/1000 [==============>...............] - ETA: 15:39 - rpn_cls: 3.0068 - rpn_regr: 0.1471 - detector_cls: 1.0016 - detector_regr: 0.4621 INFO 2019-07-26 10:54:21 +0000 master-replica-0 522/1000 [==============>...............] - ETA: 15:36 - rpn_cls: 3.0035 - rpn_regr: 0.1470 - detector_cls: 1.0016 - detector_regr: 0.4621 INFO 2019-07-26 10:54:23 +0000 master-replica-0 523/1000 [==============>...............] - ETA: 15:33 - rpn_cls: 2.9978 - rpn_regr: 0.1468 - detector_cls: 1.0009 - detector_regr: 0.4617 INFO 2019-07-26 10:54:24 +0000 master-replica-0 524/1000 [==============>...............] - ETA: 15:31 - rpn_cls: 3.0101 - rpn_regr: 0.1468 - detector_cls: 0.9999 - detector_regr: 0.4619 INFO 2019-07-26 10:54:25 +0000 master-replica-0 525/1000 [==============>...............] - ETA: 15:29 - rpn_cls: 3.0044 - rpn_regr: 0.1467 - detector_cls: 1.0001 - detector_regr: 0.4620 INFO 2019-07-26 10:54:27 +0000 master-replica-0 526/1000 [==============>...............] - ETA: 15:26 - rpn_cls: 3.0008 - rpn_regr: 0.1465 - detector_cls: 1.0006 - detector_regr: 0.4619 INFO 2019-07-26 10:54:28 +0000 master-replica-0 527/1000 [==============>...............] - ETA: 15:24 - rpn_cls: 2.9966 - rpn_regr: 0.1464 - detector_cls: 1.0009 - detector_regr: 0.4617 INFO 2019-07-26 10:54:30 +0000 master-replica-0 528/1000 [==============>...............] - ETA: 15:21 - rpn_cls: 2.9909 - rpn_regr: 0.1466 - detector_cls: 0.9997 - detector_regr: 0.4608 INFO 2019-07-26 10:54:31 +0000 master-replica-0 529/1000 [==============>...............] - ETA: 15:19 - rpn_cls: 2.9852 - rpn_regr: 0.1465 - detector_cls: 0.9992 - detector_regr: 0.4607 INFO 2019-07-26 10:54:32 +0000 master-replica-0 530/1000 [==============>...............] - ETA: 15:16 - rpn_cls: 2.9822 - rpn_regr: 0.1463 - detector_cls: 0.9995 - detector_regr: 0.4606 INFO 2019-07-26 10:54:33 +0000 master-replica-0 531/1000 [==============>...............] - ETA: 15:14 - rpn_cls: 2.9765 - rpn_regr: 0.1462 - detector_cls: 0.9993 - detector_regr: 0.4605 INFO 2019-07-26 10:54:35 +0000 master-replica-0 532/1000 [==============>...............] - ETA: 15:11 - rpn_cls: 2.9713 - rpn_regr: 0.1461 - detector_cls: 0.9988 - detector_regr: 0.4605 INFO 2019-07-26 10:54:36 +0000 master-replica-0 533/1000 [==============>...............] - ETA: 15:09 - rpn_cls: 2.9825 - rpn_regr: 0.1462 - detector_cls: 0.9975 - detector_regr: 0.4597 INFO 2019-07-26 10:54:38 +0000 master-replica-0 534/1000 [===============>..............] - ETA: 15:06 - rpn_cls: 2.9789 - rpn_regr: 0.1461 - detector_cls: 0.9973 - detector_regr: 0.4595 INFO 2019-07-26 10:54:39 +0000 master-replica-0 535/1000 [===============>..............] - ETA: 15:04 - rpn_cls: 2.9734 - rpn_regr: 0.1462 - detector_cls: 0.9967 - detector_regr: 0.4596 INFO 2019-07-26 10:54:41 +0000 master-replica-0 536/1000 [===============>..............] - ETA: 15:02 - rpn_cls: 2.9693 - rpn_regr: 0.1460 - detector_cls: 0.9973 - detector_regr: 0.4595 INFO 2019-07-26 10:54:42 +0000 master-replica-0 537/1000 [===============>..............] - ETA: 15:00 - rpn_cls: 2.9754 - rpn_regr: 0.1462 - detector_cls: 0.9967 - detector_regr: 0.4595 INFO 2019-07-26 10:54:44 +0000 master-replica-0 538/1000 [===============>..............] - ETA: 14:57 - rpn_cls: 2.9802 - rpn_regr: 0.1462 - detector_cls: 0.9966 - detector_regr: 0.4599 INFO 2019-07-26 10:54:45 +0000 master-replica-0 539/1000 [===============>..............] - ETA: 14:55 - rpn_cls: 2.9769 - rpn_regr: 0.1461 - detector_cls: 0.9976 - detector_regr: 0.4596 INFO 2019-07-26 10:54:46 +0000 master-replica-0 540/1000 [===============>..............] - ETA: 14:52 - rpn_cls: 2.9727 - rpn_regr: 0.1459 - detector_cls: 0.9980 - detector_regr: 0.4595 INFO 2019-07-26 10:54:47 +0000 master-replica-0 541/1000 [===============>..............] - ETA: 14:50 - rpn_cls: 2.9672 - rpn_regr: 0.1460 - detector_cls: 0.9976 - detector_regr: 0.4594 INFO 2019-07-26 10:54:49 +0000 master-replica-0 542/1000 [===============>..............] - ETA: 14:47 - rpn_cls: 2.9696 - rpn_regr: 0.1461 - detector_cls: 0.9963 - detector_regr: 0.4586 INFO 2019-07-26 10:54:50 +0000 master-replica-0 543/1000 [===============>..............] - ETA: 14:45 - rpn_cls: 2.9678 - rpn_regr: 0.1461 - detector_cls: 0.9967 - detector_regr: 0.4588 INFO 2019-07-26 10:54:51 +0000 master-replica-0 544/1000 [===============>..............] - ETA: 14:42 - rpn_cls: 2.9624 - rpn_regr: 0.1460 - detector_cls: 0.9974 - detector_regr: 0.4587 INFO 2019-07-26 10:54:53 +0000 master-replica-0 545/1000 [===============>..............] - ETA: 14:40 - rpn_cls: 2.9694 - rpn_regr: 0.1482 - detector_cls: 0.9961 - detector_regr: 0.4579 INFO 2019-07-26 10:54:54 +0000 master-replica-0 546/1000 [===============>..............] - ETA: 14:37 - rpn_cls: 2.9772 - rpn_regr: 0.1484 - detector_cls: 0.9958 - detector_regr: 0.4579 INFO 2019-07-26 10:54:55 +0000 master-replica-0 547/1000 [===============>..............] - ETA: 14:35 - rpn_cls: 2.9752 - rpn_regr: 0.1483 - detector_cls: 0.9960 - detector_regr: 0.4577 INFO 2019-07-26 10:54:57 +0000 master-replica-0 548/1000 [===============>..............] - ETA: 14:32 - rpn_cls: 2.9781 - rpn_regr: 0.1484 - detector_cls: 0.9958 - detector_regr: 0.4580 INFO 2019-07-26 10:54:58 +0000 master-replica-0 549/1000 [===============>..............] - ETA: 14:30 - rpn_cls: 2.9847 - rpn_regr: 0.1483 - detector_cls: 0.9964 - detector_regr: 0.4581 INFO 2019-07-26 10:55:00 +0000 master-replica-0 550/1000 [===============>..............] - ETA: 14:27 - rpn_cls: 2.9875 - rpn_regr: 0.1483 - detector_cls: 0.9963 - detector_regr: 0.4584 INFO 2019-07-26 10:55:01 +0000 master-replica-0 551/1000 [===============>..............] - ETA: 14:25 - rpn_cls: 2.9976 - rpn_regr: 0.1482 - detector_cls: 0.9955 - detector_regr: 0.4575 INFO 2019-07-26 10:55:02 +0000 master-replica-0 552/1000 [===============>..............] - ETA: 14:23 - rpn_cls: 2.9944 - rpn_regr: 0.1482 - detector_cls: 0.9953 - detector_regr: 0.4574 INFO 2019-07-26 10:55:05 +0000 master-replica-0 553/1000 [===============>..............] - ETA: 14:21 - rpn_cls: 2.9941 - rpn_regr: 0.1483 - detector_cls: 0.9958 - detector_regr: 0.4573 INFO 2019-07-26 10:55:06 +0000 master-replica-0 554/1000 [===============>..............] - ETA: 14:19 - rpn_cls: 2.9949 - rpn_regr: 0.1485 - detector_cls: 0.9954 - detector_regr: 0.4573 INFO 2019-07-26 10:55:07 +0000 master-replica-0 555/1000 [===============>..............] - ETA: 14:17 - rpn_cls: 2.9923 - rpn_regr: 0.1486 - detector_cls: 0.9966 - detector_regr: 0.4574 INFO 2019-07-26 10:55:08 +0000 master-replica-0 556/1000 [===============>..............] - ETA: 14:14 - rpn_cls: 2.9878 - rpn_regr: 0.1484 - detector_cls: 0.9974 - detector_regr: 0.4573 INFO 2019-07-26 10:55:10 +0000 master-replica-0 557/1000 [===============>..............] - ETA: 14:12 - rpn_cls: 2.9824 - rpn_regr: 0.1484 - detector_cls: 0.9973 - detector_regr: 0.4575 INFO 2019-07-26 10:55:12 +0000 master-replica-0 558/1000 [===============>..............] - ETA: 14:10 - rpn_cls: 2.9942 - rpn_regr: 0.1487 - detector_cls: 0.9965 - detector_regr: 0.4571 INFO 2019-07-26 10:55:13 +0000 master-replica-0 559/1000 [===============>..............] - ETA: 14:07 - rpn_cls: 2.9889 - rpn_regr: 0.1488 - detector_cls: 0.9967 - detector_regr: 0.4571 INFO 2019-07-26 10:55:14 +0000 master-replica-0 560/1000 [===============>..............] - ETA: 14:05 - rpn_cls: 2.9867 - rpn_regr: 0.1487 - detector_cls: 0.9986 - detector_regr: 0.4570 INFO 2019-07-26 10:55:16 +0000 master-replica-0 561/1000 [===============>..............] - ETA: 14:03 - rpn_cls: 2.9959 - rpn_regr: 0.1485 - detector_cls: 0.9977 - detector_regr: 0.4574 INFO 2019-07-26 10:55:17 +0000 master-replica-0 562/1000 [===============>..............] - ETA: 14:00 - rpn_cls: 3.0050 - rpn_regr: 0.1486 - detector_cls: 0.9964 - detector_regr: 0.4565 INFO 2019-07-26 10:55:19 +0000 master-replica-0 563/1000 [===============>..............] - ETA: 13:58 - rpn_cls: 3.0023 - rpn_regr: 0.1487 - detector_cls: 0.9965 - detector_regr: 0.4564 INFO 2019-07-26 10:55:20 +0000 master-replica-0 564/1000 [===============>..............] - ETA: 13:56 - rpn_cls: 2.9986 - rpn_regr: 0.1485 - detector_cls: 0.9964 - detector_regr: 0.4563 INFO 2019-07-26 10:55:21 +0000 master-replica-0 565/1000 [===============>..............] - ETA: 13:53 - rpn_cls: 2.9935 - rpn_regr: 0.1485 - detector_cls: 0.9965 - detector_regr: 0.4561 INFO 2019-07-26 10:55:23 +0000 master-replica-0 566/1000 [===============>..............] - ETA: 13:51 - rpn_cls: 2.9883 - rpn_regr: 0.1483 - detector_cls: 0.9982 - detector_regr: 0.4563 INFO 2019-07-26 10:55:24 +0000 master-replica-0 567/1000 [================>.............] - ETA: 13:48 - rpn_cls: 2.9959 - rpn_regr: 0.1481 - detector_cls: 0.9976 - detector_regr: 0.4567 INFO 2019-07-26 10:55:25 +0000 master-replica-0 568/1000 [================>.............] - ETA: 13:46 - rpn_cls: 3.0062 - rpn_regr: 0.1483 - detector_cls: 0.9973 - detector_regr: 0.4568 INFO 2019-07-26 10:55:27 +0000 master-replica-0 569/1000 [================>.............] - ETA: 13:44 - rpn_cls: 3.0087 - rpn_regr: 0.1484 - detector_cls: 0.9972 - detector_regr: 0.4572 INFO 2019-07-26 10:55:28 +0000 master-replica-0 570/1000 [================>.............] - ETA: 13:41 - rpn_cls: 3.0082 - rpn_regr: 0.1483 - detector_cls: 0.9971 - detector_regr: 0.4572 INFO 2019-07-26 10:55:29 +0000 master-replica-0 571/1000 [================>.............] - ETA: 13:39 - rpn_cls: 3.0065 - rpn_regr: 0.1483 - detector_cls: 0.9976 - detector_regr: 0.4572 INFO 2019-07-26 10:55:31 +0000 master-replica-0 572/1000 [================>.............] - ETA: 13:37 - rpn_cls: 3.0039 - rpn_regr: 0.1482 - detector_cls: 0.9979 - detector_regr: 0.4574 INFO 2019-07-26 10:55:32 +0000 master-replica-0 573/1000 [================>.............] - ETA: 13:34 - rpn_cls: 2.9987 - rpn_regr: 0.1481 - detector_cls: 0.9977 - detector_regr: 0.4576 INFO 2019-07-26 10:55:33 +0000 master-replica-0 574/1000 [================>.............] - ETA: 13:32 - rpn_cls: 3.0025 - rpn_regr: 0.1481 - detector_cls: 0.9972 - detector_regr: 0.4575 INFO 2019-07-26 10:55:35 +0000 master-replica-0 575/1000 [================>.............] - ETA: 13:30 - rpn_cls: 3.0008 - rpn_regr: 0.1485 - detector_cls: 0.9976 - detector_regr: 0.4576 INFO 2019-07-26 10:55:36 +0000 master-replica-0 576/1000 [================>.............] - ETA: 13:28 - rpn_cls: 3.0005 - rpn_regr: 0.1483 - detector_cls: 0.9985 - detector_regr: 0.4577 INFO 2019-07-26 10:55:38 +0000 master-replica-0 577/1000 [================>.............] - ETA: 13:25 - rpn_cls: 3.0002 - rpn_regr: 0.1485 - detector_cls: 0.9989 - detector_regr: 0.4579 INFO 2019-07-26 10:55:40 +0000 master-replica-0 578/1000 [================>.............] - ETA: 13:23 - rpn_cls: 2.9950 - rpn_regr: 0.1486 - detector_cls: 0.9986 - detector_regr: 0.4581 INFO 2019-07-26 10:55:41 +0000 master-replica-0 579/1000 [================>.............] - ETA: 13:21 - rpn_cls: 2.9904 - rpn_regr: 0.1484 - detector_cls: 0.9990 - detector_regr: 0.4581 INFO 2019-07-26 10:55:42 +0000 master-replica-0 580/1000 [================>.............] - ETA: 13:19 - rpn_cls: 2.9866 - rpn_regr: 0.1483 - detector_cls: 0.9987 - detector_regr: 0.4580 INFO 2019-07-26 10:55:43 +0000 master-replica-0 581/1000 [================>.............] - ETA: 13:16 - rpn_cls: 2.9857 - rpn_regr: 0.1482 - detector_cls: 0.9991 - detector_regr: 0.4579 INFO 2019-07-26 10:55:44 +0000 master-replica-0 582/1000 [================>.............] - ETA: 13:14 - rpn_cls: 2.9806 - rpn_regr: 0.1482 - detector_cls: 0.9995 - detector_regr: 0.4579 INFO 2019-07-26 10:55:46 +0000 master-replica-0 583/1000 [================>.............] - ETA: 13:12 - rpn_cls: 2.9755 - rpn_regr: 0.1482 - detector_cls: 0.9991 - detector_regr: 0.4579 INFO 2019-07-26 10:55:48 +0000 master-replica-0 584/1000 [================>.............] - ETA: 13:09 - rpn_cls: 2.9704 - rpn_regr: 0.1483 - detector_cls: 0.9986 - detector_regr: 0.4580 INFO 2019-07-26 10:55:49 +0000 master-replica-0 585/1000 [================>.............] - ETA: 13:07 - rpn_cls: 2.9799 - rpn_regr: 0.1481 - detector_cls: 0.9978 - detector_regr: 0.4583 INFO 2019-07-26 10:55:51 +0000 master-replica-0 586/1000 [================>.............] - ETA: 13:05 - rpn_cls: 2.9770 - rpn_regr: 0.1480 - detector_cls: 0.9975 - detector_regr: 0.4583 INFO 2019-07-26 10:55:52 +0000 master-replica-0 587/1000 [================>.............] - ETA: 13:03 - rpn_cls: 2.9733 - rpn_regr: 0.1479 - detector_cls: 0.9980 - detector_regr: 0.4581 INFO 2019-07-26 10:55:54 +0000 master-replica-0 588/1000 [================>.............] - ETA: 13:01 - rpn_cls: 2.9682 - rpn_regr: 0.1478 - detector_cls: 0.9980 - detector_regr: 0.4580 INFO 2019-07-26 10:55:55 +0000 master-replica-0 589/1000 [================>.............] - ETA: 12:59 - rpn_cls: 2.9769 - rpn_regr: 0.1487 - detector_cls: 0.9972 - detector_regr: 0.4573 INFO 2019-07-26 10:55:57 +0000 master-replica-0 590/1000 [================>.............] - ETA: 12:57 - rpn_cls: 2.9719 - rpn_regr: 0.1487 - detector_cls: 0.9967 - detector_regr: 0.4572 INFO 2019-07-26 10:55:58 +0000 master-replica-0 591/1000 [================>.............] - ETA: 12:54 - rpn_cls: 2.9682 - rpn_regr: 0.1486 - detector_cls: 0.9961 - detector_regr: 0.4572 INFO 2019-07-26 10:56:00 +0000 master-replica-0 592/1000 [================>.............] - ETA: 12:52 - rpn_cls: 2.9651 - rpn_regr: 0.1484 - detector_cls: 0.9955 - detector_regr: 0.4574 INFO 2019-07-26 10:56:01 +0000 master-replica-0 593/1000 [================>.............] - ETA: 12:50 - rpn_cls: 2.9706 - rpn_regr: 0.1487 - detector_cls: 0.9949 - detector_regr: 0.4566 INFO 2019-07-26 10:56:02 +0000 master-replica-0 594/1000 [================>.............] - ETA: 12:48 - rpn_cls: 2.9683 - rpn_regr: 0.1488 - detector_cls: 0.9950 - detector_regr: 0.4567 INFO 2019-07-26 10:56:04 +0000 master-replica-0 595/1000 [================>.............] - ETA: 12:45 - rpn_cls: 2.9711 - rpn_regr: 0.1489 - detector_cls: 0.9945 - detector_regr: 0.4567 INFO 2019-07-26 10:56:05 +0000 master-replica-0 596/1000 [================>.............] - ETA: 12:43 - rpn_cls: 2.9680 - rpn_regr: 0.1488 - detector_cls: 0.9945 - detector_regr: 0.4566 INFO 2019-07-26 10:56:07 +0000 master-replica-0 597/1000 [================>.............] - ETA: 12:41 - rpn_cls: 2.9646 - rpn_regr: 0.1487 - detector_cls: 0.9955 - detector_regr: 0.4565 INFO 2019-07-26 10:56:08 +0000 master-replica-0 598/1000 [================>.............] - ETA: 12:39 - rpn_cls: 2.9596 - rpn_regr: 0.1486 - detector_cls: 0.9946 - detector_regr: 0.4563 INFO 2019-07-26 10:56:09 +0000 master-replica-0 599/1000 [================>.............] - ETA: 12:37 - rpn_cls: 2.9555 - rpn_regr: 0.1485 - detector_cls: 0.9951 - detector_regr: 0.4563 INFO 2019-07-26 10:56:11 +0000 master-replica-0 600/1000 [=================>............] - ETA: 12:34 - rpn_cls: 2.9506 - rpn_regr: 0.1484 - detector_cls: 0.9957 - detector_regr: 0.4563 INFO 2019-07-26 10:56:13 +0000 master-replica-0 601/1000 [=================>............] - ETA: 12:33 - rpn_cls: 2.9457 - rpn_regr: 0.1485 - detector_cls: 0.9948 - detector_regr: 0.4556 INFO 2019-07-26 10:56:15 +0000 master-replica-0 602/1000 [=================>............] - ETA: 12:31 - rpn_cls: 2.9408 - rpn_regr: 0.1489 - detector_cls: 0.9938 - detector_regr: 0.4548 INFO 2019-07-26 10:56:16 +0000 master-replica-0 603/1000 [=================>............] - ETA: 12:29 - rpn_cls: 2.9396 - rpn_regr: 0.1488 - detector_cls: 0.9953 - detector_regr: 0.4548 INFO 2019-07-26 10:56:17 +0000 master-replica-0 604/1000 [=================>............] - ETA: 12:26 - rpn_cls: 2.9482 - rpn_regr: 0.1488 - detector_cls: 0.9944 - detector_regr: 0.4540 INFO 2019-07-26 10:56:19 +0000 master-replica-0 605/1000 [=================>............] - ETA: 12:24 - rpn_cls: 2.9433 - rpn_regr: 0.1489 - detector_cls: 0.9937 - detector_regr: 0.4542 INFO 2019-07-26 10:56:20 +0000 master-replica-0 606/1000 [=================>............] - ETA: 12:22 - rpn_cls: 2.9395 - rpn_regr: 0.1488 - detector_cls: 0.9939 - detector_regr: 0.4541 INFO 2019-07-26 10:56:21 +0000 master-replica-0 607/1000 [=================>............] - ETA: 12:19 - rpn_cls: 2.9359 - rpn_regr: 0.1488 - detector_cls: 0.9934 - detector_regr: 0.4538 INFO 2019-07-26 10:56:22 +0000 master-replica-0 608/1000 [=================>............] - ETA: 12:17 - rpn_cls: 2.9311 - rpn_regr: 0.1487 - detector_cls: 0.9939 - detector_regr: 0.4537 INFO 2019-07-26 10:56:24 +0000 master-replica-0 609/1000 [=================>............] - ETA: 12:15 - rpn_cls: 2.9271 - rpn_regr: 0.1485 - detector_cls: 0.9940 - detector_regr: 0.4536 INFO 2019-07-26 10:56:26 +0000 master-replica-0 610/1000 [=================>............] - ETA: 12:13 - rpn_cls: 2.9241 - rpn_regr: 0.1484 - detector_cls: 0.9937 - detector_regr: 0.4537 INFO 2019-07-26 10:56:28 +0000 master-replica-0 611/1000 [=================>............] - ETA: 12:11 - rpn_cls: 2.9253 - rpn_regr: 0.1485 - detector_cls: 0.9932 - detector_regr: 0.4535 INFO 2019-07-26 10:56:29 +0000 master-replica-0 612/1000 [=================>............] - ETA: 12:09 - rpn_cls: 2.9345 - rpn_regr: 0.1506 - detector_cls: 0.9925 - detector_regr: 0.4528 INFO 2019-07-26 10:56:31 +0000 master-replica-0 613/1000 [=================>............] - ETA: 12:07 - rpn_cls: 2.9306 - rpn_regr: 0.1505 - detector_cls: 0.9922 - detector_regr: 0.4527 INFO 2019-07-26 10:56:32 +0000 master-replica-0 614/1000 [=================>............] - ETA: 12:05 - rpn_cls: 2.9263 - rpn_regr: 0.1503 - detector_cls: 0.9918 - detector_regr: 0.4526 INFO 2019-07-26 10:56:33 +0000 master-replica-0 615/1000 [=================>............] - ETA: 12:03 - rpn_cls: 2.9286 - rpn_regr: 0.1502 - detector_cls: 0.9904 - detector_regr: 0.4519 INFO 2019-07-26 10:56:34 +0000 master-replica-0 616/1000 [=================>............] - ETA: 12:00 - rpn_cls: 2.9253 - rpn_regr: 0.1501 - detector_cls: 0.9901 - detector_regr: 0.4519 INFO 2019-07-26 10:56:36 +0000 master-replica-0 617/1000 [=================>............] - ETA: 11:58 - rpn_cls: 2.9217 - rpn_regr: 0.1499 - detector_cls: 0.9906 - detector_regr: 0.4518 INFO 2019-07-26 10:56:37 +0000 master-replica-0 618/1000 [=================>............] - ETA: 11:56 - rpn_cls: 2.9189 - rpn_regr: 0.1498 - detector_cls: 0.9900 - detector_regr: 0.4520 INFO 2019-07-26 10:56:39 +0000 master-replica-0 619/1000 [=================>............] - ETA: 11:54 - rpn_cls: 2.9149 - rpn_regr: 0.1497 - detector_cls: 0.9912 - detector_regr: 0.4520 INFO 2019-07-26 10:56:40 +0000 master-replica-0 620/1000 [=================>............] - ETA: 11:51 - rpn_cls: 2.9119 - rpn_regr: 0.1495 - detector_cls: 0.9916 - detector_regr: 0.4520 INFO 2019-07-26 10:56:42 +0000 master-replica-0 621/1000 [=================>............] - ETA: 11:49 - rpn_cls: 2.9177 - rpn_regr: 0.1498 - detector_cls: 0.9905 - detector_regr: 0.4520 INFO 2019-07-26 10:56:43 +0000 master-replica-0 622/1000 [=================>............] - ETA: 11:47 - rpn_cls: 2.9130 - rpn_regr: 0.1498 - detector_cls: 0.9893 - detector_regr: 0.4513 INFO 2019-07-26 10:56:44 +0000 master-replica-0 623/1000 [=================>............] - ETA: 11:45 - rpn_cls: 2.9104 - rpn_regr: 0.1496 - detector_cls: 0.9895 - detector_regr: 0.4512 INFO 2019-07-26 10:56:46 +0000 master-replica-0 624/1000 [=================>............] - ETA: 11:43 - rpn_cls: 2.9058 - rpn_regr: 0.1495 - detector_cls: 0.9888 - detector_regr: 0.4511 INFO 2019-07-26 10:56:48 +0000 master-replica-0 625/1000 [=================>............] - ETA: 11:41 - rpn_cls: 2.9140 - rpn_regr: 0.1497 - detector_cls: 0.9881 - detector_regr: 0.4510 INFO 2019-07-26 10:56:49 +0000 master-replica-0 626/1000 [=================>............] - ETA: 11:39 - rpn_cls: 2.9109 - rpn_regr: 0.1496 - detector_cls: 0.9879 - detector_regr: 0.4510 INFO 2019-07-26 10:56:50 +0000 master-replica-0 627/1000 [=================>............] - ETA: 11:37 - rpn_cls: 2.9062 - rpn_regr: 0.1495 - detector_cls: 0.9875 - detector_regr: 0.4512 INFO 2019-07-26 10:56:51 +0000 master-replica-0 628/1000 [=================>............] - ETA: 11:34 - rpn_cls: 2.9034 - rpn_regr: 0.1494 - detector_cls: 0.9876 - detector_regr: 0.4513 INFO 2019-07-26 10:56:53 +0000 master-replica-0 629/1000 [=================>............] - ETA: 11:32 - rpn_cls: 2.9086 - rpn_regr: 0.1495 - detector_cls: 0.9869 - detector_regr: 0.4505 INFO 2019-07-26 10:56:54 +0000 master-replica-0 630/1000 [=================>............] - ETA: 11:30 - rpn_cls: 2.9050 - rpn_regr: 0.1493 - detector_cls: 0.9869 - detector_regr: 0.4506 INFO 2019-07-26 10:56:55 +0000 master-replica-0 631/1000 [=================>............] - ETA: 11:28 - rpn_cls: 2.9025 - rpn_regr: 0.1493 - detector_cls: 0.9874 - detector_regr: 0.4507 INFO 2019-07-26 10:56:57 +0000 master-replica-0 632/1000 [=================>............] - ETA: 11:26 - rpn_cls: 2.9108 - rpn_regr: 0.1492 - detector_cls: 0.9868 - detector_regr: 0.4507 INFO 2019-07-26 10:56:58 +0000 master-replica-0 633/1000 [=================>............] - ETA: 11:23 - rpn_cls: 2.9070 - rpn_regr: 0.1491 - detector_cls: 0.9871 - detector_regr: 0.4506 INFO 2019-07-26 10:56:59 +0000 master-replica-0 634/1000 [==================>...........] - ETA: 11:21 - rpn_cls: 2.9048 - rpn_regr: 0.1490 - detector_cls: 0.9877 - detector_regr: 0.4505 INFO 2019-07-26 10:57:01 +0000 master-replica-0 635/1000 [==================>...........] - ETA: 11:19 - rpn_cls: 2.9002 - rpn_regr: 0.1490 - detector_cls: 0.9879 - detector_regr: 0.4504 INFO 2019-07-26 10:57:02 +0000 master-replica-0 636/1000 [==================>...........] - ETA: 11:17 - rpn_cls: 2.8986 - rpn_regr: 0.1489 - detector_cls: 0.9882 - detector_regr: 0.4502 INFO 2019-07-26 10:57:04 +0000 master-replica-0 637/1000 [==================>...........] - ETA: 11:15 - rpn_cls: 2.9008 - rpn_regr: 0.1493 - detector_cls: 0.9871 - detector_regr: 0.4495 INFO 2019-07-26 10:57:05 +0000 master-replica-0 638/1000 [==================>...........] - ETA: 11:13 - rpn_cls: 2.8972 - rpn_regr: 0.1491 - detector_cls: 0.9881 - detector_regr: 0.4497 INFO 2019-07-26 10:57:07 +0000 master-replica-0 639/1000 [==================>...........] - ETA: 11:11 - rpn_cls: 2.8969 - rpn_regr: 0.1490 - detector_cls: 0.9883 - detector_regr: 0.4497 INFO 2019-07-26 10:57:08 +0000 master-replica-0 640/1000 [==================>...........] - ETA: 11:09 - rpn_cls: 2.8924 - rpn_regr: 0.1490 - detector_cls: 0.9885 - detector_regr: 0.4497 INFO 2019-07-26 10:57:10 +0000 master-replica-0 641/1000 [==================>...........] - ETA: 11:07 - rpn_cls: 2.8966 - rpn_regr: 0.1490 - detector_cls: 0.9886 - detector_regr: 0.4497 INFO 2019-07-26 10:57:11 +0000 master-replica-0 642/1000 [==================>...........] - ETA: 11:05 - rpn_cls: 2.9019 - rpn_regr: 0.1491 - detector_cls: 0.9891 - detector_regr: 0.4497 INFO 2019-07-26 10:57:13 +0000 master-replica-0 643/1000 [==================>...........] - ETA: 11:03 - rpn_cls: 2.9039 - rpn_regr: 0.1491 - detector_cls: 0.9883 - detector_regr: 0.4490 INFO 2019-07-26 10:57:14 +0000 master-replica-0 644/1000 [==================>...........] - ETA: 11:01 - rpn_cls: 2.9006 - rpn_regr: 0.1490 - detector_cls: 0.9883 - detector_regr: 0.4492 INFO 2019-07-26 10:57:16 +0000 master-replica-0 645/1000 [==================>...........] - ETA: 10:58 - rpn_cls: 2.8966 - rpn_regr: 0.1490 - detector_cls: 0.9882 - detector_regr: 0.4491 INFO 2019-07-26 10:57:17 +0000 master-replica-0 646/1000 [==================>...........] - ETA: 10:56 - rpn_cls: 2.8931 - rpn_regr: 0.1490 - detector_cls: 0.9880 - detector_regr: 0.4491 INFO 2019-07-26 10:57:18 +0000 master-replica-0 647/1000 [==================>...........] - ETA: 10:54 - rpn_cls: 2.8903 - rpn_regr: 0.1489 - detector_cls: 0.9880 - detector_regr: 0.4490 INFO 2019-07-26 10:57:20 +0000 master-replica-0 648/1000 [==================>...........] - ETA: 10:52 - rpn_cls: 2.8879 - rpn_regr: 0.1488 - detector_cls: 0.9881 - detector_regr: 0.4491 INFO 2019-07-26 10:57:22 +0000 master-replica-0 649/1000 [==================>...........] - ETA: 10:50 - rpn_cls: 2.8969 - rpn_regr: 0.1491 - detector_cls: 0.9872 - detector_regr: 0.4489 INFO 2019-07-26 10:57:23 +0000 master-replica-0 650/1000 [==================>...........] - ETA: 10:48 - rpn_cls: 2.8938 - rpn_regr: 0.1490 - detector_cls: 0.9876 - detector_regr: 0.4488 INFO 2019-07-26 10:57:24 +0000 master-replica-0 651/1000 [==================>...........] - ETA: 10:46 - rpn_cls: 2.8893 - rpn_regr: 0.1489 - detector_cls: 0.9873 - detector_regr: 0.4489 INFO 2019-07-26 10:57:26 +0000 master-replica-0 652/1000 [==================>...........] - ETA: 10:44 - rpn_cls: 2.8849 - rpn_regr: 0.1488 - detector_cls: 0.9872 - detector_regr: 0.4492 INFO 2019-07-26 10:57:27 +0000 master-replica-0 653/1000 [==================>...........] - ETA: 10:42 - rpn_cls: 2.8805 - rpn_regr: 0.1489 - detector_cls: 0.9874 - detector_regr: 0.4491 INFO 2019-07-26 10:57:28 +0000 master-replica-0 654/1000 [==================>...........] - ETA: 10:40 - rpn_cls: 2.8776 - rpn_regr: 0.1487 - detector_cls: 0.9875 - detector_regr: 0.4490 INFO 2019-07-26 10:57:29 +0000 master-replica-0 655/1000 [==================>...........] - ETA: 10:38 - rpn_cls: 2.8732 - rpn_regr: 0.1486 - detector_cls: 0.9872 - detector_regr: 0.4491 INFO 2019-07-26 10:57:32 +0000 master-replica-0 656/1000 [==================>...........] - ETA: 10:35 - rpn_cls: 2.8702 - rpn_regr: 0.1485 - detector_cls: 0.9867 - detector_regr: 0.4490 INFO 2019-07-26 10:57:34 +0000 master-replica-0 657/1000 [==================>...........] - ETA: 10:34 - rpn_cls: 2.8799 - rpn_regr: 0.1503 - detector_cls: 0.9857 - detector_regr: 0.4483 INFO 2019-07-26 10:57:35 +0000 master-replica-0 658/1000 [==================>...........] - ETA: 10:32 - rpn_cls: 2.8759 - rpn_regr: 0.1502 - detector_cls: 0.9860 - detector_regr: 0.4483 INFO 2019-07-26 10:57:37 +0000 master-replica-0 659/1000 [==================>...........] - ETA: 10:30 - rpn_cls: 2.8715 - rpn_regr: 0.1502 - detector_cls: 0.9856 - detector_regr: 0.4484 INFO 2019-07-26 10:57:38 +0000 master-replica-0 660/1000 [==================>...........] - ETA: 10:28 - rpn_cls: 2.8678 - rpn_regr: 0.1502 - detector_cls: 0.9850 - detector_regr: 0.4482 INFO 2019-07-26 10:57:39 +0000 master-replica-0 661/1000 [==================>...........] - ETA: 10:26 - rpn_cls: 2.8661 - rpn_regr: 0.1501 - detector_cls: 0.9849 - detector_regr: 0.4481 INFO 2019-07-26 10:57:41 +0000 master-replica-0 662/1000 [==================>...........] - ETA: 10:24 - rpn_cls: 2.8617 - rpn_regr: 0.1501 - detector_cls: 0.9842 - detector_regr: 0.4484 INFO 2019-07-26 10:57:42 +0000 master-replica-0 663/1000 [==================>...........] - ETA: 10:21 - rpn_cls: 2.8640 - rpn_regr: 0.1500 - detector_cls: 0.9840 - detector_regr: 0.4485 INFO 2019-07-26 10:57:44 +0000 master-replica-0 664/1000 [==================>...........] - ETA: 10:19 - rpn_cls: 2.8596 - rpn_regr: 0.1500 - detector_cls: 0.9838 - detector_regr: 0.4487 INFO 2019-07-26 10:57:45 +0000 master-replica-0 665/1000 [==================>...........] - ETA: 10:17 - rpn_cls: 2.8553 - rpn_regr: 0.1499 - detector_cls: 0.9830 - detector_regr: 0.4485 INFO 2019-07-26 10:57:47 +0000 master-replica-0 666/1000 [==================>...........] - ETA: 10:15 - rpn_cls: 2.8537 - rpn_regr: 0.1498 - detector_cls: 0.9834 - detector_regr: 0.4486 INFO 2019-07-26 10:57:48 +0000 master-replica-0 667/1000 [===================>..........] - ETA: 10:13 - rpn_cls: 2.8608 - rpn_regr: 0.1498 - detector_cls: 0.9847 - detector_regr: 0.4486 INFO 2019-07-26 10:57:49 +0000 master-replica-0 668/1000 [===================>..........] - ETA: 10:11 - rpn_cls: 2.8655 - rpn_regr: 0.1502 - detector_cls: 0.9850 - detector_regr: 0.4486 INFO 2019-07-26 10:57:51 +0000 master-replica-0 669/1000 [===================>..........] - ETA: 10:09 - rpn_cls: 2.8638 - rpn_regr: 0.1500 - detector_cls: 0.9848 - detector_regr: 0.4485 INFO 2019-07-26 10:57:52 +0000 master-replica-0 670/1000 [===================>..........] - ETA: 10:07 - rpn_cls: 2.8679 - rpn_regr: 0.1500 - detector_cls: 0.9852 - detector_regr: 0.4486 INFO 2019-07-26 10:57:53 +0000 master-replica-0 671/1000 [===================>..........] - ETA: 10:05 - rpn_cls: 2.8664 - rpn_regr: 0.1498 - detector_cls: 0.9848 - detector_regr: 0.4487 INFO 2019-07-26 10:57:55 +0000 master-replica-0 672/1000 [===================>..........] - ETA: 10:03 - rpn_cls: 2.8684 - rpn_regr: 0.1497 - detector_cls: 0.9837 - detector_regr: 0.4480 INFO 2019-07-26 10:57:56 +0000 master-replica-0 673/1000 [===================>..........] - ETA: 10:01 - rpn_cls: 2.8721 - rpn_regr: 0.1496 - detector_cls: 0.9832 - detector_regr: 0.4480 INFO 2019-07-26 10:57:57 +0000 master-replica-0 674/1000 [===================>..........] - ETA: 9:59 - rpn_cls: 2.8695 - rpn_regr: 0.1495 - detector_cls: 0.9832 - detector_regr: 0.4480 INFO 2019-07-26 10:57:59 +0000 master-replica-0 675/1000 [===================>..........] - ETA: 9:57 - rpn_cls: 2.8780 - rpn_regr: 0.1493 - detector_cls: 0.9826 - detector_regr: 0.4473 INFO 2019-07-26 10:58:00 +0000 master-replica-0 676/1000 [===================>..........] - ETA: 9:55 - rpn_cls: 2.8766 - rpn_regr: 0.1491 - detector_cls: 0.9821 - detector_regr: 0.4472 INFO 2019-07-26 10:58:02 +0000 master-replica-0 677/1000 [===================>..........] - ETA: 9:53 - rpn_cls: 2.8741 - rpn_regr: 0.1490 - detector_cls: 0.9819 - detector_regr: 0.4472 INFO 2019-07-26 10:58:03 +0000 master-replica-0 678/1000 [===================>..........] - ETA: 9:51 - rpn_cls: 2.8747 - rpn_regr: 0.1492 - detector_cls: 0.9822 - detector_regr: 0.4471 INFO 2019-07-26 10:58:04 +0000 master-replica-0 679/1000 [===================>..........] - ETA: 9:48 - rpn_cls: 2.8733 - rpn_regr: 0.1491 - detector_cls: 0.9820 - detector_regr: 0.4470 INFO 2019-07-26 10:58:06 +0000 master-replica-0 680/1000 [===================>..........] - ETA: 9:46 - rpn_cls: 2.8795 - rpn_regr: 0.1493 - detector_cls: 0.9813 - detector_regr: 0.4473 INFO 2019-07-26 10:58:07 +0000 master-replica-0 681/1000 [===================>..........] - ETA: 9:44 - rpn_cls: 2.8767 - rpn_regr: 0.1492 - detector_cls: 0.9812 - detector_regr: 0.4474 INFO 2019-07-26 10:58:08 +0000 master-replica-0 682/1000 [===================>..........] - ETA: 9:42 - rpn_cls: 2.8725 - rpn_regr: 0.1493 - detector_cls: 0.9807 - detector_regr: 0.4477 INFO 2019-07-26 10:58:10 +0000 master-replica-0 683/1000 [===================>..........] - ETA: 9:40 - rpn_cls: 2.8690 - rpn_regr: 0.1491 - detector_cls: 0.9803 - detector_regr: 0.4475 INFO 2019-07-26 10:58:12 +0000 master-replica-0 684/1000 [===================>..........] - ETA: 9:38 - rpn_cls: 2.8662 - rpn_regr: 0.1489 - detector_cls: 0.9811 - detector_regr: 0.4475 INFO 2019-07-26 10:58:13 +0000 master-replica-0 685/1000 [===================>..........] - ETA: 9:36 - rpn_cls: 2.8684 - rpn_regr: 0.1489 - detector_cls: 0.9814 - detector_regr: 0.4476 INFO 2019-07-26 10:58:15 +0000 master-replica-0 686/1000 [===================>..........] - ETA: 9:35 - rpn_cls: 2.8642 - rpn_regr: 0.1492 - detector_cls: 0.9809 - detector_regr: 0.4473 INFO 2019-07-26 10:58:16 +0000 master-replica-0 687/1000 [===================>..........] - ETA: 9:32 - rpn_cls: 2.8600 - rpn_regr: 0.1494 - detector_cls: 0.9808 - detector_regr: 0.4473 INFO 2019-07-26 10:58:18 +0000 master-replica-0 688/1000 [===================>..........] - ETA: 9:30 - rpn_cls: 2.8567 - rpn_regr: 0.1493 - detector_cls: 0.9809 - detector_regr: 0.4473 INFO 2019-07-26 10:58:19 +0000 master-replica-0 689/1000 [===================>..........] - ETA: 9:29 - rpn_cls: 2.8536 - rpn_regr: 0.1492 - detector_cls: 0.9802 - detector_regr: 0.4473 INFO 2019-07-26 10:58:20 +0000 master-replica-0 690/1000 [===================>..........] - ETA: 9:26 - rpn_cls: 2.8615 - rpn_regr: 0.1491 - detector_cls: 0.9801 - detector_regr: 0.4475 INFO 2019-07-26 10:58:22 +0000 master-replica-0 691/1000 [===================>..........] - ETA: 9:24 - rpn_cls: 2.8573 - rpn_regr: 0.1492 - detector_cls: 0.9796 - detector_regr: 0.4473 INFO 2019-07-26 10:58:26 +0000 master-replica-0 692/1000 [===================>..........] - ETA: 9:23 - rpn_cls: 2.8641 - rpn_regr: 0.1495 - detector_cls: 0.9788 - detector_regr: 0.4466 INFO 2019-07-26 10:58:27 +0000 master-replica-0 693/1000 [===================>..........] - ETA: 9:21 - rpn_cls: 2.8619 - rpn_regr: 0.1494 - detector_cls: 0.9790 - detector_regr: 0.4466 INFO 2019-07-26 10:58:28 +0000 master-replica-0 694/1000 [===================>..........] - ETA: 9:19 - rpn_cls: 2.8578 - rpn_regr: 0.1493 - detector_cls: 0.9791 - detector_regr: 0.4467 INFO 2019-07-26 10:58:29 +0000 master-replica-0 695/1000 [===================>..........] - ETA: 9:17 - rpn_cls: 2.8557 - rpn_regr: 0.1492 - detector_cls: 0.9786 - detector_regr: 0.4469 INFO 2019-07-26 10:58:31 +0000 master-replica-0 696/1000 [===================>..........] - ETA: 9:15 - rpn_cls: 2.8522 - rpn_regr: 0.1492 - detector_cls: 0.9792 - detector_regr: 0.4468 INFO 2019-07-26 10:58:32 +0000 master-replica-0 697/1000 [===================>..........] - ETA: 9:13 - rpn_cls: 2.8482 - rpn_regr: 0.1491 - detector_cls: 0.9802 - detector_regr: 0.4466 INFO 2019-07-26 10:58:34 +0000 master-replica-0 698/1000 [===================>..........] - ETA: 9:11 - rpn_cls: 2.8441 - rpn_regr: 0.1491 - detector_cls: 0.9793 - detector_regr: 0.4460 INFO 2019-07-26 10:58:35 +0000 master-replica-0 699/1000 [===================>..........] - ETA: 9:09 - rpn_cls: 2.8413 - rpn_regr: 0.1489 - detector_cls: 0.9793 - detector_regr: 0.4459 INFO 2019-07-26 10:58:36 +0000 master-replica-0 700/1000 [====================>.........] - ETA: 9:07 - rpn_cls: 2.8373 - rpn_regr: 0.1488 - detector_cls: 0.9788 - detector_regr: 0.4462 INFO 2019-07-26 10:58:38 +0000 master-replica-0 701/1000 [====================>.........] - ETA: 9:05 - rpn_cls: 2.8332 - rpn_regr: 0.1487 - detector_cls: 0.9784 - detector_regr: 0.4461 INFO 2019-07-26 10:58:40 +0000 master-replica-0 702/1000 [====================>.........] - ETA: 9:03 - rpn_cls: 2.8292 - rpn_regr: 0.1487 - detector_cls: 0.9781 - detector_regr: 0.4461 INFO 2019-07-26 10:58:41 +0000 master-replica-0 703/1000 [====================>.........] - ETA: 9:01 - rpn_cls: 2.8359 - rpn_regr: 0.1489 - detector_cls: 0.9773 - detector_regr: 0.4455 INFO 2019-07-26 10:58:42 +0000 master-replica-0 704/1000 [====================>.........] - ETA: 8:59 - rpn_cls: 2.8333 - rpn_regr: 0.1488 - detector_cls: 0.9768 - detector_regr: 0.4454 INFO 2019-07-26 10:58:44 +0000 master-replica-0 705/1000 [====================>.........] - ETA: 8:57 - rpn_cls: 2.8292 - rpn_regr: 0.1487 - detector_cls: 0.9767 - detector_regr: 0.4457 INFO 2019-07-26 10:58:45 +0000 master-replica-0 706/1000 [====================>.........] - ETA: 8:55 - rpn_cls: 2.8269 - rpn_regr: 0.1486 - detector_cls: 0.9764 - detector_regr: 0.4456 INFO 2019-07-26 10:58:47 +0000 master-replica-0 707/1000 [====================>.........] - ETA: 8:53 - rpn_cls: 2.8229 - rpn_regr: 0.1485 - detector_cls: 0.9758 - detector_regr: 0.4456 INFO 2019-07-26 10:58:49 +0000 master-replica-0 708/1000 [====================>.........] - ETA: 8:51 - rpn_cls: 2.8189 - rpn_regr: 0.1486 - detector_cls: 0.9750 - detector_regr: 0.4450 INFO 2019-07-26 10:58:50 +0000 master-replica-0 709/1000 [====================>.........] - ETA: 8:50 - rpn_cls: 2.8170 - rpn_regr: 0.1485 - detector_cls: 0.9742 - detector_regr: 0.4451 INFO 2019-07-26 10:58:51 +0000 master-replica-0 710/1000 [====================>.........] - ETA: 8:48 - rpn_cls: 2.8139 - rpn_regr: 0.1484 - detector_cls: 0.9742 - detector_regr: 0.4453 INFO 2019-07-26 10:58:53 +0000 master-replica-0 711/1000 [====================>.........] - ETA: 8:46 - rpn_cls: 2.8137 - rpn_regr: 0.1484 - detector_cls: 0.9738 - detector_regr: 0.4452 INFO 2019-07-26 10:58:54 +0000 master-replica-0 712/1000 [====================>.........] - ETA: 8:44 - rpn_cls: 2.8098 - rpn_regr: 0.1484 - detector_cls: 0.9742 - detector_regr: 0.4453 INFO 2019-07-26 10:58:55 +0000 master-replica-0 713/1000 [====================>.........] - ETA: 8:42 - rpn_cls: 2.8091 - rpn_regr: 0.1483 - detector_cls: 0.9746 - detector_regr: 0.4453 INFO 2019-07-26 10:58:58 +0000 master-replica-0 714/1000 [====================>.........] - ETA: 8:40 - rpn_cls: 2.8073 - rpn_regr: 0.1482 - detector_cls: 0.9744 - detector_regr: 0.4453 INFO 2019-07-26 10:59:00 +0000 master-replica-0 715/1000 [====================>.........] - ETA: 8:38 - rpn_cls: 2.8172 - rpn_regr: 0.1483 - detector_cls: 0.9737 - detector_regr: 0.4452 INFO 2019-07-26 10:59:01 +0000 master-replica-0 716/1000 [====================>.........] - ETA: 8:36 - rpn_cls: 2.8269 - rpn_regr: 0.1482 - detector_cls: 0.9730 - detector_regr: 0.4446 INFO 2019-07-26 10:59:02 +0000 master-replica-0 717/1000 [====================>.........] - ETA: 8:34 - rpn_cls: 2.8289 - rpn_regr: 0.1481 - detector_cls: 0.9720 - detector_regr: 0.4448 INFO 2019-07-26 10:59:04 +0000 master-replica-0 718/1000 [====================>.........] - ETA: 8:32 - rpn_cls: 2.8373 - rpn_regr: 0.1480 - detector_cls: 0.9712 - detector_regr: 0.4450 INFO 2019-07-26 10:59:05 +0000 master-replica-0 719/1000 [====================>.........] - ETA: 8:30 - rpn_cls: 2.8333 - rpn_regr: 0.1478 - detector_cls: 0.9712 - detector_regr: 0.4450 INFO 2019-07-26 10:59:06 +0000 master-replica-0 720/1000 [====================>.........] - ETA: 8:28 - rpn_cls: 2.8304 - rpn_regr: 0.1478 - detector_cls: 0.9712 - detector_regr: 0.4449 INFO 2019-07-26 10:59:08 +0000 master-replica-0 721/1000 [====================>.........] - ETA: 8:26 - rpn_cls: 2.8265 - rpn_regr: 0.1477 - detector_cls: 0.9704 - detector_regr: 0.4450 INFO 2019-07-26 10:59:09 +0000 master-replica-0 722/1000 [====================>.........] - ETA: 8:24 - rpn_cls: 2.8248 - rpn_regr: 0.1476 - detector_cls: 0.9702 - detector_regr: 0.4451 INFO 2019-07-26 10:59:11 +0000 master-replica-0 723/1000 [====================>.........] - ETA: 8:22 - rpn_cls: 2.8209 - rpn_regr: 0.1476 - detector_cls: 0.9698 - detector_regr: 0.4452 INFO 2019-07-26 10:59:12 +0000 master-replica-0 724/1000 [====================>.........] - ETA: 8:20 - rpn_cls: 2.8247 - rpn_regr: 0.1476 - detector_cls: 0.9709 - detector_regr: 0.4452 INFO 2019-07-26 10:59:13 +0000 master-replica-0 725/1000 [====================>.........] - ETA: 8:18 - rpn_cls: 2.8208 - rpn_regr: 0.1476 - detector_cls: 0.9707 - detector_regr: 0.4453 INFO 2019-07-26 10:59:15 +0000 master-replica-0 726/1000 [====================>.........] - ETA: 8:16 - rpn_cls: 2.8181 - rpn_regr: 0.1475 - detector_cls: 0.9708 - detector_regr: 0.4456 INFO 2019-07-26 10:59:16 +0000 master-replica-0 727/1000 [====================>.........] - ETA: 8:14 - rpn_cls: 2.8157 - rpn_regr: 0.1474 - detector_cls: 0.9716 - detector_regr: 0.4456 INFO 2019-07-26 10:59:17 +0000 master-replica-0 728/1000 [====================>.........] - ETA: 8:12 - rpn_cls: 2.8129 - rpn_regr: 0.1474 - detector_cls: 0.9733 - detector_regr: 0.4456 INFO 2019-07-26 10:59:19 +0000 master-replica-0 729/1000 [====================>.........] - ETA: 8:10 - rpn_cls: 2.8090 - rpn_regr: 0.1474 - detector_cls: 0.9741 - detector_regr: 0.4455 INFO 2019-07-26 10:59:21 +0000 master-replica-0 730/1000 [====================>.........] - ETA: 8:08 - rpn_cls: 2.8151 - rpn_regr: 0.1477 - detector_cls: 0.9749 - detector_regr: 0.4455 INFO 2019-07-26 10:59:22 +0000 master-replica-0 731/1000 [====================>.........] - ETA: 8:07 - rpn_cls: 2.8130 - rpn_regr: 0.1476 - detector_cls: 0.9760 - detector_regr: 0.4454 INFO 2019-07-26 10:59:24 +0000 master-replica-0 732/1000 [====================>.........] - ETA: 8:05 - rpn_cls: 2.8218 - rpn_regr: 0.1476 - detector_cls: 0.9758 - detector_regr: 0.4455 INFO 2019-07-26 10:59:26 +0000 master-replica-0 733/1000 [====================>.........] - ETA: 8:03 - rpn_cls: 2.8179 - rpn_regr: 0.1475 - detector_cls: 0.9752 - detector_regr: 0.4456 INFO 2019-07-26 10:59:27 +0000 master-replica-0 734/1000 [=====================>........] - ETA: 8:01 - rpn_cls: 2.8159 - rpn_regr: 0.1474 - detector_cls: 0.9749 - detector_regr: 0.4457 INFO 2019-07-26 10:59:29 +0000 master-replica-0 735/1000 [=====================>........] - ETA: 7:59 - rpn_cls: 2.8165 - rpn_regr: 0.1473 - detector_cls: 0.9760 - detector_regr: 0.4457 INFO 2019-07-26 10:59:31 +0000 master-replica-0 736/1000 [=====================>........] - ETA: 7:57 - rpn_cls: 2.8240 - rpn_regr: 0.1475 - detector_cls: 0.9755 - detector_regr: 0.4452 INFO 2019-07-26 10:59:32 +0000 master-replica-0 737/1000 [=====================>........] - ETA: 7:55 - rpn_cls: 2.8237 - rpn_regr: 0.1474 - detector_cls: 0.9764 - detector_regr: 0.4452 INFO 2019-07-26 10:59:34 +0000 master-replica-0 738/1000 [=====================>........] - ETA: 7:54 - rpn_cls: 2.8288 - rpn_regr: 0.1478 - detector_cls: 0.9757 - detector_regr: 0.4446 INFO 2019-07-26 10:59:35 +0000 master-replica-0 739/1000 [=====================>........] - ETA: 7:52 - rpn_cls: 2.8280 - rpn_regr: 0.1477 - detector_cls: 0.9756 - detector_regr: 0.4444 INFO 2019-07-26 10:59:37 +0000 master-replica-0 740/1000 [=====================>........] - ETA: 7:50 - rpn_cls: 2.8361 - rpn_regr: 0.1477 - detector_cls: 0.9756 - detector_regr: 0.4446 INFO 2019-07-26 10:59:38 +0000 master-replica-0 741/1000 [=====================>........] - ETA: 7:48 - rpn_cls: 2.8358 - rpn_regr: 0.1480 - detector_cls: 0.9749 - detector_regr: 0.4447 INFO 2019-07-26 10:59:40 +0000 master-replica-0 742/1000 [=====================>........] - ETA: 7:46 - rpn_cls: 2.8372 - rpn_regr: 0.1479 - detector_cls: 0.9753 - detector_regr: 0.4447 INFO 2019-07-26 10:59:41 +0000 master-replica-0 743/1000 [=====================>........] - ETA: 7:44 - rpn_cls: 2.8397 - rpn_regr: 0.1480 - detector_cls: 0.9757 - detector_regr: 0.4448 INFO 2019-07-26 10:59:42 +0000 master-replica-0 744/1000 [=====================>........] - ETA: 7:42 - rpn_cls: 2.8358 - rpn_regr: 0.1479 - detector_cls: 0.9756 - detector_regr: 0.4448 INFO 2019-07-26 10:59:44 +0000 master-replica-0 745/1000 [=====================>........] - ETA: 7:40 - rpn_cls: 2.8387 - rpn_regr: 0.1480 - detector_cls: 0.9757 - detector_regr: 0.4448 INFO 2019-07-26 10:59:45 +0000 master-replica-0 746/1000 [=====================>........] - ETA: 7:38 - rpn_cls: 2.8349 - rpn_regr: 0.1479 - detector_cls: 0.9755 - detector_regr: 0.4449 INFO 2019-07-26 10:59:46 +0000 master-replica-0 747/1000 [=====================>........] - ETA: 7:36 - rpn_cls: 2.8330 - rpn_regr: 0.1479 - detector_cls: 0.9758 - detector_regr: 0.4449 INFO 2019-07-26 10:59:48 +0000 master-replica-0 748/1000 [=====================>........] - ETA: 7:34 - rpn_cls: 2.8310 - rpn_regr: 0.1478 - detector_cls: 0.9762 - detector_regr: 0.4450 INFO 2019-07-26 10:59:49 +0000 master-replica-0 749/1000 [=====================>........] - ETA: 7:32 - rpn_cls: 2.8272 - rpn_regr: 0.1477 - detector_cls: 0.9765 - detector_regr: 0.4449 INFO 2019-07-26 10:59:50 +0000 master-replica-0 750/1000 [=====================>........] - ETA: 7:30 - rpn_cls: 2.8234 - rpn_regr: 0.1476 - detector_cls: 0.9767 - detector_regr: 0.4449 INFO 2019-07-26 10:59:52 +0000 master-replica-0 751/1000 [=====================>........] - ETA: 7:28 - rpn_cls: 2.8207 - rpn_regr: 0.1475 - detector_cls: 0.9766 - detector_regr: 0.4449 INFO 2019-07-26 10:59:53 +0000 master-replica-0 752/1000 [=====================>........] - ETA: 7:26 - rpn_cls: 2.8226 - rpn_regr: 0.1477 - detector_cls: 0.9758 - detector_regr: 0.4443 INFO 2019-07-26 10:59:54 +0000 master-replica-0 753/1000 [=====================>........] - ETA: 7:24 - rpn_cls: 2.8189 - rpn_regr: 0.1477 - detector_cls: 0.9753 - detector_regr: 0.4446 INFO 2019-07-26 10:59:55 +0000 master-replica-0 754/1000 [=====================>........] - ETA: 7:22 - rpn_cls: 2.8152 - rpn_regr: 0.1476 - detector_cls: 0.9751 - detector_regr: 0.4447 INFO 2019-07-26 10:59:57 +0000 master-replica-0 755/1000 [=====================>........] - ETA: 7:20 - rpn_cls: 2.8201 - rpn_regr: 0.1479 - detector_cls: 0.9753 - detector_regr: 0.4447 INFO 2019-07-26 10:59:58 +0000 master-replica-0 756/1000 [=====================>........] - ETA: 7:18 - rpn_cls: 2.8190 - rpn_regr: 0.1482 - detector_cls: 0.9757 - detector_regr: 0.4448 INFO 2019-07-26 11:00:00 +0000 master-replica-0 757/1000 [=====================>........] - ETA: 7:17 - rpn_cls: 2.8162 - rpn_regr: 0.1481 - detector_cls: 0.9758 - detector_regr: 0.4447 INFO 2019-07-26 11:00:01 +0000 master-replica-0 758/1000 [=====================>........] - ETA: 7:15 - rpn_cls: 2.8152 - rpn_regr: 0.1481 - detector_cls: 0.9760 - detector_regr: 0.4447 INFO 2019-07-26 11:00:03 +0000 master-replica-0 759/1000 [=====================>........] - ETA: 7:13 - rpn_cls: 2.8130 - rpn_regr: 0.1481 - detector_cls: 0.9758 - detector_regr: 0.4445 INFO 2019-07-26 11:00:04 +0000 master-replica-0 760/1000 [=====================>........] - ETA: 7:11 - rpn_cls: 2.8093 - rpn_regr: 0.1480 - detector_cls: 0.9752 - detector_regr: 0.4444 INFO 2019-07-26 11:00:06 +0000 master-replica-0 761/1000 [=====================>........] - ETA: 7:09 - rpn_cls: 2.8072 - rpn_regr: 0.1478 - detector_cls: 0.9752 - detector_regr: 0.4444 INFO 2019-07-26 11:00:08 +0000 master-replica-0 762/1000 [=====================>........] - ETA: 7:07 - rpn_cls: 2.8052 - rpn_regr: 0.1477 - detector_cls: 0.9758 - detector_regr: 0.4445 INFO 2019-07-26 11:00:09 +0000 master-replica-0 763/1000 [=====================>........] - ETA: 7:05 - rpn_cls: 2.8121 - rpn_regr: 0.1479 - detector_cls: 0.9751 - detector_regr: 0.4446 INFO 2019-07-26 11:00:10 +0000 master-replica-0 764/1000 [=====================>........] - ETA: 7:03 - rpn_cls: 2.8139 - rpn_regr: 0.1479 - detector_cls: 0.9745 - detector_regr: 0.4440 INFO 2019-07-26 11:00:12 +0000 master-replica-0 765/1000 [=====================>........] - ETA: 7:01 - rpn_cls: 2.8102 - rpn_regr: 0.1480 - detector_cls: 0.9746 - detector_regr: 0.4441 INFO 2019-07-26 11:00:13 +0000 master-replica-0 766/1000 [=====================>........] - ETA: 7:00 - rpn_cls: 2.8109 - rpn_regr: 0.1483 - detector_cls: 0.9737 - detector_regr: 0.4435 INFO 2019-07-26 11:00:15 +0000 master-replica-0 767/1000 [======================>.......] - ETA: 6:58 - rpn_cls: 2.8072 - rpn_regr: 0.1485 - detector_cls: 0.9741 - detector_regr: 0.4436 INFO 2019-07-26 11:00:17 +0000 master-replica-0 768/1000 [======================>.......] - ETA: 6:56 - rpn_cls: 2.8147 - rpn_regr: 0.1500 - detector_cls: 0.9737 - detector_regr: 0.4430 INFO 2019-07-26 11:00:18 +0000 master-replica-0 769/1000 [======================>.......] - ETA: 6:54 - rpn_cls: 2.8117 - rpn_regr: 0.1500 - detector_cls: 0.9738 - detector_regr: 0.4431 INFO 2019-07-26 11:00:19 +0000 master-replica-0 770/1000 [======================>.......] - ETA: 6:52 - rpn_cls: 2.8080 - rpn_regr: 0.1499 - detector_cls: 0.9736 - detector_regr: 0.4433 INFO 2019-07-26 11:00:21 +0000 master-replica-0 771/1000 [======================>.......] - ETA: 6:50 - rpn_cls: 2.8053 - rpn_regr: 0.1498 - detector_cls: 0.9739 - detector_regr: 0.4431 INFO 2019-07-26 11:00:22 +0000 master-replica-0 772/1000 [======================>.......] - ETA: 6:48 - rpn_cls: 2.8028 - rpn_regr: 0.1496 - detector_cls: 0.9738 - detector_regr: 0.4430 INFO 2019-07-26 11:00:23 +0000 master-replica-0 773/1000 [======================>.......] - ETA: 6:46 - rpn_cls: 2.8091 - rpn_regr: 0.1496 - detector_cls: 0.9736 - detector_regr: 0.4430 INFO 2019-07-26 11:00:24 +0000 master-replica-0 774/1000 [======================>.......] - ETA: 6:44 - rpn_cls: 2.8055 - rpn_regr: 0.1495 - detector_cls: 0.9735 - detector_regr: 0.4428 INFO 2019-07-26 11:00:26 +0000 master-replica-0 775/1000 [======================>.......] - ETA: 6:42 - rpn_cls: 2.8033 - rpn_regr: 0.1493 - detector_cls: 0.9736 - detector_regr: 0.4428 INFO 2019-07-26 11:00:27 +0000 master-replica-0 776/1000 [======================>.......] - ETA: 6:40 - rpn_cls: 2.8108 - rpn_regr: 0.1495 - detector_cls: 0.9727 - detector_regr: 0.4422 INFO 2019-07-26 11:00:29 +0000 master-replica-0 777/1000 [======================>.......] - ETA: 6:39 - rpn_cls: 2.8086 - rpn_regr: 0.1494 - detector_cls: 0.9727 - detector_regr: 0.4422 INFO 2019-07-26 11:00:30 +0000 master-replica-0 778/1000 [======================>.......] - ETA: 6:37 - rpn_cls: 2.8061 - rpn_regr: 0.1493 - detector_cls: 0.9725 - detector_regr: 0.4422 INFO 2019-07-26 11:00:31 +0000 master-replica-0 779/1000 [======================>.......] - ETA: 6:35 - rpn_cls: 2.8025 - rpn_regr: 0.1492 - detector_cls: 0.9727 - detector_regr: 0.4422 INFO 2019-07-26 11:00:33 +0000 master-replica-0 780/1000 [======================>.......] - ETA: 6:33 - rpn_cls: 2.7997 - rpn_regr: 0.1492 - detector_cls: 0.9731 - detector_regr: 0.4424 INFO 2019-07-26 11:00:34 +0000 master-replica-0 781/1000 [======================>.......] - ETA: 6:31 - rpn_cls: 2.8030 - rpn_regr: 0.1493 - detector_cls: 0.9734 - detector_regr: 0.4424 INFO 2019-07-26 11:00:36 +0000 master-replica-0 782/1000 [======================>.......] - ETA: 6:29 - rpn_cls: 2.8013 - rpn_regr: 0.1492 - detector_cls: 0.9731 - detector_regr: 0.4422 INFO 2019-07-26 11:00:37 +0000 master-replica-0 783/1000 [======================>.......] - ETA: 6:27 - rpn_cls: 2.8056 - rpn_regr: 0.1493 - detector_cls: 0.9725 - detector_regr: 0.4417 INFO 2019-07-26 11:00:38 +0000 master-replica-0 784/1000 [======================>.......] - ETA: 6:25 - rpn_cls: 2.8021 - rpn_regr: 0.1492 - detector_cls: 0.9722 - detector_regr: 0.4417 INFO 2019-07-26 11:00:40 +0000 master-replica-0 785/1000 [======================>.......] - ETA: 6:23 - rpn_cls: 2.7985 - rpn_regr: 0.1491 - detector_cls: 0.9727 - detector_regr: 0.4418 INFO 2019-07-26 11:00:41 +0000 master-replica-0 786/1000 [======================>.......] - ETA: 6:21 - rpn_cls: 2.7958 - rpn_regr: 0.1490 - detector_cls: 0.9735 - detector_regr: 0.4418 INFO 2019-07-26 11:00:42 +0000 master-replica-0 787/1000 [======================>.......] - ETA: 6:19 - rpn_cls: 2.7928 - rpn_regr: 0.1489 - detector_cls: 0.9731 - detector_regr: 0.4418 INFO 2019-07-26 11:00:44 +0000 master-replica-0 788/1000 [======================>.......] - ETA: 6:18 - rpn_cls: 2.7911 - rpn_regr: 0.1488 - detector_cls: 0.9728 - detector_regr: 0.4419 INFO 2019-07-26 11:00:45 +0000 master-replica-0 789/1000 [======================>.......] - ETA: 6:16 - rpn_cls: 2.7987 - rpn_regr: 0.1490 - detector_cls: 0.9723 - detector_regr: 0.4415 INFO 2019-07-26 11:00:47 +0000 master-replica-0 790/1000 [======================>.......] - ETA: 6:14 - rpn_cls: 2.7965 - rpn_regr: 0.1489 - detector_cls: 0.9729 - detector_regr: 0.4415 INFO 2019-07-26 11:00:49 +0000 master-replica-0 791/1000 [======================>.......] - ETA: 6:12 - rpn_cls: 2.7980 - rpn_regr: 0.1488 - detector_cls: 0.9730 - detector_regr: 0.4414 INFO 2019-07-26 11:00:50 +0000 master-replica-0 792/1000 [======================>.......] - ETA: 6:10 - rpn_cls: 2.7956 - rpn_regr: 0.1488 - detector_cls: 0.9728 - detector_regr: 0.4414 INFO 2019-07-26 11:00:51 +0000 master-replica-0 793/1000 [======================>.......] - ETA: 6:08 - rpn_cls: 2.7933 - rpn_regr: 0.1488 - detector_cls: 0.9725 - detector_regr: 0.4413 INFO 2019-07-26 11:00:53 +0000 master-replica-0 794/1000 [======================>.......] - ETA: 6:06 - rpn_cls: 2.7907 - rpn_regr: 0.1487 - detector_cls: 0.9734 - detector_regr: 0.4412 INFO 2019-07-26 11:00:54 +0000 master-replica-0 795/1000 [======================>.......] - ETA: 6:05 - rpn_cls: 2.7879 - rpn_regr: 0.1485 - detector_cls: 0.9737 - detector_regr: 0.4411 INFO 2019-07-26 11:00:55 +0000 master-replica-0 796/1000 [======================>.......] - ETA: 6:03 - rpn_cls: 2.7895 - rpn_regr: 0.1486 - detector_cls: 0.9735 - detector_regr: 0.4412 INFO 2019-07-26 11:00:57 +0000 master-replica-0 797/1000 [======================>.......] - ETA: 6:01 - rpn_cls: 2.7868 - rpn_regr: 0.1485 - detector_cls: 0.9735 - detector_regr: 0.4412 INFO 2019-07-26 11:00:58 +0000 master-replica-0 798/1000 [======================>.......] - ETA: 5:59 - rpn_cls: 2.7849 - rpn_regr: 0.1485 - detector_cls: 0.9734 - detector_regr: 0.4412 INFO 2019-07-26 11:00:59 +0000 master-replica-0 799/1000 [======================>.......] - ETA: 5:57 - rpn_cls: 2.7827 - rpn_regr: 0.1484 - detector_cls: 0.9731 - detector_regr: 0.4412 INFO 2019-07-26 11:01:01 +0000 master-replica-0 800/1000 [=======================>......] - ETA: 5:55 - rpn_cls: 2.7846 - rpn_regr: 0.1483 - detector_cls: 0.9722 - detector_regr: 0.4415 INFO 2019-07-26 11:01:02 +0000 master-replica-0 801/1000 [=======================>......] - ETA: 5:53 - rpn_cls: 2.7921 - rpn_regr: 0.1485 - detector_cls: 0.9713 - detector_regr: 0.4409 INFO 2019-07-26 11:01:03 +0000 master-replica-0 802/1000 [=======================>......] - ETA: 5:51 - rpn_cls: 2.7889 - rpn_regr: 0.1484 - detector_cls: 0.9711 - detector_regr: 0.4408 INFO 2019-07-26 11:01:05 +0000 master-replica-0 803/1000 [=======================>......] - ETA: 5:49 - rpn_cls: 2.7924 - rpn_regr: 0.1483 - detector_cls: 0.9708 - detector_regr: 0.4410 INFO 2019-07-26 11:01:06 +0000 master-replica-0 804/1000 [=======================>......] - ETA: 5:48 - rpn_cls: 2.7910 - rpn_regr: 0.1484 - detector_cls: 0.9713 - detector_regr: 0.4410 INFO 2019-07-26 11:01:08 +0000 master-replica-0 805/1000 [=======================>......] - ETA: 5:46 - rpn_cls: 2.7889 - rpn_regr: 0.1482 - detector_cls: 0.9713 - detector_regr: 0.4410 INFO 2019-07-26 11:01:09 +0000 master-replica-0 806/1000 [=======================>......] - ETA: 5:44 - rpn_cls: 2.7859 - rpn_regr: 0.1481 - detector_cls: 0.9724 - detector_regr: 0.4409 INFO 2019-07-26 11:01:10 +0000 master-replica-0 807/1000 [=======================>......] - ETA: 5:42 - rpn_cls: 2.7825 - rpn_regr: 0.1481 - detector_cls: 0.9720 - detector_regr: 0.4410 INFO 2019-07-26 11:01:12 +0000 master-replica-0 808/1000 [=======================>......] - ETA: 5:40 - rpn_cls: 2.7881 - rpn_regr: 0.1480 - detector_cls: 0.9715 - detector_regr: 0.4413 INFO 2019-07-26 11:01:13 +0000 master-replica-0 809/1000 [=======================>......] - ETA: 5:38 - rpn_cls: 2.7897 - rpn_regr: 0.1480 - detector_cls: 0.9711 - detector_regr: 0.4411 INFO 2019-07-26 11:01:14 +0000 master-replica-0 810/1000 [=======================>......] - ETA: 5:36 - rpn_cls: 2.7975 - rpn_regr: 0.1481 - detector_cls: 0.9708 - detector_regr: 0.4411 INFO 2019-07-26 11:01:16 +0000 master-replica-0 811/1000 [=======================>......] - ETA: 5:35 - rpn_cls: 2.7951 - rpn_regr: 0.1480 - detector_cls: 0.9712 - detector_regr: 0.4410 INFO 2019-07-26 11:01:17 +0000 master-replica-0 812/1000 [=======================>......] - ETA: 5:33 - rpn_cls: 2.8026 - rpn_regr: 0.1480 - detector_cls: 0.9705 - detector_regr: 0.4412 INFO 2019-07-26 11:01:19 +0000 master-replica-0 813/1000 [=======================>......] - ETA: 5:31 - rpn_cls: 2.8016 - rpn_regr: 0.1479 - detector_cls: 0.9701 - detector_regr: 0.4411 INFO 2019-07-26 11:01:20 +0000 master-replica-0 814/1000 [=======================>......] - ETA: 5:29 - rpn_cls: 2.7993 - rpn_regr: 0.1478 - detector_cls: 0.9697 - detector_regr: 0.4410 INFO 2019-07-26 11:01:21 +0000 master-replica-0 815/1000 [=======================>......] - ETA: 5:27 - rpn_cls: 2.7959 - rpn_regr: 0.1480 - detector_cls: 0.9691 - detector_regr: 0.4408 INFO 2019-07-26 11:01:22 +0000 master-replica-0 816/1000 [=======================>......] - ETA: 5:25 - rpn_cls: 2.7924 - rpn_regr: 0.1479 - detector_cls: 0.9688 - detector_regr: 0.4410 INFO 2019-07-26 11:01:23 +0000 master-replica-0 817/1000 [=======================>......] - ETA: 5:23 - rpn_cls: 2.7897 - rpn_regr: 0.1478 - detector_cls: 0.9688 - detector_regr: 0.4409 INFO 2019-07-26 11:01:25 +0000 master-replica-0 818/1000 [=======================>......] - ETA: 5:21 - rpn_cls: 2.7862 - rpn_regr: 0.1477 - detector_cls: 0.9684 - detector_regr: 0.4409 INFO 2019-07-26 11:01:26 +0000 master-replica-0 819/1000 [=======================>......] - ETA: 5:19 - rpn_cls: 2.7879 - rpn_regr: 0.1479 - detector_cls: 0.9680 - detector_regr: 0.4408 INFO 2019-07-26 11:01:28 +0000 master-replica-0 820/1000 [=======================>......] - ETA: 5:18 - rpn_cls: 2.7859 - rpn_regr: 0.1478 - detector_cls: 0.9683 - detector_regr: 0.4408 INFO 2019-07-26 11:01:29 +0000 master-replica-0 821/1000 [=======================>......] - ETA: 5:16 - rpn_cls: 2.7825 - rpn_regr: 0.1479 - detector_cls: 0.9686 - detector_regr: 0.4408 INFO 2019-07-26 11:01:30 +0000 master-replica-0 822/1000 [=======================>......] - ETA: 5:14 - rpn_cls: 2.7836 - rpn_regr: 0.1479 - detector_cls: 0.9684 - detector_regr: 0.4407 INFO 2019-07-26 11:01:32 +0000 master-replica-0 823/1000 [=======================>......] - ETA: 5:12 - rpn_cls: 2.7802 - rpn_regr: 0.1480 - detector_cls: 0.9679 - detector_regr: 0.4406 INFO 2019-07-26 11:01:33 +0000 master-replica-0 824/1000 [=======================>......] - ETA: 5:10 - rpn_cls: 2.7779 - rpn_regr: 0.1479 - detector_cls: 0.9678 - detector_regr: 0.4404 INFO 2019-07-26 11:01:34 +0000 master-replica-0 825/1000 [=======================>......] - ETA: 5:08 - rpn_cls: 2.7800 - rpn_regr: 0.1479 - detector_cls: 0.9674 - detector_regr: 0.4406 INFO 2019-07-26 11:01:36 +0000 master-replica-0 826/1000 [=======================>......] - ETA: 5:07 - rpn_cls: 2.7779 - rpn_regr: 0.1479 - detector_cls: 0.9669 - detector_regr: 0.4406 INFO 2019-07-26 11:01:37 +0000 master-replica-0 827/1000 [=======================>......] - ETA: 5:05 - rpn_cls: 2.7752 - rpn_regr: 0.1478 - detector_cls: 0.9668 - detector_regr: 0.4406 INFO 2019-07-26 11:01:38 +0000 master-replica-0 828/1000 [=======================>......] - ETA: 5:03 - rpn_cls: 2.7727 - rpn_regr: 0.1478 - detector_cls: 0.9675 - detector_regr: 0.4406 INFO 2019-07-26 11:01:40 +0000 master-replica-0 829/1000 [=======================>......] - ETA: 5:01 - rpn_cls: 2.7745 - rpn_regr: 0.1477 - detector_cls: 0.9668 - detector_regr: 0.4400 INFO 2019-07-26 11:01:42 +0000 master-replica-0 830/1000 [=======================>......] - ETA: 4:59 - rpn_cls: 2.7713 - rpn_regr: 0.1476 - detector_cls: 0.9667 - detector_regr: 0.4400 INFO 2019-07-26 11:01:43 +0000 master-replica-0 831/1000 [=======================>......] - ETA: 4:57 - rpn_cls: 2.7687 - rpn_regr: 0.1476 - detector_cls: 0.9662 - detector_regr: 0.4400 INFO 2019-07-26 11:01:45 +0000 master-replica-0 832/1000 [=======================>......] - ETA: 4:56 - rpn_cls: 2.7654 - rpn_regr: 0.1477 - detector_cls: 0.9652 - detector_regr: 0.4395 INFO 2019-07-26 11:01:46 +0000 master-replica-0 833/1000 [=======================>......] - ETA: 4:54 - rpn_cls: 2.7675 - rpn_regr: 0.1477 - detector_cls: 0.9648 - detector_regr: 0.4394 INFO 2019-07-26 11:01:47 +0000 master-replica-0 834/1000 [========================>.....] - ETA: 4:52 - rpn_cls: 2.7642 - rpn_regr: 0.1476 - detector_cls: 0.9646 - detector_regr: 0.4395 INFO 2019-07-26 11:01:49 +0000 master-replica-0 835/1000 [========================>.....] - ETA: 4:50 - rpn_cls: 2.7666 - rpn_regr: 0.1477 - detector_cls: 0.9641 - detector_regr: 0.4396 INFO 2019-07-26 11:01:50 +0000 master-replica-0 836/1000 [========================>.....] - ETA: 4:48 - rpn_cls: 2.7647 - rpn_regr: 0.1475 - detector_cls: 0.9645 - detector_regr: 0.4395 INFO 2019-07-26 11:01:52 +0000 master-replica-0 837/1000 [========================>.....] - ETA: 4:46 - rpn_cls: 2.7665 - rpn_regr: 0.1476 - detector_cls: 0.9637 - detector_regr: 0.4390 INFO 2019-07-26 11:01:53 +0000 master-replica-0 838/1000 [========================>.....] - ETA: 4:45 - rpn_cls: 2.7642 - rpn_regr: 0.1476 - detector_cls: 0.9634 - detector_regr: 0.4389 INFO 2019-07-26 11:01:54 +0000 master-replica-0 839/1000 [========================>.....] - ETA: 4:43 - rpn_cls: 2.7625 - rpn_regr: 0.1475 - detector_cls: 0.9637 - detector_regr: 0.4389 INFO 2019-07-26 11:01:56 +0000 master-replica-0 840/1000 [========================>.....] - ETA: 4:41 - rpn_cls: 2.7605 - rpn_regr: 0.1474 - detector_cls: 0.9642 - detector_regr: 0.4388 INFO 2019-07-26 11:01:57 +0000 master-replica-0 841/1000 [========================>.....] - ETA: 4:39 - rpn_cls: 2.7572 - rpn_regr: 0.1474 - detector_cls: 0.9636 - detector_regr: 0.4388 INFO 2019-07-26 11:01:58 +0000 master-replica-0 842/1000 [========================>.....] - ETA: 4:37 - rpn_cls: 2.7614 - rpn_regr: 0.1476 - detector_cls: 0.9631 - detector_regr: 0.4383 INFO 2019-07-26 11:02:00 +0000 master-replica-0 843/1000 [========================>.....] - ETA: 4:35 - rpn_cls: 2.7587 - rpn_regr: 0.1475 - detector_cls: 0.9637 - detector_regr: 0.4380 INFO 2019-07-26 11:02:01 +0000 master-replica-0 844/1000 [========================>.....] - ETA: 4:34 - rpn_cls: 2.7561 - rpn_regr: 0.1475 - detector_cls: 0.9634 - detector_regr: 0.4379 INFO 2019-07-26 11:02:02 +0000 master-replica-0 845/1000 [========================>.....] - ETA: 4:32 - rpn_cls: 2.7624 - rpn_regr: 0.1476 - detector_cls: 0.9634 - detector_regr: 0.4380 INFO 2019-07-26 11:02:04 +0000 master-replica-0 846/1000 [========================>.....] - ETA: 4:30 - rpn_cls: 2.7604 - rpn_regr: 0.1476 - detector_cls: 0.9639 - detector_regr: 0.4381 INFO 2019-07-26 11:02:05 +0000 master-replica-0 847/1000 [========================>.....] - ETA: 4:28 - rpn_cls: 2.7626 - rpn_regr: 0.1477 - detector_cls: 0.9638 - detector_regr: 0.4382 INFO 2019-07-26 11:02:08 +0000 master-replica-0 848/1000 [========================>.....] - ETA: 4:26 - rpn_cls: 2.7612 - rpn_regr: 0.1476 - detector_cls: 0.9639 - detector_regr: 0.4382 INFO 2019-07-26 11:02:09 +0000 master-replica-0 849/1000 [========================>.....] - ETA: 4:25 - rpn_cls: 2.7674 - rpn_regr: 0.1479 - detector_cls: 0.9630 - detector_regr: 0.4377 INFO 2019-07-26 11:02:11 +0000 master-replica-0 850/1000 [========================>.....] - ETA: 4:23 - rpn_cls: 2.7665 - rpn_regr: 0.1479 - detector_cls: 0.9636 - detector_regr: 0.4378 INFO 2019-07-26 11:02:12 +0000 master-replica-0 851/1000 [========================>.....] - ETA: 4:21 - rpn_cls: 2.7649 - rpn_regr: 0.1478 - detector_cls: 0.9641 - detector_regr: 0.4377 INFO 2019-07-26 11:02:15 +0000 master-replica-0 852/1000 [========================>.....] - ETA: 4:19 - rpn_cls: 2.7622 - rpn_regr: 0.1477 - detector_cls: 0.9640 - detector_regr: 0.4376 INFO 2019-07-26 11:02:17 +0000 master-replica-0 853/1000 [========================>.....] - ETA: 4:18 - rpn_cls: 2.7589 - rpn_regr: 0.1476 - detector_cls: 0.9633 - detector_regr: 0.4378 INFO 2019-07-26 11:02:18 +0000 master-replica-0 854/1000 [========================>.....] - ETA: 4:16 - rpn_cls: 2.7598 - rpn_regr: 0.1476 - detector_cls: 0.9625 - detector_regr: 0.4375 INFO 2019-07-26 11:02:20 +0000 master-replica-0 855/1000 [========================>.....] - ETA: 4:14 - rpn_cls: 2.7616 - rpn_regr: 0.1477 - detector_cls: 0.9620 - detector_regr: 0.4374 INFO 2019-07-26 11:02:21 +0000 master-replica-0 856/1000 [========================>.....] - ETA: 4:12 - rpn_cls: 2.7590 - rpn_regr: 0.1475 - detector_cls: 0.9624 - detector_regr: 0.4373 INFO 2019-07-26 11:02:23 +0000 master-replica-0 857/1000 [========================>.....] - ETA: 4:10 - rpn_cls: 2.7608 - rpn_regr: 0.1475 - detector_cls: 0.9619 - detector_regr: 0.4374 INFO 2019-07-26 11:02:24 +0000 master-replica-0 858/1000 [========================>.....] - ETA: 4:09 - rpn_cls: 2.7682 - rpn_regr: 0.1476 - detector_cls: 0.9610 - detector_regr: 0.4369 INFO 2019-07-26 11:02:26 +0000 master-replica-0 859/1000 [========================>.....] - ETA: 4:07 - rpn_cls: 2.7650 - rpn_regr: 0.1478 - detector_cls: 0.9603 - detector_regr: 0.4369 INFO 2019-07-26 11:02:27 +0000 master-replica-0 860/1000 [========================>.....] - ETA: 4:05 - rpn_cls: 2.7706 - rpn_regr: 0.1478 - detector_cls: 0.9605 - detector_regr: 0.4369 INFO 2019-07-26 11:02:29 +0000 master-replica-0 861/1000 [========================>.....] - ETA: 4:03 - rpn_cls: 2.7689 - rpn_regr: 0.1477 - detector_cls: 0.9609 - detector_regr: 0.4369 INFO 2019-07-26 11:02:30 +0000 master-replica-0 862/1000 [========================>.....] - ETA: 4:02 - rpn_cls: 2.7761 - rpn_regr: 0.1482 - detector_cls: 0.9602 - detector_regr: 0.4364 INFO 2019-07-26 11:02:32 +0000 master-replica-0 863/1000 [========================>.....] - ETA: 4:00 - rpn_cls: 2.7729 - rpn_regr: 0.1482 - detector_cls: 0.9603 - detector_regr: 0.4363 INFO 2019-07-26 11:02:33 +0000 master-replica-0 864/1000 [========================>.....] - ETA: 3:58 - rpn_cls: 2.7697 - rpn_regr: 0.1481 - detector_cls: 0.9602 - detector_regr: 0.4363 INFO 2019-07-26 11:02:34 +0000 master-replica-0 865/1000 [========================>.....] - ETA: 3:56 - rpn_cls: 2.7691 - rpn_regr: 0.1480 - detector_cls: 0.9606 - detector_regr: 0.4362 INFO 2019-07-26 11:02:36 +0000 master-replica-0 866/1000 [========================>.....] - ETA: 3:54 - rpn_cls: 2.7716 - rpn_regr: 0.1481 - detector_cls: 0.9604 - detector_regr: 0.4362 INFO 2019-07-26 11:02:37 +0000 master-replica-0 867/1000 [=========================>....] - ETA: 3:52 - rpn_cls: 2.7684 - rpn_regr: 0.1481 - detector_cls: 0.9598 - detector_regr: 0.4361 INFO 2019-07-26 11:02:39 +0000 master-replica-0 868/1000 [=========================>....] - ETA: 3:51 - rpn_cls: 2.7662 - rpn_regr: 0.1479 - detector_cls: 0.9600 - detector_regr: 0.4362 INFO 2019-07-26 11:02:40 +0000 master-replica-0 869/1000 [=========================>....] - ETA: 3:49 - rpn_cls: 2.7647 - rpn_regr: 0.1478 - detector_cls: 0.9601 - detector_regr: 0.4362 INFO 2019-07-26 11:02:42 +0000 master-replica-0 870/1000 [=========================>....] - ETA: 3:47 - rpn_cls: 2.7615 - rpn_regr: 0.1478 - detector_cls: 0.9601 - detector_regr: 0.4364 INFO 2019-07-26 11:02:43 +0000 master-replica-0 871/1000 [=========================>....] - ETA: 3:45 - rpn_cls: 2.7591 - rpn_regr: 0.1477 - detector_cls: 0.9604 - detector_regr: 0.4365 INFO 2019-07-26 11:02:44 +0000 master-replica-0 872/1000 [=========================>....] - ETA: 3:43 - rpn_cls: 2.7606 - rpn_regr: 0.1476 - detector_cls: 0.9602 - detector_regr: 0.4367 INFO 2019-07-26 11:02:46 +0000 master-replica-0 873/1000 [=========================>....] - ETA: 3:42 - rpn_cls: 2.7626 - rpn_regr: 0.1476 - detector_cls: 0.9598 - detector_regr: 0.4368 INFO 2019-07-26 11:02:48 +0000 master-replica-0 874/1000 [=========================>....] - ETA: 3:40 - rpn_cls: 2.7604 - rpn_regr: 0.1476 - detector_cls: 0.9594 - detector_regr: 0.4369 INFO 2019-07-26 11:02:49 +0000 master-replica-0 875/1000 [=========================>....] - ETA: 3:38 - rpn_cls: 2.7613 - rpn_regr: 0.1475 - detector_cls: 0.9588 - detector_regr: 0.4368 INFO 2019-07-26 11:02:50 +0000 master-replica-0 876/1000 [=========================>....] - ETA: 3:36 - rpn_cls: 2.7581 - rpn_regr: 0.1475 - detector_cls: 0.9592 - detector_regr: 0.4369 INFO 2019-07-26 11:02:52 +0000 master-replica-0 877/1000 [=========================>....] - ETA: 3:35 - rpn_cls: 2.7560 - rpn_regr: 0.1474 - detector_cls: 0.9593 - detector_regr: 0.4369 INFO 2019-07-26 11:02:53 +0000 master-replica-0 878/1000 [=========================>....] - ETA: 3:33 - rpn_cls: 2.7604 - rpn_regr: 0.1474 - detector_cls: 0.9597 - detector_regr: 0.4371 INFO 2019-07-26 11:02:55 +0000 master-replica-0 879/1000 [=========================>....] - ETA: 3:31 - rpn_cls: 2.7602 - rpn_regr: 0.1473 - detector_cls: 0.9599 - detector_regr: 0.4371 INFO 2019-07-26 11:02:56 +0000 master-replica-0 880/1000 [=========================>....] - ETA: 3:29 - rpn_cls: 2.7589 - rpn_regr: 0.1472 - detector_cls: 0.9603 - detector_regr: 0.4370 INFO 2019-07-26 11:02:58 +0000 master-replica-0 881/1000 [=========================>....] - ETA: 3:27 - rpn_cls: 2.7574 - rpn_regr: 0.1471 - detector_cls: 0.9599 - detector_regr: 0.4370 INFO 2019-07-26 11:02:59 +0000 master-replica-0 882/1000 [=========================>....] - ETA: 3:26 - rpn_cls: 2.7554 - rpn_regr: 0.1471 - detector_cls: 0.9596 - detector_regr: 0.4370 INFO 2019-07-26 11:03:01 +0000 master-replica-0 883/1000 [=========================>....] - ETA: 3:24 - rpn_cls: 2.7560 - rpn_regr: 0.1472 - detector_cls: 0.9595 - detector_regr: 0.4370 INFO 2019-07-26 11:03:02 +0000 master-replica-0 884/1000 [=========================>....] - ETA: 3:22 - rpn_cls: 2.7538 - rpn_regr: 0.1470 - detector_cls: 0.9598 - detector_regr: 0.4371 INFO 2019-07-26 11:03:03 +0000 master-replica-0 885/1000 [=========================>....] - ETA: 3:20 - rpn_cls: 2.7570 - rpn_regr: 0.1470 - detector_cls: 0.9593 - detector_regr: 0.4372 INFO 2019-07-26 11:03:05 +0000 master-replica-0 886/1000 [=========================>....] - ETA: 3:18 - rpn_cls: 2.7552 - rpn_regr: 0.1469 - detector_cls: 0.9594 - detector_regr: 0.4372 INFO 2019-07-26 11:03:06 +0000 master-replica-0 887/1000 [=========================>....] - ETA: 3:17 - rpn_cls: 2.7536 - rpn_regr: 0.1468 - detector_cls: 0.9590 - detector_regr: 0.4374 INFO 2019-07-26 11:03:08 +0000 master-replica-0 888/1000 [=========================>....] - ETA: 3:15 - rpn_cls: 2.7518 - rpn_regr: 0.1467 - detector_cls: 0.9595 - detector_regr: 0.4375 INFO 2019-07-26 11:03:09 +0000 master-replica-0 889/1000 [=========================>....] - ETA: 3:13 - rpn_cls: 2.7556 - rpn_regr: 0.1466 - detector_cls: 0.9593 - detector_regr: 0.4377 INFO 2019-07-26 11:03:10 +0000 master-replica-0 890/1000 [=========================>....] - ETA: 3:11 - rpn_cls: 2.7534 - rpn_regr: 0.1465 - detector_cls: 0.9596 - detector_regr: 0.4375 INFO 2019-07-26 11:03:12 +0000 master-replica-0 891/1000 [=========================>....] - ETA: 3:10 - rpn_cls: 2.7525 - rpn_regr: 0.1465 - detector_cls: 0.9595 - detector_regr: 0.4375 INFO 2019-07-26 11:03:13 +0000 master-replica-0 892/1000 [=========================>....] - ETA: 3:08 - rpn_cls: 2.7505 - rpn_regr: 0.1464 - detector_cls: 0.9591 - detector_regr: 0.4374 INFO 2019-07-26 11:03:15 +0000 master-replica-0 893/1000 [=========================>....] - ETA: 3:06 - rpn_cls: 2.7475 - rpn_regr: 0.1464 - detector_cls: 0.9593 - detector_regr: 0.4374 INFO 2019-07-26 11:03:16 +0000 master-replica-0 894/1000 [=========================>....] - ETA: 3:04 - rpn_cls: 2.7455 - rpn_regr: 0.1463 - detector_cls: 0.9592 - detector_regr: 0.4374 INFO 2019-07-26 11:03:17 +0000 master-replica-0 895/1000 [=========================>....] - ETA: 3:02 - rpn_cls: 2.7523 - rpn_regr: 0.1462 - detector_cls: 0.9587 - detector_regr: 0.4376 INFO 2019-07-26 11:03:19 +0000 master-replica-0 896/1000 [=========================>....] - ETA: 3:01 - rpn_cls: 2.7496 - rpn_regr: 0.1460 - detector_cls: 0.9588 - detector_regr: 0.4375 INFO 2019-07-26 11:03:20 +0000 master-replica-0 897/1000 [=========================>....] - ETA: 2:59 - rpn_cls: 2.7465 - rpn_regr: 0.1460 - detector_cls: 0.9592 - detector_regr: 0.4376 INFO 2019-07-26 11:03:22 +0000 master-replica-0 898/1000 [=========================>....] - ETA: 2:57 - rpn_cls: 2.7452 - rpn_regr: 0.1459 - detector_cls: 0.9592 - detector_regr: 0.4375 INFO 2019-07-26 11:03:23 +0000 master-replica-0 899/1000 [=========================>....] - ETA: 2:55 - rpn_cls: 2.7511 - rpn_regr: 0.1459 - detector_cls: 0.9587 - detector_regr: 0.4370 INFO 2019-07-26 11:03:26 +0000 master-replica-0 900/1000 [==========================>...] - ETA: 2:53 - rpn_cls: 2.7583 - rpn_regr: 0.1460 - detector_cls: 0.9582 - detector_regr: 0.4371 INFO 2019-07-26 11:03:27 +0000 master-replica-0 901/1000 [==========================>...] - ETA: 2:52 - rpn_cls: 2.7641 - rpn_regr: 0.1473 - detector_cls: 0.9574 - detector_regr: 0.4366 INFO 2019-07-26 11:03:28 +0000 master-replica-0 902/1000 [==========================>...] - ETA: 2:50 - rpn_cls: 2.7628 - rpn_regr: 0.1473 - detector_cls: 0.9576 - detector_regr: 0.4366 INFO 2019-07-26 11:03:30 +0000 master-replica-0 903/1000 [==========================>...] - ETA: 2:48 - rpn_cls: 2.7608 - rpn_regr: 0.1472 - detector_cls: 0.9575 - detector_regr: 0.4365 INFO 2019-07-26 11:03:31 +0000 master-replica-0 904/1000 [==========================>...] - ETA: 2:47 - rpn_cls: 2.7578 - rpn_regr: 0.1471 - detector_cls: 0.9575 - detector_regr: 0.4366 INFO 2019-07-26 11:03:33 +0000 master-replica-0 905/1000 [==========================>...] - ETA: 2:45 - rpn_cls: 2.7560 - rpn_regr: 0.1471 - detector_cls: 0.9579 - detector_regr: 0.4367 INFO 2019-07-26 11:03:34 +0000 master-replica-0 906/1000 [==========================>...] - ETA: 2:43 - rpn_cls: 2.7539 - rpn_regr: 0.1470 - detector_cls: 0.9575 - detector_regr: 0.4366 INFO 2019-07-26 11:03:35 +0000 master-replica-0 907/1000 [==========================>...] - ETA: 2:41 - rpn_cls: 2.7509 - rpn_regr: 0.1470 - detector_cls: 0.9573 - detector_regr: 0.4368 INFO 2019-07-26 11:03:37 +0000 master-replica-0 908/1000 [==========================>...] - ETA: 2:39 - rpn_cls: 2.7498 - rpn_regr: 0.1469 - detector_cls: 0.9587 - detector_regr: 0.4368 INFO 2019-07-26 11:03:38 +0000 master-replica-0 909/1000 [==========================>...] - ETA: 2:38 - rpn_cls: 2.7468 - rpn_regr: 0.1468 - detector_cls: 0.9583 - detector_regr: 0.4367 INFO 2019-07-26 11:03:39 +0000 master-replica-0 910/1000 [==========================>...] - ETA: 2:36 - rpn_cls: 2.7454 - rpn_regr: 0.1468 - detector_cls: 0.9584 - detector_regr: 0.4367 INFO 2019-07-26 11:03:41 +0000 master-replica-0 911/1000 [==========================>...] - ETA: 2:34 - rpn_cls: 2.7478 - rpn_regr: 0.1467 - detector_cls: 0.9581 - detector_regr: 0.4366 INFO 2019-07-26 11:03:42 +0000 master-replica-0 912/1000 [==========================>...] - ETA: 2:32 - rpn_cls: 2.7450 - rpn_regr: 0.1466 - detector_cls: 0.9579 - detector_regr: 0.4367 INFO 2019-07-26 11:03:43 +0000 master-replica-0 913/1000 [==========================>...] - ETA: 2:31 - rpn_cls: 2.7420 - rpn_regr: 0.1465 - detector_cls: 0.9584 - detector_regr: 0.4369 INFO 2019-07-26 11:03:44 +0000 master-replica-0 914/1000 [==========================>...] - ETA: 2:29 - rpn_cls: 2.7398 - rpn_regr: 0.1465 - detector_cls: 0.9586 - detector_regr: 0.4368 INFO 2019-07-26 11:03:46 +0000 master-replica-0 915/1000 [==========================>...] - ETA: 2:27 - rpn_cls: 2.7374 - rpn_regr: 0.1464 - detector_cls: 0.9586 - detector_regr: 0.4367 INFO 2019-07-26 11:03:47 +0000 master-replica-0 916/1000 [==========================>...] - ETA: 2:25 - rpn_cls: 2.7344 - rpn_regr: 0.1465 - detector_cls: 0.9586 - detector_regr: 0.4368 INFO 2019-07-26 11:03:48 +0000 master-replica-0 917/1000 [==========================>...] - ETA: 2:23 - rpn_cls: 2.7314 - rpn_regr: 0.1465 - detector_cls: 0.9581 - detector_regr: 0.4369 INFO 2019-07-26 11:03:50 +0000 master-replica-0 918/1000 [==========================>...] - ETA: 2:22 - rpn_cls: 2.7285 - rpn_regr: 0.1465 - detector_cls: 0.9578 - detector_regr: 0.4370 INFO 2019-07-26 11:03:51 +0000 master-replica-0 919/1000 [==========================>...] - ETA: 2:20 - rpn_cls: 2.7260 - rpn_regr: 0.1465 - detector_cls: 0.9576 - detector_regr: 0.4371 INFO 2019-07-26 11:03:52 +0000 master-replica-0 920/1000 [==========================>...] - ETA: 2:18 - rpn_cls: 2.7241 - rpn_regr: 0.1464 - detector_cls: 0.9573 - detector_regr: 0.4370 INFO 2019-07-26 11:03:53 +0000 master-replica-0 921/1000 [==========================>...] - ETA: 2:16 - rpn_cls: 2.7239 - rpn_regr: 0.1465 - detector_cls: 0.9579 - detector_regr: 0.4371 INFO 2019-07-26 11:03:55 +0000 master-replica-0 922/1000 [==========================>...] - ETA: 2:15 - rpn_cls: 2.7222 - rpn_regr: 0.1464 - detector_cls: 0.9581 - detector_regr: 0.4370 INFO 2019-07-26 11:03:56 +0000 master-replica-0 923/1000 [==========================>...] - ETA: 2:13 - rpn_cls: 2.7271 - rpn_regr: 0.1464 - detector_cls: 0.9588 - detector_regr: 0.4371 INFO 2019-07-26 11:03:58 +0000 master-replica-0 924/1000 [==========================>...] - ETA: 2:11 - rpn_cls: 2.7258 - rpn_regr: 0.1463 - detector_cls: 0.9593 - detector_regr: 0.4370 INFO 2019-07-26 11:03:59 +0000 master-replica-0 925/1000 [==========================>...] - ETA: 2:09 - rpn_cls: 2.7244 - rpn_regr: 0.1464 - detector_cls: 0.9589 - detector_regr: 0.4370 INFO 2019-07-26 11:04:00 +0000 master-replica-0 926/1000 [==========================>...] - ETA: 2:08 - rpn_cls: 2.7226 - rpn_regr: 0.1463 - detector_cls: 0.9592 - detector_regr: 0.4369 INFO 2019-07-26 11:04:02 +0000 master-replica-0 927/1000 [==========================>...] - ETA: 2:06 - rpn_cls: 2.7288 - rpn_regr: 0.1463 - detector_cls: 0.9587 - detector_regr: 0.4369 INFO 2019-07-26 11:04:03 +0000 master-replica-0 928/1000 [==========================>...] - ETA: 2:04 - rpn_cls: 2.7279 - rpn_regr: 0.1462 - detector_cls: 0.9584 - detector_regr: 0.4367 INFO 2019-07-26 11:04:04 +0000 master-replica-0 929/1000 [==========================>...] - ETA: 2:02 - rpn_cls: 2.7323 - rpn_regr: 0.1473 - detector_cls: 0.9580 - detector_regr: 0.4362 INFO 2019-07-26 11:04:06 +0000 master-replica-0 930/1000 [==========================>...] - ETA: 2:00 - rpn_cls: 2.7303 - rpn_regr: 0.1473 - detector_cls: 0.9584 - detector_regr: 0.4364 INFO 2019-07-26 11:04:07 +0000 master-replica-0 931/1000 [==========================>...] - ETA: 1:59 - rpn_cls: 2.7282 - rpn_regr: 0.1472 - detector_cls: 0.9589 - detector_regr: 0.4365 INFO 2019-07-26 11:04:09 +0000 master-replica-0 932/1000 [==========================>...] - ETA: 1:57 - rpn_cls: 2.7354 - rpn_regr: 0.1472 - detector_cls: 0.9585 - detector_regr: 0.4360 INFO 2019-07-26 11:04:10 +0000 master-replica-0 933/1000 [==========================>...] - ETA: 1:55 - rpn_cls: 2.7325 - rpn_regr: 0.1471 - detector_cls: 0.9586 - detector_regr: 0.4362 INFO 2019-07-26 11:04:11 +0000 master-replica-0 934/1000 [===========================>..] - ETA: 1:53 - rpn_cls: 2.7305 - rpn_regr: 0.1470 - detector_cls: 0.9586 - detector_regr: 0.4361 INFO 2019-07-26 11:04:13 +0000 master-replica-0 935/1000 [===========================>..] - ETA: 1:52 - rpn_cls: 2.7276 - rpn_regr: 0.1470 - detector_cls: 0.9587 - detector_regr: 0.4362 INFO 2019-07-26 11:04:14 +0000 master-replica-0 936/1000 [===========================>..] - ETA: 1:50 - rpn_cls: 2.7348 - rpn_regr: 0.1471 - detector_cls: 0.9582 - detector_regr: 0.4358 INFO 2019-07-26 11:04:16 +0000 master-replica-0 937/1000 [===========================>..] - ETA: 1:48 - rpn_cls: 2.7381 - rpn_regr: 0.1471 - detector_cls: 0.9583 - detector_regr: 0.4359 INFO 2019-07-26 11:04:17 +0000 master-replica-0 938/1000 [===========================>..] - ETA: 1:46 - rpn_cls: 2.7352 - rpn_regr: 0.1471 - detector_cls: 0.9584 - detector_regr: 0.4360 INFO 2019-07-26 11:04:18 +0000 master-replica-0 939/1000 [===========================>..] - ETA: 1:45 - rpn_cls: 2.7327 - rpn_regr: 0.1469 - detector_cls: 0.9581 - detector_regr: 0.4358 INFO 2019-07-26 11:04:20 +0000 master-replica-0 940/1000 [===========================>..] - ETA: 1:43 - rpn_cls: 2.7320 - rpn_regr: 0.1469 - detector_cls: 0.9582 - detector_regr: 0.4357 INFO 2019-07-26 11:04:21 +0000 master-replica-0 941/1000 [===========================>..] - ETA: 1:41 - rpn_cls: 2.7303 - rpn_regr: 0.1468 - detector_cls: 0.9581 - detector_regr: 0.4357 INFO 2019-07-26 11:04:23 +0000 master-replica-0 942/1000 [===========================>..] - ETA: 1:40 - rpn_cls: 2.7293 - rpn_regr: 0.1467 - detector_cls: 0.9582 - detector_regr: 0.4356 INFO 2019-07-26 11:04:24 +0000 master-replica-0 943/1000 [===========================>..] - ETA: 1:38 - rpn_cls: 2.7359 - rpn_regr: 0.1466 - detector_cls: 0.9578 - detector_regr: 0.4357 INFO 2019-07-26 11:04:25 +0000 master-replica-0 944/1000 [===========================>..] - ETA: 1:36 - rpn_cls: 2.7330 - rpn_regr: 0.1465 - detector_cls: 0.9574 - detector_regr: 0.4357 INFO 2019-07-26 11:04:26 +0000 master-replica-0 945/1000 [===========================>..] - ETA: 1:34 - rpn_cls: 2.7313 - rpn_regr: 0.1464 - detector_cls: 0.9576 - detector_regr: 0.4357 INFO 2019-07-26 11:04:29 +0000 master-replica-0 946/1000 [===========================>..] - ETA: 1:33 - rpn_cls: 2.7284 - rpn_regr: 0.1463 - detector_cls: 0.9579 - detector_regr: 0.4356 INFO 2019-07-26 11:04:30 +0000 master-replica-0 947/1000 [===========================>..] - ETA: 1:31 - rpn_cls: 2.7358 - rpn_regr: 0.1463 - detector_cls: 0.9575 - detector_regr: 0.4358 INFO 2019-07-26 11:04:32 +0000 master-replica-0 948/1000 [===========================>..] - ETA: 1:29 - rpn_cls: 2.7329 - rpn_regr: 0.1462 - detector_cls: 0.9578 - detector_regr: 0.4357 INFO 2019-07-26 11:04:34 +0000 master-replica-0 949/1000 [===========================>..] - ETA: 1:27 - rpn_cls: 2.7405 - rpn_regr: 0.1463 - detector_cls: 0.9574 - detector_regr: 0.4358 INFO 2019-07-26 11:04:35 +0000 master-replica-0 950/1000 [===========================>..] - ETA: 1:26 - rpn_cls: 2.7377 - rpn_regr: 0.1464 - detector_cls: 0.9567 - detector_regr: 0.4361 INFO 2019-07-26 11:04:37 +0000 master-replica-0 951/1000 [===========================>..] - ETA: 1:24 - rpn_cls: 2.7382 - rpn_regr: 0.1465 - detector_cls: 0.9567 - detector_regr: 0.4361 INFO 2019-07-26 11:04:38 +0000 master-replica-0 952/1000 [===========================>..] - ETA: 1:22 - rpn_cls: 2.7367 - rpn_regr: 0.1464 - detector_cls: 0.9564 - detector_regr: 0.4360 INFO 2019-07-26 11:04:39 +0000 master-replica-0 953/1000 [===========================>..] - ETA: 1:20 - rpn_cls: 2.7342 - rpn_regr: 0.1464 - detector_cls: 0.9565 - detector_regr: 0.4361 INFO 2019-07-26 11:04:41 +0000 master-replica-0 954/1000 [===========================>..] - ETA: 1:19 - rpn_cls: 2.7314 - rpn_regr: 0.1463 - detector_cls: 0.9569 - detector_regr: 0.4360 INFO 2019-07-26 11:04:42 +0000 master-replica-0 955/1000 [===========================>..] - ETA: 1:17 - rpn_cls: 2.7331 - rpn_regr: 0.1462 - detector_cls: 0.9567 - detector_regr: 0.4359 INFO 2019-07-26 11:04:43 +0000 master-replica-0 956/1000 [===========================>..] - ETA: 1:15 - rpn_cls: 2.7302 - rpn_regr: 0.1462 - detector_cls: 0.9567 - detector_regr: 0.4360 INFO 2019-07-26 11:04:45 +0000 master-replica-0 957/1000 [===========================>..] - ETA: 1:13 - rpn_cls: 2.7286 - rpn_regr: 0.1461 - detector_cls: 0.9563 - detector_regr: 0.4359 INFO 2019-07-26 11:04:46 +0000 master-replica-0 958/1000 [===========================>..] - ETA: 1:12 - rpn_cls: 2.7262 - rpn_regr: 0.1460 - detector_cls: 0.9569 - detector_regr: 0.4359 INFO 2019-07-26 11:04:48 +0000 master-replica-0 959/1000 [===========================>..] - ETA: 1:10 - rpn_cls: 2.7302 - rpn_regr: 0.1463 - detector_cls: 0.9562 - detector_regr: 0.4355 INFO 2019-07-26 11:04:49 +0000 master-replica-0 960/1000 [===========================>..] - ETA: 1:08 - rpn_cls: 2.7287 - rpn_regr: 0.1464 - detector_cls: 0.9565 - detector_regr: 0.4354 INFO 2019-07-26 11:04:51 +0000 master-replica-0 961/1000 [===========================>..] - ETA: 1:07 - rpn_cls: 2.7271 - rpn_regr: 0.1463 - detector_cls: 0.9562 - detector_regr: 0.4355 INFO 2019-07-26 11:04:52 +0000 master-replica-0 962/1000 [===========================>..] - ETA: 1:05 - rpn_cls: 2.7243 - rpn_regr: 0.1463 - detector_cls: 0.9559 - detector_regr: 0.4356 INFO 2019-07-26 11:04:53 +0000 master-replica-0 963/1000 [===========================>..] - ETA: 1:03 - rpn_cls: 2.7214 - rpn_regr: 0.1463 - detector_cls: 0.9556 - detector_regr: 0.4357 INFO 2019-07-26 11:04:54 +0000 master-replica-0 964/1000 [===========================>..] - ETA: 1:01 - rpn_cls: 2.7237 - rpn_regr: 0.1464 - detector_cls: 0.9555 - detector_regr: 0.4357 INFO 2019-07-26 11:04:55 +0000 master-replica-0 965/1000 [===========================>..] - ETA: 1:00 - rpn_cls: 2.7209 - rpn_regr: 0.1463 - detector_cls: 0.9553 - detector_regr: 0.4356 INFO 2019-07-26 11:04:57 +0000 master-replica-0 966/1000 [===========================>..] - ETA: 58s - rpn_cls: 2.7194 - rpn_regr: 0.1462 - detector_cls: 0.9549 - detector_regr: 0.4356 INFO 2019-07-26 11:04:58 +0000 master-replica-0 967/1000 [============================>.] - ETA: 56s - rpn_cls: 2.7186 - rpn_regr: 0.1461 - detector_cls: 0.9548 - detector_regr: 0.4357 INFO 2019-07-26 11:04:59 +0000 master-replica-0 968/1000 [============================>.] - ETA: 54s - rpn_cls: 2.7236 - rpn_regr: 0.1462 - detector_cls: 0.9541 - detector_regr: 0.4358 INFO 2019-07-26 11:05:00 +0000 master-replica-0 969/1000 [============================>.] - ETA: 53s - rpn_cls: 2.7208 - rpn_regr: 0.1462 - detector_cls: 0.9536 - detector_regr: 0.4357 INFO 2019-07-26 11:05:02 +0000 master-replica-0 970/1000 [============================>.] - ETA: 51s - rpn_cls: 2.7223 - rpn_regr: 0.1461 - detector_cls: 0.9531 - detector_regr: 0.4352 INFO 2019-07-26 11:05:03 +0000 master-replica-0 971/1000 [============================>.] - ETA: 49s - rpn_cls: 2.7202 - rpn_regr: 0.1460 - detector_cls: 0.9533 - detector_regr: 0.4352 INFO 2019-07-26 11:05:04 +0000 master-replica-0 972/1000 [============================>.] - ETA: 47s - rpn_cls: 2.7232 - rpn_regr: 0.1460 - detector_cls: 0.9535 - detector_regr: 0.4352 INFO 2019-07-26 11:05:06 +0000 master-replica-0 973/1000 [============================>.] - ETA: 46s - rpn_cls: 2.7215 - rpn_regr: 0.1460 - detector_cls: 0.9532 - detector_regr: 0.4353 INFO 2019-07-26 11:05:07 +0000 master-replica-0 974/1000 [============================>.] - ETA: 44s - rpn_cls: 2.7187 - rpn_regr: 0.1459 - detector_cls: 0.9531 - detector_regr: 0.4353 INFO 2019-07-26 11:05:09 +0000 master-replica-0 975/1000 [============================>.] - ETA: 42s - rpn_cls: 2.7172 - rpn_regr: 0.1458 - detector_cls: 0.9533 - detector_regr: 0.4353 INFO 2019-07-26 11:05:10 +0000 master-replica-0 976/1000 [============================>.] - ETA: 41s - rpn_cls: 2.7144 - rpn_regr: 0.1459 - detector_cls: 0.9530 - detector_regr: 0.4353 INFO 2019-07-26 11:05:11 +0000 master-replica-0 977/1000 [============================>.] - ETA: 39s - rpn_cls: 2.7120 - rpn_regr: 0.1459 - detector_cls: 0.9527 - detector_regr: 0.4352 INFO 2019-07-26 11:05:12 +0000 master-replica-0 978/1000 [============================>.] - ETA: 37s - rpn_cls: 2.7136 - rpn_regr: 0.1458 - detector_cls: 0.9519 - detector_regr: 0.4354 INFO 2019-07-26 11:05:14 +0000 master-replica-0 979/1000 [============================>.] - ETA: 35s - rpn_cls: 2.7114 - rpn_regr: 0.1457 - detector_cls: 0.9517 - detector_regr: 0.4354 INFO 2019-07-26 11:05:15 +0000 master-replica-0 980/1000 [============================>.] - ETA: 34s - rpn_cls: 2.7162 - rpn_regr: 0.1457 - detector_cls: 0.9524 - detector_regr: 0.4354 INFO 2019-07-26 11:05:16 +0000 master-replica-0 981/1000 [============================>.] - ETA: 32s - rpn_cls: 2.7134 - rpn_regr: 0.1457 - detector_cls: 0.9525 - detector_regr: 0.4354 INFO 2019-07-26 11:05:18 +0000 master-replica-0 982/1000 [============================>.] - ETA: 30s - rpn_cls: 2.7202 - rpn_regr: 0.1455 - detector_cls: 0.9521 - detector_regr: 0.4357 INFO 2019-07-26 11:05:19 +0000 master-replica-0 983/1000 [============================>.] - ETA: 29s - rpn_cls: 2.7195 - rpn_regr: 0.1458 - detector_cls: 0.9526 - detector_regr: 0.4357 INFO 2019-07-26 11:05:21 +0000 master-replica-0 984/1000 [============================>.] - ETA: 27s - rpn_cls: 2.7181 - rpn_regr: 0.1458 - detector_cls: 0.9528 - detector_regr: 0.4358 INFO 2019-07-26 11:05:22 +0000 master-replica-0 985/1000 [============================>.] - ETA: 25s - rpn_cls: 2.7173 - rpn_regr: 0.1457 - detector_cls: 0.9530 - detector_regr: 0.4358 INFO 2019-07-26 11:05:24 +0000 master-replica-0 986/1000 [============================>.] - ETA: 23s - rpn_cls: 2.7145 - rpn_regr: 0.1457 - detector_cls: 0.9526 - detector_regr: 0.4357 INFO 2019-07-26 11:05:25 +0000 master-replica-0 987/1000 [============================>.] - ETA: 22s - rpn_cls: 2.7127 - rpn_regr: 0.1456 - detector_cls: 0.9525 - detector_regr: 0.4355 INFO 2019-07-26 11:05:27 +0000 master-replica-0 988/1000 [============================>.] - ETA: 20s - rpn_cls: 2.7100 - rpn_regr: 0.1457 - detector_cls: 0.9522 - detector_regr: 0.4356 INFO 2019-07-26 11:05:29 +0000 master-replica-0 989/1000 [============================>.] - ETA: 18s - rpn_cls: 2.7082 - rpn_regr: 0.1456 - detector_cls: 0.9520 - detector_regr: 0.4355 INFO 2019-07-26 11:05:31 +0000 master-replica-0 990/1000 [============================>.] - ETA: 17s - rpn_cls: 2.7144 - rpn_regr: 0.1457 - detector_cls: 0.9513 - detector_regr: 0.4350 INFO 2019-07-26 11:05:32 +0000 master-replica-0 991/1000 [============================>.] - ETA: 15s - rpn_cls: 2.7119 - rpn_regr: 0.1457 - detector_cls: 0.9516 - detector_regr: 0.4349 INFO 2019-07-26 11:05:33 +0000 master-replica-0 992/1000 [============================>.] - ETA: 13s - rpn_cls: 2.7102 - rpn_regr: 0.1456 - detector_cls: 0.9518 - detector_regr: 0.4349 INFO 2019-07-26 11:05:35 +0000 master-replica-0 993/1000 [============================>.] - ETA: 11s - rpn_cls: 2.7086 - rpn_regr: 0.1455 - detector_cls: 0.9523 - detector_regr: 0.4350Average number of overlapping bounding boxes from RPN = 12.653 for 1000 previous iterations INFO 2019-07-26 11:05:36 +0000 master-replica-0 994/1000 [============================>.] - ETA: 10s - rpn_cls: 2.7069 - rpn_regr: 0.1455 - detector_cls: 0.9528 - detector_regr: 0.4350 INFO 2019-07-26 11:05:38 +0000 master-replica-0 995/1000 [============================>.] - ETA: 8s - rpn_cls: 2.7056 - rpn_regr: 0.1454 - detector_cls: 0.9525 - detector_regr: 0.4350 INFO 2019-07-26 11:05:39 +0000 master-replica-0 996/1000 [============================>.] - ETA: 6s - rpn_cls: 2.7062 - rpn_regr: 0.1456 - detector_cls: 0.9519 - detector_regr: 0.4345 INFO 2019-07-26 11:05:41 +0000 master-replica-0 997/1000 [============================>.] - ETA: 5s - rpn_cls: 2.7077 - rpn_regr: 0.1456 - detector_cls: 0.9513 - detector_regr: 0.4350 INFO 2019-07-26 11:05:42 +0000 master-replica-0 998/1000 [============================>.] - ETA: 3s - rpn_cls: 2.7050 - rpn_regr: 0.1456 - detector_cls: 0.9511 - detector_regr: 0.4351 INFO 2019-07-26 11:05:43 +0000 master-replica-0 999/1000 [============================>.] - ETA: 1s - rpn_cls: 2.7039 - rpn_regr: 0.1455 - detector_cls: 0.9507 - detector_regr: 0.4349 INFO 2019-07-26 11:05:43 +0000 master-replica-0 1000/1000 [==============================] - 1706s 2s/step - rpn_cls: 2.7021 - rpn_regr: 0.1455 - detector_cls: 0.9504 - detector_regr: 0.4349 INFO 2019-07-26 11:06:06 +0000 master-replica-0 Mean number of bounding boxes from RPN overlapping ground truth boxes: 12.632571996 INFO 2019-07-26 11:06:06 +0000 master-replica-0 Classifier accuracy for bounding boxes from RPN: 0.6938125 INFO 2019-07-26 11:06:06 +0000 master-replica-0 Loss RPN classifier: 2.7020942679 INFO 2019-07-26 11:06:06 +0000 master-replica-0 Loss RPN regression: 0.145456151465 INFO 2019-07-26 11:06:06 +0000 master-replica-0 Loss Detector classifier: 0.950382808502 INFO 2019-07-26 11:06:06 +0000 master-replica-0 Loss Detector regression: 0.434891333551 INFO 2019-07-26 11:06:06 +0000 master-replica-0 Elapsed time: 1706.23027396 INFO 2019-07-26 11:06:06 +0000 master-replica-0 Total loss decreased from inf to 4.23282456142, saving weights INFO 2019-07-26 11:06:06 +0000 master-replica-0 Training complete, exiting. INFO 2019-07-26 11:06:07 +0000 master-replica-0 Module completed; cleaning up. INFO 2019-07-26 11:06:07 +0000 master-replica-0 Clean up finished. INFO 2019-07-26 11:06:07 +0000 master-replica-0 Task completed successfully. endTime: '2019-07-26T11:09:37' jobId: test_job_GcloudColab_3 startTime: '2019-07-26T10:33:44' state: SUCCEEDED ###Markdown Online predictions in AI Platform Create model and version resources in AI PlatformTo serve online predictions using the model you trained and exported previously,create a **Model Resource** in AI Platform and a **Version Resource**within it.The version resource is what actually uses your trained model toserve predictions. Multiple Model and Versions could be created together in AI Platform to test and experiment with results.Explore more about [modelsandversions](https://cloud.google.com/ml-engine/docs/tensorflow/projects-models-versions-jobs). * First, Define a name and create the model resource;Also Enable Online prediction logging, to stream logs that contain the **stderr and stdout streams** from your prediction nodes, and can be useful for debugging during version creation and inferencing. ###Code MODEL_NAME = "food_predictor" ! gcloud beta ai-platform models create $MODEL_NAME \ --regions $REGION --enable-console-logging ###Output _____no_output_____ ###Markdown Now, Create the model version. Since from Previous the training job is exported to a timestamped directory in your Cloud Storage bucket. AI Platform uses this directory to create a model version.* The code packaged during training is stored at **gs://$BUCKET_NAME/JOB_NAME/** from previous steps.Since the model saved as an ouput to training is keras' .hdf5 format. i.e., Not tensorflow's recommended Saved model, the versioning of this model is done using [Custom Prediction routine](https://cloud.google.com/ml-engine/docs/tensorflow/custom-prediction-routines) explained in GCP documentation for Version creation. * **First, Clone the custom prediction implementation** ###Code !git clone https://github.com/leoninekev/ml-engine-custom-prediction-routine.git ###Output _____no_output_____ ###Markdown Now proceed as follows:* Navigate to directory containing **setup.py*** package the code by running following cell.* Copy the packaged .tar.gz file to specific folder in cloud storage bucket ###Code python setup.py sdist --formats=gztar gsutil cp dist/test_code_new_model_beta5-0.1.tar.gz gs://nifty-episode-231612-mlengine/cloud_test_package_2/cloud_test_package_v ###Output _____no_output_____ ###Markdown * Define following Model Versioning parameters ###Code MODEL_NAME="FoodPredictor_060619" VERSION_NAME='v5_a' REGION=asia-east1 ###Output _____no_output_____ ###Markdown * Now submit a Version job, running following cell ###Code gcloud beta ai-platform versions create $VERSION_NAME --model $MODEL_NAME --python-version 3.5 --runtime-version 1.5 --machine-type mls1-c4-m2 --origin gs://nifty-episode-231612-mlengine/cloud_test_package_2/cloud_test_package_v5 --package-uris gs://nifty-episode-231612-mlengine/cloud_test_package_2/cloud_test_package_v5/test_code_new_model_beta5-0.1.tar.gz --prediction-class predictor.MyPredictor ###Output _____no_output_____
examples/tutorials/7. Tuning a Pipeline.ipynb
###Markdown Tuning a PipelineThis short guide shows how tune a Pipeline using a [BTB](https://github.com/HDI-Project/BTB) Tuner.Note that some steps are not explained for simplicity. Full detailsabout them can be found in the previous parts of the tutorial.Here we will:1. Load a dataset and a pipeline2. Explore the pipeline tunable hyperparameters3. Write a scoring function4. Build a BTB Tunable and BTB Tuner.5. Write a tuning loop Load dataset and the pipelineThe first step will be to load the dataset that we were using in previous tutorials. ###Code from mlprimitives.datasets import load_dataset dataset = load_dataset('census') ###Output _____no_output_____ ###Markdown And load a suitable pipeline.Note how in this case we are using the variable name `template` instead of `pipeline`,because this will only be used as a template for the pipelines that we will createand evaluate during the later tuning loop. ###Code from mlblocks import MLPipeline template = MLPipeline('single_table.classification.categorical_encoder.xgboost') ###Output _____no_output_____ ###Markdown Explore the pipeline tunable hyperparameters Once we have loaded the pipeline, we can now extract the hyperparameters that we will tuneby calling the `get_tunable_hyperparameters` method.In this case we will call it using `flat=True` to obtain the hyperparameters in a formatthat is compatible with BTB. ###Code tunable_hyperparameters = template.get_tunable_hyperparameters(flat=True) tunable_hyperparameters ###Output _____no_output_____ ###Markdown Write a scoring functionTo tune the pipeline we will need to evaluate its performance multiple times with different hyperparameters.For this reason, we will start by writing a scoring function that will expect only oneinput, the hyperparameters dictionary, and evaluate the performance of the pipeline using them.In this case, the evaluation will be done using 5-fold cross validation based on the `get_splits`method from the dataset. ###Code import numpy as np def cross_validate(hyperparameters=None): scores = [] for X_train, X_test, y_train, y_test in dataset.get_splits(5): pipeline = MLPipeline(template.to_dict()) # Make a copy of the template if hyperparameters: pipeline.set_hyperparameters(hyperparameters) pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) scores.append(dataset.score(y_test, y_pred)) return np.mean(scores) ###Output _____no_output_____ ###Markdown By calling this function without any arguments we will obtain the score obtainedwith the default hyperparameters. ###Code default_score = cross_validate() default_score ###Output _____no_output_____ ###Markdown Optionally, we can certify that by passing a hyperparameters dictionary the new hyperparameterswill be used, resulting on a different score. ###Code hyperparameters = { ('xgboost.XGBClassifier#1', 'max_depth'): 4 } cross_validate(hyperparameters) ###Output _____no_output_____ ###Markdown Create a BTB TunableThe next step is to create the BTB Tunable instance that will be tuned by the BTB Tuner.For this we will use its `from_dict` method, passing our hyperparameters dict. ###Code from btb.tuning import Tunable tunable = Tunable.from_dict(tunable_hyperparameters) ###Output _____no_output_____ ###Markdown Create the BTB TunerAfter creating the Tunable, we need to create a Tuner to tune it.In this case we will use the GPTuner, a Meta-model based tuner that uses a Gaussian Process Regressorfor the optimization. ###Code from btb.tuning import GPTuner tuner = GPTuner(tunable) ###Output _____no_output_____ ###Markdown Optionally, since we already know the score obtained by the default arguments andthese have a high probability of being already decent, we will inform the tunerabout their performance.In order to obtain the default hyperparameters used before we can either callthe template `get_hyperparameters(flat=True)` method, the `tunable.get_defaults()`. ###Code defaults = tunable.get_defaults() defaults tuner.record(defaults, default_score) ###Output _____no_output_____ ###Markdown Start the Tuning loopOnce we have the tuner ready we can the tuning loop.During this loop we will:1. Ask the tuner for a new hyperparameter proposal2. Run the `cross_validate` function to evaluate these hyperparameters3. Record the obtained score back to the tuner.4. If the obtained score is better than the previous one, store the proposal. ###Code best_score = default_score best_proposal = defaults for iteration in range(10): print("scoring pipeline {}".format(iteration + 1)) proposal = tuner.propose() score = cross_validate(proposal) tuner.record(proposal, score) if score > best_score: print("New best found: {}".format(score)) best_score = score best_proposal = proposal ###Output scoring pipeline 1 scoring pipeline 2 New best found: 0.8722706212975673 scoring pipeline 3 scoring pipeline 4 scoring pipeline 5 scoring pipeline 6 scoring pipeline 7 scoring pipeline 8 scoring pipeline 9 scoring pipeline 10 ###Markdown After the loop has finished, the best proposal will be stored in the `best_proposal` variable,which can be used to generate a new pipeline instance. ###Code best_proposal best_pipeline = MLPipeline(template.to_dict()) best_pipeline.set_hyperparameters(best_proposal) best_pipeline.fit(dataset.data, dataset.target) ###Output _____no_output_____ ###Markdown Tuning a PipelineThis short guide shows how tune a Pipeline using a [BTB](https://github.com/MLBazaar/BTB) Tuner.Note that some steps are not explained for simplicity. Full detailsabout them can be found in the previous parts of the tutorial.Here we will:1. Load a dataset and a pipeline2. Explore the pipeline tunable hyperparameters3. Write a scoring function4. Build a BTB Tunable and BTB Tuner.5. Write a tuning loop Load dataset and the pipelineThe first step will be to load the dataset that we were using in previous tutorials. ###Code from mlprimitives.datasets import load_dataset dataset = load_dataset('census') ###Output _____no_output_____ ###Markdown And load a suitable pipeline.Note how in this case we are using the variable name `template` instead of `pipeline`,because this will only be used as a template for the pipelines that we will createand evaluate during the later tuning loop. ###Code from mlblocks import MLPipeline template = MLPipeline('single_table.classification.xgb') ###Output _____no_output_____ ###Markdown Explore the pipeline tunable hyperparameters Once we have loaded the pipeline, we can now extract the hyperparameters that we will tuneby calling the `get_tunable_hyperparameters` method.In this case we will call it using `flat=True` to obtain the hyperparameters in a formatthat is compatible with BTB. ###Code tunable_hyperparameters = template.get_tunable_hyperparameters(flat=True) tunable_hyperparameters ###Output _____no_output_____ ###Markdown Write a scoring functionTo tune the pipeline we will need to evaluate its performance multiple times with different hyperparameters.For this reason, we will start by writing a scoring function that will expect only oneinput, the hyperparameters dictionary, and evaluate the performance of the pipeline using them.In this case, the evaluation will be done using 5-fold cross validation based on the `get_splits`method from the dataset. ###Code import numpy as np def cross_validate(hyperparameters=None): scores = [] for X_train, X_test, y_train, y_test in dataset.get_splits(5): pipeline = MLPipeline(template.to_dict()) # Make a copy of the template if hyperparameters: pipeline.set_hyperparameters(hyperparameters) pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) scores.append(dataset.score(y_test, y_pred)) return np.mean(scores) ###Output _____no_output_____ ###Markdown By calling this function without any arguments we will obtain the score obtainedwith the default hyperparameters. ###Code default_score = cross_validate() default_score ###Output _____no_output_____ ###Markdown Optionally, we can certify that by passing a hyperparameters dictionary the new hyperparameterswill be used, resulting on a different score. ###Code hyperparameters = { ('xgboost.XGBClassifier#1', 'max_depth'): 4 } cross_validate(hyperparameters) ###Output _____no_output_____ ###Markdown Create a BTB TunableThe next step is to create the BTB Tunable instance that will be tuned by the BTB Tuner.For this we will use its `from_dict` method, passing our hyperparameters dict. ###Code from btb.tuning import Tunable tunable = Tunable.from_dict(tunable_hyperparameters) ###Output _____no_output_____ ###Markdown Create the BTB TunerAfter creating the Tunable, we need to create a Tuner to tune it.In this case we will use the GPTuner, a Meta-model based tuner that uses a Gaussian Process Regressorfor the optimization. ###Code from btb.tuning import GPTuner tuner = GPTuner(tunable) ###Output _____no_output_____ ###Markdown Optionally, since we already know the score obtained by the default arguments andthese have a high probability of being already decent, we will inform the tunerabout their performance.In order to obtain the default hyperparameters used before we can either callthe template `get_hyperparameters(flat=True)` method, the `tunable.get_defaults()`. ###Code defaults = tunable.get_defaults() defaults tuner.record(defaults, default_score) ###Output _____no_output_____ ###Markdown Start the Tuning loopOnce we have the tuner ready we can the tuning loop.During this loop we will:1. Ask the tuner for a new hyperparameter proposal2. Run the `cross_validate` function to evaluate these hyperparameters3. Record the obtained score back to the tuner.4. If the obtained score is better than the previous one, store the proposal. ###Code best_score = default_score best_proposal = defaults for iteration in range(10): print("scoring pipeline {}".format(iteration + 1)) proposal = tuner.propose() score = cross_validate(proposal) tuner.record(proposal, score) if score > best_score: print("New best found: {}".format(score)) best_score = score best_proposal = proposal ###Output scoring pipeline 1 scoring pipeline 2 scoring pipeline 3 scoring pipeline 4 New best found: 0.8642241881762839 scoring pipeline 5 scoring pipeline 6 scoring pipeline 7 New best found: 0.8644390957265209 scoring pipeline 8 New best found: 0.8679095503945804 scoring pipeline 9 scoring pipeline 10 ###Markdown After the loop has finished, the best proposal will be stored in the `best_proposal` variable,which can be used to generate a new pipeline instance. ###Code best_proposal best_pipeline = MLPipeline(template.to_dict()) best_pipeline.set_hyperparameters(best_proposal) best_pipeline.fit(dataset.data, dataset.target) ###Output _____no_output_____
Malware Detection/Malware_detection.ipynb
###Markdown Tree Classifier ###Code from sklearn.ensemble import ExtraTreesClassifier from sklearn.feature_selection import SelectFromModel from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix # Removing non essential columns for training data data_train = Data.drop(['Name','md5','legitimate'], axis=1).values labels = Data['legitimate'].values extratrees = ExtraTreesClassifier().fit(data_train,labels) select = SelectFromModel(extratrees, prefit=True) data_train_new = select.transform(data_train) print(data_train.shape, data_train_new.shape) # number of selected features for training features = data_train_new.shape[1] importances = extratrees.feature_importances_ indices = np.argsort(importances)[::-1] # sorting the features according to its importance (influence on final result) for i in range(features): print("%d"%(i+1), Data.columns[2+indices[i]],importances[indices[i]]) from sklearn.ensemble import RandomForestClassifier legit_train, legit_test, mal_train, mal_test = train_test_split(data_train_new, labels, test_size = 0.25) # initialising a RandomForestClassifier model with 50 trees in the forest randomf =RandomForestClassifier(n_estimators=50) # training the model randomf.fit(legit_train, mal_train) # checking performance of the model print("Score of algo :", randomf.score(legit_test, mal_test)*100) from sklearn.metrics import confusion_matrix result = randomf.predict(legit_test) ''''The first number of the first matrix gives the number of correct predictions of that particular result which should be obtained and the second number gives the number of incorrect predictions made. Similarly vice versa for the second matrix present''' conf_mat = confusion_matrix(mal_test,result) print(conf_mat) ###Output [[24037 113] [ 66 10296]] ###Markdown **Logistic Regression** ###Code import pickle import warnings warnings.filterwarnings('ignore') from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression # Scaling the data to pass into the logistic regressor sc = StandardScaler() legit_train_scale = sc.fit_transform(legit_train) legit_test_scale = sc.transform(legit_test) # Training the Model logclf = LogisticRegression(random_state = 0) logclf.fit(legit_train_scale, mal_train) # TRAIN MODEL MULTIPLE TIMES FOR BEST SCORE best = 0 for _ in range(20): legit_train, legit_test, mal_train, mal_test = train_test_split(data_train_new, labels, test_size = 0.25) legit_train_scale = sc.fit_transform(legit_train) legit_test_scale = sc.transform(legit_test) logclf = LogisticRegression(random_state = 0) logclf.fit(legit_train_scale, mal_train) acc = logclf.score(legit_test_scale, mal_test) #print("Accuracy: " + str(acc)) if acc > best: best = acc with open("malware_log_clf.pickle", "wb") as f: pickle.dump(logclf, f) #Checking final accuracy pickle_in = open("malware_log_clf.pickle", "rb") logclf = pickle.load(pickle_in) logclf.score(legit_test_scale, mal_test) ###Output _____no_output_____
sqlite-0.ipynb
###Markdown Over deze opdrachten* dit is Jupyter Notebook `sqlite-0.ipynb` - voor het aanmaken van de database.* voor een inleiding over het gebruik van Jupyter Notebooks: [Inleiding Jupyter Notebook](Inleiding-Jupyter.ipynb)* de hele reeks SQLite opdrachten: * [SQLite 0 - init database](sqlite-0.ipynb) (om met een schone lei te beginnnen) * [SQLite 1 - selectie en projectie](sqlite-1.ipynb) * [SQLite 2 - joins](sqlite-2.ipynb) * [SQLite 3 - CRUD](sqlite-3.ipynb) * [SQLite 4 - Schema](sqlite-4.ipynb) Voorbeeld Bij deze opdrachten gebruiken we een voorbeeld-database met drie tabellen: `leden`, `inschrijvingen`, en `events`.Deze database komt uit een webtoepassing; deze vind je op glitch.com. REFDaar kun je de toepassing bekijken, uitproberen, en er een eigen versie ("remix") van maken. Aanmaken van de database In de volgende opdrachten voer je allerlei queries uit op een database.Je moeten dan eerst wel een database met inhoud hebben.Met de onderstaande opdrachten maak je deze database.Deze opdrachten hoef je maar één keer uit te voeren: de database blijft bestaan, met je veranderingen.Je kunt deze opdrachten later ook uitvoeren om opnieuw te beginnen in een goed-gedefinieerde toestand. We maken de tabel(len) aan.We verwijderen eerst een eventueel bestaande versie van de tabel(len):we hebben dan een goed gedefinieerde toestand.> Opmerking: er zijn kleine verschillen in de notatie van de constraints bij het aanmaken van een tabel; MySQL gebruikt bijvoorbeeld een andere notatie dan Oracle. Eerste tabel: ledenDe opdracht bestaat uit de volgende onderdelen:1. het opstarten van `sqlite` (de eerste twee regels). Hierna kunnen we SQL opdrachten geven;2. het verwijderen van de `leden`-tabel als deze bestaat (`DROP TABLE`);3. het aanmaken van de `leden`-tabel (`CREATE TABLE`);4. het vullen van de tabel uit een csv-bestand (dit zijn geen SQL-opdrachten);5. een SQL-`SELECT`-opdracht om te controleren of de tabel inderdaad ingelezen is. ###Code %%bash sqlite3 example.db DROP TABLE IF EXISTS leden; CREATE TABLE leden( lidnr INTEGER PRIMARY KEY, voornaam VARCHAR(255) NOT NULL, achternaam VARCHAR(255) NOT NULL, email VARCHAR(255) NOT NULL UNIQUE ); .mode csv .import leden.csv leden SELECT lidnr, voornaam, achternaam, email FROM leden; ###Output _____no_output_____ ###Markdown We hebben een voorbeeld-inhoud van de tabel(len) in csv-bestanden.Zo'n csv-bestand kun je gemakkelijk aanpassen in een teksteditor.Voor het importeren van een csv-bestand gebruiken we een speciale SQLite-opdracht. Tweede tabel: eventsDe tabel `events` bevat de events waarvoor de leden kunnen inschrijven.Elk event heeft een datum en een beschrijving.Hiervoor volgen we hetzelfde patroon: ###Code %%bash sqlite3 example.db DROP TABLE IF EXISTS events; CREATE TABLE events( eventnr INTEGER, datum VARCHAR(10) NOT NULL, beschrijving VARCHAR(255), PRIMARY KEY (eventnr), CONSTRAINT name UNIQUE (datum, beschrijving) ); .mode csv .import events.csv events SELECT eventnr, datum, beschrijving FROM events; ###Output _____no_output_____ ###Markdown Derde tabel: inschrijvingenDeze tabel beschrijft een N-M relatie tussen leden en inschrijvingen.Naast de verwijzingen (via *foreign keys*) naar de andere tabellen vindt je hier de gegevens over de inschrijving (maaltijd-keuze). ###Code %%bash sqlite3 example.db DROP TABLE IF EXISTS inschrijvingen; CREATE TABLE inschrijvingen( eventnr INTEGER, lidnr INTEGER, maaltijd VARCHAR(255), PRIMARY KEY (lidnr, eventnr), FOREIGN KEY (lidnr) REFERENCES leden (lidnr), FOREIGN KEY (eventnr) REFERENCES events (eventnr) ); .mode csv .import inschrijvingen.csv inschrijvingen SELECT eventnr, lidnr, maaltijd FROM inschrijvingen; ###Output _____no_output_____ ###Markdown Demonstratie: alle inschrijvingenVoor een overzicht van alle inschrijvingen met de gegevens van de leden en van de events gebruiken we een join. Dit is een voorproefje - in een volgend notebook werken we dit verder uit. ###Code %%bash sqlite3 example.db SELECT evt.datum , evt.beschrijving , lid.voornaam , lid.achternaam , lid.email , ins.maaltijd FROM leden lid, events evt, inschrijvingen ins WHERE lid.lidnr=ins.lidnr AND evt.eventnr=ins.eventnr; ###Output _____no_output_____
result-analysis/Driver Failure.ipynb
###Markdown Metrics analysis - Driver FailureThis notebook generates the chart for driver failures. ###Code # selectivity per run. This is required to compute the input throughput NOTEBOOK_PHASE = 3 if (NOTEBOOK_PHASE == 1): inputfactor = 1 elif(NOTEBOOK_PHASE == 2): inputfactor = 2 elif(NOTEBOOK_PHASE == 3): inputfactor = 3.166667 print("Will use input factor: " + str(inputfactor)) # settings for saving plots saveplots = True dpiResolution = 200 import pyspark.sql.functions as F import numpy as np # Import to indent the plots in the notebook %matplotlib notebook %matplotlib inline import matplotlib import matplotlib.cm as cm import matplotlib.pyplot as plt import matplotlib.collections as collections import seaborn as sns from IPython.core.display import display, HTML from PIL import Image from matplotlib.lines import Line2D from matplotlib.ticker import AutoMinorLocator # Python imports import pandas as pd from collections import defaultdict from datetime import timedelta from datetime import datetime import numpy as np import pytz import math # SQL imports from pyspark.sql.functions import * from pyspark.sql import Window from pyspark.sql import functions from pyspark.sql.types import IntegerType, LongType, DoubleType, TimestampType, StringType # settings to get plots in the right style plt.style.use('ggplot') plt.style.use('seaborn-deep') plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.serif'] = 'Ubuntu' plt.rcParams['font.monospace'] = 'Ubuntu Mono' plt.rcParams['font.size'] = 20 plt.rcParams['axes.labelsize'] = 20 plt.rcParams['axes.labelweight'] = 'normal' plt.rcParams['axes.labelcolor'] = 'black' plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.edgecolor'] = 'lightgrey' plt.rcParams['axes.titlesize'] = 20 plt.rcParams['axes.titleweight'] = 'normal' plt.rcParams['figure.edgecolor'] = 'lightgrey' plt.rcParams['xtick.labelsize'] = 20 plt.rcParams['ytick.labelsize'] = 20 plt.rcParams['xtick.color'] = 'black' plt.rcParams['ytick.color'] = 'black' plt.rcParams['legend.fontsize'] = 20 plt.rcParams['legend.edgecolor'] = 'lightgrey' plt.rcParams['figure.titlesize'] = 20 plt.rcParams['figure.titleweight'] ='bold' plt.rcParams['grid.color'] = 'grey' plt.rcParams['grid.linestyle'] = ':' plt.rcParams['figure.facecolor'] = 'white' plt.rcParams['axes.spines.top'] = False plt.rcParams['axes.spines.right'] = False plt.rcParams['axes.spines.left'] = False plt.rcParams['axes.spines.bottom'] = True plt.rcParams['xtick.direction'] = 'out' plt.rcParams['ytick.direction'] ='out' plt.rcParams["date.autoformatter.minute"] = "%H:%M" plt.rcParams["font.family"] = "Times New Roman" # check if Spark is running spark # List of which frameworks should be included in this comparison # Only Spark frameworks because they only have a driver. frameworks_that_could_be_in_the_data = ["SPARK", "STRUCTUREDSTREAMING"] frameworks = ["SPARK_AMO", "SPARK_ALO", "STRUCTUREDSTREAMING_AMO", "STRUCTUREDSTREAMING_ALO"] frameworksPrintable = { "SPARK": "Spark Streaming", "STRUCTUREDSTREAMING":"Structured Streaming" } stages=["ingest", "parse", "join", "aggregate", "window"] dataPath = dict() for i in frameworks_that_could_be_in_the_data: dataPath[i + "_AMO"] = "./scalability-data/driver-failure/" + i + "/stage" + str(NOTEBOOK_PHASE) + "/5x-4cpu-20gb/AMO/*" dataPath[i + "_ALO"] = "./scalability-data/driver-failure/" + i + "/stage" + str(NOTEBOOK_PHASE) + "/5x-4cpu-20gb/ALO/*" print("The paths that will be read: ") dataPath ###Output The paths that will be read: ###Markdown General Methods ###Code def datetimeFromEpoch(epoch): return datetime.utcfromtimestamp(epoch//1000).replace(microsecond=epoch%1000*1000) datetimeFromEpochUDF = functions.udf(datetimeFromEpoch, TimestampType()) # method to save the image def save_img_colored_and_grayscale(path_colored_img): if saveplots: plt.savefig(path_colored_img + '.png', dpi=dpiResolution, bbox_inches="tight", pad_inches = 0) im = Image.open(path_colored_img + '.png').convert('L') im.save(path_colored_img + '_grayscale.png', dpi=(300, 300)) ###Output _____no_output_____ ###Markdown Latency Read in latency data and transform in the right format for plotting. ###Code # Check if each framework had all containers running during the benchmark. To avoid including runs which had issues with some components. containerCheck = defaultdict(dict) for framework in frameworks: try: if framework == "KAFKASTREAMS": requiredAmtContainers = 5 elif framework == "FLINK": requiredAmtContainers = 6 else: requiredAmtContainers = 7 containerCheckPhase = spark.read.option("header", "true").option("inferSchema", "true") \ .csv(dataPath[framework] + "/resources-per-container-timeseries.csv/*") amtOfContainers = containerCheckPhase.select("containerName").distinct().count() if amtOfContainers != requiredAmtContainers: containerCheckPhase.select("containerName").distinct().show() print("WARNING FOR " + framework + " volume: " + str(NOTEBOOK_PHASE) + " amount of containers: " + str(amtOfContainers)) else: print("all checks passed for " + framework) except: print('framework ' + framework + " not in data") ###Output _____no_output_____ ###Markdown Phases that are present in the data ###Code latencyTimeseriesDataWithoutStartup = dict() for framework in frameworks: latencyTimeseriesDataPhase = spark.read.option("header", "true").option("inferSchema", "true") \ .csv(dataPath[framework] + "/latency-timeseries-data-without-startup.csv/*") \ .withColumn("time", datetimeFromEpochUDF(col("outputBucketTime"))) minTimeSec = int(latencyTimeseriesDataPhase.select("startTime").collect()[0][0]) / 60000 latencyTimeseriesDataWithoutStartup[framework] = latencyTimeseriesDataPhase.withColumn("timeSec", (col("outputBucketTime")/60000.0)-minTimeSec) ###Output _____no_output_____ ###Markdown Throughput Stage 0 throughput ###Code throughputTimeseriesDataWithStartup = dict() for framework in frameworks: throughputTimeseriesDataWithStartupPhase = spark.read.option("header", "true").option("inferSchema", "true") \ .csv(dataPath[framework] + "/output-throughput-timeseries-second-buckets.csv/*") \ .withColumn("time", datetimeFromEpochUDF(col("outputBucketTime"))) minTimeSec = int(throughputTimeseriesDataWithStartupPhase.select("startTime").collect()[0][0]) / 60000 throughputTimeseriesDataWithStartup[framework] = throughputTimeseriesDataWithStartupPhase.withColumn("timeSec", (col("outputBucketTime")/60000.0)-minTimeSec) inputThroughputTimeseriesDataWithStartup = dict() for framework in frameworks: inputThroughputTimeseriesDataWithStartupPhase = spark.read.option("header", "true").option("inferSchema", "true") \ .csv(dataPath[framework] + "/input-throughput-timeseries-second-buckets.csv/*") \ .withColumn("time", datetimeFromEpochUDF(col("inputBucketTime"))) minTimeSec = int(inputThroughputTimeseriesDataWithStartupPhase.select("startTime").collect()[0][0]) / 60000 inputThroughputTimeseriesDataWithStartup[framework] = inputThroughputTimeseriesDataWithStartupPhase.withColumn("timeSec", (col("inputBucketTime")/60000.0)-minTimeSec) ###Output _____no_output_____ ###Markdown CPU ###Code cpuTimeseries = dict() for framework in frameworks: try: cpuTimeseries[framework] = spark.read.option("header", "true").option("inferSchema", "true") \ .csv(dataPath[framework] + "/cpu-per-container-timeseries.csv/*") \ .withColumn("timeParsed", datetimeFromEpochUDF(col("time"))) except: print("didnt work for " + framework) containersPandas = dict() for framework in frameworks: containersPandas[framework] = cpuTimeseries[framework].select("containerName").distinct().toPandas() # You can use this to assign different colors to the different workers in the plot. We didn't use this here. # Map label to RGB color_map = dict() for framework in frameworks: #Assign different color to each container rgb_values = sns.diverging_palette(255, 133, l=60, n=len(containersPandas[framework]), center="dark") color_map[framework] = dict(zip(containersPandas[framework]['containerName'], rgb_values)) sns.palplot(sns.diverging_palette(255, 133, l=60, n=len(containersPandas), center="dark")) # Map label to RGB color_map = defaultdict(dict) for framework in frameworks: #Assign different color to each container: rgb_values = sns.husl_palette(len(containersPandas[framework]), h=0.4, l=0.65, s=1) color_map[framework] = dict(zip(containersPandas[framework]['containerName'], rgb_values)) cpuTimeseriesDataWithStartup = dict() for framework in frameworks: cpuOfPhasePerContainer = spark.read.option("header", "true").option("inferSchema", "true") \ .csv(dataPath[framework] + "/cpu-per-container-timeseries.csv/*") \ .withColumn("timeParsed", datetimeFromEpochUDF(col("time"))) minTimeSec = int(cpuOfPhasePerContainer.select("startTime").collect()[0][0]) / 60000 cpuTimeseriesDataWithStartup[framework] = cpuOfPhasePerContainer \ .withColumn("timeSec", (col("time")/60000.0)-minTimeSec) cpuTimeseriesDataWithoutStartup = dict() for framework in frameworks: cpuTimeseriesDataPhase = cpuTimeseriesDataWithStartup[framework] if len(cpuTimeseriesDataPhase.head(1)) > 0: startTime = cpuTimeseriesDataPhase.agg(F.min("time")).collect()[0][0] cpuWithoutStartup = cpuTimeseriesDataPhase \ .filter(col("time")>startTime + 120000) minTimeSec = int(cpuTimeseriesDataPhase.select("startTime").collect()[0][0]) / 60000 cpuTimeseriesDataWithoutStartup[framework] = cpuWithoutStartup \ .withColumn("timeSec", (col("time")/60000.0)-minTimeSec) else: print("No data for stage " + str(i)) containersPandasPerPhase = dict() for framework in frameworks: containersPandasPerPhase[framework] = cpuTimeseriesDataWithStartup[framework] \ .select("containerName").distinct().orderBy("containerName").toPandas() ###Output _____no_output_____ ###Markdown Metric correlationsPlotting different metrics for a certain stage together. For generating a chart of the four metrics ###Code def generateDriverFailureChart(colNum, containersPandas, latencyPandas, throughputPandas, inputThroughputPandas, cpuPandas, start, end): minor_x_locator = AutoMinorLocator(3) # how many minor grid lines in between two major grid lines for x axis pct01_line, = ax[0, colNum].plot(latencyPandas["timeSec"], latencyPandas["percentile_01_second"], color="#a8a8a8", linestyle="--", label = "1p") pct50_line, = ax[0, colNum].plot(latencyPandas["timeSec"], latencyPandas["percentile_50_second"], color="#7e7e7e", linestyle="solid", label = "50p") pct99_line, = ax[0, colNum].plot(latencyPandas["timeSec"], latencyPandas["percentile_99_second"], color="#151515", linestyle="solid", label = "99p") ax[0, colNum].xaxis.set_minor_locator(minor_x_locator) minor_y_locator_1 = AutoMinorLocator(2) # how many minor grid lines in between two major grid lines for y axis ax[0, colNum].yaxis.set_minor_locator(minor_y_locator_1) ax[0, colNum].grid(which='minor', color='black') ax[0, colNum].get_yaxis().set_major_formatter( matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x/1000.0), ',').replace(',', ' ') + " s")) tp_line2 = ax[1, colNum].scatter(inputThroughputPandas["timeSec"], inputThroughputPandas["inputMsgCount"].multiply(inputfactor), s=5, label = "input", color="#7e7e7e") ax[1, colNum].get_yaxis().set_major_formatter( matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x/1000.0), ',').replace(',', ' ') + "K")) ax[1, colNum].xaxis.set_minor_locator(minor_x_locator) ax[1, colNum].grid(which='minor', color='black') tp_line1 = ax[2, colNum].scatter(throughputPandas["timeSec"], throughputPandas["outputMsgCount"], s=5, label = "output", color="#151515") ax[2, colNum].get_yaxis().set_major_formatter( matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x/1000.0), ',').replace(',', ' ') + "K")) ax[2, colNum].xaxis.set_minor_locator(minor_x_locator) ax[2, colNum].grid(which='minor', color='black') cpuTimeseriesDataWithStartupPhase = cpuTimeseriesDataWithStartup[framework]\ .filter((col("timeSec") >start) & (col("timeSec")<end)).toPandas() for contNum, containerId in enumerate(containersPandasPerPhase[framework]['containerName']): if "FLINK" in framework: label = "taskmanager-" + str(contNum) else: label = containerId data = cpuTimeseriesDataWithStartupPhase.loc[cpuTimeseriesDataWithStartupPhase['containerName'] == containerId] cpu_worker_line, = ax[3, colNum].plot(data['timeSec'], data['cpuUsagePct'], c="black", linestyle=":", label="cpu usage worker") ax[3, colNum].set_ylim(ymin=0, ymax=110) ax[3, colNum].xaxis.set_minor_locator(minor_x_locator) minor_y_locator_3 = AutoMinorLocator(2) # how many minor grid lines in between two major grid lines for y axis ax[3, colNum].yaxis.set_minor_locator(minor_y_locator_3) ax[3, colNum].grid(which='minor', color='black') ax[3, colNum].get_yaxis().set_major_formatter( matplotlib.ticker.FuncFormatter(lambda x, p: str(int(x)) + " %")) if (colNum == 0): ax[0, colNum].set_ylabel("latency") ax[1, colNum].set_ylabel("input\nthroughput\nmsg/s") ax[2, colNum].set_ylabel("output\nthroughput\nmsg/s") ax[3, colNum].set_ylabel("CPU") if (colNum == len(frameworks)-1): ax[0, colNum].legend(loc = "upper right", ncol=4, bbox_to_anchor=(1, 1.45), framealpha=1.0, frameon=False) ax[2, colNum].legend(loc = "upper right", ncol=3, bbox_to_anchor=(1, 1.45), framealpha=0.5, frameon=False) ax[1, colNum].legend(loc = "upper right", ncol=3, bbox_to_anchor=(1, 1.45), framealpha=0.5, frameon=False) ax[3, colNum].legend([cpu_worker_line], ["per worker"], loc = "upper right", bbox_to_anchor=(1, 1.45), frameon=False) stageLatencyPandasShortSample = dict() stageThroughputPandasShortSample = dict() stageInputThroughputPandasShortSample = dict() stageCpuPandasShortSample = dict() start = 10 end = 15 for j, framework in enumerate(frameworks): print(framework) stageLatencyPandasShortSample[framework] = latencyTimeseriesDataWithoutStartup[framework].orderBy("timeSec") \ .filter((col("timeSec") >start) & (col("timeSec")<end)).toPandas() stageThroughputPandasShortSample[framework] = throughputTimeseriesDataWithStartup[framework].orderBy("timeSec") \ .filter((col("timeSec") >start) & (col("timeSec")<end)).toPandas() stageInputThroughputPandasShortSample[framework] = inputThroughputTimeseriesDataWithStartup[framework].orderBy("timeSec") \ .filter((col("timeSec") >start) & (col("timeSec")<end)).toPandas() stageCpuPandasShortSample[framework] = cpuTimeseriesDataWithoutStartup[framework].orderBy("timeSec") \ .filter((col("timeSec") >start) & (col("timeSec")<end)).toPandas() # frameworks=["FLINK", "KAFKASTREAMS", "SPARK", "STRUCTUREDSTREAMING"] frameworksPrintable2 = { "SPARK_AMO": "Spark Str. \n at-most-once", "SPARK_ALO": "Spark Str. \n at-least-once", "STRUCTUREDSTREAMING_AMO": "Structured Str. \n at-most-once", "STRUCTUREDSTREAMING_ALO": "Structured Str. \n at-least-once" } f, ax = plt.subplots(4, 4,figsize=(9, 8), sharey='row', sharex='col') pad = 5 for j, framework in enumerate(frameworks): generateDriverFailureChart(j, containersPandas=containersPandas, \ latencyPandas=stageLatencyPandasShortSample[framework], \ throughputPandas=stageThroughputPandasShortSample[framework], \ inputThroughputPandas=stageInputThroughputPandasShortSample[framework], \ cpuPandas=stageCpuPandasShortSample[framework]) ax[0, j].annotate(frameworksPrintable2[framework], xy=(0.5, 1.25), xytext=(0, pad), xycoords='axes fraction', textcoords='offset points', size='medium', ha='center', va='baseline') plt.subplots_adjust(wspace=0.1, hspace=0.35) save_img_colored_and_grayscale("./figures/driver-failure/overall/phase" + str(NOTEBOOK_PHASE) + "/driver_failure") plt.show() ###Output _____no_output_____
Mathematics/FractionMultiplication/fraction-multiplication.ipynb
###Markdown ![Callysto.ca Banner](https://github.com/callysto/curriculum-notebooks/blob/master/callysto-notebook-banner-top.jpg?raw=true) ###Code import uiButtons %uiButtons ###Output _____no_output_____ ###Markdown Visualizing Fraction Multiplication IntroductionAn important skill to have when it comes to fractions is knowing how to multiply them together.As we know, fractions are of the form $\frac{a}{b}$ with $a$ and $b$ integers and $b\neq 0$. You can think of $\frac{a}{b}$ as the number you get when you do $a\div b$. If we think of a fraction as a division problem then it makes sense that it works well with multiplication.Unlike addition, multiplying fractions is easy and straightforward. In this notebook we will look into two forms of fraction multiplication:- multiplying two fractions together $\bigg($e.g. $\dfrac{4}{7} \times \dfrac{2}{3}\bigg)$ - multiplying a fraction by an integer $\bigg($e.g. $\dfrac{4}{7} \times 3\bigg)$ ProcedureAs mentioned earlier, multiplying two fractions together is simple.Let's say we want to multiply the fractions $\dfrac{4}{7}$ and $\dfrac{2}{3}$.All we have to do is multiply the numerators (top numbers) together, then multiply the denominators (bottom numbers) together. Let's take a look: $$\frac{4}{7} \times \frac{2}{3}=\frac{4\times 2}{7\times 3}=\frac{8}{21}$$ Let's try another example. Take the fractions $\dfrac{3}{5}$ and $\dfrac{2}{3}$. To multiply them we multiply the numerators together and the denominators together: $$\frac{3\times 2}{5\times 3}=\frac{6}{15}$$ In this example, you might notice that the result is not in lowest terms: both 6 and 15 are divisible by 3, so we get $\dfrac{6}{15} = \dfrac25$. In a later notebook, we'll focus on mechanics like this. For now, we want to focus on a visual understanding of the problem.Now that we know how to multiply two fractions, let's think about what it actually means.Recall that a fraction simply represents a part of something. We can think of multiplying fractions together as taking a part of another part. In other words $\dfrac{1}{2}\times\dfrac{1}{2}$ is like saying $\dfrac{1}{2}$ of $\dfrac{1}{2}$ (one half **of** one half). If we have $\dfrac{1}{2}$ of a pizza and we want $\dfrac{1}{2}$ of that half what do we end up with?We get $\dfrac{1}{4}$ because $\dfrac{1}{2}\times\dfrac{1}{2}=\dfrac{1}{4}$.Watch the video below to help us further visualize this concept. ###Code %%html <div align="middle"> <iframe id="vid1" width="640" height="360" src="https://www.youtube.com/embed/hr_mTd-oJ-M" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe> <p><a href="https://www.youtube.com/channel/UC4a-Gbdw7vOaccHmFo40b9g" target="_blank">Click here</a> for more videos by Khan Academy</p> </div> <script> $(function() { var reachable = false; var myFrame = $('#vid1'); var videoSrc = myFrame.attr("src"); myFrame.attr("src", videoSrc) .on('load', function(){reachable = true;}); setTimeout(function() { if(!reachable) { var ifrm = myFrame[0]; ifrm = (ifrm.contentWindow) ? ifrm.contentWindow : (ifrm.contentDocument.document) ? ifrm.contentDocument.document : ifrm.contentDocument; ifrm.document.open(); ifrm.document.write('If the video does not start click <a href="' + videoSrc + '" target="_blank">here</a>'); ifrm.document.close(); } }, 2000) }); </script> ###Output _____no_output_____ ###Markdown Interactive visualizationThe widget below allows you to visualize fraction multiplication as shown in the video. To begin, enter a fraction in the boxes below. ###Code %%html <script src="./d3/d3.min.js"></script> <!-- <script src="https://d3js.org/d3.v3.min.js"></script> --> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]} }); </script> <script src="https://code.jquery.com/jquery-1.10.2.js"></script> <style> .fractionInput { max-width: 40px; } .fractionBar { width: 40px; height: 3px; background-color: #000000; } .ingredientsInput { margin-left: 10px; margin-right: 10px; max-width: 40px; /* float: right; */ } #speech { margin: 50px; font-size: 150%; } li { margin-bottom: 15px; } </style> %%html <div class="fractionInputs" style="margin:20px"> <h1 id="leftInputFractionText" style="float: left; display: none"></h1> <div id="opperandInput" style="float: left; display: block"> <input type="text" class="fractionInput form-control form-control-sm" id="oppNumerator" placeholder="0" style="margin-bottom: -10px;"> <hr align="left" class="fractionBar"> <input type="text" class="fractionInput form-control form-control-sm" id="oppDenominator" placeholder="1" style="margin-top: -10px;"> </div> <button type="button" id="continueBtn" class="btn btn-primary buttons" style="margin: 30px">Continue</button> </div> <div class="canvasDiv" style="clear: left"> <svg height="500" width="500" viewbox="0 0 500 500" mlns="http://www.w3.org/2000/svg" id="mainCanvas" style="float: left"> <rect id="mainBox" height="480" width="480" x="10" y="10" style="outline: solid #000000 3px; fill:#ffffff"></rect> <rect id="leftOpperand" height="480" width="0" x="10" y="10"></rect> <rect id="rightOpperand" height="0" width="480" x="10" y="10"></rect> </svg> </div> <div> <p id="speech">Enter a fraction inside the boxes provided then click continue.</p> </div> <div style="clear: left; margin-left: 10px"> <button type="button" id="resetFractionBoxBtn" class="btn btn-primary buttons">Reset</button> </div> ###Output _____no_output_____ ###Markdown Multiplying a fraction by an integerIn this section we will talk about multiplying a fraction like $\dfrac{4}{7}$, with an integer such as $3$. A good example of when this could be useful is when you need to double a recipe. Doing multiplication of this form is simply a special case of multiplying two fractions together since any integer, such as $3$ in this case, can be rewritten as $\dfrac{3}{1}$. On a calculator, try inputting any number divided by $1$, and you will always get back the original number. Let's demonstrate this with an example. To multiply the fraction $\dfrac{4}{7}$ and the integer $3$, remember that we can write $3$ as $\dfrac31$. We get$$\frac{4}{7}\times\frac{3}{1} = \frac{4\times 3}{7\times 1}= \frac{12}{7} $$*Note that $\dfrac{3}{1}$ is an improper fraction. Improper fractions follow all the same rules for multiplication as proper fractions.*The big take away from this is that the denominator does not change as it is simply multiplied by $1$. This means we did not change the _"whole"_, we only changed how many parts of the _"whole"_ we have (the numerator). In effect all we did was triple our fraction, since our constant was 3. Let's practice what we just learned with a recipe example. Below you will see the ingredient list for the famous **Fresh Tomato and Basil Pasta Salad** recipe. This recipe makes enough for 4 servings, but we would like to double the recipe in order to serve 8 people. Apply what we have learned so far to double the ingredients list for the **tomato and basil pasta salad** in order to make 8 servings. (Enter your answer in the provided boxes. Fractions should be written using the _forward slash_ key "/" eg. 5/8. When your done click _check answer_ to see if you are correct!) ###Code %%html <div class="ingredientsList"> <h1>Fresh Tomato and Basil Pasta Salad</h1> <img src="./images/pastaSalad.jpg" width=250 style="float: left; margin-right: 50px; box-shadow: 5px 6px 25px 3px grey"> <ul style="max-width: 700px; margin-bottom"> <li><label>3 medium ripe tomatoes, chopped --></label><input id="tomatoes" class="ingredientsInput"></input><label>tomatoes</label></li> <li><label>1/3 cup thinly sliced fresh basil --></label><input id="basil" class="ingredientsInput"></input><label>cup</label></li> <li><label>2 Tbsp. olive oil --></label><input id="olivOil" class="ingredientsInput"></input><label>Tbsp.</label></li> <li><label>1 clove garlic, minced --></label><input id="garlic" class="ingredientsInput"></input><label>clove</label></li> <li><label>1/2 tsp. salt --></label><input id="salt" class="ingredientsInput"></input><label>tsp.</label></li> <li><label>1/4 tsp. pepper --></label><input id="pepper" class="ingredientsInput"></input><label>tsp.</label></li> <li><label>8 oz. rotini pasta pasta, uncooked --></label><input id="pasta" class="ingredientsInput"></input><label>oz.</label></li> <li><label>3/4 cup Parmesan Style Grated Topping --></label><input id="parmesan" class="ingredientsInput"></input><label>cup</label></li> </ul> <button type="button" id="checkAnswerBtn">Check Answers</button> <button type="button" id="resetBtn">Reset</button> </div> <div> <h2 id="answerStatus"></h2> </div> ###Output _____no_output_____ ###Markdown ConclusionThroughout this notebook we looked at how easy multiplying fractions together really is. We also looked at how to work with a fraction multiplied by a constant. Lets recap what we have learned:- When multiplying two fractions together we multiply the numerators together and the denominators together: $\dfrac{a}{b}\times\dfrac{c}{d}=\dfrac{a \times c}{b \times d} = \dfrac{ac}{bd}$- A constant can always be rewritten as the constant over 1: $c = \dfrac{c}{1}$- Multiplying a fraction with a constant, multiply the numerator by the constant and keep the denominator the same: $\dfrac{a}{b}\times c=\dfrac{a\times c}{b}=\dfrac{ac}{b}$- Multiplying two fractions together is the same as saying _a part of a part_: $\dfrac{a}{b}\times\dfrac{c}{d}$ is like saying $\dfrac{a}{b}$ **of** $\dfrac{c}{d}$ (The equation $\dfrac{3}{5}\times\dfrac{1}{4}$ is the same as _three fifths **of** one quarter_) ###Code %%html <script> var leftOpperand = { id: 'leftOpperand', numerator: Number(0), denominator: Number(0), colour: '#ff0066' }; var rightOpperand = { id: 'rightOpperand', numerator: Number(0), denominator: Number(0), colour: '#0000ff' }; var currentState = 0; var getOpperandInput = function(numeratorInput, denominatorInput, opperand) { opperand.numerator = document.getElementById(numeratorInput).value; opperand.denominator = document.getElementById(denominatorInput).value; } var verticalDivide = function(xVal, lineNum) { var i = xVal; while(lineNum > 0){ addLine(Number(i + 10), Number(i + 10), 10, Number(d3.select('#mainBox').attr('height')) + 10); i += xVal; lineNum --; } }; var horizontalDivide = function(xVal, lineNum) { var i = Number(xVal); while(lineNum > 0){ addLine(10, Number(d3.select('#mainBox').attr('width')) + 10, Number(i + 10), Number(i +10)); i += xVal; lineNum --; } }; var addLine = function (x1, x2, y1, y2,) { var dashed = '0,0'; var stroke = 2; d3.select('#mainCanvas').append('line') .attr('class', 'divLine ') .attr('x1', x1) .attr('x2', x2) .attr('y1', y1) .attr('y2', y2) .style('stroke', 'black') .style('stroke-width', stroke); }; var fillBox = function(box, width, height, colour, opacity) { d3.select('#' + box.id) .style('fill', colour) .style('opacity', opacity) .transition().delay(function (d, i) { return i * 300; }).duration(500) .attr('width', width) .attr('height', height); }; var changeOpacity = function(box, opacity) { d3.select('#' + box.id).transition().delay(function (d, i) { return i * 300; }).duration(500) .style('opacity', opacity); d3.selectAll('.divLine').transition().delay(function (d, i) { return i * 100; }).duration(200) .style('opacity', opacity); }; var resetInputs = function() { d3.select('#continueBtn').attr('disabled', null); d3.selectAll('.divLine').remove(); d3.select('#leftOpperand').attr('width', 0); d3.select('#rightOpperand').attr('height', 0); d3.select('#leftInputFractionText').text('').style('display', 'none'); clearInput('oppNumerator'); clearInput('oppDenominator'); leftOpperand.numerator = Number(0); leftOpperand.denominator = Number(0); rightOpperand.numerator = Number(0); rightOpperand.denominator = Number(0); }; var isValid = function(numerator, denominator) { if (numerator < 0 || numerator > 12) { return false; } if (denominator <= 0 || denominator > 12) { return false; } return (numerator < denominator); }; var updateMathJax = function() { MathJax.Hub.Queue(["Typeset",MathJax.Hub]); }; var showInputBox = function(inputId) { d3.select('#' + inputId).style('display', 'block'); }; var hideInputBox = function(inputId) { d3.select('#' + inputId).style('display', 'none'); }; var clearInput = function(inputId) { document.getElementById(inputId).value = ''; } var stateControler = function(state) { currentState = state; setSpeech(state); switch(state) { case 0 : resetInputs(); showInputBox('opperandInput'); break; case 1 : getOpperandInput('oppNumerator', 'oppDenominator', leftOpperand); d3.select('#leftInputFractionText') .text('$\\frac{'+leftOpperand.numerator+'}{'+leftOpperand.denominator+'} \\times$') .style('display', 'block'); updateMathJax(); verticalDivide(Number(d3.select('#mainBox').attr('width')/leftOpperand.denominator), Number(leftOpperand.denominator - 1)); hideInputBox('opperandInput'); break; case 2 : fillBox(leftOpperand, Number(d3.select('#mainBox').attr('width')/leftOpperand.denominator) * leftOpperand.numerator, Number(d3.select('#mainBox').attr('height')), leftOpperand.colour, 1); clearInput('oppNumerator'); clearInput('oppDenominator'); showInputBox('opperandInput'); break; case 3 : getOpperandInput('oppNumerator', 'oppDenominator', rightOpperand); d3.select('#leftInputFractionText') .text('$\\frac{'+leftOpperand.numerator+'}{'+leftOpperand.denominator+'} \\times$' + '$\\frac{'+rightOpperand.numerator+'}{'+rightOpperand.denominator+'}$'); updateMathJax(); changeOpacity(leftOpperand, 0); horizontalDivide(Number(d3.select('#mainBox').attr('height')/rightOpperand.denominator), Number(rightOpperand.denominator - 1)); hideInputBox('opperandInput'); break; case 4 : fillBox(rightOpperand, Number(d3.select('#mainBox').attr('width')), Number(d3.select('#mainBox').attr('height')/rightOpperand.denominator) * rightOpperand.numerator, rightOpperand.colour, 0.5); break; case 5 : changeOpacity(leftOpperand, 1); d3.select('#continueBtn').attr('disabled', true); break; default: console.log('not a valid of state, returning to state 0'); stateControler(0); } }; var speech = [ "Enter a fraction in the boxes provided, then click continue.", "Great! Now we see that the square has been divided into rectangles of equal size. The number of rectangles is given by the denominator. Click continue when ready.", "Some of the equal parts have been filled in with pink. The numerator equals the number of pink rectangles. The ratio of the area in pink to the total area is our fraction. Enter another fraction to multiply then click continue.", "Let’s focus on the second fraction. The first one is temporarily hidden for clarity. As before, the number of rectangles we see equals the denominator. Click continue when ready.", "Now we have a blue section representing the numerator of the second fraction. Click continue to multiply these two fractions.", "Awesome! The first fraction is back and overlaid with the second fraction. The number of rectangles in the purple section is the numerator of our answer. Notice that this is the product of the numerators. The total number of rectangles is the denominator of the product, and this is just the product of the two denominators!" ]; function setSpeech(state) { d3.select('#speech').text(speech[state]); }; document.getElementById('continueBtn').onclick = function() { if(!isValid(Number(document.getElementById('oppNumerator').value), Number(document.getElementById('oppDenominator').value))){ alert('Make sure your factions are proper and the denominators less than or equal to 12'); } else { stateControler(currentState + 1); } }; document.getElementById('resetFractionBoxBtn').onclick = function() { console.log("hello"); resetInputs(); stateControler(0); }; </script> %%html <script type="text/javascript"> var x = 2; //Recipie multiplyer getInput('checkAnswerBtn').onclick = function() { if(checkAnswers()) { d3.select('#answerStatus').text('Correct!! Good job.'); } else { d3.select('#answerStatus').text('Not quite, keep trying!'); } }; getInput('resetBtn').onclick = function() { var inputs = document.getElementsByClassName('ingredientsInput'); for(var i = 0; i < inputs.length; i++) { inputs[i].value = ''; } d3.selectAll('.ingredientsInput').style('background-color', '#ffffff'); d3.select('#answerStatus').text(''); }; function checkAnswers() { var isCorrect = true; if(!checkAnswer('tomatoes', x*3)) isCorrect = false; if(!checkAnswer('basil', x*(1/3))) isCorrect = false; if(!checkAnswer('olivOil', x*2)) isCorrect = false; if(!checkAnswer('garlic', x*1)) isCorrect = false; if(!checkAnswer('salt', x*(1/2))) isCorrect = false; if(!checkAnswer('pepper', x*(1/4))) isCorrect = false; if(!checkAnswer('pasta', x*8)) isCorrect = false; if(!checkAnswer('parmesan', x*(3/4))) isCorrect = false; return isCorrect; }; function checkAnswer(id, ans) { if(eval(getInput(id).value) === ans) { return answerCorrect(id); } return answerIncorrect(id); }; function answerCorrect(id) { d3.select('#' + id).style('background-color', '#76D177'); return true; } function answerIncorrect(id) { d3.select('#' + id).style('background-color', '#BB4646'); return false; } function getInput(id) { return document.getElementById(id); }; </script> ###Output _____no_output_____
Statistics/Bivariate Data.ipynb
###Markdown Bivariate DataWelcome to the Bivariate Data section. Bivariate Data is simply a dataset that has two values instead of one. In this section, we'll go over ways we can visualize and describe relationships between random variables. You'll see the familiar scatter plot, the details of correlation and covariance, $r^2$ measures, some practical tips, and much more!It's a short but an important one. Let's go. Relationships in dataThe general goal of the following techniques are to describe the relationships between two variables. For example, we want to know how house price is related to house size, or salary to experience, or year to GDP. This is such a crucial and fundamental goal of statistics because by finding a good relationship, we can make good predictions. In fact, one of the simplest methods of Machine Learning, linear regression, will model a linear relationship between an explanatory (i.e. input) variable and result (i.e. output) variable. That way, all the machine has to do is plug in the value of the explanatory variable to get the result variable. We'll look at linear regression in more detail in another notebook. Our data: We're going to use one of Seaborn's built-in data sets called 'tips' that has a list of restaurant tips. This makes it easy for anyone to grab the data. But again, don't focus on the details of using Seaborn or Pandas, as here we're just focused on examining our data.What we want to know is if there is a relationship between the total bill and the size of the tip. You've eaten out before, what is your guess? ###Code import seaborn as sns import pandas as pd import matplotlib.pyplot as plt %matplotlib inline tips = sns.load_dataset('tips') type(tips) ###Output _____no_output_____ ###Markdown The `type` of our tips dataset is a pandas `DataFrame`. Think of a `DataFrame` as Python's version of an excel table. Again, don't worry about it too much. There's plent of resources out there on Pandas if you want to learn more.There are 7 variables in this dataset, but I'm going to scrub the table so we have the two pieces we want to examine: `total_bill` and `tip`. ###Code tips.drop(labels=["sex", "smoker", "day", "time", "size"], axis=1, inplace=True) ###Output _____no_output_____ ###Markdown Basic statisticsNow we want to examine our dataset. In particular, we want to see the mean, standard devaition, range, and the distribution. Refer to the Descriptive Statistics notebook for more details on how we do this manually. For now, we'll use the `Series` class from Pandas to do all of it for us: ###Code tips["total_bill"].describe() tips["tip"].describe() ###Output _____no_output_____ ###Markdown Take a couple minutes to examine those statistics. What do they tell you? Which mean?Think back to the previous lesson on Descriptive Statistics. We went over 3 different types of means. If we wanted to get the mean for the tip percent, which should we use? You might see the percent sign and jump straight for the geometric mean. Afterall, that's how we averaged stock returns. But remember that these are not returns but proportions -- in other words, a tip percent has no dependence on any previous value.You may also want to jump straight for the arithmetic mean by creating all of tip percent and averaging the value (in other words, $\frac{0.15 + 0.18 + 0.21}{3}=0.18$. This is a reasonable assumption, but is it the best mean?Well the answer depends on what data you are trying to describe! The arithmetic mean will give you the average tip percent, which answers the question "what tip percent can I expect any given customer to give?"But the harmonic mean answers a slightly different question: for every dollar I sell, how much tip can I expect to receive. (Remember, the harmonic mean is all about proportions). The difference is subtle, but important. Imagine if everyone that has small bills tips 20%, but everyone with large bills tips 10%. The man for my tip will be around 15%. But because those with large bills contribute so much more to my total bill amount, their tips will drag down the proportion and make it closer to 10%. So the harmonic mean may be better for predicting how many tips you expect given a total revenue, whereas the arithmetic mean will be better at predicting what tip percent my next customer will make.For our example, let's take a look at these two values: ###Code def arithmetic_mean(tip, bills): n = tip.count() return sum(tip/bills)/n arithmetic_mean(tips["tip"], tips["total_bill"]) def harmonic_mean(tip, bills): return sum(tip)/sum(bills) harmonic_mean(tips["tip"], tips["total_bill"]) ###Output _____no_output_____ ###Markdown Judging by these two numbers, we can expect any given person to tip about 16.08%. But at the end of the night, we can expect 15 cents for every dollar we sold. How is this so? This is an indication that the larger bills tend to tip less.We won't do any more analysis on tip percentage, but this was a valuable aside on knowing what you can glean by expressing your data in different ways. HistogramsBack to our regularly scheduled program, let's take a look at our two distributions: `tip` and `total_bill` ###Code fig, axs = plt.subplots(1,2, figsize=(10,5)) hist_kws={"edgecolor":"k", "lw":1} sns.distplot(tips["total_bill"], kde=False, ax=axs[0], axlabel="Total Bill (dollars)", hist_kws=hist_kws) sns.distplot(tips["tip"], kde=False, ax=axs[1], color='r', axlabel="Total Tip (dollars)", hist_kws=hist_kws) ###Output _____no_output_____ ###Markdown From the above, we can see that the distributions are roughly the same. It's not quite normal because of the right skew (that is, the tail is long and to the right). But even though these look similar, it does not say anything definitive about the relationship. For example, each tip could be completely independently matched up with the total bill, like in the extreme case of the \$10.00 max tip getting matched to the \$3.07 minimum bill (hey, it could happen!). For a better sense of this relationship, let's introduce the Scatter PlotAnother familiar graph, it will plot the `total_bill` against the `tip`. In this case, `total_bill` is the explanatory variable and the `tip` is the result variable. This means we are looking at the `total_bill` value to explain the `tip` value.Let's take a look at the scatter plot (or `lmplot` as seaborn calls it) and all will become clear: ###Code sns.lmplot(x="total_bill", y="tip", data=tips, fit_reg=False) ###Output _____no_output_____ ###Markdown Look at that! So much more useful than the histogram as we can now see the actual relationships. Each datapoint represents one total bill paired up with it's related tip. Obviously there's a strong relationship here. Since we know the average tip to be 16.1%, and a bill of 0 should give us a tip of 0, we can quickly guess that a linear relationship should be described by the following equation:$$ y = 0 + 0.161x $$Let's plot this line on the graph and see how accurate it might be. ###Code yvals = 0.161 * tips["total_bill"] plt.plot(tips["total_bill"], yvals) sns.regplot(tips["total_bill"], tips["tip"], fit_reg=False) ###Output _____no_output_____ ###Markdown That looks pretty good, but of course mathematicians aren't excited by "looks pretty good." They need numbers to back that claim up. We'll get in to finding the best line in the next notebook on linear regression, but for now be settled that it there's a clear positive relationship (meaning $y$ goes up as $x$ goes up) between the variables._Refere back tou the section on "Which mean?" See how the higher bills tend to be below the blue line? This again is more confirmation that the larger bills tend to tip less. Of course in a small dataset, you can't call this a significant trend, but it does corrobrate the discrepency in our earlier analysis._ Covariance and Correlation CovarianceLet's now talk about how strong this positive relationship is. In other words, how sure can we be that if $x$ goes up $y$ will follow? Statisticians look at the way these values vary together with a term called _covariance_. When two variables tend to move together, their covariance is positive. If they move opposite, it's negative. If they are completely independent, it's 0.The covariance for $N$ samples with random variables $X$ and $Y$ is given by the formula$$ Q = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i}-\bar{x})(y_i-\bar{y}) $$In Python: ###Code # A useful helper function will be to define the dot product between two vectors # dot product is defined as <v1, v2> * <u1, u2> = v1*u1 + v2*u2 from operator import mul def dot(v, u): return sum(map(mul, v,u)) # Another useful helper function will be to take a list and output another list # that contains the differences of the means def diff_mean(values): mean = values.mean() # use Panda's arithmetic mean function deltas = [] for v in values: deltas.append(v-mean) return deltas def covariance(x, y): n = len(x) return dot(diff_mean(x), diff_mean(y)) / (n-1) covariance(tips["total_bill"], tips["tip"]) ###Output _____no_output_____ ###Markdown 8.3235 is a value without a lot of context. Think about what the units of that are: it's essentially 2022.61 dollars squared ($\$^2$). Do you every pay for things in dollars squared? Or if we use two variables with totally different units, like salary (dollars) and years, we get units of dollar-years. This is really difficult to get a sense of scale or closeness of relationship. CorrelationInstead, statisticians will often use the correlation (or Pearson Correlation Coefficient to be formal) to report a number that everyone can understand. Correlation is a number between -1 and +1. If it's 1, there's a perfect positive relationship and vice versa. A correlation of 0 means there's absolutely no relationship. But keep in mind, just because there's a correlation of 0, doesn't mean that there's no _linear_ correlation between values.Take this helpful image from Wikipedia:![correlations](https://upload.wikimedia.org/wikipedia/commons/d/d4/Correlation_examples2.svg "Pearson Correlation Coefficients")The correlation coefficient is almost always denoted by the variable $r$. The formula for a sample is:$$ r = \frac{\sum\nolimits_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y}))}{\sqrt{\sum\nolimits_{i=1}^{n}(x_i-\bar{x})^2\sum\nolimits_{i=1}^{n}(y_i-\bar{y})^2}} $$ Before you freak out, we've seen all of these pieces before. This is just the covariance divided by the product of the standard deviations. Perhaps a simpler equation?$$ \rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X\sigma_Y} $$Now in code: ###Code def correlation(x, y): std_x = x.std() # again, just use Panda's method std_y = y.std() if std_x > 0 and std_y > 0: return covariance(x,y) / (std_x*std_y) else: return 0 correlation(tips["total_bill"], tips["tip"]) ###Output _____no_output_____
notebooks/Sofia/onlyFitandPlotfit.ipynb
###Markdown Select the folder where the Master Sheet I share with you. ###Code askdirectory = filedialog.askdirectory() # show an "Open" dialog box and select the folder path = Path(askdirectory) data = pd.read_csv(path/('MasterSheet.csv'), encoding='utf-8') #read the Mster Sheet data ###Output _____no_output_____ ###Markdown These are the names in my data frame, since I'll use them over and over agian I'd rather just declare them. ###Code tubulin = '[Tubulin] ' r'$(\mu M)$' tub = 'tub' DCXconc = '[DCX] ' r'$(n M)$' DCX = 'DCX' Type = 'DCX Type' Concentration = 'Concentration ' r'$(\mu M)$' Length = 'Length ' r'$(\mu m)$' Lifetime = 'Lifetime ' r'$(min)$' GrowthRate = 'Growth Rate ' r'$(\mu m / min)$' TimeToNucleate = 'Time to Nucleate ' r'$(min)$' ShrinkageLength = 'Shrink Length ' r'$(\mu m)$' ShrinkageLifetime = 'Shrink Lifetime ' r'$(min)$' ShrinkageRate = 'Shrink Rate ' r'$(\mu m / min)$' parameters = [GrowthRate,TimeToNucleate,Lifetime,ShrinkageRate] ###Output _____no_output_____ ###Markdown Fitting Data First declare the functions you are going to fit to. Here x is the variable and the other inputs are the distribution's parameters. ###Code def gaussian(x, mu, sig): return (np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.))) )/(sig*np.sqrt(2*np.pi)) def exponential(x, scale): return ((np.exp(-x/scale) )/(scale)) def gamma(x, shape, scale): return (np.power(x,shape-1)*np.exp(-x/ scale))/(sp.special.gamma(shape) * np.power(scale,shape)) ###Output _____no_output_____ ###Markdown Then I make a function to extract a particular set of data and make a histogram. When matplotlib.pyplot makes a histogram, it saves the info on the bins used and the value of each bin. ###Code def make_hist(data, parameter, tubconc, dcxtype, dcxconc): #Dataframe, what paramenter I'm plotting (e.g. GrowthRate), tubulin concentration, which dcx mutant, DCX concentration. selectdata = data[(data[tubulin]==tubconc)&(data[Type]==dcxtype)&(data[DCXconc]==dcxconc)] #this is specific to how my dataframe is organized, it just filters the data I'm interested in if parameter == GrowthRate : #The Growthrate histogram ranges from 0 to 1.5 while the other go up to 30 maxbin = 1.5 binsize = 0.05 else: maxbin = 30 binsize = 1 n, bins, patches = plt.hist(selectdata[parameter], bins=np.arange(0, maxbin + binsize, binsize), density=True); #extracting the histogrm info n is the value of a bin, patches is image info that we don't need plt.clf() #This is so the image of the histogram doesn't appear, we don't need it right now return n, bins ###Output _____no_output_____ ###Markdown Next is the 'Master' fitting function where I only have to give it a dataframe with all my data (the Master Sheet) and the parameter I want to plot (e.g GrowthRate). Inside the function I loop for every tubulin concentration, dcx mutant and DCX concentration. Then it uses the previous function to get the histogram info. With this info it fits a curve with optimize. The optimize function outputs the fitting coefficients and the variance matrix. From the matrix you can get the error after doing some simple math. Finally I make a dataframe that contains the coefficients and error for each condition. ###Code def equation_fit(data, parameter): if (parameter == GrowthRate) | (parameter == ShrinkageRate) : #Choose an equation given a paramenter to fit equation = gaussian elif parameter == TimeToNucleate : equation = exponential elif parameter == Lifetime : equation = gamma results = pd.DataFrame(columns=[] , index=[]) #Declare an empty dataframe where we'll later put the results in. for tubconc in data[tubulin].unique(): #Lopping over all of my conditions for dcxtype in data[Type].unique(): for dcxconc in data[DCXconc].unique(): n, bins = make_hist(data, parameter, tubconc, dcxtype, dcxconc) #Make one histogram per condition if np.isnan(np.sum(n)) == True: #If the condition doesn't exist, skip the loop (eg. DCX Type = None, [DCX] = 50nM) continue if equation == gamma : #THe optimize function starts with a set of paramenters and iterates to minimize the error. #The default starting parameter is 1, but the gamma function needs something other than the defualt to work. coeff, var_matrix = sp.optimize.curve_fit(equation,bins[:-1],n,[2,1]) else : coeff, var_matrix = sp.optimize.curve_fit(equation,bins[:-1],n) #Give optimize the function of interest, and the info we got from the histogram variance = np.diagonal(var_matrix) #This is the math you have to do to extract the error from the output matrix SE = np.sqrt(variance) #SE for Standard Error #======Making a data frame======== results0 = pd.DataFrame(columns=[] , index=[]) #Declare a dataframe to put this loop's coefficients for k in np.arange(0,len(coeff)): header = [np.array([parameter]),np.array(['Coefficient '+ str(k)])] r0 = pd.DataFrame([coeff[k],SE[k]], index=(['Value','SE']),columns= header) results0 = pd.concat([results0, r0], axis=1, sort=False) results0[tubulin] = tubconc #Adding the concentration info to thecoefficients we just saved results0[Type] = dcxtype results0[DCXconc] = dcxconc results = pd.concat([results, results0], sort=False) #Concatenate to the big result dataframe return results ###Output _____no_output_____ ###Markdown Then just run the function and violà done. This is all you have to do to get the coeffients, which are also the means for the exponential and gaussian, but for but for Lifetime there are a couple of more steps you have to do to on the gamma coefficients get the mean and mean error. I haven't included them right now to keep thing simple but if you're interested just ask :) ###Code GrowthRateFit = equation_fit(data, GrowthRate); TimeToNucleateFit = equation_fit(data, TimeToNucleate); LifetimeFit = equation_fit(data, Lifetime); ShrinkageRateFit = equation_fit(data, ShrinkageRate); ###Output C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:8: RuntimeWarning: divide by zero encountered in power ###Markdown Concatenate the results from above ###Code ResultFit = pd.concat([GrowthRateFit, TimeToNucleateFit,LifetimeFit,ShrinkageRateFit], axis=1, sort=False) ResultFit = ResultFit.loc[:,~ResultFit.columns.duplicated()] ###Output _____no_output_____ ###Markdown To plot the histogram with the fitted fuctions I use the following: ###Code def plot_hist(data, tubconc, dcxtype, dcxconc) : selectdata = data[(data[tubulin]==tubconc)&(data[Type]==dcxtype)&(data[DCXconc]==dcxconc)] #again select data from Master Sheet fig, ax = plt.subplots(2,2,figsize=(15,15)) #declare figure n = len(selectdata.dropna().index) #gets the how many microtubules you analyzed per histogram c=0 for i in np.arange(len(ax)): for j in np.arange(len(ax)): parameter = parameters[c] if parameter == GrowthRate : #same steps to make a histogram maxbin = 1.5 binsize = 0.025 else: maxbin = 30 binsize = 0.5 ax[i][j].hist(selectdata[parameter], bins=np.arange(0, maxbin + binsize, binsize), density=True); ax[i][j].set_title(parameter) ax[1][1].set_xlim(0,maxbin) c += 1 selectcoeff = ResultFit[ResultFit[tubulin]==tubconc] #filter datafram for one [Tub] x = np.arange(0, 1.5 + 0.025, 0.025) # keep filtering the dataframe to obtain a specific coefficient mu = selectcoeff[(selectcoeff[Type] == dcxtype)&(selectcoeff[DCXconc] == dcxconc)][parameters[0]]['Coefficient 0'].loc['Value'] sig = selectcoeff[(selectcoeff[Type] == dcxtype)&(selectcoeff[DCXconc] == dcxconc)][parameters[0]]['Coefficient 1'].loc['Value'] ax[0][0].plot(x, gaussian(x, mu, sig)); #plot a curve with the equation and its coefficients you just got. Grwoth rate x = np.arange(0, 30 + 0.5, 0.5) scale = selectcoeff[(selectcoeff[Type] == dcxtype)&(selectcoeff[DCXconc] == dcxconc)][parameters[1]]['Coefficient 0'].loc['Value'] ax[0][1].plot(x, exponential(x, scale)); #same for nucleation shape = selectcoeff[(selectcoeff[Type] == dcxtype)&(selectcoeff[DCXconc] == dcxconc)][parameters[2]]['Coefficient 0'].loc['Value'] scale = selectcoeff[(selectcoeff[Type] == dcxtype)&(selectcoeff[DCXconc] == dcxconc)][parameters[2]]['Coefficient 1'].loc['Value'] ax[1][0].plot(x, gamma(x, shape, scale));#lifetime mu = selectcoeff[(selectcoeff[Type] == dcxtype)&(selectcoeff[DCXconc] == dcxconc)][parameters[3]]['Coefficient 0'].loc['Value'] sig = selectcoeff[(selectcoeff[Type] == dcxtype)&(selectcoeff[DCXconc] == dcxconc)][parameters[3]]['Coefficient 1'].loc['Value'] ax[1][1].plot(x, gaussian(x, mu, sig)); #shrikage rate return n plot_hist(data, 6, 'P191R', 35) ###Output _____no_output_____
Obtencao_dados_cripto.ipynb
###Markdown Imports: ###Code import numpy as np import datetime as dt import time import re import requests import matplotlib.pyplot as plt from pandas import Series, DataFrame, read_json, to_datetime, to_numeric #from pandas import Timedelta ###Output _____no_output_____ ###Markdown Exemplos "originais" (via Telegram): ###Code dados = read_json('https://api.binance.com/api/v3/klines?symbol=BTCUSDT&interval=15m&limit=340') dados2 = read_json('https://api.binance.com/api/v3/klines?symbol=VETUSDT&interval=15m&startTime=1628125200000&endTime=1628989200000&limit=1000') ###Output _____no_output_____ ###Markdown Exemplos interativos: ###Code symbol = 'BTCUSDT' interval='15m' limit='340' dados3 = read_json('https://api.binance.com/api/v3/klines?symbol={}&interval={}&limit={}'.format( symbol, interval, limit) ) dados3.head() fig = dados3[4].plot(figsize = (16,8), grid=True, fontsize = 18, linewidth=2.0) plt.title(f'{symbol} Close values over the time', fontdict = {'fontsize' : 25}) print(dados3[4].min()) print(dados3[4].max()) print((dados3[4].max() - dados3[4].min())/(dados3[4].max())) symbol = 'VETUSDT' interval='15m' limit='1000' data_inicio = '2021-08-04' horario_inicio = '22:00' data_fim = '2021-08-14' horario_fim = '22:00' startTime = int(dt.datetime.fromisoformat(data_inicio+'T'+horario_inicio).timestamp()) * 1000 endTime = int(dt.datetime.fromisoformat(data_fim+'T'+horario_fim).timestamp()) * 1000 dados4 = read_json('https://api.binance.com/api/v3/klines?symbol={}&interval={}&startTime={}&endTime={}&limit={}'.format( symbol, interval, startTime, endTime, limit) ) dados4.head() ###Output _____no_output_____ ###Markdown Coletando dados de um range largo de datas e exportando resultados: ###Code symbols = ['BTC','ETH','BNB'] #symbols = ['DOGE','CHZ','MATIC','XRP','BNB','XLM','THETA','VET','ETC','BTT','FIL','ADA','LTC','UNI','TRX','ENJ','DOT','EOS','ETH','BCH','ATOM','LINK','AXS','NEO','BTC','XTZ','MKR','AAVE','XMR','FTT','ALGO','SOL'] def gerar_csv_dados_cripto(symbol, interval, limit, data_inicio=None, horario_inicio=None, data_fim=None, horario_fim=None, log=True): if(interval == '1m'): delta = dt.timedelta(hours=16) elif(interval == '3m'): delta = dt.timedelta(days=2) elif(interval == '5m'): delta = dt.timedelta(days=3) elif(interval == '15m'): delta = dt.timedelta(days=10) elif(interval == '30m'): delta = dt.timedelta(days=20, hours=20) elif(interval == '1h'): delta = dt.timedelta(days=40) elif(interval == '2h'): delta = dt.timedelta(days=80) elif(interval == '4h'): delta = dt.timedelta(days=160) elif(interval == '6h'): delta = dt.timedelta(days=240) elif(interval == '8h'): delta = dt.timedelta(days=320) elif(interval == '12h'): delta = dt.timedelta(days=480) elif(interval == '1d'): delta = dt.timedelta(days=1000) elif(interval == '3d'): delta = dt.timedelta(days=3000) elif(interval == '1w'): delta = dt.timedelta(weeks=1000) elif(interval == '1M'): delta = dt.timedelta(weeks=4000) else: raise ValueError('intervalError') if(horario_inicio == None): horario_inicio = '00:00:00' if(horario_fim == None): #horario_fim = dt.datetime.now() #horario_fim = str(horario_fim.hour)+':'+str(horario_fim.minute)+':'+str(horario_fim.second) horario_fim = '23:59:59' if(limit > 1000): limit = 1000 if(limit <= 0): raise ValueError('limitError') if(data_inicio == None): path_dados = 'https://api.binance.com/api/v3/klines?symbol={}&interval={}&limit={}'.format( symbol, interval, limit ) dados_atual = read_json(path_dados).iloc[:, :5] dados_atual.insert(loc=0, column='Date-Time', value = dados_atual[0].apply(lambda x : dt.datetime.fromtimestamp(x/1000))) print('Gerando arquivo .csv...') dados_atual.columns = ['Date-Time', 'Timestamp', 'Open', 'Max', 'Min', 'Close'] dados_atual.set_index('Date-Time', inplace=True) dados_atual.to_csv(f'dados_{symbol}_{interval}.csv') print('Procedimento realizado com sucesso!') return elif((data_inicio != None) and (data_fim != None)): path_dados_base = 'https://api.binance.com/api/v3/klines?symbol={}&interval={}&startTime={}&endTime={}&limit={}' limit = 1000 else: data_fim = dt.datetime.now() data_fim = str(data_fim.year)+'-'+str(data_fim.month)+'-'+str(data_fim.day) path_dados_base = 'https://api.binance.com/api/v3/klines?symbol={}&interval={}&startTime={}&endTime={}&limit={}' limit = 1000 data_atual = dt.datetime.fromisoformat(data_inicio+'T'+horario_inicio) dados_list = list() primeiro_laco = True momento_final = dt.datetime.fromisoformat(data_fim+'T'+horario_fim) momento_final_timestamp = int(dt.datetime.timestamp(momento_final)) * 1000 it_count = 1 while(data_atual < momento_final): if(log): print('Iteracao Atual:', it_count) print('Data Atual:', data_atual) startTime = int(data_atual.timestamp()) * 1000 aux_endTime = int( (data_atual + delta).timestamp()) * 1000 if(aux_endTime < momento_final_timestamp): endTime = aux_endTime else: endTime = momento_final_timestamp dados_iter = re.findall(r'\[[\d]+,"[\d]+.[\d]+","[\d]+.[\d]+","[\d]+.[\d]+","[\d]+.[\d]+"', requests.get( path_dados_base.format(symbol, interval, startTime, endTime, limit)).text ) if(primeiro_laco): dados_list.extend(dados_iter) else: dados_list.extend(dados_iter[1:]) data_atual += delta it_count += 1 primeiro_laco = False print('Gerando arquivo .csv...') dados_completo = Series(dados_list).str.replace('[\["]', '', regex=True) dados_completo = DataFrame([dados_completo[i].split(',') for i in range(len(dados_completo))]) dados_completo = dados_completo.apply(to_numeric) dados_completo.insert(0, 'Date-Time', (dados_completo[0]/1000).apply(lambda x : dt.datetime.fromtimestamp(x))) dados_completo.columns = ['Date-Time', 'Timestamp', 'Open', 'Max', 'Min', 'Close'] dados_completo.set_index('Date-Time', inplace=True) dados_completo.to_csv(f'dados_{symbol}_{interval}.csv') print('Procedimento realizado com sucesso!') return time_init = time.time() gerar_csv_dados_cripto(symbol='BTCUSDT', interval='30m', limit=1000, data_inicio='2021-06-01', log=False) print('Tempo do procedimento:', time.time() - time_init, 's') ###Output Gerando arquivo .csv... Procedimento realizado com sucesso! Tempo do procedimento: 5.530316114425659 s
ingest_data/ingest-data-types/ingest_text_data.ipynb
###Markdown Ingest Text DataLabeled text data can be in a structured data format, such as reviews for sentiment analysis, news headlines for topic modeling, or documents for text classification. In these cases, you may have one column for the label, one column for the text, and sometimes other columns for attributes. You can treat this structured data like tabular data. Sometimes text data, especially raw text data comes as unstructured data and is often in .json or .txt format, and we will discuss how to ingest these types of data files into a SageMaker Notebook in this section. Set Up Notebook ###Code %pip install -q 's3fs==0.4.2' import pandas as pd import json import glob import s3fs import sagemaker # Get SageMaker session & default S3 bucket sagemaker_session = sagemaker.Session() bucket = sagemaker_session.default_bucket() # replace with your own bucket if you have one s3 = sagemaker_session.boto_session.resource("s3") prefix = "text_spam/spam" prefix_json = "json_jeo" filename = "SMSSpamCollection.txt" filename_json = "JEOPARDY_QUESTIONS1.json" ###Output _____no_output_____ ###Markdown Downloading data from Online Sources Text data (in structured .csv format): Twitter -- sentiment140 **Sentiment140** This is the sentiment140 dataset. It contains 1.6M tweets extracted using the twitter API. The tweets have been annotated with sentiment (0 = negative, 4 = positive) and topics (hashtags used to retrieve tweets). The dataset contains the following columns:* `target`: the polarity of the tweet (0 = negative, 4 = positive)* `ids`: The id of the tweet ( 2087)* `date`: the date of the tweet (Sat May 16 23:58:44 UTC 2009)* `flag`: The query (lyx). If there is no query, then this value is NO_QUERY.* `user`: the user that tweeted (robotickilldozr)* `text`: the text of the tweet (Lyx is cool[Second Twitter data](https://github.com/guyz/twitter-sentiment-dataset) is a Twitter data set collected as an extension to Sanders Analytics Twitter sentiment corpus, originally designed for training and testing Twitter sentiment analysis algorithms. We will use this data to showcase how to aggregate two data sets if you want to enhance your current data set by adding more data to it. ###Code # helper functions to upload data to s3 def write_to_s3(filename, bucket, prefix): # put one file in a separate folder. This is helpful if you read and prepare data with Athena key = "{}/{}".format(prefix, filename) return s3.Bucket(bucket).upload_file(filename, key) def upload_to_s3(bucket, prefix, filename): url = "s3://{}/{}/{}".format(bucket, prefix, filename) print("Writing to {}".format(url)) write_to_s3(filename, bucket, prefix) # run this cell if you are in SageMaker Studio notebook #!apt-get install unzip # download first twitter dataset !wget http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip -O sentimen140.zip # Uncompressing !unzip -o sentimen140.zip -d sentiment140 # upload the files to the S3 bucket csv_files = glob.glob("sentiment140/*.csv") for filename in csv_files: upload_to_s3(bucket, "text_sentiment140", filename) # download second twitter dataset !wget https://raw.githubusercontent.com/zfz/twitter_corpus/master/full-corpus.csv filename = "full-corpus.csv" upload_to_s3(bucket, "text_twitter_sentiment_2", filename) ###Output _____no_output_____ ###Markdown Text data (in .txt format): SMS Spam data [SMS Spam Data](https://archive.ics.uci.edu/ml/datasets/sms+spam+collection) was manually extracted from the Grumbletext Web site. This is a UK forum in which cell phone users make public claims about SMS spam messages, most of them without reporting the very spam message received. Each line in the text file has the correct class followed by the raw message. We will use this data to showcase how to ingest text data in .txt format. ###Code !wget http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/smsspamcollection.zip -O spam.zip !unzip -o spam.zip -d spam txt_files = glob.glob("spam/*.txt") for filename in txt_files: upload_to_s3(bucket, "text_spam", filename) ###Output _____no_output_____ ###Markdown Text Data (in .json format): Jeopardy Question data[Jeopardy Question](https://j-archive.com/) was obtained by crawling the Jeopardy question archive website. It is an unordered list of questions where each question has the following key-value pairs:* `category` : the question category, e.g. "HISTORY"* `value`: dollar value of the question as string, e.g. "\$200"* `question`: text of question* `answer` : text of answer* `round`: one of "Jeopardy!","Double Jeopardy!","Final Jeopardy!" or "Tiebreaker"* `show_number` : string of show number, e.g '4680'* `air_date` : the show air date in format YYYY-MM-DD ###Code # json file format ! wget 'https://docs.google.com/uc?export=download&id=0BwT5wj_P7BKXb2hfM3d2RHU1ckE' -O JEOPARDY_QUESTIONS1.json # Uncompressing filename = "JEOPARDY_QUESTIONS1.json" upload_to_s3(bucket, "json_jeo", filename) ###Output _____no_output_____ ###Markdown Ingest Data into Sagemaker Notebook Method 1: Copying data to the InstanceYou can use the AWS Command Line Interface (CLI) to copy your data from s3 to your SageMaker instance. This is a quick and easy approach when you are dealing with medium sized data files, or you are experimenting and doing exploratory analysis. The documentation can be found [here](https://docs.aws.amazon.com/cli/latest/reference/s3/cp.html). ###Code # Specify file names prefix = "text_spam/spam" prefix_json = "json_jeo" filename = "SMSSpamCollection.txt" filename_json = "JEOPARDY_QUESTIONS1.json" prefix_spam_2 = "text_spam/spam_2" # copy data to your sagemaker instance using AWS CLI !aws s3 cp s3://$bucket/$prefix_json/ text/$prefix_json/ --recursive data_location = "text/{}/{}".format(prefix_json, filename_json) with open(data_location) as f: data = json.load(f) print(data[0]) ###Output _____no_output_____ ###Markdown Method 2: Use AWS compatible Python PackagesWhen you are dealing with large data sets, or do not want to lose any data when you delete your Sagemaker Notebook Instance, you can use pre-built packages to access your files in S3 without copying files into your instance. These packages, such as `Pandas`, have implemented options to access data with a specified path string: while you will use `file://` on your local file system, you will use `s3://` instead to access the data through the AWS boto library. For `pandas`, any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. You can find additional documentation [here](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html). For text data, most of the time you can read it as line-by-line files or use Pandas to read it as a DataFrame by specifying a delimiter. ###Code data_s3_location = "s3://{}/{}/{}".format(bucket, prefix, filename) # S3 URL s3_tabular_data = pd.read_csv(data_s3_location, sep="\t", header=None) s3_tabular_data.head() ###Output _____no_output_____ ###Markdown For JSON files, depending on the structure, you can also use `Pandas` `read_json` function to read it if it's a flat json file. ###Code data_json_location = "s3://{}/{}/{}".format(bucket, prefix_json, filename_json) s3_tabular_data_json = pd.read_json(data_json_location, orient="records") s3_tabular_data_json.head() ###Output _____no_output_____ ###Markdown Method 3: Use AWS Native methods s3fs[S3Fs](https://s3fs.readthedocs.io/en/latest/) is a Pythonic file interface to S3. It builds on top of botocore. The top-level class S3FileSystem holds connection information and allows typical file-system style operations like cp, mv, ls, du, glob, etc., as well as put/get of local files to/from S3. ###Code fs = s3fs.S3FileSystem() data_s3fs_location = "s3://{}/{}/".format(bucket, prefix) # To List all files in your accessible bucket fs.ls(data_s3fs_location) # open it directly with s3fs data_s3fs_location = "s3://{}/{}/{}".format(bucket, prefix, filename) # S3 URL with fs.open(data_s3fs_location) as f: print(pd.read_csv(f, sep="\t", nrows=2)) ###Output _____no_output_____ ###Markdown Aggregating datasetsIf you would like to enhance your data with more data collected for your use cases, you can always aggregate your newly-collected data with your current dataset. We will use two datasets -- Sentiment140 and Sanders Twitter Sentiment to show how to aggregate data together. ###Code prefix_tw1 = "text_sentiment140/sentiment140" filename_tw1 = "training.1600000.processed.noemoticon.csv" prefix_added = "text_twitter_sentiment_2" filename_added = "full-corpus.csv" ###Output _____no_output_____ ###Markdown Let's read in our original data and take a look at its format and schema: ###Code data_s3_location_base = "s3://{}/{}/{}".format(bucket, prefix_tw1, filename_tw1) # S3 URL # we will showcase with a smaller subset of data for demonstration purpose text_data = pd.read_csv( data_s3_location_base, header=None, encoding="ISO-8859-1", low_memory=False, nrows=10000 ) text_data.columns = ["target", "tw_id", "date", "flag", "user", "text"] ###Output _____no_output_____ ###Markdown We have 6 columns, `date`, `text`, `flag` (which is the topic the twitter was queried), `tw_id` (tweet's id), `user` (user account name), and `target` (0 = neg, 4 = pos). ###Code text_data.head(1) ###Output _____no_output_____ ###Markdown Let's read in and take a look at the data we want to add to our original data. We will start by checking for columns for both data sets. The new data set has 5 columns, `TweetDate` which maps to `date`, `TweetText` which maps to `text`, `Topic` which maps to `flag`, `TweetId` which maps to `tw_id`, and `Sentiment` mapped to `target`. In this new data set, we don't have `user account name` column, so when we aggregate two data sets we can add this column to the data set to be added and fill it with `NULL` values. You can also remove this column from the original data if it does not provide much valuable information based on your use cases. ###Code data_s3_location_added = "s3://{}/{}/{}".format(bucket, prefix_added, filename_added) # S3 URL # we will showcase with a smaller subset of data for demonstration purpose text_data_added = pd.read_csv( data_s3_location_added, encoding="ISO-8859-1", low_memory=False, nrows=10000 ) text_data_added.head(1) ###Output _____no_output_____ ###Markdown Add the missing column to the new data set and fill it with `NULL` ###Code text_data_added["user"] = "" ###Output _____no_output_____ ###Markdown Renaming the new data set columns to combine two data sets ###Code text_data_added.columns = ["flag", "target", "tw_id", "date", "text", "user"] text_data_added.head(1) ###Output _____no_output_____ ###Markdown Change the `target` column to the same format as the `target` in the original data setNote that the `target` column in the new data set is marked as "positive", "negative", "neutral", and "irrelevant", whereas the `target` in the original data set is marked as "0" and "4". So let's map "positive" to 4, "neutral" to 2, and "negative" to 0 in our new data set so that they are consistent. For "irrelevant", which are either not English or Spam, you can either remove these if it is not valuable for your use case (In our use case of sentiment analysis, we will remove those since these text does not provide any value in terms of predicting sentiment) or map them to -1. ###Code # remove tweets labeled as irelevant text_data_added = text_data_added[text_data_added["target"] != "irelevant"] # convert strings to number targets target_map = {"positive": 4, "negative": 0, "neutral": 2} text_data_added["target"] = text_data_added["target"].map(target_map) ###Output _____no_output_____ ###Markdown Combine the two data sets and save as one new file ###Code text_data_new = pd.concat([text_data, text_data_added]) filename = "sentiment_full.csv" text_data_new.to_csv(filename, index=False) upload_to_s3(bucket, "text_twitter_sentiment_full", filename) ###Output _____no_output_____
_notebooks/2020-04-24-logistic-regression.ipynb
###Markdown "Logistic Regression from Scratch"> "Implementing logistic regression in Python using numpy library"- toc: true- badges: true- comments: true- categories: [ML, jupyter] IntroductionLogistic Regression is a statistical method to predict qualitative response using one or more independent variables. Instead of predicting the response directly, Logistic Regression models probability that the response belongs to a particular category. In logistic regression, we use logistic function. The logistic function will always producr an S shaped curve, so we always get a sensible prediction. $p(X)$ is sometimes also called sigmoid function.$$ \log\Big(\frac{p(X)}{1-p(X)}\Big) = w^TX + c $$$$z = w^TX + c $$$$ p(X) = \frac{1}{1 + e^{-z}} $$ ###Code #collapse-hide import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.preprocessing import normalize #collapse-hide def sigmoid(z): '''Sigmoid function maps from a value between 0 and 1''' return 1/(1+np.exp(-z)) x = np.linspace(-10,10,100) y = sigmoid(x) plt.plot(x,y) plt.title("Sigmoid Function") plt.show() ###Output _____no_output_____ ###Markdown Estimate Regression Coefficients A method called **maximum likelihood** is to estimate the unknown coefficients. The idea behind this method is to estimate coefficients such that predicted probability $\hat{p}(x_i)$ of each observation corresponds closely as possible to the observed value of response variable for the same observation. In other words, we estimate coefficients such that $p(X)$ yields a number close to 1 for the observations with actual response value 1 and a number close to 0 for the observations with actual response value 0. The mathematical eequation for the likelihood function is$$ \ell(W) = \prod_{i;y_i = 1} p(x_i) \prod_{i;y_i = 0} ( 1 - p(x_i)) $$The $W$ estimates are chosen to maximize the likelihood function. Manipulating the above constraint, we arrive at Cross Entropy Loss for binary classification case.\begin{equation}L(y,\hat{y}) = -\frac{1}{N} \sum_{i=1}^N y_i \log(\hat{y_i}) + (1-y_i)\log(\hat{y_i})\end{equation} ###Code def cross_entropy_loss(w,x,y): '''Cross entropy loss function''' z = np.dot(x,w) h = sigmoid(z) total_loss = np.sum(-y*np.log(h) - (1-y)*np.log(1-h)).mean() return total_loss ###Output _____no_output_____ ###Markdown Use chain rule to calculate gradient of loss\begin{equation}\frac{\partial{L}}{\partial{w_i}} = \frac{\partial{L}}{\partial{\hat{y}}} \frac{\partial{\hat{y}}}{\partial{z}} \frac{\partial{z}}{\partial{w}}\end{equation}Examining each factor in turn\begin{equation}\frac{\partial{L}}{\partial{\hat{y_i}}} = \frac{-y_i}{\hat{y_i}} + \frac{1-y_i}{1-\hat{y_i}} \end{equation}\begin{equation}\frac{\partial{L}}{\partial{\hat{y_i}}} = \frac{\hat{y_i}-y_i}{\hat{y_i}(1-\hat{y_i})} \end{equation}\begin{equation}\frac{\partial{\hat{y}}}{\partial{z}} = \hat{y_i}(1-\hat{y_i}) \end{equation}\begin{equation}\frac{\partial{z}}{\partial{w}} = x_i \end{equation}Multiplying all the indivdual terms, you get \begin{equation}\frac{\partial{L}}{\partial{w_i}} = (\hat{y_i}-y_i)x_i\end{equation} ###Code def gradient(w,x,y): '''Gradient for cross entropy loss''' z = np.dot(x,w) h = sigmoid(z) gradient = np.dot(x.T,h - y) return gradient ###Output _____no_output_____ ###Markdown We are gonnna use a algorithm called **batch gradient descent** to find the optimal weights. $$ \Delta w_{i} = -\eta \frac{\partial L}{\partial w_{i}} $$$$ w_{i} := w_{i} + \Delta w_{i} $$ ###Code def update_weights(learning_rate = 0.01, n_iters = 1000, loss_threshold = 0.001): ## Initialize the weights with zero values w = np.random.rand(x.shape[1]) for epoch in range(n_iters): loss = cross_entropy_loss(w,x,y) grad = gradient(w,x,y) w = w - learning_rate * grad if epoch % 1000 == 0: print(f"Loss after iteration {epoch} is {round(loss,2)}") if loss < loss_threshold: break return(w) def accuracy(true, probs, threshold = 0.5): predicted = (probs > threshold).astype(int) return 100*(predicted == true).mean() def predict(w,x): return sigmoid(np.dot(x,w)) ###Output _____no_output_____ ###Markdown Lets load some binary classification data from `sklearn.datasets` and split the data into train test split. ###Code cancer_data = load_breast_cancer() x, x_test, y, y_test = train_test_split(cancer_data.data, cancer_data.target, test_size=0.25, random_state=0) x = normalize(x) ###Output _____no_output_____ ###Markdown Lets call the update weights function to find the optimal weights that minimizes cross entropy loss ###Code w = update_weights(learning_rate = 0.05, n_iters = 10000, loss_threshold = 0.001) ###Output Loss after iteration 0 is 281.55 Loss after iteration 1000 is 87.93 Loss after iteration 2000 is 83.59 Loss after iteration 3000 is 81.78 Loss after iteration 4000 is 80.63 Loss after iteration 5000 is 79.76 Loss after iteration 6000 is 79.06 Loss after iteration 7000 is 78.46 Loss after iteration 8000 is 77.94 Loss after iteration 9000 is 77.47 ###Markdown Lets use the model to generate predictions for the test data and see what kind of accuracies are we reaching. ###Code preds = predict(w,normalize(x_test)) acc = accuracy(y_test, preds) print(f"Accuracy on test data is {round(acc,3)}") ###Output Accuracy on test data is 93.706
Spacy_NER_model.ipynb
###Markdown Build a Spacy NER model ###Code # Define variables requred for the model model = None output_dir=Path("/content/drive/MyDrive/Data extraction from financial documents/models/model") n_iter=100 #load the model if model is not None: nlp = spacy.load(model) print("Loaded model '%s'" % model) else: nlp = spacy.blank('en') print("Created blank 'en' model") #set up the pipeline if 'ner' not in nlp.pipe_names: ner = nlp.create_pipe('ner') nlp.add_pipe(ner, last=True) else: ner = nlp.get_pipe('ner') #Train the recognizer by disabling the unnecessary pipeline except for NER for _, annotations in TRAIN_DATA: for ent in annotations.get('entities'): ner.add_label(ent[2]) other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner'] with nlp.disable_pipes(*other_pipes): # only train NER optimizer = nlp.begin_training() for itn in range(n_iter): random.shuffle(TRAIN_DATA) losses = {} for text, annotations in tqdm(TRAIN_DATA): nlp.update( [text], [annotations], drop=0.5, sgd=optimizer, losses=losses) print(losses) # Save model if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print("Saved model to", output_dir) # Load the trained model nlp = spacy.load(output_dir) doc = nlp("Trad receiable 819.0") for ent in doc.ents: print(ent.label_, ent.text) # Run predictions path = "/content/drive/MyDrive/Data extraction from financial documents/" import os os.chdir(path) !python predict.py ###Output _____no_output_____
examples/.ipynb_checkpoints/Mutation Effect Prediction-checkpoint.ipynb
###Markdown We will walk through the basic functions of loading up a model and predicting the effects of mutations. Downloading pretrained parameters Please first download the pretrained parameters in the "Downloading pretrained parameters.ipynb" notebook. Loading the model ###Code sys.path.insert(0, "../DeepSequence") import model import helper import train ###Output _____no_output_____ ###Markdown Mutation effect prediction Mutation effect prediction helper functions are always with respect to the focus sequence of the alignment. We can ask for a prediction of mutation effect individually.For reliable mutation effect prediction results, we recommend taking Monte Carlo 500-2000 samples from the model (with the N_pred_iterations parameter).We can predict the effects of single, double, triple mutants, etc. Mutations are organized as a list of tuples, where the tuples are (uniprot position, wt amino acid, mutant amino acid). PABP First let's load up a model. We don't have to calculate sequence weights here because we are not training a model and this can be slow on the CPU. In the "Explore model parameters.ipynb" notebook, the helper.py code was ammended to prespesify a dataset used for the DataHelper class. However, we can pass in an alignment name and a few more parameters so we don't have to modify the helper.py file. ###Code data_params = {"alignment_file":"datasets/PABP_YEAST_hmmerbit_plmc_n5_m30_f50_t0.2_r115-210_id100_b48.a2m"} pabp_data_helper = helper.DataHelper( alignment_file=data_params["alignment_file"], working_dir=".", calc_weights=False ) model_params = { "batch_size" : 100, "encode_dim_zero" : 1500, "encode_dim_one" : 1500, "decode_dim_zero" : 100, "decode_dim_one" : 500, "n_patterns" : 4, "n_latent" : 30, "logit_p" : 0.001, "sparsity" : "logit", "encode_nonlin" : "relu", "decode_nonlin" : "relu", "final_decode_nonlin": "sigmoid", "output_bias" : True, "final_pwm_scale" : True, "conv_pat" : True, "d_c_size" : 40 } pabp_vae_model = model.VariationalAutoencoder(pabp_data_helper, batch_size = model_params["batch_size"], encoder_architecture = [model_params["encode_dim_zero"], model_params["encode_dim_one"]], decoder_architecture = [model_params["decode_dim_zero"], model_params["decode_dim_one"]], n_latent = model_params["n_latent"], n_patterns = model_params["n_patterns"], convolve_patterns = model_params["conv_pat"], conv_decoder_size = model_params["d_c_size"], logit_p = model_params["logit_p"], sparsity = model_params["sparsity"], encode_nonlinearity_type = model_params["encode_nonlin"], decode_nonlinearity_type = model_params["decode_nonlin"], final_decode_nonlinearity = model_params["final_decode_nonlin"], output_bias = model_params["output_bias"], final_pwm_scale = model_params["final_pwm_scale"], working_dir = ".") print ("Model built") ###Output Encoding sequences Neff = 151528.0 Data Shape = (151528, 82, 20) Model built ###Markdown Load up the parameters of a pretrained model in the 'params' folder. ###Code file_prefix = "PABP_YEAST" pabp_vae_model.load_parameters(file_prefix=file_prefix) print ("Parameters loaded") print (pabp_data_helper.delta_elbo(pabp_vae_model,[(126,"G","A")], N_pred_iterations=500)) print (pabp_data_helper.delta_elbo(pabp_vae_model,[(126,"G","A"), (137,"I","P")], N_pred_iterations=500)) print (pabp_data_helper.delta_elbo(pabp_vae_model,[(126,"G","A"), (137,"I","P"), (155,"S","A")], N_pred_iterations=500)) ###Output -16.058655309 ###Markdown We can predict the effects of mutations for all single mutations. This and the below function are preferred because they can take advantages of speed-ups from minibatching the mutation data. ###Code pabp_full_matr_mutant_name_list, pabp_full_matr_delta_elbos \ = pabp_data_helper.single_mutant_matrix(pabp_vae_model, N_pred_iterations=500) print (pabp_full_matr_mutant_name_list[0], pabp_full_matr_delta_elbos[0]) ###Output ('K123A', 0.5887526915685584) ###Markdown We can also predict the effect of mutations from a file in batched mode. ###Code pabp_custom_matr_mutant_name_list, pabp_custom_matr_delta_elbos \ = pabp_data_helper.custom_mutant_matrix("mutations/PABP_YEAST_Fields2013-singles.csv", \ pabp_vae_model, N_pred_iterations=500) print (pabp_custom_matr_mutant_name_list[12], pabp_custom_matr_delta_elbos[12]) ###Output ('N127D', -6.426795215037501) ###Markdown Let's also make a quick function to calculate the spearman rho from a mutation file. ###Code def generate_spearmanr(mutant_name_list, delta_elbo_list, mutation_filename, phenotype_name): measurement_df = pd.read_csv(mutation_filename, sep=',') mutant_list = measurement_df.mutant.tolist() expr_values_ref_list = measurement_df[phenotype_name].tolist() mutant_name_to_pred = {mutant_name_list[i]:delta_elbo_list[i] for i in range(len(delta_elbo_list))} # If there are measurements wt_list = [] preds_for_spearmanr = [] measurements_for_spearmanr = [] for i,mutant_name in enumerate(mutant_list): expr_val = expr_values_ref_list[i] # Make sure we have made a prediction for that mutant if mutant_name in mutant_name_to_pred: multi_mut_name_list = mutant_name.split(':') # If there is no measurement for that mutant, pass over it if np.isnan(expr_val): pass # If it was a codon change, add it to the wt vals to average elif mutant_name[0] == mutant_name[-1] and len(multi_mut_name_list) == 1: wt_list.append(expr_values_ref_list[i]) # If it is labeled as the wt sequence, add it to the average list elif mutant_name == 'wt' or mutant_name == 'WT': wt_list.append(expr_values_ref_list[i]) else: measurements_for_spearmanr.append(expr_val) preds_for_spearmanr.append(mutant_name_to_pred[mutant_name]) if wt_list != []: measurements_for_spearmanr.append(np.mean(average_wt_list)) preds_for_spearmanr.append(0.0) num_data = len(measurements_for_spearmanr) spearman_r, spearman_pval = spearmanr(measurements_for_spearmanr, preds_for_spearmanr) print ("N: "+str(num_data)+", Spearmanr: "+str(spearman_r)+", p-val: "+str(spearman_pval)) generate_spearmanr(pabp_custom_matr_mutant_name_list, pabp_custom_matr_delta_elbos, \ "mutations/PABP_YEAST_Fields2013-singles.csv", "log") ###Output N: 1188, Spearmanr: 0.6509305755221257, p-val: 4.0800344026520655e-144 ###Markdown PDZ ###Code data_params = {"alignment_file":"datasets/DLG4_RAT_hmmerbit_plmc_n5_m30_f50_t0.2_r300-400_id100_b50.a2m"} pdz_data_helper = helper.DataHelper( alignment_file=data_params["alignment_file"], working_dir=".", calc_weights=False ) pdz_vae_model = model.VariationalAutoencoder(pdz_data_helper, batch_size = model_params["batch_size"], encoder_architecture = [model_params["encode_dim_zero"], model_params["encode_dim_one"]], decoder_architecture = [model_params["decode_dim_zero"], model_params["decode_dim_one"]], n_latent = model_params["n_latent"], n_patterns = model_params["n_patterns"], convolve_patterns = model_params["conv_pat"], conv_decoder_size = model_params["d_c_size"], logit_p = model_params["logit_p"], sparsity = model_params["sparsity"], encode_nonlinearity_type = model_params["encode_nonlin"], decode_nonlinearity_type = model_params["decode_nonlin"], final_decode_nonlinearity = model_params["final_decode_nonlin"], output_bias = model_params["output_bias"], final_pwm_scale = model_params["final_pwm_scale"], working_dir = ".") print ("Model built") file_prefix = "DLG4_RAT" pdz_vae_model.load_parameters(file_prefix=file_prefix) print ("Parameters loaded\n\n") pdz_custom_matr_mutant_name_list, pdz_custom_matr_delta_elbos \ = pdz_data_helper.custom_mutant_matrix("mutations/DLG4_RAT_Ranganathan2012.csv", \ pdz_vae_model, N_pred_iterations=500) generate_spearmanr(pdz_custom_matr_mutant_name_list, pdz_custom_matr_delta_elbos, \ "mutations/DLG4_RAT_Ranganathan2012.csv", "CRIPT") ###Output Encoding sequences Neff = 102246.0 Data Shape = (102246, 84, 20) Model built Parameters loaded N: 1577, Spearmanr: 0.6199244929585085, p-val: 4.31636475994128e-168 ###Markdown B-lactamase Larger proteins with more mutations to predict can take much longer to run. For these, we recommend GPU-enabled computation. ###Code data_params = {"dataset":"BLAT_ECOLX"} blat_data_helper = helper.DataHelper( dataset=data_params["dataset"], working_dir=".", calc_weights=False ) blat_vae_model = model.VariationalAutoencoder(blat_data_helper, batch_size = model_params["batch_size"], encoder_architecture = [model_params["encode_dim_zero"], model_params["encode_dim_one"]], decoder_architecture = [model_params["decode_dim_zero"], model_params["decode_dim_one"]], n_latent = model_params["n_latent"], n_patterns = model_params["n_patterns"], convolve_patterns = model_params["conv_pat"], conv_decoder_size = model_params["d_c_size"], logit_p = model_params["logit_p"], sparsity = model_params["sparsity"], encode_nonlinearity_type = model_params["encode_nonlin"], decode_nonlinearity_type = model_params["decode_nonlin"], final_decode_nonlinearity = model_params["final_decode_nonlin"], output_bias = model_params["output_bias"], final_pwm_scale = model_params["final_pwm_scale"], working_dir = ".") print ("Model built") file_prefix = "BLAT_ECOLX" blat_vae_model.load_parameters(file_prefix=file_prefix) print ("Parameters loaded\n\n") blat_custom_matr_mutant_name_list, blat_custom_matr_delta_elbos \ = blat_data_helper.custom_mutant_matrix("mutations/BLAT_ECOLX_Ranganathan2015.csv", \ blat_vae_model, N_pred_iterations=500) generate_spearmanr(blat_custom_matr_mutant_name_list, blat_custom_matr_delta_elbos, \ "mutations/BLAT_ECOLX_Ranganathan2015.csv", "2500") ###Output Encoding sequences Neff = 8355.0 Data Shape = (8355, 253, 20) Model built Parameters loaded N: 4807, Spearmanr: 0.743886370415797, p-val: 0.0
notebooks/amqdn-0.2-baseline-grail-qa.ipynb
###Markdown Baseline - Grail QASince we have labels already, it makes sense to consider what performance we can get with straight classification. Topic modeling is fine for large datasets where we don't have the luxury of labeled data, but let's see what a simpler classifier can do. ###Code import pandas as pd pd.options.display.max_colwidth = 0 from src.data.utils import * train = pd.DataFrame(get_domains_and_questions('train', 'grail_qa')) dev = pd.DataFrame(get_domains_and_questions('dev', 'grail_qa')) domains = ['medicine', 'computer'] train = filter_domains(train, domains) dev = filter_domains(dev, domains) train.loc[train.domains =='medicine'].sample(5) train.loc[train.domains =='computer'].sample(5) print(f'---Train Distribution---\n{train.domains.value_counts()}') print(f'---Dev Distribution---\n{dev.domains.value_counts()}') ###Output ---Train Distribution--- medicine 2002 computer 1923 Name: domains, dtype: int64 ---Dev Distribution--- computer 190 medicine 178 Name: domains, dtype: int64 ###Markdown Fairly balanced dataset considering only these two `subdomains`. We'll see how that changes when we incorporate others. ###Code from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer() xt = tfidf.fit_transform(train.questions) xd = tfidf.transform(dev.questions) import numpy as np def transform_labels(labels): labels[np.where(labels == 'medicine')] = 0. labels[np.where(labels == 'computer')] = 1. return labels.astype(np.float64) yt = transform_labels(train.domains.values) yd = transform_labels(dev.domains.values) from sklearn.linear_model import LogisticRegression clf = LogisticRegression() clf.fit(xt, yt) from sklearn.metrics import classification_report print(classification_report(yd, clf.predict(xd))) ###Output precision recall f1-score support 0.0 1.00 1.00 1.00 178 1.0 1.00 1.00 1.00 190 accuracy 1.00 368 macro avg 1.00 1.00 1.00 368 weighted avg 1.00 1.00 1.00 368
master/_downloads/9a20dadaa600955e1b6e24df368031ce/plot_compute_emd.ipynb
###Markdown Plot multiple EMDShows how to compute multiple EMD and Sinkhorn with two differentground metrics and plot their values for different distributions. ###Code # Author: Remi Flamary <[email protected]> # # License: MIT License # sphinx_gallery_thumbnail_number = 3 import numpy as np import matplotlib.pylab as pl import ot from ot.datasets import make_1D_gauss as gauss ###Output _____no_output_____ ###Markdown Generate data ###Code n = 100 # nb bins n_target = 50 # nb target distributions # bin positions x = np.arange(n, dtype=np.float64) lst_m = np.linspace(20, 90, n_target) # Gaussian distributions a = gauss(n, m=20, s=5) # m= mean, s= std B = np.zeros((n, n_target)) for i, m in enumerate(lst_m): B[:, i] = gauss(n, m=m, s=5) # loss matrix and normalization M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'euclidean') M /= M.max() M2 = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'sqeuclidean') M2 /= M2.max() ###Output _____no_output_____ ###Markdown Plot data ###Code pl.figure(1) pl.subplot(2, 1, 1) pl.plot(x, a, 'b', label='Source distribution') pl.title('Source distribution') pl.subplot(2, 1, 2) pl.plot(x, B, label='Target distributions') pl.title('Target distributions') pl.tight_layout() ###Output _____no_output_____ ###Markdown Compute EMD for the different losses ###Code d_emd = ot.emd2(a, B, M) # direct computation of EMD d_emd2 = ot.emd2(a, B, M2) # direct computation of EMD with loss M2 pl.figure(2) pl.plot(d_emd, label='Euclidean EMD') pl.plot(d_emd2, label='Squared Euclidean EMD') pl.title('EMD distances') pl.legend() ###Output _____no_output_____ ###Markdown Compute Sinkhorn for the different losses ###Code reg = 1e-2 d_sinkhorn = ot.sinkhorn2(a, B, M, reg) d_sinkhorn2 = ot.sinkhorn2(a, B, M2, reg) pl.figure(2) pl.clf() pl.plot(d_emd, label='Euclidean EMD') pl.plot(d_emd2, label='Squared Euclidean EMD') pl.plot(d_sinkhorn, '+', label='Euclidean Sinkhorn') pl.plot(d_sinkhorn2, '+', label='Squared Euclidean Sinkhorn') pl.title('EMD distances') pl.legend() pl.show() ###Output _____no_output_____
notebooks/estudos_python/machine_learning/naive-bayes/classificacao_naive-bayes3.ipynb
###Markdown **NAIVE BAYES** Baseado no teorema de bayes (análise probabilistica)Aplicações mais comuns :- Detecção de SPAN- Detecção de emoções em frases- Separação de documentosO naive bayes a partir da tabela de dados previsores gera uma tabela de probabilidades que é usada como base para classificar novos dados.Vantagens :- Rápido se comparado a abordagens mais complexas ( Ex: redes neurais )- Simples- Capaz de tabalhar com altas dimensões (atributos)- Boas previsões em bases de dados pequenas ( 400 - 1000 registros)Desvantagens :- Presume que os atributos previsores são totalmente independentes, o que nem sempre é verdade. ###Code import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.naive_bayes import GaussianNB from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler,MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.metrics import confusion_matrix, accuracy_score, classification_report from sklearn.compose import make_column_transformer # carregando a base de dados de censo base = pd.read_csv('../../res/census.csv') base.shape # separando os dados de previsao e classificacao previsores = base.iloc[:, 0:14].values classificadores = base.iloc[:, 14].values #gerando uma copia dos dados originais para fazer mais testes abaixo previsores_escalonados=previsores.copy() #efetuando correcoes nos dados do censo #transformando dados categorios da base em dados discretos labelencoder_prev = LabelEncoder() previsores[:, 1] = labelencoder_prev.fit_transform(previsores[:, 1]) previsores[:, 3] = labelencoder_prev.fit_transform(previsores[:, 3]) previsores[:, 5] = labelencoder_prev.fit_transform(previsores[:, 5]) previsores[:, 6] = labelencoder_prev.fit_transform(previsores[:, 6]) previsores[:, 7] = labelencoder_prev.fit_transform(previsores[:, 7]) previsores[:, 8] = labelencoder_prev.fit_transform(previsores[:, 8]) previsores[:, 9] = labelencoder_prev.fit_transform(previsores[:, 9]) previsores[:, 13] = labelencoder_prev.fit_transform(previsores[:, 13]) preprocess = make_column_transformer(( OneHotEncoder(categories='auto'), [1,3,5,6,7,8,9,13] ),remainder="passthrough") previsores = preprocess.fit_transform(previsores).toarray() # padronizando os valores nao discretos da copia dos previsores ( nao deve ser feito para todos os parametros sob risco de degradar a precisao do algoritimo) #o min max scaler foi mais interessante para este caso scaler = MinMaxScaler(feature_range=(0, 200)) #scaler = StandardScaler() #transformando dados categorios da copia da base em dados discretos labelencoder_prev = LabelEncoder() previsores_escalonados[:, 1] = labelencoder_prev.fit_transform(previsores_escalonados[:, 1]) previsores_escalonados[:, 3] = labelencoder_prev.fit_transform(previsores_escalonados[:, 3]) previsores_escalonados[:, 5] = labelencoder_prev.fit_transform(previsores_escalonados[:, 5]) previsores_escalonados[:, 6] = labelencoder_prev.fit_transform(previsores_escalonados[:, 6]) previsores_escalonados[:, 7] = labelencoder_prev.fit_transform(previsores_escalonados[:, 7]) previsores_escalonados[:, 8] = labelencoder_prev.fit_transform(previsores_escalonados[:, 8]) previsores_escalonados[:, 9] = labelencoder_prev.fit_transform(previsores_escalonados[:, 9]) previsores_escalonados[:, 13] = labelencoder_prev.fit_transform(previsores_escalonados[:, 13]) print("\nVisualizando estatisticas dos dados nao discretos antes do escalonamento\n") for x in range(3): print('coluna ',x,"\n") print(previsores_escalonados[:,[4,10,12]][x].min()) print(previsores_escalonados[:,[4,10,12]][x].max()) print(previsores_escalonados[:,[4,10,12]][x].mean()) print(previsores_escalonados[:,[4,10,12]][x].var()) print("\n") #padronizando dados nao discretos da copia da base original (testes feitos de varias maneiras para daterminar o melhor resultado) #previsores_escalonados[:,[2,4,10,11,12]] = scaler.fit_transform(previsores_escalonados[:,[2,4,10,11,12]]) #testes com poucas colunas escalonadas previsores_escalonados[:,[12]] = scaler.fit_transform(previsores_escalonados[:,[12]]) previsores_escalonados[:,[10]] = scaler.fit_transform(previsores_escalonados[:,[10]]) previsores_escalonados[:,[4]] = scaler.fit_transform(previsores_escalonados[:,[4]]) print("\nVisualizando estatisticas dos dados nao discretos depois do escalonamento\n") for x in range(3): print('coluna ',x,"\n") print(previsores_escalonados[:,[4,10,12]][x].min()) print(previsores_escalonados[:,[4,10,12]][x].max()) print(previsores_escalonados[:,[4,10,12]][x].mean()) print(previsores_escalonados[:,[4,10,12]][x].var()) print("\n") #fazendo o one hot encoder para a copia da base (para os valores discretos) preprocess = make_column_transformer(( OneHotEncoder(categories='auto'), [1,3,5,6,7,8,9,13] ),remainder="passthrough") previsores_escalonados = preprocess.fit_transform(previsores_escalonados).toarray() #separando os valores de teste e treinamento para os previsores escalonados e nao escalonados previsores_treinamento, previsores_teste, classificadores_treinamento1, classificadores_teste1 = train_test_split(previsores, classificadores, test_size=0.15, random_state=0) previsores_escalonados_treinamento, previsores_escalonados_teste, classificadores_treinamento, classificadores_teste = train_test_split(previsores_escalonados, classificadores, test_size=0.15, random_state=0) # instanciando o naive bayes com o scikit classificador = GaussianNB(priors=(.75,.25)) classificador.fit(previsores_escalonados_treinamento, classificadores_treinamento) # rodando previsoes com o dados de teste (copia) previsoes_dados_escalonados = classificador.predict(previsores_escalonados_teste) # fazendo o fit com os dados normais classificador.fit(previsores_treinamento, classificadores_treinamento1) previsoes = classificador.predict(previsores_teste) #testes dessa instancia algoritimo # o dado de precisao per se nao quer dizer muita coisa e preciso verificar outras metricas precisao_escalonados = accuracy_score(classificadores_teste, previsoes_dados_escalonados) precisao = accuracy_score(classificadores_teste1, previsoes) # uma dessas metricas eh a matriz de confusao ... ela e capaz de mostrar o desempenho do algoritimo para cada classe matriz_escalonados = confusion_matrix(classificadores_teste, previsoes_dados_escalonados) matriz = confusion_matrix(classificadores_teste1, previsoes) #o scikit tambem possui uma classe utilitaria que prove um report mais detalhado... report_escalonados = classification_report(classificadores_teste, previsoes_dados_escalonados) report = classification_report(classificadores_teste1, previsoes) print("Precisão dados normais / escalonados :\n") print(precisao,'/',precisao_escalonados) print("\nMatriz de confusão dados normais / escalonados:\n") print(matriz) print("\n") print(matriz_escalonados) print("\nReport dados normais / escalonados:\n") print (report) print("\n") print (report_escalonados) ###Output Precisão dados normais / escalonados : 0.7950870010235415 / 0.7985670419651996 Matriz de confusão dados normais / escalonados: [[3515 178] [ 823 369]] [[3565 128] [ 856 336]] Report dados normais / escalonados: precision recall f1-score support <=50K 0.81 0.95 0.88 3693 >50K 0.67 0.31 0.42 1192 accuracy 0.80 4885 macro avg 0.74 0.63 0.65 4885 weighted avg 0.78 0.80 0.77 4885 precision recall f1-score support <=50K 0.81 0.97 0.88 3693 >50K 0.72 0.28 0.41 1192 accuracy 0.80 4885 macro avg 0.77 0.62 0.64 4885 weighted avg 0.79 0.80 0.76 4885
macros/Macros.ipynb
###Markdown Macros This notebook shows how to use *macros* commands in Jupyter.What is *macro*? It is just a named code snippet. Similarly to functions, we can use macros to wrap frequently used code. For example, we can define a macro, that will load all the libraries for us. Step 1: Define macro To save some code as a macro we need to put that code in a cell and run it. ###Code import numpy as np import pandas as pd from tqdm import tqdm_notebook import os import sys import os.path import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import rc from cycler import cycler %matplotlib inline mpl.rcParams['axes.prop_cycle'] = cycler('color', ['#ff0000', '#0000ff', '#00ffff','#ffA300', '#00ff00', '#ff00ff', '#990000', '#009999', '#999900', '#009900', '#009999']) rc('font', size=16) rc('font',**{'family':'serif','serif':['Computer Modern']}) rc('text', usetex=False) rc('figure', figsize=(12, 10)) rc('axes', linewidth=.5) rc('lines', linewidth=1.75) print('The libraries have been loaded!') ###Output The libraries have been loaded! ###Markdown Now you need to remember the number inside squre brackets of `In []`. Now, to save the code, in that cell you need to use macro magic:```%macro __imp ``` ###Code %macro -q __imp 1 ###Output _____no_output_____ ###Markdown Now try it! ###Code __imp ###Output The libraries have been loaded! ###Markdown Step 2: save macroTo this end we've only created a macro, but it will be lost, when the kernel is restarted. We need to somehow store it, so than we can load it easily later. In can be done with `%store` macro. ###Code %store __imp ###Output Stored '__imp' (Macro) ###Markdown Now `__imp` is saved in a kind of Jupyter's global memory. You can list all the stored variables like that: ###Code %store ###Output Stored variables and their in-db values: __imp -> IPython.macro.Macro("import numpy as np\nimport pa ###Markdown Now **restart the kernel** and get back to this cell without running the previous ones. To run the stored macro you need to retrieve the macro first with the following line: ###Code %store -r __imp ###Output _____no_output_____ ###Markdown And only then call the macro: ###Code __imp ###Output The libraries have been loaded! ###Markdown Step 3: auto restore macro So you need to use as many as 2 cells! But, fortunately, Jupyer can load the stored variables (and macros) automatically. To enable it you need to update you `.ipython_profile` [config](http://ipython.readthedocs.io/en/stable/development/config.html). If you've never heared of it, then it is not yet created, otherwise you should know where it lives. On Coursera's notebooks we will create it here: `~/.ipython/profile_default/ipython_profile.py` and notify the ipython, that we want it to automatically restore stored variables.```c.StoreMagics.autorestore = True``` ###Code !echo "c = get_config()\nc.StoreMagics.autorestore = True" > ~/.ipython/profile_default/ipython_config.py !cat ~/.ipython/profile_default/ipython_config.py ###Output c = get_config() c.StoreMagics.autorestore = True ###Markdown That's it! Now **restart your notebook (kernel)** and **define and store macro** again (step 1 and first code cell from step 2). And finally, to test it, **restart the kernel** again. Now you can immediately access `__imp` macro, so that all the libraries are loaded with a 5 char line of code. ###Code __imp ###Output The libraries have been loaded!
19-21-itertools/my_code/Itertools_prmutations_combinations.ipynb
###Markdown combinations just gives list of combos - doesn't care about order - that's where permutations come in!P gives result and in whatever order they can be in. ###Code print(list(combinations(friends, 2))) print(list(permutations(friends, 2))) # mike, bob and bob, mike ###Output _____no_output_____
module4-classification-metrics/Unit_2_Sprint_2_Module_4_LESSON.ipynb
###Markdown Lambda School Data Science*Unit 2, Sprint 2, Module 4*--- Classification Metrics- get and interpret the **confusion matrix** for classification models- use classification metrics: **precision, recall**- understand the relationships between precision, recall, **thresholds, and predicted probabilities**, to help **make decisions and allocate budgets**- Get **ROC AUC** (Receiver Operating Characteristic, Area Under the Curve) SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries- category_encoders- ipywidgets- matplotlib- numpy- pandas- scikit-learn- seaborn ###Code %%capture import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Kaggle-Challenge/master/data/' !pip install category_encoders==2.* # If you're working locally: else: DATA_PATH = '../data/' ###Output _____no_output_____ ###Markdown Get and interpret the confusion matrix for classification models Overview First, load the Tanzania Waterpumps data and fit a model. (This code isn't new, we've seen it all before.) ###Code %matplotlib inline import category_encoders as ce import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.impute import SimpleImputer from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.ensemble import RandomForestClassifier def wrangle(X): """Wrangles train, validate, and test sets in the same way""" X = X.copy() # Convert date_recorded to datetime X['date_recorded'] = pd.to_datetime(X['date_recorded'], infer_datetime_format=True) # Extract components from date_recorded, then drop the original column X['year_recorded'] = X['date_recorded'].dt.year X['month_recorded'] = X['date_recorded'].dt.month X['day_recorded'] = X['date_recorded'].dt.day X = X.drop(columns='date_recorded') # Engineer feature: how many years from construction_year to date_recorded X['years'] = X['year_recorded'] - X['construction_year'] # Drop recorded_by (never varies) and id (always varies, random) unusable_variance = ['recorded_by', 'id'] X = X.drop(columns=unusable_variance) # Drop duplicate columns duplicate_columns = ['quantity_group'] X = X.drop(columns=duplicate_columns) # About 3% of the time, latitude has small values near zero, # outside Tanzania, so we'll treat these like null values X['latitude'] = X['latitude'].replace(-2e-08, np.nan) # When columns have zeros and shouldn't, they are like null values cols_with_zeros = ['construction_year', 'longitude', 'latitude', 'gps_height', 'population'] for col in cols_with_zeros: X[col] = X[col].replace(0, np.nan) return X # Merge train_features.csv & train_labels.csv train = pd.merge(pd.read_csv(DATA_PATH+'waterpumps/train_features.csv'), pd.read_csv(DATA_PATH+'waterpumps/train_labels.csv')) # Read test_features.csv & sample_submission.csv test = pd.read_csv(DATA_PATH+'waterpumps/test_features.csv') sample_submission = pd.read_csv(DATA_PATH+'waterpumps/sample_submission.csv') # Split train into train & val. Make val the same size as test. target = 'status_group' train, val = train_test_split(train, test_size=len(test), stratify=train[target], random_state=42) # Wrangle train, validate, and test sets in the same way train = wrangle(train) val = wrangle(val) test = wrangle(test) # Arrange data into X features matrix and y target vector X_train = train.drop(columns=target) y_train = train[target] X_val = val.drop(columns=target) y_val = val[target] X_test = test # Make pipeline! pipeline = make_pipeline( ce.OrdinalEncoder(), SimpleImputer(strategy='mean'), RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1) ) # Fit on train, score on val pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_val) print('Validation Accuracy', accuracy_score(y_val, y_pred)) ###Output Validation Accuracy 0.8140409527789386 ###Markdown Follow AlongScikit-learn added a [**`plot_confusion_matrix`**](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html) function in version 0.22! ###Code import sklearn sklearn.__version__ from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(pipeline, X_val, y_val, values_format='.0f', xticks_rotation='vertical') ###Output _____no_output_____ ###Markdown How many correct predictions were made? ###Code correct_predictions = 7005 + 332 + 4351 correct_predictions ###Output _____no_output_____ ###Markdown How many total predictions were made? ###Code total_predictions = 7005 + 171 + 622 + 555 + 332 + 156 + 1098 + 68 + 4351 total_predictions ###Output _____no_output_____ ###Markdown What was the classification accuracy? ###Code correct_predictions / total_predictions accuracy_score(y_val, y_pred) sum(y_pred == y_val) / len(y_pred) ###Output _____no_output_____ ###Markdown Use classification metrics: precision, recall Overview[Scikit-Learn User Guide — Classification Report](https://scikit-learn.org/stable/modules/model_evaluation.htmlclassification-report) ###Code from sklearn.metrics import classification_report print (classification_report(y_val, y_pred)) ###Output precision recall f1-score support functional 0.81 0.90 0.85 7798 functional needs repair 0.58 0.32 0.41 1043 non functional 0.85 0.79 0.82 5517 accuracy 0.81 14358 macro avg 0.75 0.67 0.69 14358 weighted avg 0.81 0.81 0.81 14358 ###Markdown Wikipedia, [Precision and recall](https://en.wikipedia.org/wiki/Precision_and_recall)> Both precision and recall are based on an understanding and measure of relevance.> Suppose a computer program for recognizing dogs in photographs identifies 8 dogs in a picture containing 12 dogs and some cats. Of the 8 identified as dogs, 5 actually are dogs (true positives), while the rest are cats (false positives). The program's precision is 5/8 while its recall is 5/12.> High precision means that an algorithm returned substantially more relevant results than irrelevant ones, while high recall means that an algorithm returned most of the relevant results. Follow Along [We can get precision & recall from the confusion matrix](https://en.wikipedia.org/wiki/Precision_and_recallDefinition_(classification_context)) ###Code cm = plot_confusion_matrix(pipeline, X_val, y_val, values_format='.0f', xticks_rotation='vertical') cm # precision = true_positives / (true_positives + positives) # recall = true_positives / (true_positives + false_negatives) ###Output _____no_output_____ ###Markdown How many correct predictions of "non functional"? ###Code correct_predictions_nonfunctional = 4351 ###Output _____no_output_____ ###Markdown How many total predictions of "non functional"? ###Code total_predictions_nonfunctional = 622 + 156 + 4351 ###Output _____no_output_____ ###Markdown What's the precision for "non functional"? ###Code correct_predictions_nonfunctional / total_predictions_nonfunctional print (classification_report(y_val, y_pred)) ###Output precision recall f1-score support functional 0.81 0.90 0.85 7798 functional needs repair 0.58 0.32 0.41 1043 non functional 0.85 0.79 0.82 5517 accuracy 0.81 14358 macro avg 0.75 0.67 0.69 14358 weighted avg 0.81 0.81 0.81 14358 ###Markdown How many actual "non functional" waterpumps? ###Code actual_nonfunctional = 1098 + 68 + 4351 ###Output _____no_output_____ ###Markdown What's the recall for "non functional"? ###Code correct_predictions_nonfunctional / actual_nonfunctional ###Output _____no_output_____ ###Markdown Understand the relationships between precision, recall, thresholds, and predicted probabilities, to help make decisions and allocate budgets Overview Imagine this scenario...Suppose there are over 14,000 waterpumps that you _do_ have some information about, but you _don't_ know whether they are currently functional, or functional but need repair, or non-functional. ###Code len(test) ###Output _____no_output_____ ###Markdown **You have the time and resources to go to just 2,000 waterpumps for proactive maintenance.** You want to predict, which 2,000 are most likely non-functional or in need of repair, to help you triage and prioritize your waterpump inspections.You have historical inspection data for over 59,000 other waterpumps, which you'll use to fit your predictive model. ###Code len(train) + len(val) ###Output _____no_output_____ ###Markdown You have historical inspection data for over 59,000 other waterpumps, which you'll use to fit your predictive model.Based on this historical data, if you randomly chose waterpumps to inspect, then about 46% of the waterpumps would need repairs, and 54% would not need repairs. ###Code y_train.value_counts(normalize=True) 2000 * 0.46 ###Output _____no_output_____ ###Markdown **Can you do better than random at prioritizing inspections?** In this scenario, we should define our target differently. We want to identify which waterpumps are non-functional _or_ are functional but needs repair: ###Code y_train = y_train != 'functional' y_val = y_val != 'functional' y_train.value_counts(normalize=True) ###Output _____no_output_____ ###Markdown *We* already made our validation set the same size as our test set. ###Code len(val) == len(test) ###Output _____no_output_____ ###Markdown We can refit our model, using the redefined target.Then make predictions for the validation set. ###Code pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_val) ###Output _____no_output_____ ###Markdown Follow Along Look at the confusion matrix: ###Code plot_confusion_matrix(pipeline, X_val, y_val, values_format='.0f', xticks_rotation='vertical'); ###Output _____no_output_____ ###Markdown How many total predictions of "True" ("non functional" or "functional needs repair") ? ###Code 5032 + 977 ###Output _____no_output_____ ###Markdown We don't have "budget" to take action on all these predictions- But we can get predicted probabilities, to rank the predictions. - Then change the threshold, to change the number of positive predictions, based on our budget. Get predicted probabilities and plot the distribution ###Code pipeline.predict_proba(X_val) pipeline.predict(X_val) #Predicted probabilites for the positive class pipeline.predict_proba(X_val)[:, 1] threshold = 0.925 sum(pipeline.predict_proba(X_val)[:, 1] > threshold) ###Output _____no_output_____ ###Markdown Change the threshold ###Code import seaborn as sns y_pred_proba = pipeline.predict_proba(X_val)[:, 1] ax = sns.distplot(y_pred_proba) threshold = 0.9 ax.axvline(threshold, color='red') ###Output _____no_output_____ ###Markdown Or, get exactly 2,000 positive predictions Identify the 2,000 waterpumps in the validation set with highest predicted probabilities. ###Code from ipywidgets import interact, fixed import seaborn as sns from sklearn.metrics import confusion_matrix from sklearn.utils.multiclass import unique_labels def my_confusion_matrix(y_true, y_pred): labels = unique_labels(y_true) columns = [f'Predicted {label}' for label in labels] index = [f'Actual {label}' for label in labels] table = pd.DataFrame(confusion_matrix(y_true, y_pred), columns=columns, index=index) return sns.heatmap(table, annot=True, fmt='d', cmap='viridis') def set_threshold(y_true, y_pred_proba, threshold=0.5): y_pred = y_pred_proba > threshold ax = sns.distplot(y_pred_proba) ax.axvline(threshold, color='red') plt.show() print(classification_report(y_true, y_pred)) my_confusion_matrix(y_true, y_pred) interact(set_threshold, y_true=fixed(y_val), y_pred_proba=fixed(y_pred_proba), threshold=(0, 1, 0.02)); # accuracy 0.83 # accuracy 0.70 ###Output _____no_output_____ ###Markdown Most of these top 2,000 waterpumps will be relevant recommendations, meaning `y_val==True`, meaning the waterpump is non-functional or needs repairs.Some of these top 2,000 waterpumps will be irrelevant recommendations, meaning `y_val==False`, meaning the waterpump is functional and does not need repairs.Let's look at a random sample of 50 out of these top 2,000: ###Code ###Output _____no_output_____ ###Markdown So how many of our recommendations were relevant? ... ###Code ###Output _____no_output_____ ###Markdown What's the precision for this subset of 2,000 predictions? ###Code ###Output _____no_output_____ ###Markdown In this scenario ... Accuracy _isn't_ the best metric!Instead, change the threshold, to change the number of positive predictions, based on the budget. (You have the time and resources to go to just 2,000 waterpumps for proactive maintenance.)Then, evaluate with the precision for "non functional"/"functional needs repair".This is conceptually like **Precision@K**, where k=2,000.Read more here: [Recall and Precision at k for Recommender Systems: Detailed Explanation with examples](https://medium.com/@m_n_malaeb/recall-and-precision-at-k-for-recommender-systems-618483226c54)> Precision at k is the proportion of recommended items in the top-k set that are relevant> Mathematically precision@k is defined as: `Precision@k = ( of recommended items @k that are relevant) / ( of recommended items @k)`> In the context of recommendation systems we are most likely interested in recommending top-N items to the user. So it makes more sense to compute precision and recall metrics in the first N items instead of all the items. Thus the notion of precision and recall at k where k is a user definable integer that is set by the user to match the top-N recommendations objective.We asked, can you do better than random at prioritizing inspections?If we had randomly chosen waterpumps to inspect, we estimate that only 920 waterpumps would be repaired after 2,000 maintenance visits. (46%)But using our predictive model, in the validation set, we succesfully identified over 1,900 waterpumps in need of repair!So we will use this predictive model with the dataset of over 14,000 waterpumps that we _do_ have some information about, but we _don't_ know whether they are currently functional, or functional but need repair, or non-functional.We will predict which 2,000 are most likely non-functional or in need of repair.We estimate that approximately 1,900 waterpumps will be repaired after these 2,000 maintenance visits.So we're confident that our predictive model will help triage and prioritize waterpump inspections. But ...This metric (~1,900 waterpumps repaired after 2,000 maintenance visits) is specific for _one_ classification problem and _one_ possible trade-off.Can we get an evaluation metric that is generic for _all_ classification problems and _all_ possible trade-offs?Yes — the most common such metric is **ROC AUC.** Get ROC AUC (Receiver Operating Characteristic, Area Under the Curve)[Wikipedia explains,](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) "A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied. **The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.**"ROC AUC is the area under the ROC curve. [It can be interpreted](https://stats.stackexchange.com/questions/132777/what-does-auc-stand-for-and-what-is-it) as "the expectation that a uniformly drawn random positive is ranked before a uniformly drawn random negative." ROC AUC measures **how well a classifier ranks predicted probabilities.** So, when you get your classifier’s ROC AUC score, you need to **use predicted probabilities, not discrete predictions.**ROC AUC ranges **from 0 to 1.** Higher is better. A naive majority class **baseline** will have an ROC AUC score of **0.5.** Scikit-Learn docs- [User Guide: Receiver operating characteristic (ROC)](https://scikit-learn.org/stable/modules/model_evaluation.htmlreceiver-operating-characteristic-roc)- [sklearn.metrics.roc_curve](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html)- [sklearn.metrics.roc_auc_score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html) More links- [ROC curves and Area Under the Curve explained](https://www.dataschool.io/roc-curves-and-auc-explained/)- [The philosophical argument for using ROC curves](https://lukeoakdenrayner.wordpress.com/2018/01/07/the-philosophical-argument-for-using-roc-curves/) ###Code # "The ROC curve is created by plotting the true positive rate (TPR) # against the false positive rate (FPR) # at various threshold settings." # Use scikit-learn to calculate TPR & FPR at various thresholds from sklearn.metrics import roc_curve fpr, tpr, thresholds = roc_curve(y_val, y_pred_proba) # See the results in a table pd.DataFrame({ 'False Positive Rate': fpr, 'True Positive Rate': tpr, 'Threshold': thresholds }) # See the results on a plot. # This is the "Receiver Operating Characteristic" curve plt.scatter(fpr, tpr) plt.title('ROC curve') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate'); # Use scikit-learn to calculate the area under the curve. from sklearn.metrics import roc_auc_score roc_auc_score(y_val, y_pred_proba) ###Output _____no_output_____ ###Markdown **Recap:** ROC AUC measures how well a classifier ranks predicted probabilities. So, when you get your classifier’s ROC AUC score, you need to use predicted probabilities, not discrete predictions. Your code may look something like this:```pythonfrom sklearn.metrics import roc_auc_scorey_pred_proba = model.predict_proba(X_test_transformed)[:, -1] Probability for last classprint('Test ROC AUC:', roc_auc_score(y_test, y_pred_proba))```ROC AUC ranges from 0 to 1. Higher is better. A naive majority class baseline will have an ROC AUC score of 0.5. ###Code from sklearn.metrics import roc_auc_score y_pred_proba = model.predict_proba(X_test_transformed)[:, -1] # Probability for last class print('Test ROC AUC:', roc_auc_score(y_test, y_pred_proba)) ###Output _____no_output_____
scratch/fields/128x128 - demo.ipynb
###Markdown Model in STAX ###Code n_summaries = 2 n_s = 5000 n_d = 5000 λ = 100.0 ϵ = 0.1 # define inception block layer def InceptBlock2(filters, strides, do_5x5=True, do_3x3=True): """InceptNet convolutional striding block. filters: tuple: (f1,f2,f3) filters1: for conv1x1 filters2: for conv1x1,conv3x3 filters3L for conv1x1,conv5x5""" filters1, filters2, filters3 = filters conv1x1 = stax.serial(stax.Conv(filters1, (1,1), strides, padding="SAME")) filters4 = filters2 conv3x3 = stax.serial(stax.Conv(filters2, (1,1), strides=None, padding="SAME"), stax.Conv(filters4, (3,3), strides, padding="SAME")) filters5 = filters3 conv5x5 = stax.serial(stax.Conv(filters3, (1,1), strides=None, padding="SAME"), stax.Conv(filters5, (5,5), strides, padding="SAME")) maxpool = stax.serial(stax.MaxPool((3,3), padding="SAME"), stax.Conv(filters4, (1,1), strides, padding="SAME")) if do_3x3: if do_5x5: return stax.serial( stax.FanOut(4), # should num=3 or 2 here ? stax.parallel(conv1x1, conv3x3, conv5x5, maxpool), stax.FanInConcat(), stax.LeakyRelu) else: return stax.serial( stax.FanOut(3), # should num=3 or 2 here ? stax.parallel(conv1x1, conv3x3, maxpool), stax.FanInConcat(), stax.LeakyRelu) else: return stax.serial( stax.FanOut(2), # should num=3 or 2 here ? stax.parallel(conv1x1, maxpool), stax.FanInConcat(), stax.LeakyRelu) def Reshape(newshape): """Layer function for a reshape layer.""" init_fun = lambda rng, input_shape: (newshape,()) apply_fun = lambda params, inputs, **kwargs: np.reshape(inputs,newshape) return init_fun, apply_fun rng,drop_rng = jax.random.split(rng) fs = 64 #for 128x128 sims model = stax.serial( InceptBlock2((fs,fs,fs), strides=(4,4)), InceptBlock2((fs,fs,fs), strides=(4,4)), InceptBlock2((fs,fs,fs), strides=(4,4)), InceptBlock2((fs,fs,fs), strides=(2,2), do_5x5=False, do_3x3=False), stax.Conv(n_summaries, (1,1), strides=(1,1), padding="SAME"), stax.Flatten, Reshape((n_summaries,)) ) optimiser = optimizers.adam(step_size=1e-3) ###Output _____no_output_____ ###Markdown Random seeds for IMNN ###Code rng, initial_model_key = jax.random.split(rng) rng, fitting_key = jax.random.split(rng) ###Output _____no_output_____ ###Markdown Random seeds for ABC ###Code rng, abc_key = jax.random.split(rng) ###Output _____no_output_____ ###Markdown 2D Gaussian Field Simulator in JAX Steps to creating $(N \times N)$ 2D Gaussian field for IMNN:1. Generate a $(N\times N)$ white noise field $\varphi$ such that $\langle \varphi_k \varphi_{-k} \rangle' = 1$2. Fourier Transform $\varphi$ to real space: $R_{\rm white}(\textbf{x}) \rightarrow R_{\rm white}(\textbf{k})$ - note: NumPy's DFT Fourier convention is: $$\phi_{ab}^{\textbf{k}} = \sum_{c,d = 0}^{N-1} \exp{(-i x_c k_a - i x_d k_b) \phi^{\textbf{x}}_{cd}}$$ $$\phi_{ab}^{\textbf{x}} = \frac{1}{N^2}\sum_{c,d = 0}^{N-1} \exp{(-i x_c k_a - i x_d k_b) \phi^{\textbf{k}}_{cd}}$$ 3. Scale white noise $R_{\rm white}(\textbf{k})$ by the chosen power spectrum evaluated over a field of $k$ values:$$ R_P(\textbf{k}) = P^{1/2}(k) R_{\rm white}(\textbf{k}) $$ - note: here we need to ensure that this array of amplitudes is Hermitian, e.g. $\phi^{* \textbf{k}}_{a(N/2 + b)} = \phi^{\textbf{k}}_{a(N/2 - b)}$. This is accomplished by choosing indexes $k_a = k_b = \frac{2\pi}{N} (0, \dots, N/2, -N/2+1, \dots, -1)$ and then evaluating the square root of the outer product of the meshgrid between the two: $k = \sqrt{k^2_a + k^2_b}$. We can then evaluate $P^{1/2}(k)$. 4. Fourier Transform $R_{P}(\textbf{k})$ to real space: $ R_P(\textbf{x}) = \int d^d \tilde{k} e^{i\textbf{k} \cdot \textbf{x}} R_p(\textbf{k}) $:$$R_{ab}^{\textbf{x}} = \frac{1}{N^2}\sum_{c,d = 0}^{N-1} \exp{(-i x_c k_a - i x_d k_b) R^{\textbf{k}}_{cd}}$$ ###Code # SET 32-BiT floats for model ! θ_fid = np.array([1.0, 0.5], dtype=np.float32) δθ = np.array([0.1, 0.1], dtype=np.float32) n_params = 2 N = 128 dim = 2 L = 128 field_shape = (N,N) input_shape = (1,1, N,N) simulator_args = {"N": N, "L": L, "dim": dim, "shape": field_shape, 'vol_norm': False, "N_scale": True, "squeeze": False} ###Output _____no_output_____ ###Markdown simulator class for a Powerbox in JaxAttributes:- simulator for Gaussian fields from input power spectrum- analytic Fisher information computation at a given $\theta$ ###Code rng,fg_key = jax.random.split(rng) foregrounds = jax.random.normal(fg_key, (1000, 1,) + simulator_args['shape'])*0 def default_P(k, A, B): return A*k**-B class powerBoxJax: def __init__(self, shape, pk=None, k=None): if pk is None: self.pk = default_P else: self.pk = pk if k is None: self.k = np.sqrt(np.sum(np.array(np.meshgrid(*( (np.hstack((np.arange(0, _shape//2 + 1), np.arange(-_shape//2 + 1, 0))) * 2*np.pi / _shape)**2 for _shape in shape))), axis=0)) else: self.k = k self.shape = shape self.N = shape[0] def simulator(self, rng, θ, simulator_args=simulator_args, add_foregrounds=False): def P(k, A=1, B=1): return self.pk(k, A, B) def fn(key, A, B): shape = self.shape #simulator_args["shape"] k = self.k new_shape = () for _shape in shape: if _shape % 2 == 0: new_shape += (_shape+1,) else: new_shape += (_shape,) key1,key2 = jax.random.split(key) if add_foregrounds: foreground = foregrounds[jax.random.randint(key2, minval=0, maxval=1000, shape=())] else: foreground = 0. # L is in length units, like Gpc L = simulator_args['L'] dim = simulator_args['dim'] if np.isscalar(L): L = [L]*int(dim) else: L = np.array(L) V = np.prod(np.array(L)) scale = V**(1./dim) Lk = () _N = 1 for i,_shape in enumerate(shape): _N *= _shape Lk += (_shape / L[i],) # 1 / dx fft_norm = np.prod(np.array(Lk)) _dims = len(shape) tpl = () for _d in range(_dims): tpl += (_d,) # POWERBOX IMPLEMENTATION mag = jax.random.normal(key1, shape=tuple(N for N in new_shape)) # random phases pha = 2 * np.pi * jax.random.uniform(key1, shape=tuple(N for N in new_shape)) # now make hermitian field (reality condition) revidx = (slice(None, None, -1),) * len(mag.shape) mag = (mag + mag[revidx]) / np.sqrt(2) pha = (pha - pha[revidx]) / 2 + np.pi dk = mag * (np.cos(pha) + 1j * np.sin(pha)) # output is complex cutidx = (slice(None, -1),) * len(new_shape) dk = dk[cutidx] powers = np.concatenate((np.zeros(1), np.sqrt(P(k.flatten()[1:], A=A, B=B)))).reshape(k.shape) # normalize power by volume if simulator_args['vol_norm']: powers = powers/V fourier_field = powers * dk fourier_field = jax.ops.index_update( fourier_field, np.zeros(len(shape), dtype=int), np.zeros((1,))) field = np.real(np.fft.ifftn(fourier_field) * fft_norm * V) if simulator_args["N_scale"]: field *= scale field = np.expand_dims(field + foreground, (0,)) if not simulator_args["squeeze"]: field = np.expand_dims(field, (0,)) return np.array(field, dtype='float32') shape = self.shape A, B = θ if A.shape == B.shape: if len(A.shape) == 0: return fn(rng, A, B) else: keys = jax.random.split(rng, num=A.shape[0] + 1) rng = keys[0] keys = keys[1:] return jax.vmap( lambda key, A, B: simulator(key, (A, B), simulator_args=simulator_args) )(keys, A, B) else: if len(A.shape) > 0: keys = jax.random.split(rng, num=A.shape[0] + 1) rng = keys[0] keys = keys[1:] return jax.vmap( lambda key, A: simulator(key, (A, B), simulator_args=simulator_args) )(keys, A) elif len(B.shape) > 0: keys = jax.random.split(rng, num=B.shape[0]) return jax.vmap( lambda key, B: simulator(key, (A, B), simulator_args=simulator_args) )(keys, B) def AnalyticFisher(self, θ, kvec=None, N=None ): """ Code for computing the Analytic Fisher for a Gaussian Field with power spectrum P(k) = Ak^-B """ A,B = θ if N is None: N = self.N # we want all UNIQUE fourier modes if kvec is None: kvec = self.k[1:N//2, 1:N//2] pk = lambda k : A*(k**-B) # P(k) = Ak^(-B) p_a = lambda k : k**-B # deriv w.r.t. A p_b = lambda k : -A*(k**-B)*np.log(k) # deriv w.r.t. B powers = (pk(kvec.flatten()[:]))#np.concatenate((np.ones(1), powera = (p_a(kvec.flatten()[:])) #np.concatenate((np.zeros(1), powerb = (p_b(kvec.flatten()[:])) #np.concatenate((np.zeros(1), Cinv = np.diag(1. / powers) # diagonal inv. covariance Ca = np.diag(powera / 1.) # C_{,A} Cb = np.diag(powerb / 1.) # C_{,B} Faa = 0.5 * np.trace((Ca @ Cinv @ Ca @ Cinv)) Fab = 0.5 * np.trace((Ca @ Cinv @ Cb @ Cinv)) Fba = 0.5 * np.trace((Cb @ Cinv @ Ca @ Cinv)) Fbb = 0.5 * np.trace((Cb @ Cinv @ Cb @ Cinv)) return np.array([[Faa, Fab], [Fba, Fbb]]) ###Output _____no_output_____ ###Markdown analytic likelihood class- return the log-likelihood (computed on a grid) for power spectrum parameters for Gaussian Fields- takes in a PowerboxJax simulator object `PBJ` and fourier-transformed field target data `Δ_target`methods:- `get_likelihood`: return likelihood marginal on a grid- `plot_contours`: plot likelihood contours on a meshgrid- `plot_corner`: plot liklihood contours, target crosshairs, and image data on a 2x2 corner plot ###Code class analyticFieldLikelihood: def __init__(self, PBJ, field_shape, Δ_target, prior, k=None, pk=None, gridsize=20, tiling=2): """code for computing a gaussian field's likelihood for power spectrum parameters PBJ : powerBox simulator object field_shape : list. shape of field input Δ : array-like. FFT of the real-space field prior : array-like. range over which to compute the likelihood k : array-like. fourier modes over which to compute P(k) tiling : list or int. tiling=2 means likelihood will be computed as 2x2 grid gridsize : how large to make the likelihood surface """ if k is None: self.k = PBJ.k if pk is None: self.pk = PBJ.pk self.field_shape = field_shape self.gridsize = gridsize if np.isscalar(tiling): self.tiling = [tiling]*2 else: self.tiling = tiling #self.tilesize = gridsize // tiling self.N = np.sqrt(np.prod(np.array(field_shape))) # should just be N for NxN grid self.prior = prior self.k = k self.Δ = Δ_target def Pk(self, k, A=1, B=0.5): return self.pk(k, A, B) return np.diag(pk) def log_likelihood(self, k, A, B, Δ): Δ = Δ.flatten()[:] k = k dlength = len(k.flatten()) def fn(_A, _B): nrm = np.pad(np.ones(dlength-2)*2, (1,1), constant_values=1.) nrm = jax.ops.index_update( nrm, np.array([[0],[(dlength-2)]]), np.array([[1],[1]])) nrm = 1 powers = self.Pk(k.flatten()[:], A=_A, B=_B) # covariance is P(k) C = powers * nrm invC = 1./self.Pk(k.flatten()[:], A=_A, B=_B) logdetC = np.sum(np.log(C)) pi2 = np.pi * 2. m_half_size = -0.5 * len(Δ) exponent = - 0.5 * np.sum(np.conj(Δ) * invC * Δ) norm = -0.5 * logdetC + m_half_size*np.log(pi2) return (exponent + norm) return jax.vmap(fn)(A, B) def get_likelihood(self, return_grid=False, shift=None): A_start = self.prior[0][0] A_end = self.prior[1][0] B_start = self.prior[0][1] B_end = self.prior[1][1] region_size = [self.gridsize // self.tiling[i] for i in range(len(self.tiling))] print("computing likelihood on a %dx%d grid \n \ in tiles of size %dx%d"%(self.gridsize, self.gridsize, region_size[0], region_size[1])) def get_like_region(A0, A1, B0, B1, qsize): A_range = np.linspace(A0, A1, qsize) B_range = np.linspace(B0, B1, qsize) A, B = np.meshgrid(A_range, B_range) return (self.log_likelihood(self.k, A.ravel(), B.ravel(), self.Δ).reshape(qsize,qsize)) A_incr = (A_end - A_start) / self.tiling[0] B_incr = (B_end - B_start) / self.tiling[1] # marks the ends of linspace A_starts = [A_start + (i)*A_incr for i in range(self.tiling[0])] A_ends = [A_start + (i+1)*A_incr for i in range(self.tiling[0])] B_starts = [B_start + (i)*B_incr for i in range(self.tiling[1])] B_ends = [B_start + (i+1)*B_incr for i in range(self.tiling[1])] _like_cols = [] for _col in range(self.tiling[0]): # slide horizontally in A _like_row = [] for _row in range(self.tiling[1]): # slide vertically in B _like = get_like_region(A_starts[_row], A_ends[_row], B_starts[_col], B_ends[_col], region_size[0], ) _like_row.append(_like) _like_cols.append(np.concatenate(_like_row, axis=1)) _log_likelihood = np.real(np.concatenate(_like_cols, axis=0)) if shift is None: shift = np.max(_log_likelihood) #print('shift', shift) print('loglike mean', np.mean(_log_likelihood)) #_log_likelihood = _log_likelihood - shift if return_grid: _A_range = np.linspace(self.prior[0,0], self.prior[1,0], self.gridsize) _B_range = np.linspace(self.prior[0,0], self.prior[1,0], self.gridsize) return (_log_likelihood), _A_range, _B_range return (_log_likelihood) def plot_contours(self, ax=None, θ_ref=None, shift=None, xlabel='A', ylabel='B', return_like=True): _like, _A, _B = self.get_likelihood(return_grid=True, shift=shift) _like = scipy.special.softmax(np.real(_like)) _A, _B = np.meshgrid(_A, _B) if ax is None: fig,ax = plt.subplots(figsize=(10,10)) mesh = ax.contourf(_A, _B, _like) plt.colorbar(mesh, ax=ax) if θ_ref is not None: ax.scatter(θ_ref[0], θ_ref[1], zorder=10, marker='+', s=100, color='r') ax.set_xlabel('A') ax.set_ylabel('B') if return_like: return _like, ax else: return ax def plot_corner(self, ax=None, θ_ref=None, label="Analytic likelihood", image_data=None, return_like=False): _like, _A_range, _B_range = self.get_likelihood(return_grid=True) likelihoodA = scipy.special.softmax(np.real(_like)).sum(0) #np.real(likelihood).sum(0) likelihoodA /= likelihoodA.sum() * (_A_range[1] - _A_range[0]) likelihoodB = scipy.special.softmax(np.real(_like)).sum(1) #np.real(likelihood).sum(1) likelihoodB /= likelihoodB.sum() * (_B_range[1] - _B_range[0]) _like = scipy.special.softmax(np.real(_like)) sorted_marginal = np.sort(_like.flatten())[::-1] cdf = np.cumsum(sorted_marginal / sorted_marginal.sum()) value = [] for level in [0.997, 0.95, 0.68]: this_value = sorted_marginal[np.argmin(np.abs(cdf - level))] if len(value) == 0: value.append(this_value) elif this_value <= value[-1]: break else: value.append(this_value) if ax is None: fig,ax = plt.subplots(nrows=2, ncols=2) ax[1,0].contour(_A_range, _B_range, _like, levels=value, colors='C2', alpha=0.7) ax[0,0].plot(_A_range, likelihoodA, color='C2', label=None, alpha=0.7) ax[1,1].plot(likelihoodB, _B_range, color='C2', label='loglike', alpha=0.7) if image_data is not None: ax[0,1].imshow(np.squeeze(image_data)) else: ax[0,1].axis("off") if θ_ref is not None: ax[0,0].axvline(θ_ref[0], linestyle='--', c='k') ax[1,0].axvline(θ_ref[0], linestyle='--', c='k') ax[1,0].axhline(θ_ref[1], linestyle='--', c='k') ax[1,1].axhline(θ_ref[1], linestyle='--', c='k', label=r'$\theta_{\rm ref}$') ax[1,0].set_xlabel(r'$A$') ax[1,0].set_ylabel(r'$B$') if return_like: return ax,_like else: return ax PBJ = powerBoxJax(simulator_args['shape']) simulator = PBJ.simulator ###Output _____no_output_____ ###Markdown sim and gradient ###Code def simulator_gradient(rng, θ, simulator_args=simulator_args): return value_and_jacrev(simulator, argnums=1, allow_int=True, holomorphic=True)(rng, θ, simulator_args=simulator_args) rng, key = jax.random.split(rng) field_shape # plot example simulation and derivative deriv_args = {"N": N, "L": L, "dim": dim, "shape": field_shape, "vol_norm": True, "N_scale": True, "squeeze": False} simulation, simulation_gradient = value_and_jacfwd(simulator, argnums=1)(rng, θ_fid, simulator_args=deriv_args) plt.imshow(np.squeeze(simulation[0]), extent=(0,1,0,1)) plt.colorbar() plt.title('example simulation') plt.show() plt.imshow(np.squeeze(simulation_gradient[0].T[0].T), extent=(0,1,0,1)) plt.title('gradient of simulation') plt.colorbar() plt.show() def get_simulations(rng, n_s, θ, simulator_args=simulator_args): def get_simulator(key): return simulator(key, θ, simulator_args=simulator_args) keys = jax.random.split(rng, num=n_s) return jax.vmap(get_simulator)(np.array(keys)) def get_simulation_gradients(rng, n_s, n_d, θ, simulator_args=simulator_args): def get_batch_gradient(key): return simulator_gradient(key, θ, simulator_args=simulator_args) keys = jax.random.split(rng, num=n_s) return jax.vmap(get_batch_gradient)(np.array(keys)[:n_d]) ###Output _____no_output_____ ###Markdown known analytic Fisher information For a gaussian field, the likelihood is written$$ \mathcal{L}(\Delta | \theta) = \frac{1}{(2\pi)^{N_p / 2} \det(C)^{1/2}}\exp{\left(-\frac{1}{2} \Delta C^{-1} \Delta \right)}$$Where $\Delta \in \mathbb{R}^{N_p},\ N_p=N_k=V=N\times N$ is the Fourier Transform of the observed real-space field.This yields a Fisher information matrix of$$F_{\alpha \beta} = \langle -\frac{\partial^2 \ln \mathcal{L}}{\partial \lambda_\alpha \partial \lambda_\beta} \rangle= \frac{1}{2} {\rm Tr} (C_{, \alpha} C^{-1} C_{, \beta} C^{-1}) $$where the covariance is$$ C_{k_i, k_j} = P(k_i)\delta_{ij}$$The associated derivatives for a power law $P(k) = Ak^{-B}$ are$$\begin{align} C_{,A} &= \left( k^{-B} \right)\delta_{ij} \\ C_{,B} &= \left( -Ak^{-B}\ln k \right) \delta_{ij}\end{align} $$We notice that the Fisher information is *only* a function of the power spectrum parameters. It tells us the curvature of the chosen model (likelihood function) at a given $\theta$. The analytic Fisher information is the maximum amount of information we can expect the IMNN to extract from our simulations. <!-- Alternatively, we can explore a volume integral analytically from the definition of C :where the Fisher matrix is given by$$ F_{\alpha \beta} = \sum_k \frac{1}{(\delta P_k)^2} \frac{\partial P_k}{\partial \lambda_\alpha} \frac{\partial P_k}{\partial \lambda_\beta}$$and the error on $P_k$ is given (for a square, 2D box) as$$ \delta P_k = \sqrt{\frac{2}{k (\Delta k) V} } \left( P_k + \frac{1}{\bar{n}} \right) $$ --> <!-- For a gaussian field, the likelihood is written$$ \ln \mathcal{L}(\theta | \vec{d}) = \ln \mathcal{L}(\theta | \Delta) = \sqrt{\frac{1}{2\pi C}} \exp{\frac{-{\Delta}^2}{2C}}$$where $\vec{d} = \Delta$ is the overdensity field (in a cosmological context this is the measured temperature or galaxy count in a sky survey). Given that the power spectrum describes the correlations at different scales $k$, we can define the correlation via the power spectrum $C = P(k) = Ak^{-B}$ to compute the log-likelihood. The Fisher information matrix, given as $$ F_{\alpha \beta} = \langle - \frac{\partial^2 \ln \mathcal{L}}{\partial \theta_\alpha \partial \theta_\beta} \rangle $$can then be computed analytically for our likelihood:$$ F_{\alpha \beta} = \sum_k \frac{1}{(\delta P_k)^2} \frac{\partial P_k}{\partial \theta_\alpha} \frac{\partial P_k}{\partial \theta_\beta} $$where $\delta P_k = \sqrt{\frac{2}{4\pi \Delta k V k_{\rm tot}^2}} (P_k + \frac{1}{\bar{n}})$ is the error on $P_k$ with survey volume $V$, sampling interval $\Delta k$, and shot noise $1/\bar{n}$. Using the fact that $d\ln P_k = \frac{d P_k}{P_k}$, we can rewrite the sum as an integral:$$ F_{\alpha \beta} = 2 \pi \left( \frac{V_{\rm eff}}{\lambda^3} \right) \int_{k_{\rm min}}^{k_{\rm max}} d \ln k \frac{\partial \ln P_k}{\partial \theta_\alpha} \frac{\partial \ln P_k}{\partial \theta_\beta}$$Where $V_{\rm eff}$ and $\lambda^3$ are our effective windowed survey size and survey extent, respectively (set to 1 for now). Doing the integration explicitly, we obtain the Fisher matrix for parameters $\theta = (A, B)$:$$ F = 2 \pi \left( \frac{V_{\rm eff}}{\lambda^3} \right) \begin{bmatrix} \frac{1}{A^2} \ln (\frac{k_{\rm max}}{k_{\rm min}}) & \frac{1}{2A} ((\ln k_{\rm min})^2 - (\ln k_{\rm max})^2) \\ \frac{1}{2A} ((\ln k_{\rm min})^2 - (\ln k_{\rm max})^2) & \frac{1}{3}((\ln k_{\rm max})^3 - (\ln k_{\rm min})^3) \\\end{bmatrix}$$ --> For our fiducial model with our data vector of size $128^2$, our $\rm det|F|$ reads: ###Code N = simulator_args["N"] shape = simulator_args["shape"] kbin = np.sqrt(np.sum(np.array(np.meshgrid(*( np.hstack((np.arange(0, _shape//2 + 1), np.arange(-_shape//2 + 1, 0))) *2* np.pi / _shape for _shape in shape)))**2, axis=0)) f_expected = PBJ.AnalyticFisher(θ_fid, kvec=None) print("analytic F(θ_fid): ", f_expected) detf_expected = np.linalg.det(f_expected) print("analytic det(F(θ_fid)): ", detf_expected) # MAKE SIMULATION N = simulator_args["N"] shape = (N,N) θ_sim = np.array([0.7, 0.8]) simulator_args = {"N": N, "L": L, "dim": dim, "shape": shape, "vol_norm": True, "N_scale": False, "squeeze": True} simulator_args["shape"] = (N,N) simkey,rng = jax.random.split(rng) #sim = np.squeeze(target_data)# sim = np.squeeze(simulator(simkey, θ_sim, simulator_args=simulator_args)) sim_fft = (np.fft.fft2(sim)) #/ (N**2) # PLOT ANALYTIC POSTERIOR # IGNORE FIRST FOURIER MODE -- no information here ! gridsize = 100 # for likelihood gridding Δ = sim_fft[1:N//2, 1:N//2] k = kbin[1:N//2, 1:N//2] prior_range = np.array([[0.1, 0.1], [1.25, 1.25]]) AL = analyticFieldLikelihood(PBJ, shape, Δ, prior_range, k=k, gridsize=gridsize, tiling=[5,5]) #plt.style.use('default') ax = AL.plot_corner(θ_ref=θ_sim, image_data=sim) simulator_args def sanity_check(gridsize=50, num=20): likes = [] likeAs = [] likeBs = [] rng1 = jax.random.PRNGKey(13) values = [] θ_target = np.array([0.8, 0.8], dtype=np.float32) for t in range(num): key, rng1 = jax.random.split(rng1) targ = simulator( key, θ_target) gridsize = 50 # for likelihood gridding Δ = np.fft.fftn(np.squeeze(targ))[1:N//2, 1:N//2] / N k = kbin[1:N//2, 1:N//2] prior_range = np.array([[0.1, 0.1], [1.25, 1.25]]) AL = analyticFieldLikelihood(PBJ, shape, Δ, prior_range, k=k, gridsize=gridsize, tiling=[5,5]) likelihood,A_range,B_range = AL.get_likelihood(shift=None, return_grid=True) _A_range = A_range#*np.exp(shift) _B_range = B_range#*np.exp(shift) likelihoodA = scipy.special.softmax(np.real(likelihood)).sum(0) #np.real(likelihood).sum(0) likelihoodA /= likelihoodA.sum() * (_A_range[1] - _A_range[0]) likelihoodB = scipy.special.softmax(np.real(likelihood)).sum(1) #np.real(likelihood).sum(1) likelihoodB /= likelihoodB.sum() * (_B_range[1] - _B_range[0]) likelihood = scipy.special.softmax(np.real(likelihood)) sorted_marginal = np.sort(likelihood.flatten())[::-1] cdf = np.cumsum(sorted_marginal / sorted_marginal.sum()) value = [] for level in [0.997, 0.95, 0.68]: this_value = sorted_marginal[np.argmin(np.abs(cdf - level))] if len(value) == 0: value.append(this_value) elif this_value <= value[-1]: break else: value.append(this_value) #fig, ax = plt.subplots(2, 2, figsize=(10, 10)) #likelihood /= likelihood.sum() likes.append(likelihood) likeAs.append(likelihoodA) likeBs.append(likelihoodB) values.append(value) return likes,likeAs,likeBs,values likes,likeAs,likeBs,values = sanity_check() fig,ax = plt.subplots(nrows=2, ncols=2) for l,like in enumerate(likes): ax[1,0].contour(A_range, B_range, like, levels=value, colors='#FF8D33', alpha=0.5) ax[0, 0].plot(A_range, likeAs[l], color='#FF8D33', label=None, alpha=0.5) ax[0, 1].axis("off") ax[1, 1].plot(likeBs[l], B_range, color='#FF8D33', label='loglike', alpha=0.5) ax[1,0].scatter(θ_target[0], θ_target[1], marker='+', s=50, color='blue', zorder=20) ax[0,0].axvline(θ_target[0], linestyle='--', c='k') ax[1,0].axvline(θ_target[0], linestyle='--', c='k') ax[1,0].axhline(θ_target[1], linestyle='--', c='k') ax[1,1].axhline(θ_target[1], linestyle='--', c='k', label=r'$\theta_{\rm target}$') ax[1,0].set_xlabel(r'$A$') ax[1,0].set_ylabel(r'$B$') ###Output computing likelihood on a 50x50 grid in tiles of size 10x10 shift -204802937697.98566 loglike mean -859104641710.4711 ###Markdown Initialise IMNN ###Code simulator_args["squeeze"] = False simulator_args['vol_norm'] = True simulator_args['N_scale'] = True # false simulator_args['L'] = L simulator_args IMNN = SimulatorIMNN( n_s=5000, n_d=5000, n_params=n_params, n_summaries=n_summaries, input_shape=input_shape, θ_fid=θ_fid, model=model, optimiser=optimiser, key_or_state=initial_model_key, simulator=lambda rng, θ: simulator(rng, θ, simulator_args=simulator_args), # devices=[jax.devices()[0]], # n_per_device=1000 ) ###Output _____no_output_____ ###Markdown Fit ###Code # SAVING IMNN ATTRIBUTES import cloudpickle as pickle import os def save_weights(IMNN, folder_name='./model', weights='final'): # create output directory if not os.path.exists(folder_name): os.mkdir(folder_name) def pckl_me(obj, path): with open(path, 'wb') as file_pi: pickle.dump(obj, file_pi) file_pi.close() # save IMNN (optimiser) state: savestate = jax.experimental.optimizers.unpack_optimizer_state(IMNN.state) pckl_me(savestate, os.path.join(folder_name, 'IMNN_state')) # save weights if weights == 'final': np.save(os.path.join(folder_name, 'final_w'), IMNN.final_w) else: np.save(os.path.join(folder_name, 'best_w'), IMNN.best_w) # save initial weights np.save(os.path.join(folder_name, 'initial_w'), IMNN.initial_w) # save training history pckl_me(IMNN.history, os.path.join(folder_name, 'history')) # save important attributes as a dict imnn_attributes = { 'n_s': IMNN.n_s, 'n_d': IMNN.n_d, 'input_shape': IMNN.input_shape, 'n_params' : IMNN.n_params, 'n_summaries': IMNN.n_summaries, 'θ_fid': IMNN.θ_fid, 'F': IMNN.F, 'validate': IMNN.validate, 'simulate': IMNN.simulate, } pckl_me(imnn_attributes, os.path.join(folder_name, 'IMNN_attributes')) print('saved weights and attributes to the file ', folder_name) def load_weights(IMNN, folder_name='./model', weights='final', load_attributes=True): def unpckl_me(path): file = open(path, 'rb') return pickle.load(file) # load and assign weights if weights=='final': weights = np.load(os.path.join(folder_name, 'final_w.npy'), allow_pickle=True) IMNN.final_w = weights else: weights = np.load(os.path.join(folder_name, 'best_w.npy'), allow_pickle=True) IMNN.best_w = weights # re-pack and load the optimiser state loadstate = unpckl_me(os.path.join(folder_name, 'IMNN_state')) IMNN.state = jax.experimental.optimizers.pack_optimizer_state(loadstate) # load history IMNN.history = unpckl_me(os.path.join(folder_name, 'history')) # load important attributes if load_attributes: IMNN.intial_w = np.load(os.path.join(folder_name, 'initial_w.npy'), allow_pickle=True) attributes = unpckl_me(os.path.join('test_model', 'IMNN_attributes')) IMNN.θ_fid = attributes['θ_fid'] IMNN.n_s = attributes['n_s'] IMNN.n_d = attributes['n_d'] IMNN.input_shape = attributes['input_shape'] print('loaded IMNN with these attributes: ', attributes) # # test save functions # save_weights(IMNN, folder_name='./model') # # test load functions # # initialize a new imnn with different attributes and then load the old file # # to overwrite them # my_new_IMNN = SimIMNN( # n_s=300, # n_d=100, # n_params=n_params, # n_summaries=n_summaries, # input_shape=input_shape, # θ_fid=np.array([1.0,1.0]), # key=initial_model_key, # model=model, # optimiser=optimiser, # simulator=lambda rng, θ: simulator(rng, θ, simulator_args=simulator_args), # ) # load_weights(my_new_IMNN, folder_name='./model', load_attributes=True) # my_new_IMNN.set_F_statistics(rng, my_new_IMNN.best_w, my_new_IMNN.θ_fid, my_new_IMNN.n_s, my_new_IMNN.n_d, validate=True) θ_fid %%time for i in range(1): rng,fit_rng = jax.random.split(rng) IMNN.fit(λ=10., ϵ=ϵ, rng=fit_rng, min_iterations=500) #for IMNN, IMNN_rng in zip(IMNNs, IMNN_rngs); #save_weights(IMNN, folder_name='./big_incept128') IMNNs = [IMNN] latexify(fig_width=3.37) plt.plot(IMNN.history['detF'][:]) plt.plot(np.ones(len(IMNN.history['detF'][:]))*detf_expected, c='k', linestyle='--') plt.ylim(1e-2, 1e7) plt.ylabel(r'$\det \textbf{F}$') plt.xlabel('number of epochs') plt.yscale('log') plt.tight_layout() plt.savefig('/mnt/home/tmakinen/repositories/field-plots/128x128-training.png', dpi=400) np.linalg.det(IMNNs[0].F) #/ (detf_expected) IMNNs[0].F print('IMNN F:', IMNN.F) print('IMNN det F:', np.linalg.det(IMNN.F)) print('IMNN F / analytic det F: ', (np.linalg.det(IMNN.F)) / detf_expected) ###Output IMNN F: [[ 2485.2085 -1814.8022] [-1814.8022 1678.63 ]] IMNN det F: 878238.75 IMNN F / analytic det F: 0.9076835203931398 ###Markdown Data for ABC example ###Code class uniform: def __init__(self, low, high): self.low = np.array(low) self.high = np.array(high) self.event_shape = [[] for i in range(self.low.shape[0])] def sample(self, n=None, seed=None): if n is None: n = 1 keys = np.array(jax.random.split( seed, num=len(self.event_shape))) return jax.vmap( lambda key, low, high : jax.random.uniform( key, shape=(n,), minval=low, maxval=high))( keys, self.low, self.high) prior = uniform([0.6, 0.2], [1.25, 1.20]) simulator_args simulator_args = {"N": N, "L": L, "dim": dim, "shape": shape, "N_scale": True, "vol_norm": True, "squeeze": True} rng, key = jax.random.split(rng) θ_target = np.array([0.9, 0.6]) target_data = simulator( key, θ_target, simulator_args={**simulator_args, **{'squeeze':False}}) ###Output _____no_output_____ ###Markdown analytic likelihood calculation ###Code target_data = np.load('./128x128-gauss/example-field_theta=%d_%d.npy'%(θ_target[0]*10, θ_target[1]*10)) target_data = np.expand_dims(np.expand_dims(np.expand_dims(target_data,0),0),0) gridsize = 100 # for likelihood gridding Δ = np.fft.fftn(np.squeeze(target_data))[1:N//2, 1:N//2] / N k = kbin[1:N//2, 1:N//2] prior_range = np.array([[0.1, 0.1], [1.25, 1.25]]) AL = analyticFieldLikelihood(PBJ, shape, Δ, prior_range, k=k, gridsize=gridsize, tiling=[5,5]) %%time %matplotlib inline ax,like = AL.plot_corner(θ_ref=θ_target, image_data=target_data, return_like=True) latexify(fig_height=5.37) plt.show() np.save('./128x128-gauss/example-field_theta=%d_%d'%(θ_target[0]*10, θ_target[1]*10), np.squeeze(target_data)) ###Output _____no_output_____ ###Markdown Gaussian approximation ###Code @jit #partial(jax.jit, static_argnums=0) def get_estimate(d): if len(d.shape) == 1: return IMNN.θ_fid + np.einsum( "ij,kj,kl,l->i", IMNN.invF, IMNN.dμ_dθ, IMNN.invC, IMNN.model(IMNN.best_w, d, rng=rng) - IMNN.μ) else: return IMNN.θ_fid + np.einsum( "ij,kj,kl,ml->mi", IMNN.invF, IMNN.dμ_dθ, IMNN.invC, IMNN.model(IMNN.best_w, d, rng=rng) - IMNN.μ) estimates = IMNN.get_estimate(target_data) #[i.get_estimate(target_data) for i in IMNNs]; estimates GAs = [GaussianApproximation(IMNN.get_estimate(target_data), IMNN.invF, prior)] #GaussianApproximation(get_estimate(target_data), np.linalg.inv(f_expected), prior)] %matplotlib inline for i, (GA, label) in enumerate(zip(GAs, ['sim IMNN'])): if i == 0: ax = GA.marginal_plot( axis_labels=[r"$A$", r"$B$"], label='on-the-fly IMNN', colours="C{}".format(i) ) else: GA.marginal_plot(ax=ax, label='sim IMNN', colours="C{}".format(i), ncol=8) ###Output _____no_output_____ ###Markdown ABC ###Code {**simulator_args, **{'squeeze':False}} ABC = ApproximateBayesianComputation( target_data, prior, lambda A,B : simulator(A,B, simulator_args={**simulator_args, **{'squeeze':False}}), IMNN.get_estimate, F=IMNN.F, gridsize=50 ) %%time rng,abc_key = jax.random.split(rng) ABC(rng=abc_key, n_samples=int(1e3), min_accepted=15000, max_iterations=50000, ϵ=0.05, smoothing=0.); ABC.parameters.accepted[0].shape ABC.parameters.accepted[0][0] #np.save("accepted.npy", ABC.parameters.accepted) #ax = ABC.scatter_summaries(points=ABC.summaries.rejected, colours='red') ABC.scatter_summaries( colours='blue') likelihood, A_range, B_range = AL.get_likelihood(return_grid=True) likelihoodA = scipy.special.softmax(np.real(likelihood)).sum(0) #np.real(likelihood).sum(0) likelihoodA /= likelihoodA.sum() * (A_range[1] - A_range[0]) likelihoodB = scipy.special.softmax(np.real(likelihood)).sum(1) #np.real(likelihood).sum(1) likelihoodB /= likelihoodB.sum() * (B_range[1] - B_range[0]) likelihood = scipy.special.softmax(np.real(likelihood)) sorted_marginal = np.sort(likelihood.flatten())[::-1] cdf = np.cumsum(sorted_marginal / sorted_marginal.sum()) value = [] for level in [0.997, 0.95, 0.68]: this_value = sorted_marginal[np.argmin(np.abs(cdf - level))] if len(value) == 0: value.append(this_value) elif this_value <= value[-1]: break else: value.append(this_value) %matplotlib inline #plt.style.use('default') new_colors = [ '#2c0342', '#286d87', '#4fb49d', '#9af486'] #fig = plt.figure(constrained_layout=True, figsize=(3.41*1., 3.41*1.)) #fig,ax = plt.subplots(nrows=2, ncols=2, figsize=(3.37*2, 3.37*2)) #ax = fig.subplots(nrows=2, ncols=2) fig,ax = plt.subplots(nrows=2, ncols=2, figsize=(3.41*1., 3.41*1.), gridspec_kw={'height_ratios': [1, 1], 'width_ratios':[1,1]}) latexify(fig_width=3.41, fig_height=3.41) # just to fiddle with the label ax[0,0].plot(0.3, 0., color=new_colors[0], marker='o', label='ABC') cmap_reversed = matplotlib.cm.get_cmap('viridis_r') ax = GAs[0].marginal_plot(ax=ax, colours='#00c133', #new_colors[1], axis_labels=[r"$A$", r"$B$"], label="Gaussian Approximation", ncol=1, linestyle='dotted') ax[0,0].legend(framealpha=0.) ax[0,1].imshow(np.squeeze(target_data), cmap='viridis') ax[0,0].axvline(θ_target[0], linestyle='--', c='k') ax[1,0].axvline(θ_target[0], linestyle='--', c='k') ax[1,0].axhline(θ_target[1], linestyle='--', c='k') ax[1,1].axhline(θ_target[1], linestyle='--', c='k', label=r'$\theta_{\rm target}$') ax[1,0].set_xlabel(r'$A$') ax[1,0].set_ylabel(r'$B$') ax[0,0].axvline(θ_fid[0], linestyle='--', c='k', alpha=0.4) ax[1,0].axvline(θ_fid[0], linestyle='--', c='k', alpha=0.4) ax[1,0].axhline(θ_fid[1], linestyle='--', c='k', alpha=0.4) ax[1,1].axhline(θ_fid[1], linestyle='--', c='k', alpha=0.4, label=r'$\theta_{\rm fid}$') ax[1,1].legend(framealpha=0.) # add in the likelihood estimate ax[0, 0].plot(A_range, likelihoodA, color='#FF8D33', label='Analytic Likelihood', linestyle='--') #ax[0,0].legend(framealpha=0.) ax[0, 1].axis("off") ax[1, 0].contour(A_range, B_range, likelihood, levels=value, colors='#FF8D33', linestyles='--') ax[1, 1].plot(likelihoodB, B_range, color='#FF8D33', label='Analytic Likelihood', linestyle='--') # ax = ABC.scatter_plot(ax=ax, # colours=new_colors[0], # axis_labels=[r"$A$", r"$B$"], # s=8, # label='ABC', bbox_to_anchor=None) # ABC scatter plots ax[0,0].hist(ABC.parameters.accepted[0][:, 0], color=new_colors[0], histtype='step', density=True) ax[1,0].scatter(ABC.parameters.accepted[0][:, 0], ABC.parameters.accepted[0][:, 1], s=8, alpha=0.6, c=np.log(ABC.distances.accepted[0]), cmap='Purples', edgecolors=None, linewidths=0, marker='.') ax[1,1].hist(ABC.parameters.accepted[0][:, 1], color=new_colors[0], histtype='step', density=True, orientation='horizontal') #ax[1,0].legend(framealpha=0.) ax[0,0].set_xlim(0.55, 1.1) #ax[0,0].set_ylim(0., 10.1) ax[1,0].set_xlim(0.55, 1.1) ax[1,0].set_ylim(0.3, 0.9) ax[1,1].set_ylim(0.3, 0.9) ax[0,0].legend(framealpha=0., bbox_to_anchor=(1.08, 1.5), frameon=False) ax[1,1].set_yticks([]) ax[1,1].set_xticks([]) ax[0,0].set_xticks([]) ax[0,0].set_yticks([]) #ax[0,0].set_ylabel(r'$\mathit{P}(A|\textbf{x})$') #ax[1,1].set_xlabel(r'$\mathit{P}(B|\textbf{x})$') plt.subplots_adjust(wspace=0.1, hspace=0.1) #plt.tight_layout() plt.savefig('/mnt/home/tmakinen/repositories/field-plots/128x128-inference-contours-3sig-nolab-col.png', dpi=400, bbox_inches='tight') #plt.subplots_adjust(wspace=0, hspace=0) plt.show() # save all the contours # save all analytic calculations fname = './128x128-gauss/' np.save(fname + 'target_field_1', np.squeeze(target_data)) np.save(fname + 'analytic_likelihood', likelihood) np.save(fname + 'ranges', np.stack((A_range, B_range), axis=0)) # save ABC posterior np.save("./128x128-gauss/IMNN_accepted.npy", ABC.parameters.accepted) # Create figures in Python that handle LaTeX, and save images to files in my # preferred formatting. I typically place this code in the root of each of my # projects, and import using: # from latexify import * # which will also run the latexify() function on the import. # Based on code from https://nipunbatra.github.io/blog/2014/latexify.html import matplotlib import matplotlib.pyplot as plt from math import sqrt #Back-end to use depends on the system from matplotlib.backends.backend_pgf import FigureCanvasPgf matplotlib.backend_bases.register_backend('pdf', FigureCanvasPgf) # matplotlib.use('pgf') # from matplotlib.backends.backend_pgf import FigureCanvasPgf # matplotlib.backend_bases.register_backend('ps', FigureCanvasPgf) import seaborn as sns sns.set_style("white") #my preferred palette. From #https://seaborn.pydata.org/tutorial/color_palettes.html: "The cubehelix color #palette system makes sequential palettes with a linear increase or decrease in #brightness and some variation in hue. This means that the information in your #colormap will be preserved when converted to black and white (for printing) or #when viewed by a colorblind individual." # I typically set the number of colors (below, 8) to the distinct colors I need # in a given plot, so as to use the full range. sns.set_palette(sns.color_palette("cubehelix", 8)) # The following is the latexify function. It allows you to create 2 column or 1 # column figures. You may also wish to alter the height or width of the figure. # The default settings are good for most cases. You may also change the # parameters such as labelsize and fontsize based on your classfile. def latexify(fig_width=None, fig_height=None, columns=1): """Set up matplotlib's RC params for LaTeX plotting. Call this before plotting a figure. Parameters ---------- fig_width : float, optional, inches fig_height : float, optional, inches columns : {1, 2} """ # code adapted from http://www.scipy.org/Cookbook/Matplotlib/LaTeX_Examples # Width and max height in inches for IEEE journals taken from # computer.org/cms/Computer.org/Journal%20templates/transactions_art_guide.pdf assert(columns in [1, 2]) if fig_width is None: fig_width = 6.9 if columns == 1 else 13.8 # width in inches #3.39 if fig_height is None: golden_mean = (sqrt(5) - 1.0) / 2.0 # Aesthetic ratio fig_height = fig_width * golden_mean # height in inches MAX_HEIGHT_INCHES = 16.0 if fig_height > MAX_HEIGHT_INCHES: print(("WARNING: fig_height too large:" + fig_height + "so will reduce to" + MAX_HEIGHT_INCHES + "inches.")) fig_height = MAX_HEIGHT_INCHES params = { # 'backend': 'ps', # 'pgf.rcfonts': False, # 'pgf.preamble': ['\\usepackage{gensymb}', '\\usepackage[dvipsnames]{xcolor}'], # "pgf.texsystem": "pdflatex", # 'text.latex.preamble': ['\\usepackage{gensymb}', '\\usepackage[dvipsnames]{xcolor}'], 'text.latex.preamble': '\\usepackage{mathptmx}', #values below are useful defaults. individual plot fontsizes are #modified as necessary. 'axes.labelsize': 8, # fontsize for x and y labels 'axes.titlesize': 8, 'font.size': 8, 'legend.fontsize': 8, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'text.usetex': True, 'figure.figsize': [fig_width, fig_height], 'font.family': 'serif', 'font.serif': 'Times', 'lines.linewidth': 1.5, 'lines.markersize':1, 'xtick.major.pad' : 2, 'ytick.major.pad' : 2, 'axes.xmargin' : .0, # x margin. See `axes.Axes.margins` 'axes.ymargin' : .0, # y margin See `axes.Axes.margins` } matplotlib.rcParams.update(params) def saveimage(name, fig = plt, extension = 'pdf', folder = 'plots/'): sns.despine() #Minor ticks off by default in matplotlib # plt.minorticks_off() #grid being off is the default for seaborn white style, so not needed. # plt.grid(False, axis = "x") # plt.grid(False, axis = "y") fig.savefig('{}{}.{}'.format(folder,name, extension), bbox_inches = 'tight') latexify() ###Output _____no_output_____
notebooks/analysing-text-statistics.ipynb
###Markdown ![Callysto.ca Banner](https://github.com/callysto/curriculum-notebooks/blob/master/callysto-notebook-banner-top.jpg?raw=true) Analysing Text StatisticsLet's try out some statistical analysis of text, including [natural language processing](https://en.wikipedia.org/wiki/Natural_language_processing), using a [public domain](https://en.wikipedia.org/wiki/Public_domain) book from [Project Gutenberg](http://www.gutenberg.org).The example we'll use is the [most downloaded](http://www.gutenberg.org/browse/scores/top) book, [Pride and Prejudice by Jane Austen](http://www.gutenberg.org/ebooks/1342). Running this first code cell will import and display the contents of the book.Feel free to change the link in the following code cell if you'd like to explore another book, but make sure you are using the `Plain Text UTF-8` link. ###Code gutenberg_text_link = 'http://gutenberg.org/files/1342/1342-0.txt' import requests r = requests.get(gutenberg_text_link) # get the online book file r.encoding = 'utf-8' # specify the type of text encoding in the file text = r.text.split('***')[2] # get the part after the header text = text.replace("’","'").replace("“",'"').replace("”",'"') # replace any 'smart quotes' book_title = r.text[r.text.index('Title:')+7:r.text.index('Author:')-4] # find the book title print(text) ###Output _____no_output_____ ###Markdown Making a DataFrame of ChaptersNow that we have the text of the book, let's split it into chapters. We'll use the Python [library](https://en.wikipedia.org/wiki/Library_(computing)) called [pandas](https://pandas.pydata.org) to create a [dataframe](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html) that includes the text and length of each chapter (number of characters, including spaces and punctuation). ###Code import pandas as pd chapters = pd.DataFrame() # create an empty data frame that we will append to for chapter in text.split('Chapter'): if len(chapter)>500: # so that we are getting actual book chapters chapter = chapter.replace('\r','').replace('\n','') # delete the 'new line' characters chapters = chapters.append({'Chapter Text':chapter, 'Length':len(chapter)}, ignore_index=True) chapters.index=chapters.index+1 # set the index to the chapter number chapters ###Output _____no_output_____ ###Markdown Visualizing Chapter LengthsFrom that dataframe we can create a bar graph of chapter lengths. ###Code import plotly.express as px px.bar(chapters, y='Length', title='Characters per Chapter in '+book_title).update_xaxes(title='Chapter') ###Output _____no_output_____ ###Markdown Counting Words by TypeWe'll use the [spaCy](https://spacy.io) natural language processing library to identify the [parts of speech](https://spacy.io/api/annotationpos-tagging) in the text. For this example we'll just look at adjectives, verbs, nouns, and proper nouns, but you can add to the list on the first line in the code cell.This will take a while to run, and will result in a dataframe containing the number and percent of each of those parts of speech in each chapter. ###Code word_types = ['ADJ', 'VERB', 'NOUN', 'PROPN'] # https://spacy.io/api/annotation#pos-tagging # uncomment the following two installation lines if you get errors #!pip install spacy --user #!python -m spacy download en_core_web_sm import en_core_web_sm nlp = en_core_web_sm.load() # set up natural language processing parts_of_speech_df = pd.DataFrame(columns=word_types) # create an empty dataframe with column names for i in range(1,len(chapters)+1): # iterate through the chapters dataframe parts_of_speech_list = [] # create an empty list word_count = 0 for token in nlp(chapters['Chapter Text'][i]): # loop through each token in the chapter word_count += 1 # increment the word counter part_of_speech = token.pos_ if part_of_speech in word_types: # if it is in the list of types we made parts_of_speech_list.append(part_of_speech) word_type_count = {} # create an empty dictionary for word_type in word_types: word_type_count.update({word_type:parts_of_speech_list.count(word_type)}) # add to that dictionary word_type_count.update({'Words':word_count}) parts_of_speech_df = parts_of_speech_df.append(word_type_count, ignore_index=True) # add to dataframe parts_of_speech_df = parts_of_speech_df.astype(int) # convert values to integers parts_of_speech_df.index = parts_of_speech_df.index+1 # set the dataframe index to Chapter number parts_of_speech_df['Adjectives %'] = parts_of_speech_df['ADJ']/parts_of_speech_df['Words']*100 parts_of_speech_df['Verbs %'] = parts_of_speech_df['VERB']/parts_of_speech_df['Words']*100 parts_of_speech_df['Nouns %'] = parts_of_speech_df['NOUN']/parts_of_speech_df['Words']*100 parts_of_speech_df['Proper Nouns %'] = parts_of_speech_df['PROPN']/parts_of_speech_df['Words']*100 parts_of_speech_df ###Output _____no_output_____ ###Markdown We can also plot the proportional occurrences of those parts of speech. ###Code px.line(parts_of_speech_df, y=['Adjectives %', 'Verbs %', 'Nouns %', 'Proper Nouns %'], title='Proportion of Word Types in '+book_title).update_xaxes(title='Chapter') ###Output _____no_output_____ ###Markdown Most Common VerbsTo get an idea of the most common words in the text we can look at a part of speech, verbs for example, and count which are the most frequent.This will also take some time to run. ###Code word_type = 'VERB' from collections import Counter words_df = pd.DataFrame() for i in range(1,len(chapters)+1): # loop through the chapters dataframe word_list = [] for token in nlp(chapters['Chapter Text'][i]): if token.pos_ == word_type: # if the token is a VERB word_list.append(token.lemma_.strip().lower()) words_df = words_df.append(Counter(word_list), ignore_index=True) # add the list to the dataframe words_df.index = words_df.index+1 # set the dataframe index to Chapter number words_df.sum().sort_values(ascending=False) ###Output _____no_output_____ ###Markdown In our example text there are 1233 unique verbs. Let's look at the `10` most common verbs. ###Code words_df.sum().sort_values(ascending=False).head(10) ###Output _____no_output_____ ###Markdown We can also choose a verb and plot its frequency by chapter as a percent of the total number of words. ###Code word = 'say' words_df['%'] = words_df[word]/parts_of_speech_df['Words']*100 # calculate the percent of the words in each chapter px.bar(words_df, y='%', title='Percent Frequency of the Word "'+word+'" by Chapter in '+book_title).update_xaxes(title='Chapter').update_yaxes(title='Percent Freqency') ###Output _____no_output_____ ###Markdown Most Common NamesWe can also look at character names and how often they occur in each chapter. The spaCy library does a fairly good job of identifying names, but you may see some false positives (words that aren't actually character names). ###Code names_df = pd.DataFrame() for i in range(1,len(chapters)+1): names_list = [] for token in nlp(chapters['Chapter Text'][i]): #if token.pos_ == 'PROPN': if token.ent_type_ == 'PERSON': # seems to be more reliable than part_of_speech == proper_noun names_list.append(token.text) names_df = names_df.append(Counter(names_list), ignore_index=True) names_df ###Output _____no_output_____ ###Markdown List of Character NamesWe can check out the list of words identified as names. ###Code for name in names_df.columns: print(name) ###Output _____no_output_____ ###Markdown Cleaning DataIf you'd like to remove columns that may categorized incorrectly or are uncommon, we can drop columns with fewer than five occurrences. ###Code for column in names_df.columns: if names_df[column].sum() < 5: # if there are fewer than five occurences names_df.drop(columns=column, inplace=True) names_df ###Output _____no_output_____ ###Markdown Visualization of Name FrequenciesLet's make a bar graph of the top `20` most frequently mentioned characters. ###Code d = names_df.sum().sort_values(ascending=False).head(20) px.bar(d, title='Character Name Frequencies in '+book_title).update_yaxes(title='Frequency').update_xaxes(title='Name').update(layout_showlegend=False) ###Output _____no_output_____ ###Markdown Cumulative Name Frequencies over TimeSince we have the text divided into chapters, let's visualize the cumulative mentions of the top `3` character names throughout the book. ###Code how_many_names = 3 main_character_names = names_df.sum().sort_values(ascending=False).head(how_many_names).index # list the top three main_characters = names_df[main_character_names].fillna(value=0) # create a new dataframe for top three main_characters.index = main_characters.index+1 title = 'Cumulative Character Mentions of Time in '+book_title px.line(main_characters.cumsum(), title=title).update_yaxes(title='Total Mentions').update_xaxes(title='Chapter') ###Output _____no_output_____ ###Markdown Sentiment Analysis[Sentiment analysis](https://en.wikipedia.org/wiki/Sentiment_analysis) is categorizing text based on its tone (negative, neutral, or positive).For this we will use the [vaderSentiment](https://github.com/cjhutto/vaderSentiment) library, then visualize the positive and negative sentiment by chapter. ###Code #!pip install vaderSentiment --user from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer analyzer = SentimentIntensityAnalyzer() sentiment_df = pd.DataFrame() for i in range(1,len(chapters)+1): senti = analyzer.polarity_scores(chapters['Chapter Text'][i]) # analyze the sentiment of chapter sentiment_df = sentiment_df.append(senti, ignore_index=True) # add to dataframe sentiment_df['neg'] = -sentiment_df['neg'] # change the sign of the negative sentiment sentiment_df.index = sentiment_df.index+1 px.bar(sentiment_df, y=['pos', 'neg'], title=book_title+' Sentiment Analysis by Chapter').update(layout_showlegend=False) ###Output _____no_output_____ ###Markdown ReadabilityOne last library to introduce, [textstat](https://github.com/shivam5992/textstat) for checking the readability, complexity, and grade level of text. It includes a [number of functions](https://github.com/shivam5992/textstatlist-of-functions), but we'll only use a few of them. This will take a while to run. ###Code #!pip install --user textstat import textstat textstats = pd.DataFrame() for i in range(1,len(chapters)+1): text = chapters['Chapter Text'][i] textstats_data = {'Flesch-Kincaid Grade':textstat.flesch_kincaid_grade(text), 'Gunning Fog Index':textstat.gunning_fog(text), 'Linsear Write Formula':textstat.linsear_write_formula(text), 'Readability':textstat.text_standard(text, float_output=True)} textstats = textstats.append(textstats_data, ignore_index=True) textstats.index = textstats.index+1 textstats ###Output _____no_output_____ ###Markdown Now that we have a dataframe of readability information, we can plot and describe the readability statistics. ###Code px.line(textstats, y='Readability', title=book_title+' Readability by Chapter').update_xaxes(title='Chapter') textstats.describe() ###Output _____no_output_____
src/BagofVisualWords.ipynb
###Markdown ###Code import cv2 import numpy as np import pickle as cPickle from sklearn.cluster import MiniBatchKMeans from sklearn.neighbors import KNeighborsClassifier from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from google.colab import drive drive.mount('/content/drive') ###Output _____no_output_____ ###Markdown Let us first read the train and test files ###Code train_images_filenames = cPickle.load(open('train_images_filenames.dat','r')) test_images_filenames = cPickle.load(open('test_images_filenames.dat','r')) train_labels = cPickle.load(open('train_labels.dat','r')) test_labels = cPickle.load(open('test_labels.dat','r')) train_images_filenames[12] ###Output _____no_output_____ ###Markdown We create a SIFT object detector and descriptor ###Code SIFTdetector = cv2.xfeatures2d.SIFT_create(nfeatures=300) ###Output _____no_output_____ ###Markdown We compute the SIFT descriptors for all the train images and subsequently build a numpy array with all the descriptors stacked together ###Code Train_descriptors = [] Train_label_per_descriptor = [] for filename,labels in zip(train_images_filenames,train_labels): ima=cv2.imread(filename) gray=cv2.cvtColor(ima,cv2.COLOR_BGR2GRAY) kpt,des=SIFTdetector.detectAndCompute(gray,None) Train_descriptors.append(des) Train_label_per_descriptor.append(labels) D=np.vstack(Train_descriptors) ###Output _____no_output_____ ###Markdown We now compute a k-means clustering on the descriptor space ###Code k = 128 codebook = MiniBatchKMeans(n_clusters=k, verbose=False, batch_size=k * 20,compute_labels=False,reassignment_ratio=10**-4,random_state=42) codebook.fit(D) ###Output _____no_output_____ ###Markdown And, for each train image, we project each keypoint descriptor to its closest visual word. We represent each of the images with the frequency of each visual word. ###Code visual_words=np.zeros((len(Train_descriptors),k),dtype=np.float32) for i in xrange(len(Train_descriptors)): words=codebook.predict(Train_descriptors[i]) visual_words[i,:]=np.bincount(words,minlength=k) ###Output _____no_output_____ ###Markdown We build a k-nn classifier and train it with the train descriptors ###Code knn = KNeighborsClassifier(n_neighbors=5,n_jobs=-1,metric='euclidean') knn.fit(visual_words, train_labels) ###Output _____no_output_____ ###Markdown We end up computing the test descriptors and compute the accuracy of the model ###Code visual_words_test=np.zeros((len(test_images_filenames),k),dtype=np.float32) for i in range(len(test_images_filenames)): filename=test_images_filenames[i] ima=cv2.imread(filename) gray=cv2.cvtColor(ima,cv2.COLOR_BGR2GRAY) kpt,des=SIFTdetector.detectAndCompute(gray,None) words=codebook.predict(des) visual_words_test[i,:]=np.bincount(words,minlength=k) accuracy = 100*knn.score(visual_words_test, test_labels) print(accuracy) ###Output _____no_output_____ ###Markdown Dimensionality reduction, with PCA and LDA ###Code pca = PCA(n_components=64) VWpca = pca.fit_transform(visual_words) knnpca = KNeighborsClassifier(n_neighbors=5,n_jobs=-1,metric='euclidean') knnpca.fit(VWpca, train_labels) vwtestpca = pca.transform(visual_words_test) accuracy = 100*knnpca.score(vwtestpca, test_labels) print(accuracy) lda = LinearDiscriminantAnalysis(n_components=64) VWlda = lda.fit_transform(visual_words,train_labels) knnlda = KNeighborsClassifier(n_neighbors=5,n_jobs=-1,metric='euclidean') knnlda.fit(VWlda, train_labels) vwtestlda = lda.transform(visual_words_test) accuracy = 100*knnlda.score(vwtestlda, test_labels) print(accuracy) ###Output _____no_output_____
python-scripts/data_analytics_learn/link_pandas/Ex_Files_Pandas_Data/Exercise Files/03_03/Final/.ipynb_checkpoints/Date Arithmetic-checkpoint.ipynb
###Markdown Date Arithmeticdocumentation: http://pandas.pydata.org/pandas-docs/stable/timeseries.htmltimeseries-offsets| Type | | Description ||-----------|---|-------------------------------------------------------------------|| date | | Store calendar date (year, month, day) using a Gregorian Calendar || datetime | | Store both date and time || timedelta | | Difference between two datetime values | common date arithmetic operations- calculate differences between date- generate sequences of dates and time spans- convert time series to a particular frequency Date, time, functionsdocumentation: http://pandas.pydata.org/pandas-docs/stable/api.htmltop-level-dealing-with-datetimelike| to_datetime(*args, **kwargs) | Convert argument to datetime. | ||---------------------------------------------------|-----------------------------------------------------------------------------|---|| to_timedelta(*args, **kwargs) | Convert argument to timedelta | || date_range([start, end, periods, freq, tz, ...]) | Return a fixed frequency datetime index, with day (calendar) as the default | || bdate_range([start, end, periods, freq, tz, ...]) | Return a fixed frequency datetime index, with business day as the default | || period_range([start, end, periods, freq, name]) | Return a fixed frequency datetime index, with day (calendar) as the default | || timedelta_range([start, end, periods, freq, ...]) | Return a fixed frequency timedelta index, with day as the default | || infer_freq(index[, warn]) | Infer the most likely frequency given the input index. | | ###Code import pandas as pd import numpy as np from datetime import datetime ###Output _____no_output_____ ###Markdown now() ###Code now = datetime.now() now now.year, now.month, now.day ###Output _____no_output_____ ###Markdown deltasource: http://pandas.pydata.org/pandas-docs/stable/timedeltas.html ###Code delta = now - datetime(2001, 1, 1) delta delta.days ###Output _____no_output_____ ###Markdown Parsing Timedelta from string ###Code pd.Timedelta('4 days 7 hours') ###Output _____no_output_____ ###Markdown named keyword arguments ###Code # note: these MUST be specified as keyword arguments pd.Timedelta(days=1, seconds=1) ###Output _____no_output_____ ###Markdown integers with a unit ###Code pd.Timedelta(1, unit='d') ###Output _____no_output_____ ###Markdown create a range of dates from Timedelta ###Code us_memorial_day = datetime(2016, 5, 30) print(us_memorial_day) us_labor_day = datetime(2016, 9, 5) print(us_labor_day) us_summer_time = us_labor_day - us_memorial_day print(us_summer_time) type(us_summer_time) us_summer_time_range = pd.date_range(us_memorial_day, periods=us_summer_time.days, freq='D') ###Output _____no_output_____ ###Markdown summer_time time series with random data ###Code us_summer_time_time_series = pd.Series(np.random.randn(us_summer_time.days), index=us_summer_time_range) us_summer_time_time_series.tail() ###Output _____no_output_____
Section 2: Elementary machine learning algorithms/linear_regression/05_03_Hyperparameters_and_Model_Validation.ipynb
###Markdown *This notebook contains an excerpt from the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).**The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!* Hyperparameters and Model Validation In the previous section, we saw the basic recipe for applying a supervised machine learning model:1. Choose a class of model2. Choose model hyperparameters3. Fit the model to the training data4. Use the model to predict labels for new dataThe first two pieces of this—the choice of model and choice of hyperparameters—are perhaps the most important part of using these tools and techniques effectively.In order to make an informed choice, we need a way to *validate* that our model and our hyperparameters are a good fit to the data.While this may sound simple, there are some pitfalls that you must avoid to do this effectively. Thinking about Model ValidationIn principle, model validation is very simple: after choosing a model and its hyperparameters, we can estimate how effective it is by applying it to some of the training data and comparing the prediction to the known value.The following sections first show a naive approach to model validation and why itfails, before exploring the use of holdout sets and cross-validation for more robustmodel evaluation. Model validation the wrong wayLet's demonstrate the naive approach to validation using the Iris data, which we saw in the previous section.We will start by loading the data: ###Code from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target ###Output _____no_output_____ ###Markdown Next we choose a model and hyperparameters. Here we'll use a *k*-neighbors classifier with ``n_neighbors=1``.This is a very simple and intuitive model that says "the label of an unknown point is the same as the label of its closest training point:" ###Code from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=1) ###Output _____no_output_____ ###Markdown Then we train the model, and use it to predict labels for data we already know: ###Code model.fit(X, y) y_model = model.predict(X) ###Output _____no_output_____ ###Markdown Finally, we compute the fraction of correctly labeled points: ###Code from sklearn.metrics import accuracy_score accuracy_score(y, y_model) ###Output _____no_output_____ ###Markdown We see an accuracy score of 1.0, which indicates that 100% of points were correctly labeled by our model!But is this truly measuring the expected accuracy? Have we really come upon a model that we expect to be correct 100% of the time?As you may have gathered, the answer is no.In fact, this approach contains a fundamental flaw: *it trains and evaluates the model on the same data*.Furthermore, the nearest neighbor model is an *instance-based* estimator that simply stores the training data, and predicts labels by comparing new data to these stored points: except in contrived cases, it will get 100% accuracy *every time!* Model validation the right way: Holdout setsSo what can be done?A better sense of a model's performance can be found using what's known as a *holdout set*: that is, we hold back some subset of the data from the training of the model, and then use this holdout set to check the model performance.This splitting can be done using the ``train_test_split`` utility in Scikit-Learn: ###Code import sklearn from sklearn.model_selection import train_test_split # split the data with 50% in each set X1, X2, y1, y2 = train_test_split(X, y, random_state=0, train_size=0.5) # fit the model on one set of data model.fit(X1, y1) # evaluate the model on the second set of data y2_model = model.predict(X2) accuracy_score(y2, y2_model) ###Output _____no_output_____ ###Markdown We see here a more reasonable result: the nearest-neighbor classifier is about 90% accurate on this hold-out set.The hold-out set is similar to unknown data, because the model has not "seen" it before. Model validation via cross-validationOne disadvantage of using a holdout set for model validation is that we have lost a portion of our data to the model training.In the above case, half the dataset does not contribute to the training of the model!This is not optimal, and can cause problems – especially if the initial set of training data is small.One way to address this is to use *cross-validation*; that is, to do a sequence of fits where each subset of the data is used both as a training set and as a validation set.Visually, it might look something like this:![](https://github.com/jakevdp/PythonDataScienceHandbook/raw/8a34a4f653bdbdc01415a94dc20d4e9b97438965/notebooks/figures/05.03-2-fold-CV.png)[figure source in Appendix](/content/drive/MyDrive/figures/05.03-2-fold-CV.png)Here we do two validation trials, alternately using each half of the data as a holdout set.Using the split data from before, we could implement it like this: ###Code y2_model = model.fit(X1, y1).predict(X2) y1_model = model.fit(X2, y2).predict(X1) accuracy_score(y1, y1_model), accuracy_score(y2, y2_model) ###Output _____no_output_____ ###Markdown What comes out are two accuracy scores, which we could combine (by, say, taking the mean) to get a better measure of the global model performance.This particular form of cross-validation is a *two-fold cross-validation*—that is, one in which we have split the data into two sets and used each in turn as a validation set.We could expand on this idea to use even more trials, and more folds in the data—for example, here is a visual depiction of five-fold cross-validation:![](https://github.com/jakevdp/PythonDataScienceHandbook/raw/8a34a4f653bdbdc01415a94dc20d4e9b97438965/notebooks/figures/05.03-5-fold-CV.png)[figure source in Appendix](06.00-Figure-Code.ipynb5-Fold-Cross-Validation)Here we split the data into five groups, and use each of them in turn to evaluate the model fit on the other 4/5 of the data.This would be rather tedious to do by hand, and so we can use Scikit-Learn's ``cross_val_score`` convenience routine to do it succinctly: ###Code from sklearn.model_selection import cross_val_score cross_val_score(model, X, y, cv=5) ###Output _____no_output_____ ###Markdown Repeating the validation across different subsets of the data gives us an even better idea of the performance of the algorithm.Scikit-Learn implements a number of useful cross-validation schemes that are useful in particular situations; these are implemented via iterators in the ``cross_validation`` module.For example, we might wish to go to the extreme case in which our number of folds is equal to the number of data points: that is, we train on all points but one in each trial.This type of cross-validation is known as *leave-one-out* cross validation, and can be used as follows: ###Code from sklearn.model_selection import LeaveOneOut scores = cross_val_score(model, X, y, cv=LeaveOneOut()) scores ###Output _____no_output_____ ###Markdown Because we have 150 samples, the leave one out cross-validation yields scores for 150 trials, and the score indicates either successful (1.0) or unsuccessful (0.0) prediction.Taking the mean of these gives an estimate of the error rate: ###Code scores.mean() ###Output _____no_output_____ ###Markdown Other cross-validation schemes can be used similarly.For a description of what is available in Scikit-Learn, use IPython to explore the ``sklearn.cross_validation`` submodule, or take a look at Scikit-Learn's online [cross-validation documentation](http://scikit-learn.org/stable/modules/cross_validation.html). Selecting the Best ModelNow that we've seen the basics of validation and cross-validation, we will go into a litte more depth regarding model selection and selection of hyperparameters.These issues are some of the most important aspects of the practice of machine learning, and I find that this information is often glossed over in introductory machine learning tutorials.Of core importance is the following question: *if our estimator is underperforming, how should we move forward?*There are several possible answers:- Use a more complicated/more flexible model- Use a less complicated/less flexible model- Gather more training samples- Gather more data to add features to each sampleThe answer to this question is often counter-intuitive.In particular, sometimes using a more complicated model will give worse results, and adding more training samples may not improve your results!The ability to determine what steps will improve your model is what separates the successful machine learning practitioners from the unsuccessful. The Bias-variance trade-offFundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between *bias* and *variance*.Consider the following figure, which presents two regression fits to the same dataset:![](https://github.com/jakevdp/PythonDataScienceHandbook/raw/8a34a4f653bdbdc01415a94dc20d4e9b97438965/notebooks/figures/05.03-bias-variance.png)[figure source in Appendix](06.00-Figure-Code.ipynbBias-Variance-Tradeoff)It is clear that neither of these models is a particularly good fit to the data, but they fail in different ways.The model on the left attempts to find a straight-line fit through the data.Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well.Such a model is said to *underfit* the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high *bias*.The model on the right attempts to fit a high-order polynomial through the data.Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data.Such a model is said to *overfit* the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high *variance*. To look at this in another light, consider what happens if we use these two models to predict the y-value for some new data.In the following diagrams, the red/lighter points indicate data that is omitted from the training set:![](https://github.com/jakevdp/PythonDataScienceHandbook/raw/8a34a4f653bdbdc01415a94dc20d4e9b97438965/notebooks/figures/05.03-bias-variance-2.png)[figure source in Appendix](06.00-Figure-Code.ipynbBias-Variance-Tradeoff-Metrics)The score here is the $R^2$ score, or [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination), which measures how well a model performs relative to a simple mean of the target values. $R^2=1$ indicates a perfect match, $R^2=0$ indicates the model does no better than simply taking the mean of the data, and negative values mean even worse models.From the scores associated with these two models, we can make an observation that holds more generally:- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set. If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:![](https://github.com/jakevdp/PythonDataScienceHandbook/raw/8a34a4f653bdbdc01415a94dc20d4e9b97438965/notebooks/figures/05.03-validation-curve.png)[figure source in Appendix](06.00-Figure-Code.ipynbValidation-Curve)The diagram shown here is often called a *validation curve*, and we see the following essential features:- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.The means of tuning the model complexity varies from model to model; when we discuss individual models in depth in later sections, we will see how each model allows for such tuning. Validation curves in Scikit-LearnLet's look at an example of using cross-validation to compute the validation curve for a class of models.Here we will use a *polynomial regression* model: this is a generalized linear model in which the degree of the polynomial is a tunable parameter.For example, a degree-1 polynomial fits a straight line to the data; for model parameters $a$ and $b$:$$y = ax + b$$A degree-3 polynomial fits a cubic curve to the data; for model parameters $a, b, c, d$:$$y = ax^3 + bx^2 + cx + d$$We can generalize this to any number of polynomial features.In Scikit-Learn, we can implement this with a simple linear regression combined with the polynomial preprocessor.We will use a *pipeline* to string these operations together (we will discuss polynomial features and pipelines more fully in [Feature Engineering](05.04-Feature-Engineering.ipynb)): ###Code from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.pipeline import make_pipeline def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) ###Output _____no_output_____ ###Markdown Now let's create some data to which we will fit our model: ###Code import numpy as np def make_data(N, err=1.0, rseed=1): # randomly sample the data rng = np.random.RandomState(rseed) X = rng.rand(N, 1) ** 2 y = 10 - 1. / (X.ravel() + 0.1) if err > 0: y += err * rng.randn(N) return X, y X, y = make_data(40) ###Output _____no_output_____ ###Markdown We can now visualize our data, along with polynomial fits of several degrees: ###Code %matplotlib inline import matplotlib.pyplot as plt import seaborn; seaborn.set() # plot formatting X_test = np.linspace(-0.1, 1.1, 500)[:, None] plt.scatter(X.ravel(), y, color='black') axis = plt.axis() for degree in [1, 3, 5]: y_test = PolynomialRegression(degree).fit(X, y).predict(X_test) plt.plot(X_test.ravel(), y_test, label='degree={0}'.format(degree)) plt.xlim(-0.1, 1.0) plt.ylim(-2, 12) plt.legend(loc='best'); ###Output _____no_output_____ ###Markdown The knob controlling model complexity in this case is the degree of the polynomial, which can be any non-negative integer.A useful question to answer is this: what degree of polynomial provides a suitable trade-off between bias (under-fitting) and variance (over-fitting)?We can make progress in this by visualizing the validation curve for this particular data and model; this can be done straightforwardly using the ``validation_curve`` convenience routine provided by Scikit-Learn.Given a model, data, parameter name, and a range to explore, this function will automatically compute both the training score and validation score across the range: ###Code from sklearn.model_selection import learning_curve, validation_curve degree = np.arange(0, 21) train_score, val_score = validation_curve(PolynomialRegression(), X, y, 'polynomialfeatures__degree', degree, cv=5) plt.plot(degree, np.median(train_score, 1), color='blue', label='training score') plt.plot(degree, np.median(val_score, 1), color='red', label='validation score') plt.legend(loc='best') plt.ylim(0, 1) plt.xlabel('degree') plt.ylabel('score'); ###Output _____no_output_____ ###Markdown This shows precisely the qualitative behavior we expect: the training score is everywhere higher than the validation score; the training score is monotonically improving with increased model complexity; and the validation score reaches a maximum before dropping off as the model becomes over-fit.From the validation curve, we can read-off that the optimal trade-off between bias and variance is found for a third-order polynomial; we can compute and display this fit over the original data as follows: ###Code plt.scatter(X.ravel(), y) lim = plt.axis() y_test = PolynomialRegression(3).fit(X, y).predict(X_test) plt.plot(X_test.ravel(), y_test); plt.axis(lim); ###Output _____no_output_____ ###Markdown Notice that finding this optimal model did not actually require us to compute the training score, but examining the relationship between the training score and validation score can give us useful insight into the performance of the model. Learning CurvesOne important aspect of model complexity is that the optimal model will generally depend on the size of your training data.For example, let's generate a new dataset with a factor of five more points: ###Code X2, y2 = make_data(200) plt.scatter(X2.ravel(), y2); ###Output _____no_output_____ ###Markdown We will duplicate the preceding code to plot the validation curve for this larger dataset; for reference let's over-plot the previous results as well: ###Code degree = np.arange(21) train_score2, val_score2 = validation_curve(PolynomialRegression(), X2, y2, 'polynomialfeatures__degree', degree, cv=7) plt.plot(degree, np.median(train_score2, 1), color='blue', label='training score') plt.plot(degree, np.median(val_score2, 1), color='red', label='validation score') plt.plot(degree, np.median(train_score, 1), color='blue', alpha=0.3, linestyle='dashed') plt.plot(degree, np.median(val_score, 1), color='red', alpha=0.3, linestyle='dashed') plt.legend(loc='lower center') plt.ylim(0, 1) plt.xlabel('degree') plt.ylabel('score'); ###Output _____no_output_____ ###Markdown The solid lines show the new results, while the fainter dashed lines show the results of the previous smaller dataset.It is clear from the validation curve that the larger dataset can support a much more complicated model: the peak here is probably around a degree of 6, but even a degree-20 model is not seriously over-fitting the data—the validation and training scores remain very close.Thus we see that the behavior of the validation curve has not one but two important inputs: the model complexity and the number of training points.It is often useful to to explore the behavior of the model as a function of the number of training points, which we can do by using increasingly larger subsets of the data to fit our model.A plot of the training/validation score with respect to the size of the training set is known as a *learning curve.*The general behavior we would expect from a learning curve is this:- A model of a given complexity will *overfit* a small dataset: this means the training score will be relatively high, while the validation score will be relatively low.- A model of a given complexity will *underfit* a large dataset: this means that the training score will decrease, but the validation score will increase.- A model will never, except by chance, give a better score to the validation set than the training set: this means the curves should keep getting closer together but never cross.With these features in mind, we would expect a learning curve to look qualitatively like that shown in the following figure: ![](https://github.com/jakevdp/PythonDataScienceHandbook/raw/8a34a4f653bdbdc01415a94dc20d4e9b97438965/notebooks/figures/05.03-learning-curve.png)[figure source in Appendix](06.00-Figure-Code.ipynbLearning-Curve) The notable feature of the learning curve is the convergence to a particular score as the number of training samples grows.In particular, once you have enough points that a particular model has converged, *adding more training data will not help you!*The only way to increase model performance in this case is to use another (often more complex) model. Learning curves in Scikit-LearnScikit-Learn offers a convenient utility for computing such learning curves from your models; here we will compute a learning curve for our original dataset with a second-order polynomial model and a ninth-order polynomial: ###Code from sklearn.model_selection import learning_curve fig, ax = plt.subplots(1, 2, figsize=(16, 6)) fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1) for i, degree in enumerate([2, 9]): N, train_lc, val_lc = learning_curve(PolynomialRegression(degree), X, y, cv=7, train_sizes=np.linspace(0.3, 1, 25)) ax[i].plot(N, np.mean(train_lc, 1), color='blue', label='training score') ax[i].plot(N, np.mean(val_lc, 1), color='red', label='validation score') ax[i].hlines(np.mean([train_lc[-1], val_lc[-1]]), N[0], N[-1], color='gray', linestyle='dashed') ax[i].set_ylim(0, 1) ax[i].set_xlim(N[0], N[-1]) ax[i].set_xlabel('training size') ax[i].set_ylabel('score') ax[i].set_title('degree = {0}'.format(degree), size=14) ax[i].legend(loc='best') ###Output _____no_output_____ ###Markdown This is a valuable diagnostic, because it gives us a visual depiction of how our model responds to increasing training data.In particular, when your learning curve has already converged (i.e., when the training and validation curves are already close to each other) *adding more training data will not significantly improve the fit!*This situation is seen in the left panel, with the learning curve for the degree-2 model.The only way to increase the converged score is to use a different (usually more complicated) model.We see this in the right panel: by moving to a much more complicated model, we increase the score of convergence (indicated by the dashed line), but at the expense of higher model variance (indicated by the difference between the training and validation scores).If we were to add even more data points, the learning curve for the more complicated model would eventually converge.Plotting a learning curve for your particular choice of model and dataset can help you to make this type of decision about how to move forward in improving your analysis. Validation in Practice: Grid SearchThe preceding discussion is meant to give you some intuition into the trade-off between bias and variance, and its dependence on model complexity and training set size.In practice, models generally have more than one knob to turn, and thus plots of validation and learning curves change from lines to multi-dimensional surfaces.In these cases, such visualizations are difficult and we would rather simply find the particular model that maximizes the validation score.Scikit-Learn provides automated tools to do this in the grid search module.Here is an example of using grid search to find the optimal polynomial model.We will explore a three-dimensional grid of model features; namely the polynomial degree, the flag telling us whether to fit the intercept, and the flag telling us whether to normalize the problem.This can be set up using Scikit-Learn's ``GridSearchCV`` meta-estimator: ###Code from sklearn.model_selection import GridSearchCV param_grid = {'polynomialfeatures__degree': np.arange(21), 'linearregression__fit_intercept': [True, False], 'linearregression__normalize': [True, False]} grid = GridSearchCV(PolynomialRegression(), param_grid, cv=7) ###Output _____no_output_____ ###Markdown Notice that like a normal estimator, this has not yet been applied to any data.Calling the ``fit()`` method will fit the model at each grid point, keeping track of the scores along the way: ###Code grid.fit(X, y); ###Output _____no_output_____ ###Markdown Now that this is fit, we can ask for the best parameters as follows: ###Code grid.best_params_ ###Output _____no_output_____ ###Markdown Finally, if we wish, we can use the best model and show the fit to our data using code from before: ###Code model = grid.best_estimator_ plt.scatter(X.ravel(), y) lim = plt.axis() y_test = model.fit(X, y).predict(X_test) plt.plot(X_test.ravel(), y_test); plt.axis(lim); ###Output _____no_output_____
02_usecases/factorization_machines_recommendations/13_Recommendation_Train_Model.ipynb
###Markdown Creating and Evaluating Solutions In this notebook, you will train several models using Amazon Personalize, specifically: 1. User Personalization - what items are most relevant to a specific user.1. Similar Items - given an item, what items are similar to it.1. Personalized Ranking - given a user and a collection of items, in what order are they most releveant. Outline1. [Introduction](intro)1. [Create solutions](solutions)1. [Evaluate solutions](eval)1. [Using evaluation metrics](use)1. [Storing useful variables](vars) Introduction To recap, for the most part, the algorithms in Amazon Personalize (called recipes) look to solve different tasks, explained here:1. **User Personalization** - New release that supports ALL HRNN workflows / user personalization needs, it will be what we use here.1. **HRNN & HRNN-Metadata** - Recommends items based on previous user interactions with items.1. **HRNN-Coldstart** - Recommends new items for which interaction data is not yet available.1. **Personalized-Ranking** - Takes a collection of items and then orders them in probable order of interest using an HRNN-like approach.1. **SIMS (Similar Items)** - Given one item, recommends other items also interacted with by users.1. **Popularity-Count** - Recommends the most popular items, if HRNN or HRNN-Metadata do not have an answer - this is returned by default.No matter the use case, the algorithms all share a base of learning on user-item-interaction data which is defined by 3 core attributes:1. **UserID** - The user who interacted1. **ItemID** - The item the user interacted with1. **Timestamp** - The time at which the interaction occurredWe also support event types and event values defined by:1. **Event Type** - Categorical label of an event (browse, purchased, rated, etc).1. **Event Value** - A value corresponding to the event type that occurred. Generally speaking, we look for normalized values between 0 and 1 over the event types. For example, if there are three phases to complete a transaction (clicked, added-to-cart, and purchased), then there would be an event_value for each phase as 0.33, 0.66, and 1.0 respectfully.The event type and event value fields are additional data which can be used to filter the data sent for training the personalization model. In this particular exercise we will not have an event type or event value. To run this notebook, you need to have run the previous notebooks, `01_Validating_and_Importing_User_Item_Interaction_Data` and `02_Validating_and_Importing_Item_Metadata.ipynb`, where you created a dataset and imported interaction and item metadata data into Amazon Personalize. At the end of that notebook, you saved some of the variable values, which you now need to load into this notebook. ![](img/03.png) ###Code %store -r ###Output _____no_output_____ ###Markdown Create solutions [Back to top](top)In this notebook, you will create solutions with the following recipes:1. User Personalization1. SIMS1. Personalized-RankingThe Popularity-Count recipe is the simplest solution available in Amazon Personalize and it should only be used as a fallback, so it will also not be covered in this notebook.Similar to the previous notebook, start by importing the relevant packages, and set up a connection to Amazon Personalize using the SDK. ###Code import time from time import sleep import json import boto3 # Configure the SDK to Personalize: personalize = boto3.client('personalize') personalize_runtime = boto3.client('personalize-runtime') ###Output _____no_output_____ ###Markdown In Amazon Personalize, a specific variation of an algorithm is called a recipe. Different recipes are suitable for different situations. A trained model is called a solution, and each solution can have many versions that relate to a given volume of data when the model was trained.To start, we will list all the recipes that are supported. This will allow you to select one and use that to build your model. ###Code personalize.list_recipes() ###Output _____no_output_____ ###Markdown The output is just a JSON representation of all of the algorithms mentioned in the introduction.Next we will select specific recipes and build models with them. User PersonalizationThe User-Personalization (aws-user-personalization) recipe is optimized for all USER_PERSONALIZATION recommendation scenarios. When recommending items, it uses automatic item exploration.With automatic exploration, Amazon Personalize automatically tests different item recommendations, learns from how users interact with these recommended items, and boosts recommendations for items that drive better engagement and conversion. This improves item discovery and engagement when you have a fast-changing catalog, or when new items, such as news articles or promotions, are more relevant to users when fresh.You can balance how much to explore (where items with less interactions data or relevance are recommended more frequently) against how much to exploit (where recommendations are based on what we know or relevance). Amazon Personalize automatically adjusts future recommendations based on implicit user feedback.First, select the recipe by finding the ARN in the list of recipes above. ###Code user_personalization_recipe_arn = "arn:aws:personalize:::recipe/aws-user-personalization" ###Output _____no_output_____ ###Markdown Create the solutionFirst you create a solution using the recipe. Although you provide the dataset ARN in this step, the model is not yet trained. See this as an identifier instead of a trained model. ###Code user_personalization_create_solution_response = personalize.create_solution( name = "personalize-poc-userpersonalization", datasetGroupArn = dataset_group_arn, recipeArn = user_personalization_recipe_arn ) user_personalization_solution_arn = user_personalization_create_solution_response['solutionArn'] print(json.dumps(user_personalization_solution_arn, indent=2)) ###Output "arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-userpersonalization" ###Markdown Create the solution versionOnce you have a solution, you need to create a version in order to complete the model training. The training can take a while to complete, upwards of 25 minutes, and an average of 90 minutes for this recipe with our dataset. Normally, we would use a while loop to poll until the task is completed. However the task would block other cells from executing, and the goal here is to create many models and deploy them quickly. So we will set up the while loop for all of the solutions further down in the notebook. There, you will also find instructions for viewing the progress in the AWS console. ###Code userpersonalization_create_solution_version_response = personalize.create_solution_version( solutionArn = user_personalization_solution_arn ) userpersonalization_solution_version_arn = userpersonalization_create_solution_version_response['solutionVersionArn'] print(json.dumps(user_personalization_create_solution_response, indent=2)) ###Output { "solutionArn": "arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-userpersonalization", "ResponseMetadata": { "RequestId": "20623f71-407c-46ab-80bd-3d6a9dacb797", "HTTPStatusCode": 200, "HTTPHeaders": { "content-type": "application/x-amz-json-1.1", "date": "Sun, 08 Nov 2020 06:46:11 GMT", "x-amzn-requestid": "20623f71-407c-46ab-80bd-3d6a9dacb797", "content-length": "105", "connection": "keep-alive" }, "RetryAttempts": 0 } } ###Markdown SIMSSIMS is one of the oldest algorithms used within Amazon for recommendation systems. A core use case for it is when you have one item and you want to recommend items that have been interacted with in similar ways over your entire user base. This means the result is not personalized per user. Sometimes this leads to recommending mostly popular items, so there is a hyperparameter that can be tweaked which will reduce the popular items in your results. For our use case, using the Movielens data, let's assume we pick a particular movie. We can then use SIMS to recommend other movies based on the interaction behavior of the entire user base. The results are not personalized per user, but instead, differ depending on the movie we chose as our input.Just like last time, we start by selecting the recipe. ###Code SIMS_recipe_arn = "arn:aws:personalize:::recipe/aws-sims" ###Output _____no_output_____ ###Markdown Create the solutionAs with HRNN, start by creating the solution first. Although you provide the dataset ARN in this step, the model is not yet trained. See this as an identifier instead of a trained model. ###Code sims_create_solution_response = personalize.create_solution( name = "personalize-poc-sims", datasetGroupArn = dataset_group_arn, recipeArn = SIMS_recipe_arn ) sims_solution_arn = sims_create_solution_response['solutionArn'] print(json.dumps(sims_create_solution_response, indent=2)) ###Output { "solutionArn": "arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-sims", "ResponseMetadata": { "RequestId": "a27bfa79-c34c-4b85-890c-a3b2652843ad", "HTTPStatusCode": 200, "HTTPHeaders": { "content-type": "application/x-amz-json-1.1", "date": "Sun, 08 Nov 2020 06:46:11 GMT", "x-amzn-requestid": "a27bfa79-c34c-4b85-890c-a3b2652843ad", "content-length": "90", "connection": "keep-alive" }, "RetryAttempts": 0 } } ###Markdown Create the solution versionOnce you have a solution, you need to create a version in order to complete the model training. The training can take a while to complete, upwards of 25 minutes, and an average of 35 minutes for this recipe with our dataset. Normally, we would use a while loop to poll until the task is completed. However the task would block other cells from executing, and the goal here is to create many models and deploy them quickly. So we will set up the while loop for all of the solutions further down in the notebook. There, you will also find instructions for viewing the progress in the AWS console. ###Code sims_create_solution_version_response = personalize.create_solution_version( solutionArn = sims_solution_arn ) sims_solution_version_arn = sims_create_solution_version_response['solutionVersionArn'] print(json.dumps(sims_create_solution_version_response, indent=2)) ###Output { "solutionVersionArn": "arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-sims/666f373e", "ResponseMetadata": { "RequestId": "b4a6c1c1-6223-4cc1-9153-3da6606191fd", "HTTPStatusCode": 200, "HTTPHeaders": { "content-type": "application/x-amz-json-1.1", "date": "Sun, 08 Nov 2020 06:46:12 GMT", "x-amzn-requestid": "b4a6c1c1-6223-4cc1-9153-3da6606191fd", "content-length": "106", "connection": "keep-alive" }, "RetryAttempts": 0 } } ###Markdown Personalized RankingPersonalized Ranking is an interesting application of HRNN. Instead of just recommending what is most probable for the user in question, this algorithm takes in a user and a list of items as well. The items are then rendered back in the order of most probable relevance for the user. The use case here is for filtering on unique categories that you do not have item metadata to create a filter, or when you have a broad collection that you would like better ordered for a particular user.For our use case, using the MovieLens data, we could imagine that a VOD application may want to create a shelf of comic book movies, or movies by a specific director. We most likely have these lists based title metadata we have. We would use personalized ranking to re-order the list of movies for each user, based on their previous tagging history. Just like last time, we start by selecting the recipe. ###Code rerank_recipe_arn = "arn:aws:personalize:::recipe/aws-personalized-ranking" ###Output _____no_output_____ ###Markdown Create the solutionAs with the previous solution, start by creating the solution first. Although you provide the dataset ARN in this step, the model is not yet trained. See this as an identifier instead of a trained model. ###Code rerank_create_solution_response = personalize.create_solution( name = "personalize-poc-rerank", datasetGroupArn = dataset_group_arn, recipeArn = rerank_recipe_arn ) rerank_solution_arn = rerank_create_solution_response['solutionArn'] print(json.dumps(rerank_create_solution_response, indent=2)) ###Output { "solutionArn": "arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-rerank", "ResponseMetadata": { "RequestId": "bcd3deaa-07e5-47ba-bbd3-abc41b61bb57", "HTTPStatusCode": 200, "HTTPHeaders": { "content-type": "application/x-amz-json-1.1", "date": "Sun, 08 Nov 2020 06:46:12 GMT", "x-amzn-requestid": "bcd3deaa-07e5-47ba-bbd3-abc41b61bb57", "content-length": "92", "connection": "keep-alive" }, "RetryAttempts": 0 } } ###Markdown Create the solution versionOnce you have a solution, you need to create a version in order to complete the model training. The training can take a while to complete, upwards of 25 minutes, and an average of 35 minutes for this recipe with our dataset. Normally, we would use a while loop to poll until the task is completed. However the task would block other cells from executing, and the goal here is to create many models and deploy them quickly. So we will set up the while loop for all of the solutions further down in the notebook. There, you will also find instructions for viewing the progress in the AWS console. ###Code rerank_create_solution_version_response = personalize.create_solution_version( solutionArn = rerank_solution_arn ) rerank_solution_version_arn = rerank_create_solution_version_response['solutionVersionArn'] print(json.dumps(rerank_create_solution_version_response, indent=2)) ###Output { "solutionVersionArn": "arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-rerank/44c934a6", "ResponseMetadata": { "RequestId": "61ffe655-1749-49f6-9a67-3aea32515ba8", "HTTPStatusCode": 200, "HTTPHeaders": { "content-type": "application/x-amz-json-1.1", "date": "Sun, 08 Nov 2020 06:46:12 GMT", "x-amzn-requestid": "61ffe655-1749-49f6-9a67-3aea32515ba8", "content-length": "108", "connection": "keep-alive" }, "RetryAttempts": 0 } } ###Markdown View solution creation statusAs promised, how to view the status updates in the console:* In another browser tab you should already have the AWS Console up from opening this notebook instance. * Switch to that tab and search at the top for the service `Personalize`, then go to that service page. * Click `View dataset groups`.* Click the name of your dataset group, most likely something with POC in the name.* Click `Solutions and recipes`.* You will now see a list of all of the solutions you created above, including a column with the status of the solution versions. Once it is `Active`, your solution is ready to be reviewed. It is also capable of being deployed.Or simply run the cell below to keep track of the solution version creation status. ###Code %%time in_progress_solution_versions = [ userpersonalization_solution_version_arn, sims_solution_version_arn, rerank_solution_version_arn ] max_time = time.time() + 10*60*60 # 10 hours while time.time() < max_time: for solution_version_arn in in_progress_solution_versions: version_response = personalize.describe_solution_version( solutionVersionArn = solution_version_arn ) status = version_response["solutionVersion"]["status"] if status == "ACTIVE": print("Build succeeded for {}".format(solution_version_arn)) in_progress_solution_versions.remove(solution_version_arn) elif status == "CREATE FAILED": print("Build failed for {}".format(solution_version_arn)) in_progress_solution_versions.remove(solution_version_arn) if len(in_progress_solution_versions) <= 0: break else: print("At least one solution build is still in progress") time.sleep(60) ###Output At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress Build succeeded for arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-sims/666f373e At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress Build succeeded for arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-rerank/44c934a6 At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress At least one solution build is still in progress Build succeeded for arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-userpersonalization/d8407cb8 CPU times: user 456 ms, sys: 58.3 ms, total: 514 ms Wall time: 1h 2min 8s ###Markdown Hyperparameter tuningPersonalize offers the option of running hyperparameter tuning when creating a solution. Because of the additional computation required to perform hyperparameter tuning, this feature is turned off by default. Therefore, the solutions we created above, will simply use the default values of the hyperparameters for each recipe. For more information about hyperparameter tuning, see the [documentation](https://docs.aws.amazon.com/personalize/latest/dg/customizing-solution-config-hpo.html).If you have settled on the correct recipe to use, and are ready to run hyperparameter tuning, the following code shows how you would do so, using SIMS as an example.```pythonsims_create_solution_response = personalize.create_solution( name = "personalize-poc-sims-hpo", datasetGroupArn = dataset_group_arn, recipeArn = SIMS_recipe_arn, performHPO=True)sims_solution_arn = sims_create_solution_response['solutionArn']print(json.dumps(sims_create_solution_response, indent=2))```If you already know the values you want to use for a specific hyperparameter, you can also set this value when you create the solution. The code below shows how you could set the value for the `popularity_discount_factor` for the SIMS recipe.```pythonsims_create_solution_response = personalize.create_solution( name = "personalize-poc-sims-set-hp", datasetGroupArn = dataset_group_arn, recipeArn = SIMS_recipe_arn, solutionConfig = { 'algorithmHyperParameters': { 'popularity_discount_factor': '0.7' } })sims_solution_arn = sims_create_solution_response['solutionArn']print(json.dumps(sims_create_solution_response, indent=2))``` Evaluate solution versions [Back to top](top)It should not take more than an hour to train all the solutions from this notebook. While training is in progress, we recommend taking the time to read up on the various algorithms (recipes) and their behavior in detail. This is also a good time to consider alternatives to how the data was fed into the system and what kind of results you expect to see.When the solutions finish creating, the next step is to obtain the evaluation metrics. Personalize calculates these metrics based on a subset of the training data. The image below illustrates how Personalize splits the data. Given 10 users, with 10 interactions each (a circle represents an interaction), the interactions are ordered from oldest to newest based on the timestamp. Personalize uses all of the interaction data from 90% of the users (blue circles) to train the solution version, and the remaining 10% for evaluation. For each of the users in the remaining 10%, 90% of their interaction data (green circles) is used as input for the call to the trained model. The remaining 10% of their data (orange circle) is compared to the output produced by the model and used to calculate the evaluation metrics.![personalize metrics](static/imgs/personalize_metrics.png)We recommend reading [the documentation](https://docs.aws.amazon.com/personalize/latest/dg/working-with-training-metrics.html) to understand the metrics, but we have also copied parts of the documentation below for convenience.You need to understand the following terms regarding evaluation in Personalize:* *Relevant recommendation* refers to a recommendation that matches a value in the testing data for the particular user.* *Rank* refers to the position of a recommended item in the list of recommendations. Position 1 (the top of the list) is presumed to be the most relevant to the user.* *Query* refers to the internal equivalent of a GetRecommendations call.The metrics produced by Personalize are:* **coverage**: The proportion of unique recommended items from all queries out of the total number of unique items in the training data (includes both the Items and Interactions datasets).* **mean_reciprocal_rank_at_25**: The [mean of the reciprocal ranks](https://en.wikipedia.org/wiki/Mean_reciprocal_rank) of the first relevant recommendation out of the top 25 recommendations over all queries. This metric is appropriate if you're interested in the single highest ranked recommendation.* **normalized_discounted_cumulative_gain_at_K**: Discounted gain assumes that recommendations lower on a list of recommendations are less relevant than higher recommendations. Therefore, each recommendation is discounted (given a lower weight) by a factor dependent on its position. To produce the [cumulative discounted gain](https://en.wikipedia.org/wiki/Discounted_cumulative_gain) (DCG) at K, each relevant discounted recommendation in the top K recommendations is summed together. The normalized discounted cumulative gain (NDCG) is the DCG divided by the ideal DCG such that NDCG is between 0 - 1. (The ideal DCG is where the top K recommendations are sorted by relevance.) Amazon Personalize uses a weighting factor of 1/log(1 + position), where the top of the list is position 1. This metric rewards relevant items that appear near the top of the list, because the top of a list usually draws more attention.* **precision_at_K**: The number of relevant recommendations out of the top K recommendations divided by K. This metric rewards precise recommendation of the relevant items.Let's take a look at the evaluation metrics for each of the solutions produced in this notebook. *Please note, your results might differ from the results described in the text of this notebook, due to the quality of the Movielens dataset.* User Personalization metricsFirst, retrieve the evaluation metrics for the User Personalization solution version. ###Code user_personalization_solution_metrics_response = personalize.get_solution_metrics( solutionVersionArn = userpersonalization_solution_version_arn ) print(json.dumps(user_personalization_solution_metrics_response, indent=2)) ###Output { "solutionVersionArn": "arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-userpersonalization/d8407cb8", "metrics": { "coverage": 0.0786, "mean_reciprocal_rank_at_25": 0.2263, "normalized_discounted_cumulative_gain_at_10": 0.2174, "normalized_discounted_cumulative_gain_at_25": 0.2831, "normalized_discounted_cumulative_gain_at_5": 0.1802, "precision_at_10": 0.0464, "precision_at_25": 0.0321, "precision_at_5": 0.0571 }, "ResponseMetadata": { "RequestId": "d88a71cd-8b6a-4096-9862-f58d6bbcb8bd", "HTTPStatusCode": 200, "HTTPHeaders": { "content-type": "application/x-amz-json-1.1", "date": "Sun, 08 Nov 2020 07:48:19 GMT", "x-amzn-requestid": "d88a71cd-8b6a-4096-9862-f58d6bbcb8bd", "content-length": "419", "connection": "keep-alive" }, "RetryAttempts": 0 } } ###Markdown The normalized discounted cumulative gain above tells us that at 5 items, we have less than a (38% for full 22% for small) chance in a recommendation being a part of a user's interaction history (in the hold out phase from training and validation). Around 13% of the recommended items are unique, and we have a precision of only (14% for full, 7.5% for small) in the top 5 recommended items. This is clearly not a great model, but keep in mind that we had to use rating data for our interactions because Movielens is an explicit dataset based on ratings. The Timestamps also were from the time that the movie was rated, not watched, so the order is not the same as the order a viewer would watch movies. SIMS metricsNow, retrieve the evaluation metrics for the SIMS solution version. ###Code sims_solution_metrics_response = personalize.get_solution_metrics( solutionVersionArn = sims_solution_version_arn ) print(json.dumps(sims_solution_metrics_response, indent=2)) ###Output { "solutionVersionArn": "arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-sims/666f373e", "metrics": { "coverage": 0.1843, "mean_reciprocal_rank_at_25": 0.1777, "normalized_discounted_cumulative_gain_at_10": 0.2299, "normalized_discounted_cumulative_gain_at_25": 0.2962, "normalized_discounted_cumulative_gain_at_5": 0.1954, "precision_at_10": 0.0588, "precision_at_25": 0.0418, "precision_at_5": 0.0824 }, "ResponseMetadata": { "RequestId": "48ac3d87-8481-41ec-8b9e-8725241f0ba0", "HTTPStatusCode": 200, "HTTPHeaders": { "content-type": "application/x-amz-json-1.1", "date": "Sun, 08 Nov 2020 07:48:20 GMT", "x-amzn-requestid": "48ac3d87-8481-41ec-8b9e-8725241f0ba0", "content-length": "404", "connection": "keep-alive" }, "RetryAttempts": 0 } } ###Markdown In this example we are seeing a slightly elevated precision at 5 items, a little over (4.5% for full, 6.4% for small) this time. Effectively this is probably within the margin of error, but given that no effort was made to mask popularity, it may just be returning super popular results that a large volume of users have interacted with in some way. Personalized ranking metricsNow, retrieve the evaluation metrics for the personalized ranking solution version. ###Code rerank_solution_metrics_response = personalize.get_solution_metrics( solutionVersionArn = rerank_solution_version_arn ) print(json.dumps(rerank_solution_metrics_response, indent=2)) ###Output { "solutionVersionArn": "arn:aws:personalize:us-east-1:835319576252:solution/personalize-poc-rerank/44c934a6", "metrics": { "coverage": 0.0038, "mean_reciprocal_rank_at_25": 0.0593, "normalized_discounted_cumulative_gain_at_10": 0.0824, "normalized_discounted_cumulative_gain_at_25": 0.0958, "normalized_discounted_cumulative_gain_at_5": 0.0377, "precision_at_10": 0.0189, "precision_at_25": 0.0113, "precision_at_5": 0.0075 }, "ResponseMetadata": { "RequestId": "d81e90b9-d502-465f-a234-eeec9fa22341", "HTTPStatusCode": 200, "HTTPHeaders": { "content-type": "application/x-amz-json-1.1", "date": "Sun, 08 Nov 2020 07:48:20 GMT", "x-amzn-requestid": "d81e90b9-d502-465f-a234-eeec9fa22341", "content-length": "406", "connection": "keep-alive" }, "RetryAttempts": 0 } } ###Markdown Just a quick comment on this one, here we see again a precision of near (2.7% for full, 2.2% for small), as this is based on User Personalization, that is to be expected. However the sample items are not the same for validaiton, thus the low scoring. Using evaluation metrics [Back to top](top)It is important to use evaluation metrics carefully. There are a number of factors to keep in mind.* If there is an existing recommendation system in place, this will have influenced the user's interaction history which you use to train your new solutions. This means the evaluation metrics are biased to favor the existing solution. If you work to push the evaluation metrics to match or exceed the existing solution, you may just be pushing the User Personalization to behave like the existing solution and might not end up with something better.* The HRNN Coldstart recipe is difficult to evaluate using the metrics produced by Amazon Personalize. The aim of the recipe is to recommend items which are new to your business. Therefore, these items will not appear in the existing user transaction data which is used to compute the evaluation metrics. As a result, HRNN Coldstart will never appear to perform better than the other recipes, when compared on the evaluation metrics alone. Note: The User Personalization recipe also includes improved cold start functionalityKeeping in mind these factors, the evaluation metrics produced by Personalize are generally useful for two cases:1. Comparing the performance of solution versions trained on the same recipe, but with different values for the hyperparameters and features (impression data etc)1. Comparing the performance of solution versions trained on different recipes (except HRNN Coldstart).Properly evaluating a recommendation system is always best done through A/B testing while measuring actual business outcomes. Since recommendations generated by a system usually influence the user behavior which it is based on, it is better to run small experiments and apply A/B testing for longer periods of time. Over time, the bias from the existing model will fade. Storing useful variables [Back to top](top)Before exiting this notebook, run the following cells to save the version ARNs for use in the next notebook. ###Code %store userpersonalization_solution_version_arn %store sims_solution_version_arn %store rerank_solution_version_arn %store user_personalization_solution_arn %store sims_solution_arn %store rerank_solution_arn ###Output Stored 'userpersonalization_solution_version_arn' (str) Stored 'sims_solution_version_arn' (str) Stored 'rerank_solution_version_arn' (str) Stored 'user_personalization_solution_arn' (str) Stored 'sims_solution_arn' (str) Stored 'rerank_solution_arn' (str) ###Markdown Release Resources ###Code %%javascript Jupyter.notebook.save_checkpoint(); Jupyter.notebook.session.delete(); ###Output _____no_output_____
Week 2/.ipynb_checkpoints/Logistic_Regression_with_a_Neural_Network_mindset_v6a-checkpoint.ipynb
###Markdown Logistic Regression with a Neural Network mindsetWelcome to your first (required) programming assignment! You will build a logistic regression classifier to recognize cats. This assignment will step you through how to do this with a Neural Network mindset, and so will also hone your intuitions about deep learning.**Instructions:**- Do not use loops (for/while) in your code, unless the instructions explicitly ask you to do so.**You will learn to:**- Build the general architecture of a learning algorithm, including: - Initializing parameters - Calculating the cost function and its gradient - Using an optimization algorithm (gradient descent) - Gather all three functions above into a main model function, in the right order. UpdatesThis notebook has been updated over the past few months. The prior version was named "v5", and the current versionis now named '6a' If you were working on a previous version:* You can find your prior work by looking in the file directory for the older files (named by version name).* To view the file directory, click on the "Coursera" icon in the top left corner of this notebook.* Please copy your work from the older versions to the new version, in order to submit your work for grading. List of Updates* Forward propagation formula, indexing now starts at 1 instead of 0.* Optimization function comment now says "print cost every 100 training iterations" instead of "examples".* Fixed grammar in the comments.* Y_prediction_test variable name is used consistently.* Plot's axis label now says "iterations (hundred)" instead of "iterations".* When testing the model, the test image is normalized by dividing by 255. 1 - Packages First, let's run the cell below to import all the packages that you will need during this assignment. - [numpy](www.numpy.org) is the fundamental package for scientific computing with Python.- [h5py](http://www.h5py.org) is a common package to interact with a dataset that is stored on an H5 file.- [matplotlib](http://matplotlib.org) is a famous library to plot graphs in Python.- [PIL](http://www.pythonware.com/products/pil/) and [scipy](https://www.scipy.org/) are used here to test your model with your own picture at the end. ###Code import numpy as np import matplotlib.pyplot as plt import h5py import scipy from PIL import Image from scipy import ndimage from lr_utils import load_dataset %matplotlib inline ###Output _____no_output_____ ###Markdown 2 - Overview of the Problem set **Problem Statement**: You are given a dataset ("data.h5") containing: - a training set of m_train images labeled as cat (y=1) or non-cat (y=0) - a test set of m_test images labeled as cat or non-cat - each image is of shape (num_px, num_px, 3) where 3 is for the 3 channels (RGB). Thus, each image is square (height = num_px) and (width = num_px).You will build a simple image-recognition algorithm that can correctly classify pictures as cat or non-cat.Let's get more familiar with the dataset. Load the data by running the following code. ###Code # Loading the data (cat/non-cat) train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset() ###Output _____no_output_____ ###Markdown We added "_orig" at the end of image datasets (train and test) because we are going to preprocess them. After preprocessing, we will end up with train_set_x and test_set_x (the labels train_set_y and test_set_y don't need any preprocessing).Each line of your train_set_x_orig and test_set_x_orig is an array representing an image. You can visualize an example by running the following code. Feel free also to change the `index` value and re-run to see other images. ###Code # Example of a picture index = 25 plt.imshow(train_set_x_orig[index]) print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") + "' picture.") ###Output y = [1], it's a 'cat' picture. ###Markdown Many software bugs in deep learning come from having matrix/vector dimensions that don't fit. If you can keep your matrix/vector dimensions straight you will go a long way toward eliminating many bugs. **Exercise:** Find the values for: - m_train (number of training examples) - m_test (number of test examples) - num_px (= height = width of a training image)Remember that `train_set_x_orig` is a numpy-array of shape (m_train, num_px, num_px, 3). For instance, you can access `m_train` by writing `train_set_x_orig.shape[0]`. ###Code ### START CODE HERE ### (≈ 3 lines of code) m_train = train_set_x_orig.shape[0] m_test = test_set_x_orig.shape[0] num_px = train_set_x_orig.shape[1] ### END CODE HERE ### print ("Number of training examples: m_train = " + str(m_train)) print ("Number of testing examples: m_test = " + str(m_test)) print ("Height/Width of each image: num_px = " + str(num_px)) print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)") print ("train_set_x shape: " + str(train_set_x_orig.shape)) print ("train_set_y shape: " + str(train_set_y.shape)) print ("test_set_x shape: " + str(test_set_x_orig.shape)) print ("test_set_y shape: " + str(test_set_y.shape)) ###Output Number of training examples: m_train = 209 Number of testing examples: m_test = 50 Height/Width of each image: num_px = 64 Each image is of size: (64, 64, 3) train_set_x shape: (209, 64, 64, 3) train_set_y shape: (1, 209) test_set_x shape: (50, 64, 64, 3) test_set_y shape: (1, 50) ###Markdown **Expected Output for m_train, m_test and num_px**: **m_train** 209 **m_test** 50 **num_px** 64 For convenience, you should now reshape images of shape (num_px, num_px, 3) in a numpy-array of shape (num_px $*$ num_px $*$ 3, 1). After this, our training (and test) dataset is a numpy-array where each column represents a flattened image. There should be m_train (respectively m_test) columns.**Exercise:** Reshape the training and test data sets so that images of size (num_px, num_px, 3) are flattened into single vectors of shape (num\_px $*$ num\_px $*$ 3, 1).A trick when you want to flatten a matrix X of shape (a,b,c,d) to a matrix X_flatten of shape (b$*$c$*$d, a) is to use: ```pythonX_flatten = X.reshape(X.shape[0], -1).T X.T is the transpose of X``` ###Code # Reshape the training and test examples ### START CODE HERE ### (≈ 2 lines of code) train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0],-1).T ### END CODE HERE ### print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape)) print ("train_set_y shape: " + str(train_set_y.shape)) print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape)) print ("test_set_y shape: " + str(test_set_y.shape)) print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0])) ###Output train_set_x_flatten shape: (12288, 209) train_set_y shape: (1, 209) test_set_x_flatten shape: (12288, 50) test_set_y shape: (1, 50) sanity check after reshaping: [17 31 56 22 33] ###Markdown **Expected Output**: **train_set_x_flatten shape** (12288, 209) **train_set_y shape** (1, 209) **test_set_x_flatten shape** (12288, 50) **test_set_y shape** (1, 50) **sanity check after reshaping** [17 31 56 22 33] To represent color images, the red, green and blue channels (RGB) must be specified for each pixel, and so the pixel value is actually a vector of three numbers ranging from 0 to 255.One common preprocessing step in machine learning is to center and standardize your dataset, meaning that you substract the mean of the whole numpy array from each example, and then divide each example by the standard deviation of the whole numpy array. But for picture datasets, it is simpler and more convenient and works almost as well to just divide every row of the dataset by 255 (the maximum value of a pixel channel). Let's standardize our dataset. ###Code train_set_x = train_set_x_flatten/255. test_set_x = test_set_x_flatten/255. ###Output _____no_output_____ ###Markdown **What you need to remember:**Common steps for pre-processing a new dataset are:- Figure out the dimensions and shapes of the problem (m_train, m_test, num_px, ...)- Reshape the datasets such that each example is now a vector of size (num_px \* num_px \* 3, 1)- "Standardize" the data 3 - General Architecture of the learning algorithm It's time to design a simple algorithm to distinguish cat images from non-cat images.You will build a Logistic Regression, using a Neural Network mindset. The following Figure explains why **Logistic Regression is actually a very simple Neural Network!****Mathematical expression of the algorithm**:For one example $x^{(i)}$:$$z^{(i)} = w^T x^{(i)} + b \tag{1}$$$$\hat{y}^{(i)} = a^{(i)} = sigmoid(z^{(i)})\tag{2}$$ $$ \mathcal{L}(a^{(i)}, y^{(i)}) = - y^{(i)} \log(a^{(i)}) - (1-y^{(i)} ) \log(1-a^{(i)})\tag{3}$$The cost is then computed by summing over all training examples:$$ J = \frac{1}{m} \sum_{i=1}^m \mathcal{L}(a^{(i)}, y^{(i)})\tag{6}$$**Key steps**:In this exercise, you will carry out the following steps: - Initialize the parameters of the model - Learn the parameters for the model by minimizing the cost - Use the learned parameters to make predictions (on the test set) - Analyse the results and conclude 4 - Building the parts of our algorithm The main steps for building a Neural Network are:1. Define the model structure (such as number of input features) 2. Initialize the model's parameters3. Loop: - Calculate current loss (forward propagation) - Calculate current gradient (backward propagation) - Update parameters (gradient descent)You often build 1-3 separately and integrate them into one function we call `model()`. 4.1 - Helper functions**Exercise**: Using your code from "Python Basics", implement `sigmoid()`. As you've seen in the figure above, you need to compute $sigmoid( w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}}$ to make predictions. Use np.exp(). ###Code # GRADED FUNCTION: sigmoid def sigmoid(z): """ Compute the sigmoid of z Arguments: z -- A scalar or numpy array of any size. Return: s -- sigmoid(z) """ ### START CODE HERE ### (≈ 1 line of code) s = 1/(1+np.exp(z*-1)) ### END CODE HERE ### return s print ("sigmoid([0, 2]) = " + str(sigmoid(np.array([0,2])))) ###Output sigmoid([0, 2]) = [ 0.5 0.88079708] ###Markdown **Expected Output**: **sigmoid([0, 2])** [ 0.5 0.88079708] 4.2 - Initializing parameters**Exercise:** Implement parameter initialization in the cell below. You have to initialize w as a vector of zeros. If you don't know what numpy function to use, look up np.zeros() in the Numpy library's documentation. ###Code # GRADED FUNCTION: initialize_with_zeros def initialize_with_zeros(dim): """ This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0. Argument: dim -- size of the w vector we want (or number of parameters in this case) Returns: w -- initialized vector of shape (dim, 1) b -- initialized scalar (corresponds to the bias) """ ### START CODE HERE ### (≈ 1 line of code) w = np.zeros((dim,1)) b = 0 ### END CODE HERE ### assert(w.shape == (dim, 1)) assert(isinstance(b, float) or isinstance(b, int)) return w, b dim = 2 w, b = initialize_with_zeros(dim) print ("w = " + str(w)) print ("b = " + str(b)) ###Output w = [[ 0.] [ 0.]] b = 0 ###Markdown **Expected Output**: ** w ** [[ 0.] [ 0.]] ** b ** 0 For image inputs, w will be of shape (num_px $\times$ num_px $\times$ 3, 1). 4.3 - Forward and Backward propagationNow that your parameters are initialized, you can do the "forward" and "backward" propagation steps for learning the parameters.**Exercise:** Implement a function `propagate()` that computes the cost function and its gradient.**Hints**:Forward Propagation:- You get X- You compute $A = \sigma(w^T X + b) = (a^{(1)}, a^{(2)}, ..., a^{(m-1)}, a^{(m)})$- You calculate the cost function: $J = -\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log(a^{(i)})+(1-y^{(i)})\log(1-a^{(i)})$Here are the two formulas you will be using: $$ \frac{\partial J}{\partial w} = \frac{1}{m}X(A-Y)^T\tag{7}$$$$ \frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^m (a^{(i)}-y^{(i)})\tag{8}$$ ###Code # GRADED FUNCTION: propagate def propagate(w, b, X, Y): """ Implement the cost function and its gradient for the propagation explained above Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples) Return: cost -- negative log-likelihood cost for logistic regression dw -- gradient of the loss with respect to w, thus same shape as w db -- gradient of the loss with respect to b, thus same shape as b Tips: - Write your code step by step for the propagation. np.log(), np.dot() """ m = X.shape[1] # FORWARD PROPAGATION (FROM X TO COST) ### START CODE HERE ### (≈ 2 lines of code) A = sigmoid(np.dot(w.T,X) + b) # compute activation cost = -1/m*(np.sum(np.multiply(Y,np.log(A))+np.multiply(1-Y,np.log(1-A))))# compute cost ### END CODE HERE ### # BACKWARD PROPAGATION (TO FIND GRAD) ### START CODE HERE ### (≈ 2 lines of code) dw = (1/m)*(np.dot(X,(A-Y).T)) db = (1/m)*(np.sum(A-Y)) ### END CODE HERE ### assert(dw.shape == w.shape) assert(db.dtype == float) cost = np.squeeze(cost) assert(cost.shape == ()) grads = {"dw": dw, "db": db} return grads, cost w, b, X, Y = np.array([[1.],[2.]]), 2., np.array([[1.,2.,-1.],[3.,4.,-3.2]]), np.array([[1,0,1]]) grads, cost = propagate(w, b, X, Y) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) print ("cost = " + str(cost)) ###Output dw = [[ 0.99845601] [ 2.39507239]] db = 0.00145557813678 cost = 5.80154531939 ###Markdown **Expected Output**: ** dw ** [[ 0.99845601] [ 2.39507239]] ** db ** 0.00145557813678 ** cost ** 5.801545319394553 4.4 - Optimization- You have initialized your parameters.- You are also able to compute a cost function and its gradient.- Now, you want to update the parameters using gradient descent.**Exercise:** Write down the optimization function. The goal is to learn $w$ and $b$ by minimizing the cost function $J$. For a parameter $\theta$, the update rule is $ \theta = \theta - \alpha \text{ } d\theta$, where $\alpha$ is the learning rate. ###Code # GRADED FUNCTION: optimize def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False): """ This function optimizes w and b by running a gradient descent algorithm Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of shape (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples) num_iterations -- number of iterations of the optimization loop learning_rate -- learning rate of the gradient descent update rule print_cost -- True to print the loss every 100 steps Returns: params -- dictionary containing the weights w and bias b grads -- dictionary containing the gradients of the weights and bias with respect to the cost function costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve. Tips: You basically need to write down two steps and iterate through them: 1) Calculate the cost and the gradient for the current parameters. Use propagate(). 2) Update the parameters using gradient descent rule for w and b. """ costs = [] for i in range(num_iterations): # Cost and gradient calculation (≈ 1-4 lines of code) ### START CODE HERE ### grads,cost = propagate(w, b, X, Y) ### END CODE HERE ### # Retrieve derivatives from grads dw = grads["dw"] db = grads["db"] # update rule (≈ 2 lines of code) ### START CODE HERE ### w = w - learning_rate*dw b = b - learning_rate*db ### END CODE HERE ### # Record the costs if i % 100 == 0: costs.append(cost) # Print the cost every 100 training iterations if print_cost and i % 100 == 0: print ("Cost after iteration %i: %f" %(i, cost)) params = {"w": w, "b": b} grads = {"dw": dw, "db": db} return params, grads, costs params, grads, costs = optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False) print ("w = " + str(params["w"])) print ("b = " + str(params["b"])) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) ###Output w = [[ 0.19033591] [ 0.12259159]] b = 1.92535983008 dw = [[ 0.67752042] [ 1.41625495]] db = 0.219194504541 ###Markdown **Expected Output**: **w** [[ 0.19033591] [ 0.12259159]] **b** 1.92535983008 **dw** [[ 0.67752042] [ 1.41625495]] **db** 0.219194504541 **Exercise:** The previous function will output the learned w and b. We are able to use w and b to predict the labels for a dataset X. Implement the `predict()` function. There are two steps to computing predictions:1. Calculate $\hat{Y} = A = \sigma(w^T X + b)$2. Convert the entries of a into 0 (if activation 0.5), stores the predictions in a vector `Y_prediction`. If you wish, you can use an `if`/`else` statement in a `for` loop (though there is also a way to vectorize this). ###Code # GRADED FUNCTION: predict def predict(w, b, X): ''' Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b) Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Returns: Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X ''' m = X.shape[1] Y_prediction = np.zeros((1,m)) w = w.reshape(X.shape[0], 1) # Compute vector "A" predicting the probabilities of a cat being present in the picture ### START CODE HERE ### (≈ 1 line of code) A = sigmoid(np.dot(w.T,X)+b) ### END CODE HERE ### for i in range(A.shape[1]): # Convert probabilities A[0,i] to actual predictions p[0,i] ### START CODE HERE ### (≈ 4 lines of code) if A[0,i] <= 0.5: Y_prediction[0,i] = 0 else: Y_prediction[0,i] = 1 ### END CODE HERE ### assert(Y_prediction.shape == (1, m)) return Y_prediction w = np.array([[0.1124579],[0.23106775]]) b = -0.3 X = np.array([[1.,-1.1,-3.2],[1.2,2.,0.1]]) print ("predictions = " + str(predict(w, b, X))) ###Output predictions = [[ 1. 1. 0.]] ###Markdown **Expected Output**: **predictions** [[ 1. 1. 0.]] **What to remember:**You've implemented several functions that:- Initialize (w,b)- Optimize the loss iteratively to learn parameters (w,b): - computing the cost and its gradient - updating the parameters using gradient descent- Use the learned (w,b) to predict the labels for a given set of examples 5 - Merge all functions into a model You will now see how the overall model is structured by putting together all the building blocks (functions implemented in the previous parts) together, in the right order.**Exercise:** Implement the model function. Use the following notation: - Y_prediction_test for your predictions on the test set - Y_prediction_train for your predictions on the train set - w, costs, grads for the outputs of optimize() ###Code # GRADED FUNCTION: model def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False): """ Builds the logistic regression model by calling the function you've implemented previously Arguments: X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train) Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train) X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test) Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test) num_iterations -- hyperparameter representing the number of iterations to optimize the parameters learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize() print_cost -- Set to true to print the cost every 100 iterations Returns: d -- dictionary containing information about the model. """ ### START CODE HERE ### # initialize parameters with zeros (≈ 1 line of code) w, b = initialize_with_zeros(X_train.shape[0]) # Gradient descent (≈ 1 line of code) parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost = False) # Retrieve parameters w and b from dictionary "parameters" w = parameters["w"] b = parameters["b"] # Predict test/train set examples (≈ 2 lines of code) Y_prediction_train = predict(w,b,X_train) Y_prediction_test = predict(w,b,X_test) ### END CODE HERE ### # Print train/test Errors print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100)) print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100)) d = {"costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediction_train" : Y_prediction_train, "w" : w, "b" : b, "learning_rate" : learning_rate, "num_iterations": num_iterations} return d ###Output _____no_output_____ ###Markdown Run the following cell to train your model. ###Code d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True) ###Output train accuracy: 99.04306220095694 % test accuracy: 70.0 % ###Markdown **Expected Output**: **Cost after iteration 0 ** 0.693147 $\vdots$ $\vdots$ **Train Accuracy** 99.04306220095694 % **Test Accuracy** 70.0 % **Comment**: Training accuracy is close to 100%. This is a good sanity check: your model is working and has high enough capacity to fit the training data. Test accuracy is 68%. It is actually not bad for this simple model, given the small dataset we used and that logistic regression is a linear classifier. But no worries, you'll build an even better classifier next week!Also, you see that the model is clearly overfitting the training data. Later in this specialization you will learn how to reduce overfitting, for example by using regularization. Using the code below (and changing the `index` variable) you can look at predictions on pictures of the test set. ###Code # Example of a picture that was wrongly classified. index = 1 plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3))) print ("y = " + str(test_set_y[0,index]) + ", you predicted that it is a \"" + classes[d["Y_prediction_test"][0,index]].decode("utf-8") + "\" picture.") ###Output y = 1, you predicted that it is a "cat" picture. ###Markdown Let's also plot the cost function and the gradients. ###Code # Plot learning curve (with costs) costs = np.squeeze(d['costs']) plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(d["learning_rate"])) plt.show() ###Output _____no_output_____ ###Markdown **Interpretation**:You can see the cost decreasing. It shows that the parameters are being learned. However, you see that you could train the model even more on the training set. Try to increase the number of iterations in the cell above and rerun the cells. You might see that the training set accuracy goes up, but the test set accuracy goes down. This is called overfitting. 6 - Further analysis (optional/ungraded exercise) Congratulations on building your first image classification model. Let's analyze it further, and examine possible choices for the learning rate $\alpha$. Choice of learning rate **Reminder**:In order for Gradient Descent to work you must choose the learning rate wisely. The learning rate $\alpha$ determines how rapidly we update the parameters. If the learning rate is too large we may "overshoot" the optimal value. Similarly, if it is too small we will need too many iterations to converge to the best values. That's why it is crucial to use a well-tuned learning rate.Let's compare the learning curve of our model with several choices of learning rates. Run the cell below. This should take about 1 minute. Feel free also to try different values than the three we have initialized the `learning_rates` variable to contain, and see what happens. ###Code learning_rates = [0.01, 0.001, 0.0001] models = {} for i in learning_rates: print ("learning rate is: " + str(i)) models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False) print ('\n' + "-------------------------------------------------------" + '\n') for i in learning_rates: plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"])) plt.ylabel('cost') plt.xlabel('iterations (hundreds)') legend = plt.legend(loc='upper center', shadow=True) frame = legend.get_frame() frame.set_facecolor('0.90') plt.show() ###Output learning rate is: 0.01 train accuracy: 99.52153110047847 % test accuracy: 68.0 % ------------------------------------------------------- learning rate is: 0.001 train accuracy: 88.99521531100478 % test accuracy: 64.0 % ------------------------------------------------------- learning rate is: 0.0001 train accuracy: 68.42105263157895 % test accuracy: 36.0 % ------------------------------------------------------- ###Markdown **Interpretation**: - Different learning rates give different costs and thus different predictions results.- If the learning rate is too large (0.01), the cost may oscillate up and down. It may even diverge (though in this example, using 0.01 still eventually ends up at a good value for the cost). - A lower cost doesn't mean a better model. You have to check if there is possibly overfitting. It happens when the training accuracy is a lot higher than the test accuracy.- In deep learning, we usually recommend that you: - Choose the learning rate that better minimizes the cost function. - If your model overfits, use other techniques to reduce overfitting. (We'll talk about this in later videos.) 7 - Test with your own image (optional/ungraded exercise) Congratulations on finishing this assignment. You can use your own image and see the output of your model. To do that: 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub. 2. Add your image to this Jupyter Notebook's directory, in the "images" folder 3. Change your image's name in the following code 4. Run the code and check if the algorithm is right (1 = cat, 0 = non-cat)! ###Code ## START CODE HERE ## (PUT YOUR IMAGE NAME) my_image = "my_image.jpg" # change this to the name of your image file ## END CODE HERE ## # We preprocess the image to fit your algorithm. fname = "images/" + my_image image = np.array(ndimage.imread(fname, flatten=False)) image = image/255. my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T my_predicted_image = predict(d["w"], d["b"], my_image) plt.imshow(image) print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.") ###Output _____no_output_____
floodzone_pfirm_analysis.ipynb
###Markdown New York City's Flood Zone Exploratory Data AnalysisAuthor: Mark Bauer 1. IntroductionI've wanted to do this project for some time now, and I'm finally happy to share this open source project. This notebook demonstrates how to analyze FEMA's Preliminary Flood Insurance Rate Map (i.e. PFIRM), sometimes known as '*flood zone*.' The flood zone is for New York City (all five boroughs). Let's see what cool things we can discover about this dataset! Resources Before Getting Started NYC's Preliminary Flood Insurance Rate Map (PFIRM) data can be downloaded here: http://www.region2coastal.com/view-flood-maps-data/view-preliminary-flood-map-data/![website](imgs/fema_pfirm_website.png)*Figure 1. Screenshot of website of the pfirm data* ![image](imgs/data_for_nyc.png)*Figure 2. Screenshot of data section for New York City* About the data: >The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the State Plane projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000. General identification information about this dataset>Originator: Federal Emergency Management Agency Publication_Date: 20150130 Title: DIGITAL FLOOD INSURANCE RATE MAP DATABASE, CITY OF NEW YORK, NEW YORK Geospatial_Data_Presentation_Form: FEMA-DFIRM-Preliminary Publication_Information:>Publication_Place: Washington, DC Publisher: Federal Emergency Management Agency Online_Linkage: https://msc.fema.gov To read the full Preliminary Flood Insurance Study mentioned above: https://msc.fema.gov/portal/downloadProduct?productID=360497V000B Unfortunately, there is no data dictionary provided in the download. To learn more about each column, the [metadata](https://github.com/mebauer/nyc-floodzone-analysis/blob/master/pfirm_nyc/360497_PRELIM_metadata.txt) points to **Guidelines and Specifications for Flood Hazard Mapping Partners: Appendix L: Guidance for Preparing Draft Digital Data and DFIRM Database.** You can find this resource at the Homeland Security Digital Library located here: https://www.hsdl.org/?abstract&did=13285. I've also uploaded this resource for you with the title [data_dictionary.pdf](https://github.com/mebauer/nyc-floodzone-analysis/blob/master/data_dictionary.pdf).![data_dictionary_screenshot.png](imgs/data_dictionary_screenshot.png) *Figure 3. Screenshot of data dictionary webpage* Libraries ###Code import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import geopandas as gpd import urllib.request from zipfile import ZipFile plt.rcParams['savefig.facecolor'] = 'white' %matplotlib inline print('printing packages and versions:\n') %reload_ext watermark %watermark -v -p numpy,pandas,seaborn,matplotlib.pyplot,geopandas ###Output printing packages and versions: CPython 3.7.1 IPython 7.20.0 numpy 1.19.2 pandas 1.2.1 seaborn 0.11.1 matplotlib.pyplot 3.3.2 geopandas 0.8.1 ###Markdown ![copy_data_address](imgs/copy_data_address.png)*Figure 4. Screenshot of data path* ***Uncomment the code below to download the files from the web.*** ###Code # # url path from the web # url = 'https://msc.fema.gov/portal/downloadProduct?productID=360497_PRELIMDB' # print('data url path:', url) # # assigning file name as 'pfirm_nyc.zip' # urllib.request.urlretrieve(url, 'pfirm_nyc.zip') # listing files in our directory print('listing the new downloaded file in our directory:') %ls ###Output listing the new downloaded file in our directory: CODE_OF_CONDUCT.md floodzone_pfirm_analysis.ipynb CONTRIBUTING.md imgs/ LICENSE pfirm_nyc/ README.md pfirm_nyc.zip data_dictionary.pdf ###Markdown ***Uncomment the code below to unzip and extract the files from the zip file.*** ###Code # path = 'pfirm_nyc.zip' # print('name of zip file:', path) # # opening zip using 'with' keyword in read mode # with zipfile.ZipFile(path, 'r') as file: # # extracing all items in our zipfile # # naming our file 'pfirm_nyc' # file.extractall('pfirm_nyc') print('listing items after unzipping the file:\n') %ls pfirm_nyc/ ###Output listing items after unzipping the file: 360497_PRELIM_metadata.txt s_fld_haz_ar.shx 360497_PRELIM_metadata.xml s_fld_haz_ln.dbf L_PAN_REVIS.dbf s_fld_haz_ln.shp L_POL_FHBM.dbf s_fld_haz_ln.shx S_BASE_INDEX.prj s_gen_struct.dbf S_BFE.prj s_gen_struct.shp S_CBRS.prj s_gen_struct.shx S_CST_TSCT_LN.dbf s_label_ld.dbf S_CST_TSCT_LN.prj s_label_ld.prj S_CST_TSCT_LN.shp s_label_ld.sbn S_CST_TSCT_LN.shx s_label_ld.sbx S_FIRM_PAN.prj s_label_ld.shp S_FLD_HAZ_AR.prj s_label_ld.shx S_FLD_HAZ_LN.prj s_label_pt.dbf S_GEN_STRUCT.prj s_label_pt.prj S_LiMWA.dbf s_label_pt.sbn S_LiMWA.prj s_label_pt.sbx S_LiMWA.shp s_label_pt.shp S_LiMWA.shx s_label_pt.shx S_PERM_BMK.prj s_perm_bmk.dbf S_POL_AR.prj s_perm_bmk.shp S_POL_LN.prj s_perm_bmk.shx S_QUAD_INDEX.prj s_pol_ar.dbf S_WTR_AR.prj s_pol_ar.shp S_WTR_LN.prj s_pol_ar.shx S_XS.prj s_pol_ln.dbf l_comm_info.dbf s_pol_ln.shp l_stn_start.dbf s_pol_ln.shx s_base_index.dbf s_quad_index.dbf s_base_index.shp s_quad_index.shp s_base_index.shx s_quad_index.shx s_bfe.dbf s_wtr_ar.dbf s_bfe.shp s_wtr_ar.shp s_bfe.shx s_wtr_ar.shx s_cbrs.dbf s_wtr_ln.dbf s_cbrs.shp s_wtr_ln.shp s_cbrs.shx s_wtr_ln.shx s_firm_pan.dbf s_xs.dbf s_firm_pan.shp s_xs.shp s_firm_pan.shx s_xs.shx s_fld_haz_ar.dbf study_info.dbf s_fld_haz_ar.shp ###Markdown 2. The filesFor this analysis, we are interested in the special flood hazard area shapefile - `s_fld_haz_ar.shp`. This contains information about the flood zone. A shapefile is geospatial vector data for geographic information system software and stores geometric location and associated attribute information. Data description from metadata:>Entity_Type_Label: s_fld_haz_ar Entity_Type_Definition: Location and attributes for flood insurance risk zones on the DFIRM.For more information about our columns and their descriptions, please find the [metadata files](https://github.com/mebauer/nyc-floodzone-analysis/blob/master/pfirm_nyc/360497_PRELIM_metadata.txt) located in the pfirm_nyc folder. 2.1 Inspecting the data ###Code # reading in shape file path = 'pfirm_nyc/s_fld_haz_ar.shp' pfirm_df = gpd.read_file(path) # previewing first five rorws of data pfirm_df.head() # previewing last five rorws of data pfirm_df.tail() print('dataframe shape:\n') rows = pfirm_df.shape[0] columns = pfirm_df.shape[1] print('number of rows: {:,}.\nnumber of columns: {}.'.format(rows, columns)) ###Output dataframe shape: number of rows: 3,985. number of columns: 15. ###Markdown In this dataset, each row is a flood zone geometry. The type of flood zone can be inspected under the `FLD_ZONE` column. Additionally, there are 15 columns that contain information about each flood zone row. ###Code print('type of python object:\n\n{}'.format(type(pfirm_df))) ###Output type of python object: <class 'geopandas.geodataframe.GeoDataFrame'> ###Markdown We read the shapefile into Python as a GeoDataFrame. This type is similar to a pandas dataframe, but incudes additional spatial information - mainly, our `geometry` column. The geometry column contains polygons that represent the physical space of each flood zone. ###Code print('quickly inspecting our map.') pfirm_df.plot() # summary of the data pfirm_df.info() ###Output <class 'geopandas.geodataframe.GeoDataFrame'> RangeIndex: 3985 entries, 0 to 3984 Data columns (total 15 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 FLD_AR_ID 3985 non-null object 1 FLD_ZONE 3985 non-null object 2 FLOODWAY 47 non-null object 3 SFHA_TF 3985 non-null object 4 STATIC_BFE 3985 non-null float64 5 V_DATUM 1153 non-null object 6 DEPTH 3985 non-null float64 7 LEN_UNIT 1165 non-null object 8 VELOCITY 3985 non-null float64 9 VEL_UNIT 0 non-null object 10 AR_REVERT 0 non-null object 11 BFE_REVERT 3985 non-null float64 12 DEP_REVERT 3985 non-null float64 13 SOURCE_CIT 3985 non-null object 14 geometry 3985 non-null geometry dtypes: float64(5), geometry(1), object(9) memory usage: 467.1+ KB ###Markdown We notice that there are two columns that are completely null - `VEL_UNIT` and `AR_REVERT`. We may be able to safely drop them in the future. ###Code print('count of data types:') pfirm_df.dtypes.value_counts() print('summary statistics for numeric columns:') pfirm_df.describe() ###Output summary statistics for numeric columns: ###Markdown There seems to be weird values of -9999 in the numeric columns. Possibly placeholders for null values. We will inspect these values later. ###Code print('summary statistics for string/object columns:') pfirm_df.describe(include='object') print('summary statistics for all column types:') pfirm_df.drop(columns='geometry').describe(include='all').T s1 = pfirm_df.isnull().sum().sort_values(ascending=False) s2 = round(pfirm_df.isnull().sum().sort_values(ascending=False) / len(pfirm_df), 3) print('null statistics of each column:') pd.concat([s1.rename('count_null'), s2.rename('normalized')], axis=1) print('total number of nulls in data: {:,}.'.format(pfirm_df.isnull().sum().sum())) ###Output total number of nulls in data: 17,560. ###Markdown Now that we have a better understanding of our data, let's come back to those 100% null value columns and see if we can safely drop them 2.2 Dropping unnecessary columns Definitions from our data dictionary:VEL_UNIT>Velocity Unit Lookup Identification. A code that provides a link to a valid unit of velocity from the D_Vel_Units table. This unit indicates the measurement system for the velocity of the flood hazard area. The value is shown in the legend where alluvial fans are present. This field is only populated if the VELOCITY field is populated.AR_REVERT>If the area is Zone AR, this field would hold the zone that the area would revert to if the AR zone were removed. This field is only populated if the corresponding area is Zone AR. Acceptable values for this field are listed in the D_Zone table. ###Code # previewing columns that are 100% null pfirm_df[['VEL_UNIT', 'AR_REVERT']].head() # inspecting items within these columns for col in ['VEL_UNIT', 'AR_REVERT']: print(pfirm_df[col].value_counts()) ###Output Series([], Name: VEL_UNIT, dtype: int64) Series([], Name: AR_REVERT, dtype: int64) ###Markdown There are no values besides `None` in these columns, and we can safely drop these. ###Code print('number of columns: {}'.format(pfirm_df.shape[1])) # dropping 100% null columns pfirm_df = pfirm_df.drop(columns=['VEL_UNIT', 'AR_REVERT']) print('new number of columns: {}\n'.format(pfirm_df.shape[1])) pfirm_df.head() # let's preview our null counts after droppping those columns s1 = pfirm_df.isnull().sum().sort_values(ascending=False) s2 = round(pfirm_df.isnull().sum().sort_values(ascending=False) / len(pfirm_df), 2) print('null statistics:') pd.concat([s1.rename('count_null'), s2.rename('normalized')], axis=1) print('reviewing items in FLOODWAY column that is almost 100% null') pfirm_df['FLOODWAY'].value_counts(dropna=False) ###Output reviewing items in FLOODWAY column that is almost 100% null ###Markdown Although `FLOODWAY` is 99% null, it still has non-null values. Let's keep the column. ###Code # plotting histograms of numeric columns pfirm_df.hist(figsize=(12,12)) plt.tight_layout() ###Output _____no_output_____ ###Markdown There seems to be some outliers in these columns. Let's inspect them. ###Code print("previewing items within each column. hopefully we'll \ find columns that are\n\ not 100% null but are still not useful for this analysis.\n") for col in pfirm_df.columns: # geometry type does not have a .value_counts() method if col == 'geometry': continue print(col, 'value counts:') print(pfirm_df[col].value_counts(dropna=False, normalize=True).head()) print() ###Output previewing items within each column. hopefully we'll find columns that are not 100% null but are still not useful for this analysis. FLD_AR_ID value counts: 1200 0.000251 2221 0.000251 1976 0.000251 3194 0.000251 1957 0.000251 Name: FLD_AR_ID, dtype: float64 FLD_ZONE value counts: 0.2 PCT ANNUAL CHANCE FLOOD HAZARD 0.433124 AE 0.318444 X 0.132748 VE 0.105395 A 0.005270 Name: FLD_ZONE, dtype: float64 FLOODWAY value counts: NaN 0.988206 FLOODWAY 0.011794 Name: FLOODWAY, dtype: float64 SFHA_TF value counts: F 0.56788 T 0.43212 Name: SFHA_TF, dtype: float64 STATIC_BFE value counts: -9999.0 0.710665 13.0 0.055458 14.0 0.038896 11.0 0.036888 12.0 0.036136 Name: STATIC_BFE, dtype: float64 V_DATUM value counts: NaN 0.710665 NAVD88 0.289335 Name: V_DATUM, dtype: float64 DEPTH value counts: -9999.0 0.996989 3.0 0.001757 1.0 0.000753 2.0 0.000502 Name: DEPTH, dtype: float64 LEN_UNIT value counts: NaN 0.707654 FEET 0.292346 Name: LEN_UNIT, dtype: float64 VELOCITY value counts: -9999.0 1.0 Name: VELOCITY, dtype: float64 BFE_REVERT value counts: -9999.0 1.0 Name: BFE_REVERT, dtype: float64 DEP_REVERT value counts: -9999.0 1.0 Name: DEP_REVERT, dtype: float64 SOURCE_CIT value counts: STUDY4 0.737014 STUDY3 0.257716 STUDY5 0.005270 Name: SOURCE_CIT, dtype: float64 ###Markdown Reviewing possible columns to drop. After reviewing items within each column, there are a few columns that have only one value as well as values that look off (e.g. -9999.0.). Let's continue to inspect these columns. ###Code pfirm_df.iloc[:, -5:-1].head() # summary statistics of possible columns to drop pfirm_df.iloc[:, -5:-1].describe() ###Output _____no_output_____ ###Markdown these columns don't appear to be useful in this analysis, so I'll drop them. ###Code print('number of initial columns: {}'.format(pfirm_df.shape[1])) col_drop = pfirm_df.iloc[:, -5:-1].columns print('columns to drop:', col_drop.to_list()) pfirm_df = pfirm_df.drop(columns=col_drop) print('number of new columns: {}'.format(pfirm_df.shape[1])) pfirm_df.head() ###Output number of initial columns: 13 columns to drop: ['VELOCITY', 'BFE_REVERT', 'DEP_REVERT', 'SOURCE_CIT'] number of new columns: 9 ###Markdown Let's continue inspecting our data ###Code # inspecting our data pfirm_df.info() s1 = pfirm_df.isnull().sum().sort_values(ascending=False) s2 = round(pfirm_df.isnull().sum().sort_values(ascending=False) / len(pfirm_df), 2) print('null statistics:') pd.concat([s1.rename('count_null'), s2.rename('normalized')], axis=1) ###Output null statistics: ###Markdown We've inspecting most of our columns, and even dropped some that didn't have any values stored in them. We did see wierd values such as -9999, but for now, let's turn our attention to our geometry column. 2.3 Inspecting our geometry column Lastly, let's inspect our geometry column, which is a type provided by the shapefile (.shp) format. ###Code print('reviewing geometry column:') pfirm_df[['geometry']].head() pfirm_df[['geometry']].info() print("reviewing the geometry's coordinate referance system (CRS).") pfirm_df.crs ###Output reviewing the geometry's coordinate referance system (CRS). ###Markdown From the `.crs` attribute above, our geometry's CRS is *NAD83 / New York Long Island (ftUS)* - code 2263.Our units are in feet. ###Code # looking at the values in the V_DATUM column pfirm_df['V_DATUM'].value_counts() ###Output _____no_output_____ ###Markdown We could potentially drop this column and just record the vertical datum on the page, but this does provide useful information. Let's keep it. ###Code v_datum = pfirm_df['V_DATUM'].value_counts().index[0] print('the vertical datum for this geometry is: {}.'.format(v_datum)) ###Output the vertical datum for this geometry is: NAVD88. ###Markdown There's a lot of useful information stored in our geometry column, but for now, let's continue and inspect our flood zone values. 3. Inspecting flood zones and static base flood elevation values Definitions from our [data dictionary](https://github.com/mebauer/nyc-floodzone-analysis/blob/master/data_dictionary.pdf):FLD_ZONE>Flood Zone Lookup Identification. This is a code that provides a link to a valid entry from the D_Zone table. This is the flood zone label/abbreviation for the area.STATIC_BFE>Static Base Flood Elevation. For areas of constant Base Flood Elevation (BFE), the BFE value is shown beneath the zone label rather than on a BFE line. In this situation the same BFE applies to the entire polygon. This is normally occurs in lakes or coastal zones. This field is only populated where a static BFE is shown on the FIRM.DEPTH>Depth Value for Zone AO Areas. This is shown beneath the zone label on the FIRM. This field is only populated if a depth is shown on the FIRM.SFHA_TF>Special Flood Hazard Area. If the area is within SFHA this field would be True. This field will be true for any area that is coded for any A or V zone flood areas. It should be false for any X or D zone flood areas. Enter “T” for true or “F” for false. Brief definition of FEMA's flood zones:>Flood hazard areas identified on the Flood Insurance Rate Map are identified as a Special Flood Hazard Area (SFHA). SFHA are defined as the area that will be inundated by the flood event having a 1-percent chance of being equaled or exceeded in any given year. The 1-percent annual chance flood is also referred to as the base flood or 100-year flood. SFHAs are labeled as Zone A, Zone AO, Zone AH, Zones A1-A30, Zone AE, Zone A99, Zone AR, Zone AR/AE, Zone AR/AO, Zone AR/A1-A30, Zone AR/A, Zone V, Zone VE, and Zones V1-V30. Moderate flood hazard areas, labeled Zone B or Zone X (shaded) are also shown on the FIRM, and are the areas between the limits of the base flood and the 0.2-percent-annual-chance (or 500-year) flood. The areas of minimal flood hazard, which are the areas outside the SFHA and higher than the elevation of the 0.2-percent-annual-chance flood, are labeled Zone C or Zone X (unshaded). Source: https://www.fema.gov/glossary/flood-zones ###Code print('reviewing items in the FLD_ZONE column:') pfirm_df['FLD_ZONE'].value_counts() zone_vals = pfirm_df['FLD_ZONE'].unique() print('the unique values in our flood zone column are:\n\n{}'.format(zone_vals)) ###Output the unique values in our flood zone column are: ['AE' 'X' '0.2 PCT ANNUAL CHANCE FLOOD HAZARD' 'VE' 'OPEN WATER' 'AO' 'A'] ###Markdown From a quick glance, we can probably drop the `OPEN WATER` value, as this is probably only the outline of a water boundary. Additionally, zone 'X' doesn't tell us any information about flood zones. ###Code zone_checks = ['OPEN WATER', 'X'] fig, axs = plt.subplots(2, 1, figsize=(10,10)) for zone, ax in zip(zone_checks, axs): pfirm_df[pfirm_df['FLD_ZONE'].isin([zone])].plot(ax=ax) ax.set_title('FLD_ZONE = {}.'.format(zone)) ###Output _____no_output_____ ###Markdown Let's look at some summary statistics. ###Code print('reviewing summary statistics for base flood elevations by flood zone:') pfirm_df.groupby(by=['FLD_ZONE'])['STATIC_BFE'].describe() # zones with base flood elevations bfe_df = pfirm_df.groupby(by=['FLD_ZONE'])['STATIC_BFE'].describe() bfe_df[bfe_df['max'] > 0] zones = bfe_df[bfe_df['max'] > 0].index.to_list() print('zones {} are the only zones that have static base flood elevations.'.format(zones)) ###Output zones ['AE', 'VE'] are the only zones that have static base flood elevations. ###Markdown The null placeholder of -9999 will be problematic in the future. We will want to replace these with nulls. ###Code print('reviewing summary statistics for depth elevations by flood zone:') pfirm_df.groupby(by=['FLD_ZONE'])['DEPTH'].describe() # zones with base flood elevations depths_df = pfirm_df.groupby(by=['FLD_ZONE'])['DEPTH'].describe() depths_df[depths_df['max'] > 0] depths = depths_df[depths_df['max'] > 0].index.to_list() print('zone {} is the only zone that has a depth elevation.'.format(depths)) sfha_df = pfirm_df.groupby(by=['SFHA_TF', 'FLD_ZONE'])['STATIC_BFE'].describe() sfha_df.sort_values(by='SFHA_TF', ascending=False) ###Output _____no_output_____ ###Markdown Although zones A & AO don't have base flood elevations, they are inside the special flood hazard area (SFHA). Thus, we can not drop them. `T` stands for **True** and `F` stands for **False**. 3.1 Replacing -9999 values with null It seems to be that this dataset represents null values for certain numeric columns as -9999 (refer to screenshot below). Let's see what the values are if we exclude these values. ![null_information](imgs/null_information.png)*Figure 5. Screenshot of null description found in data dictionary* ###Code pfirm_df.loc[pfirm_df['STATIC_BFE'] > -9999][['STATIC_BFE']].describe() ###Output _____no_output_____ ###Markdown Those values look much better and are probably the real statistics of our static base flood elevation column. For this analysis, we can safely replace the -9999.0 values with nulls. Let's first track our replacement process. ###Code null_length = len(pfirm_df.loc[pfirm_df['STATIC_BFE'] <= -9999]) print('there are {:,} values with null placeholders of -9999 for STATIC_BFE that \ need to be replaced with nulls.'.format(null_length)) s1 = pfirm_df.isnull().sum().sort_values(ascending=False) s2 = round(pfirm_df.isnull().sum().sort_values(ascending=False) / len(pfirm_df), 3) print('null statistics:') print('total nulls in dataframe: {:,}.'.format(s1.sum())) before_replace_df = pd.concat([s1.rename('count_null'), s2.rename('normalized')], axis=1) before_replace_df.head(len(before_replace_df)) print('replacing incorrectly inserted values (e.g. -9999) with nans.') for col in ['STATIC_BFE', 'DEPTH']: # if our column value is less than -1, replace with nan, else keep column value pfirm_df[col] = np.where(pfirm_df[col] < -1, np.nan, pfirm_df[col]) pfirm_df.describe() s1 = pfirm_df.isnull().sum().sort_values(ascending=False) s2 = round(pfirm_df.isnull().sum().sort_values(ascending=False) / len(pfirm_df), 3) print('null statistics:') print('total nulls in dataframe: {:,}.'.format(s1.sum())) after_replace_df = pd.concat([s1.rename('count_null'), s2.rename('normalized')], axis=1) after_replace_df.head(len(after_replace_df)) pd.concat([before_replace_df, after_replace_df.rename(columns={'count_null':'count_after', 'normalized':'normalized_after'})], axis=1) ###Output _____no_output_____ ###Markdown You can see that both columns static_bfe and depth have a significant amount of null values after replacing -9999 with null. 3.2 Reviewing summary statistics by flood zone after filling in nulls ###Code print('reviewing summary statistics for static base flood elevations by flood zone:') pfirm_df.groupby(by=['FLD_ZONE'])['STATIC_BFE'].describe() sfha_df = pfirm_df.groupby(by=['SFHA_TF', 'FLD_ZONE'])['STATIC_BFE'].describe() sfha_df.sort_values(by='SFHA_TF', ascending=False) ###Output _____no_output_____ ###Markdown Performing summary statistics of static base flood elevations grouped by Special Flood Hazard Area (True/False) and Flood Zone. Zones AE and VE are the only ones with elevation values, and the remaining zones have null values. ###Code print('distribution of numeric columns. this is perhaps the true distribution of these columns:') hist = pfirm_df.hist(figsize=(12,6), bins=25) for ax in hist.flatten(): ax.set_xlabel("ft.", fontsize=12) ax.set_ylabel("Count", fontsize=12) plt.tight_layout() print('inspecting the distribution of numeric columns with box plots:') fig, axs = plt.subplots(2, 1, figsize=(10,12)) for ax, col in zip(axs.flat, ['STATIC_BFE', 'DEPTH']): sns.boxplot(x=col, y="FLD_ZONE", data=pfirm_df, ax=ax) ax.set_xlabel(col + ' (ft.)') ###Output inspecting the distribution of numeric columns with box plots: ###Markdown Flood zones VE and AE are the only zones that have a static base flood elevation (BFE) value. Flood zone AO is the only zone with a depth elevation, although these depths are very small. 3.2 Dropping unnecessary flood zone values There are two flood zones in particular, X and OPEN WATER, that may be good candidates to drop. We don't want to drop any flood zones in the special flood hazard area (AE, VE, A, and AO), and we also don't want to drop the 0.2 % annual chance flood zone (although outside of the special flood hazard area, this information is still quite useful). Let's see if we can safely drop the previously mentioned values safely. ###Code # number of records in each flood zone pfirm_df['FLD_ZONE'].value_counts() # preview the dataframe where flood zones are open water and x pfirm_df.loc[pfirm_df['FLD_ZONE'].isin(['OPEN WATER', 'X'])].head() # summary statistics where flood zones are open water and x pfirm_df.loc[pfirm_df['FLD_ZONE'].isin(['OPEN WATER', 'X'])].iloc[:, :-1].describe(include='all') # preview count of records grouped by flood zones are open water and x d1 = pfirm_df.loc[pfirm_df['FLD_ZONE'].isin(['OPEN WATER', 'X'])] d1.groupby(by=['FLD_ZONE', 'SFHA_TF']).count() print('number of records in total data frame: {:,}'.format(pfirm_df.shape[0])) length = pfirm_df.loc[pfirm_df['FLD_ZONE'].isin(['OPEN WATER', 'X'])].shape[0] print('number of records to drop where flood zone is open water and x: {:,}'.format(length)) pfirm_df = pfirm_df.loc[~pfirm_df['FLD_ZONE'].isin(['OPEN WATER', 'X'])] print('number of records in dataframe after dropping open water and x zones: {:,}'.format(pfirm_df.shape[0])) # our dropped flood zones are no longer included in dataframe pfirm_df.groupby(by=['SFHA_TF', 'FLD_ZONE']).count() # number of records in each flood zone pfirm_df['FLD_ZONE'].value_counts() # a quick preview of our map after dropping open water and x flood zones pfirm_df.plot() # summary statistics of data pfirm_df.iloc[:, :-1].describe(include='all') # summary of data pfirm_df.info() fig, ax = plt.subplots(figsize=(10, 6)) sns.histplot(pfirm_df, x='STATIC_BFE', hue='FLD_ZONE', multiple="stack") plt.tight_layout() ###Output _____no_output_____ ###Markdown Distribution of static base flood elevations (ft.) by flood zone. ###Code fig, ax = plt.subplots(figsize=(10, 6)) sns.histplot(pfirm_df, x='STATIC_BFE', hue='FLD_ZONE', multiple="stack", element='step') plt.tight_layout() ###Output _____no_output_____ ###Markdown Distribution of static base flood elevations (ft.) by flood zone where element = step. ###Code # plotting static base flood elevations distribution by flood zone per plot zones = pfirm_df['FLD_ZONE'].unique() for zone in zones: plt.figure() plot = pfirm_df.loc[pfirm_df['FLD_ZONE'] == zone] sns.histplot(plot, x='STATIC_BFE') plt.title('FLD_ZONE = {}'.format(zone)) # previewing count of flood zones by within special flood hazard area pfirm_df['SFHA_TF'].value_counts() # summary statistics of static base flood elevations by special flood hazard area pfirm_df.groupby(by=['SFHA_TF'])['STATIC_BFE'].describe() ###Output _____no_output_____ ###Markdown 4. Inspect the geometry of the data 4.1 Mapping the flood zone ![borough_boundaries](imgs/nyc_borough_screenshot.png)*Figure 6. Screenshot of borough boundaries page on nyc open data*Website link: https://data.cityofnewyork.us/City-Government/Borough-Boundaries/tqmj-j8zm ###Code # importing borough boundaries for better aesthetics path = 'https://data.cityofnewyork.us/api/geospatial/tqmj-j8zm?method=export&format=Shapefile' borough_gdf = gpd.read_file(path) borough_gdf.head() # quick plot of boroughs borough_gdf.plot() plt.title('nyc boroughs') # converting to the local crs of our floodzone dataframe borough_gdf = borough_gdf.to_crs(epsg=2263) print(borough_gdf.crs) borough_gdf.plot() plt.title('nyc boroughs') fig, ax = plt.subplots(figsize=(10, 10)) pfirm_df.plot(ax=ax) borough_gdf.plot(ax=ax, facecolor='none', edgecolor='black', zorder=1) plt.title('Preliminary Flood Insurance Rate Map of New York City', fontsize=15) # preview active crs pfirm_df.crs # adding a column for our geometry converted to WGS84 pfirm_df['wgs84'] = pfirm_df.to_crs(epsg=4326)['geometry'] pfirm_df.head() # make sure 2263 is still our active geometry pfirm_df.crs fig, ax = plt.subplots(figsize=(10, 10)) # plotting our map in WGS84 pfirm_df.set_geometry('wgs84').plot(ax=ax) borough_gdf.to_crs(epsg=4326).plot(ax=ax, facecolor='none', edgecolor='black', zorder=1) plt.title('Preliminary Flood Insurance Rate Map of New York City', fontsize=15) ###Output _____no_output_____ ###Markdown 4.2 Analyzing the flood zone's area ###Code # previewing geometry's area in square ft. pfirm_df.area.head() # converting square feet to square miles sq_mi = pfirm_df.area / 5280**2 sq_mi.head() # summary statistics of area in sq mi sq_mi_df = sq_mi.to_frame().rename(columns={0:'area sq mi'}) round(sq_mi_df.describe(), 4) sq_mi_df.hist(bins=25, figsize=(10,6)) plt.title("Distribution of Each Geometry's Area", fontsize=15) plt.xlabel('sq mi') plt.ylabel('count') print('flood zone area statistics:\n') print('area in square feet: {:,.0f}'.format(pfirm_df.area.sum())) print('area in square miles: {:,.0f}'.format(pfirm_df.area.sum() / 5280**2)) # creating a dataframe of only flood zones in the special flood hazard area (sfha) # 0.2 pct chance is excluded from the sfha sfha_df = pfirm_df[~pfirm_df['FLD_ZONE'].isin(['0.2 PCT ANNUAL CHANCE FLOOD HAZARD'])] sfha_df['FLD_ZONE'].value_counts() print('area statistics only of special flood hazard area zones:\n') print('area in square feet: {:,.0f}'.format(sfha_df.area.sum())) print('area in square miles: {:,.0f}'.format(sfha_df.area.sum() / 5280**2)) # retrieving area calculations by flood zone zones = pfirm_df['FLD_ZONE'].unique() empty_dict = {} for zone in zones: zone_df = pfirm_df.loc[pfirm_df['FLD_ZONE'] == zone] zone_series = zone_df.area.sum() / 5280**2 empty_dict.update({zone:zone_series}) empty_dict s1 = pd.Series(empty_dict).rename('area (sq mi)') s1 = s1.reset_index().rename(columns={'index': 'zone'}) s1 = s1.sort_values(by='area (sq mi)', ascending=False) # plot of area by flood zone fig, ax = plt.subplots(figsize=(8, 8)) sns.barplot(data=s1, x='area (sq mi)', y='zone') plt.title('Area by Flood Zone in NYC', fontsize=15) ###Output _____no_output_____
code/anomalies-detection.ipynb
###Markdown EDA ###Code symbols = ['GME', 'BB', 'NOK', 'AMC'] # year, month, and day. start = dt.datetime(2014, 12, 1) end = dt.datetime.now() volume = [] closes = [] for symbol in symbols: print(symbol) vdata = web.DataReader(symbol, 'yahoo', start, end) cdata = vdata[['Close']] closes.append(cdata) vdata = vdata[['Volume']] volume.append(vdata) volume = pd.concat(volume, axis = 1).dropna() volume.columns = symbols closes = pd.concat(closes, axis = 1).dropna() closes.columns = symbols volume.head() volume.plot(title = "Trading volume",figsize=(12, 6)) plt.savefig("figures/trading_volume.pdf") plt.show() closes.plot(title = "Close price", figsize=(12, 6)) plt.savefig("figures/close_price.pdf") plt.show() print(volume.describe().to_latex()) print("Skewness: %f" % volume['GME'].skew()) print("Kurtosis: %f" % volume['GME'].kurt()) sns_plot = sns.distplot(volume['GME']) plt.title("Distribution of trading volume GME") sns.despine() sns_plot.get_figure().savefig("figures/distribution_trading_volume_GME.pdf") sns_plot = sns.distplot(closes['GME']) plt.title("Distribution of closing price GME") sns.despine() sns_plot.get_figure().savefig("figures/distribution_closing_price_GME.pdf") sns_plot = sns.regplot(x="GME", y="BB", data=volume) plt.title("Regplot GME BB") sns.despine(); sns_plot.get_figure().savefig("figures/regplot_GME_BB.pdf") sns_plot = sns.regplot(x="GME", y="AMC", data=volume) plt.title("Regplot GME AMC") sns.despine(); sns_plot.get_figure().savefig("figures/regplot_GME_AMC.pdf") sns_plot = sns.regplot(x="GME", y="NOK", data=volume) plt.title("Regplot GME NOK") sns.despine(); sns_plot.get_figure().savefig("figures/regplot_GME_NOK.pdf") volume.plot.scatter('GME','BB') plt.savefig("figures/GME_BB.pdf") plt.show() volume.plot.scatter('GME','NOK') plt.savefig("figures/GME_NOK.pdf") plt.show() volume.plot.scatter('GME','AMC') plt.savefig("figures/GME_AMC.pdf") plt.show() GME_BB_volume = volume.iloc[:, 0:2] GME_BB_volume.head() ###Output _____no_output_____ ###Markdown Models to use IsolationForest (Univariate Anomaly Detection) ###Code from sklearn.ensemble import IsolationForest #GME volume isolation_forest = IsolationForest(n_estimators=100) isolation_forest.fit(volume['GME'].values.reshape(-1, 1)) xx = np.linspace(volume['GME'].min(), volume['GME'].max(), len(volume)).reshape(-1,1) anomaly_score = isolation_forest.decision_function(xx) outlier = isolation_forest.predict(xx) plt.figure(figsize=(10,4)) plt.plot(xx, anomaly_score, label='anomaly score') plt.fill_between(xx.T[0], np.min(anomaly_score), np.max(anomaly_score), where=outlier==-1, color='r', alpha=.4, label='outlier region') plt.legend() plt.ylabel('GME Anomaly score') plt.xlabel('GME Trading volume') plt.savefig("figures/if_trading_GME.pdf") plt.show(); # GME closing price isolation_forest = IsolationForest(n_estimators=100) isolation_forest.fit(closes['GME'].values.reshape(-1, 1)) xx = np.linspace(closes['GME'].min(), closes['GME'].max(), len(closes)).reshape(-1,1) anomaly_score = isolation_forest.decision_function(xx) outlier = isolation_forest.predict(xx) plt.figure(figsize=(10,4)) plt.plot(xx, anomaly_score, label='anomaly score') plt.fill_between(xx.T[0], np.min(anomaly_score), np.max(anomaly_score), where=outlier==-1, color='r', alpha=.4, label='outlier region') plt.legend() plt.ylabel('GME Anomaly score') plt.xlabel('GME Closing price') plt.savefig("figures/if_closing_GME.pdf") plt.show(); # Nokia volume isolation_forest = IsolationForest(n_estimators=100) isolation_forest.fit(volume['NOK'].values.reshape(-1, 1)) xx = np.linspace(volume['NOK'].min(), volume['NOK'].max(), len(volume)).reshape(-1,1) anomaly_score = isolation_forest.decision_function(xx) outlier = isolation_forest.predict(xx) plt.figure(figsize=(10,4)) plt.plot(xx, anomaly_score, label='anomaly score') plt.fill_between(xx.T[0], np.min(anomaly_score), np.max(anomaly_score), where=outlier==-1, color='r', alpha=.4, label='outlier region') plt.legend() plt.ylabel('NOK Anomaly score') plt.xlabel('NOK Trading volume') plt.savefig("figures/if_trading_NOK.pdf") plt.show(); # Nokia closing price isolation_forest = IsolationForest(n_estimators=100) isolation_forest.fit(closes['NOK'].values.reshape(-1, 1)) xx = np.linspace(closes['NOK'].min(), closes['NOK'].max(), len(closes)).reshape(-1,1) anomaly_score = isolation_forest.decision_function(xx) outlier = isolation_forest.predict(xx) plt.figure(figsize=(10,4)) plt.plot(xx, anomaly_score, label='anomaly score') plt.fill_between(xx.T[0], np.min(anomaly_score), np.max(anomaly_score), where=outlier==-1, color='r', alpha=.4, label='outlier region') plt.legend() plt.ylabel('NOK Anomaly score') plt.xlabel('NOK Closing price') plt.savefig("figures/if_closing_NOK.pdf") plt.show(); # AMC volume isolation_forest = IsolationForest(n_estimators=100) isolation_forest.fit(volume['AMC'].values.reshape(-1, 1)) xx = np.linspace(volume['AMC'].min(), volume['AMC'].max(), len(volume)).reshape(-1,1) anomaly_score = isolation_forest.decision_function(xx) outlier = isolation_forest.predict(xx) plt.figure(figsize=(10,4)) plt.plot(xx, anomaly_score, label='anomaly score') plt.fill_between(xx.T[0], np.min(anomaly_score), np.max(anomaly_score), where=outlier==-1, color='r', alpha=.4, label='outlier region') plt.legend() plt.ylabel('AMC Anomaly score') plt.xlabel('AMC Trading volume') plt.savefig("figures/if_trading_AMC.pdf") plt.show(); # AMC closing price isolation_forest = IsolationForest(n_estimators=100) isolation_forest.fit(closes['AMC'].values.reshape(-1, 1)) xx = np.linspace(closes['AMC'].min(), closes['AMC'].max(), len(closes)).reshape(-1,1) anomaly_score = isolation_forest.decision_function(xx) outlier = isolation_forest.predict(xx) plt.figure(figsize=(10,4)) plt.plot(xx, anomaly_score, label='anomaly score') plt.fill_between(xx.T[0], np.min(anomaly_score), np.max(anomaly_score), where=outlier==-1, color='r', alpha=.4, label='outlier region') plt.legend() plt.ylabel('AMC Anomaly score') plt.xlabel('AMC Closing price') plt.savefig("figures/if_closing_AMC.pdf") plt.show(); # BB volume isolation_forest = IsolationForest(n_estimators=100) isolation_forest.fit(volume['BB'].values.reshape(-1, 1)) xx = np.linspace(volume['BB'].min(), volume['BB'].max(), len(volume)).reshape(-1,1) anomaly_score = isolation_forest.decision_function(xx) outlier = isolation_forest.predict(xx) plt.figure(figsize=(10,4)) plt.plot(xx, anomaly_score, label='anomaly score') plt.fill_between(xx.T[0], np.min(anomaly_score), np.max(anomaly_score), where=outlier==-1, color='r', alpha=.4, label='outlier region') plt.legend() plt.ylabel('BB Anomaly score') plt.xlabel('BB Trading volume') plt.savefig("figures/if_trading_BB.pdf") plt.show(); # BB closing price isolation_forest = IsolationForest(n_estimators=100) isolation_forest.fit(closes['BB'].values.reshape(-1, 1)) xx = np.linspace(closes['BB'].min(), closes['BB'].max(), len(closes)).reshape(-1,1) anomaly_score = isolation_forest.decision_function(xx) outlier = isolation_forest.predict(xx) plt.figure(figsize=(10,4)) plt.plot(xx, anomaly_score, label='anomaly score') plt.fill_between(xx.T[0], np.min(anomaly_score), np.max(anomaly_score), where=outlier==-1, color='r', alpha=.4, label='outlier region') plt.legend() plt.ylabel('BB Anomaly score') plt.xlabel('BB Closing price') plt.savefig("figures/if_closing_BB.pdf") plt.show(); ###Output _____no_output_____ ###Markdown  PyOD ###Code # Import all models from pyod.models.abod import ABOD from pyod.models.cblof import CBLOF from pyod.models.hbos import HBOS from pyod.models.iforest import IForest from pyod.models.knn import KNN from pyod.models.lof import LOF from pyod.models.mcd import MCD from pyod.models.ocsvm import OCSVM from pyod.models.pca import PCA from pyod.models.lscp import LSCP from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) GME_BB_volume[['GME','BB']] = scaler.fit_transform(GME_BB_volume[['GME','BB']]) GME_BB_volume[['GME','BB']].head() GME_BB_volume[['GME','BB']].size X1 = GME_BB_volume['GME'].values.reshape(-1,1) X2 = GME_BB_volume['BB'].values.reshape(-1,1) X = np.concatenate((X1,X2),axis=1) # initialize a set of detectors for LSCP detector_list = [LOF(n_neighbors=5), LOF(n_neighbors=10), LOF(n_neighbors=15), LOF(n_neighbors=20), LOF(n_neighbors=25), LOF(n_neighbors=30), LOF(n_neighbors=35), LOF(n_neighbors=40), LOF(n_neighbors=45), LOF(n_neighbors=50)] random_state = np.random.RandomState(42) outliers_fraction = 0.01 # Define seven outlier detection tools to be compared classifiers = { 'Angle-based Outlier Detector (ABOD)': ABOD(contamination=outliers_fraction), 'Cluster-based Local Outlier Factor (CBLOF)': CBLOF(contamination=outliers_fraction, check_estimator=False, random_state=random_state), 'Histogram-base Outlier Detection (HBOS)': HBOS( contamination=outliers_fraction), 'Isolation Forest': IForest(contamination=outliers_fraction, random_state=random_state), 'K Nearest Neighbors (KNN)': KNN( contamination=outliers_fraction), 'Average KNN': KNN(method='mean', contamination=outliers_fraction), 'Local Outlier Factor (LOF)': LOF(n_neighbors=35, contamination=outliers_fraction), 'Minimum Covariance Determinant (MCD)': MCD( contamination=outliers_fraction, random_state=random_state), 'One-class SVM (OCSVM)': OCSVM(contamination=outliers_fraction), 'Principal Component Analysis (PCA)': PCA( contamination=outliers_fraction, random_state=random_state), 'Locally Selective Combination (LSCP)': LSCP( detector_list, contamination=outliers_fraction, random_state=random_state) } xx , yy = np.meshgrid(np.linspace(0,1 , 200), np.linspace(0, 1, 200)) for i, (clf_name, clf) in enumerate(classifiers.items()): print(i + 1, 'fitting', clf_name) clf.fit(X) # predict raw anomaly score scores_pred = clf.decision_function(X) * -1 # prediction of a datapoint category outlier or inlier y_pred = clf.predict(X) n_inliers = len(y_pred) - np.count_nonzero(y_pred) n_outliers = np.count_nonzero(y_pred == 1) plt.figure(figsize=(25, 15)) # copy of dataframe dfx = GME_BB_volume dfx['outlier'] = y_pred.tolist() # IX1 - inlier feature 1, IX2 - inlier feature 2 IX1 = np.array(dfx['GME'][dfx['outlier'] == 0]).reshape(-1,1) IX2 = np.array(dfx['BB'][dfx['outlier'] == 0]).reshape(-1,1) # OX1 - outlier feature 1, OX2 - outlier feature 2 OX1 = dfx['GME'][dfx['outlier'] == 1].values.reshape(-1,1) OX2 = dfx['BB'][dfx['outlier'] == 1].values.reshape(-1,1) print('OUTLIERS : ',n_outliers,'INLIERS : ',n_inliers, clf_name) # threshold value to consider a datapoint inlier or outlier threshold = stats.scoreatpercentile(scores_pred,100 * outliers_fraction) # decision function calculates the raw anomaly score for every point Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) * -1 Z = Z.reshape(xx.shape) subplot = plt.subplot(3, 4, i + 1) # fill blue map colormap from minimum anomaly score to threshold value subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7),cmap=plt.cm.Blues_r) # draw red contour line where anomaly score is equal to thresold a = subplot.contour(xx, yy, Z, levels=[threshold],linewidths=2, colors='red') # fill orange contour lines where range of anomaly score is from threshold to maximum anomaly score subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()],colors='orange') b = subplot.scatter(IX1,IX2, c='white',s=20, edgecolor='k') c = subplot.scatter(OX1,OX2, c='black',s=20, edgecolor='k') subplot.axis('tight') subplot.legend( [a.collections[0], b,c], ['learned decision function', 'inliers','outliers'], prop=matplotlib.font_manager.FontProperties(size=10), loc='lower right') subplot.set_xlabel("%d. %s" % (i + 1, clf_name)) subplot.set_xlim((0, 1)) subplot.set_ylim((0, 1)) plt.show() ###Output 1 fitting Angle-based Outlier Detector (ABOD) OUTLIERS : 16 INLIERS : 1536 Angle-based Outlier Detector (ABOD) 2 fitting Cluster-based Local Outlier Factor (CBLOF)
examples/extreme_response_full_sea_state_example.ipynb
###Markdown Extreme Conditions Modeling - Full Sea State ApproachExtreme conditions modeling consists of identifying the expected extreme (e.g. 100-year) response of some quantity of interest, such as WEC motions or mooring loads. Three different methods of estimating extreme conditions were adapted from [WDRT](https://github.com/WEC-Sim/WDRT): full sea state approach, contour approach, and MLER design wave. This noteboook presents the full sea state approach. The full sea state approach consists of the following steps: 1. Take $N$ samples to represent the sea state. Each sample represents a small area of the sea state and consists of a representative $(H_{s}, T_{e})_i$ pair and a weight $W_i$ associated with the probability of that sea state area. 2. For each sample $(H_{s}, T_{e})_i$ calculate the short-term (e.g. 3-hours) extreme for the quantity of interest (e.g. WEC motions or mooring tension).3. Integrate over the entire sea state to obtain the long-term extreme. This is a sum of the products of the weight of each sea state times the short-term extreme. See more details and equations in> [1] Coe, Ryan G., Carlos A. Michelén Ströfer, Aubrey Eckert-Gallup, and Cédric Sallaberry. 2018. “Full Long-Term Design Response Analysis of a Wave Energy Converter.” Renewable Energy 116: 356–66.**NOTE:** Prior to running this example it is recommended to become familiar with `environmental_contours_example.ipynb` and `short_term_extremes_example.ipynb` since some code blocks are adapted from those examples and used here without the additional description. We start by importing the relevant modules, including `waves.contours` submodule which includes the sampling function, and `loads.extreme` which inlcudes the short-term extreme and full sea state integration functions. ###Code from mhkit.wave import resource, contours, graphics from mhkit.loads import extreme import matplotlib.pyplot as plt from mhkit.wave.io import ndbc import pandas as pd import numpy as np ###Output _____no_output_____ ###Markdown Obtain and Process NDBC Buouy DataThe first step will be obtaining the environmental data and creating the contours.See `environmental_contours_example.ipynb` for more details and explanations of how this is being done in the following code block. ###Code parameter = 'swden' buoy_number = '46022' ndbc_available_data = ndbc.available_data(parameter, buoy_number) years_of_interest = ndbc_available_data[ndbc_available_data.year < 2013] filenames = years_of_interest['filename'] ndbc_requested_data = ndbc.request_data(parameter, filenames) ndbc_data = {} for year in ndbc_requested_data: year_data = ndbc_requested_data[year] ndbc_data[year] = ndbc.to_datetime_index(parameter, year_data) Hm0_list = [] Te_list = [] # Iterate over each year and save the result in the initalized dictionary for year in ndbc_data: year_data = ndbc_data[year] Hm0_list.append(resource.significant_wave_height(year_data.T)) Te_list.append(resource.energy_period(year_data.T)) # Concatenate list of Series into a single DataFrame Te = pd.concat(Te_list, axis=0) Hm0 = pd.concat(Hm0_list, axis=0) Hm0_Te = pd.concat([Hm0, Te], axis=1) # Drop any NaNs created from the calculation of Hm0 or Te Hm0_Te.dropna(inplace=True) # Sort the DateTime index Hm0_Te.sort_index(inplace=True) Hm0_Te_clean = Hm0_Te[Hm0_Te.Hm0 < 20] Hm0 = Hm0_Te_clean.Hm0.values Te = Hm0_Te_clean.Te.values dt = (Hm0_Te_clean.index[2]-Hm0_Te_clean.index[1]).seconds ###Output _____no_output_____ ###Markdown 1. SamplingThe first step is sampling the sea state to get samples $(H_s, T_e)_i$ and associtated weights. For this we will use the `waves.contours.samples_full_seastate` function. We will sample 20 points between each return level, for 10 levels ranging from 0.001—100 years return periods. For more details on the sampling approach see> [1] Coe, Ryan G., Carlos A. Michelén Ströfer, Aubrey Eckert-Gallup, and Cédric Sallaberry. 2018. “Full Long-Term Design Response Analysis of a Wave Energy Converter.” Renewable Energy 116: 356–66.> [2] Eckert-Gallup, Aubrey C., Cédric J. Sallaberry, Ann R. Dallman, and Vincent S. Neary. 2016. “Application of Principal Component Analysis (PCA) and Improved Joint Probability Distributions to the Inverse First-Order Reliability Method (I-FORM) for Predicting Extreme Sea States.” Ocean Engineering 112 (January): 307–19. ###Code # return levels levels = np.array([0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100]) # points per return level interval npoints = 20 # Create samples sample_hs, sample_te, sample_weights = contours.samples_full_seastate( Hm0, Te, npoints, levels, dt) ###Output _____no_output_____ ###Markdown We will now plot the samples alongside the contours. First we will create the different contours using `contours.environmental_contours`. See `environmental_contours_example.ipynb` for more details on using this function. There are 20 samples, randomly distributed, between each set of return levels. ###Code # Create the contours Te_contours = [] Hm0_contours = [] for period in levels: copula = contours.environmental_contours( Hm0, Te, dt, period, 'PCA', return_PCA=True) Hm0_contours.append(copula['PCA_x1']) Te_contours.append(copula['PCA_x2']) # plot fig, ax = plt.subplots(figsize=(8, 4)) labels = [f"{period}-year Contour" for period in levels] ax = graphics.plot_environmental_contour( sample_te, sample_hs, Te_contours, Hm0_contours, data_label='Samples', contour_label=labels, x_label='Energy Period, $Te$ [s]', y_label='Sig. wave height, $Hm0$ [m]', ax=ax) ###Output _____no_output_____ ###Markdown 2. Short-Term Extreme DistributionsMany different methods for short-term extremes were adapted from WDRT, and a summary and examples can be found in `short_term_extremes_example.ipynb`. The response quantity of interest is typically related to the WEC itself, e.g. maximum heave displacement, PTO extension, or load on the mooring lines. This requires running a simulation (e.g. WEC-Sim) for each of the 200 sampled sea states $(H_s, T_e)_i$. For the sake of example we will consider the wave elevation as the quantity of interest (can be thought as a proxy for heave motion in this example). Wave elevation time-series for a specific sea state can be created quickly without running any external software. **NOTE:** The majority of the for loop below is simply creating the synthetic data (wave elevation time series). In a realistic case the variables `time` and `data` describing each time series would be obtained externally, e.g. through simulation software such as WEC-Sim or CFD. For this reason the details of creating the synthetic data are not presented here, instead assume for each sea state there is time-series data available. The last lines of the for-loop create the short-term extreme distribution from the time-series using the `loads.extreme.short_term_extreme` function. The short-term period will be 3-hours and we will use 1-hour "simulations" and the Weibul-tail-fitting method to estimate the 3-hour short-term extreme distributions for each of the 200 samples.For more details on short-term extreme distributions see `short_term_extremes_example.ipynb` and > [3] Michelén Ströfer, Carlos A., and Ryan Coe. 2015. “Comparison of Methods for Estimating Short-Term Extreme Response of Wave Energy Converters.” In OCEANS 2015 - MTS/IEEE Washington, 1–6. IEEE. ###Code # create the short-term extreme distribution for each sample sea state t_st = 3.0 * 60.0 * 60.0 gamma = 3.3 t_sim = 1.0 * 60.0 * 60.0 ste_all = [] i = 0 n = len(sample_hs) for hs, te in zip(sample_hs, sample_te): tp = te / (0.8255 + 0.03852*gamma - 0.005537*gamma**2 + 0.0003154*gamma**3) i += 1 print(f"Sea state {i}/{n}. (Hs, Te) = ({hs} m, {te} s). Tp = {tp} s") # time & frequency arrays f0 = 1.0/t_sim T_min = tp/10.0 # s f_max = 1.0/T_min Nf = int(f_max/f0) time = np.linspace(0, t_sim, 2*Nf+1) f = np.linspace(f0, f_max, Nf) # spectrum S = resource.jonswap_spectrum(f, tp, hs, gamma) # 1-hour elevation time-series data = resource.surface_elevation(S, time).values.squeeze() # 3-hour extreme distribution ste = extreme.short_term_extreme(time, data, t_st, 'peaks_weibull_tail_fit') ste_all.append(ste) ###Output Sea state 1/200. (Hs, Te) = (2.7476690431712387 m, 9.898396804782426 s). Tp = 10.953763434059923 s Sea state 2/200. (Hs, Te) = (3.531570115440943 m, 11.072854690290276 s). Tp = 12.253441967345596 s Sea state 3/200. (Hs, Te) = (3.5631169008261416 m, 10.529043453084103 s). Tp = 11.651649600094585 s Sea state 4/200. (Hs, Te) = (3.3136880458617415 m, 9.477416257821945 s). Tp = 10.48789795981279 s Sea state 5/200. (Hs, Te) = (3.172687890319087 m, 9.360633157328573 s). Tp = 10.35866345031299 s Sea state 6/200. (Hs, Te) = (3.0630002153170452 m, 8.59765613746172 s). Tp = 9.514337854353085 s Sea state 7/200. (Hs, Te) = (2.7069002802048345 m, 8.619396416083681 s). Tp = 9.538396080519615 s Sea state 8/200. (Hs, Te) = (2.4473757676516734 m, 8.436380373858702 s). Tp = 9.335866875971888 s Sea state 9/200. (Hs, Te) = (2.046394958916393 m, 7.376850430979894 s). Tp = 8.163369897472288 s Sea state 10/200. (Hs, Te) = (2.293289736769183 m, 8.853033813999282 s). Tp = 9.796943887461476 s Sea state 11/200. (Hs, Te) = (2.2020532526799967 m, 8.69872911280172 s). Tp = 9.626187225850904 s Sea state 12/200. (Hs, Te) = (2.0876480479410366 m, 8.539262027183852 s). Tp = 9.449717766621593 s Sea state 13/200. (Hs, Te) = (1.8902057494339104 m, 8.529332396785021 s). Tp = 9.438729439469068 s Sea state 14/200. (Hs, Te) = (2.308096327590195 m, 9.112272664224243 s). Tp = 10.083822772424941 s Sea state 15/200. (Hs, Te) = (1.9622893666119121 m, 9.151949676311485 s). Tp = 10.127730145785039 s Sea state 16/200. (Hs, Te) = (2.305667961346008 m, 9.200023294046321 s). Tp = 10.18092937051529 s Sea state 17/200. (Hs, Te) = (1.9701858425767147 m, 10.185262006644049 s). Tp = 11.27121419104896 s Sea state 18/200. (Hs, Te) = (2.292470528080541 m, 9.616889178090641 s). Tp = 10.642241476668234 s Sea state 19/200. (Hs, Te) = (2.6097974565855493 m, 10.607583411714911 s). Tp = 11.738563485638863 s Sea state 20/200. (Hs, Te) = (2.7555697594812547 m, 10.323372655443912 s). Tp = 11.42405019111185 s Sea state 21/200. (Hs, Te) = (3.682633905384873 m, 12.402475369156193 s). Tp = 13.724826744150525 s Sea state 22/200. (Hs, Te) = (4.212665972583244 m, 12.185046415308522 s). Tp = 13.48421552486582 s Sea state 23/200. (Hs, Te) = (4.05026799253212 m, 11.113905814149078 s). Tp = 12.298869960213526 s Sea state 24/200. (Hs, Te) = (5.303297566743566 m, 10.639559673240361 s). Tp = 11.773949054753066 s Sea state 25/200. (Hs, Te) = (4.924134073730911 m, 9.785109089934313 s). Tp = 10.828396988068192 s Sea state 26/200. (Hs, Te) = (3.5985615413148957 m, 8.581846021873012 s). Tp = 9.496842064939978 s Sea state 27/200. (Hs, Te) = (3.135645469719277 m, 7.8511911960291645 s). Tp = 8.688284853899408 s Sea state 28/200. (Hs, Te) = (2.431810006062661 m, 7.116680274464138 s). Tp = 7.875460410382518 s Sea state 29/200. (Hs, Te) = (2.0838410893707966 m, 6.298801092171736 s). Tp = 6.970378985868918 s Sea state 30/200. (Hs, Te) = (1.6423455509793814 m, 6.523674804404985 s). Tp = 7.219228723348807 s Sea state 31/200. (Hs, Te) = (1.4428843954801813 m, 7.031455517574027 s). Tp = 7.7811489936843605 s Sea state 32/200. (Hs, Te) = (1.0660804027836115 m, 7.003369546884362 s). Tp = 7.750068498042693 s Sea state 33/200. (Hs, Te) = (0.6706525629195497 m, 7.391577956604073 s). Tp = 8.179667671226758 s Sea state 34/200. (Hs, Te) = (0.9453680651508931 m, 8.514256864842773 s). Tp = 9.422046554978298 s Sea state 35/200. (Hs, Te) = (0.8606454052847035 m, 9.19445876440277 s). Tp = 10.1747715509674 s Sea state 36/200. (Hs, Te) = (1.446046535282041 m, 9.890985020002242 s). Tp = 10.94556140511448 s Sea state 37/200. (Hs, Te) = (1.814284454479686 m, 10.884111327310288 s). Tp = 12.044574795357422 s Sea state 38/200. (Hs, Te) = (1.8369294990041127 m, 14.071484897068036 s). Tp = 15.571785994067179 s Sea state 39/200. (Hs, Te) = (2.4279375035930384 m, 11.721321793811422 s). Tp = 12.971048604746592 s Sea state 40/200. (Hs, Te) = (3.4366878484585097 m, 13.500507507743283 s). Tp = 14.939931020760929 s Sea state 41/200. (Hs, Te) = (4.881749805564816 m, 15.102009111828629 s). Tp = 16.712184655000232 s Sea state 42/200. (Hs, Te) = (5.929650654049805 m, 14.041374740462938 s). Tp = 15.538465493897355 s Sea state 43/200. (Hs, Te) = (6.733647106251836 m, 12.756124450005649 s). Tp = 14.116181874349593 s Sea state 44/200. (Hs, Te) = (5.823482465094092 m, 10.757719220728456 s). Tp = 11.904706767965251 s Sea state 45/200. (Hs, Te) = (4.522240943762454 m, 8.448078861366799 s). Tp = 9.348812655700389 s Sea state 46/200. (Hs, Te) = (3.9632342495762476 m, 7.763746279892604 s). Tp = 8.591516564674196 s Sea state 47/200. (Hs, Te) = (3.48351682452572 m, 7.324368618974508 s). Tp = 8.105292476993444 s Sea state 48/200. (Hs, Te) = (2.563456346797842 m, 6.056216781584966 s). Tp = 6.701930346822829 s Sea state 49/200. (Hs, Te) = (1.995627635392273 m, 5.300300446310389 s). Tp = 5.865418245333961 s Sea state 50/200. (Hs, Te) = (1.2482525200731613 m, 5.00092407195376 s). Tp = 5.534122375192174 s Sea state 51/200. (Hs, Te) = (1.0112713778368576 m, 5.4894639018048546 s). Tp = 6.0747503000819165 s Sea state 52/200. (Hs, Te) = (0.7225874968126063 m, 5.797180698365338 s). Tp = 6.415275847873832 s Sea state 53/200. (Hs, Te) = (0.3412147422072267 m, 6.444682361990287 s). Tp = 7.131814110219623 s Sea state 54/200. (Hs, Te) = (0.37629800539801495 m, 7.278127327491898 s). Tp = 8.054120941059342 s Sea state 55/200. (Hs, Te) = (0.2593556848203602 m, 9.772429376897422 s). Tp = 10.814365364588443 s Sea state 56/200. (Hs, Te) = (0.22439382449464995 m, 11.838773644910981 s). Tp = 13.101023167012615 s Sea state 57/200. (Hs, Te) = (0.7231170863341507 m, 13.331652990941636 s). Tp = 14.75307324285046 s Sea state 58/200. (Hs, Te) = (1.0944677391961881 m, 14.740489201708725 s). Tp = 16.31211950806222 s Sea state 59/200. (Hs, Te) = (2.2544246940776325 m, 15.00832277152429 s). Tp = 16.608509481238684 s Sea state 60/200. (Hs, Te) = (4.221697213400411 m, 15.06617516629942 s). Tp = 16.672530095784513 s Sea state 61/200. (Hs, Te) = (0.42919942735341365 m, 14.389743813203152 s). Tp = 15.923977661756238 s Sea state 62/200. (Hs, Te) = (0.8066477894744781 m, 14.929114433172016 s). Tp = 16.520855953356616 s Sea state 63/200. (Hs, Te) = (2.18706772725983 m, 16.553280263601604 s). Tp = 18.31819027274999 s Sea state 64/200. (Hs, Te) = (4.058781607387172 m, 17.104385307921103 s). Tp = 18.92805411250597 s Sea state 65/200. (Hs, Te) = (5.280990480119309 m, 17.091896795314423 s). Tp = 18.914234075237836 s Sea state 66/200. (Hs, Te) = (6.67877937615683 m, 15.499740904199125 s). Tp = 17.152322593471858 s Sea state 67/200. (Hs, Te) = (6.927635065873248 m, 14.740354537612657 s). Tp = 16.31197048608619 s Sea state 68/200. (Hs, Te) = (6.837998607790748 m, 12.158743171888053 s). Tp = 13.455107830795898 s Sea state 69/200. (Hs, Te) = (6.515875893176208 m, 10.937669435895 s). Tp = 12.103843267109248 s Sea state 70/200. (Hs, Te) = (5.304001413051129 m, 8.964849111642947 s). Tp = 9.92068092719158 s Sea state 71/200. (Hs, Te) = (4.21625929476447 m, 7.632380539272374 s). Tp = 8.446144614602561 s Sea state 72/200. (Hs, Te) = (3.90275894328102 m, 7.0180531016534715 s). Tp = 7.766317612771473 s Sea state 73/200. (Hs, Te) = (3.092131576145537 m, 6.263479592630679 s). Tp = 6.931291509609928 s Sea state 74/200. (Hs, Te) = (2.061691984692526 m, 5.2597539358137295 s). Tp = 5.8205486676825124 s Sea state 75/200. (Hs, Te) = (1.7477973238002613 m, 4.952976645409529 s). Tp = 5.481062796151686 s Sea state 76/200. (Hs, Te) = (1.188105496243663 m, 4.789426304957664 s). Tp = 5.300074725638678 s Sea state 77/200. (Hs, Te) = (0.8909185568988089 m, 4.865417933018925 s). Tp = 5.384168577720861 s Sea state 78/200. (Hs, Te) = (0.5868809150201082 m, 5.342702431380711 s). Tp = 5.912341128176003 s Sea state 79/200. (Hs, Te) = (0.3249029161852639 m, 5.8652556732843655 s). Tp = 6.490608973606103 s Sea state 80/200. (Hs, Te) = (0.19854447978643908 m, 6.682309275317205 s). Tp = 7.394776794529401 s Sea state 81/200. (Hs, Te) = (1.1378533719939599 m, 16.29937669010103 s). Tp = 18.037215511479157 s Sea state 82/200. (Hs, Te) = (1.7207753935819574 m, 18.18049776867239 s). Tp = 20.11890163619976 s Sea state 83/200. (Hs, Te) = (3.045435393397856 m, 18.2722028817323 s). Tp = 20.220384344355757 s Sea state 84/200. (Hs, Te) = (5.9410240832717705 m, 18.20434585099714 s). Tp = 20.14529240000659 s Sea state 85/200. (Hs, Te) = (6.900385063891696 m, 16.965929376112204 s). Tp = 18.774836015374902 s Sea state 86/200. (Hs, Te) = (7.5413039919231215 m, 16.07885944382636 s). Tp = 17.79318672616556 s Sea state 87/200. (Hs, Te) = (8.33324739000868 m, 14.60855477544739 s). Tp = 16.16611823911159 s Sea state 88/200. (Hs, Te) = (8.073493320987428 m, 13.666423534396822 s). Tp = 15.123537006833741 s Sea state 89/200. (Hs, Te) = (7.742808676245161 m, 11.899449249557978 s). Tp = 13.168168001941908 s Sea state 90/200. (Hs, Te) = (6.04122128102763 m, 9.145483011133436 s). Tp = 10.120574005051886 s Sea state 91/200. (Hs, Te) = (5.307838900691543 m, 8.532751345737658 s). Tp = 9.44251291660773 s Sea state 92/200. (Hs, Te) = (3.5538843391472863 m, 6.449345501593802 s). Tp = 7.1369744335613 s Sea state 93/200. (Hs, Te) = (3.2727441707177842 m, 6.178574531557655 s). Tp = 6.837333874682727 s Sea state 94/200. (Hs, Te) = (2.396435845611073 m, 5.2840531245047435 s). Tp = 5.847438634796415 s Sea state 95/200. (Hs, Te) = (1.7925351881694949 m, 4.859872189983066 s). Tp = 5.378031547807942 s Sea state 96/200. (Hs, Te) = (1.3712158702331128 m, 4.614584181856148 s). Tp = 5.106590943109626 s Sea state 97/200. (Hs, Te) = (1.0020762104765706 m, 4.4051257091119895 s). Tp = 4.874800017270961 s Sea state 98/200. (Hs, Te) = (0.6840846016235075 m, 4.6709868121298745 s). Tp = 5.169007219327068 s Sea state 99/200. (Hs, Te) = (0.4400318176169047 m, 5.264806535859035 s). Tp = 5.826139975721048 s Sea state 100/200. (Hs, Te) = (0.2950455607439133 m, 5.368907174671332 s). Tp = 5.941339820036593 s Sea state 101/200. (Hs, Te) = (0.2538207006543258 m, 17.12463819459854 s). Tp = 18.950466361064674 s Sea state 102/200. (Hs, Te) = (2.401827718374254 m, 19.74909028958335 s). Tp = 21.854737422273 s Sea state 103/200. (Hs, Te) = (4.771083170894034 m, 20.076537695823838 s). Tp = 22.217097256475835 s Sea state 104/200. (Hs, Te) = (6.672059784308026 m, 18.96224243886321 s). Tp = 20.98399588853062 s Sea state 105/200. (Hs, Te) = (7.266218886285855 m, 18.517848875220015 s). Tp = 20.492221102798194 s Sea state 106/200. (Hs, Te) = (8.704119700269523 m, 16.896830852172723 s). Tp = 18.698370209870912 s Sea state 107/200. (Hs, Te) = (9.025791407684109 m, 15.924773336852542 s). Tp = 17.622671965285193 s Sea state 108/200. (Hs, Te) = (8.335871487107436 m, 12.413322380618183 s). Tp = 13.736830263494564 s Sea state 109/200. (Hs, Te) = (7.4617419694961065 m, 10.850802026111152 s). Tp = 12.00771405793852 s Sea state 110/200. (Hs, Te) = (6.0882272377996465 m, 9.069127068362327 s). Tp = 10.036076995041613 s Sea state 111/200. (Hs, Te) = (4.971882552682233 m, 7.629443455087086 s). Tp = 8.442894378631417 s Sea state 112/200. (Hs, Te) = (3.9137147533928953 m, 6.396097294409882 s). Tp = 7.078048904883903 s Sea state 113/200. (Hs, Te) = (3.06161156988711 m, 5.531224857642791 s). Tp = 6.120963807183185 s Sea state 114/200. (Hs, Te) = (2.7343619821293204 m, 5.293654205328456 s). Tp = 5.85806338243266 s Sea state 115/200. (Hs, Te) = (2.0584231261728334 m, 4.660229583463185 s). Tp = 5.157103055415991 s Sea state 116/200. (Hs, Te) = (1.3721475288257854 m, 4.323265832156141 s). Tp = 4.784212243856746 s Sea state 117/200. (Hs, Te) = (0.8599939026300656 m, 4.213959963822748 s). Tp = 4.663252188678921 s Sea state 118/200. (Hs, Te) = (0.5419078120521271 m, 4.519931230768316 s). Tp = 5.001846098565626 s Sea state 119/200. (Hs, Te) = (0.3868003926473669 m, 4.617757194340929 s). Tp = 5.110102262045115 s Sea state 120/200. (Hs, Te) = (0.07629861562822371 m, 5.12934517057858 s). Tp = 5.676235725669164 s Sea state 121/200. (Hs, Te) = (0.34633798237637237 m, 19.72005237767673 s). Tp = 21.822603489483953 s Sea state 122/200. (Hs, Te) = (2.3276352644630043 m, 20.988388061461745 s). Tp = 23.22616906774459 s Sea state 123/200. (Hs, Te) = (4.4025116313558925 m, 20.635956263518874 s). Tp = 22.836161007101737 s Sea state 124/200. (Hs, Te) = (6.356747543266486 m, 20.26518087818985 s). Tp = 22.425853566597404 s Sea state 125/200. (Hs, Te) = (8.350325561657009 m, 18.84467767246754 s). Tp = 20.853896371944614 s Sea state 126/200. (Hs, Te) = (10.507095756225086 m, 16.726452821049758 s). Tp = 18.509826480609608 s Sea state 127/200. (Hs, Te) = (10.051931328368415 m, 15.526444557776568 s). Tp = 17.181873389411972 s Sea state 128/200. (Hs, Te) = (9.569671582265315 m, 13.484451946197973 s). Tp = 14.922163615954188 s Sea state 129/200. (Hs, Te) = (7.670417919717313 m, 10.688834805882522 s). Tp = 11.828477899856887 s Sea state 130/200. (Hs, Te) = (6.695773472447784 m, 9.28833992655812 s). Tp = 10.27866231847709 s Sea state 131/200. (Hs, Te) = (5.2124365852315915 m, 7.762126130889369 s). Tp = 8.589723675455936 s Sea state 132/200. (Hs, Te) = (4.332304023671216 m, 6.700456908860995 s). Tp = 7.414859327958517 s Sea state 133/200. (Hs, Te) = (3.6845002818825954 m, 6.05544401874487 s). Tp = 6.701075192042921 s Sea state 134/200. (Hs, Te) = (2.651930188462395 m, 4.882016850087267 s). Tp = 5.402537270592454 s Sea state 135/200. (Hs, Te) = (1.761425029748757 m, 4.320829327277171 s). Tp = 4.781515958935407 s Sea state 136/200. (Hs, Te) = (1.6715886684994976 m, 4.2515655747998595 s). Tp = 4.704867308234196 s Sea state 137/200. (Hs, Te) = (0.982745350372394 m, 4.044748867057365 s). Tp = 4.475999812264762 s Sea state 138/200. (Hs, Te) = (0.6319038698634393 m, 3.9844552342473887 s). Tp = 4.4092776749928495 s Sea state 139/200. (Hs, Te) = (0.43826897160129663 m, 4.309987462686959 s). Tp = 4.769518135222388 s Sea state 140/200. (Hs, Te) = (0.12296019879881004 m, 4.824883587782545 s). Tp = 5.339312462389205 s Sea state 141/200. (Hs, Te) = (1.7008854788623395 m, 21.591483415345785 s). Tp = 23.893566421570075 s Sea state 142/200. (Hs, Te) = (1.958403888846231 m, 22.399914218070567 s). Tp = 24.78819208070469 s Sea state 143/200. (Hs, Te) = (6.654571320228031 m, 21.834806379665565 s). Tp = 24.1628324695775 s Sea state 144/200. (Hs, Te) = (7.417015230376994 m, 22.004251917947876 s). Tp = 24.350344283652746 s Sea state 145/200. (Hs, Te) = (10.015094697709129 m, 19.80808526300293 s). Tp = 21.920022437147782 s Sea state 146/200. (Hs, Te) = (10.935487969680494 m, 18.194709889967456 s). Tp = 20.134629053238356 s Sea state 147/200. (Hs, Te) = (10.740817257849123 m, 16.312190381294457 s). Tp = 18.051395397860563 s Sea state 148/200. (Hs, Te) = (10.318979128904427 m, 13.810844960534954 s). Tp = 15.283356639035425 s Sea state 149/200. (Hs, Te) = (8.926396179491384 m, 11.686930863038155 s). Tp = 12.932990914456232 s Sea state 150/200. (Hs, Te) = (6.360592705852408 m, 8.544681430031973 s). Tp = 9.455714985961547 s Sea state 151/200. (Hs, Te) = (5.079095551882201 m, 7.2036675682669244 s). Tp = 7.97172228560098 s Sea state 152/200. (Hs, Te) = (4.139472783285571 m, 6.228329733752621 s). Tp = 6.89239397433383 s Sea state 153/200. (Hs, Te) = (3.4483306755718233 m, 5.481984054027074 s). Tp = 6.0664729512650855 s Sea state 154/200. (Hs, Te) = (2.8921184163756575 m, 4.935956882773301 s). Tp = 5.462228387176384 s Sea state 155/200. (Hs, Te) = (2.1073029243263735 m, 4.3654137834767255 s). Tp = 4.830854007881896 s Sea state 156/200. (Hs, Te) = (1.6474602839139243 m, 4.092507633924886 s). Tp = 4.528850616742159 s Sea state 157/200. (Hs, Te) = (1.0572722867269018 m, 3.8421613140275808 s). Tp = 4.2518123832963495 s Sea state 158/200. (Hs, Te) = (0.6406099130872815 m, 3.8713841750793403 s). Tp = 4.284150984500205 s Sea state 159/200. (Hs, Te) = (0.4054145619344566 m, 4.049398568043829 s). Tp = 4.481145264164633 s Sea state 160/200. (Hs, Te) = (0.04052982291891705 m, 4.528167327323754 s). Tp = 5.010960327371321 s Sea state 161/200. (Hs, Te) = (0.9321525156202579 m, 23.34548077630066 s). Tp = 25.83457490352772 s Sea state 162/200. (Hs, Te) = (3.967681748224935 m, 24.333091362041877 s). Tp = 26.92748448621447 s Sea state 163/200. (Hs, Te) = (6.784028064639531 m, 23.110281041500112 s). Tp = 25.57429818341138 s Sea state 164/200. (Hs, Te) = (9.44189240558023 m, 22.593599747148144 s). Tp = 25.002528352321065 s Sea state 165/200. (Hs, Te) = (11.240531608432693 m, 19.575407738491727 s). Tp = 21.662536845270218 s Sea state 166/200. (Hs, Te) = (12.004540248825101 m, 17.882918927035586 s). Tp = 19.789594951636836 s Sea state 167/200. (Hs, Te) = (12.024225448635484 m, 16.671252728627874 s). Tp = 18.448740956776554 s Sea state 168/200. (Hs, Te) = (11.357641718079881 m, 14.223019851712502 s). Tp = 15.739477598869739 s Sea state 169/200. (Hs, Te) = (8.821707924875701 m, 11.009149800345794 s). Tp = 12.18294486485446 s Sea state 170/200. (Hs, Te) = (7.106361798567036 m, 9.224265100430067 s). Tp = 10.207755837222862 s Sea state 171/200. (Hs, Te) = (5.211295520287843 m, 7.015787616178823 s). Tp = 7.7638105813357745 s Sea state 172/200. (Hs, Te) = (4.8195217091534825 m, 6.637986810245572 s). Tp = 7.3457286701932984 s Sea state 173/200. (Hs, Te) = (3.3902610822019144 m, 5.164748265935532 s). Tp = 5.7154134974863275 s Sea state 174/200. (Hs, Te) = (2.6095653202369826 m, 4.621018348933888 s). Tp = 5.113711120796454 s Sea state 175/200. (Hs, Te) = (1.8697727603224317 m, 4.0452987797603335 s). Tp = 4.4766083566357855 s Sea state 176/200. (Hs, Te) = (1.5454032632552606 m, 3.901895461469463 s). Tp = 4.317915382894982 s Sea state 177/200. (Hs, Te) = (1.1162594384590447 m, 3.7807872241095453 s). Tp = 4.1838945906273315 s Sea state 178/200. (Hs, Te) = (0.9028634682006197 m, 3.7222798357613645 s). Tp = 4.119149147122681 s Sea state 179/200. (Hs, Te) = (0.32249025006568055 m, 3.8987959672401518 s). Tp = 4.314485420728108 s Sea state 180/200. (Hs, Te) = (0.3250987448403442 m, 3.9671561761459007 s). Tp = 4.390134192082142 s Sea state 181/200. (Hs, Te) = (1.0306696654071352 m, 23.938975875960722 s). Tp = 26.49134842444872 s Sea state 182/200. (Hs, Te) = (2.603264286267793 m, 25.13838407710226 s). Tp = 27.81863747491678 s Sea state 183/200. (Hs, Te) = (5.858754709021494 m, 25.063693808326345 s). Tp = 27.735983732989357 s Sea state 184/200. (Hs, Te) = (10.155435864907151 m, 23.211633456341872 s). Tp = 25.686456788238267 s Sea state 185/200. (Hs, Te) = (12.361550008947113 m, 20.139407734957956 s). Tp = 22.286670496400152 s Sea state 186/200. (Hs, Te) = (12.732660337947125 m, 18.002340099850258 s). Tp = 19.92174880461209 s Sea state 187/200. (Hs, Te) = (12.471212243449607 m, 16.22100142577672 s). Tp = 17.950483879941046 s Sea state 188/200. (Hs, Te) = (11.30029974478813 m, 13.819219928253016 s). Tp = 15.292624545440956 s Sea state 189/200. (Hs, Te) = (9.231594696755867 m, 11.08794558713383 s). Tp = 12.270141854942771 s Sea state 190/200. (Hs, Te) = (7.4957968275525655 m, 9.146029757697058 s). Tp = 10.121179045709924 s Sea state 191/200. (Hs, Te) = (6.174952841653434 m, 7.83613931929022 s). Tp = 8.67162814672867 s Sea state 192/200. (Hs, Te) = (4.681623492075341 m, 6.339937017001209 s). Tp = 7.01590082118326 s Sea state 193/200. (Hs, Te) = (3.900851734182826 m, 5.570871321782711 s). Tp = 6.164837375575169 s Sea state 194/200. (Hs, Te) = (3.1189685428910567 m, 4.886108588584802 s). Tp = 5.407065270067518 s Sea state 195/200. (Hs, Te) = (1.9193980219283122 m, 3.8820797075687836 s). Tp = 4.295986874190348 s Sea state 196/200. (Hs, Te) = (1.5120152039662609 m, 3.6534201969813007 s). Tp = 4.042947696703235 s Sea state 197/200. (Hs, Te) = (1.0490506632626337 m, 3.48025912982143 s). Tp = 3.8513242042259317 s Sea state 198/200. (Hs, Te) = (0.5803416777834116 m, 3.454649334283839 s). Tp = 3.8229838934214713 s Sea state 199/200. (Hs, Te) = (0.49309280206832695 m, 3.543799112476096 s). Tp = 3.9216388170193093 s Sea state 200/200. (Hs, Te) = (0.08514972661072973 m, 3.7868424627988535 s). Tp = 4.190595438597723 s ###Markdown 3. Long-Term Extreme DistributionFinally we integrate the weighted short-term extreme distributions over the entire sea state space to obtain the extreme distribution, assuming a 3-hour sea state coherence. For this we use the `loads.extreme.full_seastate_long_term_extreme` function.The integral reduces to a sum over the 200 bins of the weighted short-term extreme distributions. ###Code lte = extreme.full_seastate_long_term_extreme(ste_all, sample_weights) ###Output _____no_output_____ ###Markdown Similar to the short-term extreme functions, the output of long-term extreme function is a probability distribution (`scipy.stats.rv_continuous`). This object provides common statistical functions (PDF, CDF, PPF, etc.) and metrics (expected value, median, etc). Here, we will look at the survival function and the 100-year return level. The value of the survival function at a given return level (e.g. 100-years) (`s_t` in the code below) is $1/N$ where $N$ is the number of short-term periods in the return period. In this case $N$ is the number of 3-hour periods in a 100-year period, which gives `s_t`$\approx 3e-6$. The corresponding response, i.e. the 100-year wave elevation in this case, is given as the inverse cumulative function (ppf) of $1-$`s_t`. This gives a 100-year wave of about 10.4 meters. ###Code t_st_hr = t_st/(60.0*60.0) t_return_yr = 100.0 s_t = 1.0/(365.25*24*t_return_yr/t_st_hr) x_t = lte.ppf(1-s_t) print(f"100-year elevation: {x_t} m") ###Output 100-year elevation: 11.139864671857818 m ###Markdown Finally we plot the survival function and show the 100-year return level (dashed grey lines). The 100-year value is about 104 m (where the grey line intersects the x-axis) ###Code x = np.linspace(0, 20, 1000) fig, ax = plt.subplots() # plot survival function ax.semilogy(x, lte.sf(x)) # format plot plt.grid(True, which="major", linestyle=":") ax.tick_params(axis="both", which="major", direction="in") ax.xaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') plt.minorticks_off() ax.set_xticks([0, 5, 10, 15, 20]) ax.set_yticks(1.0*10.0**(-1*np.arange(11))) ax.set_xlabel("elevation [m]") ax.set_ylabel("survival function (1-cdf)") ax.set_xlim([0, x[-1]]) ylim = [1e-10, 1] ax.set_ylim(ylim) # 100-year return level ax.plot([0, x[-1]], [s_t, s_t], '--', color="0.5", linewidth=1) ax.plot([x_t, x_t], ylim, '--', color="0.5", linewidth=1) ###Output _____no_output_____
3_10_Scene_Understanding/CarND-Object-Detection-Lab.ipynb
###Markdown CarND Object Detection LabLet's get started! ###Code HTML(""" <video width="960" height="600" controls> <source src="{0}" type="video/mp4"> </video> """.format('result.mp4')) import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from PIL import Image from PIL import ImageDraw from PIL import ImageColor import time from scipy.stats import norm %matplotlib inline plt.style.use('ggplot') ###Output _____no_output_____ ###Markdown MobileNets[*MobileNets*](https://arxiv.org/abs/1704.04861), as the name suggests, are neural networks constructed for the purpose of running very efficiently (high FPS, low memory footprint) on mobile and embedded devices. *MobileNets* achieve this with 3 techniques:1. Perform a depthwise convolution followed by a 1x1 convolution rather than a standard convolution. The 1x1 convolution is called a pointwise convolution if it's following a depthwise convolution. The combination of a depthwise convolution followed by a pointwise convolution is sometimes called a separable depthwise convolution.2. Use a "width multiplier" - reduces the size of the input/output channels, set to a value between 0 and 1.3. Use a "resolution multiplier" - reduces the size of the original input, set to a value between 0 and 1.These 3 techniques reduce the size of cummulative parameters and therefore the computation required. Of course, generally models with more paramters achieve a higher accuracy. *MobileNets* are no silver bullet, while they perform very well larger models will outperform them. ** *MobileNets* are designed for mobile devices, NOT cloud GPUs**. The reason we're using them in this lab is automotive hardware is closer to mobile or embedded devices than beefy cloud GPUs. Convolutions Vanilla ConvolutionBefore we get into the *MobileNet* convolution block let's take a step back and recall the computational cost of a vanilla convolution. There are $N$ kernels of size $D_k * D_k$. Each of these kernels goes over the entire input which is a $D_f * D_f * M$ sized feature map or tensor (if that makes more sense). The computational cost is:$$D_g * D_g * M * N * D_k * D_k$$Let $D_g * D_g$ be the size of the output feature map. Then a standard convolution takes in a $D_f * D_f * M$ input feature map and returns a $D_g * D_g * N$ feature map as output.(*Note*: In the MobileNets paper, you may notice the above equation for computational cost uses $D_f$ instead of $D_g$. In the paper, they assume the output and input are the same spatial dimensions due to stride of 1 and padding, so doing so does not make a difference, but this would want $D_g$ for different dimensions of input and output.)![Standard Convolution](assets/standard_conv.png) Depthwise ConvolutionA depthwise convolution acts on each input channel separately with a different kernel. $M$ input channels implies there are $M$ $D_k * D_k$ kernels. Also notice this results in $N$ being set to 1. If this doesn't make sense, think about the shape a kernel would have to be to act upon an individual channel.Computation cost:$$D_g * D_g * M * D_k * D_k$$![Depthwise Convolution](assets/depthwise_conv.png) Pointwise ConvolutionA pointwise convolution performs a 1x1 convolution, it's the same as a vanilla convolution except the kernel size is $1 * 1$.Computation cost:$$D_k * D_k * D_g * D_g * M * N =1 * 1 * D_g * D_g * M * N =D_g * D_g * M * N$$![Pointwise Convolution](assets/pointwise_conv.png)Thus the total computation cost is for separable depthwise convolution:$$D_g * D_g * M * D_k * D_k + D_g * D_g * M * N$$which results in $\frac{1}{N} + \frac{1}{D_k^2}$ reduction in computation:$$\frac {D_g * D_g * M * D_k * D_k + D_g * D_g * M * N} {D_g * D_g * M * N * D_k * D_k} = \frac {D_k^2 + N} {D_k^2*N} = \frac {1}{N} + \frac{1}{D_k^2}$$*MobileNets* use a 3x3 kernel, so assuming a large enough $N$, separable depthwise convnets are ~9x more computationally efficient than vanilla convolutions! Width MultiplierThe 2nd technique for reducing the computational cost is the "width multiplier" which is a hyperparameter inhabiting the range [0, 1] denoted here as $\alpha$. $\alpha$ reduces the number of input and output channels proportionally:$$D_f * D_f * \alpha M * D_k * D_k + D_f * D_f * \alpha M * \alpha N$$ Resolution MultiplierThe 3rd technique for reducing the computational cost is the "resolution multiplier" which is a hyperparameter inhabiting the range [0, 1] denoted here as $\rho$. $\rho$ reduces the size of the input feature map:$$\rho D_f * \rho D_f * M * D_k * D_k + \rho D_f * \rho D_f * M * N$$ Combining the width and resolution multipliers results in a computational cost of:$$\rho D_f * \rho D_f * a M * D_k * D_k + \rho D_f * \rho D_f * a M * a N$$Training *MobileNets* with different values of $\alpha$ and $\rho$ will result in different speed vs. accuracy tradeoffs. The folks at Google have run these experiments, the result are shown in the graphic below:![MobileNets Graphic](https://github.com/tensorflow/models/raw/master/research/slim/nets/mobilenet_v1.png) MACs (M) represents the number of multiplication-add operations in the millions. Exercise 1 - Implement Separable Depthwise ConvolutionIn this exercise you'll implement a separable depthwise convolution block and compare the number of parameters to a standard convolution block. For this exercise we'll assume the width and resolution multipliers are set to 1.Docs:* [depthwise convolution](https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d) ###Code def vanilla_conv_block(x, kernel_size, output_channels): """ Vanilla Conv -> Batch Norm -> ReLU """ x = tf.layers.conv2d( x, output_channels, kernel_size, (2, 2), padding='SAME') x = tf.layers.batch_normalization(x) return tf.nn.relu(x) # TODO: implement MobileNet conv block def mobilenet_conv_block(x, kernel_size, output_channels): """ Depthwise Conv -> Batch Norm -> ReLU -> Pointwise Conv -> Batch Norm -> ReLU """ input_shape = x.get_shape() # print(input_shape) channels = int(input_shape[3]) # print(channels) # print(channels.__class__) W = tf.Variable(tf.truncated_normal((kernel_size, kernel_size, channels, 1))) # depthwise conv x = tf.nn.depthwise_conv2d(x, W, (1, 2, 2, 1), padding='SAME') x = tf.layers.batch_normalization(x) x = tf.nn.relu(x) # pointwise conv x = tf.layers.conv2d(x, output_channels, (1, 1), padding='SAME') x = tf.layers.batch_normalization(x) return tf.nn.relu(x) return None ###Output _____no_output_____ ###Markdown **[Sample solution](./exercise-solutions/e1.py)**Let's compare the number of parameters in each block. ###Code # constants but you can change them so I guess they're not so constant :) INPUT_CHANNELS = 32 OUTPUT_CHANNELS = 512 KERNEL_SIZE = 3 IMG_HEIGHT = 256 IMG_WIDTH = 256 with tf.Session(graph=tf.Graph()) as sess: # input x = tf.constant(np.random.randn(1, IMG_HEIGHT, IMG_WIDTH, INPUT_CHANNELS), dtype=tf.float32) with tf.variable_scope('vanilla'): vanilla_conv = vanilla_conv_block(x, KERNEL_SIZE, OUTPUT_CHANNELS) with tf.variable_scope('mobile'): mobilenet_conv = mobilenet_conv_block(x, KERNEL_SIZE, OUTPUT_CHANNELS) vanilla_params = [ (v.name, np.prod(v.get_shape().as_list())) for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'vanilla') ] mobile_params = [ (v.name, np.prod(v.get_shape().as_list())) for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'mobile') ] print("VANILLA CONV BLOCK") total_vanilla_params = sum([p[1] for p in vanilla_params]) for p in vanilla_params: print("Variable {0}: number of params = {1}".format(p[0], p[1])) print("Total number of params =", total_vanilla_params) print() print("MOBILENET CONV BLOCK") total_mobile_params = sum([p[1] for p in mobile_params]) for p in mobile_params: print("Variable {0}: number of params = {1}".format(p[0], p[1])) print("Total number of params =", total_mobile_params) print() print("{0:.3f}x parameter reduction".format(total_vanilla_params / total_mobile_params)) ###Output VANILLA CONV BLOCK Variable vanilla/conv2d/kernel:0: number of params = 147456 Variable vanilla/conv2d/bias:0: number of params = 512 Variable vanilla/batch_normalization/gamma:0: number of params = 512 Variable vanilla/batch_normalization/beta:0: number of params = 512 Total number of params = 148992 MOBILENET CONV BLOCK Variable mobile/Variable:0: number of params = 288 Variable mobile/batch_normalization/gamma:0: number of params = 32 Variable mobile/batch_normalization/beta:0: number of params = 32 Variable mobile/conv2d/kernel:0: number of params = 16384 Variable mobile/conv2d/bias:0: number of params = 512 Variable mobile/batch_normalization_1/gamma:0: number of params = 512 Variable mobile/batch_normalization_1/beta:0: number of params = 512 Total number of params = 18272 8.154x parameter reduction ###Markdown Your solution should show the majority of the parameters in *MobileNet* block stem from the pointwise convolution. *MobileNet* SSDIn this section you'll use a pretrained *MobileNet* [SSD](https://arxiv.org/abs/1512.02325) model to perform object detection. You can download the *MobileNet* SSD and other models from the [TensorFlow detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) (*note*: we'll provide links to specific models further below). [Paper](https://arxiv.org/abs/1611.10012) describing comparing several object detection models.Alright, let's get into SSD! Single Shot Detection (SSD)Many previous works in object detection involve more than one training phase. For example, the [Faster-RCNN](https://arxiv.org/abs/1506.01497) architecture first trains a Region Proposal Network (RPN) which decides which regions of the image are worth drawing a box around. RPN is then merged with a pretrained model for classification (classifies the regions). The image below is an RPN:![Faster-RCNN Visual](./assets/faster-rcnn.png) The SSD architecture is a single convolutional network which learns to predict bounding box locations and classify the locations in one pass. Put differently, SSD can be trained end to end while Faster-RCNN cannot. The SSD architecture consists of a base network followed by several convolutional layers: ![SSD Visual](./assets/ssd_architecture.png)**NOTE:** In this lab the base network is a MobileNet (instead of VGG16.) Detecting BoxesSSD operates on feature maps to predict bounding box locations. Recall a feature map is of size $D_f * D_f * M$. For each feature map location $k$ bounding boxes are predicted. Each bounding box carries with it the following information:* 4 corner bounding box **offset** locations $(cx, cy, w, h)$* $C$ class probabilities $(c_1, c_2, ..., c_p)$SSD **does not** predict the shape of the box, rather just where the box is. The $k$ bounding boxes each have a predetermined shape. This is illustrated in the figure below:![](./assets/ssd_feature_maps.png)The shapes are set prior to actual training. For example, In figure (c) in the above picture there are 4 boxes, meaning $k$ = 4. Exercise 2 - SSD Feature MapsIt would be a good exercise to read the SSD paper prior to a answering the following questions.***Q: Why does SSD use several differently sized feature maps to predict detections?*** A: Your answer hereTo be able to detect objects at different distances (and so different sizes before being classified). The current approach leaves us with thousands of bounding box candidates, clearly the vast majority of them are nonsensical. Exercise 3 - Filtering Bounding Boxes***Q: What are some ways which we can filter nonsensical bounding boxes?*** A: Your answer hereBy calculating the ratio of the intersection over union and so to calculate the likeliness of an error in the detection in case of heavily varying results. LossWith the final set of matched boxes we can compute the loss:$$L = \frac {1} {N} * ( L_{class} + L_{box})$$where $N$ is the total number of matched boxes, $L_{class}$ is a softmax loss for classification, and $L_{box}$ is a L1 smooth loss representing the error of the matched boxes with the ground truth boxes. L1 smooth loss is a modification of L1 loss which is more robust to outliers. In the event $N$ is 0 the loss is set 0. SSD Summary* Starts from a base model pretrained on ImageNet. * The base model is extended by several convolutional layers.* Each feature map is used to predict bounding boxes. Diversity in feature map size allows object detection at different resolutions.* Boxes are filtered by IoU metrics and hard negative mining.* Loss is a combination of classification (softmax) and dectection (smooth L1)* Model can be trained end to end. Object Detection InferenceIn this part of the lab you'll detect objects using pretrained object detection models. You can download the latest pretrained models from the [model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md), although do note that you may need a newer version of TensorFlow (such as v1.8) in order to use the newest models.We are providing the download links for the below noted files to ensure compatibility between the included environment file and the models.[SSD_Mobilenet 11.6.17 version](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_11_06_2017.tar.gz)[RFCN_ResNet101 11.6.17 version](http://download.tensorflow.org/models/object_detection/rfcn_resnet101_coco_11_06_2017.tar.gz)[Faster_RCNN_Inception_ResNet 11.6.17 version](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017.tar.gz)Make sure to extract these files prior to continuing! ###Code # Frozen inference graph files. NOTE: change the path to where you saved the models. SSD_GRAPH_FILE = 'pretrained/ssd_mobilenet_v1_coco_11_06_2017/frozen_inference_graph.pb' RFCN_GRAPH_FILE = 'pretrained/rfcn_resnet101_coco_11_06_2017/frozen_inference_graph.pb' FASTER_RCNN_GRAPH_FILE = 'pretrained/faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017/frozen_inference_graph.pb' ###Output _____no_output_____ ###Markdown Below are utility functions. The main purpose of these is to draw the bounding boxes back onto the original image. ###Code # Colors (one for each class) cmap = ImageColor.colormap print("Number of colors =", len(cmap)) COLOR_LIST = sorted([c for c in cmap.keys()]) # # Utility funcs # def filter_boxes(min_score, boxes, scores, classes): """Return boxes with a confidence >= `min_score`""" n = len(classes) idxs = [] for i in range(n): if scores[i] >= min_score: idxs.append(i) filtered_boxes = boxes[idxs, ...] filtered_scores = scores[idxs, ...] filtered_classes = classes[idxs, ...] return filtered_boxes, filtered_scores, filtered_classes def to_image_coords(boxes, height, width): """ The original box coordinate output is normalized, i.e [0, 1]. This converts it back to the original coordinate based on the image size. """ box_coords = np.zeros_like(boxes) box_coords[:, 0] = boxes[:, 0] * height box_coords[:, 1] = boxes[:, 1] * width box_coords[:, 2] = boxes[:, 2] * height box_coords[:, 3] = boxes[:, 3] * width return box_coords def draw_boxes(image, boxes, classes, thickness=4): """Draw bounding boxes on the image""" draw = ImageDraw.Draw(image) for i in range(len(boxes)): bot, left, top, right = boxes[i, ...] class_id = int(classes[i]) color = COLOR_LIST[class_id] draw.line([(left, top), (left, bot), (right, bot), (right, top), (left, top)], width=thickness, fill=color) def load_graph(graph_file): """Loads a frozen inference graph""" graph = tf.Graph() with graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(graph_file, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') return graph ###Output Number of colors = 148 ###Markdown Below we load the graph and extract the relevant tensors using [`get_tensor_by_name`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). These tensors reflect the input and outputs of the graph, or least the ones we care about for detecting objects. ###Code # detection_graph = load_graph(SSD_GRAPH_FILE) # detection_graph = load_graph(RFCN_GRAPH_FILE) detection_graph = load_graph(FASTER_RCNN_GRAPH_FILE) # The input placeholder for the image. # `get_tensor_by_name` returns the Tensor with the associated name in the Graph. image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') # The classification of the object (integer id). detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') ###Output _____no_output_____ ###Markdown Run detection and classification on a sample image. ###Code # Load a sample image. image = Image.open('./assets/sample1.jpg') image_np = np.expand_dims(np.asarray(image, dtype=np.uint8), 0) with tf.Session(graph=detection_graph) as sess: # Actual detection. (boxes, scores, classes) = sess.run([detection_boxes, detection_scores, detection_classes], feed_dict={image_tensor: image_np}) # Remove unnecessary dimensions boxes = np.squeeze(boxes) scores = np.squeeze(scores) classes = np.squeeze(classes) confidence_cutoff = 0.8 # Filter boxes with a confidence score less than `confidence_cutoff` boxes, scores, classes = filter_boxes(confidence_cutoff, boxes, scores, classes) # The current box coordinates are normalized to a range between 0 and 1. # This converts the coordinates actual location on the image. width, height = image.size box_coords = to_image_coords(boxes, height, width) # Each class with be represented by a differently colored box draw_boxes(image, box_coords, classes) plt.figure(figsize=(12, 8)) plt.imshow(image) ###Output _____no_output_____ ###Markdown Timing DetectionThe model zoo comes with a variety of models, each its benefits and costs. Below you'll time some of these models. The general tradeoff being sacrificing model accuracy for seconds per frame (SPF). ###Code def time_detection(sess, img_height, img_width, runs=10): image_tensor = sess.graph.get_tensor_by_name('image_tensor:0') detection_boxes = sess.graph.get_tensor_by_name('detection_boxes:0') detection_scores = sess.graph.get_tensor_by_name('detection_scores:0') detection_classes = sess.graph.get_tensor_by_name('detection_classes:0') # warmup gen_image = np.uint8(np.random.randn(1, img_height, img_width, 3)) sess.run([detection_boxes, detection_scores, detection_classes], feed_dict={image_tensor: gen_image}) times = np.zeros(runs) for i in range(runs): t0 = time.time() sess.run([detection_boxes, detection_scores, detection_classes], feed_dict={image_tensor: image_np}) t1 = time.time() times[i] = (t1 - t0) * 1000 return times with tf.Session(graph=detection_graph) as sess: times = time_detection(sess, 600, 1000, runs=10) # Create a figure instance fig = plt.figure(1, figsize=(9, 6)) # Create an axes instance ax = fig.add_subplot(111) plt.title("Object Detection Timings") plt.ylabel("Time (ms)") # Create the boxplot plt.style.use('fivethirtyeight') bp = ax.boxplot(times) ###Output _____no_output_____ ###Markdown Exercise 4 - Model TradeoffsDownload a few models from the [model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) and compare the timings. Detection on a VideoFinally run your pipeline on [this short video](https://s3-us-west-1.amazonaws.com/udacity-selfdrivingcar/advanced_deep_learning/driving.mp4). ###Code # Import everything needed to edit/save/watch video clips from moviepy.editor import VideoFileClip from IPython.display import HTML HTML(""" <video width="960" height="600" controls> <source src="{0}" type="video/mp4"> </video> """.format('driving.mp4')) ###Output _____no_output_____ ###Markdown Exercise 5 - Object Detection on a VideoRun an object detection pipeline on the above clip. ###Code clip = VideoFileClip('driving.mp4') # TODO: Complete this function. # The input is an NumPy array. # The output should also be a NumPy array. def pipeline(img): draw_img = Image.fromarray(img) boxes, scores, classes = sess.run([detection_boxes, detection_scores, detection_classes], feed_dict={image_tensor: np.expand_dims(img, 0)}) # Remove unnecessary dimensions boxes = np.squeeze(boxes) scores = np.squeeze(scores) classes = np.squeeze(classes) confidence_cutoff = 0.8 # Filter boxes with a confidence score less than `confidence_cutoff` boxes, scores, classes = filter_boxes(confidence_cutoff, boxes, scores, classes) # The current box coordinates are normalized to a range between 0 and 1. # This converts the coordinates actual location on the image. width, height = draw_img.size box_coords = to_image_coords(boxes, height, width) # Each class with be represented by a differently colored box draw_boxes(draw_img, box_coords, classes) return np.array(draw_img) ###Output _____no_output_____ ###Markdown **[Sample solution](./exercise-solutions/e5.py)** ###Code with tf.Session(graph=detection_graph) as sess: image_tensor = sess.graph.get_tensor_by_name('image_tensor:0') detection_boxes = sess.graph.get_tensor_by_name('detection_boxes:0') detection_scores = sess.graph.get_tensor_by_name('detection_scores:0') detection_classes = sess.graph.get_tensor_by_name('detection_classes:0') new_clip = clip.fl_image(pipeline) # write to file new_clip.write_videofile('result.mp4') HTML(""" <video width="960" height="600" controls> <source src="{0}" type="video/mp4"> </video> """.format('result.mp4')) ###Output _____no_output_____
ICO Data Object Example.ipynb
###Markdown ICO Data object example ###Code import ICO import os import pandas as pd import time ###Output _____no_output_____ ###Markdown The `Data` object is initialized with the path to the directory of .pickle files. On creation it reads in the pickle files, but does not transform the data. ###Code data = ICO.Data(os.getcwd()+'/data/') ###Output _____no_output_____ ###Markdown The `data` object can be accessed like a dictionary to the underlying `Dataframes`. These will be transformed on their first access into a normalized form. (This might take awhile for the first access) ###Code start = time.time() data["all_encounter_data"] print(time.time() - start) data["all_encounter_data"].describe(include='all') data["all_encounter_data"].columns.values data['all_encounter_data'].shape[0] data['all_encounter_data'].to_pickle('all_encounter_data_Dan_20170415.pickle') start = time.time() data["all_person_data"] print(time.time() - start) data["all_person_data"].describe(include='all') data["all_person_data"].columns.values data['all_person_data'].shape[0] data['all_person_data'].to_pickle('all_person_data_Dan_20170415.pickle') ###Output _____no_output_____
02_Python_Datatypes_examples/002_transpose a matrix.ipynb
###Markdown All the IPython Notebooks in this **Python Examples** series by Dr. Milaan Parmar are available @ **[GitHub](https://github.com/milaan9/90_Python_Examples)** Python Program to Transpose a MatrixIn this example, you will learn to transpose a matrix (which is created by using a nested list).To understand this example, you should have the knowledge of the following **[Python programming](https://github.com/milaan9/01_Python_Introduction/blob/main/000_Intro_to_Python.ipynb)** topics:* **[Python for Loop](https://github.com/milaan9/03_Python_Flow_Control/blob/main/005_Python_for_Loop.ipynb)*** **[Python List](https://github.com/milaan9/02_Python_Datatypes/blob/main/003_Python_List.ipynb)** In Python, we can implement a matrix as a nested list (list inside a list). We can treat each element as a row of the matrix.For example **`X = [[1, 2], [4, 5], [3, 6]]`** would represent a 3x2 matrix. The first row can be selected as **`X[0]`**. And, the element in the first-row first column can be selected as **`X[0][0]`**.Transpose of a matrix is the interchanging of rows and columns. It is denoted as **`X'`**. The element at **`ith`** row and **`jth`** column in **`X`** will be placed at **`jth`** row and **`ith`** column in **`X'`**. So if **`X`** is a 3x2 matrix, **`X'`** will be a 2x3 matrix.Here are a couple of ways to accomplish this in Python. ###Code # Example 1: transpose a matrix using a nested loop X = [[12,9], [7 ,3], [5 ,6]] result = [[0,0,0], [0,0,0]] # iterate through rows for i in range(len(X)): # iterate through columns for j in range(len(X[0])): result[j][i] = X[i][j] for r in result: print(r) ''' >>Output/Runtime Test Cases: [12, 7, 5] [9, 3, 6] ''' ###Output [12, 7, 5] [9, 3, 6] ###Markdown **Explanation:** In this program we have used nested **`for`** loops to iterate through each row and each column. At each point we place the **`X[i][j]`** element into **`result[j][i]`**. ###Code # Example 2: transpose a matrix using list comprehension X = [[12,9], [7 ,3], [5 ,6]] result = [[X[j][i] for j in range(len(X))] for i in range(len(X[0]))] for r in result: print(r) ''' >>Output/Runtime Test Cases: [12, 7, 5] [9, 3, 6] ''' ###Output [12, 7, 5] [9, 3, 6]
notebooks/4-WMT.ipynb
###Markdown Example 4Let's use [IPython Notebook](http://ipython.org/notebook.html) to download model output from WMT and examine the results. Set up with `pylab` magic, plus other global imports: ###Code %pylab inline import os ###Output _____no_output_____ ###Markdown Switch to the directory **examples/4-WMT** to use as our working directory: ###Code os.chdir(os.path.join('..', 'examples', '4-WMT')) os.getcwd() ###Output _____no_output_____ ###Markdown The model output is stored as a **tar.gz** file on the CSDMS website. Here's the name and location of the results of the experiment **Multidim Parameter Study MP-2**: ###Code run_id = '0b6296d2-ccdd-4717-b347-96be60bfe8e7' download_file = run_id + '.tar.gz' ###Output _____no_output_____ ###Markdown You can download and unpack the model output with shell commands.Or, here's a pure Python solution: ###Code def wmt_download_and_unpack(download_file): import requests import tarfile download_url = 'http://csdms.colorado.edu/pub/users/wmt/' + download_file r = requests.get(download_url) with open(download_file, 'w') as fp: fp.write(r.content) tar = tarfile.open(download_file) tar.extractall() tar.close() ###Output _____no_output_____ ###Markdown Here's the call (it takes a few seconds): ###Code wmt_download_and_unpack(download_file) ###Output _____no_output_____ ###Markdown Change to the directory containing the unpacked output and get a listing: ###Code os.chdir(run_id) %ls ###Output _____no_output_____ ###Markdown This is the standard WMT packaging for a model run.Change to the parameter study directory: ###Code os.chdir('multidim_parameter_study') ###Output _____no_output_____ ###Markdown Read the Dakota tabular data file: ###Code data = numpy.loadtxt('dakota.dat', skiprows=1, unpack=True, usecols=[0,2,3,4]) data.shape ###Output _____no_output_____ ###Markdown Reshape the variables from the data file to set up a surface plot: ###Code m = len(set(data[1,])) n = len(set(data[2,])) T2 = data[1,].reshape(n,m) P2 = data[2,].reshape(n,m) Qs2 = data[3,].reshape(n,m) ###Output _____no_output_____ ###Markdown Make a surface plot with `Axes3D.plot_surface`: ###Code from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = Axes3D(fig) ax.plot_surface(T2, P2, Qs2, rstride=2, cstride=2) ax.view_init(elev=30, azim=-75) ax.set_xlabel('$T \,(^\circ C)$') ax.set_ylabel('$P \,(m)$') ax.set_zlabel('$Q_s \,(kg \, s^{-1})$') ###Output _____no_output_____