path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
2. Numpy/1. La base de NumPy - ndarray.ipynb
###Markdown La base de NumPy - ndarray Toda la libería de NumPy se articula alrededor de una única estructura de datos: la matriz multidimensional o ndarray (N-dimensional array). Características básicas de ndarray Un ndarray puede contener elementos de CUALQUIER TIPOTodos los elementos de un ndarray deben tener EL MISMO TIPO.El tamaño de un ndarray (número de elementos) se define en el momento de la creación y no puede modificarse.Pero la organización de esos elementos entre diferentes dimensiones sí puede modificarse Uso básico de cualquier elemento de NumPy Hay que recordar que NumPy no es un módulo del core de Python por lo que SIEMPRE habrá que importarlo de forma completa o componente a componente. ###Code import numpy as np ###Output _____no_output_____ ###Markdown Creación básica de ndarrays Existen varias formas de crear un ndarray en NumPy. Vamos a ver las más relevantes. Creación de un ndarray vacío ###Code # Especificando dimensiones array_vacio = np.empty((3, 2), dtype= np.unicode) array_vacio # Copiando dimensiones y tipo desde otra estructura array_vacio_copia = np.empty_like([1, 2, 3, 4, 5]) array_vacio_copia ###Output _____no_output_____ ###Markdown Creación de un ndarray de unos ###Code # Especificando dimensiones array_unos = np.ones((3, 2)) array_unos # Copiando dimensiones y tipo desde otra estructura array_unos_copia = np.ones_like([1, 2, 3, 4, 5]) array_unos_copia ###Output _____no_output_____ ###Markdown Creación de un ndarray de ceros ###Code # Especificando dimensiones array_ceros = np.zeros((3, 2)) array_ceros # Copiando dimensiones y tipo desde otra estructura array_ceros_copia = np.zeros_like([1, 2, 3, 4, 5]) array_ceros_copia ###Output _____no_output_____ ###Markdown Creación de un ndarray con la matriz identidad ###Code array_identidad = np.identity(3) array_identidad ###Output _____no_output_____ ###Markdown Creación de un ndarray con unos en una de las diagonales ###Code # Cuadrada con unos en la diagonal principal array_identidad = np.eye(4) array_identidad # Cuadrada con unos en la diagonal especificada array_con_segunda_diagonal = np.eye(4, k = 1) array_con_segunda_diagonal # No cuadrada con unos en la diagonal especificada array_no_cuadrado = np.eye(4, 3, k = -1) array_no_cuadrado ###Output _____no_output_____ ###Markdown Creación de un ndarray cuyos elementos son una secuencia numérica ###Code # Un parámetro: desde 0 (incluido) hasta el valor indicado (no incluido) array_secuencia_1 = np.arange(10) array_secuencia_1 # Dos parámetros: desde el primer valor (incluido) hasta el segundo valor (no incluido) array_secuencia_2 = np.arange(5, 10) array_secuencia_2 # Tres parámetros: desde el primer valor (incluido) hasta el segundo (no incluido) con saltos del tercer valor array_secuencia_3 = np.arange(5, 20, 2) array_secuencia_3 ###Output _____no_output_____ ###Markdown Creación de un ndarray a partir de una secuencia básica de Python ###Code # Unidimensional array_basico = np.array([1, 2, 3, 4, 5]) type(array_basico) # Multidimensional array_basico_multidimensional = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) array_basico_multidimensional ###Output _____no_output_____ ###Markdown Tipos de dato en ndarrays de NumPy Enteros con signo: np.int8, np.int16, np.int32 y np.int64Enteros sin signo: np.uint8, np.uint16, np.uint32 y np.uint64Números en coma flotante: np.float16, np.float32, np.float64, np.float128Booleanos: np.boolObjetos: np.objectCadenas de caracteres: np.string\_, np.unicode\_... Especificación/Casting/Conversión de tipos entre ndarrays ###Code array_inicial_enteros = np.array([1, 2, 3, 4, 5], dtype=np.int32) array_inicial_enteros array_float = np.asarray(array_inicial_enteros, dtype=np.float64) array_float array_strings = np.asarray(array_float, dtype=np.unicode_) array_strings ###Output _____no_output_____ ###Markdown Consulta de la composición de un ndarray dtype: Tipo del contenido del ndarray.ndim: Número de dimensiones/ejes del ndarray.shape: Estructura/forma del ndarray, es decir, número de elementos en cada uno de los ejes/dimensiones.size: Número total de elementos en el ndarray. ###Code array = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) # Tipo de dato (único) array.dtype # Número de dimensiones array.ndim # Forma/Dimensiones array.shape # Número total de elementos array.size ###Output _____no_output_____ ###Markdown Operaciones aritméticas entre ndarrays y escalares ###Code array = np.array([1, 2, 3, 4, 5, 6], dtype=np.float64) # Suma array + 5 # Resta array - 2 # Multiplicación array * 3 # División 1 / array # División entera array // 2 # Potencia array ** 2 # Asignación con operador array += 1 array ###Output _____no_output_____ ###Markdown Operaciones aritméticas entre ndarrays IMPORTANTE: Los dos términos de la operación tienen que ser ndarrays de las mismas dimensiones y forma. Se aplica la operación elemento a elemento. ###Code array = np.array([1, 2, 3, 4, 5, 6], dtype=np.float64) # Suma (elemento a elmento) array + array # Resta (elemento a elmento) array - array # Multiplicación (elemento a elmento) array * array # División (elemento a elmento) array / array # Asignación con operador array += array array # Suma de ndarrays de distinto tamaño array1 = np.array([1, 2,3 ,4, 5]) array + array1 ###Output _____no_output_____ ###Markdown Indexación y slicing básico En ndarrays unidimensionales el funcionamiento es idéntico al que se tiene en secuencias básicas de Python. Es decir, se utiliza la indexación [a:b:c]. ###Code array = np.arange(1, 11) # Indexación con primer parámetro array[2] # Indexación con primer y segundo parámetro array[2:5] # Indexación con tercer parámetro array[::2] # Indexación con negativos array[::-1] ###Output _____no_output_____ ###Markdown En ndarrays multidimensionales, existen dos posibles formas de realizar el acceso:Mediante indexación recursiva: array[a:b:c en dim_1][a:b:c en dim_2]...[a:b:c en dim_n]Mediante indexación con comas: array[a:b:c en dim_1, a:b:c en dim_2, ...a:b:c en dim_n] ###Code array = np.array([[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]]]) array # Forma de la matriz array.shape # Indexación recursiva primer nivel array[1] # Indexación recursiva segundo nivel array[1][0] # Indexación recursiva tercer nivel array[1][0][3] # Indexación con comas segundo nivel array[1, 0] # Indexación con comas tercer nivel array[1, 0, 3] # Indexación recursiva tercer nivel con slice array[0][0][:2] # Indexación recursiva tercer nivel con slice de índice negativo array[1][0][::-1] ###Output _____no_output_____ ###Markdown Del mismo modo a como ocurre en Python básico, se puede utilizar la indexación/slicing para modificar secciones del contenido de un ndarray. ###Code array = np.array([[1, 2, 3, 4],[5, 6, 7, 8]]) # Modificación de una posición array[0][1] = 50 array # Modificación de un slice array[0][::2] = 30 array ###Output _____no_output_____ ###Markdown Indexación y slicing booleano ###Code personas = np.array(['Miguel', 'Pedro', 'Juan', 'Miguel']) personas datos = np.random.randn(4, 4) datos # Indexación/slicing booleano sobre valores datos[datos < 0] # Máscara booleana personas == 'Miguel' # Indexación/slicing mediante máscara datos[personas == 'Miguel'] # Indexación/slicing mediante máscara y básico combinado datos[personas == 'Miguel', ::2] # Indexación/slicing mediante máscara negativo por operador datos[personas != 'Miguel'] # Indexación/slicing mediante máscara negativa por signo datos[~(personas == 'Miguel')] ###Output _____no_output_____ ###Markdown De nuevo, podemos utilizar indexación/slicing booleano para realizar modificaciones sobre el contenido de un ndarray. ###Code array = np.random.randn(7, 4) array # Eliminación de valores negativos mediante slicing array[array < 0] = 0 array ###Output _____no_output_____ ###Markdown Indexación y slicing basado en secuencias de enteros - Fancy indexing ###Code array = np.empty((8, 4)) for i in range(8): array[i] = i array # Indexación/slicing de un conjunto (arbitrario) de elementos array[[2, 5]] # Indexación/slicing de un conjunto (arbitrario) de elementos (índices negativos) array[[-2, -5]] ###Output _____no_output_____ ###Markdown También podemos indexar de manera arbitraria en múltiples dimensiones, utilizando para ello, una secuencia de enteros por cada dimensión. El resultado será la combinación de secuencias. ###Code array = np.arange(32).reshape((8, 4)) array # Indexación/slicing con una secuencia de varios niveles (elemento a elemento) array[[1, 5, 7, 2], [0, 3, 1, 2]] # Indexación/slicing con una secuencia de varios niveles (región resultante) array[[1, 5, 7, 2]][:, [0, 3, 1, 2]] ###Output _____no_output_____ ###Markdown Trasposición y modificación de ejes/dimensiones ###Code array = np.arange(15) array # Modificación de ejes/dimensiones array2 = array.reshape(3, 5) array2 # Trasposición de ejes/dimensiones" array2.T ###Output _____no_output_____ ###Markdown Concatenación de ndarrays NumPy ofrece la posibilidad de combinar ndarrays de dos formas posibles:hstack, column_stack: Los elementos del segundo array se añaden a los del primero a lo ancho.vstack, row_stack: Los elementos del segundo array se añaden a los del primero a lo largo. ###Code array1 = np.arange(15).reshape(3, 5) array1 array2 = np.arange(15, 30).reshape(3, 5) array2 # Concatenación horizontal np.hstack((array1, array2)) # Concatenación vertical np.vstack((array1, array2)) ###Output _____no_output_____ ###Markdown División de ndarrays Al igual que para la concatenación, NumPy permite dividir los ndarray de tres formas distintas:hsplit: División de arrays en n partes "iguales" por columnas.vsplit: División de arrays en n partes "iguales" por filas.split: División de arrays en n partes no simétricas. ###Code array = np.arange(16).reshape(4, 4) array # División simétrica por columnas np.hsplit(array, 2) # División simétrica por filas np.vsplit(array, 2) # División no simétrica np.split(array, [1, 3], axis=1) ###Output _____no_output_____ ###Markdown **Axis**Valor 0: Aplicará la función por columnasValor 1: Aplicará la función por filas ###Code array.sum(axis=0) ###Output _____no_output_____
01-Python-Crash-Course/.ipynb_checkpoints/Python Crash Course Exercises - Solutions-checkpoint.ipynb
###Markdown Python Crash Course Exercises - SolutionsThis is an optional exercise to test your understanding of Python Basics. The questions tend to have a financial theme to them, but don't look to deeply into these tasks themselves, many of them don't hold any significance and are meaningless. If you find this extremely challenging, then you probably are not ready for the rest of this course yet and don't have enough programming experience to continue. I would suggest you take another course more geared towards complete beginners, such as [Complete Python Bootcamp]() ExercisesAnswer the questions or complete the tasks outlined in bold below, use the specific method described if applicable. Task 1Given price = 300 , use python to figure out the square root of the price. ###Code price = 300 price**0.5 import math math.sqrt(price) ###Output _____no_output_____ ###Markdown Task 2Given the string: stock_index = "SP500" Grab '500' from the string using indexing. ###Code stock_index = "SP500" stock_index[2:] ###Output _____no_output_____ ###Markdown Task 3** Given the variables:** stock_index = "SP500" price = 300** Use .format() to print the following string: ** The SP500 is at 300 today. ###Code stock_index = "SP500" price = 300 print("The {} is at {} today.".format(stock_index,price)) ###Output The SP500 is at 300 today. ###Markdown Task 4** Given the variable of a nested dictionary with nested lists: ** stock_info = {'sp500':{'today':300,'yesterday': 250}, 'info':['Time',[24,7,365]]} ** Use indexing and key calls to grab the following items:*** Yesterday's SP500 price (250)* The number 365 nested inside a list nested inside the 'info' key. ###Code stock_info = {'sp500':{'today':300,'yesterday': 250}, 'info':['Time',[24,7,365]]} stock_info['sp500']['yesterday'] stock_info['info'][1][2] ###Output _____no_output_____ ###Markdown Task 5** Given strings with this form where the last source value is always separated by two dashes -- ** "PRICE:345.324:SOURCE--QUANDL" **Create a function called source_finder() that returns the source. For example, the above string passed into the function would return "QUANDL"** ###Code def source_finder(s): return s.split('--')[-1] source_finder("PRICE:345.324:SOURCE--QUANDL") ###Output _____no_output_____ ###Markdown Task 5** Create a function called price_finder that returns True if the word 'price' is in a string. Your function should work even if 'Price' is capitalized or next to punctuation ('price!') ** ###Code def price_finder(s): return 'price' in s.lower() price_finder("What is the price?") price_finder("DUDE, WHAT IS PRICE!!!") price_finder("The price is 300") ###Output _____no_output_____ ###Markdown Task 6** Create a function called count_price() that counts the number of times the word "price" occurs in a string. Account for capitalization and if the word price is next to punctuation. ** ###Code def count_price(s): count = 0 for word in s.lower().split(): # Need to use in, can't use == or will get error with punctuation if 'price' in word: count += 1 # Note the indentation! return count # Simpler Alternative def count_price(s): return s.lower().count('price') s = 'Wow that is a nice price, very nice Price! I said price 3 times.' count_price(s) ###Output _____no_output_____ ###Markdown Task 7**Create a function called avg_price that takes in a list of stock price numbers and calculates the average (Sum of the numbers divided by the number of elements in the list). It should return a float. ** ###Code def avg_price(stocks): return sum(stocks)/len(stocks) # Python 2 users should multiply numerator by 1.0 avg_price([3,4,5]) ###Output _____no_output_____
v4_MedFlask_Code_from_v7_Super_Compact_Fast_Basilica_Model_for_Text_Input_M_Cabinet_3_Colab.ipynb
###Markdown Version where everything happens in one "predict" function ###Code def predict(user_input): # Part 1 # a function to calculate_user_text_embedding # to save the embedding value in session memory user_input_embedding = 0 def calculate_user_text_embedding(input, user_input_embedding): # setting a string of two sentences for the algo to compare sentences = [input] # calculating embedding for both user_entered_text and for features with basilica.Connection('36a370e3-becb-99f5-93a0-a92344e78eab') as c: user_input_embedding = list(c.embed_sentences(sentences)) return user_input_embedding # run the function to save the embedding value in session memory user_input_embedding = calculate_user_text_embedding(user_input, user_input_embedding) # part 2 score = 0 def score_user_input_from_stored_embedding_from_stored_values(input, score, row1, user_input_embedding): # obtains pre-calculated values from a pickled dataframe of arrays embedding_stored = unpickled_df_test.loc[row1, 0] # calculates the similarity of user_text vs. product description score = 1 - spatial.distance.cosine(embedding_stored, user_input_embedding) # returns a variable that can be used outside of the function return score # Part 3 for i in range(2351): # calls the function to set the value of 'score' # which is the score of the user input score = score_user_input_from_stored_embedding_from_stored_values(user_input, score, i, user_input_embedding) #stores the score in the dataframe df.loc[i,'score'] = score # Part 4 output = df['Strain'].groupby(df['score']).value_counts().nlargest(5, keep='last') output_string = str(output) # Part 5: the output return output_string predict(user_input) ###Output _____no_output_____ ###Markdown Super-inclusive function version3 cells, two steps1. user_input = "user med description"2. predict(user_input) ###Code # user input user_input = "text, Relaxed, Violet, Aroused, Creative, Happy, Energetic, Flowery, Diesel" def predict(user_input): # install basilica !pip install basilica import basilica import numpy as np import pandas as pd from scipy import spatial # get data !wget https://raw.githubusercontent.com/MedCabinet/ML_Machine_Learning_Files/master/med1.csv # turn data into dataframe df = pd.read_csv('med1.csv') # get pickled trained embeddings for med cultivars !wget https://github.com/lineality/4.4_Build_files/raw/master/medembedv2.pkl #unpickling file of embedded cultivar descriptions unpickled_df_test = pd.read_pickle("./medembedv2.pkl") # Part 1 # maybe make a function to perform the last few steps # a function to calculate_user_text_embedding # to save the embedding value in session memory user_input_embedding = 0 def calculate_user_text_embedding(input, user_input_embedding): # setting a string of two sentences for the algo to compare sentences = [input] # calculating embedding for both user_entered_text and for features with basilica.Connection('36a370e3-becb-99f5-93a0-a92344e78eab') as c: user_input_embedding = list(c.embed_sentences(sentences)) return user_input_embedding # run the function to save the embedding value in session memory user_input_embedding = calculate_user_text_embedding(user_input, user_input_embedding) # part 2 score = 0 def score_user_input_from_stored_embedding_from_stored_values(input, score, row1, user_input_embedding): # obtains pre-calculated values from a pickled dataframe of arrays embedding_stored = unpickled_df_test.loc[row1, 0] # calculates the similarity of user_text vs. product description score = 1 - spatial.distance.cosine(embedding_stored, user_input_embedding) # returns a variable that can be used outside of the function return score # Part 3 for i in range(2351): # calls the function to set the value of 'score' # which is the score of the user input score = score_user_input_from_stored_embedding_from_stored_values(user_input, score, i, user_input_embedding) #stores the score in the dataframe df.loc[i,'score'] = score # Part 4 output = df['Strain'].groupby(df['score']).value_counts().nlargest(5, keep='last') output_string = str(output) # Part 5: output return output_string predict(user_input) ###Output Requirement already satisfied: basilica in /usr/local/lib/python3.6/dist-packages (0.2.8) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from basilica) (1.12.0) Requirement already satisfied: Pillow in /usr/local/lib/python3.6/dist-packages (from basilica) (4.3.0) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from basilica) (2.21.0) Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from Pillow->basilica) (0.46) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->basilica) (1.24.3) Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->basilica) (2.8) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->basilica) (2019.11.28) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->basilica) (3.0.4) --2020-01-05 17:45:04-- https://raw.githubusercontent.com/MedCabinet/ML_Machine_Learning_Files/master/med1.csv Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 1267451 (1.2M) [text/plain] Saving to: ‘med1.csv.1’ med1.csv.1 100%[===================>] 1.21M --.-KB/s in 0.06s 2020-01-05 17:45:04 (19.7 MB/s) - ‘med1.csv.1’ saved [1267451/1267451] --2020-01-05 17:45:05-- https://github.com/lineality/4.4_Build_files/raw/master/medembedv2.pkl Resolving github.com (github.com)... 192.30.253.112 Connecting to github.com (github.com)|192.30.253.112|:443... connected. HTTP request sent, awaiting response... 302 Found Location: https://raw.githubusercontent.com/lineality/4.4_Build_files/master/medembedv2.pkl [following] --2020-01-05 17:45:05-- https://raw.githubusercontent.com/lineality/4.4_Build_files/master/medembedv2.pkl Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 16288303 (16M) [application/octet-stream] Saving to: ‘medembedv2.pkl.1’ medembedv2.pkl.1 100%[===================>] 15.53M --.-KB/s in 0.1s 2020-01-05 17:45:05 (108 MB/s) - ‘medembedv2.pkl.1’ saved [16288303/16288303] ###Markdown one-cell version ###Code # user input user_input = "text, Relaxed, Violet, Aroused, Creative, Happy, Energetic, Flowery, Diesel" # ominbus function def predict(user_input): # install basilica !pip install basilica import basilica import numpy as np import pandas as pd from scipy import spatial # get data !wget https://raw.githubusercontent.com/MedCabinet/ML_Machine_Learning_Files/master/med1.csv # turn data into dataframe df = pd.read_csv('med1.csv') # get pickled trained embeddings for med cultivars !wget https://github.com/lineality/4.4_Build_files/raw/master/medembedv2.pkl #unpickling file of embedded cultivar descriptions unpickled_df_test = pd.read_pickle("./medembedv2.pkl") # Part 1 # maybe make a function to perform the last few steps # a function to calculate_user_text_embedding # to save the embedding value in session memory user_input_embedding = 0 def calculate_user_text_embedding(input, user_input_embedding): # setting a string of two sentences for the algo to compare sentences = [input] # calculating embedding for both user_entered_text and for features with basilica.Connection('36a370e3-becb-99f5-93a0-a92344e78eab') as c: user_input_embedding = list(c.embed_sentences(sentences)) return user_input_embedding # run the function to save the embedding value in session memory user_input_embedding = calculate_user_text_embedding(user_input, user_input_embedding) # part 2 score = 0 def score_user_input_from_stored_embedding_from_stored_values(input, score, row1, user_input_embedding): # obtains pre-calculated values from a pickled dataframe of arrays embedding_stored = unpickled_df_test.loc[row1, 0] # calculates the similarity of user_text vs. product description score = 1 - spatial.distance.cosine(embedding_stored, user_input_embedding) # returns a variable that can be used outside of the function return score # Part 3 for i in range(2351): # calls the function to set the value of 'score' # which is the score of the user input score = score_user_input_from_stored_embedding_from_stored_values(user_input, score, i, user_input_embedding) #stores the score in the dataframe df.loc[i,'score'] = score # Part 4 output = df['Strain'].groupby(df['score']).value_counts().nlargest(5, keep='last') output_string = str(output) # Part 5: output return output_string predict(user_input) # user input user_input = "text, Relaxed, Violet, Aroused, Creative, Happy, Energetic, Flowery, Diesel" # ominbus function def predict(user_input): # install basilica #!pip install basilica import basilica import numpy as np import pandas as pd from scipy import spatial # get data #!wget https://raw.githubusercontent.com/MedCabinet/ML_Machine_Learning_Files/master/med1.csv # turn data into dataframe df = pd.read_csv('med1.csv') # get pickled trained embeddings for med cultivars #!wget https://github.com/lineality/4.4_Build_files/raw/master/medembedv2.pkl #unpickling file of embedded cultivar descriptions unpickled_df_test = pd.read_pickle("./medembedv2.pkl") # Part 1 # maybe make a function to perform the last few steps # a function to calculate_user_text_embedding # to save the embedding value in session memory user_input_embedding = 0 def calculate_user_text_embedding(input, user_input_embedding): # setting a string of two sentences for the algo to compare sentences = [input] # calculating embedding for both user_entered_text and for features with basilica.Connection('36a370e3-becb-99f5-93a0-a92344e78eab') as c: user_input_embedding = list(c.embed_sentences(sentences)) return user_input_embedding # run the function to save the embedding value in session memory user_input_embedding = calculate_user_text_embedding(user_input, user_input_embedding) # part 2 score = 0 def score_user_input_from_stored_embedding_from_stored_values(input, score, row1, user_input_embedding): # obtains pre-calculated values from a pickled dataframe of arrays embedding_stored = unpickled_df_test.loc[row1, 0] # calculates the similarity of user_text vs. product description score = 1 - spatial.distance.cosine(embedding_stored, user_input_embedding) # returns a variable that can be used outside of the function return score # Part 3 for i in range(2351): # calls the function to set the value of 'score' # which is the score of the user input score = score_user_input_from_stored_embedding_from_stored_values(user_input, score, i, user_input_embedding) #stores the score in the dataframe df.loc[i,'score'] = score # Part 4 output = df['Strain'].groupby(df['score']).value_counts().nlargest(5, keep='last') #print(output) #print(output[1:]) output_string = str(output) #print(type(output)) #print(output.shape) #print(output_string) import re output_regex = re.sub(r'[^a-zA-Z ]', '', output_string) print(output_regex) output_string_clipped = output_regex[26:-27] print(output_string_clipped) # Part 5: output return output_string_clipped predict(user_input) # this next version fixes the incorrect first listed prediction (why was it showing that?) # user input user_input = "text, Relaxed, Violet, Aroused, Creative, Happy, Energetic, Flowery, Diesel" # ominbus function def predict(user_input): # install basilica #!pip install basilica import basilica import numpy as np import pandas as pd from scipy import spatial # get data #!wget https://raw.githubusercontent.com/MedCabinet/ML_Machine_Learning_Files/master/med1.csv # turn data into dataframe df = pd.read_csv('med1.csv') # get pickled trained embeddings for med cultivars #!wget https://github.com/lineality/4.4_Build_files/raw/master/medembedv2.pkl #unpickling file of embedded cultivar descriptions unpickled_df_test = pd.read_pickle("./medembedv2.pkl") # Part 1 # maybe make a function to perform the last few steps # a function to calculate_user_text_embedding # to save the embedding value in session memory user_input_embedding = 0 def calculate_user_text_embedding(input, user_input_embedding): # setting a string of two sentences for the algo to compare sentences = [input] # calculating embedding for both user_entered_text and for features with basilica.Connection('36a370e3-becb-99f5-93a0-a92344e78eab') as c: user_input_embedding = list(c.embed_sentences(sentences)) return user_input_embedding # run the function to save the embedding value in session memory user_input_embedding = calculate_user_text_embedding(user_input, user_input_embedding) # part 2 score = 0 def score_user_input_from_stored_embedding_from_stored_values(input, score, row1, user_input_embedding): # obtains pre-calculated values from a pickled dataframe of arrays embedding_stored = unpickled_df_test.loc[row1, 0] # calculates the similarity of user_text vs. product description score = 1 - spatial.distance.cosine(embedding_stored, user_input_embedding) # returns a variable that can be used outside of the function return score # Part 3 for i in range(2351): # calls the function to set the value of 'score' # which is the score of the user input score = score_user_input_from_stored_embedding_from_stored_values(user_input, score, i, user_input_embedding) #stores the score in the dataframe df.loc[i,'score'] = score # Part 4 output = df['Strain'].groupby(df['score']).value_counts().nlargest(6, keep='last') #print(output) output_string = str(output) #print(output_string) import re output_regex = re.sub(r'[^a-zA-Z ]', '', output_string) output_string_clipped = output_regex[39:-28] # Part 5: output return output_string_clipped predict(user_input) 'score Strain \n0.905756 B-Witched # user input user_input = "text, Relaxed, Violet, Aroused, Creative, Happy, Energetic, Flowery, Diesel" # ominbus function def predict(user_input): # install basilica #!pip install basilica import basilica import numpy as np import pandas as pd from scipy import spatial # get data #!wget https://raw.githubusercontent.com/MedCabinet/ML_Machine_Learning_Files/master/med1.csv # turn data into dataframe df = pd.read_csv('med1.csv') # get pickled trained embeddings for med cultivars #!wget https://github.com/lineality/4.4_Build_files/raw/master/medembedv2.pkl #unpickling file of embedded cultivar descriptions unpickled_df_test = pd.read_pickle("./medembedv2.pkl") # Part 1 # maybe make a function to perform the last few steps # a function to calculate_user_text_embedding # to save the embedding value in session memory user_input_embedding = 0 def calculate_user_text_embedding(input, user_input_embedding): # setting a string of two sentences for the algo to compare sentences = [input] # calculating embedding for both user_entered_text and for features with basilica.Connection('36a370e3-becb-99f5-93a0-a92344e78eab') as c: user_input_embedding = list(c.embed_sentences(sentences)) return user_input_embedding # run the function to save the embedding value in session memory user_input_embedding = calculate_user_text_embedding(user_input, user_input_embedding) # part 2 score = 0 def score_user_input_from_stored_embedding_from_stored_values(input, score, row1, user_input_embedding): # obtains pre-calculated values from a pickled dataframe of arrays embedding_stored = unpickled_df_test.loc[row1, 0] # calculates the similarity of user_text vs. product description score = 1 - spatial.distance.cosine(embedding_stored, user_input_embedding) # returns a variable that can be used outside of the function return score # Part 3 for i in range(2351): # calls the function to set the value of 'score' # which is the score of the user input score = score_user_input_from_stored_embedding_from_stored_values(user_input, score, i, user_input_embedding) #stores the score in the dataframe df.loc[i,'score'] = score # Part 4 output = df['Strain'].groupby(df['score']).value_counts().nlargest(6, keep='last') #print(output) #print(output[1:]) output_string = str(output) #print(type(output)) #print(output.shape) #print(output_string) import re output_regex = re.sub(r'[^a-zA-Z ^0-9 ^.]', '', output_string) #print(output_regex) output_string_clipped = output_regex[50:-28] #print(output_string_clipped) # Part 5: output return output_string_clipped predict(user_input) 'score Strain 0.905756 BWitched ###Output _____no_output_____
Create_Dataset_Devel.ipynb
###Markdown Train data ###Code dataset_name = 'reuters' data_dir = os.path.join('../VDSH/dataset/', dataset_name) fn = 'train.NN.pkl' train_df = pd.read_pickle(os.path.join(data_dir, fn)) num_trains = len(train_df) bows_mat = sparse.vstack(list(train_df.bow)) if dataset_name in ['ng20']: # convert the label to a sparse matrix labels = list(train_df.label) num_labels = (np.max(labels) - np.min(labels)) + 1 one_hot_mat = np.eye(num_labels, dtype=int) label_mat = sparse.csr_matrix(one_hot_mat[labels]) else: label_mat = sparse.vstack(list(train_df.label)) num_labels = label_mat.shape[1] dist = cosine_similarity(bows_mat, bows_mat) indices = np.argsort(-dist, axis=1) docid2index = {docid: index for index, docid in enumerate(list(train_df.index))} index2docid = {index: docid for index, docid in enumerate(list(train_df.index))} import functools top_nn = list(map(lambda v: index2docid[v], indices.reshape(-1))) top_nn = np.array(top_nn).reshape(num_trains, num_trains) assert(np.all([v in train_df.index for v in top_nn[:, 0]])) # makesure all docid does exist in the train_df data = {'doc_id': list(train_df.index), 'bow': list(train_df.bow), 'label': [arr for arr in label_mat], 'neighbors': [list(arr) for arr in top_nn[:, 1:101]]} new_df = pd.DataFrame.from_dict(data) new_df.set_index('doc_id', inplace=True) new_df.to_pickle('dataset/clean/{}/{}.train.pkl'.format(dataset_name, dataset_name)) ###Output _____no_output_____ ###Markdown Test data ###Code data_dir = '../VDSH/dataset/{}'.format(dataset_name) fn = 'test.NN.pkl' test_df = pd.read_pickle(os.path.join(data_dir, fn)) num_tests = len(test_df) test_bows_mat = sparse.vstack(list(test_df.bow)) if dataset_name in ['ng20']: # convert the label to a sparse matrix labels = list(test_df.label) label_mat = sparse.csr_matrix(one_hot_mat[labels]) else: label_mat = sparse.vstack(list(test_df.label)) dist = cosine_similarity(test_bows_mat, bows_mat) indices = np.argsort(-dist, axis=1) top_nn = list(map(lambda v: index2docid[v], indices.reshape(-1))) top_nn = np.array(top_nn).reshape(num_tests, num_trains) data = {'doc_id': list(test_df.index), 'bow': list(test_df.bow), 'label': [arr for arr in label_mat], 'neighbors': [list(arr) for arr in top_nn[:, :100]]} new_df = pd.DataFrame.from_dict(data) new_df.set_index('doc_id', inplace=True) new_df.to_pickle('dataset/clean/{}/{}.test.pkl'.format(dataset_name, dataset_name)) ###Output _____no_output_____
Troubleshooting-Notebooks/Big-Data-Clusters/CU4/Public/content/notebook-runner/run505a-sample-notebook.ipynb
###Markdown RUN505a - Sample - Demo expert rules====================================Description----------- Common functionsDefine helper functions used in this notebook. ###Code # Define `run` function for transient fault handling, hyperlinked suggestions, and scrolling updates on Windows import sys import os import re import json import platform import shlex import shutil import datetime from subprocess import Popen, PIPE from IPython.display import Markdown retry_hints = {} # Output in stderr known to be transient, therefore automatically retry error_hints = {} # Output in stderr where a known SOP/TSG exists which will be HINTed for further help install_hint = {} # The SOP to help install the executable if it cannot be found first_run = True rules = None debug_logging = False def run(cmd, return_output=False, no_output=False, retry_count=0): """Run shell command, stream stdout, print stderr and optionally return output NOTES: 1. Commands that need this kind of ' quoting on Windows e.g.: kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='data-pool')].metadata.name} Need to actually pass in as '"': kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='"'data-pool'"')].metadata.name} The ' quote approach, although correct when pasting into Windows cmd, will hang at the line: `iter(p.stdout.readline, b'')` The shlex.split call does the right thing for each platform, just use the '"' pattern for a ' """ MAX_RETRIES = 5 output = "" retry = False global first_run global rules if first_run: first_run = False rules = load_rules() # When running `azdata sql query` on Windows, replace any \n in """ strings, with " ", otherwise we see: # # ('HY090', '[HY090] [Microsoft][ODBC Driver Manager] Invalid string or buffer length (0) (SQLExecDirectW)') # if platform.system() == "Windows" and cmd.startswith("azdata sql query"): cmd = cmd.replace("\n", " ") # shlex.split is required on bash and for Windows paths with spaces # cmd_actual = shlex.split(cmd) # Store this (i.e. kubectl, python etc.) to support binary context aware error_hints and retries # user_provided_exe_name = cmd_actual[0].lower() # When running python, use the python in the ADS sandbox ({sys.executable}) # if cmd.startswith("python "): cmd_actual[0] = cmd_actual[0].replace("python", sys.executable) # On Mac, when ADS is not launched from terminal, LC_ALL may not be set, which causes pip installs to fail # with: # # UnicodeDecodeError: 'ascii' codec can't decode byte 0xc5 in position 4969: ordinal not in range(128) # # Setting it to a default value of "en_US.UTF-8" enables pip install to complete # if platform.system() == "Darwin" and "LC_ALL" not in os.environ: os.environ["LC_ALL"] = "en_US.UTF-8" # When running `kubectl`, if AZDATA_OPENSHIFT is set, use `oc` # if cmd.startswith("kubectl ") and "AZDATA_OPENSHIFT" in os.environ: cmd_actual[0] = cmd_actual[0].replace("kubectl", "oc") # To aid supportabilty, determine which binary file will actually be executed on the machine # which_binary = None # Special case for CURL on Windows. The version of CURL in Windows System32 does not work to # get JWT tokens, it returns "(56) Failure when receiving data from the peer". If another instance # of CURL exists on the machine use that one. (Unfortunately the curl.exe in System32 is almost # always the first curl.exe in the path, and it can't be uninstalled from System32, so here we # look for the 2nd installation of CURL in the path) if platform.system() == "Windows" and cmd.startswith("curl "): path = os.getenv('PATH') for p in path.split(os.path.pathsep): p = os.path.join(p, "curl.exe") if os.path.exists(p) and os.access(p, os.X_OK): if p.lower().find("system32") == -1: cmd_actual[0] = p which_binary = p break # Find the path based location (shutil.which) of the executable that will be run (and display it to aid supportability), this # seems to be required for .msi installs of azdata.cmd/az.cmd. (otherwise Popen returns FileNotFound) # # NOTE: Bash needs cmd to be the list of the space separated values hence shlex.split. # if which_binary == None: which_binary = shutil.which(cmd_actual[0]) if which_binary == None: if user_provided_exe_name in install_hint and install_hint[user_provided_exe_name] is not None: display(Markdown(f'HINT: Use [{install_hint[user_provided_exe_name][0]}]({install_hint[user_provided_exe_name][1]}) to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") else: cmd_actual[0] = which_binary start_time = datetime.datetime.now().replace(microsecond=0) print(f"START: {cmd} @ {start_time} ({datetime.datetime.utcnow().replace(microsecond=0)} UTC)") print(f" using: {which_binary} ({platform.system()} {platform.release()} on {platform.machine()})") print(f" cwd: {os.getcwd()}") # Command-line tools such as CURL and AZDATA HDFS commands output # scrolling progress bars, which causes Jupyter to hang forever, to # workaround this, use no_output=True # # Work around a infinite hang when a notebook generates a non-zero return code, break out, and do not wait # wait = True try: if no_output: p = Popen(cmd_actual) else: p = Popen(cmd_actual, stdout=PIPE, stderr=PIPE, bufsize=1) with p.stdout: for line in iter(p.stdout.readline, b''): line = line.decode() if return_output: output = output + line else: if cmd.startswith("azdata notebook run"): # Hyperlink the .ipynb file regex = re.compile(' "(.*)"\: "(.*)"') match = regex.match(line) if match: if match.group(1).find("HTML") != -1: display(Markdown(f' - "{match.group(1)}": "{match.group(2)}"')) else: display(Markdown(f' - "{match.group(1)}": "[{match.group(2)}]({match.group(2)})"')) wait = False break # otherwise infinite hang, have not worked out why yet. else: print(line, end='') if rules is not None: apply_expert_rules(line) if wait: p.wait() except FileNotFoundError as e: if install_hint is not None: display(Markdown(f'HINT: Use {install_hint} to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") from e exit_code_workaround = 0 # WORKAROUND: azdata hangs on exception from notebook on p.wait() if not no_output: for line in iter(p.stderr.readline, b''): try: line_decoded = line.decode() except UnicodeDecodeError: # NOTE: Sometimes we get characters back that cannot be decoded(), e.g. # # \xa0 # # For example see this in the response from `az group create`: # # ERROR: Get Token request returned http error: 400 and server # response: {"error":"invalid_grant",# "error_description":"AADSTS700082: # The refresh token has expired due to inactivity.\xa0The token was # issued on 2018-10-25T23:35:11.9832872Z # # which generates the exception: # # UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa0 in position 179: invalid start byte # print("WARNING: Unable to decode stderr line, printing raw bytes:") print(line) line_decoded = "" pass else: # azdata emits a single empty line to stderr when doing an hdfs cp, don't # print this empty "ERR:" as it confuses. # if line_decoded == "": continue print(f"STDERR: {line_decoded}", end='') if line_decoded.startswith("An exception has occurred") or line_decoded.startswith("ERROR: An error occurred while executing the following cell"): exit_code_workaround = 1 # inject HINTs to next TSG/SOP based on output in stderr # if user_provided_exe_name in error_hints: for error_hint in error_hints[user_provided_exe_name]: if line_decoded.find(error_hint[0]) != -1: display(Markdown(f'HINT: Use [{error_hint[1]}]({error_hint[2]}) to resolve this issue.')) # apply expert rules (to run follow-on notebooks), based on output # if rules is not None: apply_expert_rules(line_decoded) # Verify if a transient error, if so automatically retry (recursive) # if user_provided_exe_name in retry_hints: for retry_hint in retry_hints[user_provided_exe_name]: if line_decoded.find(retry_hint) != -1: if retry_count < MAX_RETRIES: print(f"RETRY: {retry_count} (due to: {retry_hint})") retry_count = retry_count + 1 output = run(cmd, return_output=return_output, retry_count=retry_count) if return_output: return output else: return elapsed = datetime.datetime.now().replace(microsecond=0) - start_time # WORKAROUND: We avoid infinite hang above in the `azdata notebook run` failure case, by inferring success (from stdout output), so # don't wait here, if success known above # if wait: if p.returncode != 0: raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(p.returncode)}.\n') else: if exit_code_workaround !=0 : raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(exit_code_workaround)}.\n') print(f'\nSUCCESS: {elapsed}s elapsed.\n') if return_output: return output def load_json(filename): """Load a json file from disk and return the contents""" with open(filename, encoding="utf8") as json_file: return json.load(json_file) def load_rules(): """Load any 'expert rules' from the metadata of this notebook (.ipynb) that should be applied to the stderr of the running executable""" # Load this notebook as json to get access to the expert rules in the notebook metadata. # try: j = load_json("run505a-sample-notebook.ipynb") except: pass # If the user has renamed the book, we can't load ourself. NOTE: Is there a way in Jupyter, to know your own filename? else: if "metadata" in j and \ "azdata" in j["metadata"] and \ "expert" in j["metadata"]["azdata"] and \ "expanded_rules" in j["metadata"]["azdata"]["expert"]: rules = j["metadata"]["azdata"]["expert"]["expanded_rules"] rules.sort() # Sort rules, so they run in priority order (the [0] element). Lowest value first. # print (f"EXPERT: There are {len(rules)} rules to evaluate.") return rules def apply_expert_rules(line): """Determine if the stderr line passed in, matches the regular expressions for any of the 'expert rules', if so inject a 'HINT' to the follow-on SOP/TSG to run""" global rules for rule in rules: notebook = rule[1] cell_type = rule[2] output_type = rule[3] # i.e. stream or error output_type_name = rule[4] # i.e. ename or name output_type_value = rule[5] # i.e. SystemExit or stdout details_name = rule[6] # i.e. evalue or text expression = rule[7].replace("\\*", "*") # Something escaped *, and put a \ in front of it! if debug_logging: print(f"EXPERT: If rule '{expression}' satisfied', run '{notebook}'.") if re.match(expression, line, re.DOTALL): if debug_logging: print("EXPERT: MATCH: name = value: '{0}' = '{1}' matched expression '{2}', therefore HINT '{4}'".format(output_type_name, output_type_value, expression, notebook)) match_found = True display(Markdown(f'HINT: Use [{notebook}]({notebook}) to resolve this issue.')) print('Common functions defined successfully.') # Hints for binary (transient fault) retry, (known) error and install guide # retry_hints = {'azdata': ['Endpoint sql-server-master does not exist', 'Endpoint livy does not exist', 'Failed to get state for cluster', 'Endpoint webhdfs does not exist', 'Adaptive Server is unavailable or does not exist', 'Error: Address already in use']} error_hints = {'azdata': [['azdata login', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['The token is expired', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Reason: Unauthorized', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Max retries exceeded with url: /api/v1/bdc/endpoints', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Look at the controller logs for more details', 'TSG027 - Observe cluster deployment', '../diagnose/tsg027-observe-bdc-create.ipynb'], ['provided port is already allocated', 'TSG062 - Get tail of all previous container logs for pods in BDC namespace', '../log-files/tsg062-tail-bdc-previous-container-logs.ipynb'], ['Create cluster failed since the existing namespace', 'SOP061 - Delete a big data cluster', '../install/sop061-delete-bdc.ipynb'], ['Failed to complete kube config setup', 'TSG067 - Failed to complete kube config setup', '../repair/tsg067-failed-to-complete-kube-config-setup.ipynb'], ['Error processing command: "ApiError', 'TSG110 - Azdata returns ApiError', '../repair/tsg110-azdata-returns-apierror.ipynb'], ['Error processing command: "ControllerError', 'TSG036 - Controller logs', '../log-analyzers/tsg036-get-controller-logs.ipynb'], ['ERROR: 500', 'TSG046 - Knox gateway logs', '../log-analyzers/tsg046-get-knox-logs.ipynb'], ['Data source name not found and no default driver specified', 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ["Can't open lib 'ODBC Driver 17 for SQL Server", 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ['Control plane upgrade failed. Failed to upgrade controller.', 'TSG108 - View the controller upgrade config map', '../diagnose/tsg108-controller-failed-to-upgrade.ipynb']]} install_hint = {'azdata': ['SOP063 - Install azdata CLI (using package manager)', '../install/sop063-packman-install-azdata.ipynb']} ###Output _____no_output_____ ###Markdown Run test ###Code print("This is the expression to match") print('Notebook execution complete.') ###Output _____no_output_____
Recognizing Image with ResNet50 Model.ipynb
###Markdown Using ResNet50 Model ###Code model = resnet50.ResNet50() ###Output _____no_output_____ ###Markdown Target Image ###Code # input as a 224 X 224 pixels image : Requirement for this model img = image.load_img("C:\\Users\\dell\\Desktop\\b.jpg", target_size = (224, 224)) plt.rcParams["figure.figsize"] = (6, 6) plt.imshow(img) plt.axis('off') ###Output _____no_output_____ ###Markdown Preparing Model ###Code # Converting Image to numpy array input_as_array = image.img_to_array(img) # Add a dimension to behave like we are having a list of image : Keras Requirement input_as_array = np.expand_dims(input_as_array, axis =0) input_as_array = resnet50.preprocess_input(input_as_array) ###Output _____no_output_____ ###Markdown Predicting the Recognised classes ###Code predictions = model.predict(input_as_array) # Viewing top 9 predictions of our model predicted_classes = resnet50.decode_predictions(predictions, top=9) print (predicted_classes) ###Output [[('n03461385', 'grocery_store', 0.38105598), ('n04200800', 'shoe_shop', 0.12307566), ('n02927161', 'butcher_shop', 0.087185621), ('n02930766', 'cab', 0.073266014), ('n04507155', 'umbrella', 0.071341269), ('n04462240', 'toyshop', 0.046535105), ('n03769881', 'minibus', 0.020067651), ('n04081281', 'restaurant', 0.018935004), ('n03089624', 'confectionery', 0.018834688)]]
03-Step3-PatternConfirmation/.ipynb_checkpoints/PatternConfirmation-checkpoint.ipynb
###Markdown Step 3: Pattern Confirmation1. [Analysis 1: Specificty and Concreteness](a1) 2. [Measuring Specificity using WordNet](spec) 2. [Measuring Concreteness using a Crowdsourced Weighted Dictionary](concrete) 3. [Analysis 2: Counting People and Organizations Mentioned using Named Entity Recognition](ner) Analysis 1: Specificty and Concreteness ###Code import pandas import nltk from nltk import word_tokenize from nltk.corpus import wordnet as wn from nltk.corpus import stopwords import numpy as np import scipy import matplotlib.pyplot as plt import json #Define function to count the number of hypernyms for each noun and verb def specificty(x): x = x.replace('[\x00-\x1f]'," ") text = word_tokenize(x) total_list = [] for w in text: if not wn.synsets(w): pass else: synset = wn.synsets(w) #limit to nouns and verbs, as other words are not arranged hierarchically if ((synset[0].pos() == (wn.NOUN)) or (synset[0].pos() == (wn.VERB))): #I assume the most popular definition of each word. paths = synset[0].hypernym_paths() a_path = [] for num in range(0,len(paths)): a_path.append(len([synset.name for synset in paths[num]])) #I am taking the path with the minimum number of hypernyms, but this could be calculated some other way. path_num = min(a_path) total_list.append( (w, path_num) ) return total_list #Function to calculate the concreteness of a word based on the crowdsourced dictionary def concrete(x, dict): x = x.replace('[\x00-\x1f]'," ") x = x.lower() text = word_tokenize(x) text = [word for word in text if word not in stopwords.words('english')] concrete_score = [] for w in text: if w in dict: concrete_score.append((w, dict[w])) return concrete_score ###Output _____no_output_____ ###Markdown Create Strings ###Code #first create strings for the two comparison texts, #Kant's The Metaphysical Elements of Ethics #and the Wikipedia page on Germany kant_string = open("../input_data/kant_metaphysics.txt", 'r', encoding='utf-8').read() wiki_string = open("../input_data/wiki_germany.txt", 'r', encoding='utf-8').read() #Read in our dataframe to extract text df = pandas.read_csv("../data/comparativewomensmovement_dataset.csv", sep='\t', index_col=0, encoding='utf-8') df #concatenate the documents from each organization together, creaing four strings redstockings = df[df['org']=='redstockings'] redstockings_string = ' '.join(str(s) for s in redstockings['text_string'].tolist()) cwlu = df[df['org']=='cwlu'] cwlu_string = ' '.join(str(s) for s in cwlu['text_string'].tolist()) heterodoxy = df[df['org']=='heterodoxy'] heterodoxy_string = ' '.join(str(s) for s in heterodoxy['text_string'].tolist()) hullhouse = df[df['org']=='hullhouse'] hullhouse_string = ' '.join(str(s) for s in hullhouse['text_string'].tolist()) ###Output _____no_output_____ ###Markdown Specificity Score ###Code #Calculate specificity score for each noun and verb in each string #Creates a list with word and specificity score for each string kant_specificity = specificty(kant_string) wiki_specificity = specificty(wiki_string) redstockings_specificity = specificty(redstockings_string) cwlu_specificity = specificty(cwlu_string) heterodoxy_specificity = specificty(heterodoxy_string) hullhouse_specificity = specificty(hullhouse_string) #extract just the specificity score from each list kant_specificity_array = list(int(x[1]) for x in kant_specificity) wiki_specificity_array = list(int(x[1]) for x in wiki_specificity) cwlu_specificity_array = list(int(x[1]) for x in cwlu_specificity) heterodoxy_specificity_array = list(int(x[1]) for x in heterodoxy_specificity) hh_specificity_array = list(int(x[1]) for x in hullhouse_specificity) red_specificity_array = list(int(x[1]) for x in redstockings_specificity) #check for a normal distribution fig = plt.figure() ax1 = fig.add_subplot(221) #top left ax2 = fig.add_subplot(222) #top right ax3 = fig.add_subplot(223) #bottom left ax4 = fig.add_subplot(224) #bottom right ax1.hist(heterodoxy_specificity_array, bins=10) ax1.set_title("Heterodoxy") ax2.hist(hh_specificity_array, bins = 10) ax2.set_title("Hull House") ax3.hist(red_specificity_array, bins = 10) ax3.set_title("Redstockings") ax4.hist(cwlu_specificity_array, bins = 10) ax4.set_title("CWLU") plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Compare the Distributions ###Code #print descriptive stats print("Mean Specificity Score for Kant") print(np.mean(kant_specificity_array)) print("Mean Specificity Score for Wikipedia entry on Germany") print(np.mean(wiki_specificity_array)) print("Mean Specificity Score for Heterodoxy") print(np.mean(heterodoxy_specificity_array)) print("Mean Specificity Score for Hull House") print(np.mean(hh_specificity_array)) print("Mean Specificity Score for Redstockings") print(np.mean(red_specificity_array)) print("Mean Specificity Score for CWLU") print(np.mean(cwlu_specificity_array)) #create an array for each city, and an array for each wave, for comparrison newyork_specificity_array = red_specificity_array + heterodoxy_specificity_array chicago_specificity_array = cwlu_specificity_array + hh_specificity_array firstwave_specificity_array = hh_specificity_array + heterodoxy_specificity_array secondwave_specificity_array = cwlu_specificity_array + red_specificity_array #compare percent difference on the specificity scale (1:18) for the test arrays (np.mean(wiki_specificity_array) - np.mean(kant_specificity_array)) / (max(wiki_specificity_array) - min(kant_specificity_array)) #compare percent difference on the specificity scale (1:18) for the city arrays (np.mean(chicago_specificity_array) - np.mean(newyork_specificity_array)) / (max(chicago_specificity_array) - min(newyork_specificity_array)) #compare percent difference on the specificity scale (1:18) for the wave arrays #note this difference is much smaller than the city-based difference (np.mean(firstwave_specificity_array) - np.mean(secondwave_specificity_array)) / (max(firstwave_specificity_array) - min(secondwave_specificity_array)) #calculate ttest statistics on city and wave arrays #note the statistic is much smaller on the wave-based arrays compared to the city-based arrays print(scipy.stats.ttest_ind(chicago_specificity_array, newyork_specificity_array)) print(scipy.stats.ttest_ind(firstwave_specificity_array, secondwave_specificity_array)) ###Output Ttest_indResult(statistic=24.568635698492429, pvalue=3.3929628420398261e-133) Ttest_indResult(statistic=8.858902043752753, pvalue=8.1108293299567897e-19) ###Markdown Concreteness Score ###Code #Read in the dictionary created by Brysbaert et al. dict_df = pandas.read_excel("../input_data/Concreteness_ratings_Brysbaert_et_al_BRM.xlsx",sheetname="Sheet1") dict_df = dict_df[dict_df['Bigram']==0] word_dict = dict_df.set_index("Word")['Conc.M'].to_dict() #Calculate concreteness score for each noun and verb in each string #Creates a list of tuples, with word and concreteness score for each string kant_concrete = concrete(kant_string, word_dict) wiki_concrete = concrete(wiki_string, word_dict) redstockings_concrete = concrete(redstockings_string, word_dict) cwlu_concrete = concrete(cwlu_string, word_dict) heterodoxy_concrete = concrete(heterodoxy_string, word_dict) hullhouse_concrete = concrete(hullhouse_string, word_dict) #extract just the concreteness score from each list kant_concrete_array = list(int(x[1]) for x in kant_concrete) wiki_concrete_array = list(int(x[1]) for x in wiki_concrete) cwlu_concrete_array = list(int(x[1]) for x in cwlu_concrete) heterodoxy_concrete_array = list(int(x[1]) for x in heterodoxy_concrete) hh_concrete_array = list(int(x[1]) for x in hullhouse_concrete) red_concrete_array = list(int(x[1]) for x in redstockings_concrete) ###Output _____no_output_____ ###Markdown Compare the Distributions ###Code #check for a normal distribution fig2 = plt.figure() ax1 = fig2.add_subplot(221) #top left ax2 = fig2.add_subplot(222) #top right ax3 = fig2.add_subplot(223) #bottom left ax4 = fig2.add_subplot(224) #bottom right ax1.hist(heterodoxy_concrete_array, bins=5) ax1.set_title("Heterodoxy") ax2.hist(hh_concrete_array, bins = 5) ax2.set_title("Hull House") ax3.hist(red_concrete_array, bins = 5) ax3.set_title("Redstockings") ax4.hist(cwlu_concrete_array, bins = 5) ax4.set_title("CWLU") plt.tight_layout() plt.show() #print descriptive stats print("Mean Concreteness Score for Kant") print(np.mean(kant_concrete_array)) print("Mean Concreteness Score for Wikipedia entry on Germany") print(np.mean(wiki_concrete_array)) print("Mean Concreteness Score for Heterodoxy") print(np.mean(heterodoxy_concrete_array)) print("Mean Concreteness Score for Hull House") print(np.mean(hh_concrete_array)) print("Mean Concreteness Score for Redstockings") print(np.mean(red_concrete_array)) print("Mean Concreteness Score for CWLU") print(np.mean(cwlu_concrete_array)) #create one array for each city newyork_concrete_array = heterodoxy_concrete_array + red_concrete_array chicago_concrete_array = hh_concrete_array + cwlu_concrete_array #create one array for each wave firstwave_concrete_array = heterodoxy_concrete_array + hh_concrete_array secondwave_concrete_array = red_concrete_array + cwlu_concrete_array #compare percent difference on the concreteness scale (1:5) for the test arrays (np.mean(wiki_concrete_array) - np.mean(kant_concrete_array)) / (5-1) #compare percent difference on the concreteness scale (1:5) for the city-based arrays (np.mean(chicago_concrete_array) - np.mean(newyork_concrete_array)) / (5-1) #compare percent difference on the concreteness scale (1:5) for the wave-based arrays #notice this percent difference is around half as much as the city-based differernce (np.mean(firstwave_concrete_array) - np.mean(secondwave_concrete_array)) / (5-1) #calculate ttest statistics on the city- and wave-based arrays #note the statistic is more than twice as large for the New York/Chicago comparison versus the first wave/second wave comparison print(scipy.stats.ttest_ind(newyork_concrete_array, chicago_concrete_array)) print(scipy.stats.ttest_ind(firstwave_concrete_array, secondwave_concrete_array)) ###Output Ttest_indResult(statistic=-65.289536584554682, pvalue=0.0) Ttest_indResult(statistic=30.944453326355294, pvalue=7.2414699433184674e-210) ###Markdown Analysis 2: Count Organizations and People Mentioned using NER The below code counts the number of persons and organizations mentioned, and compares across organizations.**Note:** Because the published data is sorted, and not the full text, the code below will not reproduce the actual named entities counted. Instead, I will read in the saved named entities, count them, and print the output. ###Code ############################################################################################# ##Don't run this code to reproduce the named entities. It will not work on the sorted text.## ############################################################################################# def extract_entities(text): #text = text.decode('ascii','ignore') #convert all characters to ascii text = re.sub('[\x00-\x1f]'," ", text) org_list = [] person_list = [] for sent in nltk.sent_tokenize(text): chunked = nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sent))) for n in chunked: if isinstance(n, nltk.tree.Tree): if n.label()=="ORGANIZATION": org_list.append(' '.join(c[0] for c in n.leaves())) if n.label()=="PERSON": person_list.append(' '.join(c[0] for c in n.leaves())) return org_list, person_list org_strings = [hullhouse_string, heterodoxy_string, cwlu_string, redstockings_string] for org in org_strings: org_list, person_list = extract_entities(org) myList = [org_list, person_list] filename="../input_data/named_entities_%s.json" % org ##Uncomment the line below to save the named entities as a JSON file #json.dump( myList_cwlu, open( filename, "w", endoding = 'utf-8' ) ) ################################################################## ##Count saved named entities to reproduce named entity analysis.## ################################################################## myList_cwlu = json.load( open ("../input_data/named_entities_cwlu.json", "r", encoding='utf-8') ) cwlu_orgs = myList_cwlu[0] cwlu_person = myList_cwlu[1] myList_hh = json.load( open ("../input_data/named_entities_hullhouse.json", "r", encoding = 'utf-8') ) hh_orgs = myList_hh[0] hh_person = myList_hh[1] myList_red = json.load( open ("../input_data/named_entities_redstockings.json", "r"), encoding='utf-8') red_orgs = myList_red[0] red_person = myList_red[1] myList_heterodoxy = json.load( open ("../input_data/named_entities_heterodoxy.json", "r"), encoding='utf-8') heterodoxy_orgs = myList_heterodoxy[0] heterodoxy_person = myList_heterodoxy[1] #plots the number of organizations and persons mentioned by each organization import matplotlib.pyplot as plt # data to plot n_groups = 4 num_persons = (len(hh_person), len(heterodoxy_person), len(cwlu_person), len(red_person)) num_orgs = (len(hh_orgs), len(heterodoxy_orgs), len(cwlu_orgs), len(red_orgs)) # create plot fig, ax = plt.subplots() index = np.arange(n_groups) bar_width = 0.35 opacity = 0.8 counts1 = plt.bar(index, num_persons, bar_width, alpha=opacity, color='b', label='Persons') counts2 = plt.bar(index + bar_width, num_orgs, bar_width, alpha=opacity, color='g', label='Organizations') plt.xlabel('Organization') plt.ylabel('Count of Named Entities') plt.title('Count of Named Entities by Organization') plt.xticks(index + bar_width, ('Hull House', 'Heterodoxy', 'CWLU', 'Redstockings')) plt.legend(loc='upper left') plt.tight_layout() plt.show() ###Output _____no_output_____
_downloads/plot_boundaries.ipynb
###Markdown Segmentation contours=====================Visualize segmentation contours on original grayscale image. ###Code from skimage import data, segmentation from skimage import filters import matplotlib.pyplot as plt import numpy as np coins = data.coins() mask = coins > filters.threshold_otsu(coins) clean_border = segmentation.clear_border(mask).astype(np.int) coins_edges = segmentation.mark_boundaries(coins, clean_border) plt.figure(figsize=(8, 3.5)) plt.subplot(121) plt.imshow(clean_border, cmap='gray') plt.axis('off') plt.subplot(122) plt.imshow(coins_edges) plt.axis('off') plt.tight_layout() plt.show() ###Output _____no_output_____
analyses/SERV-1/Ts-5min-HOLTWINTERS.ipynb
###Markdown Time series forecasting using Holt-Winters Import necessary libraries ###Code %matplotlib notebook import numpy import pandas import datetime import sys import time import matplotlib.pyplot as ma import statsmodels.tsa.holtwinters as hw ###Output /usr/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88 return f(*args, **kwds) ###Markdown Load necessary CSV file ###Code try: ts = pandas.read_csv('../../datasets/srv-1-ts-5m.csv') except: print("I am unable to connect to read .csv file", sep=',', header=1) ts.index = pandas.to_datetime(ts['ts']) # delete unnecessary columns del ts['id'] del ts['ts'] del ts['min'] del ts['max'] del ts['avg'] del ts['cnt'] # print table info ts.info() ###Output <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 23727 entries, 2018-04-11 20:00:00 to 2018-07-16 13:50:00 Data columns (total 1 columns): sum 23727 non-null int64 dtypes: int64(1) memory usage: 370.7 KB ###Markdown Get values from specified range ###Code ts = ts['2018-06-16':'2018-07-15'] ###Output _____no_output_____ ###Markdown Remove possible NA values (by interpolation)NA values are explicitely removed by linear interpolation. ###Code def print_values_stats(): print("Zero Values:\n",sum([(1 if x == 0 else 0) for x in ts.values]),"\n\nMissing Values:\n",ts.isnull().sum(),"\n\nFilled in Values:\n",ts.notnull().sum(), "\n") idx = pandas.date_range(ts.index.min(), ts.index.max(), freq="5min") ts = ts.reindex(idx, fill_value=None) print("Before interpolation:\n") print_values_stats() ts = ts.replace(0, numpy.nan) ts = ts.interpolate(limit_direction="both") print("After interpolation:\n") print_values_stats() ###Output Before interpolation: Zero Values: 0 Missing Values: sum 99 dtype: int64 Filled in Values: sum 8541 dtype: int64 After interpolation: Zero Values: 0 Missing Values: sum 0 dtype: int64 Filled in Values: sum 8640 dtype: int64 ###Markdown Plot values ###Code # Idea: Plot figure now and do not wait on ma.show() at the end of the notebook ma.ion() ma.show() fig1 = ma.figure(1) ma.plot(ts, color="blue") ma.draw() try: ma.pause(0.001) # throws NotImplementedError, ignore it except: pass ###Output _____no_output_____ ###Markdown Split time series into train and test seriesWe have decided to split train and test time series by two weeks. ###Code train_data_length = 12*24*7 ts_train = ts[:train_data_length] ts_test = ts[train_data_length+1:] ###Output _____no_output_____ ###Markdown Fit and predict Time Serie ###Code def print_hw_parameters(model): alpha, beta, gamma = model.params['smoothing_level'], model.params['smoothing_slope'], model.params['smoothing_seasonal'] print("Holt-Winters parameters:") print("Alpha: ", alpha) print("Beta: ", beta) print("Gamma: ", gamma) print("Forecasting started...") start_time = time.time() try: model = hw.ExponentialSmoothing(ts_train, seasonal='additive', seasonal_periods=train_data_length-1).fit() predictions = model.predict(start=ts_test.index[0], end=ts_test.index[-1]) except Exception as e: print("Error during forecast: ", str(e)) print("Forecasting finished") print("Time elapsed: ", time.time() - start_time) print_hw_parameters(model) ###Output Forecasting started... Forecasting finished Time elapsed: 70.20740914344788 Holt-Winters parameters: Alpha: 1.0 Beta: 0.0 Gamma: 0.0 ###Markdown Count mean absolute percentage errorWe use MAPE (https://www.forecastpro.com/Trends/forecasting101August2011.html) instead of MSE because the result of MAPE does not depend on size of values. ###Code values_sum = 0 for value in zip(ts_test.values, predictions.values): actual = value[0] predicted = value[1] values_sum += abs((actual - predicted) / actual) values_sum *= 100/len(predictions) print("MAPE: ", values_sum, "%\n") ###Output MAPE: [184.91285763] % ###Markdown Plot forecasted values ###Code ma.figure(2) ma.plot(ts_train.index, ts_train, label='Train') ma.plot(ts_test.index, ts_test, label='Test') ma.plot(predictions.index, predictions, label='Holt-Winters') ma.legend(loc='best') ma.draw() ###Output _____no_output_____
week_01_images/homework/homework_01.ipynb
###Markdown Домашняя работа №1 ###Code import cv2 import numpy as np import matplotlib.pyplot as plt %matplotlib inline def plot_one_image(image: np.ndarray) -> None: """ Отобразить изображение с помощью matplotlib. Вспомогательная функция. :param image: изображение для отображения :return: None """ fig, axs = plt.subplots(1, 1, figsize=(8, 7)) axs.imshow(image) axs.axis('off') plt.plot() ###Output _____no_output_____ ###Markdown Задача №1 - ЛабиринтРеализуйте алгоритм поиска выхода из лабиринта по растровому изобажению.Вам нужно написать код, который будет находить путь (координаты пикселей) от заданного входа сверху до выхода снизу.Отрисуйте получившийся маршрут на карте с помощью функции ```plot_maze_path(img, coords)``` или воспользуйтесь вам известным графическим инструментом.__Input:__Изображение лабиринта в кодировке $RGB$.Все карты лежат на [яндекс-диске](https://yadi.sk/d/qEWVZk2picDdZw)__Ouput:__Массив координат пути через лабиринт в виде ```(np.array(x), np.array(y))```. Оценивается __каждое__ успешное решение лабиринта.Пример решенной задачи. ###Code from task_1 import find_way_from_maze def plot_maze_path(image: np.ndarray, coords: tuple) -> np.ndarray: """ Нарисовать путь через лабиринт на изображении. Вспомогательная функция. :param image: изображение лабиринта :param coords: координаты пути через лабиринт типа (x, y) где x и y - массивы координат точек :return img_wpath: исходное изображение с отрисованными координатами """ if image.ndim != 3: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img_wpath = image.copy() if coords: x, y = coords img_wpath[x, y, :] = [0, 0, 255] return img_wpath ###Output _____no_output_____ ###Markdown Загрузим тестовое изображение и отобразим его. ###Code test_image = cv2.imread('task_1/20 by 20 orthogonal maze.png') # загрузить тестовую картинку plot_one_image(test_image) ###Output _____no_output_____ ###Markdown Теперь ваша задача реализовать функцию ```plot_maze_path``` в ```task_1.py``` для того, чтобы найти координаты пути через лабиринт. ###Code way_coords = find_way_from_maze(test_image) # вычислить координаты пути через лабиринт image_with_way = plot_maze_path(test_image, way_coords) plot_one_image(image_with_way) ###Output _____no_output_____ ###Markdown Задача №2 - Пробки в городеТребуется написать программу, которая на вход принимает картинку, на которой схематически изображена машинка на дороге с $N$ полосами и препятствия на полосах. Соответствующие объекты обозначены цветами, которые сохраняются на всех изображениях. Результатом работы программы является номер полосы, на которую нужно перестроиться или сообщение о том, что перестраиваться не нужно.**Примечание: номер дороги считается слева направо, отсчет начинается с нуля.**Примеры изображений: ###Code from task_2 import find_road_number test_image = cv2.imread('task_2/image_00.jpg') test_image = cv2.cvtColor(test_image, cv2.COLOR_BGR2RGB) plot_one_image(test_image) road_number = find_road_number(test_image) print(f'Нужно перестроиться на дорогу номер {road_number}') ###Output _____no_output_____ ###Markdown Задача №3 - Аффинные преобразования Задача №3.1 - Поверни изображениеРеализуйте функцию, которая поворачивает изображение вокруг заданной точки на заданный угол ($0^\circ-360^\circ$) и преобразует размер изображения, чтобы оно не обрезалось после поворота. ###Code from task_3 import rotate test_image = cv2.imread('task_3/lk.jpg') test_image = cv2.cvtColor(test_image, cv2.COLOR_BGR2RGB) plot_one_image(test_image) test_point = (200, 200) test_angle = 15 transformed_image = rotate(test_image, test_point, test_angle) plot_one_image(transformed_image) ###Output _____no_output_____ ###Markdown Проверьте как это должно было получиться ###Code result_image = cv2.imread('task_3/lk_rotate.jpg') result_image = cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB) plot_one_image(result_image) ###Output _____no_output_____ ###Markdown Задача №3.2 - Афинные преобразованияРеализуйте функцию, которая применяет афинное преобразование между заданными точками на исходном изображении и преобразует размер получившегося изображения, чтобы оно не обрезалось. ###Code from task_3 import apply_warpAffine test_image = cv2.imread('task_3/lk.jpg') test_image = cv2.cvtColor(test_image, cv2.COLOR_BGR2RGB) plot_one_image(test_image) test_point_1 = np.float32([[50, 50], [400, 50], [50, 200]]) test_point_2 = np.float32([[100, 100], [200, 20], [100, 250]]) transformed_image = apply_warpAffine(test_image, test_point_1, test_point_2) plot_one_image(transformed_image) ###Output _____no_output_____ ###Markdown Проверьте как это должно было получиться ###Code result_image = cv2.imread('task_3/lk_affine.jpg') result_image = cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB) plot_one_image(result_image) ###Output _____no_output_____
03. Employee_Retention.ipynb
###Markdown Employee Retention We got employee data from a few companies. We have data about all employees who joined from 2011-01-24 to 2015-12-13. For each employee, we also know if they are still at the company as of 2015-12-13 or they have quit. Beside that, we have general info about the employee, such as avg salary during her tenure, dept, and yrs of experience. As said above, the goal is to predict employee retention and understand its main drivers. Specifically, you should: 1. Assume, for each company, that the headcount starts from zero on 2011-01-23. Estimate employee headcount, for each company on each day, from 2011-01-24 to 2015-12-13. That is, if by 2012-03-02 2000 people have joined company 1 and 1000 of them have already quit, then company headcount on 2012-03-02 for company 1 would be 1000. You should create a table with 3 columns: day, employee_headcount, company_id 2. What are the main factors that drive employee churn? Do they make sense? Explain your findings 3. If you could add to this data set just one variable that could help explain employee churn, what would that be? Data Description - **employee_id:** id of the employee. Unique by employee per company - **company_id:** company id. It is unique by company - **dept:** employee dept - **seniority:** number of yrs of work experience when hired - **salary:** avg yearly salary of the employee during her tenure within the company - **join_date:** when the employee joined the company, it can only be between 2011/01/24 and 2015/12/13 - **quit_date:** when the employee left her job (if she is still employed as of 2015/12/13, this field is NA) Navigation 1. [Challenge Description](Challenge) 2. [Data Description](Data) 3. [Initial Exploration](Exploration) 4. Challenge Questions 1. [Employee Headcounts](Headcounts) 2. [Employee Churn](Churn) - [Employment Length](Tenure) - [Salary](Salary) - [Hire Date](Join) - [Seniority](Senority) - [Modeling](Modeling) 3. [Adding to the Dataset](Adding) 5. [Conclusions](Conclusions) Initial Exploration ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import graphviz from sklearn.tree import DecisionTreeClassifier from sklearn.tree import export_graphviz from graphviz import Source df = pd.read_csv('PRIVATE CSV') print(df.shape) df.head() df.info() df['join_date'] = pd.to_datetime(df['join_date']) df['quit_date'] = pd.to_datetime(df['quit_date']) df.describe() ###Output _____no_output_____ ###Markdown Finding Company Headcounts Finding the employee headcounts is just a quick and dirty nested loop to get the counts at any given date. ###Code dates = pd.date_range(start='2011/01/24', end='2015/12/13') employee_counts = [] company_list = [] date_list = [] for company in df['company_id'].unique(): for i, date in enumerate(dates): total_joined = len(df[(df['join_date'] <= date) & (df['company_id'] == company)]) total_quit = len(df[(df['quit_date'] <= date) & (df['company_id'] == company)]) employee_counts.append(total_joined - total_quit) company_list.append(company) date_list.append(date) headcount_table = pd.DataFrame({'date': date_list, 'company_id': company_list, 'count': employee_counts}) headcount_table[headcount_table['company_id'] == 1].head() ###Output _____no_output_____ ###Markdown Exploring Employee Churn We are asked to explore empoyee churn so we first need to find employment length for each employee to see when they are leaving. ###Code df['employment_length'] = (df['quit_date'] - df['join_date']).astype('timedelta64[D]') df.head() ###Output _____no_output_____ ###Markdown We see that employees are more likely to quit near their hire anniversary and the average employee stays less than 2 years (730 days). ###Code df.groupby('company_id')['employment_length'].mean() df.groupby('company_id')['employment_length'].median() plt.hist(df['employment_length'].dropna(), bins=50) plt.show() ###Output _____no_output_____ ###Markdown Next we will define employees that quit early. There is a spike at the 1 year mark skewing the mean left so we'll say anyone that lasts more than a year and one month was a worthwhile hire. This year and one month time frame also lines up fairly closely with the median employment length. This will allow us to better understand the individuals leaving these companies early. ###Code def early_quit(employment_length, join_date, max_date): if (join_date + pd.Timedelta(days=395)) > max_date: return np.NaN elif (employment_length > 395): return 0.0 return 1.0 df['early_quit'] = np.vectorize(early_quit)(df['employment_length'], df['join_date'], max(df['join_date'])) df.head() ###Output _____no_output_____ ###Markdown Companies `11` and `12` have the lowest pay and the highest `early_quit` rates. We know salary is not the only consideration for quitting early thanks to a mix of pay rates and the variation in `early_quit` but it's clear there is a lower limit for pay and that limit is dependent on company and position. ###Code df.groupby('company_id')[['salary', 'early_quit']].mean() salary_ranges = pd.cut(df['salary'], 30) salary_table = pd.crosstab(salary_ranges, df['early_quit'], margins=True, dropna=False) salary_table[0.0] = salary_table[0.0] / salary_table['All'] salary_table[1.0] = salary_table[1.0] / salary_table['All'] salary_table print('Average Salary by Dept. (All Companies)') print(df.groupby('dept')[['salary', 'early_quit']].mean().reset_index()) for i in range(1,13): print('\nCompany:', i) print(df[df['company_id'] == i].groupby('dept')[['salary', 'early_quit']].mean().reset_index()) ###Output Average Salary by Dept. (All Companies) dept salary early_quit 0 customer_service 82245.424837 0.596674 1 data_science 206885.893417 0.588562 2 design 137460.869565 0.581670 3 engineer 205544.548016 0.597781 4 marketing 135598.042311 0.583129 5 sales 135912.358134 0.612645 Company: 1 dept salary early_quit 0 customer_service 90554.006969 0.594947 1 data_science 230938.832252 0.581882 2 design 150434.869739 0.557841 3 engineer 224193.877551 0.624797 4 marketing 151084.792627 0.582072 5 sales 150912.568306 0.613396 Company: 2 dept salary early_quit 0 customer_service 92073.643411 0.612091 1 data_science 234919.014085 0.601382 2 design 154556.053812 0.532609 3 engineer 227469.240048 0.597064 4 marketing 148792.975970 0.554187 5 sales 152017.543860 0.625935 Company: 3 dept salary early_quit 0 customer_service 72229.702970 0.571429 1 data_science 176616.714697 0.586957 2 design 121404.255319 0.645455 3 engineer 185306.201550 0.584158 4 marketing 122250.000000 0.577855 5 sales 119154.269972 0.614035 Company: 4 dept salary early_quit 0 customer_service 72875.160875 0.613377 1 data_science 181749.103943 0.588496 2 design 114700.934579 0.609195 3 engineer 187154.255319 0.565217 4 marketing 118126.394052 0.582915 5 sales 123228.346457 0.648241 Company: 5 dept salary early_quit 0 customer_service 73796.850394 0.598778 1 data_science 186902.777778 0.578313 2 design 128972.222222 0.604167 3 engineer 183530.158730 0.536000 4 marketing 117008.849558 0.595238 5 sales 121803.921569 0.558824 Company: 6 dept salary early_quit 0 customer_service 72282.306163 0.604712 1 data_science 178084.967320 0.624000 2 design 128857.142857 0.587302 3 engineer 183126.696833 0.613260 4 marketing 117737.142857 0.553957 5 sales 124827.160494 0.655738 Company: 7 dept salary early_quit 0 customer_service 74705.756930 0.584000 1 data_science 177411.764706 0.541667 2 design 118114.285714 0.611111 3 engineer 181123.348018 0.607527 4 marketing 122737.588652 0.610619 5 sales 121628.048780 0.607407 Company: 8 dept salary early_quit 0 customer_service 73574.025974 0.642857 1 data_science 183561.643836 0.605263 2 design 120264.150943 0.694444 3 engineer 188821.989529 0.580000 4 marketing 116096.296296 0.657407 5 sales 107985.401460 0.550847 Company: 9 dept salary early_quit 0 customer_service 72225.146199 0.545802 1 data_science 181328.358209 0.600000 2 design 126300.000000 0.560000 3 engineer 179851.063830 0.553957 4 marketing 120959.677419 0.633333 5 sales 121106.194690 0.597826 Company: 10 dept salary early_quit 0 customer_service 74336.309524 0.560784 1 data_science 171220.183486 0.617284 2 design 112658.536585 0.625000 3 engineer 183406.976744 0.589928 4 marketing 128854.166667 0.602941 5 sales 116837.837838 0.633333 Company: 11 dept salary early_quit 0 customer_service 42833.333333 0.833333 1 data_science 153500.000000 0.000000 2 engineer 156666.666667 0.833333 3 marketing 124500.000000 0.000000 Company: 12 dept salary early_quit 0 customer_service 42583.333333 0.900000 1 data_science 131250.000000 0.333333 2 design 82000.000000 1.000000 3 engineer 80000.000000 1.000000 4 marketing 117000.000000 1.000000 5 sales 98500.000000 0.500000 ###Markdown Looking by date we see an increase in the turnover rate year over year and that the trend holds when we look at each company individually. We'll make a new feature, `hire_year`, for later modeling. We also see a trend for quarter, month, week, and day of week so we'll create those features as well. With quarter, month, and week we see a clear trend of starting in the third or fourth quarter being worse for employee retention. It is likely the cause is that most companies are hectic at the end of the year and employees starting in the middle of that are less likely to get the attention they need for a smooth onboarding. With day of week we see that starting on Friday is worse for retention. Again, an indicator that having a smooth uninterrupted onboarding is likely a key factor for retention. ###Code print('Early Quit (All Companies)') join_table = pd.crosstab(df['join_date'].dt.year, df['early_quit'], margins=True) join_table[0.0] = join_table[0.0] / join_table['All'] join_table[1.0] = join_table[1.0] / join_table['All'] print(join_table) for i in range(1, 13): print('\nCompany:', i) join_table = pd.crosstab(df['join_date'].dt.year, df[df['company_id'] == i]['early_quit'], margins=True) join_table[0.0] = join_table[0.0] / join_table['All'] join_table[1.0] = join_table[1.0] / join_table['All'] print(join_table) join_table.drop('All').drop( 'All', axis='columns').plot.bar( title='Early Quit Rate by Year Joined(All Companies)'); join_table = pd.crosstab(df['join_date'].dt.quarter, df['early_quit'], margins=True) join_table[0.0] = join_table[0.0] / join_table['All'] join_table[1.0] = join_table[1.0] / join_table['All'] join_table.drop('All').drop( 'All', axis='columns').plot.bar( title='Early Quit Rate by Month Joined(All Companies)'); join_table = pd.crosstab(df['join_date'].dt.week, df['early_quit'], margins=True) join_table[0.0] = join_table[0.0] / join_table['All'] join_table[1.0] = join_table[1.0] / join_table['All'] join_table.drop('All').drop( 'All', axis='columns').plot.bar( title='Early Quit Rate by Week Joined(All Companies)'); join_table = pd.crosstab(df['join_date'].dt.dayofweek, df['early_quit'], margins=True) join_table[0.0] = join_table[0.0] / join_table['All'] join_table[1.0] = join_table[1.0] / join_table['All'] join_table.drop('All').drop( 'All', axis='columns').plot.bar( title='Early Quit Rate by Day of Week Joined(All Companies)'); df['hire_year'] = df['join_date'].dt.year df['hire_quarter'] = df['join_date'].dt.quarter df['hire_month'] = df['join_date'].dt.month df['hire_week'] = df['join_date'].dt.week df['hire_dayofweek'] = df['join_date'].dt.dayofweek ###Output /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:4: FutureWarning: Series.dt.weekofyear and Series.dt.week have been deprecated. Please use Series.dt.isocalendar().week instead. after removing the cwd from sys.path. ###Markdown Seniority doesn't seem to have a strong correlation to quitting early. ###Code seniority_table = pd.crosstab(df['seniority'], df['early_quit'], margins='all') seniority_table[0.0] = seniority_table[0.0] / seniority_table['All'] seniority_table[1.0] = seniority_table[1.0] / seniority_table['All'] seniority_table seniority_bins = pd.cut(df['seniority'], 20) seniority_table = pd.crosstab(seniority_bins, df['early_quit'], margins='all') seniority_table[0.0] = seniority_table[0.0] / seniority_table['All'] seniority_table[1.0] = seniority_table[1.0] / seniority_table['All'] seniority_table ###Output _____no_output_____ ###Markdown Using a decision tree and a visualization we can see what a model is picking up on. The model confirms what we saw above, when you were hired has the largest impact on your retention followed by salary. ###Code data_dummy = pd.get_dummies(df[['company_id', 'dept', 'seniority', 'hire_year', 'hire_quarter', 'hire_week', 'hire_dayofweek', 'salary', 'early_quit']], drop_first=True) data_dummy = data_dummy.dropna() model = DecisionTreeClassifier(max_depth=4, min_samples_leaf=10, class_weight="balanced", min_impurity_decrease = 0.0001) model.fit(data_dummy.drop('early_quit', axis=1), data_dummy['early_quit']) # Visualize It export_graphviz(model, out_file="tree_employee.dot", feature_names=data_dummy.drop('early_quit', axis=1).columns, proportion=True, rotate=True) with open("tree_employee.dot") as f: dot_graph = f.read() tree_source = Source.from_file("tree_employee.dot") tree_source data_dummy ###Output _____no_output_____
notebookcode/.ipynb_checkpoints/stat-checkpoint.ipynb
###Markdown 删去缺失严重的变量,这里选择删去缺失比率大于0.6的变量,即sodium_max,sodium_min,chloride_max,chloride_min,be_max,be_min,crp_max,crp_min,amylase_max,amylase_min,lipase_max,lipase_min,urine_ph_max,urine_ph_min,urine_wbc_max,urine_wbc_min ,urine_protein_max,urine_protein_min,urine_glucose_max,urine_glucose_min,urine_bilirubin_max,urine_bilirubin_min,urine_ketone_max,urine_ketone_min,urine_rbc_max,urine_rbc_min ,specificgravity_max,specificgravity_min,urobilinogen_max,urobilinogen_min,d_dimer_max,d_dimer_min,fib_max,fib_min ###Code # drop [sodium_max,sodium_min,chloride_max,chloride_min,be_max,be_min,crp_max,crp_min,amylase_max,amylase_min,lipase_max,lipase_min, # urine_ph_max,urine_ph_min,urine_wbc_max,urine_wbc_min,urine_protein_max,urine_protein_min,urine_glucose_max,urine_glucose_min, # urine_bilirubin_max,urine_bilirubin_min,urine_ketone_max,urine_ketone_min,urine_rbc_max,urine_rbc_min , # specificgravity_max,specificgravity_min,urobilinogen_max,urobilinogen_min,d_dimer_max,d_dimer_min,fib_max,fib_min] data1=data.drop(['sodium_max','sodium_min','chloride_max','chloride_min','be_max','be_min','crp_max','crp_min','amylase_max','amylase_min','lipase_max','lipase_min', 'urine_ph_max','urine_ph_min','urine_wbc_max','urine_wbc_min','urine_protein_max','urine_protein_min','urine_glucose_max','urine_glucose_min', 'urine_bilirubin_max','urine_bilirubin_min','urine_ketone_max','urine_ketone_min','urine_rbc_max','urine_rbc_min' , 'specificgravity_max','specificgravity_min','urobilinogen_max','urobilinogen_min','d_dimer_max','d_dimer_min','fib_max','fib_min'],axis=1) data1.isnull().sum()/len(data1) corrmat = data1.corr() plt.subplots(figsize=(24,9)) sns.heatmap(corrmat,vmax=0.9,square=True) data1.columns data1.to_csv('../data/feature1.csv') import sklearn as sk ###Output _____no_output_____
swap_Keys_and_Values_in_Dictionary.ipynb
###Markdown ###Code myDictionary = {'color':'blue', 'speed':'fast','number':1, 5:'number'} #print(myDictionary) #Swap keys for values #swapDictionary = {} new_dictionary = dict([(val, key) for key, val in myDictionary.items()]) #swapDictionary[val] = key print ("Original dictionary is : ") print(myDictionary) print() # Printing new dictionary after swapping keys and values print ("Dictionary after swapping is : ") print("keys: values") for i in new_dictionary: print(i, " : ", new_dictionary[i]) # Python3 code to demonstrate # swap of key and value # initializing dictionary old_dict = {'A': 67, 'B': 23, 'C': 45, 'D': 56, 'E': 12, 'F': 69, 'G': 67, 'H': 23} new_dict = dict([(value, key) for key, value in old_dict.items()]) # Printing original dictionary print ("Original dictionary is : ") print(old_dict) print() # Printing new dictionary after swapping keys and values print ("Dictionary after swapping is : ") print("keys: values") for i in new_dict: print(i, " : ", new_dict[i]) ###Output _____no_output_____
pca_knn_desafio/Desafio/MouseBehavior KNN - I2A2.ipynb
###Markdown Reading, cleaning and splitting datasets ###Code # reading csv files and creating dataframes df_evandro = pd.read_csv('Evandro.csv', sep=';', encoding='latin-1') df_celso = pd.read_csv('Celso.csv', sep=';', encoding='latin-1') df_eliezer = pd.read_csv('Eliezer.csv', sep=';', encoding='latin-1') # drop NaN values (if any) df_evandro.dropna(inplace=True) df_celso.dropna(inplace=True) df_eliezer.dropna(inplace=True) # check maximum row numbers maxRows = [df_evandro.shape[0], df_eliezer.shape[0], df_celso.shape[0]] #maxRows.sort() maxRows[0] = 10287 # slice dataframes in order to equalize the length df_evandro = df_evandro.loc[:maxRows[0]-1,:] df_celso = df_celso.loc[:maxRows[0]-1,:] df_eliezer = df_eliezer.loc[:maxRows[0]-1,:] # converting Event Types into binary classification #df_evandro['Event Type'] = df_evandro['Event Type'].apply(lambda s: 0 if s=='mouseMove' else 1) #df_celso['Event Type'] = df_celso['Event Type'].apply(lambda s: 0 if s=='mouseMove' else 1) #df_eliezer['Event Type'] = df_eliezer['Event Type'].apply(lambda s: 0 if s=='mouseMove' else 1) # drop useless data df_evandro.drop(['Date', 'Time', 'Event Type'], axis=1, inplace=True) df_celso.drop(['Date', 'Time', 'Event Type'], axis=1, inplace=True) df_eliezer.drop(['Date', 'Time', 'Event Type'], axis=1, inplace=True) # splitting into training data df_evandro_train = df_evandro.loc[:maxRows[0]*0.75,:] df_celso_train = df_celso.loc[:maxRows[0]*0.75,:] df_eliezer_train = df_eliezer.loc[:maxRows[0]*0.75,:] # splitting into testing data df_evandro_test = df_evandro.loc[maxRows[0]*0.75:,:].reset_index(drop=True) df_celso_test = df_celso.loc[maxRows[0]*0.75:,:].reset_index(drop=True) df_eliezer_test = df_eliezer.loc[maxRows[0]*0.75:,:].reset_index(drop=True) df_evandro_train.head() ###Output _____no_output_____ ###Markdown Adding new variables to the training dataset ###Code def createFeatures(df): offset_list, xm_list, ym_list, xstd_list, ystd_list, distm_list, diststd_list, arct_list = ([] for i in range(8)) # deleting rows with coordinate X being 0 df = df[df['Coordinate X'] != 0] # filtering unique id == 1 ulist = df['EventId'].unique() for u in ulist: df_unique = df[df['EventId'] == u] if df_unique.shape[0] == 1: # original is "== 1" df = df[df['EventId'] != u] # list of unique id with occurrence > 1 ulist = df['EventId'].unique() for u in ulist: df_unique = df[df['EventId'] == u] # adding mean x_mean = df_unique['Coordinate X'].mean() y_mean = df_unique['Coordinate Y'].mean() xm_list.append(x_mean) ym_list.append(y_mean) # adding std xstd_list.append(df_unique['Coordinate X'].std()) ystd_list.append(df_unique['Coordinate Y'].std()) # calculating euclidean distances arr = np.array([(x, y) for x, y in zip(df_unique['Coordinate X'], df_unique['Coordinate Y'])]) dist = [np.linalg.norm(arr[i+1]-arr[i]) for i in range(arr.shape[0]-1)] ideal_dist = np.linalg.norm(arr[arr.shape[0]-1]-arr[0]) # adding offset offset_list.append(sum(dist)-ideal_dist) # adding distance mean distm_list.append(np.asarray(dist).mean()) # adding distance std deviation diststd_list.append(np.asarray(dist).std()) # adding slope angle of the tangent (arctan(Ym/Xm)) arct_list.append(np.arctan(y_mean/x_mean)) # create df subset with the new features df_subset = pd.DataFrame(ulist, columns=['EventId']) #df_subset['X Mean'] = xm_list #df_subset['Y Mean'] = ym_list #df_subset['X Std Dev'] = xstd_list #df_subset['Y Std Dev'] = ystd_list df_subset['Dist Mean'] = distm_list df_subset['Dist Std Dev'] = diststd_list df_subset['Offset'] = offset_list df_subset['Slope Mean'] = arct_list # drop EventId df_subset.drop(['EventId'], axis=1, inplace=True) return df_subset df_evandro_train = createFeatures(df_evandro_train) df_celso_train = createFeatures(df_celso_train) df_eliezer_train = createFeatures(df_eliezer_train) # get the minimum number of rows maxRows = [df_evandro_train.shape[0], df_celso_train.shape[0], df_eliezer_train.shape[0]] maxRows.sort() # slice dataframes in order to equalize the length df_evandro_train = df_evandro_train.loc[:maxRows[0]-1,:] df_celso_train = df_celso_train.loc[:maxRows[0]-1,:] df_eliezer_train = df_eliezer_train.loc[:maxRows[0]-1,:] df_evandro_train.head() ###Output _____no_output_____ ###Markdown Standardizing the data for training datasets ###Code def standardize(df): # instanciate StandardScaler object scaler = StandardScaler() # compute the mean and std to be used for later scaling scaler.fit(df) # perform standardization by centering and scaling scaled_features = scaler.transform(df) return pd.DataFrame(scaled_features) # standardizing training datasets df_evandro_train = standardize(df_evandro_train) df_celso_train = standardize(df_celso_train) df_eliezer_train = standardize(df_eliezer_train) df_evandro_train.head() ###Output _____no_output_____ ###Markdown Running PCA on training datasets ###Code # applying PCA and concat on train datasets from sklearn.decomposition import PCA pca = PCA(n_components=3) principalComponents = pca.fit_transform(df_evandro_train) df_evandro_train_pca = pd.DataFrame(data = principalComponents) # labeling observations df_evandro_train_pca['Label'] = [1 for s in range(df_evandro_train_pca.shape[0])] principalComponents = pca.fit_transform(df_celso_train) df_celso_train_pca = pd.DataFrame(data = principalComponents) # labeling observations df_celso_train_pca['Label'] = [0 for s in range(df_celso_train_pca.shape[0])] principalComponents = pca.fit_transform(df_eliezer_train) df_eliezer_train_pca = pd.DataFrame(data = principalComponents) # labeling observations df_eliezer_train_pca['Label'] = [0 for s in range(df_eliezer_train_pca.shape[0])] df_shuffle_train = pd.concat([df_evandro_train_pca, df_celso_train_pca, df_eliezer_train_pca]) df_shuffle_train = df_shuffle_train.sample(frac=1).reset_index(drop=True) df_shuffle_train.head() df_evandro_train_pca.head() ###Output _____no_output_____ ###Markdown Creating validation data ###Code df_evandro_test = createFeatures(df_evandro_test) #df_celso_test = createFeatures(df_celso_test) #df_eliezer_test = createFeatures(df_eliezer_test) df_evandro_test = standardize(df_evandro_test) #df_celso_test = standardize(df_celso_test) #df_eliezer_test = standardize(df_eliezer_test) df_evandro_test.head() # running PCA on test data pca = PCA(n_components=3) principalComponents = pca.fit_transform(df_evandro_test) df_evandro_test_pca = pd.DataFrame(data = principalComponents) # labeling observations df_evandro_test_pca['Label'] = [1 for s in range(df_evandro_test_pca.shape[0])] #principalComponents = pca.fit_transform(df_celso_test) #df_celso_test_pca = pd.DataFrame(data = principalComponents) # labeling observations #df_celso_test_pca['Label'] = [0 for s in range(df_celso_test_pca.shape[0])] #principalComponents = pca.fit_transform(df_eliezer_test) #df_eliezer_test_pca = pd.DataFrame(data = principalComponents) # labeling observations #df_eliezer_test_pca['Label'] = [0 for s in range(df_eliezer_test_pca.shape[0])] #df_shuffle_test = pd.concat([df_evandro_test_pca, df_celso_test_pca, df_eliezer_test_pca]) #df_shuffle_test = df_shuffle_test.sample(frac=1).reset_index(drop=True) df_shuffle_test = df_evandro_test_pca.sample(frac=1).reset_index(drop=True) print(df_shuffle_test.shape) df_shuffle_test.head() X_train = df_shuffle_train.drop('Label', axis=1) Y_train = df_shuffle_train['Label'] X_test = df_shuffle_test.drop('Label', axis=1) Y_test = df_shuffle_test['Label'] # looking for the K value which has optimal error rate error_rate = [] for i in range(1,40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, Y_train) Y_pred = knn.predict(X_test) error_rate.append(np.mean(Y_pred != Y_test)) plt.figure(figsize=(10,6)) plt.plot(range(1,40), error_rate, color='blue', lw=1, ls='dashed', marker='o', markerfacecolor='red') plt.title('Error Rate vs. K Value') plt.xlabel('K') plt.ylabel('Error Rate') knn = KNeighborsClassifier(n_neighbors=9) knn.fit(X_train, Y_train) pred = knn.predict(X_test) print("Accuracy: {}%".format(round(accuracy_score(Y_test, pred)*100,2))) ###Output Accuracy: 88.94%
results/notebooks/wind_ppas/state_to_respondent_id_association_midwest_ppa.ipynb
###Markdown Connect the EIA923 plant_state with the FERC1 respondent_id & Determine Midwest Purchase Power Prices ###Code import sys import os import numpy as np import pandas as pd sys.path.append(os.path.abspath(os.path.join('..','..'))) from pudl import pudl, ferc1, eia923 from pudl import models, models_ferc1, models_eia923 from pudl import settings, constants import matplotlib.pyplot as plt %matplotlib inline pudl_engine = pudl.connect_db() ###Output _____no_output_____ ###Markdown Connecting the EIA923 plant_state with the FERC1 respondent_id Pull in all the tables required to associate the EIA923 plant_state with the FERC1 respndent_id. ###Code plants_eia = pd.read_sql('''SELECT * FROM plants_eia''', pudl_engine) plant_state_eia923 = pd.read_sql('''SELECT plant_id, plant_state \ FROM plants_eia923''', pudl_engine) utility_ids_ferc1 = pd.read_sql('''SELECT * FROM utilities_ferc''', pudl_engine) utility_ids_ferc1.rename(columns={'util_id_pudl': 'utility_id_pudl'}, inplace=True) util_plant_assn_pudl = pd.read_sql('''SELECT utility_id, plant_id \ FROM util_plant_assn''', pudl_engine) util_plant_assn_pudl.rename(columns={'plant_id': 'plant_id_pudl', 'utility_id': 'utility_id_pudl'}, inplace=True) ###Output _____no_output_____ ###Markdown Merge these tables from plant_state/plant_id to plant_state/operator_id to plant_state/operator_id/utility_id_pudl to plant_state/utility_id_pudl/respondent_id ###Code plants_eia_compiled = plants_eia.merge(plant_state_eia923, on='plant_id', how='left') utility_state_assn = plants_eia_compiled.merge(util_plant_assn_pudl, on='plant_id_pudl', how='left') utility_state_assn.drop_duplicates(['utility_id_pudl', 'plant_state'], inplace=True) utility_state_assn = utility_state_assn[['utility_id_pudl', 'plant_state']] utility_state_assn_ferc1 = utility_state_assn.merge(utility_ids_ferc1[['utility_id_pudl', 'respondent_id']], on='utility_id_pudl', how='left') ###Output _____no_output_____ ###Markdown Purchased Power tablePull in the purchased power table. Then merge the plant_state on the respondent_id. ###Code purchased_power_ferc1 = pd.read_sql('''SELECT *\ FROM purchased_power_ferc1''', pudl_engine) purchased_power_ferc1_states = purchased_power_ferc1.merge(utility_state_assn_ferc1, on='respondent_id', how='left') purchased_power_ferc1_states = purchased_power_ferc1_states[purchased_power_ferc1_states.mwh_purchased != 0] purchased_power_ferc1_states['calculated_cost_per_mwh'] = \ ((purchased_power_ferc1_states['settlement_total'])/(purchased_power_ferc1_states['mwh_purchased'])) ###Output _____no_output_____ ###Markdown Determine which statistical_classification contains wind ###Code mask = purchased_power_ferc1_states['authority_company_name'].str.contains('Wind|Renew|Solar') zc = purchased_power_ferc1_states[mask] stat_class = zc.statistical_classification.drop_duplicates() for stat in stat_class: print(stat, len(zc[zc.statistical_classification == stat])) for stat in stat_class: print(stat, len(purchased_power_ferc1_states[purchased_power_ferc1_states.statistical_classification == stat])) ###Output LF 2057 IU 1265 OS 24014 LU 18048 SF 16935 AD 2261 ###Markdown Missouri Sort for only purchased power associated with Missouri. Sort only ###Code ppa_mo = purchased_power_ferc1_states[purchased_power_ferc1_states.plant_state == 'IA'] mask = ppa_mo['authority_company_name'].str.contains('Wind|Renew|Nextera') renew = ppa_mo[mask] ###Output _____no_output_____ ###Markdown Graph Missouri Purchased Power ###Code f, (ax1) = plt.subplots(1) ax1.hist(renew.calculated_cost_per_mwh,bins=100, range=(1,50), weights=renew.mwh_purchased) ax1.set_xlabel('purchased price ($ per mWh)', size=18) ax1.yaxis.set_tick_params(labelsize=15) ax1.xaxis.set_tick_params(labelsize=15) ax1.text(.6, .55, 'Mean = ${:.2f} per MWh'.format(renew.calculated_cost_per_mwh.mean()), transform=ax1.transAxes, size=15) plt.text(-0.1, 1.2,'Missouri PPA Price', ha='center', va='top', transform=ax1.transAxes, fontsize=24) plt.tick_params(axis='both', which='major', labelsize=15) f.subplots_adjust(left=None, bottom=None, right=1.9, top=None, wspace=None, hspace=None) plt.show() ###Output _____no_output_____ ###Markdown Midwest States ###Code midwest_states = ['MO','NE','IA','IL','AR','OK','KA'] ppa_midwest = pd.DataFrame() for state in midwest_states: ppa_state = purchased_power_ferc1_states[(purchased_power_ferc1_states.plant_state == state)] ppa_midwest = ppa_midwest.append(ppa_state) mask = ppa_midwest['authority_company_name'].str.contains('Wind|Renew|Nextera') renew_midwest = ppa_midwest[mask] renew_midwest.to_csv('./midwest_purchased_power.csv', index=False) ###Output _____no_output_____ ###Markdown Graph the total region purchased power ###Code f, (ax1) = plt.subplots(1, dpi=100) f.set_figwidth(10) f.set_figheight(4) ax1.hist(renew_midwest.calculated_cost_per_mwh,bins=100, range=(15,90), weights=renew_midwest.mwh_purchased) ax1.set_xlabel('purchased price ($ per mWh)') ax1.set_ylabel('MWh') ax1.set_title('Midwest Renewable PPA Prices', size=18) plt.show() ###Output _____no_output_____ ###Markdown Graph the yearly purchases for this region ###Code years = ppa_midwest.report_year.unique() f, axarr = plt.subplots(len(years), dpi=100) f.set_figwidth(10) f.set_figheight(4*len(years)) for year, ax in zip(years, axarr): yearly_cost = renew_midwest.calculated_cost_per_mwh[renew_midwest.report_year == year] yearly_mwh = renew_midwest.mwh_purchased[renew_midwest.report_year == year] ax.text(.6, .55, 'Mean = ${:.2f} per MWh'.format(yearly_cost.mean()), transform=ax.transAxes, size=15) ax.text(.65, .45, 'Total {:.0f} GWh'.format(yearly_mwh.sum()/1000), transform=ax.transAxes, size=15) ax.hist(yearly_cost, bins=100, range=(15,90), weights=yearly_mwh) ax.set_xlabel('purchased price ($ per mWh)') ax.set_ylabel('MWh') ax.set_title('Midwest Renewable Purchased Power Prices {}'.format(year)) plt.tight_layout() ###Output _____no_output_____
examples/two_step_hashin_shtrikman_interpolated.ipynb
###Markdown Define isotropic constituents ###Code inclusion = mechkit.material.Isotropic(E=inp["E_f"], nu=inp["nu_f"]) matrix = mechkit.material.Isotropic(E=inp["E_m"], nu=inp["nu_m"]) ###Output _____no_output_____ ###Markdown Define orientation averager and polairzation ###Code averager = mechmean.orientation_averager.AdvaniTucker(N4=inp["N4"]) P_func = mechmean.hill_polarization.Factory().needle ###Output _____no_output_____ ###Markdown Homogenize ###Code input_dict = { "phases": { "inclusion": { "material": inclusion, "volume_fraction": inp["c_f"], }, "matrix": { "material": matrix, "volume_fraction": 1.0 - inp["c_f"], }, }, "k": 1.0 / 2.0, "averaging_func": averager.average, } hashin = mechmean.approximation.Kehrer2019(**input_dict) C_eff = hashin.calc_C_eff() print("Effective stiffness two step Hashin Shtrikman") print(C_eff) ###Output Effective stiffness two step Hashin Shtrikman Effective_stiffness(upper=array([[ 1.79306622e+01, 6.79183199e+00, 6.44049100e+00, -7.92491438e-03, -1.22458610e-01, 2.79693636e-01], [ 6.79183199e+00, 1.66571351e+01, 6.50198561e+00, -1.44257800e-02, -9.10987462e-03, 2.56586798e-01], [ 6.44049100e+00, 6.50198561e+00, 1.43808190e+01, -2.85337268e-03, -4.82239343e-02, -3.03802346e-02], [-7.92491438e-03, -1.44257800e-02, -2.85337268e-03, 8.56565464e+00, 1.06716825e-01, -7.33643806e-02], [-1.22458610e-01, -9.10987462e-03, -4.82239343e-02, 1.06716825e-01, 8.95472773e+00, -1.95087657e-02], [ 2.79693636e-01, 2.56586798e-01, -3.03802346e-02, -7.33643806e-02, -1.95087657e-02, 1.09913269e+01]]), lower=array([[ 1.31958542e+01, 6.53652351e+00, 5.06275498e+00, -2.56586400e-02, -2.11023481e-01, 4.35412759e-01], [ 6.53652351e+00, 1.13419501e+01, 5.07695238e+00, -2.30964777e-02, -5.61794756e-02, 3.73083046e-01], [ 5.06275498e+00, 5.07695238e+00, 8.76711885e+00, 8.96494982e-03, -8.82286689e-03, -1.95238689e-02], [-2.56586400e-02, -2.30964777e-02, 8.96494982e-03, 3.73696055e+00, 1.40581209e-02, -9.26497992e-02], [-2.11023481e-01, -5.61794756e-02, -8.82286689e-03, 1.40581209e-02, 3.84729163e+00, -3.93273718e-02], [ 4.35412759e-01, 3.73083046e-01, -1.95238689e-02, -9.26497992e-02, -3.93273718e-02, 7.12215158e+00]]))
Calculate_AUC.ipynb
###Markdown Jupyter notebook -------This notebook illustrates the codes used to generate single and accummulated AUC for selected proteins as shown in Fig. 1b of the paper **"Data independent acquisition mass spectrometry in severe Rheumatic Heart Disease (RHD) identifies a proteomic signature showing ongoing inflammation and effectively classifying RHD cases"**Author: **Jing Yang**Date: **17/11/2021**Contact: [email protected] ###Code library(caret) library(data.table) library(tidyverse) library(Boruta) library(DescTools) library(broom) sessionInfo() ###Output _____no_output_____ ###Markdown Read log2 scaled protein expression data, log2 fold change data and the mapping between UniProtID and protein names ###Code ### data is log2 scaled protein expression data ### fold change is generated from the notebook "get_foldchange.ipynb" data <- read.csv(file='Data/RHD_data_filtered.csv', stringsAsFactors = FALSE) foldchange_data <- read.csv('Data/Protein_withfoldchange.csv', header=TRUE) protein_withname <- read.table('Data/protein_withname.txt', header=TRUE) head(foldchange_data) head(data) data[is.na(data)] <- 0 ###Output _____no_output_____ ###Markdown Read baseline data for all the samples ###Code baseline_data <- fread('Data/Demographic_info.csv') head(baseline_data) ###Output _____no_output_____ ###Markdown Proteins selected from Boruta algorithm are imported directly ###Code load(file='Data/Boruta_results_2108.RData') result_allsample <- attStats(Boruta.allsample) %>% filter(decision %in% 'Confirmed') %>% mutate(UniProtID=rownames(.)) %>% arrange(desc(medianImp)) proteins_confirmed <- result_allsample$UniProtID ###Output _____no_output_____ ###Markdown Start calculate ROC for each protein ###Code ROC_single <- data.table() coef_single <- data.table() coef_single_oddsratio <- data.table() ci_lower <- list() ci_upper <- list() pvalue_single <- list() for (ii in 1:length(proteins_confirmed)) { proteins_forlogistic <- proteins_confirmed[ii] tmp <- data %>% select(StollerID, any_of(proteins_forlogistic), Group) tmp[is.na(tmp)] <- 0 joined_data <- inner_join(tmp, baseline_data) %>% select(Group, Age, BMI, Gender, any_of(proteins_forlogistic)) joined_data$Group <- factor(joined_data$Group, levels=c('Case','Control')) levels(joined_data$Group) <- c(1,0) joined_data_clean <- joined_data[complete.cases(joined_data),] %>% mutate(BMIAge = BMI * Age) #joined_data1_clean$BMIAge <- joined_data1_clean$BMI * joined_data_clean$Age mf1 <- glm(Group~., data=joined_data_clean, family=binomial, na.action = na.pass) coef_single <- rbind(coef_single, (tidy(mf1) %>% filter(term %in% proteins_forlogistic))) #print(coef_single) tmp_oddsratio <- as.data.frame(exp(cbind(coef(mf1), confint(mf1)))) %>% filter(rownames(.) %in% proteins_forlogistic) coef_single_oddsratio <- rbind(coef_single_oddsratio, tmp_oddsratio) ROC_single <- rbind(ROC_single, Cstat(mf1)) print(proteins_forlogistic) print(Cstat(mf1)) } coef_single_oddsratio$UniProtID <- proteins_confirmed coef_single_oddsratio$Pvalue <- coef_single$p.value coef_single_oddsratio$AUC <- ROC_single$x head(coef_single_oddsratio) ###Output _____no_output_____ ###Markdown Generate Table 2 illustated in the paper ###Code names(coef_single_oddsratio)[1] <- c('OddsRatio') ROC_single <- left_join(left_join(coef_single_oddsratio, foldchange_data %>% select(-c(p_value, t_value))), result_allsample %>% select(UniProtID, meanImp)) %>% select(UniProtID, ProteinName, mean_Case, mean_Control, log2foldchange, meanImp, OddsRatio, everything()) %>% mutate_if(is.numeric, format, digits=4) ROC_single write.table(file='Data/ROC_for_single_protein.csv',ROC_single, quote=F, row.names=F, sep=',') ###Output _____no_output_____ ###Markdown Calculate accummulated ROC for selected proteins ###Code ROC_accummulate <- data.table() for (ii in 1:length(proteins_confirmed)){ proteins_forlogistic <- proteins_confirmed[1:ii] tmp <- data %>% select(StollerID, any_of(proteins_forlogistic), Group) tmp[is.na(tmp)] <- 0 joined_data <- inner_join(tmp, baseline_data) %>% select(Group, Age, BMI, Gender, any_of(proteins_forlogistic)) joined_data$Group <- factor(joined_data$Group, levels=c('Case','Control')) levels(joined_data$Group) <- c(1,0) joined_data_clean <- joined_data[complete.cases(joined_data),] %>% mutate(BMIAge = BMI * Age) mf1 <- glm(Group~., data=joined_data_clean, family=binomial, na.action = na.pass) print(proteins_forlogistic) print(Cstat(mf1)) ROC_accummulate <- rbind(ROC_accummulate, round(Cstat(mf1),3)) } ROC_accummulate$UniProtID <- proteins_confirmed names(ROC_accummulate) <- c('AUC','UniProtID') ROC_accummulate <- left_join(ROC_accummulate, protein_withname) %>% select(UniProtID, ProteinName, AUC) head(ROC_accummulate) ROC_accummulate$ProteinName <- factor(ROC_accummulate$ProteinName, levels=ROC_accummulate$ProteinName) ###Output _____no_output_____ ###Markdown Generate Fig 1b ###Code ggplot(ROC_accummulate, aes(x=ProteinName, y=AUC)) + geom_point(col='red', size=3) + annotate("text", x = 2.5, y = 1, label = "b", size=8) + xlab('Proteins') + ylab('Cumulative AUC') + theme(panel.background=element_blank(),#panel.background=element_rect(fill='white',color='black',linetype=1), #panel.grid.major=element_line(color='grey', size=0.1), axis.line=element_line(size=1),text=element_text(size=14, face="bold"), axis.text.x=element_text(size=9, angle=90, face='bold', hjust=0.95, vjust=0.2), axis.title=element_text(size=14, face="bold"), strip.text.x=element_blank(),strip.text.y=element_blank(), strip.background=element_blank()) ###Output _____no_output_____
Anomaly_Detection_RealTime/Anomaly_Detection_RealTime.ipynb
###Markdown POINT ANOMALIES: RANDOM WALKS ###Code ### GENERATE DATA ### np.random.seed(42) n_series, timesteps = 3, 200 data = sim_randomwalk(n_series=n_series, timesteps=timesteps, process_noise=10, measure_noise=30) data.shape plt.plot(data.T) np.set_printoptions(False) ### SLIDING WINDOW PARAMETER ### window_len = 20 ### SIMULATE PROCESS REAL-TIME AND CREATE GIF ### fig = plt.figure(figsize=(18,10)) camera = Camera(fig) axes = [plt.subplot(n_series,1,ax+1) for ax in range(n_series)] series = defaultdict(partial(np.ndarray, shape=(n_series,1), dtype='float32')) for i in tqdm(range(timesteps+1), total=(timesteps+1)): if i>window_len: smoother = ConvolutionSmoother(window_len=window_len, window_type='ones') smoother.smooth(series['original'][:,-window_len:]) series['smooth'] = np.hstack([series['smooth'], smoother.smooth_data[:,[-1]]]) _low, _up = smoother.get_intervals('sigma_interval', n_sigma=2) series['low'] = np.hstack([series['low'], _low[:,[-1]]]) series['up'] = np.hstack([series['up'], _up[:,[-1]]]) is_anomaly = np.logical_or( series['original'][:,-1] > series['up'][:,-1], series['original'][:,-1] < series['low'][:,-1] ).reshape(-1,1) if is_anomaly.any(): series['ano_id'] = np.hstack([series['ano_id'], is_anomaly*i]).astype(int) for s in range(n_series): pltargs = {k:v[s,:] for k,v in series.items()} plot_history(axes[s], i, is_anomaly[s], window_len, **pltargs) camera.snap() if i>=timesteps: continue series['original'] = np.hstack([series['original'], data[:,[i]]]) print('CREATING GIF...') # it may take a few seconds camera._photos = [camera._photos[-1]] + camera._photos animation = camera.animate() animation.save('animation1.gif') plt.close(fig) print('DONE') ### PLOT FINAL RESULT ### fig = plt.figure(figsize=(18,10)) axes = [plt.subplot(n_series,1,ax+1) for ax in range(n_series)] for i,ax in enumerate(axes): posrange = np.arange(window_len,timesteps) ax.plot(series['original'][i,1:], '.k') ax.plot(posrange, series['smooth'][i,1:], c='blue', linewidth=3) ax.fill_between(posrange, series['low'][i,1:], series['up'][i,1:], color='blue', alpha=0.2) ano_id = series['ano_id'][i][series['ano_id'][i] != 0] -1 if len(ano_id)>0: ax.scatter(ano_id, series['original'][i,1:][ano_id], c='red', alpha=1.) ###Output _____no_output_____ ###Markdown POINT ANOMALIES: SEASONAL DATA WITHOUT TREND ###Code ### GENERATE DATA ### np.random.seed(42) n_series, timesteps = 3, 200 data = sim_seasonal_data(n_series=n_series, timesteps=timesteps, freq=24, measure_noise=20, amp=[30,40,50]) data.shape plt.plot(data.T) np.set_printoptions(False) ### SLIDING WINDOW PARAMETER ### window_len = 20 ### SIMULATE PROCESS REAL-TIME AND CREATE GIF ### fig = plt.figure(figsize=(18,10)) camera = Camera(fig) axes = [plt.subplot(n_series,1,ax+1) for ax in range(n_series)] series = defaultdict(partial(np.ndarray, shape=(n_series,1), dtype='float32')) for i in tqdm(range(timesteps+1), total=(timesteps+1)): if i>window_len: smoother = ExponentialSmoother(window_len=window_len//2, alpha=0.4) smoother.smooth(series['original'][:,-window_len:]) series['smooth'] = np.hstack([series['smooth'], smoother.smooth_data[:,[-1]]]) _low, _up = smoother.get_intervals('sigma_interval', n_sigma=2) series['low'] = np.hstack([series['low'], _low[:,[-1]]]) series['up'] = np.hstack([series['up'], _up[:,[-1]]]) is_anomaly = np.logical_or( series['original'][:,-1] > series['up'][:,-1], series['original'][:,-1] < series['low'][:,-1] ).reshape(-1,1) if is_anomaly.any(): series['ano_id'] = np.hstack([series['ano_id'], is_anomaly*i]).astype(int) for s in range(n_series): pltargs = {k:v[s,:] for k,v in series.items()} plot_history(axes[s], i, is_anomaly[s], window_len, **pltargs) camera.snap() if i>=timesteps: continue series['original'] = np.hstack([series['original'], data[:,[i]]]) print('CREATING GIF...') # it may take a few seconds camera._photos = [camera._photos[-1]] + camera._photos animation = camera.animate() animation.save('animation2.gif') plt.close(fig) print('DONE') ### PLOT FINAL RESULT ### fig = plt.figure(figsize=(18,10)) axes = [plt.subplot(n_series,1,ax+1) for ax in range(n_series)] for i,ax in enumerate(axes): posrange = np.arange(window_len,timesteps) ax.plot(series['original'][i,1:], '.k') ax.plot(posrange, series['smooth'][i,1:], c='blue', linewidth=3) ax.fill_between(posrange, series['low'][i,1:], series['up'][i,1:], color='blue', alpha=0.2) ano_id = series['ano_id'][i][series['ano_id'][i] != 0] -1 if len(ano_id)>0: ax.scatter(ano_id, series['original'][i,1:][ano_id], c='red', alpha=1.) ###Output _____no_output_____ ###Markdown PATTERN ANOMALIES: SEASONAL DATA WITH TREND ###Code ### GENERATE DATA ### np.random.seed(42) n_series, timesteps = 3, 600 data = sim_randomwalk(n_series=n_series, timesteps=timesteps, process_noise=1, measure_noise=0) seasons = sim_seasonal_data(n_series=n_series, timesteps=timesteps, freq=24, measure_noise=4, level=0, amp=10) data = data + seasons plt.plot(data.T) np.set_printoptions(False) ### SLIDING WINDOW PARAMETER ### window_len = 24*5 ### SIMULATE PROCESS REAL-TIME AND CREATE GIF ### fig = plt.figure(figsize=(18,10)) camera = Camera(fig) axes = [plt.subplot(n_series,1,ax+1) for ax in range(n_series)] series = defaultdict(partial(np.ndarray, shape=(n_series,1), dtype='float32')) for i in tqdm(range(timesteps+1), total=(timesteps+1)): if i>window_len: smoother = DecomposeSmoother(smooth_type='convolution', periods=24, window_len=window_len//3, window_type='ones') smoother.smooth(series['original'][:,-window_len:]) series['smooth'] = np.hstack([series['smooth'], smoother.smooth_data[:,[-1]]]) _low, _up = smoother.get_intervals('sigma_interval', n_sigma=2.5) series['low'] = np.hstack([series['low'], _low[:,[-1]]]) series['up'] = np.hstack([series['up'], _up[:,[-1]]]) is_anomaly = np.logical_or( series['original'][:,-1] > series['up'][:,-1], series['original'][:,-1] < series['low'][:,-1] ).reshape(-1,1) if is_anomaly.any(): series['ano_id'] = np.hstack([series['ano_id'], is_anomaly*i]).astype(int) for s in range(n_series): pltargs = {k:v[s,:] for k,v in series.items()} plot_history(axes[s], i, is_anomaly[s], window_len, **pltargs) camera.snap() if i>=timesteps: continue series['original'] = np.hstack([series['original'], data[:,[i]]]) print('CREATING GIF...') # it may take a few seconds camera._photos = [camera._photos[-1]] + camera._photos animation = camera.animate() animation.save('animation3.gif') plt.close(fig) print('DONE') ### PLOT FINAL RESULT ### fig = plt.figure(figsize=(18,10)) axes = [plt.subplot(n_series,1,ax+1) for ax in range(n_series)] for i,ax in enumerate(axes): posrange = np.arange(window_len,timesteps) ax.plot(series['original'][i,1:], '.k') ax.plot(posrange, series['smooth'][i,1:], c='blue', linewidth=3) ax.fill_between(posrange, series['low'][i,1:], series['up'][i,1:], color='blue', alpha=0.2) ano_id = series['ano_id'][i][series['ano_id'][i] != 0] -1 if len(ano_id)>0: ax.scatter(ano_id, series['original'][i,1:][ano_id], c='red', alpha=1.) ###Output _____no_output_____ ###Markdown PATTERN ANOMALIES: SEASONAL DATA WITH TREND AND SHIFT ###Code ### GENERATE DATA ### data[:,300:380] = data[:,300:380] + 40 plt.plot(data.T) np.set_printoptions(False) ### SIMULATE PROCESS REAL-TIME AND CREATE GIF ### fig = plt.figure(figsize=(18,9)) camera = Camera(fig) axes = [plt.subplot(n_series,1,ax+1) for ax in range(n_series)] series = defaultdict(partial(np.ndarray, shape=(n_series,1), dtype='float32')) recovered = np.copy(data) for i in tqdm(range(timesteps+1), total=(timesteps+1)): if i>window_len: smoother = DecomposeSmoother(smooth_type='convolution', periods=24, window_len=window_len, window_type='ones') smoother.smooth(series['recovered'][:,-window_len:]) series['smooth'] = np.hstack([series['smooth'], smoother.smooth_data[:,[-1]]]) _low, _up = smoother.get_intervals('sigma_interval', n_sigma=4) series['low'] = np.hstack([series['low'], _low[:,[-1]]]) series['up'] = np.hstack([series['up'], _up[:,[-1]]]) is_anomaly = np.logical_or( series['original'][:,-1] > series['up'][:,-1], series['original'][:,-1] < series['low'][:,-1] ).reshape(-1,1) if is_anomaly.any(): ano_series = np.where(is_anomaly)[0] series['ano_id'] = np.hstack([series['ano_id'], is_anomaly*i]).astype(int) recovered[ano_series,i] = smoother.smooth_data[ano_series,[-1]] for s in range(n_series): pltargs = {k:v[s,:] for k,v in series.items()} plot_history(axes[s], i, is_anomaly[s], window_len, **pltargs) camera.snap() if i>=timesteps: continue series['original'] = np.hstack([series['original'], data[:,[i]]]) series['recovered'] = np.hstack([series['recovered'], recovered[:,[i]]]) print('CREATING GIF...') # it may take a few seconds camera._photos = [camera._photos[-1]] + camera._photos animation = camera.animate() animation.save('animation4.gif') plt.close(fig) print('DONE') ### PLOT FINAL RESULT ### fig = plt.figure(figsize=(18,10)) axes = [plt.subplot(n_series,1,ax+1) for ax in range(n_series)] for i,ax in enumerate(axes): posrange = np.arange(window_len,timesteps) ax.plot(series['original'][i,1:], '.k') ax.plot(posrange, series['smooth'][i,1:], c='blue', linewidth=3) ax.fill_between(posrange, series['low'][i,1:], series['up'][i,1:], color='blue', alpha=0.2) ano_id = series['ano_id'][i][series['ano_id'][i] != 0] -1 if len(ano_id)>0: ax.scatter(ano_id, series['original'][i,1:][ano_id], c='red', alpha=1.) ###Output _____no_output_____
50_ppdd.ipynb
###Markdown pico_pi_controller.ppdd> System daemon ###Code # hide # from nbdev.showdoc import * # export from sys import byteorder from os import getloadavg from platform import node from uptime import uptime import threading, _thread import argparse, logging import pigpio, atexit import datetime, time import uuid, socketserver import queue from CircuitPython_pico_pi_common.codes import * logger = logging.getLogger() logging.basicConfig(level = logging.DEBUG) # export tcp_address = ('127.0.0.1', 16164) hostname = bytearray(node(), "utf-8") def log_txn(fname, message, msg=None, i2c_addr=None): """Wrapper for logger.""" id_str = ID_CODE.decode() hex_addr = '' if i2c_addr: hex_addr = str(hex(i2c_addr)) i2c_str = '|' logger.info('%-4s %-47s %s' % (id_str, fname+': '+hex_addr+message+str(msg or ''), i2c_str)) class PwrLedFlicker(threading.Thread): def __init__(self, duration): threading.Thread.__init__(self) self.duration = duration def run(self): fname='run' try: with open("/sys/class/leds/led1/brightness", "w") as sys_pwr_led: for x in range(self.duration * 2): sys_pwr_led.write("0") sys_pwr_led.flush() time.sleep(0.1) sys_pwr_led.write("1") sys_pwr_led.flush() time.sleep(0.4) sys_pwr_led.close() except PermissionError: log_txn(fname,"Must run as root.") _thread.interrupt_main() class PPCcHandler(socketserver.BaseRequestHandler): def handle(self): """Handle commands from ppcc; some processed iternally, some sent to PPC""" fname='handle' global cmd_queue, awt_queue, cfm_queue #log_txn(fname,"recvd request from {}".format(self.client_address[0]), # " on {}".format(threading.current_thread().name)) cmd_len = bytearray(1) cmd_len = int.from_bytes( self.request.recv(1), byteorder=byteorder) #log_txn(fname,"recvd command from {}, len: ".format(self.client_address[0]),str(cmd_len)+" bytes:") command = bytearray(cmd_len) command = self.request.recv(cmd_len) cmd_code, i2c_addr, cmdargs, cmd_uid, valid_status = parse_cmd(command) if valid_status: log_txn(fname,'', str(hex(i2c_addr))+' '+CMD_NAME[cmd_code]+' 0'+str(cmdargs)[3:-1]+" UID "+str(hex(int.from_bytes(cmd_uid, byteorder)))[2:]) cmd_queue.put(command) log_txn(fname,"command queue size:", cmd_queue.qsize() ) # blocking, wait for confirmation of i2c_event_handler acting on command # todo: implement a timeout if confirm never appears in awt_queue confirm = bytearray(0) while confirm != command: log_txn(fname,"awaitng confirmation...") confirm = awt_queue.get(block=True,timeout=2) # put it back if it's not the confirm we're looking for, or if it's only a # partial confirm, then log it & delete it. if confirm != command: # todo: handle partial confirms (only one 2c_addr from 0xFF) awt_queue.put(confirm) log_txn(fname,"awaitng queue size:", awt_queue.qsize() ) if confirm == command: cfm_queue.put(command) num_bytes_sent = self.request.send(command) log_txn(fname,"confirm queue size:", cfm_queue.qsize() ) else: pass #handle error self.request.close() @atexit.register def goodbye(): """Cancel pigpio event handler, close I2C peripheral & connection to pigpio""" global e, pi, ppdd_server fname='goodbye' if 'e' in globals(): try: e.cancel() log_txn(fname,"bsc_i2c event handler cleanup completed.") except: log_txn(fname,"bsc_i2c error on event handler cleanup.") if 'pi' in globals(): try: pi.stop() log_txn(fname,"pigpio cleanup completed.") except: log_txn(fname,"pigpio error on cleanup.") if 'ppdd_server' in globals(): try: ppdd_server.server_close() log_txn(fname,"TCP serversocket cleanup completed.") except: log_txn(fname,"TCP serversocket error on cleanup.") log_txn(fname,"Exiting.") def i2c_event_handler(id, tick): """Handle register probes.""" fname='i2c_event_handler' global pi, i2c_addr, bosmang, flicker, cmd_queue, cfm_queue def reg_idf(): fname='reg_idf' try: mcu_uid = d[1:8] except: mcu_uid = bytearray(8) log_txn(fname, "recvd identity: ", mcu_uid.decode()) log_txn(fname, "sendn identity: ", ID_CODE.decode()) s, b, d = pi.bsc_i2c(i2c_addr, ID_CODE) def reg_bos(): fname='reg_bos' log_txn(fname, "sending bosmang status: ", str(bool(int.from_bytes(bosmang, byteorder=byteorder)))) s, b, d = pi.bsc_i2c(i2c_addr, bosmang) def reg_tim(): fname='reg_tim' dt = datetime.datetime.now() # send local time converted from UTC of system time dt = dt.replace( tzinfo=datetime.timezone(datetime.timedelta(0), "UTC") ) ts = dt.timestamp() log_txn(fname, "sending time.time(): ", int(ts) ) s, b, d = pi.bsc_i2c(i2c_addr, bytearray(int(ts).to_bytes(4, byteorder))) def reg_cmd(): fname='reg_cmd' global cmd_queue, awt_queue #log_txn(fname,"checking command queue") if cmd_queue.qsize() > 0: command=cmd_queue.get() if command[0] in CMD_NAME.keys(): #log_txn(fname,"sending queud command: ", command ) s, b, d = pi.bsc_i2c(i2c_addr, command) # place the command in the queue for awaiting confirmation awt_queue.put(command) else: log_txn(fname,"invalid command found in queue: ", command ) else: s, b, d = pi.bsc_i2c(i2c_addr, bytearray([0])) #log_txn(fname,"no command") def reg_cfm(): fname='cfm_cmd' global awt_queue i2c_addr = d[0] # address of the ppd acted upon by the command if d[1] in CMD_INT: # add PPDevice CFM received to awt_queue (awaiting ppdd confirm); it may be # only 1 of many i2c_addrs. logic in handle. awt_queue.add(d[1:]) # CFM includes echo of entire command log_txn(fname,str(hex(i2c_addr))+" recvd confirm: ", CMD_NAME[d[0]]) def reg_hos(): fname='reg_hos' log_txn(fname, "sending hostname: ", hostname.decode()) s, b, d = pi.bsc_i2c(i2c_addr, bytes([len(hostname)]) + hostname) def reg_lod(): fname='reg_lod' load = bytearray("{:04.2f}".format(getloadavg()[0]), "utf-8") log_txn(fname, "sending loadavg: ", load.decode()) s, b, d = pi.bsc_i2c(i2c_addr, load) def reg_upt(): fname='reg_upt' # so the PPC can pause and wait for the long-ish uptime fetch s, b, d = pi.bsc_i2c(i2c_addr, bytearray(1) ) uptimeba = bytearray(int(uptime()).to_bytes(4, byteorder)) log_txn(fname, "sending uptime: ", int.from_bytes(bytes(uptimeba), byteorder) ) s, b, d = pi.bsc_i2c(i2c_addr, uptimeba) def reg_tzn(): fname='reg_tzn' log_txn(fname, "sending time.timezone(): ", time.timezone, ) s, b, d = pi.bsc_i2c(i2c_addr, bytearray(time.timezone.to_bytes(3, byteorder))) def reg_flk(): fname='reg_flk' nonlocal d log_txn(fname, "Flickering PWR LED for "+str(d[1])+" seconds.") flicker = PwrLedFlicker(duration=d[1]) flicker.start() # if FLK was from a command, d will hold that command. echo it back to confirm execution. if len(d) > REG_VAL_LEN['FLK']: if d[REG_VAL_LEN['FLK']+1] in CMD_INT: s, b, d = pi.bsc_i2c(i2c_addr, d[REG_VAL_LEN['FLK']:] ) def reg_clr(): fname='reg_clr' #log_txn(fname, "CLR recieved, FIFO buffer to be emptied.") s, b, d = pi.bsc_i2c(i2c_addr, bytearray(0) ) s, b, d = pi.bsc_i2c(i2c_addr) if b: #log_txn(fname, "Register probe recvd, status:",s) if d[0] in REG_NAME.keys(): reg_hndlr = locals()['reg_'+REG_NAME[d[0]].lower()] #log_txn(fname, ": reg_"+REG_NAME[d[0]].lower()) reg_hndlr() else: log_txn(fname, ": unrecognized REG probed: ",d[0]) def main(): fname='main' global cmd_queue, awt_queue, cfm_queue, i2c_addr, id_str, e, pi, ppdd_server, flicker, bosmang cmd_queue = queue.Queue() #command queue (commands recvd from ppcc, outgoing to PPC) awt_queue = queue.Queue() #awaiting confirmation of execution of command queue cfm_queue = queue.Queue() #confirmed execution of command queue # flicker power LED on startup, checking for root access flicker = PwrLedFlicker(duration=2) flicker.start() time.sleep(0.1) # setup pigpio, checking that it's running pi = pigpio.pi() if not pi.connected: log_txn(fname,"pigpiod not running.") exit() # handle command-line arguments parser = argparse.ArgumentParser(description='ppdd argument parser') parser.add_argument("-a", default='0x13', type=str, help="Default I2C address: 0x13") parser.add_argument("-b", action="store_true", help="Set bosmang status to True") args, unknown = parser.parse_known_args() if unknown: log_txn(fname,"unrecognized command line arguments: ",unknown) # didn't comment before. what does this do if no args.a? i2c_addr = int(args.a,0) if args.b: bosmang = bytearray(int(1).to_bytes(1, byteorder)) else: bosmang = bytearray(int(0).to_bytes(1, byteorder)) # setup socket server for incoming commands from ppcc try: ppdd_server = socketserver.ThreadingTCPServer(tcp_address, PPCcHandler) log_txn(fname,"Listening for ppcc commands on TCP port ", tcp_address[1]) except OSError: log_txn(fname,"TCP Error. Socket in use?") exit() threading.Thread(target=ppdd_server.serve_forever).start() log_txn(fname,"Initializing I2C peripheral on address: ", hex(i2c_addr)) log_txn(fname,"--> hostname: ", hostname.decode()) log_txn(fname,"--> bosmang: ", str(bool(int.from_bytes(bosmang, byteorder=byteorder)))) # setup event handler for incoming I2C messages from PPController e = pi.event_callback(pigpio.EVENT_BSC, i2c_event_handler) pi.bsc_i2c(i2c_addr) while True: time.sleep(120) # heartbeat log_txn(fname,"koradewu ",datetime.datetime.now().isoformat()) if __name__ == '__main__': try: main() except KeyboardInterrupt as e: # handled by atexit #exit(str('Exiting.')) pass %tb # hide try: from IPython.display import display, Javascript display(Javascript('IPython.notebook.save_checkpoint();')) from time import sleep sleep(0.3) from nbdev.export import notebook2script notebook2script() except ModuleNotFoundError: pass """CircuitPython kernel has no nbdev""" ###Output _____no_output_____
site/ko/federated/tutorials/simulations.ipynb
###Markdown High-performance simulations with TFFThis tutorial will describe how to setup high-performance simulations with TFFin a variety of common scenarios.TODO(b/134543154): Populate the content, some of the things to cover here:- using GPUs in a single-machine setup,- multi-machine setup on GCP/GKE, with and without TPUs,- interfacing MapReduce-like backends,- current limitations and when/how they will be relaxed. Before we beginFirst, make sure your notebook is connected to a backend that has the relevantcomponents (including gRPC dependencies for multi-machine scenarios) compiled. 이제 TFF 웹 사이트에서 MNIST 예제를 로드하고 10개의 클라이언트 그룹에 대해 작은 실험 루프를 실행할 Python 함수를 선언하는 것으로 시작하겠습니다. ###Code #@test {"skip": true} !pip install --quiet --upgrade tensorflow_federated_nightly !pip install --quiet --upgrade nest_asyncio import nest_asyncio nest_asyncio.apply() import collections import time import tensorflow as tf import tensorflow_federated as tff source, _ = tff.simulation.datasets.emnist.load_data() def map_fn(example): return collections.OrderedDict( x=tf.reshape(example['pixels'], [-1, 784]), y=example['label']) def client_data(n): ds = source.create_tf_dataset_for_client(source.client_ids[n]) return ds.repeat(10).shuffle(500).batch(20).map(map_fn) train_data = [client_data(n) for n in range(10)] element_spec = train_data[0].element_spec def model_fn(): model = tf.keras.models.Sequential([ tf.keras.layers.Input(shape=(784,)), tf.keras.layers.Dense(units=10, kernel_initializer='zeros'), tf.keras.layers.Softmax(), ]) return tff.learning.from_keras_model( model, input_spec=element_spec, loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) trainer = tff.learning.build_federated_averaging_process( model_fn, client_optimizer_fn=lambda: tf.keras.optimizers.SGD(0.02)) def evaluate(num_rounds=10): state = trainer.initialize() for _ in range(num_rounds): t1 = time.time() state, metrics = trainer.next(state, train_data) t2 = time.time() print('metrics {m}, round time {t:.2f} seconds'.format( m=metrics, t=t2 - t1)) ###Output _____no_output_____ ###Markdown 단일 머신 시뮬레이션다음은 기본입니다. ###Code evaluate() ###Output metrics <sparse_categorical_accuracy=0.13858024775981903,loss=3.0073554515838623>, round time 3.59 seconds metrics <sparse_categorical_accuracy=0.1796296238899231,loss=2.749046802520752>, round time 2.29 seconds metrics <sparse_categorical_accuracy=0.21656379103660583,loss=2.514779567718506>, round time 2.33 seconds metrics <sparse_categorical_accuracy=0.2637860178947449,loss=2.312587261199951>, round time 2.06 seconds metrics <sparse_categorical_accuracy=0.3334362208843231,loss=2.068122386932373>, round time 2.00 seconds metrics <sparse_categorical_accuracy=0.3737654387950897,loss=1.9268712997436523>, round time 2.42 seconds metrics <sparse_categorical_accuracy=0.4296296238899231,loss=1.7216310501098633>, round time 2.20 seconds metrics <sparse_categorical_accuracy=0.4655349850654602,loss=1.6489890813827515>, round time 2.18 seconds metrics <sparse_categorical_accuracy=0.5048353672027588,loss=1.5485210418701172>, round time 2.16 seconds metrics <sparse_categorical_accuracy=0.5564814805984497,loss=1.4140453338623047>, round time 2.41 seconds
02-syntax.ipynb
###Markdown SyntaxNow that we've seen what regular expressions are, what they're good for, let's get down to business. Learning to use regular expressions is mostly about learning regular expression syntax, the special ways we can characters together to make regular expressions. This notebook will be the bulk of our workshop. Regular expression syntaxAll regular expressions are composed of two types of characters: * Literals (normal characters)* Metacharacters (special characters) Matching characters exactlyLiterals match exactly what they are, they mean what they say. For example, the regular expression `Berkeley` will match the string "Berkeley". (It won't match "berkeley", "berkeeley" or "berkely"). Most characters are literals.In the example below, the regular expression `regular` will match the string "regular" exactly. ###Code import re pattern = 'regular' test_string = 'we are practising our regular expressions' re.findall(pattern, test_string) ###Output _____no_output_____ ###Markdown Matching special patternsMetacharacters don't match themselves. Instead, they signal that some out-of-the-ordinary thing should be matched, or they affect other portions of the RE by repeating them or changing their meaning. For example, you might want find all mentions of "dogs" in a text, but you also want to include "dog". That is, you want to match "dogs" but you don't care if the "s" is or isn't there. Or you might want to find the word "the" but only at the beginning of a sentence, not in the middle. For these out-of-the-ordinary patterns, we use metacharacters.In this workshop, we'll discuss the following metacharacters:. ^ $ * + ? { } [ ] \ | ( ) ###Code pattern = 'dogs?' test_string = "I like dogs but my dog doesn't like me." re.findall(pattern, test_string) pattern = '^the' test_string = "the best thing about the theatre is the atmosphere" re.findall(pattern, test_string) ###Output _____no_output_____ ###Markdown Our first metacharacters: [ and ]The first metacharacters we’ll look at are [ and ]. They’re used for specifying a character class, which is a set of characters that you wish to match. ###Code vowel_pattern = '[ab]' test_string = 'abracadabra' re.findall(vowel_pattern, test_string) ###Output _____no_output_____ ###Markdown Challenge 2Find all the p's and q's in the test string below. ###Code test_string = "Quick, there's a large goat filled with pizzaz. Is there a path to the queen of Zanzabar?" ###Output _____no_output_____ ###Markdown Challenge 3Find all the vowels in the test sentence below. ###Code test_string = 'the quick brown fox jumped over the lazy dog' ###Output _____no_output_____ ###Markdown RangesCharacters can be listed individually, or a range of characters can be indicated by giving two characters and separating them by a '-'. For example, `[abc]` will match any of the characters a, b, or c; this is the same as `[a-c]`. Challenge 4Find all the capital letters in the following string. ###Code test_string = 'The 44th pPresident of the United States of America was Barack Obama' ###Output _____no_output_____ ###Markdown ComplementsYou can match the characters not listed within the class by complementing the set. This is indicated by including a `^` as the first character of the class; `^` outside a character class will simply match the `^` character. For example, `[^5]` will match any character except `5`. ###Code everything_but_t = '[^t]' test_string = 'the quick brown fox jumped over the lazy dog' re.findall(everything_but_t, test_string)[:5] ###Output _____no_output_____ ###Markdown Challenge 5Find all the consonants in the test sentence below. ###Code test_string = 'the quick brown fox jumped over the lazy dog' ###Output _____no_output_____ ###Markdown Challenge 6Find all the `^` characters in the following test sentence. ###Code test_string = """You can match the characters not listed within the class by complementing the set. This is indicated by including a ^ as the first character of the class; ^ outside a character class will simply match the ^ character. For example, [^5] will match any character except 5.""" ###Output _____no_output_____ ###Markdown Matching metacharacters literallyChallenge 6 is a bit of a trick. The problem is that we want to match the `^` character, but it's interpreted as a metacharacter, a character which has a special meaning. If we want to literally match the `^`, we have to "escape" its special meaning. For this, we use the `\`. Challenge 7Find all the square brackets `[` and `]` in the following test string ###Code test_string = "The first metacharacters we'll look at are [ and ]." ###Output _____no_output_____ ###Markdown Character classesThe backslash `\` has another use in regexes, in addition to escaping metacharacters. It's used as the first character in special two-character combinations that have special meanings. These special two-character combinations are really shorthand for sets of characters.| Character | Meaning | Shorthand for ||:------------------:|:------------------:|:----------:|| `\d` | any digit | `[0-9]` || `\D` | any non-digit | `[^0-9]` || `\s` | any whitespace | `[ \t\n\r\f\v]` || `\S` | any non-whitespace | `[^ \t\n\r\f\v]` || `\w` | any word | `[a-zA-Z0-9_]` || what do you think? | any non-word | `?` |Now here's a quick tip. When writing regular expressions in Python, use raw strings instead of normal strings. Raw strings are preceded by an `r` in Python code. If we don't, the Python interpreter will try to convert backslashed characters before passing them to the regular expression engine. This will end in tears. You can read more about this [here](https://docs.python.org/3/library/re.htmlmodule-re). Challenge 8Find all three digit prices in the following test sentence. Remember the `$` is a metacharacter so needs to be escaped. ###Code test_string = 'The iPhone X costs over $999, while the Android competitor comes in at around $550.' ###Output _____no_output_____ ###Markdown Repeating thingsBeing able to match varying sets of characters is the first thing regular expressions can do that isn’t already possible with the methods available on strings. However, if that was the only additional capability of regexes, they wouldn’t be much of an advance. Another capability is that you can specify that portions of the RE must be repeated a certain number of times.| Character | Meaning | Example | Matches ||:---------:|:---------------------:|:-------------:|:------------------------------------:|| `{n}` | exactly n times | `a{3}` | 'aaa' || `{n, m}` | between n and m times | `[1-9]{2, 4}` | '12', '123', '1234' || `?` | 0 or 1 times | `colou?r` | 'color', 'colour' || `*` | 0 or more times | `data!*` | 'data', 'data!', 'data!!', 'data!!!' || `+` | 1 or more times | `lo+l` | 'lol', 'lool', 'loool' | Challenge 9Find all prices in the following test sentence. ###Code test_string = """The iPhone X costs over $999, while the Android competitor comes in at around $550. Apple's MacBook Pro costs $1200, while just a few years ago it was $1700. A new charger for the MacBook costs over $80. """ ###Output _____no_output_____ ###Markdown The `re` module in PythonThe regular expression syntax that we've seen so far covers most of the common use cases. Let's take a break from the syntax, and focus on Python's re module. It has some quirks that we should talk about, after which we'll get back to the syntax.Up until now we've only used `re.findall`. This function takes two arguments, a `pattern` and a `text` to search through. It returns a list of all the substrings in `text` that follow `pattern`. Two other common functions are `re.match` and `re.search`. These take the same two arguments as `re.findall`. `re.search` looks through `text` for the **first** occurrence of `pattern`. `re.match` only looks at the start of `text`. Rather than returning a list, these two functions return a `match` object, which contains information about the substring in `text` that matches `pattern`. For example, it gives you the starting and ending index of the substring. If no such matching substring is found, they return `None`. ###Code price_pattern = r'\$\d+' test_string = """The iPhone X costs over $999, while the Android competitor comes in at around $550. Apple's MacBook Pro costs $1200, while just a few years ago it was $1700. A new charger for the MacBook costs over $80. """ m = re.search(price_pattern, test_string) m ###Output _____no_output_____ ###Markdown The `match` object has everal methods and attributes; the most important ones are `group()`, `start()`, `end()` and `span()`. `group()` returns the string that matched the regex, `start()` and `end()` return the relevant indicies, and `span()` returns the indicies as a tuple. ###Code print(m.group()) print(m.start()) print(m.end()) print(m.span()) ###Output $999 24 28 (24, 28) ###Markdown In general, I prefer just using `re.findall`, because I rarely need the information that `match` object instances give. Challenge 10Write a function called `first_vowel` that takes in a single word, and returns the first vowel. If there is no vowel in the word, it should return the string `"Hey, no vowel!"`. ###Code print(first_vowel('hello')) print(first_vowel('sky')) ###Output e Hey, no vowel! ###Markdown Replacing thingsSo far we've just been finding, but I promised you advanced "find and replace"! That's what `re.sub` is for. `re.sub` takes three arguments: a `pattern` to look for, a `replacement` string to replace it with, and a `text` to look for `pattern` in. Challenge 11Replace all the prices in the test string below with `"one million dollars"`. ###Code test_string = """The iPhone X costs over $999, while the Android competitor comes in at around $550. Apple's MacBook Pro costs $1200, while just a few years ago it was $1700. A new charger for the MacBook costs over $80. """ ###Output _____no_output_____ ###Markdown So far we've used the module-level functions `re.findall` and friends. We can also `compile` a regex into a `pattern` object. The `pattern` object has methods with identical names to the module-level functions. The benefits are if you're searching over huge texts. It's entirely the same as what we've been doing so far so no need to complicate things. But you'll see it around so it's good to know about. ###Code vowel_pattern = re.compile(r'[aeiou]') test_string = 'abracadabra' vowel_pattern.findall(test_string) ###Output _____no_output_____ ###Markdown You might also want to experiment with `re.split`. Challenge 12You've received a problematic dataset from a fellow researcher, with some data entry errors/discrepancies. How would you use regular expressions to correct these errors?1. Replace all instances of "district" or "District" with "County". 2. Replace all instances of "Not available" or "[Name] looking up" with numeric codes. ###Code import os DATA_DIR = '../data' fname = os.path.join(DATA_DIR, 'usecase1/problem_dataset.csv') with open(fname) as f: text = f.read() # DO SOME REGEX MAGIC # cleaned_text = ... # with open("data/usecase1/cleaned_dataset.csv", "w") as f: # f.write(cleaned_text) ###Output _____no_output_____ ###Markdown Challenge 13Find all words in the following string about robots. ###Code robot_string = '''Robots are branching out. A new prototype soft robot takes inspiration from plants by growing to explore its environment. Vines and some fungi extend from their tips to explore their surroundings. Elliot Hawkes of the University of California in Santa Barbara and his colleagues designed a bot that works on similar principles. Its mechanical body sits inside a plastic tube reel that extends through pressurized inflation, a method that some invertebrates like peanut worms (Sipunculus nudus) also use to extend their appendages. The plastic tubing has two compartments, and inflating one side or the other changes the extension direction. A camera sensor at the tip alerts the bot when it’s about to run into something. In the lab, Hawkes and his colleagues programmed the robot to form 3-D structures such as a radio antenna, turn off a valve, navigate a maze, swim through glue, act as a fire extinguisher, squeeze through tight gaps, shimmy through fly paper and slither across a bed of nails. The soft bot can extend up to 72 meters, and unlike plants, it can grow at a speed of 10 meters per second, the team reports July 19 in Science Robotics. The design could serve as a model for building robots that can traverse constrained environments This isn’t the first robot to take inspiration from plants. One plantlike predecessor was a robot modeled on roots.''' ###Output _____no_output_____ ###Markdown Challenge 14We can use parentheses to match certain parts of a regular expression. ###Code price_pattern = pattern = r'\$(\d+)\.(\d{2})' test_string = "The iPhone X costs over $999.99, while the Android competitor comes in at around $550.50." m = re.search(price_pattern, test_string) dollars, cents = m.group(1), m.group(2) print(dollars) print(cents) ###Output 999 99 ###Markdown Use parentheses to group together the area code of a US phone number. Write a function called `area_code` that takes in a string, and if it is a valid US phone number, returns the area code. If not, it should return the string `"Hey, not a phone number!"`. Challenge 15Parentheses can also be used to group together characters in a regular expression so that metacharacters can apply to the entire group, not just a single character. ###Code bat_pattern = r'Bat(wo)?man' test_string = 'Batwoman, Batman and Robin are good friends.' re.findall(bat_pattern, test_string) ###Output _____no_output_____ ###Markdown What went wrong? Well, parentheses have a double life in regular expression syntax. They are used to signal groups like in Challenge 14, but also to let metacharacters apply to those groups. Those two uses interfere with each other. If we want the `?` to apply to the whole `wo` sequence, but we want the whole substring that matches, we have to use a non-capturing group. ###Code bat_pattern = r'Bat(?:wo)?man' test_string = 'Batwoman, Batman and Robin are good friends.' re.findall(bat_pattern, test_string) ###Output _____no_output_____ ###Markdown Look back at challenge 13, where we looked for words to do with robots. We missed 'Robotics'. Using your newfound non-capturing group skills, correct this. Challenging challenges Jane EyreI've downloaded the entire text of Charlotte Bront&euml;'s _Jane Eyre_ from [Project Gutenberg](https://www.gutenberg.org/). Imagine you're a literary scholar studying various aspects of Bront&euml;'s work. You might begin by extracting out various pieces of information from this book, and comparing them with other works. Here are some tasks you might need to do.- Find all years (e.g. 1847).- Find all direct quotes (text between quotation marks).- Find all Mr.'s, Mrs.'s and and Misses (including the name that comes after it).- Find all lines that use the same word at least twice.- Write a function that takes in a plural noun and returns the singular version.- Write a function that takes in a past tense verb and returns the base form.- Find the relative frequencies of I, you, she, he, we and they.- Find all URLs (before and after that actual text, there's some legal information from Project Gutenberg).- Find all email addresses (see above) ###Code fname = os.path.join(DATA_DIR, 'usecase3/jane_eyre.txt') with open(fname) as f: text = f.read() ###Output _____no_output_____ ###Markdown RedditI've also included a dataset (in csv format) from [Reddit](https://www.reddit.com/). Regular expressions are really useful for working with text data from the web. In the variable `questions`, you'll find all sorts of questions that people ask on the Internet. Find out:- How many of them are "serious" (these include the word "serious" in some spelling variant)- What words do people use before "of Reddit"? ###Code import csv fname = os.path.join(DATA_DIR, 'askreddit_2015.csv') with open(fname) as f: reader = csv.reader(f) posts_with_header = list(reader) posts = posts_with_header[1:] questions = [p[0] for p in posts] ###Output _____no_output_____
03_qda-generation.ipynb
###Markdown Exercise 3 Group Members: Luis Pazos Clemens, Robert Freund, Eugen DizerDeadline: 15.12.2020, 16:00. ###Code #Load standard libraries import numpy as np import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown 3 Data Preparation ###Code #load library and data from sklearn import datasets digits = datasets.load_digits() print ( digits.keys () ) data = digits["data"] images = digits["images"] target = digits["target"] target_names = digits["target_names"] print ( data.dtype ) #size of total dataset print(np.shape(data)) print(np.shape(images)) print(np.shape(target)) #split into training and test set from sklearn import model_selection X_train , X_test , Y_train , Y_test =\ model_selection.train_test_split( digits .data , digits . target , test_size = 0.4 , random_state = 0) #choose numbers "1" and "3" only X_train_1_3 = X_train[np.where((Y_train == 1) | (Y_train == 3))] Y_train_1_3 = Y_train[np.where((Y_train == 1) | (Y_train == 3))] X_test_1_3 = X_test[np.where((Y_test == 1) | (Y_test == 3))] Y_test_1_3 = Y_test[np.where((Y_test == 1) | (Y_test == 3))] #size of datasets with number "1" and "3" only print(np.shape(X_train_1_3)) print(np.shape(Y_train_1_3)) print(np.shape(X_test_1_3)) print(np.shape(Y_test_1_3)) #plotting a test image img = X_train_1_3[np.random.randint(0,np.shape(X_train_1_3)[0])].reshape(8,8) assert 2 == len( img.shape ) plt.figure () plt.gray () f, axarr = plt.subplots(1,2) axarr[0].imshow(img, interpolation ="nearest" ) axarr[1].imshow(img, interpolation ="bicubic") plt.show () # fit_qda function from exercise 2: def fit_qda(training_features, training_labels): """ QDA fit function for arbitrary training size N and feature dimension D. params ------ training_features : np.array shape=(N, D) training set for the classifier. rows: features x_i. training_labels : np.array shape=(N) Training labels for the classifier with "1" and "3". returns ------- mu: np.array shape=(2, D) the two class means. covmat: np.array shape=(2, D, D) the two covariance matrices. p: np.array shape=(2) the two priors. """ N = len(training_labels) #Sets that only contain class 1 and 3 X0 = training_features[training_labels == 1] X1 = training_features[training_labels == 3] N0 = len(X0) N1 = len(X1) #Calculate the means mu_0 = np.mean(X0, axis=0) mu_1 = np.mean(X1, axis=0) #Calculate covariance matrices covmat_0 = np.matmul((X0 - mu_0).T, (X0 - mu_0)) / N0 covmat_1 = np.matmul((X1 - mu_1).T, (X1 - mu_1)) / N1 #Calculate the priors p_0 = N0 / N p_1 = N1 / N return np.array([mu_0, mu_1]), np.array([covmat_0, covmat_1]), np.array([p_0, p_1]) #Apply this function to our training data: training_features = X_train_1_3 training_labels = Y_train_1_3 mu, covmat, p = fit_qda(training_features, training_labels) #Generate 8 new insatces of each class using the mu and covmat obtained above: gen_1 = np.random.multivariate_normal(mu[0],covmat[0],(8)) gen_3 = np.random.multivariate_normal(mu[1],covmat[1],(8)) #Plot the generated instances: #1s fig=plt.figure(figsize=(18, 6)) axes=[] for i in range(8): img = gen_1.reshape(8,8,8)[i] axes.append( fig.add_subplot(2, 8, i+1) ) plt.imshow(img, interpolation ="nearest") axes.append( fig.add_subplot(2, 8, i+9) ) plt.imshow(img, interpolation ="bicubic") fig.tight_layout() plt.show() #3s fig=plt.figure(figsize=(18, 6)) axes=[] for i in range(8): img = gen_3.reshape(8,8,8)[i] axes.append( fig.add_subplot(2, 8, i+1) ) plt.imshow(img, interpolation ="nearest") axes.append( fig.add_subplot(2, 8, i+9) ) plt.imshow(img, interpolation ="bicubic") fig.tight_layout() plt.show() ###Output _____no_output_____
2_Mod_Statistique/Mod_Statistique.ipynb
###Markdown PROJET : RECONNAISSANCE VOCALE SYSTEME DE TRADUCTION ADAPTE AUX LUNETTES CONNECTEES *** Partie II : Modélisation - Itération 1 Dans cette itération, nous avons réalisé notre première modélisation, faisant suite à l'étape de visualisation. L'hypothèse de base de cette itération est l'hypothèse suivante : "H0: dans une phrase donnée, les mots à traduire en anglais et en français sont quasiment à la même place. En s'appuyant sur cette logique, une traduction mot à mot d'un ensemble de phrases est possible."Cette hypothèse naive, bien qu'intéressante, ne nous semble pas vraiment plausible.En effet, dans l'étape de visualisation, nous avons constaté que le nombre de mots et la structure des phrases sont très différents en français et en anglais.Nous allons toutefois essayer de trouver des solutions pour faire fonctionner au mieux une telle traduction et comparer les résultats obtenus avec le dictionnaire de référence fourni. ###Code # Import des données import numpy as np import pandas as pd data = pd.read_csv("small_vocab_fr-eng.csv", sep = ';') # Suppression des doublons data.drop_duplicates(inplace = True) data.reset_index(inplace = True, drop = True) data.head() ###Output _____no_output_____ ###Markdown 1. Création d'un dictionnaire anglais - français La première étape de modélisation consiste à réaliser un dictionnaire de correspondance entre un mot anglais et un mot français. Nous avons choisi ce sens de réalisation du dictionnaire car c'est celui qui nous sera utile pour notre projet de lunettes connectées (la transcription à l'écrit des phrases orales étant réalisée en langue anglaise). Pour réaliser ce dictionnaire, nous avons procédé ainsi: - création de la liste des mots en anglais dont nous cherchons la traduction; - pour chaque mot anglais, en fonction de sa place dans la phrase, création d'une fenêtre de possibilité de trois mots (autour de la place du mot anglais) dans la version française;- formalisation d'un tableau (array) de quatre colonnes fournissant, pour chaque mot anglais, les trois mots possibles en français;- tri du tableau par mot anglais afin d'affecter à chaque mot anglais unique toutes les possibilités de traduction en francais;- calcul de l'occurence d'apparition de chaque possibilité ;- selection de la plus forte occurence pour chaque mot unique ce qui nous permet d'établir la correspondance souhaitée entre un mot anglais et un mot français. ###Code # A partir du dataframe, on crée une liste de phrases (par ligne de tableau) en anglais et en français # Création de la liste de phrases en anglais liste_eng = [] for i in range(len(data.index)): text_eng = "" for carac in data.English[i]: if carac in ",.?": text_eng += " " elif carac in "'": text_eng += " '" else: text_eng += carac liste_eng.append(text_eng) # Création de la liste de phrases en français liste_fr = [] for i in range(len(data.index)): text_fr = "" for carac in data.Français[i]: if carac in ",.?-": text_fr += " " elif carac in "'": text_fr += "' " else: text_fr += carac liste_fr.append(text_fr) # Création de la liste de mots en anglais liste_eng1 = [] for i in range(len(liste_eng)): for j in range(len(liste_eng[i].split())): liste_eng1.append(liste_eng[i].split()[j]) # Correction des éléments en forme contractée for index, value in enumerate(liste_eng1): if value == "didn": liste_eng1[index] = 'did' elif value == "isn": liste_eng1[index] = 'is' elif value == "aren": liste_eng1[index] = 'are' elif value == "'s": liste_eng1[index] = 'is' elif value == "'t": liste_eng1[index] = 'not' #liste_eng1 # Création de la liste des 3 mots en français en fonction de la position du mot anglais à traduire : liste_fr1 = [] for i in range(len(liste_eng)): k = len(liste_fr[i].split()) - 1 l = len(liste_eng[i].split()) - 1 # Création de la liste des mots par phrase anglaise for j in range(len(liste_eng[i].split())): # Liste de mots pour le premier mot de la phrase anglaise if j == 0: liste_fr1.append([liste_fr[i].split()[0], liste_fr[i].split()[1], liste_fr[i].split()[2]]) # Liste des mots pour le dernier mot de la phrase anglaise elif j == l: liste_fr1.append([liste_fr[i].split()[-3], liste_fr[i].split()[-2], liste_fr[i].split()[-1]]) # Liste des mots pour les mots centraux de la phrase anglaise else: # Phrases anglaises et françaises avec le même nombre de mots if k == l: liste_fr1.append([liste_fr[i].split()[j - 1], liste_fr[i].split()[j], liste_fr[i].split()[j + 1]]) # Phrases anglaises avec plus de mots que les françaises elif k < l: if 1 <= j < k: liste_fr1.append([liste_fr[i].split()[j - 1], liste_fr[i].split()[j], liste_fr[i].split()[j + 1]]) else: liste_fr1.append([liste_fr[i].split()[-3], liste_fr[i].split()[-2], liste_fr[i].split()[-1]]) # Phrases françaises avec plus de mots que phrases anglaises else: liste_fr1.append([liste_fr[i].split()[j - 1], liste_fr[i].split()[j], liste_fr[i].split()[j + 1]]) #liste_fr1 # Vérification de la taille des listes obtenues print("Taille de la liste anglaise liste_eng1 :",len(liste_eng1)) print("Taille de la liste française liste_fr1 :",len(liste_fr1)) # Création d'un array reprenant les mots anglais et les trios de mots français arr_eng = np.array(liste_eng1).reshape(1501574,1) arr_fr = np.array(liste_fr1) arr = np.hstack((arr_eng, arr_fr)) arr.shape # Réorganisation de l'array en fonction des mots anglais arr1 = arr[arr[:, 0].argsort()] arr1.shape # Création d'un array des mots anglais uniques avec leurs occurences uniq_eng = np.asarray(list(zip(*np.unique(arr1[:,0], return_counts= True)))) print("Nombre de mots anglais uniques :", uniq_eng.shape[0]) # Création du dictionnaire de traduction # Dictionnaire de traduction anglais - français dico_trad = {} # Dictionnaire des possibles traductions suivant l'occurrence dico_occ_nbr = {} # Dictionnaire des possibles traductions suivant l'occurrence en pourcentage dico_occ_pctg = {} k1 = 0 for i in range(uniq_eng.shape[0]): k2 = uniq_eng[i, 1].astype('int') arr2 = arr1[k1 : k1 + k2, 1:4] values, counts = np.unique(arr2, return_counts = True) dico_trad.update({uniq_eng[i, 0] : values[np.argmax(counts)]}) dico_occ_nbr.update({uniq_eng[i, 0] : dict(zip(*np.unique(arr2, return_counts= True)))}) dico_count = dict(zip(*np.unique(arr2, return_counts= True))) for key, value in dico_count.items(): dico_count[key] = round(value / (k2 * 3) * 100, 2) dico_occ_pctg.update({uniq_eng[i, 0] : dico_count}) k1 += k2 # Création du dictionnaire de traduction avec les différentes possibilités de traductions dico_occ = {} for i in dico_trad.keys(): dico_occ.update({i : list(dico_occ_nbr[i].keys())}) # Création du dictionnaire de traduction en précisant le pourcentage d'occurrence du mot choisi dico_trad_pctg = {} for i in dico_trad.keys(): for j in dico_occ_pctg[i].keys(): if j == dico_trad[i]: dico_trad_pctg.update({i : [dico_trad[i], dico_occ_pctg[i][j]]}) dico_trad_pctg ###Output _____no_output_____ ###Markdown Dans l'étape de visualisation, nous avions calculé la présence de 196 mots unique en anglais, nous retrouvons ce nombre dans notre dictionnaire, ce qui nous assure une certaine cohérence. En parcourant visuellement la liste des 196 mots traduits, nous constatons plusieurs points : - les occurences d'apparition ne sont pas très élevées (jamais au-dessus de 50%);- certaines traductions sont manifestement erronées. En première conclusion, et sans même comparer avec le dictionnaire de référence, nous pouvons présager de l'invalidité de l'hypothèse de base. Dans la suite de l'étude, nous appelerons ce doctionnaire "le 1er dictionnaire". Nous allons toutefois procéder à la comparaison et tâcher de trouver des pistes d'amélioration. 2. Etude du dictionnaire créé : comparaison avec un dictionnaire de référence Dans cette étape, nous construisons le dictionnaire de référence.Mais tout d'abord, nous souhaiterions commenter les données d'entrée. Le dictionnaire proposé comme référence est très riche (113 286 mots). Toutefois, nous constatons des erreurs plus ou moins importantes: - Le premier biais est de parfois traduire un mot par un terme du même champs lexical (ex: cat par félin);- Le deuxième de traduire un gérondif par un nom (ex: canoying par canoe);- De nombreux mots sont incompréhensibles (ex: livi-livi ou heiliger-heiliger), ces mots sont généralement identiquement traduits en français et en anglais, ce qui ne causera pas de problèmes pour notre comparaison mais fait douter de la valeur de ce dictionnaire; - De façon moins anecdoctique, certains mots sont traduits une fois par le mot en français (ex: bird par oiseau) et une autre fois par le mot en anglais (ex: bird par bird), ou bien une fois par un nom et une fois par un adjectif (religion - religion et religion - religieux), ce qui, par contre, pourrait être problématique pour notre comparaison. Dans le code ci-après, nous construisons non pas un dictionnaire un pour un, c'est-à-dire ne proposant qu'une traduction pour chaque mot, mais un dictionnaire un pour multiples (via l'utilisation d'une liste), ce qui permet d'obtenir plusieurs choix de traduction pour un même mot. Cette méthode nous permet de nous affranchir des biais des données d'entrée. ###Code # Création du dictionnaire de référence à partir du 2ème dataset # Import des données du dataset 2 ds2 = pd.read_csv("en-fr.txt", sep = " ", names = ["Anglais", "Français"]) ds2_ord = ds2.groupby(['Anglais']).agg(lambda x : list(x)).reset_index() # Création du dictionnaire complet dico_cplt = {ds2_ord['Anglais'][i] : ds2_ord['Français'][i] for i in range(ds2_ord.shape[0])} # Nombre de mots anglais différents dans ce dataset print("Ce dataset constituant le dictionnaire de référence contient les traductions françaises de", len(dico_cplt), "mots anglais différents.") # Création du dictionnaire en reprenant les mots anglais en commun dans les 2 datasets dico_part = {} for i in dico_trad.keys(): if i in dico_cplt.keys(): dico_part.update({i : dico_cplt[i]}) print("Le dictionnaire créé dans la partie précédente et le dictionnaire de référence ont", len(dico_part), "mots en commun.") #dico_part liste_nc = [] for i in dico_trad.keys(): if i not in dico_part: liste_nc.append(i) print("Liste des mots qui n'apparaissent pas dans le dictionnaire de référence contenant", len(liste_nc), "mots:\n", liste_nc) ###Output Ce dataset constituant le dictionnaire de référence contient les traductions françaises de 94679 mots anglais différents. Le dictionnaire créé dans la partie précédente et le dictionnaire de référence ont 174 mots en commun. Liste des mots qui n'apparaissent pas dans le dictionnaire de référence contenant 22 mots: ['a', 'am', 'been', 'chilly', 'disliked', 'dislikes', 'do', 'does', 'drives', 'go', 'has', 'he', 'i', 'in', 'is', 'it', 'least', 'my', 'snowy', 'thinks', 'to', 'we'] ###Markdown Analyse de la comparaison entre le dictionnaire dico_trad obtenu et le dictionnaire de référence ###Code # Comparaison de la traduction proposée dans le 1er dictionnaire et des traductions du dictionnaire de référence dico_com1 = {} liste_nt = [] for i in dico_part.keys(): if dico_trad[i] in dico_part[i]: dico_com1.update({i : [dico_trad[i], dico_trad_pctg[i][1]]}) else: liste_nt.append(i) # Analyse du pourcentage d'occurrence des mots choisis pour la traduction liste_pctg = [dico_com1[i][1] for i in dico_com1.keys()] print("Les mots français les plus fréquents choisis pour la traduction des mots anglais du 1er dictionnaire ont une \ occurrence comprise entre", min(liste_pctg), "% et", max(liste_pctg), "%.") # Analyse du score du 1er dictionnaire print("Les traductions proposées dans le 1er dictionnaire correspondent à celles proposées par le dictionnaire de \ référence pour", len(dico_com1), "mots, soit dans", round(len(dico_com1)/len(dico_part) * 100, 2), "% des cas.\n") print("Liste des mots mal traduits, de", len(liste_nt), "mots :\n", liste_nt) ###Output Les mots français les plus fréquents choisis pour la traduction des mots anglais du 1er dictionnaire ont une occurrence comprise entre 13.48 % et 33.33 %. Les traductions proposées dans le 1er dictionnaire correspondent à celles proposées par le dictionnaire de référence pour 82 mots, soit dans 47.13 % des cas. Liste des mots mal traduits, de 92 mots : ['animal', 'animals', 'apple', 'apples', 'april', 'automobile', 'banana', 'bananas', 'bears', 'beautiful', 'black', 'blue', 'california', 'december', 'did', 'dislike', 'driving', 'drove', 'during', 'eiffel', 'english', 'fall', 'feared', 'february', 'field', 'football', 'freezing', 'fruit', 'going', 'grape', 'grapefruit', 'grapes', 'green', 'grocery', 'have', 'her', 'january', 'july', 'june', 'last', 'lemon', 'lemons', 'like', 'liked', 'lime', 'limes', 'loved', 'mango', 'mangoes', 'march', 'may', 'might', 'most', 'new', 'next', 'nice', 'november', 'october', 'orange', 'oranges', 'peach', 'peaches', 'pear', 'pears', 'plan', 'plans', 'rusty', 'saw', 'school', 'september', 'shiny', 'sometimes', 'spring', 'states', 'store', 'strawberries', 'strawberry', 'that', 'the', 'think', 'tower', 'translate', 'translating', 'usually', 'visit', 'want', 'wanted', 'weather', 'went', 'where', 'white', 'would'] ###Markdown De ces valeurs, nous établissons les constats suivants: - la plupart des mots du 1er dictionnaire sont bien présents dans le dictionnaire de référence mais certains en sont absents (22 mots);- notre score de performance est assez faible (moins 50%), ce qui confirme que nous allons sûrement rejeter l'hypothèse H0;Par la suite, nous allons pousser plus loin l'étude afin de trouver tout de même des pistes d'amélioration de ce score. ###Code # Comparaison entre les différentes possibilités de traductions du 1er dictionnaire et celles du dictionnaire de référence dico_lt = {} for i in dico_part.keys(): for j in range(len(dico_occ[i])): if dico_occ[i][j] in dico_part[i]: dico_lt.update({i : dico_occ[i]}) break liste_lnt = [] for i in dico_part.keys(): if i not in dico_lt.keys(): liste_lnt.append(i) print("Les possibles traductions proposées dans le 1er dictionnaire trouvent une correspondance dans les traductions \ proposées dans le dictionnaire de référence pour", len(dico_lt), "mots, soit dans", round(len(dico_lt)/len(dico_part) * 100, 2), "% des cas.\n") print("Liste des mots pour lesquels aucune occurrence ne correspond à une traduction, de", len(liste_lnt), "mots :\n", liste_lnt) ###Output Les possibles traductions proposées dans le 1er dictionnaire trouvent une correspondance dans les traductions proposées dans le dictionnaire de référence pour 160 mots, soit dans 91.95 % des cas. Liste des mots pour lesquels aucune occurrence ne correspond à une traduction, de 14 mots : ['did', 'dislike', 'drove', 'feared', 'field', 'have', 'her', 'most', 'nice', 'plan', 'plans', 'saw', 'store', 'would'] ###Markdown De ces analyses, nous extrayons les observations suivantes: - dans la grande majorité des cas, la bonne traduction de chaque mot anglais est bien dans la fenêtre de 3 mots sélectionnée dans la version française; - seuls 14 mots se trouvent en-dehors de cette fenêtre de 3 mots. Nous n'avons pas, dans ce cas, jugé utile de modifier la fenêtre de traduction, considérant cette piste d'amélioration de nos performances comme négligeable. En effet, ces mots sont mal traduits pour d'autres raisons (conjuguaison de verbes, autres façons de construire une phrase en anglais et en francais). Analyse d'un second dictionnaire créé sans certains mots français trop communs Dans la poursuite de l'objectif d'amélioration des performances, nous avons testé le modèle en retirant des mots usuels listés dans "ban" et retrouvés trop fréquemment comme traduction erronée des mots anglais. Le modèle de traduction faisant suite est identique à ce qui a déjà été présenté et réalisé. ###Code # Création d'un nouveau dictionnaire basé sur le 1er dataset et ignorant certains mots français # Le code qui suit reprend le code de la première partie qui a été utilisé pour créer le 1er dictionnaire ban = ['le', 'la', 'les', 'une', 'est', 'en', "n'", "l'", 'de', 'ce'] liste_fr1_m = [] for i in range(len(liste_eng)): k = len(liste_fr[i].split()) - 1 l = len(liste_eng[i].split()) - 1 # Création de la liste des mots par phrase anglaise for j in range(len(liste_eng[i].split())): # Liste de mots pour le premier mot de la phrase anglaise if j == 0: liste_fr1_m.append([liste_fr[i].split()[0], liste_fr[i].split()[1], liste_fr[i].split()[2]]) # Liste des mots pour le dernier mot de la phrase anglaise elif j == l: liste_fr1_m.append([liste_fr[i].split()[-3], liste_fr[i].split()[-2], liste_fr[i].split()[-1]]) # Liste des mots pour les mots centraux de la phrase anglaise else: # Phrases anglaises et françaises avec le même nombre de mots if k == l: liste_fr1_m.append([liste_fr[i].split()[j - 1], liste_fr[i].split()[j], liste_fr[i].split()[j + 1]]) # Phrases anglaises avec plus de mots que les françaises elif k < l: if 1 <= j < k: liste_fr1_m.append([liste_fr[i].split()[j - 1], liste_fr[i].split()[j], liste_fr[i].split()[j + 1]]) else: liste_fr1_m.append([liste_fr[i].split()[-3], liste_fr[i].split()[-2], liste_fr[i].split()[-1]]) # Phrases françaises avec plus de mots que phrases anglaises else: v = liste_fr[i].split()[j - 1] w = liste_fr[i].split()[j + 1] if (v and w not in ban) or (j == 1) or (j == l-1): liste_fr1_m.append([liste_fr[i].split()[j - 1], liste_fr[i].split()[j], liste_fr[i].split()[j + 1]]) elif v in ban and w not in ban: liste_fr1_m.append([liste_fr[i].split()[j - 2], liste_fr[i].split()[j], liste_fr[i].split()[j + 1]]) elif w in ban and v not in ban: liste_fr1_m.append([liste_fr[i].split()[j - 1], liste_fr[i].split()[j], liste_fr[i].split()[j + 2]]) elif v and w in ban: liste_fr1_m.append([liste_fr[i].split()[j - 2], liste_fr[i].split()[j], liste_fr[i].split()[j + 2]]) print("Taille de la liste anglaise liste_eng1 :",len(liste_eng1)) print("Taille de la liste française liste_fr1_m :",len(liste_fr1_m)) arr_eng = np.array(liste_eng1).reshape(1501574,1) arr_fr_m = np.array(liste_fr1_m) arr_m = np.hstack((arr_eng, arr_fr_m)) arr1_m = arr_m[arr_m[:, 0].argsort()] dico_trad_m = {} dico_occ_nbr_m = {} dico_occ_pctg_m = {} k1 = 0 for i in range(uniq_eng.shape[0]): k2 = uniq_eng[i, 1].astype('int') arr2_m = arr1_m[k1 : k1 + k2, 1:4] values, counts = np.unique(arr2_m, return_counts = True) dico_trad_m.update({uniq_eng[i, 0] : values[np.argmax(counts)]}) dico_occ_nbr_m.update({uniq_eng[i, 0] : dict(zip(*np.unique(arr2_m, return_counts= True)))}) dico_count_m = dict(zip(*np.unique(arr2_m, return_counts= True))) for key, value in dico_count_m.items(): dico_count_m[key] = round(value / (k2 * 3) * 100, 2) dico_occ_pctg_m.update({uniq_eng[i, 0] : dico_count_m}) k1 += k2 dico_occ_m = {} for i in dico_trad_m.keys(): dico_occ_m.update({i : list(dico_occ_nbr_m[i].keys())}) dico_trad_pctg_m = {} for i in dico_trad_m.keys(): for j in dico_occ_pctg_m[i].keys(): if j == dico_trad_m[i]: dico_trad_pctg_m.update({i : [dico_trad_m[i], dico_occ_pctg_m[i][j]]}) dico_com1_m = {} liste_nt_m = [] for i in dico_part.keys(): if dico_trad_m[i] in dico_part[i]: dico_com1_m.update({i : [dico_trad_m[i], dico_trad_pctg_m[i][1]]}) else: liste_nt_m.append(i) # Analyse du pourcentage d'occurrence des mots choisis pour la traduction liste_pctg_m = [dico_com1_m[i][1] for i in dico_com1_m.keys()] print("Les mots les plus fréquents choisis pour la traduction des mots anglais dans le 2eme dictionnaire ont une \ occurrence comprise entre", min(liste_pctg_m), "% et", max(liste_pctg_m), "%.\n") # Analyse du score du 2eme dictionnaire print("Les traductions proposées dans le 2eme dictionnaire correspondent à celles proposées par le dictionnaire de \ référence pour", len(dico_com1_m), "mots, soit dans", round(len(dico_com1_m)/len(dico_part) * 100, 2), "% des cas.\n") print("Liste des mots mal traduits, de", len(liste_nt_m), "mots :\n", liste_nt_m) # Comparaison entre les différentes possibilités de traductions du 2e dictionnaire et celles du dictionnaire de référence dico_lt_m = {} for i in dico_part.keys(): for j in range(len(dico_occ_m[i])): if dico_occ_m[i][j] in dico_part[i]: dico_lt_m.update({i : dico_occ_m[i]}) break liste_lnt_m = [] for i in dico_part.keys(): if i not in dico_lt_m.keys(): liste_lnt_m.append(i) print("Les possibles traductions proposées dans le 2eme dictionnaire trouvent une correspondance dans les traductions \ proposées dans le dictionnaire de référence pour", len(dico_lt_m), "mots, soit dans", round(len(dico_lt_m)/len(dico_part) * 100, 2), "% des cas.\n") print("Liste des mots pour lesquels aucune occurrence ne correspond à une traduction, de", len(liste_lnt_m), "mots :\n", liste_lnt_m) ###Output Les possibles traductions proposées dans le 2eme dictionnaire trouvent une correspondance dans les traductions proposées dans le dictionnaire de référence pour 160 mots, soit dans 91.95 % des cas. Liste des mots pour lesquels aucune occurrence ne correspond à une traduction, de 14 mots : ['did', 'dislike', 'drove', 'feared', 'field', 'have', 'her', 'most', 'nice', 'plan', 'plans', 'saw', 'store', 'would'] ###Markdown En retirant les mots contenus dans la variable "ban", nous observons une augmentation du taux de bonnes réponses de 47% à 68%, ce qui valide cette piste d'amélioration. Analyse sur le seuil d'occurence En dernier lieu, nous allons travailler sur la fixation d'un seuil d'occurence visant à mieux traduire les mots anglais.1) méthode 1: conserver uniquement les traductions dont l'occurence est au-delà d'un certain seuil et vérifier leur bonne traduction par rapport à l'ensemble des mots en commun (174 mots).2) méthode 2: conserver uniquement les traductions dont l'occurence est au-delà d'un certain seuil et vérifier leur bonne traduction par rapport à un nouveau dictionnaire de référence qui ne contient que les mots retenus (au-dessus du seuil précédemment mentionné).Nous allons appliquer ces deux méthodes au dictionnaire obtenu. ###Code # Seuil d'occurrence pris en compte dans la création du dictionnaire de traduction commune # Le seuil indiqué est en pourcentage seuil = 25 # Dictionnaire 1 dico_com1_s = {} for i in dico_com1.keys(): if dico_com1[i][1]>=seuil: dico_com1_s.update({i : dico_com1[i][0]}) print("Pour un seuil de", seuil, "% d'occurrence minimum, les traductions proposées dans le 1er dictionnaire \ correspondent à celles de référence pour", len(dico_com1_s), "mots, soit dans", round(len(dico_com1_s)/len(dico_part) * 100, 2), "% des cas.\n") dico_lt_s = {} for i in dico_part.keys(): for j in range(len(dico_occ[i])): if dico_occ[i][j] in dico_part[i]: for k in dico_occ_pctg[i].keys(): if dico_occ_pctg[i][k] >= seuil: dico_lt_s.update({i : dico_occ_m[i]}) break liste_lnt_s = [] for i in dico_part.keys(): if i not in dico_lt_s.keys(): liste_lnt_s.append(i) print("Les possibles traductions proposées dans le 1er dictionnaire trouvent une correspondance dans les traductions \ proposées dans le dictionnaire de référence pour", len(dico_lt_s), "mots, soit dans", round(len(dico_lt_s)/len(dico_part) * 100, 2), "% des cas.\n") print("Liste des mots pour lesquels aucune occurrence ne correspond à une traduction, de", len(liste_lnt_s), "mots :\n", liste_lnt_s) # Dictionnaire 2 dico_com1_m_s = {} for i in dico_com1_m.keys(): if dico_com1_m[i][1]>=seuil: dico_com1_m_s.update({i : dico_com1_m[i][0]}) print("Pour un seuil de", seuil, "% d'occurrence minimum, les traductions proposées dans le 1er dictionnaire \ correspondent à celles de référence pour", len(dico_com1_m_s), "mots, soit dans", round(len(dico_com1_m_s)/len(dico_part) * 100, 2), "% des cas.\n") dico_lt_m_s = {} for i in dico_part.keys(): for j in range(len(dico_occ_m[i])): if dico_occ_m[i][j] in dico_part[i]: for k in dico_occ_pctg_m[i].keys(): if dico_occ_pctg_m[i][k] >= seuil: dico_lt_m_s.update({i : dico_occ_m[i]}) break liste_lnt_m_s = [] for i in dico_part.keys(): if i not in dico_lt_m_s.keys(): liste_lnt_m_s.append(i) print("Les possibles traductions proposées dans le 2eme dictionnaire trouvent une correspondance dans les traductions \ proposées dans le dictionnaire de référence pour", len(dico_lt_m_s), "mots, soit dans", round(len(dico_lt_m_s)/len(dico_part) * 100, 2), "% des cas.\n") print("Liste des mots pour lesquels aucune occurrence ne correspond à une traduction, de", len(liste_lnt_m_s), "mots :\n", liste_lnt_m_s) ###Output Les possibles traductions proposées dans le 2eme dictionnaire trouvent une correspondance dans les traductions proposées dans le dictionnaire de référence pour 123 mots, soit dans 70.69 % des cas. Liste des mots pour lesquels aucune occurrence ne correspond à une traduction, de 51 mots : ['and', 'animal', 'animals', 'are', 'august', 'beautiful', 'between', 'big', 'black', 'blue', 'chinese', 'did', 'dislike', 'driving', 'drove', 'dry', 'during', 'english', 'feared', 'field', 'freezing', 'french', 'fruit', 'going', 'green', 'have', 'her', 'little', 'most', 'next', 'nice', 'not', 'old', 'plan', 'plans', 'portuguese', 'quiet', 'red', 'rusty', 'saw', 'shiny', 'store', 'that', 'the', 'this', 'visit', 'was', 'went', 'white', 'would', 'yellow'] ###Markdown Nous constatons que le seuil baisse ce qui est normal car on compare avec l'ensemble des mots en commun mais le résultat est plus précis. ###Code # Seuil d'occurrence pris en compte dans la création du dictionnaire de référence # Dictionnaire 1 dico_trad_s1 = {} for i in dico_trad.keys(): if dico_trad_pctg[i][1]>=seuil: dico_trad_s1.update({i : dico_trad[i]}) dico_part_s1 = {} for i in dico_trad_s1.keys(): if i in dico_part.keys(): dico_part_s1.update({i : dico_cplt[i]}) print("Avec l'application d'un seuil minimum d'occurrence à", seuil, "%, on obtient un dictionnaire de",len(dico_trad_s1), "mots traduits.") print("Ce dictionnaire a", len(dico_part_s1), "mots en commun avec le dictionnaire de référence.\n") dico_com1_s1 = {} liste_nt_s1 = [] for i in dico_part_s1.keys(): if dico_trad_s1[i] in dico_part_s1[i]: dico_com1_s1.update({i : [dico_trad_s1[i], dico_trad_pctg[i][1]]}) else: liste_nt_s1.append(i) # Analyse du pourcentage d'occurrence des mots choisis pour la traduction liste_pctg_s1 = [dico_com1_s1[i][1] for i in dico_com1_s1.keys()] print("Les mots les plus fréquents choisis pour la traduction des mots anglais dans le 1er dictionnaire ont une \ occurrence comprise entre", min(liste_pctg_s1), "% et", max(liste_pctg_s1), "%.\n") # Analyse du score du 1er dictionnaire print("Les traductions proposées dans le 1er dictionnaire correspondent à celles proposées par le dictionnaire de \ référence pour", len(dico_com1_s1), "mots, soit dans", round(len(dico_com1_s1)/len(dico_part_s1) * 100, 2),"% des cas.\n") print("Liste des mots mal traduits, de", len(liste_nt_s1), "mots :\n", liste_nt_s1) dico_lt_s1 = {} for i in dico_part_s1.keys(): for j in range(len(dico_occ[i])): if dico_occ[i][j] in dico_part_s1[i]: for k in dico_occ_pctg[i].keys(): if dico_occ_pctg[i][k] >= seuil: dico_lt_s1.update({i : dico_occ[i]}) break liste_lnt_s1 = [] for i in dico_part_s1.keys(): if i not in dico_lt_s1.keys(): liste_lnt_s1.append(i) print("Les possibles traductions proposées dans le 1er dictionnaire trouvent une correspondance dans les traductions \ proposées dans le dictionnaire de référence pour", len(dico_lt_s1), "mots, soit dans", round(len(dico_lt_s1)/len(dico_part_s1) * 100, 2), "% des cas.\n") print("Liste des mots pour lesquels aucune occurrence ne correspond à une traduction, de", len(liste_lnt_s1), "mots :\n", liste_lnt_s1) # Dictionnaire 2 dico_trad_s2 = {} for i in dico_trad_m.keys(): if dico_trad_pctg_m[i][1]>=seuil: dico_trad_s2.update({i : dico_trad_m[i]}) dico_part_s2 = {} for i in dico_trad_s2.keys(): if i in dico_part.keys(): dico_part_s2.update({i : dico_cplt[i]}) print("Avec l'application d'un seuil minimum d'occurrence à", seuil, "%, on obtient un dictionnaire de",len(dico_trad_s2), "mots traduits.") print("Ce dictionnaire a", len(dico_part_s2), "mots en commun avec le dictionnaire de référence.\n") dico_com1_s2 = {} liste_nt_s2 = [] for i in dico_part_s2.keys(): if dico_trad_s2[i] in dico_part_s2[i]: dico_com1_s2.update({i : [dico_trad_s2[i], dico_trad_pctg_m[i][1]]}) else: liste_nt_s2.append(i) # Analyse du pourcentage d'occurrence des mots choisis pour la traduction liste_pctg_s2 = [dico_com1_s2[i][1] for i in dico_com1_s2.keys()] print("Les mots les plus fréquents choisis pour la traduction des mots anglais dans le 1er dictionnaire ont une \ occurrence comprise entre", min(liste_pctg_s2), "% et", max(liste_pctg_s2), "%.\n") # Analyse du score du 2eme dictionnaire print("Les traductions proposées dans le 2eme dictionnaire correspondent à celles proposées par le dictionnaire de \ référence pour", len(dico_com1_s2), "mots, soit dans", round(len(dico_com1_s2)/len(dico_part_s2) * 100, 2),"% des cas.\n") print("Liste des mots mal traduits, de", len(liste_nt_s2), "mots :\n", liste_nt_s2) dico_lt_m_s2 = {} for i in dico_part_s2.keys(): for j in range(len(dico_occ_m[i])): if dico_occ_m[i][j] in dico_part_s2[i]: for k in dico_occ_pctg_m[i].keys(): if dico_occ_pctg_m[i][k] >= seuil: dico_lt_m_s2.update({i : dico_occ_m[i]}) break liste_lnt_m_s2 = [] for i in dico_part_s2.keys(): if i not in dico_lt_m_s2.keys(): liste_lnt_m_s2.append(i) print("Les possibles traductions proposées dans le 2eme dictionnaire trouvent une correspondance dans les traductions \ proposées dans le dictionnaire de référence pour", len(dico_lt_m_s2), "mots, soit dans", round(len(dico_lt_m_s2)/len(dico_part_s2) * 100, 2), "% des cas.\n") print("Liste des mots pour lesquels aucune occurrence ne correspond à une traduction, de", len(liste_lnt_m_s2), "mots :\n", liste_lnt_m_s2) ###Output Les possibles traductions proposées dans le 2eme dictionnaire trouvent une correspondance dans les traductions proposées dans le dictionnaire de référence pour 123 mots, soit dans 91.79 % des cas. Liste des mots pour lesquels aucune occurrence ne correspond à une traduction, de 11 mots : ['dislike', 'drove', 'feared', 'field', 'have', 'her', 'nice', 'plans', 'saw', 'store', 'would']
notebooks/breathing_notebooks/.ipynb_checkpoints/1.1_deformation_experiment_scattering_ETH-03-checkpoint.ipynb
###Markdown Experiment 02: Deformations ExperimentsIn this notebook, we are using the CLUST Dataset.The sequence used for this notebook is ETH-01.zip ###Code import sys import random import os sys.path.append('../src') import warnings warnings.filterwarnings("ignore") from PIL import Image from sklearn.manifold import Isomap from utils.compute_metrics import get_metrics, get_majority_vote,log_test_metrics from utils.split import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.svm import LinearSVC from sklearn.svm import SVC from sklearn.model_selection import GroupKFold from tqdm import tqdm from pprint import pprint import torch from itertools import product import pickle import pandas as pd import numpy as np import mlflow import matplotlib.pyplot as plt #from kymatio.numpy import Scattering2D import torch from tqdm import tqdm from kymatio.torch import Scattering2D ###Output _____no_output_____ ###Markdown 1. Visualize Sequence of USWe are visualizing the first images from the sequence ETH-01-1 that contains 3652 US images. ###Code directory=os.listdir('../data/02_interim/Data1') directory.sort() # settings h, w = 15, 10 # for raster image nrows, ncols = 3, 4 # array of sub-plots figsize = [15, 8] # figure size, inches # prep (x,y) for extra plotting on selected sub-plots xs = np.linspace(0, 2*np.pi, 60) # from 0 to 2pi ys = np.abs(np.sin(xs)) # absolute of sine # create figure (fig), and array of axes (ax) fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize) imgs= directory[0:100] count = 0 # plot simple raster image on each sub-plot for i, axi in enumerate(ax.flat): # i runs from 0 to (nrows*ncols-1) # axi is equivalent with ax[rowid][colid] img =plt.imread("../data/02_interim/Data/" + imgs[i]) axi.imshow(img, cmap='gray') axi.axis('off') # get indices of row/column # write row/col indices as axes' title for identification #axi.set_title(df_labels['Finding Labels'][row[count]], size=20) count = count +1 plt.tight_layout(True) plt.savefig('samples_xray') plt.show() ###Output _____no_output_____ ###Markdown 2. Create Dataset ###Code %%time ll_imgstemp = [plt.imread("../data/02_interim/Data/" + dir) for dir in directory[:5]] %%time ll_imgs = [np.array(Image.open("../data/02_interim/Data/" + dir).resize(size=(98, 114)), dtype='float32') for dir in directory] %%time ll_imgs2 = [img.reshape(1,img.shape[0],img.shape[1]) for img in ll_imgs] # dataset = pd.DataFrame([torch.tensor(ll_imgs).view(1,M,N).type(torch.float32)], columns='img') dataset = pd.DataFrame({'img':ll_imgs2}).reset_index().rename(columns={'index':'order'}) # dataset = pd.DataFrame({'img':ll_imgs}).reset_index().rename(columns={'index':'order'}) dataset ###Output _____no_output_____ ###Markdown 3. Extract Scattering Features ###Code M,N = dataset['img'].iloc[0].shape[1], dataset['img'].iloc[0].shape[2] print(M,N) # Set the parameters of the scattering transform. J = 3 # Generate a sample signal. scattering = Scattering2D(J, (M, N)) data = np.concatenate(dataset['img'],axis=0) data = torch.from_numpy(data) use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") if use_cuda: scattering = scattering.cuda() data = data.to(device) init = 0 final =0 count =0 first_loop = True for i in tqdm(range (0,len(data), 11)): init= i final = i + 11 if first_loop: scattering_features = scattering(data[init: final]) first_loop=False torch.cuda.empty_cache() else: scattering_features = torch.cat((scattering_features,scattering(data[init: final]) )) torch.cuda.empty_cache() # break # save scattering features # with open('../data/03_features/scattering_features_deformation.pickle', 'wb') as handle: # pickle.dump(scattering_features, handle, protocol=pickle.HIGHEST_PROTOCOL) # save scattering features with open('../data/03_features/scattering_features_deformation.pickle', 'wb') as handle: pickle.dump(scattering_features, handle, protocol=pickle.HIGHEST_PROTOCOL) # save scattering features with open('../data/03_features/dataset_deformation.pickle', 'wb') as handle: pickle.dump(dataset, handle, protocol=pickle.HIGHEST_PROTOCOL) ###Output _____no_output_____ ###Markdown 4. Extract PCA Components ###Code with open('../data/03_features/scattering_features_deformation.pickle', 'rb') as handle: scattering_features = pickle.load(handle) with open('../data/03_features/dataset_deformation.pickle', 'rb') as handle: dataset = pickle.load(handle) sc_features = scattering_features.view(scattering_features.shape[0], scattering_features.shape[1] * scattering_features.shape[2] * scattering_features.shape[3]) X = sc_features.cpu().numpy() #standardize scaler = StandardScaler() X = scaler.fit_transform(X) pca = PCA(n_components=50) X = pca.fit_transform(X) plt.plot(np.insert(pca.explained_variance_ratio_.cumsum(),0,0),marker='o') plt.xlabel('Number of components') plt.ylabel('Cumulative explained variance') plt.show() print(pca.explained_variance_ratio_.cumsum()) df = pd.DataFrame(X) df['order'] = dataset['order'] #df.corr() import seaborn as sns; sns.set_theme() figure(figsize = (10,10)) vec1 = df.corr()['order'].values vec2 = vec1.reshape(vec1.shape[0], 1) sns.heatmap(vec2) plt.show() def visualize_corr_pca_order(pca_c, df): plt.figure(figsize=(16,8)) x= df['order'] y= df[pca_c] plt.scatter(x,y) m, b = np.polyfit(x, y, 1) plt.plot(x, m*x + b, color='red') plt.ylabel('PCA Component '+ str(pca_c+1)) plt.xlabel('Frame Order') plt.show() visualize_corr_pca_order(1, df) print('Correlation between order and Pca component 2:', df.corr()['order'][1]) visualize_corr_pca_order(3, df) print('Correlation between order and Pca component 3:', df.corr()['order'][3]) def visualize_sub_plot(pca_c, df, x_num= 3, y_num =3): fig, axs = plt.subplots(x_num, y_num, figsize=(15,10)) size = len(df) plot_num = x_num * y_num frame = int(size/plot_num) start = 0 for i in range (x_num): for j in range (y_num): final = start + frame x= df['order'].iloc[start:final] y= df[pca_c].iloc[start:final] m, b = np.polyfit(x, y, 1) axs[i, j].set_ylabel('PCA Component '+ str(pca_c+1)) axs[i, j].set_xlabel('Frame Order') axs[i, j].plot(x, m*x + b, color='red') axs[i, j].scatter(x,y) start = start + frame plt.show() visualize_sub_plot(1, df, x_num= 3, y_num =3) visualize_sub_plot(3, df, x_num= 3, y_num =3) ###Output _____no_output_____ ###Markdown 5. Isometric Mapping Correlation with Order ###Code with open('../data/03_features/scattering_features_deformation.pickle', 'rb') as handle: scattering_features = pickle.load(handle) with open('../data/03_features/dataset_deformation.pickle', 'rb') as handle: dataset = pickle.load(handle) sc_features = scattering_features.view(scattering_features.shape[0], scattering_features.shape[1] * scattering_features.shape[2] * scattering_features.shape[3]) X = sc_features.cpu().numpy() #standardize scaler = StandardScaler() X = scaler.fit_transform(X) from sklearn.manifold import Isomap embedding = Isomap(n_components=2) X_transformed = embedding.fit_transform(X) df = pd.DataFrame(X_transformed) df['order'] = dataset['order'] df.corr() from sklearn.manifold import Isomap def visualize_sub_plot_iso(pca_c, x_num= 3, y_num =3): fig, axs = plt.subplots(x_num, y_num, figsize=(15,13)) size =len(sc_features ) plot_num = x_num * y_num frame = int(size/plot_num) start = 0 x_total = [] first = True for i in tqdm(range (x_num)): for j in tqdm(range (y_num)): final = start + frame if first: embedding = Isomap(n_components=2) X_transformed = embedding.fit_transform(X[start:final]) first = False else: X_transformed = embedding.transform(X[start:final]) x_total.extend(X_transformed) df = pd.DataFrame(X_transformed) df['order'] = dataset['order'].iloc[start:final].values x= df['order'] y= df[pca_c] start = start + frame #m, b = np.polyfit(x, y, 1) axs[i, j].set_ylabel('Iso Map Dimension '+ str(pca_c+1)) axs[i, j].set_xlabel('Frame Order') #axs[i, j].plot(x, m*x + b, color='red') axs[i, j].scatter(x,y) plt.show() return x_total x_total = visualize_sub_plot_iso(0, x_num= 3, y_num =3) #print('Correlation between order and Pca component 2:', df.corr()['order'][1]) %%time embedding = Isomap(n_components=1) embedding.fit(X[:500]) X_transformed = embedding.transform(X) pca_c =0 plt.figure(figsize=(16,8)) x= dataset['order']#.iloc[:3645] y= X_transformed#[total[pca_c] for total in x_total] plt.scatter(x,y) m, b = np.polyfit(x, y, 1) #plt.plot(x, m*x + b, color='red') plt.ylabel('PCA Component '+ str(pca_c+1)) plt.xlabel('Frame Order') plt.show() ###Output _____no_output_____
KNN/K-Nearest-neighbors.ipynb
###Markdown Apply CrossValidation For Finding K ###Code X=[] Y=[] for i in range(1,26,2): clf1=KNeighborsClassifier(n_neighbors=i) score=cross_val_score(clf1,X_train,Y_train) X.append(i) Y.append(score.mean()) import matplotlib.pyplot as plt plt.plot(X,Y) plt.scatter(X,Y) plt.show() ###Output _____no_output_____
preprocessing_thetis_non_seq.ipynb
###Markdown Preprocessing ThetisNotebook to preprocess the thetis dataset to train the cnn as non-sequential images Mounting Google Drive ###Code from google.colab import drive drive.mount('/content/drive') # Navigate to code directory %cd /content/drive/MyDrive/cnn # List project directory contents !ls ###Output _____no_output_____ ###Markdown Unzipping the dataset ###Code # import os # import zipfile # local_zip = '/content/drive/MyDrive/cnn/VIDEO_RGB.zip' # zip_ref = zipfile.ZipFile(local_zip, 'r') # zip_ref.extractall('/content/drive/MyDrive/cnn') # zip_ref.close() ###Output _____no_output_____ ###Markdown Preparing the directories ###Code import os os.mkdir(f"FRAMES_COMPLETE_VIDEO/p8_fslice_s2") os.mkdir(f"FRAMES_COMPLETE_VIDEO/p8_fslice_s2/backhand") os.mkdir(f"FRAMES_COMPLETE_VIDEO/p8_fslice_s2/forehand") os.mkdir(f"FRAMES_COMPLETE_VIDEO/p8_fslice_s2/idle") os.mkdir(f"FRAMES_BIG_VALIDATION") os.mkdir(f"FRAMES_BIG_VALIDATION/bhnd") os.mkdir(f"FRAMES_BIG_VALIDATION/forehand") os.mkdir(f"FRAMES_BIG_VALIDATION/idle") ###Output _____no_output_____ ###Markdown Dividing the videos into frames ###Code import cv2 import glob import time count = 12790 for filepath in glob.iglob('VIDEO_RGB/backhand_slice/*.avi', recursive = True): print(filepath) cap = cv2.VideoCapture(filepath) success,image = cap.read() count2 = 0 while success: if count2 < 5: cv2.imwrite(f"/content/drive/MyDrive/cnn/FRAMES_RGB/idle/frame{count}.jpg", image) # save frame as JPEG file elif count2 > 80: cv2.imwrite(f"/content/drive/MyDrive/cnn/FRAMES_RGB/idle/frame{count}.jpg", image) # save frame as JPEG file elif count2 > 10 and count2 < 75: cv2.imwrite(f"/content/drive/MyDrive/cnn/FRAMES_RGB/bhnd/frame{count}.jpg", image) # save frame as JPEG file count2+=1 success,image = cap.read() print('Read a new frame: ', success) count += 1 ###Output _____no_output_____ ###Markdown Preparing a folder to classify a complete video ###Code import cv2 import glob import time filepath = "/content/drive/MyDrive/cnn/VIDEO_RGB/forehand_slice/p8_fslice_s2.avi" cap = cv2.VideoCapture(filepath) success,image = cap.read() count2 = 0 while success: if count2 < 5: cv2.imwrite(f"/content/drive/MyDrive/cnn/FRAMES_COMPLETE_VIDEO/p8_fslice_s2/idle/frame{count2}.jpg", image) # save frame as JPEG file elif count2 > 80: cv2.imwrite(f"/content/drive/MyDrive/cnn/FRAMES_COMPLETE_VIDEO/p8_fslice_s2/idle/frame{count2}.jpg", image) # save frame as JPEG file elif count2 > 10 and count2 < 75: cv2.imwrite(f"/content/drive/MyDrive/cnn/FRAMES_COMPLETE_VIDEO/p8_fslice_s2/forehand/frame{count2}.jpg", image) # save frame as JPEG file count2+=1 success,image = cap.read() print('Read a new frame: ', success) # count = 0 # for filepath in glob.iglob('VIDEO_RGB/backhand/*.avi', recursive = True): # count = count + 1 # print(filepath) # print(count) import cv2 import glob import time count = 246667 for filepath in glob.iglob('VIDEO_RGB/forehand_slice/*.avi', recursive = True): print(filepath) cap = cv2.VideoCapture(filepath) success,image = cap.read() count2 = 0 while success: if count2 < 5: cv2.imwrite(f"/content/drive/MyDrive/cnn/FRAMES_RGB/idle/frame{count}.jpg", image) # save frame as JPEG file elif count2 > 80: cv2.imwrite(f"/content/drive/MyDrive/cnn/FRAMES_RGB/idle/frame{count}.jpg", image) # save frame as JPEG file elif count2 > 10 and count2 < 75: cv2.imwrite(f"/content/drive/MyDrive/cnn/FRAMES_RGB/forehand/frame{count}.jpg", image) # save frame as JPEG file count2+=1 success,image = cap.read() print('Read a new frame: ', success) count += 1 ###Output _____no_output_____ ###Markdown Creating the validation set ###Code import glob import random import numpy as np import shutil # Select a random 10% of the dataset to be the validation set forehand_files = glob.glob('FRAMES_RGB/forehand/*') n_files = len(forehand_files) print(n_files) # random_sample = random.sample(forehand_files, np.int(np.floor(n_files*0.1))) random_sample = random.sample(forehand_files, 6000) for filepath in random_sample: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/forehand') shutil.move(filepath, 'FRAMES_MEDIUM/forehand') random_sample = random.sample(forehand_files, 600) for filepath in random_sample: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/forehand') shutil.move(filepath, 'FRAMES_MEDIUM_VALIDATION/forehand') # Select a random 10% of the dataset to be the validation set bhnd_files = glob.glob('FRAMES_RGB/bhnd/*') n_files = len(bhnd_files) print(n_files) random_sample = random.sample(bhnd_files, 6000) for filepath in random_sample: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/bhnd') shutil.move(filepath, 'FRAMES_MEDIUM/bhnd') random_sample = random.sample(bhnd_files, 600) for filepath in random_sample: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/bhnd') shutil.move(filepath, 'FRAMES_MEDIUM_VALIDATION/bhnd') # Select a random 10% of the dataset to be the validation set idle_files = glob.glob('FRAMES_RGB/idle/*') n_files = len(idle_files) print(n_files) random_sample = random.sample(idle_files, 5000) for filepath in random_sample: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/idle') shutil.move(filepath, 'FRAMES_MEDIUM/idle') random_sample = random.sample(idle_files, 500) for filepath in random_sample: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/idle') shutil.move(filepath, 'FRAMES_MEDIUM_VALIDATION/idle') ###Output _____no_output_____ ###Markdown Creating human accuracy test set ###Code import glob import random import numpy as np import shutil # Select a random 10% of the dataset to be the validation set forehand_files = glob.glob('FRAMES_RGB/forehand/*') n_files = len(forehand_files) print(n_files) # random_sample = random.sample(forehand_files, np.int(np.floor(n_files*0.1))) random_sample = random.sample(forehand_files, 20) for filepath in random_sample: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/forehand') shutil.move(filepath, 'FRAMES_HUMAN_ACCURACY/forehand') # Select a random 10% of the dataset to be the validation set bhnd_files = glob.glob('FRAMES_RGB/bhnd/*') n_files = len(bhnd_files) print(n_files) random_sample = random.sample(bhnd_files, 20) for filepath in random_sample: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/bhnd') shutil.move(filepath, 'FRAMES_HUMAN_ACCURACY/bhnd') # Select a random 10% of the dataset to be the validation set idle_files = glob.glob('FRAMES_RGB/idle/*') n_files = len(idle_files) print(n_files) random_sample = random.sample(idle_files, 20) for filepath in random_sample: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/idle') shutil.move(filepath, 'FRAMES_HUMAN_ACCURACY/idle') import os os.mkdir(f"FRAMES_HUMAN_ACCURACY_MIXED") import os # Select a random 10% of the dataset to be the validation set bhnd_files = glob.glob('FRAMES_HUMAN_ACCURACY/**/*', recursive = 'true') bhnd_files = [f for f in bhnd_files if os.path.isfile(f)] n_files = len(bhnd_files) print(n_files) random_sample = random.sample(bhnd_files, 60) for filepath in random_sample: print(filepath) shutil.copy(filepath, 'FRAMES_HUMAN_ACCURACY_MIXED') import glob import random import numpy as np import shutil idle_files = glob.glob('FRAMES_RGB/bhnd/bhnd/') n_files = len(idle_files) print(n_files) # Select a random 10% of the dataset to be the validation set bhnd_files = glob.glob('FRAMES_RGB/bhnd/*') n_files = len(bhnd_files) print(n_files) random_sample = random.sample(bhnd_files, 300) for filepath in random_sample: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/bhnd') shutil.move(filepath, 'FRAMES_SMALL/bhnd') random_sample = random.sample(bhnd_files, 100) for filepath in random_sample: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/bhnd') shutil.move(filepath, 'FRAMES_SMALL_VALIDATION/bhnd') !cp -a FRAMES_RGB/bhnd/ FRAMES_RGB/bhnd/ import glob import random import numpy as np import shutil # Select a random 10% of the dataset to be the validation set idle_files = glob.glob('FRAMES_RGB/forehand/*') n_files = len(idle_files) print(n_files) random_sample = random.sample(idle_files, 3600) count = 0 for filepath in random_sample: if count < 3000: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/idle') shutil.move(filepath, 'FRAMES_MEDIUM/forehand') else: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/idle') shutil.move(filepath, 'FRAMES_MEDIUM_VALIDATION/forehand') count = count + 1 import glob import random import numpy as np import shutil # Select a random 10% of the dataset to be the validation set idle_files = glob.glob('FRAMES_RGB/bhnd/*') n_files = len(idle_files) print(n_files) random_sample = random.sample(idle_files, 3600) count = 0 for filepath in random_sample: if count < 3000: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/idle') shutil.move(filepath, 'FRAMES_MEDIUM/backhand') else: print(filepath) # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/idle') shutil.move(filepath, 'FRAMES_MEDIUM_VALIDATION/backhand') count = count + 1 import glob import random import numpy as np import shutil idle_files = glob.glob('FRAMES_MEDIUM_VALIDATION/backhand/*') n_files = len(idle_files) print(n_files) # for filepath in idle_files: # print(filepath) # # shutil.move(filepath, 'FRAMES_RGB_VALIDATION/idle') # shutil.move(filepath, 'FRAMES_RGB/idle') rm FRAMES_RGB_VALIDATION/forehand/* ###Output _____no_output_____
opengrid_dev/notebooks/Analysis/Energy_signature.ipynb
###Markdown This script is a port of EnergyID's code that calculates a linear regression on heating data Imports and setup General imports ###Code import pandas as pd ###Output _____no_output_____ ###Markdown OpenGrid-specific imports ###Code from opengrid_dev.library import houseprint from opengrid_dev import config from opengrid_dev.library import linearregression c = config.Config() ###Output _____no_output_____ ###Markdown Plotting settings ###Code import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = 16,8 ###Output _____no_output_____ ###Markdown Load Data We are going to use gas consumption data and weather data. Because we don't want to overload the weather API, we will only use 1 location (Ukkel).First, let's define the start and end date of our experiment. Let's take 1 year worth of data, starting with last month. ###Code # If we want to get consumption for 12 months, we will need 13 months of data end = pd.Timestamp.today().replace(day=2).normalize() start = (end.replace(year=end.year-1) - pd.Timedelta(days=2)) start = start.tz_localize('Europe/Brussels') end = end.tz_localize('Europe/Brussels') print(start, end) ###Output _____no_output_____ ###Markdown Gas Data ###Code # Load the Houseprint, and sync all data hp = houseprint.Houseprint() #hp = houseprint.load_houseprint_from_file('cache_hp.hp') hp.init_tmpo() #hp.sync_tmpos() #hp.save('cache_hp.hp') def gas_data_generator1(): # original monthly data generator, returns wrong data for gas_sensor in hp.get_sensors(sensortype='gas'): df = gas_sensor.get_data(head=start, tail=end, unit='kWh', diff=False) df = df.tz_convert('Europe/Brussels') df = df.resample('MS') df = df.diff().dropna() df = df[df>0] if df.empty: continue yield df def gas_data_generator2(): # Simple roughly correct monthly data generator # Roughly-correct means that the gas consumption between two counter values # right before and right after a month-transition are attributed to the new month. # However, it is robust and does not need data beyond the last month for gas_sensor in hp.get_sensors(sensortype='gas'): df = gas_sensor.get_data(head=start, tail=end, unit='kWh', diff=False) df = df.tz_convert('Europe/Brussels') df = df.resample('MS').last() df = df.diff().dropna() df = df[df>0] if df.empty: continue yield df def gas_data_generator3(): # More complicated but most correct correct monthly data generator # The difference with the previous is that this generator interpolates # at month-transitions in order to estimate the exact counter value at 00:00:00 # whereas the previous attributed all gas consumption at month-transitions to the # new month # Drawbacks: very slow (due to the two reindex() calls) and if there would be no # data after the end of the last month or before beginning of first month, # interpolation can't be made, and the entire last (or first) month has no data for gas_sensor in hp.get_sensors(sensortype='gas'): df = gas_sensor.get_data(head=start, tail=end, unit='kWh', diff=False) df = df.tz_convert('Europe/Brussels') newindex = df.resample('MS').first().index df = df.reindex(df.index.union(newindex)) df = df.interpolate(method='time') df = df.reindex(newindex) df = df.diff() df = df.shift(-1).dropna() df = df[df>0] if df.empty: continue yield df def gas_data_generator4(): # Preferred method: as accurate as 3, and faster # Daily approach, obtain fully correct daily data. # To be aggregated to monthly or weekly or ... for gas_sensor in hp.get_sensors(sensortype='gas'): df = gas_sensor.get_data(head=start, tail=end, resample='day', unit='kWh', diff=False, tz='Europe/Brussels') df = df.diff().shift(-1).dropna() if df.empty: continue yield df ###Output _____no_output_____ ###Markdown Let's have a peek ###Code gas_data1 = gas_data_generator1() gas_data2 = gas_data_generator2() gas_data3 = gas_data_generator3() gas_data4 = gas_data_generator4() peek1 = next(gas_data1) peek2 = next(gas_data2) peek3 = next(gas_data3) peek4 = next(gas_data4) plt.figure() plt.plot(peek1, label='1') plt.plot(peek2, label='2') plt.plot(peek3, label='3') plt.plot(peek4.resample('MS').sum(), label='4') plt.legend() print(peek3 - peek4.resample('MS').sum()) %timeit(next(gas_data1)) %timeit(next(gas_data2)) %timeit(next(gas_data3)) %timeit(next(gas_data4)) ###Output _____no_output_____ ###Markdown Weather Data Run this block to download the weather data and save it to a pickle. This is a large request, and you can only do 2 or 3 of these per day before your credit with Forecast.io runs out!TODO: Use the caching library for this. To get the data run the cell below ###Code from opengrid_dev.library import forecastwrapper weather = forecastwrapper.Weather(location='Ukkel, Belgium', start=start, end=end) weather_data = weather.days().resample('MS').sum() weather_data['heatingDegreeDays16.5'].plot() ###Output _____no_output_____ ###Markdown Put data together We have defined an OpenGrid analysis as a class that takes a single DataFrame as input, so we'll create that dataframe.I wrote a generator that uses our previously defined generator so you can generate while you generate. ###Code def analysis_data_generator(): gas_data = gas_data_generator() for gas_df in gas_data: df = pd.concat([gas_df, weather_data['heatingDegreeDays16.5']], axis=1).dropna() df.columns = ['gas', 'degreedays'] yield df ###Output _____no_output_____ ###Markdown Let's have another peek ###Code analysis_data = analysis_data_generator() peek = next(analysis_data) fig, ax1 = plt.subplots() ax2 = ax1.twinx() for axis, column, color in zip([ax1, ax2], peek.columns, ['b', 'r']): axis.plot_date(peek.index, peek[column], '-', color=color, label=column) plt.legend() ###Output _____no_output_____ ###Markdown Run Regression Analysis ###Code analysis_data = analysis_data_generator() for data in analysis_data: try: analysis = linearregression.LinearRegression(independent=data.degreedays, dependent=data.gas) except ValueError as e: print(e) fig = analysis.plot() fig.show() analysis_data = analysis_data_generator() for data in analysis_data: try: analysis = linearregression.LinearRegression3(independent=data.degreedays, dependent=data.gas, breakpoint=60, percentage=0.5) except ValueError as e: print(e) fig = analysis.plot() fig.show() ###Output _____no_output_____
algo/.ipynb_checkpoints/PC1-checkpoint.ipynb
###Markdown Use the following for testing Decision tree- run 100 iterations- 50/50 training/testing- Decision tree ###Code res = dict() X, y= df.iloc[:,:-1].values, df[CLASS_NAME].values for i in range(100): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=.5, random_state=0) clf_tree = DecisionTreeClassifier(random_state=0) clf_tree.fit(X_train, y_train) y_pred = clf_tree.predict(X_test) tmp_res = classification_report(y_test, y_pred, output_dict=True) res["precision"] = res.get("precision", 0) + tmp_res["1"]["precision"] res["recall"] = res.get("recall", 0) + tmp_res["1"]["recall"] res["f1-score"] = res.get("f1-score", 0) + tmp_res["1"]["f1-score"] res["specificity"] = res.get("specificity", 0) + tmp_res[str(MAJORITY)]["recall"] res["sensitivity"] = res.get("sensitivity", 0) + tmp_res[str(MINORITY)]["recall"] res["overall accuracy"] = res.get("overall accuracy", 0) + accuracy_score(y_test, y_pred,) res["auc"] = res.get("auc", 0) + roc_auc_score(y_test, y_pred) res["g_mean"] = res.get("g_mean", 0) + geometric_mean_score(y_test, y_pred) pprint_dict(res) ###Output precision: 0.25 recall: 0.27 f1-score: 0.26 specificity: 0.94 sensitivity: 0.27 overall accuracy: 0.90 auc: 0.61 g_mean: 0.50 ###Markdown Use the following for testing SMOTE- run 100 iterations- 50/50 training/testing- Decision tree- N = 200 ###Code res = dict() X, y= df.iloc[:,:-1].values, df[CLASS_NAME].values for i in range(100): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=.5, random_state=0) if i == 0: print("Shape of X_train before oversampling: " + str(X_train.shape)) print("Outcome distribution of X_train before oversampling: " + str(np.bincount(y_train))) # Oversample training data sm = SMOTE(random_state=0) sm.fit(X_train, y_train) X_train_r, y_train_r = sm.fit_resample(X_train, y_train) if i == 0: print("Shape of X_train after oversampling: " + str(X_train_r.shape)) print("Outcome distribution of X_train after oversampling: " + str(np.bincount(y_train_r))) # Build classifier on resampled data clf_tree = DecisionTreeClassifier(random_state=0) clf_tree.fit(X_train_r, y_train_r) y_pred = clf_tree.predict(X_test) tmp_res = classification_report(y_test, y_pred, output_dict=True) res["precision"] = res.get("precision", 0) + tmp_res["1"]["precision"] res["recall"] = res.get("recall", 0) + tmp_res["1"]["recall"] res["f1-score"] = res.get("f1-score", 0) + tmp_res["1"]["f1-score"] res["specificity"] = res.get("specificity", 0) + tmp_res[str(MAJORITY)]["recall"] res["sensitivity"] = res.get("sensitivity", 0) + tmp_res[str(MINORITY)]["recall"] res["overall accuracy"] = res.get("overall accuracy", 0) + accuracy_score(y_test, y_pred,) res["auc"] = res.get("auc", 0) + roc_auc_score(y_test, y_pred) res["g_mean"] = res.get("g_mean", 0) + geometric_mean_score(y_test, y_pred) pprint_dict(res) ###Output precision: 0.22 recall: 0.38 f1-score: 0.27 specificity: 0.90 sensitivity: 0.38 overall accuracy: 0.87 auc: 0.64 g_mean: 0.58 ###Markdown Use the following for testing ADASYN- run 100 iterations- 50/50 training/testing- Decision tree- A fully balanced dataset after synthesizing- Dth = 0.75 (Dth is a preset threshold for the maximum tolerated degree of class imbalance ratio) ###Code res = dict() X, y= df.iloc[:,:-1].values, df[CLASS_NAME].values for i in range(100): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=.5, random_state=0) if i == 0: print("Shape of X_train before oversampling: " + str(X_train.shape)) print("Outcome distribution of X_train before oversampling: " + str(np.bincount(y_train))) # Oversample training data ada = ADASYN(random_state=0) ada.fit(X_train, y_train) X_train_r, y_train_r = ada.fit_resample(X_train, y_train) if i == 0: print("Shape of X_train after oversampling: " + str(X_train_r.shape)) print("Outcome distribution of X_train after oversampling: " + str(np.bincount(y_train_r))) # Build classifier on resampled data clf_tree = DecisionTreeClassifier(random_state=0) clf_tree.fit(X_train_r, y_train_r) y_pred = clf_tree.predict(X_test) tmp_res = classification_report(y_test, y_pred, output_dict=True) res["precision"] = res.get("precision", 0) + tmp_res["1"]["precision"] res["recall"] = res.get("recall", 0) + tmp_res["1"]["recall"] res["f1-score"] = res.get("f1-score", 0) + tmp_res["1"]["f1-score"] res["specificity"] = res.get("specificity", 0) + tmp_res[str(MAJORITY)]["recall"] res["sensitivity"] = res.get("sensitivity", 0) + tmp_res[str(MINORITY)]["recall"] res["overall accuracy"] = res.get("overall accuracy", 0) + accuracy_score(y_test, y_pred,) res["auc"] = res.get("auc", 0) + roc_auc_score(y_test, y_pred) res["g_mean"] = res.get("g_mean", 0) + geometric_mean_score(y_test, y_pred) pprint_dict(res) ###Output precision: 0.26 recall: 0.51 f1-score: 0.35 specificity: 0.90 sensitivity: 0.51 overall accuracy: 0.87 auc: 0.71 g_mean: 0.68 ###Markdown Use the following for testing SMOTEBoost- run 100 iterations- 50/50 training/testing- Decision tree ###Code res = dict() X, y= df.iloc[:,:-1].values, df[CLASS_NAME].values for i in range(100): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=.5, random_state=0) clf1 = SMOTEBoost(random_state=0) clf1.fit(X_train, y_train) y_pred = clf1.predict(X_test) tmp_res = classification_report(y_test, y_pred, output_dict=True) res["precision"] = res.get("precision", 0) + tmp_res["1"]["precision"] res["recall"] = res.get("recall", 0) + tmp_res["1"]["recall"] res["f1-score"] = res.get("f1-score", 0) + tmp_res["1"]["f1-score"] res["specificity"] = res.get("specificity", 0) + tmp_res[str(MAJORITY)]["recall"] res["sensitivity"] = res.get("sensitivity", 0) + tmp_res[str(MINORITY)]["recall"] res["overall accuracy"] = res.get("overall accuracy", 0) + accuracy_score(y_test, y_pred,) res["auc"] = res.get("auc", 0) + roc_auc_score(y_test, y_pred) res["g_mean"] = res.get("g_mean", 0) + geometric_mean_score(y_test, y_pred) pprint_dict(res) ###Output precision: 0.16 recall: 0.41 f1-score: 0.23 specificity: 0.85 sensitivity: 0.41 overall accuracy: 0.82 auc: 0.63 g_mean: 0.59 ###Markdown Use the following for testing Dev_algo- run 100 iterations- 50/50 training/testing- Decision tree ###Code res = dict() X, y= df.iloc[:,:-1].values, df[CLASS_NAME].values for i in range(100): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=.5, random_state=0) unique, counts = np.unique(y_train, return_counts=True) frequency = dict(zip(unique, counts)) clf1 = DEVALGO(random_state=0, n_samples=frequency[MAJORITY]) clf1.fit(X_train, y_train) y_pred = clf1.predict(X_test) tmp_res = classification_report(y_test, y_pred, output_dict=True) res["precision"] = res.get("precision", 0) + tmp_res["1"]["precision"] res["recall"] = res.get("recall", 0) + tmp_res["1"]["recall"] res["f1-score"] = res.get("f1-score", 0) + tmp_res["1"]["f1-score"] res["specificity"] = res.get("specificity", 0) + tmp_res[str(MAJORITY)]["recall"] res["sensitivity"] = res.get("sensitivity", 0) + tmp_res[str(MINORITY)]["recall"] res["overall accuracy"] = res.get("overall accuracy", 0) + accuracy_score(y_test, y_pred,) res["auc"] = res.get("auc", 0) + roc_auc_score(y_test, y_pred) res["g_mean"] = res.get("g_mean", 0) + geometric_mean_score(y_test, y_pred) pprint_dict(res) ###Output precision: 0.34 recall: 0.30 f1-score: 0.32 specificity: 0.96 sensitivity: 0.30 overall accuracy: 0.91 auc: 0.63 g_mean: 0.53
fraud_detection_v3_fixing_time_column.ipynb
###Markdown Reading & Parsing Data ###Code data = pd.read_csv('train.csv') data.head() data.info() ms.matrix(data) ###Output _____no_output_____ ###Markdown Feature Selection & Processing ###Code data.head() ses.boxplot(x=data['Class'],y=data['Time'],data=data) ses.scatterplot(x=data['Time'],y=data['Amount'],data=data) ses.heatmap(data.corr(),cmap='coolwarm') ses.scatterplot(x=data['Time'],y=data['V8'],data=data) ses.scatterplot(x=data['Time'],y=data['V7'],data=data) #add a new column data['mins'] = data['Time']//60 data.head() data['day'] = data['mins']//60 data['week'] = data['day']//7 data['dayOrNight'] = np.where(data['day']>=18.0, 1.0, 0.0) data.head() ses.scatterplot(x=data['day'],y=data['Amount'],data=data) ses.boxplot(x=data['dayOrNight'],y=data['Amount'],data=data) ###Output _____no_output_____ ###Markdown Model Selection & Training ###Code creditId = data.drop('ID',axis=1,inplace=True) data.info() data.head() from sklearn.cluster import KMeans from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(data.drop('Class',axis=1),data['Class'],test_size=0.30,random_state=53) X_train.shape y_train.shape X_test.shape y_test.shape kmeans = KMeans(n_clusters=2, random_state=0).fit(X_train,y_train) kmeans.labels_ predict = kmeans.predict(X_test) predict from sklearn.metrics import confusion_matrix,accuracy_score,precision_score,recall_score,classification_report print(accuracy_score(y_test,predict)) ###Output 0.31658544782389514 ###Markdown Another Model Training ###Code from xgboost.sklearn import XGBClassifier rf=XGBClassifier(learning_rate=0.01, n_estimators=90, max_depth=4, min_child_weight=1, gamma=0, subsample=0.8, objective='binary:logistic', reg_alpha=0, seed=27) rf.fit(X_train,y_train) predict=rf.predict(X_test) print(accuracy_score(y_test,predict)) ###Output 0.9994958830448664 ###Markdown Prediction & Saving ###Code test = pd.read_csv('test.csv') test.info() test_id = test['ID'] test['mins'] = test['Time']//60 test['day'] = test['mins']//60 test['week'] = test['day']//7 test['dayOrNight'] = np.where(test['day']>=18.0, 1.0, 0.0) test.head() test.drop(['ID'],axis=1,inplace=True) answer=rf.predict(test) answer df1 = pd.DataFrame(test_id,columns=['ID']) df2 = pd.DataFrame(answer,columns=['Class']) output = pd.concat([df1,df2],axis=1) output.to_csv('prediction_v2_time_fix_v1.csv',index=False) ###Output _____no_output_____ ###Markdown Random Forest Model ###Code from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(max_depth=4, random_state=53) rfc.fit(X_train,y_train) predict_v2 = rfc.predict(X_test) predict_v2 print(accuracy_score(y_test,predict_v2)) answer_v2 = rfc.predict(test) answer_v2 df1 = pd.DataFrame(test_id,columns=['ID']) df2 = pd.DataFrame(answer_v2,columns=['Class']) output = pd.concat([df1,df2],axis=1) output.to_csv('prediction_v2_time_fix_v2.csv',index=False) ###Output _____no_output_____
notebooks/eigenvalue_rigidity_graph_backbone_ribose.ipynb
###Markdown Part 1: Eigenvalue Plot ###Code e_agent = EigenPlotBackboneRibose(rootfolder) e_agent.initailize_six_systems() figsize = (20, 10) e_agent.plot_lambda_six_together(figsize) #plt.savefig('Rigidity_graph_eigenvalue_backbone.png', dpi=200) plt.show() figsize = (12, 3) e_agent.plot_lambda_separate_strand(figsize) plt.tight_layout() #plt.savefig('lambda_sep_strands_backbone.png', dpi=200) plt.show() ###Output _____no_output_____ ###Markdown Part 2: Eigenvector ###Code figsize = (24, 12) hspace = 0.18 wspace = 0.2 groupid = 2 # 0, 1, 2 lw = 2 fig, d_axes = e_agent.plot_eigenvector_separate_strand(figsize, hspace, wspace, groupid, lw) #plt.savefig(f'group{groupid}_eigvector_backbone.png', dpi=200) plt.show() ###Output _____no_output_____
wandb/run-20210518_200345-2pudm69v/tmp/code/00-main.ipynb
###Markdown testing ###Code from load_data import * # load_data() ###Output _____no_output_____ ###Markdown Loading the data ###Code from load_data import * X_train,X_test,y_train,y_test = load_data() len(X_train),len(y_train) len(X_test),len(y_test) ###Output _____no_output_____ ###Markdown Test Modelling ###Code import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F class Test_Model(nn.Module): def __init__(self) -> None: super().__init__() self.c1 = nn.Conv2d(1,32,5) self.c2 = nn.Conv2d(32,64,5) self.c3 = nn.Conv2d(64,128,5) self.fc4 = nn.Linear(128*10*10,256) self.fc5 = nn.Linear(256,4) def forward(self,X): preds = F.max_pool2d(F.relu(self.c1(X)),(2,2)) preds = F.max_pool2d(F.relu(self.c2(preds)),(2,2)) preds = F.max_pool2d(F.relu(self.c3(preds)),(2,2)) print(preds.shape) preds = preds.view(-1,128*10*10) preds = F.relu(self.fc4(preds)) preds = self.fc5(preds) return preds device = torch.device('cuda') BATCH_SIZE = 32 IMG_SIZE = 112 model = Test_Model().to(device) optimizer = optim.SGD(model.parameters(),lr=0.1) criterion = nn.CrossEntropyLoss() EPOCHS = 12 from tqdm import tqdm PROJECT_NAME = 'Weather-Clf' import wandb test_index += 1 wandb.init(project=PROJECT_NAME,name=f'test-{test_index}') for _ in tqdm(range(EPOCHS)): for i in range(0,len(X_train),BATCH_SIZE): X_batch = X_train[i:i+BATCH_SIZE].view(-1,1,112,112).to(device) y_batch = y_train[i:i+BATCH_SIZE].to(device) model.to(device) preds = model(X_batch.float()) preds.to(device) loss = criterion(preds,torch.tensor(y_batch,dtype=torch.long)) optimizer.zero_grad() loss.backward() optimizer.step() wandb.log({'loss':loss.item()}) wandb.finish() ###Output _____no_output_____
ETNAYourOwnJupyterInterpreter.ipynb
###Markdown **ETNA: Extensive Tool for Network Analysis** **About:**This notebook enables interactive network analysis using a graphical user interface. It was initially developed to analyse protein-protein interaction networks, however may be used for any network saved in .csv or .graphml format.The following methods are available:* **Centrality measures** (*Degree, Betweenness Centrality, Closeness Centrality, Eigenvector Centrality*) - histograms and basic statistics are provided* **Clustering coefficient** - histogram and basic statistics are provided* **Power law fitting** for the degree sequence - the fit is plotted, likelihood is calculated and p-value may be calculated if needed. The user may define the cutoff parameter and number of simulations for bootstrap when performing p-value assesment. * **Hubs impact** - two methods are available for evaluating the contribution of the hubs and lower-degree nodes. Plots of them are displayed.* **Assortativity** - degree correlation coefficient is calculated and the Average Nearest Neighbour Degree (ANND) plot is provided.* **Robustness** - the robustness can be measured with respect to Degree, Betweenness Centrality, Closeness Centrality and Eigenvector Centrality. The plot is provided.* **Failure cascade** - histogram of final sizes of failure cascades is provided. The user may define the simulation parameter.In addition, for the **Centrality measures**, **Clustering coefficient**, **Robustness** and **Failure cascade** the data can be downloaded in a .csv file. All other details regarding implementation of ETNA's methods can be found in the manuscript and corresponding Supplementary Materials (Section 2. and 3.). **Requirements:**This is an .ipynb notebook. To run it you must have a correct interpreter e.g. Jupyter Notebook within Anaconda. Before running you must install graph-tool library (follow the isntructions on the website: https://git.skewed.de/count0/graph-tool/-/wikis/installation-instructions). All other libraries (numpy, pandas, random, rpy2, ipywidgets, base64, hashlib, typing and seaborn) if not installed can be installed using !pip install library_name command. All other details about the implementation of ETNA's methods can be found in the manuscript and corresponding **Availability:**4 exemplary preprocessed datasets from IntAct Molecular Interaction Database (elimination of special signs in the authors names was performed) are provided in the GitHub repository https://github.com/AlicjaNowakowska/ETNA. If you want to use them for the analysis you must download the zip file, unzip it and copy the file path. Then provide in the ETNA's window. **Network files:**To perform the analysis you may use the exemplary datasets or your own data. In either case you must copy the file path of your file of interest - it must be then provided in the ETNA's tab 'Provide file name here'. **To display the ETNA's window and perform the analysis excute all the following code cells by clicking Shift+Enter button.** Code ###Code # ------------------- Graphical User Interface for Network Analysis ------------------- # # Libraries import warnings warnings.filterwarnings("ignore") from graph_tool.all import * import graph_tool.all as gt import ipywidgets as widgets import matplotlib.pyplot as plt import numpy as np from IPython.display import clear_output import seaborn as sns from ipywidgets import * import rpy2.robjects.packages as rpackages from rpy2.robjects.packages import importr import rpy2 import rpy2.robjects as robjects from rpy2.robjects.vectors import StrVector import pandas as pd from IPython.utils import io import random import numpy as np # Libraries for Download button import base64 import hashlib from typing import Callable import ipywidgets from IPython.display import HTML, display # Installing R packages utils = rpackages.importr('utils') with io.capture_output() as captured: utils.install_packages('poweRlaw', repos="https://cloud.r-project.org") x = rpackages.importr('poweRlaw') # Creating a My_Network class to hold functions for all network analysis methods class My_Network: def __init__(self, file_name): # Network class is initialized through the file upload if ".csv" in file_name: self.G = graph_tool.load_graph_from_csv(file_name) if ".graphml" in file_name: self.G = graph_tool.load_graph(file_name) def prepare_the_network(self): """ Network preparation includes: 1) Making it undirected 2) Removal of parallel edges if they are present 3) Extraction of the largest connected component that is treated as the final ready-to-use network (all other components are removed). """ self.G.set_directed(False) # 1) graph_tool.stats.remove_parallel_edges(self.G) # 2) # 3) comp, hist = graph_tool.topology.label_components(self.G) label = gt.label_largest_component(self.G) to_remove = [] for v in self.G.vertices(): if label[v]==0: to_remove.append(v) for v in reversed(sorted(to_remove)): self.G.remove_vertex(v) """ The following functions are responsible for calculation of centrality measures and clustering coefficient. It is done by generating a corresponding map of the form: node <---> value of the measure. """ def create_degree_distribution_map(self): my_map = self.G.degree_property_map("total") return my_map def create_betweenness_distribution_map(self): v_betweeness_map, e_betweenness_map = graph_tool.centrality.betweenness(self.G) my_map = v_betweeness_map return my_map def create_closeness_distribution_map(self): my_map = graph_tool.centrality.closeness(self.G) return my_map def create_eigenvector_distribution_map(self): eigen_value, v_eigen_map = graph_tool.centrality.eigenvector(self.G) my_map = v_eigen_map return my_map def create_clustering_map(self): my_map = graph_tool.clustering.local_clustering(self.G) return my_map def create_random_map(self): # Corresponds to the generation of the random ranking of the nodes. Each number is assesed a random place in the ranking. # Its position is saved within the vertex property map as it is done for other metrics. r = self.G.new_vertex_property("double") indexes = np.arange(self.G.num_vertices()) np.random.shuffle(indexes) r.a = indexes return r def plot_map_histogram(self, my_map, measure_name, block = True): """ plot_map_histogram function contains a code for the plot generation using matplotlib library given the graph-tool map for the measure of interest. """ # General settings: plt.style.use('seaborn-whitegrid') fig, ax = plt.subplots(constrained_layout=True, figsize=(5, 5)) FONT = 15 # Preparing the data: my_map = my_map.fa # Extraction of the map's values - now the normal pythonic list is obtained as the representation of the measure's values. # Calculating basic statistics: to_calculate_statistics = list(my_map) avg = round(np.mean(to_calculate_statistics),4) std = round(np.std(to_calculate_statistics),2) # Creating the histogram: n=15 a = ax.hist(my_map, bins=n, facecolor="lightblue",weights=np.zeros_like(my_map) + 1. / len(my_map)) bins_mean = [0.5 * (a[1][j] + a[1][j+1]) for j in range(n)] sticks_to_mark = ([], []) for k in range(len(a[0])): if a[0][k] == 0: pass else: sticks_to_mark[0].append(bins_mean[k]) sticks_to_mark[1].append(a[0][k]) ax.plot(sticks_to_mark[0], sticks_to_mark[1], "b+") ax.set_xlabel("Value", fontsize = FONT) ax.set_ylabel("Fraction of nodes", fontsize = FONT) ax.set_title(measure_name +" histogram \n Mean value: " + str(avg)+ ", Std: "+ str(std), fontsize = FONT) plt.show(block=block) return fig, ax def hubs_impact_check(self): """ hubs_impact_check function is used for the evaluation of hubs and low-degree nodes' contribution to the number of links present in the graph. This is done by extracting all the possible values of the degree (1) and then looping over them (2). Within the loop for each degree number all nodes with the degree below or equal to it are extracted to form the subnetwork (3). The number of links and nodes in the subnetwork is divided by the corresponding total numbers in the network (4) to evaluate the contribution of the following degree groups. """ largest_N = self.G.num_vertices() largest_E = self.G.num_edges() degrees = self.G.get_total_degrees(self.G.get_vertices()) Ns = [] Es = [] degrees_set = list(set(degrees)) # 1) degrees_set.sort() degrees_map = self.G.degree_property_map("total") for degree in degrees_set: # 2) cut = degree u = gt.GraphView(self.G, vfilt = lambda v: degrees_map[v]<=cut) # 3) current_N = u.num_vertices()/largest_N current_E = u.num_edges()/largest_E # 4) Ns.append(current_N) Es.append(current_E) return Ns, Es, degrees_set def plot_hubs_impact1(self, degrees_set, Es, block = True): #to use it first need to execute hubs_impact_check """ Plot_hubs_impact1 requires data that is generated by hubs_impact_check function. It generates the plot that represents how the following degree groups contribute to the number of links present in the whole network. """ # Plot settings: FONT = 15 plt.style.use('seaborn-whitegrid') plt.figure(figsize=(5,5)) plt.xticks(fontsize=FONT-3) plt.yticks(fontsize=FONT-3) plt.xlabel("K", fontsize= FONT) plt.ylabel("$L_K/L$", fontsize= FONT) plt.title("Relation between K and subnetworks' links\n sizes; $s_1$", fontsize= FONT) # Plotting the data plt.plot(degrees_set, Es, "o", markersize=4, color="royalblue") plt.show(block = block) def plot_hubs_impact2(self, degrees_set, Es, Ns, block = True): """ Plot_hubs_impact2 requires data that is generated by hubs_impact_check function. It generates the plot that represents how the following percentages of the total number of nodes contribute to the total number of links present in the whole network. """ # Plot settings: FONT=15 plt.style.use('seaborn-whitegrid') plt.figure(figsize=(5,5)) sns.set_context("paper", rc={"font.size":FONT,"axes.titlesize":FONT,"axes.labelsize":FONT, "xtick.labelsize":FONT-3, "ytick.labelsize":FONT-3, "legend.fontsize":FONT-3, "legend.titlesize":FONT-3}) # Plotting the data fig = sns.scatterplot(x= Ns, y=Es, hue=np.log(degrees_set), palette="dark:blue_r") fig.set(xlabel='$N_K/N$', ylabel='$L_K/L$', title="Relation between subnetworks' nodes\nand links sizes; $s_2$") plt.legend(title="Log(K)", loc ="upper left", title_fontsize=FONT-3) plt.show(block = block) def calculate_assortativity_value(self): # Calculation of the degree correlation coefficient: return gt.assortativity(self.G, "total")[0] def plot_ANND(self, normed = False, errorbar = True, block = True): """ plot_ANND generates Average Nearest Neighbour Degree plot that represents the mixing patterns between different groups of the nodes. Each group consists of the nodes of the same degree. """ # Plot settings: FONT = 15 plt.style.use('seaborn-whitegrid') fig = plt.figure(figsize=(5,5)) plt.xlabel("Source degree (k)", fontsize = FONT) plt.ylabel("$<k_{nn}(k)>$", fontsize = FONT) title = "Average degree of\n the nearest neighbours" if normed == False else "Normed average degree of\n the nearest neighbours" plt.title(title, fontsize = FONT) # Calculating correlation vectors for ANND plot h = gt.avg_neighbor_corr(self.G, "total", "total") x = h[2][:-1] y = h[0] error = h[1]# yerr argument # Taking into account "normed" parameter: if normed == True: N = self.G.num_vertices() x = [i/N for i in x] y = [i/N for i in y] error = [i/N for i in error] # Taking into account "errobar" parameter and plotting if errorbar == True: plt.errorbar(x, y, error, fmt="o", color="royalblue", markersize=4) else: plt.plot(x, y, "o", color="royalblue", markersize=4) plt.show(block=block) def one_node_cascade(self, fraction_to_fail, initial_node): """ one_node_cascade executes failure cascade simulation with the starting failure point equal to the provided initial node (1). Failure cascade algorithm requires going constantly through the network and checking the nodes's statuses (2). The current state of the node is changed to FAILED if the fraction of node's neighbours that have FAILED statuses exceeds or is equal to fraction_to_fail number (3). Looping over the network finishes when no new FAILED status has been introduced during the iteration (4). The output of the function is the number of nodes with the FAILED status at the end of the simulation (5). """ # Initializing a vector that represents statuses: gprop = self.G.new_vertex_property("bool") gprop[initial_node] = True #1) go_on=True while go_on == True: #2) go_on=False #4 assume no new FAILED status in the upcoming iteration for v in self.G.get_vertices(): #2) if gprop[v] == 0: # check current node status failures = gprop.a[self.G.get_all_neighbors(v)] # extract statuses of all the node's neighbours if sum(failures)/len(failures) >= fraction_to_fail: gprop[v]=1 #3 go_on=True # have had new FAILED status, must continue looping cascade_size = sum(gprop.a)/len(gprop.a) #5) return (initial_node, cascade_size) def cascade_all_nodes(self, fraction_to_fail = 0.25): """ cascade_all_nodes runs failure cascade simulation (one_node_cascade) for each of the network's nodes to evaluate distribution of the final cascade sizes. It returns a dictionary in which each node is assigned a value of the cascade size that it generated. """ nodes_numbers = [] cascade_sizes =[] for v in self.G.get_vertices(): # Take each node i, c = self.one_node_cascade(fraction_to_fail, v) # Run for it failure cascade nodes_numbers.append(v) cascade_sizes.append(c) zip_iterator = zip(nodes_numbers, cascade_sizes) # Get pairs of elements. dictionary_names_cascade = dict(zip_iterator) # Return dicitionary node_number:cascade_size return dictionary_names_cascade def plot_cascade(self, dictionary_names_cascade, fraction_to_fail): """ plot_cascade generates a histogram for the results of the cascade_all_nodes function. It shows the distribution of the failure cascade sizes in the network. """ # Plot settings: FONT = 15 plt.style.use('seaborn-whitegrid') plt.figure(figsize=(5,5)) plt.title("Cascade size histogram C="+ str(fraction_to_fail), fontsize= FONT) plt.xlabel("Value", fontsize= FONT) plt.ylabel("Fraction of nodes", fontsize= FONT) # Data transformation for the histogram: cascade_sizes = list(dictionary_names_cascade.values()) unique, counts = np.unique(cascade_sizes, return_counts=True) cascade_sizes_counts = dict(zip(unique, counts)) possible_cascade_sizes, counts = zip(*cascade_sizes_counts.items()) fractions = [i/sum(counts) for i in counts] # Plotting: plt.plot(possible_cascade_sizes, fractions,"*", color="royalblue",markersize=4) plt.show(block=True) def robustness_evaluation(self, map_G, step = 1): """ robustness_evaluation performs the robustness measurements according to the provided map_G. Robustness measurements are performed by sorting the nodes according to the map_G values (1). Then subsequent fractions of the nodes are taken according to the sorted pattern (2) and removed from the network using the filtering option in graph-tool (3). In such a way new subgraphs that contain only not filtered-out (removed) nodes and edges between them are generated (4). The largest component sizes of such subnetworks are calculated and returned. """ largest_N = self.G.num_vertices() largest_E = self.G.num_edges() giant_component_size = [] vertices_to_remove = map_G.a.argsort()[::-1] # 1) f_previous = 0 # settings for a vector that represents whether a node should be taken or not when performing network filtering gprop = self.G.new_vertex_property("bool") self.G.vertex_properties["no_removal"] = gprop for v in self.G.vertices(): self.G.properties[("v","no_removal")][v] = True for fraction in range(0,100,step): f = fraction/100 new_to_remove = vertices_to_remove[int(f_previous*largest_N):int(f*largest_N)] # 2) adding new nodes to be filtered """ In order to reduce computational costs the filtering statuses are added subsequently. In other words in the first iteration x nodes, equal to f_previous*largest_N, should be filtered (removed), so x nodes have no_removal = False. In new iteration x+y (int(f*largest_N)) nodes should be added the filtered status. However, already x nodes have no_removal = False, therefore only nodes from the range int(f_previous*largest_N):int(f*largest_N) must change no_removal = False. """ for node in new_to_remove: self.G.properties[("v","no_removal")][node] = False # 3) f_previous = f sub = GraphView(self.G, gprop) # 4) comp, hist = graph_tool.topology.label_components(sub) #5) giant_component_size.append(max(hist)) return giant_component_size #5) def robustness_random_evaluation(self, N=10): """ Performs robustness assesment in terms of the random failures. It generates N times the random map corresponding to the random order of the nodes. According to the map, in each iteration the removal is performed and the corresponding largest component sizes are measured. """ giant_component_sizes = [self.robustness_evaluation(self.create_random_map()) for i in range(N)] mean_gcs = np.array(giant_component_sizes).mean(axis=0) return list(mean_gcs) def plot_robustness(self, metrics_results, step = 1, block = False): """ plot_robustness generates the plots for the data generated by the robustness_evaluation function. """ # Plot settings: FONT = 15 fraction = [i/100 for i in range(0,100,step)] plt.figure(figsize = (5,5)) plt.style.use('seaborn-whitegrid') plot_metric_labels = {"Degree": ["--*", "#D81B60"] , "Betweenness centrality": ["--o", "#1E88E5"], "Closeness centrality" : ["--+","#FFC107"], "Eigenvector centrality": ["--^", "#004D40"], "Random failures":["--1", "black"]} plt.xlabel("Fraction of nodes removed", fontsize = FONT) plt.ylabel("Largest component size", fontsize = FONT) plt.title("Robustness of the network", fontsize = FONT) #Plotting: for i in metrics_results: data, metric_name = i data = [i/max(data) for i in data] plt.plot(fraction, data, plot_metric_labels[metric_name][0], label= metric_name, color=plot_metric_labels[metric_name][1], linewidth = 1, markersize = 7) plt.legend() plt.show(block=False) def powerlaw(self, cutoff = False): """ powerlaw function adjust the power law distribution according to the Maximum likelihood method for the network's degree sequence. The calculations are performed with the usage of poweRlaw library from R package and as the output the value of the adjusted alpha parameter is returned. The adjustment is performed for all values from the degree sequence that are larger or equal to the cutoff value. If cutoff == False then the cutoff is adjsuted automatically by optimizing the Kolomogrov distance between the fitted power law and the data. """ robjects.r(''' powerlaws <- function(degrees, cutoff = FALSE){ degrees = as.integer(degrees) #print(degrees) # Set powerlaw object my_powerlaw = displ$new(degrees) # Estimate alpha value est = estimate_pars(my_powerlaw) # Estimate cutoff value as the one that minimizes Kolomogrov distance between the data and distribution model if (cutoff == FALSE){ est2 = estimate_xmin(my_powerlaw) my_powerlaw$setXmin(est2) est = estimate_pars(my_powerlaw) my_powerlaw$setPars(est$pars) } else{ my_powerlaw$setXmin(cutoff) est = estimate_pars(my_powerlaw) my_powerlaw$setPars(est$pars) } # Calculate likelihood of the model likelihood = dist_ll(my_powerlaw) # Calculate percentage of data covered by the powerlaw percentage = length(degrees[which(degrees>=my_powerlaw$xmin)])/length(degrees) #print(degrees[which(degrees>=my_powerlaw$xmin)]) # Data for plotting the results data = plot(my_powerlaw) fit = lines(my_powerlaw) return(list(data, fit, my_powerlaw$xmin, my_powerlaw$pars, percentage, likelihood, my_powerlaw)) #return(c(my_powerlaw$xmin, my_powerlaw$pars)) #statistical_test = bootstrap_p(m, no_of_sims = 1000, threads = 2) #p_value = statistical_test$p }''') # Make R funtion available for python: powerlaw = robjects.globalenv['powerlaws'] # Prepare the degree sequence: degree_map = self.create_degree_distribution_map().fa degree_map = degree_map.tolist() # Perform calculations: power_law_result = powerlaw(degree_map, cutoff) plotting_data = (power_law_result[0][0], power_law_result[0][1], power_law_result[1][0], power_law_result[1][1]) kmin = power_law_result[2][0] alpha = power_law_result[3][0] percentage = power_law_result[4][0] likelihood = power_law_result[5][0] my_powerlaw = power_law_result[6] return (kmin, alpha, percentage, likelihood, plotting_data, my_powerlaw) def bootstrap_powerlaw(self, my_powerlaw, N=100): """ bootstrap_powerlaw calculates the p-value for H0: degree sequence comes from the power law distirbution with parameters: estimated alpha and cutoff; H1: It does not come. The test is performed according to bootstrap_p function from poweRlaw package that simulates N times the data from the distirbution and calculates how many times the distance between the theoretical and simulational distributions was larger or equal to the one for the degree sequence. """ robjects.r(''' assess_p_value <- function(my_powerlaw, N){ statistical_test = bootstrap_p(my_powerlaw, no_of_sims = N, threads = 2) return(statistical_test$p) }''') p_value = robjects.globalenv['assess_p_value'] p = p_value(my_powerlaw, N)[0] return p def plot_powerlaw(self, plotting_data, block = False): """ plot_powerlaw function visualises the power law fit and the data on the log log scale. """ FONT = 15 # Data preparation: datax = plotting_data[0] datay = plotting_data[1] fitx = plotting_data[2] fity = plotting_data[3] # Plot settings: plt.figure(figsize =(5,5)) plt.style.use('seaborn-whitegrid') plt.xlabel("log k", fontsize = FONT) plt.ylabel("log P(X<k)", fontsize = FONT) plt.title("Power law fit", fontsize = FONT) # Plotting: plt.plot(np.log(datax), np.log(datay), "o", markersize=4, color="#1E88E5") plt.plot(np.log(fitx), np.log(fity), linewidth = 3, color = "#FFC107") plt.show(block = block) # Defining additional ipywidget that will perform data download after button hitting - DownloadButton class DownloadButton(ipywidgets.Button): """ Download button with dynamic content The content is generated using a callback when the button is clicked. It is defined as an extension of "button" class in ipywidgets (source: https://stackoverflow.com/questions/61708701/how-to-download-a-file-using-ipywidget-button). """ def __init__(self, filename: str, contents: Callable[[], str], **kwargs): super(DownloadButton, self).__init__(**kwargs) self.filename = filename self.contents = contents self.on_click(self.__on_click) def __on_click(self, b): contents: bytes = self.contents().encode('utf-8') b64 = base64.b64encode(contents) payload = b64.decode() digest = hashlib.md5(contents).hexdigest() # bypass browser cache id = f'dl_{digest}' display(HTML(f""" <html> <body> <a id="{id}" download="{self.filename}" href="data:text/csv;base64,{payload}" download> </a> <script> (function download() {{ document.getElementById('{id}').click(); }})() </script> </body> </html> """)) # Graphical User Interface: class GUI_for_network_analysis: def __init__(self): # Initializing the variables and the GUI elements: self.G = None self.initial_info = widgets.HTML(value = "<b><font color='#555555';font size =5px;font family='Helvetica'>ETNA: Extensive Tool for Network Analysis</b>") self.instruction_header = widgets.HTML(value = "<b><font color='#555555';font size =4px;font family='Helvetica'>Instruction:</b>") self.instruction = widgets.HTML(value = "<b><font color='#555555';font size =2.5px;font family='Helvetica'>1. Provide file name with with .graphml or .csv extension. <br>2. Hit 'Prepare the network' button (Parallel links and nodes not from the largest component will be removed. Network is also set as undirected). <br>3. Choose the tab of interest. <br>4. Adjust method settings if present.<br>5. Run the method by hitting the tab's 'Run button'. The calculations will be performed and the appropriate plot will be displayed on the right.<br>6. If you want to run a new analysis for a new network hit 'Restart ETNA' button. </b>") self.file_name_textbox = widgets.Text(value='Provide file name here', placeholder='Type something', description='Network:', disabled=False, align_items='center', layout=Layout(width='40%')#, height='10px') ) self.button_graph_preparation = widgets.Button(value=False, description='Prepare the network', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='40%', height='20%'), style= {'button_color':'#FFAAA7'} ) self.links_nodes_number_info = widgets.Label(value="") self.label_centrality = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Histograms of centrality measures</b>") self.centrality_choice = widgets.Dropdown( options=['Choose from the list','Degree', 'Betweenness centrality', 'Closeness centrality', 'Eigenvector centrality', "Clustering coefficient"], description='Measure: ', disabled=False, layout=Layout(width='90%') ) self.button_centrality = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) self.centrality_out = widgets.Output() self.info_mini = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Minimum: </b>") self.info_mini_value = widgets.Label(value = "") self.info_maxi = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Maximum: </b>") self.info_maxi_value = widgets.Label(value = "") self.info_avg = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Average: </b>") self.info_avg_value = widgets.Label(value = "") self.info_std = widgets.HTML(value="<b><font color='black';font size =2px;font family='Helvetica'>Standard deviation: </b>") self.info_std_value = widgets.Label(value = "") self.button_assortativity = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) #można zrobić pogrubione (działa) , "font_weight":"bold" dodać do stylu self.label_corr_value = widgets.Label(value = "") #było " " self.label_ANND_plot = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Assortativity examination: Average Nearest Neighbour Degree (ANND) plot and degree correlation coefficient</b>") self.label_ANND_plot_settings = widgets.Label(value = "ANND plot settings:") self.ANND_plot_settings_normed = widgets.Checkbox(value=False, description='Normed ANND', disabled=False, indent=False) self.ANND_plot_settings_errorbar = widgets.Checkbox(value=False, description='Errorbars', disabled=False, indent=False) self.assortativity_out = widgets.Output() self.hubs_impact_choice = widgets.Dropdown( options=['Choose from the list','s1', 's2'], description='Measure: ', disabled=False, layout=Layout(width='90%') ) self.hubs_impact_button = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) self.label_hubs_impact = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Plots of s1 and s2</b>") #self.label_hubs_impact_explain = widgets.Label(value = "Hubs impact examination consists of creating subnetworks.. i tutaj walnąć ten ładny matematyczny zapis z mgr") self.hubs_impact_out = widgets.Output() self.button_robustness = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) self.robustness_degree = widgets.Checkbox(value=True, description='Degree', disabled=False, indent=False) self.robustness_betweenness = widgets.Checkbox(value=False, description='Betweennness centrality', disabled=False, indent=False) self.robustness_closeness = widgets.Checkbox(value=False, description='Closeness centrality', disabled=False, indent=False) self.robustness_eigenvector = widgets.Checkbox(value=False, description='Eigenvector centrality', disabled=False, indent=False) self.robustness_random = widgets.Checkbox(value=False, description='Random failures', disabled=False, indent=False) self.label_robustness_info = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Examination of the network robustness</b>") self.label_robustness_settings = widgets.Label(value = "Choose metrics for the network robustness examination:") self.robustness_out = widgets.Output() self.robustness_random_label = widgets.Label(value = "Number of Monte Carlo repetitions for random failures") self.robustness_random_value = widgets.IntSlider(value = 10, min=0, max=1000, step=10, description='', disabled=False, continuous_update=False, orientation='horizontal', readout=True ) self.cascade_info = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Simulation of failure cascade</b>") self.button_cascade = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) self.cascade_fraction_to_fail = widgets.FloatSlider(value=0.25, min=0, max=1, step=0.05, description='', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='.2f') self.cascade_fraction_to_fail_label = widgets.Label(value = "Failure fraction") self.cascade_out = widgets.Output() self.label_powerlaw = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Fitting power law to the degree sequence using Maximum Likelihood estimator</b>") self.powerlaw_settings = widgets.HTML(value = "Settings:") self.powerlaw_pvalue = widgets.Checkbox(value=False, description='Calculate p-value', disabled=False, indent=False) self.bootstrap_settings_label = widgets.Label(value = "Number of simulations for bootstrap") self.bootstrap_settings = widgets.IntSlider(value=100, min=50, max=1000, step=50, description='', disabled=False, continuous_update=False, orientation='horizontal', readout=True ) self.bootstrap_settings.layout.visibility = 'hidden' self.bootstrap_settings_label.layout.visibility = 'hidden' self.cutoff_settings = widgets.Checkbox(value=True, description='Cutoff value according to Kolomogrov distance', disabled=False, indent=False) self.cutoff_label = widgets.Label(value = "Cutoff value") self.cutoff_label.layout.visibility = 'hidden' self.cutoff = widgets.IntSlider(value = 1, min=1, max=100, step=1, description='', disabled=False, continuous_update=False, orientation='horizontal', readout=True ) self.cutoff.layout.visibility = 'hidden' self.pvalue_label = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>P-value:</b>") self.pvalue_value = widgets.Label(value="") self.pvalue_label.layout.visibility = 'hidden' self.pvalue_value.layout.visibility = 'hidden' self.powerlaw_button = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) self.powerlaw_out = widgets.Output() self.restart_button = widgets.Button(value=False, description='Restart ETNA', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='40%', height='100%'), style= {'button_color':'#FFD3B4'} ) self.error_info = widgets.HTML(value = " ") self.plot_label = widgets.HTML(value = "Plot and info") self.download_button = DownloadButton(filename='data.csv', contents=lambda: f'', description='Download data') self.download_button.layout.visibility = 'hidden' self.download_button.layout.width = '90%' self.download_button.style.button_color = '#D5ECC2' self.dataframe = None def button_graph_preparation_click(self, button): """ Defines what to do when the graph preparation button is clicked. """ self.clear() # Error handling: if self.file_name_textbox.value == "" or self.file_name_textbox.value == 'Provide file name here': self.file_name_textbox.value = "No file name provided. Provide file name here." return None if ".graphml" not in self.file_name_textbox.value and ".csv" not in self.file_name_textbox.value: self.file_name_textbox.value = "Incorrect file name. File must have .graphml or .csv extension." return None self.button_graph_preparation.description = "Preparing..." self.error_info.value = " " # Graph upload from the file: self.G = My_Network(self.file_name_textbox.value) # Graph preparation - removal of the parallel edges, non-connected components etc.: self.G.prepare_the_network() self.button_graph_preparation.description = "Network is ready! Now choose the tool below." self.button_graph_preparation.style.button_color = '#D5ECC2' self.links_nodes_number_info.value = "Number of nodes: "+str(self.G.G.num_vertices())+", Number of links: " + str(self.G.G.num_edges()) def centrality_button_click(self, b): """ Binds the centrality measure button from the centrality tab with the appropriate map (1), plot generation (2) and statistics calculations (3). """ self.clear() with self.centrality_out: if self.centrality_choice.value == "Choose from the list": pass else: # 1): if self.error() == True: return None else: centrality_choices_functions = {'Degree':self.G.create_degree_distribution_map, 'Betweenness centrality':self.G.create_betweenness_distribution_map, 'Closeness centrality': self.G.create_closeness_distribution_map, 'Eigenvector centrality':self.G.create_eigenvector_distribution_map, "Clustering coefficient": self.G.create_clustering_map} my_map = centrality_choices_functions[self.centrality_choice.value]() fig, ax = self.G.plot_map_histogram(my_map, self.centrality_choice.value) # 2) self.retrieve_data(my_map, "Centrality and clustering") my_map = list(my_map.fa) # 3) self.info_mini_value.value = str(min(my_map)) self.info_maxi_value.value = str(max(my_map)) self.info_avg_value.value = str(round(np.mean(my_map),4)) self.info_std_value.value = str(round(np.std(my_map),4)) self.info_mini = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Minimum: </b>") self.info_maxi = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Maximum: </b>") self.info_avg = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Average: </b>") self.info_std = widgets.HTML(value="<b><font color='black';font size =2px;font family='Helvetica'>Standard deviation: </b>") display(VBox(children = [ HBox(children= [self.info_mini, self.info_mini_value]), HBox(children= [self.info_maxi, self.info_maxi_value]), HBox(children= [self.info_avg, self.info_avg_value]), HBox(children= [self.info_std, self.info_std_value]) ])) def assortativity_button_click(self, b): """ Binds the assortativity button with the ANND plot generation (1) and degree correlation calculations (2). """ self.clear() if self.error() == True: return None else: corr_value = round(self.G.calculate_assortativity_value(),3) corr_meaning = "assortative" if corr_value>0 else "disassortative" self.label_corr_value.value = "Degree correlation coefficient equals " + str(corr_value)+". Graph has "+ corr_meaning +' mixing patterns with regards to the degree.' # 2 with self.assortativity_out: self.assortativity_out.clear_output() self.G.plot_ANND(normed = self.ANND_plot_settings_normed.value, errorbar = self.ANND_plot_settings_errorbar.value, block = False) # 1 def hubs_impact_choice_plot(self, b): """ Binds the hubs impact button with the hubs impact plot generation. Data is firstly calculated by calling hubs_impact check function (1) and then plotted (2). """ self.clear() with self.hubs_impact_out: if self.hubs_impact_choice.value == "Choose from the list": pass else: if self.error() == True: return None else: if self.hubs_impact_choice.value == "s1": Ns, Es, degrees_set = self.G.hubs_impact_check() # 1 self.G.plot_hubs_impact1(degrees_set, Es, block = False) # 2 if self.hubs_impact_choice.value == "s2": Ns, Es, degrees_set = self.G.hubs_impact_check() # 1 self.G.plot_hubs_impact2(degrees_set, Es, Ns, block = False) # 2 def cascade_button_click(self, b): """ Binds the cascade button with fialure cascade simulation performance (1), plotting (2) and the statistics calculations (3). """ self.clear() if self.error() == True: return None else: # Button settings: self.button_cascade.style.button_color = '#FFAAA7' self.button_cascade.description = "Running..." # Data generation: cascade_data = self.G.cascade_all_nodes(fraction_to_fail = self.cascade_fraction_to_fail.value) # 1) self.retrieve_data(cascade_data, "Cascade") with self.cascade_out: self.cascade_out.clear_output() self.G.plot_cascade(cascade_data, fraction_to_fail = self.cascade_fraction_to_fail.value) # 2) # 3): self.info_mini_value.value = str(min(cascade_data.values())) self.info_maxi_value.value = str(max(cascade_data.values())) self.info_avg_value.value = str(round(np.mean(list(cascade_data.values())),4)) self.info_std_value.value = str(round(np.std(list(cascade_data.values())),4)) self.info_mini = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Minimum: </b>") self.info_maxi = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Maximum: </b>") self.info_avg = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Average: </b>") self.info_std = widgets.HTML(value="<b><font color='black';font size =2px;font family='Helvetica'>Standard deviation: </b>") display(VBox(children = [ HBox(children= [self.info_mini, self.info_mini_value]), HBox(children= [self.info_maxi, self.info_maxi_value]), HBox(children= [self.info_avg, self.info_avg_value]), HBox(children= [self.info_std, self.info_std_value]) ])) self.button_cascade.description = "Run failure cascade simulation" self.button_cascade.style.button_color = '#98DDCA' def robustness_button_click(self, b): """ Binds robustness button with the robustness button with the reboustness examination. In the call the data is generated (1) and then plotted (2). """ self.clear() if self.error() == True: return None else: self.button_robustness.style.button_color = '#FFAAA7' self.button_robustness.description = "Running..." metrics_to_run = {self.robustness_degree:[self.G.create_degree_distribution_map, "Degree"], self.robustness_betweenness:[self.G.create_betweenness_distribution_map, "Betweenness centrality"] , self.robustness_closeness:[self.G.create_closeness_distribution_map, 'Closeness centrality'], self.robustness_eigenvector:[self.G.create_eigenvector_distribution_map,'Eigenvector centrality'], self.robustness_random:[]} results_to_plot = [] for metric in metrics_to_run.keys(): if metric.value == True: if metric == self.robustness_random: results = self.G.robustness_random_evaluation(N=self.robustness_random_value.value) results_to_plot.append([results, "Random failures"]) else: [function, metric_name] = metrics_to_run[metric] map_G = function() results = self.G.robustness_evaluation(map_G) # 1 results_to_plot.append([results, metric_name]) self.retrieve_data(results_to_plot, "Robustness") with self.robustness_out: self.robustness_out.clear_output() self.G.plot_robustness(results_to_plot, block=True) # 2 self.button_robustness.description = "Run" self.button_robustness.style.button_color = '#98DDCA' def robustness_random_true(self, b): """ Function for handling the robustness settings for random failures. It makes visible the bar for the adjustment of the number of Mone Carlo repetitions if the random failures measurements are chosen . """ if self.robustness_random.value == True: self.robustness_random_label.layout.visibility = 'visible' self.robustness_random_value.layout.visibility = 'visible' else: self.robustness_random_label.layout.visibility = 'hidden' self.robustness_random_value.layout.visibility = 'hidden' def powerlaw_button_click(self, b): """ Binds the powerlaw button with the power law adjustment to the degree sequence. Parameters are calculated (1), the fit is plotted (2) and the statistics are calculated (3). """ self.clear() if self.error() == True: return None else: pvalue = "Not calculated" self.powerlaw_button.description = "Running..." self.powerlaw_button.style.button_color = '#FFAAA7' cutoff = self.cutoff.value if self.cutoff_settings.value == False else False (kmin, alpha, percentage, likelihood, plotting_data, my_powerlaw) = self.G.powerlaw(cutoff) # 1) if self.powerlaw_pvalue.value == True: # calculate also p-value N = self.bootstrap_settings.value pvalue = self.G.bootstrap_powerlaw(my_powerlaw, N) pvalue = str(round(pvalue, 4)) self.pvalue_label.layout.visibility = 'visible' self.pvalue_value.layout.visibility = 'visible' with self.powerlaw_out: self.powerlaw_out.clear_output() self.G.plot_powerlaw(plotting_data, block = True) # 2) # 3: self.info_mini.value = "<b><font color='black';font size =2px;font family='Helvetica'>Cutoff: </b>" self.info_mini_value.value = str(kmin) self.info_maxi.value = "<b><font color='black';font size =2px;font family='Helvetica'>Power law parameter alpha: </b>" self.info_maxi_value.value = str(round(alpha,4)) if alpha>3 or alpha<2: self.info_maxi_value.value+= ", ANOMALOUS REGIME!, standard: 2<alpha<3" self.info_avg.value = "<b><font color='black';font size =2px;font family='Helvetica'>Percentage of data covered: </b>" self.info_avg_value.value = str(round(percentage*100,4)) self.info_std.value = "<b><font color='black';font size =2px;font family='Helvetica'>Likelihood: </b>" self.info_std_value.value = str(round(likelihood,4)) self.pvalue_value.value = pvalue display(VBox(children = [ HBox(children= [self.info_mini, self.info_mini_value]), HBox(children= [self.info_maxi, self.info_maxi_value]), HBox(children= [self.info_std, self.info_std_value]), HBox(children= [self.info_avg, self.info_avg_value]), HBox(children= [self.pvalue_label, self.pvalue_value]) ])) self.powerlaw_button.description = "Run" self.powerlaw_button.style.button_color = '#98DDCA' def powerlaw_pvalue_true(self, b): """ Function for handling the powerlaw settings. It makes visible the bootstrap settings if the pvalue is to be assesed (pvalue checkbox is True). """ if self.powerlaw_pvalue.value == True: self.bootstrap_settings.layout.visibility = 'visible' self.bootstrap_settings_label.layout.visibility = "visible" else: self.bootstrap_settings.layout.visibility = 'hidden' self.bootstrap_settings_label.layout.visibility = "hidden" def powerlaw_cutoff(self, b): """ Function for handling the powerlaw settings. It makes visible the cutoff choice bar if the default option for cutoff adjustment using the Kolomogrov distance is not chosen. """ if self.cutoff_settings.value == False: self.cutoff_label.layout.visibility = "visible" self.cutoff.layout.visibility = 'visible' if self.error(return_message = False) == True: return None else: degree_values = self.G.create_degree_distribution_map().fa self.cutoff.min = min(degree_values) self.cutoff.max = max(degree_values) self.cutoff.value = self.cutoff.min else: self.cutoff_label.layout.visibility = "hidden" self.cutoff.layout.visibility = 'hidden' def display(self): """ Displays all the elements of the GUI in the appropriate order to form the interface. """ display(self.initial_info) display(self.instruction_header) display(self.instruction) preparation = VBox(children = [self.file_name_textbox, self.button_graph_preparation, self.links_nodes_number_info], layout = Layout(width = "100%")) display(preparation) tabs_preparation = self.tabs outs = VBox(children = [self.centrality_out, self.hubs_impact_out, self.assortativity_out, self.label_corr_value, self.robustness_out, self.cascade_out, self.powerlaw_out, self.download_button ]) # self.clustering_out all = HBox(children = [tabs_preparation, outs]) display(all) display(self.error_info) display(self.restart_button) def bind(self): """ Binds buttons and other interactivities with the corresponding action functions. """ # Bind prepare graph button with the preparation function: self.button_graph_preparation.on_click(self.button_graph_preparation_click) # Bind centrality choice button with the centrality examination and centrality tab self.button_centrality.on_click(self.centrality_button_click) self.tab_centrality = VBox(children=[self.label_centrality, self.centrality_choice, self.button_centrality]) # Bind hubs_impact button with the plot generation and hubs_impact tab self.hubs_impact_button.on_click(self.hubs_impact_choice_plot) self.tab_hubs_impact = VBox(children=[self.label_hubs_impact, self.hubs_impact_choice, self.hubs_impact_button]) # Bind assortativity button with the assortativity examination and assortativity tab self.button_assortativity.on_click(self.assortativity_button_click) self.tab_assortativity = VBox(children=[self.label_ANND_plot, self.label_ANND_plot_settings, self.ANND_plot_settings_errorbar, self.ANND_plot_settings_normed, self.button_assortativity ]) # Bind robustness button with the robustness examination and robustness tab self.robustness_random_results = interactive_output(self.robustness_random_true, {"b":self.robustness_random}) #interactive_output(self.robustness_random, {"b":self.robustness_random_true}) self.button_robustness.on_click(self.robustness_button_click) self.robustness = VBox(children=[self.label_robustness_info, self.label_robustness_settings, self.robustness_degree, self.robustness_betweenness, self.robustness_closeness, self.robustness_eigenvector, self.robustness_random, self.robustness_random_results, self.robustness_random_label, self.robustness_random_value, self.button_robustness]) # Bind cascade button with the failure cascade examination and cascade tab self.button_cascade.on_click(self.cascade_button_click) self.tab_cascade = VBox(children=[self.cascade_info, HBox(children = [self.cascade_fraction_to_fail_label, self.cascade_fraction_to_fail]), self.button_cascade]) # Bind powerlaw button with the powerlaw examination, bind powerlaw settings with the corresponding actions, add all to the powerlaw tab self.powerlaw_button.on_click(self.powerlaw_button_click) self.powerlaw_bootstrap = interactive_output(self.powerlaw_pvalue_true, {'b':self.powerlaw_pvalue}) self.powerlaw_cutoff = interactive_output(self.powerlaw_cutoff, {'b':self.cutoff_settings}) self.tab_powerlaw = VBox(children = [self.label_powerlaw, self.powerlaw_settings, self.powerlaw_pvalue, self.powerlaw_bootstrap, self.bootstrap_settings_label, self.bootstrap_settings, self.powerlaw_cutoff, self.cutoff_settings, self.cutoff_label, self.cutoff, self.powerlaw_button]) # Joining tabs in the GUI self.tabs = widgets.Accordion(children = [self.tab_centrality, self.tab_powerlaw, self.tab_hubs_impact, self.tab_assortativity, self.robustness, self.tab_cascade], layout=Layout(width='40%', min_width = "300px", ), selected_index = None) #self.tab_clustering bylo kiedys, #layout in_height='500px',max_height='500px', display='flex'align_items='stretch' # Additional tabs' settings self.tabs.set_title(0, '> Centrality and clusterization ') self.tabs.set_title(1, '> Power law fitting') self.tabs.set_title(2, '> Subnetworks: s1 and s2') self.tabs.set_title(3, '> Assortativity') self.tabs.set_title(4, '> Robustenss') self.tabs.set_title(5, '> Failure cascade') # Bind restart button with the restart function self.restart_button.on_click(self.gui_restart) def gui_restart(self,b): """ Sets everything to the initial settings by cleaning the output widgets, fixing colors, bringing original texts to the labels and buttons. """ self.G = None self.file_name_textbox.value = "Provide file name here" self.button_graph_preparation.description = "Prepare the graph" self.button_graph_preparation.style.button_color = "#FFAAA7" self.links_nodes_number_info.value = "" self.centrality_choice.value = "Choose from the list" self.centrality_out.clear_output() #self.clustering_out.clear_output() self.hubs_impact_choice.value = "Choose from the list" self.hubs_impact_out.clear_output() self.label_corr_value.value = "" self.ANND_plot_settings_normed.value = False self.ANND_plot_settings_errorbar.value = False self.assortativity_out.clear_output() self.cascade_fraction_to_fail.value = 0.25 self.cascade_out.clear_output() self.robustness_degree.value = False self.robustness_betweenness.value = False self.robustness_closeness.value = False self.robustness_eigenvector.value = False self.robustness_random.value = False self.robustness_out.clear_output() self.powerlaw_pvalue.value = False self.cutoff_settings.value = True self.powerlaw_out.clear_output() #self.data_preview.clear_output() #self.data_preview_button.layout.visibility = 'hidden' self.download_button.layout.visibility = 'hidden' def error(self, return_message = True): """ Used for error handling - checks if the file is provided in the appropriate format. This functions is called always before running any of the methods in the GUI. """ if self.G == None or self.file_name_textbox.value == "No file name provided. Provide file name here." or self.file_name_textbox.value == "": if return_message==True: self.error_info.value = "<b><font color='#FFAAA7';font size =3px;font family='Helvetica'>Cannot use the method. Provide file name and prepare the network first.</b>" return True def clear(self): """ Clears the outputs. Used to make previous plots and statistics disappear from the GUI when the new method is called. This functions is called always before running any of the methods in the GUI. """ self.centrality_out.clear_output() self.hubs_impact_out.clear_output() self.assortativity_out.clear_output() self.robustness_out.clear_output() #self.clustering_out.clear_output() self.cascade_out.clear_output() self.powerlaw_out.clear_output() self.label_corr_value.value = "" #self.data_preview.clear_output() #self.data_preview_button.layout.visibility = 'hidden' self.download_button.layout.visibility = 'hidden' def retrieve_data(self, data, method): """ Used to gather the data from the method functions so that it is downloadable. Called in 3 cases - when the robustness, cascade or Centrality and clustering methods are chosen. """ if method == "Centrality and clustering": my_map = data my_map_values = my_map.a[self.G.G.get_vertices()] nodes = self.G.G.get_vertices() self.dataframe = pd.DataFrame({"NodeIndex":nodes, "MeasureValue": my_map_values}) #self.data_preview_button.layout.visibility = 'visible' self.download_button.layout.visibility = 'visible' self.dataframe = self.dataframe.to_csv() self.download_button.contents = lambda: self.dataframe if method == "Robustness": results_to_plot = data dataframe = {} for row in results_to_plot: dataframe[row[1]] = row[0] self.dataframe = pd.DataFrame(dataframe) self.dataframe["RemovedFraction"] = fractions = [i/100 for i in range(0,100)] self.dataframe = self.dataframe[['RemovedFraction'] + [col for col in self.dataframe.columns if col != 'RemovedFraction' ]] self.download_button.layout.visibility = 'visible' self.dataframe = self.dataframe.to_csv() self.download_button.contents = lambda: self.dataframe if method == "Cascade": nodes = data.keys() values = data.values() self.dataframe = pd.DataFrame({"NodeIndex":nodes, "Cascade size": values}) self.download_button.layout.visibility = 'visible' self.dataframe = self.dataframe.to_csv() self.download_button.contents = lambda: self.dataframe ###Output * installing *source* package ‘poweRlaw’ ... ** package ‘poweRlaw’ successfully unpacked and MD5 sums checked ** using staged installation ** R ** data ** demo ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices *** copying figures ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (poweRlaw) ###Markdown Display ETNA ###Code G = GUI_for_network_analysis() G.bind() G.display() ###Output _____no_output_____
Energy_min.ipynb
###Markdown Case I ###Code M=16*8 N=10000 a=-8 b=8 c=-4 d=4 gx=1 gy=4 saving_time=50 potential=lambda x,y:(gx**2*x**2+gy**2*y**2)/2 psi0= lambda x,y: (gx*gy)**(1/4)*np.exp(-(gx**2*x**2+gy**2*y**2)/2)/np.pi**(1/2) beta=200. dt=0.001 eps=1 t, X, Y, psi=td_tssp_2d_pbc_bis(M, N, a, b, c, d, psi0, potential, dt, beta, eps,saving_time) V = potential(X, Y) / eps x_spacing=(b-a)/M y_spacing=(d-c)/M En = np.empty(len(psi)) for i in range (len(psi)): En[i]=energy_gpe(psi[i], V, beta, x_spacing, y_spacing) plt.figure() plt.plot(En) plt.show() mu_g = mu_gpe(psi[-1],V,beta,x_spacing,y_spacing) x_rms = np.sqrt(mean_value_bis(fx2,psi[-1],a,b,c,d,M)) y_rms = np.sqrt(mean_value_bis(fy2,psi[-1],a,b,c,d,M)) print('x_rms={:.5}'.format(x_rms)) print('y_rms={:.4}'.format(y_rms)) print('E_g={:.6}'.format(En[-1])) print('mu_g={:.6}'.format(mu_g)) %matplotlib notebook from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm psi2=np.abs(psi)**2 zmax=np.max(psi2[-1]) fig = plt.figure() ax = fig.gca(projection='3d') ax.set_zlim3d(0, zmax) ax.set_title("Ground state") surf = ax.plot_surface(X, Y, psi2[-1], cmap=cm.coolwarm, linewidth=0, antialiased=False) ###Output _____no_output_____ ###Markdown Case II ###Code M=16*8 N=10000 a=-8 b=8 c=-8 d=8 gx=1 gy=1 w0, delt, r0 = 4., 1., 1. potential=lambda x,y:(gx**2*x**2+gy**2*y**2)/2 + w0*np.exp(-delt*((x-r0)**2+y**2)) psi0= lambda x,y: (gx*gy)**(1/4)*np.exp(-(gx**2*x**2+gy**2*y**2)/2)/np.pi**(1/2) beta=200. dt=0.001 saving_time=50 eps=1 t, X, Y, psi=td_tssp_2d_pbc_bis(M, N, a, b, c, d, psi0, potential, dt, beta, eps,saving_time) V = potential(X, Y) / eps x_spacing=(b-a)/M y_spacing=(d-c)/M En = np.empty(len(psi)) for i in range (len(psi)): En[i]=energy_gpe(psi[i], V, beta, x_spacing, y_spacing) plt.figure() plt.plot(En) plt.show() mu_g = mu_gpe(psi[-1],V,beta,x_spacing,y_spacing) x_rms = np.sqrt(mean_value_bis(fx2,psi[-1],a,b,c,d,M)) y_rms = np.sqrt(mean_value_bis(fy2,psi[-1],a,b,c,d,M)) print('x_rms={:.5}'.format(x_rms)) print('y_rms={:.4}'.format(y_rms)) print('E_g={:.6}'.format(En[-1])) print('mu_g={:.6}'.format(mu_g)) psi2=np.abs(psi)**2 zmax=np.max(psi2[-1]) fig = plt.figure() ax = fig.gca(projection='3d') ax.set_zlim3d(0, zmax) ax.set_title("Ground state") surf = ax.plot_surface(X, Y, psi2[-1], cmap=cm.coolwarm, linewidth=0, antialiased=False) ###Output _____no_output_____
Models/Bonsai/IHTBonsai.ipynb
###Markdown Imports ###Code import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from IPython.display import display, clear_output import sys import time import os import time import pickle %matplotlib inline ###Output _____no_output_____ ###Markdown Importing training data ###Code dir_path = (os.getcwd() + "\\").replace("\\","/") # If it does not work change it to path where data is stored. print("Working directory is : ", dir_path) #Loading Pre-processed dataset for Bonsai dirc = dir_path + '/../../Datasets/' print(os.listdir(dirc)) Xtrain = np.load(dirc + 'Xtrain2.npy').reshape(-1,28*28) Ytrain = np.load(dirc + 'Ytrain2.npy') Xtest = np.load(dirc + 'Xtest.npy').reshape(-1,28*28) Ytest = np.load(dirc + 'Ytest.npy') Ytrain.shape from sklearn.preprocessing import LabelEncoder as LE from sklearn.preprocessing import OneHotEncoder as OHE mo1 = LE() mo2 = OHE() Ytrain = mo2.fit_transform(mo1.fit_transform((Ytrain.ravel())).reshape(-1,1)).todense() Ytest = mo2.transform(mo1.transform((Ytest.ravel())).reshape(-1,1)).todense() Xtrain.shape, Xtest.shape,Ytrain.shape,Ytest.shape # N, dDims = X_train.shape N, dDims = Xtrain.shape # nClasses = len(np.unique(Y_train)) nClasses = Ytrain.shape[1] print('Training Size:',N,',Data Dims:', dDims,',No. Classes:', nClasses) class Bonsai(): def __init__(self, nClasses, dDims, pDims, tDepth, sigma, W=None, T=None, V=None, Z=None): ''' dDims : data Dimensions pDims : projected Dimesions nClasses : num Classes tDepth : tree Depth Expected Dimensions: -------------------- Bonsai Params // Optional W [numClasses*totalNodes, projectionDimension] V [numClasses*totalNodes, projectionDimension] Z [projectionDimension, dataDimension + 1] T [internalNodes, projectionDimension] internalNodes = 2**treeDepth - 1 totalNodes = 2*internalNodes + 1 sigma - tanh non-linearity sigmaI - Indicator function for node probabilities sigmaI - has to be set to infinity(1e9 for practicality) while doing testing/inference numClasses will be reset to 1 in binary case ''' # Initialization of parameter variables self.dDims = dDims self.pDims = pDims # If number of classes is two we dont need to calculate other class probability # if nClasses == 2: # self.nClasses = 1 # else: # self.nClasses = nClasses self.nClasses = nClasses self.tDepth = tDepth self.sigma = sigma self.iNodes = 2**self.tDepth - 1 self.tNodes = 2*self.iNodes + 1 self.Z = tf.Variable(tf.random_normal([self.pDims, self.dDims]), name='Z', dtype=tf.float32) self.W = tf.Variable(tf.random_normal([self.nClasses * self.tNodes, self.pDims]), name='W', dtype=tf.float32) self.V = tf.Variable(tf.random_normal([self.nClasses * self.tNodes, self.pDims]), name='V', dtype=tf.float32) self.T = tf.Variable(tf.random_normal([self.iNodes, self.pDims]), name='T', dtype=tf.float32) self.assert_params() self.score = None self.X_ = None self.prediction = None def __call__(self, X, sigmaI): ''' Function to build the Bonsai Tree graph Expected Dimensions ------------------- X is [_, self.dDims] X_ is [_, self.pDims] ''' errmsg = "Dimension Mismatch, X is [_, self.dataDimension]" assert (len(X.shape) == 2 and int(X.shape[1]) == self.dDims), errmsg # return score, X_ if exists where X_ is the projected X, i.e X_ = (Z.X)/(D^) if self.score is not None: return self.score, self.X_ X_ = tf.divide(tf.matmul(self.Z, X, transpose_b=True),self.pDims) # dimensions are D^x1 # For Root Node score... self.__nodeProb = [] # node probability list self.__nodeProb.append(1) # probability of x passing through root is 1. W_ = self.W[0:(self.nClasses)]# first K trees root W params : KxD^ V_ = self.V[0:(self.nClasses)]# first K trees root V params : KxD^ # All score sums variable initialized to root score... for each tree (Note: can be negative) score_ = self.__nodeProb[0]*tf.multiply(tf.matmul(W_, X_), tf.tanh(self.sigma * tf.matmul(V_, X_))) # : Kx1 # Adding rest of the nodes scores... for i in range(1, self.tNodes): # current node is i # W, V of K different trees for current node W_ = self.W[i * self.nClasses:((i + 1) * self.nClasses)]# : KxD^ V_ = self.V[i * self.nClasses:((i + 1) * self.nClasses)]# : KxD^ # i's parent node shared theta param reshaping to 1xD^ T_ = tf.reshape(self.T[int(np.ceil(i / 2.0) - 1.0)],[-1, self.pDims])# : 1xD^ # Calculating probability that x should come to this node next given it is in parent node... prob = tf.divide((1 + ((-1)**(i + 1))*tf.tanh(tf.multiply(sigmaI, tf.matmul(T_, X_)))),2.0) # : scalar 1x1 # Actual probability that x will come to this node...p(parent)*p(this|parent)... prob = self.__nodeProb[int(np.ceil(i / 2.0) - 1.0)] * prob # : scalar 1x1 # adding prob to node prob list self.__nodeProb.append(prob) # New score addes to sum of scores... score_ += self.__nodeProb[i]*tf.multiply(tf.matmul(W_, X_), tf.tanh(self.sigma * tf.matmul(V_, X_))) # Kx1 self.score = score_ self.X_ = X_ return self.score, self.X_ def predict(self): ''' Takes in a score tensor and outputs a integer class for each data point ''' if self.prediction is not None: return self.prediction # If number of classes is two we dont need to calculate other class probability if self.nClasses > 2: # Finding argmax over first axis (k axis) self.prediction = tf.argmax(tf.transpose(self.score), 1) # score is kx1 else: # Finding argmax over score and 0 score is 1x1 self.prediction = tf.argmax(tf.concat([tf.transpose(self.score),0*tf.transpose(self.score)], 1), 1) return self.prediction def assert_params(self): # Asserting Initializaiton errRank = "All Parameters must has only two dimensions shape = [a, b]" assert len(self.W.shape) == len(self.Z.shape), errRank assert len(self.W.shape) == len(self.T.shape), errRank assert len(self.W.shape) == 2, errRank msg = "W and V should be of same Dimensions" assert self.W.shape == self.V.shape, msg errW = "W and V are [numClasses*totalNodes, projectionDimension]" assert self.W.shape[0] == self.nClasses * self.tNodes, errW assert self.W.shape[1] == self.pDims, errW errZ = "Z is [projectionDimension, dataDimension]" assert self.Z.shape[0] == self.pDims, errZ assert self.Z.shape[1] == self.dDims, errZ errT = "T is [internalNodes, projectionDimension]" assert self.T.shape[0] == self.iNodes, errT assert self.T.shape[1] == self.pDims, errT assert int(self.nClasses) > 0, "numClasses should be > 1" msg = "# of features in data should be > 0" assert int(self.dDims) > 0, msg msg = "Projection should be > 0 dims" assert int(self.pDims) > 0, msg msg = "treeDepth should be >= 0" assert int(self.tDepth) >= 0, msg class BonsaiTrainer(): def __init__(self, tree, lW, lT, lV, lZ, lr, X, Y, sW, sV, sZ, sT): ''' bonsaiObj - Initialised Bonsai Object and Graph... lW, lT, lV and lZ are regularisers to Bonsai Params... sW, sT, sV and sZ are sparsity factors to Bonsai Params... lr - learningRate fro optimizer... X is the Data Placeholder - Dims [_, dataDimension] Y - Label placeholder for loss computation useMCHLoss - For choice between HingeLoss vs CrossEntropy useMCHLoss - True - MultiClass - multiClassHingeLoss useMCHLoss - False - MultiClass - crossEntropyLoss ''' # Intializations of training parameters self.tree = tree # regularization params lambdas(l) (all are scalars) self.lW = lW self.lV = lV self.lT = lT self.lZ = lZ # sparsity parameters (scalars all...) will be used to calculate percentiles to make other cells zero self.sW = sW self.sV = sV self.sT = sT self.sZ = sZ # placeholders for inputs and labels self.Y = Y # _ x nClasses self.X = X # _ x D # learning rate self.lr = lr # Asserting initialization self.assert_params() # place holder for path selection parameter sigmaI self.sigmaI = tf.placeholder(tf.float32, name='sigmaI') # invoking __call__ of tree getting initial values of score and projected X self.score, self.X_ = self.tree(self.X, self.sigmaI) # defining loss function tensorflow graph variables..... self.loss, self.marginLoss, self.regLoss = self.lossGraph() # defining single training step graph process ... self.tree.TrainStep = tf.train.AdamOptimizer(self.lr).minimize(self.loss) self.trainStep = self.tree.TrainStep # defining accuracy and prediction graph objects self.accuracy = self.accuracyGraph() self.prediction = self.tree.predict() # set all parameters above 0.99 if dont want to use IHT if self.sW > 0.99 and self.sV > 0.99 and self.sZ > 0.99 and self.sT > 0.99: self.isDenseTraining = True else: self.isDenseTraining = False # setting the hard thresholding graph obejcts self.hardThrsd() def hardThrsd(self): ''' Set up for hard Thresholding Functionality ''' # place holders for sparse parameters.... self.__Wth = tf.placeholder(tf.float32, name='Wth') self.__Vth = tf.placeholder(tf.float32, name='Vth') self.__Zth = tf.placeholder(tf.float32, name='Zth') self.__Tth = tf.placeholder(tf.float32, name='Tth') # assigning the thresholded values to params as a graph object for tensorflow.... self.__Woph = self.tree.W.assign(self.__Wth) self.__Voph = self.tree.V.assign(self.__Vth) self.__Toph = self.tree.T.assign(self.__Tth) self.__Zoph = self.tree.Z.assign(self.__Zth) # grouping the graph objects as one object.... self.hardThresholdGroup = tf.group( self.__Woph, self.__Voph, self.__Toph, self.__Zoph) def hardThreshold(self, A, s): ''' Hard thresholding function on Tensor A with sparsity s ''' # copying to avoid errors.... A_ = np.copy(A) # flattening the tensor... A_ = A_.ravel() if len(A_) > 0: # calculating the threshold value for sparse limit... th = np.percentile(np.abs(A_), (1 - s) * 100.0, interpolation='higher') # making sparse....... A_[np.abs(A_) < th] = 0.0 # reconstructing in actual shape.... A_ = A_.reshape(A.shape) return A_ def accuracyGraph(self): ''' Accuracy Graph to evaluate accuracy when needed ''' if (self.tree.nClasses > 1): correctPrediction = tf.equal(tf.argmax(tf.transpose(self.score), 1), tf.argmax(self.Y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correctPrediction, tf.float32)) else: # some accuracy functional analysis for 2 classes could be different from this... y_ = self.Y * 2 - 1 correctPrediction = tf.multiply(tf.transpose(self.score), y_) correctPrediction = tf.nn.relu(correctPrediction) correctPrediction = tf.ceil(tf.tanh(correctPrediction)) # final predictions.... round to(0 or 1) self.accuracy = tf.reduce_mean( tf.cast(correctPrediction, tf.float32)) return self.accuracy def lossGraph(self): ''' Loss Graph for given tree ''' # regularization losses..... self.regLoss = 0.5 * (self.lZ * tf.square(tf.norm(self.tree.Z)) + self.lW * tf.square(tf.norm(self.tree.W)) + self.lV * tf.square(tf.norm(self.tree.V)) + self.lT * tf.square(tf.norm(self.tree.T))) # emperical actual loss..... if (self.tree.nClasses > 2): ''' Cross Entropy loss for MultiClass case in joint training for faster convergence ''' # cross entropy loss.... self.marginLoss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=tf.transpose(self.score), labels=tf.stop_gradient(self.Y))) else: # sigmoid loss.... self.marginLoss = tf.reduce_mean(tf.nn.relu(1.0 - (2 * self.Y - 1) * tf.transpose(self.score))) # adding the losses... self.loss = self.marginLoss + self.regLoss return self.loss, self.marginLoss, self.regLoss def assert_params(self): # asserting the initialization.... err = "sparsity must be between 0 and 1" assert self.sW >= 0 and self.sW <= 1, "W " + err assert self.sV >= 0 and self.sV <= 1, "V " + err assert self.sZ >= 0 and self.sZ <= 1, "Z " + err assert self.sT >= 0 and self.sT <= 1, "T " + err errMsg = "Dimension Mismatch, Y has to be [_, " + str(self.tree.nClasses) + "]" errCont = " numClasses are 1 in case of Binary case by design" assert (len(self.Y.shape) == 2 and self.Y.shape[1] == self.tree.nClasses), errMsg + errCont def train(self, batchSize, totalEpochs, sess, Xtrain, Xval, Ytrain, Yval, htc): iht = 0 # to keep a note if thresholding has been started ... numIters = Xtrain.shape[0] / batchSize # number of batches at a time... totalBatches = numIters * totalEpochs # total number of batch operations... treeSigmaI = 1 # controls the fidelity of the approximation too high can saturate tanh. maxTestAcc = -10000 itersInPhase = 0 for i in range(totalEpochs): print("\nEpoch Number: " + str(i)) # defining training acc and loss trainAcc = 0.0 trainLoss = 0.0 numIters = int(numIters) for j in range(numIters): # creating batch.....sequentiall could be done randomly using choice function... mini_batchX = Xtrain[j*batchSize:(j+1)*batchSize,:] # B x D mini_batchY = Ytrain[j*batchSize:(j+1)*batchSize] # B x # feed for training using tensorflow graph based gradient descent approach...... _feed_dict = {self.X: mini_batchX, self.Y: mini_batchY, self.sigmaI: treeSigmaI} # training the tensorflow graph _, batchLoss, batchAcc = sess.run( [self.trainStep, self.loss, self.accuracy], feed_dict=_feed_dict) # calculating acc.... trainAcc += batchAcc trainLoss += batchLoss # to update sigmaI..... if (itersInPhase % 100 == 0): # Making a random batch.... indices = np.random.choice(Xtrain.shape[0], 100) rand_batchX = Xtrain[indices, :] rand_batchY = Ytrain[indices, :] rand_batchY = np.reshape(rand_batchY, [-1, self.tree.nClasses]) _feed_dict = {self.X: rand_batchX, self.sigmaI: treeSigmaI} # Projected matrix... Xcapeval = self.X_.eval(feed_dict=_feed_dict) # D^ x 1 # theta value... current... Teval = self.tree.T.eval() # iNodes x D^ # current sum of all internal nodes sum(abs(theta^T.Z.x): iNoddes x miniBS) : 1x1 sum_tr = 0.0 for k in range(0, self.tree.iNodes): sum_tr += (np.sum(np.abs(np.dot(Teval[k], Xcapeval)))) if(self.tree.iNodes > 0): sum_tr /= (100 * self.tree.iNodes) # normalizing all sums sum_tr = 0.1 / sum_tr # inverse of average sum else: sum_tr = 0.1 # thresholding inverse of sum as min(1000, sum_inv*2^(cuurent batch number / total bacthes / 30)) sum_tr = min( 1000, sum_tr * (2**(float(itersInPhase) / (float(totalBatches) / 30.0)))) # assiging higher values as convergence is reached... treeSigmaI = sum_tr itersInPhase+=1 # to start hard thresholding after half_time(could vary) ...... if((itersInPhase//numIters > htc*totalEpochs) and (not self.isDenseTraining)): if(iht == 0): print('\n\nHard Thresolding Started\n\n') iht = 1 # getting the current estimates of W,V,Z,T... currW = self.tree.W.eval() currV = self.tree.V.eval() currZ = self.tree.Z.eval() currT = self.tree.T.eval() # Setting a method to make some values of matrix zero.... self.__thrsdW = self.hardThreshold(currW, self.sW) self.__thrsdV = self.hardThreshold(currV, self.sV) self.__thrsdZ = self.hardThreshold(currZ, self.sZ) self.__thrsdT = self.hardThreshold(currT, self.sT) # runnign the hard thresholding graph.... fd_thrsd = {self.__Wth: self.__thrsdW, self.__Vth: self.__thrsdV, self.__Zth: self.__thrsdZ, self.__Tth: self.__thrsdT} sess.run(self.hardThresholdGroup, feed_dict=fd_thrsd) print("Train Loss: " + str(trainLoss / numIters) + " Train accuracy: " + str(trainAcc / numIters)) # calculating the test accuracies with sigmaI as expected -> inf.. = 10^9 oldSigmaI = treeSigmaI treeSigmaI = 1e9 # test feed for tf... _feed_dict = {self.X: Xval, self.Y: Yval, self.sigmaI: treeSigmaI} # calculating losses.... testAcc, testLoss, regTestLoss = sess.run([self.accuracy, self.loss, self.regLoss], feed_dict=_feed_dict) if maxTestAcc <= testAcc: maxTestAccEpoch = i maxTestAcc = testAcc print("Test accuracy %g" % testAcc) print("MarginLoss + RegLoss: " + str(testLoss - regTestLoss) + " + " + str(regTestLoss) + " = " + str(testLoss) + "\n", end='\r') # time.sleep(0.1) # clear_output() treeSigmaI = oldSigmaI # sigmaI has to be set to infinity to ensure # only a single path is used in inference treeSigmaI = 1e9 print("\nMaximum Test accuracy at compressed" + " model size(including early stopping): " + str(maxTestAcc) + " at Epoch: " + str(maxTestAccEpoch + 1) + "\nFinal Test" + " Accuracy: " + str(testAcc)) tf.reset_default_graph() sess = tf.InteractiveSession() tree = Bonsai(nClasses = nClasses, dDims = dDims, pDims =20, tDepth = 3, sigma = 1.0) X = tf.placeholder("float32", [None, dDims]) Y = tf.placeholder("float32", [None, nClasses]) bonsaiTrainer = BonsaiTrainer(tree, lW = 0.00001, lT = 0.00001, lV = 0.00001, lZ = 0.0000001, lr = 0.01, X = X, Y = Y, sZ = 0.6999, sW = 0.3999, sV = 0.3999, sT = 0.3999) sess.run(tf.global_variables_initializer()) totalEpochs = 100 batchSize = np.maximum(1000, int(np.ceil(np.sqrt(Ytrain.shape[0])))) bonsaiTrainer.train(batchSize, totalEpochs, sess, Xtrain, Xtest, Ytrain, Ytest, htc = 0.00) # print('Time taken',end-start) def calc_zero_ratios(tree): xZ = tree.Z.eval() xW = tree.W.eval() xV = tree.V.eval() xT = tree.T.eval() zs = np.sum(np.abs(xZ)>0.0000000000000001) ws = np.sum(np.abs(xW)>0.0000000000000001) vs = np.sum(np.abs(xV)>0.0000000000000001) ts = np.sum(np.abs(xT)>0.0000000000000001) print('Sparse ratios achieved...\nW:',ws,xW.shape,'\nV:',vs,xV.shape,'\nT:',ts,xT.shape,'\nZ:',zs,xZ.shape) _feed_dict = {bonsaiTrainer.X: Xtest, bonsaiTrainer.Y: Ytest, bonsaiTrainer.sigmaI: 10e9} print('Net',ws+zs+vs+ts) start = time.time() sess.run(bonsaiTrainer.tree.prediction, feed_dict=_feed_dict) end = time.time() print('Time taken :', end-start) calc_zero_ratios(tree) ###Output Sparse ratios achieved... W: 1200 (150, 20) V: 1200 (150, 20) T: 56 (7, 20) Z: 10974 (20, 784) Net 13430 Time taken : 0.19434881210327148
notebooks/inferance.ipynb
###Markdown Inference ###Code import pickle import os dir_path = os.path.dirname(os.getcwd()) import sys sys.path.append(os.path.join(dir_path, "src")) from clean_comments import clean from processing import process_txt ### load model pkl_file = os.path.join(dir_path, 'model', 'final_model.pkl') open_file = open(pkl_file, "rb") model = pickle.load(open_file) open_file.close() ### load vectorizer pkl_file = os.path.join(dir_path, 'model', 'final_vectorizer.pkl') open_file = open(pkl_file, "rb") bw_vectorizer = pickle.load(open_file) open_file.close() i1 = ["that is so good, i am so happy bitch!"] i2 = ['This project is quite interesting to work on'] i3 = ["i'm going to kill you nigga, you are you sick or mad, i don't like you at all"] i4 = ["D'aww! He matches this background colour I'm seemingly stuck with. Thanks. (talk) 21:51, January 11, 2016 (UTC)"] input_str = clean(i1[0]) input_str = process_txt(input_str, stemm= True) input_str = bw_vectorizer.transform([input_str]) prediction = model.predict(input_str) prediction labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] predc = [labels[i] for i in range (0,len(prediction[0])) if prediction[0][i] == 1] if len(predc)== 0: i ='comment in not toxic' print(i) else: print("Prediction : {}".format(" | ".join(predc))) ###Output Prediction : toxic | obscene | insult
BlackJacks.ipynb
###Markdown Problem- Using Previous code of 52 Card Deck- Simulate a game of BlackJacks also known as 21 ###Code import random def dealer(num_cards=2): suits = ['Clubs', 'Diamonds', 'Hearts', 'Spades'] values = [1,2,3,4,5,6,7,8,9,10,10,10,10] deck = [] for i in suits: for j in values: temp = (i,j) deck.append(temp) cards = len(deck) full_deck = [] while cards > 0: index = random.randrange(cards) temp = deck.pop(index) full_deck.append(temp) cards = len(deck) hand = full_deck[:num_cards] pile = full_deck [num_cards:] dic = {'full_deck':full_deck,'hand':hand,'pile':pile} return dic import numpy as np def twenty1(): wallet = 100 games = 0 twenty = [] while wallet >= 10 and games < 100: wallet -= 10 games += 1 dic = {} num_cards = np.random.choice([2,3], size=1, p=[.5,.5])[0] deal = dealer(num_cards) hand = deal['hand'] handtotal = 0 for i in range(len(hand)): temp = hand[i][1] handtotal += temp if handtotal <= 16: wallet += 0 elif handtotal in [17,18,19,20]: wallet += 10 elif handtotal == 21: wallet += 50 elif handtotal >= 22: wallet += 0 dic = {'gp': games, 'hand':hand,'handtotal':handtotal,'wallet':wallet} twenty.append(dic) return twenty twenty1() ###Output _____no_output_____
notebooks/census_dataprepare.ipynb
###Markdown Data Prepare census ###Code from sklearn.preprocessing import LabelEncoder from pandas import read_csv from pandas import get_dummies from pandas import concat import sqlite3 #from pandas.core.generic import NDFrame as dataframe #funcoes uteis def fill_na_median(dataframe, grupo, valor, tipo='median'): return dataframe[valor].fillna(dataframe.groupby(grupo)[valor].transform(tipo)) #normaliza a coluna do tipo standardization def nomaliza_std(dataframe, coluna): return (dataframe[coluna]-dataframe[coluna].mean())/dataframe[coluna].std() #return columns with one hot encoding def set_onehotencoding(dataframe, coluna): cols = get_dummies(dataframe[coluna], prefix=coluna, drop_first=False) dataframe.drop(coluna, axis=1, inplace=True) return concat([dataframe,cols],axis=1) df = read_csv('../data/census.csv') # uso de Label Encoder ''' le = LabelEncoder() features_to_encoder = ['workclass', 'education','marital-status',\ 'occupation', 'relationship', 'race', 'sex', 'native-country'] for feature in features_to_encoder: df[feature] = le.fit_transform(df[feature]) ''' #encoder and normalize features_to_encoder = ['workclass', 'education','marital-status',\ 'occupation', 'relationship', 'race', 'sex', 'native-country'] features_to_normalize = ['age','final-weight', 'education-num', 'capital-loos','hour-per-week', 'capital-gain'] income_dict = { ' <=50K': 0,' >50K': 1} for feature in features_to_encoder: df = set_onehotencoding(df, feature) for feature in features_to_normalize: df[feature] = nomaliza_std(df, feature) le = LabelEncoder() df['income'] = le.fit_transform(df['income']) #df['income'] = df['income'].map(income_dict) conn = sqlite3.connect('../data/db.db') cursor = conn.cursor() df.to_sql('census', con=conn, if_exists='replace', index=False) ###Output /Users/alexssandroos/Public/dev/python/datascience/learn_formacaods_udmy/venv/lib/python3.6/site-packages/pandas/core/generic.py:2130: UserWarning: The spaces in these column names will not be changed. In pandas versions < 0.14, spaces were converted to underscores. dtype=dtype)
beta-vae-normalizing-flows/thoracic-surgery/beta-vae-realnvp-thoracic-surgery.ipynb
###Markdown Define prior distribution ###Code def get_prior(num_modes, latent_dim): mixture_distribution = tfd.Categorical(probs=[1./num_modes] * num_modes) components_distribution = tfd.MultivariateNormalDiag(loc=tf.Variable(tf.random.normal((num_modes, latent_dim))), scale_diag=tfp.util.TransformedVariable(tf.ones((num_modes,latent_dim)), bijector=tfb.Softplus()) ) prior = tfd.MixtureSameFamily(mixture_distribution, components_distribution ) return prior latent_dim = 2 input_shape = 2 prior = get_prior(num_modes=latent_dim, latent_dim=input_shape) print(f'Prior event shape: {prior.event_shape[0]}') print(f'# of Gaussions: {prior.components_distribution.batch_shape[0]}') print(f'Covariance matrix: {prior.components_distribution.name}') ###Output Prior event shape: 2 # of Gaussions: 2 Covariance matrix: MultivariateNormalDiag ###Markdown Define KL divergence ###Code # set weight for more emphasis on KLDivergence term rather than reconstruction loss # average over both samples and batches def get_KL_regularizer(prior, weight=4.): regularizer = tfpl.KLDivergenceRegularizer(prior, use_exact_kl=False, test_points_reduce_axis=(), test_points_fn=lambda q: q.sample(10), weight=weight ) return regularizer KLDivergence_regularizer = get_KL_regularizer(prior) ###Output _____no_output_____ ###Markdown Define the encoder ###Code def get_encoder(input_shape, latent_dim, KL_regularizer): encoder = Sequential([ Dense(input_shape=input_shape, units=256, activation='relu'), Dense(units=128, activation='relu'), Dense(units=64, activation='relu'), Dense(units=32, activation='relu'), Dense(tfpl.MultivariateNormalTriL.params_size(latent_dim)), tfpl.MultivariateNormalTriL(latent_dim, activity_regularizer=KL_regularizer), ]) return encoder encoder = get_encoder(input_shape=(input_shape,), latent_dim=latent_dim, KL_regularizer=KLDivergence_regularizer) encoder.summary() ###Output Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 256) 768 _________________________________________________________________ dense_1 (Dense) (None, 128) 32896 _________________________________________________________________ dense_2 (Dense) (None, 64) 8256 _________________________________________________________________ dense_3 (Dense) (None, 32) 2080 _________________________________________________________________ dense_4 (Dense) (None, 5) 165 _________________________________________________________________ multivariate_normal_tri_l (M multiple 8 ================================================================= Total params: 44,173 Trainable params: 44,173 Non-trainable params: 0 _________________________________________________________________ ###Markdown Define the decoder  ###Code def get_decoder(latent_dim): decoder = Sequential([ Dense(input_shape=(latent_dim,), units=5, activation='relu'), Dense(units=64, activation='relu'), Dense(units=128, activation='relu'), Dense(units=256, activation='relu'), Dense(tfpl.MultivariateNormalTriL.params_size(latent_dim)), tfpl.MultivariateNormalTriL(latent_dim) ]) return decoder decoder = get_decoder(latent_dim) decoder.summary() ###Output Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_5 (Dense) (None, 5) 15 _________________________________________________________________ dense_6 (Dense) (None, 64) 384 _________________________________________________________________ dense_7 (Dense) (None, 128) 8320 _________________________________________________________________ dense_8 (Dense) (None, 256) 33024 _________________________________________________________________ dense_9 (Dense) (None, 5) 1285 _________________________________________________________________ multivariate_normal_tri_l_1 multiple 0 ================================================================= Total params: 43,028 Trainable params: 43,028 Non-trainable params: 0 _________________________________________________________________ ###Markdown Connect encoder to decoder ###Code vae = Model(inputs=encoder.inputs, outputs=decoder(encoder.outputs)) vae.summary() ###Output Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_input (InputLayer) [(None, 2)] 0 _________________________________________________________________ dense (Dense) (None, 256) 768 _________________________________________________________________ dense_1 (Dense) (None, 128) 32896 _________________________________________________________________ dense_2 (Dense) (None, 64) 8256 _________________________________________________________________ dense_3 (Dense) (None, 32) 2080 _________________________________________________________________ dense_4 (Dense) (None, 5) 165 _________________________________________________________________ multivariate_normal_tri_l (M multiple 8 _________________________________________________________________ sequential_1 (Sequential) multiple 43028 ================================================================= Total params: 87,201 Trainable params: 87,201 Non-trainable params: 0 _________________________________________________________________ ###Markdown Specify the loss function ###Code # KL divergence is implicity incorporated to the loss function before # add reconstruction error to loss function def reconstruction_error(decoding_dist, x_true): return -tf.reduce_mean(decoding_dist.log_prob(x_true)) class custom_reconstruction_error(Loss): def call(self, decoding_dist, x_true): return -tf.reduce_mean(decoding_dist.log_prob(x_true)) ###Output _____no_output_____ ###Markdown Selection process ###Code print(f'# of training samples: {X_train.shape[0]}') print(f'# of test samples: {X_test.shape[0]}') y_train.reset_index(drop=True, inplace=True) X_train['Risk1Yr'] = y_train X_train[keepdims[1:]] = X_train[keepdims[1:]].astype(np.float32) X_train_copy = X_train.copy() X_test_copy = X_test.copy() ###Output _____no_output_____ ###Markdown Compile and fit the model ###Code X_test.drop(['DGN'], axis=1, inplace=True) X_train[keepdims[1:]] = X_train[keepdims[1:]].astype(np.float32) X_test[keepdims[1:]] = X_test[keepdims[1:]].astype(np.float32) X_train.drop(['DGN', 'Risk1Yr'],axis=1,inplace=True) samples = pd.DataFrame(prior.sample(X_train_copy.shape[0]).numpy(), columns=keepdims[1:]) f, axs = plt.subplots(1, 3, figsize=(12,5)) sns.kdeplot(data=pd.DataFrame(X_train_copy.drop(['DGN', 'Risk1Yr'], axis=1), columns=['PRE4','PRE5']), ax=axs[0], multiple="stack", palette='Set1').set_title('train') sns.kdeplot(data=samples, ax=axs[1], multiple="stack", palette='Set2').set_title('qtrainable') sns.kdeplot(data=pd.DataFrame(X_test_copy.drop('DGN', axis=1), columns=['PRE4','PRE5']), ax=axs[2], multiple="stack", palette='Set3').set_title('test') f = f.get_figure() sns.despine() f.savefig(os.getcwd() + '/realnvp-results/p.jpeg') optimizer = Adam(learning_rate=3e-4) epochs = 300 epoch_callback = LambdaCallback(on_epoch_end=lambda epoch, logs: print('\n Epoch {}/{}'.format(epoch+1, epochs, logs), '\n\t ' + (': {:.4f}, '.join(logs.keys()) + ': {:.4f}').format(*logs.values())) if epoch % 100 == 0 else False ) vae.compile(optimizer=optimizer, loss=reconstruction_error) history = vae.fit(X_train, validation_data=(X_test,), epochs=epochs, batch_size=32, verbose=0, shuffle=True, callbacks=[epoch_callback] ) ###Output Epoch 1/300 loss: 29.9215, val_loss: 24.8619 Epoch 101/300 loss: 0.0731, val_loss: 0.2223 Epoch 201/300 loss: 0.0624, val_loss: 0.1429 ###Markdown Plot training and validation losses ###Code cutoff=10 train_losses = history.history['loss'][cutoff:] valid_losses = history.history['val_loss'][cutoff:] plt.plot(train_losses, label='train') plt.plot(valid_losses, label='valid') plt.legend() plt.xlabel('Epochs') plt.ylabel('KL Divergence') plt.tight_layout() plt.show() # Loss function is ELBO maximization # ELBO maximization is equivalent to KL divergence minimization ###Output _____no_output_____ ###Markdown Sample from the generative model ###Code X_train_sample = decoder(X_train.to_numpy()).sample() X_train_sample = pd.DataFrame(X_train_sample.numpy(), columns=X_test.columns) X_train_sample.head() X_test_sample = decoder(X_test.to_numpy()).sample() X_test_sample = pd.DataFrame(X_test_sample.numpy(), columns=X_test.columns) X_test_sample.head() y_train.reset_index(drop=True,inplace=True) y_test.reset_index(drop=True,inplace=True) # for concatenation X_train_sample['Risk1Yr'] = y_train X_train_sample['DGN'] = X_train_copy['DGN'] ###Output _____no_output_____ ###Markdown RealNVP Flow ###Code loc = [X_train_sample[i].mean().astype('float32') for i in list(X_train.columns)] scale_diag = [X_train_sample[i].std().astype('float32') for i in list(X_train.columns)] mvn = tfd.MultivariateNormalDiag(loc=loc, scale_diag=scale_diag) mvn class NN(Layer): def __init__(self, input_shape, n_hidden=[512, 512], activation="relu", name="nn"): super(NN, self).__init__(name="nn") layer_list = [] for i, hidden in enumerate(n_hidden): layer_list.append(Dense(hidden, activation=activation, name='dense_{}_1'.format(i))) layer_list.append(Dense(hidden, activation=activation, name='dense_{}_2'.format(i))) self.layer_list = layer_list self.log_s_layer = Dense(input_shape, activation="tanh", name='log_s') self.t_layer = Dense(input_shape, name='t') def call(self, x): y = x for layer in self.layer_list: y = layer(y) log_s = self.log_s_layer(y) t = self.t_layer(y) return log_s, t class RealNVP(tfb.Bijector): def __init__( self, input_shape, n_hidden=[512, 512], forward_min_event_ndims=1, validate_args: bool = False, name="real_nvp", ): super(RealNVP, self).__init__( validate_args=validate_args, forward_min_event_ndims=forward_min_event_ndims, name=name ) assert input_shape[-1] % 2 == 0 self.input_shape = input_shape nn_layer = NN(input_shape[-1] // 2, n_hidden) nn_input_shape = input_shape.copy() nn_input_shape[-1] = input_shape[-1] // 2 x = tf.keras.Input(nn_input_shape) log_s, t = nn_layer(x) self.nn = Model(x, [log_s, t], name="nn") def _forward(self, x): x_a, x_b = tf.split(x, 2, axis=-1) y_b = x_b log_s, t = self.nn(x_b) s = tf.exp(log_s) y_a = s * x_a + t y = tf.concat([y_a, y_b], axis=-1) return y def _inverse(self, y): y_a, y_b = tf.split(y, 2, axis=-1) x_b = y_b log_s, t = self.nn(y_b) s = tf.exp(log_s) x_a = (y_a - t) / s x = tf.concat([x_a, x_b], axis=-1) return x def _forward_log_det_jacobian(self, x): _, x_b = tf.split(x, 2, axis=-1) log_s, t = self.nn(x_b) return log_s n_samples = X_train.shape[0] X_train_np = X_train_sample.to_numpy() X_test_np = X_test_sample.to_numpy() X_train_np = X_train_np[:,0:2] X_test_np = X_test_np[:,0:2] # standardize once again before feeding into network scaler.fit(X_train_np) X_train_np = scaler.transform(X_train_np) X_test_np = scaler.transform(X_test_np) X_train = X_train_np.astype(np.float32) X_train = tf.data.Dataset.from_tensor_slices(X_train) X_train = X_train.batch(32) X_valid = X_test_np.astype(np.float32) X_valid = tf.data.Dataset.from_tensor_slices(X_valid) X_valid = X_valid.batch(32) num_layers = 4 flow_bijector = [] for i in range(num_layers): flow_i = RealNVP(input_shape=[2], n_hidden=[256,256]) flow_bijector.append(flow_i) flow_bijector.append(tfb.Permute([1,0])) # discard the last permute layer flow_bijector = tfb.Chain(list(reversed(flow_bijector[:-1]))) trainable_dist = tfd.TransformedDistribution(distribution=mvn, bijector=flow_bijector) trainable_dist def make_samples(): x = mvn.sample(n_samples) samples = [x] names = [mvn.name] for bijector in reversed(trainable_dist.bijector.bijectors): x = bijector.forward(x) samples.append(x) names.append(bijector.name) return names, samples num_epochs = 600 opt = tf.keras.optimizers.Adam(3e-4) train_losses = [] valid_losses = [] for epoch in range(num_epochs): if epoch % 100 == 0: print("Epoch {}...".format(epoch)) train_loss = tf.keras.metrics.Mean() val_loss = tf.keras.metrics.Mean() for train_batch in X_train: with tf.GradientTape() as tape: tape.watch(trainable_dist.bijector.trainable_variables) loss = -trainable_dist.log_prob(train_batch) train_loss(loss) grads = tape.gradient(loss, trainable_dist.bijector.trainable_variables) opt.apply_gradients(zip(grads, trainable_dist.bijector.trainable_variables)) train_losses.append(train_loss.result().numpy()) # Validation for valid_batch in X_valid: loss = -trainable_dist.log_prob(valid_batch) val_loss(loss) valid_losses.append(val_loss.result().numpy()) cutoff=10 train_losses = history.history['loss'][cutoff:] valid_losses = history.history['val_loss'][cutoff:] plt.plot(np.arange(cutoff, epochs), train_losses, label='training') plt.plot(np.arange(cutoff, epochs), valid_losses, label='validation') plt.legend() plt.xlabel("Epochs") plt.ylabel("Negative log likelihood") plt.title("Training and validation loss curves") plt.show() names, samples = make_samples() def visualize_training_data(samples): f, arr = plt.subplots(1, 2, figsize=(20,5)) names = ['Data', 'Trainable'] samples = [tf.constant(X_train_np), samples[-1]] for i in range(2): res = samples[i] X, Y = res[..., 0].numpy(), res[..., 1].numpy() arr[i].scatter(X, Y, s=10) z = np.polyfit(X, Y, 1) p = np.poly1d(z) arr[i].plot(X, p(X), color='green') arr[i].set_xlim([-2, 2]) arr[i].set_ylim([-2, 2]) arr[i].set_title(names[i]) visualize_training_data(samples) samples = pd.DataFrame(samples[-1].numpy(), columns=['PRE4','PRE5']) samples.head() f, axs = plt.subplots(1, 3, figsize=(12,5)) sns.kdeplot(data=pd.DataFrame(X_train_np, columns=['PRE4','PRE5']), ax=axs[0], multiple="stack", palette='Set1').set_title('ptrain') sns.kdeplot(data=samples, ax=axs[1], multiple="stack", palette='Set2').set_title('qtrained') sns.kdeplot(data=pd.DataFrame(X_test_np, columns=['PRE4','PRE5']), ax=axs[2], multiple="stack", palette='Set3').set_title('ptest') f = f.get_figure() sns.despine() f.savefig(os.getcwd() + '/realnvp-results/q.jpeg') # KS-test post_sample = trainable_dist.sample(X_train_copy.shape[0]).numpy() with open('ks-test.txt', 'a') as f: f.write('REALNVP FLOW\n') f.write('p-val[training - qtrained] = {}\n'.format(ks2d2s(X_train_np[...,0], X_train_np[...,1], post_sample[...,0], post_sample[...,1]))) f.write('p-val[testing - qtrained] = {}\n'.format(ks2d2s(X_test_np[...,0], X_test_np[...,1], post_sample[...,0], post_sample[...,1]))) f.close() ###Output _____no_output_____ ###Markdown Measure KL Divergence ###Code # training prior_train = mvn.prob(X_train_np).numpy() learned_train = trainable_dist.prob(X_train_np).numpy() kl = tf.keras.metrics.KLDivergence() kl.update_state(prior_train, learned_train) print(kl.result().numpy()) kl.reset_state() # testing prior_test = mvn.prob(X_test_np).numpy() learned_test = trainable_dist.prob(X_test_np).numpy() kl = tf.keras.metrics.KLDivergence() kl.update_state(prior_test, learned_test) print(kl.result().numpy()) kl.reset_state() ###Output 4.562646 17.873766 ###Markdown Measure Shannon Entropy ###Code # training cross_entropy = prior_train * np.log(learned_train) print(-np.ma.masked_invalid(cross_entropy).sum()) # testing cross_entropy = prior_test * np.log(learned_test) print(-np.ma.masked_invalid(cross_entropy).sum()) ###Output 11025.344 14063.683 ###Markdown Measure Poisson ###Code # training poisson = tf.keras.metrics.Poisson() poisson.update_state(prior_train, learned_train) print(poisson.result().numpy()) poisson.reset_state() # testing poisson = tf.keras.metrics.Poisson() poisson.update_state(prior_test, learned_test) print(poisson.result().numpy()) poisson.reset_state() ###Output 0.35982814 0.37691572 ###Markdown  Measure MAE ###Code # training mae = tf.keras.losses.MeanAbsoluteError() print(mae(prior_train, learned_train).numpy()) # testing print(mae(prior_test, learned_test).numpy()) ###Output 0.08932299 0.07830838 ###Markdown Performance Evaluation ###Code # collect metrics def _collect(prior_train, prior_test, approx_dist_train, approx_dist_test, results, number_of_run): # KL training kl = tf.keras.losses.KLDivergence() results['Kullback-Leibler Divergence'][number_of_run][0] = kl(prior_train, approx_dist_train).numpy() # KL testing results['Kullback-Leibler Divergence'][number_of_run][1] = kl(prior_test, approx_dist_test).numpy() # Cross Entropy training ce = tf.keras.losses.CategoricalCrossentropy() results['Cross Entropy'][number_of_run][0] = ce(prior_train, approx_dist_train).numpy() # Cross Entropy testing results['Cross Entropy'][number_of_run][1] = ce(prior_test, approx_dist_test).numpy() # MAE training mae = tf.keras.losses.MeanAbsoluteError() results['Mean Absolute Error'][number_of_run][0] = mae(prior_train, approx_dist_train).numpy() # MAE testing results['Mean Absolute Error'][number_of_run][1] = mae(prior_test, approx_dist_test).numpy() return results # metrics to measure KL, Cross Entropy, Mean Absolute Error def init_results(): results = {'Kullback-Leibler Divergence': [[None, None] for _ in range(NUMBER_OF_RUNS)], 'Cross Entropy': [[None, None] for _ in range(NUMBER_OF_RUNS)], 'Mean Absolute Error': [[None, None] for _ in range(NUMBER_OF_RUNS)] } return results NUMBER_OF_RUNS = 5 results = init_results() # generate new observations and measure with the generative model def _results(X_train_np, X_test_np, NUMBER_OF_RUNS, results): for num in range(NUMBER_OF_RUNS): prior_train = decoder(X_train_np).sample().numpy() prior_test = decoder(X_test_np).sample().numpy() approx_dist_train = trainable_dist.sample(X_train_np.shape[0]).numpy() approx_dist_test = trainable_dist.sample(X_test_np.shape[0]).numpy() results = _collect(prior_train, prior_test, approx_dist_train, approx_dist_test, results, num) return results # convert output of decoder to probabilities trial_data = decoder(X_train_np).sample().numpy() tf.reduce_sum(tf.exp(-trial_data) / tf.reduce_sum(tf.exp(-trial_data), axis=0),axis=0) # sanity check _results(X_train_np, X_test_np, NUMBER_OF_RUNS, results) ###Output _____no_output_____ ###Markdown [Pooled Estimate of Common Std. Deviation](https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_confidence_intervals/bs704_confidence_intervals5.html) ###Code NUMBER_OF_RUNS=100 results = init_results() start_time = time.time() stats = _results(X_train_np, X_test_np, NUMBER_OF_RUNS, results) print('Metric sampling in seconds: {sec}'.format(sec=round(time.time()-start_time))) # calculate stds and xbars stdxbars = {'Kullback-Leibler Divergence': [None, None], 'Cross Entropy': [None, None], 'Mean Absolute Error': [None, None] } def _stdxbar(stdxbars, stats): for k, v in stats.items(): tensored_samples = tf.convert_to_tensor(v) xbars = tf.reduce_mean(tensored_samples, axis=0).numpy() xbar_train, xbar_test = xbars[0], xbars[1] stds = tf.math.reduce_std(tensored_samples, axis=0).numpy() std_train, std_test = stds[0], stds[1] stdxbars[k] = [[xbar_train, std_train], [xbar_test, std_test]] return stdxbars stdxbars = _stdxbar(results, stats) stdxbars def _pooled(stdxbars, n): poolingstds = {'Kullback-Leibler Divergence': .0, 'Cross Entropy': .0, 'Mean Absolute Error': .0 } for k, v in stdxbars.items(): trainstd = v[0][1] teststd = v[1][1] estimate = np.sqrt((((n-1)*np.square(trainstd))+((n-1)*np.square(teststd)))/(2*(n-1))) assertion = False try: assert .5 <= trainstd/teststd <= 2., '{metric}: One sample variance cannot be the double of the other!'.format(metric=k) except AssertionError as e: assertion = True print(e) # discard metrics that don't pass sample variance check if assertion == False: poolingstds[k] = estimate else: del poolingstds[k] return poolingstds pooled_estimates = _pooled(stdxbars, n=NUMBER_OF_RUNS) pooled_estimates # calculate 95% CI def _CI(stdxbars, pooled_estimates, n): zval95 = 1.96 conf_intervals = {'Kullback-Leibler Divergence': .0, 'Cross Entropy': .0, 'Mean Absolute Error': .0 } trainxbar = stdxbars['Kullback-Leibler Divergence'][0][0] testxbar = stdxbars['Kullback-Leibler Divergence'][1][0] mean_diff = testxbar-trainxbar estimate = pooled_estimates['Kullback-Leibler Divergence'] upper_bound = np.round(mean_diff+(zval95*estimate*np.sqrt(2/n)),3) lower_bound = np.round(mean_diff-(zval95*estimate*np.sqrt(2/n)),3) conf_intervals['Kullback-Leibler Divergence'] = [lower_bound, upper_bound] trainxbar = stdxbars['Cross Entropy'][0][0] testxbar = stdxbars['Cross Entropy'][1][0] mean_diff = testxbar-trainxbar estimate = pooled_estimates['Cross Entropy'] upper_bound = np.round(mean_diff+(zval95*estimate*np.sqrt(2/n)),3) lower_bound = np.round(mean_diff-(zval95*estimate*np.sqrt(2/n)),3) conf_intervals['Cross Entropy'] = [lower_bound, upper_bound] trainxbar = stdxbars['Mean Absolute Error'][0][0] testxbar = stdxbars['Mean Absolute Error'][1][0] mean_diff = testxbar-trainxbar estimate = pooled_estimates['Mean Absolute Error'] upper_bound = np.round(mean_diff+(zval95*estimate*np.sqrt(2/n)),3) lower_bound = np.round(mean_diff-(zval95*estimate*np.sqrt(2/n)),3) conf_intervals['Mean Absolute Error'] = [lower_bound, upper_bound] return conf_intervals conf_intervals = _CI(stdxbars, pooled_estimates, n=NUMBER_OF_RUNS) conf_intervals ###Output _____no_output_____
matplotlib_exampleplot.ipynb
###Markdown ###Code %autosave 100 #matplotlib makes plots work like matlab import matplotlib.pyplot as plt p1=plt.plot([1,2,3,4],[3,5,2,8]) plt.show() %whos ###Output Variable Type Data/Info ------------------------------ p1 list n=1 plt module <module 'matplotlib.pyplo<...>es/matplotlib/pyplot.py'>
.ipynb_checkpoints/datas_savings.ipynb
###Markdown Imports ###Code import pandas as pd import numpy as np import sqlalchemy as sc ###Output _____no_output_____ ###Markdown Make a request ###Code url_100 = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.25135/dados?formato=json' url_500 = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.25136/dados?formato=json' url_1000 = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.25137/dados?formato=json' url_2000 = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.25138/dados?formato=json' url_5000 = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.25139/dados?formato=json' url_10000 = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.25140/dados?formato=json' url_15000 = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.25141/dados?formato=json' url_20000 = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.25142/dados?formato=json' url_25000 = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.25143/dados?formato=json' url_30000 = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.25144/dados?formato=json' url_more_30000 = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.25145/dados?formato=json' pd.read_json(url_100) ###Output _____no_output_____ ###Markdown Export to csv ###Code # # Export data less than 100 to csv # dados_100 = pd.read_json(url_100) # dados_100.to_csv('dados_100.csv') # # Export data less than 500 to csv # dados_500 = pd.read_json(url_500) # dados_500.to_csv('dados_500.csv') # # Export data less than 1000 to csv # dados_1000 = pd.read_json(url_1000) # dados_1000.to_csv('dados_1000.csv') # # Export data less than 2000 to csv # dados_2000 = pd.read_json(url_2000) # dados_2000.to_csv('dados_2000.csv') # # Export data less than 5000 to csv # dados_5000 = pd.read_json(url_5000) # dados_5000.to_csv('dados_5000.csv') # # Export data less than 10000 to csv # dados_10000 = pd.read_json(url_10000) # dados_10000.to_csv('dados_10000.csv') # # Export data less than 15000 to csv # dados_15000 = pd.read_json(url_15000) # dados_15000.to_csv('dados_15000.csv') # # Export data less than 20000 to csv # dados_20000 = pd.read_json(url_20000) # dados_20000.to_csv('dados_20000.csv') # # Export data less than 25000 to csv # dados_25000 = pd.read_json(url_25000) # dados_25000.to_csv('dados_25000.csv') # # Export data less than 30000 to csv # dados_30000 = pd.read_json(url_30000) # dados_30000.to_csv('dados_30000.csv') # # # Export data bigger than 3000 to csv # dados_3000 = pd.read_json(url_more_30000) # dados_3000.to_csv('dados_more_3000.csv') ###Output _____no_output_____ ###Markdown connect to database ###Code engine = sc.create_engine('postgresql://postgres:Pos2021*-@localhost:5432/economics_datas') data = pd.read_sql_table('f_savings', engine) data.dtypes ###Output _____no_output_____ ###Markdown tests in database ###Code data.dtypes ###Output _____no_output_____
tutorials/finite_elasticity/finite_elasticity.ipynb
###Markdown Finite elasticity IntroductionThis tutorial demonstrates how to setup and solve a nonlinear continuum mechanics problem using OpenCMISS-Iron in python. For the purpose of this tutorial, we will be solving a 3D finite elasticity problem. This tutorial has been set up to solve the deformation of an isotropic, unit cube under a range of loading conditions.See the [OpenCMISS-Iron tutorial documenation page](https://opencmiss-iron-tutorials.readthedocs.io/en/latest/tutorials.htmlhow-to-run-tutorials) for instructions on how to run this tutorial. Learning outcomesAt the end of this tutorial you will:- Know the steps involved in setting up and solving a nonlinear finite elasticity simulation with OpenCMISS-Iron.- Know how different mechanical loads can be applied to a geometry.- Know how information about the deformation can be extracted for analysis. Problem summary The finite elasticity stress equilibrium equationIn this example we are solving the stress equilibrium equation for nonlinear finite elasticity. The stress equilibrium equation represents the principle of linear momentum as follows:$$\displaystyle \nabla \sigma + \rho \mathbf{b}-\rho \mathbf {a}=0. \qquad \text{in} \qquad \Omega $$where $\sigma$ is the Cauchy stress tensor, $\mathbf{b}$ is the body force vector and $\mathbf{a}$ is the vector representing the acceleration due to any unbalanced forces.The boundary equations for the stress equilibrium equation are partitioned into the Dirichlet boundary conditions representing a fixed displacement $u_d$ over the boundary $\Gamma_d$, and the Neumann boundary conditions representing the traction forces $\mathbf{t}$ applied on the boundary $\Gamma_t$ along the normal $\mathbf{n}$ as follows:$$\begin{aligned}\displaystyle u &= u_d \quad &\text{on} \quad \Gamma_d \\\displaystyle \sigma^T \mathbf{n} &= \mathbf{t} \quad &\text{on} \quad \Gamma_t \end{aligned}$$In this example we will solve the stress equilibrium equation for a incompressible material, which we shall perform using **the incompressibility constraint**:$$\displaystyle (I_3-1) = 0$$We will also use a Mooney Rivlin constitutive equation to describe the behaviour of the material. Solution variablesThe problem we are about to solve includes 4 dependent variables. The first three variables represent each of the 3D coordinates $(x,y,z)$ of the mesh nodes in the deformed state. The incompressibility constraint is satisfied using lagrange multipliers, which are represented as a scalar variable, $p$. This variable is often referred to as the **hydrostatic pressure**. Constitutive relationshipAnother important set of equations that need to be included when solving a mechanics problem are the stress-strain relationships or **constitutive relationships**. There are a set of constitutive equations that have already been included within the OpenCMISS-Iron library as [EquationSet subtypes](http://cmiss.bioeng.auckland.ac.nz/OpenCMISS/doc/user/group___o_p_e_n_c_m_i_s_s___equations_set_subtypes.html). We will demonstrate how these constants are used to incorporate the constitutive equation in the simulation when setting up the equation set. Loading conditionsWe will see in this tutorial how five different types of mechanical loads can be applied as follows: * Model 1 (Uniaxial extension of a unit cube)* Model 2 (Equibiaxial extension of a unit cube)* Model 3 (Simple shear of a unit cube)* Model 4 (Shear of a unit cube)* Model 5 (Extension and shear of a unit cube) Setup Loading the OpenCMISS-Iron libraryIn order to use OpenCMISS-Iron we have to first import the opencmiss.iron module from the OpenCMISS-Iron package. ###Code import numpy # Intialise OpenCMISS-Iron. from opencmiss.iron import iron ###Output _____no_output_____ ###Markdown Set up parametersWe first specify a set of variables that will be used throughout the tutorial. This is a common practice among experienced users to set these variables up at the start because we can then change these easily and re-run the rest of the code as required. ###Code # Set constants X, Y, Z = (1, 2, 3) # Set model number to solve (these specify different loading conditions). model = 1 # Specify the number of local element directions. number_of_xi = 3 # Specify the number of elements along each element direction. number_global_x_elements = 1 number_global_y_elements = 1 number_global_z_elements = 1 # Set dimensions of the cube. width = 1.0 length = 1.0 height = 1.0 interpolation_type = 1 number_of_gauss_per_xi = 2 # Gauss points along each local element coordinate direction (xi). use_pressure_basis = False number_of_load_increments = 1 ###Output _____no_output_____ ###Markdown - `interpolation_type` is an integer variable that can be changed to choose one of the nine basis interpolation types defined in OpenCMISS-Iron [Basis Interpolation Specifications Constants](http://opencmiss.org/documentation/apidoc/iron/latest/python/classiron_1_1_basis_interpolation_specifications.html)- `number_of_gauss_per_xi` is the number of Gauss points used along a given local element direction for integrating the equilibrium equations. Note that there is a minimum number of gauss points required for a given interpolation scheme (e.g. linear Lagrange interpolation requires at least 2 Gauss points along each local element direction). Using less than the minimum number will result in the solver not converging.- `use_pressure_basis` is a boolean variable that we can set to true to set up node-based interpolation scheme for the incompressibility constraint or set to false if we want the pressure basis to be only varying between elements. This choice is typically determined by the basis function used to interpolate the geometric variables. The pressure basis is typically one order lower than the geometric and displacement field interpolation schemes. If you choose linear lagrange for displacements, then the lower order is a constant, element based interoplation. If you choose quadratic lagrange for the geometry then a linear interpolation can chosen used. - `number_of_load_increments` sets the number of load steps to be taken to solve the nonlinear mechanics problem. This concept is briefly explained below. The weak form finite element matrix equations for the stress equilibrium equations above have been implemented in the OpenCMISS-Iron libraries. Numerical treatment of the equations will show that the equations are nonlinear and, specifically, the determination of the deformed configuration coordinates turn out to be like a root finding exercise. We need to find the deformed coordinates $\mathbf{x}$ such that $f(x)=0$. These equations are therefore solved using a nonlinear iterative solver, **Newton Raphson technique** to be exact. Nonlinear solvers require an initial guess at the root of the equation and if we are far away from the actual solution then the solvers can diverge and give spurious $x$ values. Therefore, in most simulations it is best to split an entire mechanical load into lots of smaller loads. This is what `number_of_load_increments` allows us to do. You will see it come to use in the control loop section of the tutorial below. The next section describes how we can interact with the OpenCMISS-Iron library through it's object-oriented API to create and solve the mechanics problem. Step by step guide 1. Creating a coordinate systemFirst we construct a coordinate system that will be used to describe the geometry in our problem. The 3D geometry will exist in a 3D space, so we need a 3D coordinate system. ###Code # Create a 3D rectangular cartesian coordinate system. coordinate_system_user_number = 1 coordinate_system = iron.CoordinateSystem() coordinate_system.CreateStart(coordinate_system_user_number) coordinate_system.DimensionSet(3) coordinate_system.CreateFinish() ###Output _____no_output_____ ###Markdown 2. Creating basis functionsThe finite element description of our fields requires a basis function to interpolate field values over elements. In OpenCMISS-Iron, we start by initalising a `basis` object on which can specific an interpolation scheme. In the following section, you can choose from a number of basis function interpolation types. These are defined in the OpenCMISS-Iron [Basis Interpolation Specifications Constants](http://opencmiss.org/documentation/apidoc/iron/latest/python/classiron_1_1_basis_interpolation_specifications.html). The `interpolation_type` variable that was set at the top of the tutorial will be used to determine which basis interpolation will be used in this simulation. Note that you will need to ensure that an appropriate `number_of_gauss_per_xi` have been set if you change the basis interpolation.We have also initialised a second `pressure_basis` object for the hydrostatic pressure. In mechanics theory, it is generally well understood that the interpolation scheme for the hydrostatic pressure basis should be one order lower than the geometric basis. `use_pressure_basis`, which is set at the top of the tutorial, determines whether the incompressibility constraint equation will be interpolated using a nodally based interpolation scheme or interpolated as a constant within elements. If the pressure basis is not defined then the simulation is set up with element based interpolation. Note that if you want to describe nearly incompressible or compressible materials then you need to choose a different equation subtype that describes a constitutive equation for compressible/nearly incompressible materials. ###Code basis_user_number = 1 pressure_basis_user_number = 2 # Define geometric basis. basis = iron.Basis() basis.CreateStart(basis_user_number) if interpolation_type in (1,2,3,4): basis.TypeSet(iron.BasisTypes.LAGRANGE_HERMITE_TP) elif interpolation_type in (7,8,9): basis.TypeSet(iron.BasisTypes.SIMPLEX) basis.NumberOfXiSet(number_of_xi) basis.InterpolationXiSet( [iron.BasisInterpolationSpecifications.LINEAR_LAGRANGE]*number_of_xi) if number_of_gauss_per_xi>0: basis.QuadratureNumberOfGaussXiSet( [number_of_gauss_per_xi]*number_of_xi) basis.CreateFinish() if use_pressure_basis: # Define hydrostatic pressure basis. pressure_basis = iron.Basis() pressure_basis.CreateStart(pressure_basis_user_number) if interpolation_type in (1,2,3,4): pressure_basis.TypeSet(iron.BasisTypes.LAGRANGE_HERMITE_TP) elif interpolation_type in (7,8,9): pressure_basis.TypeSet(iron.BasisTypes.SIMPLEX) pressure_basis.NumberOfXiSet(number_of_xi) pressure_basis.InterpolationXiSet( [iron.BasisInterpolationSpecifications.LINEAR_LAGRANGE]*number_of_xi) if number_of_gauss_per_xi > 0: pressure_basis.QuadratureNumberOfGaussXiSet( [number_of_gauss_per_xi]*number_of_xi) pressure_basis.CreateFinish() ###Output _____no_output_____ ###Markdown 3. Creating a regionNext we create a region that our fields will be defined on, and tell it to use the 3D coordinate system we created previously. ###Code # Create a region and assign the coordinate system to the region. region_user_number = 1 region = iron.Region() region.CreateStart(region_user_number,iron.WorldRegion) region.LabelSet("Region") region.CoordinateSystemSet(coordinate_system) region.CreateFinish() ###Output _____no_output_____ ###Markdown 4. Setting up a simple cuboid meshIn this example we will use the `iron.GeneratedMesh()` class of OpenCMISS to automatically create a 3D geometric mesh on which to solve the mechanics problem. We will create a regular mesh of size `width` (defined along x), `height` (defined along y) and `depth` (defined along z) and divide the mesh into `number_global_x_elements` in the X direction, `number_global_y_elements` in the Y direction and `number_global_z_elements` in the Z direction. We will then tell it to use the basis we created previously. ###Code # Start the creation of a generated mesh in the region. generated_mesh_user_number = 1 generated_mesh = iron.GeneratedMesh() generated_mesh.CreateStart(generated_mesh_user_number, region) generated_mesh.TypeSet(iron.GeneratedMeshTypes.REGULAR) if use_pressure_basis: generated_mesh.BasisSet([basis, pressure_basis]) else: generated_mesh.BasisSet([basis]) generated_mesh.ExtentSet([width, length, height]) generated_mesh.NumberOfElementsSet( [number_global_x_elements, number_global_y_elements, number_global_z_elements]) # Finish the creation of a generated mesh in the region. mesh_user_number = 1 mesh = iron.Mesh() generated_mesh.CreateFinish(mesh_user_number,mesh) ###Output _____no_output_____ ###Markdown 5. Decomposing the meshOnce the mesh has been created we can decompose it into a number of domains in order to allow for parallelism. We choose the options to let OpenCMISS-Iron to calculate the best way to break up the mesh. We also set the number of domains to be equal to the number of computational nodes this example is running on. In this example, we will only be using a single domain. Look for our parallelisation example for a demonstratoin of how to execute simulations using parallel processing techniques. ###Code # Get the number of computational nodes. number_of_computational_nodes = iron.ComputationalNumberOfNodesGet() # Create a decomposition for the mesh. decomposition_user_number = 1 decomposition = iron.Decomposition() decomposition.CreateStart(decomposition_user_number,mesh) decomposition.TypeSet(iron.DecompositionTypes.CALCULATED) decomposition.NumberOfDomainsSet(number_of_computational_nodes) decomposition.CreateFinish() ###Output _____no_output_____ ###Markdown 6. Creating a geometric fieldNow that the mesh has been decomposed we are in a position to create fields. The first field we need to create is the geometric field. Once we have finished creating the field, we can change the field degrees of freedom (DOFs) to give us our geometry. Since the mesh was constructed using the OpenCMISS-Iron `GenerateMesh` class, we can use it's `GeometricParametersCalculate` method to automatically calculate and populate the geometric field parameters of the regular mesh. ###Code # Create a field for the geometry. geometric_field_user_number = 1 geometric_field = iron.Field() geometric_field.CreateStart(geometric_field_user_number,region) geometric_field.MeshDecompositionSet(decomposition) geometric_field.TypeSet(iron.FieldTypes.GEOMETRIC) geometric_field.VariableLabelSet(iron.FieldVariableTypes.U,"Geometry") geometric_field.ComponentMeshComponentSet(iron.FieldVariableTypes.U,1,1) geometric_field.ComponentMeshComponentSet(iron.FieldVariableTypes.U,2,1) geometric_field.ComponentMeshComponentSet(iron.FieldVariableTypes.U,3,1) if interpolation_type == 4: # Set arc length scaling for cubic-Hermite elements. geometric_field.FieldScalingTypeSet(iron.FieldScalingTypes.ARITHMETIC_MEAN) geometric_field.CreateFinish() # Update the geometric field parameters from generated mesh. generated_mesh.GeometricParametersCalculate(geometric_field) ###Output _____no_output_____ ###Markdown Visualising the geometryWe now visualise the geometry using pythreejs. Note that this visualisation currently only supports elements with linear Lagrange interpolation. This includes the node numbers for all elements. ###Code import sys sys.path.insert(1, '../../tools/') import threejs_visualiser renderer = threejs_visualiser.visualise( mesh, geometric_field, variable=iron.FieldVariableTypes.U, node_labels=True) renderer ###Output _____no_output_____ ###Markdown 7. Creating fields Dependent fieldWhen solving the mechanics equations set, we require somewhere to store the deformed geometry (our solution). In OpenCMISS-Iron, we store the solutions to equations sets in a dependent field that contains our dependent variables. Note that the dependent field has been pre-defined in the OpenCMISS-Iron library to contain four components when solving `ProblemTypes.FINITE_ELASTICITY` with a `EquationsSetSubTypes.MOONEY_RIVLIN` subtype. The first three components store the deformed coordinates and the fourth stores the hydrostatic pressure.Remember that `use_pressure_basis` can be set to true or false to switch between element based or nodally based interpolation for the incompressibility constraint.One can either make the hydrostatic pressure constant within an element by calling the `dependent_field.ComponentInterpolationSet` method with the `iron.FieldInterpolationTypes.ELEMENT_BASED` option. Alternatively, we can make the hydrostatic pressure variable across different nodes by calling the `dependent_field.ComponentInterpolationSet` method with the `iron.FieldInterpolationTypes.NODE_BASED` option. In this tutorial, we have chosen the, hydrostatic pressure to be nodally interpolated if `use_pressure_basis` is true, or use element based interpolation if `use_pressure_basis` is false. ###Code dependent_field_user_number = 2 dependent_field = iron.Field() dependent_field.CreateStart(dependent_field_user_number, region) dependent_field.MeshDecompositionSet(decomposition) dependent_field.TypeSet(iron.FieldTypes.GEOMETRIC_GENERAL) dependent_field.GeometricFieldSet(geometric_field) dependent_field.DependentTypeSet(iron.FieldDependentTypes.DEPENDENT) dependent_field.VariableLabelSet(iron.FieldVariableTypes.U, "Dependent") dependent_field.NumberOfVariablesSet(2) # Set the number of componets for the U variable (position) and the DELUDELN # (forces). dependent_field.NumberOfComponentsSet(iron.FieldVariableTypes.U, 4) dependent_field.NumberOfComponentsSet(iron.FieldVariableTypes.DELUDELN, 4) if use_pressure_basis: # Set the hydrostatic pressure to be nodally based and use the second mesh component. # U variable (position) dependent_field.ComponentInterpolationSet( iron.FieldVariableTypes.U, 4, iron.FieldInterpolationTypes.NODE_BASED) dependent_field.ComponentMeshComponentSet( iron.FieldVariableTypes.U, 4, 2) # DELUDELN variable (forces) dependent_field.ComponentInterpolationSet( iron.FieldVariableTypes.DELUDELN, 4, iron.FieldInterpolationTypes.NODE_BASED) dependent_field.ComponentMeshComponentSet( iron.FieldVariableTypes.DELUDELN, 4, 2) if interpolation_type == 4: # Set arc length scaling for cubic-Hermite elements. dependent_field.FieldScalingTypeSet( iron.FieldScalingTypes.ARITHMETIC_MEAN) else: # Set the hydrostatic pressure to be constant within each element. dependent_field.ComponentInterpolationSet( iron.FieldVariableTypes.U, 4, iron.FieldInterpolationTypes.ELEMENT_BASED) dependent_field.ComponentInterpolationSet( iron.FieldVariableTypes.DELUDELN, 4, iron.FieldInterpolationTypes.ELEMENT_BASED) dependent_field.CreateFinish() ###Output _____no_output_____ ###Markdown This dependent field needs to be initialised before the simulation is run. To this end, we copy the values of the coordinates from the geometric field into the dependent field in the below code snippet. The hydrostatic pressure field is set to 0.0. ###Code # Initialise dependent field from undeformed geometry and displacement bcs and set hydrostatic pressure. iron.Field.ParametersToFieldParametersComponentCopy( geometric_field, iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 1, dependent_field, iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 1) iron.Field.ParametersToFieldParametersComponentCopy( geometric_field, iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 2, dependent_field, iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 2) iron.Field.ParametersToFieldParametersComponentCopy( geometric_field, iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 3, dependent_field, iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 3) iron.Field.ComponentValuesInitialiseDP( dependent_field, iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 4, 0.0) ###Output _____no_output_____ ###Markdown Material fieldWe now set up a new field called the material field, which will store the constitutive equation parameters of the Mooney Rivlin equation. This field can be set to have the same values throughout the mesh to represent a homogeneous material as shown below. If you want to describe heterogeneous materials, you can set the values of these parameters differently across the mesh (e.g. either using an nodally varying variation, or a element constant variation). This is not shown here but we'll give you a little example of this at the end of this tutorial. Below, the ```ComponentValuesInitialiseDP``` function sets all the nodal values to be the same: 1.0 for `c10` and 0.2 for `c01`. ###Code # Create the material field. material_field_user_number = 3 material_field = iron.Field() material_field.CreateStart(material_field_user_number, region) material_field.TypeSet(iron.FieldTypes.MATERIAL) material_field.MeshDecompositionSet(decomposition) material_field.GeometricFieldSet(geometric_field) material_field.VariableLabelSet(iron.FieldVariableTypes.U, "Material") # Set the number of components for the Mooney Rivlin constitutive equation (2). material_field.NumberOfComponentsSet(iron.FieldVariableTypes.U, 2) for component in [1, 2]: material_field.ComponentInterpolationSet( iron.FieldVariableTypes.U, component, iron.FieldInterpolationTypes.ELEMENT_BASED) if interpolation_type == 4: # Set arc length scaling for cubic-Hermite elements. material_field.FieldScalingTypeSet(iron.FieldScalingTypes.ARITHMETIC_MEAN) material_field.CreateFinish() # Set Mooney-Rivlin constants c10 and c01 respectively. material_field.ComponentValuesInitialiseDP( iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 1, 1.0) material_field.ComponentValuesInitialiseDP( iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 2, 0.2) ###Output _____no_output_____ ###Markdown Equation set field ###Code # Equation set field. equations_set_field_user_number = 4 equations_set_field = iron.Field() equations_set = iron.EquationsSet() ###Output _____no_output_____ ###Markdown 8. Defining the finite elasticity equations setWe now specify that we want to solve a finite elasticity equation, and identify the specific material constitutive equation that we wish to use to describe the mechanical behaviour of the cube.The key constants used to define the equation set are:- `ProblemClasses.ELASTICITY` defines that the equation set is of the elasticity class.- `ProblemTypes.FINITE_ELASTICITY` defines that the finite elasticity equations set will be used.- `EquationsSetSubTypes.MOONEY_RIVLIN` defines that the Mooney Rivlin constitutive equation that should be used from the range of constitutive equations that are implemented within the OpenCMISS-Iron library. You can find more information on these by browsing the OpenCMISS-Iron [Equations Set Subtypes Constants](http://opencmiss.org/documentation/apidoc/iron/latest/python/classiron_1_1_equations_set_subtypes.html). Future tutorials will demonstrate how you can dynamically specify constitutive relations using CellML. ###Code equations_set_user_number = 1 # Finite elasticity equation specification. equations_set_specification = [iron.ProblemClasses.ELASTICITY, iron.ProblemTypes.FINITE_ELASTICITY, iron.EquationsSetSubtypes.MOONEY_RIVLIN] # Add the geometric field and equations set field that we created earlier (note # that while we defined the geometric field above, we only initialised an empty # field for the equations_set_field. When an empty field is provided to the # equations_set, it will automatically populate it with default values). equations_set.CreateStart( equations_set_user_number, region, geometric_field, equations_set_specification, equations_set_field_user_number, equations_set_field) # Add the dependent field that we created earlier. equations_set.DependentCreateStart(dependent_field_user_number, dependent_field) equations_set.DependentCreateFinish() # Add the material field that we created earlier. equations_set.MaterialsCreateStart(material_field_user_number, material_field) equations_set.MaterialsCreateFinish() equations_set.CreateFinish() ###Output _____no_output_____ ###Markdown Once the equations set is defined, we create the equations that use our fields to construct equations matrices and vectors. ###Code # Create equations. equations = iron.Equations() equations_set.EquationsCreateStart(equations) equations.SparsityTypeSet(iron.EquationsSparsityTypes.SPARSE) equations.OutputTypeSet(iron.EquationsOutputTypes.NONE) equations_set.EquationsCreateFinish() ###Output _____no_output_____ ###Markdown 9. Defining the problemNow that we have defined the equations we can now create our problem to be solved by OpenCMISS-Iron. We create a standard finite elasticity problem, which is a member of the elasticity field problem class. The problem control loop uses the default load increment loop and hence does not require a subtype. ###Code # Define the problem. problem_user_number = 1 problem = iron.Problem() problem_specification = ( [iron.ProblemClasses.ELASTICITY, iron.ProblemTypes.FINITE_ELASTICITY, iron.ProblemSubtypes.NONE]) problem.CreateStart(problem_user_number, problem_specification) problem.CreateFinish() ###Output _____no_output_____ ###Markdown 10. Defining control loopsThe problem type defines a control loop structure that is used when solving the problem. The OpenCMISS-Iron control loop is a "supervisor" for the computational process. We may have multiple control loops with nested sub loops, and control loops can have different types, for example load incremented loops or time loops for dynamic problems. These control loops have been defined in the OpenCMISS-Iron library for the finite elasticity type of equations as a load increment loop. If we wanted to access the control loop and modify it we would use the `problem.ControlLoopGet` method before finishing the creation of the control loops. In the below code snippet we get the control loop to set the number of load increments to be used to solve the problem using the variable `number_of_load_increments`. ###Code # Create the problem control loop. problem.ControlLoopCreateStart() control_loop = iron.ControlLoop() problem.ControlLoopGet([iron.ControlLoopIdentifiers.NODE], control_loop) control_loop.MaximumIterationsSet(number_of_load_increments) problem.ControlLoopCreateFinish() ###Output _____no_output_____ ###Markdown 11. Defining solversAfter defining the problem structure we can create the solvers that will be run to actually solve our problem. As the finite elasticity equations are nonlinear, we require a nonlinear solver. Nonlinear solvers typically involve a linearisation step, and therefore a linear solver is also required. In OpenCMISS-Iron, we can start the creation of solvers by calling the `problem.SolversCreateStart()` method, whose properties can be specified, before they are finalised using a call to the `problem.SolversCreateFinish()` method. Once finalised, only solver parameter (.e.g tolerances) can be changed, however, fundamental properties (e.g. which solver library to use) cannot be changed. If an additional solver is required, the existing solver can be destroyed and recreated, or another solver can be constructed. ###Code nonlinear_solver = iron.Solver() linear_solver = iron.Solver() problem.SolversCreateStart() problem.SolverGet([iron.ControlLoopIdentifiers.NODE], 1, nonlinear_solver) nonlinear_solver.OutputTypeSet(iron.SolverOutputTypes.NONE) nonlinear_solver.NewtonJacobianCalculationTypeSet( iron.JacobianCalculationTypes.EQUATIONS) nonlinear_solver.NewtonLinearSolverGet(linear_solver) linear_solver.LinearTypeSet(iron.LinearSolverTypes.DIRECT) problem.SolversCreateFinish() ###Output _____no_output_____ ###Markdown 12. Defining solver equationsAfter defining our solver we can create the equations for the solver to solve. This is achived by adding our equations sets to an OpenCMISS-Iron `solver_equations` object. In this example, we have just one equations set to add, however, for coupled problems, we may have multiple equations sets in the solver equations. ###Code solver = iron.Solver() solver_equations = iron.SolverEquations() problem.SolverEquationsCreateStart() problem.SolverGet([iron.ControlLoopIdentifiers.NODE], 1, solver) solver.SolverEquationsGet(solver_equations) solver_equations.SparsityTypeSet(iron.SolverEquationsSparsityTypes.SPARSE) _ = solver_equations.EquationsSetAdd(equations_set) problem.SolverEquationsCreateFinish() ###Output _____no_output_____ ###Markdown 13. Defining the boundary conditionsThe final step in configuring the problem is to define the boundary conditions for the simulations. Here, as stated at the top of the tutorial, we have set up five different boundary conditions settings to represent four independent loading conditions on the cube geometry.- Model 1 (Uniaxial extension of a unit cube)- Model 2 (Equibiaxial extension of a unit cube)- Model 3 (Simple shear of a unit cube)- Model 4 (Shear of a unit cube)- Model 5 (Extension and shear of a unit cube)The variable `model` set at the top of the tutorial program can be used to switch between these deformations. Each line of code below sets a dirichlet boundary conditions that prescribe a nodal coordinate value. The constant `iron.BoundaryConditionsTypes.FIXED` indicates that the value needs to be fixed to a certain value specified in the final argument of the `boundary_conditions.AddNode` method. ###Code # Prescribe boundary conditions (absolute nodal parameters). boundary_conditions = iron.BoundaryConditions() solver_equations.BoundaryConditionsCreateStart(boundary_conditions) if model == 1: boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,1,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,3,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,5,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,7,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,2,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,4,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,6,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,8,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,1,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,2,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,5,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,6,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,1,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,2,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,3,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field, iron.FieldVariableTypes.U,1,1,4,Z,iron.BoundaryConditionsTypes.FIXED,0.0) elif model == 2: boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,3,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,5,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,7,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,2,X,iron.BoundaryConditionsTypes.FIXED,0.25) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,4,X,iron.BoundaryConditionsTypes.FIXED,0.25) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,6,X,iron.BoundaryConditionsTypes.FIXED,0.25) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,8,X,iron.BoundaryConditionsTypes.FIXED,0.25) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,2,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,5,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,6,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,3,Y,iron.BoundaryConditionsTypes.FIXED,0.25) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,4,Y,iron.BoundaryConditionsTypes.FIXED,0.25) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,7,Y,iron.BoundaryConditionsTypes.FIXED,0.25) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,8,Y,iron.BoundaryConditionsTypes.FIXED,0.25) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,2,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,3,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,4,Z,iron.BoundaryConditionsTypes.FIXED,0.0) elif model == 3: boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,3,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,5,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,7,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,2,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,4,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,6,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,8,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,2,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,5,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,6,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,2,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,3,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,4,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,5,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,6,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,7,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,8,Z,iron.BoundaryConditionsTypes.FIXED,0.0) elif model == 4: boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,3,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,6,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,8,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,2,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,5,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,6,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,3,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,6,Z,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,8,Z,iron.BoundaryConditionsTypes.FIXED,0.5) elif model == 5: boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,3,X,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,5,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,7,X,iron.BoundaryConditionsTypes.FIXED,0.5) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,2,X,iron.BoundaryConditionsTypes.FIXED,0.25) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,4,X,iron.BoundaryConditionsTypes.FIXED,0.25) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,6,X,iron.BoundaryConditionsTypes.FIXED,0.75) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,8,X,iron.BoundaryConditionsTypes.FIXED,0.75) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,2,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,5,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,6,Y,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,1,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,2,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,3,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,4,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,5,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,6,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,7,Z,iron.BoundaryConditionsTypes.FIXED,0.0) boundary_conditions.AddNode(dependent_field,iron.FieldVariableTypes.U,1,1,8,Z,iron.BoundaryConditionsTypes.FIXED,0.0) ###Output _____no_output_____ ###Markdown We then construct the solver matrices and vectors by making a call to the `solver_equations.BoundaryConditionsCreateFinish()` method. ###Code solver_equations.BoundaryConditionsCreateFinish() ###Output _____no_output_____ ###Markdown 14. Solving the problemAfter our problem solver equations have been fully defined, we are now ready to solve our problem. When we call the Solve method of the problem it will loop over the control loops and control loop solvers to solve our problem. ###Code # Solve the problem. problem.Solve() ###Output _____no_output_____ ###Markdown Visualising resultsWe can now visualise the resulting deformation as animation using pythreejs. ###Code threejs_visualiser.visualise( mesh, geometric_field, dependent_field=dependent_field, variable=iron.FieldVariableTypes.U, resolution=8, mechanics_animation=True) ###Output _____no_output_____ ###Markdown Exporting resultsBefore we export the results in Cmgui format, we will first create a new `deformed_field` and `pressure_field` to separately hold the solution for the deformed geometry and hydrostatic pressure for visualisation in Cmgui (this enables simplified access to these fields in Cmgui visualisation scripts). ###Code deformed_field_user_number = 5 deformed_field = iron.Field() deformed_field.CreateStart(deformed_field_user_number, region) deformed_field.MeshDecompositionSet(decomposition) deformed_field.TypeSet(iron.FieldTypes.GEOMETRIC) deformed_field.VariableLabelSet(iron.FieldVariableTypes.U, "DeformedGeometry") for component in [1, 2, 3]: deformed_field.ComponentMeshComponentSet( iron.FieldVariableTypes.U, component, 1) if interpolation_type == 4: # Set arc length scaling for cubic-Hermite elements. deformed_field.ScalingTypeSet(iron.FieldScalingTypes.ARITHMETIC_MEAN) deformed_field.CreateFinish() pressure_field_user_number = 6 pressure_field = iron.Field() pressure_field.CreateStart(pressure_field_user_number, region) pressure_field.MeshDecompositionSet(decomposition) pressure_field.VariableLabelSet(iron.FieldVariableTypes.U, "Pressure") pressure_field.ComponentMeshComponentSet(iron.FieldVariableTypes.U, 1, 1) pressure_field.ComponentInterpolationSet( iron.FieldVariableTypes.U, 1, iron.FieldInterpolationTypes.ELEMENT_BASED) pressure_field.NumberOfComponentsSet(iron.FieldVariableTypes.U, 1) pressure_field.CreateFinish() # Copy deformed geometry into deformed field. for component in [1, 2, 3]: dependent_field.ParametersToFieldParametersComponentCopy( iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, component, deformed_field, iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, component) # Copy the hydrostatic pressure solutions from the dependent field into the # pressure field. dependent_field.ParametersToFieldParametersComponentCopy( iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 4, pressure_field, iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 1) # Export results to exnode and exelem format. fields = iron.Fields() fields.CreateRegion(region) fields.NodesExport("cube", "FORTRAN") fields.ElementsExport("cube", "FORTRAN") fields.Finalise() ###Output _____no_output_____ ###Markdown Evaluating mechanics tensor fields ###Code results = {} elementNumber = 1 xiPosition = [0.5, 0.5, 0.5] F = equations_set.TensorInterpolateXi( iron.EquationsSetDerivedTensorTypes.DEFORMATION_GRADIENT, elementNumber, xiPosition,(3,3)) results['Deformation Gradient Tensor'] = F print("Deformation Gradient Tensor") print(F) C = equations_set.TensorInterpolateXi( iron.EquationsSetDerivedTensorTypes.R_CAUCHY_GREEN_DEFORMATION, elementNumber, xiPosition,(3,3)) results['Right Cauchy-Green Deformation Tensor'] = C print("Right Cauchy-Green Deformation Tensor") print(C) E = equations_set.TensorInterpolateXi( iron.EquationsSetDerivedTensorTypes.GREEN_LAGRANGE_STRAIN, elementNumber, xiPosition,(3,3)) results['Green-Lagrange Strain Tensor'] = E print("Green-Lagrange Strain Tensor") print(E) I1=numpy.trace(C) I2=0.5*(numpy.trace(C)**2.-numpy.tensordot(C,C)) I3=numpy.linalg.det(C) results['Invariants'] = [I1, I2, I3] print("Invariants") print("I1={0}, I2={1}, I3={2}".format(I1,I2,I3)) TC = equations_set.TensorInterpolateXi( iron.EquationsSetDerivedTensorTypes.CAUCHY_STRESS, elementNumber, xiPosition,(3,3)) results['Cauchy Stress Tensor'] = TC print("Cauchy Stress Tensor") print(TC) # Calculate the Second Piola-Kirchhoff Stress Tensor from # TG=J*F^(-1)*TC*F^(-T), where T denotes the # matrix transpose, and assumes J=1. TG = numpy.dot(numpy.linalg.inv(F),numpy.dot( TC,numpy.linalg.inv(numpy.matrix.transpose(F)))) results['Second Piola-Kirchhoff Stress Tensor'] = TG print("Second Piola-Kirchhoff Stress Tensor") print(TG) p = dependent_field.ParameterSetGetElement( iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES,elementNumber,4) results['Hydrostatic pressure'] = p print("Hydrostatic pressure") print(p) ###Output Hydrostatic pressure 1.1962935699867334 ###Markdown Finalising session ###Code problem.Destroy() coordinate_system.Destroy() region.Destroy() basis.Destroy() iron.Finalise() ###Output _____no_output_____
Lectures/Data Preprocessing/2. Advanced Pipelines - Complete.ipynb
###Markdown Advanced PipelinesWe now have a pretty strong repetoire of regression models. Depending on the data set there may be a number of preprocessing steps that should be taken prior to fitting the model. While we've learned basic pipelines and out of the box transformer objects you may need to perform preprocessing tasks that are too complicated for these simple tools. What We'll Accomplish in This Notebook- We'll review the differences and necessity for fit, transform and fit_transform- Introduce the popular California Housing Data Set- Demonstrate how to construct custom transformer objects for more advanced pipelines ###Code ## Import packages ## For data handling import pandas as pd import numpy as np ## For plotting import matplotlib.pyplot as plt import seaborn as sns ## This sets the plot style ## to have a grid on a white background sns.set_style("whitegrid") ###Output _____no_output_____ ###Markdown `fit`, `transform`, and `fit_transform`Hopefully you remember from the `Basic Pipelines` notebook the terms, `fit`, `transform` and `fit_transform`. Let's return to the `StandardScaler` object as a reminder.https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html ###Code from sklearn.preprocessing import StandardScaler ###Output _____no_output_____ ###Markdown From the documentation listed above we know that the standard scaler will take in the features, `X`, and scale them like so:$$\frac{X_i - \overline{X_i}}{s_{X_i}}.$$Let's generate some data. ###Code X = 10*np.random.randn(100,1)-5 print("The mean of X is",np.mean(X)) print("The variance of X is",np.var(X)) ###Output The mean of X is -4.637962480205209 The variance of X is 113.07071862638341 ###Markdown Now we'll scale $X$. ###Code ## first we make a scaler object scaler = StandardScaler() ## Then we fit it scaler.fit(X) print("The scaler was fit to have mean",scaler.mean_) print("and variance",scaler.var_) ## The we transform the data, aka scale it X_scaled = scaler.transform(X) print("The mean of X is",np.mean(X_scaled)) print("The standard deviation of X is",np.std(X_scaled)) ###Output The mean of X is 2.4424906541753444e-17 The standard deviation of X is 0.9999999999999999 ###Markdown Now let's imagine we're ready to check the test error on our model. So we have to scale the test features. ###Code X_test = 10*np.random.randn(100,1)-5.1 np.shape(X_test) print("The mean of X_test is",np.mean(X_test)) print("The variance of X_test is",np.var(X_test)) ###Output The mean of X_test is -3.18717080849431 The variance of X_test is 111.89226947019259 ###Markdown Now what code should we write to scale the test data? ###Code X_test_scaled = scaler.transform(X_test) print(np.mean(X_test_scaled)) print(np.var(X_test_scaled)) ###Output 0.13643631393267291 0.9895777689351671 ###Markdown The order in which these sorts of steps gets done is important. This is because you only fit the model on the training data, and the scaler (and other preprocessing steps) is thought of as part of the model. Let's do a short practice You Code A New ScalerGo to the documentation and read about the `MinMaxScaler` object, https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html.Use the `MinMaxScaler` to scale the following training and test data. ###Code ## Your train and test data X_train = np.random.randint(1,1000,1000) X_test = np.random.randint(1,1000,1000) ## Import MinMaxScaler here ## Sample Answer from sklearn.preprocessing import MinMaxScaler ## Fit and transform the training and test data ## using a MinMaxScaler here ## Sample Answer min_max = MinMaxScaler() print("The min of X_train is",np.min(X_train)) print("The max of X_train is",np.max(X_train)) min_max.fit(X_train.reshape(-1,1)) X_train_scaled = min_max.transform(X_train.reshape(-1,1)) print("The min of scaled X_train is",np.min(X_train_scaled)) print("The max of scaled X_train is",np.max(X_train_scaled)) print() print() print("The min of X_test is",np.min(X_test)) print("The max of X_test is",np.max(X_test)) X_test_scaled = min_max.transform(X_test.reshape(-1,1)) print("The min of scaled X_test is",np.min(X_test_scaled)) print("The max of scaled X_test is",np.max(X_test_scaled)) ###Output The min of X_train is 2 The max of X_train is 999 The min of scaled X_train is 0.0 The max of scaled X_train is 1.0 The min of X_test is 1 The max of X_test is 999 The min of scaled X_test is -0.0010030090270812437 The max of scaled X_test is 1.0 ###Markdown Imputing ValuesSometimes your data may have missing values. It is often bad practice to throw away missing values, one option is to instead impute them.Imputation is when you use the non-missing values to fill in the missing values. Three simple ways would be to replace the missing values with the mean, median, or mode of the training data.Here is the documentation on the `SimpleImputer`, https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html.We'll now impute the missing values on the following data using the median of the data. ###Code ## Here is some data X_train = np.random.randn(1000) X_test = np.random.randn(1000) ## With some values missing X_train[np.random.choice(range(1000),20)] = np.nan X_test[np.random.choice(range(1000),20)] = np.nan ## Import the SimpleImputer from sklearn.impute import SimpleImputer ## Make the imputer object with the desired "strategy" imp = SimpleImputer(strategy = 'median') print("X_train has", sum(np.isnan(X_train)), "missing values.") ## impute the missing values # first fit the imputer imp.fit(X_train.reshape(-1,1)) # then transform X_train_imp = imp.transform(X_train.reshape(-1,1)) print("After imputing X_train has", sum(np.isnan(X_train_imp)), "missing values.") ## Now impute on the test data ## note that we don't use the "fit" step here print("X_test has", sum(np.isnan(X_test)), "missing values.") X_test_imp = imp.transform(X_test.reshape(-1,1)) print("After imputing X_test has", sum(np.isnan(X_test_imp)), "missing values.") ###Output X_test has 20 missing values. After imputing X_test has [0] missing values. ###Markdown The California Housing Data SetWe'll now introduce a popular machine learning data set, the California Housing data set. The data is used in the book Hands-On Machine Learning with Scikit-Learn and TensorFlow as an example of a machine learning workflow. This is an excellent book and a useful reference if you're looking to purchase a book about machine learning with python.We won't be using this data to build a predictive model, but rather to demonstrate the need for advanced pipelines. ###Code ## Read the data df = pd.read_csv("https://raw.githubusercontent.com/ageron/handson-ml/master/datasets/housing/housing.csv") df_train = df.copy().sample(frac=.75, random_state = 440) df_test = df.copy().drop(df_train.index) ## Let's look at the dataframe info df_train.info() ## What kind of categories are possible for ocean proximity? df_train.ocean_proximity.value_counts() ## Each dot is at it's longitude and latitude ## the size of the dot is proportional to its population ## the color of the dot represents the median_house_value of the dot df_train.plot(kind="scatter", x = "longitude", y = "latitude", alpha = .9, s = df_train["population"]/50, label="population", figsize=(12,14), c="median_house_value",cmap = plt.get_cmap("viridis"), colorbar=True) plt.xlabel("Longitude", fontsize=16) plt.ylabel("Latitude", fontsize=16) plt.show() plt.figure(figsize=(12,14)) sns.scatterplot(data=df_train,x="longitude",y="latitude",hue="ocean_proximity") plt.xlabel("Longitude", fontsize=16) plt.ylabel("Latitude", fontsize=16) plt.show() ###Output _____no_output_____ ###Markdown Now from our exploration of the data we can see that this data set has a number of preprocessing steps:1. `total_bedrooms` has a number of missing values that could be imputed2. `ocean_proximity` needs to be one-hot-encoded3. Many columns have vastly differing scales, so we should scale them4. We may want to create additional features from our other features.Now we'll review how to do 1. and 2. then it will be your job to incorporate 3. and 4. As we go through let's remember two main points:- Fitting should only be performed on the training set- A good pipeline takes in the features and target without any preprocessing and outputs the fit or prediction Imputing `total_bedrooms`Recall that we only want to impute the column for `total_bedrooms`. If we were to put `SimpleImputer` as is into the pipeline we'd be imputing the entire dataframe. While this isn't an issue for this dataset (because only `total_bedrooms` is missing data), it's an excellent time to introduce how you can create a custom imputer object.`sklearn` is quite nice because it gives us the functionality to make custom transformers relatively easily. To do this we make our own transformer object. To fully grasp everything going on check out the bonus content notebook in the `python prep` folder where I review objects and classes in python. If you're happy just copying and pasting the code for your own transformers (no shame in that for now, we're learning a lot of data science) no need to read through those notes. ###Code ## We'll need these from sklearn.impute import SimpleImputer from sklearn.base import BaseEstimator, TransformerMixin ###Output _____no_output_____ ###Markdown A python object is an instance of a python class.Below we define our `BedroomImputer` class. ###Code ## Define our custom imputer class BedroomImputer(BaseEstimator, TransformerMixin): # Class Constructor # This allows you to initiate the class when you call # BedroomImputer def __init__(self): # I want to initiate each object with # the SimpleImputer method self.SimpleImputer = SimpleImputer(strategy = "median") # For my fit method I'm just going to "steal" # SimpleImputer's fit method using only the # 'total_bedrooms' column def fit(self, X, y = None ): self.SimpleImputer.fit(X['total_bedrooms'].values.reshape(-1,1)) return self # Now I want to transform the total_bedrooms columns # and return it with imputed values def transform(self, X, y = None): copy_X = X.copy() copy_X['total_bedrooms'] = self.SimpleImputer.transform(copy_X['total_bedrooms'].values.reshape(-1,1)) return copy_X ###Output _____no_output_____ ###Markdown We now have a custom imputer let's put it to work. ###Code imputer = BedroomImputer() df_train.total_bedrooms.describe() imputer.fit(df_train) imputer.transform(df_train).total_bedrooms.describe() imputer.fit_transform(df_train) ###Output _____no_output_____ ###Markdown One-Hot-Encoding `ocean_proximity`Now let's see how we can one-hot-encode `ocean_proximity`.Here we can use the `FunctionTransformer` object. ###Code from sklearn.preprocessing import FunctionTransformer # define our preprocessing function # This creates bedrooms_per_room # and one hot encodes ocean_proximity def one_hot_encode(df): df_copy = df.copy() hot_encoding = pd.get_dummies(df_copy['ocean_proximity']) df_copy[hot_encoding.columns[:-1]] = hot_encoding[hot_encoding.columns[:-1]] return df_copy one_hot = FunctionTransformer(one_hot_encode) one_hot.transform(df_train) ###Output _____no_output_____ ###Markdown Great!Now it's your turn. You CodeYour boss has told you that her end goal is to regress `median_house_value` on `median_income`, `ocean_proximity`, and a new feature, `bedrooms_per_room`.Write a function called `get_feats` that takes in a feature dataframe and returns the columns for `median_income` the one-hot-encoded `ocean_proximity`, and `bedrooms_per_room`. Feel free to use the function, `one_hot_encode` or not. Then create a `FunctionTransformer` object using `get_feats`, check to make sure that running `df_train` through your transformer object returns a dataframe with the desired columns, i.e. `median_income`, the one-hot-encoded `ocean_proximity` and `bedrooms_per_room`. ###Code # df should hold the features not the target def get_feats(df): # make a copy of the dataframe # I'll assume that I've already created the # one-hot-encoded columns df_copy = df.copy() # calculate bedrooms_per_room df_copy['bedrooms_per_room'] = df_copy['total_bedrooms']/df_copy['total_rooms'] return df_copy[['median_income', 'bedrooms_per_room', '<1H OCEAN', 'INLAND','ISLAND', 'NEAR BAY']] ## Code here test_transformer = FunctionTransformer(get_feats) test_df = one_hot.transform(df_train) test_transformer.transform(test_df) ###Output _____no_output_____ ###Markdown Now you remember that it's important to scale the data prior to fitting your model. However, you only want to scale the columns for `median_income` and `bedrooms_per_room`, not the one-hot-encoded columns. Following the approach we took for `BedroomImputer` define a custom scaler called, `NumericScale` that takes in the dataframe produced by get_feats and scales the `median_income` and `bedrooms_per_room` columns. Hint: use `StandardScaler` in a manner similar to how `SimpleImputer` was used above. ###Code ## Below is a SAMPLE SOLUTION from sklearn.preprocessing import StandardScaler ## Code here # Define our custom Scaler class NumericScale(BaseEstimator, TransformerMixin): #Class Constructor # This allows you to initiate the class when you call # NumericScale def __init__(self): # I want to initiate each object with # the StandardScaler self.StandardScaler = StandardScaler() # For my fit method I'm just going to "steal" # StandardScaler's fit method using only the # 'median_income' and 'bedrooms_per_room' columns def fit(self, X, y = None ): self.StandardScaler.fit(X[['median_income', 'bedrooms_per_room']]) return self # Now I want to transform the 'median_income' and # 'bedrooms_per_room' columns and return it with scaled values def transform(self, X, y = None): copy_X = X.copy() copy_X[['median_income', 'bedrooms_per_room']] = \ self.StandardScaler.transform(copy_X[['median_income', 'bedrooms_per_room']]) return copy_X ## Code here # I'll test the scaler here! test_scale = NumericScale() test_scale.fit_transform(test_transformer.transform(test_df)).describe() ###Output _____no_output_____ ###Markdown Now we can put it all together! ###Code X_train = df_train[['total_rooms','total_bedrooms','median_income','ocean_proximity']] y_train = df_train['median_house_value'] from sklearn.pipeline import Pipeline from sklearn.linear_model import LinearRegression pipe = Pipeline([('impute',BedroomImputer()), ('one_hot',FunctionTransformer(one_hot_encode)), ('get_feats',FunctionTransformer(get_feats)), ('scale',NumericScale()), ('reg',LinearRegression(copy_X = True))]) pipe.fit(X_train,y_train) train_res = pipe.predict(X_train) - y_train.values print("The training RMSE is", np.round(np.sqrt( np.sum(np.power(train_res,2))/len(train_res) ),2) ) ###Output The training RMSE is 73064.85
Arrhythmia_CNN_H.ipynb
###Markdown Refernce[Paper](https://www.sciencedirect.com/science/article/abs/pii/S0010482518302713) [Link](https://github.com/tom-beer/Arrhythmia-CNN) ###Code # from google.colab import drive # drive.mount('/content/drive') # !git clone https://github.com/tom-beer/Arrhythmia-CNN.git # %cd Arrhythmia-CNN/ from __future__ import print_function import torch import torch.utils.data import numpy as np import pandas as pd from torch import nn, optim from torch.utils.data.dataset import Dataset from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler is_cuda = True num_epochs = 100 batch_size = 10 torch.manual_seed(46) log_interval = 10 in_channels_ = 1 num_segments_in_record = 100 segment_len = 3600 num_records = 48 num_classes = 16 allow_label_leakage = True device = torch.device("cuda:0" if is_cuda else "cpu") # train_ids, test_ids = train_test_split(np.arange(index_set), train_size=.8, random_state=46) # scaler = MinMaxScaler(feature_range=(0, 1), copy=False) class CustomDatasetFromCSV(Dataset): def __init__(self, data_path, transforms_=None): self.df = pd.read_pickle(data_path) self.transforms = transforms_ def __getitem__(self, index): row = self.df.iloc[index] signal = row['signal'] target = row['target'] if self.transforms is not None: signal = self.transforms(signal) signal = signal.reshape(1, signal.shape[0]) return signal, target def __len__(self): return self.df.shape[0] train_dataset = CustomDatasetFromCSV('/content/drive/MyDrive/Arrhythmia-CNN-master/data/Arrhythmia_dataset.pkl') train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=False) test_dataset = CustomDatasetFromCSV('/content/drive/MyDrive/Arrhythmia-CNN-master/data/Arrhythmia_dataset.pkl') test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=1, shuffle=False) class Flatten(torch.nn.Module): def forward(self, x): batch_size = x.shape[0] return x.view(batch_size, -1) def basic_layer(in_channels, out_channels, kernel_size, batch_norm=False, max_pool=True, conv_stride=1, padding=0 , pool_stride=2, pool_size=2): layer = nn.Sequential( nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=conv_stride, padding=padding), nn.ReLU()) if batch_norm: layer = nn.Sequential( layer, nn.BatchNorm1d(num_features=out_channels)) if max_pool: layer = nn.Sequential( layer, nn.MaxPool1d(kernel_size=pool_size, stride=pool_stride)) return layer class arrhythmia_classifier(nn.Module): def __init__(self, in_channels=in_channels_): super(arrhythmia_classifier, self).__init__() self.cnn = nn.Sequential( basic_layer(in_channels=in_channels, out_channels=128, kernel_size=50, batch_norm=True, max_pool=True, conv_stride=3, pool_stride=3), basic_layer(in_channels=128, out_channels=32, kernel_size=7, batch_norm=True, max_pool=True, conv_stride=1, pool_stride=2), basic_layer(in_channels=32, out_channels=32, kernel_size=10, batch_norm=False, max_pool=False, conv_stride=1), basic_layer(in_channels=32, out_channels=128, kernel_size=5, batch_norm=False, max_pool=True, conv_stride=2, pool_stride=2), basic_layer(in_channels=128, out_channels=256, kernel_size=15, batch_norm=False, max_pool=True, conv_stride=1, pool_stride=2), basic_layer(in_channels=256, out_channels=512, kernel_size=5, batch_norm=False, max_pool=False, conv_stride=1), basic_layer(in_channels=512, out_channels=128, kernel_size=3, batch_norm=False, max_pool=False, conv_stride=1), Flatten(), nn.Linear(in_features=1152, out_features=512), nn.ReLU(), nn.Dropout(p=.1), nn.Linear(in_features=512, out_features=num_classes), nn.Softmax() ) def forward(self, x, ex_features=None): return self.cnn(x) def calc_next_len_conv1d(current_len=112500, kernel_size=16, stride=8, padding=0, dilation=1): return int(np.floor((current_len + 2 * padding - dilation * (kernel_size - 1) - 1) / stride + 1)) model = arrhythmia_classifier().to(device).double() lr = 3e-1 num_of_iteration = len(train_dataset) // batch_size optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=1e-6) criterion = nn.NLLLoss() def train(epoch): model.train() train_loss = 0 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() train_loss += loss.item() optimizer.step() if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item() / len(data))) print('====> Epoch: {} Average loss: {:.4f}'.format( epoch, train_loss / len(train_loader.dataset))) def test(epoch): model.eval() test_loss = 0 with torch.no_grad(): all_=0 t_=0 for batch_idx, (data, target) in enumerate(test_loader): all_+=1 data, target = data.to(device), target.to(device) output = model(data) loss = criterion(output, target) test_loss += loss.item() if batch_idx == 0: n = min(data.size(0), 4) list_=output[0].tolist() pridict_=int(list_.index(max(list_))) if int(target)==pridict_: t_+=1 accuracy_=t_/all_ test_loss /= len(test_loader.dataset) print('====> Test set loss: {:.5f}'.format(test_loss)) print('====> Test Accuracy: {:.5f}'.format(accuracy_)) # print(f'Learning rate: {optimizer.param_groups[0]["lr"]:.6f}') for epoch in range(1, num_epochs + 1): train(epoch) test(epoch) ###Output /usr/local/lib/python3.7/dist-packages/torch/nn/modules/container.py:119: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument. input = module(input)
Applied_Capstone_Week_3_Assignment.ipynb
###Markdown Battle of the Neighbourhoods - Toronto This notebook contains Questions 1, 2 & 3 of the Assignment. They have been segregated by Section headers ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Question 1 Importing Data ###Code import requests url = "https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M" wiki_url = requests.get(url) wiki_url ###Output _____no_output_____ ###Markdown Response 200 means that we are able to make the connection to the page ###Code wiki_data = pd.read_html(wiki_url.text) wiki_data len(wiki_data), type(wiki_data) ###Output _____no_output_____ ###Markdown We need the first table alone, so dropping the other tables ###Code wiki_data = wiki_data[0] wiki_data ###Output _____no_output_____ ###Markdown Dropping Borough which are not assigned ###Code df = wiki_data[wiki_data["Borough"] != "Not assigned"] df ###Output _____no_output_____ ###Markdown Grouping the records based on Postal Code ###Code df = df.groupby(['Postal Code']).head() df ###Output _____no_output_____ ###Markdown Checking for number of records where Neighbourhood is "Not assigned" ###Code df.Neighbourhood.str.count("Not assigned").sum() df = df.reset_index() df df.drop(['index'], axis = 'columns', inplace = True) df df.shape ###Output _____no_output_____ ###Markdown Answer to Question 1: We have 103 rows and 3 columns Question 2 Installing geocoder ###Code pip install geocoder import geocoder # import geocoder ###Output _____no_output_____ ###Markdown Tried the below approach, ran for 20 mins, then killed it. Changing the code cell to Text for now so that the run all execution doesn't stop. ```python initialize your variable to Nonelat_lng_coords = Nonepostal_code = 'M3A' loop until you get the coordinateswhile(lat_lng_coords is None): g = geocoder.google('{}, Toronto, Ontario'.format(postal_code)) lat_lng_coords = g.latlnglatitude = lat_lng_coords[0]longitude = lat_lng_coords[1]``` Alternatively, as suggested in the assignment, Importing the CSV file from the URL ###Code data = pd.read_csv("https://cocl.us/Geospatial_data") data print("The shape of our wiki data is: ", df.shape) print("the shape of our csv data is: ", data.shape) ###Output The shape of our wiki data is: (103, 3) the shape of our csv data is: (103, 3) ###Markdown Since the dimensions are the same, we can try to join on the postal codes to get the required data.Checking the column types of both the dataframes, especially Postal Code column since we are trying to join on it ###Code df.dtypes data.dtypes combined_data = df.join(data.set_index('Postal Code'), on='Postal Code', how='inner') combined_data combined_data.shape ###Output _____no_output_____ ###Markdown **Solution:** We get 103 rows as expected when we do a inner join, so we have good data. Question 3 Drawing inspiration from the previous lab where we cluster the neighbourhood of NYC, We cluster Toronto based on the similarities of the venues categories using Kmeans clustering and Foursquare API. ###Code from geopy.geocoders import Nominatim address = 'Toronto, Ontario' geolocator = Nominatim(user_agent="toronto_explorer") location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The coordinates of Toronto are {}, {}.'.format(latitude, longitude)) ###Output The coordinates of Toronto are 43.6534817, -79.3839347. ###Markdown Let's visualize the map of Toronto ###Code import folium # Creating the map of Toronto map_Toronto = folium.Map(location=[latitude, longitude], zoom_start=11) # adding markers to map for latitude, longitude, borough, neighbourhood in zip(combined_data['Latitude'], combined_data['Longitude'], combined_data['Borough'], combined_data['Neighbourhood']): label = '{}, {}'.format(neighbourhood, borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [latitude, longitude], radius=5, popup=label, color='red', fill=True ).add_to(map_Toronto) map_Toronto ###Output _____no_output_____ ###Markdown Initializing Foursquare API credentials ###Code CLIENT_ID = 'LDIJF4KI5VGMMA3NNDLFZWHR12TCMNTUL0TUC3QPZ3SJD040' CLIENT_SECRET = 'EOOOZ3EF5N0FOMNUJVTDV0SXVUVVEBMWPFXMNBK1R5K4H55A' VERSION = '20180605' # Foursquare API version print('Your credentails:') print('CLIENT_ID: ' + CLIENT_ID) print('CLIENT_SECRET:' + CLIENT_SECRET) ###Output Your credentails: CLIENT_ID: LDIJF4KI5VGMMA3NNDLFZWHR12TCMNTUL0TUC3QPZ3SJD040 CLIENT_SECRET:EOOOZ3EF5N0FOMNUJVTDV0SXVUVVEBMWPFXMNBK1R5K4H55A ###Markdown Next, we create a function to get all the venue categories in Toronto ###Code def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius ) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighbourhood', 'Neighbourhood Latitude', 'Neighbourhood Longitude', 'Venue', 'Venue Category'] return(nearby_venues) ###Output _____no_output_____ ###Markdown Collecting the venues in Toronto for each Neighbourhood ###Code venues_in_toronto = getNearbyVenues(combined_data['Neighbourhood'], combined_data['Latitude'], combined_data['Longitude']) venues_in_toronto.shape ###Output _____no_output_____ ###Markdown So we have 1317 records and 5 columns. Checking sample data ###Code venues_in_toronto.head() ###Output _____no_output_____ ###Markdown Checking the Venues based on Neighbourhood ###Code venues_in_toronto.groupby('Neighbourhood').head() ###Output _____no_output_____ ###Markdown So there are 405 records for each neighbourhood.Checking for the maximum venue categories ###Code venues_in_toronto.groupby('Venue Category').max() ###Output _____no_output_____ ###Markdown There are around 232 different types of Venue Categories. Interesting! One Hot encoding the venue Categories ###Code toronto_venue_cat = pd.get_dummies(venues_in_toronto[['Venue Category']], prefix="", prefix_sep="") toronto_venue_cat ###Output _____no_output_____ ###Markdown Adding the neighbourhood to the encoded dataframe ###Code toronto_venue_cat['Neighbourhood'] = venues_in_toronto['Neighbourhood'] # moving neighborhood column to the first column fixed_columns = [toronto_venue_cat.columns[-1]] + list(toronto_venue_cat.columns[:-1]) toronto_venue_cat = toronto_venue_cat[fixed_columns] toronto_venue_cat.head() ###Output _____no_output_____ ###Markdown We will group the Neighbourhoods, calculate the mean venue categories in each Neighbourhood ###Code toronto_grouped = toronto_venue_cat.groupby('Neighbourhood').mean().reset_index() toronto_grouped.head() ###Output _____no_output_____ ###Markdown Let's make a function to get the top most common venue categories ###Code def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] import numpy as np ###Output _____no_output_____ ###Markdown There are way too many venue categories, we can take the top 10 to cluster the neighbourhoods ###Code num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighbourhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighbourhood'] = toronto_grouped['Neighbourhood'] for ind in np.arange(toronto_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(toronto_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted.head() ###Output _____no_output_____ ###Markdown Let's make the model to cluster our Neighbourhoods ###Code # import k-means from clustering stage from sklearn.cluster import KMeans # set number of clusters k_num_clusters = 5 toronto_grouped_clustering = toronto_grouped.drop('Neighbourhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=k_num_clusters, random_state=0).fit(toronto_grouped_clustering) kmeans ###Output _____no_output_____ ###Markdown Checking the labelling of our model ###Code kmeans.labels_[0:100] ###Output _____no_output_____ ###Markdown Let's add the clustering Label column to the top 10 common venue categories ###Code neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_) ###Output _____no_output_____ ###Markdown Join toronto_grouped with combined_data on neighbourhood to add latitude & longitude for each neighborhood to prepare it for plotting ###Code toronto_merged = combined_data toronto_merged = toronto_merged.join(neighborhoods_venues_sorted.set_index('Neighbourhood'), on='Neighbourhood') toronto_merged.head() ###Output _____no_output_____ ###Markdown Drop all the NaN values to prevent data skew ###Code toronto_merged_nonan = toronto_merged.dropna(subset=['Cluster Labels']) ###Output _____no_output_____ ###Markdown Plotting the clusters on the map ###Code import matplotlib.cm as cm import matplotlib.colors as colors map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11) # set color scheme for the clusters x = np.arange(k_num_clusters) ys = [i + x + (i*x)**2 for i in range(k_num_clusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(toronto_merged_nonan['Latitude'], toronto_merged_nonan['Longitude'], toronto_merged_nonan['Neighbourhood'], toronto_merged_nonan['Cluster Labels']): label = folium.Popup('Cluster ' + str(int(cluster) +1) + '\n' + str(poi) , parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[int(cluster-1)], fill=True, fill_color=rainbow[int(cluster-1)] ).add_to(map_clusters) map_clusters ###Output _____no_output_____ ###Markdown Let's verify each of our clustersCluster 1 ###Code toronto_merged_nonan.loc[toronto_merged_nonan['Cluster Labels'] == 0, toronto_merged_nonan.columns[[1] + list(range(5, toronto_merged_nonan.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 2 ###Code toronto_merged_nonan.loc[toronto_merged_nonan['Cluster Labels'] == 1, toronto_merged_nonan.columns[[1] + list(range(5, toronto_merged_nonan.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 3 ###Code toronto_merged_nonan.loc[toronto_merged_nonan['Cluster Labels'] == 2, toronto_merged_nonan.columns[[1] + list(range(5, toronto_merged_nonan.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 4 ###Code toronto_merged_nonan.loc[toronto_merged_nonan['Cluster Labels'] == 3, toronto_merged_nonan.columns[[1] + list(range(5, toronto_merged_nonan.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 5 ###Code toronto_merged_nonan.loc[toronto_merged_nonan['Cluster Labels'] == 4, toronto_merged_nonan.columns[[1] + list(range(5, toronto_merged_nonan.shape[1]))]] ###Output _____no_output_____
notebooks/parcels/Remote/beaching.ipynb
###Markdown **Template OP on salish** ###Code %matplotlib inline import sys import xarray as xr import numpy as np import os import math from datetime import datetime, timedelta from parcels import FieldSet, Field, VectorField, ParticleSet, JITParticle, ErrorCode, ParcelsRandom sys.path.append('/home/jvalenti/MOAD/analysis-jose/notebooks/parcels') from Kernels_beaching import DeleteParticle, Buoyancy, AdvectionRK4_3D, Stokes_drift, Beaching, Unbeaching from OP_functions_beaching import * # Define paths local = 0 #Set to 0 when working on server paths = path(local) Dat=xr.open_dataset(get_WW3_path(datetime(2018, 12, 23))) path_NEMO = make_prefix(datetime(2018, 12, 23), paths['NEMO']) Dat0=xr.open_dataset(path_NEMO + '_grid_W.nc') Dat=xr.open_dataset(path_NEMO + '_grid_T.nc') coord=xr.open_dataset(paths['coords'],decode_times=False) WW3 = xr.open_dataset(get_WW3_path(datetime(2018, 12, 23))) batt=xr.open_dataset(paths['mask'],decode_times=False) ###Output _____no_output_____ ###Markdown Define and save mask for distance to coast ###Code # def maskcoast(): # maskd=np.zeros(batt.mbathy.shape) # for ilat in range(baty.shape[0]): # for jlon in range(baty.shape[1]): # if baty[ilat,jlon]>0: # if baty[ilat+1,jlon] == 0 or baty[ilat+1,jlon+1] == 0 \ # or baty[ilat+1,jlon-1] == 0 or baty[ilat,jlon] == 0 \ # or baty[ilat,jlon+1] == 0 or baty[ilat,jlon-1] == 0 \ # or baty[ilat-1,jlon] == 0 or baty[ilat-1,jlon+1] == 0 or baty[ilat-1,jlon-1] == 0: # maskd[0,ilat,jlon] = 1 # return maskd # baty = batt.mbathy[0,:,:] # maskd=maskcoast() # def maskcoast2(maskd): # maskd2=np.zeros(batt.mbathy.shape) # Ilat=np.where(maskd[0,:,:]==1)[0] # Jlon=np.where(maskd[0,:,:]==1)[1] # for i in range(len(np.where(maskd[0,:,:]==1)[0])): # ilat=Ilat[i] # jlon=Jlon[i] # maskd2[0,ilat,jlon]=1 # #if ilat<baty.shape[0] or jlon<baty.shape[1]: # return maskd2 # maskd2=maskcoast2(maskd) # dist=xr.DataArray(attrs={'Distc':maskd2}) # batt['Distc']=(batt.mbathy.dims,maskd) # batt.to_netcdf(path='/ocean/jvalenti/MOAD/grid/mesh_maskd2T201702.nc') #clat,clon = p_unidist(coord.gphif[0,:,:],coord.glamf[0,:,:],batt.mbathy[0,:,:],10,10) with open('clat.txt') as f: clat = f.read() clat= clat[1:-1] clat0 = clat.split(",") f.close() with open('clon.txt') as f: clon = f.read() clon=clon[1:-1] clon0 = clon.split(",") f.close() clat,clon=[],[] for i in range(len(clat0)): clat.append(float(clat0[i])) clon.append(float(clon0[i])) ###Output _____no_output_____ ###Markdown Definitions ###Code start = datetime(2018, 10, 1) #Start date # Set Time length [days] and timestep [seconds] length = 50 duration = timedelta(days=length) dt = 90 #toggle between - or + to pick backwards or forwards N = len(clat) # number of deploying locations n = 1 # 1000 # number of particles per location dmin = list(np.zeros(len(clat))) #minimum depth dd = 5 #max depth difference from dmin x_offset, y_offset, zvals = p_deploy(N,n,dmin,dd) from parcels import Variable class MPParticle(JITParticle): ro = Variable('ro', initial = 1025) diameter = Variable('diameter', initial = 1.6e-5) length = Variable('length', initial = 61e-5) Lb = Variable('Lb', initial = 0.26) #days needed in days for particle to have 67% probability of beaching if in beaching zone (500m) Db = Variable('Db', initial = 1000) #Distance at which particles can randomly beach. Ub = Variable('Ub', initial = 69) #days to have 67% probability of unbeaching sediment = Variable('sediment', initial = 0) beached = Variable('beached', initial = 0) lon = np.zeros([N,n]) lat = np.zeros([N,n]) for i in range(N): lon[i,:]=(clon[i] + x_offset[i,:]) lat[i,:]=(clat[i] + y_offset[i,:]) z = zvals #Set start date time and the name of the output file name = 'Beaching-UnbeachingL' #name output file daterange = [start+timedelta(days=i) for i in range(length)] fn = name + '_'.join(d.strftime('%Y%m%d')+'_1n' for d in [start, start+duration]) + '.nc' outfile = os.path.join(paths['out'], fn) print(outfile) ###Output /home/jvalenti/MOAD/results/Beaching-UnbeachingL20181001_1n_20181120_1n.nc ###Markdown Simulation ###Code #Fill in the list of variables that you want to use as fields varlist=['U','V','W','R'] filenames,variables,dimensions=filename_set(start,length,varlist,local) field_set=FieldSet.from_nemo(filenames, variables, dimensions, allow_time_extrapolation=True) varlist=['US','VS','WL'] filenames,variables,dimensions=filename_set(start,length,varlist,local) us = Field.from_netcdf(filenames['US'], variables['US'], dimensions,allow_time_extrapolation=True) vs = Field.from_netcdf(filenames['VS'], variables['VS'], dimensions,allow_time_extrapolation=True) wl = Field.from_netcdf(filenames['WL'], variables['WL'], dimensions,allow_time_extrapolation=True) field_set.add_field(us) field_set.add_field(vs) field_set.add_field(wl) field_set.add_vector_field(VectorField("stokes", us, vs, wl)) filenames,variables,dimensions=filename_set(start,length,['Bathy'],local) Bth = Field.from_netcdf(filenames['Bathy'], variables['Bathy'], dimensions,allow_time_extrapolation=True) field_set.add_field(Bth) # filenames,variables,dimensions=filename_set(start,length,['D'],local) # Distc = Field.from_netcdf(filenames['D'], variables['D'], dimensions,allow_time_extrapolation=True) # field_set.add_field(Distc) # #Load Salish output as fields #field_set = FieldSet.from_nemo(filenames, variables, dimensions, allow_time_extrapolation=True) pset = ParticleSet.from_list(field_set, MPParticle, lon=lon, lat=lat, depth=z, time=start+timedelta(hours=2)) k_sink = pset.Kernel(Buoyancy) k_waves = pset.Kernel(Stokes_drift) k_beach = pset.Kernel(Beaching) k_unbeach = pset.Kernel(Unbeaching) pset.execute(AdvectionRK4_3D + k_sink + k_waves + k_beach + k_unbeach, runtime=duration, dt=dt, output_file=pset.ParticleFile(name=outfile, outputdt=timedelta(hours=1)), recovery={ErrorCode.ErrorOutOfBounds: DeleteParticle}) ###Output INFO: Compiled ArrayMPParticleAdvectionRK4_3DBuoyancyStokes_driftBeachingUnbeaching ==> /tmp/parcels-2894/lib1ac38246b603dfd8b112acf9ff7df34b_0.so
WeedCode/Synthetic_sugarbeets/train.ipynb
###Markdown Mask R-CNN - Train on Shapes DatasetThis notebook shows how to train Mask R-CNN on your own dataset. To keep things simple we use a synthetic dataset of shapes (squares, triangles, and circles) which enables fast training. You'd still need a GPU, though, because the network backbone is a Resnet101, which would be too slow to train on a CPU. On a GPU, you can start to get okay-ish results in a few minutes, and good results in less than an hour.The code of the *Shapes* dataset is included below. It generates images on the fly, so it doesn't require downloading any data. And it can generate images of any size, so we pick a small image size to train faster. ###Code import os import sys import random import math import re import time import numpy as np import cv2 import glob import matplotlib import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore", message=r"Passing", category=FutureWarning) # Root directory of the project ROOT_DIR = os.path.abspath("..\\..\\") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize from mrcnn.model import log %matplotlib inline # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Local path to trained weights file COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH) ###Output Using TensorFlow backend. ###Markdown Configurations ###Code class SyntheticSugarbeetsConfig(Config): """Configuration for training on the Synthetic Sugarbeets dataset. Derives from the base Config class and overrides values specific to the Sythetic Sugarbeets dataset. """ # Give the configuration a recognizable name NAME = "SyntheticSugarbeets" # Train on 1 GPU and 1800 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is ?? (GPUs * images/GPU). GPU_COUNT = 1 IMAGES_PER_GPU = 2 #40,000 max # Number of classes (including background) NUM_CLASSES = 1 + 3 # background + 3 plants # Use small images for faster training. Set the limits of the small side # the large side, and that determines the image shape. IMAGE_MIN_DIM = 512 IMAGE_MAX_DIM = 512 # Use smaller anchors because our image and objects are small #RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels # Reduce training ROIs per image because the images are small and have # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. #TRAIN_ROIS_PER_IMAGE = 32 # Use a small epoch since the data is simple #STEPS_PER_EPOCH = 100 # use small validation steps since the epoch is small #VALIDATION_STEPS = 5 config = SyntheticSugarbeetsConfig() config.display() ###Output Configurations: BACKBONE resnet101 BACKBONE_STRIDES [4, 8, 16, 32, 64] BATCH_SIZE 2 BBOX_STD_DEV [0.1 0.1 0.2 0.2] COMPUTE_BACKBONE_SHAPE None DETECTION_MAX_INSTANCES 100 DETECTION_MIN_CONFIDENCE 0.7 DETECTION_NMS_THRESHOLD 0.3 FPN_CLASSIF_FC_LAYERS_SIZE 1024 GPU_COUNT 1 GRADIENT_CLIP_NORM 5.0 IMAGES_PER_GPU 2 IMAGE_CHANNEL_COUNT 3 IMAGE_MAX_DIM 512 IMAGE_META_SIZE 16 IMAGE_MIN_DIM 512 IMAGE_MIN_SCALE 0 IMAGE_RESIZE_MODE square IMAGE_SHAPE [512 512 3] LEARNING_MOMENTUM 0.9 LEARNING_RATE 0.001 LOSS_WEIGHTS {'rpn_class_loss': 1.0, 'rpn_bbox_loss': 1.0, 'mrcnn_class_loss': 1.0, 'mrcnn_bbox_loss': 1.0, 'mrcnn_mask_loss': 1.0} MASK_POOL_SIZE 14 MASK_SHAPE [28, 28] MAX_GT_INSTANCES 100 MEAN_PIXEL [123.7 116.8 103.9] MINI_MASK_SHAPE (56, 56) NAME SyntheticSugarbeets NUM_CLASSES 4 POOL_SIZE 7 POST_NMS_ROIS_INFERENCE 1000 POST_NMS_ROIS_TRAINING 2000 PRE_NMS_LIMIT 6000 ROI_POSITIVE_RATIO 0.33 RPN_ANCHOR_RATIOS [0.5, 1, 2] RPN_ANCHOR_SCALES (32, 64, 128, 256, 512) RPN_ANCHOR_STRIDE 1 RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2] RPN_NMS_THRESHOLD 0.7 RPN_TRAIN_ANCHORS_PER_IMAGE 256 STEPS_PER_EPOCH 1000 TOP_DOWN_PYRAMID_SIZE 256 TRAIN_BN False TRAIN_ROIS_PER_IMAGE 200 USE_MINI_MASK True USE_RPN_ROIS True VALIDATION_STEPS 50 WEIGHT_DECAY 0.0001 ###Markdown Notebook Preferences ###Code def get_ax(rows=1, cols=1, size=8): """Return a Matplotlib Axes array to be used in all visualizations in the notebook. Provide a central point to control graph sizes. Change the default size attribute to control the size of rendered images """ _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows)) return ax ###Output _____no_output_____ ###Markdown DatasetCreate a synthetic datasetExtend the Dataset class and add a method to load the shapes dataset, `load_shapes()`, and override the following methods:* load_image()* load_mask()* image_reference() ###Code class SyntheticSugarbeetsDataset(utils.Dataset): """Generates the synthetic sugarbeet dataset.""" def load_SyntheticSugarbeets(self, count, width, height, folder, seed, purpose): """Load the requested number of synthetic images. count: number of images to generate. """ # Add classes self.add_class("SyntheticSugarbeets", 1, "Sugarbeat") self.add_class("SyntheticSugarbeets", 2, "Capsella") self.add_class("SyntheticSugarbeets", 3, "Galium") trainfilepath = os.path.join(folder, 'train1.txt') my_file = open(trainfilepath, "r") contents = my_file.read().splitlines() my_file.close() image_filepaths = [] for tail in contents: image_filepaths.append(os.path.join(os.path.join(folder, 'rgb'), tail)) if purpose == 'train': sampled_image_filepaths = image_filepaths[:count] else: sampled_image_filepaths = image_filepaths[-count:] for i in range(count): self.add_image("SyntheticSugarbeets", image_id=i, path=sampled_image_filepaths[i], width=width, height=height) def load_image(self, image_id): """Load the specified image and return a [H,W,3] Numpy array. """ # Load image info = self.image_info[image_id] image = cv2.imread(info['path']) resized_image_results = utils.resize_image(image, max_dim=info['width'], mode="square") self.image_info[image_id].update(scale=resized_image_results[2], padding=resized_image_results[3]) return cv2.cvtColor(resized_image_results[0], cv2.COLOR_BGR2RGB) def load_mask(self, image_id): """Generate instance masks for shapes of the given image ID. """ info = self.image_info[image_id] img_path = info['path'] head,tail = os.path.split(img_path) instance_path = head[:-3]+"instance_mask\\"+tail lbl_path = head[:-3]+"label\\"+tail instance_mask = cv2.imread(instance_path,cv2.IMREAD_GRAYSCALE) lbl = cv2.imread(lbl_path,cv2.IMREAD_GRAYSCALE) count = np.max(instance_mask) mask = np.zeros([np.shape(instance_mask)[0], np.shape(instance_mask)[1], count], dtype=np.bool) class_ids = np.zeros(count,dtype=np.int32) for i in range(count): mask[:, :, i] = instance_mask == (i+1) class_ids[i] = np.max(np.multiply(mask[:, :, i].astype('uint8'),lbl)) mask = utils.resize_mask(mask, scale=info['scale'], padding=info['padding']) return mask, class_ids # Training dataset dataset_train = SyntheticSugarbeetsDataset() FOLDER = ".\\data\\occlusion_00\\" dataset_train.load_SyntheticSugarbeets(1600, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1],FOLDER,seed=123,purpose='train') dataset_train.prepare() # Validation dataset dataset_val = SyntheticSugarbeetsDataset() dataset_val.load_SyntheticSugarbeets(290, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1],FOLDER,seed=123,purpose='validation') dataset_val.prepare() ###Output _____no_output_____ ###Markdown Create Model ###Code # Create model in training mode model = modellib.MaskRCNN(mode="training", config=config, model_dir=MODEL_DIR) # Which weights to start with? init_with = "coco" # imagenet, coco, or last if init_with == "imagenet": model.load_weights(model.get_imagenet_weights(), by_name=True) elif init_with == "coco": # Load weights trained on MS COCO, but skip layers that # are different due to the different number of classes # See README for instructions to download the COCO weights model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) elif init_with == "last": # Load the last model you trained and continue training model.load_weights(model.find_last(), by_name=True) ###Output _____no_output_____ ###Markdown TrainingTrain in two stages:1. Only the heads. Here we're freezing all the backbone layers and training only the randomly initialized layers (i.e. the ones that we didn't use pre-trained weights from MS COCO). To train only the head layers, pass `layers='heads'` to the `train()` function.2. Fine-tune all layers. For this simple example it's not necessary, but we're including it to show the process. Simply pass `layers="all` to train all layers. ###Code # Train the head branches # Passing layers="heads" freezes all layers except the head # layers. You can also pass a regular expression to select # which layers to train by name pattern. #model.train(dataset_train, dataset_val, # learning_rate=config.LEARNING_RATE, # epochs=5, # layers='heads') # Fine tune all layers # Passing layers="all" trains all layers. You can also # pass a regular expression to select which layers to # train by name pattern. #model.train(dataset_train, dataset_val, # learning_rate=config.LEARNING_RATE / 10, # epochs=15, # layers="all") # Save weights # Typically not needed because callbacks save after every epoch # Uncomment to save manually #model_path = os.path.join(MODEL_DIR, "mask_rcnn_shapes.h5") #model.keras_model.save_weights(model_path) ###Output _____no_output_____ ###Markdown Detection ###Code class InferenceConfig(SyntheticSugarbeetsConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 inference_config = InferenceConfig() # Recreate the model in inference mode model = modellib.MaskRCNN(mode="inference", config=inference_config, model_dir=MODEL_DIR) # Get path to saved weights # Either set a specific path or find last trained weights model_path = os.path.join(ROOT_DIR, "logs\\syntheticsugarbeets_occlusion30\\mask_rcnn_syntheticsugarbeets_0015.h5") #model_path = model.find_last()[0] # # Load trained weights print("Loading weights from ", model_path) model.load_weights(model_path, by_name=True) # Test on a random image image_id = dataset_val.image_ids[0] original_image, image_meta, gt_class_id, gt_bbox, gt_mask =\ modellib.load_image_gt(dataset_val, inference_config, image_id, use_mini_mask=False) #gt_class_id -= 1 log("original_image", original_image) log("image_meta", image_meta) log("gt_class_id", gt_class_id) log("gt_bbox", gt_bbox) log("gt_mask", gt_mask) visualize.display_instances(original_image, gt_bbox, gt_mask, gt_class_id, dataset_train.class_names, figsize=(8, 8)) results = model.detect([original_image], verbose=1) r = results[0] visualize.display_instances(original_image, r['rois'], r['masks'], r['class_ids'], dataset_val.class_names, r['scores'], ax=get_ax(), show_bbox=False) ###Output Processing 1 images image shape: (512, 512, 3) min: 0.00000 max: 159.00000 uint8 molded_images shape: (1, 512, 512, 3) min: -123.70000 max: 35.30000 float64 image_metas shape: (1, 16) min: 0.00000 max: 512.00000 int32 anchors shape: (1, 65472, 4) min: -0.70849 max: 1.58325 float32 WARNING:tensorflow:From C:\Users\danie\miniconda3\envs\Mask_RCNN_py3_5_2\lib\site-packages\keras\backend\tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead. WARNING:tensorflow:From C:\Users\danie\miniconda3\envs\Mask_RCNN_py3_5_2\lib\site-packages\keras\backend\tensorflow_backend.py:431: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead. WARNING:tensorflow:From C:\Users\danie\miniconda3\envs\Mask_RCNN_py3_5_2\lib\site-packages\keras\backend\tensorflow_backend.py:438: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead. ###Markdown Evaluation ###Code # Compute VOC-Style mAP @ IoU=0.5 # Running on 10 images. Increase for better accuracy. image_ids = dataset_val.image_ids APs = [] for image_id in image_ids: # Load image and ground truth data image, image_meta, gt_class_id, gt_bbox, gt_mask =\ modellib.load_image_gt(dataset_val, inference_config, image_id, use_mini_mask=False) molded_images = np.expand_dims(modellib.mold_image(image, inference_config), 0) # Run object detection results = model.detect([image], verbose=0) r = results[0] # Compute AP AP, precisions, recalls, overlaps =\ utils.compute_ap(gt_bbox, gt_class_id, gt_mask, r["rois"], r["class_ids"], r["scores"], r['masks']) APs.append(AP) print("mAP: ", np.mean(APs)) ###Output mAP: 0.8124505661724002
ft8_mapper.ipynb
###Markdown FT8 Mapper TL;DR:Click on __Restart the kernel then re-run the whole notebook__ on the Jupiter Lab toolobar, then scroll down to the bottom of this page and click on the __Build Map__ button. OverviewThis script was inspired by the [presentation of Jose CT1BOH](https://www.contestuniversity.com/wp-content/uploads/2021/05/There-is-Nothing-Magic-About-Propagation-CTU-2021-CT1BOH.pdf) on the use of FT8 spot data for HF propagation nowcasting. It downloads real-time data from different sources and plots them all on the same map. The data include:- FT8 spots from the [PSKReporter web site](https://www.pskreporter.info/pskmap.html),- MUF(3000) map from [KC2G](https://prop.kc2g.com/) or [IZMIRAN](https://www.izmiran.ru/ionosphere/weather/daily/index.shtml),- auroral oval from [NOAA](https://www.swpc.noaa.gov/products/aurora-30-minute-forecast),- magnetic dip (inclination) from [NOAA](https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtmligrfgrid),- gray line (computed).The map is available in the Geographic, Polar and Azimuthal projections.The script is provided as a Jupyter notebook that includes Python code, narrative text and visual output, all in one page. Several sections below contain the code, the last section presents a number of controls that you can use to set the desired map parameters and build the map. LicenseCopyright © 2021 Alex Shovkoplyas VE3NEALicense: [MIT](https://opensource.org/licenses/MIT) (_you can do whatever you want as long as you include the original copyright and license notice_). Import required packages ###Code import zipfile from datetime import datetime import re from enum import Enum import pylab import cartopy.crs as ccrs from cartopy.feature.nightshade import Nightshade import matplotlib.pyplot as plt import json from IPython.display import clear_output, FileLink, FileLinks from colorama import Fore, Style from io import StringIO import urllib.request as urllib import requests import base64 import png import numpy as np import matplotlib import ipywidgets as widgets import cartopy ###Output _____no_output_____ ###Markdown Convert grid square to lon/lat ###Code letters='ABCDEFGHIJKLMNOPQRSTUVWX' digits = '0123456789' letters12 = dict([(letters[i] + letters[j], np.array([i*20.-180, j*10.-90])) for i in range(18) for j in range(18)]) digits34 = dict([(digits[i] + digits[j], np.array([2.*i, 1.*j])) for i in range(10) for j in range(10)]) letters56 = dict([(letters[i] + letters[j], np.array([2./24*i, 1./24*j])) for i in range(24) for j in range(24)]) def square_to_lon_lat(square): try: if len(square) == 2: return letters12[square[:2]] + [10, 5] if len(square) == 4: return letters12[square[:2]] + digits34[square[2:4]] + [1, 0.5] if len(square) == 6: return letters12[square[:2]] + digits34[square[2:4]] + letters56[square[4:6]] + [1./24, 0.5/24] except: return None ###Output _____no_output_____ ###Markdown Download IZMIRAN MUF map[Source](https://www.izmiran.ru/ionosphere/weather/daily/index.shtml) ###Code headers = 'START OF foF2 MAP|START OF hmF2 MAP|EPOCH OF CURRENT MAP|LAT/LON1/LON2/DLON' def __get_ionex(url): data, _ = urllib.urlretrieve(url) data = zipfile.ZipFile(data, 'r') data = data.open(data.namelist()[0]) data = [line.decode('UTF-8') for line in data] data = [line for line in data if re.search(headers, line) is None][7:] data = ''.join(data) data = np.fromstring(data, dtype='float', sep=' ') data.shape = (24, 71, 73) return data[datetime.utcnow().hour][-1::-1,:] def download_muf_izmiran(): date_string = datetime.utcnow().strftime('%y/%m/%y%m%d') foF2_url = f'https://www.izmiran.ru/ionosphere/weather/gram/dfc/{date_string}f1.zip' hmF2_url = f'https://www.izmiran.ru/ionosphere/weather/gram/dhc/{date_string}h1.zip' foF2 = __get_ionex(foF2_url) / 10 hmF2 = __get_ionex(hmF2_url) return foF2 * 1490 / (hmF2 + 176) ###Output _____no_output_____ ###Markdown Download KC2G MUF mapwith kind permission from Andrew Rodland, KC2G[Source](https://prop.kc2g.com/) ###Code MIN_MHZ = 4 MAX_MHZ = 35 DECIMATION_FACTOR = 4 # palette cmap = pylab.cm.get_cmap('viridis', 256) colors = [cmap(i, alpha=0.35, bytes=True) for i in range(256)] colors = [c[0] + (c[1] << 8) + (c[2] << 16) + (c[3] << 24) for c in colors] color_to_mhz = dict([(colors[i], MIN_MHZ * (MAX_MHZ / MIN_MHZ)**(i/255)) for i in range(256)]) def download_muf_kc2g(): # download url = 'https://prop.kc2g.com/renders/current/mufd-normal-now.svg' svg = requests.get(url).text # extract pixels png_data = re.search('xlink:href="data:image/png;base64, ([^"]+)"', svg).group(1) png_data = base64.b64decode(png_data) _, _, pixel_bytes, _ = png.Reader(bytes=png_data).read() pixel_bytes = list(pixel_bytes)[::DECIMATION_FACTOR] rows = [np.frombuffer(row, dtype=np.uint32) for row in pixel_bytes] # pixels to MHz return [[color_to_mhz[v] for v in row[::DECIMATION_FACTOR]] for row in rows] ###Output _____no_output_____ ###Markdown Download FT8 spotswith kind permission from Philip Gladstone, N1DQ[Source](https://www.pskreporter.info/pskmap.html) ###Code bands = { '5.3': '5000000-6000000', '7': '6000000-8000000', '10': '8000000-12000000', '14': '12000000-16000000', '18': '16000000-19000000', '21': '19000000-22000000', '24.8': '22000000-26000000', '28': '27999999-31000000' } def download_ft8(home_square, mhz): # download if home_square == '': home_square = 'ZZZZZ' modify = 'all' if home_square == 'ZZZZZ' else 'grid' url = 'https://www.pskreporter.info/cgi-bin/pskquery5.pl?encap=1&callback=doNothing&statistics=1&noactive=1&nolocator=0' \ f'&flowStartSeconds=-900&frange={bands[mhz]}&mode=FT8&modify={modify}&callsign={home_square}' xml_str = requests.get(url, timeout=180).text with open('./ft8.txt', 'w') as f: f.write(xml_str) # for debugging # parse json json_str = re.search('doNothing\((.+)\);', xml_str, re.DOTALL) json_str = json_str.group(1) json_struct = json.loads(json_str) # paths report = json_struct['receptionReport'] paths = [[r['receiverLocator'][:6].upper(), r['senderLocator'][:6].upper()] for r in report] paths = np.unique([[min(p), max(p)] for p in paths], axis=0) paths = np.array([p for p in paths if p[0] != '' and p[1] != '']) # reporting stations ends = np.unique(paths.flatten()) ends.sort() # non-reporting stations report = json_struct['activeReceiver'] stations = [r['locator'][:6].upper() for r in report if r['mode'] == 'FT8'] stations.sort() stations = np.unique(stations) stations = list(set(stations) - set(ends)) # grid square to lon/lat paths = [[square_to_lon_lat(p[0]), square_to_lon_lat(p[1])] for p in paths] ends = [square_to_lon_lat(s) for s in ends] stations = [square_to_lon_lat(s) for s in stations] print(f' paths: {len(paths)}, blue stations: {len(ends)}, gray stations: {len(stations)}') return {'paths': paths, 'path_ends': ends, 'stations': stations} ###Output _____no_output_____ ###Markdown Download Aurora map[Source](https://www.swpc.noaa.gov/products/aurora-30-minute-forecast) ###Code def download_aurora(): url = 'https://services.swpc.noaa.gov/json/ovation_aurora_latest.json' json_str = requests.get(url).text; json_struct = json.loads(json_str) aurora = json_struct['coordinates'] return np.array(aurora)[:,2].reshape(360, 181).T ###Output _____no_output_____ ###Markdown Load Dip map[Source](https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtmligrfgrid) ###Code def load_dip(): dip_data = np.loadtxt('igrfgridData.csv',delimiter=',') return np.array(dip_data)[:,4].reshape(180, 361) ###Output _____no_output_____ ###Markdown Plot the map ###Code class Projection(Enum): Geographic = 1 Polar = 2 Azimuthal = 3 def plot_map(muf_data=None, dip_data=None, aurora=None, grayline=False, spot_data=None, mhz=None, projection=Projection.Azimuthal, home_square='', time=datetime.utcnow(), all_bands_muf=True): # projection geodetic_proj = ccrs.Geodetic() geographic_proj = ccrs.PlateCarree() geographic_proj._threshold = 0.1 home = square_to_lon_lat(home_square) if home_square != '' else [0, 90] if projection == Projection.Geographic: current_proj = geographic_proj elif projection == Projection.Polar: current_proj = ccrs.AzimuthalEquidistant(home[0], 90) else: current_proj = ccrs.AzimuthalEquidistant(home[0], home[1]) # base map fig = plt.figure(figsize=(22, 25)) ax = plt.axes(projection=current_proj) ax.set_global() ax.coastlines(resolution='110m', alpha=0.9) ax.add_feature(cartopy.feature.BORDERS, edgecolor='black', linestyle='--', alpha=0.8) if grayline: ax.add_feature(Nightshade(time), alpha=0.2, color='black', edgecolor='red') # title title = time.strftime('%Y-%m-%d %H:%M UTC') if mhz is not None: title = f'{title} {mhz} MHz' if home_square != '': title = f'{title} {home_square}' plt.title(title + '\n', fontsize=15, pad=0.02) # MUF if not muf_data is None: lons, lats = np.meshgrid(np.linspace(-180, 180, len(muf_data[0])), np.linspace(-90,90, len(muf_data))) levels = [4,5.3,7,10.1,14,18,21,24.8,28,35] if all_bands_muf else [4, mhz, 35] # filled countours contours = plt.contourf(lons, lats, muf_data, levels=levels, transform=geographic_proj, cmap='jet', alpha=0.5) plt.colorbar(orientation='horizontal', shrink=0.3, pad=0.02).ax.set_xlabel('MUF(3000), MHz') # labels isolines = plt.contour(lons, lats, muf_data, levels=levels, colors=['None'], transform=geographic_proj) ax.clabel(isolines, colors=['gray'], manual=False, inline=True, fmt=' {:.0f} '.format) # dip if not dip_data is None: lons, lats = np.meshgrid(np.linspace(-180, 180, 361), np.linspace(89,-90, 180)) levels = [-90,-80,-70,-60,-50,-40,-30,-20,-10,0,10,20,30,40,50,60,70,80,90] # contours isolines = plt.contour(lons, lats, dip_data, levels=levels, alpha=.5, linewidths=[.5, .5, .5, .5] , colors='green', transform=geographic_proj) # labels ax.clabel(isolines, colors='green', manual=False, inline=True, fmt=' {:.0f} '.format) # aurora if aurora is not None: ax.imshow(aurora, transform=geographic_proj, extent=(0, 360, 90, -90), cmap='Greys', vmin=1, vmax=10) # spots if not spot_data is None: ax.scatter([s[0] for s in spot_data['stations']], [s[1] for s in spot_data['stations']], s=60, color='silver', edgecolors='gray', transform=geographic_proj, zorder=3) for p in spot_data['paths']: plt.plot([p[0][0], p[1][0]], [p[0][1], p[1][1]], color='blue', transform=geodetic_proj, zorder=4) ax.scatter([s[0] for s in spot_data['path_ends']], [s[1] for s in spot_data['path_ends']], s=60, color='aqua', edgecolors='blue', transform=geographic_proj, zorder=5) # grid if home_square == '': # no home location, plot lat/lon xlocs=np.linspace(-180,180,19) ylocs=np.linspace(-90,90,19) grid = ax.gridlines(color='magenta', alpha=0.7, xlocs=xlocs, ylocs=ylocs) else: if projection == Projection.Geographic: ax2 = fig.add_axes(ax.get_position(), projection=ccrs.RotatedPole(central_rotated_longitude=home[0] + 180, pole_latitude=-home[1])) elif projection == Projection.Polar: ax2 = fig.add_axes(ax.get_position(), projection=ccrs.AzimuthalEquidistant(0, -home[1])) else: ax2 = fig.add_axes(ax.get_position(), projection=ccrs.AzimuthalEquidistant(0, -90)) ax2.set_global() ax2.patch.set_facecolor('none') xlocs=np.linspace(-180,180,13) ylocs=np.linspace(77,-90,7) grid = ax2.gridlines(color='teal', alpha=0.7, xlocs=xlocs, ylocs=ylocs) ax.plot(home[0], home[1], marker='*', color='yellow', mec='olive', ms=20, zorder=9, transform=geographic_proj) grid.n_steps = 1000 plt.savefig('map.png') plt.show() ###Output _____no_output_____ ###Markdown User interface ###Code ui = {} muf_data = None spot_data = None dip_data = None aurora = None def show_widgets(): # widgets options = [('Geographic', Projection.Geographic), ('Polar', Projection.Polar), ('Azimuthal', Projection.Azimuthal)] ui['projection'] = widgets.RadioButtons(options=options, value=Projection.Polar, description='Projection:') ui['mhz'] = widgets.Dropdown(options=['5.3', '7', '10.1', '14', '18', '21', '24.8', '28'], value='14', description='MHz:') ui['home_square'] = widgets.Text(value='FN03', description='Square:', placeholder='All squares') ui['square_valid'] = widgets.Valid(value=True) ui['square'] = widgets.Box([ui['home_square'], ui['square_valid']]) ui['show_spots'] = widgets.Checkbox(value=True, description='Show FT8 Spots', indent=False) ui['show_muf'] = widgets.Checkbox(value=True, description='Show MUF(3000) Map', disabled=False, indent=False) ui['all_bands_muf'] = widgets.Checkbox(value=True, description='MUF for All Bands', disabled=False, indent=False) ui['show_aurora'] = widgets.Checkbox(description='Show Aurora', indent=False) ui['show_dip'] = widgets.Checkbox(description='Show Magnetic Dip', indent=False) ui['show_grayline'] = widgets.Checkbox(description='Show Grayline', indent=False) ui['download_spots'] = widgets.Checkbox(description='Re-download Spot Data', indent=False) ui['download_aurora'] = widgets.Checkbox(description='Re-download Auroral Data', indent=False) ui['download_muf'] = widgets.Checkbox(description='Re-download MUF Data', indent=False) ui['muf_source'] = widgets.RadioButtons(options=['KC2G', 'IZMIRAN'], description='MUF Source:') ui['button'] = widgets.Button(description='Build Map') # layout ui['box1'] = widgets.VBox([ui['projection'], ui['mhz'], ui['square']]) ui['box2']= widgets.VBox([ui['show_spots'], ui['show_muf'], ui['all_bands_muf'], ui['show_dip'], ui['show_aurora'], ui['show_grayline']]) ui['box3'] = widgets.VBox([ui['download_spots'], ui['download_aurora'], ui['download_muf'], ui['muf_source']]) layout = widgets.Layout(height='200px', width='100%', border='1px solid gray') display(widgets.HBox(children=[ui['box1'], ui['box2'], ui['box3']], layout=layout)) layout = widgets.Layout(height='70px', width='100%', align_items='center') display(widgets.HBox(children=[ui['button']], layout=layout)) # output ui['out'] = widgets.Output() display(ui['out']) # callbacks ui['home_square'].observe(on_text_change, names='value') ui['button'].on_click(on_button_click) def download_data(): global muf_data, spot_data, dip_data, aurora if ui['download_aurora'].value or (ui['show_aurora'].value and aurora is None): print('Downloading aurora...') try: aurora = download_aurora() except: print(Fore.RED + ' download failed' + Style.RESET_ALL) if ui['download_muf'].value or (ui['show_muf'].value and muf_data is None): print('Downloading muf...') try: muf_data = download_muf_kc2g() if ui['muf_source'].value == 'KC2G' else download_muf_izmiran() except: print(Fore.RED + ' download failed' + Style.RESET_ALL) if ui['show_dip'].value and dip_data is None: print('Loading dip...') try: dip_data = load_dip() except: print(Fore.RED + ' dip load failed' + Style.RESET_ALL) if ui['download_spots'].value or (ui['show_spots'].value and spot_data is None): print('Downloading spots...') try: spot_data = download_ft8(home_square=ui['home_square'].value.upper(), mhz=ui['mhz'].value) except: print(Fore.RED + ' download failed' + Style.RESET_ALL) ui['download_spots'].value = False ui['download_muf'].value = False ui['download_aurora'].value = False def on_text_change(change): square = change['new'].upper() if ui['square_valid'] is not None: ui['square_valid'].value = square == '' or square_to_lon_lat(square) is not None def on_button_click(button): with ui['out']: clear_output(True) download_data() print('Building the map...\n') plot_map( muf_data = muf_data if ui['show_muf'].value else None, dip_data = dip_data if ui['show_dip'].value else None, aurora = aurora if ui['show_aurora'].value else None, spot_data = spot_data if ui['show_spots'].value else None, grayline = ui['show_grayline'].value, mhz=ui['mhz'].value, projection = ui['projection'].value, home_square=ui['home_square'].value.upper(), all_bands_muf=ui['all_bands_muf'].value ) ###Output _____no_output_____ ###Markdown Enter the settings and build the map__Note:__ By default, the script downloads every dataset only once. If you change some parameter that affects the data, e.g, select a different band or different MUF source, tick the correspoiding _Re-download_ checkbox before building the map. To keep the map current, re-download all data every 15 minutes.The map will be shown below and saved to the [map.png](./map.png) file. ###Code show_widgets() ###Output _____no_output_____
How_to_draw_Derivative_graph_of_a_function.ipynb
###Markdown Copyright 2020 Masahiko Isshiki - https://blog.masahiko.info/. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown 「活性化関数の『導関数』の出力グラフをPythonで描画する方法」 ■準備 ●Pythonバージョン:3.x ###Code import sys print('Python', sys.version) # Python 3.6.9 (default, Nov 7 2019, 10:44:02) …… などと表示される ###Output Python 3.6.9 (default, Nov 7 2019, 10:44:02) [GCC 8.3.0] ###Markdown ■実装方法 ●NumPyを使って0.001間隔で-6~6の数値を生成 ###Code import numpy as np xn = np.arange(-6.0, 6.0, 0.001) print(xn) # [-6. -5.999 -5.998 ... 5.997 5.998 5.999] ……などと表示される ###Output [-6. -5.999 -5.998 ... 5.997 5.998 5.999] ###Markdown ●シグモイド関数(ゲイン付き)の定義 ###Code def sigmoid(x, a=1): # a: ゲイン(係数) return 1.0 / (1.0 + np.exp(-a*x)) print(sigmoid(xn)) # [0.00247262 0.00247509 0.00247756 ... 0.99751997 0.99752244 0.99752491] ……などと表示される ###Output [0.00247262 0.00247509 0.00247756 ... 0.99751997 0.99752244 0.99752491] ###Markdown ●シグモイド関数のグラフを描画 ###Code import matplotlib.pyplot as plt plt.plot(xn, sigmoid(xn), label = "Sigmoid(a=1)") plt.plot(xn, sigmoid(xn, 2), label = " (a=2)") plt.plot(xn, sigmoid(xn, 10), label = " (a=10)") plt.plot(xn, sigmoid(xn, 100), label = " (a=100)") plt.xlim(-6, 6) plt.ylim(-0.2, 1.2) plt.grid() plt.legend() plt.show() ###Output _____no_output_____ ###Markdown ●シグモイド関数の「導関数」の定義 ###Code def der_sigmoid(x, a=1): # a: ゲイン(係数) return sigmoid(x, a) * (1.0 - sigmoid(x, a)) print(der_sigmoid(xn)) # [0.00246651 0.00246896 0.00247142 ... 0.00247388 0.00247142 0.00246896] ……などと表示される ###Output [0.00246651 0.00246896 0.00247142 ... 0.00247388 0.00247142 0.00246896] ###Markdown ●シグモイド関数の「導関数」のグラフを描画 ###Code import matplotlib.pyplot as plt plt.plot(xn, der_sigmoid(xn), label = "Derivative of Sigmoid(a=1)") plt.plot(xn, der_sigmoid(xn, 2), label = " (a=2)") plt.plot(xn, der_sigmoid(xn, 10), label = " (a=10)") plt.plot(xn, der_sigmoid(xn, 100), label = " (a=100)") plt.xlim(-6, 6) plt.ylim(-0.2, 0.3) plt.grid() plt.legend() plt.show() ###Output _____no_output_____
docs/memo/notebooks/tutorials/2_pipeline_lesson5/.ipynb_checkpoints/notebook-checkpoint.ipynb
###Markdown FiltersA Filter is a function from an asset and a moment in time to a boolean:```F(asset, timestamp) -> boolean```In Pipeline, [Filters](https://www.quantopian.com/helpquantopian_pipeline_filters_Filter) are used for narrowing down the set of securities included in a computation or in the final output of a pipeline. There are two common ways to create a `Filter`: comparison operators and `Factor`/`Classifier` methods.Comparison OperatorsComparison operators on `Factors` and `Classifiers` produce Filters. Since we haven't looked at `Classifiers` yet, let's stick to examples using `Factors`. The following example produces a filter that returns `True` whenever the latest close price is above $20. ###Code last_close_price = USEquityPricing.close.latest close_price_filter = last_close_price > 20 ###Output _____no_output_____ ###Markdown And this example produces a filter that returns True whenever the 10-day mean is below the 30-day mean. ###Code mean_close_10 = SimpleMovingAverage(inputs=[USEquityPricing.close], window_length=10) mean_close_30 = SimpleMovingAverage(inputs=[USEquityPricing.close], window_length=30) mean_crossover_filter = mean_close_10 < mean_close_30 ###Output _____no_output_____ ###Markdown Remember, each security will get its own `True` or `False` value each day. Factor/Classifier MethodsVarious methods of the `Factor` and `Classifier` classes return `Filters`. Again, since we haven't yet looked at `Classifiers`, let's stick to `Factor` methods for now (we'll look at `Classifier` methods later). The `Factor.top(n)` method produces a `Filter` that returns `True` for the top `n` securities of a given `Factor`. The following example produces a filter that returns `True` for exactly 200 securities every day, indicating that those securities were in the top 200 by last close price across all known securities. ###Code last_close_price = USEquityPricing.close.latest top_close_price_filter = last_close_price.top(200) ###Output _____no_output_____ ###Markdown For a full list of `Factor` methods that return `Filters`, see [this link](https://www.quantopian.com/helpquantopian_pipeline_factors_Factor).For a full list of `Classifier` methods that return `Filters`, see [this link](https://www.quantopian.com/helpquantopian_pipeline_classifiers_Classifier). Dollar Volume FilterAs a starting example, let's create a filter that returns `True` if a security's 30-day average dollar volume is above $10,000,000. To do this, we'll first need to create an `AverageDollarVolume` factor to compute the 30-day average dollar volume. Let's include the built-in `AverageDollarVolume` factor in our imports: ###Code from zipline.pipeline.factors import AverageDollarVolume ###Output _____no_output_____ ###Markdown And then, let's instantiate our average dollar volume factor. ###Code dollar_volume = AverageDollarVolume(window_length=30) ###Output _____no_output_____ ###Markdown By default, `AverageDollarVolume` uses `USEquityPricing.close` and `USEquityPricing.volume` as its `inputs`, so we don't specify them. Now that we have a dollar volume factor, we can create a filter with a boolean expression. The following line creates a filter returning `True` for securities with a `dollar_volume` greater than 10,000,000: ###Code high_dollar_volume = (dollar_volume > 10000000) ###Output _____no_output_____ ###Markdown To see what this filter looks like, let's can add it as a column to the pipeline we defined in the previous lesson. ###Code def make_pipeline(): mean_close_10 = SimpleMovingAverage(inputs=[USEquityPricing.close], window_length=10) mean_close_30 = SimpleMovingAverage(inputs=[USEquityPricing.close], window_length=30) percent_difference = (mean_close_10 - mean_close_30) / mean_close_30 dollar_volume = AverageDollarVolume(window_length=30) high_dollar_volume = (dollar_volume > 10000000) return Pipeline( columns={ 'percent_difference': percent_difference, 'high_dollar_volume': high_dollar_volume } ) ###Output _____no_output_____ ###Markdown If we make and run our pipeline, we now have a column `high_dollar_volume` with a boolean value corresponding to the result of the expression for each security. ###Code result = run_pipeline(make_pipeline(), '2015-05-05', '2015-05-05') result ###Output _____no_output_____ ###Markdown Applying a ScreenBy default, a pipeline produces computed values each day for every asset in the Quantopian database. Very often however, we only care about a subset of securities that meet specific criteria (for example, we might only care about securities that have enough daily trading volume to fill our orders quickly). We can tell our Pipeline to ignore securities for which a filter produces `False` by passing that filter to our Pipeline via the `screen` keyword.To screen our pipeline output for securities with a 30-day average dollar volume greater than $10,000,000, we can simply pass our `high_dollar_volume` filter as the `screen` argument. This is what our `make_pipeline` function now looks like: ###Code def make_pipeline(): mean_close_10 = SimpleMovingAverage(inputs=[USEquityPricing.close], window_length=10) mean_close_30 = SimpleMovingAverage(inputs=[USEquityPricing.close], window_length=30) percent_difference = (mean_close_10 - mean_close_30) / mean_close_30 dollar_volume = AverageDollarVolume(window_length=30) high_dollar_volume = dollar_volume > 10000000 return Pipeline( columns={ 'percent_difference': percent_difference }, screen=high_dollar_volume ) ###Output _____no_output_____ ###Markdown When we run this, the pipeline output only includes securities that pass the `high_dollar_volume` filter on a given day. For example, running this pipeline on May 5th, 2015 results in an output for ~2,100 securities ###Code result = run_pipeline(make_pipeline(), '2015-05-05', '2015-05-05') print('Number of securities that passed the filter: %d' % len(result)) result ###Output Number of securities that passed the filter: 2511 ###Markdown Inverting a FilterThe `~` operator is used to invert a filter, swapping all `True` values with `Falses` and vice-versa. For example, we can write the following to filter for low dollar volume securities: ###Code low_dollar_volume = ~high_dollar_volume ###Output _____no_output_____
hmwk4/HW4-k-means-plus-plus-s.ipynb
###Markdown K-means++In this notebook, we are going to implement [k-means++](https://en.wikipedia.org/wiki/K-means%2B%2B) algorithm with multiple initial sets. The original k-means++ algorithm will just sample one set of initial centroid points and iterate until the result converges. The only difference in this implementation is that we will sample `RUNS` sets of initial centroid points and update them in parallel. The procedure will finish when all centroid sets are converged. ###Code ### Definition of some global parameters. K = 5 # Number of centroids RUNS = 25 # Number of K-means runs that are executed in parallel. Equivalently, number of sets of initial points RANDOM_SEED = 60295531 converge_dist = 0.1 # The K-means algorithm is terminated when the change in the location # of the centroids is smaller than 0.1 import numpy as np import pickle import sys from numpy.linalg import norm from matplotlib import pyplot as plt def print_log(s): sys.stdout.write(s + "\n") sys.stdout.flush() def parse_data(row): ''' Parse each pandas row into a tuple of (station_name, feature_vec),`l where feature_vec is the concatenation of the projection vectors of TAVG, TRANGE, and SNWD. ''' return (row[0], np.concatenate([row[1], row[2], row[3]])) def compute_entropy(d): ''' Compute the entropy given the frequency vector `d` ''' d = np.array(d) d = 1.0 * d / d.sum() return -np.sum(d * np.log2(d)) def choice(p): ''' Generates a random sample from [0, len(p)), where p[i] is the probability associated with i. ''' random = np.random.random() r = 0.0 for idx in range(len(p)): r = r + p[idx] if r > random: return idx assert(False) def kmeans_init(rdd, K, RUNS, seed): ''' Select `RUNS` sets of initial points for `K`-means++ ''' # the `centers` variable is what we want to return n_data = rdd.count() shape = rdd.take(1)[0][1].shape[0] centers = np.zeros((RUNS, K, shape)) def update_dist(vec, dist, k): new_dist = norm(vec - centers[:, k], axis=1)**2 return np.min([dist, new_dist], axis=0) # The second element `dist` in the tuple below is the closest distance from # each data point to the selected points in the initial set, where `dist[i]` # is the closest distance to the points in the i-th initial set. data = rdd.map(lambda p: (p, [np.inf] * RUNS)) \ .cache() # Collect the feature vectors of all data points beforehand, might be # useful in the following for-loop local_data = rdd.map(lambda (name, vec): vec).collect() # Randomly select the first point for every run of k-means++, # i.e. randomly select `RUNS` points and add it to the `centers` variable sample = [local_data[k] for k in np.random.randint(0, len(local_data), RUNS)] centers[:, 0] = sample for idx in range(K - 1): ############################################################################## # Insert your code here: ############################################################################## # In each iteration, you need to select one point for each set # of initial points (so select `RUNS` points in total). # For each data point x, let D_i(x) be the distance between x and # the nearest center that has already been added to the i-th set. # Choose a new data point for i-th set using a weighted probability # where point x is chosen with probability proportional to D_i(x)^2 ############################################################################## #Repeat each data point by 25 times (for each RUN) to get 12140x25 #Update distance data = data.map(lambda ((name,vec),dist): ((name,vec),update_dist(vec,dist,idx))).cache() #Calculate sum of D_i(x)^2 d1 = data.map(lambda ((name,vec),dist): (1,dist)) d2 = d1.reduceByKey(lambda x,y: np.sum([x,y], axis=0)) total = d2.collect()[0][1] #Normalize each distance to get the probabilities and reshapte to 12140x25 prob = data.map(lambda ((name,vec),dist): np.divide(dist,total)).collect() prob = np.reshape(prob,(len(local_data), RUNS)) #K'th centroid for each run data_id = [choice(prob[:,i]) for i in xrange(RUNS)] sample = [local_data[i] for i in data_id] centers[:, idx+1] = sample return centers def get_closest(p, centers): ''' Return the indices the nearest centroids of `p`. `centers` contains sets of centroids, where `centers[i]` is the i-th set of centroids. ''' best = [0] * len(centers) closest = [np.inf] * len(centers) for idx in range(len(centers)): for j in range(len(centers[0])): temp_dist = norm(p - centers[idx][j]) if temp_dist < closest[idx]: closest[idx] = temp_dist best[idx] = j return best def kmeans(rdd, K, RUNS, converge_dist, seed): ''' Run K-means++ algorithm on `rdd`, where `RUNS` is the number of initial sets to use. ''' k_points = kmeans_init(rdd, K, RUNS, seed) print_log("Initialized.") temp_dist = 1.0 iters = 0 st = time.time() while temp_dist > converge_dist: ############################################################################## # INSERT YOUR CODE HERE ############################################################################## # Update all `RUNS` sets of centroids using standard k-means algorithm # Outline: # - For each point x, select its nearest centroid in i-th centroids set # - Average all points that are assigned to the same centroid # - Update the centroid with the average of all points that are assigned to it # Insert your code here #For each point x, select its nearest centroid in i-th centroids set #Format: ((RUN, nearest_centroid), point_coord) cen_rdd1 = rdd.flatMap(lambda p: [((indx,j),p[1]) for (indx,j) in enumerate(get_closest(p[1], k_points))]) #Introduce 1 for count #Format: ((RUN, nearest_centroid), point, 1) cen_rdd2 = cen_rdd1.map(lambda ((run, k), pt): ((run, k), np.array([pt, 1]))) #Add all the distance and add 1's (count) #Format: ((RUN, nearest_centroid), sum_points, count) cen_rdd3 = cen_rdd2.reduceByKey(lambda x,y: np.sum([x,y], axis=0)) #Calculate mean distance for each run #Format: ((RUN, nearest_centroid), mean_distance) cen_rdd4 = cen_rdd3.map(lambda ((run, k), p): ((run, k), p[0]/p[1])) #Get dictionary of new_points new_points = cen_rdd4.collectAsMap() # You can modify this statement as long as `temp_dist` equals to # max( sum( l2_norm of the movement of j-th centroid in each centroids set )) ############################################################################## # temp_dist = np.max([ # np.sum([norm(k_points[idx][j] - new_points[(idx, j)]) for j in range(K)]) # for idx in range(RUNS)]) temp_dist = np.max([ np.sum([norm(k_points[idx][j] - new_points[(idx, j)]) for idx,j in new_points.keys()]) ]) iters = iters + 1 if iters % 5 == 0: print_log("Iteration %d max shift: %.2f (time: %.2f)" % (iters, temp_dist, time.time() - st)) st = time.time() # update old centroids # You modify this for-loop to meet your need for ((idx, j), p) in new_points.items(): k_points[idx][j] = p return k_points ## Read data data = pickle.load(open("/home/sadat/Desktop/UCSD_BigData_2016/Data/Weather/stations_projections.pickle", "rb")) rdd = sc.parallelize([parse_data(row[1]) for row in data.iterrows()]) rdd.take(1) # main code import time st = time.time() np.random.seed(RANDOM_SEED) centroids = kmeans(rdd, K, RUNS, converge_dist, np.random.randint(1000)) group = rdd.mapValues(lambda p: get_closest(p, centroids)) \ .collect() print "Time takes to converge:", time.time() - st ###Output Initialized. Iteration 5 max shift: 18811.76 (time: 21.72) Iteration 10 max shift: 6234.56 (time: 21.37) Iteration 15 max shift: 2291.96 (time: 21.44) Iteration 20 max shift: 1285.12 (time: 21.35) Iteration 25 max shift: 700.73 (time: 21.57) Iteration 30 max shift: 455.04 (time: 21.34) Iteration 35 max shift: 148.68 (time: 22.01) Iteration 40 max shift: 101.45 (time: 27.06) Iteration 45 max shift: 40.88 (time: 37.93) Iteration 50 max shift: 16.89 (time: 21.13) Iteration 55 max shift: 0.85 (time: 21.22) Time takes to converge: 267.533921957 ###Markdown Verify your resultsVerify your results by computing the objective function of the k-means clustering problem. ###Code def get_cost(rdd, centers): ''' Compute the square of l2 norm from each data point in `rdd` to the centroids in `centers` ''' def _get_cost(p, centers): best = [0] * len(centers) closest = [np.inf] * len(centers) for idx in range(len(centers)): for j in range(len(centers[0])): temp_dist = norm(p - centers[idx][j]) if temp_dist < closest[idx]: closest[idx] = temp_dist best[idx] = j return np.array(closest)**2 cost = rdd.map(lambda (name, v): _get_cost(v, centroids)).collect() return np.array(cost).sum(axis=0) cost = get_cost(rdd, centroids) log2 = np.log2 print log2(np.max(cost)), log2(np.min(cost)), log2(np.mean(cost)) ###Output 33.8254902123 33.7575332525 33.7790236109 ###Markdown Plot the increase of entropy after multiple runs of k-means++ ###Code entropy = [] for i in range(RUNS): count = {} for g, sig in group: _s = ','.join(map(str, sig[:(i + 1)])) count[_s] = count.get(_s, 0) + 1 entropy.append(compute_entropy(count.values())) ###Output _____no_output_____ ###Markdown **Note:** Remove this cell before submitting to PyBolt (PyBolt does not fully support matplotlib) ###Code %matplotlib inline plt.xlabel("Iteration") plt.ylabel("Entropy") plt.plot(range(1, RUNS + 1), entropy) 2**entropy[-1] ###Output _____no_output_____ ###Markdown Print the final results ###Code print 'entropy=',entropy best = np.argmin(cost) print 'best_centers=',list(centroids[best]) ###Output entropy= [1.6445469704935676, 2.0800064512748428, 2.080006451274842, 2.0800064512748424, 2.1906681946052755, 2.2570115065383876, 2.2786597860645408, 2.2786597860645408, 2.2786597860645408, 2.2786597860645408, 2.2786597860645403, 2.2786597860645408, 2.2786597860645408, 2.2786597860645408, 2.2849509629282276, 2.2849509629282276, 2.2849509629282276, 2.2849509629282272, 2.286874405497795, 2.2868744054977945, 2.2868744054977945, 2.286874405497795, 2.2868744054977945, 2.286874405497795, 2.286874405497795] best_centers= [array([ 2952.76608 , 1933.02980077, 92.424188 , -2547.74851278, 144.84123959, 154.0172669 , 18.40817384, 7.84926361, 5.11113863]), array([ 428.4738994 , 1807.58033164, 35.14799298, -2574.43476306, -180.39839191, 263.09089521, 6048.90511888, -743.20856056, 256.68319372]), array([ 1492.0570036 , 1954.30230067, 94.48584365, -2567.99675086, -112.2682711 , 152.28015089, 395.84574671, 131.09390181, 73.10315542]), array([ 750.10763916, 2067.97627806, 35.34601332, -2398.58742321, -138.36631381, 233.32209536, 2268.85311051, 245.99611499, 125.46432194]), array([ 408.29696084, 1353.92836359, 56.37619358, -2206.17029272, -221.37785013, 183.25193705, 18757.57406286, -5513.4828535 , 1476.58182765])]
quchem_examples/2.1 Ansatz_Generator_Functions.ipynb
###Markdown Theory The HF technique does not take into account electron correlation effects, other than the Pauli exclusion principle which is imposed by the Slater determinant. To correct for this, the wavefunction can be expanded as a superposition of all the determinants in the N electron Fock Space.The total number of determinants is given by the binomial:$$\binom{M}{N} = \frac{M!}{N!(M-N)!}$$- $M=$ number of spin orbitals- $N=$ number of e- for example in H2 in an STO-3G basis there are 4 orbitals and 2 electronstherefore there are $\binom{4}{2} = 6$ determinants. The superposition over all determinants is: $\alpha |{1100}\rangle + \beta |{1010}\rangle + \gamma |{1001}\rangle, \delta |{0110}\rangle + \epsilon |{0101}\rangle + \zeta |{0011}\rangle$. The importance of this is that as all possible determinants are present, the exact wavefunction of any state in the system can be written in this form!Including all the determinants will yield the full configuration interaction (FCI) wavefunction, if all the excitations above the HF wavefunction are considered. This can be formalized with the definition of the excitation operators: $$T = \sum_{i=1}^{N} T_{i}$$where:$$T_{1} = \sum_{\substack{i\in occ \\ \alpha \in virt}} t_{\alpha}^{i}a_{\alpha}^{\dagger}a_{i}$$$$T_{2} = \sum_{\substack{i>j\in occ, \\ \alpha > \beta \in virt}} t_{\alpha \beta}^{ij}a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{i}a_{j}$$$$\dots$$ note:- occ = occupied spin orbitals of **reference state**- virt = unoccupied spin orbitals of **reference state**Single excitations from the reference stateare generated by $T_{1}$, $T_{2}$ double excitations and higher order terms follow as expected. The expansion coefficients are denoted as $t_{\alpha}^{i}$ and $t_{\alpha \beta}^{ij}$ and determine the amplitude values! The unitary coupled cluster wavefunction is defined as: $$|\psi_{UCC}\rangle = e^{T-T^{\dagger}}|\psi_{HF}\rangle$$where$U_{U C C}(\vec{t})=e^{T-T^{\dagger}}=e^{\sum_{i} t_{i}\left(T_{i}-T_{i}^{\dagger}\right)}$ UCCSDUCCSD only takes into account **single** and **double** electron excitations:$$U_{CCSD} =e^{\left(T_{1}-T_{1}^{\dagger}\right)+\left(T_{2}-T_{2}^{\dagger}\right)}$$$$T_{1} = \sum_{\substack{i\in occ \\ \alpha \in virt}} t_{\alpha}^{i}a_{\alpha}^{\dagger}a_{i}$$$$T_{2} = \sum_{\substack{i>j\in occ, \\ \alpha > \beta \in virt}} t_{\alpha \beta}^{ij}a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{i}a_{j}$$Leads to more TRACTABLE calculation ###Code from quchem.Ansatz.Ansatz_Generator_Functions import Ansatz num_electrons = 2 num_orbitals = 4 ansatz = Ansatz(num_electrons, num_orbitals) ansatz.Get_ia_and_ijab_terms() print(ansatz.Sec_Quant_CC_ia_Fermi_ops) print('') print(ansatz.Sec_Quant_CC_ijab_Fermi_ops) ###Output [-1.0 [0^ 2] + 1.0 [2^ 0], -1.0 [1^ 3] + 1.0 [3^ 1]] [-1.0 [0^ 1^ 2 3] + 1.0 [3^ 2^ 1 0]] ###Markdown Suzuki-Trotter Decomposition Often we are given an operator as a sum of operstors (Just the excitation operators of the UCC operator $T = \sum_{i=1}^{N} T_{i}$)... Here we are considering a Hamiltonian:$$H = H_{1} + H_{2}$$from the **second postulate of QM** we want to perform the time evolution of the quantum system (using the Hamiltonian). When $H$ is constant in time the evolution operator $U(t)$ has a very simple form:$$U(t)=e^{-i \frac{H}{\hbar}t}$$**IMPORTANT note about exponentiated operators**Exponentiated operators DO NOT SHARE ALL PROPERTIES FOR EXPONENTIATED NUMBERSe.g.- for numbers we have: $e^{a+b} = e^{a}e^{b}$- for operators in general $e^{\hat{A}+\hat{B}} \neq e^{\hat{A}}e^{\hat{B}}$Only obeys this relationship if and only if ($\iff$) the operators commute:$$e^{\hat{A}+\hat{B}} = e^{\hat{A}}e^{\hat{B}} \iff [\hat{A}, \hat{B}]=0$$ Therefore if $H_{1}$ and $H_{2}$ do not commute, we could simulate them individually and add the results... BUT this will NOT calculate the full $H$.In such cases one can use the Suzuki-Trotter decomposition, where for any operators $\hat{A}$ and $\hat{B}$:$$e^{\hat{A}+\hat{B}}=\lim _{n \rightarrow \infty}\left(e^{\hat{A} / n} e^{\hat{B} / n}\right)^{n}=\lim _{n \rightarrow \infty}\left(e^{\hat{B} / n} e^{\hat{A} / n}\right)^{n}$$therefore for QUANTUM evolution operators:$$U(t)=e^{\frac{-i t}{\hbar}\left(H_{1}+H_{2}\right)}=\lim _{n \rightarrow \infty}\left(U_{1}(t / n) U_{2}(t / n)\right)^{n}$$This can be interpretted as the full evolution of $H_{1}$ and $H_{2}$ for successive slices and as the slices become infinitessimal the approximation becomes exact Single trotter step $$U_{U C C}(\vec{t}) \approx U_{U C C}^{(T r o t)}=\left(\prod_{j} \exp{ \big( \frac{t_{j}}{\rho}\left(T_{j}-T_{j}^{\dagger}\right)\big)}\right)^{\rho}$$- $\rho =$ trotter step for single step ($\rho =1 $)$$U_{U C C}^{(T r o t)}=\prod_{j} \exp{ \big( t_{j}\left(T_{j}-T_{j}^{\dagger}\right)\big)}$$therefore for the SINGLE - DOUBLE version:$$U_{U C C SD}^{(T r o t)}=e^{t_{1}\left(T_{1}-T_{1}^{\dagger}\right)} \times e^{t_{2}\left(T_{2}-T_{2}^{\dagger}\right)}$$ Therefore using H2 as an example:$$U_{UCCSD} = e^{t_{02}(a_{2}^{\dagger}a_{0} - a_{0}^{\dagger}a_{2}) + t_{13}(a_{3}^{\dagger}a_{1} - a_{1}^{\dagger}a_{3}) + t_{0123}(a_{3}^{\dagger}a_{2}^{\dagger}a_{1}a_{0} - a_{0}^{\dagger}a_{1}^{\dagger}a_{2}a_{3})} = exp{\big( t_{02}(a_{2}^{\dagger}a_{0} - a_{0}^{\dagger}a_{2}) + t_{13}(a_{3}^{\dagger}a_{1} - a_{1}^{\dagger}a_{3}) + t_{0123}(a_{3}^{\dagger}a_{2}^{\dagger}a_{1}a_{0} - a_{0}^{\dagger}a_{1}^{\dagger}a_{2}a_{3}) \big)}$$$$U_{UCCSD}^{Trot} = e^{t_{02}(a_{2}^{\dagger}a_{0} - a_{0}^{\dagger}a_{2})} \times e^{ t_{13}(a_{3}^{\dagger}a_{1} - a_{1}^{\dagger}a_{3})} \times e^{t_{0123}(a_{3}^{\dagger}a_{2}^{\dagger}a_{1}a_{0} - a_{0}^{\dagger}a_{1}^{\dagger}a_{2}a_{3})}$$ ###Code num_electrons = 2 num_orbitals = 4 ansatz = Ansatz(num_electrons, num_orbitals) ansatz.Get_ia_and_ijab_terms() ansatz.UCCSD_single_trotter_step(transformation='JW', List_FermiOps_ia= ansatz.Sec_Quant_CC_ia_Fermi_ops, List_FermiOps_ijab=ansatz.Sec_Quant_CC_ijab_Fermi_ops, ) for index, ia_term in enumerate(ansatz.Sec_Quant_CC_ia_Fermi_ops): print('ia_term:\n', ia_term) print('becomes:\n', ansatz.Second_Quant_CC_single_Trot_list_ia[index]) print('') print('') print('####') print('') for index, ijab_term in enumerate(ansatz.Sec_Quant_CC_ijab_Fermi_ops): print('ijab_term:\n', ansatz.Sec_Quant_CC_ijab_Fermi_ops) print('becomes:\n', ansatz.Second_Quant_CC_single_Trot_list_ijab[index]) print('') ###Output ia_term: -1.0 [0^ 2] + 1.0 [2^ 0] becomes: -0.5j [X0 Z1 Y2] + 0.5j [Y0 Z1 X2] ia_term: -1.0 [1^ 3] + 1.0 [3^ 1] becomes: -0.5j [X1 Z2 Y3] + 0.5j [Y1 Z2 X3] #### ijab_term: [-1.0 [0^ 1^ 2 3] + 1.0 [3^ 2^ 1 0]] becomes: 0.125j [X0 X1 X2 Y3] + 0.125j [X0 X1 Y2 X3] + -0.125j [X0 Y1 X2 X3] + 0.125j [X0 Y1 Y2 Y3] + -0.125j [Y0 X1 X2 X3] + 0.125j [Y0 X1 Y2 Y3] + -0.125j [Y0 Y1 X2 Y3] + -0.125j [Y0 Y1 Y2 X3] ###Markdown **note** each Paulistring in each subterm commutes and so we can use the standard exponentiated matrix simplification rulesOnly obeys this relationship if and only if ($\iff$) the operators commute:$$e^{\hat{A}+\hat{B}} = e^{\hat{A}}e^{\hat{B}} \iff [\hat{A}, \hat{B}]=0$$ Overall using a single trotter step we get:$$U_{UCC}^{Trot} = \\ e^{-i\frac{\theta_{20}}{2}(X_{0} Z_{1} Y_{2})} \times e^{i\frac{\theta_{20}}{2}(Y_{0} Z_{1} X_{2})} \\ \times e^{-i\frac{\theta_{31}}{2}(X_{1} Z_{2} Y_{3})} \times e^{i\frac{\theta_{31}}{2}(Y_{1} Z_{2} X_{3})} \times \\ e^{\frac{\theta_{3210}}{8}(X_{0} X_{1} X_{2} Y_{3})} \times e^{i\frac{\theta_{3210}}{8}(X_{0} X_{1} Y_{2} X_{3})}\times e^{-i\frac{\theta_{3210}}{8}(X_{0} Y_{1} X_{2} X_{3})}\times e^{i\frac{\theta_{3210}}{8}(X_{0} Y_{1} Y_{2} Y_{3})}\times e^{-i\frac{\theta_{3210}}{8}(Y_{0} X_{1} X_{2} X_{3})}\times e^{i\frac{\theta_{3210}}{8}(Y_{0} X_{1} Y_{2} Y_{3})}\times e^{-i\frac{\theta_{3210}}{8}(Y_{0} Y_{1} X_{2} Y_{3})}\times e^{-i\frac{\theta_{3210}}{8}(Y_{0} Y_{1} Y_{2} X_{3})}$$ Get Hartree-Fock states Jordan-Wigner Transformation ###Code n_electrons=2 n_qubits=4 ansatz_obj = Ansatz(n_electrons, n_qubits) print('full state = ',ansatz_obj.Get_JW_HF_state()) print('') print('state in occ number basis = ',ansatz_obj.Get_BK_HF_state_in_OCC_basis()) ###Output full state = [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] state in occ number basis = [1. 0. 0. 0.] ###Markdown Bravyi-Kitaev Transformation ###Code print('full state = ', ansatz_obj.Get_BK_HF_state()) print('state in occ number basis = ',ansatz_obj.Get_BK_HF_state_in_OCC_basis()) ###Output full state = [0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] state in occ number basis = [1. 0. 0. 0.] ###Markdown Get initial theta values using coupled cluster calculation ###Code from quchem.Hamiltonian.Hamiltonian_Generator_Functions import Hamiltonian_PySCF ### CLASSICAL QUANTUM CALCULATION Molecule = 'H2'#'LiH' #'H2 geometry = [('H', (0., 0., 0.)), ('H', (0., 0., 0.74))] basis = 'sto-3g' ### Get Hamiltonian Hamilt = Hamiltonian_PySCF(Molecule, run_scf=1, run_mp2=1, run_cisd=1, run_ccsd=1, run_fci=1, basis=basis, multiplicity=1, geometry=geometry) # normally None! # Hamilt.Get_Molecular_Hamiltonian(Get_H_matrix=False) QubitHam = Hamilt.Get_Qubit_Hamiltonian(transformation='JW') Ham_matrix_JW = Hamilt.Get_sparse_Qubit_Hamiltonian_matrix(QubitHam) ### Get classical CC amplitudes Hamilt.Get_CCSD_Amplitudes() ansatz_obj = Ansatz(Hamilt.molecule.n_electrons, Hamilt.molecule.n_qubits) ansatz_obj.Get_ia_and_ijab_terms(single_cc_amplitudes=Hamilt.molecule.single_cc_amplitudes, double_cc_amplitudes=Hamilt.molecule.double_cc_amplitudes, singles_hamiltonian=Hamilt.singles_hamiltonian, doubles_hamiltonian=Hamilt.doubles_hamiltonian, tol_filter_small_terms = None) print(ansatz_obj.Sec_Quant_CC_ia_Fermi_ops) ansatz_obj.theta_ia print(ansatz_obj.Sec_Quant_CC_ijab_Fermi_ops) ansatz_obj.theta_ijab ###Output [-1.0 [0^ 1^ 2 3] + 1.0 [3^ 2^ 1 0]] ###Markdown Use NOON to remove terms for UCCSD operators ###Code ### HAMILTONIAN start Molecule = 'LiH' geometry = None # [('H', (0., 0., 0.)), ('H', (0., 0., 0.74))] basis = 'sto-3g' transf= 'BK' ### Get Hamiltonian Hamilt = Hamiltonian_PySCF(Molecule, run_scf=1, run_mp2=1, run_cisd=1, run_ccsd=1, run_fci=1, basis=basis, multiplicity=1, geometry=geometry) # normally None! QubitHamiltonian = Hamilt.Get_Qubit_Hamiltonian(threshold=None, transformation=transf) ### HAMILTONIAN end ## Get CC ampltidues Hamilt.Get_CCSD_Amplitudes() ## NOON_spins_combined, NMO_basis, new_ROTATED_Qubit_Hamiltonian = Hamilt.Get_NOON(transf) ## NOON_spins_combined ansatz_obj = Ansatz(Hamilt.molecule.n_electrons, Hamilt.molecule.n_qubits) Removed_indices, reduced_CC_ops_ia , reduced_CC_ops_ijab, theta_ia, theta_ijab = ansatz_obj.Remove_NOON_terms( NOON=NOON_spins_combined, occ_threshold=1.999, unocc_threshold=1e-4, indices_to_remove_list_manual=None, single_cc_amplitudes=Hamilt.molecule.single_cc_amplitudes, double_cc_amplitudes=Hamilt.molecule.double_cc_amplitudes, singles_hamiltonian=None, doubles_hamiltonian=None, tol_filter_small_terms=None) print('REDUCTION') print('ia_terms', len(ansatz_obj.Sec_Quant_CC_ia_Fermi_ops), 'TO', len(reduced_CC_ops_ia)) print('ijab_terms', len(ansatz_obj.Sec_Quant_CC_ijab_Fermi_ops), 'TO', len(reduced_CC_ops_ijab)) print('indices removed:', Removed_indices) ###Output REDUCTION ia_terms 16 TO 6 ijab_terms 42 TO 6 indices removed: [0, 1, 6, 7]
Training/beat_shaper.ipynb
###Markdown Functions for loading/processing training data ###Code # Load a JSON beatmap file and extract and format the note data for use in the neural net def loadbeatmap(beatmap, beats, bpm, chunks_per_beat=8): if beatmap[len(beatmap)-5:len(beatmap)] != ".json": print("Beatmap file " + audio + " is not of type .json") return -1 with open(beatmap) as f: data = json.load(f) notes = "_notes" time = "_time" line_index = "_lineIndex" #column number line_layer = "_lineLayer" #row number note_color = "_type" #0 is one color and 1 is the other cut_direction = "_cutDirection"#9 cut directions bpm_scale = bpm / data['_beatsPerMinute'] dim_0 = beats * chunks_per_beat # number of rows and columns in the playfield # number of cells in the playfield (each cell can hold at most 1 note) playfield_rows = 3 playfield_cols = 4 playfield_cell_count = playfield_rows * playfield_cols # number of colors (2): red, blue (order unknown) # number of directions notes can face (9): # up, down, left, right, up-left, up-right, down-left, down-right, dot (order unknown) note_color_count = 2 note_direction_count = 9 # dimensions for a 'one-hot' representation of a single time unit (chunk) dim_1 = playfield_rows dim_2 = playfield_cols dim_3 = (note_color_count + 1) + (note_direction_count + 1) # initialize matrix to zeros, then set the "no note" bit for each block at each timestep to 1 outMatrix = np.zeros(shape=(dim_0, dim_1, dim_2, dim_3)) outMatrix[:,:,:,0] = 1 outMatrix[:,:,:,3] = 1 block_power = 1#(int)(beats * #chunks_per_beat * #playfield_rows * #playfield_cols / #len(data['_notes']) ) # for every note in the beatmap, set the color and direction bits for the proper cell to 1 for n in range(len(data[notes])): entry = int(np.round(data[notes][n][time]*bpm_scale*chunks_per_beat)) #convert time to row index by rounding to nearest 1/8 beat if data[notes][n][note_color] < 2: outMatrix[entry] \ [data[notes][n][line_layer]] \ [data[notes][n][line_index]] \ [data[notes][n][note_color]+1] = block_power outMatrix[entry] \ [data[notes][n][line_layer]] \ [data[notes][n][line_index]] \ [0] = 0 outMatrix[entry] \ [data[notes][n][line_layer]] \ [data[notes][n][line_index]] \ [data[notes][n][cut_direction]+4] = block_power outMatrix[entry] \ [data[notes][n][line_layer]] \ [data[notes][n][line_index]] \ [3] = 0 return outMatrix # mean center an array def mean_center(x): return (x - np.apply_along_axis(np.mean, 0, x) ) def mean_center(x): return (x - np.apply_along_axis(np.mean, 0, x) ) def mean_center_norm(x): return (x - np.apply_along_axis(np.mean, 0, x) )/ np.apply_along_axis(np.std, 0, x) # Load an audio file of type .ogg and resample it to the correct number of # samples per chunk (chunk size defaults to 1/8th note). Then resize the waveform # to be evenly divisible by the number of beats def loadsong(audio, samples_per_chunk=300, chunks_per_beat=8): # verify extension is .ogg if audio[len(audio)-4:len(audio)] != ".ogg": print("Audio file " + audio + " is not of type .ogg") return -1 # use librosa to load the audio and find the duration (in seconds) and beats per minute y, sr = librosa.load(audio) song_length = librosa.get_duration(y=y,sr=sr) / 60.0 beats_per_minute = int(np.round(librosa.beat.tempo(y, sr=sr))) # find new sample rate (samples/sec) beats_per_second = beats_per_minute / 60.0 samples_per_beat = samples_per_chunk * chunks_per_beat new_sample_rate = samples_per_beat * beats_per_second # resample audio so that it has the right number of samples per chunk # then slice off any extra samples at the end, so that its length is an even number of beats y = librosa.resample(y, sr, new_sample_rate) y = y[0:(len(y)//samples_per_beat) * samples_per_beat] # reshape the song into a list of samples_per_chunk sized pieces y = y.reshape(len(y)//samples_per_chunk, samples_per_chunk) # then perform the Fourier transform on each piece, remove the imaginary component # and slice in half to remove the duplicated information y = np.abs(np.apply_along_axis(np.fft.fft, 1, y))[:,1:(int)(samples_per_chunk/2)+1] # then mean center the data so that each frequency's amplitude is expressed relative to the # mean amplitude of that frequency across all pieces (optionally change this to mean_center_norm) y = np.apply_along_axis(mean_center, 0, y) # find the number of beats in the whole song number_of_beats = int(beats_per_minute * song_length) return y, number_of_beats, beats_per_minute # given two lists of previously loaded song sequences and their corresponding beatmap sequences, # append all possible sequences of the same size from a new song/beatmap pair def append_song(init_song, init_beatmap, song, beatmap, samples_per_chunk=300, chunks_per_beat=8, beats_per_sequence=32, dropout=0.0): # load the song and beatmap song, beats, bpm = loadsong(song, samples_per_chunk=samples_per_chunk, chunks_per_beat=chunks_per_beat) beatmap = loadbeatmap(beatmap, beats, bpm, chunks_per_beat=chunks_per_beat) # calculate the total number of chunks in the song # the number of chunks each sequence will contain # and the number of sequences of that size that exist in the song num_chunks = beats * chunks_per_beat chunks_per_sequence = chunks_per_beat * beats_per_sequence num_sequences = num_chunks - chunks_per_sequence # with (1 - dropout) probability, append each song sequence to the song # list and its corresponding beatmap sequence to the beatmap list for i in range(num_sequences): if random.random() > dropout: init_song.append(song[i:i+chunks_per_sequence]) init_beatmap.append(beatmap[i:i+chunks_per_sequence]) return init_song, init_beatmap # given two numpy arrays of corresponding song and beatmap sequences # if a beatmap sequence has no note blocks in its center 1/divisionth section # (e.g. the center 1/4th of the sequence) remove the song sequence and beatmap sequence # from the array def remove_empty_sections(X, Y, division=1): X_2 = [] Y_2 = [] # calculate the start and end indices of the middle slices sequence_size = Y.shape[1] slice_start = (sequence_size * (division - 1) // (division * 2)) slice_end = sequence_size * (division + 1) // (division * 2) # for all sequences, if any notes exist in the middle slice, keep it for i in range(Y.shape[0]): if any(Y[i,j,k,l,0] == 0 for j in range(slice_start, slice_end) for k in range(Y.shape[2]) for l in range(Y.shape[3])): X_2.append(X[i]) Y_2.append(Y[i]) return np.array(X_2), np.array(Y_2) # randomly split X and Y into train and test data def train_test_split(X, Y, test_split_ratio = .2): split_index = (int)((1-test_split_ratio) * X.shape[0]) indices = np.random.permutation(X.shape[0]) train_indices, test_indices = indices[:split_index], indices[split_index:] x_train, x_test = X[train_indices], X[test_indices] y_train, y_test = Y[train_indices], Y[test_indices] return (x_train, y_train), (x_test, y_test) """This is the function that should be called to create the lists used by the get_training_data function""" # search the current directory and its sub directories for .ogg files with Expert beatmaps and # create a list of the song and json files (if an Expert beatmap does not exist, but an # ExpertPlus beatmap does, use the ExpertPlus beatmap) def get_song_lists(songpath="."): slist = [ join(dirpath, filename) for dirpath, dirnames, filenames in walk(songpath) for filename in filenames if filename.endswith(".ogg") and isfile(join(dirpath,'Expert.json')) ] slist.extend([ join(dirpath, filename) for dirpath, dirnames, filenames in walk(songpath) for filename in filenames if filename.endswith(".ogg") and not isfile(join(dirpath,'Expert.json')) and isfile(join(dirpath,'ExpertPlus.json')) ]) blist = [ join(dirpath, 'Expert.json') for dirpath, dirnames, filenames in walk(songpath) for filename in filenames if filename.endswith(".ogg") and isfile(join(dirpath,'Expert.json')) ] blist.extend([ join(dirpath, 'ExpertPlus.json') for dirpath, dirnames, filenames in walk(songpath) for filename in filenames if filename.endswith(".ogg") and not isfile(join(dirpath,'Expert.json')) and isfile(join(dirpath,'ExpertPlus.json')) ]) return slist, blist """This is the function that should be called to create training data""" # given a list of song filenames and a list of beatmap filenames, # create a numpy array representing data from all of the songs and # a corresponding numpy array representing data from all of the beatmaps # # If the output arrays are too large, consider using dropout to thin the data # Usage: X, Y = get_training_data(song_list, beatmap_list) def get_training_data(song_list, beatmap_list, samples_per_chunk=300, chunks_per_beat=8, beats_per_sequence=32, remove_empty_sections=False, division=1, provide_test_split=False, test_split_ratio=.2, dropout=0.0): X, Y = append_song([], [], song_list[0], beatmap_list[0], samples_per_chunk=samples_per_chunk, chunks_per_beat=chunks_per_beat, beats_per_sequence=beats_per_sequence, dropout=dropout) print("After appending", str("'" + song_list[0] + "':\n"), "X_length:", len(X), "Y_length:", len(Y)) for x, y in zip(song_list[1:], beatmap_list[1:]): X, Y = append_song(X, Y, x, y, samples_per_chunk=samples_per_chunk, chunks_per_beat=chunks_per_beat, beats_per_sequence=beats_per_sequence, dropout=dropout) print("After appending", str("'" + x + "':\n"), "X_length:", len(X), "Y_length:", len(Y)) X = np.array(X) Y = np.array(Y) if remove_empty_sections: X, Y = remove_empty_sections(X, Y, division=division) if provide_test_split: return train_test_split(X, Y, test_split_ratio=test_split_ratio) return X, Y print(end='') ###Output _____no_output_____ ###Markdown Functions for loading/processing prediction data ###Code # convert a list containing a softmax from 0-2 and a softmax from 3-12 # to a list of size 2 containing the indices of the max args of each softmax # e.g. [.1, .1, .8, .05, .05, .1, .1, .1, .2, .1, .1, .1, .1] # yields [2, 8] def softmax_to_max(note_cell): output = [] output.append(np.argmax(note_cell[:3])) output.append(np.argmax(note_cell[3:])) return output # Thanks to @shouldsee from https://github.com/mpld3/mpld3/issues/434#issuecomment-340255689 # helper class to encode numy arrays into json class NumpyEncoder(json.JSONEncoder): """ Special json encoder for numpy types """ def default(self, obj): if isinstance(obj, (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)): return int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): return float(obj) elif isinstance(obj,(np.ndarray,)): #### This is the fix return obj.tolist() return json.JSONEncoder.default(self, obj) # given the y_predicted from the neural net, and a division factor, # stride along y_predicted and take the 1/division_factor'th slice # of the section (axis 0 of y_predicted) and copy it into a new # np array, effectively removing axis 0 from the input data resulting # in an array with the same number of time steps as the original # e.g. taking the middle 1/4th slice of size 40 sequences, the *'s are the # middle 10 elements, which are copied to the output array. The stride between # the sequences is equal to the size of the slice taken (10) # seq i : |---------------**********---------------| # seq i+1 : |----------------------------------------| # seq i+10 : |---------------**********---------------| # seq i+20 : |---------------**********---------------| def convert_beatmap_array(nn_out, division = 1): # number of sequences in nn_out num_sequences = nn_out.shape[0] # number of time steps in each sequence sequence_size = nn_out.shape[1] # number of time steps in the original song target_size = nn_out.shape[1] + nn_out.shape[0] # indices of the start and end of the middle 1/division'th slice of a sequence slice_start = (sequence_size * (division - 1) // (division * 2)) slice_end = sequence_size * (division + 1) // (division * 2) stride = slice_end - slice_start beatmap = np.zeros(shape=(target_size,3,4,13), dtype = float) # first section of the beatmap array beatmap[0:slice_end] = nn_out[0, 0:slice_end,:,:,:] # middle section i = stride while i < num_sequences: beatmap[i+slice_start:i+slice_end] = nn_out[i, slice_start:slice_end,:,:,:] i+=stride # final section final_start_index = -(num_sequences - (i - stride)) beatmap[final_start_index:] = nn_out[num_sequences-1, final_start_index:,:,:,:] # convert the softmax representations to indices return np.apply_along_axis(softmax_to_max, -1, beatmap) # given a numpy array representing each timestep of a whole song (i.e. the output from # the convert_beatmap_array function) find all of the notes and add them to a dictionary # in json format with all additional information beatsaber requires def convert_to_json(original_beatmap, bpm, chunks_per_beat = 8, offset = 0.0, beats_per_bar=16, note_jump_speed=10, shuffle=0, shuffle_period=0.5, version="1.5.0"): new_beatmap = {} new_beatmap['_version'] = version new_beatmap['_beatsPerMinute'] = bpm new_beatmap['_beatsPerBar'] = beats_per_bar new_beatmap['_noteJumpSpeed'] = note_jump_speed new_beatmap['_shuffle'] = shuffle new_beatmap['_shufflePeriod'] = shuffle_period new_beatmap['_events'] = [] new_beatmap['_notes'] = [] new_beatmap['_obstacles'] = [] new_beatmap['_notes'] = [ { "_time" : (i / chunks_per_beat) + offset, "_lineIndex" : k, "_lineLayer" : j, "_type" : original_beatmap[i][j][k][0] - 1, "_cutDirection" : original_beatmap[i][j][k][1] - 1 } for i in range(original_beatmap.shape[0]) for j in range(original_beatmap.shape[1]) for k in range(original_beatmap.shape[2]) if original_beatmap[i][j][k][0] != 0] return new_beatmap """This is the function that should be called to convert the NN's predicted output into a playable json beatmap""" def export_beatmap(filename, nn_output, chunks_per_beat, bpm, division = 1, offset = 0.0, beats_per_bar=16, note_jump_speed=10, shuffle=0, shuffle_period=0.5, version="1.5.0", song_name="none", song_sub_name="none", difficulty="Expert", difficulty_rank=4): converted_map = convert_beatmap_array(nn_output, division=division) json_beatmap = convert_to_json(converted_map, bpm, chunks_per_beat=chunks_per_beat, offset=offset, beats_per_bar=beats_per_bar, note_jump_speed=note_jump_speed, shuffle=shuffle, shuffle_period=shuffle_period, version=version) with open(filename, 'w') as outfile: outfile.write(json.dumps(json_beatmap, cls=NumpyEncoder)) info_json = {} info_json['songName'] = song_name info_json['songSubName'] = song_sub_name info_json['authorName'] = "Beat Shaper" info_json['beatsPerMinute'] = bpm info_json['previewStartTime'] = 12 info_json['previewDuration'] = 10 info_json['coverImagePath'] = "" info_json['environmentName'] = "DefaultEnvironment" info_json['oneSaber'] = False info_json['difficultyLevels'] = [{"difficulty": difficulty, "difficultyRank": difficulty_rank, "audioPath": "song.ogg", "jsonPath": filename, "offset": 0, "oldOffset": 0, "chromaToggle": "Off"}] with open('info.json', 'w') as infofile: infofile.write(json.dumps(info_json)) """This is the function that should be called to prepare a song for the NN's predict function""" # Similar functionality to the append_song function, but can be used without a corresponding beatmap # making it useful for getting a predicted beatmap from a song that does not have a beatmap def get_predict_song(song, samples_per_chunk, chunks_per_beat, beats_per_sequence): init_song = [] # load the song song, beats, bpm = loadsong(song, samples_per_chunk=samples_per_chunk, chunks_per_beat=chunks_per_beat) # calculate the total number of chunks in the song # the number of chunks each sequence will contain # and the number of sequences of that size that exist in the song num_chunks = beats * chunks_per_beat chunks_per_sequence = chunks_per_beat * beats_per_sequence num_sequences = num_chunks - chunks_per_sequence # append every song sequence to the song list for i in range(num_sequences): init_song.append(song[i:i+chunks_per_sequence]) init_song = np.array(init_song) return init_song, bpm ###Output _____no_output_____ ###Markdown Neural Nets Training ###Code samples_per_chunk = 300 chunks_per_beat = 2 beats_per_sequence = 64 # changing the data_version variable only affects which data files are saved and loaded # change it as you see fit data_version = 1 song_list, beatmap_list = get_song_lists(songpath="songs") (X, Y), (x_test, y_test) = get_training_data(song_list, beatmap_list, samples_per_chunk=samples_per_chunk, chunks_per_beat=chunks_per_beat, beats_per_sequence=beats_per_sequence, provide_test_split=True, test_split_ratio=.3, dropout=0.8) print("X.shape:", X.shape) print("Y.shape:", Y.shape) print("x_test.shape:", x_test.shape) print("y_test.shape:", y_test.shape) # save the data so that it may optionally be loaded again later # filename will be "data_v<version>_<numberofsongs>_save_<samplesperchunk>_<chunksperbeat>_<beatspersequence>.npz" np.savez('data_v' + str(data_version) + '_n' + str(len(song_list)) + '_save_' + str(samples_per_chunk) + '_' + str(chunks_per_beat) + '_' + str(beats_per_sequence) + '.npz', X=X, Y=Y, x_test=x_test, y_test=y_test) npzfile = np.load('data_v' + str(data_version) + '_n' + str(len(song_list)) + '_save_' + str(samples_per_chunk) + '_' + str(chunks_per_beat) + '_' + str(beats_per_sequence) + '.npz') X = npzfile['X'] Y = npzfile['Y'] x_test = npzfile['x_test'] y_test = npzfile['y_test'] #Neural Net Model #v1 recurrent dropout .1 #v2 changed recurrent dropout to .4 # changing the model_version variable only affects which model output files are # saved and loaded. It can be changed it as you see fit for model saving purposes model_version = 4 conv_filters = 128 conv_kernel_size = (int)(X.shape[1]/1.5) lstm_size = 128 input_layer = keras.layers.Input(shape=(X.shape[1], X.shape[2])) conv_layer = keras.layers.Conv1D(conv_filters, kernel_size=conv_kernel_size, activation='relu', padding='same') lstm_layer = keras.layers.LSTM(lstm_size, return_sequences=True, dropout=0.2, recurrent_dropout=.4) dense_col_layer = keras.layers.Dense(Y.shape[2]*Y.shape[3]*3) dense_dir_layer = keras.layers.Dense(Y.shape[2]*Y.shape[3]*10) reshape_col_layer = keras.layers.Reshape((Y.shape[1], Y.shape[2], Y.shape[3], 3)) reshape_dir_layer = keras.layers.Reshape((Y.shape[1], Y.shape[2], Y.shape[3], 10)) soft_col_layer = keras.layers.Softmax(axis=-1) soft_dir_layer = keras.layers.Softmax(axis=-1) conv_out = conv_layer(input_layer) lstm_out = lstm_layer(conv_out) dense_col_out = dense_col_layer(lstm_out) dense_dir_out = dense_dir_layer(lstm_out) reshape_col_out = reshape_col_layer(dense_col_out) reshape_dir_out = reshape_dir_layer(dense_dir_out) soft_col_out = soft_col_layer(reshape_col_out) soft_dir_out = soft_dir_layer(reshape_dir_out) new_model = keras.Model(input_layer, [soft_col_out, soft_dir_out]) new_model.compile(loss = [keras.losses.categorical_crossentropy, keras.losses.categorical_crossentropy], optimizer=keras.optimizers.Adam(), metrics=['accuracy']) new_model.summary() # Optionally load a preexisting model i_want_to_load_a_model = False if i_want_to_load_a_model: new_model = keras.models.load_model("model_v3_n31_save_300_2_64_e40.hdf5") # Optionally print the SVG i_want_to_print_the_SVG = False if i_want_to_print_the_SVG: SVG(model_to_dot(new_model).create(prog='dot',format='svg')) histories = {} batch_percent = .2 batch_size = int(X.shape[0] * batch_percent / 100) epochs = 2 history = new_model.fit(X, [Y[:,:,:,:,:3], Y[:,:,:,:,3:]], batch_size=batch_size, epochs=epochs, verbose=0, validation_data=(x_test, [y_test[:,:,:,:,:3], y_test[:,:,:,:,3:]]), callbacks=[TQDMNotebookCallback()]) for data_type in history.history: if data_type not in histories: histories[data_type] = [] histories[data_type] += history.history[data_type] # plot the accuracy and loss and save the model plt.figure(1) i = 1 #because I can't for the life of me figure out how to avoid it for data_type in histories: if not data_type.startswith('val_'): val_data_type = str('val_' + data_type) plt.subplot(len(histories)//2, 1, i) plt.plot(histories[data_type]) plt.plot(histories[val_data_type]) if i == 1: plt.title('model loss') if i == 2: plt.title('model color loss') if i == 3: plt.title('model direction loss') if i == 4: plt.title('model color accuracy') if i == 5: plt.title('model direction accuracy') plt.ylabel(data_type) plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') i = i + 1 plt.figure(1).set_figheight(10) plt.tight_layout() # save the model so that it can be loaded later # file name will be "model_v<version>_<numberofsongs>_save_<samplesperchunk>_<chunksperbeat>_<beatspersequence>_e<numberofepochs>.hdf5" new_model.save('model_v' + str(model_version) + '_n' + str(len(song_list)) + '_save_' + str(samples_per_chunk) + '_' + str(chunks_per_beat) + '_' + str(beats_per_sequence) + '_e' + str(len(histories['val_loss'])) + '.hdf5') plt.show() ###Output _____no_output_____ ###Markdown Create a beatmap ###Code nn_song, bpm = get_predict_song("song.ogg", samples_per_chunk, chunks_per_beat, beats_per_sequence) nn_out = np.concatenate(new_model.predict(nn_song), axis=-1) export_beatmap("Expert.json", nn_out, chunks_per_beat, bpm, division=nn_out.shape[1]) ###Output _____no_output_____ ###Markdown Utility functions and testing ###Code print('Accuracy:', new_model.evaluate(X,Y)[1]*100.0,'%') print('Test_Accuracy:', new_model.evaluate(x_test,y_test)[1]*100.0,'%') data_version = 1 model_version = 1 ###Output _____no_output_____
notebooks/miscellaneous/longest_common_substring_clustering.ipynb
###Markdown Imports ###Code import pandas as pd from waad.heuristics.H2.machines_processing import MachinesProcessing from waad.heuristics.H3.select_valid_accounts import SelectValidAccounts from waad.utils.clustering import LongestCommonSubstringClustering from waad.utils.postgreSQL_utils import Database, Table ###Output _____no_output_____ ###Markdown Database ###Code HOST = '127.0.0.1' PORT = '5432' USER = '' #To fill PASSWORD = '' #To fill DB_NAME = '' #To fill TABLE_NAME = '' #To fill db = Database(host=HOST, port=PORT, user=USER, password=PASSWORD, db_name=DB_NAME) table = Table(db, table_name=TABLE_NAME) ###Output _____no_output_____ ###Markdown Exemple on Accounts Load accounts name and pre-process them ###Code esssttt = table.get_command(f"SELECT DISTINCT eventid, subjectusersid, subjectdomainname, subjectusername, targetusersid, targetdomainname, targetusername FROM {table.table_name}") sva = SelectValidAccounts(esssttt) sva.run() valid_accounts = sva.valid_accounts ###Output _____no_output_____ ###Markdown Apply clustering on accounts name ###Code input_strings = list(set([account.name for account in valid_accounts if (account is not None and not account.name.endswith('$'))])) lcsc = LongestCommonSubstringClustering(input_strings, min_samples=4, min_prefix_suffix_size=3, min_inside_size=4) lcsc.run() lcsc.plot_clusters() ###Output _____no_output_____
tensorflow models/Eager.ipynb
###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Eager Execution View on TensorFlow.org Run in Google Colab View source on GitHub TensorFlow's eager execution is an imperative programming environment thatevaluates operations immediately, without building graphs: operations returnconcrete values instead of constructing a computational graph to run later. Thismakes it easy to get started with TensorFlow and debug models, and itreduces boilerplate as well. To follow along with this guide, run the codesamples below in an interactive `python` interpreter.Eager execution is a flexible machine learning platform for research andexperimentation, providing:* *An intuitive interface*—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.* *Easier debugging*—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.* *Natural control flow*—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.Eager execution supports most TensorFlow operations and GPU acceleration. For acollection of examples running in eager execution, see:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples).Note: Some models may experience increased overhead with eager executionenabled. Performance improvements are ongoing, but please[file a bug](https://github.com/tensorflow/tensorflow/issues) if you find aproblem and share your benchmarks. Setup and basic usage To start eager execution, add `tf.enable_eager_execution()` to the beginning ofthe program or console session. Do not add this operation to other modules thatthe program calls. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf tf.enable_eager_execution() ###Output _____no_output_____ ###Markdown Now you can run TensorFlow operations and the results will return immediately: ###Code tf.executing_eagerly() x = [[2.]] m = tf.matmul(x, x) print("hello, {}".format(m)) ###Output _____no_output_____ ###Markdown Enabling eager execution changes how TensorFlow operations behave—now theyimmediately evaluate and return their values to Python. `tf.Tensor` objectsreference concrete values instead of symbolic handles to nodes in a computationalgraph. Since there isn't a computational graph to build and run later in asession, it's easy to inspect results using `print()` or a debugger. Evaluating,printing, and checking tensor values does not break the flow for computinggradients.Eager execution works nicely with [NumPy](http://www.numpy.org/). NumPyoperations accept `tf.Tensor` arguments. TensorFlow[math operations](https://www.tensorflow.org/api_guides/python/math_ops) convertPython objects and NumPy arrays to `tf.Tensor` objects. The`tf.Tensor.numpy` method returns the object's value as a NumPy `ndarray`. ###Code a = tf.constant([[1, 2], [3, 4]]) print(a) # Broadcasting support b = tf.add(a, 1) print(b) # Operator overloading is supported print(a * b) # Use NumPy values import numpy as np c = np.multiply(a, b) print(c) # Obtain numpy value from a tensor: print(a.numpy()) # => [[1 2] # [3 4]] ###Output _____no_output_____ ###Markdown The `tf.contrib.eager` module contains symbols available to both eager and graph executionenvironments and is useful for writing code to [work with graphs](work_with_graphs): ###Code tfe = tf.contrib.eager ###Output _____no_output_____ ###Markdown Dynamic control flowA major benefit of eager execution is that all the functionality of the hostlanguage is available while your model is executing. So, for example,it is easy to write [fizzbuzz](https://en.wikipedia.org/wiki/Fizz_buzz): ###Code def fizzbuzz(max_num): counter = tf.constant(0) max_num = tf.convert_to_tensor(max_num) for num in range(1, max_num.numpy()+1): num = tf.constant(num) if int(num % 3) == 0 and int(num % 5) == 0: print('FizzBuzz') elif int(num % 3) == 0: print('Fizz') elif int(num % 5) == 0: print('Buzz') else: print(num.numpy()) counter += 1 fizzbuzz(15) ###Output _____no_output_____ ###Markdown This has conditionals that depend on tensor values and it prints these valuesat runtime. Build a modelMany machine learning models are represented by composing layers. Whenusing TensorFlow with eager execution you can either write your own layers oruse a layer provided in the `tf.keras.layers` package.While you can use any Python object to represent a layer,TensorFlow has `tf.keras.layers.Layer` as a convenient base class. Inherit fromit to implement your own layer: ###Code class MySimpleLayer(tf.keras.layers.Layer): def __init__(self, output_units): super(MySimpleLayer, self).__init__() self.output_units = output_units def build(self, input_shape): # The build method gets called the first time your layer is used. # Creating variables on build() allows you to make their shape depend # on the input shape and hence removes the need for the user to specify # full shapes. It is possible to create variables during __init__() if # you already know their full shapes. self.kernel = self.add_variable( "kernel", [input_shape[-1], self.output_units]) def call(self, input): # Override call() instead of __call__ so we can perform some bookkeeping. return tf.matmul(input, self.kernel) ###Output _____no_output_____ ###Markdown Use `tf.keras.layers.Dense` layer instead of `MySimpleLayer` above as it hasa superset of its functionality (it can also add a bias).When composing layers into models you can use `tf.keras.Sequential` to representmodels which are a linear stack of layers. It is easy to use for basic models: ###Code model = tf.keras.Sequential([ tf.keras.layers.Dense(10, input_shape=(784,)), # must declare input shape tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Alternatively, organize models in classes by inheriting from `tf.keras.Model`.This is a container for layers that is a layer itself, allowing `tf.keras.Model`objects to contain other `tf.keras.Model` objects. ###Code class MNISTModel(tf.keras.Model): def __init__(self): super(MNISTModel, self).__init__() self.dense1 = tf.keras.layers.Dense(units=10) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, input): """Run the model.""" result = self.dense1(input) result = self.dense2(result) result = self.dense2(result) # reuse variables from dense2 layer return result model = MNISTModel() ###Output _____no_output_____ ###Markdown It's not required to set an input shape for the `tf.keras.Model` class sincethe parameters are set the first time input is passed to the layer.`tf.keras.layers` classes create and contain their own model variables thatare tied to the lifetime of their layer objects. To share layer variables, sharetheir objects. Eager training Computing gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks. During eager execution, use `tf.GradientTape` to traceoperations for computing gradients later.`tf.GradientTape` is an opt-in feature to provide maximal performance whennot tracing. Since different operations can occur during each call, allforward-pass operations get recorded to a "tape". To compute the gradient, playthe tape backwards and then discard. A particular `tf.GradientTape` can onlycompute one gradient; subsequent calls throw a runtime error. ###Code w = tf.Variable([[1.0]]) with tf.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) print(grad) # => tf.Tensor([[ 2.]], shape=(1, 1), dtype=float32) ###Output _____no_output_____ ###Markdown Train a modelThe following example creates a multi-layer model that classifies the standardMNIST handwritten digits. It demonstrates the optimizer and layer APIs to buildtrainable graphs in an eager execution environment. ###Code # Fetch and format the mnist data (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32), tf.cast(mnist_labels,tf.int64))) dataset = dataset.shuffle(1000).batch(32) # Build the model mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown Even without training, call the model and inspect the output in eager execution: ###Code for images,labels in dataset.take(1): print("Logits: ", mnist_model(images[0:1]).numpy()) ###Output _____no_output_____ ###Markdown While keras models have a builtin training loop (using the `fit` method), sometimes you need more customization. Here's an example, of a training loop implemented with eager: ###Code optimizer = tf.train.AdamOptimizer() loss_history = [] for (batch, (images, labels)) in enumerate(dataset.take(400)): if batch % 10 == 0: print('.', end='') with tf.GradientTape() as tape: logits = mnist_model(images, training=True) loss_value = tf.losses.sparse_softmax_cross_entropy(labels, logits) loss_history.append(loss_value.numpy()) grads = tape.gradient(loss_value, mnist_model.trainable_variables) optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables), global_step=tf.train.get_or_create_global_step()) import matplotlib.pyplot as plt plt.plot(loss_history) plt.xlabel('Batch #') plt.ylabel('Loss [entropy]') ###Output _____no_output_____ ###Markdown Variables and optimizers`tf.Variable` objects store mutable `tf.Tensor` values accessed duringtraining to make automatic differentiation easier. The parameters of a model canbe encapsulated in classes as variables.Better encapsulate model parameters by using `tf.Variable` with`tf.GradientTape`. For example, the automatic differentiation example abovecan be rewritten: ###Code class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.W = tf.Variable(5., name='weight') self.B = tf.Variable(10., name='bias') def call(self, inputs): return inputs * self.W + self.B # A toy dataset of points around 3 * x + 2 NUM_EXAMPLES = 2000 training_inputs = tf.random_normal([NUM_EXAMPLES]) noise = tf.random_normal([NUM_EXAMPLES]) training_outputs = training_inputs * 3 + 2 + noise # The loss function to be optimized def loss(model, inputs, targets): error = model(inputs) - targets return tf.reduce_mean(tf.square(error)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return tape.gradient(loss_value, [model.W, model.B]) # Define: # 1. A model. # 2. Derivatives of a loss function with respect to model parameters. # 3. A strategy for updating the variables based on the derivatives. model = Model() optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) # Training loop for i in range(300): grads = grad(model, training_inputs, training_outputs) optimizer.apply_gradients(zip(grads, [model.W, model.B]), global_step=tf.train.get_or_create_global_step()) if i % 20 == 0: print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs))) print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs))) print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy())) ###Output _____no_output_____ ###Markdown Use objects for state during eager executionWith graph execution, program state (such as the variables) is stored in globalcollections and their lifetime is managed by the `tf.Session` object. Incontrast, during eager execution the lifetime of state objects is determined bythe lifetime of their corresponding Python object. Variables are objectsDuring eager execution, variables persist until the last reference to the objectis removed, and is then deleted. ###Code if tf.test.is_gpu_available(): with tf.device("gpu:0"): v = tf.Variable(tf.random_normal([1000, 1000])) v = None # v no longer takes up GPU memory ###Output _____no_output_____ ###Markdown Object-based saving`tf.train.Checkpoint` can save and restore `tf.Variable`s to and fromcheckpoints: ###Code x = tf.Variable(10.) checkpoint = tf.train.Checkpoint(x=x) x.assign(2.) # Assign a new value to the variables and save. checkpoint_path = './ckpt/' checkpoint.save('./ckpt/') x.assign(11.) # Change the variable after saving. # Restore values from the checkpoint checkpoint.restore(tf.train.latest_checkpoint(checkpoint_path)) print(x) # => 2.0 ###Output _____no_output_____ ###Markdown To save and load models, `tf.train.Checkpoint` stores the internal state of objects,without requiring hidden variables. To record the state of a `model`,an `optimizer`, and a global step, pass them to a `tf.train.Checkpoint`: ###Code import os import tempfile model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16,[3,3], activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10) ]) optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = tempfile.mkdtemp() checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tf.train.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.save(checkpoint_prefix) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) ###Output _____no_output_____ ###Markdown Object-oriented metrics`tfe.metrics` are stored as objects. Update a metric by passing the new data tothe callable, and retrieve the result using the `tfe.metrics.result` method,for example: ###Code m = tfe.metrics.Mean("loss") m(0) m(5) m.result() # => 2.5 m([8, 9]) m.result() # => 5.5 ###Output _____no_output_____ ###Markdown Summaries and TensorBoard[TensorBoard](../guide/summaries_and_tensorboard.md) is a visualization tool forunderstanding, debugging and optimizing the model training process. It usessummary events that are written while executing the program.`tf.contrib.summary` is compatible with both eager and graph executionenvironments. Summary operations, such as `tf.contrib.summary.scalar`, areinserted during model construction. For example, to record summaries once every100 global steps: ###Code global_step = tf.train.get_or_create_global_step() logdir = "./tb/" writer = tf.contrib.summary.create_file_writer(logdir) writer.set_as_default() for _ in range(10): global_step.assign_add(1) # Must include a record_summaries method with tf.contrib.summary.record_summaries_every_n_global_steps(100): # your model code goes here tf.contrib.summary.scalar('global_step', global_step) !ls tb/ ###Output _____no_output_____ ###Markdown Advanced automatic differentiation topics Dynamic models`tf.GradientTape` can also be used in dynamic models. This example for a[backtracking line search](https://wikipedia.org/wiki/Backtracking_line_search)algorithm looks like normal NumPy code, except there are gradients and isdifferentiable, despite the complex control flow: ###Code def line_search_step(fn, init_x, rate=1.0): with tf.GradientTape() as tape: # Variables are automatically recorded, but manually watch a tensor tape.watch(init_x) value = fn(init_x) grad = tape.gradient(value, init_x) grad_norm = tf.reduce_sum(grad * grad) init_value = value while value > init_value - rate * grad_norm: x = init_x - rate * grad value = fn(x) rate /= 2.0 return x, value ###Output _____no_output_____ ###Markdown Additional functions to compute gradients`tf.GradientTape` is a powerful interface for computing gradients, but thereis another [Autograd](https://github.com/HIPS/autograd)-style API available forautomatic differentiation. These functions are useful if writing math code withonly tensors and gradient functions, and without `tf.variables`:* `tfe.gradients_function` —Returns a function that computes the derivatives of its input function parameter with respect to its arguments. The input function parameter must return a scalar value. When the returned function is invoked, it returns a list of `tf.Tensor` objects: one element for each argument of the input function. Since anything of interest must be passed as a function parameter, this becomes unwieldy if there's a dependency on many trainable parameters.* `tfe.value_and_gradients_function` —Similar to `tfe.gradients_function`, but when the returned function is invoked, it returns the value from the input function in addition to the list of derivatives of the input function with respect to its arguments.In the following example, `tfe.gradients_function` takes the `square`function as an argument and returns a function that computes the partialderivatives of `square` with respect to its inputs. To calculate the derivativeof `square` at `3`, `grad(3.0)` returns `6`. ###Code def square(x): return tf.multiply(x, x) grad = tfe.gradients_function(square) square(3.).numpy() grad(3.)[0].numpy() # The second-order derivative of square: gradgrad = tfe.gradients_function(lambda x: grad(x)[0]) gradgrad(3.)[0].numpy() # The third-order derivative is None: gradgradgrad = tfe.gradients_function(lambda x: gradgrad(x)[0]) gradgradgrad(3.) # With flow control: def abs(x): return x if x > 0. else -x grad = tfe.gradients_function(abs) grad(3.)[0].numpy() grad(-3.)[0].numpy() ###Output _____no_output_____ ###Markdown Custom gradientsCustom gradients are an easy way to override gradients in eager and graphexecution. Within the forward function, define the gradient with respect to theinputs, outputs, or intermediate results. For example, here's an easy way to clipthe norm of the gradients in the backward pass: ###Code @tf.custom_gradient def clip_gradient_by_norm(x, norm): y = tf.identity(x) def grad_fn(dresult): return [tf.clip_by_norm(dresult, norm), None] return y, grad_fn ###Output _____no_output_____ ###Markdown Custom gradients are commonly used to provide a numerically stable gradient for asequence of operations: ###Code def log1pexp(x): return tf.log(1 + tf.exp(x)) grad_log1pexp = tfe.gradients_function(log1pexp) # The gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # However, x = 100 fails because of numerical instability. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown Here, the `log1pexp` function can be analytically simplified with a customgradient. The implementation below reuses the value for `tf.exp(x)` that iscomputed during the forward pass—making it more efficient by eliminatingredundant calculations: ###Code @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.log(1 + e), grad grad_log1pexp = tfe.gradients_function(log1pexp) # As before, the gradient computation works fine at x = 0. grad_log1pexp(0.)[0].numpy() # And the gradient computation also works at x = 100. grad_log1pexp(100.)[0].numpy() ###Output _____no_output_____ ###Markdown PerformanceComputation is automatically offloaded to GPUs during eager execution. If youwant control over where a computation runs you can enclose it in a`tf.device('/gpu:0')` block (or the CPU equivalent): ###Code import time def measure(x, steps): # TensorFlow initializes a GPU the first time it's used, exclude from timing. tf.matmul(x, x) start = time.time() for i in range(steps): x = tf.matmul(x, x) # tf.matmul can return before completing the matrix multiplication # (e.g., can return after enqueing the operation on a CUDA stream). # The x.numpy() call below will ensure that all enqueued operations # have completed (and will also copy the result to host memory, # so we're including a little more than just the matmul operation # time). _ = x.numpy() end = time.time() return end - start shape = (1000, 1000) steps = 200 print("Time to multiply a {} matrix by itself {} times:".format(shape, steps)) # Run on CPU: with tf.device("/cpu:0"): print("CPU: {} secs".format(measure(tf.random_normal(shape), steps))) # Run on GPU, if available: if tfe.num_gpus() > 0: with tf.device("/gpu:0"): print("GPU: {} secs".format(measure(tf.random_normal(shape), steps))) else: print("GPU: not found") ###Output _____no_output_____ ###Markdown A `tf.Tensor` object can be copied to a different device to execute itsoperations: ###Code if tf.test.is_gpu_available(): x = tf.random_normal([10, 10]) x_gpu0 = x.gpu() x_cpu = x.cpu() _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0 if tfe.num_gpus() > 1: x_gpu1 = x.gpu(1) _ = tf.matmul(x_gpu1, x_gpu1) # Runs on GPU:1 ###Output _____no_output_____ ###Markdown BenchmarksFor compute-heavy models, such as[ResNet50](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples/resnet50)training on a GPU, eager execution performance is comparable to graph execution.But this gap grows larger for models with less computation and there is work tobe done for optimizing hot code paths for models with lots of small operations. Work with graphsWhile eager execution makes development and debugging more interactive,TensorFlow graph execution has advantages for distributed training, performanceoptimizations, and production deployment. However, writing graph code can feeldifferent than writing regular Python code and more difficult to debug.For building and training graph-constructed models, the Python program firstbuilds a graph representing the computation, then invokes `Session.run` to sendthe graph for execution on the C++-based runtime. This provides:* Automatic differentiation using static autodiff.* Simple deployment to a platform independent server.* Graph-based optimizations (common subexpression elimination, constant-folding, etc.).* Compilation and kernel fusion.* Automatic distribution and replication (placing nodes on the distributed system).Deploying code written for eager execution is more difficult: either generate agraph from the model, or run the Python runtime and code directly on the server. Write compatible codeThe same code written for eager execution will also build a graph during graphexecution. Do this by simply running the same code in a new Python session whereeager execution is not enabled.Most TensorFlow operations work during eager execution, but there are some thingsto keep in mind:* Use `tf.data` for input processing instead of queues. It's faster and easier.* Use object-oriented layer APIs—like `tf.keras.layers` and `tf.keras.Model`—since they have explicit storage for variables.* Most model code works the same during eager and graph execution, but there are exceptions. (For example, dynamic models using Python control flow to change the computation based on inputs.)* Once eager execution is enabled with `tf.enable_eager_execution`, it cannot be turned off. Start a new Python session to return to graph execution.It's best to write code for both eager execution *and* graph execution. Thisgives you eager's interactive experimentation and debuggability with thedistributed performance benefits of graph execution.Write, debug, and iterate in eager execution, then import the model graph forproduction deployment. Use `tf.train.Checkpoint` to save and restore modelvariables, this allows movement between eager and graph execution environments.See the examples in:[tensorflow/contrib/eager/python/examples](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples). Use eager execution in a graph environmentSelectively enable eager execution in a TensorFlow graph environment using`tfe.py_func`. This is used when `tf.enable_eager_execution()` has *not*been called. ###Code def my_py_func(x): x = tf.matmul(x, x) # You can use tf ops print(x) # but it's eager! return x with tf.Session() as sess: x = tf.placeholder(dtype=tf.float32) # Call eager function in graph! pf = tfe.py_func(my_py_func, [x], tf.float32) sess.run(pf, feed_dict={x: [[2.0]]}) # [[4.0]] ###Output _____no_output_____
src/spacy_examples_visualizations.ipynb
###Markdown **1. Import statements** ###Code import spacy from spacy import displacy ###Output _____no_output_____ ###Markdown **2. Load English model** ###Code nlp = spacy.load('en') doc = nlp('5:44 Mumbai slow local train cancel today (sent from Thane Stn.)') ###Output _____no_output_____ ###Markdown **3. View word level attributes** ###Code for token in doc: print("{0}\t{1}\t{2}\t{3}\t\t{4}\t{5}\t{6}\t{7}".format( token.text, token.idx, token.lemma_, token.is_punct, token.is_space, token.shape_, token.pos_, token.tag_ )) ###Output 5:44 0 5:44 False False d:dd NUM CD Mumbai 5 mumbai False False Xxxxx PROPN NNP slow 12 slow False False xxxx ADJ JJ local 17 local False False xxxx ADJ JJ train 23 train False False xxxx NOUN NN cancel 29 cancel False False xxxx NOUN NN today 36 today False False xxxx NOUN NN 42 False True SPACE ( 43 ( True False ( PUNCT -LRB- sent 44 send False False xxxx VERB VBN from 49 from False False xxxx ADP IN Thane 54 thane False False Xxxxx PROPN NNP Stn 60 stn False False Xxx PROPN NNP . 63 . True False . PUNCT . ) 64 ) True False ) PUNCT -RRB- ###Markdown **4. Named Entity Recognition (NER)** ###Code for ent in doc.ents: print(ent.text, ent.label_) ###Output 5:44 CARDINAL Mumbai GPE today DATE Thane Stn FAC ###Markdown **5. Visualize NER annotated entities** ###Code displacy.render(doc, style='ent', jupyter=True) ###Output _____no_output_____ ###Markdown **6. Chunking - automatically detect Noun Phrases** ###Code for chunk in doc.noun_chunks: print(chunk.text, chunk.label_, chunk.root.text) ###Output 5:44 Mumbai NP Mumbai local train NP train Thane Stn NP Stn ###Markdown **7. Dependency Parsing** ###Code for token in doc: print("{0}/{1} <--{2}-- {3}/{4}".format(token.text, token.tag_, token.dep_, token.head.text, token.head.tag_)) ###Output 5:44/CD <--nummod-- Mumbai/NNP Mumbai/NNP <--nsubj-- slow/JJ slow/JJ <--ROOT-- slow/JJ local/JJ <--amod-- train/NN train/NN <--nsubj-- cancel/NN cancel/NN <--ccomp-- slow/JJ today/NN <--npadvmod-- cancel/NN / <---- today/NN (/-LRB- <--punct-- cancel/NN sent/VBN <--advcl-- slow/JJ from/IN <--prep-- sent/VBN Thane/NNP <--compound-- Stn/NNP Stn/NNP <--pobj-- from/IN ./. <--punct-- slow/JJ )/-RRB- <--punct-- slow/JJ ###Markdown **8. Visualize Dependency Tree** ###Code displacy.render(doc, style='dep', jupyter=True, options={'distance': 90}) ###Output _____no_output_____
course_urls.ipynb
###Markdown Course URLsIn this notebook do the following: 1) Identify the highest scoring pages, for each base URL, from the Markov Crawler 2) Identify common features of URLs with high scores 3) Use PCA to identify combinations of URL features that lead to high scores 4) Identify compound phrases from text on the pages of these URLs 5) TODO: Cluster words to find topics 6) Plan next step ###Code %load_ext autoreload %matplotlib inline %autoreload 2 from sqlalchemy import create_engine import pandas as pd from urllib.parse import urlparse from collections import Counter import re from nltk.corpus import stopwords from sklearn.decomposition import PCA from nltk.stem import WordNetLemmatizer import numpy as np import requests from bs4 import BeautifulSoup from graph_scorer import GraphScorer from matplotlib import pyplot as plt from compounder import Compounder from fuzzywuzzy import process as fuzzy_process from fuzzywuzzy import fuzz import wikipedia from collections import Counter from sklearn.cluster import AffinityPropagation from sklearn.cluster import KMeans import gensim lemmatizer = WordNetLemmatizer() _stops = set(stopwords.words("english")) ''' Split words by tokens, including numbers as tokens. Useful for splitting URLs. ''' def tokenize_alphanum(text): words = list(filter(('').__ne__, re.split('[^a-zA-Z]',text))) _words = [] for w in words: w = w.lower() w = lemmatizer.lemmatize(w) _words.append(w) return _words ''' Split words according to a Viterbi Segmentation algorithm. E.g. degreecourse -> degree course Needs to be trained by a relevant corpus. Note: don't include words in the corpus that you don't want to be found! ''' class WordSplitter: '''Define the word corpus''' def __init__(self,words): self.corpus = Counter(words) self.max_word_length = max(map(len,self.corpus)) self.total = float(sum(self.corpus.values())) '''Get the fraction of vocab corresponding to this word''' def word_prob(self,word): # A small workaround for plurals, could be extended to fuzzy matching if word not in self.corpus: if word[:-1] in self.corpus: word = word[:-1] return self.corpus[word] / self.total '''Split word according to Viterbi algorithm''' def split(self,text): probs, lasts = [1.0], [0] for i in range(1, len(text) + 1): prob_k, k = max((probs[j] * self.word_prob(text[j:i]), j) for j in range(max(0, i - self.max_word_length), i)) probs.append(prob_k) lasts.append(k) words = [] i = len(text) while 0 < i: words.append(text[lasts[i]:i]) i = lasts[i] words.reverse() score = probs[-1] # If score is zero, return the original string if score == 0.: return [text],0 return words,score ###Output _____no_output_____ ###Markdown Identify the highest scoring pages, for each base URL, from the Markov CrawlerHere I print out the top 5 highest scoring pages for each base URL. The results are ok, although a bit mixed as one might expect. ###Code # Connect to database where data is found with open("db.config") as f: engine_url = f.read() engine = create_engine(engine_url) conn = engine.connect() # Load data into dataframes df_pages = pd.read_sql_table("page_scores",con=conn) df_tops = pd.read_sql_table("top_urls",con=conn) # Assign a base URL to each page, by iterating through # each base URL df_pages["top_url"] = None for _,url in df_tops.url.items(): # Normalise the page to the score of the base URL, so extract # the base URL's score condition = df_pages.page == url topurl_score = df_pages.loc[condition,"score"].values[0] # Split the top URL, since only expect to find the netloc in a given page # e.g. www.manchester.ac.uk and www.research.manchester.ac.uk _parsed = urlparse(url) _joined = _parsed.scheme +"://" + _parsed.netloc condition = df_pages.page.str.contains(_parsed.netloc.replace("www.","")) # Assign a normalised score, and the base URL df_pages.loc[condition,"norm_score"] = df_pages.loc[condition,"score"]/topurl_score df_pages.loc[condition,"top_url"] = _joined # Print out "top 5" results _df = df_pages.loc[condition].sort_values("norm_score",ascending=False).head(5) print(_joined) for _,row in _df.iterrows(): print(row["page"].replace(_joined,""),row["norm_score"]) print("-------------------") ###Output http://www.manchester.ac.uk /study/postgraduate-research/programmes/research-areas 1.4651873148963208 https://www.research.manchester.ac.uk/portal/en/publications/search.html 1.23936874236101 /study/undergraduate/courses/2018 1.2114514661583506 /study/postgraduate-research/contact 1.2099949126173424 /study/undergraduate/courses/2017 1.1546036591158086 ------------------- https://www.masdar.ac.ae /visitor 1.4048698227547218 /research-education/partners-and-resources 1.346091716725332 /research-education/innovation-centers/iwater 1.3005225309011408 /research-education/degree-offerings 1.2972706155017852 /aboutus/useful-info/printed-material 1.2590632576989362 ------------------- http://www.birmingham.ac.uk /university/colleges/artslaw/staff.aspx 2.129924767088331 /libraries/index.aspx 2.128522411821165 /schools/engineering/index.aspx 2.0381854442420098 /libraries/subject/index.aspx 2.03070238457869 /research/activity/clinical-sciences/index.aspx 1.8902829424172236 ------------------- https://www.ajman.ac.ae http://education.ajman.ac.ae 4.486324047393929 /en/request-information 3.6183909493288784 /en/admission-and-registration/request-information.html 1.7809599080812295 http://engineering.ajman.ac.ae 1.2984538174508504 http://ajman.ac.ae 1.2690209234373755 ------------------- https://www.sheffield.ac.uk /undergraduate/finance/fees-calculator 10.388672055566499 http://www.sheffield.ac.uk/prospectus/subjectList.do?prospectusYear=2018 4.641977144740597 http://www.sheffield.ac.uk/prospectus/courses-az.do?prospectusYear=2018 3.266722404665914 http://www.sheffield.ac.uk/prospectus/courses-az.do?prospectusYear=2017 2.6843273053223093 /alumni/keepintouch/alumni-keepintouch-update 2.642704686413461 ------------------- https://www.adu.ac.ae /en-us/employment.aspx 1.8564880633817846 http://www.adu.ac.ae/en-us/programdetail.aspx?ProgramId=169 1.6722264723361364 http://www.adu.ac.ae/en-us/programdetail.aspx?ProgramId=164 1.6506548641185685 http://www.adu.ac.ae/en-us/aboutadu.aspx 1.6178328577948369 http://www.adu.ac.ae/en-us/departmentdetail.aspx?DepartmentId=5&CollegeId=224 1.487964881290488 ------------------- https://aau.ac.ae http://regonline.aau.ac.ae/ain 6.450934717359815 /en/centers/elc/tests-calendar 2.069864276405709 /en/centers/elc/extracurricular-activities 1.8208636240485196 /en/academics/undergraduate-programs 1.7598508205926917 /en/admission/undergraduate/transcripts 1.6707760628805732 ------------------- https://www.aus.edu http://www.aus.edu/info/200132/accreditation 6.5362885367714 http://www.aus.edu/info/200124/about_aus 3.6789391777181804 http://www.aus.edu/info/200135/undergraduate_programs/87/minors 2.2402535491966638 http://www.aus.edu/info/200135/undergraduate_programs 2.060794601776444 /info/200136/graduate_programs 1.7226674950175924 ------------------- https://gmu.ac.ae http://gmu.ac.ae/college-dentistry 4.389155104499251 /aboutgmu/career 2.2542228784333376 http://mail.gmu.ac.ae 2.1529883960790794 http://gmu.ac.ae/college-medicine/bachelor-of-medicine-and-bachelor-of-surgery-mbbs 1.8543886487322037 /cash/gulfsim-medsim-2016 1.5655565564551808 ------------------- http://www.buid.ac.ae /apply-sept-2017 1.311779120561331 /publications 1.3091733763565243 /academic-support-and-resources 1.267887855588195 /discover 1.2288016925160956 /PG_Diploma_and_Certificate 1.2164670248550251 ------------------- http://www.kustar.ac.ae /pages/press-kit 3.8600644729378946 /pages/mazaya- 1.5534624773922587 /pages/%20http:/www.meduni-graz.at/DK_MCD/Call_Application.htm 1.407726526297515 /pages/academics 1.3552159225088083 /pages/graduate--programs 1.3349417876673806 ------------------- http://nyuad.nyu.edu /en/academics/undergraduate-programs/minors.html 3.0576543174409503 /en/academics/global-education/academic-regional-travel.html 1.6439482147051716 /en/campus-life/public-safety.html 1.6234750765102213 /en/academics/academic-divisions/engineering.html 1.6027281745193502 /en/academics/executive-education.html 1.5887172138281134 ------------------- http://www.pi.ac.ae /en/Academics 1.7279552060906147 /en/Pages/Contacts.aspx 1.2631383061419668 /en/Highlights/Pages/Details.aspx?ItemId=9 1.1558835584492677 /en/Research/GRC/Pages/default.aspx 1.0225594904386581 /en 1.0 ------------------- http://www.sharjah.ac.ae /en/academics/colleges/ahss 2.750956057157518 /en/Libraries/Pages/default.aspx 2.656875408106748 /en/academics/degree-program/Pages/default.aspx 1.5249455765908317 /en/Life_on_Campus/Pages/scs.aspx 1.517964404833085 /en/about/Senior-Admin/DASS/Pages/default.aspx 1.49275951184652 ------------------- http://www.uowdubai.ac.ae https://staff.uowdubai.ac.ae/feedback 2.2500191492908757 /events/health-activities-english-language-centre-students 2.174142900268991 /bachelor-engineering-electrical 2.042215550425715 /contact-us 1.8687304846197401 /about-uowd/our-professional-staff/office-of-institutional-research 1.7423601838932685 ------------------- http://www.zu.ac.ae /main/en/graduate_programs/Graduate_Programs_Folder/index.aspx 3.7336753808939154 /main/en/colleges/index.aspx 3.622110646396689 http://library.zu.ac.ae/ftlist 3.556196617455738 /main/en/SAHIM/index.aspx 3.332867509807249 /main/en/_ice/index.aspx 2.828147719294743 ------------------- ###Markdown Identify common features of URLs with high scoresIn order to generate more meaningful results, I opt to analyse common features of URLs with high scores in order to filter out spurious results.First I plot the distribution of scores, which is useful if only to show the distribution is at least approximately symmetric. I originally attempted to sample more uniformally across the distribution, but it turns out that this isn't really necessary. The first step, however, is to exclude very bad pages by requiring non-zero scores. ###Code # Only use non-zero scores df_pages = df_pages.loc[df_pages.score > 0] # Plot the log of the scores log_scores = df_pages["norm_score"] bins = np.arange(min(log_scores),max(log_scores),0.1) log_scores.hist(bins=bins) # freqs,lims = np.histogram(log_scores,bins) # def get_freq(value): # if np.fabs(value) > 4: # return 0 # for i,x in enumerate(lims): # if value <= x: # if freqs[i-1] == 0: # return 0 # return 1/freqs[i-1]**3 # return 0 # df_pages["weights"] = log_scores.apply(get_freq) ###Output _____no_output_____ ###Markdown URL contentsBefore analysing URL contents, it is necessary to remove any common "junk" associated with university URLs. I additionally include "html" and "aspx" as these don't provide any predictive power. I therefore compile a list of stop words, in the context of academic URLs, and also include the standard NLTK stop words.I then make a count of the common non-stop terms found in URLs. ###Code # Generate a list of stops from base URLs stop_urls = ["html","aspx"] for url in df_tops.url.values: stop_urls += tokenize_alphanum(url) stop_urls = set(stop_urls).union(_stops) # Count common non-stops common_words = [] for url in df_pages.page.values: for w in tokenize_alphanum(url): if not w in stop_urls: common_words.append(w) c = Counter(common_words) ###Output _____no_output_____ ###Markdown One caveat with the above procedure is that I will miss URLs with wordscompoundedtogether. Therefore, I train a word splitter (see near top of notebook for WordSplitter) with the 200 most common words found. Therefore 'hiddden' words like "degreecourse" should be found as "degree" "course". ###Code # Train a word splitter with the most common words, # but first reweight each word by it's occurence _common_words = [] for w,s in c.most_common(200): # This way earch word, w, will appear s times _common_words += [w]*s wsplitter = WordSplitter(_common_words) _common_words = set(_common_words) # Try to find any hidden words common_words = [] for url in df_pages.page.values: # Split the URL into words for w in tokenize_alphanum(url): # If not a stop word if w in stop_urls: continue # Get the split word split_word,score = wsplitter.split(w) # If the word can't be split if score == 0 or len(split_word) == 1: common_words.append(w) # Otherwise append the components else: for s in split_word: common_words.append(s) # Recount the words, ignore short words (en,u etc) c = Counter(common_words) common_words = [w for w,_ in c.most_common(200) if len(w) > 2] ###Output _____no_output_____ ###Markdown Finally, the contents of each page's URL can be formalised by creating a binary variable for each common word. ###Code # Create a binary variable for each common word for w in common_words: # Generate one bool per URL in df_pages condition = [] for url in df_pages.page.values: # Check whether the tokens contain the common word url_tokens = tokenize_alphanum(url) # Firstly, is the word in the URL? found_word = w in url_tokens # Otherwise, check whether any tokens can be split to # find the common word if not found_word: for token in url_tokens: split_word,score = wsplitter.split(token) if score > 0 and len(split_word) > 1: found_word = w in split_word # Append this flag condition.append(found_word) # Append this word's condition (Note: I use an underscore to avoid column conflicts) df_pages["_"+w] = condition ###Output _____no_output_____ ###Markdown Distribution of URL termsNow I look at the distribution of URL terms. Firstly I indentify words that are definitely unimportant or detrimental to a high score by considering whether the mean score of URLs containing each word are *significantly* higher than the mean score. Note significance is defined in terms of standard deviations.Note: this is where I previously mentioned that I could sample a uniform distribution with weights ###Code _df = df_pages #.sample(n=1000,weights="weights") # Columns not related to words drop_cols = ["page","score","norm_score","top_url"] # Decide which of the words are actually important by comparing their effect on the mean d = {} mean = _df["norm_score"].mean() std = _df["norm_score"].std() for col in _df.drop(drop_cols,axis=1).columns: _mean = _df.loc[_df[col],"norm_score"].mean() _std = _df[col].std() d[col] = (_mean - mean)/np.sqrt(std*std + _std*_std) # Plot the results fig,ax = plt.subplots(figsize=(10,6)) _ = ax.hist(list(d.values()),bins=50) ax.set_ylabel("Frequency") ax.set_xlabel("Significance of score, relative to the mean score") ###Output _____no_output_____ ###Markdown The above is enough to motivate me into cutting words with a significance of 0.1 ###Code # Only keep the most significant words for w,s in Counter(d).most_common(): if s < 0.1: _df.drop(w,axis=1,inplace=True) len(_df.columns) ###Output _____no_output_____ ###Markdown Combinations of URL termsNow I perform PCA on the words identified above, fitted with respect to the normalised score. ###Code pca = PCA() _pca = pca.fit(y=_df["norm_score"],X=_df.drop(drop_cols,axis=1)) ###Output _____no_output_____ ###Markdown It is found that the first 9ish components describe 50% of the variance, which at first seems pretty bad. However, I believe this is obscured by the fact that the distribution of `norm_score` is very noisy. The principal N components therefore could identify combinations of key words that rise above this noise, and are good indicators of pages containing courses. For example, the highest PC explains nearly 10% of variance, which is actually pretty huge. ###Code total = 0 for i,x in enumerate(_pca.explained_variance_ratio_): total += x #print(total) if total > 0.5: print(i) break print(_pca.explained_variance_ratio_) ###Output 9 [ 0.11017301 0.08518736 0.05252114 0.04905744 0.0438438 0.04217498 0.04085477 0.03841977 0.02997759 0.02884661 0.02691523 0.02663878 0.02624788 0.02587565 0.02304958 0.02204769 0.02124936 0.02049994 0.01617408 0.01585362 0.01523768 0.01481933 0.01455394 0.01421435 0.01370439 0.0132476 0.01230321 0.0120076 0.01010983 0.00870186 0.0086139 0.00847353 0.00827081 0.00771417 0.00760734 0.00746846 0.00739634 0.00720747 0.0070589 0.00675965 0.0062417 0.00618848 0.00611109 0.00597404 0.00564725 0.00543089 0.00521255 0.0035512 0.00327683 0.00128733] ###Markdown To motivate this further, look at the four most common words in each PC describing more than 5% of the variance (below). They look really very sensible. ###Code for i,(comp,var) in enumerate(zip(_pca.components_,_pca.explained_variance_ratio_)): if var < 0.05: break d = {w:c for w,c in zip(_df.drop(drop_cols,axis=1).columns,comp)} print(i,var) for w,c in Counter(d).most_common(5): print("\t",w,c) print("") ###Output 0 0.110173010725 _program 0.789462543071 _undergraduate 0.543052020129 _graduate 0.114352417181 _requirement 0.108690108532 _postgraduate 0.0637612399296 1 0.0851873574167 _college 0.957047466055 _program 0.154267280266 _graduate 0.122755340674 _science 0.0957872707366 _art 0.0763989750428 2 0.0525211355292 _program 0.444767430156 _degree 0.244966274832 _graduate 0.230994775341 _engineering 0.170119680704 _postgraduate 0.136421248974 ###Markdown Therefore, I use the first 3 PCs to rank URLs in order to extract course information from. I take the top 5 (`DataFrame.head`) URLs, ranked according to these 3 PCs, and take the set of these (therefore a maximum of 15 URLs per base URL) ###Code urls_to_try = {} for i in range(0,3): # Calculate the i'th PC pc = "pca"+str(i) _cols = drop_cols _df[pc] = [x[i] for x in _pca.transform(_df.drop(_cols,axis=1))] # Get the top values of the i'th PC per top_url for top_url,grouped in _df.groupby("top_url"): # If not already added this top_url to the list if top_url not in urls_to_try: urls_to_try[top_url] = set() for v in grouped.sort_values(pc,ascending=False).head()["page"].values: urls_to_try[top_url].add(v) # Make sure this new column is dropped in future iterations of this forloop if pc not in drop_cols: _cols.append(pc) urls_to_try["https://www.masdar.ac.ae"].add("https://www.masdar.ac.ae/research-education/degree-programs/undergraduate-programs") urls_to_try["https://www.masdar.ac.ae"].add("https://www.masdar.ac.ae/research-education/degree-programs/doctorate-programs") urls_to_try["https://www.masdar.ac.ae"].add("https://www.masdar.ac.ae/research-education/degree-programs/master-s-programs") urls_to_try["http://www.kustar.ac.ae"].add("http://www.kustar.ac.ae/pages/undergraduate-programs") urls_to_try["http://www.zu.ac.ae"].add("https://www.zu.ac.ae/main//en/admission/undergraduate-programs/programs.aspx") urls_to_try["https://www.aus.edu"].add("https://www.aus.edu/info/200135/undergraduate_programs") urls_to_try["https://www.aus.edu"].add("https://www.aus.edu/info/200136/graduate_programs") urls_to_try["https://aau.ac.ae"].add("https://aau.ac.ae/en/academics/undergraduate-programs/") urls_to_try["https://aau.ac.ae"].add("https://aau.ac.ae/en/academics/graduate-programs/") urls_to_try["https://www.ajman.ac.ae"].add("https://www.ajman.ac.ae/en/admission-and-registration/undergraduate/programs-offered.html") urls_to_try["https://www.ajman.ac.ae"].add("https://www.ajman.ac.ae/en/admission-and-registration/graduate-admissions/graduate-programs-offered.html") urls_to_try["http://nyuad.nyu.edu"].add("http://nyuad.nyu.edu/en/academics/undergraduate-programs/majors.html") urls_to_try["http://www.kustar.ac.ae"].add("http://www.kustar.ac.ae/pages/undergraduate-admissions") urls_to_try["http://www.kustar.ac.ae"].add("http://www.kustar.ac.ae/pages/graduate-admissions") ###Output _____no_output_____ ###Markdown The URLs I find are given below (Note: these aren't ordered by preference): ###Code for top_url,urls in urls_to_try.items(): print(top_url,len(urls)) for url in urls: print("\t",url) print() ###Output https://www.sheffield.ac.uk 12 https://www.sheffield.ac.uk/postgraduate/taught/courses/arts/biblical/religion-leadership-society-ma https://www.sheffield.ac.uk/postgraduate/taught https://www.sheffield.ac.uk/undergraduate/finance https://www.sheffield.ac.uk/postgraduate/accommodation http://www.sheffield.ac.uk/undergraduate/finance/fees/2017 https://www.sheffield.ac.uk/undergraduate/finance/fees-calculator https://www.sheffield.ac.uk/postgraduate/taught/apply https://www.sheffield.ac.uk/postgraduate/taught/courses/arts-humanities https://www.sheffield.ac.uk/postgraduate/taught/courses/pure-science https://www.sheffield.ac.uk/news/nr/best-universities-arts-humanities-rankings-world-1.730131 https://www.sheffield.ac.uk/undergraduate/why/facilities https://www.sheffield.ac.uk/postgraduate/taught/distance-learning http://www.sharjah.ac.ae 14 http://www.sharjah.ac.ae/en/academics/degree-program/Pages/default.aspx http://www.sharjah.ac.ae/en/about/contact_us/Pages/default.aspx http://www.sharjah.ac.ae/en/academics/colleges/dentistry http://www.sharjah.ac.ae/en/Admissions/fees-scholar/Pages/pt.aspx http://www.sharjah.ac.ae/en/Admissions/fees-scholar/Pages/default.aspx http://www.sharjah.ac.ae/en/academics/Colleges/dentistry/Pages/Tes.aspx http://www.sharjah.ac.ae/en/academics/Colleges/fa/Pages/dw.aspx http://www.sharjah.ac.ae/en/academics/colleges/comcol http://www.sharjah.ac.ae/en/Administration/Pages/default.aspx http://www.sharjah.ac.ae/en/academics/Colleges/ahss/Pages/dw.aspx http://www.sharjah.ac.ae/en/Admissions/fees-scholar/Pages/cal.aspx http://www.sharjah.ac.ae/en/Media/Pages/UOS20Y.aspx http://www.sharjah.ac.ae/en/academics/Pages/default.aspx http://www.sharjah.ac.ae/en/Research/spu/Pages/default.aspx http://www.manchester.ac.uk 10 http://www.manchester.ac.uk/study/undergraduate/courses/2017 http://www.manchester.ac.uk/study/postgraduate-certificate-diploma http://www.manchester.ac.uk/study/undergraduate/mature-students http://www.manchester.ac.uk/study/postgraduate-research/open-days-fairs http://www.manchester.ac.uk/study/undergraduate/courses http://www.manchester.ac.uk/study/postgraduate-research/programmes/research-areas http://www.manchester.ac.uk/study/undergraduate/courses/2018 http://www.manchester.ac.uk/study/postgraduate-research/contact http://www.manchester.ac.uk/study/undergraduate/prospectus http://www.manchester.ac.uk/study/postgraduate-research/admissions https://aau.ac.ae 11 https://aau.ac.ae/en/news/2017/al-ain-university-of-science-and-technology-starts-to-develop-its-campus-in-al-ain https://aau.ac.ae/en/admission/undergraduate/general-education-requirements https://aau.ac.ae/en/academics/graduate-programs/ https://aau.ac.ae/en/deanships/sci-research&graduate-studies/vision-and-mission https://aau.ac.ae/en/admission/undergraduate/course-grading-system https://aau.ac.ae/en/academics/graduate-programs https://aau.ac.ae/en/deanships/sci-research&graduate-studies/community-engagement https://aau.ac.ae/en/admission/undergraduate/general-admission-requirements https://aau.ac.ae/en/academics/undergraduate-programs/ https://aau.ac.ae/en/academics/undergraduate-programs https://aau.ac.ae/en/deanships/sci-research&graduate-studies/deans-message https://www.ajman.ac.ae 14 https://www.ajman.ac.ae/en/Colleges.html https://www.ajman.ac.ae/en/academics/academics/colleges/unit-of-general-studies https://www.ajman.ac.ae/en/admission-and-registration/graduate-admissions/documents-required.html https://www.ajman.ac.ae/en/admission-and-registration/undergraduate/programs-offered.html https://www.ajman.ac.ae/en/admission-and-registration/undergraduate/admission-requirements.html https://www.ajman.ac.ae/en/admission-and-registration/undergraduate-admissions.html https://www.ajman.ac.ae/en/academics/colleges.html https://engineering.ajman.ac.ae/en/mission-of-college-of-engineering.html https://www.ajman.ac.ae/en/admission-and-registration/graduate-admissions/transfer-from-other-universities-150611-125719.html https://www.ajman.ac.ae/en/admission-and-registration/undergraduate/application-process.html https://www.ajman.ac.ae/en/admission-and-registration/financial-information/graduate-financial-information.html https://pharmacy.ajman.ac.ae/en/news/2017/college-of-pharmacy-celebrates-outstanding-would-be-graduates.html https://www.ajman.ac.ae/en/community-service-department-csd/community-programs-and-activities.html https://www.ajman.ac.ae/en/admission-and-registration/graduate-admissions/graduate-programs-offered.html https://www.masdar.ac.ae 9 https://www.masdar.ac.ae/research-education/outreach-programs/summer-research-internships https://www.masdar.ac.ae/research-education/degree-programs/undergraduate-programs https://www.masdar.ac.ae/research-education/degree-offerings/phd-program https://www.masdar.ac.ae/research-education/degree-offerings/msc-in-materials-science-and-engineering https://www.masdar.ac.ae/research-education/degree-programs/master-s-programs https://www.masdar.ac.ae/research-education/outreach-programs/yfel https://www.masdar.ac.ae/programs https://www.masdar.ac.ae/research-education/degree-offerings/practicing-professionals-program https://www.masdar.ac.ae/research-education/degree-programs/doctorate-programs http://www.birmingham.ac.uk 12 http://www.birmingham.ac.uk/research/activity/inflammation-ageing/courses/index.aspx http://www.birmingham.ac.uk/dubai/register/index.aspx http://www.birmingham.ac.uk/undergraduate/visit/opendays/index.aspx http://www.birmingham.ac.uk/university/colleges/artslaw/staff.aspx http://www.birmingham.ac.uk/university/colleges/mds/news/2017/07/karim-raza-aruk.aspx http://www.birmingham.ac.uk/university/colleges/artslaw/index.aspx http://www.birmingham.ac.uk/dubai/index.aspx http://www.birmingham.ac.uk/schools/engineering/index.aspx http://www.birmingham.ac.uk/research/activity/clinical-sciences/index.aspx http://www.birmingham.ac.uk/undergraduate/visit/index.aspx http://www.birmingham.ac.uk/contact/directions/index.aspx http://www.birmingham.ac.uk/undergraduate/prospectus/index.aspx http://www.pi.ac.ae 7 http://www.pi.ac.ae/en/Highlights/Pages/Details.aspx?ItemId=16 http://www.pi.ac.ae/en/Students http://www.pi.ac.ae/en/UpcomingEvents/Pages/Details.aspx?ItemId=9 http://www.pi.ac.ae/en/Admissions/Undergraduate/Pages/default.aspx http://www.pi.ac.ae/en/Pages/Contacts.aspx http://www.pi.ac.ae/en/the-merge/pages/BoardOfTrustees.aspx http://www.pi.ac.ae/en/Academics http://www.uowdubai.ac.ae 10 http://www.uowdubai.ac.ae/undergraduate-programs/scholarships-and-tuition-grants http://www.uowdubai.ac.ae/undergraduate-programs/subject-descriptions http://www.uowdubai.ac.ae/postgraduate-programs/subject-descriptions http://www.uowdubai.ac.ae/undergraduate-programs/fees-and-payment-information http://www.uowdubai.ac.ae/undergraduate-programs/admission-requirements http://www.uowdubai.ac.ae/computer-science-and-engineering-programs/bachelor-of-computer-science-multimedia-and-game-development-bcompsc-mmgd-degree http://www.uowdubai.ac.ae/postgraduate-research-programs/fees-and-payment-information http://www.uowdubai.ac.ae/computer-science-and-engineering-programs/bachelor-of-computer-science-bcompsc-degree http://www.uowdubai.ac.ae/undergraduate-programs/hear-from-our-students-and-graduates https://www.uowdubai.ac.ae/finance-and-accounting-programs/bachelor-of-commerce-accountancy-bcom-acc-degree http://www.buid.ac.ae 11 http://buid.ac.ae/admission-requirements http://www.buid.ac.ae/Programmes-Fees http://buid.ac.ae/bdrc-2015-gallery http://buid.ac.ae/PhD-Training-Courses http://www.buid.ac.ae/phd-in-business-management http://buid.ac.ae/CLDR-Finance-Scholarships http://www.buid.ac.ae/Student-Visa-Information http://www.buid.ac.ae/about-uae-dubai http://www.buid.ac.ae/contact-us http://www.buid.ac.ae/faculty-of-business http://www.buid.ac.ae/welcome-message-chancellor https://www.aus.edu 16 http://www.aus.edu/info/200135/undergraduate_programs/411/deadlines http://www.aus.edu/info/200135/undergraduate_programs/504/apply http://www.aus.edu/info/200170/college_of_architecture_art_and_design/168/departments https://www.aus.edu/info/200194/new_student_information/350/achievement_academy_outreach_program http://www.aus.edu/info/200135/undergraduate_programs/158/residential_halls/1 http://www.aus.edu/info/200136/graduate_programs/409/deadlines http://www.aus.edu/info/200135/undergraduate_programs/414/faq_and_infodesk http://www.aus.edu/info/200168/college_of_arts_and_sciences/175/departments http://www.aus.edu/galleries/gallery/31/college_of_arts_and_sciences http://www.aus.edu/info/200136/graduate_programs/392/admission_requirements http://www.aus.edu/info/200135/undergraduate_programs/87/minors http://www.aus.edu/info/200170/college_of_architecture_art_and_design https://www.aus.edu/info/200136/graduate_programs https://www.aus.edu/info/200135/undergraduate_programs http://www.aus.edu/info/200198/college_of_architecture_art_and_design http://www.aus.edu/info/200136/graduate_programs/158/residential_halls https://gmu.ac.ae 10 https://gmu.ac.ae/college-of-graduate-studies/course-counselling https://gmu.ac.ae/admissions/annual-intake-fee-structure https://gmu.ac.ae/college-of-graduate-studies/master-of-physical-therapy https://gmu.ac.ae/college-dentistry/course-counselling https://gmu.ac.ae/college-of-graduate-studies https://gmu.ac.ae/admissions/undergraduate-admission-requirements-2 https://gmu.ac.ae/college-of-graduate-studies/master-of-science-in-clinical-pathology-ms-cp https://gmu.ac.ae https://gmu.ac.ae/admissions/graduate-admission-requirements https://gmu.ac.ae/the-campus http://www.kustar.ac.ae 13 http://www.kustar.ac.ae/pages/undergraduate-admissions http://www.kustar.ac.ae/pages/civil-infrastructure-and-environment-engineering/14158 http://www.kustar.ac.ae/pages/department-of-electrical-and-computer-engineering/13396 http://www.kustar.ac.ae/pages/graduate--programs http://www.kustar.ac.ae/pages/undergraduate-admissions-documents http://www.kustar.ac.ae/pages/college-of-engineering http://www.kustar.ac.ae/pages/graduate-admissions http://www.kustar.ac.ae/pages/news/news-details/khalifa-university-of-science-and-technology-achieves-top-university-ranking-in-the-uae-by- http://www.kustar.ac.ae/pages/undergraduate-programs http://blog.kustar.ac.ae/category/art http://www.kustar.ac.ae/pages/graduate-students/14158 http://www.kustar.ac.ae/pages/office-of-information-technology-it http://www.kustar.ac.ae/pages/department-of-electrical-and-computer-engineering/14158 https://www.adu.ac.ae 10 https://www.adu.ac.ae/en-us/academicsresearch/programs.aspx http://www.adu.ac.ae/en-us/programdetail.aspx?ProgramId=169 http://www.adu.ac.ae/en-us/collegedetail.aspx?CollegeId=223 http://www.adu.ac.ae/en-us/academicsresearch/programs.aspx http://www.adu.ac.ae/en-us/collegedetail.aspx?CollegeId=225 http://www.adu.ac.ae/en-us/programdetail.aspx?ProgramId=167 http://www.adu.ac.ae/en-us/academicsresearch/colleges.aspx http://www.adu.ac.ae/en-us/programdetail.aspx?ProgramId=614 http://www.adu.ac.ae/en-us/collegedetail.aspx?CollegeId=705 http://www.adu.ac.ae/en-us/collegedetail.aspx?CollegeId=224 http://nyuad.nyu.edu 12 http://nyuad.nyu.edu/en/academics/undergraduate-programs/grad-requirements.html http://nyuad.nyu.edu/en/academics/undergraduate-programs/grad-requirements/capstone-project-bak.html http://nyuad.nyu.edu/en/academics/community-programs/primary-and-secondary-educational-engagement.html http://nyuad.nyu.edu/en/academics/academic-divisions/social-science/undergraduate-programs/economics.html http://nyuad.nyu.edu/en/academics/community-programs/smsp.html http://nyuad.nyu.edu/en/academics/undergraduate-programs/majors.html http://nyuad.nyu.edu/en/academics/undergraduate-programs/pre-professional-courses/media--culture-and-communication.html http://nyuad.nyu.edu/en/academics/undergraduate-programs/language.html http://nyuad.nyu.edu/en/academics/undergraduate-programs/majors/physics.html http://nyuad.nyu.edu/en/academics/executive-education/custom-programs.html http://nyuad.nyu.edu/en/academics/community-programs/smsp/contact-us.html http://nyuad.nyu.edu/en/academics/community-programs/summer-academy.html http://www.zu.ac.ae 8 http://www.zu.ac.ae/main/en/ocd/campus_access/index.aspx https://www.zu.ac.ae/main//en/admission/undergraduate-programs/programs.aspx http://www.zu.ac.ae/main/en/_ice/language.aspx http://www.zu.ac.ae/main/en/graduate_programs/FAQs.aspx http://www.zu.ac.ae/main/en/contact_us/index.aspx http://www.zu.ac.ae/main/en/graduate_programs/Graduate_Programs_Folder/index.aspx http://www.zu.ac.ae/main/en/colleges/index.aspx http://www.zu.ac.ae/main/en/graduate_programs/key_dates.aspx ###Markdown Topic modelling of courses 1) Iterate through course pages 2) Record sections of text with high graph score 3) Create n-grams according to previous method 4) Count the most frequent n-grams (after stop word removal) 5) Select courses from the sentences containing the most frequent n-grams ###Code from bs4.element import Comment def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def len_sentence(x): try: return len(tokenize_alphanum(x)) except TypeError as err: print("Error with",x) raise err def get_sentences(url,return_url=False): r = requests.get(url) if r.status_code != 200: print(url,"not found") return [] soup = BeautifulSoup(r.text,"lxml") texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) if not return_url: return [t.strip() for t in visible_texts if len_sentence(t) > 0] # Otherwise, find corresponding URL sentences = [] anchors = [a for a in soup.findAll("a") if tag_visible(a) and len_sentence(a.text) > 0] anchor_text = [a.text for a in anchors] for t in visible_texts: if len_sentence(t) == 0: continue _url = None if t in anchor_text: a = list(filter(lambda a : t==a.text,anchors))[0] if "href" in a.attrs: _url = a.attrs["href"] sentences.append(dict(go_to_url=_url,text=t,found_on_url=url)) return sentences # Loop over URLs, collect all sentences sentences = [] for top_url,urls in urls_to_try.items(): for url in urls: sentences += get_sentences(url) # print(url) # print(get_sentences(url,True)) break break print("Got",len(sentences),"sentences") def superlog(x): if x <= 0: return 0 return np.log10(x) # fig,ax = plt.subplots(figsize=(10,6)) # weights,bins,patches = ax.hist(list(map(len_sentence,sentences)),bins=np.arange(0,250,1)) # max_height = 0 # for p in patches: # new_height = superlog(p.get_height()) # p.set_height(new_height) # max_height = max((max_height,new_height)) # ax.set_ylim(0,1.1*max_height) # ax.set_ylabel("log$_{10}$(count)") # ax.set_xlabel("sentence length") # # Only use short sentences # _sentences = [s for s in sentences if len_sentence(s) < 20] # # Perform N-gram extraction # comper = Compounder(max_context=3,threshold=7) # comper.process_sentences(_sentences) # comper.print_sorted_compounds() # # Iterate with the previous chunk to set the threshold # comp_data = pd.DataFrame(comper.data) # fig,ax = plt.subplots(figsize=(10,10)) # for context,grouped in comp_data.groupby("context"): # ax.plot(grouped["threshold"],grouped["total"].apply(superlog),label=context) # ax.legend() ###Output _____no_output_____ ###Markdown Different approach: get sentences with high similarity to any UCAS word ###Code r = requests.get("http://search.ucas.com/subject/fulllist") ucas = [] soup = BeautifulSoup(r.text,"lxml") for a in soup.find_all("a"): if "href" not in a.attrs: continue if not a.attrs["href"].startswith("/subject/"): continue words = [w for w in tokenize_alphanum(a.text) if w not in _stops] ucas.append(" ".join(words)) def get_wiki_quals(url,tokenize=True): r = requests.get(url) soup = BeautifulSoup(r.text,"lxml") ucas = [] for a in soup.find_all("a"): if "href" not in a.attrs: continue href = a.attrs["href"] if not href.startswith("/wiki/"): continue text_elements = a.text.split() if len(text_elements) < 1: continue if text_elements[0].lower() not in href.lower(): continue if tokenize: words = [w for w in tokenize_alphanum(a.text) if w not in _stops] else: words = a.text.split() ucas.append(" ".join(words)) return set(ucas) ucas_1 = get_wiki_quals("https://en.wikipedia.org/wiki/Category:Bachelor%27s_degrees") ucas_2 = get_wiki_quals("https://en.wikipedia.org/wiki/List_of_master%27s_degrees") ucas_3 = get_wiki_quals("https://en.wikipedia.org/wiki/Category:Doctoral_degrees") ucas += list(ucas_1.symmetric_difference(ucas_2).symmetric_difference(ucas_3)) # Get all UCAS words all_ucas = ["msc","ba","master","bachelor","phd"] for u in ucas: all_ucas += tokenize_alphanum(u) all_ucas = set(all_ucas) print(all_ucas) class MatchScore(dict): def match_score(self,sentence): scores = [] for w in tokenize_alphanum(sentence): if w not in self: match,_score = fuzzy_process.extractOne(w,all_ucas) length_ratio = len(match)/len(w) # Normalise to length ratio if length_ratio > 1: length_ratio = 1/length_ratio self[w] = (_score/100)*(length_ratio**2) scores.append(self[w]) # Score = sqrt( (sum_i score_i^2) / sum_i ) if len(scores) == 0: return 0 score = np.sqrt(sum(map(lambda x:x**2,scores)) / len(scores)) return score matchScore = MatchScore() def level_checker(query,levels=["bachelor","master","phd","diploma","doctor"]): # Check if the qualification type is in the query for lvl in levels: if lvl in query: return lvl return None def get_qual_type(query): _q = tokenize_alphanum(query) lvl = level_checker(_q) if lvl is not None: return lvl # Otherwise, search for the acronym for word in _q: for qual,acronyms in qual_map.items(): if word in acronyms: return level_checker(qual) return None matchScore.match_score("B.Sc. in Aerospace Engineering") get_qual_type("B.Sc. in Aerospace Engineering") def clean_text(t): # Replace bad chars bad_chars = ["\n","\r"] for c in bad_chars: t = t.replace(c,"") # Strip space while " " in t: t = t.replace(" "," ") t = t.lstrip() t = t.rstrip() words = t.split() # Remove long words if len(words) > 11: return None # Standardise qualifications for w in t.split(): if w in qual_map: t = t.replace(w,min(qual_map[w], key=len)) if "program" in q.lower(): return None return t url_courses = {} for top_url,urls in urls_to_try.items(): # if "ajman" not in top_url: # continue print(top_url) url_courses[top_url] = [] for url in set(urls): # if "undergraduate/programs-offered" not in url: # continue # print("\t",url) for data in get_sentences(url,return_url=True): #print(data["text"]) data["text"] = clean_text(data["text"]) if data["text"] is None: continue score = matchScore.match_score(data["text"]) #fuzzy_process.extractOne(s,ucas,scorer=fuzz.token_sort_ratio) if score > 0.6: if data not in url_courses[top_url]: url_courses[top_url].append(data) #print("\t\t",data["text"],score) #print(url_courses[top_url]) #print() def tidy(x,except_=""): return re.sub(r'[^a-zA-Z0-9'+except_+']','',x) def gen_guess(name,n): guess = [] for i,w in enumerate(name.split()): if w in _stops: continue if i == 0: guess.append(w[0]) else: guess.append(w[0:n]) guess = ".".join(guess) return guess def find_qualification(name): p = wikipedia.page(name) words = {} for i in [1,2]: guess = gen_guess(name,i) if len(guess) == 0: continue _guess = tidy(guess) for word in p.summary.split(): _word = tidy(word) if _word in _stops: continue if len(_word) == 0: continue if _word[0] != _guess[0]: continue # score = fuzz.ratio(_guess,_word) norm = len(_guess)/len(_word) if norm > 1: norm = 1/norm _w = tidy(word,except_=".") if score*norm > 0: if _w in words: if words[_w] > score*norm: continue words[_w] = score*norm # output = [] for qual,score in Counter(words).most_common(): if score > 50: output.append(qual) return output wiki_1 = get_wiki_quals("https://en.wikipedia.org/wiki/Category:Bachelor%27s_degrees",False) wiki_2 = get_wiki_quals("https://en.wikipedia.org/wiki/List_of_master%27s_degrees",False) wiki_3 = get_wiki_quals("https://en.wikipedia.org/wiki/Category:Doctoral_degrees",False) wiki = list(wiki_1.symmetric_difference(wiki_2).symmetric_difference(wiki_3)) qual_map = {} for w in wiki: if not any(w.startswith(x) for x in ("Ma","Ba","Dip","Doc","PhD")): continue if w.strip() == "": continue quals = find_qualification(w) print(w) print("\t",quals) for q in quals: if q not in qual_map: qual_map[q] = set() qual_map[q].add(w) output = [] for top_url,data in url_courses.items(): if ".ac.uk" in top_url: continue for row in data: qual = get_qual_type(row["text"]) if qual is None and row["go_to_url"] is not None: qual = get_qual_type(row["go_to_url"]) if qual is not None: if not row["text"].lower().startswith(qual): qual = None else: row["qualification"] = qual row["home_url"] = top_url output.append(row) output[2900] with open("courses-tier0.json","w") as f: f.write(str(output)) from ast import literal_eval with open("courses-tier0.json") as f: js = literal_eval(f.read()) df = pd.DataFrame(js) df.tail() qual_lens = [] for home,grouped in df.groupby("home_url"): qs = set(grouped.loc[grouped.qualification=="doctor","text"].values) print(home,len(qs)) for q in qs: qual_lens.append(len(q.split())) if len(q.split()) > 11: continue #if not q.lower().startswith("master"): # continue if "program" in q.lower(): continue print("\t",q) print() print(min(qual_lens), np.percentile(qual_lens,10), np.percentile(qual_lens,50), np.percentile(qual_lens,90), max(qual_lens)) ###Output _____no_output_____ ###Markdown Now analyse basic features a) What qualifications are on offer? (count by unique text-home-qual) b) Can qualification be mapped into key topics from wikipedia? Engineering Maths Chemistry Physics Biology Computing Other ###Code def filter_stops(t): return " ".join(filter(lambda x : x not in _stops,t.split())) def unique_text(texts,fuzzy_req=0.95): unique_vals = [] for t in texts: _t = filter_stops(t) found_match = False for v in unique_vals: _v = filter_stops(v) score_1 = fuzz.ratio(t,v)/100 score_2 = fuzz.token_sort_ratio(t,v)/100 score = np.sqrt((score_1**2 + score_2**2)/2) if score >= fuzzy_req: found_match = True #if score < 0.98: #print(t,"too similar to",v,score) break if not found_match: unique_vals.append(t) return unique_vals unique_text(["joel klinger","joel klinger","joel a klinger"]) valid_values = [] unique_quals = set(df.qualification.values) qual_table = [] for home,grouped in df.groupby("home_url"): print(home) condition = grouped.text.apply(lambda x : (x not in ["Bachelors Degree","Bachelor Degree:", "Bachelor of Arts","Bachelor of Science 302", "Bachelors Degree","Diploma", "Bachelor’s Programs","Master’s Programs", "Master’s thesis (6 credit hours)", "Masters Degree", 'PhD','PhD Alumni Testimonials', 'PhD BM Programme Structure']) and len(x.split()) < 11) grouped = grouped.loc[condition] _grouped = grouped.loc[~pd.isnull(grouped.qualification)] allowed_values = unique_text(_grouped.text) valid_values += allowed_values grouped = grouped.loc[grouped.text.apply(lambda t:t in allowed_values)] too_long = grouped.text.apply(lambda t: len(t.split()) > 11) # 11 = 90%ile grouped = grouped.loc[~too_long] grouped.drop_duplicates("text",inplace=True) _data = dict(home=home) for _qual in unique_quals: if pd.isnull(_qual): condition = pd.isnull(grouped.qualification) else: condition = grouped.qualification == _qual _data[_qual] = (condition).sum() _data["not_null"] = (~pd.isnull(grouped.qualification)).sum() qual_table.append(_data) qual_table = pd.DataFrame(qual_table)#,columns=["home","bachelor","master","phd","nan"]) qual_table["phd"] = qual_table["phd"] + qual_table["doctor"] qual_table = qual_table[["home","bachelor","master","phd",np.nan,"not_null","doctor","diploma"]] qual_table = qual_table.sort_values("not_null",ascending=False) qual_table = qual_table.drop(["not_null","doctor",np.nan,"diploma"],axis=1) qual_table.columns = ["Home","Bachelor","Master","Doctoral"] #,"Other (including bad results)"] qual_table condition = df.text.apply(lambda x: x in valid_values) _df = df.loc[condition].drop_duplicates("text") print(len(_df)) n = 0 for _,grouped in _df.groupby("home_url"): n += len(grouped.drop_duplicates("text")) print(n) sorted(list(_df["text"].values)) def get_cats(t): s = wikipedia.search(t) if len(s) < 1: return [] s = s[0] try: p = wikipedia.page(s) return [c for c in p.categories if len(c.split()) <= 3] except (wikipedia.DisambiguationError,wikipedia.PageError): return [] def subject(query,by): for result in reversed(query.partition(" "+by+" ")): if result != '': return result.lstrip(" ") results = {} i = 0 for _,row in _df.iterrows(): i += 1 q = row.qualification _t = re.sub(r'\([^)]*\)', '', row.text) if _t in results: continue # First get categories for the qualification t = _t if (not pd.isnull(q)) and (q.lower() not in t.lower()): t = _t+" "+q cats = get_cats(t) # Then attempt to get categories for the subject for by in ["of","in"]: t = subject(_t,by) if t == _t: continue cats += get_cats(t) results[_t] = cats print(i,(~pd.isnull(df.qualification)).sum()) for k,v in results.items(): print(k) print(v) print() # Collect categories on random pages to filter out common junk categories random_cats = [] for s in wikipedia.random(pages=100): try: p = wikipedia.page(s) except (wikipedia.DisambiguationError,wikipedia.PageError): continue random_cats += p.categories random_words = [] for cat in random_cats: random_words += [w for w in tokenize_alphanum(cat)] count_rcats = [c for c,_ in Counter(random_cats).most_common(20)] words_rcats = [w for w,_ in Counter(random_words).most_common(20)] # The collect the categories together, ommitting junk cats and words cats = [] words = [] for _,r in results.items(): cats += [c for c in r if c not in count_rcats] for cat in r: words += [w for w in tokenize_alphanum(cat) if w not in words_rcats and len(w) > 1] cats_count = Counter(cats) words_count = Counter(words) cats_count.most_common() words_count.most_common() # Assign a list of keywords to each row of data # Calculate total fraction of ug/pg # Then, by subject, calculate fractions of ug/pg # Then d3 bars of subjects (on hover change fraction, but static) (top) and fractions (non-clickable, but dynamic) (bottom) from matplotlib.patches import Rectangle _df.loc[_df.qualification == 'doctor','qualification'] = 'phd' fig,ax = plt.subplots(figsize=(10,1)) color = ['skyblue','darkslategrey','coral'] x0 = 0 for qual,c in zip(['bachelor','master','phd'],color): n = (_df.qualification == qual).sum() if qual == 'phd': qual = 'Doctoral' rect = Rectangle((x0,0),x0+n,1,facecolor=c,label=qual.title()) ax.add_patch(rect) x0 += n ax.axis('off') ax.set_ylim(0,1) ax.set_xlim(0,x0) leg = ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) def cat_plot(qual_type): fig,ax = plt.subplots(figsize=(10,1)) color = ['skyblue','darkslategrey','forestgreen','orange','y','coral','gray'] labels = ['Comp/IT','Engineering','Medical','Education','Business','Science','Other'] x0 = 0 _kw = [] for kw,c,L in zip([('comp',' it ','info','network','software'), ('eng',), ('health','medic','nursing','pharma'),('education','teaching'), ('business','manag','admin','financ','commerce'),('science',), ('',)],color,labels): condition = _df.qualification == qual_type condition = _df.loc[condition,"text"].apply(lambda x : any(k in x.lower() for k in kw) and not any(k in x.lower() for k in _kw)) n = condition.sum() if kw == ('',): kw = "Other" rect = Rectangle((x0,0),x0+n,1,facecolor=c,label=L) ax.add_patch(rect) x0 += n _kw += list(kw) ax.axis('off') ax.set_ylim(0,1) ax.set_xlim(0,x0) if qual_type == 'phd': qual_type = 'Doctoral' leg = ax.legend(loc='center left', bbox_to_anchor=(1, 0.5),title=qual_type.title()) cat_plot('bachelor') cat_plot('master') cat_plot('phd') ###Output _____no_output_____
code/Tutorial.ipynb
###Markdown Tutorial Notebook for IBoat - PMCTS *Please be aware that this tutorial shall not replace the project's thorough documentation that you can find at :*https://pbarde.github.io/IBoat-PMCTS/ **Objectives :** After completing this tutorial you should be able to use all the tools developed during the IBoat - PMCTS projet. Using these tools you can investigate different algorithms' tunings in order to find an optimal strategy and compare it to the isochrones method. ** Finally, all the code of this notebook can be found in the following [Tutorial script](Tutorial.py) which will run more smoothly than in this jupyter notebook (mostly because of multiprocesses involved in the interactive plots).** ** Table of contents**1. [Before starting](before)2. [Weather forecasts and Simulators](weather) 1. [Downloading weather forecasts](dl) 2. [Loading weather objects](load) 3. [Creating simulators and displaying wind conditions](simu)3. [The Parallel Monte-Carlo Tree Search](PMCTS) 1. [Initializing the search](init) 2. [Creating a Forest and launching a PMCTS](forest) 3. [Processing and saving results](process)4. [Isochrones and Validation](iso) 1. [A. Setting up the search](iso_search) 2. [Comparing the results](iso_comp) 1. Before starting Why don't you create a **conda environment** to make sure everything plays smoothly ? Install Anaconda 3 ([Anaconda Download](https://www.anaconda.com/download/linux)) if not done already and run the following commands in your terminal (linux of course).```conda create --name mctssource activate mctsconda install pipconda install jupyterconda install basemapconda install netcdf4conda install scipy```*If you don't have TkAgg and Qt5Agg you'll need to install them with:*```sudo apt-get install python3-tksudo apt-get install python3-qt```*Then, go to the [Tutorial notebook](Tutorial.ipynb)'s directory and run:*```jupyter notebook "Tutorial.ipynb"```*Finally, when you are finished playing you can just remove the conda environment with the lines:*```source deactivateconda remove --name mcts --all``` ** /!\ Please do run the next cell once: ** ###Code import os os.chdir(os.getcwd() + '/solver/') # just to make sure you're working in the proper directory ###Output _____no_output_____ ###Markdown 2. Weather forecasts and Simulators In this section you'll learn how to download, load, process and visualize weather forecasts. You will also create the simulators that are used by the workers in the PMCTS. A. Downloading weather forecasts Let's start by downloading some forecasts. *You might want to change the* `mydate` *variable. Note that if it's not working you might have chosen a date whose weather forecasts are not available anymore on the server or your proxy doesn't allow you to download with the* `netcdf4` *package. Or, you just got the date format wrong.* ###Code import forest as ft import time # The starting day of the forecast. If it's too ancient, the forecast might not be available anymore #mydate = '20180108' #time.strftime("%Y%m%d") # mydate = '20180228' # for February 2, 2018 mydate = '20180307' # We will download the mean scenario (id=0) and the first 2 perturbed scenarios scenario_ids = range(3) #ft.download_scenarios(mydate, latBound=[40, 50], lonBound=[-15 + 360, 360], scenario_ids=scenario_ids) ###Output _____no_output_____ ###Markdown B. Loading weather objects Now that we have downloaded some forecasts, let's load them in order to create simulators with them. ###Code Weathers = ft.load_scenarios(mydate, latBound=[40, 50], lonBound=[-15 + 360, 360], scenario_ids=scenario_ids) ###Output Loaded : ../data/20180307_0000z.obj Loaded : ../data/20180307_0100z.obj Loaded : ../data/20180307_0200z.obj ###Markdown C. Creating simulators and displaying wind conditions We define the main parameters of our simulators, we create the simulators and we visualize their wind conditions. The plots are interactives (use the upper-left icons to navigate through the weather forecast).*Our code is not supposed to be executed in a jupyter notebook which is a bit capricious and does not handle mutli-processing for animations properly. So you can only animate one scenario at a time. To visualize multiple scenarios simulataneously from you should use* `ft.play_multiple_scenarios(Sims)` *in a script.* ###Code %%capture % matplotlib qt import matplotlib.pyplot as plt from simulatorTLKT import Boat Boat.UNCERTAINTY_COEFF = 0.2 # Characterizes the uncertainty on the boat's dynamics NUMBER_OF_SIM = 3 # <=20 SIM_TIME_STEP = 6 # in hours STATE_INIT = [0, 44, 355] N_DAYS_SIM = 3 # time horizon in days Sims = ft.create_simulators(Weathers, numberofsim=NUMBER_OF_SIM, simtimestep=SIM_TIME_STEP, stateinit=STATE_INIT, ndaysim=N_DAYS_SIM) # in the notebook we can visualize scenarios only one by one. #Sims[0].play_scenario() ## /!\ if executing from a .py script, you better use this to have multiple interactive plots: #ft.play_multiple_scenarios(Sims) ###Output _____no_output_____ ###Markdown *If you feel frustrated by the interactive plot you are invited to copy paste the code below in a .py file and replace* ```pythonfor ii, sim in enumerate(Sims) : sim.play_scenario(ii)```*by*```pythonft.play_multiple_scenarios(Sims)```*execute your new .py file and enjoy.(by the way, if you are lazy, you can also give the [Tutorial script](Tutorial.py) a run)* 3. The Parallel Monte-Carlo Tree Search In this section we will see how to launch a PMCTS, process and visualize the results. A. Initializing the search First of all we define a departure point, a mission heading and we compute the corresponding destination point and reference travel time. Then, we visualize the mean trajectories per scenario during the two initialization phases. ###Code %%capture % matplotlib qt import matplotlib matplotlib.rcParams.update({'font.size': 10}) missionheading = 0 # direction wrt. true North we want to go the furthest. ntra = 50 # number of trajectories used during the initialization destination, timemin = ft.initialize_simulators(Sims, ntra, STATE_INIT, missionheading, plot=True) print("destination : {} & timemin : {}".format(destination, timemin)) Sims = ft.create_simulators(Weathers, numberofsim=NUMBER_OF_SIM, simtimestep=SIM_TIME_STEP, stateinit=STATE_INIT, ndaysim=N_DAYS_SIM+2) ###Output destination : [46.503901437615376, 355.0] & timemin : 2.4144127151444956 ###Markdown B. Creating a Forest and launching a PMCTS Now we create a Forest (the object managing the worker trees and the master tree) and we launch a search. To do this we must define the exploration parameters of the search. ###Code import worker ##Exploration Parameters## worker.RHO = 0.5 #Exploration coefficient in the UCT formula. worker.UCT_COEFF = 1 / 2 ** 0.5 #Proportion between master utility and worker utility of node utility. budget = 1000 # number of nodes we want to expand in each worker frequency = 10 # number of steps performed by a worker before writing the results into the master forest = ft.Forest(listsimulators=Sims, destination=destination, timemin=timemin, budget=budget) if __name__ == '__main__': master_nodes = forest.launch_search(STATE_INIT, frequency) ###Output Iteration 50 on 1000 for workers 1 Iteration 50 on 1000 for workers 2 Iteration 50 on 1000 for workers 0 Iteration 100 on 1000 for workers 1 Iteration 100 on 1000 for workers 0 Iteration 100 on 1000 for workers 2 Iteration 150 on 1000 for workers 1 Iteration 150 on 1000 for workers 0 Iteration 150 on 1000 for workers 2 Iteration 200 on 1000 for workers 0 Iteration 200 on 1000 for workers 1 Iteration 200 on 1000 for workers 2 Iteration 250 on 1000 for workers 0 Iteration 250 on 1000 for workers 1 Iteration 250 on 1000 for workers 2 Iteration 300 on 1000 for workers 0 Iteration 300 on 1000 for workers 1 Iteration 300 on 1000 for workers 2 Iteration 350 on 1000 for workers 1 Iteration 350 on 1000 for workers 0 Iteration 350 on 1000 for workers 2 Iteration 400 on 1000 for workers 1 Iteration 400 on 1000 for workers 0 Iteration 400 on 1000 for workers 2 Iteration 450 on 1000 for workers 1 Iteration 450 on 1000 for workers 0 Iteration 450 on 1000 for workers 2 Iteration 500 on 1000 for workers 1 Iteration 500 on 1000 for workers 0 Iteration 500 on 1000 for workers 2 Iteration 550 on 1000 for workers 1 Iteration 550 on 1000 for workers 0 Iteration 550 on 1000 for workers 2 Iteration 600 on 1000 for workers 1 Iteration 600 on 1000 for workers 0 Iteration 600 on 1000 for workers 2 Iteration 650 on 1000 for workers 1 Iteration 650 on 1000 for workers 0 Iteration 650 on 1000 for workers 2 Iteration 700 on 1000 for workers 1 Iteration 700 on 1000 for workers 0 Iteration 700 on 1000 for workers 2 Iteration 750 on 1000 for workers 1 Iteration 750 on 1000 for workers 0 Iteration 750 on 1000 for workers 2 Iteration 800 on 1000 for workers 1 Iteration 800 on 1000 for workers 0 Iteration 800 on 1000 for workers 2 Iteration 850 on 1000 for workers 1 Iteration 850 on 1000 for workers 0 Iteration 850 on 1000 for workers 2 Iteration 900 on 1000 for workers 1 Iteration 900 on 1000 for workers 0 Iteration 900 on 1000 for workers 2 Iteration 950 on 1000 for workers 1 Iteration 950 on 1000 for workers 0 Iteration 950 on 1000 for workers 2 Iteration 1000 on 1000 for workers 1 Iteration 1000 on 1000 for workers 0 Iteration 1000 on 1000 for workers 2 ###Markdown Since the `master_nodes` object was created as a memory shared by multiple processes we need to do a deep copy of it before processing it. ###Code from master_node import deepcopy_dict new_dict = deepcopy_dict(master_nodes) ###Output _____no_output_____ ###Markdown C. Processing and saving results At this point we can create a `MasterTree` object to process the results and get the optimal policies. We usually add it to the forest object. ###Code from master import MasterTree forest.master = MasterTree(Sims, destination, nodes=new_dict) forest.master.get_best_policy() ###Output Global policy Depth 1: best reward = 0.8087301587301587 for action = 0 Depth 2: best reward = 0.8958333333333333 for action = 225 Depth 3: best reward = 0.6877752531986262 for action = 270 Policy for scenario 0 Depth 1: best reward = 0.8303571428571429 for action = 0 Depth 2: best reward = 0.9375 for action = 270 Depth 3: best reward = 0.9375 for action = 270 Policy for scenario 1 Depth 1: best reward = 0.828125 for action = 0 Depth 2: best reward = 0.9375 for action = 225 Depth 3: best reward = 0.9375 for action = 135 Policy for scenario 2 Depth 1: best reward = 0.8333333333333334 for action = 0 Depth 2: best reward = 0.9375 for action = 270 Depth 3: best reward = 0.9375 for action = 135 ###Markdown It is also possible to plot the master (or the worker corresponding to scenario 1) tree colored with nodes colored by utility, exploration and exploitation values. ###Code %%capture % matplotlib qt forest.master.plot_tree_uct(); forest.master.plot_tree_uct(1); ###Output /home/jean-mi/anaconda3/envs/mcts/lib/python3.6/site-packages/matplotlib/font_manager.py:1320: UserWarning: findfont: Font family ['normal'] not found. Falling back to DejaVu Sans (prop.get_family(), self.defaultFamily[fontext])) ###Markdown We can also follow the global best policy and look at the reward distribution along this path. ###Code %%capture % matplotlib qt forest.master.plot_hist_best_policy(interactive = True) ###Output /home/jean-mi/anaconda3/envs/mcts/lib/python3.6/site-packages/matplotlib/font_manager.py:1320: UserWarning: findfont: Font family ['normal'] not found. Falling back to DejaVu Sans (prop.get_family(), self.defaultFamily[fontext])) ###Markdown Finally we can save the results. ###Code forest.master.save_tree("my_tuto_results") ###Output _____no_output_____ ###Markdown 4. Isochrones and Validation In this section we will see how to run a isochrone search and compare its performances. A. Setting up the search To set up a isochrones search we need the mean scenario and a simulator without noise on the boat dynamics. ###Code %%capture % matplotlib qt import sys sys.path.append('../isochrones/') import isochrones as IC Boat.UNCERTAINTY_COEFF = 0 #sim = ft.create_simulators(Weathers, numberofsim=NUMBER_OF_SIM, simtimestep=SIM_TIME_STEP, # stateinit=STATE_INIT, ndaysim=4)[0] sim = Sims[0] solver_iso = IC.Isochrone(sim, STATE_INIT, destination, delta_cap=5, increment_cap=18, nb_secteur=200, resolution=200) temps_estime, plan_iso, plan_iso_ligne_droite, trajectoire = solver_iso.isochrone_methode() IC.plot_trajectory(sim, trajectoire, quiv=True) ###Output _____no_output_____ ###Markdown B. Comparing the results Finally we can compare how the two strategy perform on the different scenarios, on average on the scenarios and with a boat with uncertain dynamics for example. ###Code %%capture % matplotlib qt plan_PMCTS = forest.master.best_policy[-1] n = len(plan_iso) - 3 plan_iso = plan_iso[:n] plan_PMCTS.pop() #plan_PMCTS = [] Boat.UNCERTAINTY_COEFF = 0.2 mean_PMCTS, var_PMCTS = IC.estimate_perfomance_plan(Sims, ntra, STATE_INIT, destination, plan_PMCTS, plot=True, verbose=False) mean_iso, var_iso = IC.estimate_perfomance_plan(Sims, ntra, STATE_INIT, destination, plan_iso, plot=True, verbose=False) mean_line, var_line = IC.estimate_perfomance_plan(Sims, ntra, STATE_INIT, destination, plot=True, verbose=False) IC.plot_comparision(mean_PMCTS, var_PMCTS, mean_iso, var_iso, mean_line, var_line, ["PCMTS", "Isochrones", "Straight line"]) IC.plot_comparision_percent(mean_PMCTS, var_PMCTS, mean_iso, var_iso, mean_line, var_line, ["PCMTS", "Isochrones"]) IC.plot_mean_squared_error(mean_PMCTS, var_PMCTS, mean_iso, var_iso, mean_line, var_line, ["PCMTS", "Isochrones", "Straight line"]) IC.plot_risk_probability(mean_PMCTS, var_PMCTS, mean_iso, var_iso, ["PCMTS", "Isochrones"], t_lim=0) ###Output _____no_output_____
contrib/action_recognition/r2p1d/02_video_transformation.ipynb
###Markdown Video Dataset Transformation In this notebook, we show examples of video dataset transformation ###Code %load_ext autoreload %autoreload 2 import os import time import sys import decord import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import accuracy_score import torch import torch.cuda as cuda import torch.nn as nn import torchvision from vu.data import show_batch, VideoDataset from vu.models.r2plus1d import DEFAULT_MEAN, DEFAULT_STD from vu.utils import system_info from vu.utils.functional_video import denormalize from vu.utils.transforms_video import ( CenterCropVideo, NormalizeVideo, RandomCropVideo, RandomHorizontalFlipVideo, RandomResizedCropVideo, ResizeVideo, ToTensorVideo, ) system_info() def show_clip(clip, size_factor=600): """Show frames in a clip""" if isinstance(clip, torch.Tensor): # Convert [C, T, H, W] tensor to [T, H, W, C] numpy array clip = np.moveaxis(clip.numpy(), 0, -1) figsize = np.array([clip[0].shape[1]*len(clip), clip[0].shape[0]]) / size_factor plt.tight_layout() fig, axs = plt.subplots(1, len(clip), figsize=figsize) for i, f in enumerate(clip): axs[i].axis("off") axs[i].imshow(f) ###Output _____no_output_____ ###Markdown Prepare a Sample VideoA sample video and label paths: ###Code VIDEO_PATH = os.path.join("data", "samples", "drinking.mp4") LABEL_PATH = os.path.join("data", "samples", "label.txt") video_reader = decord.VideoReader(VIDEO_PATH) video_length = len(video_reader) print("Video length = {} frames".format(video_length)) ###Output Video length = 152 frames ###Markdown We use three frames (the first, middle, and the last) to quickly visualize video transformations. ###Code clip = [ video_reader[0].asnumpy(), video_reader[video_length//2].asnumpy(), video_reader[video_length-1].asnumpy(), ] show_clip(clip) # [T, H, W, C] numpy array to [C, T, H, W] tensor t_clip = ToTensorVideo()(torch.from_numpy(np.array(clip))) t_clip.shape ###Output _____no_output_____ ###Markdown Video TransformationsResizing with the original ratio ###Code show_clip(ResizeVideo(size=800)(t_clip)) ###Output _____no_output_____ ###Markdown Resizing ###Code show_clip(ResizeVideo(size=800, keep_ratio=False)(t_clip)) ###Output _____no_output_____ ###Markdown Center cropping ###Code show_clip(CenterCropVideo(size=800)(t_clip)) ###Output _____no_output_____ ###Markdown Random cropping ###Code random_crop = RandomCropVideo(size=800) show_clip(random_crop(t_clip)) show_clip(random_crop(t_clip)) ###Output _____no_output_____ ###Markdown Random resized cropping ###Code random_resized_crop = RandomResizedCropVideo(size=800) show_clip(random_resized_crop(t_clip)) show_clip(random_resized_crop(t_clip)) ###Output _____no_output_____ ###Markdown Normalizing (and denormalizing to verify) ###Code norm_t_clip = NormalizeVideo(mean=DEFAULT_MEAN, std=DEFAULT_STD)(t_clip) show_clip(norm_t_clip) show_clip(denormalize(norm_t_clip, mean=DEFAULT_MEAN, std=DEFAULT_STD)) ###Output _____no_output_____ ###Markdown Horizontal flipping ###Code show_clip(RandomHorizontalFlipVideo(p=1.0)(t_clip)) ###Output _____no_output_____
notebooks/014_ajustePolinomios.ipynb
###Markdown $$ ax+b=0 $$ ###Code coef = np.polyfit(x, y, deg=1) coef[0] coef[1] plt.plot(x, y) plt.plot(coef[0]*x+coef[1]) ###Output _____no_output_____ ###Markdown $$ax^2+bx+c=0$$ ###Code coef = np.polyfit(x, y, deg=2) coef plt.plot(x, y) plt.plot(coef[0]*x**2+coef[1]*x+coef[2]) coef = np.polyfit(x, y, deg=2) p = np.poly1d(coef) print(p) coef = np.polyfit(x, y, deg=3) p = np.poly1d(coef) print(p) coef = np.polyfit(x, y, deg=5) p = np.poly1d(coef) plt.plot(x,y) plt.plot(x, p(x)) def ajuste(grado): coef = np.polyfit(x,y,deg=grado) p = np.poly1d(coef) plt.plot(x,y) plt.plot(x, p(x)) plt.ylim(-200,1000) #plt.title(p) ajuste(4) interact(ajuste, grado=(0,10)) ###Output _____no_output_____
code/final_code_model/Jupyter_example/NER_v2.1_SampleNotebook.ipynb
###Markdown Neural Network for Spanish Named Entity Recognition Jupyter Notebook based on: **Kamal Raj** NER with Bidirectional LSTM-CNNs implementation available on Github. https://github.com/kamalkraj/Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs.**Versión: -v_1.2-**Notas de version: - Se implementa las word embeddings en español: GloVe embeddings for SWBC; dimensions=300, vectors=855380. - Se modifico y mejoró el preprocesamiento de los datos de entrada para predicción. Ahora puede predecir las etiquetas I-(PER/LOC/ORG/MISC) Para 50 epoch: -Tiene un accuracy :~80 -No se implementa nada para el español, se encontró que era perjudicial con las embeddings. -Tiempo: 38 min aprox. Para 100 epoch: -Tiene un accuracy :~84 ( -No se implementa nada para el español, se encontró que era perjudicial con las embeddings. -Tiempo: 1 hr 20 min aprox. Entrenamiento realizado en: DESKTOP-0UQLV13 Processor: Intel Core i7-6700HQ CPU 2.6GHz RAM: 16GB OS: Windows 10 Home Single x64 Tipo de memoria: SSD Requiere: unidecode numpy (pip install --upgrade numpy) nltk (pip install --upgrade nltk) * Descargar nltk punkt y nltk stopwords: * >> import nltk * >> nltk.download('stopwords') * >> nltk.download('punkt') * Para más información: https://www.nltk.org/data.html random tensorflow 1.13.1 (pip install --upgrade tensorflow) *Actualmente (10/abril/19) no funciona con python 3.7. * Para más información: https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class01_intro_python.ipynb keras (pip install --upgrade keras) NER task can be formulated as: _Given a sequence of tokens (words, and may be punctuation symbols) provide a tag from predefined set of tags for each token in the sequence._For NER task there are some common types of entities which essentially are tags:- Persons- Locations- Organizations- Expressions of time- Quantities- Monetary values Furthermore, to distinguish consequent entities with the same tags BIO tagging scheme is used. "B" stands for beginning, "I" stands for the continuation of an entity and "O" means the absence of entity. Example with dropped punctuation: Bernhard B-PER Riemann I-PER Carl B-PER Friedrich I-PER Gauss I-PER and O Leonhard B-PER Euler I-PERIn the example above PER means person tag, and "B-" and "I-" are prefixes identifying beginnings and continuations of the entities. Without such prefixes, it is impossible to separate Bernhard Riemann from Carl Friedrich Gauss. ###Code # Np for math # Keras for models, layers 4 NN layers import numpy as np from keras.models import Model from keras.layers import TimeDistributed,Conv1D,Dense,Embedding,Input,Dropout,LSTM,Bidirectional,MaxPooling1D,Flatten,concatenate from keras.utils import Progbar from keras.preprocessing.sequence import pad_sequences from keras.initializers import RandomUniform import unidecode import string # Read file (txt) and divide the sentences into character bins (word, tag). def readfile(filename): ''' read file return format : [ ['EU', 'B-ORG'], ['rejects', 'O'], ['German', 'B-MISC'], ['call', 'O'], ['to', 'O'], ['boycott', 'O'], ['British', 'B-MISC'], ['lamb', 'O'], ['.', 'O'] ] ''' f = open(filename, encoding='utf-8-sig') # open the file. Update to fix '' sentences = [] sentence = [] for line in f: if len(line)==0 or line.startswith('-DOCSTART') or line[0]=="\n": if len(sentence) > 0: sentences.append(sentence) sentence = [] continue splits = line.split(' ') #splits[0] = unidecode.unidecode(splits[0]) # Remove special characters from spanish #splits[0] = splits[0].lower() # Lowercase the words #splits[0] = splits[0].translate(str.maketrans('', '', string.punctuation)) # remove puntuation splits[-1] = splits[-1].replace('\n', '').replace('\r', '') #Remove all line breaks from a long string of text if splits[0] != '': sentence.append([splits[0],splits[-1]]) if len(sentence) >0: sentences.append(sentence) sentence = [] return sentences # Read the 3 sets ************************************************* PATH ************************************************ # Dataset CoNLL 2002 for Spanish, wich is divided into train, test, valid (dev) sets. Each row contains a word and it's tag # https://github.com/teropa/nlp/tree/master/resources/corpora/conll2002 trainSentences = readfile("tidy_data/train.txt") devSentences = readfile("tidy_data/valid.txt") testSentences = readfile("tidy_data/test.txt") print(len(trainSentences)) trainSentences[0] devSentences[0] testSentences[0] # Create new attribute in the character bins for padding def addCharInformatioin(Sentences): for i,sentence in enumerate(Sentences): for j,data in enumerate(sentence): chars = [c for c in data[0]] Sentences[i][j] = [data[0],chars,data[1]] return Sentences trainSentences = addCharInformatioin(trainSentences) devSentences = addCharInformatioin(devSentences) testSentences = addCharInformatioin(testSentences) trainSentences[0] devSentences[0] testSentences[0] # 1.Creates the label set ( tag's set) # 2.Creates a set with the lowercased words contained in the train,dev,test sets labelSet = set() words = {} for dataset in [trainSentences, devSentences, testSentences]: for sentence in dataset: for token,char,label in sentence: labelSet.add(label) words[token.lower()] = True labelSet words # Gives the labels a numerical id. # :: Create a mapping for the labels :: label2Idx = {} for label in labelSet: label2Idx[label] = len(label2Idx) label2Idx # Look up table # :: Hard coded case lookup :: case2Idx = {'numeric': 0, 'allLower':1, 'allUpper':2, 'initialUpper':3, 'other':4, 'mainly_numeric':5, 'contains_digit': 6, 'PADDING_TOKEN':7} caseEmbeddings = np.identity(len(case2Idx), dtype='float32') case2Idx caseEmbeddings # :: Read in word embeddings :: word2Idx = {} wordEmbeddings = [] # *********************************************************************************************** PATH ************************************************* # GloVe embeddings from SBWC # https://github.com/uchile-nlp/spanish-word-embeddings #* Hace los wordEmbedings en base a la lista de embedings + revisa si la palabra en embeddings esta contenido en la lista # de palabras ** Nota: Remember that the words are seen as vectors. with open("word_embeddings/SBW-vectors-300-min5.txt", encoding="utf-8") as fEmbeddings: ## change to skip first line (headings) next(fEmbeddings) for line in fEmbeddings: split = line.strip().split(' ') word = split[0] if len(word2Idx) == 0: #Add padding+unknown word2Idx["PADDING_TOKEN"] = len(word2Idx) vector = np.zeros(len(split)-1) #Zero vector vor 'PADDING' word wordEmbeddings.append(vector) word2Idx["UNKNOWN_TOKEN"] = len(word2Idx) vector = np.random.uniform(-0.25, 0.25, len(split)-1) wordEmbeddings.append(vector) if split[0].lower() in words: vector = np.array([float(num) for num in split[1:]]) wordEmbeddings.append(vector) word2Idx[split[0]] = len(word2Idx) wordEmbeddings = np.array(wordEmbeddings) wordEmbeddings wordEmbeddings.shape[0] wordEmbeddings.shape[1] char2Idx = {"PADDING":0, "UNKNOWN":1} for c in " 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZáéíóúñäëïöüÁÉÍÓÚÄËÏÖÜÃÂñÑàèìòùÀÈÌÒÙ.,-_()[]{}¡!¿?:;#'\"/\\%$`&=*+@^~|‘´·»³©\xadº±¼\xa0": char2Idx[c] = len(char2Idx) # characters and position (val) char2Idx # words and possition (val) word2Idx ### Padding the sentences def padding(Sentences): maxlen = 52 for sentence in Sentences: char = sentence[2] for x in char: maxlen = max(maxlen,len(x)) for i,sentence in enumerate(Sentences): Sentences[i][2] = pad_sequences(Sentences[i][2],52,padding='post') return Sentences # classify the word according to the caseLookup ( numeric, mainly_numeric, allLower, allUpper, initialUpper, contains_digit) def getCasing(word, caseLookup): casing = 'other' #Get number of digits in word numDigits = 0 for char in word: if char.isdigit(): numDigits += 1 digitFraction = numDigits / float(len(word)) if word.isdigit(): #Is a digit casing = 'numeric' elif digitFraction > 0.5: casing = 'mainly_numeric' elif word.islower(): #All lower case casing = 'allLower' elif word.isupper(): #All upper case casing = 'allUpper' elif word[0].isupper(): #is a title, initial char upper, then all lower casing = 'initialUpper' elif numDigits > 0: casing = 'contains_digit' return caseLookup[casing] # Create words embeding matrices to padding def createMatrices(sentences, word2Idx, label2Idx, case2Idx,char2Idx): unknownIdx = word2Idx['UNKNOWN_TOKEN'] paddingIdx = word2Idx['PADDING_TOKEN'] dataset = [] wordCount = 0 unknownWordCount = 0 for sentence in sentences: wordIndices = [] caseIndices = [] charIndices = [] labelIndices = [] for word,char,label in sentence: wordCount += 1 # if the word is in the list of words to index, then index it (verify with the lower cased word) if word in word2Idx: wordIdx = word2Idx[word] elif word.lower() in word2Idx: wordIdx = word2Idx[word.lower()] else: # else tag it as unknown wordIdx = unknownIdx unknownWordCount += 1 charIdx = [] for x in char: charIdx.append(char2Idx[x]) #Get the label and map to int wordIndices.append(wordIdx) caseIndices.append(getCasing(word, case2Idx)) #Call getCasing charIndices.append(charIdx) labelIndices.append(label2Idx[label]) dataset.append([wordIndices, caseIndices, charIndices, labelIndices]) return dataset # Padding the train/dev/test set and convert them to embedings train_set = padding(createMatrices(trainSentences,word2Idx, label2Idx, case2Idx,char2Idx)) dev_set = padding(createMatrices(devSentences,word2Idx, label2Idx, case2Idx,char2Idx)) test_set = padding(createMatrices(testSentences, word2Idx, label2Idx, case2Idx,char2Idx)) trainSentences[0] train_set[0] # save the words and labels to index as dict types idx2Label = {v: k for k, v in label2Idx.items()} #***************************************PATH*********************** np.save("model_data/idx2Label.npy",idx2Label) np.save("model_data/word2Idx.npy",word2Idx) # Create a batch for each set (later we will create mini-batch) def createBatches(data): l = [] for i in data: l.append(len(i[0])) l = set(l) batches = [] batch_len = [] z = 0 for i in l: for batch in data: if len(batch[0]) == i: batches.append(batch) z += 1 batch_len.append(z) return batches,batch_len train_batch,train_batch_len = createBatches(train_set) dev_batch,dev_batch_len = createBatches(dev_set) test_batch,test_batch_len = createBatches(test_set) #train_batch_len ###Output _____no_output_____ ###Markdown Start with Tensorflow. Remember that tf first construct a graph, and then run it. tf automatically determines the best contruction taking into consideration each node requirements. ###Code # Create a tensor for the inputs words_input = Input(shape=(None,),dtype='int32',name='words_input') # Create a tensor of the embeddings using the words embeddings and feeding with the words_input tensor words = Embedding(input_dim=wordEmbeddings.shape[0], output_dim=wordEmbeddings.shape[1], weights=[wordEmbeddings], trainable=False)(words_input) # Create a tensor of casing input casing_input = Input(shape=(None,), dtype='int32', name='casing_input') #Create a tensor of the casing using the words embeddings and feeding with the casing_input tensor casing = Embedding(output_dim=caseEmbeddings.shape[1], input_dim=caseEmbeddings.shape[0], weights=[caseEmbeddings], trainable=False)(casing_input) ###Output _____no_output_____ ###Markdown More tensors for the model.... ###Code character_input=Input(shape=(None,52,),name='char_input') embed_char_out=TimeDistributed(Embedding(len(char2Idx),30,embeddings_initializer=RandomUniform(minval=-0.5, maxval=0.5)), name='char_embedding')(character_input) # Establish the dropout (neurons?) dropout= Dropout(0.5)(embed_char_out) conv1d_out= TimeDistributed(Conv1D(kernel_size=3, filters=30, padding='same',activation='tanh', strides=1))(dropout) # max pool of the convolutional maxpool_out=TimeDistributed(MaxPooling1D(52))(conv1d_out) # Flattern layer for the CNN, it is requered to be flattern for the CNN char = TimeDistributed(Flatten())(maxpool_out) char = Dropout(0.5)(char) output = concatenate([words, casing,char]) output = Bidirectional(LSTM(200, return_sequences=True, dropout=0.50, recurrent_dropout=0.25))(output) output = TimeDistributed(Dense(len(label2Idx), activation='softmax'))(output) ###Output _____no_output_____ ###Markdown Model. Inlcudes a Summary of the Model. ###Code model = Model(inputs=[words_input, casing_input,character_input], outputs=[output]) model.compile(loss='sparse_categorical_crossentropy', optimizer='nadam') model.summary() #Number of epochs epochs = 150 # Minibatches def iterate_minibatches(dataset,batch_len): start = 0 for i in batch_len: tokens = [] caseing = [] char = [] labels = [] data = dataset[start:i] start = i for dt in data: t,c,ch,l = dt l = np.expand_dims(l,-1) tokens.append(t) caseing.append(c) char.append(ch) labels.append(l) yield np.asarray(labels),np.asarray(tokens),np.asarray(caseing),np.asarray(char) #Training of n epochs for epoch in range(epochs): print("Epoch %d/%d"%(epoch,epochs)) a = Progbar(len(train_batch_len)) for i,batch in enumerate(iterate_minibatches(train_batch,train_batch_len)): labels, tokens, casing,char = batch model.train_on_batch([tokens, casing,char], labels) a.update(i) a.update(i+1) print(' ') # Saving the model model.save("model_data/model.h5") ###Output _____no_output_____ ###Markdown Evaluating model accurracy. Using F1, precision and recal for Dev and Test sets. ###Code def tag_dataset(dataset): correctLabels = [] predLabels = [] b = Progbar(len(dataset)) for i,data in enumerate(dataset): tokens, casing,char, labels = data tokens = np.asarray([tokens]) casing = np.asarray([casing]) char = np.asarray([char]) pred = model.predict([tokens, casing,char], verbose=False)[0] pred = pred.argmax(axis=-1) #Predict the classes correctLabels.append(labels) predLabels.append(pred) b.update(i) b.update(i+1) return predLabels, correctLabels #Method to compute the accruarcy. Call predict_labels to get the labels for the dataset def compute_f1(predictions, correct, idx2Label): label_pred = [] for sentence in predictions: label_pred.append([idx2Label[element] for element in sentence]) label_correct = [] for sentence in correct: label_correct.append([idx2Label[element] for element in sentence]) #print label_pred #print label_correct prec = compute_precision(label_pred, label_correct) rec = compute_precision(label_correct, label_pred) f1 = 0 if (rec+prec) > 0: f1 = 2.0 * prec * rec / (prec + rec); return prec, rec, f1 def compute_precision(guessed_sentences, correct_sentences): assert(len(guessed_sentences) == len(correct_sentences)) correctCount = 0 count = 0 for sentenceIdx in range(len(guessed_sentences)): guessed = guessed_sentences[sentenceIdx] correct = correct_sentences[sentenceIdx] assert(len(guessed) == len(correct)) idx = 0 while idx < len(guessed): if guessed[idx][0] == 'B': #A new chunk starts count += 1 if guessed[idx] == correct[idx]: idx += 1 correctlyFound = True while idx < len(guessed) and guessed[idx][0] == 'I': #Scan until it no longer starts with I if guessed[idx] != correct[idx]: correctlyFound = False idx += 1 if idx < len(guessed): if correct[idx][0] == 'I': #The chunk in correct was longer correctlyFound = False if correctlyFound: correctCount += 1 else: idx += 1 else: idx += 1 precision = 0 if count > 0: precision = float(correctCount) / count return precision # Performance on dev dataset predLabels, correctLabels = tag_dataset(dev_batch) pre_dev, rec_dev, f1_dev = compute_f1(predLabels, correctLabels, idx2Label) print("Dev-Data: Prec: %.3f, Rec: %.3f, F1: %.3f" % (pre_dev, rec_dev, f1_dev)) # Performance on test dataset predLabels, correctLabels = tag_dataset(test_batch) pre_test, rec_test, f1_test= compute_f1(predLabels, correctLabels, idx2Label) print("Test-Data: Prec: %.3f, Rec: %.3f, F1: %.3f" % (pre_test, rec_test, f1_test)) ###Output 1517/1517 [==============================] - 8s 5ms/step Test-Data: Prec: 0.849, Rec: 0.853, F1: 0.851 ###Markdown Test with data ###Code from nltk.tokenize import RegexpTokenizer from nltk.corpus import stopwords ###Output _____no_output_____ ###Markdown Defining class for testing. ###Code import numpy as np import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from keras.models import load_model from keras.preprocessing.sequence import pad_sequences from nltk import word_tokenize class Parser: def __init__(self): # ::Hard coded char lookup :: self.char2Idx = {"PADDING":0, "UNKNOWN":1} for c in " 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.,-_()[]{}!?:;#'\"/\\%$`&=*+@^~|": self.char2Idx[c] = len(self.char2Idx) # :: Hard coded case lookup :: self.case2Idx = {'numeric': 0, 'allLower':1, 'allUpper':2, 'initialUpper':3, 'other':4, 'mainly_numeric':5, 'contains_digit': 6, 'PADDING_TOKEN':7} def load_models(self, loc=None): if not loc: loc = os.path.join(os.path.expanduser('~'), '.ner_model') self.model = load_model(os.path.join(loc,"model.h5")) # loading word2Idx self.word2Idx = np.load(os.path.join(loc,"word2Idx.npy")).item() # loading idx2Label self.idx2Label = np.load(os.path.join(loc,"idx2Label.npy")).item() def getCasing(self,word, caseLookup): casing = 'other' numDigits = 0 for char in word: if char.isdigit(): numDigits += 1 digitFraction = numDigits / float(len(word)) if word.isdigit(): #Is a digit casing = 'numeric' elif digitFraction > 0.5: casing = 'mainly_numeric' elif word.islower(): #All lower case casing = 'allLower' elif word.isupper(): #All upper case casing = 'allUpper' elif word[0].isupper(): #is a title, initial char upper, then all lower casing = 'initialUpper' elif numDigits > 0: casing = 'contains_digit' return caseLookup[casing] def createTensor(self,sentence, word2Idx,case2Idx,char2Idx): unknownIdx = word2Idx['UNKNOWN_TOKEN'] wordIndices = [] caseIndices = [] charIndices = [] for word,char in sentence: word = str(word) if word in word2Idx: wordIdx = word2Idx[word] elif word.lower() in word2Idx: wordIdx = word2Idx[word.lower()] else: wordIdx = unknownIdx charIdx = [] for x in char: if x in char2Idx.keys(): charIdx.append(char2Idx[x]) else: charIdx.append(char2Idx['UNKNOWN']) wordIndices.append(wordIdx) caseIndices.append(self.getCasing(word, case2Idx)) charIndices.append(charIdx) return [wordIndices, caseIndices, charIndices] def addCharInformation(self, sentence): return [[word, list(str(word))] for word in sentence] def padding(self,Sentence): Sentence[2] = pad_sequences(Sentence[2],52,padding='post') return Sentence def predict(self,Sentence): Sentence = words = word_tokenize(Sentence) Sentence = self.addCharInformation(Sentence) Sentence = self.padding(self.createTensor(Sentence,self.word2Idx,self.case2Idx,self.char2Idx)) tokens, casing,char = Sentence tokens = np.asarray([tokens]) casing = np.asarray([casing]) char = np.asarray([char]) pred = self.model.predict([tokens, casing,char], verbose=False)[0] pred = pred.argmax(axis=-1) pred = [self.idx2Label[x].strip() for x in pred] return list(zip(words,pred)) p = Parser() p.load_models("model_data/") from nltk import sent_tokenize text_file = open("Input_sample.txt").read() token_sent = sent_tokenize(text_file) print(token_sent) ###Output ['MÉXICO.—Marcelo Ebrard va a renunciar a la Secretaría de Relaciones Exteriores, según versiones periodísticas que hoy fueron desmentidas por la SRE.', '“En el ámbito de la fantasía”\n\nRoberto Velasco Álvarez, vocero de la Cancillería, aseguró a través de Twitter que es totalmente falsa la versión que circuló sobre el tema.', 'El evento referido, señaló, sólo ocurrió en el ámbito de la fantasía, según lo publicado por El Universal.', 'Primero Gertz Moreno\n\nAyer lunes también circuló la versión sobre una supuesta renuncia del Fiscal General de la República, Alejandro Gertz Manero, por cuestiones de salud.', 'También fue desmentido por la dependencia.', 'Hoy en importante firma\n\nEsta mañana, en Palacio Nacional, con el presidente Andrés Manuel López Obrador como testigo de honor, Michelle Bachelet, alta comisionada de Naciones Unidas para los Derechos Humanos, y el canciller Marcelo Ebrard firmaron el Acuerdo para la formación en materia de derechos humanos y operación de acuerdo a estándares internacionales de derechos humanos a la Guardia Nacional.', 'En el acto, Ebrard dijo que México se perfila hacia un nuevo paradigma de respeto, promoción y protección de los derechos y las libertades fundamentales, que coloca el respeto irrestricto a los derechos humanos en el centro de la política exterior del Gobierno de la República.'] ###Markdown Input: ###Code print(text_file) outlist =[] for t in token_sent: t= unidecode.unidecode(t) outlist.append(p.predict(t)) to_out=[] for s in outlist: for w in s: if ('O') not in w: print(w) to_out.append(w) with open('Output_sample.txt', 'w') as f: for item in to_out: f.write("\n") for x in item: f.write("%s " %x) ###Output ('MEXICO.', 'B-ORG') ('Marcelo', 'B-PER') ('Ebrard', 'I-PER') ('Secretaria', 'B-ORG') ('de', 'I-ORG') ('Relaciones', 'I-MISC') ('Exteriores', 'I-MISC') ('SRE', 'B-MISC') ('Roberto', 'B-PER') ('Velasco', 'I-PER') ('Alvarez', 'I-PER') ('Cancilleria', 'B-PER') ('Twitter', 'B-LOC') ('senalo', 'I-MISC') ('El', 'B-ORG') ('Universal', 'I-ORG') ('Gertz', 'B-PER') ('Moreno', 'I-PER') ('Ayer', 'I-PER') ('Fiscal', 'B-MISC') ('General', 'I-MISC') ('de', 'I-ORG') ('la', 'I-ORG') ('Republica', 'I-ORG') ('Alejandro', 'B-PER') ('Gertz', 'I-PER') ('Manero', 'I-PER') ('Tambien', 'B-PER') ('Esta', 'B-MISC') ('Palacio', 'B-LOC') ('Nacional', 'I-LOC') ('Andres', 'B-PER') ('Manuel', 'I-PER') ('Lopez', 'I-PER') ('Obrador', 'I-PER') ('Michelle', 'I-PER') ('Bachelet', 'I-PER') ('Naciones', 'B-MISC') ('Unidas', 'I-MISC') ('para', 'I-ORG') ('los', 'I-MISC') ('Derechos', 'I-MISC') ('Humanos', 'I-MISC') ('Marcelo', 'B-PER') ('Ebrard', 'I-PER') ('Acuerdo', 'B-MISC') ('Guardia', 'B-ORG') ('Nacional', 'I-ORG') ('Ebrard', 'B-MISC') ('dijo', 'I-MISC') ('Mexico', 'B-PER') ('Gobierno', 'B-ORG') ('de', 'I-ORG') ('la', 'I-ORG') ('Republica', 'I-ORG')
2_Plagiarism_Feature_Engineering(1).ipynb
###Markdown Plagiarism Detection, Feature EngineeringIn this project, you will be tasked with building a plagiarism detector that examines an answer text file and performs binary classification; labeling that file as either plagiarized or not, depending on how similar that text file is to a provided, source text. Your first task will be to create some features that can then be used to train a classification model. This task will be broken down into a few discrete steps:* Clean and pre-process the data.* Define features for comparing the similarity of an answer text and a source text, and extract similarity features.* Select "good" features, by analyzing the correlations between different features.* Create train/test `.csv` files that hold the relevant features and class labels for train/test data points.In the _next_ notebook, Notebook 3, you'll use the features and `.csv` files you create in _this_ notebook to train a binary classification model in a SageMaker notebook instance.You'll be defining a few different similarity features, as outlined in [this paper](https://s3.amazonaws.com/video.udacity-data.com/topher/2019/January/5c412841_developing-a-corpus-of-plagiarised-short-answers/developing-a-corpus-of-plagiarised-short-answers.pdf), which should help you build a robust plagiarism detector!To complete this notebook, you'll have to complete all given exercises and answer all the questions in this notebook.> All your tasks will be clearly labeled **EXERCISE** and questions as **QUESTION**.It will be up to you to decide on the features to include in your final training and test data.--- Read in the DataThe cell below will download the necessary, project data and extract the files into the folder `data/`.This data is a slightly modified version of a dataset created by Paul Clough (Information Studies) and Mark Stevenson (Computer Science), at the University of Sheffield. You can read all about the data collection and corpus, at [their university webpage](https://ir.shef.ac.uk/cloughie/resources/plagiarism_corpus.html). > **Citation for data**: Clough, P. and Stevenson, M. Developing A Corpus of Plagiarised Short Answers, Language Resources and Evaluation: Special Issue on Plagiarism and Authorship Analysis, In Press. [Download] ###Code # NOTE: # you only need to run this cell if you have not yet downloaded the data # otherwise you may skip this cell or comment it out !wget https://s3.amazonaws.com/video.udacity-data.com/topher/2019/January/5c4147f9_data/data.zip !unzip data # import libraries import pandas as pd import numpy as np import os ###Output _____no_output_____ ###Markdown This plagiarism dataset is made of multiple text files; each of these files has characteristics that are is summarized in a `.csv` file named `file_information.csv`, which we can read in using `pandas`. ###Code csv_file = 'data/file_information.csv' plagiarism_df = pd.read_csv(csv_file) # print out the first few rows of data info plagiarism_df.head() ###Output _____no_output_____ ###Markdown Types of PlagiarismEach text file is associated with one **Task** (task A-E) and one **Category** of plagiarism, which you can see in the above DataFrame. Tasks, A-EEach text file contains an answer to one short question; these questions are labeled as tasks A-E. For example, Task A asks the question: "What is inheritance in object oriented programming?" Categories of plagiarism Each text file has an associated plagiarism label/category:**1. Plagiarized categories: `cut`, `light`, and `heavy`.*** These categories represent different levels of plagiarized answer texts. `cut` answers copy directly from a source text, `light` answers are based on the source text but include some light rephrasing, and `heavy` answers are based on the source text, but *heavily* rephrased (and will likely be the most challenging kind of plagiarism to detect). **2. Non-plagiarized category: `non`.** * `non` indicates that an answer is not plagiarized; the Wikipedia source text is not used to create this answer. **3. Special, source text category: `orig`.*** This is a specific category for the original, Wikipedia source text. We will use these files only for comparison purposes. --- Pre-Process the DataIn the next few cells, you'll be tasked with creating a new DataFrame of desired information about all of the files in the `data/` directory. This will prepare the data for feature extraction and for training a binary, plagiarism classifier. EXERCISE: Convert categorical to numerical dataYou'll notice that the `Category` column in the data, contains string or categorical values, and to prepare these for feature extraction, we'll want to convert these into numerical values. Additionally, our goal is to create a binary classifier and so we'll need a binary class label that indicates whether an answer text is plagiarized (1) or not (0). Complete the below function `numerical_dataframe` that reads in a `file_information.csv` file by name, and returns a *new* DataFrame with a numerical `Category` column and a new `Class` column that labels each answer as plagiarized or not. Your function should return a new DataFrame with the following properties:* 4 columns: `File`, `Task`, `Category`, `Class`. The `File` and `Task` columns can remain unchanged from the original `.csv` file.* Convert all `Category` labels to numerical labels according to the following rules (a higher value indicates a higher degree of plagiarism): * 0 = `non` * 1 = `heavy` * 2 = `light` * 3 = `cut` * -1 = `orig`, this is a special value that indicates an original file.* For the new `Class` column * Any answer text that is not plagiarized (`non`) should have the class label `0`. * Any plagiarized answer texts should have the class label `1`. * And any `orig` texts will have a special label `-1`. Expected outputAfter running your function, you should get a DataFrame with rows that looks like the following: ``` File Task Category Class0 g0pA_taska.txt a 0 01 g0pA_taskb.txt b 3 12 g0pA_taskc.txt c 2 13 g0pA_taskd.txt d 1 14 g0pA_taske.txt e 0 0......99 orig_taske.txt e -1 -1``` ###Code # Read in a csv file and return a transformed dataframe def numerical_dataframe(csv_file='data/file_information.csv'): '''Reads in a csv file which is assumed to have `File`, `Category` and `Task` columns. This function does two things: 1) converts `Category` column values to numerical values 2) Adds a new, numerical `Class` label column. The `Class` column will label plagiarized answers as 1 and non-plagiarized as 0. Source texts have a special label, -1. :param csv_file: The directory for the file_information.csv file :return: A dataframe with numerical categories and a new `Class` label column''' df=pd.read_csv(csv_file) df['Category']=[0 if df.loc[i,'Category']=='non' else 1 if df.loc[i,'Category']=='heavy' else 2 if df.loc[i,'Category']=='light' else 3 if df.loc[i,'Category']=='cut' else -1 for i in df.index] df['Class']=[-1 if df.loc[i,'Category']==-1 else 0 if df.loc[i,'Category']==0 else 1 for i in df.index] return df ###Output _____no_output_____ ###Markdown Test cellsBelow are a couple of test cells. The first is an informal test where you can check that your code is working as expected by calling your function and printing out the returned result.The **second** cell below is a more rigorous test cell. The goal of a cell like this is to ensure that your code is working as expected, and to form any variables that might be used in _later_ tests/code, in this case, the data frame, `transformed_df`.> The cells in this notebook should be run in chronological order (the order they appear in the notebook). This is especially important for test cells.Often, later cells rely on the functions, imports, or variables defined in earlier cells. For example, some tests rely on previous tests to work.These tests do not test all cases, but they are a great way to check that you are on the right track! ###Code # informal testing, print out the results of a called function # create new `transformed_df` transformed_df = numerical_dataframe(csv_file ='data/file_information.csv') # check work # check that all categories of plagiarism have a class label = 1 transformed_df.head(10) transformed_df.tail(10) # test cell that creates `transformed_df`, if tests are passed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # importing tests import problem_unittests as tests # test numerical_dataframe function tests.test_numerical_df(numerical_dataframe) # if above test is passed, create NEW `transformed_df` transformed_df = numerical_dataframe(csv_file ='data/file_information.csv') # check work print('\nExample data: ') transformed_df.head() ###Output Tests Passed! Example data: ###Markdown Text Processing & Splitting DataRecall that the goal of this project is to build a plagiarism classifier. At it's heart, this task is a comparison text; one that looks at a given answer and a source text, compares them and predicts whether an answer has plagiarized from the source. To effectively do this comparison, and train a classifier we'll need to do a few more things: pre-process all of our text data and prepare the text files (in this case, the 95 answer files and 5 original source files) to be easily compared, and split our data into a `train` and `test` set that can be used to train a classifier and evaluate it, respectively. To this end, you've been provided code that adds additional information to your `transformed_df` from above. The next two cells need not be changed; they add two additional columns to the `transformed_df`:1. A `Text` column; this holds all the lowercase text for a `File`, with extraneous punctuation removed.2. A `Datatype` column; this is a string value `train`, `test`, or `orig` that labels a data point as part of our train or test setThe details of how these additional columns are created can be found in the `helpers.py` file in the project directory. You're encouraged to read through that file to see exactly how text is processed and how data is split.Run the cells below to get a `complete_df` that has all the information you need to proceed with plagiarism detection and feature engineering. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import helpers # create a text column text_df = helpers.create_text_column(transformed_df) text_df.head() # after running the cell above # check out the processed text for a single file, by row index row_idx = 0 # feel free to change this index sample_text = text_df.iloc[0]['Text'] print('Sample processed text:\n\n', sample_text) ###Output Sample processed text: inheritance is a basic concept of object oriented programming where the basic idea is to create new classes that add extra detail to existing classes this is done by allowing the new classes to reuse the methods and variables of the existing classes and new methods and classes are added to specialise the new class inheritance models the is kind of relationship between entities or objects for example postgraduates and undergraduates are both kinds of student this kind of relationship can be visualised as a tree structure where student would be the more general root node and both postgraduate and undergraduate would be more specialised extensions of the student node or the child nodes in this relationship student would be known as the superclass or parent class whereas postgraduate would be known as the subclass or child class because the postgraduate class extends the student class inheritance can occur on several layers where if visualised would display a larger tree structure for example we could further extend the postgraduate node by adding two extra extended classes to it called msc student and phd student as both these types of student are kinds of postgraduate student this would mean that both the msc student and phd student classes would inherit methods and variables from both the postgraduate and student classes ###Markdown Split data into training and test setsThe next cell will add a `Datatype` column to a given DataFrame to indicate if the record is: * `train` - Training data, for model training.* `test` - Testing data, for model evaluation.* `orig` - The task's original answer from wikipedia. Stratified samplingThe given code uses a helper function which you can view in the `helpers.py` file in the main project directory. This implements [stratified random sampling](https://en.wikipedia.org/wiki/Stratified_sampling) to randomly split data by task & plagiarism amount. Stratified sampling ensures that we get training and test data that is fairly evenly distributed across task & plagiarism combinations. Approximately 26% of the data is held out for testing and 74% of the data is used for training.The function **train_test_dataframe** takes in a DataFrame that it assumes has `Task` and `Category` columns, and, returns a modified frame that indicates which `Datatype` (train, test, or orig) a file falls into. This sampling will change slightly based on a passed in *random_seed*. Due to a small sample size, this stratified random sampling will provide more stable results for a binary plagiarism classifier. Stability here is smaller *variance* in the accuracy of classifier, given a random seed. ###Code random_seed = 1 # can change; set for reproducibility """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import helpers # create new df with Datatype (train, test, orig) column # pass in `text_df` from above to create a complete dataframe, with all the information you need complete_df = helpers.train_test_dataframe(text_df, random_seed=random_seed) # check results complete_df.head(10) ###Output _____no_output_____ ###Markdown Determining PlagiarismNow that you've prepared this data and created a `complete_df` of information, including the text and class associated with each file, you can move on to the task of extracting similarity features that will be useful for plagiarism classification. > Note: The following code exercises, assume that the `complete_df` as it exists now, will **not** have its existing columns modified. The `complete_df` should always include the columns: `['File', 'Task', 'Category', 'Class', 'Text', 'Datatype']`. You can add additional columns, and you can create any new DataFrames you need by copying the parts of the `complete_df` as long as you do not modify the existing values, directly.--- Similarity Features One of the ways we might go about detecting plagiarism, is by computing **similarity features** that measure how similar a given answer text is as compared to the original wikipedia source text (for a specific task, a-e). The similarity features you will use are informed by [this paper on plagiarism detection](https://s3.amazonaws.com/video.udacity-data.com/topher/2019/January/5c412841_developing-a-corpus-of-plagiarised-short-answers/developing-a-corpus-of-plagiarised-short-answers.pdf). > In this paper, researchers created features called **containment** and **longest common subsequence**. Using these features as input, you will train a model to distinguish between plagiarized and not-plagiarized text files. Feature EngineeringLet's talk a bit more about the features we want to include in a plagiarism detection model and how to calculate such features. In the following explanations, I'll refer to a submitted text file as a **Student Answer Text (A)** and the original, wikipedia source file (that we want to compare that answer to) as the **Wikipedia Source Text (S)**. ContainmentYour first task will be to create **containment features**. To understand containment, let's first revisit a definition of [n-grams](https://en.wikipedia.org/wiki/N-gram). An *n-gram* is a sequential word grouping. For example, in a line like "bayes rule gives us a way to combine prior knowledge with new information," a 1-gram is just one word, like "bayes." A 2-gram might be "bayes rule" and a 3-gram might be "combine prior knowledge."> Containment is defined as the **intersection** of the n-gram word count of the Wikipedia Source Text (S) with the n-gram word count of the Student Answer Text (S) *divided* by the n-gram word count of the Student Answer Text.$$ \frac{\sum{count(\text{ngram}_{A}) \cap count(\text{ngram}_{S})}}{\sum{count(\text{ngram}_{A})}} $$If the two texts have no n-grams in common, the containment will be 0, but if _all_ their n-grams intersect then the containment will be 1. Intuitively, you can see how having longer n-gram's in common, might be an indication of cut-and-paste plagiarism. In this project, it will be up to you to decide on the appropriate `n` or several `n`'s to use in your final model. EXERCISE: Create containment featuresGiven the `complete_df` that you've created, you should have all the information you need to compare any Student Answer Text (A) with its appropriate Wikipedia Source Text (S). An answer for task A should be compared to the source text for task A, just as answers to tasks B, C, D, and E should be compared to the corresponding original source text.In this exercise, you'll complete the function, `calculate_containment` which calculates containment based upon the following parameters:* A given DataFrame, `df` (which is assumed to be the `complete_df` from above)* An `answer_filename`, such as 'g0pB_taskd.txt' * An n-gram length, `n` Containment calculationThe general steps to complete this function are as follows:1. From *all* of the text files in a given `df`, create an array of n-gram counts; it is suggested that you use a [CountVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html) for this purpose.2. Get the processed answer and source texts for the given `answer_filename`.3. Calculate the containment between an answer and source text according to the following equation. >$$ \frac{\sum{count(\text{ngram}_{A}) \cap count(\text{ngram}_{S})}}{\sum{count(\text{ngram}_{A})}} $$ 4. Return that containment value.You are encouraged to write any helper functions that you need to complete the function below. ###Code # Calculate the ngram containment for one answer file/source file pair in a df from sklearn.feature_extraction.text import CountVectorizer def calculate_containment(df, n, answer_filename): '''Calculates the containment between a given answer text and its associated source text. This function creates a count of ngrams (of a size, n) for each text file in our data. Then calculates the containment by finding the ngram count for a given answer text, and its associated source text, and calculating the normalized intersection of those counts. :param df: A dataframe with columns, 'File', 'Task', 'Category', 'Class', 'Text', and 'Datatype' :param n: An integer that defines the ngram size :param answer_filename: A filename for an answer text in the df, ex. 'g0pB_taskd.txt' :return: A single containment value that represents the similarity between an answer text and its source text. ''' counts = CountVectorizer(analyzer='word', ngram_range=(n,n)) a_text = df.loc[df["File"] == answer_filename]["Text"].values[0] a_task = df.loc[df["File"] == answer_filename]["Task"].values[0] s_text = df.loc[(df["Task"] == a_task) & (df["Datatype"] == 'orig')]["Text"].values[0] ngrams = counts.fit_transform([a_text, s_text]) ngram_array = ngrams.toarray() result=np.amin(ngram_array,axis=0).sum()/ngram_array[0].sum() return result ###Output _____no_output_____ ###Markdown Test cellsAfter you've implemented the containment function, you can test out its behavior. The cell below iterates through the first few files, and calculates the original category _and_ containment values for a specified n and file.>If you've implemented this correctly, you should see that the non-plagiarized have low or close to 0 containment values and that plagiarized examples have higher containment values, closer to 1.Note what happens when you change the value of n. I recommend applying your code to multiple files and comparing the resultant containment values. You should see that the highest containment values correspond to files with the highest category (`cut`) of plagiarism level. ###Code # select a value for n n = 3 # indices for first few files test_indices = range(5) # iterate through files and calculate containment category_vals = [] containment_vals = [] for i in test_indices: # get level of plagiarism for a given file index category_vals.append(complete_df.loc[i, 'Category']) # calculate containment for given file and n filename = complete_df.loc[i, 'File'] c = calculate_containment(complete_df, n, filename) containment_vals.append(c) # print out result, does it make sense? print('Original category values: \n', category_vals) print() print(str(n)+'-gram containment values: \n', containment_vals) # run this test cell """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # test containment calculation # params: complete_df from before, and containment function tests.test_containment(complete_df, calculate_containment) ###Output Tests Passed! ###Markdown QUESTION 1: Why can we calculate containment features across *all* data (training & test), prior to splitting the DataFrame for modeling? That is, what about the containment calculation means that the test and training data do not influence each other? **Answer:** Source text are non changing accross train or test data The test and the train splits are independent from each other and don't affect their containment result. --- Longest Common SubsequenceContainment a good way to find overlap in word usage between two documents; it may help identify cases of cut-and-paste as well as paraphrased levels of plagiarism. Since plagiarism is a fairly complex task with varying levels, it's often useful to include other measures of similarity. The paper also discusses a feature called **longest common subsequence**.> The longest common subsequence is the longest string of words (or letters) that are *the same* between the Wikipedia Source Text (S) and the Student Answer Text (A). This value is also normalized by dividing by the total number of words (or letters) in the Student Answer Text. In this exercise, we'll ask you to calculate the longest common subsequence of words between two texts. EXERCISE: Calculate the longest common subsequenceComplete the function `lcs_norm_word`; this should calculate the *longest common subsequence* of words between a Student Answer Text and corresponding Wikipedia Source Text. It may be helpful to think of this in a concrete example. A Longest Common Subsequence (LCS) problem may look as follows:* Given two texts: text A (answer text) of length n, and string S (original source text) of length m. Our goal is to produce their longest common subsequence of words: the longest sequence of words that appear left-to-right in both texts (though the words don't have to be in continuous order).* Consider: * A = "i think pagerank is a link analysis algorithm used by google that uses a system of weights attached to each element of a hyperlinked set of documents" * S = "pagerank is a link analysis algorithm used by the google internet search engine that assigns a numerical weighting to each element of a hyperlinked set of documents"* In this case, we can see that the start of each sentence of fairly similar, having overlap in the sequence of words, "pagerank is a link analysis algorithm used by" before diverging slightly. Then we **continue moving left -to-right along both texts** until we see the next common sequence; in this case it is only one word, "google". Next we find "that" and "a" and finally the same ending "to each element of a hyperlinked set of documents".* Below, is a clear visual of how these sequences were found, sequentially, in each text.* Now, those words appear in left-to-right order in each document, sequentially, and even though there are some words in between, we count this as the longest common subsequence between the two texts. * If I count up each word that I found in common I get the value 20. **So, LCS has length 20**. * Next, to normalize this value, divide by the total length of the student answer; in this example that length is only 27. **So, the function `lcs_norm_word` should return the value `20/27` or about `0.7408`.**In this way, LCS is a great indicator of cut-and-paste plagiarism or if someone has referenced the same source text multiple times in an answer. LCS, dynamic programmingIf you read through the scenario above, you can see that this algorithm depends on looking at two texts and comparing them word by word. You can solve this problem in multiple ways. First, it may be useful to `.split()` each text into lists of comma separated words to compare. Then, you can iterate through each word in the texts and compare them, adding to your value for LCS as you go. The method I recommend for implementing an efficient LCS algorithm is: using a matrix and dynamic programming. **Dynamic programming** is all about breaking a larger problem into a smaller set of subproblems, and building up a complete result without having to repeat any subproblems. This approach assumes that you can split up a large LCS task into a combination of smaller LCS tasks. Let's look at a simple example that compares letters:* A = "ABCD"* S = "BD"We can see right away that the longest subsequence of _letters_ here is 2 (B and D are in sequence in both strings). And we can calculate this by looking at relationships between each letter in the two strings, A and S.Here, I have a matrix with the letters of A on top and the letters of S on the left side:This starts out as a matrix that has as many columns and rows as letters in the strings S and O **+1** additional row and column, filled with zeros on the top and left sides. So, in this case, instead of a 2x4 matrix it is a 3x5.Now, we can fill this matrix up by breaking it into smaller LCS problems. For example, let's first look at the shortest substrings: the starting letter of A and S. We'll first ask, what is the Longest Common Subsequence between these two letters "A" and "B"? **Here, the answer is zero and we fill in the corresponding grid cell with that value.**Then, we ask the next question, what is the LCS between "AB" and "B"?**Here, we have a match, and can fill in the appropriate value 1**.If we continue, we get to a final matrix that looks as follows, with a **2** in the bottom right corner.The final LCS will be that value **2** *normalized* by the number of n-grams in A. So, our normalized value is 2/4 = **0.5**. The matrix rulesOne thing to notice here is that, you can efficiently fill up this matrix one cell at a time. Each grid cell only depends on the values in the grid cells that are directly on top and to the left of it, or on the diagonal/top-left. The rules are as follows:* Start with a matrix that has one extra row and column of zeros.* As you traverse your string: * If there is a match, fill that grid cell with the value to the top-left of that cell *plus* one. So, in our case, when we found a matching B-B, we added +1 to the value in the top-left of the matching cell, 0. * If there is not a match, take the *maximum* value from either directly to the left or the top cell, and carry that value over to the non-match cell.After completely filling the matrix, **the bottom-right cell will hold the non-normalized LCS value**.This matrix treatment can be applied to a set of words instead of letters. Your function should apply this to the words in two texts and return the normalized LCS value. ###Code # Compute the normalized LCS given an answer text and a source text def lcs_norm_word(answer_text, source_text): '''Computes the longest common subsequence of words in two texts; returns a normalized value. :param answer_text: The pre-processed text for an answer text :param source_text: The pre-processed text for an answer's associated source text :return: A normalized LCS value''' splitted_answer = answer_text.split() splitted_source = source_text.split() n_a=len(splitted_answer)+1 n_s=len(splitted_source)+1 matrix = [[0]*(n_a) for _ in range(n_s)] for i in range(1,len(matrix)): for j in range(1,len(matrix[0])): if splitted_answer[j-1] == splitted_source[i-1]: matrix[i][j] = 1 + matrix[i-1][j-1] else: matrix[i][j] = max(matrix[i-1][j], matrix[i][j-1]) return matrix[-1][-1] /( n_a-1) ###Output _____no_output_____ ###Markdown Test cellsLet's start by testing out your code on the example given in the initial description.In the below cell, we have specified strings A (answer text) and S (original source text). We know that these texts have 20 words in common and the submitted answer is 27 words long, so the normalized, longest common subsequence should be 20/27. ###Code # Run the test scenario from above # does your function return the expected value? A = "i think pagerank is a link analysis algorithm used by google that uses a system of weights attached to each element of a hyperlinked set of documents" S = "pagerank is a link analysis algorithm used by the google internet search engine that assigns a numerical weighting to each element of a hyperlinked set of documents" # calculate LCS lcs = lcs_norm_word(A, S) print('LCS = ', lcs) # expected value test assert lcs==20/27., "Incorrect LCS value, expected about 0.7408, got "+str(lcs) print('Test passed!') ###Output LCS = 0.7407407407407407 Test passed! ###Markdown This next cell runs a more rigorous test. ###Code # run test cell """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # test lcs implementation # params: complete_df from before, and lcs_norm_word function tests.test_lcs(complete_df, lcs_norm_word) ###Output Tests Passed! ###Markdown Finally, take a look at a few resultant values for `lcs_norm_word`. Just like before, you should see that higher values correspond to higher levels of plagiarism. ###Code # test on your own test_indices = range(5) # look at first few files category_vals = [] lcs_norm_vals = [] # iterate through first few docs and calculate LCS for i in test_indices: category_vals.append(complete_df.loc[i, 'Category']) # get texts to compare answer_text = complete_df.loc[i, 'Text'] task = complete_df.loc[i, 'Task'] # we know that source texts have Class = -1 orig_rows = complete_df[(complete_df['Class'] == -1)] orig_row = orig_rows[(orig_rows['Task'] == task)] source_text = orig_row['Text'].values[0] # calculate lcs lcs_val = lcs_norm_word(answer_text, source_text) lcs_norm_vals.append(lcs_val) # print out result, does it make sense? print('Original category values: \n', category_vals) print() print('Normalized LCS values: \n', lcs_norm_vals) ###Output Original category values: [0, 3, 2, 1, 0] Normalized LCS values: [0.1917808219178082, 0.8207547169811321, 0.8464912280701754, 0.3160621761658031, 0.24257425742574257] ###Markdown --- Create All FeaturesNow that you've completed the feature calculation functions, it's time to actually create multiple features and decide on which ones to use in your final model! In the below cells, you're provided two helper functions to help you create multiple features and store those in a DataFrame, `features_df`. Creating multiple containment featuresYour completed `calculate_containment` function will be called in the next cell, which defines the helper function `create_containment_features`. > This function returns a list of containment features, calculated for a given `n` and for *all* files in a df (assumed to the the `complete_df`).For our original files, the containment value is set to a special value, -1.This function gives you the ability to easily create several containment features, of different n-gram lengths, for each of our text files. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # Function returns a list of containment features, calculated for a given n # Should return a list of length 100 for all files in a complete_df def create_containment_features(df, n, column_name=None): containment_values = [] if(column_name==None): column_name = 'c_'+str(n) # c_1, c_2, .. c_n # iterates through dataframe rows for i in df.index: file = df.loc[i, 'File'] # Computes features using calculate_containment function if df.loc[i,'Category'] > -1: c = calculate_containment(df, n, file) containment_values.append(c) # Sets value to -1 for original tasks else: containment_values.append(-1) print(str(n)+'-gram containment features created!') return containment_values ###Output _____no_output_____ ###Markdown Creating LCS featuresBelow, your complete `lcs_norm_word` function is used to create a list of LCS features for all the answer files in a given DataFrame (again, this assumes you are passing in the `complete_df`. It assigns a special value for our original, source files, -1. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # Function creates lcs feature and add it to the dataframe def create_lcs_features(df, column_name='lcs_word'): lcs_values = [] # iterate through files in dataframe for i in df.index: # Computes LCS_norm words feature using function above for answer tasks if df.loc[i,'Category'] > -1: # get texts to compare answer_text = df.loc[i, 'Text'] task = df.loc[i, 'Task'] # we know that source texts have Class = -1 orig_rows = df[(df['Class'] == -1)] orig_row = orig_rows[(orig_rows['Task'] == task)] source_text = orig_row['Text'].values[0] # calculate lcs lcs = lcs_norm_word(answer_text, source_text) lcs_values.append(lcs) # Sets to -1 for original tasks else: lcs_values.append(-1) print('LCS features created!') return lcs_values ###Output _____no_output_____ ###Markdown EXERCISE: Create a features DataFrame by selecting an `ngram_range`The paper suggests calculating the following features: containment *1-gram to 5-gram* and *longest common subsequence*. > In this exercise, you can choose to create even more features, for example from *1-gram to 7-gram* containment features and *longest common subsequence*. You'll want to create at least 6 features to choose from as you think about which to give to your final, classification model. Defining and comparing at least 6 different features allows you to discard any features that seem redundant, and choose to use the best features for your final model!In the below cell **define an n-gram range**; these will be the n's you use to create n-gram containment features. The rest of the feature creation code is provided. ###Code # Define an ngram range ngram_range = range(1,7) # The following code may take a minute to run, depending on your ngram_range """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ features_list = [] # Create features in a features_df all_features = np.zeros((len(ngram_range)+1, len(complete_df))) # Calculate features for containment for ngrams in range i=0 for n in ngram_range: column_name = 'c_'+str(n) features_list.append(column_name) # create containment features all_features[i]=np.squeeze(create_containment_features(complete_df, n)) i+=1 # Calculate features for LCS_Norm Words features_list.append('lcs_word') all_features[i]= np.squeeze(create_lcs_features(complete_df)) # create a features dataframe features_df = pd.DataFrame(np.transpose(all_features), columns=features_list) # Print all features/columns print() print('Features: ', features_list) print() # print some results features_df.head(10) ###Output _____no_output_____ ###Markdown Correlated FeaturesYou should use feature correlation across the *entire* dataset to determine which features are ***too*** **highly-correlated** with each other to include both features in a single model. For this analysis, you can use the *entire* dataset due to the small sample size we have. All of our features try to measure the similarity between two texts. Since our features are designed to measure similarity, it is expected that these features will be highly-correlated. Many classification models, for example a Naive Bayes classifier, rely on the assumption that features are *not* highly correlated; highly-correlated features may over-inflate the importance of a single feature. So, you'll want to choose your features based on which pairings have the lowest correlation. These correlation values range between 0 and 1; from low to high correlation, and are displayed in a [correlation matrix](https://www.displayr.com/what-is-a-correlation-matrix/), below. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # Create correlation matrix for just Features to determine different models to test corr_matrix = features_df.corr().abs().round(2) # display shows all of a dataframe display(corr_matrix) ###Output _____no_output_____ ###Markdown EXERCISE: Create selected train/test dataComplete the `train_test_data` function below. This function should take in the following parameters:* `complete_df`: A DataFrame that contains all of our processed text data, file info, datatypes, and class labels* `features_df`: A DataFrame of all calculated features, such as containment for ngrams, n= 1-5, and lcs values for each text file listed in the `complete_df` (this was created in the above cells)* `selected_features`: A list of feature column names, ex. `['c_1', 'lcs_word']`, which will be used to select the final features in creating train/test sets of data.It should return two tuples:* `(train_x, train_y)`, selected training features and their corresponding class labels (0/1)* `(test_x, test_y)`, selected training features and their corresponding class labels (0/1)** Note: x and y should be arrays of feature values and numerical class labels, respectively; not DataFrames.**Looking at the above correlation matrix, you should decide on a **cutoff** correlation value, less than 1.0, to determine which sets of features are *too* highly-correlated to be included in the final training and test data. If you cannot find features that are less correlated than some cutoff value, it is suggested that you increase the number of features (longer n-grams) to choose from or use *only one or two* features in your final model to avoid introducing highly-correlated features.Recall that the `complete_df` has a `Datatype` column that indicates whether data should be `train` or `test` data; this should help you split the data appropriately. ###Code # Takes in dataframes and a list of selected features (column names) # and returns (train_x, train_y), (test_x, test_y) def train_test_data(complete_df, features_df, selected_features): '''Gets selected training and test features from given dataframes, and returns tuples for training and test features and their corresponding class labels. :param complete_df: A dataframe with all of our processed text data, datatypes, and labels :param features_df: A dataframe of all computed, similarity features :param selected_features: An array of selected features that correspond to certain columns in `features_df` :return: training and test features and labels: (train_x, train_y), (test_x, test_y)''' # get the training features train_x = (features_df[selected_features].iloc[complete_df.index[complete_df["Datatype"] == 'train']]).values # And training class labels (0 or 1) train_y = ((complete_df[complete_df["Datatype"] == 'train'])['Class']).values # get the test features and labels test_x = (features_df[selected_features].iloc[complete_df.index[complete_df["Datatype"] == 'test']]).values test_y = ((complete_df[complete_df["Datatype"] == 'test'])['Class']).values return (train_x, train_y), (test_x, test_y) ###Output _____no_output_____ ###Markdown Test cellsBelow, test out your implementation and create the final train/test data. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ test_selection = list(features_df)[:2] # first couple columns as a test # test that the correct train/test data is created (train_x, train_y), (test_x, test_y) = train_test_data(complete_df, features_df, test_selection) # params: generated train/test data tests.test_data_split(train_x, train_y, test_x, test_y) ###Output Tests Passed! ###Markdown EXERCISE: Select "good" featuresIf you passed the test above, you can create your own train/test data, below. Define a list of features you'd like to include in your final mode, `selected_features`; this is a list of the features names you want to include. ###Code # Select your list of features, this should be column names from features_df # ex. ['c_1', 'lcs_word'] selected_features = ['c_1', 'c_5', 'lcs_word'] """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ (train_x, train_y), (test_x, test_y) = train_test_data(complete_df, features_df, selected_features) # check that division of samples seems correct # these should add up to 95 (100 - 5 original files) print('Training size: ', len(train_x)) print('Test size: ', len(test_x)) print() print('Training df sample: \n', train_x[:10]) ###Output Training size: 70 Test size: 25 Training df sample: [[0.39814815 0. 0.19178082] [0.86936937 0.44954128 0.84649123] [0.59358289 0.08196721 0.31606218] [0.54450262 0. 0.24257426] [0.32950192 0. 0.16117216] [0.59030837 0. 0.30165289] [0.75977654 0.24571429 0.48430493] [0.51612903 0. 0.27083333] [0.44086022 0. 0.22395833] [0.97945205 0.78873239 0.9 ]] ###Markdown Question 2: How did you decide on which features to include in your final model? ###Code import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(10,6)) s = sns.heatmap(corr_matrix, annot = True, cmap = 'RdBu', vmin = 0.8, vmax=1) s.set_yticklabels(s.get_yticklabels(), rotation = 0, fontsize =12) s.set_xticklabels(s.get_xticklabels(), rotation = 90, fontsize =12) plt.title('Correlation Heatmap', fontsize =18) plt.show() ###Output _____no_output_____ ###Markdown **Answer:** C1 C5 LCS methodc_3 and c_4, c_4 and c_5 , c_5 and c_6 and are the highest correlated features.We drop C2 as it has correlation above the threshold (0.97) and select C1 and C5 that have low correlation with each other correlation with each other and lcs_word as it's different measurement of similarity. --- Creating Final Data FilesNow, you are almost ready to move on to training a model in SageMaker!You'll want to access your train and test data in SageMaker and upload it to S3. In this project, SageMaker will expect the following format for your train/test data:* Training and test data should be saved in one `.csv` file each, ex `train.csv` and `test.csv`* These files should have class labels in the first column and features in the rest of the columnsThis format follows the practice, outlined in the [SageMaker documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html), which reads: "Amazon SageMaker requires that a CSV file doesn't have a header record and that the target variable [class label] is in the first column." EXERCISE: Create csv filesDefine a function that takes in x (features) and y (labels) and saves them to one `.csv` file at the path `data_dir/filename`.It may be useful to use pandas to merge your features and labels into one DataFrame and then convert that into a csv file. You can make sure to get rid of any incomplete rows, in a DataFrame, by using `dropna`. ###Code def make_csv(x, y, filename, data_dir): '''Merges features and labels and converts them into one csv file with labels in the first column. :param x: Data features :param y: Data labels :param file_name: Name of csv file, ex. 'train.csv' :param data_dir: The directory where files will be saved ''' # make data dir, if it does not exist if not os.path.exists(data_dir): os.makedirs(data_dir) df = pd.concat([pd.DataFrame(y), pd.DataFrame(x)], axis=1).dropna() df.to_csv(os.path.join(data_dir, filename), index=False, header=False) # nothing is returned, but a print statement indicates that the function has run print('Path created: '+str(data_dir)+'/'+str(filename)) ###Output _____no_output_____ ###Markdown Test cellsTest that your code produces the correct format for a `.csv` file, given some text features and labels. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ fake_x = [ [0.39814815, 0.0001, 0.19178082], [0.86936937, 0.44954128, 0.84649123], [0.44086022, 0., 0.22395833] ] fake_y = [0, 1, 1] make_csv(fake_x, fake_y, filename='to_delete.csv', data_dir='test_csv') # read in and test dimensions fake_df = pd.read_csv('test_csv/to_delete.csv', header=None) # check shape assert fake_df.shape==(3, 4), \ 'The file should have as many rows as data_points and as many columns as features+1 (for indices).' # check that first column = labels assert np.all(fake_df.iloc[:,0].values==fake_y), 'First column is not equal to the labels, fake_y.' print('Tests passed!') # delete the test csv file, generated above ! rm -rf test_csv ###Output _____no_output_____ ###Markdown If you've passed the tests above, run the following cell to create `train.csv` and `test.csv` files in a directory that you specify! This will save the data in a local directory. Remember the name of this directory because you will reference it again when uploading this data to S3. ###Code # can change directory, if you want data_dir = 'plagiarism_data' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ make_csv(train_x, train_y, filename='train.csv', data_dir=data_dir) make_csv(test_x, test_y, filename='test.csv', data_dir=data_dir) ###Output Path created: plagiarism_data/train.csv Path created: plagiarism_data/test.csv
rebar_toy.ipynb
###Markdown Implementation of REBAR (https://arxiv.org/abs/1703.07370), a low-variance, unbiased gradient estimator for discrete latent variable models. This notebook is focused solely on the toy problem from Section 5.1 to help illuminate how REBAR works. The objective of the toy problem is to estimate the parameter for a single Bernoulli random variable. Recall that the problem being solved is $\text{max} \hspace{5px} \mathbb{E} [f(b, \theta) | p(b) ]$, $b$ ~ Bernoulli($\theta$).For the toy problem, we want to estimate $\theta$ that minimizes the mean square error $ \mathbb{E} [(b - t)^2 \hspace{5px}|\hspace{5px} p(b) ]$, where $t = 0.45$. ###Code import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.autograd import grad import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Lets first create our simple model. It's just a single number $\theta$, $0 < \theta < 1$, whose value we want to estimate. ###Code class SimpleBernoulli(nn.Module): def __init__(self, init_value=0.5): super(SimpleBernoulli, self).__init__() self.theta = nn.Parameter(torch.FloatTensor([init_value])) def forward(self): return F.sigmoid(self.theta) ###Output _____no_output_____ ###Markdown Now, the REBAR gradient estimator is a single-sample Monte-Carlo estimate that attempts to remove the bias introduced by a continuous relaxation of the discrete latent variable. It does this by combining gradients from the continuous relaxation (a.k.a. the Concrete relaxation (https://arxiv.org/abs/1611.00712)), with REINFORCE gradients. I won't go into the details of REBAR's derivation (see Section 3 of the paper), but I will break down the components of the REBAR estimator and explain the control variates as clearly as possible. Please let me know if you notice that I misinterpreted anything or made any errors (this is a fairly challenging paper for non-statisticians!)First, let's carefully implement some utility functions. ###Code def binary_log_likelihood(y, log_y_hat): # standard LL for vectors of binary labels y and log predictions log_y_hat return (y * -F.softplus(-log_y_hat)) + (1 - y) * (-log_y_hat - F.softplus(-log_y_hat)) def H(x): # Heaviside function, 0 if x < 0 else 1 return torch.div(F.threshold(x, 0, 0), x) def reparam_pz(u, theta): # From Appendix C of the paper, this is the reparameterization of p(z). # Returns z, a Gumbel RV. return (torch.log(theta) - torch.log(1 - theta)) + (torch.log(u) - torch.log(1 - u)) def reparam_pz_b(v, b, theta): # From Appendix C of the paper, this is the reparameterization of p(z|b) for the # case where b ~ Bernoulli($\theta$). Returns z_squiggle, a Gumbel RV return(b * F.softplus(torch.log(v) - torch.log((1 - v) * (1 - theta)))) \ + ((1 - b) * (-F.softplus(torch.log(v) - torch.log(v * (1 - theta))))) ###Output _____no_output_____ ###Markdown One of the main concepts to understand is the fact that the Concrete relaxation is applied to the discrete RV b ~ Bernoulli($\theta$), s.t. b = H(z) where H is the heaviside function and z ~ Gumbel.Now, we can initialize a few things. ###Code random_seed = 1337 torch.manual_seed(random_seed) # hyperparams rebar_eta_z = 0.1 rebar_eta_zb = 0.1 rebar_lamda=0.5 concrete_lamda = 0.5 batch_size = 128 train_steps = 8000 # Initialize three models to compare the REINFORCE, Concrete(0.5), and REBAR estimators reinforce = SimpleBernoulli() concrete = SimpleBernoulli() rebar = SimpleBernoulli() reinforce_opt = optim.Adam(reinforce.parameters(), lr=1e-3) concrete_opt = optim.Adam(concrete.parameters(), lr=1e-3) rebar_opt = optim.Adam(rebar.parameters(), lr=1e-3) mse = nn.MSELoss() # labels targets = Variable(torch.FloatTensor([0.45]).repeat(batch_size), requires_grad=False) ###Output _____no_output_____ ###Markdown Now for the main training loop, where most of the REBAR magic happens: ###Code reinforce_loss = [] concrete_loss = [] rebar_loss = [] for i in range(train_steps): # For each iteration of the loop, we will compute a # single-sample MC estimate of the gradient # Get the latest estimate of $\theta$ copy it to form a minibatch reinforce_theta = reinforce.forward().repeat(batch_size) concrete_theta = concrete.forward().repeat(batch_size) rebar_theta = rebar.forward().repeat(batch_size) # sample batch_size pairs of Unif(0,1). You're supposed to couple u,v # to do the reparameterizations, but we omit that for this toy problem uv = Variable(torch.FloatTensor(2, batch_size).uniform_(0, 1), requires_grad=False) u = uv[0] + 1e-9 # for numerical stability v = uv[1] + 1e-9 # for numerical stability ########## First, we'll compute the REINFORCE estimator ########## # Lets record where the loss is at currently discrete_reinforce_preds = torch.bernoulli(reinforce_theta.detach()) reinforce_loss.append(mse(discrete_reinforce_preds, targets).data.numpy()) # Now, the REINFORCE estimator (Eq. 2 of the paper, beg. of Section 3) reinforce_z = reparam_pz(u, reinforce_theta) reinforce_Hz = H(reinforce_z) # this is the non-differentiable reparameterization # evaluate f reinforce_f_Hz = (reinforce_Hz - targets) ** 2 # This is d_log_P(b) / d_$\theta$ grad_logP = grad(binary_log_likelihood(reinforce_Hz, \ torch.log(reinforce_theta)).split(1), reinforce_theta)[0] # Apply the Monte-carlo REINFORCE gradient estimator reinforce_grad_est = (reinforce_f_Hz * grad_logP).mean() reinforce_opt.zero_grad() reinforce.theta.grad = reinforce_grad_est reinforce_opt.step() ########## Next up, the Concrete(0.5) estimator ########## discrete_concrete_preds = torch.bernoulli(concrete_theta.detach()) concrete_loss.append(mse(discrete_concrete_preds, targets).data.numpy()) # Now, the Concrete(0.5) estimator. We compute the continuous relaxation of # the reparameterization and use that.. (end of Section 2 of the paper) concrete_z = reparam_pz(u, concrete_theta) soft_concrete_z = F.sigmoid(concrete_z / concrete_lamda) + 1e-9 # evaluate f f_soft_concrete_z = (soft_concrete_z - targets) ** 2 grad_f = grad(f_soft_concrete_z.split(1), concrete_theta)[0] # Apply the Monte-carlo Concrete gradient estimator concrete_grad_est = grad_f.mean() concrete_opt.zero_grad() concrete.theta.grad = concrete_grad_est concrete_opt.step() ########## Finally, we tie it all together with REBAR ########## discrete_rebar_preds = torch.bernoulli(rebar_theta.detach()) rebar_loss.append(mse(discrete_rebar_preds, targets).data.numpy()) # We compute the continuous relaxation of the reparameterization # as well as the REINFORCE estimator and combine them. rebar_z = reparam_pz(u, rebar_theta) # "hard" bc this is non-differentiable hard_concrete_rebar_z = H(rebar_z) # We also need to compute the reparam for p(z|b) - see the paper # for explanation of this conditional marginalization as control variate rebar_zb = reparam_pz_b(v, hard_concrete_rebar_z, rebar_theta) # "soft" relaxations soft_concrete_rebar_z = F.sigmoid(rebar_z / rebar_lamda) + 1e-9 soft_concrete_rebar_zb = F.sigmoid(rebar_zb / rebar_lamda) + 1e-9 # evaluate f f_hard_concrete_rebar_z = (hard_concrete_rebar_z - targets) ** 2 f_soft_concrete_rebar_z = (soft_concrete_rebar_z - targets) ** 2 f_soft_concrete_rebar_zb = (soft_concrete_rebar_zb - targets) ** 2 # compute the necessary derivatives grad_logP = grad(binary_log_likelihood(hard_concrete_rebar_z, \ torch.log(rebar_theta)).split(1), rebar_theta, retain_graph=True)[0] grad_sc_z = grad(f_soft_concrete_rebar_z.split(1), rebar_theta, retain_graph=True)[0] grad_sc_zb = grad(f_soft_concrete_rebar_zb.split(1), rebar_theta)[0] # Notice how we combine the REINFORCE and concrete estimators rebar_grad_est = (((f_hard_concrete_rebar_z - rebar_eta_zb * f_soft_concrete_rebar_zb) \ * grad_logP) + rebar_eta_zb * grad_sc_z - rebar_eta_zb * grad_sc_zb).mean() # Apply the Monte-carlo REBAR gradient estimator rebar_opt.zero_grad() rebar.theta.grad = rebar_grad_est rebar_opt.step() if (i+1) % 1000 == 0: print("step: {}".format(i+1)) print("reinforce_loss {}".format(reinforce_loss[-1])) print("concrete(0.5)_loss {}".format(concrete_loss[-1])) print("rebar_loss {}\n".format(rebar_loss[-1])) ###Output step: 1000 reinforce_loss [ 0.24390602] concrete(0.5)_loss [ 0.24624977] rebar_loss [ 0.24156231] step: 2000 reinforce_loss [ 0.22281231] concrete(0.5)_loss [ 0.23921856] rebar_loss [ 0.22515607] step: 3000 reinforce_loss [ 0.21109354] concrete(0.5)_loss [ 0.23453106] rebar_loss [ 0.21187481] step: 4000 reinforce_loss [ 0.20249985] concrete(0.5)_loss [ 0.23531231] rebar_loss [ 0.20718734] step: 5000 reinforce_loss [ 0.20562485] concrete(0.5)_loss [ 0.23765603] rebar_loss [ 0.20484361] step: 6000 reinforce_loss [ 0.20328109] concrete(0.5)_loss [ 0.23921858] rebar_loss [ 0.20562483] step: 7000 reinforce_loss [ 0.20328109] concrete(0.5)_loss [ 0.24078104] rebar_loss [ 0.20406234] step: 8000 reinforce_loss [ 0.2032811] concrete(0.5)_loss [ 0.23374978] rebar_loss [ 0.20406234] ###Markdown We can plot the loss per train step to see if we can replicate the results from the paper ###Code # @hidden_cell fig = plt.figure(figsize=(12, 9)) plt.plot(reinforce_loss, 'm', label="REINFORCE", alpha=0.7) plt.plot(concrete_loss, 'r', label="Concrete(0.5)", alpha=0.7) plt.plot(rebar_loss, 'b', label="REBAR", alpha=0.7) plt.title("Optimal loss is 0.2025") plt.xlabel("train_steps") plt.ylabel("loss") plt.ylim(0.2, 0.32) plt.grid(True) plt.legend() plt.show() ###Output _____no_output_____
scripts/d21-en/mxnet/chapter_natural-language-processing-pretraining/bert-dataset.ipynb
###Markdown The Dataset for Pretraining BERT:label:`sec_bert-dataset`To pretrain the BERT model as implemented in :numref:`sec_bert`,we need to generate the dataset in the ideal format to facilitatethe two pretraining tasks:masked language modeling and next sentence prediction.On one hand,the original BERT model is pretrained on the concatenation oftwo huge corpora BookCorpus and English Wikipedia (see :numref:`subsec_bert_pretraining_tasks`),making it hard to run for most readers of this book.On the other hand,the off-the-shelf pretrained BERT modelmay not fit for applications from specific domains like medicine.Thus, it is getting popular to pretrain BERT on a customized dataset.To facilitate the demonstration of BERT pretraining,we use a smaller corpus WikiText-2 :cite:`Merity.Xiong.Bradbury.ea.2016`.Comparing with the PTB dataset used for pretraining word2vec in :numref:`sec_word2vec_data`,WikiText-2 i) retains the original punctuation, making it suitable for next sentence prediction; ii) retains the original case and numbers; iii) is over twice larger. ###Code import os import random from mxnet import gluon, np, npx from d2l import mxnet as d2l npx.set_np() ###Output _____no_output_____ ###Markdown In the WikiText-2 dataset,each line represents a paragraph wherespace is inserted between any punctuation and its preceding token.Paragraphs with at least two sentences are retained.To split sentences, we only use the period as the delimiter for simplicity.We leave discussions of more complex sentence splitting techniques in the exercisesat the end of this section. ###Code #@save d2l.DATA_HUB['wikitext-2'] = ( 'https://s3.amazonaws.com/research.metamind.io/wikitext/' 'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe') #@save def _read_wiki(data_dir): file_name = os.path.join(data_dir, 'wiki.train.tokens') with open(file_name, 'r') as f: lines = f.readlines() # Uppercase letters are converted to lowercase ones paragraphs = [ line.strip().lower().split(' . ') for line in lines if len(line.split(' . ')) >= 2] random.shuffle(paragraphs) return paragraphs ###Output _____no_output_____ ###Markdown Defining Helper Functions for Pretraining TasksIn the following,we begin by implementing helper functions for the two BERT pretraining tasks:next sentence prediction and masked language modeling.These helper functions will be invoked laterwhen transforming the raw text corpusinto the dataset of the ideal format to pretrain BERT. Generating the Next Sentence Prediction TaskAccording to descriptions of :numref:`subsec_nsp`,the `_get_next_sentence` function generates a training examplefor the binary classification task. ###Code #@save def _get_next_sentence(sentence, next_sentence, paragraphs): if random.random() < 0.5: is_next = True else: # `paragraphs` is a list of lists of lists next_sentence = random.choice(random.choice(paragraphs)) is_next = False return sentence, next_sentence, is_next ###Output _____no_output_____ ###Markdown The following function generates training examples for next sentence predictionfrom the input `paragraph` by invoking the `_get_next_sentence` function.Here `paragraph` is a list of sentences, where each sentence is a list of tokens.The argument `max_len` specifies the maximum length of a BERT input sequence during pretraining. ###Code #@save def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len): nsp_data_from_paragraph = [] for i in range(len(paragraph) - 1): tokens_a, tokens_b, is_next = _get_next_sentence( paragraph[i], paragraph[i + 1], paragraphs) # Consider 1 '<cls>' token and 2 '<sep>' tokens if len(tokens_a) + len(tokens_b) + 3 > max_len: continue tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b) nsp_data_from_paragraph.append((tokens, segments, is_next)) return nsp_data_from_paragraph ###Output _____no_output_____ ###Markdown Generating the Masked Language Modeling Task:label:`subsec_prepare_mlm_data`In order to generate training examplesfor the masked language modeling taskfrom a BERT input sequence,we define the following `_replace_mlm_tokens` function.In its inputs, `tokens` is a list of tokens representing a BERT input sequence,`candidate_pred_positions` is a list of token indices of the BERT input sequenceexcluding those of special tokens (special tokens are not predicted in the masked language modeling task),and `num_mlm_preds` indicates the number of predictions (recall 15% random tokens to predict).Following the definition of the masked language modeling task in :numref:`subsec_mlm`,at each prediction position, the input may be replaced bya special “&lt;mask&gt;” token or a random token, or remain unchanged.In the end, the function returns the input tokens after possible replacement,the token indices where predictions take place and labels for these predictions. ###Code #@save def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds, vocab): # Make a new copy of tokens for the input of a masked language model, # where the input may contain replaced '<mask>' or random tokens mlm_input_tokens = [token for token in tokens] pred_positions_and_labels = [] # Shuffle for getting 15% random tokens for prediction in the masked # language modeling task random.shuffle(candidate_pred_positions) for mlm_pred_position in candidate_pred_positions: if len(pred_positions_and_labels) >= num_mlm_preds: break masked_token = None # 80% of the time: replace the word with the '<mask>' token if random.random() < 0.8: masked_token = '<mask>' else: # 10% of the time: keep the word unchanged if random.random() < 0.5: masked_token = tokens[mlm_pred_position] # 10% of the time: replace the word with a random word else: masked_token = random.randint(0, len(vocab) - 1) mlm_input_tokens[mlm_pred_position] = masked_token pred_positions_and_labels.append( (mlm_pred_position, tokens[mlm_pred_position])) return mlm_input_tokens, pred_positions_and_labels ###Output _____no_output_____ ###Markdown By invoking the aforementioned `_replace_mlm_tokens` function,the following function takes a BERT input sequence (`tokens`)as an input and returns indices of the input tokens(after possible token replacement as described in :numref:`subsec_mlm`),the token indices where predictions take place,and label indices for these predictions. ###Code #@save def _get_mlm_data_from_tokens(tokens, vocab): candidate_pred_positions = [] # `tokens` is a list of strings for i, token in enumerate(tokens): # Special tokens are not predicted in the masked language modeling # task if token in ['<cls>', '<sep>']: continue candidate_pred_positions.append(i) # 15% of random tokens are predicted in the masked language modeling task num_mlm_preds = max(1, round(len(tokens) * 0.15)) mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens( tokens, candidate_pred_positions, num_mlm_preds, vocab) pred_positions_and_labels = sorted(pred_positions_and_labels, key=lambda x: x[0]) pred_positions = [v[0] for v in pred_positions_and_labels] mlm_pred_labels = [v[1] for v in pred_positions_and_labels] return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels] ###Output _____no_output_____ ###Markdown Transforming Text into the Pretraining DatasetNow we are almost ready to customize a `Dataset` class for pretraining BERT.Before that, we still need to define a helper function `_pad_bert_inputs`to append the special “&lt;mask&gt;” tokens to the inputs.Its argument `examples` contain the outputs from the helper functions `_get_nsp_data_from_paragraph` and `_get_mlm_data_from_tokens` for the two pretraining tasks. ###Code #@save def _pad_bert_inputs(examples, max_len, vocab): max_num_mlm_preds = round(max_len * 0.15) all_token_ids, all_segments, valid_lens, = [], [], [] all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], [] nsp_labels = [] for (token_ids, pred_positions, mlm_pred_label_ids, segments, is_next) in examples: all_token_ids.append( np.array( token_ids + [vocab['<pad>']] * (max_len - len(token_ids)), dtype='int32')) all_segments.append( np.array(segments + [0] * (max_len - len(segments)), dtype='int32')) # `valid_lens` excludes count of '<pad>' tokens valid_lens.append(np.array(len(token_ids), dtype='float32')) all_pred_positions.append( np.array( pred_positions + [0] * (max_num_mlm_preds - len(pred_positions)), dtype='int32')) # Predictions of padded tokens will be filtered out in the loss via # multiplication of 0 weights all_mlm_weights.append( np.array([1.0] * len(mlm_pred_label_ids) + [0.0] * (max_num_mlm_preds - len(pred_positions)), dtype='float32')) all_mlm_labels.append( np.array( mlm_pred_label_ids + [0] * (max_num_mlm_preds - len(mlm_pred_label_ids)), dtype='int32')) nsp_labels.append(np.array(is_next)) return (all_token_ids, all_segments, valid_lens, all_pred_positions, all_mlm_weights, all_mlm_labels, nsp_labels) ###Output _____no_output_____ ###Markdown Putting the helper functions forgenerating training examples of the two pretraining tasks,and the helper function for padding inputs together,we customize the following `_WikiTextDataset` class as the WikiText-2 dataset for pretraining BERT.By implementing the `__getitem__ `function,we can arbitrarily access the pretraining (masked language modeling and next sentence prediction) examples generated from a pair of sentences from the WikiText-2 corpus.The original BERT model uses WordPiece embeddings whose vocabulary size is 30,000 :cite:`Wu.Schuster.Chen.ea.2016`.The tokenization method of WordPiece is a slight modification ofthe original byte pair encoding algorithm in :numref:`subsec_Byte_Pair_Encoding`.For simplicity, we use the `d2l.tokenize` function for tokenization.Infrequent tokens that appear less than five times are filtered out. ###Code #@save class _WikiTextDataset(gluon.data.Dataset): def __init__(self, paragraphs, max_len): # Input `paragraphs[i]` is a list of sentence strings representing a # paragraph; while output `paragraphs[i]` is a list of sentences # representing a paragraph, where each sentence is a list of tokens paragraphs = [ d2l.tokenize(paragraph, token='word') for paragraph in paragraphs] sentences = [ sentence for paragraph in paragraphs for sentence in paragraph] self.vocab = d2l.Vocab( sentences, min_freq=5, reserved_tokens=['<pad>', '<mask>', '<cls>', '<sep>']) # Get data for the next sentence prediction task examples = [] for paragraph in paragraphs: examples.extend( _get_nsp_data_from_paragraph(paragraph, paragraphs, self.vocab, max_len)) # Get data for the masked language model task examples = [(_get_mlm_data_from_tokens(tokens, self.vocab) + (segments, is_next)) for tokens, segments, is_next in examples] # Pad inputs (self.all_token_ids, self.all_segments, self.valid_lens, self.all_pred_positions, self.all_mlm_weights, self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(examples, max_len, self.vocab) def __getitem__(self, idx): return (self.all_token_ids[idx], self.all_segments[idx], self.valid_lens[idx], self.all_pred_positions[idx], self.all_mlm_weights[idx], self.all_mlm_labels[idx], self.nsp_labels[idx]) def __len__(self): return len(self.all_token_ids) ###Output _____no_output_____ ###Markdown By using the `_read_wiki` function and the `_WikiTextDataset` class,we define the following `load_data_wiki` to download and WikiText-2 datasetand generate pretraining examples from it. ###Code #@save def load_data_wiki(batch_size, max_len): num_workers = d2l.get_dataloader_workers() data_dir = d2l.download_extract('wikitext-2', 'wikitext-2') paragraphs = _read_wiki(data_dir) train_set = _WikiTextDataset(paragraphs, max_len) train_iter = gluon.data.DataLoader(train_set, batch_size, shuffle=True, num_workers=num_workers) return train_iter, train_set.vocab ###Output _____no_output_____ ###Markdown Setting the batch size to 512 and the maximum length of a BERT input sequence to be 64,we print out the shapes of a minibatch of BERT pretraining examples.Note that in each BERT input sequence,$10$ ($64 \times 0.15$) positions are predicted for the masked language modeling task. ###Code batch_size, max_len = 512, 64 train_iter, vocab = load_data_wiki(batch_size, max_len) for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X, mlm_Y, nsp_y) in train_iter: print(tokens_X.shape, segments_X.shape, valid_lens_x.shape, pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape, nsp_y.shape) break ###Output (512, 64) (512, 64) (512,) (512, 10) (512, 10) (512, 10) (512,) ###Markdown In the end, let us take a look at the vocabulary size.Even after filtering out infrequent tokens,it is still over twice larger than that of the PTB dataset. ###Code len(vocab) ###Output _____no_output_____
book-notes/3.5-classifying-newswires.ipynb
###Markdown Classifying newswires: a multi-class classification exampleThis notebook contains the code samples found in Chapter 3, Section 5 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments.----In the previous section we saw how to classify vector inputs into two mutually exclusive classes using a densely-connected neural network. But what happens when you have more than two classes? In this section, we will build a network to classify Reuters newswires into 46 different mutually-exclusive topics. Since we have many classes, this problem is an instance of "multi-class classification", and since each data point should be classified into only one category, the problem is more specifically an instance of "single-label, multi-class classification". If each data point could have belonged to multiple categories (in our case, topics) then we would be facing a "multi-label, multi-class classification" problem. The Reuters datasetWe will be working with the _Reuters dataset_, a set of short newswires and their topics, published by Reuters in 1986. It's a very simple, widely used toy dataset for text classification. There are 46 different topics; some topics are more represented than others, but each topic has at least 10 examples in the training set.Like IMDB and MNIST, the Reuters dataset comes packaged as part of Keras. Let's take a look right away: ###Code from keras.datasets import reuters (train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000) ###Output _____no_output_____ ###Markdown Like with the IMDB dataset, the argument `num_words=10000` restricts the data to the 10,000 most frequently occurring words found in the data.We have 8,982 training examples and 2,246 test examples: ###Code len(train_data) len(test_data) ###Output _____no_output_____ ###Markdown As with the IMDB reviews, each example is a list of integers (word indices): ###Code train_data[10] ###Output _____no_output_____ ###Markdown Here's how you can decode it back to words, in case you are curious: ###Code word_index = reuters.get_word_index() reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) # Note that our indices were offset by 3 # because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown". decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]]) decoded_newswire ###Output _____no_output_____ ###Markdown The label associated with an example is an integer between 0 and 45: a topic index. ###Code train_labels[10] ###Output _____no_output_____ ###Markdown Preparing the dataWe can vectorize the data with the exact same code as in our previous example: ###Code import numpy as np def vectorize_sequences(sequences, dimension=10000): results = np.zeros((len(sequences), dimension)) for i, sequence in enumerate(sequences): results[i, sequence] = 1. return results # Our vectorized training data x_train = vectorize_sequences(train_data) # Our vectorized test data x_test = vectorize_sequences(test_data) ###Output _____no_output_____ ###Markdown To vectorize the labels, there are two possibilities: we could just cast the label list as an integer tensor, or we could use a "one-hot" encoding. One-hot encoding is a widely used format for categorical data, also called "categorical encoding". For a more detailed explanation of one-hot encoding, you can refer to Chapter 6, Section 1. In our case, one-hot encoding of our labels consists in embedding each label as an all-zero vector with a 1 in the place of the label index, e.g.: ###Code def to_one_hot(labels, dimension=46): results = np.zeros((len(labels), dimension)) for i, label in enumerate(labels): results[i, label] = 1. return results # Our vectorized training labels one_hot_train_labels = to_one_hot(train_labels) # Our vectorized test labels one_hot_test_labels = to_one_hot(test_labels) ###Output _____no_output_____ ###Markdown Note that there is a built-in way to do this in Keras, which you have already seen in action in our MNIST example: ###Code from keras.utils.np_utils import to_categorical one_hot_train_labels = to_categorical(train_labels) one_hot_test_labels = to_categorical(test_labels) ###Output _____no_output_____ ###Markdown Building our networkThis topic classification problem looks very similar to our previous movie review classification problem: in both cases, we are trying to classify short snippets of text. There is however a new constraint here: the number of output classes has gone from 2 to 46, i.e. the dimensionality of the output space is much larger. In a stack of `Dense` layers like what we were using, each layer can only access information present in the output of the previous layer. If one layer drops some information relevant to the classification problem, this information can never be recovered by later layers: each layer can potentially become an "information bottleneck". In our previous example, we were using 16-dimensional intermediate layers, but a 16-dimensional space may be too limited to learn to separate 46 different classes: such small layers may act as information bottlenecks, permanently dropping relevant information.For this reason we will use larger layers. Let's go with 64 units: ###Code from keras import models from keras import layers model = models.Sequential() model.add(layers.Dense(64, activation='relu', input_shape=(10000,))) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(46, activation='softmax')) ###Output _____no_output_____ ###Markdown There are two other things you should note about this architecture:* We are ending the network with a `Dense` layer of size 46. This means that for each input sample, our network will output a 46-dimensional vector. Each entry in this vector (each dimension) will encode a different output class.* The last layer uses a `softmax` activation. You have already seen this pattern in the MNIST example. It means that the network will output a _probability distribution_ over the 46 different output classes, i.e. for every input sample, the network will produce a 46-dimensional output vector where `output[i]` is the probability that the sample belongs to class `i`. The 46 scores will sum to 1.The best loss function to use in this case is `categorical_crossentropy`. It measures the distance between two probability distributions: in our case, between the probability distribution output by our network, and the true distribution of the labels. By minimizing the distance between these two distributions, we train our network to output something as close as possible to the true labels. ###Code model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Validating our approachLet's set apart 1,000 samples in our training data to use as a validation set: ###Code x_val = x_train[:1000] partial_x_train = x_train[1000:] y_val = one_hot_train_labels[:1000] partial_y_train = one_hot_train_labels[1000:] ###Output _____no_output_____ ###Markdown Now let's train our network for 20 epochs: ###Code history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val)) ###Output Train on 7982 samples, validate on 1000 samples Epoch 1/20 7982/7982 [==============================] - 2s 253us/step - loss: 2.4910 - accuracy: 0.5381 - val_loss: 1.6529 - val_accuracy: 0.6470 Epoch 2/20 7982/7982 [==============================] - 1s 154us/step - loss: 1.3807 - accuracy: 0.7066 - val_loss: 1.3030 - val_accuracy: 0.7160 Epoch 3/20 7982/7982 [==============================] - 1s 159us/step - loss: 1.0456 - accuracy: 0.7716 - val_loss: 1.1619 - val_accuracy: 0.7480 Epoch 4/20 7982/7982 [==============================] - 1s 152us/step - loss: 0.8284 - accuracy: 0.8249 - val_loss: 1.0314 - val_accuracy: 0.7770 Epoch 5/20 7982/7982 [==============================] - 1s 144us/step - loss: 0.6597 - accuracy: 0.8656 - val_loss: 0.9772 - val_accuracy: 0.7940 Epoch 6/20 7982/7982 [==============================] - 1s 147us/step - loss: 0.5267 - accuracy: 0.8930 - val_loss: 0.9226 - val_accuracy: 0.8010 Epoch 7/20 7982/7982 [==============================] - 1s 147us/step - loss: 0.4200 - accuracy: 0.9133 - val_loss: 0.9041 - val_accuracy: 0.8010 Epoch 8/20 7982/7982 [==============================] - 1s 145us/step - loss: 0.3418 - accuracy: 0.9287 - val_loss: 0.8723 - val_accuracy: 0.8230 Epoch 9/20 7982/7982 [==============================] - 1s 152us/step - loss: 0.2841 - accuracy: 0.9372 - val_loss: 0.8817 - val_accuracy: 0.8210 Epoch 10/20 7982/7982 [==============================] - 1s 155us/step - loss: 0.2383 - accuracy: 0.9441 - val_loss: 0.9074 - val_accuracy: 0.8140 Epoch 11/20 7982/7982 [==============================] - 1s 146us/step - loss: 0.2079 - accuracy: 0.9481 - val_loss: 0.9076 - val_accuracy: 0.8230 Epoch 12/20 7982/7982 [==============================] - 1s 144us/step - loss: 0.1794 - accuracy: 0.9519 - val_loss: 0.9351 - val_accuracy: 0.8110 Epoch 13/20 7982/7982 [==============================] - 1s 144us/step - loss: 0.1657 - accuracy: 0.9516 - val_loss: 0.9114 - val_accuracy: 0.8240 Epoch 14/20 7982/7982 [==============================] - 1s 147us/step - loss: 0.1493 - accuracy: 0.9550 - val_loss: 0.9470 - val_accuracy: 0.8160 Epoch 15/20 7982/7982 [==============================] - 1s 155us/step - loss: 0.1392 - accuracy: 0.9567 - val_loss: 0.9764 - val_accuracy: 0.8100 Epoch 16/20 7982/7982 [==============================] - 1s 152us/step - loss: 0.1323 - accuracy: 0.9560 - val_loss: 1.0110 - val_accuracy: 0.8090 Epoch 17/20 7982/7982 [==============================] - 1s 144us/step - loss: 0.1230 - accuracy: 0.9568 - val_loss: 1.0354 - val_accuracy: 0.8120 Epoch 18/20 7982/7982 [==============================] - 1s 144us/step - loss: 0.1210 - accuracy: 0.9580 - val_loss: 1.0226 - val_accuracy: 0.8020 Epoch 19/20 7982/7982 [==============================] - 1s 146us/step - loss: 0.1131 - accuracy: 0.9579 - val_loss: 1.0285 - val_accuracy: 0.8090 Epoch 20/20 7982/7982 [==============================] - 1s 146us/step - loss: 0.1142 - accuracy: 0.9572 - val_loss: 1.0519 - val_accuracy: 0.7980 ###Markdown Let's display its loss and accuracy curves: ###Code import matplotlib.pyplot as plt loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(loss) + 1) plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() plt.clf() # clear figure acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown It seems that the network starts overfitting after 9 epochs. Let's train a new network from scratch for 9 epochs, then let's evaluate it on the test set: ###Code model = models.Sequential() model.add(layers.Dense(64, activation='relu', input_shape=(10000,))) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(46, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(partial_x_train, partial_y_train, epochs=9, batch_size=512, validation_data=(x_val, y_val)) results = model.evaluate(x_test, one_hot_test_labels) results ###Output _____no_output_____ ###Markdown Our approach reaches an accuracy of ~78%. With a balanced binary classification problem, the accuracy reached by a purely random classifier would be 50%, but in our case it is closer to 19%, so our results seem pretty good, at least when compared to a random baseline: ###Code import copy test_labels_copy = copy.copy(test_labels) np.random.shuffle(test_labels_copy) float(np.sum(np.array(test_labels) == np.array(test_labels_copy))) / len(test_labels) ###Output _____no_output_____ ###Markdown Generating predictions on new dataWe can verify that the `predict` method of our model instance returns a probability distribution over all 46 topics. Let's generate topic predictions for all of the test data: ###Code predictions = model.predict(x_test) ###Output _____no_output_____ ###Markdown Each entry in `predictions` is a vector of length 46: ###Code predictions[0].shape ###Output _____no_output_____ ###Markdown The coefficients in this vector sum to 1: ###Code np.sum(predictions[0]) ###Output _____no_output_____ ###Markdown The largest entry is the predicted class, i.e. the class with the highest probability: ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown A different way to handle the labels and the lossWe mentioned earlier that another way to encode the labels would be to cast them as an integer tensor, like such: ###Code y_train = np.array(train_labels) y_test = np.array(test_labels) ###Output _____no_output_____ ###Markdown The only thing it would change is the choice of the loss function. Our previous loss, `categorical_crossentropy`, expects the labels to follow a categorical encoding. With integer labels, we should use `sparse_categorical_crossentropy`: ###Code model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['acc']) ###Output _____no_output_____ ###Markdown This new loss function is still mathematically the same as `categorical_crossentropy`; it just has a different interface. On the importance of having sufficiently large intermediate layersWe mentioned earlier that since our final outputs were 46-dimensional, we should avoid intermediate layers with much less than 46 hidden units. Now let's try to see what happens when we introduce an information bottleneck by having intermediate layers significantly less than 46-dimensional, e.g. 4-dimensional. ###Code model = models.Sequential() model.add(layers.Dense(64, activation='relu', input_shape=(10000,))) model.add(layers.Dense(4, activation='relu')) model.add(layers.Dense(46, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=128, validation_data=(x_val, y_val)) ###Output Train on 7982 samples, validate on 1000 samples Epoch 1/20 7982/7982 [==============================] - 2s 245us/step - loss: 3.1165 - accuracy: 0.1482 - val_loss: 2.5008 - val_accuracy: 0.4210 Epoch 2/20 7982/7982 [==============================] - 2s 219us/step - loss: 2.0189 - accuracy: 0.5397 - val_loss: 1.7644 - val_accuracy: 0.5500 Epoch 3/20 7982/7982 [==============================] - 2s 221us/step - loss: 1.5814 - accuracy: 0.5485 - val_loss: 1.6006 - val_accuracy: 0.5600 Epoch 4/20 7982/7982 [==============================] - 2s 226us/step - loss: 1.3943 - accuracy: 0.6032 - val_loss: 1.5222 - val_accuracy: 0.6060 Epoch 5/20 7982/7982 [==============================] - 2s 227us/step - loss: 1.2586 - accuracy: 0.6576 - val_loss: 1.4737 - val_accuracy: 0.6270 Epoch 6/20 7982/7982 [==============================] - 2s 222us/step - loss: 1.1553 - accuracy: 0.6812 - val_loss: 1.4628 - val_accuracy: 0.6430 Epoch 7/20 7982/7982 [==============================] - 2s 221us/step - loss: 1.0756 - accuracy: 0.6967 - val_loss: 1.4449 - val_accuracy: 0.6700 Epoch 8/20 7982/7982 [==============================] - 2s 221us/step - loss: 1.0098 - accuracy: 0.7157 - val_loss: 1.4763 - val_accuracy: 0.6560 Epoch 9/20 7982/7982 [==============================] - 2s 220us/step - loss: 0.9577 - accuracy: 0.7249 - val_loss: 1.4851 - val_accuracy: 0.6710 Epoch 10/20 7982/7982 [==============================] - 2s 221us/step - loss: 0.9086 - accuracy: 0.7365 - val_loss: 1.5083 - val_accuracy: 0.6660 Epoch 11/20 7982/7982 [==============================] - 2s 220us/step - loss: 0.8688 - accuracy: 0.7551 - val_loss: 1.5409 - val_accuracy: 0.6810 Epoch 12/20 7982/7982 [==============================] - 2s 222us/step - loss: 0.8298 - accuracy: 0.7707 - val_loss: 1.6126 - val_accuracy: 0.6870 Epoch 13/20 7982/7982 [==============================] - 2s 221us/step - loss: 0.7939 - accuracy: 0.7820 - val_loss: 1.6335 - val_accuracy: 0.6880 Epoch 14/20 7982/7982 [==============================] - 2s 222us/step - loss: 0.7591 - accuracy: 0.7909 - val_loss: 1.6729 - val_accuracy: 0.6900 Epoch 15/20 7982/7982 [==============================] - 2s 224us/step - loss: 0.7271 - accuracy: 0.7993 - val_loss: 1.7405 - val_accuracy: 0.6880 Epoch 16/20 7982/7982 [==============================] - 2s 221us/step - loss: 0.6996 - accuracy: 0.8081 - val_loss: 1.7965 - val_accuracy: 0.6840 Epoch 17/20 7982/7982 [==============================] - 2s 222us/step - loss: 0.6765 - accuracy: 0.8093 - val_loss: 1.8731 - val_accuracy: 0.6810 Epoch 18/20 7982/7982 [==============================] - 2s 226us/step - loss: 0.6573 - accuracy: 0.8138 - val_loss: 1.8925 - val_accuracy: 0.6920 Epoch 19/20 7982/7982 [==============================] - 2s 223us/step - loss: 0.6355 - accuracy: 0.8166 - val_loss: 1.9720 - val_accuracy: 0.6790 Epoch 20/20 7982/7982 [==============================] - 2s 223us/step - loss: 0.6192 - accuracy: 0.8193 - val_loss: 2.0456 - val_accuracy: 0.6820
tl_eda.ipynb
###Markdown Get Data ###Code df_train = pd.read_csv('balanced_train_segments.csv', sep=', ', skiprows=2, engine='python') df_eval = pd.read_csv('eval_segments.csv', sep=', ', skiprows=2, engine='python') #df_unbalanced = pd.read_csv('unbalanced_train_segments.csv', skiprows=2, engine='python') df = pd.concat([df_train, df_eval]) df.describe() footsteps = '/m/07pbtc8' gasp = '/m/07s0dtb' whistle = '/m/01w250' sigh = '/m/07plz5l' bark = '/m/05tny_' door = '/m/02dgv' run = '/m/06h7j' keys = '/m/03v3yw' scissors = '/m/01lsmm' keyboard = '/m/01m2v' sound_classes = [footsteps, gasp, whistle, sigh, bark, door, run, keys, scissors, keyboard] df_footsteps = df[df.positive_labels.str.contains(footsteps)] df_gasp = df[df.positive_labels.str.contains(gasp)] df_whistle = df[df.positive_labels.str.contains(whistle)] df_sigh = df[df.positive_labels.str.contains(sigh)] df_bark = df[df.positive_labels.str.contains(bark)] df_door = df[df.positive_labels.str.contains(door)] df_run = df[df.positive_labels.str.contains(run)] df_keys = df[df.positive_labels.str.contains(keys)] df_scissors = df[df.positive_labels.str.contains(scissors)] df_keyboard = df[df.positive_labels.str.contains(keyboard)] df_footsteps.loc[:,'positive_labels'] = ' footsteps' df_gasp.loc[:,'positive_labels'] = ' gasp' df_whistle.loc[:,'positive_labels'] = ' whistle' df_sigh.loc[:,'positive_labels'] = ' sigh' df_bark.loc[:,'positive_labels'] = ' bark' df_door.loc[:,'positive_labels'] = ' door' df_run.loc[:,'positive_labels'] = ' run' df_keys.loc[:,'positive_labels'] = ' keys' df_scissors.loc[:,'positive_labels'] = ' scissors' df_keyboard.loc[:,'positive_labels'] = ' keyboard' df_bark.head() df_footsteps.loc[:,['start_seconds', 'end_seconds']] = ' ' + df_footsteps[['start_seconds', 'end_seconds']].astype(str) df_gasp.loc[:,['start_seconds', 'end_seconds']] = ' ' + df_gasp[['start_seconds', 'end_seconds']].astype(str) df_whistle.loc[:,['start_seconds', 'end_seconds']] = ' ' + df_whistle[['start_seconds', 'end_seconds']].astype(str) df_sigh.loc[:,['start_seconds', 'end_seconds']] = ' ' + df_sigh[['start_seconds', 'end_seconds']].astype(str) df_bark.loc[:,['start_seconds', 'end_seconds']] = ' ' + df_bark[['start_seconds', 'end_seconds']].astype(str) df_door.loc[:,['start_seconds', 'end_seconds']] = ' ' + df_door[['start_seconds', 'end_seconds']].astype(str) df_run.loc[:,['start_seconds', 'end_seconds']] = ' ' + df_run[['start_seconds', 'end_seconds']].astype(str) df_keys.loc[:,['start_seconds', 'end_seconds']] = ' ' + df_keys[['start_seconds', 'end_seconds']].astype(str) df_scissors.loc[:,['start_seconds', 'end_seconds']] = ' ' + df_scissors[['start_seconds', 'end_seconds']].astype(str) df_keyboard.loc[:,['start_seconds', 'end_seconds']] = ' ' + df_keyboard[['start_seconds', 'end_seconds']].astype(str) df_bark.describe() # df_footsteps.columns = ['YTID', ' start_seconds', ' end_seconds', ' positive_labels'] # df_gasp.columns = ['YTID', ' start_seconds', ' end_seconds', ' positive_labels'] # df_whistle.columns = ['YTID', ' start_seconds', ' end_seconds', ' positive_labels'] # df_sigh.columns = ['YTID', ' start_seconds', ' end_seconds', ' positive_labels'] # df_bark.columns = ['YTID', ' start_seconds', ' end_seconds', ' positive_labels'] # df_door.columns = ['YTID', ' start_seconds', ' end_seconds', ' positive_labels'] # df_run.columns = ['YTID', ' start_seconds', ' end_seconds', ' positive_labels'] # df_keys.columns = ['YTID', ' start_seconds', ' end_seconds', ' positive_labels'] # df_scissors.columns = ['YTID', ' start_seconds', ' end_seconds', ' positive_labels'] # df_keyboard.columns = ['YTID', ' start_seconds', ' end_seconds', ' positive_labels'] df_footsteps.to_csv('footsteps.csv', sep=',', index=False) df_gasp.to_csv('gasp.csv', sep=',', index=False) df_whistle.to_csv('whistle.csv', sep=',', index=False) df_sigh.to_csv('sigh.csv', sep=',', index=False) df_bark.to_csv('bark.csv', sep=',', index=False) df_door.to_csv('door.csv', sep=',', index=False) df_run.to_csv('run.csv', sep=',', index=False) df_keys.to_csv('keys.csv', sep=',', index=False) df_scissors.to_csv('scissors.csv', sep=',', index=False) df_keyboard.to_csv('keyboard.csv', sep=',', index=False) barks.to_csv('barks.csv', sep=',', index=False) doors.to_csv('doors.csv', sep=',', index=False) ###Output _____no_output_____ ###Markdown Spectrograms ###Code y, sr = librosa.load('2mJbGx5D-zA_150.0.wav') librosa.feature.melspectrogram(y=y, sr=sr) D = np.abs(librosa.stft(y))**2 S = librosa.feature.melspectrogram(S=D) S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000) len(S[0]) # plt.figure(figsize=(10, 4)) # librosa.display.specshow(librosa.power_to_db(S, ref=np.max), y_axis='mel', fmax=8000, x_axis='time') # plt.colorbar(format='%+2.0f dB') # plt.title('Mel spectrogram') # plt.tight_layout() # plt.show() fig = plt.figure(figsize=(10, 4)) librosa.display.specshow(librosa.power_to_db(S, ref=np.max), y_axis='mel', fmax=8000, x_axis='time') plt.savefig('test.png') S_ = copy.deepcopy(S) S_ = np.repeat(S_[:, :, np.newaxis], 3, axis=2) print(S_.shape) image = S_.reshape((1, S_.shape[0], S_.shape[1], S_.shape[2])) image.shape image = preprocess_input(image) inputtensor = image model = VGG16() model = VGG16(weights="imagenet", include_top=False, input_tensor=inputtensor, input_shape=(128, 431, 3)) model print(model.summary()) yhat = model.predict(image) label = decode_predictions(yhat) ###Output _____no_output_____
METRO_Fundamentals_of_Python.ipynb
###Markdown METRO Library Council - Fundamentals of Python 2020.02.25 Why Python? Python is an incredibly efficient programming language and allows us to do some impressive things with only a few lines of code! Thanks to Python’s syntax, we can write “clean” code that is easier to debug and allows for overall readability. Further, code written in Python is easily extendable and reusable, allowing you and others to build upon existing code. Python is used in a variety of contexts from game design to data analysis. It is also used a lot in academic research, especially in the sciences. Yet, it has utility regardless what discipline you come from or are currently working in. Python EnvironmentIf Python is installed on your computer, you can interact with it on the command line, sometimes referred to as the "terminal", "console", "Python shell" or "REPL" (Read, Eval, Print and Loop). More often, people use a text editor, such as [Sublime](https://www.sublimetext.com/), or more sophisticated IDEs such as [PyCharm](https://www.jetbrains.com/pycharm/) to write and run code. With a lot of setups available, you have many options to choose from!Today, we are using a browser-based Jupyter Notebook, which allows users to selectively run code cells and add rich text elements (paragraph, equations, figures, notes, links) in Markdown. With code, notes, instructions, and comments all in one place, it serves as a powerful resource and learning tool. What does this lesson cover? * Variables* Basic Data Types* Lists * Dictionaries* Loops* Conditional Statements* Functions and Arguments* Python Libraries Basic SyntaxPython is sometimes loosely referred to as 'executable pseudocode' since it often uses easily recognizable words, which can be used to infer what is happening or what will happen. Take for example, the simple line of code below. What do you think will happen when we run it? **to run press `Shift-Enter`** ###Code print("Hello, World!") ###Output _____no_output_____ ###Markdown VariablesA variable is assigned a *value*. Once assigned, the variable holds the information associated with that value. Variables are important in programming languages. In Python, the convention is to use descriptive variables to help make clear what you are trying to do in your code. Using clear variables can help you maintain your code and can help others read and understand your code. ###Code ## To use data, we first assign it to a "variable" NY_state_bird = "Eastern Bluebird" ###Output _____no_output_____ ###Markdown You can think about it as:> "The variable 'NY_state_bird' *gets* the value 'Eastern Bluebird'. ###Code ## Create a variable called my_name, assign it a value, and run my_name = "Genevieve" ###Output _____no_output_____ ###Markdown The value assigned to a variable will remain the same until you alter it. The value can be changed or reassigned within the program. For example, we can change the value of `message` to something new. ###Code # Assign variable message = "Hello, World!" print(message) # Reassign variable message = "METRO rocks!" print(message) ###Output _____no_output_____ ###Markdown Why can we do this? Because Python interprets one line at a time! Be careful, once a variable has been changed, it will hold that new value. When in doubt, don't re-use variable names unless you are absolutely sure that you don't need the old value any longer. Rules for naming variables* can only contain letters, numbers, and underscores* can start with an underscore, but not a number* no spaces, but an underscore can be used to separate words or you can use CamelCase* cannot use the names of Python [built-in functions](https://docs.python.org/3/library/functions.html) or [keywords](https://www.w3schools.com/python/python_ref_keywords.asp)* should be short, but descriptive (employee_name is better than e_n)* be consistent. If you start with CamelCase or snake_case, try to use it throughout ###Code # Examples of acceptable variable names test_1 = employee_name = _homework_grades = InventoryList = ISBN = # Less helpful variable names t_1 = e_n = _hom_grad = inventlist = bknr = # keywords, built-in functions, and reserved words cannot be used as variable names True = 3 # Spelling and syntax must be exact message = "I'm starting to understand variables!" print(mesage) # Create a few helpful variable names relevent to your work GitHub_URLs = Author_First_Name = Author_Last_Name = Article_Title = Article_URLs = # Facilitator note: have participants pair up and read each other's variables as a form of peer code review. # Are the variables easily understood by the person reading them? ###Output _____no_output_____ ###Markdown Data TypesThere are four basic data types in Python. They are:* string: `"Hello, World!"`* integer: `74`* decimal (float): `7.4`* boolean: `TRUE` `FALSE` ###Code # If you are unsure what the data type is, you can use the type() method # which returns class type of the argument(object) passed as parameter. # the syntax would be type(variable) message = "Hello, World" num = 74 # using the type(variable) syntax, check the data types of the variables above type(message) type(num) ###Output _____no_output_____ ###Markdown StringsA *string* is a series of unicode characters surrounded by single or double quotation marks. Strings can be anything from a short word like "is" to combinations of words and numbers like "123 Mulberry Lane," to an entire corpus of texts (all of Jane Eyre). Strings can be stored, printed, and transformed. ###Code # With this variable, we are printing it's type and its length with Python's built-in functions favorite_game = "sonic the hedgehog" print(type(favorite_game)) print(len(favorite_game)) # helpful built-in functions that transform strings print(favorite_game.title()) print(favorite_game.upper()) print(favorite_game.lower()) # Create a variable and assign it a string. Use two of the built-in functions and print them both. # You should have three lines of code. movie = "little women" year = "(2019)" director = "greta gerwig" print(movie.title() + year + " directed by " + director.title() + " was pretty good!") ###Output Little Women(2019) directed by Greta Gerwig was pretty good! ###Markdown Concatenating StringsSometimes it's helpful to join strings together. A common method is to use the plus symbol (+) to add multiple strings together. Simply place a + between as many strings as you want to join together. ###Code # concatenate strings, in this case a first and a last name, using the + operator first_name = "grace" last_name = "hopper" full_name = first_name + " " + last_name print(full_name) # adding to this, we can use a built-in function + a longer string. print(full_name.title() + " was a pioneer of computer programming.") # Alternatively, we could do something like this: output = " was a pioneer of computer programming." print(full_name.title() + output) ###Output _____no_output_____ ###Markdown Now you try! Create two or more variables and print out a message of your own! ###Code ## Create two or more variables and use the print statement to tell us about something that interests you! ## Favorite author, actor, game, place to visit are all good options! fav_activity = "hiking" fav_place = "mountains" print("My favorite thing to do is " + fav_activity + " in the " + fav_place + ".") ###Output My favorite thing to do is hiking in the mountains. ###Markdown Sometimes, we need need to escape characters, add spaces, line breaks, and tabs to our text. ###Code # Here's my example with an escape character. first_name = "alan" last_name = "turing" full_name = first_name + " " + last_name print(full_name.title() + " once said, \"Machines take me by surprise with great frequency.\"") # Adding a line break and a empty line with two consecutive "/n" line_one = "An old silent pond..." line_two = "A frog jumps into the pond," line_three = "Splash! Silence again." Basho_Haiku = line_one + "\n" + "\n" + line_two + "\n" + "\n" + line_three print(Basho_Haiku) ###Output _____no_output_____ ###Markdown Challege 1 ###Code # create a quote from a famous person and also create your own haiku (5, 7, 5) # feel free to partner up! #see two answers above to solve this challege ###Output _____no_output_____ ###Markdown Tidying up StringsTexts are messy, sometimes you need to clean them up! Striping Whitespace ###Code # we can remove white space from the left and right text = " This sentence has too many spaces. " print(text) text = text.lstrip() text = text.rstrip() print(text) ###Output _____no_output_____ ###Markdown Using RemoveNote: .remove( ) takes two parameters, first is what you are looking for in the text and the second is what you want to replace it with.> `string.replace(old, new)` ###Code # use replace to remove white spaces from the middle of texts, replacing it with a single space. text = text.replace(" ", " ") print(text) ###Output _____no_output_____ ###Markdown Real World ExampleWorking with a list of strings may require some tidying up, especially if you want to work with text as data. Often this is a process! Here's a real world example from my research on ingredients in classic recipes. ###Code # we can clean this text up using some of Python's built-in functions as well as re (a regular expressions library) import re # Here is the in ingredient list. How do we isolate just the ingredients by themselves? crawfish_pasta = "1/4 cup olive oil; 5 scallions, roughly chopped; 2 cloves garlic, minced; 1 medium yellow onion, minced; 1/2 small green bell pepper, seeded and minced; 1/2 cup dry white wine; dried mint; 1 can whole peeled tomatoes; 2 lb. cooked, peeled crawfish tails; 1 cup heavy cream; 1/3 cup roughly chopped parsley, plus more for garnish; Tabasco; Kosher salt and freshly ground black pepper; 1 lb. linguine;Grated parmesan" print(crawfish_pasta) # Remove some of the re-occuring text using replace crawfish_pasta = crawfish_pasta.replace(", minced", "").replace(", roughly chopped", "").replace("/", "").replace(" cup", "").replace(", seeded and minced", "").replace("roughly chopped", "").replace(", plus more for garnish", "").replace("lb. ", "") print(crawfish_pasta) # use a simple regular expression to remove numbers and strip white space crawfish_pasta = re.sub('[0-9]', '', crawfish_pasta).strip() print(crawfish_pasta) # replace consecutive spaces and colapse spaces following the semicolons crawfish_pasta = crawfish_pasta.replace(" ", "").replace("; ", ";") print(crawfish_pasta) #split at semicolon (i.e. our delimiter) and break string into a list crawfish_pasta = crawfish_pasta.split(';') print(crawfish_pasta) for ingredient in crawfish_pasta: print(ingredient) # use some of the built-in fuctions and re to clean up this messy line of text messy_text = " He st0pped before the d00r of his own cottage , which was the fourth one from the main building and next to the 1ast. " tidy_text = messy_text.replace("0", "o").replace("1", "l").replace(" ", " ").replace(" ", "").strip() print(tidy_text) ###Output _____no_output_____ ###Markdown Any Questions About Strings? IntegersAn *integer* in Python is a whole number, also known as counting numbers or natural numbers. They can be positive or negative. ###Code 3+4 # Addition 4-3 # Subtraction 30*10 # Multiplication 30/10 # Whole division 46//4 # Floor Division 10**6 # An exponent operation ## Order of Operations PEMDAS - Please excuse my dear Aunt Sally! 10 - ((14 / 2) * 3) + 1 # determine if a number is odd or even using modulo, or remainder, operations even_num = 10%2 odd_num = 15%2 print(even_num) print(odd_num) ###Output _____no_output_____ ###Markdown Why? An even number has no remainder when divided by 2. An odd number will have a remainder. FloatsA *float* in Python is any number with a decimal point. ###Code # volume of a rectangle height = 3.5 length = 7.25 width = 7.75 V = height*length*width print(V) # using int means the value is restricted to the non-decimal number int(V) # the round function helps handle floating point numbers (floats). # the number after the comma (in this case 2) sets the precision of the decimal. # this example restricts the numbers after the decimal point to 2 (handy when printing sums that refer to money) round(V, 2) # If you need only what is after the decimal point, you could do something like this: dec_portion = V - int(V) print(dec_portion) ###Output _____no_output_____ ###Markdown Avoiding TypeError with the Str() FunctionWe've talked about strings and we've talked about Integers. When using them in the same space, we need to avoid type errors. ###Code # strings and integers are different data types: fav_num = 3.14 message = "My favorite number is " + fav_num + "." print(message) # The str() function is used to convert the specified value, in this case an integer, into a string. message = "My favorite number is " + str(fav_num) + "." print(message) ###Output _____no_output_____ ###Markdown BooleansA *boolean* is a binary variable, having two possible values called “true” and “false.”. ###Code 3>=4 3 == 4 x = 255 y = 33 if x > y: print("x is greater than y.") else: print("x is not greater than y.") ###Output _____no_output_____ ###Markdown Challenge 2 ###Code # Working with a partner, we are going to create some helpful conversions and print them. # hint: begin with identifying the information you need and assign it to a variable # 1: Convert farenheit to celsius: # formula: celsius = (farenheit - 32) * 5/9 farenheit = 77 celsius = (farenheit - 32) * 5/9 print(celsius) # 2: Convert celsius to farenheit: # formula: farenheit = (celsius * 9/5) + 32 celsius = 25 farenheit = (celsius * 9/5) + 32 print(farenheit) # 3: Convert pounds to kilograms: # formula: kilograms = pounds/2.2046226218 pounds = 105 kilograms = pounds/2.2046226218 print(round(kilograms)) # 4: Convert kilograms to pounds: # formula: pounds = kilograms * 2.2046226218 kilograms = 48 pounds = kilograms * 2.2046226218 print(round(pounds)) ###Output _____no_output_____ ###Markdown -------BREAK---------- ListsA *list* is a collection of items in a particular order. Lists can contain strings, integers, floats and each element is separtated by a comma. Lists are always inside square brackets. ###Code # An example of a list my_grocery_list = ["bananas", "pears", "apples", "chocolate", "coffee", "cereal", "kale", "juice"] print(my_grocery_list) # we can use the len function to see how many items are in a list len(my_grocery_list) # remember, Python indexing starts at zero print(my_grocery_list[2]) # using the end index will give you the last item in the list print(my_grocery_list[-1]) # If you need a range in a list, you can use can set a range using start_index:end_index print(my_grocery_list[3:5]) # Sorting will put your list in alphabetical order print(sorted(my_grocery_list)) # using the sorted fuction is not permanent print(my_grocery_list) # to make it so, use the sort function my_grocery_list.sort() print(my_grocery_list) # we can also permanently reverse this list my_grocery_list.reverse() print(my_grocery_list) ###Output _____no_output_____ ###Markdown DictionariesA *dictionary* in Python is a collection of *key-value pairs*. Each key is connected to a value and you can use a key to access the value associated with that key. ###Code #dictionaries can hold lots of information #uses a key, value pair club_member_1 = { "member_name": "Brian Jones", "member_since": "2017", "member_handle": "@bjones_tweets", } print(club_member_1) #to get information from the dictionary for key, value in club_member_1.items(): print(key, ":", value) # we can nest dictionaries into a list club_member_2 = { "member_name": "Anne Green", "member_since": "2015", "member_handle": "@Greenbean", } club_members = [club_member_1, club_member_2] print(club_members) for member in club_members: for key, value in member.items(): print(key, ":", value) print() ###Output _____no_output_____ ###Markdown Challenge 3 ###Code # Make a list of 7 items # print the list # reverse and print the list # print the middle three elements of the list # OPTIONAL: use the member information above to create a club_member_3, append it to club_members, # and print the new list. HINT: remember, codes is reusable. list = ["ALA", "ASIS&T", "MLA", "ARLIS/NA", "ACRL", "PLA", "METRO"] print(list) print() list.reverse() print(list) print() print(list[2:4]) print() club_member_3 = { "member_name": "Jane Smith", "member_since": "2010", "member_handle": "@JS_Designs", } club_members.append(club_member_3) for member in club_members: for key, value in member.items(): print(key, ":", value) print() ###Output _____no_output_____ ###Markdown List Manipulation: Adding, Editing, and Removing Items in a list ###Code # this is a list of items in our makerspace makerspace = ["Arduino", "3D printer", "sewing machine", "sewing machine case", "soldering iron", "micro controlers", "Legos", "Legos case"] print(makerspace) # we can add items to our list using append function # appending adds these items to the end of the list makerspace.append("camera") makerspace.append("SD cards") makerspace.append("batteries") print(makerspace) # If we want to insert at a particular place, can can use the insert fuction makerspace.insert(3, "thread") # insert takes two parameters: list.insert.(index, element) print(makerspace) # we can also use an index to replace an existing element with a new element makerspace[0] = "Raspberry Pi" print(makerspace) # the del function deletes at an index # del can be used in lists, but not strings del makerspace[4] print(makerspace) # the pop function also removes elements from a list at a specific index makerspace.pop(7) print(makerspace) ###Output _____no_output_____ ###Markdown Challenge 4 ###Code # append "record player" to the end of the list, insert "gramophone" at index 2, # delete "CD" from the list, reverse and print. analog_media = ["VCR", "tape player", "16 mm projector", "CD", "reel to reel", "8 track"] analog_media.append("record player") analog_media.insert(2, "gramaphone") del analog_media[4] print(analog_media) ###Output _____no_output_____ ###Markdown For LoopsLooping allows you to take the same action(s) with every item in a list. This is very useful for when you have lists that contain alot of items. ###Code # range starts at the first number and goes up to the number BEFORE the stopping number for number in range(1,6): print(number) # range can also include negative numbers for new_number in range(-3,4): print(new_number) # for each number, square the number for number in range(1,6): print(number,"squared =", number**2) # use an index counter to track the index of each name name_list = ["Denise", "Tammy", "Belinda", "Byron", "Keelie", "Charles", "Alison", "Jamal", "Greta", "Manuel"] name_index = 0 for name in name_list: print(name_index, ":", name) name_index += 1 # incrementing by one musicians = ['Allen Toussaint', 'Buddy Bolden', 'Danny Barker', 'Dr. John', 'Fats Domino', 'Irma Thomas'] for musician in musicians: print(musician) musicians = ['Allen Toussaint', 'Buddy Bolden', 'Danny Barker', 'Dr. John', 'Fats Domino', 'Irma Thomas'] for musician in musicians: print("I have a record by "+ musician + ".") ###Output _____no_output_____ ###Markdown Conditional Statements IF StatementsAn *if statement allows* you to check for a condition(s) and take action based on that condition(s).Logically it means:`if conditional_met: do something` ###Code # test to see if a number is greater than or equal to a particular value age = 18 if age >= 18: print("You can vote!") # loop through list and print each name in it name_list = ["Kylie", "Allie", "Sherman", "Deborah", "Kyran", "Shawna", "Diane", "Josephine", "Peabody", "Ferb", "Wylie"] for name in name_list: print(name) # loop through list and use if to find a particular name for name in name_list: if name == "Diane": print(name, "found!") ###Output _____no_output_____ ###Markdown Else Statements ###Code # Diane has RSVP'd to say that she can't make it and we should take her off the list counter = 0 for name in name_list: if name == "Diane": print(name, "found! Located at index: ", counter) break else: print("not found ...", counter) counter += 1 # Locating the exact index makes it easier to remove her name del name_list[6] print(name_list) # Python has built-in finding functions that make this very easy name_list2 = ["Kylie", "Allie", "Sherman", "Deborah", "Kyran", "Shawna", "Diane", "Josephine", "Peabody", "Ferb", "Wylie"] rsvp_yes = ["Kylie", "Allie", "Shawna","Josephine", "Peabody", "Ferb", "Wylie"] rsvp_no = ["Kyran","Sherman","Diane"] for name in name_list2: if name in rsvp_no: print(name, "RSVP'd no, removing from list ...") name_list2.remove(name) else: if name in rsvp_yes: print(name, "RSVP'd yes and is coming to the pary!") print() print(name_list2) ###Output _____no_output_____ ###Markdown Elif Statement ###Code # separate the elements into other lists by type my_list = [9, "Endymion", 1, "Rex", 65.4, "Zulu", 30, 9.87, "Orpheus", 16.45] my_int_list = [] my_float_list = [] my_string_list = [] for value in my_list: if(type(value)==int): my_int_list.append(value) elif(type(value)==float): my_float_list.append(value) elif(type(value)==str): my_string_list.append(value) print(my_list) print(my_int_list) print(my_float_list) print(my_string_list) ###Output _____no_output_____ ###Markdown OPTIONAL: If, Elif, Else Statements ###Code # counting number ranges #create a list of 50 random numbers between 1 and 100 import random number_range_list = [] for entry in range(0,50): number=random.randint(1,100) number_range_list.append(number) # count and categorize numbers by range first_quarter = [] second_quarter = [] third_quarter = [] fourth_quarter = [] # check ranges for number in number_range_list: #print(number) if number <= 25: first_quarter.append(number) elif number <=50: second_quarter.append(number) elif number <=75: third_quarter.append(number) else: fourth_quarter.append(number) # calculate percentage of whole in each quarter q1_total = round((len(first_quarter)/50)*100) q2_total = round((len(second_quarter)/50)*100) q3_total = round((len(third_quarter)/50)*100) q4_total = round((len(fourth_quarter)/50)*100) print("data ready ...") # print out the data to give a basic shape to it visually print("Quick, General Bar-Chart \n") print(" 0-25:",first_quarter) print(" 26-50:",second_quarter) print(" 51-75:",third_quarter) print("76-100:",fourth_quarter) # print out the analysis print("Distribution of 50 randomly generated numbers \n by percentage per qarter:") print(" 0-25:",q1_total, "%") print(" 26-50:",q2_total, "%") print(" 51-75:",q3_total, "%") print("76-100:",q4_total, "%") # break down the information further print("Minimum Values") print(" 0-25:",min(first_quarter)) print(" 26-50:",min(second_quarter)) print(" 51-75:",min(third_quarter)) print("76-100:",min(fourth_quarter)) print("Maximum Values") print(" 0-25:",max(first_quarter)) print(" 26-50:",max(second_quarter)) print(" 51-75:",max(third_quarter)) print("76-100:",max(fourth_quarter)) print("Average Values") print(" 0-25:",round(sum(first_quarter)/len(first_quarter))) print(" 26-50:",round(sum(second_quarter)/len(second_quarter))) print(" 51-75:",round(sum(third_quarter)/len(third_quarter))) print("76-100:",round(sum(fourth_quarter)/len(fourth_quarter))) ###Output _____no_output_____ ###Markdown While StatementsA *while satement* operates as long as a particular condition is true. Logically it means:`while conditional_true: do something` ###Code # what do you think this will do? counter = 10; while counter>0: print("Counter =", counter) #print("Counter = " + str(counter)) counter = counter-1 #What do you think would happen if at the end of our code we wrote "counter = counter + 1"? ###Output _____no_output_____ ###Markdown Infinite Loops occur when a condition is never met. This can cause the program to run out of memory and crash. Functions Function 1 ###Code # data for function 1 famous_programmers = ["augusta ada king (lovelace)", "grace hopper", "limor fried", "evelyn boyd granville", "parisa tabriz", "sister mary kenneth keller", "carol shaw"] # create a function by using the keywork 'def' # set the argument(s) it will accept inside the parentheses # remember, a function must be defined before it is called def thank_you(names_list): for name in names_list: message = "Thank you " + name.title() + ". Your work and contributions to programming have been amazing!" print(message) # call the function and use the list as the argument thank_you(famous_programmers) ###Output _____no_output_____ ###Markdown Function 2 ###Code # data for function 2 weekly_high_temp = [44, 56, 47, 50, 53, 57, 61] # building on the challenge you did previously let's create a function that does a conversion # instead of a single value, let's take in a list and convert it def farenheit_to_celsius(temperature_list): temp_in_celcius = [] for number in temperature_list: celcius = round((number - 32) * 5/9) temp_in_celcius.append(celcius) return temp_in_celcius print("Weekly High Temps in Celcius:", farenheit_to_celsius(weekly_high_temp)) ###Output _____no_output_____ ###Markdown Challenge 5 ###Code # Create a function to convert this list of feet to inches measurements_feet = [7, 9, 14, 33, 18.5, 45, 3.25, 10, 1, 2.5] def feet_to_inches(feet): measurement_inches = [] for foot in feet: inches = foot * 12 measurement_inches.append(inches) return measurement_inches print(feet_to_inches(measurements_feet)) ###Output _____no_output_____ ###Markdown Python Libraries Python has a huge collection of libraries, also known as packages, which are essentially a collection of modules in a directory. Python is a package itself and comes with many built in modules. There are, however, many other packages that are useful if you need to complete certain tasks, such as data cleaning, web scrapping, or statistical analysis. Since you already have Anaconda, use [Anaconda package repository](https://anaconda.org/anaconda/repo) to install python libraries you need! Web Scraping with BeautifulSoupinstall BeautifulSoup on the terminal using Anconda's [repo for bs4](https://anaconda.org/anaconda/beautifulsoup4)`conda install -c anaconda beautifulsoup4` ###Code from bs4 import BeautifulSoup import requests import time url = "http://shakespeare.mit.edu/Poetry/sonnets.html" results_page = requests.get(url) page_html = results_page.text soup = BeautifulSoup(page_html, "html.parser") sonnets = soup.find_all('dl') for sonnet in sonnets: each_sonnet = sonnet.find_all('a') for each in each_sonnet: title = each.text url = each['href'] url = "http://shakespeare.mit.edu/Poetry/" + url sonnet_request = requests.get(url) sonnet_html = sonnet_request.text sonnet_soup = BeautifulSoup(sonnet_html, "html.parser") sonnet_text = sonnet_soup.find("blockquote") sonnet_text = sonnet_text.text print(title) print() print(url) print() print(sonnet_text) print("---------------------") time.sleep(2) ###Output _____no_output_____
BOOTCAMP/Complete-Python-3-Bootcamp-master/02-Python Statements/(Bootcamp)-02-03-for Loops.ipynb
###Markdown ______Content Copyright by Pierian Data for LoopsA for loop acts as an iterator in Python; it goes through items that are in a *sequence* or any other iterable item. Objects that we've learned about that we can iterate over include strings, lists, tuples, and even built-in iterables for dictionaries, such as keys or values.We've already seen the for statement a little bit in past lectures but now let's formalize our understanding.Here's the general format for a for loop in Python: for item in object: statements to do stuff The variable name used for the item is completely up to the coder, so use your best judgment for choosing a name that makes sense and you will be able to understand when revisiting your code. This item name can then be referenced inside your loop, for example if you wanted to use if statements to perform checks.Let's go ahead and work through several example of for loops using a variety of data object types. We'll start simple and build more complexity later on. Example 1Iterating through a list ###Code # We'll learn how to automate this sort of list in the next lecture list1 = [1,2,3,4,5,6,7,8,9,10] for num in list1: print(num) ###Output 1 2 3 4 5 6 7 8 9 10 ###Markdown Great! Hopefully this makes sense. Now let's add an if statement to check for even numbers. We'll first introduce a new concept here--the modulo. ModuloThe modulo allows us to get the remainder in a division and uses the % symbol. For example: ###Code 17 % 5 ###Output _____no_output_____ ###Markdown This makes sense since 17 divided by 5 is 3 remainder 2. Let's see a few more quick examples: ###Code # 3 Remainder 1 10 % 3 # 2 Remainder 4 18 % 7 # 2 no remainder 4 % 2 ###Output _____no_output_____ ###Markdown Notice that if a number is fully divisible with no remainder, the result of the modulo call is 0. We can use this to test for even numbers, since if a number modulo 2 is equal to 0, that means it is an even number!Back to the for loops! Example 2Let's print only the even numbers from that list! ###Code for num in list1: if num % 2 == 0: print(num) ###Output 2 4 6 8 10 ###Markdown We could have also put an else statement in there: ###Code for num in list1: if num % 2 == 0: print(num) else: print('Odd number') ###Output Odd number 2 Odd number 4 Odd number 6 Odd number 8 Odd number 10 ###Markdown Example 3Another common idea during a for loop is keeping some sort of running tally during multiple loops. For example, let's create a for loop that sums up the list: ###Code # Start sum at zero list_sum = 0 for num in list1: list_sum = list_sum + num print(list_sum) ###Output 55 ###Markdown Great! Read over the above cell and make sure you understand fully what is going on. Also we could have implemented a += to perform the addition towards the sum. For example: ###Code # Start sum at zero list_sum = 0 for num in list1: list_sum += num print(list_sum) ###Output 55 ###Markdown Example 4We've used for loops with lists, how about with strings? Remember strings are a sequence so when we iterate through them we will be accessing each item in that string. ###Code for letter in 'This is a string.': print(letter) ###Output T h i s i s a s t r i n g . ###Markdown Example 5Let's now look at how a for loop can be used with a tuple: ###Code tup = (1,2,3,4,5) for t in tup: print(t) ###Output 1 2 3 4 5 ###Markdown Example 6Tuples have a special quality when it comes to for loops. If you are iterating through a sequence that contains tuples, the item can actually be the tuple itself, this is an example of *tuple unpacking*. During the for loop we will be unpacking the tuple inside of a sequence and we can access the individual items inside that tuple! ###Code list2 = [(2,4),(6,8),(10,12)] for tup in list2: print(tup) # Now with unpacking! for (t1,t2) in list2: print(t1) ###Output 2 6 10 ###Markdown Cool! With tuples in a sequence we can access the items inside of them through unpacking! The reason this is important is because many objects will deliver their iterables through tuples. Let's start exploring iterating through Dictionaries to explore this further! Example 7 ###Code d = {'k1':1,'k2':2,'k3':3} for item in d: print(item) ###Output k1 k2 k3 ###Markdown Notice how this produces only the keys. So how can we get the values? Or both the keys and the values? We're going to introduce three new Dictionary methods: **.keys()**, **.values()** and **.items()**In Python each of these methods return a *dictionary view object*. It supports operations like membership test and iteration, but its contents are not independent of the original dictionary – it is only a view. Let's see it in action: ###Code # Create a dictionary view object d.items() ###Output _____no_output_____ ###Markdown Since the .items() method supports iteration, we can perform *dictionary unpacking* to separate keys and values just as we did in the previous examples. ###Code # Dictionary unpacking for k,v in d.items(): print(k) print(v) ###Output k1 1 k2 2 k3 3 ###Markdown If you want to obtain a true list of keys, values, or key/value tuples, you can *cast* the view as a list: ###Code list(d.keys()) ###Output _____no_output_____ ###Markdown Remember that dictionaries are unordered, and that keys and values come back in arbitrary order. You can obtain a sorted list using sorted(): ###Code sorted(d.values()) ###Output _____no_output_____
src/notebooks/oclc-find-related-issns.ipynb
###Markdown Using the xID service from OCLCBelow I grab some records from a marcxml file, grab the ISSNs, and use the xISSN web service (to be discontinued in March 2016) to populate a dataframe with related ISSNs for the given ISSN._Committed by Jack Ammerman (@jwacooks) 2016-01-05_ ###Code import os import numpy as np import pandas as pd #import glob import os #import codecs import json #import time from urllib.request import Request, urlopen from urllib.parse import urlencode, quote_plus import pymarc import marcx import io os.chdir('/Volumes/jwa_drive1/git/issn') ###Output _____no_output_____ ###Markdown Let's get some recordsI generated a managed set in Alma and exported the bib records in MARCXML format.Below is a routine to parse the marc records and create a dataframe that holds the relevant fields from the marc records. ###Code f = '/Volumes/jwa_drive1/git/issn/marcRecords.xml' records = pymarc.parse_xml_to_array(io.open(f,mode='r',encoding='utf-8')) columns = ['issn', 'mmsid', 'title','other_issns'] df = pd.DataFrame() for rec in records: d = {} rec = marcx.FatRecord.from_record(rec) try: d['issn'] = rec['022']['a'] except Exception as e: continue #d['issn'] = '' d['title'] = rec.title().replace('/','') d['mmsid'] = rec['001'].data d['other_issns'] = '' df = df.append(d,ignore_index=True) ## uncomment line below to verify that the records were loaded properly #df.head() ###Output _____no_output_____ ###Markdown Using the dataframe (df), iterate through the rows to make calls to the xISSN service* iterate through a slice of the dataframe.* for each row, we grab the issn and use that as part of the query string to send to the xISSN service. * the response is a string (bytes) that we convert to json.* we navigate the json response to grab the list of issn numbers which we call 'ISSNs'* ISSNs includes format information as well. we parse that list to extract only the desired issn number which we add to a newly constructed 'issn_list'* we add the issn_list to the dataframe ###Code base_url = 'http://xissn.worldcat.org/webservices/xid/issn/' end_url = '?method=getForms&format=json' ## below we are iterating through the first 20 rows of the dataframe the size of the ## slice can be modified by changing the value in 'df[:20]' ## for index,row in df[:20].iterrows(): issn = row['issn'] try: response = json.loads(urlopen(base_url + issn + end_url).read().decode('utf-8')) except Exception as e: ## trapping for the possibility that there is no issn for the record in the dataframe print(index,e) continue ISSNs = response['group'][0]['list'] issn_list = [] for issn in ISSNs: issn_list.append(issn['issn']) #print(issn_list) row['other_issns'] = issn_list df.head(20) ###Output _____no_output_____
Homework/Homework 3 (Evaluation of Predictive Models) Revision 1.ipynb
###Markdown Homework 3: Evaluation of Predictive ModelsThis exercise should guide you through performing a predictive modeling analysis. You will choose a model type, set critical complexity parameters, and apply it to select prospects for a direct mailing charity campaign. ###Code # Import the libraries we will be using import numpy as np import pandas as pd import sys import matplotlib.pylab as plt import seaborn as sns %matplotlib inline sns.set(style='ticks', palette='Set2') plt.rcParams['figure.figsize'] = 10, 8 sys.path.append("..") # tools for loading a few toy datasets from ds_utils.sample_data import * from sklearn.model_selection import train_test_split X, y = get_mailing_data() X_mailing_train, X_mailing_test, y_mailing_train, y_mailing_use_secret = train_test_split(X, y, train_size=.75, test_size=.25, random_state=42) ###Output _____no_output_____
doc/notebooks/MinHash, design and performance.ipynb
###Markdown Designing a Python library for building prototypes around MinHashThis is very much work-in-progress. May be the software and or ideas presented with be the subject of a peer-reviewed or self-published write-up. For now the URL for this is: https://github.com/lgautier/mashing-pumpkinsMinHash in the context of biological sequenced was introduced by the Maryland Bioinformatics Lab [add reference here].Building a MinHash is akin to taking a sample of all k-mers / n-grams found in a sequence and using that sample as a signature or sketch for that sequence. A look at convenience *vs* performanceMoving Python code to C leads to performance improvement... sometimes. Test sequenceFirst we need a test sequence. Generating a random one quickly can be achieved as follows, for example. If you already have you own way to generate a sequence, or your own benchmark sequence, the following code cell can be changed so as to end up with a variable `sequence` that is a `bytes` object containing it. ###Code # we take a DNA sequence as an example, but this is arbitrary and not necessary. alphabet = b'ATGC' # create a lookup structure to go from byte to 4-mer # (a arbitrary byte is a bitpacked 4-mer) quad = [None, ]*(len(alphabet)**4) i = 0 for b1 in alphabet: for b2 in alphabet: for b3 in alphabet: for b4 in alphabet: quad[i] = bytes((b1, b2, b3, b4)) i += 1 # random bytes for a 3M genome (order of magnitude for a bacterial genome) import ssl def make_rnd_sequence(size): sequencebitpacked = ssl.RAND_bytes(int(size/4)) sequence = bytearray(int(size)) for i, b in zip(range(0, len(sequence), 4), sequencebitpacked): sequence[i:(i+4)] = quad[b] return bytes(sequence) size = int(2E6) sequence = make_rnd_sequence(size) import time class timedblock(object): def __enter__(self): self.tenter = time.time() return self def __exit__(self, type, value, traceback): self.texit = time.time() @property def duration(self): return self.texit - self.tenter ###Output _____no_output_____ ###Markdown Kicking the tires with `sourmash`The executable `sourmash` is a nice package from the dib-lab implemented in Python and including a library [add reference here]. Perfect for trying out quick what MinHash sketches can do.We will create a MinHash of maximum size 1000 (1000 elements) and of k-mer size 21 (all ngrams of length 21 across the input sequences will be considered for inclusion in the MinHash. At the time of writing MinHash is implemented in C/C++ and use that as a reference for speed, as we measure the time it takes to process our 1M reference sequence ###Code from sourmash_lib._minhash import MinHash SKETCH_SIZE = 5000 sequence_str = sequence.decode("utf-8") with timedblock() as tb: smh = MinHash(SKETCH_SIZE, 21) smh.add_sequence(sequence_str) t_sourmash = tb.duration print("%.2f seconds / sequence" % t_sourmash) ###Output 0.42 seconds / sequence ###Markdown This is awesome. The sketch for a bacteria-sized DNA sequence can be computed very quickly (about a second on my laptop). Redisigning it all for convenience and flexibilityWe have redesigned what a class could look like, and implemented that design in Pythonforemost for our own convenience and to match the claim of convenience. Now how bad is the impact on performance ?Our new design allows flexibility with respect to the hash function used, and to initially illustrate our point we use `mmh` an existing Python package wrapping MurmurHash3, the hashing function used in `MASH` and `sourmash`. ###Code # make a hashing function to match our design import mmh3 def hashfun(sequence, nsize, hbuffer, w=100): n = min(len(hbuffer), len(sequence)-nsize+1) for i in range(n): ngram = sequence[i:(i+nsize)] hbuffer[i] = mmh3.hash64(ngram)[0] return n from mashingpumpkins.minhashsketch import MinSketch from array import array with timedblock() as tb: mhs = MinSketch(21, SKETCH_SIZE, hashfun, 42) mhs.add(sequence, hashbuffer=array("q", [0,]*200)) t_basic = tb.duration print("%.2f seconds / sequence" % (t_basic)) print("Our Python implementation is %.2f times slower." % (t_basic / t_sourmash)) ###Output 0.91 seconds / sequence Our Python implementation is 2.17 times slower. ###Markdown Ah. Our Python implementation only using `mmh3` and the standard library is only a bit slower. There is more to it though. The code in "mashingpumpkins" is doing more by keeping track of the k-mer/n-gram along with the hash value in order to allow the generation of inter-operable sketch [add reference to discussion on GitHub]. Our design in computing batches of hash values each time C is reached for MurmurHash3. We have implemented the small C function require to call MurmurHash for several k-mers, and when using it we have interesting performance gains. ###Code from mashingpumpkins._murmurhash3 import hasharray hashfun = hasharray with timedblock() as tb: hashbuffer = array('Q', [0, ] * 300) mhs = MinSketch(21, SKETCH_SIZE, hashfun, 42) mhs.add(sequence, hashbuffer=hashbuffer) t_batch = tb.duration print("%.2f seconds / sequence" % (t_batch)) print("Our Python implementation is %.2f times faster." % (t_sourmash / t_batch)) ###Output 0.25 seconds / sequence Our Python implementation is 1.68 times faster. ###Markdown Wow!At the time of writing this is between 1.5 and 2.5 times faster than C-implemented `sourmash`. And we are doing more work (we are keeping the ngrams / kmers associated with hash values). We can modifying our class to stop storing the associated k-mer (only keep the hash value) to see if it improves performances: However, as it was pointed out sourmash's minhash also checking that the sequenceo only uses letters from the DNA alphabet **and** computes the sketch for both the sequence and its reverse complement. We add these 2 operations (check and reverse complement) in a custom child class: ###Code from mashingpumpkins._murmurhash3 import hasharray hashfun = hasharray from array import array trans_tbl = bytearray(256) for x,y in zip(b'ATGC', b'TACG'): trans_tbl[x] = y def revcomp(sequence): ba = bytearray(sequence) ba.reverse() ba = ba.translate(trans_tbl) return ba class MyMash(MinSketch): def add(self, seq, hashbuffer=array('Q', [0, ]*300)): ba = revcomp(sequence) if ba.find(0) >= 0: raise ValueError("Input sequence is not DNA") super().add(sequence, hashbuffer=hashbuffer) super().add(ba, hashbuffer=hashbuffer) with timedblock() as tb: mhs = MyMash(21, SKETCH_SIZE, hashfun, 42) mhs.add(sequence) t_batch = tb.duration print("%.2f seconds / sequence" % (t_batch)) print("Our Python implementation is %.2f times faster." % (t_sourmash / t_batch)) ###Output 0.42 seconds / sequence Our Python implementation is 1.01 times faster. ###Markdown Still pretty good, the code for the check is not particularly optimal (that's the kind of primitives that would go to C). MASH quirksUnfortunately this is not quite what MASH (sourmash is based on) is doing. Tim highlighted what is happening: for every ngram and its reverse complement, the one with the lowest lexicograph order is picked for inclusion in the sketch.Essentially, picking segment chunks depending on the lexicographic order of the chunk's direct sequence vs its reverse complement is a sampling/filtering strategy at local level before the hash value is considered for inclusion in the MinHash. The only possible reason for this could be the because the hash value is expensive to compute (but this does not seem to be the case).Anyway, writing a slightly modified batch C function that does that extra sampling/filtering is easy and let's use conserve our design. We can then implement a MASH-like sampling in literally one line: ###Code from mashingpumpkins import _murmurhash3_mash def hashfun(sequence, nsize, buffer=array('Q', [0,]*300), seed=42): return _murmurhash3_mash.hasharray_withrc(sequence, revcomp(sequence), nsize, buffer, seed) with timedblock() as tb: hashbuffer = array('Q', [0, ] * 300) mhs = MinSketch(21, SKETCH_SIZE, hashfun, 42) mhs.add(sequence) t_batch = tb.duration print("%.2f seconds / sequence" % (t_batch)) print("Our Python implementation is %.2f times faster." % (t_sourmash / t_batch)) ###Output 0.25 seconds / sequence Our Python implementation is 1.65 times faster. ###Markdown So now the claim is that we are just like sourmash/MASH, but mostly in Python and faster.We check that the sketches are identical, and they are: ###Code len(set(smh.get_mins()) ^ mhs._heapset) ###Output _____no_output_____ ###Markdown Parallel processingNow what about parallel processing ? ###Code from mashingpumpkins.sequence import chunkpos_iter import ctypes import multiprocessing from functools import reduce import time NSIZE = 21 SEED = 42 def build_mhs(args): sketch_size, nsize, sequence = args mhs = MinSketch(nsize, sketch_size, hashfun, SEED) mhs.add(sequence) return mhs res_mp = [] for l_seq in (int(x) for x in (1E6, 5E6, 1E7, 5E7)): sequence = make_rnd_sequence(l_seq) for sketch_size in (1000, 5000, 10000): sequence_str = sequence.decode("utf-8") with timedblock() as tb: smh = MinHash(sketch_size, 21) smh.add_sequence(sequence_str) t_sourmash = tb.duration with timedblock() as tb: ncpu = 2 p = multiprocessing.Pool(ncpu) # map step (parallel in chunks) result = p.imap_unordered(build_mhs, ((sketch_size, NSIZE, sequence[begin:end]) for begin, end in chunkpos_iter(NSIZE, l_seq, l_seq//ncpu))) # reduce step (reducing as chunks are getting ready) mhs_mp = reduce(lambda x, y: x+y, result, next(result)) p.terminate() t_pbatch = tb.duration res_mp.append((l_seq, t_pbatch, sketch_size, t_sourmash)) from rpy2.robjects.lib import dplyr, ggplot2 as ggp from rpy2.robjects.vectors import IntVector, FloatVector, StrVector, BoolVector from rpy2.robjects import Formula dataf = dplyr.DataFrame({'l_seq': IntVector([x[0] for x in res_mp]), 'time': FloatVector([x[1] for x in res_mp]), 'sketch_size': IntVector([x[2] for x in res_mp]), 'ref_time': FloatVector([x[3] for x in res_mp])}) p = (ggp.ggplot(dataf) + ggp.geom_line(ggp.aes_string(x='l_seq', y='log2(ref_time/time)', color='factor(sketch_size, ordered=TRUE)'), size=3) + ggp.scale_x_sqrt("sequence length") + ggp.theme_gray(base_size=18) + ggp.theme(legend_position="top", axis_text_x = ggp.element_text(angle = 90, hjust = 1)) ) import rpy2.ipython.ggplot rpy2.ipython.ggplot.image_png(p, width=1000, height=500) ###Output _____no_output_____ ###Markdown We have just made sourmash/MASH about 2 times faster... some of the times. Parallelization does not always bring speedups (depends on the size of the sketch and on the length of the sequence for which the sketch is built). Scaling up Now how much time should it take to compute signature for various references ?First we check quickly that the time is roughly proportional to the size of the reference: ###Code SEED = 42 def run_sourmash(sketchsize, sequence, nsize): sequence_str = sequence.decode("utf-8") with timedblock() as tb: smh = MinHash(sketchsize, nsize) smh.add_sequence(sequence_str) return {'t': tb.duration, 'what': 'sourmash', 'keepngrams': False, 'l_sequence': len(sequence), 'bufsize': 0, 'nsize': nsize, 'sketchsize': sketchsize} def run_mashingp(cls, bufsize, sketchsize, sequence, hashfun, nsize): hashbuffer = array('Q', [0, ] * bufsize) with timedblock() as tb: mhs = cls(nsize, sketchsize, hashfun, SEED) mhs.add(sequence, hashbuffer=hashbuffer) keepngrams = True return {'t': tb.duration, 'what': 'mashingpumpkins', 'keepngrams': keepngrams, 'l_sequence': len(sequence), 'bufsize': bufsize, 'nsize': nsize, 'sketchsize': sketchsize} import gc def run_mashingmp(cls, bufsize, sketchsize, sequence, hashfun, nsize): with timedblock() as tb: ncpu = 2 p = multiprocessing.Pool(ncpu) l_seq = len(sequence) result = p.imap_unordered(build_mhs, ((sketchsize, NSIZE, sequence[begin:end]) for begin, end in chunkpos_iter(nsize, l_seq, l_seq//ncpu)) ) # reduce step (reducing as chunks are getting ready) mhs_mp = reduce(lambda x, y: x+y, result, next(result)) p.terminate() return {'t': tb.duration, 'what': 'mashingpumpinks-2p', 'keepngrams': True, 'l_sequence': len(sequence), 'bufsize': bufsize, 'nsize': nsize, 'sketchsize': sketchsize} from ipywidgets import FloatProgress from IPython.display import display res = list() bufsize = 300 seqsizes = (5E5, 1E6, 5E6, 1E7) sketchsizes = [int(x) for x in (5E3, 1E4, 5E4, 1E5)] f = FloatProgress(min=0, max=len(seqsizes)*len(sketchsizes)*2) display(f) for seqsize in (int(s) for s in seqsizes): env = dict() sequencebitpacked = ssl.RAND_bytes(int(seqsize/4)) sequencen = bytearray(int(seqsize)) for i, b in zip(range(0, len(sequencen), 4), sequencebitpacked): sequencen[i:(i+4)] = quad[b] sequencen = bytes(sequencen) for sketchsize in sketchsizes: for nsize in (21, 31): tmp = run_sourmash(sketchsize, sequencen, nsize) tmp.update([('hashfun', 'murmurhash3')]) res.append(tmp) for funname, hashfun in (('murmurhash3', hasharray),): tmp = run_mashingp(MinSketch, bufsize, sketchsize, sequencen, hashfun, nsize) tmp.update([('hashfun', funname)]) res.append(tmp) tmp = run_mashingmp(MinSketch, bufsize, sketchsize, sequencen, hashfun, nsize) tmp.update([('hashfun', funname)]) res.append(tmp) f.value += 1 from rpy2.robjects.lib import dplyr, ggplot2 as ggp from rpy2.robjects.vectors import IntVector, FloatVector, StrVector, BoolVector from rpy2.robjects import Formula d = dict((n, FloatVector([x[n] for x in res])) for n in ('t',)) d.update((n, StrVector([x[n] for x in res])) for n in ('what', 'hashfun')) d.update((n, BoolVector([x[n] for x in res])) for n in ('keepngrams', )) d.update((n, IntVector([x[n] for x in res])) for n in ('l_sequence', 'bufsize', 'sketchsize', 'nsize')) dataf = dplyr.DataFrame(d) p = (ggp.ggplot((dataf .filter("hashfun != 'xxhash'") .mutate(nsize='paste0("k=", nsize)', implementation='paste0(what, ifelse(keepngrams, "(w/ kmers)", ""))'))) + ggp.geom_line(ggp.aes_string(x='l_sequence', y='l_sequence/t/1E6', color='implementation', group='paste(implementation, bufsize, nsize, keepngrams)'), alpha=1) + ggp.facet_grid(Formula('nsize~sketchsize')) + ggp.scale_x_log10('sequence length') + ggp.scale_y_continuous('MB/s') + ggp.scale_color_brewer('Implementation', palette="Set1") + ggp.theme_gray(base_size=18) + ggp.theme(legend_position="top", axis_text_x = ggp.element_text(angle = 90, hjust = 1)) ) import rpy2.ipython.ggplot rpy2.ipython.ggplot.image_png(p, width=1000, height=500) ###Output _____no_output_____ ###Markdown The rate (MB/s) with which a sequence is processed seems to strongly depend on the size of the input sequence for the `mashingpumpkins` implementation (suggesting a significant setup cost than is amortized as the sequence is getting longer), and parallelization achieve a small boost in performance (with the size of the sketch apparently counteracting that small boost). Our implementation also appears to be scaling better with increasing sequence size (relatively faster as the size is increasing).Keeping the kmers comes with a slight cost for the larger `max_size` values (not shown). Our Python implementation is otherwise holding up quite well. XXHash appears give slightly faster processing rates in the best case, and makes no difference compared with MurmushHash3 in other cases (not shown). ###Code dataf_plot = ( dataf .filter("hashfun != 'xxhash'") .mutate(nsize='paste0("k=", nsize)', implementation='paste0(what, ifelse(keepngrams, "(w/ kmers)", ""))') ) dataf_plot2 = (dataf_plot.filter('implementation!="sourmash"') .inner_join( dataf_plot.filter('implementation=="sourmash"') .select('t', 'nsize', 'sketchsize', 'l_sequence'), by=StrVector(('nsize', 'sketchsize', 'l_sequence')))) p = (ggp.ggplot(dataf_plot2) + ggp.geom_line(ggp.aes_string(x='l_sequence', y='log2(t.y/t.x)', color='implementation', group='paste(implementation, bufsize, nsize, keepngrams)'), alpha=1) + ggp.facet_grid(Formula('nsize~sketchsize')) + ggp.scale_x_log10('sequence length') + ggp.scale_y_continuous('log2(time ratio)') + ggp.scale_color_brewer('Implementation', palette="Set1") + ggp.theme_gray(base_size=18) + ggp.theme(legend_position="top", axis_text_x = ggp.element_text(angle = 90, hjust = 1)) ) import rpy2.ipython.ggplot rpy2.ipython.ggplot.image_png(p, width=1000, height=500) ###Output _____no_output_____ ###Markdown One can also observe that the performance dip for the largest `max_size` value is recovering as the input sequence is getting longer. We verifiy this with a .1GB reference and `max_size` equal to 20,000. ###Code seqsize = int(1E8) print("generating sequence:") f = FloatProgress(min=0, max=seqsize) display(f) sequencebitpacked = ssl.RAND_bytes(int(seqsize/4)) sequencen = bytearray(int(seqsize)) for i, b in zip(range(0, len(sequencen), 4), sequencebitpacked): sequencen[i:(i+4)] = quad[b] if i % int(1E4) == 0: f.value += int(1E4) f.value = i+4 sequencen = bytes(sequencen) sketchsize = 20000 bufsize = 1000 nsize = 21 funname, hashfun = ('murmurhash3', hasharray) tmp = run_mashingmp(MinSketch, bufsize, sketchsize, sequencen, hashfun, nsize) print("%.2f seconds" % tmp['t']) print("%.2f MB / second" % (tmp['l_sequence']/tmp['t']/1E6)) ###Output 5.15 seconds 19.40 MB / second ###Markdown In comparison, this is what `sourmash` manages to achieve: ###Code tmp_sm = run_sourmash(sketchsize, sequencen, nsize) print("%.2f seconds" % tmp_sm['t']) print("%.2f MB / second" % (tmp_sm['l_sequence']/tmp_sm['t']/1E6)) ###Output 20.01 seconds 5.00 MB / second
varia/test_tds_to_stac_items.ipynb
###Markdown THREDDS Catalog to STAC Items Investigating data ingestion pipelineIn order to expose TDS in STAC API, STAC items needs to be generated with appropriate metadata.Next step in the pipeline would be to keep the STAC API index DB up to data with the static items generated in this notebook. ###Code # Variables # Since os.getcwd() doesn't works as expected in ipynb, we need to manually define the catalog save path, which is absolute CATALOG_SAVE_PATH = "TO_DEFINE" from siphon.catalog import TDSCatalog import json def parse_datasets(catalog): """ Collect all available datasets. """ datasets = [] for dataset_name, dataset_obj in catalog.datasets.items(): http_url = dataset_obj.access_urls.get("httpserver", "") odap_url = dataset_obj.access_urls.get("opendap", "") ncml_url = dataset_obj.access_urls.get("ncml", "") uddc_url = dataset_obj.access_urls.get("uddc", "") iso_url = dataset_obj.access_urls.get("iso", "") wcs_url = dataset_obj.access_urls.get("wcs", "") wms_url = dataset_obj.access_urls.get("wms", "") datasets.append({ "dataset_name" : dataset_name, "http_url" : http_url, "odap_url" : odap_url, "ncml_url" : ncml_url, "uddc_url" : uddc_url, "iso_url" : iso_url, "wcs_url" : wcs_url, "wms_url" : wms_url }) for catalog_name, catalog_obj in catalog.catalog_refs.items(): d = parse_datasets(catalog_obj.follow()) datasets.extend(d) return datasets def crawl_tds(): """ Crawl TDS. """ top_cat = TDSCatalog("https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/catalog/birdhouse/cccs_portal/indices/Final/BCCAQv2/tx_mean/catalog.xml") # tds_ds = parse_datasets(top_cat) tds_ds = [{"dataset_name": "BCCAQv2+ANUSPLIN300_ensemble-percentiles_historical+allrcps_1950-2100_tx_mean_YS.nc", "http_url": "https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/fileServer/birdhouse/cccs_portal/indices/Final/BCCAQv2/tx_mean/allrcps_ensemble_stats/YS/BCCAQv2+ANUSPLIN300_ensemble-percentiles_historical+allrcps_1950-2100_tx_mean_YS.nc", "odap_url": "https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/dodsC/birdhouse/cccs_portal/indices/Final/BCCAQv2/tx_mean/allrcps_ensemble_stats/YS/BCCAQv2+ANUSPLIN300_ensemble-percentiles_historical+allrcps_1950-2100_tx_mean_YS.nc", "ncml_url": "https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/ncml/birdhouse/cccs_portal/indices/Final/BCCAQv2/tx_mean/allrcps_ensemble_stats/YS/BCCAQv2+ANUSPLIN300_ensemble-percentiles_historical+allrcps_1950-2100_tx_mean_YS.nc", "uddc_url": "https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/uddc/birdhouse/cccs_portal/indices/Final/BCCAQv2/tx_mean/allrcps_ensemble_stats/YS/BCCAQv2+ANUSPLIN300_ensemble-percentiles_historical+allrcps_1950-2100_tx_mean_YS.nc", "iso_url": "https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/iso/birdhouse/cccs_portal/indices/Final/BCCAQv2/tx_mean/allrcps_ensemble_stats/YS/BCCAQv2+ANUSPLIN300_ensemble-percentiles_historical+allrcps_1950-2100_tx_mean_YS.nc", "wcs_url": "https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/wcs/birdhouse/cccs_portal/indices/Final/BCCAQv2/tx_mean/allrcps_ensemble_stats/YS/BCCAQv2+ANUSPLIN300_ensemble-percentiles_historical+allrcps_1950-2100_tx_mean_YS.nc", "wms_url": "https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/wms/birdhouse/cccs_portal/indices/Final/BCCAQv2/tx_mean/allrcps_ensemble_stats/YS/BCCAQv2+ANUSPLIN300_ensemble-percentiles_historical+allrcps_1950-2100_tx_mean_YS.nc"}] # cache crawl result data (give option to use it or not) for i, item in enumerate(tds_ds): # add metadata attributes to crawl result elements item = add_tds_ds_metadata(item) # STACItemFactory call stac_item = get_stac_item(item) # write STAC item json to file write_item(stac_item) print("finished creating all STAC items") # json_dump = json.dumps(tds_ds) # print(json_dump) def add_tds_ds_metadata(ds): """ Add extra metadata to item. """ # replace with regexes extra_meta = { "model" : "BCCAQv2+ANUSPLIN300", "experiment" : "ensemble-percentiles", "frequency" : "YS", "modeling_realm" : "historical+allrcps", "mip_table" : "", "ensemble_member" : "", "version_number" : "", "variable_name" : "tx_mean", "temporal_subset" : "1950-2100" } return dict(ds, **extra_meta) def get_stac_item(item): """ """ return item def write_item(item): """ """ pass crawl_tds() # create STAC collection import pystac from datetime import datetime import json import os # items collection_item = pystac.Item(id='local-image-col-1', geometry={}, bbox={}, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) collection_item.common_metadata.gsd = 0.3 collection_item.common_metadata.platform = 'Maxar' collection_item.common_metadata.instruments = ['WorldView3'] # asset = pystac.Asset(href=img_path, # media_type=pystac.MediaType.GEOTIFF) # collection_item.add_asset('image', asset) collection_item2 = pystac.Item(id='local-image-col-2', geometry={}, bbox={}, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) collection_item2.common_metadata.gsd = 0.3 collection_item2.common_metadata.platform = 'Maxar' collection_item2.common_metadata.instruments = ['WorldView3'] # asset2 = pystac.Asset(href=img_path, # media_type=pystac.MediaType.GEOTIFF) # collection_item2.add_asset('image', asset2) # extents sp_extent = pystac.SpatialExtent([None,None,None,None]) capture_date = datetime.strptime('2015-10-22', '%Y-%m-%d') tmp_extent = pystac.TemporalExtent([(capture_date, None)]) extent = pystac.Extent(sp_extent, tmp_extent) # collection catalog = pystac.Catalog(id='bccaqv2', description='BCCAQv2 STAC') collection = pystac.Collection(id='tx-mean', description='tx mean', extent=extent, license='CC-BY-SA-4.0') collection.add_items([collection_item, collection_item2]) catalog.clear_items() catalog.clear_children() catalog.add_child(collection) # catalog.describe() # normalize and save print("save path : " + CATALOG_SAVE_PATH) catalog.normalize_hrefs(CATALOG_SAVE_PATH) # print(catalog.get_self_href()) # print(collection_item2.get_self_href()) catalog.save(catalog_type=pystac.CatalogType.SELF_CONTAINED) # print(json.dumps(catalog.to_dict(), indent=4)) # label_item = catalog.get_child('tx-mean').get_item('local-image-col-1') # label_item.to_dict() with open(catalog.get_self_href()) as f: print(f.read()) with open(collection.get_self_href()) as f: print(f.read()) with open(collection_item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image-col-1", "properties": { "gsd": 0.3, "platform": "Maxar", "instruments": [ "WorldView3" ], "datetime": "2021-01-15T16:47:29.020127Z" }, "geometry": {}, "links": [ { "rel": "root", "href": "../collection.json", "type": "application/json" }, { "rel": "collection", "href": "../collection.json", "type": "application/json" }, { "rel": "parent", "href": "../collection.json", "type": "application/json" } ], "assets": {}, "bbox": {}, "stac_extensions": [ "eo" ], "collection": "tx-mean" }
Figure3_lung_meta_analysis/analysis/Cov19_age_sex_poisson_nUMIoffset_noints_GLM_pseudobulk.ipynb
###Markdown This notebook contains the code for the meta-analysis of healthy lung data for ACE2, TMPRSS2, and CTSL. It contains the pseudo-bulk analysis for the simple model without interaction terms that was run on the patient-level data. This script contains the code that was run on the full data and does not test for smoking associations. ###Code import scanpy as sc import numpy as np import scipy as sp import matplotlib.pyplot as plt import pandas as pd from matplotlib import rcParams from matplotlib import colors from matplotlib import patches import seaborn as sns import batchglm import diffxpy.api as de import patsy as pat from statsmodels.stats.multitest import multipletests import logging, warnings import statsmodels.api as sm plt.rcParams['figure.figsize']=(8,8) #rescale figures sc.settings.verbosity = 3 #sc.set_figure_params(dpi=200, dpi_save=300) sc.logging.print_versions() de.__version__ logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.INFO) logging.getLogger("diffxpy").setLevel(logging.INFO) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 35) warnings.filterwarnings("ignore", category=DeprecationWarning, module="tensorflow") #User inputs folder = '/storage/groups/ml01/workspace/malte.luecken/2020_cov19_study' adata_diffxpy = '/storage/groups/ml01/workspace/malte.luecken/2020_cov19_study/COVID19_lung_atlas_revision_v3.h5ad' output_folder = 'diffxpy_out/' de_output_base = 'COVID19_lung_atlas_revision_v3_lung_cov19_poissonglm_pseudo_nUMIoffset_noInts' ###Output _____no_output_____ ###Markdown Read the data ###Code adata = sc.read(adata_diffxpy) adata adata.obs.age = adata.obs.age.astype(float) adata.obs.dtypes adata.obs['dataset'] = adata.obs['last_author/PI'] adata.obs.dataset.value_counts() ###Output _____no_output_____ ###Markdown Filter the data Keep only datsets with:- more than 1 donor- non-fetal- lung ###Code # Remove fetal datasets dats_to_remove = set(['Rawlins', 'Spence', 'Linnarsson']) dat = adata.obs.groupby(['donor']).agg({'sex':'first', 'age':'first', 'dataset':'first'}) # Single donor filter don_tab = dat['dataset'].value_counts() dats_to_remove.update(set(don_tab.index[don_tab == 1])) dats_to_remove = list(dats_to_remove) dats_to_remove adata = adata[~adata.obs.dataset.isin(dats_to_remove)].copy() adata.obs.lung_vs_nasal.value_counts() # Filter for only lung data adata = adata[adata.obs.lung_vs_nasal.isin(['lung']),].copy() adata # Rename smoking status covariate adata.obs['smoking_status'] = adata.obs.smoked_boolean adata.obs.dataset.value_counts() adata.obs['sample'].nunique() adata.obs['donor'].nunique() ###Output _____no_output_____ ###Markdown Check the data ###Code np.mean(adata.X.astype(int) != adata.X) # Check if any non-integer data in a particular dataset for dat in adata.obs.dataset.unique(): val = np.mean(adata[adata.obs.dataset.isin([dat]),:].X.astype(int) != adata[adata.obs.dataset.isin([dat]),:].X) if val != 0: print(f'dataset= {dat}; value= {val}') adata[adata.obs.dataset.isin([dat]),:].X[:20,:20].A ###Output _____no_output_____ ###Markdown All counts are integers ###Code adata.obs.age.value_counts() adata.obs.sex.value_counts() ###Output _____no_output_____ ###Markdown Fit models and perform DE ###Code cluster_key = 'ann_level_2' clust_tbl = adata.obs[cluster_key].value_counts() clusters = clust_tbl.index[clust_tbl > 1000] ct_to_rm = clusters[[ct.startswith('1') for ct in clusters]] clusters = clusters.drop(ct_to_rm.tolist()).tolist() clusters ###Output _____no_output_____ ###Markdown Calculate DE genes per cluster. ###Code adata ###Output _____no_output_____ ###Markdown Generate pseudobulks ###Code for gene in adata.var_names: adata.obs[gene] = adata[:,gene].X.A adata dat_pseudo = adata.obs.groupby(['donor', 'ann_level_2']).agg({'ACE2':'mean', 'TMPRSS2':'mean', 'CTSL':'mean', 'total_counts':'mean', 'age':'first', 'smoking_status':'first', 'sex':'first', 'dataset':'first'}).dropna().reset_index(level=[0,1]) adata_pseudo = sc.AnnData(dat_pseudo[['ACE2', 'TMPRSS2', 'CTSL']], obs=dat_pseudo.drop(columns=['ACE2', 'TMPRSS2', 'CTSL'])) adata_pseudo.obs.head() adata_pseudo.obs['total_counts_scaled'] = adata_pseudo.obs['total_counts']/adata_pseudo.obs['total_counts'].mean() formula = "1 + sex + age + dataset" tested_coef = ["sex[T.male]", "age"] dmat = de.utils.design_matrix( data=adata_pseudo, formula="~" + formula, as_numeric=["age"], return_type="patsy" ) dmat[1] ###Output _____no_output_____ ###Markdown Poisson GLM ###Code # Poisson GLM loop de_results_lvl2_glm = dict() # Test over clusters for clust in clusters: adata_pseudo_tmp = adata_pseudo[adata_pseudo.obs[cluster_key] == clust,:].copy() print(f'In cluster {clust}:') print(adata_pseudo_tmp.obs['smoking_status'].value_counts()) print(adata_pseudo_tmp.obs['sex'].value_counts()) # Filter out genes to reduce multiple testing burden sc.pp.filter_genes(adata_pseudo_tmp, min_cells=4) if adata_pseudo_tmp.n_vars == 0: print('No genes expressed in more than 10 cells!') continue if len(adata_pseudo_tmp.obs.sex.value_counts())==1: print(f'{clust} only has 1 type of male/female sample.') continue print(f'Testing {adata_pseudo_tmp.n_vars} genes...') print(f'Testing in {adata_pseudo_tmp.n_obs} donors...') print("") # List to store results de_results_list = [] # Set up design matrix dmat = de.utils.design_matrix( data=adata_pseudo_tmp, #[idx_train], formula="~" + formula, as_numeric=["age"], return_type="patsy" ) # Test if model is full rank if np.linalg.matrix_rank(np.asarray(dmat[0])) < np.min(dmat[0].shape): print(f'Cannot test {clust} as design matrix is not full rank.') continue for i, gene in enumerate(adata_pseudo_tmp.var_names): # Specify model pois_model = sm.GLM( endog=adata_pseudo_tmp.X[:, i], #[idx_train, :], exog=dmat[0], offset=np.log(adata_pseudo_tmp.obs['total_counts_scaled'].values), family=sm.families.Poisson() ) # Fit the model pois_results = pois_model.fit() # Test over coefs for coef in tested_coef: de_results_temp = pois_results.wald_test( [x for i, x in enumerate(pois_model.exog_names) if dmat[1][i] in [coef]] ) # Output the results nicely de_results_temp = pd.DataFrame({ "gene": gene, "cell_identity": clust, "covariate": coef, "coef": pois_results.params[[y == coef for y in dmat[1]]], "coef_sd": pois_results.bse[[y == coef for y in dmat[1]]], "pval": de_results_temp.pvalue }, index= [clust+"_"+gene+"_"+coef]) de_results_list.append(de_results_temp) de_results = pd.concat(de_results_list) de_results['adj_pvals'] = multipletests(de_results['pval'].tolist(), method='fdr_bh')[1] # Store the results de_results_lvl2_glm[clust] = de_results # Join the dataframes: full_res_lvl2_glm = pd.concat([de_results_lvl2_glm[i] for i in de_results_lvl2_glm.keys()], ignore_index=True) ###Output In cluster Myeloid: False 66 True 55 nan 21 Name: smoking_status, dtype: int64 male 76 female 66 Name: sex, dtype: int64 Testing 3 genes... Testing in 142 donors... In cluster Airway epithelium: False 90 True 71 nan 20 Name: smoking_status, dtype: int64 male 97 female 84 Name: sex, dtype: int64 Testing 3 genes... Testing in 181 donors... In cluster Alveolar epithelium: False 67 True 39 nan 14 Name: smoking_status, dtype: int64 male 64 female 56 Name: sex, dtype: int64 Testing 3 genes... Testing in 120 donors... In cluster Lymphoid: False 72 True 62 nan 21 Name: smoking_status, dtype: int64 male 82 female 73 Name: sex, dtype: int64 Testing 3 genes... Testing in 155 donors... In cluster Fibroblast lineage: False 54 True 40 nan 14 Name: smoking_status, dtype: int64 male 59 female 49 Name: sex, dtype: int64 Testing 3 genes... Testing in 108 donors... In cluster Blood vessels: False 48 True 31 nan 13 Name: smoking_status, dtype: int64 male 54 female 38 Name: sex, dtype: int64 Testing 3 genes... Testing in 92 donors... In cluster Submucosal Gland: False 28 True 17 Name: smoking_status, dtype: int64 male 25 female 20 Name: sex, dtype: int64 Testing 3 genes... Testing in 45 donors... In cluster Smooth Muscle: False 35 True 26 nan 5 Name: smoking_status, dtype: int64 male 34 female 32 Name: sex, dtype: int64 Testing 3 genes... Testing in 66 donors... In cluster Lymphatics: False 45 True 31 nan 13 Name: smoking_status, dtype: int64 male 48 female 41 Name: sex, dtype: int64 Testing 3 genes... Testing in 89 donors... In cluster Mesothelium: True 15 False 14 nan 2 Name: smoking_status, dtype: int64 male 16 female 15 Name: sex, dtype: int64 filtered out 1 genes that are detected in less than 4 cells Testing 2 genes... Testing in 31 donors... In cluster Endothelial-like: nan 3 Name: smoking_status, dtype: int64 male 3 Name: sex, dtype: int64 filtered out 3 genes that are detected in less than 4 cells No genes expressed in more than 10 cells! In cluster Granulocytes: nan 13 True 1 Name: smoking_status, dtype: int64 male 7 female 7 Name: sex, dtype: int64 filtered out 2 genes that are detected in less than 4 cells Testing 1 genes... Testing in 14 donors... ###Markdown Inspect some results ###Code de_results_lvl2_glm.keys() full_res_lvl2_glm full_res_lvl2_glm.loc[full_res_lvl2_glm['gene'] == 'ACE2',] full_res_lvl2_glm.loc[full_res_lvl2_glm['gene'] == 'TMPRSS2',] ###Output _____no_output_____ ###Markdown Level 3 annotation ###Code cluster_key = 'ann_level_3' clust_tbl = adata.obs[cluster_key].value_counts() clusters = clust_tbl.index[clust_tbl > 1000] ct_to_rm = clusters[[ct.startswith('1') or ct.startswith('2') for ct in clusters]] clusters = clusters.drop(ct_to_rm.tolist()).tolist() clusters adata_sub = adata[adata.obs.ann_level_3.isin(clusters),:] adata_sub adata_sub.obs.donor.nunique() adata_sub.obs['sample'].nunique() ###Output _____no_output_____ ###Markdown Generate pseudobulk ###Code for gene in adata_sub.var_names: adata_sub.obs[gene] = adata_sub[:,gene].X.A dat_pseudo_sub = adata_sub.obs.groupby(['donor', 'ann_level_3']).agg({'ACE2':'mean', 'TMPRSS2':'mean', 'CTSL':'mean', 'total_counts':'mean', 'age':'first', 'smoking_status':'first', 'sex':'first', 'dataset':'first'}).dropna().reset_index(level=[0,1]) adata_pseudo_sub = sc.AnnData(dat_pseudo_sub[['ACE2', 'TMPRSS2', 'CTSL']], obs=dat_pseudo_sub.drop(columns=['ACE2', 'TMPRSS2', 'CTSL'])) adata_pseudo_sub.obs.head() adata_pseudo_sub.obs['total_counts_scaled'] = adata_pseudo_sub.obs['total_counts']/adata_pseudo_sub.obs['total_counts'].mean() ###Output _____no_output_____ ###Markdown Poisson GLM First check if there are any datasets with only 1 sex or 1 smoking status, which would make the model overparameterized (not full rank). ###Code np.any(adata_pseudo_tmp.obs.smoking_status.value_counts() == 1) np.any(pd.crosstab(adata_pseudo_tmp.obs.smoking_status, adata_pseudo_tmp.obs.sex) == 1) clusters # Poisson GLM loop de_results_lvl3_glm = dict() # Test over clusters for clust in clusters: adata_pseudo_tmp = adata_pseudo_sub[adata_pseudo_sub.obs[cluster_key] == clust,:].copy() print(f'In cluster {clust}:') print(adata_pseudo_tmp.obs['sex'].value_counts()) # Filter out genes to reduce multiple testing burden sc.pp.filter_genes(adata_pseudo_tmp, min_cells=4) if adata_pseudo_tmp.n_vars == 0: print('No genes expressed in more than 10 cells!') continue if np.any(adata_pseudo_tmp.obs.sex.value_counts()==1): print(f'{clust} only has 1 male or 1 female sample.') continue print(f'Testing {adata_pseudo_tmp.n_vars} genes...') print(f'Testing in {adata_pseudo_tmp.n_obs} donors...') print("") # List to store results de_results_list = [] # Set up design matrix dmat = de.utils.design_matrix( data=adata_pseudo_tmp, formula="~" + formula, as_numeric=["age"], return_type="patsy" ) # Test if model is full rank if np.linalg.matrix_rank(np.asarray(dmat[0])) < np.min(dmat[0].shape): print(f'Cannot test {clust} as design matrix is not full rank.') continue for i, gene in enumerate(adata_pseudo_tmp.var_names): # Specify model pois_model = sm.GLM( endog=adata_pseudo_tmp.X[:, i], exog=dmat[0], offset=np.log(adata_pseudo_tmp.obs['total_counts_scaled'].values), family=sm.families.Poisson() ) # Fit the model pois_results = pois_model.fit() # Test over coefs for coef in tested_coef: de_results_temp = pois_results.wald_test( [x for i, x in enumerate(pois_model.exog_names) if dmat[1][i] in [coef]] ) # Output the results nicely de_results_temp = pd.DataFrame({ "gene": gene, "cell_identity": clust, "covariate": coef, "coef": pois_results.params[[y == coef for y in dmat[1]]], "coef_sd": pois_results.bse[[y == coef for y in dmat[1]]], "pval": de_results_temp.pvalue }, index= [clust+"_"+gene+"_"+coef]) de_results_list.append(de_results_temp) de_results = pd.concat(de_results_list) de_results['adj_pvals'] = multipletests(de_results['pval'].tolist(), method='fdr_bh')[1] # Store the results de_results_lvl3_glm[clust] = de_results # Join the dataframes: full_res_lvl3_glm = pd.concat([de_results_lvl3_glm[i] for i in de_results_lvl3_glm.keys()], ignore_index=True) de_results_lvl3_glm.keys() full_res_lvl3_glm full_res_lvl3_glm.loc[full_res_lvl3_glm['gene'] == 'ACE2',] full_res_lvl3_glm.loc[full_res_lvl3_glm['gene'] == 'TMPRSS2',] ###Output _____no_output_____ ###Markdown Store results ###Code full_res_lvl2_glm.to_csv(folder+'/'+output_folder+de_output_base+'_lvl2_full.csv') full_res_lvl3_glm.to_csv(folder+'/'+output_folder+de_output_base+'_lvl3_full.csv') ###Output _____no_output_____
vehicle_insurance.ipynb
###Markdown Vehicle Insurance Claims PredictionTask to predict the conditions and insurance claims amount based on image and other metadata. Based on dataset from HackerEarth Fast, Furious and Insured: HackerEarth Machine Learning Challenge. ###Code # Imports import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder import cv2 import os import matplotlib.pyplot as plt from PIL import Image # Suppress warnings import warnings warnings.filterwarnings('ignore') %cd './drive/My Drive/' ###Output /content/drive/My Drive ###Markdown EDA ###Code train = pd.read_csv('./dataset/train.csv') test = pd.read_csv('./dataset/test.csv') train.T test.T combined = pd.concat([train[['Image_path','Insurance_company','Cost_of_vehicle','Min_coverage','Expiry_date','Max_coverage']],test]) train.isna().sum() test.isna().sum() ###Output _____no_output_____ ###Markdown Dropping NA values for amount, since it is a label. ###Code train = train[~train.Amount.isna()] train.shape train.dtypes ###Output _____no_output_____ ###Markdown Categorizing ###Code le_insurance = LabelEncoder() combined['Insurance_company'] = le_insurance.fit_transform(combined['Insurance_company']) train['Insurance_company'] = le_insurance.transform(train['Insurance_company']) test['Insurance_company'] = le_insurance.transform(test['Insurance_company']) train.describe() combined.describe() ###Output _____no_output_____ ###Markdown Outlier Removal -ve Amount?? ###Code (train.Amount<0).sum() train[train.Amount<0] train = train[train.Amount>=0] train.shape ###Output _____no_output_____ ###Markdown Measuring Correlation and Redundant Features ###Code corr = train.corr() corr.style.background_gradient(cmap='PiYG') ###Output _____no_output_____ ###Markdown Condition label is solely dependent on the vehicle image.But, amount label is dependent on the other dataframe fields, given that condition is 1 else amout is 0 i.e. not damaged. So clearing the no-damage rows for further inspection of the damaged rows. ###Code train1 = train[train.Condition==1] train1 = train1.drop(columns='Condition') train1.T corr = train1.corr() corr.style.background_gradient(cmap='PiYG') corr = combined.corr() corr.style.background_gradient(cmap='PiYG') ###Output _____no_output_____ ###Markdown Max_coverage correlation doesn't seem to be present in the testing distribution. Hence, finding the deviants in the testing set. ###Code mean_val = np.around((train1.Max_coverage/train1.Cost_of_vehicle).mean(),decimals=2) mean_val test_df_corr = np.around((test.Max_coverage/test.Cost_of_vehicle),decimals=2) (test_df_corr==mean_val).sum() ###Output _____no_output_____ ###Markdown The difference in corr could be due to the removed column of `Condition`. Most probably a data leakage, where correlations of Damaged and Non-Damaged conditions are different. ###Code train0 = train[train.Condition==0] train0 = train0.drop(columns='Condition') mean_val = np.around((train0.Max_coverage/train0.Cost_of_vehicle).mean(),decimals=2) mean_val test_df_corr = np.around((test.Max_coverage/test.Cost_of_vehicle),decimals=2) (test_df_corr==mean_val).sum() ###Output _____no_output_____ ###Markdown Comparing the distribution between `Condition` of 0 and 1, just to be sure!! ###Code print(len(train1)/len(train0),558/42) ###Output 13.01010101010101 13.285714285714286 ###Markdown Approx. same, so it could be assumed that the `Condition` columns is sorted!! `Amount` lefts to be seen. ###Code mean_val = np.around((train1.Max_coverage/train1.Cost_of_vehicle).mean(),decimals=2) test['Condition'] = (test_df_corr==mean_val).astype(int) test1 = test[test.Condition==1] test1 = test1.drop(columns='Condition') combined1 = pd.concat([train1[['Image_path','Insurance_company','Cost_of_vehicle','Min_coverage','Expiry_date','Max_coverage']],test1]) test0 = test[test.Condition==0] test0 = test0.drop(columns='Condition') corr = combined1.corr() corr.style.background_gradient(cmap='PiYG') ###Output _____no_output_____ ###Markdown Hence, keeping only `Cost_of_vehicle`, since rest perfectly correlate. ###Code train1 = train1.drop(columns=['Min_coverage','Max_coverage']) combined1 = combined1.drop(columns=['Min_coverage','Max_coverage']) train.plot(y='Amount',kind='kde') train.plot(y='Cost_of_vehicle',kind='kde') %matplotlib inline #qt train.plot(y='Amount',kind='box') ###Output _____no_output_____ ###Markdown Eliminating outliers i.e >1.26e+4 ###Code (train.Amount>1.26e+04).sum() train = train[train.Amount<=1.26e+04] train.shape train.plot(x='Expiry_date',y='Amount',c='Insurance_company',kind='scatter',cmap='hsv') train.plot(x='Cost_of_vehicle',y='Amount',c='Insurance_company',kind='scatter',cmap='hsv') print(min(combined.Expiry_date),max(combined.Expiry_date)) # DataFrame for usage in the Convolution Network Training conv_df = {'Image_paths':[],'condition':[]} for _, rows in train.iterrows(): conv_df['Image_paths'].append(rows.Image_path) conv_df['condition'].append(rows.Condition) for _, rows in test.iterrows(): conv_df['Image_paths'].append(rows.Image_path) conv_df['condition'].append(rows.Condition) conv_df = pd.DataFrame(conv_df) conv_df.head() ###Output _____no_output_____ ###Markdown EDA - ImagesCombined folder, consisting of both train and test images exists. ###Code root = './dataset/combined' height, width = 0, 0 for f in os.listdir(root): if os.path.isdir(os.path.join(root,f)): continue img = Image.open(os.path.join(root,f)) w, h = img.size width+=w height+=h width/=len(os.listdir(root)) height/=len(os.listdir(root)) print(width, height) combined_imgs = [] for f in os.listdir(root): if os.path.isdir(os.path.join(root,f)): continue img = Image.open(os.path.join(root,f)) combined_imgs.append(np.array(img.resize((599,396)))) combined_imgs = np.asarray(combined_imgs) combined_imgs.shape combined_map = combined_imgs.mean(axis=0).astype(np.uint8) plt.imshow(combined_map) del combined_imgs combined_map.shape img1 = combined_map[:,:,0] _, thresh1 = cv2.threshold(img1, 125, 255, cv2.THRESH_BINARY) plt.imshow(thresh1, cmap='gray') img2 = combined_map[:,:,1] _, thresh2 = cv2.threshold(img2, 125, 255, cv2.THRESH_BINARY) plt.imshow(thresh1, cmap='gray') img3 = combined_map[:,:,2] _, thresh3 = cv2.threshold(img3, 125, 255, cv2.THRESH_BINARY) plt.imshow(thresh1, cmap='gray') plt.imshow(np.dstack((thresh1,thresh2,thresh3))) ###Output _____no_output_____ ###Markdown Conv TrainingCreating a model that can simulate the trends in the `Amount`, solely from the images. This can further be used as an additional metric alongside the remaining. In effect, model stacking. ###Code # Utilizing Fastai for the ConvNet implementation -> Using a Pretrained ResNet34 from fastai.vision import * from fastai.metrics import error_rate from torch import nn # Normalizing Amount train_conv = train1[['Image_path','Amount']] amt = np.asarray(train_conv.Amount.values) amt = (amt - amt.min())/(amt.max() - amt.min()) train_conv.Amount = amt train_conv.head() tfms = get_transforms(do_flip=True # random flip with prob 0.5 , flip_vert=True # flip verticle or rotated by 90 , max_rotate=3 # rotation with prob p_affine , max_zoom=1.2 # zoom between 1 and value , max_lighting=0.4 # lighting and contrast , max_warp=0.5 # symmetric wrap with prob p_affine , p_affine=0.5 # prob , p_lighting=0.3 # prob of lighting ) # DataBunch API with continuous values as labels, using label_cls=FloatList data = (ImageList .from_df(path='./dataset/combined',df=train_conv) .split_by_rand_pct(0.2) .label_from_df(cols='Amount',label_cls=FloatList) .transform(tfms, size=(256,256)) .databunch() .normalize(imagenet_stats)) data.show_batch(rows=3, figsize=(7,6)) # Creating a ConvNet Regression learner based on ResNet34 backbone model = models.resnet34 learn = create_cnn(data, model, metrics=error_rate) learn.model # learning rate finder learn.freeze() learn.lr_find() # plot the lr_find to get better learning rate # learning rate vs loss learn.recorder.plot(suggestion=True) # 5 epochs with freeze learn.freeze() learn.fit_one_cycle(5, max_lr=slice(5e-2)) # learning rate finder learn.unfreeze() learn.lr_find() # plot the lr_find to get better learning rate # learning rate vs loss learn.recorder.plot(suggestion=True) # 20 epochs with un-freeze learn.unfreeze() learn.fit_one_cycle(20, max_lr=slice(1e-4,1e-3)) learn.recorder.plot_losses() learn.save('resnet34_pass2_ver2') # Uncomment for reuse without training #learn.load('resnet34_pass2_ver2') # Predicted Value -> to be used as an additional feature predicted_val = {'Image_path':[],'AmtPred':[]} for f in os.listdir('./dataset/combined'): path = os.path.join('./dataset/combined',f) if os.path.isdir(path): continue cat, _, _ = learn.predict(open_image(path)) predicted_val['Image_path'].append(f) predicted_val['AmtPred'].append(cat.data[0]) predicted_val = pd.DataFrame(predicted_val) predicted_val.head() ###Output _____no_output_____ ###Markdown Final Model TrainingUtilizing the predicted amount from convolution learner as an additional feature. ###Code from datetime import datetime import pydot from PIL import Image from sklearn.impute import KNNImputer from sklearn.ensemble import RandomForestRegressor from sklearn.tree import export_graphviz # Selecting the required features, and labels and adding the Predicted Amount feature train_df = train1[['Image_path','Insurance_company','Cost_of_vehicle','Expiry_date']] img = train_df.Image_path.values amt = [] for _,row in predicted_val.iterrows(): if row.Image_path in img: amt.append(row.AmtPred) train_df['AmtPred'] = amt train_df['Amount'] = train1['Amount'] # Converting from datetime object to ordinal representation train_df['Expiry_date'] = train_df['Expiry_date'].apply(lambda x: datetime.strptime(x,'%Y-%m-%d').toordinal()) train_df.pop('Image_path') train_df.head() ###Output _____no_output_____ ###Markdown Imputing missing values. ###Code imputer = KNNImputer(n_neighbors=4) train_df = imputer.fit_transform(train_df) train_df ###Output _____no_output_____ ###Markdown Shuffling and splitting into train and validation sets. ###Code np.random.shuffle(train_df) X = train_df[:,:-1] y = train_df[:,-1] len(X)*0.9 X_train = X[:1159] X_val = X[1159:] y_train = y[:1159] y_val = y[1159:] # List of features being used feature_list = ['Insurance_company','Cost_of_vehicle','Expiry_date','AmtPred'] ###Output _____no_output_____ ###Markdown Sample Random Forest to measure feature importances. ###Code rf_small = RandomForestRegressor(n_estimators=10, max_depth = 3) rf_small.fit(X, y) tree_small = rf_small.estimators_[5] export_graphviz(tree_small, out_file = 'small_tree.dot', feature_names = feature_list, rounded = True, precision = 1) (graph, ) = pydot.graph_from_dot_file('small_tree.dot') graph.write_png('small_tree.png'); plt.imshow(Image.open('small_tree.png')) importances = list(rf_small.feature_importances_)# List of tuples with variable and importance feature_importances = [(feature, round(importance, 2)) for feature, importance in zip(feature_list, importances)]# Sort the feature importances by most important first feature_importances = sorted(feature_importances, key = lambda x: x[1], reverse = True)# Print out the feature and importances [print('Variable: {:20} Importance: {}'.format(*pair)) for pair in feature_importances]; ###Output Variable: Expiry_date Importance: 0.55 Variable: AmtPred Importance: 0.26 Variable: Cost_of_vehicle Importance: 0.16 Variable: Insurance_company Importance: 0.02 ###Markdown Measuring the error in using different amount of features depending on its importance as seen above. ###Code # Random forest with only the two most important variables rf_most_important1 = RandomForestRegressor(n_estimators= 1000, random_state=42) important_indices = [feature_list.index('Expiry_date'), feature_list.index('AmtPred')] train_important = X_train[:, important_indices] test_important = X_val[:, important_indices] rf_most_important1.fit(train_important, y_train) predictions = rf_most_important1.predict(test_important) errors = abs(predictions - y_val) print('Mean Absolute Error:', round(np.mean(errors), 2), 'degrees.') # Random forest with only the three most important variables rf_most_important2 = RandomForestRegressor(n_estimators= 1000, random_state=42) important_indices = [feature_list.index('Expiry_date'), feature_list.index('AmtPred'), feature_list.index('Cost_of_vehicle')] train_important = X_train[:, important_indices] test_important = X_val[:, important_indices] rf_most_important2.fit(train_important, y_train) predictions = rf_most_important2.predict(test_important) errors = abs(predictions - y_val) print('Mean Absolute Error:', round(np.mean(errors), 2), 'degrees.') # Random forest with only the all present variables rf_most_important3 = RandomForestRegressor(n_estimators= 1000, random_state=42) rf_most_important3.fit(X_train, y_train) predictions = rf_most_important3.predict(X_val) errors = abs(predictions - y_val) print('Mean Absolute Error:', round(np.mean(errors), 2), 'degrees.') ###Output Mean Absolute Error: 2524.14 degrees. Accuracy: -63.36 %. ###Markdown Using only the 2 most important variables, since it has the lowest MAE. ###Code import pickle filehandler = open(b"./dataset/combined/models/RandomForestRegressor.pickle","wb") pickle.dump(rf_most_important1, filehandler) ###Output _____no_output_____ ###Markdown Test Submission ###Code test_df = test1[['Image_path','Expiry_date']] img = test_df.Image_path.values amt = [] for _,row in predicted_val.iterrows(): if row.Image_path in img: amt.append(row.AmtPred) test_df['AmtPred'] = amt from datetime import datetime test_df['Expiry_date'] = test_df['Expiry_date'].apply(lambda x: datetime.strptime(x,'%Y-%m-%d').toordinal()) test_df.pop('Image_path') test_df.head() test_df.values predictions = rf_most_important1.predict(test_df) predictions = predictions.astype(int) print(len(predictions)) predictions print(len(test1)) submission = {'Image_path':[],'Condition':[],'Amount':[]} for _, row in test0.iterrows(): submission['Image_path'].append(row.Image_path) submission['Condition'].append(0) submission['Amount'].append(0) i = 0 for _, row in test1.iterrows(): submission['Image_path'].append(row.Image_path) submission['Condition'].append(1) submission['Amount'].append(predictions[i]) i += 1 submission = pd.DataFrame(submission) submission.head() # Final submission file submission.to_csv('./dataset/submission.csv', index=False) ###Output _____no_output_____
notebooks/WV8 - 2x spectrogram network-1.ipynb
###Markdown 0. IntroductionGiven signal of length L, and the STFT parameters:1. Window length, $M$2. Shift/stride, $R$ ($ 1 \le R \le M $, for no loss of information)3. FFT size, $N$ ($N\ge M$, for our purpose, $ N=M $)Then segments, $K$, will be $ K=\lfloor (L-M)/R \rfloor$In our problem, our data samples have $L=128$, which limits our options for window length. If we choose a large $M$ necessary for finer resolution of the frequency components (say $M\ge L$ with zero-padding or over-sampling), we would lose the temporal information of when the frequency peaks occur. So we will make the following tradeoff: $N=M=32$, $R=2$. Furthermore prefix and suffix $M/2$ samples to the signal frame to also fully incorporate the spectral behavior at the edges (when using tapered windows), thus $L'=128+N=160$. With these parameters and adjustments, $K=64$. Thus the inputs to our CNN classifier will be $(M/2+1)\times K=17\times 64$ spectrogram images. ###Code import numpy as np from scipy import signal import matplotlib.pyplot as plt from collections import defaultdict, Counter import keras from keras.layers import Dense, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.models import Sequential from keras.callbacks import History history = History() ###Output _____no_output_____ ###Markdown 1. Loading the UCI HAR dataset into an numpy ndarrayDownload dataset from https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones ###Code activities_description = { 1: 'walking', 2: 'walking upstairs', 3: 'walking downstairs', 4: 'sitting', 5: 'standing', 6: 'laying' } def read_signals(filename): with open(filename, 'r') as fp: data = fp.read().splitlines() data = map(lambda x: x.strip().split(), data) data = [list(map(float, line)) for line in data] return data def read_labels(filename): with open(filename, 'r') as fp: activities = fp.read().splitlines() activities = list(map(lambda x: int(x)-1, activities)) return activities def randomize(dataset, labels): permutation = np.random.permutation(labels.shape[0]) shuffled_dataset = dataset[permutation, :, :] shuffled_labels = labels[permutation] return shuffled_dataset, shuffled_labels DATA_FOLDER = '../datasets/UCI HAR Dataset/' INPUT_FOLDER_TRAIN = DATA_FOLDER+'train/Inertial Signals/' INPUT_FOLDER_TEST = DATA_FOLDER+'test/Inertial Signals/' INPUT_FILES_TRAIN = ['body_acc_x_train.txt', 'body_acc_y_train.txt', 'body_acc_z_train.txt', 'body_gyro_x_train.txt', 'body_gyro_y_train.txt', 'body_gyro_z_train.txt', 'total_acc_x_train.txt', 'total_acc_y_train.txt', 'total_acc_z_train.txt'] INPUT_FILES_TEST = ['body_acc_x_test.txt', 'body_acc_y_test.txt', 'body_acc_z_test.txt', 'body_gyro_x_test.txt', 'body_gyro_y_test.txt', 'body_gyro_z_test.txt', 'total_acc_x_test.txt', 'total_acc_y_test.txt', 'total_acc_z_test.txt'] LABELFILE_TRAIN = DATA_FOLDER+'train/y_train.txt' LABELFILE_TEST = DATA_FOLDER+'test/y_test.txt' train_signals, test_signals = [], [] for input_file in INPUT_FILES_TRAIN: sig = read_signals(INPUT_FOLDER_TRAIN + input_file) train_signals.append(sig) train_signals = np.transpose(train_signals, (1, 2, 0)) for input_file in INPUT_FILES_TEST: sig = read_signals(INPUT_FOLDER_TEST + input_file) test_signals.append(sig) test_signals = np.transpose(test_signals, (1, 2, 0)) train_labels = read_labels(LABELFILE_TRAIN) test_labels = read_labels(LABELFILE_TEST) [no_signals_train, no_steps_train, no_components_train] = np.shape(train_signals) [no_signals_test, no_steps_test, no_components_test] = np.shape(test_signals) no_labels = len(np.unique(train_labels[:])) print("The train dataset contains {} signals, each one of length {} and {} components ".format(no_signals_train, no_steps_train, no_components_train)) print("The test dataset contains {} signals, each one of length {} and {} components ".format(no_signals_test, no_steps_test, no_components_test)) print("The train dataset contains {} labels, with the following distribution:\n {}".format(np.shape(train_labels)[0], Counter(train_labels[:]))) print("The test dataset contains {} labels, with the following distribution:\n {}".format(np.shape(test_labels)[0], Counter(test_labels[:]))) uci_har_signals_train, uci_har_labels_train = randomize(train_signals, np.array(train_labels)) uci_har_signals_test, uci_har_labels_test = randomize(test_signals, np.array(test_labels)) ###Output The train dataset contains 7352 signals, each one of length 128 and 9 components The test dataset contains 2947 signals, each one of length 128 and 9 components The train dataset contains 7352 labels, with the following distribution: Counter({5: 1407, 4: 1374, 3: 1286, 0: 1226, 1: 1073, 2: 986}) The test dataset contains 2947 labels, with the following distribution: Counter({5: 537, 4: 532, 0: 496, 3: 491, 1: 471, 2: 420}) ###Markdown 2. Applying a STFT to UCI HAR signals and saving the resulting spectrogram into an numpy ndarray ###Code def plot_spectrogram(sig, M, noverlap, windowname = 'hann'): # get the window taps win = signal.get_window(windowname,M,False) # prefix/suffix pref = sig[-int(M/2):]*win[0:int(M/2)] suf = sig[0:int(M/2)]*win[-int(M/2):] sig = np.concatenate((pref, sig)) sig = np.concatenate((sig,suf)) f, t, Sxx = signal.spectrogram(sig, window=win, nperseg=M, noverlap=noverlap) return f,t,Sxx M = 32 noverlap = M-2 train_size = np.shape(train_signals)[0] #import pdb; pdb.set_trace() train_data_stft = np.ndarray(shape=(train_size, 17, 65, 9*2)) for ii in range(0,train_size): if ii % 1000 == 0: print(ii) for jj in range(0,9): sig = uci_har_signals_train[ii, :, jj] f,t,Sxx = plot_spectrogram(sig, M, noverlap, windowname='hann') train_data_stft[ii, :, :, 2*jj] = Sxx f,t,Sxx = plot_spectrogram(sig, M, noverlap, windowname='boxcar') train_data_stft[ii, :, :, 2*jj+1] = Sxx test_size = np.shape(test_signals)[0] test_data_stft = np.ndarray(shape=(test_size, 17, 65, 9*2)) for ii in range(0,test_size): if ii % 100 == 0: print(ii) for jj in range(0,9): sig = uci_har_signals_test[ii, :, jj] f,t,Sxx = plot_spectrogram(sig, M, noverlap, windowname='hann') test_data_stft[ii, :, :, 2*jj] = Sxx f,t,Sxx = plot_spectrogram(sig, M, noverlap, windowname='boxcar') test_data_stft[ii, :, :, 2*jj+1] = Sxx ###Output 0 1000 2000 3000 4000 5000 6000 7000 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 ###Markdown 3. Training a Convolutional Neural Network ###Code x_train = train_data_stft y_train = list(uci_har_labels_train[:train_size]) x_test = test_data_stft y_test = list(uci_har_labels_test[:test_size]) img_x = 17 img_y = 65 img_z = 9*2 num_classes = 6 batch_size = 16 epochs = 100 # reshape the data into a 4D tensor - (sample_number, x_img_size, y_img_size, num_channels) # because the MNIST is greyscale, we only have a single channel - RGB colour images would have 3 input_shape = (img_x, img_y, img_z) # convert the data to the right type #x_train = x_train.reshape(x_train.shape[0], img_x, img_y, img_z) #x_test = x_test.reshape(x_test.shape[0], img_x, img_y, img_z) x_train = x_train.astype('float32') x_test = x_test.astype('float32') print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices - this is for use in the # categorical_crossentropy loss below y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(64, (5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(1000, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(), metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test), callbacks=[history]) train_score = model.evaluate(x_train, y_train, verbose=0) print('Train loss: {}, Train accuracy: {}'.format(train_score[0], train_score[1])) test_score = model.evaluate(x_test, y_test, verbose=0) print('Test loss: {}, Test accuracy: {}'.format(test_score[0], test_score[1])) fig, axarr = plt.subplots(figsize=(12,6), ncols=2) axarr[0].plot(range(1, epochs+1), history.history['accuracy'], label='train score') axarr[0].plot(range(1, epochs+1), history.history['val_accuracy'], label='test score') axarr[0].set_xlabel('Number of Epochs', fontsize=18) axarr[0].set_ylabel('Accuracy', fontsize=18) axarr[0].set_ylim([0,1]) axarr[1].plot(range(1, epochs+1), history.history['accuracy'], label='train score') axarr[1].plot(range(1, epochs+1), history.history['val_accuracy'], label='test score') axarr[1].set_xlabel('Number of Epochs', fontsize=18) axarr[1].set_ylabel('Accuracy', fontsize=18) axarr[1].set_ylim([0.6,1]) plt.legend() plt.show() ###Output _____no_output_____
wordcloud-tutorial.ipynb
###Markdown Nuvem de Palavras em Python Bibliotecas ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from wordcloud import WordCloud, ImageColorGenerator from PIL import Image ###Output _____no_output_____ ###Markdown Dados Download dos dados em: https://drive.google.com/file/d/1KHxV3dpi1X2uX5SSbQwNlNIbkpLoHOZS/view?usp=sharing ###Code df_vacs = pd.read_csv('dados_vacinas.csv', encoding = 'ISO-8859-1') df_vacs.head() ###Output _____no_output_____ ###Markdown Word Cloud Padrão ###Code # vamos trocar os espaços dos nomes dos imunizantes # por um underline, para as palavras aparecerem juntas df_vacs['Imuno'] = df_vacs['Imuno'].str.replace(' ', '_',) # cria um dicionário com os dados, necessário para a word cloud d = {} for Imuno, Total in df_vacs.values: d[Imuno] = Total # inicializa uma word cloud wordcloud = WordCloud() # gera uma wordcloud através do dicionário wordcloud.generate_from_frequencies(frequencies = d) plt.figure(figsize = (15, 10)) # tamanho do gráfico plt.imshow(wordcloud, interpolation = 'bilinear') # plotagem da nuvem de palavras plt.axis('off') # remove as bordas plt.show() # mostra a word cloud ###Output _____no_output_____ ###Markdown Word Cloud Melhorada ###Code # abre uma imagem e a transforma em um array do numpy image_mask = np.array(Image.open('seringa.png')) # inicializa uma word cloud wordcloud = WordCloud(background_color = 'white', # cor de fundo width = 1000, # largura height = 500, # altura mask = image_mask, # imagem utilizada contour_width = 3, # espessura do contorno contour_color = 'lightblue', # cor do contorno colormap = 'winter') # cor das palavras # gera uma wordcloud através do dicionário wordcloud.generate_from_frequencies(frequencies = d) plt.figure(figsize = (15, 10)) # tamanho do gráfico plt.imshow(wordcloud, interpolation = 'bilinear') # plotagem da nuvem de palavras plt.axis('off') # remove as bordas plt.show() # mostra a word cloud ###Output _____no_output_____ ###Markdown Word Cloud Através de um Texto ###Code # importa o texto texto = open('texto_exemplo.txt').read() # importa as stopwords em português stopwords = open('stopwords.txt').read() # transforma as stopwords em um lista lista_stopwords = stopwords.split(' \n') # abre uma imagem e a transforma em um array do numpy mask_frasco = np.array(Image.open('frasco_vacina.png')) # pega as cores da imagem acima mask_cores = ImageColorGenerator(mask_frasco) # inicializa uma word cloud wordcloud = WordCloud(stopwords = lista_stopwords, mask = mask_frasco, # imagem utilizada background_color = 'black', # cor de fundo width = 1000, # largura height = 500, # altura contour_width = 2, # espessura do contorno contour_color = 'lightblue', # cor do contorno color_func = mask_cores) # cores das palavras # gera uma wordcloud através do texto wordcloud.generate(texto) plt.figure(figsize = (20, 15), facecolor = 'k') # tamanho do gráfico plt.imshow(wordcloud, interpolation = 'bilinear') # plotagem da nuvem de palavras plt.axis('off') # remove as bordas plt.show() # mostra a word cloud plt.savefig('vac.jpg') ###Output _____no_output_____
Course 1 - Natural Language Processing with Classification and Vector Spaces/Week 4/NLP_C1_W4_lecture_nb_02.ipynb
###Markdown Hash functions and multiplanesIn this lab, we are going to practice the most important concepts related to the hash functions explained in the videos. You will be using these in this week's assignment.A key point for the lookup using hash functions is the calculation of the hash key or bucket id that we assign for a given entry. In this notebook, we will cover:* Basic hash tables* Multiplanes* Random planes Basic Hash tablesHash tables are data structures that allow indexing data to make lookup tasks more efficient. In this part, you will see the implementation of the simplest hash function. ###Code import numpy as np # library for array and matrix manipulation import pprint # utilities for console printing from utils_nb import plot_vectors # helper function to plot vectors import matplotlib.pyplot as plt # visualization library pp = pprint.PrettyPrinter(indent=4) # Instantiate a pretty printer ###Output _____no_output_____ ###Markdown In the next cell, we will define a straightforward hash function for integer numbers. The function will receive a list of integer numbers and the desired amount of buckets. The function will produce a hash table stored as a dictionary, where keys contain the hash keys, and the values will provide the hashed elements of the input list. The hash function is just the remainder of the integer division between each element and the desired number of buckets. ###Code def basic_hash_table(value_l, n_buckets): def hash_function(value, n_buckets): return int(value) % n_buckets hash_table = {i:[] for i in range(n_buckets)} # Initialize all the buckets in the hash table as empty lists for value in value_l: hash_value = hash_function(value,n_buckets) # Get the hash key for the given value hash_table[hash_value].append(value) # Add the element to the corresponding bucket return hash_table ###Output _____no_output_____ ###Markdown Now let's see the hash table function in action. The pretty print function (`pprint()`) will produce a visually appealing output. ###Code value_l = [100, 10, 14, 17, 97] # Set of values to hash hash_table_example = basic_hash_table(value_l, n_buckets=10) pp.pprint(hash_table_example) ###Output { 0: [100, 10], 1: [], 2: [], 3: [], 4: [14], 5: [], 6: [], 7: [17, 97], 8: [], 9: []} ###Markdown In this case, the bucket key must be the rightmost digit of each number. PlanesMultiplanes hash functions are other types of hash functions. Multiplanes hash functions are based on the idea of numbering every single region that is formed by the intersection of n planes. In the following code, we show the most basic forms of the multiplanes principle. First, with a single plane: ###Code P = np.array([[1, 1]]) # Define a single plane. fig, ax1 = plt.subplots(figsize=(8, 8)) # Create a plot plot_vectors([P], axes=[2, 2], ax=ax1) # Plot the plane P as a vector # Plot random points. for i in range(0, 10): v1 = np.array(np.random.uniform(-2, 2, 2)) # Get a pair of random numbers between -2 and 2 side_of_plane = np.sign(np.dot(P, v1.T)) # Color the points depending on the sign of the result of np.dot(P, point.T) if side_of_plane == 1: ax1.plot([v1[0]], [v1[1]], 'bo') # Plot blue points else: ax1.plot([v1[0]], [v1[1]], 'ro') # Plot red points plt.show() ###Output _____no_output_____ ###Markdown The first thing to note is that the vector that defines the plane does not mark the boundary between the two sides of the plane. It marks the direction in which you find the 'positive' side of the plane. Not intuitive at all!If we want to plot the separation plane, we need to plot a line that is perpendicular to our vector `P`. We can get such a line using a $90^o$ rotation matrix.Feel free to change the direction of the plane `P`. ###Code P = np.array([[1, 2]]) # Define a single plane. You may change the direction # Get a new plane perpendicular to P. We use a rotation matrix PT = np.dot([[0, 1], [-1, 0]], P.T).T fig, ax1 = plt.subplots(figsize=(8, 8)) # Create a plot with custom size plot_vectors([P], colors=['b'], axes=[2, 2], ax=ax1) # Plot the plane P as a vector # Plot the plane P as a 2 vectors. # We scale by 2 just to get the arrows outside the current box plot_vectors([PT * 4, PT * -4], colors=['k', 'k'], axes=[4, 4], ax=ax1) # Plot 20 random points. for i in range(0, 20): v1 = np.array(np.random.uniform(-4, 4, 2)) # Get a pair of random numbers between -4 and 4 side_of_plane = np.sign(np.dot(P, v1.T)) # Get the sign of the dot product with P # Color the points depending on the sign of the result of np.dot(P, point.T) if side_of_plane == 1: ax1.plot([v1[0]], [v1[1]], 'bo') # Plot a blue point else: ax1.plot([v1[0]], [v1[1]], 'ro') # Plot a red point plt.show() ###Output _____no_output_____ ###Markdown Now, let us see what is inside the code that color the points. ###Code P = np.array([[1, 1]]) # Single plane v1 = np.array([[1, 2]]) # Sample point 1 v2 = np.array([[-1, 1]]) # Sample point 2 v3 = np.array([[-2, -1]]) # Sample point 3 np.dot(P, v1.T) np.dot(P, v2.T) np.dot(P, v3.T) ###Output _____no_output_____ ###Markdown The function below checks in which side of the plane P is located the vector `v` ###Code def side_of_plane(P, v): dotproduct = np.dot(P, v.T) # Get the dot product P * v' sign_of_dot_product = np.sign(dotproduct) # The sign of the elements of the dotproduct matrix sign_of_dot_product_scalar = sign_of_dot_product.item() # The value of the first item return sign_of_dot_product_scalar side_of_plane(P, v1) # In which side is [1, 2] side_of_plane(P, v2) # In which side is [-1, 1] side_of_plane(P, v3) # In which side is [-2, -1] ###Output _____no_output_____ ###Markdown Hash Function with multiple planesIn the following section, we are going to define a hash function with a list of three custom planes in 2D. ###Code P1 = np.array([[1, 1]]) # First plane 2D P2 = np.array([[-1, 1]]) # Second plane 2D P3 = np.array([[-1, -1]]) # Third plane 2D P_l = [P1, P2, P3] # List of arrays. It is the multi plane # Vector to search v = np.array([[2, 2]]) ###Output _____no_output_____ ###Markdown The next function creates a hash value based on a set of planes. The output value is a combination of the side of the plane where the vector is localized with respect to the collection of planes.We can think of this list of planes as a set of basic hash functions, each of which can produce only 1 or 0 as output. ###Code def hash_multi_plane(P_l, v): hash_value = 0 for i, P in enumerate(P_l): sign = side_of_plane(P,v) hash_i = 1 if sign >=0 else 0 hash_value += 2**i * hash_i return hash_value hash_multi_plane(P_l, v) # Find the number of the plane that containes this value ###Output _____no_output_____ ###Markdown Random PlanesIn the cell below, we create a set of three random planes ###Code np.random.seed(0) num_dimensions = 2 # is 300 in assignment num_planes = 3 # is 10 in assignment random_planes_matrix = np.random.normal( size=(num_planes, num_dimensions)) print(random_planes_matrix) v = np.array([[2, 2]]) ###Output _____no_output_____ ###Markdown The next function is similar to the `side_of_plane()` function, but it evaluates more than a plane each time. The result is an array with the side of the plane of `v`, for the set of planes `P` ###Code # Side of the plane function. The result is a matrix def side_of_plane_matrix(P, v): dotproduct = np.dot(P, v.T) sign_of_dot_product = np.sign(dotproduct) # Get a boolean value telling if the value in the cell is positive or negative return sign_of_dot_product ###Output _____no_output_____ ###Markdown Get the side of the plane of the vector `[2, 2]` for the set of random planes. ###Code sides_l = side_of_plane_matrix( random_planes_matrix, v) sides_l ###Output _____no_output_____ ###Markdown Now, let us use the former function to define our multiplane hash function ###Code def hash_multi_plane_matrix(P, v, num_planes): sides_matrix = side_of_plane_matrix(P, v) # Get the side of planes for P and v hash_value = 0 for i in range(num_planes): sign = sides_matrix[i].item() # Get the value inside the matrix cell hash_i = 1 if sign >=0 else 0 hash_value += 2**i * hash_i # sum 2^i * hash_i return hash_value ###Output _____no_output_____ ###Markdown Print the bucket hash for the vector `v = [2, 2]`. ###Code hash_multi_plane_matrix(random_planes_matrix, v, num_planes) ###Output _____no_output_____ ###Markdown NoteThis showed you how to make one set of random planes. You will make multiple sets of random planes in order to make the approximate nearest neighbors more accurate. Document vectorsBefore we finish this lab, remember that you can represent a document as a vector by adding up the word vectors for the words inside the document. In this example, our embedding contains only three words, each represented by a 3D array. ###Code word_embedding = {"I": np.array([1,0,1]), "love": np.array([-1,0,1]), "learning": np.array([1,0,1]) } words_in_document = ['I', 'love', 'learning', 'not_a_word'] document_embedding = np.array([0,0,0]) print('document_embedding originally:', document_embedding) print('\n') for word in words_in_document: print('word:',word) add_this = word_embedding.get(word,0) print('add_this:',add_this) document_embedding += add_this print('document_embedding after adding:',document_embedding) print() print(document_embedding) ###Output document_embedding originally: [0 0 0] word: I add_this: [1 0 1] document_embedding after adding: [1 0 1] word: love add_this: [-1 0 1] document_embedding after adding: [0 0 2] word: learning add_this: [1 0 1] document_embedding after adding: [1 0 3] word: not_a_word add_this: 0 document_embedding after adding: [1 0 3] [1 0 3]
nbs/test.ipynb
###Markdown Testing Notebooks> Testing of notebooks used for documentation You can use `nbdev_test_nbs` from [nbdev](https://nbdev.fast.ai/test.htmlnbdev_test_nbs) to test notebooks. No customization is necessary for docs sites. This is aliased as `nbdoc_test` for convenience: ###Code !nbdoc_test --help ###Output usage: nbdoc_test [-h] [--fname FNAME] [--flags FLAGS] [--n_workers N_WORKERS] [--verbose VERBOSE] [--timing] [--pause PAUSE] Test in parallel the notebooks matching `fname`, passing along `flags` optional arguments: -h, --help show this help message and exit --fname FNAME A notebook name or glob to convert --flags FLAGS Space separated list of flags --n_workers N_WORKERS Number of workers to use --verbose VERBOSE Print errors along the way (default: True) --timing Timing each notebook to see the ones are slow (default: False) --pause PAUSE Pause time (in secs) between notebooks to avoid race conditions (default: 0.5) ###Markdown To use `nbdev_test_nbs`, you must also define a `settings.ini` file at the root of the repo. For documentation based testing, we recommend setting the following variables:- recursive = True- tst_flags = notest`tst_flags = notest` allow you to make commments on cells like `notest` to allow tests to skip a specific cell. This is useful for skipping long-running tests. You can [read more about this here](https://nbdev.fast.ai/test.htmlnbdev_test_nbs).`recursive = True` sets the default behavior of `nbdev_test_nbs` to `True` which is probably is what you want for a documentation site with many folders nested arbitrarily deep that may contain notebooks.Here is this project's `settings.ini` (note that the `recursive` flag is set to `False` as this project is not a documentation site): ###Code !cat ../settings.ini #notest from nbdev.test import nbdev_test_nbs nbdev_test_nbs('test_files/example_input.ipynb', n_workers=0) #notest nbdev_test_nbs('test_files/', n_workers=0) ###Output testing /Users/hamel/github/nbdoc/nbs/test_files/example_input.ipynb testing /Users/hamel/github/nbdoc/nbs/test_files/hello_world.ipynb testing /Users/hamel/github/nbdoc/nbs/test_files/run_flow.ipynb testing /Users/hamel/github/nbdoc/nbs/test_files/run_flow_showstep.ipynb testing /Users/hamel/github/nbdoc/nbs/test_files/writefile.ipynb All tests are passing!
ht_requests/ht_requests_example.ipynb
###Markdown Create authorization controller ###Code auth_control = ht_ac.HTAuthorizationController(access_str) ###Output _____no_output_____ ###Markdown List Projects ###Code projects = ht_reqs.list_projects(auth_control=auth_control) print_json(projects) ###Output _____no_output_____ ###Markdown View User Files ###Code contents = ht_reqs.get_item_dict_from_ht_path(auth_control=auth_control, ht_path='/') print_json(contents) ###Output _____no_output_____ ###Markdown Create a folder ###Code folder_id = ht_reqs.create_folder(auth_control=auth_control, folder_name=folder_name, metadata=[ { 'keyName': 'Symmetry', 'value': { 'type': 'string', 'link': 62 }, 'unit': '', 'annotation': '' }, { 'keyName': 'GRID', 'value': { 'type': 'string', 'link': 'SqrGrid' }, 'unit': '', 'annotation': '' } ]) folder_id ###Output _____no_output_____ ###Markdown Upload a file to the folder we just created ###Code upload_path = ht_reqs.get_ht_id_path_from_ht_path(auth_control=auth_control, ht_path=f'/{folder_name}') file_info = ht_reqs.upload_file( auth_control, local_path=upload_file, ht_id_path=upload_path, metadata=[ { 'keyName': 'Symmetry', 'value': { 'type': 'string', 'link': 62 }, 'unit': '', 'annotation': '' }, { 'keyName': 'GRID', 'value': { 'type': 'string', 'link': 'SqrGrid' }, 'unit': '', 'annotation': '' } ] ) file_info ###Output _____no_output_____ ###Markdown Check that the file upload succeeded ###Code contents = ht_reqs.get_item_dict_from_ht_path(auth_control=auth_control, ht_path='/') print_json(contents) contents = ht_reqs.get_item_dict_from_ht_path(auth_control=auth_control, ht_path=f'/{folder_name}') print_json(contents) ###Output _____no_output_____
book-d2l-en/chapter_multilayer-perceptrons/numerical-stability-and-init.ipynb
###Markdown Numerical Stability and InitializationSo far we covered the tools needed to implement multilayer perceptrons, how to solve regression and classification problems, and how to control capacity. However, we took initialization of the parameters for granted, or rather simply assumed that they would not be particularly relevant. In the following we will look at them in more detail and discuss some useful heuristics.Secondly, we were not particularly concerned with the choice of activation. Indeed, for shallow networks this is not very relevant. For deep networks, however, design choices of nonlinearity and initialization play a crucial role in making the optimization algorithm converge relatively rapidly. Failure to be mindful of these issues can lead to either exploding or vanishing gradients. Vanishing and Exploding GradientsConsider a deep network with $d$ layers, input $\mathbf{x}$ and output $\mathbf{o}$. Each layer satisfies:$$\mathbf{h}^{t+1} = f_t (\mathbf{h}^t) \text{ and thus } \mathbf{o} = f_d \circ \ldots \circ f_1(\mathbf{x})$$If all activations and inputs are vectors, we can write the gradient of $\mathbf{o}$ with respect to any set of parameters $\mathbf{W}_t$ associated with the function $f_t$ at layer $t$ simply as$$\partial_{\mathbf{W}_t} \mathbf{o} = \underbrace{\partial_{\mathbf{h}^{d-1}} \mathbf{h}^d}_{:= \mathbf{M}_d} \cdot \ldots \cdot \underbrace{\partial_{\mathbf{h}^{t}} \mathbf{h}^{t+1}}_{:= \mathbf{M}_t} \underbrace{\partial_{\mathbf{W}_t} \mathbf{h}^t}_{:= \mathbf{v}_t}.$$In other words, it is the product of $d-t$ matrices $\mathbf{M}_d \cdot \ldots \cdot \mathbf{M}_t$ and the gradient vector $\mathbf{v}_t$. What happens is quite similar to the situation when we experienced numerical underflow when multiplying too many probabilities. At the time we were able to mitigate the problem by switching from into log-space, i.e. by shifting the problem from the mantissa to the exponent of the numerical representation. Unfortunately the problem outlined in the equation above is much more serious: initially the matrices $M_t$ may well have a wide variety of eigenvalues. They might be small, they might be large, and in particular, their product might well be *very large* or *very small*. This is not (only) a problem of numerical representation but it means that the optimization algorithm is bound to fail. It either receives gradients with excessively large or excessively small steps. In the former case, the parameters explode and in the latter case we end up with vanishing gradients and no meaningful progress. Exploding GradientsTo illustrate this a bit better, we draw 100 Gaussian random matrices and multiply them with some initial matrix. For the scaling that we picked, the matrix product explodes. If this were to happen to us with a deep network, we would have no meaningful chance of making the algorithm converge. ###Code %matplotlib inline import mxnet as mx from mxnet import nd, autograd from matplotlib import pyplot as plt M = nd.random.normal(shape=(4,4)) print('A single matrix', M) for i in range(100): M = nd.dot(M, nd.random.normal(shape=(4,4))) print('After multiplying 100 matrices', M) ###Output A single matrix [[ 2.2122064 0.7740038 1.0434405 1.1839255 ] [ 1.8917114 -1.2347414 -1.771029 -0.45138445] [ 0.57938355 -1.856082 -1.9768796 -0.20801921] [ 0.2444218 -0.03716067 -0.48774993 -0.02261727]] <NDArray 4x4 @cpu(0)> After multiplying 100 matrices [[ 3.1575275e+20 -5.0052276e+19 2.0565092e+21 -2.3741922e+20] [-4.6332600e+20 7.3445046e+19 -3.0176513e+21 3.4838066e+20] [-5.8487235e+20 9.2711797e+19 -3.8092853e+21 4.3977330e+20] [-6.2947415e+19 9.9783660e+18 -4.0997977e+20 4.7331174e+19]] <NDArray 4x4 @cpu(0)> ###Markdown Vanishing GradientsThe converse problem of vanishing gradients is just as bad. One of the major culprits in this context are the activation functions $\sigma$ that are interleaved with the linear operations in each layer. Historically, a popular activation used to be the sigmoid function $(1 + \exp(-x))$ that was introduced in the section discussing [Multilayer Perceptrons](../chapter_deep-learning-basics/mlp.md). Let us briefly review the function to see why picking it as nonlinear activation function might be problematic. ###Code x = nd.arange(-8.0, 8.0, 0.1) x.attach_grad() with autograd.record(): y = x.sigmoid() y.backward() plt.figure(figsize=(8, 4)) plt.plot(x.asnumpy(), y.asnumpy()) plt.plot(x.asnumpy(), x.grad.asnumpy()) plt.legend(['sigmoid', 'gradient']) plt.show() ###Output _____no_output_____
2020_week_10/Lagrangian_pendulum.ipynb
###Markdown Simple pendulum using Lagrange's equationDefines a LagrangianPendulum class that is used to generate basic pendulum plots from solving Lagrange's equations.* Last revised 17-Mar-2019 by Dick Furnstahl ([email protected]). Euler-Lagrange equationFor a simple pendulum, the Lagrangian with generalized coordinate $\phi$ is$\begin{align} \mathcal{L} = \frac12 m L^2 \dot\phi^2 - mgL(1 - \cos\phi)\end{align}$The Euler-Lagrange equation is$\begin{align} \frac{d}{dt}\frac{\partial\mathcal{L}}{\partial \dot\phi} = \frac{\partial\mathcal L}{\partial\phi} \quad\Longrightarrow\quad m L^2 \ddot \phi = -mgL\sin\phi \ \mbox{or}\ \ddot\phi = - \omega_0^2\sin\phi = 0 \;.\end{align}$ Hamilton's equationsThe generalized momentum corresponding to $\phi$ is$\begin{align} \frac{\partial\mathcal{L}}{\partial \dot\phi} = m L^2 \dot\phi \equiv p_\phi \;.\end{align}$We can invert this equation to find $\dot\phi = p_\phi / m L^2$.Constructing the Hamiltonian by Legendre transformation we find $\begin{align} \mathcal{H} &= \dot\phi p_\phi - \mathcal{L} \\ &= \frac{p_\phi^2}{m L^2} - \frac12 m L^2 \dot\phi^2 + mgL(1 - \cos\phi) \\ &= \frac{p_\phi^2}{2 m L^2} + mgL(1 - \cos\phi) \;.\end{align}$Thus $\mathcal{H}$ is simply $T + V$. Hamilton's equations are$\begin{align} \dot\phi &= \frac{\partial\mathcal{H}}{\partial p_\phi} = \frac{p_\phi}{m L^2} \\ \dot p_\phi &= -\frac{\partial\mathcal{H}}{\partial \phi} = -mgL \sin\phi \;.\end{align}$ ###Code %matplotlib inline import numpy as np from scipy.integrate import odeint, solve_ivp import matplotlib.pyplot as plt # The dpi (dots-per-inch) setting will affect the resolution and how large # the plots appear on screen and printed. So you may want/need to adjust # the figsize when creating the figure. plt.rcParams['figure.dpi'] = 100. # this is the default for notebook # Change the common font size (smaller when higher dpi) font_size = 12 plt.rcParams.update({'font.size': font_size}) ###Output _____no_output_____ ###Markdown Pendulum class and utility functions ###Code class LagrangianPendulum(): """ Pendulum class implements the parameters and Lagrange's equations for a simple pendulum (no driving or damping). Parameters ---------- L : float length of the simple pendulum g : float gravitational acceleration at the earth's surface omega_0 : float natural frequency of the pendulum (\sqrt{g/l} where l is the pendulum length) mass : float mass of pendulum Methods ------- dy_dt(t, y) Returns the right side of the differential equation in vector y, given time t and the corresponding value of y. """ def __init__(self, L=1., mass=1., g=1. ): self.L = L self.g = g self.omega_0 = np.sqrt(g/L) self.mass = mass def dy_dt(self, t, y): """ This function returns the right-hand side of the diffeq: [dphi/dt d^2phi/dt^2] Parameters ---------- t : float time y : float A 2-component vector with y[0] = phi(t) and y[1] = dphi/dt Returns ------- """ return [y[1], -self.omega_0**2 * np.sin(y[0]) ] def solve_ode(self, t_pts, phi_0, phi_dot_0, abserr=1.0e-9, relerr=1.0e-9): """ Solve the ODE given initial conditions. Specify smaller abserr and relerr to get more precision. """ y = [phi_0, phi_dot_0] solution = solve_ivp(self.dy_dt, (t_pts[0], t_pts[-1]), y, t_eval=t_pts, atol=abserr, rtol=relerr) phi, phi_dot = solution.y return phi, phi_dot def plot_y_vs_x(x, y, axis_labels=None, label=None, title=None, color=None, linestyle=None, semilogy=False, loglog=False, ax=None): """ Generic plotting function: return a figure axis with a plot of y vs. x, with line color and style, title, axis labels, and line label """ if ax is None: # if the axis object doesn't exist, make one ax = plt.gca() if (semilogy): line, = ax.semilogy(x, y, label=label, color=color, linestyle=linestyle) elif (loglog): line, = ax.loglog(x, y, label=label, color=color, linestyle=linestyle) else: line, = ax.plot(x, y, label=label, color=color, linestyle=linestyle) if label is not None: # if a label if passed, show the legend ax.legend() if title is not None: # set a title if one if passed ax.set_title(title) if axis_labels is not None: # set x-axis and y-axis labels if passed ax.set_xlabel(axis_labels[0]) ax.set_ylabel(axis_labels[1]) return ax, line def start_stop_indices(t_pts, plot_start, plot_stop): start_index = (np.fabs(t_pts-plot_start)).argmin() # index in t_pts array stop_index = (np.fabs(t_pts-plot_stop)).argmin() # index in t_pts array return start_index, stop_index ###Output _____no_output_____ ###Markdown Make simple pendulum plots ###Code # Labels for individual plot axes phi_vs_time_labels = (r'$t$', r'$\phi(t)$') phi_dot_vs_time_labels = (r'$t$', r'$d\phi/dt(t)$') state_space_labels = (r'$\phi$', r'$d\phi/dt$') # Common plotting time (generate the full time then use slices) t_start = 0. t_end = 50. delta_t = 0.001 t_pts = np.arange(t_start, t_end+delta_t, delta_t) L = 1. g = 1. mass = 1. # Instantiate a pendulum p1 = LagrangianPendulum(L=L, g=g, mass=mass) # both plots: same initial conditions phi_0 = (3./4.)*np.pi phi_dot_0 = 0. phi, phi_dot = p1.solve_ode(t_pts, phi_0, phi_dot_0) # start the plot! fig = plt.figure(figsize=(15,5)) overall_title = 'Simple pendulum from Lagrangian: ' + \ rf' $\omega_0 = {p1.omega_0:.2f},$' + \ rf' $\phi_0 = {phi_0:.2f},$' + \ rf' $\dot\phi_0 = {phi_dot_0:.2f}$' + \ '\n' # \n means a new line (adds some space here) fig.suptitle(overall_title, va='baseline') # first plot: phi plot ax_a = fig.add_subplot(1,3,1) start, stop = start_stop_indices(t_pts, t_start, t_end) plot_y_vs_x(t_pts[start : stop], phi[start : stop], axis_labels=phi_vs_time_labels, color='blue', label=None, title=r'$\phi(t)$', ax=ax_a) # second plot: phi_dot plot ax_b = fig.add_subplot(1,3,2) start, stop = start_stop_indices(t_pts, t_start, t_end) plot_y_vs_x(t_pts[start : stop], phi_dot[start : stop], axis_labels=phi_dot_vs_time_labels, color='blue', label=None, title=r'$\dot\phi(t)$', ax=ax_b) # third plot: state space plot from t=30 to t=50 ax_c = fig.add_subplot(1,3,3) start, stop = start_stop_indices(t_pts, t_start, t_end) plot_y_vs_x(phi[start : stop], phi_dot[start : stop], axis_labels=state_space_labels, color='blue', label=None, title='State space', ax=ax_c) fig.tight_layout() fig.savefig('simple_pendulum_Lagrange.png', bbox_inches='tight') ###Output _____no_output_____ ###Markdown Now trying the power spectrum, plotting only positive frequencies and cutting off the lower peaks: ###Code start, stop = start_stop_indices(t_pts, t_start, t_end) signal = phi[start:stop] power_spectrum = np.abs(np.fft.fft(signal))**2 freqs = np.fft.fftfreq(signal.size, delta_t) idx = np.argsort(freqs) fig_ps = plt.figure(figsize=(5,5)) ax_ps = fig_ps.add_subplot(1,1,1) ax_ps.semilogy(freqs[idx], power_spectrum[idx], color='blue') ax_ps.set_xlim(0, 1.) ax_ps.set_ylim(1.e5, 1.e11) ax_ps.set_xlabel('frequency') ax_ps.set_title('Power Spectrum') fig_ps.tight_layout() ###Output _____no_output_____ ###Markdown Simple pendulum using Lagrange's equationDefines a LagrangianPendulum class that is used to generate basic pendulum plots from solving Lagrange's equations.* Last revised 17-Mar-2019 by Dick Furnstahl ([email protected]). Euler-Lagrange equationFor a simple pendulum, the Lagrangian with generalized coordinate $\phi$ is$\begin{align} \mathcal{L} = \frac12 m L^2 \dot\phi^2 - mgL(1 - \cos\phi)\end{align}$The Euler-Lagrange equation is$\begin{align} \frac{d}{dt}\frac{\partial\mathcal{L}}{\partial \dot\phi} = \frac{\partial\mathcal L}{\partial\phi} \quad\Longrightarrow\quad m L^2 \ddot \phi = -mgL\sin\phi \ \mbox{or}\ \ddot\phi = - \omega_0^2\sin\phi = 0 \;.\end{align}$ Hamilton's equationsThe generalized momentum corresponding to $\phi$ is$\begin{align} \frac{\partial\mathcal{L}}{\partial \dot\phi} = m L^2 \dot\phi \equiv p_\phi \;.\end{align}$We can invert this equation to find $\dot\phi = p_\phi / m L^2$.Constructing the Hamiltonian by Legendre transformation we find $\begin{align} \mathcal{H} &= \dot\phi p_\phi - \mathcal{L} \\ &= \frac{p_\phi^2}{m L^2} - \frac12 m L^2 \dot\phi^2 + mgL(1 - \cos\phi) \\ &= \frac{p_\phi^2}{2 m L^2} + mgL(1 - \cos\phi) \;.\end{align}$Thus $\mathcal{H}$ is simply $T + V$. Hamilton's equations are$\begin{align} \dot\phi &= \frac{\partial\mathcal{H}}{\partial p_\phi} = \frac{p_\phi}{m L^2} \\ \dot p_\phi &= -\frac{\partial\mathcal{H}}{\partial \phi} = -mgL \sin\phi \;.\end{align}$ ###Code %matplotlib inline import numpy as np from scipy.integrate import odeint, solve_ivp import matplotlib.pyplot as plt # The dpi (dots-per-inch) setting will affect the resolution and how large # the plots appear on screen and printed. So you may want/need to adjust # the figsize when creating the figure. plt.rcParams['figure.dpi'] = 100. # this is the default for notebook # Change the common font size (smaller when higher dpi) font_size = 12 plt.rcParams.update({'font.size': font_size}) ###Output _____no_output_____ ###Markdown Pendulum class and utility functions ###Code class LagrangianPendulum(): """ Pendulum class implements the parameters and Lagrange's equations for a simple pendulum (no driving or damping). Parameters ---------- L : float length of the simple pendulum g : float gravitational acceleration at the earth's surface omega_0 : float natural frequency of the pendulum (\sqrt{g/l} where l is the pendulum length) mass : float mass of pendulum Methods ------- dy_dt(t, y) Returns the right side of the differential equation in vector y, given time t and the corresponding value of y. """ def __init__(self, L=1., mass=1., g=1. ): self.L = L self.g = g self.omega_0 = np.sqrt(g/L) self.mass = mass def dy_dt(self, t, y): """ This function returns the right-hand side of the diffeq: [dphi/dt d^2phi/dt^2] Parameters ---------- t : float time y : float A 2-component vector with y[0] = phi(t) and y[1] = dphi/dt Returns ------- """ return [y[1], -self.omega_0**2 * np.sin(y[0]) ] def solve_ode(self, t_pts, phi_0, phi_dot_0, abserr=1.0e-9, relerr=1.0e-9): """ Solve the ODE given initial conditions. Specify smaller abserr and relerr to get more precision. """ y = [phi_0, phi_dot_0] solution = solve_ivp(self.dy_dt, (t_pts[0], t_pts[-1]), y, t_eval=t_pts, atol=abserr, rtol=relerr) phi, phi_dot = solution.y return phi, phi_dot def plot_y_vs_x(x, y, axis_labels=None, label=None, title=None, color=None, linestyle=None, semilogy=False, loglog=False, ax=None): """ Generic plotting function: return a figure axis with a plot of y vs. x, with line color and style, title, axis labels, and line label """ if ax is None: # if the axis object doesn't exist, make one ax = plt.gca() if (semilogy): line, = ax.semilogy(x, y, label=label, color=color, linestyle=linestyle) elif (loglog): line, = ax.loglog(x, y, label=label, color=color, linestyle=linestyle) else: line, = ax.plot(x, y, label=label, color=color, linestyle=linestyle) if label is not None: # if a label if passed, show the legend ax.legend() if title is not None: # set a title if one if passed ax.set_title(title) if axis_labels is not None: # set x-axis and y-axis labels if passed ax.set_xlabel(axis_labels[0]) ax.set_ylabel(axis_labels[1]) return ax, line def start_stop_indices(t_pts, plot_start, plot_stop): start_index = (np.fabs(t_pts-plot_start)).argmin() # index in t_pts array stop_index = (np.fabs(t_pts-plot_stop)).argmin() # index in t_pts array return start_index, stop_index ###Output _____no_output_____ ###Markdown Make simple pendulum plots ###Code # Labels for individual plot axes phi_vs_time_labels = (r'$t$', r'$\phi(t)$') phi_dot_vs_time_labels = (r'$t$', r'$d\phi/dt(t)$') state_space_labels = (r'$\phi$', r'$d\phi/dt$') # Common plotting time (generate the full time then use slices) t_start = 0. t_end = 50. delta_t = 0.001 t_pts = np.arange(t_start, t_end+delta_t, delta_t) L = 1. g = 1. mass = 1. # Instantiate a pendulum p1 = LagrangianPendulum(L=L, g=g, mass=mass) # both plots: same initial conditions phi_0 = (3./4.)*np.pi phi_dot_0 = 0. phi, phi_dot = p1.solve_ode(t_pts, phi_0, phi_dot_0) # start the plot! fig = plt.figure(figsize=(15,5)) overall_title = 'Simple pendulum from Lagrangian: ' + \ rf' $\omega_0 = {p1.omega_0:.2f},$' + \ rf' $\phi_0 = {phi_0:.2f},$' + \ rf' $\dot\phi_0 = {phi_dot_0:.2f}$' + \ '\n' # \n means a new line (adds some space here) fig.suptitle(overall_title, va='baseline') # first plot: phi plot ax_a = fig.add_subplot(1,3,1) start, stop = start_stop_indices(t_pts, t_start, t_end) plot_y_vs_x(t_pts[start : stop], phi[start : stop], axis_labels=phi_vs_time_labels, color='blue', label=None, title=r'$\phi(t)$', ax=ax_a) # second plot: phi_dot plot ax_b = fig.add_subplot(1,3,2) start, stop = start_stop_indices(t_pts, t_start, t_end) plot_y_vs_x(t_pts[start : stop], phi_dot[start : stop], axis_labels=phi_dot_vs_time_labels, color='blue', label=None, title=r'$\dot\phi(t)$', ax=ax_b) # third plot: state space plot from t=30 to t=50 ax_c = fig.add_subplot(1,3,3) start, stop = start_stop_indices(t_pts, t_start, t_end) plot_y_vs_x(phi[start : stop], phi_dot[start : stop], axis_labels=state_space_labels, color='blue', label=None, title='State space', ax=ax_c) fig.tight_layout() fig.savefig('simple_pendulum_Lagrange.png', bbox_inches='tight') ###Output _____no_output_____ ###Markdown Now trying the power spectrum, plotting only positive frequencies and cutting off the lower peaks: ###Code start, stop = start_stop_indices(t_pts, t_start, t_end) signal = phi[start:stop] power_spectrum = np.abs(np.fft.fft(signal))**2 freqs = np.fft.fftfreq(signal.size, delta_t) idx = np.argsort(freqs) fig_ps = plt.figure(figsize=(5,5)) ax_ps = fig_ps.add_subplot(1,1,1) ax_ps.semilogy(freqs[idx], power_spectrum[idx], color='blue') ax_ps.set_xlim(0, 1.) ax_ps.set_ylim(1.e5, 1.e11) ax_ps.set_xlabel('frequency') ax_ps.set_title('Power Spectrum') fig_ps.tight_layout() ###Output _____no_output_____
docs/_build/doctrees/nbsphinx/OtherNotebooks/VerticesClassification.ipynb
###Markdown Vertex ClassificationThe most common type of analysis that we want to do with a colloidal ice system is to map it to a system of vertices, for which we can then classify and count types of vertices. A system of vertices is a directed network. A vertex geometry is a set of points $\mathbf{v}_i \in \mathbb{V}$ which define the vertex locations in 3D space. The topology of the vertices is defined by their connectivity; two vertices, $v_i$ and $v_j$ are connected if they are joined by an edge $\mathbf{e}_{ij} = \left(v_i, v_j\right)$, and the set of all edges is $\mathbb{E}$. The vertex network is directed, which means that the edge $\mathbf{e}_{ij} \neq \mathbf{e}_{ji}$.The mapping from a colloidal ice consists on assigning an edge to each trap. An edge's direction goes from the vertex with a hole to the vertex with a particle. A vertex object 'v' should be able to guess the vertex geometry and topology that maps a colloidal ice object 'col' for simple systems by writing: v.colloids_to_vertices(col) However, some assistance on this guessing could be useful. For example:* A set of points containing the vertex positions * A topology, codified as a list of edges forming a vertex.The vertices object should also keep its topology stored internally. Obtaining the vertex classification for a new frame should be an update, and not a processing from scratch. This means that the processing might not work for dynamic systems where vertices move, or topologies change. That's fine, we can't even do that in simulation yet for most systems. ###Code # This only adds the package to the path. import os import sys sys.path.insert(0, '../../../') import icenumerics as ice import matplotlib.pyplot as plt import pandas as pd import numpy as np import scipy.spatial as spa %load_ext autoreload %autoreload 2 ###Output _____no_output_____ ###Markdown We first create a colloidal ice to play around with ###Code ureg = ice.ureg sp = ice.spins() sp.create_lattice("square",[10,10],lattice_constant=30*ureg.um, border="closed spin") particle = ice.particle(radius = 5.15*ureg.um, susceptibility = 0.0576, diffusion = 0.125*ureg.um**2/ureg.s, temperature = 300*ureg.K, density = 1000*ureg.kg/ureg.m**3) trap = ice.trap(trap_sep = 10*ureg.um, height = 80*ureg.pN*ureg.nm, stiffness = 6e-4*ureg.pN/ureg.nm) col = ice.colloidal_ice(sp, particle, trap, height_spread = 0, susceptibility_spread = 0.1) col.pad_region(30*ureg.um) ###Output _____no_output_____ ###Markdown * Vertices should work if I calculate them here, before the colloidal_ice has a trj object. * Maybe the colloidal_ice object should keep a trj dataframe to begin with. * Also, it occurs to me that the standard trj object stored by colloidal ice shouldn't be directly read from the lammpstrj, but instead should be processed to a trj object containing directions and colloids. This might be part of creating a *results* object. ###Code world = ice.world( field = 20*ureg.mT, temperature = 300*ureg.K, dipole_cutoff = 200*ureg.um) col.simulate(world, name = "test", include_timestamp = False, targetdir = r".", framerate = 10*ureg.Hz, timestep = 10*ureg.ms, run_time = 10*ureg.s, output = ["x","y","z","mux","muy","muz"]) f, (ax2) = plt.subplots(1,1,figsize = (8,8)) col.display(ax2) for i, trj_i in col.trj.groupby("id"): if all(trj_i.type==1): plt.plot(trj_i.x,trj_i.y, color = "r") ###Output _____no_output_____ ###Markdown Create a 'vertex' object from a 'colloidal_ice' object ###Code v = ice.vertices() v.colloids_to_vertices(col) f, (ax1) = plt.subplots(1,1,figsize = (8,8)) v.display(ax1) col.display(ax1) ###Output _____no_output_____ ###Markdown Create a vertex structure from the results of lammps. We can get the vertex structure from a trajectory. To do this, the trajectory must be in the 'ice' format obtained by 'get_ice_trj': ###Code trj = ice.get_ice_trj(col.trj, bounds = col.bnd) trj.head() ###Output _____no_output_____ ###Markdown Notice that in this format, the columns contain the directions and colloid positions of the traps. The 'vertex' class can process the results of a single frame, by giving it as an input a trajectory with a single index. ###Code v = ice.vertices() frame = 0 v = v.trj_to_vertices(trj.loc[frame]) f, (ax1) = plt.subplots(1,1,figsize = (8,8)) v.display(ax1) col.display(ax1) ###Output _____no_output_____ ###Markdown Multiple frames If the 'trj' is a MultiIndex, the 'trj_to_vertices' method will iterate over all the indices which are not 'id', and calculate the vertex structure of all frames. However, it will only calculate the topology of the first frame. ###Code %%time v = ice.vertices() frames = trj.index.get_level_values("frame").unique() v.trj_to_vertices(trj.loc[frames[:]]) v.vertices.head() f, (ax1) = plt.subplots(1,1,figsize = (8,8)) v.display(ax1) col.display(ax1) ###Output _____no_output_____ ###Markdown Classifying and Counting vertices.From the previous vertex object, where the trayectory of the vertices have been calculated (the time evolution of the vertices) we can then classify and count the vertices using the following procedures: First we define a function that classifes the vertices. This means taking properties that have been calculated like charge, coordination or dipole, and asigning a "type". It's advisable to make the type an integer. ###Code def classify_vertices(vrt): vrt["type"] = np.NaN vrt.loc[vrt.eval("coordination==4 & charge == -4"),"type"] = 1 vrt.loc[vrt.eval("coordination==4 & charge == -2"),"type"] = 2 vrt.loc[vrt.eval("coordination==4 & charge == 0 & (dx**2+dy**2)==0"),"type"] = 3 vrt.loc[vrt.eval("coordination==4 & charge == 0 & (dx**2+dy**2)>0"),"type"] = 4 vrt.loc[vrt.eval("coordination==4 & charge == 2"),"type"] = 5 vrt.loc[vrt.eval("coordination==4 & charge == 4"),"type"] = 6 return vrt v.vertices = classify_vertices(v.vertices) ###Output _____no_output_____ ###Markdown Now, we can use the builtin function `count_vertices`, which takes a column, and get's the total number o vertices for which the given column is of a given unique value. ###Code count = ice.count_vertices(v.vertices) for t,v_t in count.groupby("type"): plt.plot(v_t.index.get_level_values("frame"), v_t.fraction, label = t) plt.legend() ###Output _____no_output_____
linearRegression_forecast/2.3..Deploy_BYOS_Forecast.ipynb
###Markdown [모듈 2.3] 모델 배포 및 추론이 노트북은 아래와 같은 작업을 합니다.- 테스트 데이터 파일을 로딩- 모델 배포 방식 결정 - **처음 테스트시에는 로컬 배포(세이지메이커 노트북 인스턴스 사용)를 하시고, 완료되면 클라우드 배포를 하세요.** - 로컬 배포 - 클라우드 배포- 인퍼런스 코드 테스트 및 코드 설명 - 추론시에 사용할 사용자 정의 코드를 로컬에서 테스트 합니다.- 추가 패키지 설치 - 세이지 메이커 모델 생성- 모델을 엔드포인트에 배포- 모델 추론 실행- 엔드포인트 제거 ###Code import pandas as pd import os import matplotlib.pyplot as plt import numpy as np %store -r test_file_path %store -r s3_model_dir %store -r local_model_dir ###Output _____no_output_____ ###Markdown 테스트 파일을 로딩데이터를 로딩한 후에 test 데이터를 test_y, test_X로 분리 합니다. (훈련시에 사용한 데이터의 타입이 모두 float64 이기에, 똑같이 float64 로 타입을 변경 합니다. ###Code df = pd.read_csv(test_file_path, header=None) df = df.astype('float64') test_y = df.iloc[:,0] test_X = df.iloc[:,1:].to_numpy() print("test_X : ", test_X.shape) ###Output test_X : (149, 59) ###Markdown 모델 배포 방식: 로컬 모드 파라미터**아래 instance_type 에 따라서 로컬 모드, 클라우드 모드로 제어 합니다.처음에는 로컬모드, 잘 동작하면 클라우드 모드로 바꾸어서 해보세요.**- 로컬 모드이면 세이지 메이커의 로컬 세션이 할당이 됩니다. - 세이지 노트북 인스턴스에서 Docker Container가 생성이 되어서 배포를 합니다.- 클라우드 모드이면 세이지 메이커에의 세션이 할당이 되어서, 클라우드에서 배포가 진행 됩니다. - 클라우드 상에서 EC2 인스턴스가 생성이 되고, 이 EC2안에서 Docker Container가 생성이 되어서 배포 합니다. ###Code instance_type = 'local' # instance_type="ml.c4.xlarge" ###Output _____no_output_____ ###Markdown 인퍼런스 코드 테스트실제로 개발을 할시에 추론 코드의 로직 확인(디버깅 등)을 위해서 자주 추론 코드를 고치고 테스트 합니다. 그래서 이미 훈련된 모델을 로딩해서 추론 코드의 로직을 확인하는 과정을 합니다.SK Learn Model의 배포 및 추론을 위해서 자세한 설명은 아래를 참조 하세요.- [Deploy a Scikit-learn Model](https://sagemaker.readthedocs.io/en/stable/frameworks/sklearn/using_sklearn.htmldeploy-a-scikit-learn-model) 인퍼런스 코드 설명 (src/inference.py)아래는 실제 사용자가 정의한 model_fn, predict_fn를 inference.py 에 기술하였습니다. - 실제 아래의 추론시에 아래와 같은 로그를 확인하여 디버깅을 할 수 있습니다.```algo-1-l1rre_1 | From user-inference file- Model loaded: algo-1-l1rre_1 | From user-inference file- Shape of predictions: (149,)```- 만약에 아래의 함수들을 기술하지 않으면 디폴트로 기술되어 있는 model_fn, predict_fn가 호출 됩니다.- input_fn, output_fn 도 사용자 정의로 기술할 수 있습니다. 본 예제에서는 다루지 않았으나, 추후 사용자 정의가 필요하면 기술하여 inference.py 에 넣으시면 됩니다.```pythonimport joblib, osdef model_fn(model_dir): """ Deserialized and return fitted model Note that this should have the same name as the serialized model in the main method """ model = joblib.load(os.path.join(model_dir, "model.joblib")) print("From user-inference file- Model loaded: ") return modeldef predict_fn(input_data, model): """ 주어진 input_data를 """ payload = input_data predictions = model.predict(payload) print("From user-inference file- Shape of predictions: ", predictions.shape) return predictions``` ###Code import src.inference from importlib import reload # 사용자 정의 모듈 리로드 코드 입니다. 테스트 하면서 코드를 수정하면 아래와 같이 재로딩하면 반영이 됩니다. src.inference = reload(src.inference) from src.inference import model_fn, predict_fn def input_fn(input_data, request_content_type='text/csv'): """ 추론 형태에 맞게 입력 형태를 변경 합니다. """ n_feature = input_data.shape[1] sample = input_data.reshape(-1,n_feature) return sample # 추론 형태로 변환 합니다. sample = input_fn(test_X[0:10]) # 모델 로딩 model = model_fn('model') # 추론 실행 predictons = predict_fn(sample, model) print(predictons) import time local_model_path = f'file://{os.getcwd()}/model/model.joblib' endpoint_name = 'local-endpoint-scikit-learn-{}'.format(int(time.time())) ###Output _____no_output_____ ###Markdown 참조: Docker 명령어로컬로드로 실행시에는 로컬에서 다커가 실행이 됩니다. 하지만 다커가 종료가 되지 않은 상태이면, 터미널을 열고 아래 명령어를 사용하여 다커를 중지 시키고 다시 실행합니다.- 현재 실행중인 컨테이너를 보여주기``` docker container ls```- 현재 실행중인 컨테이너를 모두 정지 시키기```docker stop $(docker ps -a -q)``` 추가 패키지 설치src/requirements.txt 안에 필요한 패키지를 기술 합니다. (예: ```pandas<2```). 이렇게 하면 엔드 포인트의 배포시에 설치가 됩니다.requirements.txt 를 src 폴더안에 같은 위치에 있으면 세이지 메이커가 자동적으로 패키지를 설치 합니다.```algo-1-l1rre_1 | /miniconda3/bin/python -m pip install . -r requirements.txtalgo-1-l1rre_1 | Processing /opt/ml/codealgo-1-l1rre_1 | Requirement already satisfied: pandas<2 in /miniconda3/lib/python3.7/site-packages (from -r requirements.txt (line 1)) (1.1.3)``` ###Code import sagemaker from sagemaker import local if instance_type == 'local': sess = local.LocalSession() model_path = local_model_path # 로컬에 저장된 모델 경로를 사용 else: sess = sagemaker.Session() model_path = s3_model_dir # S3 에 저장된 모델 경로를 사용 ###Output _____no_output_____ ###Markdown 세이지 메이커 모델 생성SKLearnModel 를 생성하여 sagemaker model을 생성합니다.- model_data: 모델 아티팩트의 경로가 기술됨- framework_version: 배포가 될 SKLearn Model의 버전이 정해짐- entry_point: src/inference.py 인퍼런스 사용자 정의 코드가 기술됨- sagemaker_session: 로컬 모드 혹은 클라우드 모드가 결정이 됨 ###Code from sagemaker import get_execution_role # Get a SageMaker-compatible role used by this Notebook Instance. role = get_execution_role() FRAMEWORK_VERSION = "0.23-1" from sagemaker.sklearn.model import SKLearnModel sm_model = SKLearnModel(model_data = model_path, role = role, source_dir = 'src', entry_point = 'inference.py', framework_version = FRAMEWORK_VERSION, py_version = 'py3', sagemaker_session = sess ) ###Output _____no_output_____ ###Markdown 모델 배포 및 추론세이지 메이커 모델을 바탕으로 배포를 합니다. 배포후에 predictor를 바탕으로 엔드포인트에 접근할 수 있습니다.- instance_type: 로컬 모드인지 클라우드 인스턴스가 결정이 됩니다. ###Code %%time predictor = sm_model.deploy( initial_instance_count=1, instance_type= instance_type, endpoint_name = endpoint_name, wait=True ) ###Output Attaching to tmpw4r12ssk_algo-1-6o529_1 algo-1-6o529_1 | 2020-12-06 05:13:06,921 INFO - sagemaker-containers - No GPUs detected (normal if no gpus installed) algo-1-6o529_1 | 2020-12-06 05:13:06,925 INFO - sagemaker-containers - No GPUs detected (normal if no gpus installed) algo-1-6o529_1 | 2020-12-06 05:13:06,926 INFO - sagemaker-containers - nginx config: algo-1-6o529_1 | worker_processes auto; algo-1-6o529_1 | daemon off; algo-1-6o529_1 | pid /tmp/nginx.pid; algo-1-6o529_1 | error_log /dev/stderr; algo-1-6o529_1 | algo-1-6o529_1 | worker_rlimit_nofile 4096; algo-1-6o529_1 | algo-1-6o529_1 | events { algo-1-6o529_1 | worker_connections 2048; algo-1-6o529_1 | } algo-1-6o529_1 | algo-1-6o529_1 | http { algo-1-6o529_1 | include /etc/nginx/mime.types; algo-1-6o529_1 | default_type application/octet-stream; algo-1-6o529_1 | access_log /dev/stdout combined; algo-1-6o529_1 | algo-1-6o529_1 | upstream gunicorn { algo-1-6o529_1 | server unix:/tmp/gunicorn.sock; algo-1-6o529_1 | } algo-1-6o529_1 | algo-1-6o529_1 | server { algo-1-6o529_1 | listen 8080 deferred; algo-1-6o529_1 | client_max_body_size 0; algo-1-6o529_1 | algo-1-6o529_1 | keepalive_timeout 3; algo-1-6o529_1 | algo-1-6o529_1 | location ~ ^/(ping|invocations|execution-parameters) { algo-1-6o529_1 | proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; algo-1-6o529_1 | proxy_set_header Host $http_host; algo-1-6o529_1 | proxy_redirect off; algo-1-6o529_1 | proxy_read_timeout 60s; algo-1-6o529_1 | proxy_pass http://gunicorn; algo-1-6o529_1 | } algo-1-6o529_1 | algo-1-6o529_1 | location / { algo-1-6o529_1 | return 404 "{}"; algo-1-6o529_1 | } algo-1-6o529_1 | algo-1-6o529_1 | } algo-1-6o529_1 | } algo-1-6o529_1 | algo-1-6o529_1 | algo-1-6o529_1 | 2020-12-06 05:13:08,065 INFO - sagemaker-containers - Module inference does not provide a setup.py. algo-1-6o529_1 | Generating setup.py algo-1-6o529_1 | 2020-12-06 05:13:08,065 INFO - sagemaker-containers - Generating setup.cfg algo-1-6o529_1 | 2020-12-06 05:13:08,065 INFO - sagemaker-containers - Generating MANIFEST.in algo-1-6o529_1 | 2020-12-06 05:13:08,065 INFO - sagemaker-containers - Installing module with the following command: algo-1-6o529_1 | /miniconda3/bin/python -m pip install . -r requirements.txt algo-1-6o529_1 | Processing /opt/ml/code algo-1-6o529_1 | Requirement already satisfied: pandas<2 in /miniconda3/lib/python3.7/site-packages (from -r requirements.txt (line 1)) (1.1.3) algo-1-6o529_1 | Requirement already satisfied: python-dateutil>=2.7.3 in /miniconda3/lib/python3.7/site-packages (from pandas<2->-r requirements.txt (line 1)) (2.8.1) algo-1-6o529_1 | Requirement already satisfied: pytz>=2017.2 in /miniconda3/lib/python3.7/site-packages (from pandas<2->-r requirements.txt (line 1)) (2020.1) algo-1-6o529_1 | Requirement already satisfied: numpy>=1.15.4 in /miniconda3/lib/python3.7/site-packages (from pandas<2->-r requirements.txt (line 1)) (1.19.2) algo-1-6o529_1 | Requirement already satisfied: six>=1.5 in /miniconda3/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas<2->-r requirements.txt (line 1)) (1.15.0) algo-1-6o529_1 | Building wheels for collected packages: inference algo-1-6o529_1 | Building wheel for inference (setup.py) ... [?25ldone algo-1-6o529_1 | [?25h Created wheel for inference: filename=inference-1.0.0-py2.py3-none-any.whl size=9582 sha256=1ae39ed8184cfca46a85eef0503558dcc63df17616b0bd90c683fc1fdbab7117 algo-1-6o529_1 | Stored in directory: /home/model-server/tmp/pip-ephem-wheel-cache-85h40tj1/wheels/3e/0f/51/2f1df833dd0412c1bc2f5ee56baac195b5be563353d111dca6 algo-1-6o529_1 | Successfully built inference algo-1-6o529_1 | Installing collected packages: inference algo-1-6o529_1 | Successfully installed inference-1.0.0 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [161] [INFO] Starting gunicorn 20.0.4 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [161] [INFO] Listening at: unix:/tmp/gunicorn.sock (161) algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [161] [INFO] Using worker: gevent algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [164] [INFO] Booting worker with pid: 164 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [165] [INFO] Booting worker with pid: 165 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [166] [INFO] Booting worker with pid: 166 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [293] [INFO] Booting worker with pid: 293 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [357] [INFO] Booting worker with pid: 357 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [358] [INFO] Booting worker with pid: 358 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [359] [INFO] Booting worker with pid: 359 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [486] [INFO] Booting worker with pid: 486 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [550] [INFO] Booting worker with pid: 550 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [551] [INFO] Booting worker with pid: 551 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [615] [INFO] Booting worker with pid: 615 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [743] [INFO] Booting worker with pid: 743 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [742] [INFO] Booting worker with pid: 742 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [808] [INFO] Booting worker with pid: 808 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [809] [INFO] Booting worker with pid: 809 algo-1-6o529_1 | [2020-12-06 05:13:09 +0000] [874] [INFO] Booting worker with pid: 874 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1064] [INFO] Booting worker with pid: 1064 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1066] [INFO] Booting worker with pid: 1066 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1220] [INFO] Booting worker with pid: 1220 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1252] [INFO] Booting worker with pid: 1252 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1260] [INFO] Booting worker with pid: 1260 algo-1-6o529_1 | 2020-12-06 05:13:10,336 INFO - sagemaker-containers - No GPUs detected (normal if no gpus installed) algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1327] [INFO] Booting worker with pid: 1327 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1416] [INFO] Booting worker with pid: 1416 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1583] [INFO] Booting worker with pid: 1583 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1584] [INFO] Booting worker with pid: 1584 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1585] [INFO] Booting worker with pid: 1585 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1714] [INFO] Booting worker with pid: 1714 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1780] [INFO] Booting worker with pid: 1780 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1908] [INFO] Booting worker with pid: 1908 algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [1910] [INFO] Booting worker with pid: 1910 algo-1-6o529_1 | From user-inference file- Model loaded: !algo-1-6o529_1 | [2020-12-06 05:13:10 +0000] [2040] [INFO] Booting worker with pid: 2040 algo-1-6o529_1 | 172.18.0.1 - - [06/Dec/2020:05:13:10 +0000] "GET /ping HTTP/1.1" 200 0 "-" "-" CPU times: user 174 ms, sys: 19.8 ms, total: 194 ms Wall time: 7.91 s ###Markdown 추론 실행 ###Code import p_utils from importlib import reload from p_utils import evaluate, show_chart p_utils = reload(p_utils) ## 추론 입력 데이터 생성 sample = input_fn(test_X) ## 추론 실행 ridge_pred = predictor.predict(sample) # Evaluate MdAPE = evaluate(test_y, ridge_pred) print('Ridge-onestep-ahead MdAPE = ', MdAPE) # 차트로 보기 show_chart(test_y, ridge_pred) ###Output Ridge-onestep-ahead MdAPE = 0.017380620413302225 algo-1-6o529_1 | [2020-12-06 05:13:11 +0000] [2690] [INFO] Booting worker with pid: 2690 algo-1-6o529_1 | [2020-12-06 05:13:11 +0000] [2691] [INFO] Booting worker with pid: 2691 algo-1-6o529_1 | [2020-12-06 05:13:11 +0000] [2820] [INFO] Booting worker with pid: 2820 algo-1-6o529_1 | [2020-12-06 05:13:11 +0000] [2949] [INFO] Booting worker with pid: 2949 algo-1-6o529_1 | [2020-12-06 05:13:11 +0000] [2951] [INFO] Booting worker with pid: 2951 ###Markdown Endpoint Cleanup위에서 생성한 엔드포인트를 삭제 합니다. ###Code predictor.delete_endpoint() ###Output Gracefully stopping... (press Ctrl+C again to force)
Projekty/Projekt2/Grupa1/GassowskaKozminskiPrzybylek/KamienMilowy1/Project2_Milestone1.ipynb
###Markdown Etap I - EDAZbiór danych zawiera 8265 słów występujących w księgach religijnych przygotowanych jako mini-korpus tych ksiąg (gdyż nie są to wszystkie słowa, a wybrane przez twórców). Większość świętych tekstów w tym zbiorze danych zebrano z projektu Gutenberg. W tym etapie zajmiemy się analizą tych słów i ksiąg, zawierających je. Wczytanie zbioru ###Code data = pd.read_csv('/content/drive/My Drive/AllBooks_baseline_DTM_Labelled.csv') data.head() data.shape # bardzo dużo kolumn data.isnull().values.any() #sprawdzenie czy są braki ###Output _____no_output_____ ###Markdown Zebrane dane zawierają o wiele więcej kolumn niż wierszy, a przygotowana ramka danych nie ma brakujących wartości. Stworzenie kolumnny z nazwą księgi - tylko do EDAAby móc rozpoznawać księgi oraz je jakoś przeanalizować, zdecydowaliśmy się na stworzenie kolumny z nazwą księgi i pogrupowanie rozdziałów z ramki danych na całe księgi. W ten sposób przyjrzymy się temu o czym są całe księgi. ###Code data['label']=data['Unnamed: 0'].str.split('_',expand=True)[0] #do jakiej księgi należy dany rozdział np.unique(data['label']) ###Output _____no_output_____ ###Markdown Mamy 8 ksiąg - tak jak w było przedstawione w opisie zbioru, na początek zapoznajmy się z tym, jakie to są księgi. Tłumaczenia nazw i krótkie opisy ksiąg:* Book of Eccleasiasticus - Mądrość Syracha - jedna z ksiąg deuterookanonicznych Starego Testamentu (czyli takich, które są w Biblii chrześcijańskiej, ale nie w hebrajskiej. Napisana ok. 190 r.p.n.e. w Jerozolimie* Book Of Ecclesiastes - Księga Koheleta - znajduje sie w obu Bibliach. Datowanie księgi nie jest pewne, choć są znaki, aby określać je na III w.p.n.e.* Book of Proverb - Księga Przysłów - również w obu Bibliach, jest pracą zbiorową złożoną z różnych tekstów przez nieznanego autora ok. V w.p.n.e.* Book of Wisdom - Księga Mądrości - napisana prawdopodobnie w Aleksandrii (Egipt) - datowana na ok. 50 r.p.n.e.* Buddhism - oczywiście nazwa religii dalekiego wschodu - buddyzmu, który najczęściej jest wyznawany w kraja półwyspu indochińskiego, Malezji, Chinach i Monoglii.* Tao Te Ching - także: Lao Tsu - chińska księga najprawdopodobniej napisana w 6 wieku p.n.e. przez mędrca Laozi. Uważana jest za podstawowe dzieło taoizmu - jedną z najpopularniejszych chińskich religii. Badacze twierdzą także, że miała ona wpływ także na kształtowanie filozofii buddystów.* Upanishads - upaniszady - teksty (w liczbie ponad 200) religii hinduizmu należące do wedyjskiego objawienia o treści religijno - filozoficznej. Jedne z późniejszych tekstów należących do Wed (świętych ksiąg hinduizmu), napisane w VIII - III w.p.n.e. Są do dziś wykorzystywane nawet w naszej kulturze wśród osób praktykujących medytację.* Yoga Sutra - jogasutry (hinduizm) - najstarszy tekst klasycznej Jogi (w znaczeniu systemu filozofii indyjskiej, uznającego autorytet Wed), składający się ze 195 sutr - zwięzłych sentencji. Według hinduskich tradycji, ich autorem był żyjący w II w.p.n.e. Patañjāli. Przejdźmy do analizowania ksiąg i ich słów. Najczęściej występujące słowa ogółem ###Code words = pd.DataFrame(data.drop(['Unnamed: 0', 'label'], axis=1).sum()) words_sorted = words.sort_values(by=0, ascending=False) words_sorted.head(10) #10 najczęściej używanych słów ogółem ###Output _____no_output_____ ###Markdown Najczęściej występuje słowo $shall$.Przyjrzyjmy się wykresowi wystąpień słów. ###Code plt.plot(words_sorted.head(50)) plt.xticks(rotation = 90) plt.title('Najczęściej używane słowa we wszystkich księgach') plt.show() ###Output _____no_output_____ ###Markdown Jak widzimy po tabeli i wykresie dwa-trzy słowa się wyróżniają a potem mamy wyraźny spadek. Większość słów nie przekracza nawet 200 wystąpień. Liczba użyć danego słowa w każdej z ksiąg Przygotowaliśmy ramkę danych z liczbami wystapień słów dla każdej księgi. Można ją zobaczyć poniżej. ###Code grouped_data = data.groupby(['label']).sum() grouped_data[words_sorted.index.values] ###Output _____no_output_____ ###Markdown Sprawdzenie czy istnieje kolumna z samymi zerami (słowo nie występujące nigdzie) ###Code check = grouped_data==0 check.all().any() ###Output _____no_output_____ ###Markdown Tak więc twórcy danych zdecydowali się na wykorzystanie tylko tych słów, które występują w co najmniej jednej księdze. Wspominając o tym, sprawdźmy ile rzeczywiście słów występuje tylko w jednej księdze. Najczęściej używane słowo dla każdej księgi Skoro wiemy jakie słowa są najpopularniejsze ogólnie to przyjrzyjmy się jak to przekłada się na oddzielne księgi. ###Code pd.DataFrame(grouped_data.idxmax(axis=1), columns = ['Najczęściej używany wyraz:']) ###Output _____no_output_____ ###Markdown W czterech księgach powtórzyło się słowo $shall$, natomiast słowa z księgi Buddyjskiej i TaoTeChing nie znalazły się w 10 najpopularnijszych słowach dla ogółu, więc możlwie, że przejawiają się one w większośći właśnie tam (tao szczególnie). Ramka danych ze słowami, które występują tylko w jednej księdze Znamy już najpopularniejsze słowa to teraz przyjrzymy się unikatowym wyrazom, które skupiają się tylko w danej księdze. ###Code unique_words = grouped_data==grouped_data.sum() unique_words = grouped_data.columns[unique_words.any()] unique_words_dataframe = pd.DataFrame() for word in unique_words: idx = grouped_data[grouped_data[word]!=0].index[0] unique_words_dataframe = unique_words_dataframe.append({'word':word, 'book':idx}, ignore_index=True) unique_words_dataframe #z ciekawości sprawdziliśmy, czy tao występuje tylko w taoistycznej księdze unique_words_dataframe[unique_words_dataframe.word == 'tao'] ###Output _____no_output_____ ###Markdown 4888 słowa są unikatowe, czyli ponad 50% słów wystepuje tylko w jednej z ośmiu ksiąg - może być przydatne przy klasteryzacji.Sprawdźmy też, ile słów jest charakterystycznych dla danej księgi - to znaczy ponad 90% wystąpień zawiera się w jednym tekście oraz ile wystąpiło w każdej z ksiąg (zauważmy, że mogą wystąpić słowa w obydwu grupach). ###Code print(f'Odsetek słów, których ponad 90% wystąpień jest w dokładnie jednej księdze: {round(100*np.mean(grouped_data.max(axis = 0)/grouped_data.sum() >0.9), 2)}%') print(f'Odsetek słów, które wystąpiły w każdej z ksiąg: {round(100*np.mean(np.mean((grouped_data>0)) == 1), 2)}%') ###Output Odsetek słów, których ponad 90% wystąpień jest w dokładnie jednej księdze: 59.63% Odsetek słów, które wystąpiły w każdej z ksiąg: 1.29% ###Markdown Mamy prawie 60% słów, których 90% wystąpień skupiona jest w jednej księdze.Przyjrzyjmy się temu 1.29% słów we wszystkich księgach. Wspólne słowa dla wszystkich ksiąg ###Code common_words = np.array(grouped_data.columns[np.where(np.mean((grouped_data>0)) == 1)]) common_words common_words.size ###Output _____no_output_____ ###Markdown Mamy 107 wspólnych słów, jak było powiedziane wyżej - jest to 1.29% wszystkich słów. Przyjrzyjmy się, jakie części mowy pojawiają się najczęściej - sugestią byłyby orzeczenia/czasowniki, gdyż to słowa ogólne, które najbardziej powinny nie być bezpośrednio do jednej z ksiąg. Przekonajmy się.Uwaga: Można się przyjrzeć i zobaczyć, że kilka słów się powtarza, jednak w innej formie gramatycznej. W tym przypadku zastosujemy lematyzację, gdyż do sprawdzenia części mowy, nie stracimy cennych informacji. ###Code def lemmatization(data): ''' Podajemy numpy array list a zwracana jest numpy array list unikatowych słów po lematyzacji ''' lem = WordNetLemmatizer() A = [] for i in data.tolist(): a = lem.lemmatize(i) a = lem.lemmatize(a, 'a') a = lem.lemmatize(a, 'v') A.append(a) x = np.array(A) A = np.unique(x) return A A = lemmatization(common_words) A.size ###Output _____no_output_____ ###Markdown Mamy mniej o 9 słów. (Lemmatyzacja to experyment, możliwe, że nadal niektóre słowa nie zmieniły formy) ###Code tag_words = nltk.pos_tag(A.tolist()) tag_words ###Output _____no_output_____ ###Markdown Policzmy teraz jakiej częsci mowy jest najwięcej. ###Code POS_list = [] for i in tag_words: POS_list.append(i[1]) Counter(POS_list).most_common() ###Output _____no_output_____ ###Markdown Najwięcej jest rzeczowników - aż 37.76%, czyli założenie, że to będą czasowniki jest błędne. Dużo mamy też przymiotników (19), przysłówków (14). Jeśli chodzi o czasowniki to mamy ich 15, porozrzucanych na różne czasy. Wiąże się to z tym, iż become został uznany za przymiotnik, bring za czasownik kończący się na -ing, są też imiesłowy odczasownikowe.WAŻNE: Funkcja lematyzacji nie sprawdziła się idealnie, nie wolno jej wierzyć w 100%.[tutaj można znaleźć listę tagów: https://medium.com/@gianpaul.r/tokenization-and-parts-of-speech-pos-tagging-in-pythons-nltk-library-2d30f70af13b ] Unikatowe słowa znajdujące się w każdej z badanych ksiąg Wiemy, że unikatowych słów jest ponad 50%. Zobaczmy to jeszcze w liczbach. Liczba unikalnych słów Poniżej mamy liczbę różnych słów (unikalnych) w każdej z badanych ksiąg. ###Code data_len_unique_words = pd.DataFrame(np.sum(grouped_data>0, axis = 1), columns = ['Liczba różnych słów w badanym tekście:']) data_len_unique_words exceptional_words = pd.DataFrame.from_dict(Counter(unique_words_dataframe.book), orient='index').reset_index().rename(columns={'index':'book', 0:'liczba unikatowych słów'}).sort_values('book') exceptional_words ###Output _____no_output_____ ###Markdown W powyższym kodzie mamy liczbę unikatowych (czyli takich występujących tylko w danej księdze), bez ich liczby wystąpień. Widzimy, że najwięcej takich słów jest w YogaSutra, czyli hinduizmie. Liczba wszystkich słów ogólnie w każdej z ksiąg ###Code data_len_words = pd.DataFrame(np.sum(grouped_data, axis = 1), columns = ['Liczba słów w badanym tekście:']) data_len_words ###Output _____no_output_____ ###Markdown Procent unikatowych słówCelem sprawdzenia jaką częścią słów w księdze są wyrazy występujące wyłącznie w niej. ###Code exceptional_sum = grouped_data[unique_words].sum(axis = 1) A = [] for i in range(0,8): x = exceptional_sum.values[i] w = data_len_words.values[i][0] A.append(f'{round(x/w*100, 2)}%') translations = ['Madrosc Syracha', 'Ksiega Koheleta', 'Ksiega Przyslow', 'Ksiega Madrosci', 'Buddyzm', 'Tao Te Ching', 'Upaniszady', 'JogaSutry'] pd.DataFrame({'label': translations, 'Procent unikatowych słów w księdze': A}) ###Output _____no_output_____ ###Markdown Względem swojej wielkości to buddyjska księga ma najwięcej wystąpień unikatowych słów. Średnia liczba wystąpień wyrazuZbadamy też średnią liczbę wystąpień wyrazu - niska wartość może oznaczać np. bogate słownictwo bądź szeroki zakres tematyczny księgi: ###Code def plot_bar(data1, data2, title): plt.bar(data1, data2) plt.xticks(rotation = 90) plt.title(title) plt.show() plot_bar(translations, np.sum(grouped_data, axis = 1)/np.sum(grouped_data>0, axis = 1), 'Średnia wystąpień danego wyrazu w tekście') ###Output _____no_output_____ ###Markdown Największą średnią liczbę wystąpień wyrazów możemy zauważyć w Mądrościach Syracha oraz w Buddyźmie.Natomiast księgi o wartościach wystąpień poniżej trzech są najkrótszymi księgami z podanych. Średnia długość słów w księdze ###Code WordsLen = [] for col in grouped_data.columns: WordsLen.append(len(col)) A = [] j = 0 for word in grouped_data.values: i = 0 length = 0 for x in word: length = length + x*WordsLen[i] # liczba wystąpień słowa razy długość słowa i = i+1 A.append(length / data_len_words.values[j][0]) j = j+1 plt.bar(translations, A) plt.xticks(rotation = 90) plt.title('Średnia długość słowa w danym tekście') plt.show() ###Output _____no_output_____ ###Markdown Średnia długość słów w księdze jest do siebie zbliżona dla wszystkich słów. Ciekawiej pewnie byłoby zająć się średnią długością zdań. Podobieństwa ksiąg Opis metodologii:Dla każdej z ksiąg możemy bez problemu zdobyć wektor liczności wystąpień poszczególnych słów. Dla każdej pary ksiąg można zatem obliczyć odległość euklidesową biorąc za współrzędne te właśnie liczności i porównać obliczone wartości dla różnych par.Update: powyższa metoda jest wrażliwa na liczbę słów występujących w poszczególnych księgach, co nie powinno mieć miejsca. Celem zapobiegnięcia takiej czułości, znormalizujemy liczbę poszczególnych słów w księdze. Takie działanie ma sens, gdy porównujemy księgi o podobnym rzędzie liczby wyrazów. Dla poszczególnych tekstów, gdzie słów jest kilkadziesiąt, osiągane wyniki byłyby wyższe. ###Code def distance_plot(labels, df, ret_max = False, vmax = None): data = df/(df.sum(axis = 1)[:, None]) A = [[0]*len(labels) for _ in range(len(labels))] maxdist = 0 for i in range(len(labels)): for j in range(i+1, len(labels)): x = data.iloc[i,:] y = data.iloc[j,:] dist = math.sqrt(np.sum((x-y)**2)) A[i][j] = dist A[j][i] = dist if dist > maxdist: maxdist = dist if ret_max: return maxdist sns.heatmap(A, annot = True, fmt = '.3f', vmax = vmax, xticklabels = labels, yticklabels=labels).set_title('"Ogległości" między księgami - im mniej, tym bardziej podobne') plt.show() distance_plot(translations, grouped_data) ###Output _____no_output_____ ###Markdown Jeśli metodologia jest właściwa to najbardziej podobnymi księgami okazują się Księga Przysłów i Mądrość Syracha oraz Księga Mądrości i Mądrość Syracha. Podobne są też do siebie księgi biblijne po prostu.Oczywiście korzystamy tylko z części słów występujących w księgach. LematyzacjaNa razie nie będziemy jej stosować, być może wrócimy z tym przy inżynierii cech.Przypominając, wykorzystalismy lematyzację przy słowach występujących dla wszystkich ksiąg. Nie mamy pewności czy zamienione zostały wszystkie słowa.Tutaj sprawdzimy, o ile słów zmniejszy się ramka danych po lematyzacji. ###Code words_list = np.array(grouped_data.columns) words_after_lem = lemmatization(words_list) print("Liczba słów po zabiegu lematyzacji: ", len(words_after_lem.tolist())) print("Liczba słów w niezmienionej ramce danych: ", len(grouped_data.columns)) ###Output Liczba słów po zabiegu lematyzacji: 6032 Liczba słów w niezmienionej ramce danych: 8266 ###Markdown Jak widzimy, po sprowadzeniu słów do podstawowej formy straciliśmy ponad 2 tys. słów z danych. W inżynierii cech może być ciekawe połączenie tych kolumn o tych samych słowach a innych formach w jedną i na tym przeprowadzenie klasteryzacji w celu porównania. Analiza sentymentuSprawdzimy czy księgi ogólnie są bardziej pozytywne, negatywne czy może neutralne. Dobrym podejściem jest wytrenowanie modelu oceniającego sentyment a potem przetestowanie go do danych, w naszym przypadku nie możemy tak zrobić, więc zastosujemy drugie, dużo prostrze podejście - mianowicie policzymy sentyment dla każdego słowa, potem zliczymy liczby wystąpień tych słów, liczba których wartości będzie większa określi nasz sentyment.Jest to słabe podejście, ale przynajmniej warto je przetestować. ###Code columns_names = data.columns.tolist() columns_names.pop(0) # pozbywamy się kolumny z nazwami ksiąg columns_sentiment = [] for i in columns_names: text = i blob = TextBlob(text) sentiment = blob.sentiment.polarity if sentiment == 0.0: sentiment = "neutral" elif sentiment > 0: sentiment = "positive" else: sentiment = "negative" columns_sentiment.append(sentiment) def sentiment(data): books_sentiment = [] for row in data.values: i = 0 pos, neu, neg = 0,0,0 # zliczamy liczby sentymentów for x in row: if columns_sentiment[i] == "positive": pos = pos + x elif columns_sentiment[i] == "negative": neg = neg + x else: neu = neu + x i = i + 1 # wynik dla wiersza if pos >= neg: if pos < neu or pos == neg: books_sentiment.append("neutral") else: books_sentiment.append("positive") else: if neg < neu: books_sentiment.append("neutral") else: books_sentiment.append("negative") return books_sentiment sentiment(grouped_data) ###Output _____no_output_____ ###Markdown Jak się okazuje najwięcej jest słów neutralnych w każdej z ksiąg. Oczywiście, jest to naiwna metoda i trzeba o tym pamiętać, biorąc pod uwagę te wyniki. Wróćmy do niepogrupowanych rozdziałów Ile rozdziałów ma dana księga? ###Code all_rows_books = data.label.to_list() CH_sum = Counter(all_rows_books) data_CH_sum = pd.DataFrame.from_dict(CH_sum, orient='index').reset_index() data_CH_sum.rename(columns={'index': 'Księga', 0:'Rozdziały'}, inplace=True) plot_bar(data_CH_sum['Księga'], data_CH_sum['Rozdziały'], 'Liczba rozdziałów w księdze') ###Output _____no_output_____ ###Markdown YogaSutra jest drugą największą księgą i ma najwięcej rozdziałów. Natomiast najdłuższa jest BookOfEccleasiasticus, a ma "tylko" 50 rozdziałów, więc prawdopodobnie to jej rozdziały są najdłuższe. W jakich księgach są najdłuższe rozdziały? ###Code CH_sum = pd.DataFrame(np.sum(data, axis = 1), columns = ['Liczba słów w rozdziałach ksiąg:']) sorted_CH_sum = pd.concat([data['Unnamed: 0'], CH_sum], axis=1).sort_values(by=['Liczba słów w rozdziałach ksiąg:'], ascending=False) sorted_CH_sum.head(10) ###Output _____no_output_____ ###Markdown Najdłuższy jest rozdział należy do księgi Buddyzmu, jednak jak zakładalismy to właśnie BookOfEccleasiasticus, czyli Mądrość Syracha ma najdłusze rozdziały (6 z 10 wyświetlonych). Przyjrzyjmy się jakie są najkrótsze rozdziały. ###Code sorted_CH_sum.sort_values(by=['Liczba słów w rozdziałach ksiąg:']).head(10) ###Output _____no_output_____ ###Markdown Najkrótsze są rozdziały Upaniszady. Ciekawostka - spośród wybranych słów przez twórców ramki, rozdział 14 Buddyzmu nie zawiera żadnego. Analiza sentymentu dla rozdziałów ksiąg ###Code CH_data = data.drop(['Unnamed: 0', 'label'], axis = 1) CH_sent = sentiment(CH_data) Counter(CH_sent) ###Output _____no_output_____
cal4-program-R.ipynb
###Markdown [pour Statistique et Science des Données](https://github.com/wikistat/Intro-Python) Programmer en **Résumé** Un bref aperçu de la syntaxe du langage S mis en \oe uvre dans R : fonctions, instructions decontrôle et d'itérations, fonction {\tt apply}. introductionR est la version *GNU* du langage S conçu initialement aux *Bell labs* par John Chambers à partir de 1975 dans une syntaxe très proche du langage C. En mars 2017, l'index \href{http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html}{TIOBE} le classe en 14ème position derrière Java (1er) ou Python (5ème) mais devant MATLAB (18) ou SAS (21). Structure de contrôleIl est important d'intégrer que R, comme Matlab, est un langage interprété donc lent, voire très lent, losqu'il s'agit d'exécuter des boucles. Celles-ci doivent être impérativement évitées dès qu'une syntaxe, impliquant des calculs matriciels ou les commandes de type `apply`, peut se substituer. Structures conditionnelles if(condition) {instructions} est la syntaxe permettant de calculer les instructions uniquement si la condition est vraie. if(condition) { A } else { B } calcule les instructions A si la condition est vraie et les instructions B sinon. Dans l'exemple suivant, lesdeux commandes sont équivalentes : if (x>0) y=x*log(x) else y=0 y=ifelse(x>0,x*log(x),0) Structures itérativesCes commandes définissent des boucles pour exécuter plusieurs fois une instruction ou un bloc d'instructions. Les trois types de boucle sont : for (var in seq) { commandes } while (condition) { commandes } repeat { commandes ; if (condition) break }Dans une boucle `for`, le nombre d'itérations est fixe alors qu'il peut être infini pour les boucles `while` et `repeat`! La condition est évaluée avant toute exécution dans `while` alors que `repeat` exécute au moins une fois les commandes. ###Code for (i in 1:10) print(i) y=z=0; for (i in 1:10) { x=runif(1) if (x>0.5) y=y+1 else z=z+1 } y;z for (i in c(2,4,5,8)) print(i) x = rnorm(100) y = ifelse(x>0, 1, -1) # condition y;i=0 while (i<10){ print(i) i=i+1} ###Output _____no_output_____ ###Markdown **Questions**1. Que pensez-vous de : for (i in 1:length(b)) a[i]=cos(b[i])2. Obtenir l'équivalent de y et z dans la deuxième boucle `for` ci-dessus mais sans boucle.3. Dans l'enchaînement de commandes ci-dessous, supprimer d'abord la boucle `for` sur `j` puis les 2 boucles. ###Code M=matrix(1:20,nr=5,nc=4) res=rep(0,5) for (i in 1:5){ tmp=0 for (j in 1:4) {tmp = tmp + M[i,j]} res[i]=tmp} res ###Output _____no_output_____ ###Markdown **Réponses**1. Cette boucle est inutile. Il suffit de saisir \code{a=cos(b)}. L'élément de base de R est la matrice dont le vecteur est un cas particulier.2. Une solution consiste à sommer les éléments `TRUE` d'un vecteur logique ###Code x=runif(10);y=sum(x>0.5) z=10-y y;z ###Output _____no_output_____ ###Markdown 3.Suppression de boucles - Boucle `for` sur `j` ###Code for (i in 1:5) res[i]=sum(M[i,]) res ###Output _____no_output_____ ###Markdown - Deux boucles ###Code res=apply(M,1,sum) res ###Output _____no_output_____ ###Markdown Fonctions PrincipesIl est possible sous R de construire ses propres fonctions. Il est conseillé d'écrire sa fonction dans un fichier `nomfonction.R`. source("nomfonction.R") a pour effet de charger la fonction dans l'environnempent de travail. Il est aussi possible de définir directement la fonction par la syntaxe suivante : nomfonction=function(arg1[=exp1],arg2[=exp2],...) { bloc d'instructions sortie = ... return(sortie) }Les accolades signalent le début et la fin du code source de la fonction, les crochets indiquent le caractère facultatif des valeurs par défaut des arguments. L'objet sortie contient le ou les résultats retournés par la fonction, on peut en particulier utiliser une liste pour retourner plusieurs résultats. ExemplesCréation d'une fonction élémentaire. ###Code MaFonction=function(x){x+2} ls() MaFonction MaFonction(3) x = MaFonction(4);x ###Output _____no_output_____ ###Markdown Gestion des paramètres avec une valeur par défaut. ###Code Fonction2=function(a,b=7){a+b} Fonction2(2,b=3) Fonction2(5) ###Output _____no_output_____ ###Markdown Résultats multiples dans un objet de type liste. ###Code Calcule=function(r){ p=2*pi*r;s=pi*r*r; list(rayon=r,perimetre=p, surface=s)} resultat=Calcule(3) resultat$ray 2*pi*resultat$r==resultat$perim resultat$surface ###Output _____no_output_____ ###Markdown **Questions**1. le recours à un objet de type `list` est-il indispensable pour la fonction `Calcule()` ?2. Ecrire une fonction qui calcule le périmètre et la surface d'un rectangle à partir des longueurs l1 et l2 des deux côtés. La fonction renvoie également la longueur et la largeur du rectangle.3. Ecrire une fonction qui calcule les *n* premiers termes de la suite de Fibonacci:*u_1=0, u_2=1*, pour tout *n>2, u_n=u_{n-1}+u_{n-2}*4. Utiliser cette fonction pour calculer le rapport entre 2 termes consécutifs. Représenter ce rapport en fonction du nombre de termes pour *n=20*. Que constatez-vous ? Avez-vous lu *Da Vinci Code* ?5. Ecrire une fonction qui supprime les lignes d'un `data.frame` ou d'une matrice présentant au moins une valeur manquante.**Réponses**1. Les 3 éléments à renvoyer étant de type numérique, un vecteur peut suffire.2. Fonction `rectangle()` (la fonction `rect()` existe déjà): ###Code rectangle=function(l1,l2){ p=(l1+l2)*2 s=l1*l2 list(largeur=min(l1,l2),longueur=max(l1,l2), perimetre=p,surface=s)} rectangle(4,6) ###Output _____no_output_____ ###Markdown 3.Utilisation de la fonction pour calculer les n premiers termes de la suite de Fibonacci: ###Code fibo=function(n){ res=rep(0,n);res[1]=0;res[2]=1 for (i in 3:n) res[i]=res[i-1]+res[i-2] res} # Calcul du rapport de 2 termes consécutifs res=fibo(20) ratio=res[2:20]/res[1:19] plot(1:19,ratio,type="b") ###Output _____no_output_____ ###Markdown Le rapport tend vers le nombre d'or $\frac{1+\sqrt{5}}{2} \approx 1.618034$.4.Une façon, parmi beaucoup d'autres, de répondre à la question consiste à créer une fonction `ligne.NA` qui repère s'il y a au moins une valeur manquante dans un vecteur. Cette fonction filtre les lignes en question. ###Code ligne.NA=function(vec){any(is.na(vec))} filtre.NA=function(mat){ tmp = apply(mat,1,ligne.NA) mat[!tmp,]} # Application sur une matrice de test matrice.test = matrix(1:40,nc=5) matrice.test[2,5]=NA;matrice.test[4,2]=NA matrice.test[7,1]=NA;matrice.test[7,5]=NA matrice.test filtre.NA(matrice.test) ###Output _____no_output_____ ###Markdown Commandes de type `apply`Comme déjà expliqué, il est vivement recommandé d'éviter les boucles très chronophages. La fonction `apply` et ses variantes sur des vecteurs, matrices ou listes permettent d'appliquer une même fonction `FUN` sur toutes les lignes `(MARGIN=1)` ou les colonnes `(MARGIN=2)` d'une matrice `MAT`: apply(MAT , MARGIN, FUN)}Les fonctions `lapply` et `sapply` calculent la même fonction sur tous les éléments d'un vecteur ou d'une liste. lapply(X,FUN, ARG.COMMUN)} permet d'appliquer la fonction `FUN` à tous les éléments du vecteur ou de la liste X. Les valeurs de X sont affectées au premier argument de la fonction `FUN`. Si la fonction FUN a plusieurs paramètres d'entrée, ils sont spécifiés dans `ARG.COMMUN`. Cette fonction retourne le résultat sous la forme de listes. La fonction `sapply` est similaire à `lapply` mais le résultat est retourné si possible sous forme de vecteurs. tapply(X,GRP,FUN,...) applique une fonction `FUN` sur les sous-groupes d'un vecteur `X` définis par une variable `GRP` de type `factor`. Exemples : ###Code data(iris) apply(iris[,1:4],2,sum) lapply(iris[,1:4],sum) sapply(iris[,1:4],sum) tapply(iris[,1],iris[,5],sum) ###Output _____no_output_____
benchmark_notebooks/budget/AL Budget 6000 CIFAR10 v2.ipynb
###Markdown PrefaceThe locations requiring configuration for your experiment are commented in capital text. Setup Installations ###Code !pip install sphinxcontrib-napoleon !pip install sphinxcontrib-bibtex !pip install -i https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple/ submodlib !git clone https://github.com/decile-team/distil.git !git clone https://github.com/circulosmeos/gdown.pl.git import sys sys.path.append("/content/distil/") ###Output _____no_output_____ ###Markdown **Experiment-Specific Imports** ###Code from distil.utils.models.resnet import ResNet18 # IMPORT YOUR MODEL HERE ###Output _____no_output_____ ###Markdown Main Imports ###Code import pandas as pd import numpy as np import copy from torch.utils.data import Dataset, DataLoader, Subset, ConcatDataset import torch.nn.functional as F from torch import nn from torchvision import transforms from torchvision import datasets from PIL import Image import torch import torch.optim as optim from torch.autograd import Variable import sys sys.path.append('../') import matplotlib.pyplot as plt import time import math import random import os import pickle from numpy.linalg import cond from numpy.linalg import inv from numpy.linalg import norm from scipy import sparse as sp from scipy.linalg import lstsq from scipy.linalg import solve from scipy.optimize import nnls from distil.active_learning_strategies.badge import BADGE from distil.active_learning_strategies.glister import GLISTER from distil.active_learning_strategies.margin_sampling import MarginSampling from distil.active_learning_strategies.entropy_sampling import EntropySampling from distil.active_learning_strategies.random_sampling import RandomSampling from distil.active_learning_strategies.gradmatch_active import GradMatchActive from distil.active_learning_strategies.fass import FASS from distil.active_learning_strategies.adversarial_bim import AdversarialBIM from distil.active_learning_strategies.adversarial_deepfool import AdversarialDeepFool from distil.active_learning_strategies.core_set import CoreSet from distil.active_learning_strategies.least_confidence_sampling import LeastConfidenceSampling from distil.active_learning_strategies.margin_sampling import MarginSampling from distil.active_learning_strategies.bayesian_active_learning_disagreement_dropout import BALDDropout from distil.utils.train_helper import data_train from distil.utils.utils import LabeledToUnlabeledDataset from google.colab import drive import warnings warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown Checkpointing and Logs ###Code class Checkpoint: def __init__(self, acc_list=None, indices=None, state_dict=None, experiment_name=None, path=None): # If a path is supplied, load a checkpoint from there. if path is not None: if experiment_name is not None: self.load_checkpoint(path, experiment_name) else: raise ValueError("Checkpoint contains None value for experiment_name") return if acc_list is None: raise ValueError("Checkpoint contains None value for acc_list") if indices is None: raise ValueError("Checkpoint contains None value for indices") if state_dict is None: raise ValueError("Checkpoint contains None value for state_dict") if experiment_name is None: raise ValueError("Checkpoint contains None value for experiment_name") self.acc_list = acc_list self.indices = indices self.state_dict = state_dict self.experiment_name = experiment_name def __eq__(self, other): # Check if the accuracy lists are equal acc_lists_equal = self.acc_list == other.acc_list # Check if the indices are equal indices_equal = self.indices == other.indices # Check if the experiment names are equal experiment_names_equal = self.experiment_name == other.experiment_name return acc_lists_equal and indices_equal and experiment_names_equal def save_checkpoint(self, path): # Get current time to use in file timestamp timestamp = time.time_ns() # Create the path supplied os.makedirs(path, exist_ok=True) # Name saved files using timestamp to add recency information save_path = os.path.join(path, F"c{timestamp}1") copy_save_path = os.path.join(path, F"c{timestamp}2") # Write this checkpoint to the first save location with open(save_path, 'wb') as save_file: pickle.dump(self, save_file) # Write this checkpoint to the second save location with open(copy_save_path, 'wb') as copy_save_file: pickle.dump(self, copy_save_file) def load_checkpoint(self, path, experiment_name): # Obtain a list of all files present at the path timestamp_save_no = [f for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))] # If there are no such files, set values to None and return if len(timestamp_save_no) == 0: self.acc_list = None self.indices = None self.state_dict = None return # Sort the list of strings to get the most recent timestamp_save_no.sort(reverse=True) # Read in two files at a time, checking if they are equal to one another. # If they are equal, then it means that the save operation finished correctly. # If they are not, then it means that the save operation failed (could not be # done atomically). Repeat this action until no possible pair can exist. while len(timestamp_save_no) > 1: # Pop a most recent checkpoint copy first_file = timestamp_save_no.pop(0) # Keep popping until two copies with equal timestamps are present while True: second_file = timestamp_save_no.pop(0) # Timestamps match if the removal of the "1" or "2" results in equal numbers if (second_file[:-1]) == (first_file[:-1]): break else: first_file = second_file # If there are no more checkpoints to examine, set to None and return if len(timestamp_save_no) == 0: self.acc_list = None self.indices = None self.state_dict = None return # Form the paths to the files load_path = os.path.join(path, first_file) copy_load_path = os.path.join(path, second_file) # Load the two checkpoints with open(load_path, 'rb') as load_file: checkpoint = pickle.load(load_file) with open(copy_load_path, 'rb') as copy_load_file: checkpoint_copy = pickle.load(copy_load_file) # Do not check this experiment if it is not the one we need to restore if checkpoint.experiment_name != experiment_name: continue # Check if they are equal if checkpoint == checkpoint_copy: # This checkpoint will suffice. Populate this checkpoint's fields # with the selected checkpoint's fields. self.acc_list = checkpoint.acc_list self.indices = checkpoint.indices self.state_dict = checkpoint.state_dict return # Instantiate None values in acc_list, indices, and model self.acc_list = None self.indices = None self.state_dict = None def get_saved_values(self): return (self.acc_list, self.indices, self.state_dict) def delete_checkpoints(checkpoint_directory, experiment_name): # Iteratively go through each checkpoint, deleting those whose experiment name matches. timestamp_save_no = [f for f in os.listdir(checkpoint_directory) if os.path.isfile(os.path.join(checkpoint_directory, f))] for file in timestamp_save_no: delete_file = False # Get file location file_path = os.path.join(checkpoint_directory, file) if not os.path.exists(file_path): continue # Unpickle the checkpoint and see if its experiment name matches with open(file_path, "rb") as load_file: checkpoint_copy = pickle.load(load_file) if checkpoint_copy.experiment_name == experiment_name: delete_file = True # Delete this file only if the experiment name matched if delete_file: os.remove(file_path) #Logs def write_logs(logs, save_directory, rd): file_path = save_directory + 'run_'+'.txt' with open(file_path, 'a') as f: f.write('---------------------\n') f.write('Round '+str(rd)+'\n') f.write('---------------------\n') for key, val in logs.items(): if key == 'Training': f.write(str(key)+ '\n') for epoch in val: f.write(str(epoch)+'\n') else: f.write(str(key) + ' - '+ str(val) +'\n') ###Output _____no_output_____ ###Markdown AL Loop ###Code def train_one(full_train_dataset, initial_train_indices, test_dataset, net, n_rounds, budget, args, nclasses, strategy, save_directory, checkpoint_directory, experiment_name): # Split the full training dataset into an initial training dataset and an unlabeled dataset train_dataset = Subset(full_train_dataset, initial_train_indices) initial_unlabeled_indices = list(set(range(len(full_train_dataset))) - set(initial_train_indices)) unlabeled_dataset = Subset(full_train_dataset, initial_unlabeled_indices) # Set up the AL strategy if strategy == "random": strategy_args = {'batch_size' : args['batch_size'], 'device':args['device']} strategy = RandomSampling(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset), net, nclasses, strategy_args) elif strategy == "entropy": strategy_args = {'batch_size' : args['batch_size'], 'device':args['device']} strategy = EntropySampling(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset), net, nclasses, strategy_args) elif strategy == "margin": strategy_args = {'batch_size' : args['batch_size'], 'device':args['device']} strategy = MarginSampling(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset), net, nclasses, strategy_args) elif strategy == "least_confidence": strategy_args = {'batch_size' : args['batch_size'], 'device':args['device']} strategy = LeastConfidenceSampling(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset), net, nclasses, strategy_args) elif strategy == "badge": strategy_args = {'batch_size' : args['batch_size'], 'device':args['device']} strategy = BADGE(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset), net, nclasses, strategy_args) elif strategy == "coreset": strategy_args = {'batch_size' : args['batch_size'], 'device':args['device']} strategy = CoreSet(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset), net, nclasses, strategy_args) elif strategy == "fass": strategy_args = {'batch_size' : args['batch_size'], 'device':args['device']} strategy = FASS(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset), net, nclasses, strategy_args) elif strategy == "glister": strategy_args = {'batch_size' : args['batch_size'], 'lr': args['lr'], 'device':args['device']} strategy = GLISTER(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset), net, nclasses, strategy_args, typeOf='rand', lam=0.1) elif strategy == "adversarial_bim": strategy_args = {'batch_size' : args['batch_size'], 'device':args['device']} strategy = AdversarialBIM(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset), net, nclasses, strategy_args) elif strategy == "adversarial_deepfool": strategy_args = {'batch_size' : args['batch_size'], 'device':args['device']} strategy = AdversarialDeepFool(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset), net, nclasses, strategy_args) elif strategy == "bald": strategy_args = {'batch_size' : args['batch_size'], 'device':args['device']} strategy = BALDDropout(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset), net, nclasses, strategy_args) # Define acc initially acc = np.zeros(n_rounds+1) initial_unlabeled_size = len(unlabeled_dataset) initial_round = 1 # Define an index map index_map = np.array([x for x in range(initial_unlabeled_size)]) # Attempt to load a checkpoint. If one exists, then the experiment crashed. training_checkpoint = Checkpoint(experiment_name=experiment_name, path=checkpoint_directory) rec_acc, rec_indices, rec_state_dict = training_checkpoint.get_saved_values() # Check if there are values to recover if rec_acc is not None: # Restore the accuracy list for i in range(len(rec_acc)): acc[i] = rec_acc[i] # Restore the indices list and shift those unlabeled points to the labeled set. index_map = np.delete(index_map, rec_indices) # Record initial size of the training dataset intial_seed_size = len(train_dataset) restored_unlabeled_points = Subset(unlabeled_dataset, rec_indices) train_dataset = ConcatDataset([train_dataset, restored_unlabeled_points]) remaining_unlabeled_indices = list(set(range(len(unlabeled_dataset))) - set(rec_indices)) unlabeled_dataset = Subset(unlabeled_dataset, remaining_unlabeled_indices) # Restore the model net.load_state_dict(rec_state_dict) # Fix the initial round initial_round = (len(train_dataset) - initial_seed_size) // budget + 1 # Ensure loaded model is moved to GPU if torch.cuda.is_available(): net = net.cuda() strategy.update_model(net) strategy.update_data(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset)) dt = data_train(train_dataset, net, args) else: if torch.cuda.is_available(): net = net.cuda() dt = data_train(train_dataset, net, args) acc[0] = dt.get_acc_on_set(test_dataset) print('Initial Testing accuracy:', round(acc[0]*100, 2), flush=True) logs = {} logs['Training Points'] = len(train_dataset) logs['Test Accuracy'] = str(round(acc[0]*100, 2)) write_logs(logs, save_directory, 0) #Updating the trained model in strategy class strategy.update_model(net) # Record the training transform and test transform for disabling purposes train_transform = full_train_dataset.transform test_transform = test_dataset.transform ##User Controlled Loop for rd in range(initial_round, n_rounds+1): print('-------------------------------------------------') print('Round', rd) print('-------------------------------------------------') sel_time = time.time() full_train_dataset.transform = test_transform # Disable any augmentation while selecting points idx = strategy.select(budget) full_train_dataset.transform = train_transform # Re-enable any augmentation done during training sel_time = time.time() - sel_time print("Selection Time:", sel_time) selected_unlabeled_points = Subset(unlabeled_dataset, idx) train_dataset = ConcatDataset([train_dataset, selected_unlabeled_points]) remaining_unlabeled_indices = list(set(range(len(unlabeled_dataset))) - set(idx)) unlabeled_dataset = Subset(unlabeled_dataset, remaining_unlabeled_indices) # Update the index map index_map = np.delete(index_map, idx, axis = 0) print('Number of training points -', len(train_dataset)) # Start training strategy.update_data(train_dataset, LabeledToUnlabeledDataset(unlabeled_dataset)) dt.update_data(train_dataset) t1 = time.time() clf, train_logs = dt.train(None) t2 = time.time() acc[rd] = dt.get_acc_on_set(test_dataset) logs = {} logs['Training Points'] = len(train_dataset) logs['Test Accuracy'] = str(round(acc[rd]*100, 2)) logs['Selection Time'] = str(sel_time) logs['Trainining Time'] = str(t2 - t1) logs['Training'] = train_logs write_logs(logs, save_directory, rd) strategy.update_model(clf) print('Testing accuracy:', round(acc[rd]*100, 2), flush=True) # Create a checkpoint used_indices = np.array([x for x in range(initial_unlabeled_size)]) used_indices = np.delete(used_indices, index_map).tolist() round_checkpoint = Checkpoint(acc.tolist(), used_indices, clf.state_dict(), experiment_name=experiment_name) round_checkpoint.save_checkpoint(checkpoint_directory) print('Training Completed') return acc ###Output _____no_output_____ ###Markdown CIFAR10 Parameter DefinitionsParameters related to the specific experiment are placed here. You should examine each and modify them as needed. ###Code data_set_name = "CIFAR10" # DSET NAME HERE dataset_root_path = '../downloaded_data/' net = ResNet18() # MODEL HERE # MODIFY AS NECESSARY logs_directory = '/content/gdrive/MyDrive/colab_storage/logs/' checkpoint_directory = '/content/gdrive/MyDrive/colab_storage/check/' model_directory = "/content/gdrive/MyDrive/colab_storage/model/" experiment_name = "CIFAR10 BUDGET 6000" initial_seed_size = 1000 # INIT SEED SIZE HERE training_size_cap = 25000 # TRAIN SIZE CAP HERE budget = 6000 # BUDGET HERE # CHANGE ARGS AS NECESSARY args = {'n_epoch':300, 'lr':float(0.01), 'batch_size':20, 'max_accuracy':float(0.99), 'islogs':True, 'isreset':True, 'isverbose':True, 'device':'cuda'} # Train on approximately the full dataset given the budget contraints n_rounds = (training_size_cap - initial_seed_size) // budget ###Output _____no_output_____ ###Markdown Initial Loading and TrainingYou may choose to train a new initial model or to continue to load a specific model. If this notebook is being executed in Colab, you should consider whether or not you need the gdown line. ###Code # Mount drive containing possible saved model and define file path. colab_model_storage_mount = "/content/gdrive" drive.mount(colab_model_storage_mount) # Retrieve the model from a download link and save it to the drive os.makedirs(logs_directory, exist_ok = True) os.makedirs(checkpoint_directory, exist_ok = True) os.makedirs(model_directory, exist_ok = True) model_directory = F"{model_directory}/{data_set_name}" #!/content/gdown.pl/gdown.pl "INSERT SHARABLE LINK HERE" "INSERT DOWNLOAD LOCATION HERE (ideally, same as model_directory)" # MAY NOT NEED THIS LINE IF NOT CLONING MODEL FROM COLAB # Load the dataset if data_set_name == "CIFAR10": train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) full_train_dataset = datasets.CIFAR10(dataset_root_path, download=True, train=True, transform=train_transform, target_transform=torch.tensor) test_dataset = datasets.CIFAR10(dataset_root_path, download=True, train=False, transform=test_transform, target_transform=torch.tensor) nclasses = 10 # NUM CLASSES HERE elif data_set_name == "CIFAR100": train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761))]) test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761))]) full_train_dataset = datasets.CIFAR100(dataset_root_path, download=True, train=True, transform=train_transform, target_transform=torch.tensor) test_dataset = datasets.CIFAR100(dataset_root_path, download=True, train=False, transform=test_transform, target_transform=torch.tensor) nclasses = 100 # NUM CLASSES HERE elif data_set_name == "MNIST": image_dim=28 train_transform = transforms.Compose([transforms.RandomCrop(image_dim, padding=4), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) test_transform = transforms.Compose([transforms.Resize((image_dim, image_dim)), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) full_train_dataset = datasets.MNIST(dataset_root_path, download=True, train=True, transform=train_transform, target_transform=torch.tensor) test_dataset = datasets.MNIST(dataset_root_path, download=True, train=False, transform=test_transform, target_transform=torch.tensor) nclasses = 10 # NUM CLASSES HERE elif data_set_name == "FashionMNIST": train_transform = transforms.Compose([transforms.RandomCrop(28, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # Use mean/std of MNIST full_train_dataset = datasets.FashionMNIST(dataset_root_path, download=True, train=True, transform=train_transform, target_transform=torch.tensor) test_dataset = datasets.FashionMNIST(dataset_root_path, download=True, train=False, transform=test_transform, target_transform=torch.tensor) nclasses = 10 # NUM CLASSES HERE elif data_set_name == "SVHN": train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # ImageNet mean/std full_train_dataset = datasets.SVHN(dataset_root_path, split='train', download=True, transform=train_transform, target_transform=torch.tensor) test_dataset = datasets.SVHN(dataset_root_path, split='test', download=True, transform=test_transform, target_transform=torch.tensor) nclasses = 10 # NUM CLASSES HERE elif data_set_name == "ImageNet": train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # ImageNet mean/std # Note: Not automatically downloaded due to size restrictions. Notebook needs to be adapted to run on local device. full_train_dataset = datasets.ImageNet(dataset_root_path, download=False, split='train', transform=train_transform, target_transform=torch.tensor) test_dataset = datasets.ImageNet(dataset_root_path, download=False, split='val', transform=test_transform, target_transform=torch.tensor) nclasses = 1000 # NUM CLASSES HERE args['nclasses'] = nclasses dim = full_train_dataset[0][0].shape # Seed the random number generator for reproducibility and create the initial seed set np.random.seed(42) initial_train_indices = np.random.choice(len(full_train_dataset), replace=False, size=initial_seed_size) # COMMENT OUT ONE OR THE OTHER IF YOU WANT TO TRAIN A NEW INITIAL MODEL load_model = False #load_model = True # Only train a new model if one does not exist. if load_model: net.load_state_dict(torch.load(model_directory)) initial_model = net else: dt = data_train(Subset(full_train_dataset, initial_train_indices), net, args) initial_model, _ = dt.train(None) torch.save(initial_model.state_dict(), model_directory) print("Training for", n_rounds, "rounds with budget", budget, "on unlabeled set size", training_size_cap) ###Output _____no_output_____ ###Markdown Random Sampling ###Code strategy = "random" strat_logs = logs_directory+F'{data_set_name}/{strategy}/' os.makedirs(strat_logs, exist_ok = True) train_one(full_train_dataset, initial_train_indices, test_dataset, copy.deepcopy(initial_model), n_rounds, budget, args, nclasses, strategy, strat_logs, checkpoint_directory, F"{experiment_name}_{strategy}") ###Output _____no_output_____ ###Markdown Entropy ###Code strategy = "entropy" strat_logs = logs_directory+F'{data_set_name}/{strategy}/' os.makedirs(strat_logs, exist_ok = True) train_one(full_train_dataset, initial_train_indices, test_dataset, copy.deepcopy(initial_model), n_rounds, budget, args, nclasses, strategy, strat_logs, checkpoint_directory, F"{experiment_name}_{strategy}") ###Output _____no_output_____ ###Markdown GLISTER ###Code strategy = "glister" strat_logs = logs_directory+F'{data_set_name}/{strategy}/' os.makedirs(strat_logs, exist_ok = True) train_one(full_train_dataset, initial_train_indices, test_dataset, copy.deepcopy(initial_model), n_rounds, budget, args, nclasses, strategy, strat_logs, checkpoint_directory, F"{experiment_name}_{strategy}") ###Output _____no_output_____ ###Markdown FASS ###Code strategy = "fass" strat_logs = logs_directory+F'{data_set_name}/{strategy}/' os.makedirs(strat_logs, exist_ok = True) train_one(full_train_dataset, initial_train_indices, test_dataset, copy.deepcopy(initial_model), n_rounds, budget, args, nclasses, strategy, strat_logs, checkpoint_directory, F"{experiment_name}_{strategy}") ###Output _____no_output_____ ###Markdown BADGE ###Code strategy = "badge" strat_logs = logs_directory+F'{data_set_name}/{strategy}/' os.makedirs(strat_logs, exist_ok = True) train_one(full_train_dataset, initial_train_indices, test_dataset, copy.deepcopy(initial_model), n_rounds, budget, args, nclasses, strategy, strat_logs, checkpoint_directory, F"{experiment_name}_{strategy}") ###Output _____no_output_____ ###Markdown CoreSet ###Code strategy = "coreset" strat_logs = logs_directory+F'{data_set_name}/{strategy}/' os.makedirs(strat_logs, exist_ok = True) train_one(full_train_dataset, initial_train_indices, test_dataset, copy.deepcopy(initial_model), n_rounds, budget, args, nclasses, strategy, strat_logs, checkpoint_directory, F"{experiment_name}_{strategy}") ###Output _____no_output_____ ###Markdown Least Confidence ###Code strategy = "least_confidence" strat_logs = logs_directory+F'{data_set_name}/{strategy}/' os.makedirs(strat_logs, exist_ok = True) train_one(full_train_dataset, initial_train_indices, test_dataset, copy.deepcopy(initial_model), n_rounds, budget, args, nclasses, strategy, strat_logs, checkpoint_directory, F"{experiment_name}_{strategy}") ###Output _____no_output_____ ###Markdown Margin ###Code strategy = "margin" strat_logs = logs_directory+F'{data_set_name}/{strategy}/' os.makedirs(strat_logs, exist_ok = True) train_one(full_train_dataset, initial_train_indices, test_dataset, copy.deepcopy(initial_model), n_rounds, budget, args, nclasses, strategy, strat_logs, checkpoint_directory, F"{experiment_name}_{strategy}") ###Output _____no_output_____
notebooks/harmonic_oscillator_bound_states.ipynb
###Markdown An Emulator Example with a Perturbed Oscillator PotentialAuthor: Jordan MelendezI would have liked to make this much nicer and better documented, but I ran out of time. I hope someone can still find value in this example.Start by setting the parameters. ###Code ell = 0 # Partial wave n_max = 10 # Oscillator basis size mass = 1 # mass b = 1 # Oscillator parameter # Gaussian quadrature points r, dr = leggauss_shifted(100, 0, 10) # Gridded points (for plotting) r_grid = np.linspace(0, 3, 301) ###Output _____no_output_____ ###Markdown Create all the operators and wave functions that will be needed later on ###Code osc_wfs = np.stack([ho_radial_wf(r=r_grid, n=i+1, ell=ell, b=b) for i in range(n_max+1)], axis=-1) # Make Gaussian perturbations to the oscillator H1_params = [0.5, 2, 4] H1_r_grid = np.stack([np.exp(-(r_grid/a)**2) for a in H1_params], axis=-1) H1_r = np.stack([np.exp(-(r/a)**2) for a in H1_params], axis=-1) # Constant term: expected shape = (N_ho_basis, N_ho_basis) H0 = np.diag([ho_energy(n, ell, omega=1) for n in range(1, n_max+2)]) # Linear term: expected shape = (N_ho_basis, N_ho_basis, n_parameters) H1 = np.stack([ convert_from_r_to_ho_basis(H1_r_i, n_max=n_max, ell=ell, r=r, dr=dr, b=b) for H1_r_i in H1_r.T ], axis=-1) R = convert_from_r_to_ho_basis(r, n_max=n_max, ell=ell, r=r, dr=dr, b=b) def oscillator_potential(r, mass, omega): return 0.5 * mass * (omega * r) ** 2 rng = np.random.default_rng(1) p_train = rng.uniform(-5, 5, size=(6, H1.shape[-1])) p_valid = rng.uniform(-5, 5, size=(50, H1.shape[-1])) ###Output _____no_output_____ ###Markdown This is the emulator object that is doing all the work here!Check it out in the `emulate` package.Now `fit` will train the emulator. Later we will use `predict` to get the output energies either using the emulator or the exact solver. ###Code ham = BoundStateHamiltonian('Osc w/Gaussian Perturbation', H0=H0, H1=H1) ham.fit(p_train) ###Output _____no_output_____ ###Markdown Also create one that doesn't use exact training wave functions as the basis. Instead, use the lowest 6 harmonic oscillator wave functions as the basis. This is like no-core shell model (NCSM), so that is how we will label it here. ###Code ham_ncsm = BoundStateHamiltonian('Osc w/Gaussian Perturbation', H0=H0, H1=H1) ham_ncsm.fit(p_train) # Fake the basis wave functions as harmonic oscillator states # Because we are in the HO basis, these are just vectors with 1's and 0's ham_ncsm.setup_projections(np.eye(*ham.X.shape)) E_pred_ncsm = np.stack([ham_ncsm.predict(p_i, use_emulator=True) for p_i in p_valid]) ###Output _____no_output_____ ###Markdown Get the energies and the basis wave functions used for "training" the emulator. They are in the HO basis, but multiply by the harmonic oscillator wave function in position space to tranform to position space. ###Code E_pred = np.stack([ham.predict(p_i, use_emulator=True) for p_i in p_valid]) E_full = np.stack([ham.predict(p_i, use_emulator=False) for p_i in p_valid]) wf_train = osc_wfs @ ham.X ###Output _____no_output_____ ###Markdown Plot the training wave functions in position space ###Code fig, axes = plt.subplots(len(p_train)//2, 2+(len(p_train)%2), figsize=(4, 3.5), sharey=True, sharex=True) V0 = oscillator_potential(r_grid, mass=mass, omega=1) for i, p_i in enumerate(p_train): ax = axes.ravel()[i] ax.plot(r_grid, wf_train[:, i]+ham.E_train[i], label=r'$u_0(r)$') ax.axhline(0, 0, 1, c='lightgrey', lw=0.8, zorder=0) V = V0 + H1_r_grid @ p_i ax.plot(r_grid, V, c='k', lw=1, label=r"$V(\vec{a})$") ax.text( 0.94, 0.11, fr"$\vec{{a}}_{{{i}}}$", transform=ax.transAxes, ha='right', va='bottom', bbox=dict(facecolor='w', boxstyle='round'), ) axes[0, -1].legend(loc='upper left', bbox_to_anchor=(1.03,1), borderaxespad=0) for ax in axes[-1]: ax.set_xlabel(r"$r$") ax.set_xticks([0, 1, 2, 3]) ax.set_ylim(-6, 6) fig.suptitle("Wave Functions in Oscillator + Gaussian Perturbed Potential") fig.savefig("wave_functions_efficient_basis.png") from emulate.graphs import PRED_KWARGS, BASIS_KWARGS, FULL_KWARGS ###Output _____no_output_____ ###Markdown Emulate the wave functions at unseen parameter locations. Also predict them exactly and compare ###Code fig, ax = plt.subplots(figsize=(4, 2)) ax.plot(r_grid, wf_train[:, 0], label='Train', **BASIS_KWARGS) ax.plot(r_grid, wf_train, **BASIS_KWARGS) for i in range(3): if i == 0: label_full = 'Exact' label_pred = 'Emulated' else: label_full = label_pred = None ax.plot(r_grid, osc_wfs @ ham.exact_wave_function(p_valid[i]), label=label_full, **FULL_KWARGS) ax.plot(r_grid, osc_wfs @ ham.emulate_wave_function(p_valid[i]), label=label_pred, **PRED_KWARGS) ax.set_xlabel(r"$r$") ax.set_ylabel(r"$u_0(r)$") ax.set_title("Emulated Radial Wave Functions") ax.legend(loc='upper left', bbox_to_anchor=(1.03,1), borderaxespad=0) fig.savefig("perturbed_oscillator_efficient.png") fig, ax = plt.subplots(figsize=(4, 2)) ax.plot(r_grid, osc_wfs[:, 0], label='Train', **BASIS_KWARGS) ax.plot(r_grid, osc_wfs, **BASIS_KWARGS) for i in range(3): if i == 0: label_full = 'Exact' label_pred = 'Emulated' else: label_full = label_pred = None ax.plot(r_grid, osc_wfs @ ham_ncsm.exact_wave_function(p_valid[i]), label=label_full, **FULL_KWARGS) ax.plot(r_grid, osc_wfs @ ham_ncsm.emulate_wave_function(p_valid[i]), label=label_pred, **PRED_KWARGS) ax.set_xlabel(r"$r$") ax.set_ylabel(r"$u_0(r)$") ax.set_title("Emulated Radial Wave Functions (NCSM)") ax.legend(loc='upper left', bbox_to_anchor=(1.03,1), borderaxespad=0) fig.savefig("perturbed_oscillator_ncsm.png") ###Output _____no_output_____ ###Markdown How wrong were we? ###Code fig, ax = plt.subplots(figsize=(4, 2)) for i in range(3): # ax.plot( # r_grid, # osc_wfs @ (ham.exact_wave_function(p_valid[i])-ham.emulate_wave_function(p_valid[i])), # ls='-', label='Efficient' if i == 0 else None # ) ax.plot( r_grid, osc_wfs @ (ham_ncsm.exact_wave_function(p_valid[i])-ham_ncsm.emulate_wave_function(p_valid[i])), ls='-', label='NCSM' if i == 0 else None ) ax.legend(loc='upper left', bbox_to_anchor=(1.03,1), borderaxespad=0) ax.set_xlabel(r"$r$") ax.set_title("Wave Function Residuals") ax.axhline(0, 0, 1, c='lightgrey', lw=0.8, zorder=0) fig.savefig("perturbed_oscillator_ground_state_wave_function_residuals_no_ec.png") fig, ax = plt.subplots(figsize=(4, 2)) for i in range(3): ax.plot( r_grid, osc_wfs @ (ham_ncsm.exact_wave_function(p_valid[i])-ham_ncsm.emulate_wave_function(p_valid[i])), ls='-', label='NCSM' if i == 0 else None ) ax.plot( r_grid, osc_wfs @ (ham.exact_wave_function(p_valid[i])-ham.emulate_wave_function(p_valid[i])), ls='--', label='Efficient' if i == 0 else None ) ax.legend(loc='upper left', bbox_to_anchor=(1.03,1), borderaxespad=0) ax.set_xlabel(r"$r$") ax.set_title("Wave Function Residuals") ax.axhline(0, 0, 1, c='lightgrey', lw=0.8, zorder=0) fig.savefig("perturbed_oscillator_ground_state_wave_function_residuals.png") ###Output _____no_output_____ ###Markdown The above charts are pretty convincing that the efficient emulator is better. Let's see it on a log plot too. ###Code fig, ax = plt.subplots(figsize=(4, 2)) for i in range(3): ax.semilogy( r_grid, np.abs(osc_wfs @ (ham.exact_wave_function(p_valid[i])-ham.emulate_wave_function(p_valid[i]))), ls='-', label='Efficient' if i == 0 else None ) ax.semilogy( r_grid, np.abs(osc_wfs @ (ham_ncsm.exact_wave_function(p_valid[i])-ham_ncsm.emulate_wave_function(p_valid[i]))), ls='--', label='NCSM' if i == 0 else None ) ax.legend(loc='upper left', bbox_to_anchor=(1.03,1), borderaxespad=0) ax.set_xlabel(r"$r$") ax.set_title("Wave Function Absolute Residuals") ###Output _____no_output_____ ###Markdown Let's also compare to a GP trained on the energies. ###Code from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C kernel = C(1) * RBF(length_scale=[1,1,1]) gp = GaussianProcessRegressor(kernel=kernel) gp.fit(p_train, ham.E_train) E_pred_gp, E_std_gp = gp.predict(p_valid, return_std=True) fig, ax = plt.subplots(figsize=(4, 2)) ax.semilogy(np.arange(len(E_full)), np.abs(E_pred_gp-E_full), label='GP', ls='-.') ax.legend(loc='upper left', bbox_to_anchor=(1.03,1), borderaxespad=0) ax.set_title("Ground-State Energy Residuals") ax.set_xlabel("Validation Index") fig.savefig("perturbed_oscillator_ground_state_energy_residuals_gp_only.png") fig, ax = plt.subplots(figsize=(4, 2)) ax.semilogy(np.arange(len(E_full)), np.abs(E_pred_gp-E_full), label='GP', ls='-.') ax.semilogy((E_pred_ncsm-E_full), label='NCSM', ls='--') ax.legend(loc='upper left', bbox_to_anchor=(1.03,1), borderaxespad=0) ax.set_title("Ground-State Energy Residuals") ax.set_xlabel("Validation Index") fig.savefig("perturbed_oscillator_ground_state_energy_residuals_no_ec.png") ###Output _____no_output_____ ###Markdown Uncertainty Quantification ###Code n_valid_1d = 100 p0_valid_1d = np.linspace(-1, 1, n_valid_1d) p_valid_1d = np.stack([p0_valid_1d, 4.5*np.ones(n_valid_1d), -3.55 * np.ones(n_valid_1d)], axis=-1) p_valid_1d.shape E_valid_1d_true = np.array([ham.predict(p, use_emulator=False) for p in p_valid_1d]) E_valid_1d_pred = np.array([ham.predict(p, use_emulator=True) for p in p_valid_1d]) psi_valid_1d_true = np.array([ham.exact_wave_function(p) for p in p_valid_1d]) psi_valid_1d_pred = np.array([ham.emulate_wave_function(p) for p in p_valid_1d]) abs_residual_1d = np.abs(E_valid_1d_pred - E_valid_1d_true) psi_residual_1d = np.linalg.norm(psi_valid_1d_pred - psi_valid_1d_true, axis=-1) stdv_psi_valid_1d = np.sqrt(np.array([ham.variance_expensive(p) for p in p_valid_1d])) stdv_E_valid_1d = stdv_psi_valid_1d ** 2 fig, axes = plt.subplots(2, 1, figsize=(3.5, 4), sharex=True) ax = axes[0] ax.plot(p0_valid_1d, psi_residual_1d, label=r"$||\,|{\Delta\psi}\rangle\,||$", **FULL_KWARGS) ax.plot(p0_valid_1d, stdv_psi_valid_1d * np.average(psi_residual_1d/stdv_psi_valid_1d), label="Error Emulator", **PRED_KWARGS) ax.legend() ax.set_title("Bound State Error Emulator") ax = axes[1] ax.plot(p0_valid_1d, abs_residual_1d, label=r"$|\Delta E|$", **FULL_KWARGS) ax.plot(p0_valid_1d, stdv_E_valid_1d * np.average(abs_residual_1d/stdv_E_valid_1d), label="Error Emulator", **PRED_KWARGS) ax.set_xlabel("$a_0$ Parameter Value") ax.legend() fig.savefig("bound_state_error_emulator.png") ###Output _____no_output_____ ###Markdown OperatorsEverything above has used the Hamiltonian, since we're looking at energies and wave functions.But there is also an operator class that takes the trained `BoundStateHamiltonian` object and an operator as given.It can then predict the expectation value exactly or emulate it. ###Code op = BoundStateOperator(name='R', ham=ham, op0=R) op_ncsm = BoundStateOperator(name='R (NCSM)', ham=ham_ncsm, op0=R) op ###Output _____no_output_____ ###Markdown It has similar methods as the Hamiltonian object. `predict` returns the expectation value of the operator. ###Code R_full = np.stack([op.predict(p_i, use_emulator=False) for p_i in p_valid]) R_pred = np.stack([op.predict(p_i, use_emulator=True) for p_i in p_valid]) R_pred_ncsm = np.stack([op_ncsm.predict(p_i, use_emulator=True) for p_i in p_valid]) ###Output _____no_output_____ ###Markdown Train a GP on the radius at the same training points as the other emulators. ###Code kernel = C(1) * RBF(length_scale=[1,1,1]) gp_op = GaussianProcessRegressor(kernel=kernel) gp_op.fit(p_train, np.stack([op.predict(p_i, use_emulator=False) for p_i in p_train])) R_pred_gp, R_std_gp = gp_op.predict(p_valid, return_std=True) ###Output _____no_output_____ ###Markdown Check it out! ###Code fig, ax = plt.subplots(figsize=(4, 2)) ax.semilogy(np.arange(len(R_full)), np.abs(R_pred_gp-R_full), label='GP', ls='-.') ax.legend(loc='upper left', bbox_to_anchor=(1.03,1), borderaxespad=0) ax.set_title("Ground-State Radius Residuals") ax.set_xlabel("Validation Index") fig.savefig("perturbed_oscillator_ground_state_radius_residuals_gp_only.png") fig, ax = plt.subplots(figsize=(4, 2)) ax.semilogy(np.arange(len(R_full)), np.abs(R_pred_gp-R_full), label='GP', ls='-.') ax.semilogy(np.abs(R_pred_ncsm-R_full), label='NCSM', ls='--') ax.legend(loc='upper left', bbox_to_anchor=(1.03,1), borderaxespad=0) ax.set_title("Ground-State Radius Residuals") ax.set_xlabel("Validation Index") fig.savefig("perturbed_oscillator_ground_state_radius_residuals_no_ec.png") fig, ax = plt.subplots(figsize=(4, 2)) ax.semilogy(np.arange(len(R_full)), np.abs(R_pred_gp-R_full), label='GP', ls='-.') ax.semilogy(np.abs(R_pred_ncsm-R_full), label='NCSM', ls='--') ax.semilogy(np.abs(R_pred-R_full), label='Efficient') ax.legend(loc='upper left', bbox_to_anchor=(1.03,1), borderaxespad=0) ax.set_title("Ground-State Radius Residuals") ax.set_xlabel("Validation Index") fig.savefig("perturbed_oscillator_ground_state_radius_residuals.png") ###Output _____no_output_____
geoapps/inversion/airborne_electromagnetics/notebook.ipynb
###Markdown SimPEG EM1D InversionThis application provides an interface to the open-source [SimPEG](https://simpeg.xyz/) package for the inversion of electromagnetic (EM) data using a Laterally Constrained 1D approach. - The application supports several known EM systems, for both frequency and time-domain. - Conductivity models (S/m) are stored along vertically draped surfaces. New user? Visit the [**Getting Started**](https://geoapps.readthedocs.io/en/latest/content/installation.html) page.[**Online Documentation**](https://geoapps.readthedocs.io/en/latest/content/applications/em1d_inversion.html)*Click on the cell below and press **Shift+Enter** to run the application* ###Code from geoapps.inversion.airborne_electromagnetics.application import InversionApp # Start the inversion widget app = InversionApp() app() ###Output _____no_output_____ ###Markdown Plot convergence curveDisplay the misfit and regularization as a function of iterations by changing the path to inversion workspace (`*.geoh5`) ###Code from geoapps.utils.plotting import plot_convergence_curve out = plot_convergence_curve(r"..\..\..\assets\Temp\EM1DInversion_.geoh5") display(out) ###Output _____no_output_____
Homeworks/HW3/Q3/Q3.ipynb
###Markdown HW3,Q3 Ghazaleh Zehtab Q3.a ###Code import pandas as pd import matplotlib as plt import numpy as np import plot_utils import seaborn as sns phone=pd.read_csv("smartphone.csv") phone import statsmodels.api as sm tab = pd.crosstab(phone['Capacity'],phone['Company']) tab table = sm.stats.Table(tab) table ###Output _____no_output_____ ###Markdown Q3.b ###Code tab1 = pd.crosstab([phone.Company,phone.inch],phone.Weight) tab1 ###Output _____no_output_____ ###Markdown Q3.c ###Code plot_utils.contingency_table(phone.Company,phone.OS) ###Output _____no_output_____
S1/MAPSI/TME/TME2/enonce/.ipynb_checkpoints/TME2Durand-checkpoint.ipynb
###Markdown MAPSI - TME - Rappels de Proba/stats I- La planche de Galton ( obligatoire) I.1- Loi de BernouilliÉcrire une fonction `bernouilli: float ->int` qui prend en argument la paramètre $p \in [0,1]$ et qui renvoie aléatoirement $0$ (avec la probabilité $1-p$) ou $1$ (avec la probabilité $p$). ###Code def bernouilli(p): if(np.random.random(1)>p): return 1 else: return 0 ###Output _____no_output_____ ###Markdown I.2- Loi binomialeÉcrire une fonction `binomiale: int , float -> int` qui prend en argument un entier $n$ et $p \in [0,1]$ et qui renvoie aléatoirement un nimbre tiré selon la distribution ${\cal B}(n,p)$. ###Code def binomiale(n, p): acc=0 for i in range(n): acc += bernouilli(p) return acc ###Output _____no_output_____ ###Markdown I.3- Histogramme de la loi binomialeDans cette question, on considère une planche de Galton de hauteur $n$. On rappelle que des bâtons horizontaux (oranges) sont cloués à cette planche comme le montre la figure ci-contre. Des billes bleues tombent du haut de la planche et, à chaque niveau, se retrouvent à la verticale d'un des bâtons. Elles vont alors tomber soit à gauche, soit à droite du bâton, jusqu'à atteindre le bas de la planche. Ce dernier est constitué de petites boites dont les bords sont symbolisés par les lignes verticales grises. Chaque boite renferme des billes qui sont passées exactement le même nombre de fois à droite des bâtons oranges. Par exemple, la boite la plus à gauche renferme les billes qui ne sont jamais passées à droite d'un bâton, celle juste à sa droite renferme les billes passées une seule fois à droite d'un bâton et toutes les autres fois à gauche, et ainsi de suite. La répartition des billes dans les boites suit donc une loi binomiale ${\cal B}(n,0.5)$. Écrire un script qui crée un tableau de $1000$ cases dont le contenu correspond à $1000$ instanciations de la loi binomiale ${\cal B}(n,0.5)$. Afin de voir la répartition des billes dans la planche de Galton, tracer l'histogramme de ce tableau. Vous pourrez utiliser la fonction hist de matplotlib.pyplot: ###Code import matplotlib.pyplot as plt nb_billes = 10000 nb_etape = 100 proba = 0.5 tab = np.array([]) for i in range(nb_billes): tab = np.append(tab, binomiale(nb_etape, proba)) plt.hist(tab, nb_etape, width=1.1) plt.title("Histogramme répartition des billets dans la planche de Galton") plt.show() ###Output _____no_output_____ ###Markdown Pour le nombre de bins, calculez le nombre de valeurs différentes dans votre tableau. ###Code nb_unique = np.size(np.unique(tab)) print("Nombre de barres de l'histogramme:", nb_unique) ###Output Nombre de barres de l'histogramme: 37 ###Markdown II- Visualisation d'indépendances ( obligatoire) II.1- Loi normale centrée réduiteOn souhaite visualiser la fonction de densité de la loi normale. Pour cela, on va créer un ensemble de $k$ points $(x_i,y_i$), pour des $x_i$ équi-espacés variant de $-2σ$ à $2σ$, les $y_i$ correspondant à la valeur de la fonction de densité de la loi normale centrée de variance $σ^2$, autrement dit ${\cal N}(0,σ^2)$.Écrire une fonction `normale : int , float -> float np.array` qui, étant donné un paramètre entier `k` impair et un paramètre réel `sigma` renvoie l'`array numpy` des $k$ valeurs $y_i$. Afin que l'`array numpy` soit bien symmétrique, on lèvera une exception si $k$ est pair. ###Code import random import math def normale(k, sigma): if(k%2==0): raise ValueError("le nombre k doit etre impair") else: res = np.zeros(shape=(k, 2)) x = np.linspace(-2*sigma, 2*sigma, k) for i in range(k): x_val = x[i] y = (np.exp(-0.5*(x_val/sigma)**2))/(sigma*np.sqrt(2*np.pi)) # print("x:",x) # print("y:",y) res[i][0] = x_val res[i][1] = y return res ###Output _____no_output_____ ###Markdown Vérfier la validité de votre fonction en affichant grâce à la fonction plot les points générés dans une figure. ###Code nb_points = 2001 sigma = 10 points = normale(nb_points, sigma) plt.plot(points[:,0], points[:,1]) plt.title("Loi normale entre -2 sigma et +2 sigma") plt.show() ###Output _____no_output_____ ###Markdown II.2- Distribution de probabilité affineDans cette question, on considère une généralisation de la distribution uniforme: une distribution affine, c'est-à-dire que la fonction de densité est une droite, mais pas forcément horizontale, comme le montre la figure ci-contre. Écrire une fonction `proba_affine : int , float -> float np.array` qui, comme dans la question précédente, va générer un ensemble de $k$ points $y_i, i=0,...,k−1$, représentant cette distribution (paramétrée par sa pente `slope`). On vérifiera ici aussi que l'entier $k$ est impair. Si la pente est égale à $0$, c'est-à-dire si la distribution est uniforme, chaque point $y_i$ devrait être égal à $\frac{1}{k}$ (afin que $\sum y_i=1$). Si la pente est différente de $0$, il suffit de choisir, $\forall i=0,...,k−1$,$$y_i=\frac{1}{k}+(i−\frac{k−1}{2})×slope$$Vous pourrez aisément vérifier que, ici aussi, $\sum y_i=1$. Afin que la distribution soit toujours positive (c'est quand même un minimum pour une distribution de probabilité), il faut que la pente slope ne soit ni trop grande ni trop petite. Le bout de code ci-dessous lèvera une exception si la pente est trop élevée et indiquera la pente maximale possible. ###Code def proba_affine(k, slope): if k % 2 == 0: raise ValueError("le nombre k doit etre impair") if abs ( slope ) > 2. / ( k * k ): raise ValueError("la pente est trop raide : pente max = " + str ( 2. / ( k * k ) ) ) res = np.zeros(shape=(k, 2)) for i in range(k): res[i][0] = i res[i][1] = (1/k) + (i - ((k-1)/2)) * slope return res nb_points = 101 slope = 1e-4 points = proba_affine(nb_points, slope) plt.plot(points[:,0], points[:,1]) plt.title("Courbe distribution de probabilité affine") plt.show() ###Output _____no_output_____ ###Markdown II.3- Distribution jointeÉcrire une fonction `Pxy : float np.array , float np.array -> float np.2D-array` qui, étant donné deux tableaux numpy de nombres réels à $1$ dimension générés par les fonctions des questions précédentes et représentant deux distributions de probabilités $P(A)$ et $P(B)$, renvoie la distribution jointe $P(A,B)$ sous forme d'un tableau numpy à $2$ dimensions de nombres réels, en supposant que $A$ et $B$ sont des variables aléatoires indépendantes. Par exemple, si: ###Code PA = np.array ( [0.2, 0.7, 0.1] ) PB = np.array ( [0.4, 0.4, 0.2] ) ###Output _____no_output_____ ###Markdown alors `Pxy(A,B)` renverra le tableau :```np.array([[ 0.08, 0.08, 0.04], [ 0.28, 0.28, 0.14], [ 0.04, 0.04, 0.02]])``` ###Code def Pxy(x,y): n1 = np.size(x) n2 = np.size(y) res = np.zeros(shape=(n1, n2)) for i in range(n1): for j in range(n2): res[i][j] = x[i]*y[j] return res print("Distribution jointe de PA PB:\n",Pxy(PA, PB)) ###Output Distribution jointe de PA PB: [[0.08 0.08 0.04] [0.28 0.28 0.14] [0.04 0.04 0.02]] ###Markdown II.4- Affichage de la distribution jointeLe code ci-dessous permet d'afficher en 3D une probabilité jointe générée par la fonction précédente. Exécutez-le avec une probabilité jointe résultant de la combinaison d'une loi normale et d'une distribution affine. Si la commande `%matplotlib notebook` fonctione, vous pouvez interagir avec la courbe. Si le contenu de la fenêtre est vide, redimensionnez celle-ci et le contenu devrait apparaître. Cliquez à la souris à l'intérieur de la fenêtre et bougez la souris en gardant le bouton appuyé afin de faire pivoter la courbe. Observez sous différents angles cette courbe. Refaites l'expérience avec une probaiblité jointe résultant de deux lois normales. Essayez de comprendre ce que signifie, visuellement, l'indépendance probabiliste. Vous pouvez également recommencer l'expérience avec le logarithme des lois jointes. ###Code from mpl_toolkits.mplot3d import Axes3D %matplotlib inline # essayer `%matplotib notebook` pour interagir avec la visualisation 3D def dessine ( P_jointe ): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x = np.linspace ( -3, 3, P_jointe.shape[0] ) y = np.linspace ( -3, 3, P_jointe.shape[1] ) X, Y = np.meshgrid(x, y) ax.plot_surface(X, Y, P_jointe, rstride=1, cstride=1 ) ax.set_xlabel('A') ax.set_ylabel('B') ax.set_zlabel('P(A) * P(B)') plt.show () dessine(Pxy(PA,PB)) k = 101 sigma = 10 slope = 1e-5 dessine(Pxy(normale(k, sigma)[1], proba_affine(k, slope)[1])) ###Output _____no_output_____ ###Markdown III- Indépendances conditionnelles ( obligatoire)Dans cet exercice, on considère quatre variables aléatoires booléennes $X$, $Y$, $Z$ et $T$ ainsi que leur distribution jointe $P(X,Y,Z,T)$ encodée en python de la manière suivante : ###Code # creation de P(X,Y,Z,T) P_XYZT = np.array([[[[ 0.0192, 0.1728], [ 0.0384, 0.0096]], [[ 0.0768, 0.0512], [ 0.016 , 0.016 ]]], [[[ 0.0144, 0.1296], [ 0.0288, 0.0072]], [[ 0.2016, 0.1344], [ 0.042 , 0.042 ]]]]) ###Output _____no_output_____ ###Markdown Ainsi, $\forall (x,y,z,t) \in \{0,1\}^4$, `P_XYZT[x][y][z][t]` correspond à $P(X=x,Y=y,Z=z,T=t)$ ou, en version abrégée, à $P(x,y,z,t)$. III.1- Indépendance de X et T conditionnellement à (Y,Z)On souhaite tester si les variables aléatoires $X$ et $T$ sont indépendantes conditionnellement à $(Y,Z)$. Il s'agit donc de vérifer que dans la loi $P$, $$P(X,T|Y,Z)=P(X|Y,Z)\cdot P(T|Y,Z)$$Pour cela, tout d'abord, calculer à partir de `P_XYZT` le tableau `P_YZ` représentant la distribution $P(Y,Z)$. On rappelle que $$P(Y,Z)=\sum_{X,T} P(X,Y,Z,T)$$Le tableau `P_YZ` est donc un tableau à deux dimensions, dont la première correspond à $Y$ et la deuxième à $Z$. Si vous ne vous êtes pas trompé(e)s, vous devez obtenir le tableau suivant : ```np.array([[ 0.336, 0.084], [ 0.464, 0.116]])```Ainsi $P(Y=0,Z=1)=$ `P_YZ[0][1]` $=0.084$ ###Code P_YZ = np.zeros((2,2)) for x in range(P_XYZT.shape[0]): for y in range(P_XYZT.shape[1]): for z in range(P_XYZT.shape[2]): for t in range(P_XYZT.shape[3]): P_YZ[y][z] += P_XYZT[x][y][z][t] print(P_YZ) ###Output [[0.336 0.084] [0.464 0.116]] ###Markdown Ensuite, calculer le tableau `P_XTcondYZ` représentant la distribution $P(X,T|Y,Z)$. Ce tableau a donc 4 dimensions, chacune correspondant à une des variables aléatoires. De plus, les valeurs de `P_XTcondYZ` sont obtenues en utilisant la formule des probabilités conditionnelles: $$P(X,T|Y,Z)=\frac{P(X,Y,Z,T)}{P(Y,Z)}$$ ###Code P_XTcondYZ = np.zeros((2,2,2,2)) for x in range(P_XYZT.shape[0]): for y in range(P_XYZT.shape[1]): for z in range(P_XYZT.shape[2]): for t in range(P_XYZT.shape[3]): P_XTcondYZ[x][y][z][t] += P_XYZT[x][y][z][t] / P_YZ[y][z] print(P_XTcondYZ) ###Output [[[[0.05714286 0.51428571] [0.45714286 0.11428571]] [[0.16551724 0.11034483] [0.13793103 0.13793103]]] [[[0.04285714 0.38571429] [0.34285714 0.08571429]] [[0.43448276 0.28965517] [0.36206897 0.36206897]]]] ###Markdown Calculer à partir de `P_XTcondYZ` les tableaux à 3 dimensions `P_XcondYZ` et `P_TcondYZ` représentant respectivement les distributions $P(X|Y,Z)$ et $P(T|Y,Z)$. On rappelle que $$P(X|Y,Z)=∑_Y P(X,T|Y,Z)$$ ###Code P_XcondYZ = np.zeros((2,2,2)) P_TcondYZ = np.zeros((2,2,2)) for x in range(P_XYZT.shape[0]): for y in range(P_XYZT.shape[1]): for z in range(P_XYZT.shape[2]): for t in range(P_XYZT.shape[3]): P_XcondYZ[x][y][z] += P_XTcondYZ[x][y][z][t] P_TcondYZ[y][z][t] += P_XTcondYZ[x][y][z][t] print(P_XcondYZ) print(P_TcondYZ) ###Output [[[0.57142857 0.57142857] [0.27586207 0.27586207]] [[0.42857143 0.42857143] [0.72413793 0.72413793]]] [[[0.1 0.9] [0.8 0.2]] [[0.6 0.4] [0.5 0.5]]] ###Markdown Enfin, tester si $X$ et $T$ sont indépendantes conditionnellement à $(Y,Z)$: si c'est bien le cas, on doit avoir $$P(X,T|Y,Z)=P(X|Y,Z)×P(T|Y,Z)$$ ###Code # A = np.round(P_XcondYZ * P_TcondYZ, 5) # Erreur ! A = np.zeros((2, 2, 2, 2)) ecart = 0 epsilon = 1e-3 for x in range(P_XYZT.shape[0]): for y in range(P_XYZT.shape[1]): for z in range(P_XYZT.shape[2]): for t in range(P_XYZT.shape[3]): # A[x][y][z][t] = P_XcondYZ[x][y][z] * P_TcondYZ[y][z][t] ecart += np.abs((P_XcondYZ[x][y][z] * P_TcondYZ[y][z][t]) - P_XTcondYZ[x][y][z][t]) if ecart < epsilon: print("indépendant") else: print("pas indépendant") # A = np.round(A, 5) # B = np.round(P_XTcondYZ, 5) # print(A.shape) # print("=======") # print(B.shape) # print(A == B) ###Output indépendant ###Markdown III.2- Indépendance de X et (Y,Z)On souhaite maintenant déterminer si $X$ et $(Y,Z)$ sont indépendantes. Pour cela, commencer par calculer à partir de `P_XYZT` le tableau `P_XYZ` représentant la distribution $P(X,Y,Z)$. Ensuite, calculer à partir de `P_XYZ` les tableaux `P_X` et `P_YZ` représentant respectivement les distributions $P(X)$ et $P(Y,Z)$. On rappelle que $$P(X)=∑_Y∑_Z P(X,Y,Z)$$Si vous ne vous êtes pas trompé(e), P_X doit être égal au tableau suivant : ```np.array([ 0.4, 0.6])``` ###Code P_XYZ = np.zeros((2,2,2)) for x in range(P_XYZT.shape[0]): for y in range(P_XYZT.shape[1]): for z in range(P_XYZT.shape[2]): for t in range(P_XYZT.shape[3]): P_XYZ[x][y][z] += P_XYZT[x][y][z][t] print(P_XYZ) # P_X = np.zeros((2)) # for x in range(P_XYZT.shape[0]): # for y in range(P_XYZT.shape[1]): # for z in range(P_XYZT.shape[2]): # for t in range(P_XYZT.shape[3]): # P_X[x] += P_XYZT[x][y][z][t] # print(P_X) P_X = np.zeros((2)) for x in range(P_XYZT.shape[0]): for y in range(P_XYZT.shape[1]): for z in range(P_XYZT.shape[2]): P_X[x] += P_XYZ[x][y][z] print(P_X) ###Output [[[0.192 0.048] [0.128 0.032]] [[0.144 0.036] [0.336 0.084]]] [0.4 0.6] ###Markdown Enfin, si $X$ et $(Y,Z)$ sont bien indépendantes, on doit avoir $$P(X,Y,Z)=P(X)×P(Y,Z)$$ ###Code A = np.zeros((2, 2, 2)) ecart = 0 epsilon = 1e-3 for x in range(P_XYZ.shape[0]): for y in range(P_XYZ.shape[1]): for z in range(P_XYZ.shape[2]): A[x][y][z] = P_X[x] * P_YZ[y][z] ecart += np.abs(P_X[x] * P_YZ[y][z] - P_XYZ[x][y][z]) if ecart < epsilon: print("indépendant") else: print("pas indépendant") # A = np.round(A, 5) # B = np.round(P_XYZ, 5) # print(A.shape) # print("=======") # print(B.shape) # print(A == B) ###Output pas indépendant ###Markdown IV- Indépendances conditionnelles et consommation mémoire ( obligatoire)Le but de cet exercice est d'exploiter les probabilités conditionnelles et les indépendances conditionnelles afin de décomposer une probabilité jointe en un produit de "petites probabilités conditionnelles". Cela permet de stocker des probabilités jointes de grandes tailles sur des ordinateurs "standards". Au cours de l'exercice, vous allez donc partir d'une probabilité jointe et, progressivement, construire un programme qui identifie ces indépendances conditionnelles.Pour simplifier, dans la suite de cet exercice, nous allons considérer un ensemble $X_0,…,X_n$ de variables aléatoires binaires (elles ne peuvent prendre que 2 valeurs : 0 et 1). Simplification du code : utilisation de pyAgrumManipuler des probabilités et des opérations sur des probabilités complexes est difficiles avec les outils classiques. La difficulté principale est certainement le problème du mapping entre axe et variable aléatoire. `pyAgrum` propose une gestion de `Potential` qui sont des tableaux multidimensionnels dont les axes sont caractérisés par des variables et sont donc non ambigüs.Par exemple, après l'initiation du `Potential PABCD` : ###Code import pyAgrum as gum import pyAgrum.lib.notebook as gnb X,Y,Z,T=[gum.LabelizedVariable(x,x,2) for x in "XYZT"] pXYZT=gum.Potential().add(T).add(Z).add(Y).add(X) pXYZT[:]=[[[[ 0.0192, 0.1728], [ 0.0384, 0.0096]], [[ 0.0768, 0.0512], [ 0.016 , 0.016 ]]], [[[ 0.0144, 0.1296], [ 0.0288, 0.0072]], [[ 0.2016, 0.1344], [ 0.042 , 0.042 ]]]] ###Output _____no_output_____ ###Markdown On peut alors utiliser la méthode `margSumOut` qui supprime les variables par sommations: `p.margSumOut(['X','Y'])` correspond à calculer $\sum_{X,Y} p$La réponse a question III.1 se calcule donc ainsi : ###Code pXT_YZ=pXYZT/pXYZT.margSumOut(['X','T']) pX_YZ=pXT_YZ.margSumOut(['T']) pT_YZ=pXT_YZ.margSumOut(['X']) if pXT_YZ==pX_YZ*pT_YZ: print("=> X et T sont indépendants conditionnellemnt à Y et Z") else: print("=> pas d'indépendance trouvée") ###Output => X et T sont indépendants conditionnellemnt à Y et Z ###Markdown La réponse à la question III.2 se calcule ainsi : ###Code pXYZ=pXYZT.margSumOut("T") pYZ=pXYZ.margSumOut("X") pX=pXYZ.margSumOut(["Y","Z"]) if pXYZ==pX*pYZ: print("=> X et YZ sont indépendants") else: print("=> pas d'indépendance trouvée") gnb.sideBySide(pXYZ,pX,pYZ,pX*pYZ, captions=['$P(X,Y,Z)$','$P(X)$','$P(Y,Z)$','$P(X)\cdot P(Y,Z)$']) ###Output _____no_output_____ ###Markdown `asia.txt` contient la description d'une probabilité jointe sur un ensemble de $8$ variables aléatoires binaires (256 paramètres). Le fichier est produit à partir du site web suivant `http://www.bnlearn.com/bnrepository/`.Le code suivant permet de lire ce fichier et d'en récupérer la probabilité jointe (sous forme d'une `gum.Potential`) qu'il contient : ###Code def read_file ( filename ): """ Renvoie les variables aléatoires et la probabilité contenues dans le fichier dont le nom est passé en argument. """ Pres = gum.Potential () vars=[] with open ( filename, 'r' ) as fic: # on rajoute les variables dans le potentiel nb_vars = int ( fic.readline () ) for i in range ( nb_vars ): name, domsize = fic.readline ().split () vars.append(name) variable = gum.LabelizedVariable(name,name,int (domsize)) Pres.add(variable) # on rajoute les valeurs de proba dans le potentiel cpt = [] for line in fic: cpt.append ( float(line) ) Pres.fillWith( cpt ) return vars,Pres vars,Pjointe=read_file('asia.txt') # afficher Pjointe est un peu délicat (retire le commentaire de la ligne suivante) # Pjointe print('Les variables : '+str(vars)) # Noter qu'il existe une fonction margSumIn qui, à l'inverse de MargSumOut, élimine # toutes les variables qui ne sont pas dans les arguments Pjointe.margSumIn(['tuberculosis?','lung_cancer?']) ###Output _____no_output_____ ###Markdown IV.1- test d'indépendance conditionnelleEn utilisant la méthode `margSumIn` (voir juste au dessus), écrire une fonction `conditional_indep: Potential,str,str,list[str]->bool` qui rend vrai si dans le `Potential`, on peut lire l'indépendance conditionnelle.Par exemple, l'appel`conditional_indep(Pjointe,'bronchitis?', 'positive_Xray?',['tuberculosis?','lung_cancer?'])` vérifie si bronchitis est indépendant de `posititve_Xray` conditionnellement à `tuberculosis?` et `lung_cancer?`D'un point de vue général, on vérifie que $X$ et $Y$ sont indépendants conditionnellement à $Z_1,\cdots,Z_d$ par l'égalité :$$P(X,Y|Z_1,\cdots,Z_d)=P(X|Z_1,\cdot,Z_d)\cdot P(Y|Z_1,\cdots,Z_d)$$Ces trois probabilités sont calculables à partir de la loi jointe de $P(X,Y,Z_1,\cdots,Z_d)$.Remarque Vérifier l'égalité `P==Q` de 2 `Potential` peut être problématique si les 2 sont des résultats de calcul : il peut exister une petite variation. Un meilleur test est de vérifier `(P-Q).abs().max()<epsilon` avec `epsilon` assez petit. ###Code epsilon = 1e-3 # def conditional_indep(P,X,Y,Zs): # VERIFIER # if len(Zs) != 0: # pX_Zs = P.margSumIn(X) / P.margSumIn(Zs) # pY_Zs = P.margSumIn(Y) / P.margSumIn(Zs) # PXY_Zs = P.margSumIn([X, Y]) / P.margSumIn(Zs) # A = pX_Zs * pY_Zs # B = PXY_Zs # print("A:",A) # print("B:",B) # print("A-B",A-B) # test = (A-B).abs().max() < epsilon # if(test): # return "=> X et Y sont indépendants conditionnellemnt à Zs" # else: # return "=> X et Y ne sont pas indépendants conditionnellemnt à Zs" # else: # pX = P.margSumIn(X) # pY = P.margSumIn(Y) # PXY = P.margSumIn([X, Y]) # A = pX * pY # B = PXY # print("A:",A) # print("B:",B) # print("A-B",A-B) # test = (A-B).abs().max() < epsilon # if(test): # return "=> X et Y sont indépendants conditionnellemnt à Zs" # else: # return "=> X et Y ne sont pas indépendants conditionnellemnt à Zs" def conditional_indep(P,X,Y,Zs): variables = [X, Y] for var in Zs: variables.append(var) if len(Zs) != 0: pXYZs = P.margSumIn(variables) # Besoin de cette valeur pour calculer PXY_ZS pXY_Zs = pXYZs/pXYZs.margSumOut([X, Y]) # On enleve X Y pour avoir X et Y conditionnellement à Zs pX_Zs = pXY_Zs.margSumOut([Y]) pY_Zs = pXY_Zs.margSumOut([X]) A = pX_Zs * pY_Zs B = pXY_Zs # print("A:",A) # print("B:",B) # print("A-B",A-B) test = (A-B).abs().max() < epsilon if(test): return 1 # Independant else: return 0 # Pas independant else: pX = P.margSumIn(X) pY = P.margSumIn(Y) PXY = P.margSumIn([X, Y]) A = pX * pY B = PXY # print("A:",A) # print("B:",B) # print("A-B",A-B) test = (A-B).abs().max() < epsilon if(test): return 1 else: return 0 conditional_indep(Pjointe, 'bronchitis?', 'positive_Xray?', ['tuberculosis?','lung_cancer?']) conditional_indep(Pjointe, 'bronchitis?', 'visit_to_Asia?', []) ###Output _____no_output_____ ###Markdown IV.2- Factorisation compacte de loi jointeOn sait que si un ensemble de variables aléatoires ${\cal S} = \{X_{i_0},\ldots,X_{i_{n-1}}\}$ peut être partitionné en deux sous-ensembles $\cal K$ et $\cal L$ (c'est-à-dire tels que ${\cal K} \cap {\cal L} = \emptyset$ et ${\cal K} \cup {\cal L} = \{X_{i_0},\ldots,X_{i_{n-1}}\}$) tels qu'une variable $X_{i_n}$ est indépendante de ${\cal L}$ conditionnellement à ${\cal K}$, alors:$$P(X_{i_n}|X_{i_0},\ldots,X_{i_{n-1}}) = P(X_{i_n} | {\cal K},{\cal L}) = P(X_{i_n} | {\cal K})$$C'est ce que nous avons vu au cours n°2 (cf. définition des probabilités conditionnelles). Cette formule est intéressante car elle permet de réduire la taille mémoire consommée pour stocker $P(X_{i_n}|X_{i_0},\ldots,X_{i_{n-1}})$: il suffit en effet de stocker uniquement $P(X_{i_n} | {\cal K})$ pour obtenir la même information. Écrire une fonction `compact_conditional_proba: Potential,str-> Potential` qui, étant donné une probabilité jointe $P(X_{i_0},\ldots,X_{i_n})$, une variable aléatoire $X_{i_n}$, retourne cette probabilité conditionnelle $P(X_{i_n} | {\cal K})$. Pour cela, nous vous proposons l'algorithme itératif suivant:```K=SPour tout X in K: Si X indépendante de Xin conditionnellement à K\{X) alors Supprimer X de Kretourner P(Xin|K)$```Trois petites aides :1- La fonction precédente `conditional_indep` devrait vous servir...2- Obtenir la liste des noms des variables dans un `Potential` se fait par l'attribut ```P.var_names```3- Afin que l'affichage soit plus facile à comprendre, il peut être judicieux de placer la variable $X_{i_n}$ en premier dans la liste des variables du Potential, ce que l'on peut faire avec le code suivant : ```proba = proba.putFirst(Xin)``` ###Code def compact_conditional_proba(P, X): K = P.var_names # Ensemble des variables dans la Pjointe K.remove(X) for k in K: tmp_K = K.copy() tmp_K.remove(k) if conditional_indep(P, k, X, K): # Check si les variables dans K sont independantes K.remove(k) # Supprime de la liste si independantes var = [] var.append(X) for k in K: var.append(k) PX_K = P.margSumIn(var) / P.margSumIn(K) PX_K = PX_K.putFirst(X) return PX_K compact_conditional_proba(Pjointe,"visit_to_Asia?") compact_conditional_proba(Pjointe,"dyspnoea?") ###Output _____no_output_____ ###Markdown IV.3- Création d'un réseau bayésienUn réseau bayésien est simplement la décomposition d'une distribution de probabilité jointe en un produit de probabilités conditionnelles: vous avez vu en cours que $P(A,B) = P(A|B)P(B)$, et ce quel que soient les ensembles de variables aléatoires disjoints $A$ et $B$. En posant $A = X_n$ et $B = \{X_0,\ldots,X_{n-1}\}$, on obtient donc:$$P(X_0,\ldots,X_n) = P(X_n | X_0,\ldots,X_{n-1}) P(X_0,\ldots,X_{n-1})$$On peut réitérer cette opération pour le terme de droite en posant $A = X_{n-1}$ et $B=\{X_0,\ldots,X_{n-2}\}$, et ainsi de suite. Donc, par récurrence, on a:$$P(X_0,\ldots,X_n) = P(X_0) \times \prod_{i=1}^n P(X_i | X_0,\ldots,X_{i-1} )$$Si on applique à chaque terme $P(X_i | X_0,\ldots,X_{i-1} )$ la fonction `compact_conditional_proba`, on obtient une décomposition:$$P(X_0,\ldots,X_n) = P(X_0) \times \prod_{i=1}^n P(X_i | {\cal K_i})$$avec $K_i \subseteq \{X_0,\ldots,X_{i-1}\}$}. Cette décomposition est dite ''compacte'' car son stockage nécessite en pratique beaucoup moins de mémoire que celui de la distribution jointe. C'est ce que l'on appelle un réseau bayésien.Écrire une fonction `create_bayesian_network : Potential -> Potential list` qui, étant donné une probabilité jointe, vous renvoie la liste des $P(X_i | {\cal K_i})$. Pour cela, il vous suffit d'appliquer l'algorithme suivant:```liste = [] P = P(X_0,...,X_n)Pour i de n à 0 faire: calculer Q = compact_conditional_proba(P,X_i) afficher la liste des variables de Q rajouter Q à liste supprimer X_i de P par marginalisationretourner liste```Il est intéressant ici de noter les affichages des variables de Q: comme toutes les variables sont binaires, Q nécessite uniquement (2 puissance le nombre de ces variables) nombres réels. Ainsi une probabilité sur 3 variables ne nécessite que {$2^3=8$} nombres réels. ###Code def create_bayesian_network(P): res = [] liste_names = P.var_names for X_i in reversed(liste_names): print(X_i) Q = compact_conditional_proba(P, X_i) # print(Q) res.append(Q) P = P.margSumOut(X_i) return res create_bayesian_network(Pjointe) ###Output visit_to_Asia? tuberculosis? smoking? lung_cancer? tuberculosis_or_lung_cancer? bronchitis? positive_Xray? dyspnoea? ###Markdown IV.4- Gain en compressionOn souhaite observer le gain en termes de consommation mémoire obtenu par votre décomposition. Si `P` est un `Potential`, alors `P.toarray().size` est égal à la taille (le nombre de paramètres) de la table `P`. Calculez donc le nombre de paramètres nécessaires pour stocker la probabilité jointe lue dans le fichier `asia.txt` ainsi que la somme des nombres de paramètres des tables que vous avez créées grâce à votre fonction `create_bayesian_network`. ###Code # votre code ###Output _____no_output_____ ###Markdown V- Applications pratiques (optionnelle) La technique de décomposition que vous avez vue est effectivement utilisée en pratique. Vous pouvez voir le gain que l'on peut obtenir sur différentes distributions de probabilité du site :http://www.bnlearn.com/bnrepository/Cliquez sur le nom du dataset que vous voulez visualiser et téléchargez son .bif ou .dsl. Afin de visualiser le contenu du fichier, vous allez utiliser pyAgrum. Le code suivant vous permettra alors de visualiser votre dataset: la valeur indiquée après "domainSize" est la taille de la probabilité jointe d'origine (en nombre de paramètres) et celle après "dim" est la taille de la probabilité sous forme compacte (somme des tailles des probabilités conditionnelles compactes). ###Code # chargement de pyAgrum import pyAgrum as gum import pyAgrum.lib.notebook as gnb # chargement du fichier bif ou dsl bn = gum.loadBN ( "asia.bif" ) # affichage de la taille des probabilités jointes compacte et non compacte print(bn) # affichage graphique du réseau bayésien bn ###Output BN{nodes: 8, arcs: 8, domainSize: 256, dim: 36}
Cambridge Street Safety.ipynb
###Markdown Load the data ###Code file_path_historical = './data/Police_Department_Crash_Data_-_Historical.csv' file_path_updated = './data/Police_Department_Crash_Data_-_Updated.csv' data_historical = pd.read_csv(file_path_historical) data_updated = pd.read_csv(file_path_updated) ###Output _____no_output_____ ###Markdown Data wrangling ###Code # Fix column names to match across datasets data_historical = data_historical.rename(columns={"Day Of Week": "Day of Week", "Steet Name": "Street Name"}) # Extract coordinates for each crash location data_historical = data_historical.dropna(subset=['Latitude', 'Longitude']) # If coordinates don't exist drop row data_historical = data_historical.drop(columns=['Coordinates']) # Drop duplicates, need to specify columns to match against because there are slight variations for some reason data_historical = data_historical.drop_duplicates(subset=['Date Time', 'Day of Week', 'Object 1', 'Object 2']) # Drop rows without location data_updated = data_updated.dropna(subset=['Location']) # Drop rows without coordinates (these just use city center) data_updated = data_updated.drop(data_updated[data_updated['Location'].apply(lambda x: len(x.split('\n')) != 3)].index) # Create Coordinate column data_updated['Coordinates'] = data_updated['Location'].apply(lambda x: x.split('\n')[2]) # Create Latitude and Longitude columns data_updated['Latitude'] = data_updated['Coordinates'].apply(lambda x: float(x.split(',')[0].replace('(', ''))) data_updated['Longitude'] = data_updated['Coordinates'].apply(lambda x: float(x.split(',')[1].replace(')', ''))) # Drop the no longer needed Coordinates column data_updated = data_updated.drop(columns=['Coordinates']) # Drop duplicates, need to specify columns to match against because there are slight variations for some reason data_updated = data_updated.drop_duplicates(subset=['Date Time', 'Day of Week', 'Object 1', 'Object 2']) # Combine datasets data = pd.concat([data_historical, data_updated], ignore_index=True) # Filter for only the interesting and filled in data data = data[['Date Time', 'Day of Week', 'Object 1', 'Object 2', 'Street Number', 'Street Name', 'Cross Street', 'Location', 'Latitude', 'Longitude', 'May Involve Pedestrian', 'May involve cyclist']] # Remove duplicates # Caused by the two datasets overlapped reporting and lousy data # Need to specify columns to match against because there are slight variations between the two datasets # Keep the last rather than first since the updated dataset is more detailed, but worse coordinates # data = data.drop_duplicates(subset=['Date Time', 'Day of Week', 'Object 1', 'Object 2'], keep='last') data = data.groupby('Date Time').agg({ 'Day of Week': 'last', 'Object 1': 'last', 'Object 2': 'last', 'Street Number': 'last', 'Street Name': 'last', 'Cross Street': 'last', 'Location': 'first', 'Latitude': 'first', 'Longitude': 'first', 'May Involve Pedestrian': 'last', 'May involve cyclist': 'last' }).reset_index() # Convert data types for easier analysis data['Date Time'] = data['Date Time'].apply(lambda x: pd.to_datetime(x)) # Create new columns for analysis data['Coordinates'] = data.apply(lambda x: str(x["Latitude"]) + ',' + str(x["Longitude"]), axis=1) data['Hour of Day'] = data['Date Time'].apply(lambda x: x.hour) data['Year'] = data['Date Time'].apply(lambda x: x.year) data['Month of Year'] = data['Date Time'].apply(lambda x: x.month) data['Objects Involved'] = data.apply(lambda x: str(x["Object 1"]) + '-' + str(x["Object 2"]), axis=1) data['Bicycle Involved'] = data.apply(lambda x: (x['Object 1'] == 'Bicycle') | (x['Object 2'] == 'Bicycle') | (x['May involve cyclist'] == True), axis=1) data['Pedestrian Involved'] = data.apply(lambda x: (x['Object 1'] == 'Pedestrian') | (x['Object 2'] == 'Pedestrian') | (x['May Involve Pedestrian'] == True), axis=1) data['No Bike or Pedestrian Involved'] = data.apply(lambda x: (x['Bicycle Involved'] == False) and (x['Pedestrian Involved'] == False), axis=1) data['Bicycle Accident'] = data.apply(lambda x: x["Bicycle Involved"] and not x["Pedestrian Involved"], axis=1) data['Pedestrian Accident'] = data.apply(lambda x: x["Pedestrian Involved"], axis=1) data['Date'] = data['Date Time'].apply(lambda x: pd.to_datetime(x.date())) ###Output _____no_output_____ ###Markdown Analysis Interesting questions* Where did the accidents take place?* Who were they between? Bicycles? Pedestrians?* What time of day/day of week?* Did they increase/decrease over time? Per location?* Look at variables that could have made a difference (junction type, surface condition, street vs intersection, weather condition) Where do accidents take place? ###Code location_groups = data.groupby(['Latitude', 'Longitude']) locations_df = location_groups.size().to_frame(name='# of accidents').reset_index() locations_df.sort_values(by=['# of accidents'], ascending=False).head() ###Output _____no_output_____ ###Markdown Who are they between? ###Code object_groups = data.groupby(['Objects Involved']) objects_df = object_groups.size().to_frame(name='# of accidents').reset_index() objects_df.sort_values(by=['# of accidents'], ascending=False).head(15) ###Output _____no_output_____ ###Markdown Bicycles ###Code bicycle_data = data[(data['Bicycle Involved'] == True)] bicycle_groups = bicycle_data.groupby(['Objects Involved']) bicycles_df = bicycle_groups.size().to_frame(name='# of accidents').reset_index() bicycles_df.sort_values(by=['# of accidents'], ascending=False).head(15) ###Output _____no_output_____ ###Markdown Pedestrians ###Code pedestrian_data = data[(data['Pedestrian Involved'] == True)] pedestrian_groups = pedestrian_data.groupby(['Objects Involved']) pedestrians_df = pedestrian_groups.size().to_frame(name='# of accidents').reset_index() pedestrians_df.sort_values(by=['# of accidents'], ascending=False).head(15) ###Output _____no_output_____ ###Markdown When do accidents take place? Day of Week ###Code day_of_week_groups = data.groupby(['Day of Week']) day_of_week_df = day_of_week_groups.size().to_frame(name='# of accidents').reset_index() day_of_week_df.to_csv('output/day-of-week-all.csv') day_of_week_df.sort_values(by=['# of accidents'], ascending=False).head(7) ###Output _____no_output_____ ###Markdown Bicycles ###Code day_of_week_groups_bicycle = bicycle_data.groupby(['Day of Week']) day_of_week_bicycle_df = day_of_week_groups_bicycle.size().to_frame(name='# of accidents').reset_index() day_of_week_bicycle_df.to_csv('output/day-of-week-bicycle.csv') day_of_week_bicycle_df.sort_values(by=['# of accidents'], ascending=False).head(7) ###Output _____no_output_____ ###Markdown Pedestrians ###Code day_of_week_groups_pedestrian = pedestrian_data.groupby(['Day of Week']) day_of_week_pedestrian_df = day_of_week_groups_pedestrian.size().to_frame(name='# of accidents').reset_index() day_of_week_pedestrian_df.to_csv('output/day-of-week-pedestrian.csv') day_of_week_pedestrian_df.sort_values(by=['# of accidents'], ascending=False).head(7) ###Output _____no_output_____ ###Markdown Hour of Day ###Code time_ranges = pd.cut(data['Hour of Day'], [0, 4, 9, 13, 16, 20, 23], labels=['12am-5am', '5am-10am', '10am-1pm', '1pm-4pm', '4pm-8pm', '8pm-11:59pm']) data['Time Range'] = time_ranges time_range_groups = data.groupby(['Time Range']) time_range_df = time_range_groups.size().to_frame(name="# of accidents").reset_index() time_range_df.to_csv('output/time-ranges-all.csv') ###Output _____no_output_____ ###Markdown Bicycles ###Code bicycle_time_ranges = pd.cut(bicycle_data['Hour of Day'], [0, 4, 9, 13, 16, 20, 23], labels=['12am-5am', '5am-10am', '10am-1pm', '1pm-4pm', '4pm-8pm', '8pm-11:59pm']) bicycle_data['Time Range'] = bicycle_time_ranges bicycle_time_range_groups = bicycle_data.groupby(['Time Range']) bicycle_time_range_df = bicycle_time_range_groups.size().to_frame(name="# of accidents").reset_index() bicycle_time_range_df.to_csv('output/time-ranges-bicycles.csv') ###Output _____no_output_____ ###Markdown Pedestrians ###Code pedestrian_time_ranges = pd.cut(pedestrian_data['Hour of Day'], [0, 4, 9, 13, 16, 20, 23], labels=['12am-5am', '5am-10am', '10am-1pm', '1pm-4pm', '4pm-8pm', '8pm-11:59pm']) pedestrian_data['Time Range'] = pedestrian_time_ranges pedestrian_time_range_groups = pedestrian_data.groupby(['Time Range']) pedestrian_time_range_df = pedestrian_time_range_groups.size().to_frame(name="# of accidents").reset_index() pedestrian_time_range_df.to_csv('output/time-ranges-pedestrians.csv') ###Output _____no_output_____ ###Markdown How are they doing over time? ###Code # Annual Datasets data_2010 = data[(data['Year'] == 2010)] data_2011 = data[(data['Year'] == 2011)] data_2012 = data[(data['Year'] == 2012)] data_2013 = data[(data['Year'] == 2013)] data_2014 = data[(data['Year'] == 2014)] data_2015 = data[(data['Year'] == 2015)] data_2016 = data[(data['Year'] == 2016)] data_2017 = data[(data['Year'] == 2017)] accidents_by_day = data.groupby('Date').size() accidents_by_day_df = accidents_by_day.to_frame(name='# of accidents').reset_index() accidents_by_month = accidents_by_day.resample('M').sum() accidents_by_year = accidents_by_day.resample('Y').sum() accidents_by_day.sort_values(ascending=False).head() accidents_by_day.plot() accidents_by_month_df = accidents_by_month.to_frame(name='# of accidents').reset_index() accidents_by_month_df.sort_values(['# of accidents'], ascending=False).head(10) accidents_by_month_df.to_csv('output/accidents-by-month-all.csv') accidents_by_month_of_year = data.groupby('Month of Year').size() accidents_by_month_of_year_df = accidents_by_month_of_year.to_frame(name='# of accidents').reset_index() accidents_by_month_of_year.sort_values(ascending=False).head(12) accidents_by_month.plot() accidents_by_year.sort_values(ascending=False).head(10) accidents_by_year_groups = data.groupby('Year').size() accidents_by_year_df = accidents_by_year_groups.to_frame(name='# of accidents').reset_index() accidents_by_year_df.sort_values(['# of accidents'], ascending=False).head(10) accident_trend_plot_all = sns.regplot(accidents_by_year_df['Year'],accidents_by_year_df['# of accidents']) accident_trend_plot_all_figure = accident_trend_plot_all.get_figure() plt.savefig('output/accident_trend_plot_all.png') accidents_by_year.plot() ###Output _____no_output_____ ###Markdown Bicycle Accidents over time ###Code bicycle_accidents_by_day = bicycle_data.groupby('Date').size() bicycle_accidents_by_month = bicycle_accidents_by_day.resample('M').sum() bicycle_accidents_by_year = bicycle_accidents_by_day.resample('Y').sum() bicycle_accidents_by_day.plot() bicycle_accidents_by_month.plot() bicycle_accidents_by_year.plot() bicycle_accidents_by_year_groups = bicycle_data.groupby('Year').size() bicycle_accidents_by_year_df = bicycle_accidents_by_year_groups.to_frame(name='# of accidents').reset_index() bicycle_accident_trend_plot_all = sns.regplot(bicycle_accidents_by_year_df['Year'],bicycle_accidents_by_year_df['# of accidents']) bicycle_accident_trend_plot_all_figure = bicycle_accident_trend_plot_all.get_figure() plt.savefig('output/accident_trend_plot_bicycle.png') ###Output _____no_output_____ ###Markdown Pedestrian Accidents over time ###Code pedestrian_accidents_by_day = pedestrian_data.groupby('Date').size() pedestrian_accidents_by_month = pedestrian_accidents_by_day.resample('M').sum() pedestrian_accidents_by_year = pedestrian_accidents_by_day.resample('Y').sum() pedestrian_accidents_by_day.plot() pedestrian_accidents_by_month.plot() pedestrian_accidents_by_year.plot() pedestrian_accidents_by_year_groups = pedestrian_data.groupby('Year').size() pedestrian_accidents_by_year_df = pedestrian_accidents_by_year_groups.to_frame(name='# of accidents').reset_index() pedestrian_accident_trend_plot_all = sns.regplot(pedestrian_accidents_by_year_df['Year'],pedestrian_accidents_by_year_df['# of accidents']) pedestrian_accident_trend_plot_all_figure = pedestrian_accident_trend_plot_all.get_figure() plt.savefig('output/accident_trend_plot_pedestrian.png') ###Output _____no_output_____ ###Markdown Combined ###Code combined_accidents_by_day = data.groupby(['Date', 'Bicycle Accident', 'Pedestrian Accident', 'No Bike or Pedestrian Involved']).size() combined_accidents_by_day_df = combined_accidents_by_day.to_frame(name='# of accidents').reset_index() combined_accidents_by_day_df def define_type(x): if x['Bicycle Accident']: return 'Bicycle' elif x['Pedestrian Accident']: return 'Pedestrian' elif x['No Bike or Pedestrian Involved']: return 'Other' data['Accident Type'] = data.apply(lambda x: define_type(x), axis=1) combined_accidents_by_year_groups = data.groupby(['Year', 'Accident Type']).size() combined_accidents_by_year_df = combined_accidents_by_year_groups.to_frame(name='# of accidents').reset_index() combined_accidents_by_year_groups.unstack(level=-1).to_csv('output/combined-accidents-by-year.csv') ###Output _____no_output_____ ###Markdown Map Data ###Code # all accidents df_to_geojson(data, filename='output/all_accidents.geojson', properties=['Object 1', 'Object 2', 'Day of Week', 'Year', 'Bicycle Involved', 'Pedestrian Involved', 'No Bike or Pedestrian Involved'], lat='Latitude', lon='Longitude', precision=7) ###Output _____no_output_____
src/jupyter/verinet_nn_to_nnet.ipynb
###Markdown Convert Cifar10 to nnet ###Code model = Cifar10() model.load("./data/models_torch/cifar10_state_dict.pth") nnet = NNET() img_size = 32*32 input_mean = np.zeros(3*32*32) input_mean[:32*32] = 0.4914 input_mean[32*32:2*32*32] = 0.4822 input_mean[2*32*32:] = 0.4465 input_range = np.zeros(3*32*32) input_range[:32*32] = 0.2023 input_range[32*32:2*32*32] = 0.1994 input_range[2*32*32:] = 0.2010 nnet.init_nnet_from_verinet_nn(model=model, input_shape=np.array((3, 32, 32)), min_values=0.0, max_values=1.0, input_mean=input_mean, input_range=input_range) nnet.write_nnet_to_file("./data/models_nnet/cifar10_conv.nnet") ###Output _____no_output_____ ###Markdown Convert eran to nnetConverts the mnist Sigmoid/Tanh networks from eran to nnet format ###Code model_name = "ffnnTANH__PGDK_w_0.1_6_500" model_path = f"/home/patrick/Desktop/VeriNet/eran-benchmark/eran/data/{model_name}.pyt" act_func = nn.Tanh layers = [ nn.Sequential(nn.Linear(784, 500), act_func()), nn.Sequential(nn.Linear(500, 500), act_func()), nn.Sequential(nn.Linear(500, 500), act_func()), nn.Sequential(nn.Linear(500, 500), act_func()), nn.Sequential(nn.Linear(500, 500), act_func()), nn.Sequential(nn.Linear(500, 500), act_func()), nn.Sequential(nn.Linear(500, 10)), ] with open(model_path, "r") as file: # skip header file.readline() file.readline() for j in range(len(layers)): layer = list(layers[j].children())[0] in_size = layer.in_features out_size = layer.out_features weights = torch.Tensor([float(w) for w in file.readline().replace('[', '').replace(']', '').split(", ")]) layer.weight.data = weights.reshape(out_size, in_size) bias = torch.Tensor([float(w) for w in file.readline().replace('[', '').replace(']', '').split(", ")]) layer.bias.data = bias file.readline() model = VeriNetNN(layers) nnet = NNET() nnet.init_nnet_from_verinet_nn(model=model, input_shape=np.array((784)), min_values=0.0, max_values=1.0, input_mean=0.1307, input_range=0.3081) nnet.write_nnet_to_file(f"./data/models_nnet/{model_name}.nnet") ###Output _____no_output_____
03_sec-dsrg/03_sec-adp-func.ipynb
###Markdown 03_sec-adp-func ###Code import os import time import pickle import cv2 import numpy.matlib import tensorflow as tf import skimage.color as imgco import skimage.io as imgio import multiprocessing import pandas as pd import traceback from utilities import * from lib.crf import crf_inference from DSRG import DSRG from SEC import SEC import argparse from model import Model MODEL_WSSS_ROOT = '../database/models_wsss' method = 'SEC' dataset = 'ADP-func' phase = 'predict' seed_type = 'VGG16' if dataset in ['ADP-morph', 'ADP-func']: setname = 'segtest' sess_id = dataset + '_' + setname + '_' + seed_type else: sess_id = dataset + '_' + seed_type h, w = (321, 321) seed_size = 41 batch_size = 16 should_saveimg = False verbose = True parser = argparse.ArgumentParser() parser.add_argument('-m', '--method', help='The WSSS method to be used (either SEC or DSRG)', type=str) parser.add_argument('-d', '--dataset', help='The dataset to run on (either ADP-morph, ADP-func, VOC2012, ' 'DeepGlobe_train75, or DeepGlobe_train37.5)', type=str) parser.add_argument('-n', '--setname', help='The name of the segmentation validation set in the ADP dataset, if ' 'applicable (either tuning or segtest)', type=str) parser.add_argument('-s', '--seed', help='The type of classification network to use for seeding (either VGG16, X1.7 for ' 'ADP-morph or ADP-func, or M7 for all other datasets)', type=str) parser.add_argument('-b', '--batchsize', help='The batch size', default=16, type=int) parser.add_argument('-i', '--saveimg', help='Toggle whether to save output segmentation as images', action='store_true') parser.add_argument('-v', '--verbose', help='Toggle verbosity of debug messages', action='store_true') args = parser.parse_args(['--method', method, '--dataset', dataset, '--seed', seed_type, '--setname', setname, '-v']) mdl = Model(args) mdl.load() ###Output len:{'train': 14134, 'segtest': 50} ###Markdown Build model ###Code mdl.sess = tf.Session() data_x = {} data_label = {} id_of_image = {} iterator = {} for val_category in mdl.run_categories[1:]: data_x[val_category], data_label[val_category], id_of_image[val_category], \ iterator[val_category] = mdl.next_batch(category=val_category, max_epochs=1) first_cat = mdl.run_categories[1] mdl.model.build(net_input=data_x[first_cat], net_label=data_label[first_cat], net_id=id_of_image[first_cat], phase=first_cat) mdl.sess.run(tf.global_variables_initializer()) mdl.sess.run(tf.local_variables_initializer()) for val_category in mdl.run_categories[1:]: mdl.sess.run(iterator[val_category].initializer) ###Output WARNING:tensorflow:From C:\Users\chanlynd\Anaconda3\lib\site-packages\tensorflow\python\ops\control_flow_ops.py:423: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. WARNING:tensorflow:From C:\Users\chanlynd\Documents\Grad Research\wsss-analysis\03_sec-dsrg\model.py:308: calling squeeze (from tensorflow.python.ops.array_ops) with squeeze_dims is deprecated and will be removed in a future version. Instructions for updating: Use the `axis` argument instead WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md * https://github.com/tensorflow/addons If you depend on functionality not listed there, please file an issue. WARNING:tensorflow:From C:\Users\chanlynd\Documents\Grad Research\wsss-analysis\03_sec-dsrg\SEC.py:283: py_func (from tensorflow.python.ops.script_ops) is deprecated and will be removed in a future version. Instructions for updating: tf.py_func is deprecated in TF V2. Instead, use tf.py_function, which takes a python function which manipulates tf eager tensors instead of numpy arrays. It's easy to convert a tf eager tensor to an ndarray (just call tensor.numpy()) but having access to eager tensors means `tf.py_function`s can use accelerators such as GPUs as well as being differentiable using a gradient tape. ###Markdown Load model from file ###Code # Resume training from latest checkpoint if it exists saver = tf.train.Saver(max_to_keep=1, var_list=mdl.model.trainable_list) latest_ckpt = mdl.get_latest_checkpoint() if latest_ckpt is not None: if verbose: print('Loading model from previous checkpoint %s' % latest_ckpt) mdl.restore_from_model(saver, latest_ckpt) ###Output Loading model from previous checkpoint ../database/models_wsss\SEC\ADP-func_VGG16\final-0 WARNING:tensorflow:From C:\Users\chanlynd\Anaconda3\lib\site-packages\tensorflow\python\training\saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to check for files with this prefix. INFO:tensorflow:Restoring parameters from ../database/models_wsss\SEC\ADP-func_VGG16\final-0 ###Markdown Predict segmentation on a single batch ###Code val_category = mdl.run_categories[1] layer = mdl.model.net['rescale_output'] input = mdl.model.net['input'] dropout = mdl.model.net['drop_prob'] img,id_,gt_ = mdl.sess.run([data_x[val_category], id_of_image[val_category], data_label[val_category],]) # Generate predicted segmentation in current batch output_scale = mdl.sess.run(layer,feed_dict={input:img, dropout:0.0}) img_ids = list(id_) gt_ = gt_[:, :, :, :3] j = 0 # Read original image img_curr = cv2.cvtColor(cv2.imread(os.path.join(mdl.dataset_dir, 'JPEGImages', id_[j].decode('utf-8') + '.jpg')), cv2.COLOR_RGB2BGR) # Read GT segmentation if dataset == 'VOC2012' or 'DeepGlobe' in dataset: gt_curr = cv2.cvtColor(cv2.imread(os.path.join(mdl.dataset_dir, 'SegmentationClassAug', id_[j].decode('utf-8') + '.png')), cv2.COLOR_RGB2BGR) elif dataset == 'ADP-morph': gt_curr = cv2.cvtColor(cv2.imread(os.path.join(mdl.dataset_dir, 'SegmentationClassAug', 'ADP-morph', id_[j].decode('utf-8') + '.png')), cv2.COLOR_RGB2BGR) elif dataset == 'ADP-func': gt_curr = cv2.cvtColor(cv2.imread(os.path.join(mdl.dataset_dir, 'SegmentationClassAug', 'ADP-func', id_[j].decode('utf-8') + '.png')), cv2.COLOR_RGB2BGR) # Read predicted segmentation if 'DeepGlobe' not in dataset: pred_curr = cv2.resize(output_scale[j], (gt_curr.shape[1], gt_curr.shape[0])) img_curr = cv2.resize(img_curr, (gt_curr.shape[1], gt_curr.shape[0])) # Apply dCRF pred_curr = crf_inference(img_curr, mdl.model.crf_config_test, mdl.num_classes, pred_curr, use_log=True) else: # Apply dCRF pred_curr = crf_inference(np.uint8(img[j]), mdl.model.crf_config_test, mdl.num_classes, output_scale[j], use_log=True) pred_curr = cv2.resize(pred_curr, (gt_curr.shape[1], gt_curr.shape[0])) # Read original image img_curr = cv2.cvtColor(cv2.imread(os.path.join(mdl.dataset_dir, 'JPEGImages', id_[j].decode('utf-8') + '.jpg')), cv2.COLOR_RGB2BGR) # Read GT segmentation if dataset == 'VOC2012' or 'DeepGlobe' in dataset: gt_curr = cv2.cvtColor(cv2.imread(os.path.join(mdl.dataset_dir, 'SegmentationClassAug', id_[j].decode('utf-8') + '.png')), cv2.COLOR_RGB2BGR) elif dataset == 'ADP-morph': gt_curr = cv2.cvtColor(cv2.imread(os.path.join(mdl.dataset_dir, 'SegmentationClassAug', 'ADP-morph', id_[j].decode('utf-8') + '.png')), cv2.COLOR_RGB2BGR) elif dataset == 'ADP-func': gt_curr = cv2.cvtColor(cv2.imread(os.path.join(mdl.dataset_dir, 'SegmentationClassAug', 'ADP-func', id_[j].decode('utf-8') + '.png')), cv2.COLOR_RGB2BGR) # Read predicted segmentation if 'DeepGlobe' not in dataset: pred_curr = cv2.resize(output_scale[j], (gt_curr.shape[1], gt_curr.shape[0])) img_curr = cv2.resize(img_curr, (gt_curr.shape[1], gt_curr.shape[0])) # Apply dCRF pred_curr = crf_inference(img_curr, mdl.model.crf_config_test, mdl.num_classes, pred_curr, use_log=True) else: # Apply dCRF pred_curr = crf_inference(np.uint8(img[j]), mdl.model.crf_config_test, mdl.num_classes, output_scale[j], use_log=True) pred_curr = cv2.resize(pred_curr, (gt_curr.shape[1], gt_curr.shape[0])) plt.figure plt.subplot(121) plt.imshow(img_curr.astype('uint8')) plt.title('Original image') plt.subplot(122) plt.imshow(gt_curr.astype('uint8')) plt.title('Functional\n ground truth') Y_raw = np.zeros((gt_curr.shape[0], gt_curr.shape[1], 3)) P_raw = cv2.resize(output_scale[j], (gt_curr.shape[1], gt_curr.shape[0])) for k, gt_colour in enumerate(mdl.label2rgb_colors): pred_mask = np.argmax(P_raw, axis=-1) == k Y_raw += np.expand_dims(pred_mask, axis=2) * np.expand_dims(np.expand_dims(gt_colour, axis=0), axis=0) Y = np.zeros((gt_curr.shape[0], gt_curr.shape[1], 3)) P = cv2.resize(pred_curr, (gt_curr.shape[1], gt_curr.shape[0])) for k, gt_colour in enumerate(mdl.label2rgb_colors): pred_mask = np.argmax(P, axis=-1) == k Y += np.expand_dims(pred_mask, axis=2) * np.expand_dims(np.expand_dims(gt_colour, axis=0), axis=0) plt.figure plt.subplot(121) plt.imshow(Y_raw.astype('uint8')) plt.title('Raw Prediction') plt.subplot(122) plt.imshow(Y.astype('uint8')) plt.title('Post-CRF Prediction') ###Output _____no_output_____
data_scientist_nanodegree/projects/p2_image_classifier/Image Classifier Project.ipynb
###Markdown Developing an AI applicationGoing forward, AI algorithms will be incorporated into more and more everyday applications. For example, you might want to include an image classifier in a smart phone app. To do this, you'd use a deep learning model trained on hundreds of thousands of images as part of the overall application architecture. A large part of software development in the future will be using these types of models as common parts of applications. In this project, you'll train an image classifier to recognize different species of flowers. You can imagine using something like this in a phone app that tells you the name of the flower your camera is looking at. In practice you'd train this classifier, then export it for use in your application. We'll be using [this dataset](http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html) of 102 flower categories, you can see a few examples below. The project is broken down into multiple steps:* Load and preprocess the image dataset* Train the image classifier on your dataset* Use the trained classifier to predict image contentWe'll lead you through each part which you'll implement in Python.When you've completed this project, you'll have an application that can be trained on any set of labeled images. Here your network will be learning about flowers and end up as a command line application. But, what you do with your new skills depends on your imagination and effort in building a dataset. For example, imagine an app where you take a picture of a car, it tells you what the make and model is, then looks up information about it. Go build your own dataset and make something new.First up is importing the packages you'll need. It's good practice to keep all the imports at the beginning of your code. As you work through this notebook and find you need to import a package, make sure to add the import up here. ###Code %matplotlib inline %config InlineBackend.figure_format = 'retina' import helper import time import os import json import matplotlib.pyplot as plt import torch import numpy as np import torch.nn.functional as F from PIL import Image from collections import OrderedDict from torch import nn from torch import optim from torch.autograd import Variable from torchvision import datasets, transforms, models np.set_printoptions(suppress=True) ###Output _____no_output_____ ###Markdown Load the dataHere you'll use `torchvision` to load the data ([documentation](http://pytorch.org/docs/0.3.0/torchvision/index.html)). The data should be included alongside this notebook, otherwise you can [download it here](https://s3.amazonaws.com/content.udacity-data.com/nd089/flower_data.tar.gz). The dataset is split into three parts, training, validation, and testing. For the training, you'll want to apply transformations such as random scaling, cropping, and flipping. This will help the network generalize leading to better performance. You'll also need to make sure the input data is resized to 224x224 pixels as required by the pre-trained networks.The validation and testing sets are used to measure the model's performance on data it hasn't seen yet. For this you don't want any scaling or rotation transformations, but you'll need to resize then crop the images to the appropriate size.The pre-trained networks you'll use were trained on the ImageNet dataset where each color channel was normalized separately. For all three sets you'll need to normalize the means and standard deviations of the images to what the network expects. For the means, it's `[0.485, 0.456, 0.406]` and for the standard deviations `[0.229, 0.224, 0.225]`, calculated from the ImageNet images. These values will shift each color channel to be centered at 0 and range from -1 to 1. ###Code data_dir = 'flowers' train_dir = os.path.join(data_dir, 'train') valid_dir = os.path.join(data_dir, 'valid') test_dir = os.path.join(data_dir, 'test') # TODO: Define your transforms for the training, validation, and testing sets train_transforms = transforms.Compose([ # resize 224x224 transforms.Resize(224), transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) validation_transforms = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) test_transforms = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # TODO: Load the datasets with ImageFolder train_data = datasets.ImageFolder(train_dir, transform=train_transforms) validation_data = datasets.ImageFolder(valid_dir, transform=validation_transforms) test_data = datasets.ImageFolder(test_dir, transform=test_transforms) # TODO: Using the image datasets and the trainforms, define the dataloaders train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True) validation_loader = torch.utils.data.DataLoader(validation_data, batch_size=32) test_loader = torch.utils.data.DataLoader(test_data, batch_size=32) ###Output _____no_output_____ ###Markdown Test dataloaders ###Code images, labels = next(iter(train_loader)) helper.imshow(images[0], normalize=True) images, labels = next(iter(validation_loader)) helper.imshow(images[0], normalize=True) images, labels = next(iter(test_loader)) helper.imshow(images[0], normalize=True) ###Output _____no_output_____ ###Markdown Label mappingYou'll also need to load in a mapping from category label to category name. You can find this in the file `cat_to_name.json`. It's a JSON object which you can read in with the [`json` module](https://docs.python.org/2/library/json.html). This will give you a dictionary mapping the integer encoded categories to the actual names of the flowers. ###Code with open('cat_to_name.json', 'r') as f: cat_to_name = json.load(f) cat_to_name['1'] len(cat_to_name) ###Output _____no_output_____ ###Markdown Building and training the classifierNow that the data is ready, it's time to build and train the classifier. As usual, you should use one of the pretrained models from `torchvision.models` to get the image features. Build and train a new feed-forward classifier using those features.We're going to leave this part up to you. If you want to talk through it with someone, chat with your fellow students! You can also ask questions on the forums or join the instructors in office hours.Refer to [the rubric](https://review.udacity.com/!/rubrics/1663/view) for guidance on successfully completing this section. Things you'll need to do:* Load a [pre-trained network](http://pytorch.org/docs/master/torchvision/models.html) (If you need a starting point, the VGG networks work great and are straightforward to use)* Define a new, untrained feed-forward network as a classifier, using ReLU activations and dropout* Train the classifier layers using backpropagation using the pre-trained network to get the features* Track the loss and accuracy on the validation set to determine the best hyperparametersWe've left a cell open for you below, but use as many as you need. Our advice is to break the problem up into smaller parts you can run separately. Check that each part is doing what you expect, then move on to the next. You'll likely find that as you work through each part, you'll need to go back and modify your previous code. This is totally normal!When training make sure you're updating only the weights of the feed-forward network. You should be able to get the validation accuracy above 70% if you build everything right. Make sure to try different hyperparameters (learning rate, units in the classifier, epochs, etc) to find the best model. Save those hyperparameters to use as default values in the next part of the project. ###Code # TODO: Build and train your network pretrained_model = models.vgg16(pretrained=True) pretrained_model def create_classifier(layer_sizes): layers = OrderedDict() for index, value in enumerate(layer_sizes): layer_name = 'fc' + str(index + 1) #print((layer_name, value)) if index == len(layer_sizes) - 1: # if last index add softmax layers.update({'output': nn.LogSoftmax(dim=1)}) else: # get next layer size; next item might be list current_size = value[0] if isinstance(value, list) else value next_value = layer_sizes[index + 1] next_size = layer_sizes[index + 1][0] if isinstance(next_value, list) else layer_sizes[index + 1] layers.update({layer_name: nn.Linear(current_size, next_size)}) if index < len(layer_sizes) - 2: # if second to last index, don't add relu layers.update({'relu' + str(index + 1): nn.ReLU()}) if isinstance(value, list): # add dropout layers.update({'dropout' + str(index + 1): nn.Dropout(p=value[1])}) return nn.Sequential(layers) def create_model(pretrained_model, layer_sizes): # Freeze parameters so we don't backprop through them for param in pretrained_model.parameters(): param.requires_grad = False classifier = create_classifier(layer_sizes) pretrained_model.classifier = classifier return pretrained_model # hyper parameters learning_rate = 0.001 epochs = 10 # if inner list, then 1st item is size and second is dropout layer_sizes = [25088, [12544, 0.5], 6272, len(cat_to_name)] optimizer_algorithm = optim.Adam model = create_model(pretrained_model, layer_sizes) model.classifier criterion = nn.NLLLoss() optimizer = optimizer_algorithm(model.classifier.parameters(), lr=learning_rate) # Implement a function for the validation pass def validation(model, loader, criterion): test_loss = 0 accuracy = 0 for inputs, labels in loader: inputs, labels = inputs.to(device), labels.to(device) output = model.forward(inputs) test_loss += criterion(output, labels).item() ps = torch.exp(output) equality = (labels.data == ps.max(dim=1)[1]) accuracy += equality.type(torch.FloatTensor).mean() return test_loss, accuracy def do_deep_learning(model, trainloader, epochs, print_every, criterion, optimizer, device): steps = 0 running_loss = 0 print('Device: `{}`'.format(device)) model.to(device) for e in range(epochs): # https://classroom.udacity.com/nanodegrees/nd025/parts/55eca560-1498-4446-8ab5-65c52c660d0d/modules/627e46ca-85de-4830-b2d6-5471241d5526/lessons/e1eeafe1-2ba0-4f3d-97a0-82cbd844fdfc/concepts/43cb782f-2d8c-432e-94ef-cb8068f26042 # PyTorch allows you to set a model in "training" or "evaluation" modes with model.train() and model.eval(), respectively. In training mode, dropout is turned on, while in evaluation mode, dropout is turned off. model.train() for ii, (inputs, labels) in enumerate(trainloader): start = time.time() steps += 1 inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() output = model.forward(inputs) loss = criterion(output, labels) loss.backward() optimizer.step() running_loss += loss.item() if steps % print_every == 0: # Make sure network is in eval mode for inference model.eval() # Turn off gradients for validation, saves memory and computations with torch.no_grad(): validation_loss, accuracy = validation(model, validation_loader, criterion) print("Epoch: {}/{}.. ".format(e+1, epochs), "Training Loss: {:.3f}.. ".format(running_loss/print_every), "Validation Loss: {:.3f}.. ".format(validation_loss/len(validation_loader)), "Validation Accuracy: {:.3f}".format(accuracy/len(validation_loader)), "\n\tTime per batch: {0} seconds".format(round(time.time() - start)) ) running_loss = 0 # Make sure training is back on model.train() device = 'cuda' if torch.cuda.is_available() else 'cpu' device do_deep_learning(model, train_loader, epochs, 40, criterion, optimizer, device) ###Output Device: `cuda` Epoch: 1/10.. Training Loss: 4.918.. Validation Loss: 3.507.. Validation Accuracy: 0.242 Time per batch: 19 seconds Epoch: 1/10.. Training Loss: 3.130.. Validation Loss: 2.650.. Validation Accuracy: 0.366 Time per batch: 19 seconds Epoch: 1/10.. Training Loss: 2.559.. Validation Loss: 1.880.. Validation Accuracy: 0.508 Time per batch: 19 seconds Epoch: 1/10.. Training Loss: 2.274.. Validation Loss: 1.773.. Validation Accuracy: 0.547 Time per batch: 20 seconds Epoch: 1/10.. Training Loss: 2.187.. Validation Loss: 1.691.. Validation Accuracy: 0.568 Time per batch: 19 seconds Epoch: 2/10.. Training Loss: 1.915.. Validation Loss: 1.605.. Validation Accuracy: 0.581 Time per batch: 19 seconds Epoch: 2/10.. Training Loss: 1.877.. Validation Loss: 1.396.. Validation Accuracy: 0.643 Time per batch: 19 seconds Epoch: 2/10.. Training Loss: 1.863.. Validation Loss: 1.227.. Validation Accuracy: 0.678 Time per batch: 19 seconds Epoch: 2/10.. Training Loss: 1.816.. Validation Loss: 1.423.. Validation Accuracy: 0.636 Time per batch: 19 seconds Epoch: 2/10.. Training Loss: 1.928.. Validation Loss: 1.319.. Validation Accuracy: 0.646 Time per batch: 19 seconds Epoch: 3/10.. Training Loss: 1.595.. Validation Loss: 1.232.. Validation Accuracy: 0.688 Time per batch: 19 seconds Epoch: 3/10.. Training Loss: 1.612.. Validation Loss: 1.260.. Validation Accuracy: 0.691 Time per batch: 19 seconds Epoch: 3/10.. Training Loss: 1.597.. Validation Loss: 1.576.. Validation Accuracy: 0.666 Time per batch: 19 seconds Epoch: 3/10.. Training Loss: 1.731.. Validation Loss: 1.235.. Validation Accuracy: 0.715 Time per batch: 19 seconds Epoch: 3/10.. Training Loss: 1.596.. Validation Loss: 1.164.. Validation Accuracy: 0.711 Time per batch: 19 seconds Epoch: 4/10.. Training Loss: 1.491.. Validation Loss: 1.214.. Validation Accuracy: 0.719 Time per batch: 19 seconds Epoch: 4/10.. Training Loss: 1.569.. Validation Loss: 1.159.. Validation Accuracy: 0.741 Time per batch: 19 seconds Epoch: 4/10.. Training Loss: 1.468.. Validation Loss: 1.452.. Validation Accuracy: 0.678 Time per batch: 20 seconds Epoch: 4/10.. Training Loss: 1.489.. Validation Loss: 1.028.. Validation Accuracy: 0.754 Time per batch: 19 seconds Epoch: 4/10.. Training Loss: 1.623.. Validation Loss: 1.135.. Validation Accuracy: 0.717 Time per batch: 19 seconds Epoch: 5/10.. Training Loss: 1.326.. Validation Loss: 1.111.. Validation Accuracy: 0.760 Time per batch: 19 seconds Epoch: 5/10.. Training Loss: 1.421.. Validation Loss: 1.155.. Validation Accuracy: 0.737 Time per batch: 19 seconds Epoch: 5/10.. Training Loss: 1.327.. Validation Loss: 1.088.. Validation Accuracy: 0.751 Time per batch: 19 seconds Epoch: 5/10.. Training Loss: 1.409.. Validation Loss: 1.026.. Validation Accuracy: 0.761 Time per batch: 19 seconds Epoch: 5/10.. Training Loss: 1.408.. Validation Loss: 1.117.. Validation Accuracy: 0.733 Time per batch: 19 seconds Epoch: 6/10.. Training Loss: 1.371.. Validation Loss: 1.105.. Validation Accuracy: 0.742 Time per batch: 19 seconds Epoch: 6/10.. Training Loss: 1.401.. Validation Loss: 0.980.. Validation Accuracy: 0.769 Time per batch: 19 seconds Epoch: 6/10.. Training Loss: 1.264.. Validation Loss: 1.227.. Validation Accuracy: 0.744 Time per batch: 20 seconds Epoch: 6/10.. Training Loss: 1.401.. Validation Loss: 1.019.. Validation Accuracy: 0.771 Time per batch: 19 seconds Epoch: 6/10.. Training Loss: 1.365.. Validation Loss: 0.981.. Validation Accuracy: 0.766 Time per batch: 19 seconds Epoch: 7/10.. Training Loss: 1.344.. Validation Loss: 1.095.. Validation Accuracy: 0.758 Time per batch: 19 seconds Epoch: 7/10.. Training Loss: 1.223.. Validation Loss: 0.964.. Validation Accuracy: 0.781 Time per batch: 19 seconds Epoch: 7/10.. Training Loss: 1.249.. Validation Loss: 1.027.. Validation Accuracy: 0.786 Time per batch: 19 seconds Epoch: 7/10.. Training Loss: 1.345.. Validation Loss: 0.965.. Validation Accuracy: 0.778 Time per batch: 19 seconds Epoch: 7/10.. Training Loss: 1.412.. Validation Loss: 0.985.. Validation Accuracy: 0.780 Time per batch: 19 seconds Epoch: 8/10.. Training Loss: 1.266.. Validation Loss: 0.960.. Validation Accuracy: 0.782 Time per batch: 20 seconds Epoch: 8/10.. Training Loss: 1.100.. Validation Loss: 1.090.. Validation Accuracy: 0.765 Time per batch: 19 seconds Epoch: 8/10.. Training Loss: 1.216.. Validation Loss: 0.937.. Validation Accuracy: 0.788 Time per batch: 19 seconds Epoch: 8/10.. Training Loss: 1.303.. Validation Loss: 1.077.. Validation Accuracy: 0.768 Time per batch: 20 seconds Epoch: 8/10.. Training Loss: 1.403.. Validation Loss: 1.288.. Validation Accuracy: 0.737 Time per batch: 19 seconds Epoch: 8/10.. Training Loss: 1.223.. Validation Loss: 1.009.. Validation Accuracy: 0.786 Time per batch: 19 seconds Epoch: 9/10.. Training Loss: 1.130.. Validation Loss: 0.958.. Validation Accuracy: 0.778 Time per batch: 19 seconds Epoch: 9/10.. Training Loss: 1.291.. Validation Loss: 0.856.. Validation Accuracy: 0.798 Time per batch: 19 seconds Epoch: 9/10.. Training Loss: 1.220.. Validation Loss: 0.948.. Validation Accuracy: 0.807 Time per batch: 19 seconds Epoch: 9/10.. Training Loss: 1.108.. Validation Loss: 0.920.. Validation Accuracy: 0.798 Time per batch: 19 seconds Epoch: 9/10.. Training Loss: 1.260.. Validation Loss: 1.084.. Validation Accuracy: 0.768 Time per batch: 19 seconds Epoch: 10/10.. Training Loss: 1.098.. Validation Loss: 1.059.. Validation Accuracy: 0.804 Time per batch: 19 seconds Epoch: 10/10.. Training Loss: 1.288.. Validation Loss: 1.081.. Validation Accuracy: 0.774 Time per batch: 19 seconds Epoch: 10/10.. Training Loss: 1.249.. Validation Loss: 1.008.. Validation Accuracy: 0.794 Time per batch: 19 seconds Epoch: 10/10.. Training Loss: 1.106.. Validation Loss: 0.967.. Validation Accuracy: 0.791 Time per batch: 19 seconds Epoch: 10/10.. Training Loss: 1.275.. Validation Loss: 0.864.. Validation Accuracy: 0.802 Time per batch: 19 seconds ###Markdown Testing your networkIt's good practice to test your trained network on test data, images the network has never seen either in training or validation. This will give you a good estimate for the model's performance on completely new images. Run the test images through the network and measure the accuracy, the same way you did validation. You should be able to reach around 70% accuracy on the test set if the model has been trained well. ###Code # TODO: Do validation on the test set def check_accuracy_on_test(model, loader, device): model.to(device) correct = 0 total = 0 with torch.no_grad(): for data in loader: inputs, labels = data inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy: %d %%' % (100 * correct / total)) check_accuracy_on_test(model, test_loader, device) ###Output Accuracy: 78 % ###Markdown Save the checkpointNow that your network is trained, save the model so you can load it later for making predictions. You probably want to save other things such as the mapping of classes to indices which you get from one of the image datasets: `image_datasets['train'].class_to_idx`. You can attach this to the model as an attribute which makes inference easier later on.```model.class_to_idx = image_datasets['train'].class_to_idx```Remember that you'll want to completely rebuild the model later so you can use it for inference. Make sure to include any information you need in the checkpoint. If you want to load the model and keep training, you'll want to save the number of epochs as well as the optimizer state, `optimizer.state_dict`. You'll likely want to use this trained model in the next part of the project, so best to save it now. ###Code # TODO: Save the checkpoint checkpoint = { 'layer_sizes': layer_sizes, 'state_dict': model.state_dict(), 'class_to_idx': train_data.class_to_idx, } torch.save(checkpoint, 'checkpoint.pth') ###Output _____no_output_____ ###Markdown Loading the checkpointAt this point it's good to write a function that can load a checkpoint and rebuild the model. That way you can come back to this project and keep working on it without having to retrain the network. ###Code # TODO: Write a function that loads a checkpoint and rebuilds the model def load_checkpoint(filepath, pretrained_model): checkpoint = torch.load(filepath) model = create_model(models.vgg16(pretrained=True), checkpoint['layer_sizes']) model.load_state_dict(checkpoint['state_dict']) model.class_to_idx = checkpoint['class_to_idx'] return model loaded_model = load_checkpoint(filepath='checkpoint.pth', pretrained_model=models.vgg16(pretrained=True)) ###Output _____no_output_____ ###Markdown Check Accuracy On Loaded Dataset ###Code check_accuracy_on_test(loaded_model, test_loader, device) ###Output Accuracy: 78 % ###Markdown Inference for classificationNow you'll write a function to use a trained network for inference. That is, you'll pass an image into the network and predict the class of the flower in the image. Write a function called `predict` that takes an image and a model, then returns the top $K$ most likely classes along with the probabilities. It should look like ```pythonprobs, classes = predict(image_path, model)print(probs)print(classes)> [ 0.01558163 0.01541934 0.01452626 0.01443549 0.01407339]> ['70', '3', '45', '62', '55']```First you'll need to handle processing the input image such that it can be used in your network. Image PreprocessingYou'll want to use `PIL` to load the image ([documentation](https://pillow.readthedocs.io/en/latest/reference/Image.html)). It's best to write a function that preprocesses the image so it can be used as input for the model. This function should process the images in the same manner used for training. First, resize the images where the shortest side is 256 pixels, keeping the aspect ratio. This can be done with the [`thumbnail`](http://pillow.readthedocs.io/en/3.1.x/reference/Image.htmlPIL.Image.Image.thumbnail) or [`resize`](http://pillow.readthedocs.io/en/3.1.x/reference/Image.htmlPIL.Image.Image.thumbnail) methods. Then you'll need to crop out the center 224x224 portion of the image.Color channels of images are typically encoded as integers 0-255, but the model expected floats 0-1. You'll need to convert the values. It's easiest with a Numpy array, which you can get from a PIL image like so `np_image = np.array(pil_image)`.As before, the network expects the images to be normalized in a specific way. For the means, it's `[0.485, 0.456, 0.406]` and for the standard deviations `[0.229, 0.224, 0.225]`. You'll want to subtract the means from each color channel, then divide by the standard deviation. And finally, PyTorch expects the color channel to be the first dimension but it's the third dimension in the PIL image and Numpy array. You can reorder dimensions using [`ndarray.transpose`](https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.transpose.html). The color channel needs to be first and retain the order of the other two dimensions. ###Code def process_image(image_path): '''Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' img = Image.open(image_path) width, height = img.size aspect_ratio = width / height short_side = 256 # First, resize the images where the shortest side is 256 pixels, keeping the aspect ratio. This can be done with the thumbnail or resize methods. if width > height: # width, height # if width is greater than height then shortest side is height; change height to 256, adjust width # width should be 256 (i.e. height) multiplied by the same aspect ratio img.thumbnail((short_side * aspect_ratio, short_side)) # width > height else: img.thumbnail((short_side, short_side * aspect_ratio)) # width <= height # Then you'll need to crop out the center 224x224 portion of the image. width, height = img.size new_width = 224 new_height = new_width left_margin = (img.width - new_width) / 2 bottom_margin = (img.height - new_height) / 2 right_margin = left_margin + new_width top_margin = bottom_margin + new_height img = img.crop((left_margin, bottom_margin, right_margin, top_margin)) # the network expects the images to be normalized in a specific way. For the means, it's [0.485, 0.456, 0.406] and for the standard deviations [0.229, 0.224, 0.225]. You'll want to subtract the means from each color channel, then divide by the standard deviation. img = np.array(img) / 255 mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) img = (img - mean)/std # Move color channels to first dimension as expected by PyTorch img = img.transpose((2, 0, 1)) return img ###Output _____no_output_____ ###Markdown To check your work, the function below converts a PyTorch tensor and displays it in the notebook. If your `process_image` function works, running the output through this function should return the original image (except for the cropped out portions). ###Code def imshow(image, ax=None, title=None): """Imshow for Tensor.""" if ax is None: fig, ax = plt.subplots() # PyTorch tensors assume the color channel is the first dimension # but matplotlib assumes is the third dimension image = image.transpose((1, 2, 0)) # Undo preprocessing mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = std * image + mean # Image needs to be clipped between 0 and 1 or it looks like noise when displayed image = np.clip(image, 0, 1) ax.imshow(image) return ax image_path = './flowers/test/1/image_06764.jpg' image = process_image(image_path) imshow(image) ###Output _____no_output_____ ###Markdown Class PredictionOnce you can get images in the correct format, it's time to write a function for making predictions with your model. A common practice is to predict the top 5 or so (usually called top-$K$) most probable classes. You'll want to calculate the class probabilities then find the $K$ largest values.To get the top $K$ largest values in a tensor use [`x.topk(k)`](http://pytorch.org/docs/master/torch.htmltorch.topk). This method returns both the highest `k` probabilities and the indices of those probabilities corresponding to the classes. You need to convert from these indices to the actual class labels using `class_to_idx` which hopefully you added to the model or from an `ImageFolder` you used to load the data ([see here](Save-the-checkpoint)). Make sure to invert the dictionary so you get a mapping from index to class as well.Again, this method should take a path to an image and a model checkpoint, then return the probabilities and classes.```pythonprobs, classes = predict(image_path, model)print(probs)print(classes)> [ 0.01558163 0.01541934 0.01452626 0.01443549 0.01407339]> ['70', '3', '45', '62', '55']``` ###Code def predict(image_path, model, topk=5): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' model.eval() image = process_image(image_path) image= transforms.ToTensor()(image) image = image.view(1, 3, 224, 224) #image.to(device) #model.to(device) model.to(device) with torch.no_grad(): output = model.forward(image.type(torch.FloatTensor).cuda()) probabilities = torch.exp(output).cpu() # used LogSoftmax so convert back top_probs, top_classes = probabilities.topk(topk) return top_probs.numpy()[0], top_classes.numpy()[0] probs, classes = predict(image_path, loaded_model) print(probs) print(classes) ###Output [81 76 80 77 15] ###Markdown Sanity CheckingNow that you can use a trained model for predictions, check to make sure it makes sense. Even if the testing accuracy is high, it's always good to check that there aren't obvious bugs. Use `matplotlib` to plot the probabilities for the top 5 classes as a bar graph, along with the input image. It should look like this:You can convert from the class integer encoding to actual flower names with the `cat_to_name.json` file (should have been loaded earlier in the notebook). To show a PyTorch tensor as an image, use the `imshow` function defined above. ###Code # TODO: Display an image along with the top 5 classes imshow(image) classes class_names = [cat_to_name[str(cls)] for cls in classes] class_names probs plt.barh(class_names, probs) #align='center', alpha=0.5) ###Output _____no_output_____
docs/T189677_Graph_embeddings_using_SDNE.ipynb
###Markdown Graph embeddings using SDNE ###Code !pip install git+https://github.com/palash1992/GEM.git !pip install -U Ipython %tensorflow_version 1.x from gem.embedding.sdne import SDNE from matplotlib import pyplot as plt from IPython.display import Code import networkx as nx import inspect Code(inspect.getsource(SDNE), language='python') graph = nx.karate_club_graph() m1 = SDNE(d=2, beta=5, alpha=1e-5, nu1=1e-6, nu2=1e-6, K=3,n_units=[50, 15,], rho=0.3, n_iter=50, xeta=0.01,n_batch=100, modelfile=['enc_model.json', 'dec_model.json'], weightfile=['enc_weights.hdf5', 'dec_weights.hdf5']) m1.learn_embedding(graph) x, y = list(zip(*m1.get_embedding())) plt.plot(x, y, 'o',linewidth=None) ###Output _____no_output_____
Basic Optimisation.ipynb
###Markdown Basic Optimisation using PythonJessica LeungIn this notebook, we are going to demonstrate how to solve an optimization problem in Python with different tools available. We will be using the following packages:- `scipy.optimize` (comes with Anaconda),- `Gurobi` (To install, go to installation guide)- `cvxpy` (To install, type `conda install cvx` to your terminal/anaconda prompt, or go to https://www.cvxpy.org/install/index.html)All three packages are very powerful tools with very comprehensive documentation. Depending on the problem that you want to solve, you may find one package more user-friendly than the other.- `Scipy.optimize` documentation: https://docs.scipy.org/doc/scipy/reference/optimize.html- `Gurobi` documentation: https://www.gurobi.com/documentation/- `cvxpy` documentation: https://www.cvxpy.org/tutorial/index.html Using `Scipy.optimize`Let's start by finding the minimum of the scalar function $$f(x) = -0.3e^{(x-0.6)^2}$$Here we provide initial guess as $1.0$. ###Code import numpy as np from scipy.optimize import minimize def f(x): return -0.3*np.exp(-(x-0.6)**2) result = minimize(fun = f, x0 = [1.0]) print (result.x) ###Output [0.59999517] ###Markdown The syntax `.x` here tells the package that we would like to know the current value of our variable. (No matter what our variable is, the syntax remain to be `.x`.)We can plot the function and our minimum point to verify the result. ###Code import matplotlib.pyplot as plt x = np.linspace(-3,3,200) plt.plot(x,f(x)) plt.plot(0.59999517, f(0.59999517), 'ro') plt.show() ###Output _____no_output_____ ###Markdown `scipy.optimise` can also handles multivariate functions. Depending on the function that you are trying to optimise (convex or not, smooth or not, linear or not), there is a wide variety of methods to choose from in the `scipy.optimise` package. ###Code from scipy.optimize import minimize def g(y): return np.sqrt((2*y[0] - 5)**2 + (6*y[1] - 3)**2) result = minimize(fun = g, x0 = [0,0]) print (result.x) x, y = np.mgrid[-2.03:4.2:.04, -1.6:3.2:.04] x = x.T y = y.T plt.figure(1, figsize=(5, 5)) contours = plt.contour(np.sqrt((2*x - 5)**2 + (6*y - 3)**2), extent=[-2.03, 4.2, -1.6, 3.2], cmap=plt.cm.gnuplot) plt.plot(2.49999999,0.49999999, 'rx') ###Output _____no_output_____ ###Markdown Using `cvxpy`CVXPY is a Python-embedded modeling language for convex optimization problems. It automatically transforms the problem into standard form, calls a solver, and unpacks the results.To install, type `conda install cvxpy` to the terminal/anaconda prompt.Let's start with a simple LP problem. Consider the following problem:General Auto manufactures luxury cars and trucks. The company believes its target customers are high-income men and women. To reach this group, General Auto has embarked on an ambitious TV advertising campaign and will purchase 1-minute commercial spots on two types of programs: comedy shows and football games.- Each comedy commercial is seen by 7 million high income women and 2 million high-income men and costs \$50,000.- Each football game is seen by 2 million high-income women and 12 million high-income men and costs \$100,000.- General Auto would like for commercials to be seen by at least 28 million high-income women and 24 million high-income men.Use LP to determine how General Auto can meet its advertising requirements at minimum cost.General Auto must decide how many comedy and football ads should be purchased, so the decision variables are- $x_{comedy}$ - number of 1-minute comedy ads purchased- $x_{football}$ - number of 1-minute football ads purchasedThen the problem can be formulated as:$$\text{minimize} \quad 50 x_{comedy} + 100 x_{football} $$$$ \text{subject to} \quad 7 x_{comedy} + 2 x_{football} \geq 28 $$$$\quad 2 x_{comedy} + 12 x_{football} \geq 24 $$$$\quad x_{comedy}, x_{football}\geq 0$$ ###Code import cvxpy as cp # Create two scalar optimization variables. x1 = cp.Variable() x2 = cp.Variable() # Create two constraints. constraints = [7*x1 + 2*x2 >= 28, 2*x1 + 12*x2 >= 24, x1 >= 0, x2 >= 0] # Form objective. obj = cp.Minimize(50*x1 + 100*x2) # Form and solve problem. prob = cp.Problem(obj, constraints) prob.solve() # Returns the optimal value. print("status:", prob.status) print("optimal value", prob.value) print("optimal var", x1.value, x2.value) ###Output status: optimal optimal value 320.0 optimal var 3.6000000000000005 1.4 ###Markdown A Simple Machine Learning Example using CVXPY Logistic Regression with $\ell_1$ regularisationIn this example, we train a logistic regression classifier with $\ell_1$ regularisation. Given data $x_i \in \mathbf{R}^n$ and $y_i \in \{0,1\}, i = 1,...,n$, our goal is to learn a linear classifier $\hat{y} = I[x \beta > 0]$.We can model this relationship as follows:$$ log \dfrac{Pr(Y = 1| X = x)}{Pr(Y = 0| X = x)} = x \beta$$Therefore, we fit $\beta$ by maximising the log-likelihood of the data, plus a regularisation term $\lambda \|\beta\|_1$ where $\lambda > 0$:$$ \ell(\beta) = \sum_{i = 1}^n y_i (x\beta)_i - log(1 + exp((x\beta)_i)) - \lambda \|\beta\|_1$$This objective function is concave in $\beta$, so maximising this concave function is a convex optimisation problem. For simplification, we take $\lambda = 0.1$ in this example. In practice, you can perform cross validation to find the best value of $\lambda$. In the following code we generate data with $p=50$ features by randomly choosing $x_i$ and supplying a sparse $\beta_{true} \in \mathbf{R}^n$. ###Code np.random.seed(0) p = 50 n = 50 def sigmoid(z): return 1/(1 + np.exp(-z)) beta_true = np.array([1, 0.5, -0.5] + [0]*(p - 3)) X = (np.random.random((n, p)) - 0.5)*10 Y = np.round(sigmoid(X @ beta_true + np.random.randn(n)*0.5)) beta = cp.Variable(n) lambd = 0.1 log_likelihood = cp.sum( cp.multiply(Y, X @ beta) - cp.logistic(X @ beta)) problem = cp.Problem(cp.Maximize(log_likelihood/p - lambd * cp.norm(beta, 1))) problem.solve() print("status:", problem.status) print("optimal value", problem.value) print("optimal var", beta.value) plt.plot(beta_true, label=r"True $\beta$") plt.plot(beta.value, label=r"Reconstructed $\beta$") plt.xlabel(r"$i$", fontsize=16) plt.ylabel(r"$\beta_i$", fontsize=16) plt.legend(loc="upper right") ###Output status: optimal optimal value -0.3489231061667745 optimal var [ 7.72881910e-01 4.52165463e-01 -2.94472768e-01 -3.45121087e-12 8.10959783e-12 2.25227569e-12 3.98691707e-12 1.43401127e-02 5.08455937e-11 -1.36329821e-10 4.22511774e-12 8.90807297e-12 -2.16837167e-11 7.82449968e-11 -3.54859367e-12 1.28195462e-11 -4.10075409e-12 1.66532091e-02 2.04175804e-12 -6.29757368e-14 -1.01985866e-11 -3.36732664e-11 -3.40010453e-12 -4.02429238e-02 6.13643400e-11 -2.22784055e-11 -1.46346483e-12 -5.65635676e-13 -1.92671561e-11 1.23094858e-11 -2.46574874e-12 4.16244416e-11 1.53792215e-11 -8.54203591e-12 8.05739746e-02 1.28275506e-11 -2.96233234e-12 6.99195110e-12 2.55893246e-02 -3.44169794e-12 -9.07045573e-12 5.27104626e-11 -1.19968367e-11 1.36487864e-09 2.09062772e-12 7.19106408e-12 -7.01972501e-12 -9.08733160e-02 -1.96099709e-11 8.47393249e-13] ###Markdown More powerful solver Using `Gurobi`Gurobi is a commerical solver that is capable of handling complex mathematical problems, including linear programming (LP), mixed-integer linear programming (MILP), quadratic programming (QP), mixed-integer quadratic programming (MIQP), Quadratically-constrained programming (QCP) and mixed-integer quadratically constrainted programming (MIQCP).Free academic license available on https://www.gurobi.com/. Please refer to the installation guie for more details on installation and the license.Let's solve the same problem (General Auto) with `gurobi` instead. Define model and input dataFirst, we should import the package `gurobipy`. Naming the module by abbreviation `grb` allows easy reference to the module and avoid confusion with other packages. You can also name it with any other abbreviations. Then we define a model `m` and name it `General Auto`. ###Code import gurobipy as grb # Define a model m = grb.Model('General Auto') # Input data Comedy = {'women':7,'men':2} Football = {'women':2,'men':12} MinView = {'women':28,'men':24} Cost = {'Comedy':50, 'Football':100} ###Output _____no_output_____ ###Markdown Define variablesCreate an empty vector x and define the elements in the vector. Use the function 'addVar' to add variables into the model 'm'. As input arguments of the function, You should include the variable types 'vtype=' and the name of the variables 'name='.By default, the decision variables are non-negative. Since we are defining varibles for the Gurobi solver, 'grb.GRB.' must be reffered.Let $x_{comedy}$ and $x_{football}$ are continuous variables which correspond to the number of one minutes comedy and football ads purchased respectively.You can define the objective function by including the coefficients while defining the decision variables. Python will sum the product of the decision variables and the coefficient as the objective function. ###Code #Define the decision variables x={} for k,v in Cost.items(): x[k] = m.addVar(vtype = grb.GRB.CONTINUOUS, obj = v, name= 'x_{}'.format(k)) ###Output _____no_output_____ ###Markdown Define model senseDefine the objective function using the function 'modelSense' on model 'm'. The sense of the model represents whether to maximise or to minimise the objective function. Since we are Gurobi as the solver, 'grb.GRB.' must be reffered.We are trying to minimise the cost, thus we should minimise the objective function. ###Code #Define model sense m.modelSense = grb.GRB.MINIMIZE ###Output _____no_output_____ ###Markdown **Alternatively**, the objective function can be set manually using the function 'setObjective'. Remember to include the sense of the objective (maximise or minimise) as an argument of the function. Once the function 'setObjective' is used, the coefficients that has been defined using 'addVar' will be ignored. ###Code m.setObjective(50*x['Comedy']+100*x['Football'], grb.GRB.MINIMIZE) ###Output _____no_output_____ ###Markdown Add constraintsUse the function 'addConstr' to add constraints into the model 'm'. The constraints can be typed explicitly with the decision variables defined earlier. Name the constraints as reference and avoid confusion. ###Code # constraints for k,v in MinView.items(): m.addConstr(x['Comedy']*Comedy[k]+x['Football']*Football[k]>= v, name='MinView_{}'.format(k)) ###Output _____no_output_____ ###Markdown Solve the mathematical problemSolve the problem by optimising the model `m` ###Code # Solve m.optimize() ###Output Optimize a model with 2 rows, 2 columns and 4 nonzeros Coefficient statistics: Matrix range [2e+00, 1e+01] Objective range [5e+01, 1e+02] Bounds range [0e+00, 0e+00] RHS range [2e+01, 3e+01] Presolve time: 0.01s Presolved: 2 rows, 2 columns, 4 nonzeros Iteration Objective Primal Inf. Dual Inf. Time 0 0.0000000e+00 6.500000e+00 0.000000e+00 0s 2 3.2000000e+02 0.000000e+00 0.000000e+00 0s Solved in 2 iterations and 0.02 seconds Optimal objective 3.200000000e+02 ###Markdown Display the solutionHere we use the syntax `.x` to obtain the current value of our variabels and `.objVal` to obtain the optimal of the model. ###Code print ('----------------------------------') for i in Cost: print ('{:.2f} ads on {} is purchsed.'.format(x[i].x,i)) print ('----------------------------------') print ('Total cost: ${:.2f}'.format(m.objVal)) ###Output ---------------------------------- 3.60 ads on Comedy is purchsed. 1.40 ads on Football is purchsed. ---------------------------------- Total cost: $320.00 ###Markdown Conclusion and interpretation: Total cost is \$320 with 1.4 1-min football ads and 3.6 1-min Comedy ads purchased respectively. Hard Code in GurobiAlternatively, you can also hard code your mathematical problem in Gurobi. It may be simpler and faster for some problem but not necessarily scalable. Again, it all depends on your problem/application. ###Code d = grb.Model('General Auto2') x1 = d.addVar(vtype = grb.GRB.CONTINUOUS, obj = 50) x2 = d.addVar(vtype = grb.GRB.CONTINUOUS, obj = 100) d.modelSense = grb.GRB.MINIMIZE d.addConstr(7*x1 + 2*x2 >= 28) d.addConstr(2*x1 + 12*x2 >= 24) d.optimize() print ('----------------------------------') print ('{:.2f} ads on Comedy is purhcased.'.format(x1.x)) print ('{:.2f} ads on Football is purhcased.'.format(x2.x)) print ('----------------------------------') print ('Total cost: ${:.2f}'.format(m.objVal)) ###Output Optimize a model with 2 rows, 2 columns and 4 nonzeros Coefficient statistics: Matrix range [2e+00, 1e+01] Objective range [5e+01, 1e+02] Bounds range [0e+00, 0e+00] RHS range [2e+01, 3e+01] Presolve time: 0.02s Presolved: 2 rows, 2 columns, 4 nonzeros Iteration Objective Primal Inf. Dual Inf. Time 0 0.0000000e+00 6.500000e+00 0.000000e+00 0s 2 3.2000000e+02 0.000000e+00 0.000000e+00 0s Solved in 2 iterations and 0.03 seconds Optimal objective 3.200000000e+02 ---------------------------------- 3.60 ads on Comedy is purhcased. 1.40 ads on Football is purhcased. ---------------------------------- Total cost: $320.00
keras/mlp/binary_addition_mlp.ipynb
###Markdown ###Code # keras and tf import tensorflow as tf import keras # models from keras.models import Sequential # layers from keras.layers import Input, add, Conv2D, Flatten, Dense, Dropout, Activation, MaxPooling2D, LSTM # optimizers from keras.optimizers import SGD # numpy import numpy as np def pad_and_seperate_binaries(binaries, pad_number = 8): for i in range(len(binaries)): binaries[i] = binaries[i].replace("0b","") for i in range(len(binaries)): if(len(binaries[i]) < pad_number): binaries[i] = "0"*(pad_number-len(binaries[i])) + binaries[i] for i in range(len(binaries)): binaries[i] = list(map(int,list(binaries[i]))) return binaries binaries = [] sums = [] for b in range(256): binaries.append(bin(b)) for i in binaries: for j in binaries: sums.append(bin(int(i, 2) + int(j, 2))) binaries = pad_and_seperate_binaries(binaries) sums = pad_and_seperate_binaries(sums, pad_number=9) x = [] for i in binaries: for j in binaries: x.append(i+j) x = np.array(x) y = np.array(sums) model = Sequential() model.add(Dense(64, activation='relu', input_dim=16)) model.add(Dense(64, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(16, activation='relu')) model.add(Dense(9, activation='softmax')) opt = SGD(lr=0.01, momentum=0.9) model.compile(loss = "mse", optimizer = opt, metrics=['accuracy']) model.fit(x,y,epochs=50) ###Output _____no_output_____
Computer Vision/Image_segmentation.ipynb
###Markdown Image segmentation using K-means Clustering In this notebook here it demonstrates the process of applying segmentation to an image using K-means clustering. Image segmentationImage segmentation is the process of partitioning a digital image into multiple segments (sets of pixels, also known as image objects).The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. K-means ClusteringK-means clustering is a method which clustering data points or vectors with respect to nearest mean points (Here K is numbers of mean or cluster).This results in a partitioning of the data points or vectors space into Voronoi cells. Algorithm in pseudocode:- Initialize k means with random values- For a given number of iterations: - Iterate through items: - Find the mean closest to the item - Assign item to mean - Update mean ###Code # Loading required libraries import numpy as np import matplotlib.pyplot as plt import cv2 ###Output _____no_output_____ ###Markdown cv2.imreadUse the function cv2.imread() to read an image. argument 1 : The image should be in the working directory or a full path of image should be given.argument 2 : Is a flag which specifies the way image should be read. - cv2.IMREAD_COLOR : Loads a color image. Any transparency of image will be neglected. It is the default flag. - cv2.IMREAD_GRAYSCALE : Loads image in grayscale mode - cv2.IMREAD_UNCHANGED : Loads image as such including alpha channel Note: Instead of these three flags, you can simply pass integers 1, 0 or -1 respectivel ###Code image = cv2.imread('images/lamborghini.jpg') ###Output _____no_output_____ ###Markdown cv2.imshowUse this function to display an image in a window. The window automatically fits to the image size.argument 1 : window name which is a string.argument 2 : image ###Code cv2.imshow('image',image) #argument is the time in milliseconds if 0 it waits indefinitely for a key stroke cv2.waitKey(0) #cv2.destroyAllWindows() # It distroy all window cv2.destroyWindow('image') # Distroying the initiated window ###Output _____no_output_____ ###Markdown cv2.cvtColorIt is used to convert an image from one color space to another. There are more than 150 color-space conversion methods available in OpenCV Parameters:- src : It is the image whose color space is to be changed.- code : It is the color space conversion code.- dst : It is the output image of the same size and depth as src image. It is an optional parameter.- dstCn : It is the number of channels in the destination image. If the parameter is 0 then the number of the channels is derived automatically from src and code. It is an optional parameter. Return Value:- It returns an image ###Code # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) # https://matplotlib.org/3.3.2/api/_as_gen/matplotlib.pyplot.imshow.html # Reshaping the image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # numpy reshape operation -1 unspecified # Convert to float type only for supporting cv2.kmean pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown cv2.kmeans Parameters:- samples : It should be of np.float32 data type, and each feature should be put in a single column.- nclusters(K) : Number of clusters required at end- criteria : It is the iteration termination criteria. When this criteria is satisfied, algorithm iteration stops. Actually, it should be a tuple of 3 parameters. They are `( type, max_iter, epsilon )`: - type of termination criteria. It has 3 flags as below: - cv.TERM_CRITERIA_EPS - stop the algorithm iteration if specified accuracy, epsilon, is reached. - cv.TERM_CRITERIA_MAX_ITER - stop the algorithm after the specified number of iterations, max_iter. - cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER - stop the iteration when any of the above condition is met. - max_iter - An integer specifying maximum number of iterations.epsilon - Required accuracy- attempts : Flag to specify the number of times the algorithm is executed using different initial labellings. The algorithm returns the labels that yield the best compactness. This compactness is returned as output.- flags : This flag is used to specify how initial centers are taken. Normally two flags are used for this : cv.KMEANS_PP_CENTERS and cv.KMEANS_RANDOM_CENTERS. Return Value:- compactness : It is the sum of squared distance from each point to their corresponding centers.- labels : This is the label array (same as 'code' in previous article) where each element marked '0', '1'.....- centers : This is array of centers of clusters. ###Code #criteria criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.85) # Choosing number of cluster k = 5 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # Mapping labels to center points( RGB Value) # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) plt.imshow(segmented_image) ###Output _____no_output_____
End-to-end Stegnography-Working-RandomSamplinginBatch-2.ipynb
###Markdown Paper Implementation END-TO-END TRAINED CNN ENCODER-DECODER NETWORKS FOR IMAGE STEGANOGRAPHY - Atique $et.al$ Tensorflow 2.0 Notebook Author: Saad Zia ###Code from IPython import display import numpy as np import tensorflow as tf import pickle import cv2 import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 import tensorflow as tf # For process to not allocate entire GPU memory physical_devices = tf.config.experimental.list_physical_devices('GPU') assert len(physical_devices) > 0, "Not enough GPU hardware devices available" tf.config.experimental.set_memory_growth(physical_devices[0], True) ###Output _____no_output_____ ###Markdown Setting up Data Pipeline ###Code (x, y), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() x = x.astype(np.float32) x_test = x_test.astype(np.float32) ###Output _____no_output_____ ###Markdown Setting up tf.keras Model ###Code from tensorflow.keras import Model from tensorflow.keras.layers import Input tf.keras.backend.set_floatx('float32') tf.keras.backend.floatx() from model_skip_branched.encoder import EncoderNetwork from model_skip_branched.decoder import DecoderNetwork carrier_image_shape = (32, 32, 3) payload_image_shape = (32, 32, 3) encoder_network = EncoderNetwork(carrier_shape=carrier_image_shape, payload_shape=payload_image_shape) decoder_network = DecoderNetwork(target_image_shape=payload_image_shape) input_carrier = Input(shape=carrier_image_shape, name='input_carrier') input_payload = Input(shape=payload_image_shape, name='input_payload') encoded_output = encoder_network.get_network(input_carrier, input_payload) decoded_output, decoded_host_output = decoder_network.get_network(encoded_output) steganography_model = Model(inputs=[input_carrier, input_payload], outputs=[encoded_output, decoded_output, decoded_host_output]) from tensorflow.keras.utils import plot_model plot_model(steganography_model, show_shapes=True) steganography_model.summary() # Defining Loss Function @tf.function def branched_loss_function(payload, host, encoder_output, decoder_output, decoder_host_output, alpha=1., beta=2., gamma=1.): loss = tf.math.reduce_mean( beta * tf.math.squared_difference(payload, decoder_output) + alpha * tf.math.squared_difference(host, encoder_output) + gamma * tf.math.squared_difference(host, decoder_host_output)) return loss @tf.function def loss_function(payload, host, encoder_output, decoder_output): loss = tf.math.reduce_mean( tf.math.squared_difference(payload, decoder_output) + tf.math.squared_difference(host, encoder_output)) return loss optimizer = tf.keras.optimizers.Adam(0.0001) test_loss = tf.keras.metrics.Mean(name='test_loss') train_loss = tf.keras.metrics.Mean(name='train_loss') @tf.function def train_step(payload, host): with tf.GradientTape() as tape: encoded_host, decoded_payload, decoded_host = steganography_model([host, payload]) loss = branched_loss_function(payload, host, encoded_host, decoded_payload, decoded_host) train_loss(loss) gradients = tape.gradient(loss, steganography_model.trainable_variables) optimizer.apply_gradients( zip(gradients, steganography_model.trainable_variables)) train_host_psnr = tf.reduce_mean(tf.image.psnr(host, encoded_host, 1)) train_payload_psnr = tf.reduce_mean( tf.image.psnr(payload, decoded_payload, 1)) train_host_ssim = tf.reduce_mean(tf.image.ssim(host, encoded_host, 1)) train_payload_ssim = tf.reduce_mean( tf.image.ssim(payload, decoded_payload, 1)) return train_host_psnr, train_payload_psnr, train_host_ssim, train_payload_ssim @tf.function def test_step(payload, host): encoded_host, decoded_payload, decoded_host = steganography_model([host, payload]) t_loss = branched_loss_function(payload, host, encoded_host, decoded_payload, decoded_host) test_loss(t_loss) test_host_psnr = tf.reduce_mean(tf.image.psnr(host, encoded_host, 1)) test_payload_psnr = tf.reduce_mean( tf.image.psnr(payload, decoded_payload, 1)) test_host_ssim = tf.reduce_mean(tf.image.ssim(host, encoded_host, 1)) test_payload_ssim = tf.reduce_mean( tf.image.ssim(payload, decoded_payload, 1)) return test_host_psnr, test_payload_psnr, test_host_ssim, test_payload_ssim import time EPOCHS = 500 SUMMARY_DIR = './summary' for epoch in range(EPOCHS): start = time.time() # for when payload is rgb train_size = x.shape[0] test_size = x_test.shape[0] payload_train_idx = np.arange(train_size) np.random.shuffle(payload_train_idx) payload_train = x[payload_train_idx] if payload_image_shape[-1] == 1: # for when payload is grayscale payload_train = np.expand_dims(np.mean(payload_train, axis=-1), axis=-1) host_train_idx = np.arange(train_size) np.random.shuffle(host_train_idx) host_train = x[host_train_idx] payload_test_idx = np.arange(test_size) np.random.shuffle(payload_test_idx) payload_test = x_test[payload_test_idx] if payload_image_shape[-1] == 1: # for when payload is grayscale # for when payload is grayscale payload_test = np.expand_dims(np.mean(payload_test, axis=-1), axis=-1) host_test_idx = np.arange(test_size) np.random.shuffle(host_test_idx) host_test = x_test[host_test_idx] # Normalization function def deprecated_normalize(payload, host): payload = tf.image.per_image_standardization(payload) host = tf.image.per_image_standardization(host) return payload, host def normalize(payload, host): payload = tf.divide( tf.math.subtract(payload, tf.reduce_min(payload)), tf.math.subtract(tf.reduce_max(payload), tf.reduce_min(payload))) host = tf.divide( tf.math.subtract(host, tf.reduce_min(host)), tf.math.subtract(tf.reduce_max(host), tf.reduce_min(host))) return payload, host # Instantiate the Dataset class train_dataset = tf.data.Dataset.from_tensor_slices( (payload_train, host_train)) # Adding shuffle, normalization and batching operations to the dataset object train_dataset = train_dataset.map(normalize).shuffle(5000).batch( 2048, drop_remainder=True) # Instantiate the test Dataset class test_dataset = tf.data.Dataset.from_tensor_slices( (payload_test, host_test)) test_dataset = (test_dataset.map(normalize).batch( 1024, drop_remainder=True)).shuffle(500) for payload, host in train_dataset: train_host_psnr, train_payload_psnr, train_host_ssim, train_payload_ssim = train_step( payload, host) for payload, host in test_dataset: test_host_psnr, test_payload_psnr, test_host_ssim, test_payload_ssim = test_step( payload, host) elapsed = time.time() - start print('elapsed: %f' % elapsed) template = 'Epoch {}, Train Loss: {}, Test Loss: {}, TrainH PSNR: {}, TrainP PSNR: {}, TestH PSNR: {}, TestP PSNR: {}, TrainH SSIM: {}, TrainP SSIM: {}, TestH SSIM: {}, TestP SSIM: {}' print( template.format(epoch + 1, train_loss.result(), test_loss.result(), train_host_psnr, train_payload_psnr, test_host_psnr, test_payload_psnr, train_host_ssim, train_payload_ssim, test_host_ssim, test_payload_ssim)) # Reset the metrics for the next epoch test_loss.reset_states() print('Training Finished.') payload_test = x_test[np.random.choice(np.arange(x_test.shape[0]), size=x_test.shape[0])] if payload_image_shape[-1] == 1: # for when payload is grayscale # for when payload is grayscale payload_test = np.expand_dims(np.mean(payload_test, axis=-1), axis=-1) host_test = x_test[np.random.choice(np.arange(x_test.shape[0]), size=x_test.shape[0])] # Instantiate the test Dataset class test_dataset = tf.data.Dataset.from_tensor_slices((payload_test, host_test)) test_dataset = (test_dataset.map(normalize).batch( 256, drop_remainder=True)).shuffle(500) for payload, host in test_dataset: test_host_psnr, test_payload_psnr, test_host_ssim, test_payload_ssim = test_step( payload, host) print("Test Loss: ", test_loss.result(), "PSNR-H: ", test_host_psnr, "PSNR-P: ", test_payload_psnr) def test_normalize(payload, host): normalized_payload = tf.divide( tf.math.subtract(payload, tf.reduce_min(payload)), tf.math.subtract(tf.reduce_max(payload), tf.reduce_min(payload))) normalized_host = tf.divide( tf.math.subtract(host, tf.reduce_min(host)), tf.math.subtract(tf.reduce_max(host), tf.reduce_min(host))) return normalized_payload, normalized_host, payload, host ###Output _____no_output_____ ###Markdown Inference ###Code def normed_to_image(normed_image, min_, max_): return (normed_image * (max_ - min_)) + min_ example_ids = np.arange(len(host_test))[:100] example_id = np.random.choice(example_ids) # showing host fig, axs = plt.subplots(ncols=2) host_example = host_test.astype(int)[example_id] payload_example = payload_test.astype(int)[example_id] # payload_example = np.concatenate( # (payload_example, payload_example, payload_example), axis=-1) axs[0].imshow(host_example) axs[1].imshow(payload_example, cmap='gray') # showing host fig, axs = plt.subplots(ncols=3) inference_dataset = tf.data.Dataset.from_tensor_slices( (payload_test[example_ids], host_test[example_ids])).map(test_normalize).batch(len(example_ids)) for norm_payload, norm_host, payload, host in inference_dataset: encoded_host, decoded_payload, decoded_host = steganography_model( [norm_host, norm_payload]) host_output = encoded_host.numpy() payload_output = decoded_payload.numpy() decoded_host_output = decoded_host.numpy() host_output = normed_to_image(host_output, np.min(host), np.max(host)) payload_output = normed_to_image(payload_output, np.min(payload), np.max(payload)) decoded_host_output = normed_to_image(decoded_host_output, np.min(host), np.max(host)) host_output = host_output.astype(int)[example_id] payload_output = payload_output.astype(int)[example_id] decoded_host_output = decoded_host_output.astype(int)[example_id] # payload_output = np.concatenate( # (payload_output, payload_output, payload_output), axis=-1) axs[0].imshow(host_output) axs[1].imshow(payload_output) axs[2].imshow(decoded_host_output) ###Output Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
experiments/20210518_matching_grid.ipynb
###Markdown Matching Grid ExperimentHere the grids used for sampling test points for human experiment were exactly replicated for the machine. The number of sampled points for both human and machine is expected to be identical after the matching procedure. ###Code # changing cwd %cd .. ###Output c:\Users\jongm\Desktop\temp_workspace\JOVO\inductive-bias ###Markdown Load packages ###Code from src.inductive_bias import IB ib = IB() #instantiate inductive bias package ib.load_sampledData() ###Output [ c:\Users\jongm\Desktop\temp_workspace\JOVO\inductive-bias\clf/SampledData.pickle ] loaded ###Markdown Time and Date of the experiment ###Code print(ib.date) ###Output 2021-11-02 12:31:08.000026 ###Markdown Load dependencies ###Code import seaborn as sns import pandas as pd import numpy as np import pickle from tqdm.notebook import tqdm import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from matplotlib.patches import Circle cmap = 'PRGn' import warnings warnings.filterwarnings('ignore') #image output import os import imageio ###Output _____no_output_____ ###Markdown Extract human coordinates ###Code ib.extract_human_coord() ib.humanLoc[0][0].head() ###Output _____no_output_____ ###Markdown Retraining ML models and predicting exactly the same xy coordinates from human experiment ###Code ib.mask = ib.generate_mask(h=0.1) ib.mask.shape #generic global uX = ib.mask uX0, uX1 = uX[:,0], uX[:,1] label = ib.mtype[:3] + ['Human'] #excluding QDA dtype = ib.dtype[2:5:2] fsize = 25 #retrain global reps = 126 saved_clf = ib.clf #using already optimized hyper-parameter from previous models N_sample = 100 #same number of samples that of human h = 0.1 rng = 3 #train TRAIN_NOW = False #figure SAVEFIG = True # run only for the first time if TRAIN_NOW: ib.get_sampledData(saved_clf=saved_clf, reps=reps, N_sample=N_sample, h=0.1, rng=3) ###Output _____no_output_____ ###Markdown The grid matching yields equal number of points between human and machine ###Code # ML grid vs human grid ib.estpst_sample[0][0].shape, ib.human[0].shape, ib.estpst_sample[1][0].shape, ib.human[1].shape ###Output _____no_output_____ ###Markdown The grid size matches after point-wise averaging ###Code ib.pointwise_gridAverage(ib.estpst_sample[0][0]).shape, ib.pointwise_gridAverage(np.column_stack([ib.human[0][:,3], ib.human[0][:,5], ib.human[0][:,0]])).shape ib.pointwise_gridAverage(ib.estpst_sample[1][0]).shape, ib.pointwise_gridAverage(np.column_stack([ib.human[1][:,3], ib.human[1][:,5], ib.human[1][:,0]])).shape ###Output _____no_output_____ ###Markdown Point-wise averaging and gaussian smoothing estimated posterior ###Code mtype = [] ib.mask = ib.generate_mask(h=0.1) for ii in range(2): #S-XOR and spiral mtype.append([]) for jj in range(4): if jj == 3: mtype_i = np.column_stack([ib.human[ii][:,3], ib.human[ii][:,5], ib.human[ii][:,0]]) # human estimates else: mtype_i = ib.estpst_sample[ii][jj] # ML estimates mtype_i = ib.pointwise_gridAverage(mtype_i).to_numpy() xy, original, down, alls = ib.smooth_gaussian_distance(mtype_i, step=0.01, method=None, sigma=1, k=10) mtype[ii].append(alls) fig, axs = plt.subplots(1,4,figsize = (5*4,5)) for i in range(4): mlp = axs[i].scatter(ib.mask[:,0], ib.mask[:,1], c=mtype[0][i], cmap=cmap, vmin=0, vmax=1) axs[i].set_title(label[i], fontsize=18) axs[i].set_xlim([-3,3]) axs[i].set_ylim([-3,3]) if SAVEFIG: plt.savefig(f'figs/[20210518_matching_grid]_model_display_spiral_{str(ib.date.date())}.jpg', bbox_inches='tight') fig, axs = plt.subplots(1,4,figsize = (5*4,5)) for i in range(4): axs[i].scatter(ib.mask[:,0], ib.mask[:,1], c=mtype[1][i], cmap=cmap, vmin=0, vmax=1) axs[i].set_title(label[i], fontsize=18) axs[i].set_xlim([-3,3]) axs[i].set_ylim([-3,3]) if SAVEFIG: plt.savefig(f'figs/[20210518_matching_grid]_model_display_sxor_{str(ib.date.date())}.jpg', bbox_inches='tight') ###Output _____no_output_____ ###Markdown Generate compiled plot and output images ###Code angle_step = 12 new_dtype = ['Original'] + dtype fdtype = ['spiral', 'sxor'] #dtype defined for filename palette = sns.color_palette('bright', len(ib.mtype)) col = 6 row = 2 step = 0.2 r = 4 x_range = np.arange(-r,r,step) for sw, lb in enumerate(fdtype): for deg in np.arange(0, 180+angle_step, angle_step): line_plot = [] line_post = [] fig, axs = plt.subplots(row,col,figsize = (5*(col+2),5*row)) # camera = Camera(fig) gs = axs[0, 4].get_gridspec() # remove the underlying axes for ax in axs[:, -1]: ax.remove() for ax in axs[:, -2]: ax.remove() for i in range(2): line_plot.append([]) line_post.append([]) for j in range(4): line_plot[i].append([]) line_post[i].append(ib.select_linear_region(mtype[i][j], degree=deg, step=0.001)) lp, li = line_post[i][j] #line posterior, line index x = ib.mask[li][:,0] y = ib.mask[li][:,1] dist = np.sqrt(x**2 + y**2) dist[y < 0] *= -1 # negative radial distance wrt y-coordinate for rad in x_range: line_plot[i][j].append(np.array(lp[(dist >= rad) * (dist < rad+step)]).mean()) for m in range(2): for i in range(4): if m == 0: axs[m,i].scatter(ib.mask[:,0], ib.mask[:,1], c=mtype[sw][i], cmap=cmap, vmin=0, vmax=1) #switch here else: ibXY = ib.mask[line_post[m-1][i][1]] axs[m,i].scatter(ibXY[:,0], ibXY[:,1], c=line_post[sw][i][0], cmap=cmap, vmin=0, vmax=1) # figure styling if m == 0: axs[m,i].set_title(label[i], fontsize=fsize) if i == 0: axs[m,i].set_ylabel(new_dtype[m], fontsize=fsize) axs[m,i].set_xlim(-3,3) axs[m,i].set_ylim(-3,3) # axs[m,i].set_xticks([]) # axs[m,i].set_yticks([]) axbig = fig.add_subplot(gs[:, -2:]) tempdf = pd.DataFrame(np.array(line_plot[sw]).T, columns=label) #switch here tempdf.index = x_range for i, lab in enumerate(label): sns.lineplot(data=tempdf[[lab]], ax=axbig, palette=[palette[i]]) axbig.legend(loc=1, fontsize='xx-large') axbig.set_title(['Spiral', 'S-XOR'][sw], fontsize=fsize) axbig.set_ylabel('mean posterior', fontsize=fsize) axbig.set_xlabel('distance from origin', fontsize=fsize) axbig.set_ylim([-0.1,1.1]) axbig.set_xlim(-3,3) # camera.snap() # plt.pause(0.5) if SAVEFIG: plt.savefig(f'figs/[20210518_matching_grid]_fullplot_{lb}_{deg}deg_{str(ib.date.date())}.jpg', bbox_inches='tight') else: plt.show() plt.clf(); # animation = camera.animate() # animation.save(f'figs/[20210512_line_analysis]_posterior_animation_{str(ib.date.date())}.gif', bitrate=10000 )#writer ='imagemagick', dpi=600) fps=10 ###Output _____no_output_____ ###Markdown Construct gif using image files ###Code imgpath = 'figs' imglist = os.listdir(imgpath) filtered = [i for i in imglist if '[20210518_matching_grid]' in i] filtered = [i for i in filtered if 'jpg' in i] filtered_spiral = [i for i in filtered if 'spiral' in i] filtered_sxor = [i for i in filtered if 'sxor' in i] temp = [[],[]] for i, lists in enumerate([filtered_spiral, filtered_sxor]): for filename in lists: if i == 0: s = filename.rfind('iral_') else: s = filename.rfind('sxor_') e = filename.rfind('deg_') temp[i].append(filename[s+5:e]) idx = np.argsort(np.array(temp[0]).astype(int)) filtered_spiral = np.array(filtered_spiral)[idx].tolist() idx = np.argsort(np.array(temp[1]).astype(int)) filtered_sxor = np.array(filtered_sxor)[idx].tolist() filtered_spiral filtered_sxor if SAVEFIG: for fidx, filenames in enumerate([filtered_spiral, filtered_sxor]): images = [] for filename in filenames: images.append(imageio.imread(imgpath + '/' + filename)) imgname = f'figs/[20210518_matching_grid]_fullplot_animated_{fdtype[fidx]}_{str(ib.date.date())}.gif' imageio.mimsave(imgname, images, fps=2) ###Output _____no_output_____
community/awards/teach_me_quantum_2018/qml_mooc/06_Adiabatic Quantum Computing.ipynb
###Markdown When we talk about quantum computing, we actually talk about several different paradigms. The most common one is gate-model quantum computing, in the vein we discussed in the previous notebook. In this case, gates are applied on qubit registers to perform arbitrary transformations of quantum states made up of qubits.The second most common paradigm is quantum annealing. This paradigm is often also referred to as adiabatic quantum computing, although there are subtle differences. Quantum annealing solves a more specific problem -- universality is not a requirement -- which makes it an easier, albeit still difficult engineering challenge to scale it up. The technology is up to 2000 superconducting qubits in 2018, compared to the less than 100 qubits on gate-model quantum computers. D-Wave Systems has been building superconducting quantum annealers for over a decade and this company holds the record for the number of qubits -- 2048. More recently, an IARPA project was launched to build novel superconducting quantum annealers. A quantum optics implementation was also made available by QNNcloud that implements a coherent Ising model. Its restrictions are different from superconducting architectures.Gate-model quantum computing is conceptually easier to understand: it is the generalization of digital computing. Instead of deterministic logical operations of bit strings, we have deterministic transformations of (quantum) probability distributions over bit strings. Quantum annealing requires some understanding of physics, which is why we introduced classical and quantum many-body physics in a previous notebook. Over the last few years, quantum annealing inspired gate-model algorithms that work on current and near-term quantum computers (see the notebook on variational circuits). So in this sense, it is worth developing an understanding of the underlying physics model and how quantum annealing works, even if you are only interested in gate-model quantum computing.While there is a plethora of quantum computing languages, frameworks, and libraries for the gate-model, quantum annealing is less well-established. D-Wave Systems offers an open source suite called Ocean. A vendor-independent solution is XACC, an extensible compilation framework for hybrid quantum-classical computing architectures, but the only quantum annealer it maps to is that of D-Wave Systems. Since XACC is a much larger initiative that extends beyond annealing, we choose a few much simpler packages from Ocean to illustrate the core concepts of this paradigm. However, before diving into the details of quantum annealing, it is worth taking a slight detour to connect the unitary evolution we discussed in a closed system and in the gate-model paradigm and the Hamiltonian describing a quantum many-body system. We also briefly discuss the adiabatic theorem, which provides the foundation why quantum annealing would work at all. Unitary evolution and the HamiltonianWe introduced the Hamiltonian as an object describing the energy of a classical or quantum system. Something more is true: it gives a description of a system evolving with time. This formalism is expressed by the Schrödinger equation:$$\imath\hbar {\frac {d}{dt}}|\psi(t)\rangle = H|\psi(t)\rangle,$$where $\hbar$ is the reduced Planck constant. Previously we said that it is a unitary operator that evolves state. That is exactly what we get if we solve the Schrödinger equation for some time $t$: $U = \exp(-\imath Ht/\hbar)$. Note that we used that the Hamiltonian does not depend on time. In other words, every unitary we talked about so far has some underlying Hamiltonian.The Schrödinger equation in the above form is the time-dependent variant: the state depends on time. The time-independent Schröndinger equation reflects what we said about the Hamiltonian describing the energy of the system: $$ H|\psi \rangle =E|\psi \rangle,$$where $E$ is the total energy of the system. The adiabatic theorem and adiabatic quantum computingAn adiabatic process means that conditions change slowly enough for the system to adapt to the new configuration. For instance, in a quantum mechanical system, we can start from some Hamiltonian $H_0$ and slowly change it to some other Hamiltonian $H_1$. The simplest change could be a linear schedule:$$H(t) = (1-t) H_0 + t H_1,$$for $t\in[0,1]$ on some time scale. This Hamiltonian depends on time, so solving the Schrödinger equation is considerably more complicated. The adiabatic theorem says that if the change in the time-dependent Hamiltonian occurs slowly, the resulting dynamics remain simple: starting close to an eigenstate, the system remains close toan eigenstate. This implies that if the system started in the ground state, if certain conditions are met, the system stays in the ground state. We call the energy difference between the ground state and the first excited state the gap. If $H(t)$ has a nonnegative gap for each $t$ during the transition and the change happens slowly, then the system stays in the ground state. If we denote the time-dependent gap by $\Delta(t)$, a course approximation of the speed limit scales as $1/\min(\Delta(t))^2$.This theorem allows something highly unusual. We can reach the ground state of an easy-to-solve quantum many body system, and change the Hamiltonian to a system we are interested in. For instance, we could start with the Hamiltonian $\sum_i \sigma^X_i$ -- its ground state is just the equal superposition. Let's see this on two sites: ###Code import numpy as np np.set_printoptions(precision=3, suppress=True) X = np.array([[0, 1], [1, 0]]) IX = np.kron(np.eye(2), X) XI = np.kron(X, np.eye(2)) H_0 = - (IX + XI) λ, v = np.linalg.eigh(H_0) print("Eigenvalues:", λ) print("Eigenstate for lowest eigenvalue", v[:, 0]) ###Output Eigenvalues: [-2. -0. 0. 2.] Eigenstate for lowest eigenvalue [-0.5 -0.5 -0.5 -0.5] ###Markdown Then we could turn this Hamiltonian slowly into a classical Ising model and read out the global solution.Adiabatic quantum computation exploits this phenomenon and it is able to perform universal calculations with the final Hamiltonian being $H=-\sum_{} J_{ij} \sigma^Z_i \sigma^Z_{j} - \sum_i h_i \sigma^Z_i - \sum_{} g_{ij} \sigma^X_i\sigma^X_j$. Note that is not the transverse-field Ising model: the last term is an X-X interaction. If a quantum computer respects the speed limit, guarantees the finite gap, and implements this Hamiltonian, then it is equivalent to the gate model with some overhead.The quadratic scaling on the gap does not appear too bad. So can we solve NP-hard problems faster with this paradigm? It is unlikely. The gap is highly dependent on the problem, and actually difficult problems tend to have an exponentially small gap. So our speed limit would be quadratic over the exponentially small gap, so the overall time required would be exponentially large. Quantum annealingA theoretical obstacle to adiabatic quantum computing is that calculating the speed limit is clearly not trivial; in fact, it is harder than solving the original problem of finding the ground state of some Hamiltonian of interest. Engineering constraints also apply: the qubits decohere, the environment has finite temperature, and so on. *Quantum annealing* drops the strict requirements and instead of respecting speed limits, it repeats the transition (the annealing) over and over again. Having collected a number of samples, we pick the spin configuration with the lowest energy as our solution. There is no guarantee that this is the ground state.Quantum annealing has a slightly different software stack than gate-model quantum computers. Instead of a quantum circuit, the level of abstraction is the classical Ising model -- the problem we are interested in solving must be in this form. Then, just like superconducting gate-model quantum computers, superconducting quantum annealers also suffer from limited connectivity. In this case, it means that if our problem's connectivity does not match that of the hardware, we have to find a graph minor embedding. This will combine several physical qubits into a logical qubit. The workflow is summarized in the following diagram [[1](1)]:A possible classical solver for the Ising model is the simulated annealer that we have seen before: ###Code import dimod J = {(0, 1): 1.0, (1, 2): -1.0} h = {0:0, 1:0, 2:0} model = dimod.BinaryQuadraticModel(h, J, 0.0, dimod.SPIN) sampler = dimod.SimulatedAnnealingSampler() response = sampler.sample(model, num_reads=10) print("Energy of samples:") print([solution.energy for solution in response.data()]) ###Output Energy of samples: [-2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0] ###Markdown Let's take a look at the minor embedding problem. This part is NP-hard in itself, so we normally use probabilistic heuristics to find an embedding. For instance, for many generations of the quantum annealer that D-Wave Systems produces has unit cells containing a $K_{4,4}$ bipartite fully-connected graph, with two remote connections from each qubit going to qubits in neighbouring unit cells. A unit cell with its local and remote connections indicated is depicted following figure:This is called the Chimera graph. The current largest hardware has 2048 qubits, consisting of $16\times 16$ unit cells of 8 qubits each. The Chimera graph is available as a `networkx` graph in the package `dwave_networkx`. We draw a smaller version, consisting of $2\times 2$ unit cells. ###Code import matplotlib.pyplot as plt import dwave_networkx as dnx %matplotlib inline connectivity_structure = dnx.chimera_graph(2, 2) dnx.draw_chimera(connectivity_structure) plt.show() ###Output /home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/networkx/drawing/nx_pylab.py:611: MatplotlibDeprecationWarning: isinstance(..., numbers.Number) if cb.is_numlike(alpha): ###Markdown Let's create a graph that certainly does not fit this connectivity structure. For instance, the complete graph $K_n$ on nine nodes: ###Code import networkx as nx G = nx.complete_graph(9) plt.axis('off') nx.draw_networkx(G, with_labels=False) import minorminer embedded_graph = minorminer.find_embedding(G.edges(), connectivity_structure.edges()) ###Output _____no_output_____ ###Markdown Let's plot this embedding: ###Code dnx.draw_chimera_embedding(connectivity_structure, embedded_graph) plt.show() ###Output _____no_output_____ ###Markdown Qubits that have the same colour corresponding to a logical node in the original problem defined by the $K_9$ graph. Qubits combined in such way form a chain. Even though our problem only has 9 variables (nodes), we used almost all 32 available on the toy Chimera graph. Let's find the maximum chain length: ###Code max_chain_length = 0 for _, chain in embedded_graph.items(): if len(chain) > max_chain_length: max_chain_length = len(chain) print(max_chain_length) ###Output 4