path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
pymaceuticals_HW.ipynb
###Markdown Observations and Insights ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st import numpy as np from scipy.stats import linregress # Study data files mouse_metadata_path = "data/Mouse_metadata.csv" study_results_path = "data/Study_results.csv" # Read the mouse data and the study results mouse_metadata = pd.read_csv(mouse_metadata_path) study_results = pd.read_csv(study_results_path) # Combine the data into a single dataset merged_df = pd.merge(mouse_metadata, study_results, on = "Mouse ID") # Display the data table for preview merged_df.head(30) # Checking the number of mice. total_mice = merged_df["Mouse ID"].nunique() total_mice # Getting the duplicate mice by ID number that shows up for Mouse ID and Timepoint duplicate_id = merged_df.loc[merged_df.duplicated(subset = ["Mouse ID", "Timepoint"]), "Mouse ID"].unique() duplicate_id # Optional: Get all the data for the duplicate mouse ID. optional_df = merged_df.loc[merged_df["Mouse ID"]=="g989"] optional_df # Create a clean DataFrame by dropping the duplicate mouse by its ID. clean_df = merged_df.loc[merged_df["Mouse ID"]!="g989"] clean_df # Checking the number of mice in the clean DataFrame. total_mice = clean_df["Mouse ID"].nunique() total_mice ###Output _____no_output_____ ###Markdown Summary Statistics ###Code # Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen # Use groupby and summary statistical methods to calculate the following properties of each drug regimen: # mean, median, variance, standard deviation, and SEM of the tumor volume. # Assemble the resulting series into a single summary dataframe. mean_data = clean_df.groupby("Drug Regimen").mean()["Tumor Volume (mm3)"] median_data = clean_df.groupby("Drug Regimen").median()["Tumor Volume (mm3)"] variance_data = clean_df.groupby("Drug Regimen").var()["Tumor Volume (mm3)"] std_data = clean_df.groupby("Drug Regimen").std()["Tumor Volume (mm3)"] sem_data = clean_df.groupby("Drug Regimen").sem()["Tumor Volume (mm3)"] stats_df = pd.DataFrame({"Mean":mean_data, "Median":median_data, "Variance":variance_data, "STD":std_data, "SEM":sem_data}) stats_df # Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen summary_df2 = clean_df.groupby("Drug Regimen").agg({"Tumor Volume (mm3)":["mean","median","var","std","sem"]}) # Using the aggregation method, produce the same summary statistics in a single line summary_df2 ###Output _____no_output_____ ###Markdown Bar and Pie Charts ###Code # Generate a bar plot showing the total number of unique mice tested on each drug regimen using pandas. bar_plot = clean_df.groupby(["Drug Regimen"]).count()["Mouse ID"] bar_plot.plot(kind="bar", figsize=(10,5)) plt.title("Drug Distribution") plt.xlabel("Drug Regimen") plt.ylabel("Number of Mice") plt.show() plt.tight_layout() # Generate a bar plot showing the total number of unique mice tested on each drug regimen using pyplot. bar_plot x_axis= np.arange(0, len(bar_plot)) tick_locations = [] for x in x_axis: tick_locations.append(x) plt.title("Drug Distribution") plt.xlabel("Drug Regimen") plt.ylabel("# of Mice") plt.xlim(0, len(bar_plot)-0.25) plt.ylim(0, max(bar_plot)+20) plt.bar(x_axis, bar_plot, facecolor="g", alpha=0.5, align="center") plt.xticks(tick_locations, ["Capomulin", "Ceftamin", "Infubinol", "Ketapril", "Naftisol", "Placebo", "Propriva", "Ramicane", "Stelasyn", "Zoniferol"], rotation = "vertical") plt.show() # Generate a pie plot showing the distribution of female versus male mice using pandas males = clean_df[clean_df["Sex"]== "Male"]["Mouse ID"].nunique() females = clean_df[clean_df["Sex"]== "Female"]["Mouse ID"].nunique() gender_df = pd.DataFrame({"Sex": ["Male", "Female"], "Count": [males, females]}) gender_df_index = gender_df.set_index("Sex") plot = gender_df_index.plot(kind="pie", y="Count", autopct="%1.1f%%", startangle=120) plot # Generate a pie plot showing the distribution of female versus male mice using pyp labels = ["Male", "Female"] sizes = ["125", "123"] colors = ["Green", "Yellow"] plt.pie(sizes, labels=labels, colors=colors, autopct="%1.1f%%", shadow=True, startangle=140) plt.axis("equal") ###Output _____no_output_____ ###Markdown Quartiles, Outliers and Boxplots ###Code # Calculate the final tumor volume of each mouse across four of the treatment regimens: # Capomulin, Ramicane, Infubinol, and Ceftamin filt_cap = clean_df.loc[clean_df["Drug Regimen"] == "Capomulin"] filt_ram = clean_df.loc[clean_df["Drug Regimen"] == "Ramicane"] filt_infu = clean_df.loc[clean_df["Drug Regimen"] == "Infubinol"] filt_ceft = clean_df.loc[clean_df["Drug Regimen"] == "Ceftamin"] # Start by getting the last (greatest) timepoint for each mouse last_timepoint_cap = filt_cap.groupby("Mouse ID")["Timepoint"].max() last_timepoint_ram = filt_ram.groupby("Mouse ID")["Timepoint"].max() last_timepoint_infu = filt_infu.groupby("Mouse ID")["Timepoint"].max() last_timepoint_ceft = filt_ceft.groupby("Mouse ID")["Timepoint"].max() # Merge this group df with the original dataframe to get the tumor volume at the last timepoint fin_vol_cap = pd.DataFrame(last_timepoint_cap) cap_merge = pd.merge(fin_vol_cap, clean_df, on = ("Mouse ID", "Timepoint"), how = "left") fin_vol_ram = pd.DataFrame(last_timepoint_ram) ram_merge = pd.merge(fin_vol_ram, clean_df, on = ("Mouse ID", "Timepoint"), how = "left") fin_vol_infu = pd.DataFrame(last_timepoint_infu) infu_merge = pd.merge(fin_vol_infu, clean_df, on = ("Mouse ID", "Timepoint"), how = "left") fin_vol_ceft = pd.DataFrame(last_timepoint_ceft) ceft_merge = pd.merge(fin_vol_ceft, clean_df, on = ("Mouse ID", "Timepoint"), how = "left") # Put treatments into a list for for loop (and later for plot labels) treatments = [cap_merge, ram_merge, infu_merge, ceft_merge] # Create empty list to fill with tumor vol data (for plotting) tumor_volume_data_plot = [] for treatment in treatments: print(treatment) # Calculate the IQR and quantitatively determine if there are any potential outliers. # Determine outliers using upper and lower bounds #Capomulin cap_list = cap_merge["Tumor Volume (mm3)"] quartiles = cap_list.quantile([.25,.5,.75]) lowerq = quartiles[0.25] upperq = quartiles[0.75] iqr = upperq-lowerq lower_bound = lowerq - (1.5*iqr) upper_bound = upperq + (1.5*iqr) tumor_volume_data_plot.append(cap_list) print(f"Capomulin potential outliers could be values below {lower_bound} and above {upper_bound} could be outliers.") print (f"Capomulin IQR is {iqr}.") #Ramicane ram_list = ram_merge["Tumor Volume (mm3)"] quartiles = ram_list.quantile([.25,.5,.75]) lowerq = quartiles[0.25] upperq = quartiles[0.75] iqr = upperq-lowerq lower_bound = lowerq - (1.5*iqr) upper_bound = upperq + (1.5*iqr) tumor_volume_data_plot.append(ram_list) print(f"Ramicane potential outliers could be values below {lower_bound} and above {upper_bound} could be outliers.") print (f"Ramicane IQR is {iqr}.") #Infubinol infu_list = infu_merge["Tumor Volume (mm3)"] quartiles = infu_list.quantile([.25,.5,.75]) lowerq = quartiles[0.25] upperq = quartiles[0.75] iqr = upperq-lowerq lower_bound = lowerq - (1.5*iqr) upper_bound = upperq + (1.5*iqr) tumor_volume_data_plot.append(infu_list) print(f"Infubinol potential outliers could be values below {lower_bound} and above {upper_bound} could be outliers.") print (f"Infubinol IQR is {iqr}.") #Ceftamin ceft_list = ceft_merge["Tumor Volume (mm3)"] quartiles = ceft_list.quantile([.25,.5,.75]) lowerq = quartiles[0.25] upperq = quartiles[0.75] iqr = upperq-lowerq lower_bound = lowerq - (1.5*iqr) upper_bound = upperq + (1.5*iqr) tumor_volume_data_plot.append(ceft_list) print(f"Ceftamin potential outliers could be values below {lower_bound} and above {upper_bound} could be outliers.") print (f"Ceftamin IQR is {iqr}.") # Generate a box plot of the final tumor volume of each mouse across four regimens of interest tumor_volume_data_plot fig1, ax1 = plt.subplots() ax1.set_title('Final Tumor Volume of Each Mouse') ax1.set_ylabel('Final Tumor Volume (mm3)') ax1.set_xlabel('Drug Regimen') ax1.boxplot(tumor_volume_data_plot, labels = ["Capomulin", "Ramicane", "Infubinol", "Ceftamin"]) plt.show() ###Output _____no_output_____ ###Markdown Line and Scatter Plots ###Code # Generate a line plot of tumor volume vs. time point for a mouse treated with Capomulin x_axis = np.arange(0,46,5) tumor_vol = [45, 45.41, 39.11, 39.77, 36.06, 36.61, 32.91, 30.20, 28.16, 28.48] plt.xlabel("Time Point") plt.ylabel("Tumor Volume") plt.title("Capomulin (x401)") plt.ylim(25, 50) plt.xlim(0, 45) tumor_line, = plt.plot(x_axis, tumor_vol, marker="*", color="blue", linewidth=1, label="Capomulin") plt.show() # Generate a scatter plot of average tumor volume vs. mouse weight for the Capomulin regimen drug_df = clean_df.loc[clean_df["Drug Regimen"] == "Capomulin"] weight_tumor = drug_df.loc[:, ["Mouse ID", "Weight (g)", "Tumor Volume (mm3)"]] avg_tumor_volume = pd.DataFrame(weight_tumor.groupby(["Mouse ID", "Weight (g)"])["Tumor Volume (mm3)"].mean()).reset_index() avg_tumor_volume = avg_tumor_volume.set_index("Mouse ID") avg_tumor_volume.plot(kind="scatter", x="Weight (g)", y="Tumor Volume (mm3)", grid=True, figsize=(8,8), title="Weight vs. Average Tumor Volume for Capomulin") plt.show() ###Output _____no_output_____ ###Markdown Correlation and Regression ###Code # Calculate the correlation coefficient and linear regression model # for mouse weight and average tumor volume for the Capomulin regimen mouse_weight = avg_tumor_volume.iloc[:,0] tumor_volume = avg_tumor_volume.iloc[:,1] correlation = st.pearsonr(mouse_weight,tumor_volume) print(f"The correlation between both factors is {round(correlation[0],2)}") x_values = avg_tumor_volume['Weight (g)'] y_values = avg_tumor_volume['Tumor Volume (mm3)'] (slope, intercept, rvalue, pvalue, stderr) = linregress(x_values, y_values) regress_values = x_values * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x + " + str(round(intercept,2)) plt.scatter(x_values,y_values) plt.plot(x_values,regress_values,"r-") plt.annotate(line_eq,(6,10),fontsize=15,color="red") plt.xlabel('Mouse Weight (g)') plt.ylabel('Average Tumor Volume (mm3)') plt.title('Linear Regression') plt.show() ###Output _____no_output_____
vimms/notebook/MakeSpectralLibraries.ipynb
###Markdown Make spectral libraries ###Code import sys, os sys.path.append('/Users/simon/git/vimms') sys.path.insert(0,'/Users/simon/git/mass-spec-utils/') from vimms.Common import save_obj from tqdm import tqdm %load_ext autoreload %autoreload 2 library_cache = '/Users/simon/clms_er/library_cache' ###Output _____no_output_____ ###Markdown Massbank ###Code from mass_spec_utils.library_matching.spec_libraries import MassBankLibrary ###Output _____no_output_____ ###Markdown Path to the local version of the massbank repo ###Code massbank_data_path = '/Users/simon/git/MassBank-Data/' # final slash is important! mb = MassBankLibrary(mb_dir=massbank_data_path, polarity='POSITIVE') save_obj(mb, os.path.join(library_cache, 'massbank_pos.p')) mb = MassBankLibrary(mb_dir=massbank_data_path, polarity='NEGATIVE') save_obj(mb, os.path.join(library_cache, 'massbank_neg.p')) mb = MassBankLibrary(mb_dir=massbank_data_path, polarity='all') save_obj(mb, os.path.join(library_cache, 'massbank_all.p')) ###Output Loading records from /Users/simon/git/MassBank-Data/Athens_Univ/ Loaded 5252 new records Loading records from /Users/simon/git/MassBank-Data/MetaboLights/ Loaded 58 new records Loading records from /Users/simon/git/MassBank-Data/MPI_for_Chemical_Ecology/ Loaded 691 new records Loading records from /Users/simon/git/MassBank-Data/JEOL_Ltd/ Loaded 45 new records Loading records from /Users/simon/git/MassBank-Data/GL_Sciences_Inc/ Loaded 174 new records Loading records from /Users/simon/git/MassBank-Data/Env_Anal_Chem_U_Tuebingen/ Loaded 128 new records Loading records from /Users/simon/git/MassBank-Data/RIKEN_ReSpect/ Loaded 4642 new records Loading records from /Users/simon/git/MassBank-Data/Boise_State_Univ/ Loaded 4 new records Loading records from /Users/simon/git/MassBank-Data/LCSB/ Loaded 7299 new records Loading records from /Users/simon/git/MassBank-Data/PFOS_research_group/ Loaded 413 new records Loading records from /Users/simon/git/MassBank-Data/Eawag/ Loaded 11191 new records Loading records from /Users/simon/git/MassBank-Data/IPB_Halle/ Loaded 677 new records Loading records from /Users/simon/git/MassBank-Data/Washington_State_Univ/ Loaded 2626 new records Loading records from /Users/simon/git/MassBank-Data/Univ_Toyama/ Loaded 253 new records Loading records from /Users/simon/git/MassBank-Data/UOEH/ Loaded 35 new records Loading records from /Users/simon/git/MassBank-Data/Fukuyama_Univ/ Loaded 340 new records Loading records from /Users/simon/git/MassBank-Data/Waters/ Loaded 2992 new records Loading records from /Users/simon/git/MassBank-Data/UPAO/ Loaded 12 new records Loading records from /Users/simon/git/MassBank-Data/UFZ/ Loaded 1261 new records Loading records from /Users/simon/git/MassBank-Data/AAFC/ Loaded 950 new records Loading records from /Users/simon/git/MassBank-Data/Metabolon/ Loaded 149 new records Loading records from /Users/simon/git/MassBank-Data/RIKEN_NPDepo/ Loaded 1956 new records Loading records from /Users/simon/git/MassBank-Data/Eawag_Additional_Specs/ Loaded 895 new records Loading records from /Users/simon/git/MassBank-Data/Nihon_Univ/ Loaded 706 new records Loading records from /Users/simon/git/MassBank-Data/NAIST/ Loaded 621 new records Loading records from /Users/simon/git/MassBank-Data/CASMI_2012/ Loaded 26 new records Loading records from /Users/simon/git/MassBank-Data/HBM4EU/ Loaded 1925 new records Loading records from /Users/simon/git/MassBank-Data/BGC_Munich/ Loaded 903 new records Loading records from /Users/simon/git/MassBank-Data/Tottori_Univ/ Loaded 16 new records Loading records from /Users/simon/git/MassBank-Data/BS/ Loaded 1318 new records Loading records from /Users/simon/git/MassBank-Data/Chubu_Univ/ Loaded 2563 new records Loading records from /Users/simon/git/MassBank-Data/MSSJ/ Loaded 328 new records Loading records from /Users/simon/git/MassBank-Data/ISAS_Dortmund/ Loaded 513 new records Loading records from /Users/simon/git/MassBank-Data/Kyoto_Univ/ Loaded 184 new records Loading records from /Users/simon/git/MassBank-Data/Keio_Univ/ Loaded 4780 new records Loading records from /Users/simon/git/MassBank-Data/RIKEN_IMS/ Loaded 1140 new records Loading records from /Users/simon/git/MassBank-Data/Literature_Specs/ Loaded 39 new records Loading records from /Users/simon/git/MassBank-Data/Osaka_MCHRI/ Loaded 20 new records Loading records from /Users/simon/git/MassBank-Data/KWR/ Loaded 207 new records Loading records from /Users/simon/git/MassBank-Data/RIKEN/ Loaded 11935 new records Loading records from /Users/simon/git/MassBank-Data/Fiocruz/ Loaded 1107 new records Loading records from /Users/simon/git/MassBank-Data/Fac_Eng_Univ_Tokyo/ Loaded 12379 new records Loading records from /Users/simon/git/MassBank-Data/Univ_Connecticut/ Loaded 510 new records Loading records from /Users/simon/git/MassBank-Data/NaToxAq/ Loaded 3756 new records Loading records from /Users/simon/git/MassBank-Data/CASMI_2016/ Loaded 622 new records Loading records from /Users/simon/git/MassBank-Data/Kazusa/ Loaded 273 new records Loading records from /Users/simon/git/MassBank-Data/Osaka_Univ/ Loaded 449 new records ###Markdown GNPSUsing Florian's file, because it has inchikeys ###Code json_file = '/Users/simon/Downloads/gnps_positive_ionmode_cleaned_by_matchms_and_lookups.json' import json with open(json_file,'r') as f: payload = json.loads(f.read()) from mass_spec_utils.library_matching.spectrum import SpectralRecord neg_intensities = [] def json_to_spectrum(json_dat): precursor_mz = json_dat['precursor_mz'] original_file = json_file spectrum_id = json_dat['spectrum_id'] inchikey = json_dat['inchikey_smiles'] peaks = json_dat['peaks_json'] metadata = {} for k,v in json_dat.items(): if not k == 'peaks': metadata[k] = v mz,i = zip(*peaks) if min(i) < 0: neg_intensities.append(spectrum_id) return None else: new_spectrum = SpectralRecord(precursor_mz, peaks, metadata, original_file, spectrum_id) return new_spectrum records = {} for jd in tqdm(payload): new_spec = json_to_spectrum(jd) if new_spec is not None: records[new_spec.spectrum_id] = new_spec def filter_min_peaks(spectrum, min_n_peaks=10): n_peaks = len(spectrum.peaks) if n_peaks < min_n_peaks: return None else: return spectrum def filter_rel_intensity(spectrum, min_rel=0.01, max_rel=1.): pp = spectrum.peaks mz,i = zip(*pp) max_i = max(i) new_pp = [] for p in pp: ri = p[1]/max_i if ri <= max_rel and ri >= min_rel: new_pp.append(p) spectrum.peaks = new_pp return spectrum new_records = {} for sid in tqdm(records.keys()): spec = records[sid] ss = filter_min_peaks(spec) if ss is not None: new_records[sid] = ss else: continue ss = filter_rel_intensity(ss) new_records[sid] = ss for sid, ss in new_records.items(): ss.metadata['inchikey'] = ss.metadata['inchikey_smiles'] from mass_spec_utils.library_matching.spec_libraries import SpectralLibrary sl = SpectralLibrary() sl.records = new_records sl.sorted_record_list = sl._dic2list() save_obj(sl, os.path.join(library_cache,'gnps.p')) ###Output _____no_output_____
modulo - 1 Fundamentos/desafio_final1.ipynb
###Markdown Desafio Final 1Bootcamp Analista de Machine Learning @ IGTI **Objetivos**:* Pré-processamento dos dados.* Detecção de anomalias* Processamento dos dados.* Correlações.* Redução da dimensionalidade.* Algoritmos supervisionados e não supervisionados**Análise com:*** Redução de dimensionalidade* Clusterização com K-means* Classificação supervisionada ###Code import pandas as pd import numpy as np import seaborn as sns from google.colab import drive drive.mount('/content/drive') cars = pd.read_csv('/content/drive/My Drive/Data Science/Bootcamp Analista de ML/Desafio Final/cars.csv') ###Output _____no_output_____ ###Markdown Conhecendo o dataset **Significado das classes:*** mpg = miles per gallon* cylinders = quantidade de cilindros, que é a origem da força mecânica que possibilita o deslocamento do veículo* cubicinches = volume total de ar e combustível queimado pelos cilindros através do motor* hp = horse power* weightlbs = peso do carro em libras* time-to-60 = capacidade em segundos do carro de ir de 0 a 60 milhas por horas* year = ano de fabricação* brand = marca, origem, etc.1 kg = 2,20462 lbs ###Code cars.head() cars.describe() #linhas x colunas cars.shape #Existem dados faltantes ? cars.isnull().sum() cars.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 261 entries, 0 to 260 Data columns (total 8 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 mpg 261 non-null float64 1 cylinders 261 non-null int64 2 cubicinches 261 non-null object 3 hp 261 non-null int64 4 weightlbs 261 non-null object 5 time-to-60 261 non-null int64 6 year 261 non-null int64 7 brand 261 non-null object dtypes: float64(1), int64(4), object(3) memory usage: 16.4+ KB ###Markdown Teste: Desafio Final Pergunta 1 - Após a utilização da biblioteca pandas para a leitura dos dados sobre os valores lidos, é CORRETO afirmar que: ###Code cars.isnull().sum() ###Output _____no_output_____ ###Markdown **Não foram encontrados valores nulos após a leitura dos dados.** Pergunta 2 - Realize a transformação das colunas “cubicinches” e “weightlbs” do tipo “string” para o tipo numérico utilizando o pd.to_numeric(), utilizando o parâmetro errors='coerce'. Após essa transformação, é CORRETO afirmar: ###Code #Convertendo valores objects para numeric cars['cubicinches'] = pd.to_numeric(cars['cubicinches'], errors='coerce') cars['weightlbs'] = pd.to_numeric(cars['weightlbs'], errors='coerce') #Verificando resultado cars.info() cars.isnull().sum() ###Output _____no_output_____ ###Markdown **Essa transformação adiciona valores nulos ao nosso dataset.** Pergunta 3 - Indique quais eram os índices dos valores presentes no dataset que “forçaram” o pandas a compreender a variável “cubicinches” como string. ###Code indices_cub = [cars[cars['cubicinches'].isnull()]] indices_cub ###Output _____no_output_____ ###Markdown Pergunta 4 - Após a transformação das variáveis “string” para os valores numéricos, quantos valores nulos (células no dataframe) passaram a existir no dataset? ###Code cars.isnull().sum() ###Output _____no_output_____ ###Markdown Pergunta 5 - Substitua os valores nulos introduzidos no dataset, após a transformação, pelo valor médio das colunas. Qual é o novo valor médio da coluna “weightlbs”? ###Code cars['cubicinches'] = cars['cubicinches'].fillna(cars['cubicinches'].mean()) cars['weightlbs'] = cars['weightlbs'].fillna(cars['weightlbs'].mean()) cars.isnull().sum() cars['weightlbs'].mean() ###Output _____no_output_____ ###Markdown Pergunta 6 - Após substituir os valores nulos pela média das colunas, selecione as colunas ['mpg', 'cylinders', 'cubicinches', 'hp', 'weightlbs', 'time-to-60', 'year']. Qual é o valor da mediana para a característica 'mpg'? ###Code cars['mpg'].median() ###Output _____no_output_____ ###Markdown Pergunta 7 - Qual é a afirmação CORRETA sobre o valor de 14,00 para a variável “time-to-60”? ###Code cars.describe() ###Output _____no_output_____ ###Markdown 75% dos dados são maiores que o valor de 14,00. 8 - Sobre o coeficiente de correlação de Pearson entre as variáveis “cylinders” e “mpg”, é correto afirmar ###Code from scipy import stats stats.pearsonr(cars['cylinders'], cars['mpg']) from sklearn.metrics import r2_score r2_score(cars['cylinders'], cars['mpg']) ###Output _____no_output_____ ###Markdown Mesmo não sendo igual a 1, é possível dizer que à medida em que a variável “cylinders” aumenta, a variável “mpg” também aumenta na mesma direção. 9 - Sobre o boxplot da variável “hp”, é correto afirmar, EXCETO: ###Code sns.boxplot(cars['hp']) ###Output /usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning ###Markdown Cada um dos quartis possui a mesma quantidade de valores para a variável “hp”. 10 - Após normalizado, utilizando a função StandardScaler(), qual é o maior valor para a variável “hp”? ###Code cars.head() cars_normalizar = cars.drop('brand', axis=1) cars_normalizar.head() from sklearn.preprocessing import StandardScaler normalizar = StandardScaler() #instanciando o standart scaler scaler = normalizar.fit(cars_normalizar.values) #fitando o dataset para normalizar cars_normalizado = scaler.transform(cars_normalizar.values) #normalizando cars_normalizado = pd.DataFrame(cars_normalizado, columns=cars_normalizar.columns) #transformando o array numpy em data frame do pandas cars_normalizado['hp'].max() ###Output _____no_output_____ ###Markdown 11 - Aplicando o PCA, conforme a definição acima, qual é o valor da variância explicada com pela primeira componente principal ###Code from sklearn.decomposition import PCA pca = PCA(n_components=7) principais = pca.fit_transform(cars_normalizado) pca.explained_variance_ratio_ ###Output _____no_output_____ ###Markdown 12 - Utilize os três primeiros componentes principais para construir o K-means com um número de 3 clusters. Sobre os clusters, é INCORRETO afirmar que ###Code principais.explained_variance_ratio_ principais_componentes = pd.DataFrame(principais) principais_componentes.head() principais_componentes_k = principais_componentes.iloc[:, :3] #selecionando todas as linhas e as 3 primeiras colunas principais_componentes_k.columns = ['componente 1', 'componente 2', 'componente 3'] from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=3, random_state=42).fit(principais_componentes_k) #Parâmetros dados no desafio principais_componentes_k['cluster'] = kmeans.labels_ #adicionando coluna do cluster em que o carro está principais_componentes_k principais_componentes_k['cluster'].value_counts() #Contando a quantidade de elementos dos clusters gerados ###Output _____no_output_____ ###Markdown 13 - Após todo o processamento realizado nos itens anteriores, crie uma coluna que contenha a variável de eficiência do veículo. Veículos que percorrem mais de 25 milhas com um galão (“mpg”>25) devem ser considerados eficientes. Utilize as colunas ['cylinders' ,'cubicinches' ,'hp' ,'weightlbs','time-to-60'] como entradas e como saída a coluna de eficiência criada.Utilizando a árvore de decisão como mostrado, qual é a acurácia do modelo? ###Code cars.head() entradas = np.array(cars[['cylinders' ,'cubicinches' ,'hp' ,'weightlbs' ,'time-to-60']]) saidas = np.array(cars['mpg'] > 25).astype(int) #zero = maior, 1 = menor entradas saidas from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(entradas, saidas, test_size=0.30, random_state=42) from sklearn.tree import DecisionTreeClassifier classificador = DecisionTreeClassifier(random_state=42) classificador.fit(x_train, y_train) y_pred = classificador.predict(x_test) from sklearn.metrics import accuracy_score acuracia = accuracy_score(y_test, y_pred) acuracia ###Output _____no_output_____ ###Markdown 14 - Sobre a matriz de confusão obtida após a aplicação da árvore de decisão, como mostrado anteriormente, é INCORRETO afirmar: ###Code from sklearn.metrics import confusion_matrix confusion_matrix(y_test, y_pred) ###Output _____no_output_____ ###Markdown Existem duas vezes mais veículos considerados não eficientes que instâncias de veículos eficientes 15 - Utilizando a mesma divisão de dados entre treinamento e teste empregada para a análise anterior, aplique o modelo de regressão logística como mostrado na descrição do trabalho.Comparando os resultados obtidos com o modelo de árvore de decisão, é INCORRETO afirmar que: ###Code from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(random_state=42).fit(x_train, y_train) logreg_y_pred = logreg.predict(x_test) accuracy_score(y_test, logreg_y_pred) ###Output _____no_output_____
ces/carbon.ipynb
###Markdown If not explicitly mentioned otherwise we assume:- RCP2.6 scenario or the lowest ppm concentration reported (stabilized around 400-420)- Linear phase-out of fossil fuels from model start time (2000-2015) by 2100- BAU scenario would lead to RCP6 or higher- as it is widely accepcted that in order to obtain RCP2.6, emissions must at least cease or turn into removals in the geological near-term (throughout this century), therefore whenever the carbon price is given in terms of percentage reduction from current levels, a linear 100% reduction is assumed from model start time (2000-2015) by 2100- if ranges are reported, the mean is taken- if the model reports price in dollar per ton of carbon, it is converted to dollar per ton of carbon dioxide ###Code import pandas as pd, numpy as np, matplotlib.pyplot as plt, matplotlib as mpl %matplotlib inline mpl.style.use('classic') d=[] #d.append(pd.read_csv('carbon/alberth_hope2006.csv',header=None)) #d.append(pd.read_csv('carbon/alberth_hope2006_2.csv',header=None)) d.append(pd.read_csv('carbon/bauer2012.csv',header=None)) d.append(pd.read_csv('carbon/bauer2012_2a.csv',header=None)) d.append(pd.read_csv('carbon/bauer2012_2b.csv',header=None)) d.append(pd.read_csv('carbon/bauer2012_2c.csv',header=None)) d.append(pd.read_csv('carbon/bosetti2014a.csv',header=None)) d.append(pd.read_csv('carbon/bosetti2014b.csv',header=None)) d.append(pd.read_csv('carbon/bosetti2014c.csv',header=None)) d.append(pd.read_csv('carbon/cai2015.csv',header=None)) d.append(pd.read_csv('carbon/chen2005.csv',header=None)) d.append(pd.read_csv('carbon/edmonds_GCAM1994.csv',header=None)) d.append(pd.read_csv('carbon/kriegler2015_2.csv',header=None)) #d.append(pd.read_csv('carbon/luderer_REMIND2015.csv',header=None)) d.append(pd.read_csv('carbon/manne_richels_MERGE2005.csv',header=None)) d.append(pd.read_csv('carbon/paltsev2005.csv',header=None)) d.append(pd.read_csv('carbon/russ_POLES2012.csv',header=None)) d.append(pd.read_csv('carbon/wilkerson2015.csv',header=None)) from scipy.interpolate import interp1d kd=[] fd=[] for z in range(len(d)): kd.append({}) for i in range(len(d[z][0])): if ~np.isnan(d[z][0][i]): kd[z][np.round(d[z][0][i],0)]=d[z][1][i] fd.append(interp1d(sorted(kd[z].keys()),[kd[z][j] for j in sorted(kd[z].keys())])) for z in range(len(d)): #plt.scatter(d[z][0],d[z][1]) years=range(int(min(d[z][0]))+1,int(max(d[z][0]))+1) plt.plot(years,fd[z](years)) labels=['Bauer, Hilaire et al.\n2012 | REMIND-R',\ 'Luderer, Bosetti et al.\n2011 | IMACLIM-R',\ 'Luderer, Bosetti et al.\n2011 | REMIND-R',\ 'Luderer, Bosetti et al.\n2011 | WITCH',\ 'Bosetti, Marangoni et al.\n2015 | GCAM',\ 'Bosetti, Marangoni et al.\n2015 | MARKAL US',\ 'Bosetti, Marangoni et al.\n2015 | WITCH',\ 'Cai, Newth et al.\n2015 | GTEM-C',\ 'Chen, 2005\nMARKAL-MACRO',\ 'Edmonds, Wise, MacCracken\n1994 | GCAM',\ 'Kriegler, Petermann, et al.\n2015 | multiple',\ 'Manne, Richels\n2005 | MERGE',\ 'Paltsev, Reilly et al.\n2005 | MIT EPPA',\ 'Russ, Ciscar et al.\n2009 | POLES',\ 'Wilkerson, Leibowicz et al.\n2015 | multiple'\ ] co2=[1,1,1,1,0,0,0,1,0,0,1,0,0,0,1] z=14 plt.scatter(d[z][0],d[z][1]) years=range(int(min(d[z][0]))+1,int(max(d[z][0]))+1) plt.plot(years,fd[z](years)) def plotter(ax,x,y,c,l,z=2,zz=2,step=2,w=-50,w2=30): yrs=range(x[0]-40,x[len(x)-1]+10) maxi=[0,0] maxv=-100 #try a few initial values for maximum rsquared i=0 for k in range(1,5): p0 = [1., 1., x[len(x)*k/5]] fit2 = optimize.leastsq(errfunc,p0,args=(x,y),full_output=True) ss_err=(fit2[2]['fvec']**2).sum() ss_tot=((y-y.mean())**2).sum() rsquared=1-(ss_err/ss_tot) if rsquared>maxv: maxi=[i,k] maxv=rsquared i=maxi[0] k=maxi[1] p0 = [1., 1., x[len(x)*k/5], -1+i*0.5] fit2 = optimize.leastsq(errfunc,p0,args=(x,y),full_output=True) ss_err=(fit2[2]['fvec']**2).sum() ss_tot=((y-y.mean())**2).sum() rsquared=1-(ss_err/ss_tot) ax.scatter(x[::step],y[::step],lw*3,color=c) #ax.plot(yrs,logist(fit2[0],yrs),color="#006d2c",lw=lw) ax.plot(yrs,logist(fit2[0],yrs),color="#444444",lw=lw) #ax.plot(yrs,logist(fit2[0],yrs),color=c,lw=1) yk=logist([fit2[0][0],fit2[0][1],fit2[0][2],fit2[0][3]],range(3000)) mint=0 maxt=3000 perc=0.1 for i in range(3000): if yk[i]<perc: mint=i if yk[i]<1-perc: maxt=i if z>-1: coord=len(x)*z/5 ax.annotate('$R^2 = '+str(np.round(rsquared,2))+'$\n'+\ '$\\alpha = '+str(np.round(fit2[0][0],2))+'$\n'+\ '$\\beta = '+str(np.round(fit2[0][1],2))+'$\n'+\ '$\\Delta t = '+str(int(maxt-mint))+'$', xy=(yrs[coord], logist(fit2[0],yrs)[coord]),\ xycoords='data', xytext=(w, w2), textcoords='offset points', color="#444444", arrowprops=dict(arrowstyle="->",color='#444444')) coord=len(x)*zz/5 ax.annotate(l, xy=(yrs[coord], logist(fit2[0],yrs)[coord]),\ xycoords='data', xytext=(w, w2), textcoords='offset points', arrowprops=dict(arrowstyle="->")) fig, ax = plt.subplots(1,1,subplot_kw=dict(axisbg='#EEEEEE',axisbelow=True),figsize=(10,5)) lw=2 colors=["#756bb1","#d95f0e","#444444"] ax.grid(color='white', linestyle='solid') ax.set_xlabel('Years') ax.set_ylabel('Carbon tax $[\$/tonCO_2]$') ax.set_xlim([2000,2100]) ax.set_ylim([0,5000]) #ax.set_yscale('log') ax.set_title('Carbon price estimations from various IAM models',size=13,y=1.04) loc=[2088,2083,2084,2080,2031,2047,2043,2088,2015,2072,2050,2075,2095,2020,2062] lz=[(-70, 20),(-70, 20),(-20, 10),(-40, 20),(-100, 40),(-110, 20),(-130, 20),(-15, 15),\ (-70, 20),(-105, 20),(-80, 20),(-60, 12),(-120, -5),(-70, 50),(-30, 7)] for z in range(len(d))[:15]: #ax.scatter(d[z][0],d[z][1]) years=range(int(min(d[z][0]))+1,int(max(d[z][0]))+1) if (co2[z]==1):k=1 else: k=44.0/12.0 ax.plot(years,fd[z](years)*k,lw=lw,color=colors[z%3]) ax.annotate(labels[z]+str(z), xy=(loc[z],fd[z]([loc[z]])*k),\ xycoords='data', xytext=lz[z], textcoords='offset points',fontsize=9, color=colors[z%3], arrowprops=dict(arrowstyle="->",color=colors[z%3])) #plt.savefig('ces9.png',bbox_inches = 'tight', pad_inches = 0.1, dpi=150) plt.show() fig, ax = plt.subplots(1,1,subplot_kw=dict(axisbg='#EEEEEE',axisbelow=True),figsize=(10,5)) lw=2 colors=["#756bb1","#d95f0e","#444444"] ax.grid(color='white', linestyle='solid') ax.set_xlabel('Years') ax.set_ylabel('$MAC$ $[\$/tonCO_2]$') ax.set_xlim([2000,2100]) ax.set_ylim([0,5000]) #ax.set_yscale('log') ax.set_title(u'Marginal abatement cost $(MAC)$ estimations from various IAM models',size=13,y=1.04) loc=[2088,2070,2084,2070,2031,2047,2043,2088,2015,2072,2065,2075,2095,2019,2062] lz=[(-60, 20),(-75, 20),(-20, 10),(-70, 20),(-100, 40),(-110, 20),(-130, 20),(-15, 15),\ (-70, 20),(-90, 20),(-70, 20),(-70, 12),(-120, -5),(-60, 50),(-30, 7)] for z in range(len(d))[:15]: #ax.scatter(d[z][0],d[z][1]) if z not in {0,9,14}: years=range(int(min(d[z][0]))+1,int(max(d[z][0]))+1) if (co2[z]==1):k=1 else: k=44.0/12.0 if z in {3,6,7,12}: lw=3 c=colors[2] elif z in {0,1,2,5}: lw=1 c=colors[1] else: lw=1 c=colors[0] ax.plot(years,fd[z](years)*k,lw=lw,color=c) ax.annotate(labels[z], xy=(loc[z],fd[z]([loc[z]])*k),\ xycoords='data', xytext=lz[z], textcoords='offset points',fontsize=9, color=c, arrowprops=dict(arrowstyle="->",color=c)) plt.savefig('ces9b.png',bbox_inches = 'tight', pad_inches = 0.1, dpi=150) plt.show() for z in range(len(d))[:15]: print labels[z] ###Output Bauer, Hilaire et al. 2012 | REMIND-R Luderer, Bosetti et al. 2011 | IMACLIM-R Luderer, Bosetti et al. 2011 | REMIND-R Luderer, Bosetti et al. 2011 | WITCH Bosetti, Marangoni et al. 2015 | GCAM Bosetti, Marangoni et al. 2015 | MARKAL US Bosetti, Marangoni et al. 2015 | WITCH Cai, Newth et al. 2015 | GTEM-C Chen, 2005 MARKAL-MACRO Edmonds, Wise, MacCracken 1994 | GCAM Kriegler, Petermann, et al. 2015 | multiple Manne, Richels 2005 | MERGE Paltsev, Reilly et al. 2005 | MIT EPPA Russ, Ciscar et al. 2009 | POLES Wilkerson, Leibowicz et al. 2015 | multiple
3_ml_start_knn_examples/approximate_nearest_neighbors.ipynb
###Markdown Approximate nearest neighbors in TSNEThis example presents how to chain KNeighborsTransformer and TSNE in apipeline. It also shows how to wrap the packages `annoy` and `nmslib` toreplace KNeighborsTransformer and perform approximate nearest neighbors.These packages can be installed with `pip install annoy nmslib`.Note: Currently `TSNE(metric='precomputed')` does not modify the precomputeddistances, and thus assumes that precomputed euclidean distances are squared.In future versions, a parameter in TSNE will control the optional squaring ofprecomputed distances (see 12401).Note: In KNeighborsTransformer we use the definition which includes eachtraining point as its own neighbor in the count of `n_neighbors`, and forcompatibility reasons, one extra neighbor is computed when`mode == 'distance'`. Please note that we do the same in the proposed wrappers.Sample output:: Benchmarking on MNIST_2000: --------------------------- AnnoyTransformer: 0.583 sec NMSlibTransformer: 0.321 sec KNeighborsTransformer: 1.225 sec TSNE with AnnoyTransformer: 4.903 sec TSNE with NMSlibTransformer: 5.009 sec TSNE with KNeighborsTransformer: 6.210 sec TSNE with internal NearestNeighbors: 6.365 sec Benchmarking on MNIST_10000: ---------------------------- AnnoyTransformer: 4.457 sec NMSlibTransformer: 2.080 sec KNeighborsTransformer: 30.680 sec TSNE with AnnoyTransformer: 30.225 sec TSNE with NMSlibTransformer: 43.295 sec TSNE with KNeighborsTransformer: 64.845 sec TSNE with internal NearestNeighbors: 64.984 sec ###Code # Author: Tom Dupre la Tour # # License: BSD 3 clause import time import sys try: import annoy except ImportError: print("The package 'annoy' is required to run this example.") sys.exit() try: import nmslib except ImportError: print("The package 'nmslib' is required to run this example.") sys.exit() import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import NullFormatter from scipy.sparse import csr_matrix from sklearn.base import BaseEstimator, TransformerMixin from sklearn.neighbors import KNeighborsTransformer from sklearn.utils._testing import assert_array_almost_equal from sklearn.datasets import fetch_openml from sklearn.pipeline import make_pipeline from sklearn.manifold import TSNE from sklearn.utils import shuffle print(__doc__) class NMSlibTransformer(TransformerMixin, BaseEstimator): """Wrapper for using nmslib as sklearn's KNeighborsTransformer""" def __init__(self, n_neighbors=5, metric='euclidean', method='sw-graph', n_jobs=1): self.n_neighbors = n_neighbors self.method = method self.metric = metric self.n_jobs = n_jobs def fit(self, X): self.n_samples_fit_ = X.shape[0] # see more metric in the manual # https://github.com/nmslib/nmslib/tree/master/manual space = { 'sqeuclidean': 'l2', 'euclidean': 'l2', 'cosine': 'cosinesimil', 'l1': 'l1', 'l2': 'l2', }[self.metric] self.nmslib_ = nmslib.init(method=self.method, space=space) self.nmslib_.addDataPointBatch(X) self.nmslib_.createIndex() return self def transform(self, X): n_samples_transform = X.shape[0] # For compatibility reasons, as each sample is considered as its own # neighbor, one extra neighbor will be computed. n_neighbors = self.n_neighbors + 1 results = self.nmslib_.knnQueryBatch(X, k=n_neighbors, num_threads=self.n_jobs) indices, distances = zip(*results) indices, distances = np.vstack(indices), np.vstack(distances) if self.metric == 'sqeuclidean': distances **= 2 indptr = np.arange(0, n_samples_transform * n_neighbors + 1, n_neighbors) kneighbors_graph = csr_matrix((distances.ravel(), indices.ravel(), indptr), shape=(n_samples_transform, self.n_samples_fit_)) return kneighbors_graph class AnnoyTransformer(TransformerMixin, BaseEstimator): """Wrapper for using annoy.AnnoyIndex as sklearn's KNeighborsTransformer""" def __init__(self, n_neighbors=5, metric='euclidean', n_trees=10, search_k=-1): self.n_neighbors = n_neighbors self.n_trees = n_trees self.search_k = search_k self.metric = metric def fit(self, X): self.n_samples_fit_ = X.shape[0] metric = self.metric if self.metric != 'sqeuclidean' else 'euclidean' self.annoy_ = annoy.AnnoyIndex(X.shape[1], metric=metric) for i, x in enumerate(X): self.annoy_.add_item(i, x.tolist()) self.annoy_.build(self.n_trees) return self def transform(self, X): return self._transform(X) def fit_transform(self, X, y=None): return self.fit(X)._transform(X=None) def _transform(self, X): """As `transform`, but handles X is None for faster `fit_transform`.""" n_samples_transform = self.n_samples_fit_ if X is None else X.shape[0] # For compatibility reasons, as each sample is considered as its own # neighbor, one extra neighbor will be computed. n_neighbors = self.n_neighbors + 1 indices = np.empty((n_samples_transform, n_neighbors), dtype=int) distances = np.empty((n_samples_transform, n_neighbors)) if X is None: for i in range(self.annoy_.get_n_items()): ind, dist = self.annoy_.get_nns_by_item( i, n_neighbors, self.search_k, include_distances=True) indices[i], distances[i] = ind, dist else: for i, x in enumerate(X): indices[i], distances[i] = self.annoy_.get_nns_by_vector( x.tolist(), n_neighbors, self.search_k, include_distances=True) if self.metric == 'sqeuclidean': distances **= 2 indptr = np.arange(0, n_samples_transform * n_neighbors + 1, n_neighbors) kneighbors_graph = csr_matrix((distances.ravel(), indices.ravel(), indptr), shape=(n_samples_transform, self.n_samples_fit_)) return kneighbors_graph def test_transformers(): """Test that AnnoyTransformer and KNeighborsTransformer give same results """ X = np.random.RandomState(42).randn(10, 2) knn = KNeighborsTransformer() Xt0 = knn.fit_transform(X) ann = AnnoyTransformer() Xt1 = ann.fit_transform(X) nms = NMSlibTransformer() Xt2 = nms.fit_transform(X) assert_array_almost_equal(Xt0.toarray(), Xt1.toarray(), decimal=5) assert_array_almost_equal(Xt0.toarray(), Xt2.toarray(), decimal=5) def load_mnist(n_samples): """Load MNIST, shuffle the data, and return only n_samples.""" mnist = fetch_openml("mnist_784") X, y = shuffle(mnist.data, mnist.target, random_state=2) return X[:n_samples] / 255, y[:n_samples] def run_benchmark(): datasets = [ ('MNIST_2000', load_mnist(n_samples=2000)), ('MNIST_10000', load_mnist(n_samples=10000)), ] n_iter = 500 perplexity = 30 # TSNE requires a certain number of neighbors which depends on the # perplexity parameter. # Add one since we include each sample as its own neighbor. n_neighbors = int(3. * perplexity + 1) + 1 transformers = [ ('AnnoyTransformer', AnnoyTransformer(n_neighbors=n_neighbors, metric='sqeuclidean')), ('NMSlibTransformer', NMSlibTransformer(n_neighbors=n_neighbors, metric='sqeuclidean')), ('KNeighborsTransformer', KNeighborsTransformer( n_neighbors=n_neighbors, mode='distance', metric='sqeuclidean')), ('TSNE with AnnoyTransformer', make_pipeline( AnnoyTransformer(n_neighbors=n_neighbors, metric='sqeuclidean'), TSNE(metric='precomputed', perplexity=perplexity, method="barnes_hut", random_state=42, n_iter=n_iter), )), ('TSNE with NMSlibTransformer', make_pipeline( NMSlibTransformer(n_neighbors=n_neighbors, metric='sqeuclidean'), TSNE(metric='precomputed', perplexity=perplexity, method="barnes_hut", random_state=42, n_iter=n_iter), )), ('TSNE with KNeighborsTransformer', make_pipeline( KNeighborsTransformer(n_neighbors=n_neighbors, mode='distance', metric='sqeuclidean'), TSNE(metric='precomputed', perplexity=perplexity, method="barnes_hut", random_state=42, n_iter=n_iter), )), ('TSNE with internal NearestNeighbors', TSNE(metric='sqeuclidean', perplexity=perplexity, method="barnes_hut", random_state=42, n_iter=n_iter)), ] # init the plot nrows = len(datasets) ncols = np.sum([1 for name, model in transformers if 'TSNE' in name]) fig, axes = plt.subplots(nrows=nrows, ncols=ncols, squeeze=False, figsize=(5 * ncols, 4 * nrows)) axes = axes.ravel() i_ax = 0 for dataset_name, (X, y) in datasets: msg = 'Benchmarking on %s:' % dataset_name print('\n%s\n%s' % (msg, '-' * len(msg))) for transformer_name, transformer in transformers: start = time.time() Xt = transformer.fit_transform(X) duration = time.time() - start # print the duration report longest = np.max([len(name) for name, model in transformers]) whitespaces = ' ' * (longest - len(transformer_name)) print('%s: %s%.3f sec' % (transformer_name, whitespaces, duration)) # plot TSNE embedding which should be very similar across methods if 'TSNE' in transformer_name: axes[i_ax].set_title(transformer_name + '\non ' + dataset_name) axes[i_ax].scatter(Xt[:, 0], Xt[:, 1], c=y.astype(np.int32), alpha=0.2, cmap=plt.cm.viridis) axes[i_ax].xaxis.set_major_formatter(NullFormatter()) axes[i_ax].yaxis.set_major_formatter(NullFormatter()) axes[i_ax].axis('tight') i_ax += 1 fig.tight_layout() plt.show() if __name__ == '__main__': test_transformers() run_benchmark() ###Output Automatically created module for IPython interactive environment Benchmarking on MNIST_2000: --------------------------- AnnoyTransformer: 2.460 sec NMSlibTransformer: 0.173 sec KNeighborsTransformer: 2.206 sec TSNE with AnnoyTransformer: 7.510 sec TSNE with NMSlibTransformer: 5.929 sec TSNE with KNeighborsTransformer: 8.114 sec TSNE with internal NearestNeighbors: 9.213 sec Benchmarking on MNIST_10000: ---------------------------- AnnoyTransformer: 12.359 sec NMSlibTransformer: 1.494 sec KNeighborsTransformer: 52.123 sec TSNE with AnnoyTransformer: 51.923 sec TSNE with NMSlibTransformer: 49.194 sec
Drug_Data_NLP_notebook.ipynb
###Markdown Concrete solutions to real problems An NLP workshop by Emmanuel Ameisen [(@EmmanuelAmeisen)](https://twitter.com/EmmanuelAmeisen), from Insight AI While there exist a wealth of elaborate and abstract NLP techniques, clustering and classification should always be in our toolkit as the first techniques to use when dealing with this kind of data. In addition to being amongst some of the easiest to scale in production, their ease of use can quickly help business address a set of applied problems:- How do you automatically make the distinction between different categories of sentences?- How can you find sentences in a dataset that are most similar to a given one?- How can you extract a rich and concise representation that can then be used for a range of other tasks?- Most importantly, how do you find quickly whether these tasks are possible on your dataset at all?While there is a vast amount of resources on classical Machine Learning, or Deep Learning applied to images, I've found that there is a lack of clear, simple guides as to what to do when one wants to find a meaningful representation for sentences (in order to classify them or group them together for examples). Here is my attempt below. It starts with data Our Dataset: Disasters on social mediaContributors looked at over 10,000 tweets retrieved with a variety of searches like “ablaze”, “quarantine”, and “pandemonium”, then noted whether the tweet referred to a disaster event (as opposed to a joke with the word or a movie review or something non-disastrous). Thank you [Crowdflower](https://www.crowdflower.com/data-for-everyone/). Why it mattersWe will try to correctly predict tweets that are about disasters. This is a very relevant problem, because:- It is actionable to anybody trying to get signal from noise (such as police departments in this case)- It is tricky because relying on keywords is harder than in most cases like spam ###Code !pip install gensim !pip install -U -q PyDrive from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive from google.colab import auth from oauth2client.client import GoogleCredentials # 1. Authenticate and create the PyDrive client. #auth.authenticate_user() #gauth = GoogleAuth() #gauth.credentials = GoogleCredentials.get_application_default() #drive = GoogleDrive(gauth) import keras import nltk import pandas as pd import numpy as np import re import codecs ###Output Using TensorFlow backend. ###Markdown Sanitizing inputLet's make sure our tweets only have characters we want. We remove '' characters but keep the words after the '' sign because they might be relevant (eg: disaster) ###Code #!wget http://archive.ics.uci.edu/ml/machine-learning-databases/00462/drugsCom_raw.zip #!unzip drugsCom_raw.zip df_train = pd.read_table('drugsComTrain_raw.tsv') df_test = pd.read_table('drugsComTest_raw.tsv') df_main = pd.concat([df_train, df_test], axis=0) df_main.head() # Turn rating into new "binned" column def rank_bin(array): y_rank = [] for i in array: if i <= 4: # Negative Rating Cut Off (Inclusive) y_rank.append(-1) elif i >= 10: # Positive Rating Cut Off (Inclusive) y_rank.append(1) else: y_rank.append(0) return y_rank df_main["rank_bin"] = rank_bin(df_main["rating"]) df_main.rank_bin.value_counts() # Check to see the bin sizes. # Upload File Manually #from google.colab import files #uploaded = files.upload() #for fn in uploaded.keys(): # print('User uploaded file "{name}" with length {length} bytes'.format( # name=fn, length=len(uploaded[fn]))) #downloaded = drive.CreateFile({'id': "1m74XhpHHZXfS3mAM8cbBYl-FHlpjZnEi"}) #downloaded.GetContentFile("socialmedia_relevant_cols.csv") #input_file = codecs.open("socialmedia_relevant_cols.csv", "r",encoding='utf-8', errors='replace') #output_file = open("socialmedia_relevant_cols_clean.csv", "w") #def sanitize_characters(raw, clean): # for line in input_file: # out = line # output_file.write(line) #sanitize_characters(input_file, output_file) ###Output _____no_output_____ ###Markdown Let's inspect the dataIt looks solid, but we don't really need urls, and we would like to have our words all lowercase (Hello and HELLO are pretty similar for our task) ###Code questions = df_main[['review','rating','rank_bin']] #pd.read_csv("socialmedia_relevant_cols_clean.csv") questions.columns=['text', 'rating', 'class_label'] questions.head() questions.tail() questions.describe() ###Output _____no_output_____ ###Markdown Let's use a few regular expressions to clean up pour data, and save it back to disk for future use ###Code def standardize_text(df, text_field): df[text_field] = df[text_field].str.replace(r"http\S+", "") df[text_field] = df[text_field].str.replace(r"http", "") df[text_field] = df[text_field].str.replace(r"@\S+", "") df[text_field] = df[text_field].str.replace(r"[^A-Za-z0-9(),!?@\'\`\"\_\n]", " ") df[text_field] = df[text_field].str.replace(r"@", "at") df[text_field] = df[text_field].str.lower() return df questions = standardize_text(questions, "text") questions.to_csv("clean_data.csv") questions.head() clean_questions = pd.read_csv("clean_data.csv") clean_questions.tail() ###Output _____no_output_____ ###Markdown Data Overview Let's look at our class balance. ###Code clean_questions.groupby("class_label").count() ###Output _____no_output_____ ###Markdown We can see our classes are pretty balanced, with a slight oversampling of the "Irrelevant" class. Our data is clean, now it needs to be preparedNow that our inputs are more reasonable, let's transform our inputs in a way our model can understand. This implies:- Tokenizing sentences to a list of separate words- Creating a train test split- Inspecting our data a little more to validate results ###Code from nltk.tokenize import RegexpTokenizer tokenizer = RegexpTokenizer(r'\w+') clean_questions["tokens"] = clean_questions["text"].apply(tokenizer.tokenize) df_main['review_clean']=clean_questions.text df_main['tokens']=clean_questions.tokens clean_questions.head() ###Output _____no_output_____ ###Markdown Inspecting our dataset a little more ###Code from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical all_words = [word for tokens in clean_questions["tokens"] for word in tokens] df_main["sentence_length"] = [len(tokens) for tokens in clean_questions["tokens"]] VOCAB = sorted(list(set(all_words))) print("%s words total, with a vocabulary size of %s" % (len(all_words), len(VOCAB))) print("Max sentence length is %s" % max(df_main["sentence_length"])) print(df_main.loc[df_main['sentence_length'] == 1992].review.values) _a = df_main.loc[df_main['sentence_length'] >= 1000].review.count() _b = df_main.loc[df_main['sentence_length'] >= 750].review.count() _c = df_main.loc[df_main['sentence_length'] >= 250].review.count() _d = df_main.loc[df_main['sentence_length'] >= 175].review.count() _e = df_main.loc[df_main['sentence_length'] >= 100].review.count() _f = df_main.loc[df_main['sentence_length'] < 100].review.count() print (" # of Reviews by Length \n %s >1000 words \n %s 1000<>700 words \n %s 750<>500 words \n %s 300<>150 words \n %s 200<>100 words \n %s <100 words\n" % (_a,_b,_c,_d,_e,_f)) df_short = df_main.loc[df_main['sentence_length'] <= 250] df_short = df_short.sort_values(by='sentence_length', ascending=False) print("Max sentence length is %s" % max(df_short["sentence_length"])) import matplotlib.pyplot as plt fig = plt.figure(figsize=(10, 10)) plt.xlabel('Sentence length') plt.ylabel('Number of sentences') plt.title('Length of Tokenized Sentences') plt.hist(df_short["sentence_length"], bins=250) plt.show() a_ = 180 b_ = 175 c_ = 170 d_ = 168 e_ = 167 f_ = 166 g_ = 165 h_ = 165 _a = df_main.loc[df_main['sentence_length'] > a_].review.count() _b = df_main.loc[df_main['sentence_length'] > b_].review.count() _c = df_main.loc[df_main['sentence_length'] > c_].review.count() _d = df_main.loc[df_main['sentence_length'] > d_].review.count() _e = df_main.loc[df_main['sentence_length'] > e_].review.count() _f = df_main.loc[df_main['sentence_length'] > f_].review.count() _g = df_main.loc[df_main['sentence_length'] > g_].review.count() _h = df_main.loc[df_main['sentence_length'] < h_].review.count() print (" Cumulative # of Reviews by Length\n %s >%s words \n %s >%s words \n %s >%s words \n %s >%s words \n %s >%s words \n %s >%s words\n %s >%s words\n %s <%s words\n" % (_a,a_,_b,b_,_c,c_,_d,d_,_e,e_,_f,f_,_g,g_,_h,h_)) df_shorter = df_main.loc[df_main['sentence_length'] <= 180] df_shorter = df_shorter.sort_values(by='sentence_length', ascending=False) print("Max sentence length is %s" % max(df_shorter["sentence_length"])) import matplotlib.pyplot as plt fig = plt.figure(figsize=(10, 10)) plt.xlabel('sentences length') plt.ylabel('number of sentences') plt.title('tokenized sentences') plt.hist(df_shorter["sentence_length"], bins=181) plt.show() ###Output _____no_output_____ ###Markdown On to the Machine LearningNow that our data is clean and prepared, let's dive in to the machine learning part. Enter embeddings Machine Learning on images can use raw pixels as inputs. Fraud detection algorithms can use customer features. What can NLP use? A natural way to represent text for computers is to encode each character individually, this seems quite inadequate to represent and understand language. Our goal is to first create a useful embedding for each sentence (or tweet) in our dataset, and then use these embeddings to accurately predict the relevant category.The simplest approach we can start with is to use a bag of words model, and apply a logistic regression on top. A bag of words just associates an index to each word in our vocabulary, and embeds each sentence as a list of 0s, with a 1 at each index corresponding to a word present in the sentence. Bag of Words Counts ###Code from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer def cv(data): count_vectorizer = CountVectorizer() emb = count_vectorizer.fit_transform(data) return emb, count_vectorizer list_corpus = clean_questions["text"].tolist() list_labels = clean_questions["class_label"].tolist() X_train, X_test, y_train, y_test = train_test_split(list_corpus, list_labels, test_size=0.2, random_state=40) X_train_counts, count_vectorizer = cv(X_train) X_test_counts = count_vectorizer.transform(X_test) ###Output _____no_output_____ ###Markdown Visualizing the embeddingsNow that we've created embeddings, let's visualize them and see if we can identify some structure. In a perfect world, our embeddings would be so distinct that are two classes would be perfectly separated. Since visualizing data in 20k dimensions is hard, let's project it down to 2. ###Code from sklearn.decomposition import PCA, TruncatedSVD import matplotlib import matplotlib.patches as mpatches def plot_LSA(test_data, test_labels, savepath="PCA_demo.csv", plot=True): lsa = TruncatedSVD(n_components=2) lsa.fit(test_data) lsa_scores = lsa.transform(test_data) color_mapper = {label:idx for idx,label in enumerate(set(test_labels))} color_column = [color_mapper[label] for label in test_labels] colors = ['orange','blue','blue'] if plot: plt.scatter(lsa_scores[:,0], lsa_scores[:,1], s=8, alpha=.8, c=test_labels, cmap=matplotlib.colors.ListedColormap(colors)) red_patch = mpatches.Patch(color='orange', label='Irrelevant') green_patch = mpatches.Patch(color='blue', label='Disaster') plt.legend(handles=[red_patch, green_patch], prop={'size': 30}) fig = plt.figure(figsize=(16, 16)) plot_LSA(X_train_counts, y_train) plt.show() ###Output _____no_output_____ ###Markdown These embeddings don't look very cleanly separated. Let's see if we can still fit a useful model on them. Fitting a classifierStarting with a logistic regression is a good idea. It is simple, often gets the job done, and is easy to interpret. ###Code from sklearn.linear_model import LogisticRegression clf = LogisticRegression(C=30.0, class_weight='balanced', solver='newton-cg', multi_class='multinomial', n_jobs=-1, random_state=40) clf.fit(X_train_counts, y_train) y_predicted_counts = clf.predict(X_test_counts) ###Output /usr/local/lib/python3.6/dist-packages/sklearn/utils/optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) ###Markdown EvaluationLet's start by looking at some metrics to see if our classifier performed well at all. ###Code from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report def get_metrics(y_test, y_predicted): # true positives / (true positives+false positives) precision = precision_score(y_test, y_predicted, pos_label=None, average='weighted') # true positives / (true positives + false negatives) recall = recall_score(y_test, y_predicted, pos_label=None, average='weighted') # harmonic mean of precision and recall f1 = f1_score(y_test, y_predicted, pos_label=None, average='weighted') # true positives + true negatives/ total accuracy = accuracy_score(y_test, y_predicted) return accuracy, precision, recall, f1 accuracy, precision, recall, f1 = get_metrics(y_test, y_predicted_counts) print("accuracy = %.3f, precision = %.3f, recall = %.3f, f1 = %.3f" % (accuracy, precision, recall, f1)) ###Output _____no_output_____ ###Markdown InspectionA metric is one thing, but in order to make an actionnable decision, we need to actually inspect the kind of mistakes our classifier is making. Let's start by looking at the confusion matrix. ###Code import numpy as np import itertools from sklearn.metrics import confusion_matrix def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.winter): if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title, fontsize=30) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, fontsize=20) plt.yticks(tick_marks, classes, fontsize=20) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] < thresh else "black", fontsize=40) plt.tight_layout() plt.ylabel('True label', fontsize=30) plt.xlabel('Predicted label', fontsize=30) return plt cm = confusion_matrix(y_test, y_predicted_counts) fig = plt.figure(figsize=(10, 10)) plot = plot_confusion_matrix(cm, classes=['Irrelevant','Disaster','Unsure'], normalize=False, title='Confusion matrix') plt.show() print(cm) ###Output _____no_output_____ ###Markdown Our classifier never predicts class 3, which is not surprising, seeing as it is critically undersampled. This is not very important here, as the label is not very meaningful. Our classifier creates more false negatives than false positives (proportionally). Depending on the use case, this seems desirable (a false positive is quite a high cost for law enforcement for example). Further inspectionLet's look at the features our classifier is using to make decisions. ###Code def get_most_important_features(vectorizer, model, n=5): index_to_word = {v:k for k,v in vectorizer.vocabulary_.items()} # loop for each class classes ={} for class_index in range(model.coef_.shape[0]): word_importances = [(el, index_to_word[i]) for i,el in enumerate(model.coef_[class_index])] sorted_coeff = sorted(word_importances, key = lambda x : x[0], reverse=True) tops = sorted(sorted_coeff[:n], key = lambda x : x[0]) bottom = sorted_coeff[-n:] classes[class_index] = { 'tops':tops, 'bottom':bottom } return classes importance = get_most_important_features(count_vectorizer, clf, 10) def plot_important_words(top_scores, top_words, bottom_scores, bottom_words, name): y_pos = np.arange(len(top_words)) top_pairs = [(a,b) for a,b in zip(top_words, top_scores)] top_pairs = sorted(top_pairs, key=lambda x: x[1]) bottom_pairs = [(a,b) for a,b in zip(bottom_words, bottom_scores)] bottom_pairs = sorted(bottom_pairs, key=lambda x: x[1], reverse=True) top_words = [a[0] for a in top_pairs] top_scores = [a[1] for a in top_pairs] bottom_words = [a[0] for a in bottom_pairs] bottom_scores = [a[1] for a in bottom_pairs] fig = plt.figure(figsize=(10, 10)) plt.subplot(121) plt.barh(y_pos,bottom_scores, align='center', alpha=0.5) plt.title('Irrelevant', fontsize=20) plt.yticks(y_pos, bottom_words, fontsize=14) plt.suptitle('Key words', fontsize=16) plt.xlabel('Importance', fontsize=20) plt.subplot(122) plt.barh(y_pos,top_scores, align='center', alpha=0.5) plt.title('Disaster', fontsize=20) plt.yticks(y_pos, top_words, fontsize=14) plt.suptitle(name, fontsize=16) plt.xlabel('Importance', fontsize=20) plt.subplots_adjust(wspace=0.8) plt.show() top_scores = [a[0] for a in importance[1]['tops']] top_words = [a[1] for a in importance[1]['tops']] bottom_scores = [a[0] for a in importance[1]['bottom']] bottom_words = [a[1] for a in importance[1]['bottom']] plot_important_words(top_scores, top_words, bottom_scores, bottom_words, "Most important words for relevance") ###Output _____no_output_____ ###Markdown Our classifier correctly picks up on some patterns (hiroshima, massacre), but clearly seems to be overfitting on some irellevant terms (heyoo, x1392) TFIDF Bag of WordsLet's try a slightly more subtle approach. On top of our bag of words model, we use a TF-IDF (Term Frequency, Inverse Document Frequency) which means weighing words by how frequent they are in our dataset, discounting words that are too frequent, as they just add to the noise. ###Code def tfidf(data): tfidf_vectorizer = TfidfVectorizer() train = tfidf_vectorizer.fit_transform(data) return train, tfidf_vectorizer X_train_tfidf, tfidf_vectorizer = tfidf(X_train) X_test_tfidf = tfidf_vectorizer.transform(X_test) fig = plt.figure(figsize=(16, 16)) plot_LSA(X_train_tfidf, y_train) plt.show() ###Output _____no_output_____ ###Markdown These embeddings look much more separated, let's see if it leads to better performance. ###Code clf_tfidf = LogisticRegression(C=30.0, class_weight='balanced', solver='newton-cg', multi_class='multinomial', n_jobs=-1, random_state=40) clf_tfidf.fit(X_train_tfidf, y_train) y_predicted_tfidf = clf_tfidf.predict(X_test_tfidf) accuracy_tfidf, precision_tfidf, recall_tfidf, f1_tfidf = get_metrics(y_test, y_predicted_tfidf) print("accuracy = %.3f, precision = %.3f, recall = %.3f, f1 = %.3f" % (accuracy_tfidf, precision_tfidf, recall_tfidf, f1_tfidf)) ###Output _____no_output_____ ###Markdown The results are a little better, let's see if they translate to an actual difference in our use case. ###Code cm2 = confusion_matrix(y_test, y_predicted_tfidf) fig = plt.figure(figsize=(10, 10)) plot = plot_confusion_matrix(cm2, classes=['Irrelevant','Disaster','Unsure'], normalize=False, title='Confusion matrix') plt.show() print("TFIDF confusion matrix") print(cm2) print("BoW confusion matrix") print(cm) ###Output _____no_output_____ ###Markdown Our False positives have decreased, as this model is more conservative about choosing the positive class. Looking at important coefficients for linear regressionInsert details here ###Code importance_tfidf = get_most_important_features(tfidf_vectorizer, clf_tfidf, 10) top_scores = [a[0] for a in importance_tfidf[1]['tops']] top_words = [a[1] for a in importance_tfidf[1]['tops']] bottom_scores = [a[0] for a in importance_tfidf[1]['bottom']] bottom_words = [a[1] for a in importance_tfidf[1]['bottom']] plot_important_words(top_scores, top_words, bottom_scores, bottom_words, "Most important words for relevance") ###Output _____no_output_____ ###Markdown The words it picked up look much more relevant! Although our metrics on our held out validation set haven't increased much, we have much more confidence in the terms our model is using, and thus would feel more comfortable deploying it in a system that would interact with customers. Capturing semantic meaningOur first models have managed to pick up on high signal words. However, it is unlikely that we will have a training set containing all relevant words. To solve this problem, we need to capture the semantic meaning of words. Meaning we need to understand that words like 'good' and 'positive' are closer than apricot and 'continent'. Enter word2vecWord2vec is a model that was pre-trained on a very large corpus, and provides embeddings that map words that are similar close to each other. A quick way to get a sentence embedding for our classifier, is to average word2vec scores of all words in our sentence. ###Code downloaded = drive.CreateFile({'id': "0B7XkCwpI5KDYNlNUTTlSS21pQmM"}) downloaded.GetContentFile("GoogleNews-vectors-negative300.bin.gz") import gensim word2vec_path = "GoogleNews-vectors-negative300.bin.gz" word2vec = gensim.models.KeyedVectors.load_word2vec_format(word2vec_path, binary=True) def get_average_word2vec(tokens_list, vector, generate_missing=False, k=300): if len(tokens_list)<1: return np.zeros(k) if generate_missing: vectorized = [vector[word] if word in vector else np.random.rand(k) for word in tokens_list] else: vectorized = [vector[word] if word in vector else np.zeros(k) for word in tokens_list] length = len(vectorized) summed = np.sum(vectorized, axis=0) averaged = np.divide(summed, length) return averaged def get_word2vec_embeddings(vectors, clean_questions, generate_missing=False): embeddings = clean_questions['tokens'].apply(lambda x: get_average_word2vec(x, vectors, generate_missing=generate_missing)) return list(embeddings) embeddings = get_word2vec_embeddings(word2vec, clean_questions) X_train_word2vec, X_test_word2vec, y_train_word2vec, y_test_word2vec = train_test_split(embeddings, list_labels, test_size=0.2, random_state=40) fig = plt.figure(figsize=(16, 16)) plot_LSA(embeddings, list_labels) plt.show() ###Output _____no_output_____ ###Markdown These look much more separated, let's see how our logistic regression does on them! ###Code clf_w2v = LogisticRegression(C=30.0, class_weight='balanced', solver='newton-cg', multi_class='multinomial', random_state=40) clf_w2v.fit(X_train_word2vec, y_train_word2vec) y_predicted_word2vec = clf_w2v.predict(X_test_word2vec) accuracy_word2vec, precision_word2vec, recall_word2vec, f1_word2vec = get_metrics(y_test_word2vec, y_predicted_word2vec) print("accuracy = %.3f, precision = %.3f, recall = %.3f, f1 = %.3f" % (accuracy_word2vec, precision_word2vec, recall_word2vec, f1_word2vec)) ###Output _____no_output_____ ###Markdown Still getting better, let's plot the confusion matrix ###Code cm_w2v = confusion_matrix(y_test_word2vec, y_predicted_word2vec) fig = plt.figure(figsize=(10, 10)) plot = plot_confusion_matrix(cm, classes=['Irrelevant','Disaster','Unsure'], normalize=False, title='Confusion matrix') plt.show() print("Word2Vec confusion matrix") print(cm_w2v) print("TFIDF confusion matrix") print(cm2) print("BoW confusion matrix") print(cm) ###Output _____no_output_____ ###Markdown Our model is strictly better in all regards than the first two models, this is promissing! Further inspectionSince our model does not use a vector with one dimension per word, it gets much harder to directly see which words are most relevant to our classification. In order to provide some explainability, we can leverage a black box explainer such as LIME. ###Code !pip install lime from lime import lime_text from sklearn.pipeline import make_pipeline from lime.lime_text import LimeTextExplainer X_train_data, X_test_data, y_train_data, y_test_data = train_test_split(list_corpus, list_labels, test_size=0.2, random_state=40) vector_store = word2vec def word2vec_pipeline(examples): global vector_store tokenizer = RegexpTokenizer(r'\w+') tokenized_list = [] for example in examples: example_tokens = tokenizer.tokenize(example) vectorized_example = get_average_word2vec(example_tokens, vector_store, generate_missing=False, k=300) tokenized_list.append(vectorized_example) return clf_w2v.predict_proba(tokenized_list) c = make_pipeline(count_vectorizer, clf) def explain_one_instance(instance, class_names): explainer = LimeTextExplainer(class_names=class_names) exp = explainer.explain_instance(instance, word2vec_pipeline, num_features=6) return exp def visualize_one_exp(features, labels, index, class_names = ["irrelevant","relevant", "unknown"]): exp = explain_one_instance(features[index], class_names = class_names) print('Index: %d' % index) print('True class: %s' % class_names[labels[index]]) exp.show_in_notebook(text=True) visualize_one_exp(X_test_data, y_test_data, 65) visualize_one_exp(X_test_data, y_test_data, 60) import random from collections import defaultdict random.seed(40) def get_statistical_explanation(test_set, sample_size, word2vec_pipeline, label_dict): sample_sentences = random.sample(test_set, sample_size) explainer = LimeTextExplainer() labels_to_sentences = defaultdict(list) contributors = defaultdict(dict) # First, find contributing words to each class for sentence in sample_sentences: probabilities = word2vec_pipeline([sentence]) curr_label = probabilities[0].argmax() labels_to_sentences[curr_label].append(sentence) exp = explainer.explain_instance(sentence, word2vec_pipeline, num_features=6, labels=[curr_label]) listed_explanation = exp.as_list(label=curr_label) for word,contributing_weight in listed_explanation: if word in contributors[curr_label]: contributors[curr_label][word].append(contributing_weight) else: contributors[curr_label][word] = [contributing_weight] # average each word's contribution to a class, and sort them by impact average_contributions = {} sorted_contributions = {} for label,lexica in contributors.items(): curr_label = label curr_lexica = lexica average_contributions[curr_label] = pd.Series(index=curr_lexica.keys()) for word,scores in curr_lexica.items(): average_contributions[curr_label].loc[word] = np.sum(np.array(scores))/sample_size detractors = average_contributions[curr_label].sort_values() supporters = average_contributions[curr_label].sort_values(ascending=False) sorted_contributions[label_dict[curr_label]] = { 'detractors':detractors, 'supporters': supporters } return sorted_contributions label_to_text = { 0: 'Irrelevant', 1: 'Relevant', 2: 'Unsure' } sorted_contributions = get_statistical_explanation(X_test_data, 100, word2vec_pipeline, label_to_text) # First index is the class (Disaster) # Second index is 0 for detractors, 1 for supporters # Third is how many words we sample top_words = sorted_contributions['Relevant']['supporters'][:10].index.tolist() top_scores = sorted_contributions['Relevant']['supporters'][:10].tolist() bottom_words = sorted_contributions['Relevant']['detractors'][:10].index.tolist() bottom_scores = sorted_contributions['Relevant']['detractors'][:10].tolist() plot_important_words(top_scores, top_words, bottom_scores, bottom_words, "Most important words for relevance") ###Output _____no_output_____ ###Markdown Looks like very relevant words are picked up! This model definitely seems to make decisions in a very understandable way. Leveraging text structureOur models have been performing better, but they completely ignore the structure. To see whether capturing some more sense of structure would help, we will try a final, more complex model. CNNs for text classificationHere, we will be using a Convolutional Neural Network for sentence classification. While not as popular as RNNs, they have been proven to get competitive results (sometimes beating the best models), and are very fast to train, making them a perfect choice for this tutorial. First, let's embed our text! ###Code from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical EMBEDDING_DIM = 300 MAX_SEQUENCE_LENGTH = 35 VOCAB_SIZE = len(VOCAB) VALIDATION_SPLIT=.2 tokenizer = Tokenizer(num_words=VOCAB_SIZE) tokenizer.fit_on_texts(clean_questions["text"].tolist()) sequences = tokenizer.texts_to_sequences(clean_questions["text"].tolist()) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) cnn_data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH) labels = to_categorical(np.asarray(clean_questions["class_label"])) indices = np.arange(cnn_data.shape[0]) np.random.shuffle(indices) cnn_data = cnn_data[indices] labels = labels[indices] num_validation_samples = int(VALIDATION_SPLIT * cnn_data.shape[0]) embedding_weights = np.zeros((len(word_index)+1, EMBEDDING_DIM)) for word,index in word_index.items(): embedding_weights[index,:] = word2vec[word] if word in word2vec else np.random.rand(EMBEDDING_DIM) print(embedding_weights.shape) ###Output _____no_output_____ ###Markdown Now, we will define a simple Convolutional Neural Network ###Code from keras.layers import Dense, Input, Flatten, Dropout, Merge from keras.layers import Conv1D, MaxPooling1D, Embedding from keras.layers import LSTM, Bidirectional from keras.models import Model def ConvNet(embeddings, max_sequence_length, num_words, embedding_dim, labels_index, trainable=False, extra_conv=True): embedding_layer = Embedding(num_words, embedding_dim, weights=[embeddings], input_length=max_sequence_length, trainable=trainable) sequence_input = Input(shape=(max_sequence_length,), dtype='int32') embedded_sequences = embedding_layer(sequence_input) # Yoon Kim model (https://arxiv.org/abs/1408.5882) convs = [] filter_sizes = [3,4,5] for filter_size in filter_sizes: l_conv = Conv1D(filters=128, kernel_size=filter_size, activation='relu')(embedded_sequences) l_pool = MaxPooling1D(pool_size=3)(l_conv) convs.append(l_pool) l_merge = Merge(mode='concat', concat_axis=1)(convs) # add a 1D convnet with global maxpooling, instead of Yoon Kim model conv = Conv1D(filters=128, kernel_size=3, activation='relu')(embedded_sequences) pool = MaxPooling1D(pool_size=3)(conv) if extra_conv==True: x = Dropout(0.5)(l_merge) else: # Original Yoon Kim model x = Dropout(0.5)(pool) x = Flatten()(x) x = Dense(128, activation='relu')(x) #x = Dropout(0.5)(x) preds = Dense(labels_index, activation='softmax')(x) model = Model(sequence_input, preds) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc']) return model ###Output _____no_output_____ ###Markdown Now let's train our Neural Network ###Code x_train = cnn_data[:-num_validation_samples] y_train = labels[:-num_validation_samples] x_val = cnn_data[-num_validation_samples:] y_val = labels[-num_validation_samples:] model = ConvNet(embedding_weights, MAX_SEQUENCE_LENGTH, len(word_index)+1, EMBEDDING_DIM, len(list(clean_questions["class_label"].unique())), False) model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=3, batch_size=128) ###Output _____no_output_____
String/1011/1556. Thousand Separator.ipynb
###Markdown 说明: 给定整数n,添加点(“.”)作为千位分隔符,并以字符串格式返回。Example 1: Input: n = 987 Output: "987"Example 2: Input: n = 1234 Output: "1.234"Example 3: Input: n = 123456789 Output: "123.456.789"Example 4: Input: n = 0 Output: "0" Constraints: 1、0 <= n < 2^31 ###Code class Solution: def thousandSeparator(self, n: int) -> str: if n < 1000: return str(n) s_n = str(n)[::-1] res = '' for i, s in enumerate(s_n): res += s if (i + 1) % 3 == 0 and i + 1 != len(s_n): res += '.' return res[::-1] solution = Solution() solution.thousandSeparator(1234) ###Output _____no_output_____
Data input and visulization.ipynb
###Markdown Web howework 2019 Data Science Cohort : Ming Gao 1.Data reading and formating2.Ploting data for visulization3.Convert csv file into html format in pandas4.Export as html format file ###Code # Dependiences setup import matplotlib.pyplot as plt %matplotlib inline import pandas as pd import numpy as np from scipy.stats import linregress import seaborn as sns # Read data from cities csv file weather_df=pd.read_csv("./Resources/cities.csv",index_col=0) weather_df.head() # plot (latitude vs. MaxTemp) sns.set(rc={'axes.facecolor':'lightgray'}) sns.scatterplot(x=weather_df['Lat'],y=weather_df['Max Temp'],alpha=0.8, edgecolor='k',facecolor="royalblue") plt.title("City Latitude vs. Max Temperature (02/27/2020)") plt.ylabel("Max Temperature(F)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("City Latitude vs. Max Temperature.png") plt.show() # plot (latitude vs. Humidity) sns.set(rc={'axes.facecolor':'lightgray'}) sns.scatterplot(x=weather_df['Lat'],y=weather_df['Humidity'],alpha=0.8, edgecolor='k',facecolor="royalblue") plt.title("City Latitude vs. Humidity (02/27/2020)") plt.ylabel("Humidity(%)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("City Latitude vs. Humidity.png") plt.show() # plot (latitude vs. cloudiness) sns.set(rc={'axes.facecolor':'lightgray'}) sns.scatterplot(x=weather_df['Lat'],y=weather_df['Cloudiness'],alpha=0.8, edgecolor='k',facecolor="royalblue") plt.title("City Latitude vs. Cloudiness (02/27/2020)") plt.ylabel("Cloudiness(%)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("City Latitude vs. Cloudiness.png") plt.show() # plot (latitude vs. Wind Speed) sns.set(rc={'axes.facecolor':'lightgray'}) sns.scatterplot(x=weather_df['Lat'],y=weather_df['Wind Speed'],alpha=0.8, edgecolor='k',facecolor="royalblue") plt.title("City Latitude vs. Wind Speed (02/27/2020)") plt.ylabel("Wind Speed(mph)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("City Latitude vs. Wind Speed.png") plt.show() #Covert csv file into .html file, then write it out weather_df.to_html("Date_table.html") data_html_file = weather_df.to_html() ###Output _____no_output_____
glm_walkthrough.ipynb
###Markdown Example fMRI subject-level GLM model fitting================================================Full step-by-step example of fitting a subject-level GLM to experimental data and visualizingthe results. We first do this on one runs of one subject of an fMRI dataset for motor functions. These data were downloaded in BIDS format from https://openneuro.org/datasets/ds000114/versions/1.0.1 and were preprocessed using fmriprep.For details on the data, please see:Gorgolewski K J, Storkey A, Bastin M, Whittle I R, Wardlaw J M, Pernet C R. A test-retest fMRI dataset for motor, language and spatial attention functions. Gigascience. 2013: 2:6.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641991/More specifically:1. A sequence of preprocessed fMRI volumes are loaded2. A design matrix describing all the effects related to the data is computed3. A GLM is applied to the run of the dataset, contrasts are computed, and results are visualized4. A example for loop is shown to loop this analysis across runs and across subjectsTechnically, this example shows how to handle two sessions thatcontain the same experimental conditions. Task Description This dataset was acquired to validate an fMRI task used in pre-surgical planning. Different motor tasks activate different areas of the brain and surgons need to have reliable information about where these areas are located before conducting neurosurgical procedures. The task consisted of finger tapping, foot twitching and lip pursing blocks that were interleaved with fixation. Single Subject GLM First, we use PyBIDS to import the preprocessed BIDS data ###Code # Import preprocessed BIDS dataset from bids.layout import BIDSLayout from os import path data_dir = '/scratch/cis-training/' layout = BIDSLayout(path.join(data_dir, 'ds000114/'), derivatives='/scratch/cis-training/ds000114/derivatives/') events_file = layout.get(task='fingerfootlips', suffix='events')[0] events_file = events_file.path ###Output _____no_output_____ ###Markdown We query the preprocessed BIDS dataset and grab the nifti files for each run from one subject: ###Code func_files = layout.get( sub='01', datatype='func', task='fingerfootlips', space='MNI152NLin2009cAsym', desc='preproc', extension='nii.gz') print(func_files) ###Output [<BIDSImageFile filename='/scratch/cis-training/ds000114/derivatives/fmriprep/sub-01/ses-retest/func/sub-01_ses-retest_task-fingerfootlips_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz'>, <BIDSImageFile filename='/scratch/cis-training/ds000114/derivatives/fmriprep/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz'>] ###Markdown Create a mean image of the run for plotting purpose ###Code %matplotlib inline from nilearn.image import mean_img mean_img_ = mean_img(func_files[0].path) from nilearn import plotting plotting.plot_img(mean_img_) ###Output _____no_output_____ ###Markdown The timing file describing each conditon is: ###Code import pandas as pd events_df = pd.read_csv(events_file, sep='\t') events_df.head() ###Output _____no_output_____ ###Markdown We want to include nuisance regressors in our design matrix, so we search for potential confound files that were created as part of fmriprep's preprocessing. ###Code # Find the confounds file temp_entities = func_files[0].get_entities() temp_entities['suffix'] = 'regressors' temp_entities['extension'] = 'tsv' temp_entities['desc'] = 'confounds' temp_entities.pop('space') confounds_file = layout.get(**temp_entities)[0].path confounds = pd.read_csv(confounds_file, sep='\t') ###Output _____no_output_____ ###Markdown The possible confounds we have to choose from are: ###Code for c in confounds.columns: print(c) ###Output csf csf_derivative1 csf_power2 csf_derivative1_power2 white_matter white_matter_derivative1 white_matter_power2 white_matter_derivative1_power2 global_signal global_signal_derivative1 global_signal_derivative1_power2 global_signal_power2 std_dvars dvars framewise_displacement t_comp_cor_00 t_comp_cor_01 t_comp_cor_02 t_comp_cor_03 t_comp_cor_04 t_comp_cor_05 a_comp_cor_00 a_comp_cor_01 a_comp_cor_02 a_comp_cor_03 a_comp_cor_04 a_comp_cor_05 a_comp_cor_06 a_comp_cor_07 a_comp_cor_08 a_comp_cor_09 a_comp_cor_10 a_comp_cor_11 a_comp_cor_12 a_comp_cor_13 a_comp_cor_14 a_comp_cor_15 a_comp_cor_16 a_comp_cor_17 a_comp_cor_18 a_comp_cor_19 a_comp_cor_20 a_comp_cor_21 a_comp_cor_22 a_comp_cor_23 a_comp_cor_24 a_comp_cor_25 a_comp_cor_26 a_comp_cor_27 a_comp_cor_28 a_comp_cor_29 a_comp_cor_30 a_comp_cor_31 a_comp_cor_32 a_comp_cor_33 a_comp_cor_34 a_comp_cor_35 a_comp_cor_36 a_comp_cor_37 a_comp_cor_38 a_comp_cor_39 a_comp_cor_40 a_comp_cor_41 a_comp_cor_42 a_comp_cor_43 a_comp_cor_44 a_comp_cor_45 a_comp_cor_46 a_comp_cor_47 a_comp_cor_48 a_comp_cor_49 a_comp_cor_50 a_comp_cor_51 a_comp_cor_52 a_comp_cor_53 a_comp_cor_54 a_comp_cor_55 a_comp_cor_56 a_comp_cor_57 a_comp_cor_58 a_comp_cor_59 a_comp_cor_60 cosine00 cosine01 cosine02 cosine03 cosine04 cosine05 non_steady_state_outlier00 trans_x trans_x_derivative1 trans_x_derivative1_power2 trans_x_power2 trans_y trans_y_derivative1 trans_y_power2 trans_y_derivative1_power2 trans_z trans_z_derivative1 trans_z_power2 trans_z_derivative1_power2 rot_x rot_x_derivative1 rot_x_derivative1_power2 rot_x_power2 rot_y rot_y_derivative1 rot_y_power2 rot_y_derivative1_power2 rot_z rot_z_derivative1 rot_z_derivative1_power2 rot_z_power2 motion_outlier00 motion_outlier01 motion_outlier02 motion_outlier03 motion_outlier04 motion_outlier05 motion_outlier06 motion_outlier07 motion_outlier08 motion_outlier09 ###Markdown We'ge going to regress out six motion parameters (3 translation and 3 rotation) as well as any volumes that were flagged by DVARS. Here we create these confounds for the model. ###Code cols = ['trans_x', 'trans_y', 'trans_z', 'rot_x', 'rot_y', 'rot_z', 'dvars'] func_file = func_files[0] temp_entities = func_file.get_entities() temp_entities['suffix'] = 'regressors' temp_entities['extension'] = 'tsv' temp_entities['desc'] = 'confounds' temp_entities.pop('space') confounds_file = layout.get(**temp_entities)[0].path confounds = pd.read_csv(confounds_file, sep='\t') confounds_for_model = confounds[cols] confounds_for_model = confounds_for_model.fillna(0) ###Output _____no_output_____ ###Markdown Define the subject-level model. ###Code from nistats.first_level_model import FirstLevelModel t_r = layout.get_metadata(func_files[0].path)['RepetitionTime'] model = FirstLevelModel(t_r=t_r, period_cut=128, subject_label=func_files[0].entities['subject'], smoothing_fwhm=5., drift_model = 'polynomial', noise_model='ar1', minimize_memory=True) ###Output _____no_output_____ ###Markdown Run the model ###Code model.fit(func_file.path, events_df, confounds_for_model) ###Output /home/data/cis/training-week-2019/env/lib/python3.6/site-packages/nilearn/_utils/cache_mixin.py:232: DeprecationWarning: The 'cachedir' attribute has been deprecated in version 0.12 and will be removed in version 0.14. Use os.path.join(memory.location, 'joblib') attribute instead. if (memory.cachedir is None and memory_level is not None /home/data/cis/training-week-2019/env/lib/python3.6/site-packages/nilearn/_utils/cache_mixin.py:232: DeprecationWarning: The 'cachedir' attribute has been deprecated in version 0.12 and will be removed in version 0.14. Use os.path.join(memory.location, 'joblib') attribute instead. if (memory.cachedir is None and memory_level is not None <string>:6: DeprecationWarning: object of type <class 'numpy.float64'> cannot be safely interpreted as an integer. <string>:6: DeprecationWarning: object of type <class 'float'> cannot be safely interpreted as an integer. /home/data/cis/training-week-2019/env/lib/python3.6/site-packages/nilearn/_utils/cache_mixin.py:232: DeprecationWarning: The 'cachedir' attribute has been deprecated in version 0.12 and will be removed in version 0.14. Use os.path.join(memory.location, 'joblib') attribute instead. if (memory.cachedir is None and memory_level is not None ###Markdown Visualize the design matrix ###Code %matplotlib inline from nistats.reporting import plot_design_matrix import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(16, 10)) plot_design_matrix(model.design_matrices_[0], ax=ax) ax.set_title('Design Matrix') fig.show() ###Output _____no_output_____ ###Markdown Build and plot the contrasts ###Code import numpy as np def pad_vector(contrast_, n_columns): return np.hstack((contrast_, np.zeros(n_columns - len(contrast_)))) n_columns = model.design_matrices_[0].shape[1] contrasts = { 'Finger_minus_All': pad_vector([1, -0.5, -0.5], n_columns), 'Foot_minus_All': pad_vector([-0.5, 1, -0.5], n_columns) } from nistats.reporting import plot_contrast_matrix plt.figure(figsize=(7, 7)) for i, (key, values) in enumerate(contrasts.items()): ax = plt.subplot(5, 1, i + 1) plot_contrast_matrix(values, design_matrix=model.design_matrices_[0], ax=ax) plt.show() ###Output /home/data/cis/training-week-2019/env/lib/python3.6/site-packages/numpy/matrixlib/defmatrix.py:71: PendingDeprecationWarning: the matrix subclass is not the recommended way to represent matrices or deal with linear algebra (see https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html). Please adjust your code to use regular ndarray. return matrix(data, dtype=dtype, copy=False) ###Markdown Compute the contrasts and plot up the within-run, subject-level results ###Code sub = '01' ses = layout.get_sessions(subjects=sub)[0] print(sub) for index, (contrast_id, contrast_val) in enumerate(contrasts.items()): print('\t\tContrast {} out of {}: {}'.format(index+1, len(contrasts), contrast_id)) pe_map = model.compute_contrast(contrast_val, output_type='effect_size') pe_image_file = 'sub-{}_ses-{}_{}_pe_map.nii.gz'.format(sub, ses, contrast_id) pe_map.to_filename(pe_image_file) z_map = model.compute_contrast(contrast_val, output_type='z_score') z_image_file = 'sub-{}_ses-{}_{}_z_map.nii.gz'.format(sub, ses, contrast_id) z_map.to_filename(z_image_file) plotting.plot_stat_map( z_map, bg_img=mean_img_, threshold=3.0, title='%s, first session' % contrast_id) ###Output 01 Contrast 1 out of 2: Finger_minus_All ###Markdown The above cells ran the analysis for a sigle rub for a single subject. The following code accomplishes what above cells did but also loops through mulitple runs and multiple participants so that first-level analyses are performed for all subjects in the study. ###Code # Loop through participants cols = ['trans_x', 'trans_y', 'trans_z', 'rot_x', 'rot_y', 'rot_z', 'dvars'] events_file = layout.get(task='fingerfootlips', suffix='events')[0] events_df = pd.read_csv(events_file, sep='\t') for sub in layout.get_subjects()[:1]: print('Subject: {}'.format(sub)) func_files = [] confounds = [] for ses in layout.get_sessions(subjects=sub): print('\tSession {}'.format(ses)) func_file = layout.get( sub=sub, ses=ses, datatype='func', task='fingerfootlips', space='MNI152NLin2009cAsym', desc='preproc', extension='nii.gz')[0] func_files.append(func_file.path) # Search for confounds file temp_entities = func_file.get_entities() temp_entities['suffix'] = 'regressors' temp_entities['extension'] = 'tsv' temp_entities['desc'] = 'confounds' temp_entities.pop('space') confounds_file = layout.get(**temp_entities)[0].path confounds_df = pd.read_csv(confounds_file, sep='\t') confounds_for_model = confounds_df[cols] confounds_for_model = confounds_for_model.fillna(0) confounds.append(confounds_for_model) # Build model that runs across sessions t_r = layout.get_metadata(func_file.path)['RepetitionTime'] model = FirstLevelModel(t_r=t_r, subject_label=temp_entities['subject'], smoothing_fwhm=5.) model.fit(func_file.path, events_df, confounds_for_model) # Build contrasts n_columns = model.design_matrices_[0].shape[1] contrasts = { 'Finger_minus_All': pad_vector([1, -0.5, -0.5], n_columns), 'Foot_minus_All': pad_vector([-0.5, 1, -0.5], n_columns) } # Compute contrasts and plot results for index, (contrast_id, contrast_val) in enumerate(contrasts.items()): print('\t\tContrast {} out of {}: {}'.format(index+1, len(contrasts), contrast_id)) pe_map = model.compute_contrast(contrast_val, output_type='effect_size') pe_image_file = 'sub-{}_ses-{}_{}_pe_map.nii.gz'.format(sub, ses, contrast_id) pe_map.to_filename(pe_image_file) z_map = model.compute_contrast(contrast_val, output_type='z_score') z_image_file = 'sub-{}_ses-{}_{}_z_map.nii.gz'.format(sub, ses, contrast_id) z_map.to_filename(z_image_file) plotting.plot_stat_map(z_image_file, bg_img=mean_img_, threshold=3.0, title='sub {0}, {1}, {2}'.format(sub,ses,contrast_id)) plt.show() ###Output Subject: 01 Session retest ###Markdown We can also average across both runs: ###Code from nilearn import image files = ['sub-01_ses-test_Finger_minus_All_pe_map.nii.gz', 'sub-01_ses-retest_Finger_minus_All_pe_map.nii.gz'] level2_pe_map = image.mean_img(files) level2_pe_map.to_filename('sub-{}_Finger_minus_All_pe_map.nii.gz'.format('01')) plotting.plot_stat_map(level2_pe_map, bg_img=mean_img_, threshold=3.0, title='sub {0}, {1}, {2}'.format(sub,ses,contrast_id)) ###Output _____no_output_____
Day 3/DCGAN.ipynb
###Markdown ###Code from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import glob import imageio import os import numpy as np import matplotlib.pyplot as plt from tensorflow.keras import layers import time from IPython import display import PIL from tensorflow.keras.datasets import mnist (train_images, train_labels), (_,_) = mnist.load_data() train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32') train_images = (train_images - 127.5) / 127.5 batch_size = 256 buffer_size = 60000 train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(buffer_size).batch(batch_size) def generator_model(): model = tf.keras.Sequential() model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Reshape((7, 7, 256))) model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False)) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')) return model generator = generator_model() noise = tf.random.normal([1, 100]) generated_image = generator(noise, training=False) plt.imshow(generated_image[0, :, :, 0], cmap='gray') def discriminator_model(): model = tf.keras.Sequential() model.add(layers.Conv2D(64, (5,5), strides=(2,2), padding='same', input_shape=[28,28,1])) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.1)) model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.1)) model.add(layers.Flatten()) model.add(layers.Dense(1)) return model discriminator = discriminator_model() decision = discriminator(generated_image) print (decision) cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) def discriminator_loss(real_output, fake_output): real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss def generator_loss(fake_output): return cross_entropy(tf.ones_like(fake_output), fake_output) generator_optimizer = tf.keras.optimizers.Adam(1e-4) discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) checkpoint_dir = './training_checkpoints' checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, discriminator_optimizer=discriminator_optimizer, generator=generator, discriminator=discriminator) EPOCHS = 50 noise_dim = 100 num_examples_to_generate = 16 seed = tf.random.normal([num_examples_to_generate, noise_dim]) @tf.function def train_step(images): noise = tf.random.normal([batch_size, noise_dim]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) def train(dataset, epochs): for epoch in range(epochs): start = time.time() for image_batch in dataset: train_step(image_batch) display.clear_output(wait=True) generate_and_save_images(generator, epoch + 1, seed) if (epoch + 1) % 15 == 0: checkpoint.save(file_prefix = checkpoint_prefix) print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start)) display.clear_output(wait=True) generate_and_save_images(generator, epochs, seed) def generate_and_save_images(model, epoch, test_input): predictions = model(test_input, training=False) fig = plt.figure(figsize=(4,4)) for i in range(predictions.shape[0]): plt.subplot(4, 4, i+1) plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray') plt.axis('off') plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) plt.show() train(train_dataset, EPOCHS) PIL.Image.open('image_at_epoch_{:04d}.png'.format(EPOCHS)) checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) anim_file = 'output.gif' with imageio.get_writer(anim_file, mode='I') as writer: filenames = glob.glob('image*.png') filenames = sorted(filenames) last = -1 for i,filename in enumerate(filenames): frame = 2*(i**0.5) if round(frame) > round(last): last = frame else: continue image = imageio.imread(filename) writer.append_data(image) image = imageio.imread(filename) writer.append_data(image) import IPython if IPython.version_info > (6,2,0,''): display.Image(filename=anim_file) ###Output _____no_output_____
4_Matplotlib/03_ContourPlot.ipynb
###Markdown Contour Plots ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np np.random.seed(0) def f(x, y): return x**2 + y**2 x = np.arange(-5, 5.0, 0.25) y = np.arange(-5, 5.0, 0.25) print(x[:10]) print(y[:10]) ###Output [-5. -4.75 -4.5 -4.25 -4. -3.75 -3.5 -3.25 -3. -2.75] [-5. -4.75 -4.5 -4.25 -4. -3.75 -3.5 -3.25 -3. -2.75] ###Markdown Meshgrid```pythonnp.meshgrid( *xi, copy=True, sparse=False, indexing='xy')```Return coordinate matrices from coordinate vectors.Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,…, xn. ###Code X, Y = np.meshgrid(x, y) print(X) print(Y) plt.scatter(X, Y, s=10); Z = f(X, Y) print(Z) plt.contour(X, Y, Z, colors='black'); ###Output _____no_output_____ ###Markdown Colorbars'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'seismic', 'seismic_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'turbo', 'turbo_r', 'twilight', 'twilight_r', 'twilight_shifted', 'twilight_shifted_r', 'viridis', 'viridis_r', 'winter', 'winter_r' ###Code plt.contourf(X, Y, Z, 20, cmap='RdGy') plt.colorbar(); plt.contourf(X, Y, Z, 20, cmap='cool') plt.colorbar(); delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 fig, ax = plt.subplots() CS = ax.contour(X, Y, Z) ###Output _____no_output_____
300_cheat_sheet/Git_bucket.ipynb
###Markdown git pushができなくなった時https://cpoint-lab.co.jp/article/201804/windows%E7%89%88git%E3%81%A7%E8%AA%8D%E8%A8%BC%E6%83%85%E5%A0%B1%E3%82%92%E6%B6%88%E3%81%99%E6%96%B9%E6%B3%95/ - コルトナに”資格情報”と入力- “Windows資格情報”をクリック- 正しい情報に修正する Synologyで立ち上げる downloadwget https://github.com/gitbucket/gitbucket/releases/download/4.29.0/gitbucket.war![image.png](attachment:image.png) 立ち上げ java -jar gitbucket.war 下記にアクセス http://192.168.0.112:8080/ ###Code nohup java -jar gitbucket.war ###Output _____no_output_____
notebooks/04_resource_phase_eda.ipynb
###Markdown Let's get into resource Phases! First restrict on closed items ###Code isclosed = data[data["to_phase"]=="End"]["work_item"].unique() closed = data[data["work_item"].isin(isclosed)] closed[closed["from_resource"]=="0"]["from_phase"].value_counts() closed[closed["from_phase"]=="Start"]["from_resource"].value_counts(dropna=False) ###Output _____no_output_____ ###Markdown Everery Resource start from NaN. ###Code print("There are %i different resource states and %i different resource phases" %(closed["to_resource"].nunique(), closed["resource_phase"].nunique())) ###Output There are 270 different resource states and 2371 different resource phases ###Markdown Count the different paths a resource can go ###Code procfreq = count_processes(closed, "resource_phase") processes = dict_to_df(procfreq).T processes.sort_values(by="freq", ascending=False, inplace=True) processes.reset_index(drop=True, inplace=True) save_path = Path("../plots/") g1 = plot_process(process=processes["process"][0].values(), name="Resource_top_Frequency", path=save_path) g2 = plot_process(process=processes["process"][1].values(), name="Resource_second_Frequency", path=save_path) g3 = plot_process(process=processes["process"][2].values(), name="Resource_third_Frequency", path=save_path) g1 g2 g3 closed["to_resource"].value_counts().head(8) ###Output _____no_output_____ ###Markdown We can see that Resources are going forward and back or stay in the same state. Let's see what happens with the resource phase if the process phase stays on same stage ###Code process_hold = closed[closed["from_phase"]==closed["to_phase"]] resource_change = process_hold[process_hold["resource_phase"].apply(lambda x: x[0] != x[1])] resource_hold = process_hold[process_hold["resource_phase"].apply(lambda x: x[0] == x[1])] print("In %i cases the resource changes, if the process holds." %len(resource_change)) print("In %i cases the resource holds, if the process holds." %len(resource_hold)) ###Output In 171 cases the resource changes, if the process holds. In 0 cases the resource holds, if the process holds. ###Markdown This is a useful information. If the process flow stops, the resource is changed. If the resource is a person this could have multiple reasons. The things we should to get know more about are:1. What is the correlation between the process flow and the resource flow, which resource corresponds to which process phase2. Which resource needs most time3. Why is a resource changing First we calculate times and wrangle the data ###Code relevant_columns = ["work_item", "process_phase", "resource_phase", "timestamp"] times = time_for_phase(data, relevant_columns=[*relevant_columns, "to_resource"], process=True, end_date=None) duration_type = ["duration_in_days", "duration_in_hours", "duration_in_minutes"] new_names = { "to_phase": "current_phase", "process_phase_x": "from_process", "process_phase_y": "to_process", "to_resource_x": "current_resource", "resource_phase_x": "from_resource", "resource_phase_y": "to_resource" } times.rename(columns=new_names, inplace=True) relevant_cols = ["work_item", "process_index", *list(new_names.values()), "duration_in_days"] times= times[relevant_cols] times.head() is_open = pd.isnull(times["duration_in_days"]) times_open = times[is_open] times_closed = times[~is_open] categories = ["Analyze", "Design", "Build", "Test", "Package", "Accept", "Deploy", "Clarify"] times_closed.loc[:, "current_phase"] = pd.Categorical(times_closed["current_phase"], categories=categories) ###Output _____no_output_____ ###Markdown Now we take a look on the correltation between the current phase and the current resource based on the most frequent 20 resources regarding to the most influencing process phases (Analyze, Design) and take a look at the first question1. What is the correlation between the process flow and the resource flow, which resource corresponds to which process phase ###Code cross = pd.crosstab(times_closed["current_phase"], times_closed["current_resource"]) cross = cross.reindex(categories).T top20 = cross.nlargest(20, columns=["Analyze", "Design"]) top20.T.plot(kind='bar', figsize=(15,8)) plt.title("Most frequent resource phases regarding to the process phases") ###Output _____no_output_____ ###Markdown We can see that resources ER_00061 and ER_00206 going along with the phase Analyze and Deploy, while ER_00239 and ER_00225 going along with Design, Build, Test, Package and Accept. Let's look at the time2. Which resource needs most time ###Code resource_freq = times_closed.groupby("current_resource").size() resource_sum = pd.DataFrame(times_closed.groupby("current_resource")[duration_type[0]].sum() / resource_freq) resource_sum.rename(columns={0: "duration_in_days"}, inplace=True) toptime = resource_sum.nlargest(20, columns="duration_in_days") toptime.plot(kind='barh',figsize=(15,8), title="Current resource regarding to normalized duration") plt.xlabel("duration_in_days / frequency") ###Output _____no_output_____ ###Markdown Store into json for usage in models ###Code # filepath = Path("../data/top20_time_resources.json") # with open(filepath, 'w') as f: # json.dump(list(toptime.index), f) ###Output _____no_output_____ ###Markdown We can see that the resources ER_00169, ER_00097 and ER_00002 need the most time to get things done. We should compare with the resources from 1. ###Code print("The following resources have a high impact based on the process phases and the time: \n{}".format(set(toptime.index.values) & set(top20.index.values))) ###Output The following resources have a high impact based on the process phases and the time: set() ###Markdown Sadly the intersection is 0. But we should check the rank of the resources that are related to the process phases ###Code ranks = resource_sum.reset_index().sort_values(by="duration_in_days", ascending=False).reset_index(drop=True) print("The both resources that have highest relation to the phases Analyze and Deploy:") print("The rank of resource of ER_00061 is %i"%ranks[ranks["current_resource"]=="ER_00061"].index[0]) print("The rank of resource of ER_00206 is %i"%ranks[ranks["current_resource"]=="ER_00206"].index[0]) print("The both resources that have highest relation to the phases Design, Build, Test, Package and Accept:") print("The rank of resource of ER_00239 is %i"%ranks[ranks["current_resource"]=="ER_00239"].index[0]) print("The rank of resource of ER_00225 is %i"%ranks[ranks["current_resource"]=="ER_00225"].index[0]) print("\nWhile the highest rank is %i"%len(ranks)) ###Output The both resources that have highest relation to the phases Analyze and Deploy: The rank of resource of ER_00061 is 73 The rank of resource of ER_00206 is 172 The both resources that have highest relation to the phases Design, Build, Test, Package and Accept: The rank of resource of ER_00239 is 144 The rank of resource of ER_00225 is 123 While the highest rank is 273
2018-day08.ipynb
###Markdown Advent of Code 2018 Day 8: Memory Maneuverhttps://adventofcode.com/2018/day/8The tree is made up of nodes; a single, outermost node forms the tree's root, and it contains all other nodes in the tree (or contains nodes that contain nodes, and so on).Specifically, a node consists of:* A header, which is always exactly two numbers: - The quantity of child nodes. - The quantity of metadata entries.* Zero or more child nodes (as specified in the header).* One or more metadata entries (as specified in the header).Each child node is itself a node that has its own header, child nodes, and metadata. For example:```2 3 0 3 10 11 12 1 1 0 1 99 2 1 1 2A---------------------------------- B----------- C----------- D-----``` ###Code (require racket) ###Output _____no_output_____ ###Markdown We're faced with a tree made up of numbers, expressed as a depth-first traversal. Seems like good Racket terrain. First step is to load up the data. ###Code (define data (map string->number (string-split (first (file->lines "data/input2018-08.data"))))) (take data 10) ###Output _____no_output_____ ###Markdown Looks like we get what we wanted -- a list of numbers.The tree is a node, which has a (potentially empty) set of child-nodes, and a "metadata" weight. We can represent this as a Racket `struct` ###Code (struct node (children meta) #:transparent) ###Output _____no_output_____ ###Markdown We need to consume the input list of numbers one at a time -- let's use a generator for this ###Code (require racket/generator) (define next-item (generator () (for ([x (in-list data)]) (yield x)))) ###Output _____no_output_____ ###Markdown Now we can drill down the data given, recursively constructing nodes. ###Code (define (read-node) (cond [(equal? (generator-state next-item) 'done) '()] [else (define-values (child-count meta-count) (values (next-item) (next-item))) (node (for/list ([n (in-range child-count)]) (read-node)) (for/list ([n (in-range meta-count)]) (next-item)))])) (define tree (read-node)) ###Output _____no_output_____ ###Markdown Part1: What is the sum of all metadata entries?For this we traverse the tree and sum up the meta part of the nodes. We could have done that directly in the `read-node` function if we wanted, but let's keep it separate for clarity. ###Code (require math) ; sum (define (metadata-sum tree) ;; The meta data sum is the sum of the current node's meta data list ;; plus the sum of its childrens' meta data sums. (cond [(null? tree) 0] [else (+ (sum (node-meta tree)) (for/sum ([ch (in-list (node-children tree))]) (metadata-sum ch)))])) (require rackunit) (check-eq? (metadata-sum tree) 44838) ###Output _____no_output_____ ###Markdown Bingo. Part2: What's the root node value?The value of a node depends on whether it has child nodes.If a node has no child nodes, its value is the sum of its metadata entries.However, if a node does have child nodes, the metadata entries become indexes which refer to those child nodes. A metadata entry of 1 refers to the first child node, 2 to the second, 3 to the third, and so on. The value of this node is the sum of the values of the child nodes referenced by the metadata entries. If a referenced child node does not exist, that reference is skipped. A child node can be referenced multiple time and counts each time it is referenced. A metadata entry of 0 does not refer to any child node.We'll need two functions. Firstly, we need a way to get the node value, and then we need a function to pick out a child node's value by its index. ###Code (define (node-value tree) (cond [(null? tree) 0] [(null? (node-children tree)) (sum (node-meta tree))] ; node has no children: sum-of-meta [else (for/sum ([i (in-list (node-meta tree))]) ; sum of indexed child nodes' values (value@index tree i))])) (define (value@index cur idx) (cond [(zero? idx) 0] [(>= (sub1 idx) (length (node-children cur))) 0] [else (node-value (list-ref (node-children cur) (sub1 idx)))])) (check-eq? (part2 tree) 22198) ###Output _____no_output_____
ML/DAT8-master/notebooks/05_pandas_visualization.ipynb
###Markdown Visualization with Pandas (and Matplotlib) ###Code import pandas as pd import matplotlib.pyplot as plt # display plots in the notebook %matplotlib inline # increase default figure and font sizes for easier viewing plt.rcParams['figure.figsize'] = (8, 6) plt.rcParams['font.size'] = 14 # read in the drinks data drink_cols = ['country', 'beer', 'spirit', 'wine', 'liters', 'continent'] url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/drinks.csv' drinks = pd.read_csv(url, header=0, names=drink_cols, na_filter=False) ###Output _____no_output_____ ###Markdown Histogram: show the distribution of a numerical variable ###Code # sort the beer column and mentally split it into 3 groups drinks.beer.order().values # compare with histogram drinks.beer.plot(kind='hist', bins=3) # try more bins drinks.beer.plot(kind='hist', bins=20) # add title and labels drinks.beer.plot(kind='hist', bins=20, title='Histogram of Beer Servings') plt.xlabel('Beer Servings') plt.ylabel('Frequency') # compare with density plot (smooth version of a histogram) drinks.beer.plot(kind='density', xlim=(0, 500)) ###Output _____no_output_____ ###Markdown Scatter Plot: show the relationship between two numerical variables ###Code # select the beer and wine columns and sort by beer drinks[['beer', 'wine']].sort('beer').values # compare with scatter plot drinks.plot(kind='scatter', x='beer', y='wine') # add transparency drinks.plot(kind='scatter', x='beer', y='wine', alpha=0.3) # vary point color by spirit servings drinks.plot(kind='scatter', x='beer', y='wine', c='spirit', colormap='Blues') # scatter matrix of three numerical columns pd.scatter_matrix(drinks[['beer', 'spirit', 'wine']]) # increase figure size pd.scatter_matrix(drinks[['beer', 'spirit', 'wine']], figsize=(10, 8)) ###Output _____no_output_____ ###Markdown Bar Plot: show a numerical comparison across different categories ###Code # count the number of countries in each continent drinks.continent.value_counts() # compare with bar plot drinks.continent.value_counts().plot(kind='bar') # calculate the mean alcohol amounts for each continent drinks.groupby('continent').mean() # side-by-side bar plots drinks.groupby('continent').mean().plot(kind='bar') # drop the liters column drinks.groupby('continent').mean().drop('liters', axis=1).plot(kind='bar') # stacked bar plots drinks.groupby('continent').mean().drop('liters', axis=1).plot(kind='bar', stacked=True) ###Output _____no_output_____ ###Markdown Box Plot: show quartiles (and outliers) for one or more numerical variables**Five-number summary:**- min = minimum value- 25% = first quartile (Q1) = median of the lower half of the data- 50% = second quartile (Q2) = median of the data- 75% = third quartile (Q3) = median of the upper half of the data- max = maximum value(More useful than mean and standard deviation for describing skewed distributions)**Interquartile Range (IQR)** = Q3 - Q1**Outliers:**- below Q1 - 1.5 * IQR- above Q3 + 1.5 * IQR ###Code # sort the spirit column drinks.spirit.order().values # show "five-number summary" for spirit drinks.spirit.describe() # compare with box plot drinks.spirit.plot(kind='box') # include multiple variables drinks.drop('liters', axis=1).plot(kind='box') ###Output _____no_output_____ ###Markdown Line Plot: show the trend of a numerical variable over time ###Code # read in the ufo data url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/ufo.csv' ufo = pd.read_csv(url) ufo['Time'] = pd.to_datetime(ufo.Time) ufo['Year'] = ufo.Time.dt.year # count the number of ufo reports each year (and sort by year) ufo.Year.value_counts().sort_index() # compare with line plot ufo.Year.value_counts().sort_index().plot() # don't use a line plot when there is no logical ordering drinks.continent.value_counts().plot() ###Output _____no_output_____ ###Markdown Grouped Box Plots: show one box plot for each group ###Code # reminder: box plot of beer servings drinks.beer.plot(kind='box') # box plot of beer servings grouped by continent drinks.boxplot(column='beer', by='continent') # box plot of all numeric columns grouped by continent drinks.boxplot(by='continent') ###Output _____no_output_____ ###Markdown Grouped Histograms: show one histogram for each group ###Code # reminder: histogram of beer servings drinks.beer.plot(kind='hist') # histogram of beer servings grouped by continent drinks.hist(column='beer', by='continent') # share the x axes drinks.hist(column='beer', by='continent', sharex=True) # share the x and y axes drinks.hist(column='beer', by='continent', sharex=True, sharey=True) # change the layout drinks.hist(column='beer', by='continent', sharex=True, layout=(2, 3)) ###Output _____no_output_____ ###Markdown Assorted Functionality ###Code # saving a plot to a file drinks.beer.plot(kind='hist', bins=20, title='Histogram of Beer Servings') plt.xlabel('Beer Servings') plt.ylabel('Frequency') plt.savefig('beer_histogram.png') # list available plot styles plt.style.available # change to a different style plt.style.use('ggplot') ###Output _____no_output_____
privacy_analytics/attrition-analysis.ipynb
###Markdown Transformation LogicStep1: Find features that can lead to better prediction - f_subset: subset of features used for task prediction Step2: pdistcompute on dataframe(f_subset) to find unique ones that can be used to distinguish users @ADVERSARY: semi-honest adversary who uses all insider knowledge to learn aout user private information; @ADVERSARY: One who is knowledgable about data preparation Objective 1: Protect identified sensitive attributes (Age,Distance) so @ADVERSARY cannot de-identify individual These attributes are ones that can be used by adversary to identify individuals using age, gender, location (PUBLIC). Using DE-IDENTIFICATION, PRIVATE information such as monthly income, monthly rate, daily rate, percent salary hike, performance rating etc...Protect deidentification using PUBLIC attributes which will protect PRIVATE attributes Objective 2: Protect sensitive hidden inferences from published data - a case where same data can be used to make multiple classes - using attrition data to predict suicide ###Code from sklearn.model_selection import train_test_split #Step 1 using a classifier to predict attrition from input data feat = ['Age', 'BusinessTravel', 'DailyRate', 'Department', 'DistanceFromHome', 'Education', 'EducationField', 'EmployeeCount', 'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'Over18', 'OverTime', 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion', 'YearsWithCurrManager'] label = ['Attrition'] X = attrition[feat] y = attrition[label] # Split dataset into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 80% training and 30% test PRIVACY_FLAG = 1 if PRIVACY_FLAG == 1: for ele in private_attr: feat.remove(ele) X_train = X_train[feat] X_test = X_test[feat] print(X_train.shape, y_train.shape) print(X_test.shape, y_test.shape) #Import Random Forest Model from sklearn.ensemble import RandomForestClassifier #Create a Gaussian Classifier clf=RandomForestClassifier(n_estimators=100) #Train the model using the training sets y_pred=clf.predict(X_test) clf.fit(X_train,y_train) y_pred=clf.predict(X_test) #Import scikit-learn metrics module for accuracy calculation from sklearn import metrics # Model Accuracy, how often is the classifier correct? print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) plt.barh(feat,clf.feature_importances_) plt.yticks(fontsize=7) plt.tight_layout() ###Output Accuracy: 0.9013605442176871
fhdataapi/IMF/read_me.ipynb
###Markdown IMFThe `IMF` class allows you to grab macroeconomic and financial data from the [IMF Database](https://www.imf.org/en/Data). This is essentially a wrapper around their data API.--- ExampleTo fetch data with this class you need to know the IMF dataset that has your series and the values of the query parameters. The class is built in a way that helps you find the desired series and fill out the query parameters. The workflow below gives an example. ###Code from fldataapi import IMF import matplotlib.pyplot as plt imf = IMF() ###Output _____no_output_____ ###Markdown First let us look at all the available datasets using the **`dataflow`** method. ###Code imf.dataflow() ###Output _____no_output_____ ###Markdown As you can see, there are a lot of datasets. So it is recommended that you look for the dataset you need on the IMF's website and then looking for dataset code here.As an example, let us use the ***Direction of Trade* (DOT)** dataset. Once you have your dataset, we got to check what are the query parameters for that table and their dimensions. To do this we use the **`data_structure`** method. The output `dim_code` is a list containing the query parameter names and `dim_codedict` is a dictionary where the keys are the query parameters and the values are dataframes with the available dimensions for that parameter. ###Code dim_code, dim_codedict = imf.data_structure('DOT') print('These are the query parameters') print(dim_code) for code in dim_codedict.keys(): print('These are the possible values for the', code, 'query parameter') display(dim_codedict[code]) ###Output These are the possible values for the CL_FREQ query parameter ###Markdown Finnally, now that we have all the elements of the query, we can grab our series. Lets see how much did brazil export to the US on a yearly frequency. ###Code query_filter = {'CL_FREQ': 'A', 'CL_AREA_DOT': 'BR', 'CL_INDICATOR_DOT': 'TXG_FOB_USD', 'CL_COUNTERPART_AREA_DOT': 'US'} df = imf.compact_data('DOT', query_filter, 'BR exports to US') df.plot(figsize=(13, 8)) ###Output _____no_output_____
10 sparsity_and_l1_regularization.ipynb
###Markdown Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown 稀疏性和 L1 正则化 **学习目标:** * 计算模型大小 * 通过应用 L1 正则化来增加稀疏性,以减小模型大小 降低复杂性的一种方法是使用正则化函数,它会使权重正好为零。对于线性模型(例如线性回归),权重为零就相当于完全没有使用相应特征。除了可避免过拟合之外,生成的模型还会更加有效。L1 正则化是一种增加稀疏性的好方法。 设置运行以下单元格,以加载数据并创建特征定义。 ###Code from __future__ import print_function import math from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format california_housing_dataframe = pd.read_csv("https://download.mlcc.google.cn/mledu-datasets/california_housing_train.csv", sep=",") california_housing_dataframe = california_housing_dataframe.reindex( np.random.permutation(california_housing_dataframe.index)) def preprocess_features(california_housing_dataframe): """Prepares input features from California housing data set. Args: california_housing_dataframe: A Pandas DataFrame expected to contain data from the California housing data set. Returns: A DataFrame that contains the features to be used for the model, including synthetic features. """ selected_features = california_housing_dataframe[ ["latitude", "longitude", "housing_median_age", "total_rooms", "total_bedrooms", "population", "households", "median_income"]] processed_features = selected_features.copy() # Create a synthetic feature. processed_features["rooms_per_person"] = ( california_housing_dataframe["total_rooms"] / california_housing_dataframe["population"]) return processed_features def preprocess_targets(california_housing_dataframe): """Prepares target features (i.e., labels) from California housing data set. Args: california_housing_dataframe: A Pandas DataFrame expected to contain data from the California housing data set. Returns: A DataFrame that contains the target feature. """ output_targets = pd.DataFrame() # Create a boolean categorical feature representing whether the # median_house_value is above a set threshold. output_targets["median_house_value_is_high"] = ( california_housing_dataframe["median_house_value"] > 265000).astype(float) return output_targets # Choose the first 12000 (out of 17000) examples for training. training_examples = preprocess_features(california_housing_dataframe.head(12000)) training_targets = preprocess_targets(california_housing_dataframe.head(12000)) # Choose the last 5000 (out of 17000) examples for validation. validation_examples = preprocess_features(california_housing_dataframe.tail(5000)) validation_targets = preprocess_targets(california_housing_dataframe.tail(5000)) # Double-check that we've done the right thing. print("Training examples summary:") display.display(training_examples.describe()) print("Validation examples summary:") display.display(validation_examples.describe()) print("Training targets summary:") display.display(training_targets.describe()) print("Validation targets summary:") display.display(validation_targets.describe()) def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None): """Trains a linear regression model. Args: features: pandas DataFrame of features targets: pandas DataFrame of targets batch_size: Size of batches to be passed to the model shuffle: True or False. Whether to shuffle the data. num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely Returns: Tuple of (features, labels) for next data batch """ # Convert pandas data into a dict of np arrays. features = {key:np.array(value) for key,value in dict(features).items()} # Construct a dataset, and configure batching/repeating. ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) # Shuffle the data, if specified. if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. features, labels = ds.make_one_shot_iterator().get_next() return features, labels def get_quantile_based_buckets(feature_values, num_buckets): quantiles = feature_values.quantile( [(i+1.)/(num_buckets + 1.) for i in range(num_buckets)]) return [quantiles[q] for q in quantiles.keys()] def construct_feature_columns(): """Construct the TensorFlow Feature Columns. Returns: A set of feature columns """ bucketized_households = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("households"), boundaries=get_quantile_based_buckets(training_examples["households"], 10)) bucketized_longitude = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("longitude"), boundaries=get_quantile_based_buckets(training_examples["longitude"], 50)) bucketized_latitude = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("latitude"), boundaries=get_quantile_based_buckets(training_examples["latitude"], 50)) bucketized_housing_median_age = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("housing_median_age"), boundaries=get_quantile_based_buckets( training_examples["housing_median_age"], 10)) bucketized_total_rooms = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("total_rooms"), boundaries=get_quantile_based_buckets(training_examples["total_rooms"], 10)) bucketized_total_bedrooms = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("total_bedrooms"), boundaries=get_quantile_based_buckets(training_examples["total_bedrooms"], 10)) bucketized_population = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("population"), boundaries=get_quantile_based_buckets(training_examples["population"], 10)) bucketized_median_income = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("median_income"), boundaries=get_quantile_based_buckets(training_examples["median_income"], 10)) bucketized_rooms_per_person = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("rooms_per_person"), boundaries=get_quantile_based_buckets( training_examples["rooms_per_person"], 10)) long_x_lat = tf.feature_column.crossed_column( set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000) feature_columns = set([ long_x_lat, bucketized_longitude, bucketized_latitude, bucketized_housing_median_age, bucketized_total_rooms, bucketized_total_bedrooms, bucketized_population, bucketized_households, bucketized_median_income, bucketized_rooms_per_person]) return feature_columns ###Output _____no_output_____ ###Markdown 计算模型大小要计算模型大小,只需计算非零参数的数量即可。为此,我们在下面提供了一个辅助函数。该函数深入使用了 Estimator API,如果不了解它的工作原理,也不用担心。 ###Code def model_size(estimator): variables = estimator.get_variable_names() size = 0 for variable in variables: if not any(x in variable for x in ['global_step', 'centered_bias_weight', 'bias_weight', 'Ftrl'] ): size += np.count_nonzero(estimator.get_variable_value(variable)) return size ###Output _____no_output_____ ###Markdown 减小模型大小您的团队需要针对 *SmartRing* 构建一个准确度高的逻辑回归模型,这种指环非常智能,可以感应城市街区的人口统计特征(`median_income`、`avg_rooms`、`households` 等等),并告诉您指定城市街区的住房成本是否高昂。由于 SmartRing 很小,因此工程团队已确定它只能处理**参数数量不超过 600 个**的模型。另一方面,产品管理团队也已确定,除非所保留测试集的**对数损失函数低于 0.35**,否则该模型不能发布。您可以使用秘密武器“L1 正则化”调整模型,使其同时满足大小和准确率限制条件吗? 任务 1:查找合适的正则化系数。**查找可同时满足以下两种限制条件的 L1 正则化强度参数:模型的参数数量不超过 600 个且验证集的对数损失函数低于 0.35。**以下代码可帮助您快速开始。您可以通过多种方法向您的模型应用正则化。在此练习中,我们选择使用 `FtrlOptimizer` 来应用正则化。`FtrlOptimizer` 是一种设计成使用 L1 正则化比标准梯度下降法得到更好结果的方法。重申一次,我们会使用整个数据集来训练该模型,因此预计其运行速度会比通常要慢。 ###Code def train_linear_classifier_model( learning_rate, regularization_strength, steps, batch_size, feature_columns, training_examples, training_targets, validation_examples, validation_targets): """Trains a linear regression model. In addition to training, this function also prints training progress information, as well as a plot of the training and validation loss over time. Args: learning_rate: A `float`, the learning rate. regularization_strength: A `float` that indicates the strength of the L1 regularization. A value of `0.0` means no regularization. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. feature_columns: A `set` specifying the input feature columns to use. training_examples: A `DataFrame` containing one or more columns from `california_housing_dataframe` to use as input features for training. training_targets: A `DataFrame` containing exactly one column from `california_housing_dataframe` to use as target for training. validation_examples: A `DataFrame` containing one or more columns from `california_housing_dataframe` to use as input features for validation. validation_targets: A `DataFrame` containing exactly one column from `california_housing_dataframe` to use as target for validation. Returns: A `LinearClassifier` object trained on the training data. """ periods = 7 steps_per_period = steps / periods # Create a linear classifier object. my_optimizer = tf.train.FtrlOptimizer(learning_rate=learning_rate, l1_regularization_strength=regularization_strength) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) linear_classifier = tf.estimator.LinearClassifier( feature_columns=feature_columns, optimizer=my_optimizer ) # Create input functions. training_input_fn = lambda: my_input_fn(training_examples, training_targets["median_house_value_is_high"], batch_size=batch_size) predict_training_input_fn = lambda: my_input_fn(training_examples, training_targets["median_house_value_is_high"], num_epochs=1, shuffle=False) predict_validation_input_fn = lambda: my_input_fn(validation_examples, validation_targets["median_house_value_is_high"], num_epochs=1, shuffle=False) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss (on validation data):") training_log_losses = [] validation_log_losses = [] for period in range (0, periods): # Train the model, starting from the prior state. linear_classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute predictions. training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn) training_probabilities = np.array([item['probabilities'] for item in training_probabilities]) validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn) validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities]) # Compute training and validation loss. training_log_loss = metrics.log_loss(training_targets, training_probabilities) validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_log_losses.append(training_log_loss) validation_log_losses.append(validation_log_loss) print("Model training finished.") # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.tight_layout() plt.plot(training_log_losses, label="training") plt.plot(validation_log_losses, label="validation") plt.legend() return linear_classifier linear_classifier = train_linear_classifier_model( learning_rate=0.1, # TWEAK THE REGULARIZATION VALUE BELOW regularization_strength=0.0, steps=300, batch_size=100, feature_columns=construct_feature_columns(), training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) print("Model size:", model_size(linear_classifier)) ###Output _____no_output_____ ###Markdown 解决方案点击下方即可查看可能的解决方案。 正则化强度为 0.1 应该就足够了。请注意,有一个需要做出折中选择的地方:正则化越强,我们获得的模型就越小,但会影响分类损失。 ###Code linear_classifier = train_linear_classifier_model( learning_rate=0.1, regularization_strength=0.1, steps=300, batch_size=100, feature_columns=construct_feature_columns(), training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) print("Model size:", model_size(linear_classifier)) ###Output _____no_output_____
notebooks/Demo_BMP_API.ipynb
###Markdown Best Management Practice (BMP) Application Programming Interface (API) Academy of Natural Sciences of Drexel University, Drexel University College of Computing and InformaticsThe Drexel University College of Computing and Informatics (CCI) and the Academy of Natural Sciences (ANS) of Drexel University have developed Application Programming Interfaces (APIs) which incorporate novel algorithms to apply efficient solutions to complex environmental queries. The APIs are built in Python using a GeoDjango Web framework, Nginx, Docker, PostgreSQL, and Swagger.The Best Management Practice (BMP) API returnes BMP specific nutrient and sediment reduction estimates for a user-supplied area of interest. The API supports BMPs within the Delaware and Chesapeake Bay basins. In the Delaware, the API uses the Generalized Watershed Loading Funtion Enhanced (GWLF-E) model outputs at the HUC12 scale. In the Chesapeake, the API relies on the Chesapeake Bay Model scenarios within the Chesapeake Assessment Scenario Tool (CAST), also at the HUC12 scale. The API calculates the watershed boundary and land cover distribution for the BMP area of interest, then re-allocates the loads using BMP specific modeling approaches and efficiencies. BMP efficiencies used vary spatially depending on the watershed. This API is being extended to incorporate local factors that affect pollutant transport and BMP efficiency, such as ecoregion or soils. ###Code from ipyleaflet import Map, basemaps, Polygon, DrawControl, WidgetControl, GeoJSON, MeasureControl, basemap_to_tiles, SplitMapControl import ipywidgets as widgets from ipywidgets import IntSlider, ColorPicker, jslink, Dropdown, interact, FloatSlider import requests import geojson import json import shapely from shapely.geometry import mapping, MultiPolygon, Polygon, LineString, Point import matplotlib.pyplot as plt import collections from math import sqrt import numpy as np from shapely.ops import unary_union # Copy in the lookup table from the BMP API bmp_lookups = {"": [], "Agricultural Animal": [ #"", "Animal Waste Management Systems", "Waste Storage Facility", "Waste Storage Pond", "Waste Storage Structure" ], "Stream Restoration": [ #"", "Watering Facility", "Fence", "Non-Urban Stream Restoration", "Stream Channel Stabilization", "Streambank and Shoreline Protection", "Urban Stream Restoration" ], "Land Use Change": [ #"", "Tree and Shrub Establishment", "Tree Planting", "Barnyard Runoff Controls", "Conservation Easement", "Heavy Use Area Protection", "Roof Runoff Management", "Roof Runoff Structure", "Roofs and Covers" ], "Agricultural Land": [ #"", "Conservation Tillage", "Reduced Tillage", "High Residue Tillage Management", "Soil Conservation and Water Quality Plans", "Comprehensive Nutrient Management Plan", "Nutrient Management", "Conservation Cover", "Cover Crop", "Grazing Land Protection", "Prescribed Grazing" ], "Urban Stormwater Management": [ #"", "Constructed Wetland", "Dry Extended Detention Ponds", "Wet Pond", "Wet Ponds & Wetlands", "Bioretention", "Bioretention/raingardens - A/B soils no underdrain", "Bioretention/raingardens - A/B soils no underdrain", "Bioretention/raingardens - C/D soils underdrain", "Bioretention/raingardens - C/D soils no underdrain", "Bioswale", "Dry Well/Seepage Pit", "Impervious Surface Reduction", "Infiltration Practices w/o Sand Veg. - A/B soils no underdrain", "Permeable Pavement w/o Sand Veg. - A/B soils no underdrain", "Stormwater Performance Standard-Runoff Reduction", "Urban Infiltration Practices", "Stormwater Performance Standard-Stormwater Treatment" ], "Polygon Drainage": [ #"", "Forest Buffer", "Forest Buffer - Narrow", "Riparian Herbaceous Cover", "Grass Buffers", "Grass Buffer - Narrow", "Grassed Waterway", "Wetland Creation - Floodplain", "Wetland Restoration", "Wetland Restoration - Floodplain" ], "Exclusion Buffer": [ #"", "Forest Buffer-Streamside with Exclusion Fencing", "Forest Buffer-Narrow with Exclusion Fencing", "Grass Buffer-Streamside with Exclusion Fencing", "Grass Buffer-Narrow with Exclusion Fencing", ] } messages_arch = {"": '', "Agricultural Animal": 'Draw the point where the farm is located and enter the number of animals treated by the BMP.', "Stream Restoration": 'Draw the line representing the BMP and (optionally) enter the length of stream treated.', "Land Use Change": 'Draw the point or polygon representing the BMP and enter the acres treated (optional if a polygon is drawn).', "Agricultural Land": 'Draw the point or polygon representing the BMP and enter the acres treated (optional if a polygon is drawn).', "Urban Stormwater Management": 'Draw the polygon for the BMP or the drainage area to the BMP and provide the drainage area (acres, optional), percent impervious (%, optional) and runoff capture (inches, optional).', "Polygon Drainage": 'Draw the polygon footprint for your BMP.', "Exclusion Buffer": 'Draw the polygon footprint for your BMP and enter the length of fencing.' } # Sort this dictionary for better viewing bmp_lookups_sort = {} for arch in sorted(bmp_lookups): bmp_lookups_sort[arch] = bmp_lookups[arch] temp = [] for bmp in sorted(bmp_lookups[arch]): temp.append(bmp) #print("%s: %s" % (key, bmp_lookups[key])) bmp_lookups_sort[arch] = temp bmp_lookups = dict(bmp_lookups_sort) del(bmp_lookups_sort) # bmp_lookups.keys() # Set up all of the different fields to populate acres_treated = 0.0 percent_impervious = 0.0 runoff_capture = 0.5 stream_feet_treated = 0.0 number_of_units = 1.0 animal_treated = { "chickens_broilers": 0.0, "chickens_layers": 0.0, "cows_beef": 0.0, "cows_dairy": 0.0, "horses": 0.0, "pigs_hogs_swine": 0.0, "sheep": 0.0, "turkeys": 0.0 } acres_treated_text = widgets.BoundedFloatText( value=acres_treated, min=0.00, max=10000.0, placeholder='Enter Acres Treated:', description='Acres', disabled=False ) drainage_acres_treated_text = widgets.BoundedFloatText( value=acres_treated, min=0.00, max=10000.0, placeholder='Enter Drainage Area Treated (Ac.):', description='DA (Ac.)', disabled=False ) percent_impervious_text = widgets.BoundedFloatText( value=percent_impervious, placeholder='Enter Percent Impervious:', min=0.00, max=100.0, description='% Impervious', disabled=False ) runoff_capture_text = widgets.BoundedFloatText( value=runoff_capture, min=0.05, max=2.5, step=0.1, placeholder='Enter Runoff Capture (inches):', description='Capture (in.)', disabled=False ) runoff_capture_slider = FloatSlider(min=0.05, max=2.5, step=0.05, value=1) stream_feet_treated_text = widgets.BoundedFloatText( value=stream_feet_treated, min=0.00, max=10000.0, placeholder='Enter Stream Feet Treated:', description='', disabled=False ) number_of_units_text = widgets.BoundedFloatText( value=number_of_units, min=0.00, max=10.0, placeholder='Enter Number of Units:', description='', disabled=False ) # FOR ANIMALS chickens_broilers_text = widgets.BoundedFloatText( value=0, min=0.00, max=1000.0, description='Broilers', disabled=False ) chickens_layers_text = widgets.BoundedFloatText( value = None, min=0.00, max=1000.0, description='Layers', disabled=False ) cows_beef_text = widgets.BoundedFloatText( value=0, min=0.00, max=1000.0, description='Beef Cows', disabled=False ) cows_dairy_text = widgets.BoundedFloatText( value=0, min=0.00, max=1000.0, description='Dairy Cows', disabled=False ) horses_text = widgets.BoundedFloatText( value=0, min=0.00, max=1000.0, description='Horses', disabled=False ) pigs_hogs_swine_text = widgets.BoundedFloatText( value=0, min=0.00, max=1000.0, description='Hogs/Swine', disabled=False ) sheep_text = widgets.BoundedFloatText( value=0, min=0.00, max=1000.0, description='Sheep', disabled=False ) turkeys_text = widgets.BoundedFloatText( value=0, min=0.00, max=1000.0, description='Turkeys', disabled=False ) # Put in a DropDown Widget to Select a BMP and enter the necessary information bmps_selected = [] arches_selected = [] def select_bmp(Archetype): arches_selected.append(Archetype) bmpW.options = bmp_lookups[Archetype] def print_bmp(BMP): if BMP == None: pass else: print('Selected BMP: {}\n'.format(BMP)) print(messages_arch[str(scW.value)]) bmps_selected.append(BMP) if str(scW.value) == 'Agricultural Animal': display(chickens_broilers_text) display(chickens_layers_text) display(cows_beef_text) display(cows_dairy_text) display(horses_text) display(pigs_hogs_swine_text) display(sheep_text) display(turkeys_text) elif str(scW.value) == 'Agricultural Land': display(acres_treated_text) elif str(scW.value) == 'Exclusion Buffer': display(stream_feet_treated_text) elif str(scW.value) == 'Land Use Change': display(acres_treated_text) elif str(scW.value) == 'Polygon Drainage': pass elif str(scW.value) == 'Stream Restoration': display(stream_feet_treated_text) elif str(scW.value) == 'Urban Stormwater Management': display(drainage_acres_treated_text) display(percent_impervious_text) display(runoff_capture_text) scW = widgets.Dropdown(options=bmp_lookups.keys()) init = scW.value bmpW = widgets.Dropdown(options=bmp_lookups[init]) disp_bmp = widgets.interactive(print_bmp, BMP=bmpW) disp_arch = widgets.interactive(select_bmp, Archetype=scW) display(disp_arch) display(disp_bmp) # Create the map # Map centred on Wissahickon Park displaymap1 = Map(center = (40.050, -75.215), zoom = 12, min_zoom = 1, max_zoom = 20, scroll_wheel_zoom = True, basemap = basemaps.Esri.WorldStreetMap) # Enable user to draw polygons and lines draw_control = DrawControl() draw_control.polyline = { "shapeOptions": { "color": "#6bc2e5", "weight": 4, "opacity": 1.0 } } draw_control.polygon = { "shapeOptions": { "fillColor": "#6be5c3", "color": "#6be5c3", "fillOpacity": 0.3 }, "drawError": { "color": "#dd253b", "message": "Oups!" }, "allowIntersection": True, } # Save the drawn geometry to a geojson feature_collection = { 'type': 'FeatureCollection', 'features': [] } def handle_draw(self, action, geo_json): # Save the GeoJSON when it's drawn on the map feature_collection['features'].append(geo_json) # Add in a zoom slider bar for fun zoom_slider1 = IntSlider(description='Zoom level:', min=0, max=20, value=12) jslink((zoom_slider1, 'value'), (displaymap1, 'zoom')) widget_control1 = WidgetControl(widget=zoom_slider1, position='topright') # Add in ability to do measurements measure = MeasureControl( position='bottomleft', active_color = 'red', primary_length_unit = 'feet' ) displaymap1.add_control(measure) measure.completed_color = 'red' measure.add_length_unit('miles', 0.000621371, 1) measure.secondary_length_unit = 'miles' measure.add_area_unit('sqkm', 0.0000001, 1) measure.secondary_area_unit = 'sqkm' # Add everything into the map draw_control.on_draw(handle_draw) displaymap1.add_control(draw_control) left_layer = basemap_to_tiles(basemaps.Esri.WorldImagery) right_layer = basemap_to_tiles(basemaps.Esri.WorldStreetMap) #split_control = SplitMapControl(left_layer=left_layer, right_layer=right_layer) #displaymap1.add_control(split_control) # Show the map displaymap1 # Show the BMP model = 'gwlfe' bmp = bmps_selected[len(bmps_selected)-1] archetype = arches_selected[len(arches_selected)-1] print('{}: {}'.format(archetype, bmp)) # Show the last drawn shape last_geom_idx = len(feature_collection['features']) - 1 last_geom = feature_collection['features'][last_geom_idx]['geometry'] print(last_geom) # Update the paramters with the user supplied input acres_treated = drainage_acres_treated_text.value percent_impervious = percent_impervious_text.value runoff_capture = runoff_capture_text.value stream_feet_treated = stream_feet_treated_text.value number_of_units = number_of_units_text.value animal_treated = { "chickens_broilers": chickens_broilers_text.value, "chickens_layers": chickens_layers_text.value, "cows_beef": cows_beef_text.value, "cows_dairy": cows_dairy_text.value, "horses": horses_text.value, "pigs_hogs_swine": pigs_hogs_swine_text.value, "sheep": sheep_text.value, "turkeys": turkeys_text.value } ###Output Polygon Drainage: Forest Buffer {'type': 'Polygon', 'coordinates': [[[-76.039178, 40.049125], [-76.038749, 40.049737], [-76.03795, 40.050129], [-76.037019, 40.050321], [-76.036745, 40.049645], [-76.037711, 40.04939], [-76.038236, 40.04918], [-76.038617, 40.048915], [-76.039178, 40.049125]]]} ###Markdown Call BMP API ###Code # Call the Watersheds API with the drawn shape _x = dict(eval(str(last_geom))) _payload = {"bmp_geometry": _x, "bmp_type": bmp, "bmp_group": archetype, "animal_treated": animal_treated, "acres_treated": acres_treated, "stream_feet_treated": stream_feet_treated, "percent_impervious": percent_impervious, "runoff_capture": runoff_capture, "number_of_units": number_of_units, "model": model } _payload = json.dumps(_payload) _url = 'https://watersheds.cci.drexel.edu/api/bmp/' _headers = {'Content-Type': 'application/json'} _r_bmp = requests.post(_url, data = _payload , headers= _headers, allow_redirects=True, verify=True) print('{') for k, v in eval(_payload).items(): print('\t{}: {}'.format(k, v)) print('}') # print(_r_bmp.text) parsed = json.loads(_r_bmp.text) print(json.dumps(parsed, indent=2, sort_keys=False)) # Cache what we want to use later in the visualization # Save the watershed as a geojson and a shapely geometry object return_dict = eval(str(json.loads(_r_bmp.text))) watershed_shapely = shapely.geometry.shape(return_dict['watershed_geometry']) if watershed_shapely.type == 'Polygon': watershed_shapely = MultiPolygon([watershed_shapely]) watershed_geojson = geojson.loads(geojson.dumps(mapping(watershed_shapely))) #watershed_shapely = unary_union(watershed_shapely) #watershed_geojson = geojson.loads(geojson.dumps(mapping(watershed_shapely))) # Cache land cover and final recutions lulcs = return_dict['land_cover_acres'] lulcs_bmp = return_dict['land_cover_acres'] reductions = return_dict['reduction_lbyr'] p_impervious = return_dict['percent_impervious'] lu_total = 0 lu_total_bmp = 0 for lulc, acre in lulcs_bmp.items(): lu_total_bmp += acre #print(lu_total_bmp) #print('Input area ammended land cover acres: {}\n'.format(lulcs_bmp)) # In case we get a zero area, double check by re-sending the watershed boundary # Reset area for providing warnings with urban stormwater management BMPs try: if lu_total_bmp >= 0: lulcs = {} lu_total = 0 n = 1 # Call the Fast Zonal API with the Watershed Boundary for geom in watershed_shapely: print(n, end='') m = MultiPolygon([geom]) new_watershed_geojson = geojson.loads(geojson.dumps(mapping(m))) _x = json.dumps(new_watershed_geojson) _url = 'https://watersheds.cci.drexel.edu/api/fzs/' _headers = {} _r = requests.post(_url, data = _x , headers= _headers, allow_redirects=True, verify=True) lulcs_loop = eval(_r.text) for lulc, sqm in lulcs_loop.items(): if lulc in lulcs.keys(): _v = sqm / 4046.86 lulcs[lulc] += _v else: lulcs[lulc] = sqm / 4046.86 n += 1 for lulc, acre in lulcs.items(): lu_total += acre #print('\nRaw land cover acres: {}'.format(lulcs)) #print(lu_total) except Exception as e: print(e) ###Output 12 ###Markdown Call OSI API ###Code return_dict['watershed_geometry'] temp = dict({ "type": "MultiPolygon", "coordinates": [ [ [ [ -74.765000308583041, 41.165270858418161 ], [ -74.764334823710072, 41.164560835257987 ], [ -74.764339, 41.16456 ], [ -74.764464, 41.164514 ], [ -74.764618, 41.164457 ], [ -74.764686, 41.164428 ], [ -74.764743, 41.16441 ], [ -74.764858, 41.164383 ], [ -74.764933, 41.164358 ], [ -74.765013, 41.164316 ], [ -74.765302, 41.164165 ], [ -74.76565, 41.163954 ], [ -74.765693, 41.163927 ], [ -74.765866, 41.163825 ], [ -74.766076, 41.163691 ], [ -74.766108, 41.163669 ], [ -74.766473, 41.163412 ], [ -74.766583, 41.163335 ], [ -74.767029, 41.163021 ], [ -74.7671, 41.162971 ], [ -74.767133, 41.162943 ], [ -74.767192, 41.162883 ], [ -74.767241, 41.162856 ], [ -74.767278, 41.162849 ], [ -74.767301, 41.162849 ], [ -74.767323, 41.162858 ], [ -74.767381, 41.162893 ], [ -74.767395, 41.162901 ], [ -74.76741, 41.162911 ], [ -74.767415, 41.162927 ], [ -74.767412, 41.162948 ], [ -74.767339, 41.163179 ], [ -74.767338, 41.163205 ], [ -74.767345, 41.163229 ], [ -74.767373, 41.163261 ], [ -74.767455, 41.163338 ], [ -74.767496, 41.163388 ], [ -74.767518, 41.163417 ], [ -74.767538, 41.163465 ], [ -74.767546, 41.163498 ], [ -74.767549, 41.163541 ], [ -74.76757, 41.163671 ], [ -74.767583, 41.163721 ], [ -74.767609, 41.163759 ], [ -74.767579, 41.163852 ], [ -74.767593, 41.163891 ], [ -74.767677, 41.163957 ], [ -74.767698, 41.164006 ], [ -74.767705, 41.164108 ], [ -74.767777, 41.16415 ], [ -74.767788, 41.164157 ], [ -74.767755, 41.164171 ], [ -74.767567, 41.164222 ], [ -74.767537, 41.164241 ], [ -74.767503, 41.164266 ], [ -74.767467, 41.164302 ], [ -74.767413, 41.164333 ], [ -74.767359, 41.164354 ], [ -74.766062, 41.164732 ], [ -74.765975, 41.164768 ], [ -74.765896, 41.164814 ], [ -74.765824, 41.164859 ], [ -74.765752, 41.164896 ], [ -74.765674, 41.164936 ], [ -74.765000308583041, 41.165270858418161 ] ] ], [ [ [ -74.764258, 41.163513 ], [ -74.764262, 41.16351 ], [ -74.764743, 41.163237 ], [ -74.765621, 41.162742 ], [ -74.766306, 41.162364 ], [ -74.767051, 41.161958 ], [ -74.767202, 41.161883 ], [ -74.767545, 41.162154 ], [ -74.766789, 41.162602 ], [ -74.765475, 41.163396 ], [ -74.764543, 41.16378 ], [ -74.764258, 41.163513 ] ] ], [ [ [ -74.769347, 41.162123 ], [ -74.769394, 41.162069 ], [ -74.769485, 41.161901 ], [ -74.769515, 41.161857 ], [ -74.769507, 41.161819 ], [ -74.769387, 41.161784 ], [ -74.768913, 41.161777 ], [ -74.768695, 41.161803 ], [ -74.768271, 41.161911 ], [ -74.768043, 41.161995 ], [ -74.767962, 41.162014 ], [ -74.767914, 41.162007 ], [ -74.76789, 41.161991 ], [ -74.767881, 41.161958 ], [ -74.767858, 41.161876 ], [ -74.768135, 41.161637 ], [ -74.768412, 41.161474 ], [ -74.768307, 41.161271 ], [ -74.768284203831527, 41.161284166283458 ], [ -74.768311, 41.161268 ], [ -74.768458, 41.161163 ], [ -74.768615, 41.161042 ], [ -74.768747, 41.160919 ], [ -74.768846, 41.16081 ], [ -74.768945, 41.160691 ], [ -74.76905, 41.160547 ], [ -74.769134, 41.160408 ], [ -74.769213, 41.160237 ], [ -74.76931, 41.160032 ], [ -74.769394, 41.159848 ], [ -74.769588, 41.159426 ], [ -74.769894, 41.158774 ], [ -74.770053, 41.158424 ], [ -74.770182, 41.158169 ], [ -74.770586, 41.158284 ], [ -74.770957, 41.157592 ], [ -74.771548, 41.157773 ], [ -74.772174, 41.157017 ], [ -74.776342, 41.158905 ], [ -74.776288, 41.159001 ], [ -74.77594, 41.158985 ], [ -74.775809, 41.159052 ], [ -74.775341, 41.159292 ], [ -74.774598, 41.159671 ], [ -74.773707, 41.160127 ], [ -74.772907, 41.16073 ], [ -74.771895, 41.16007 ], [ -74.771207, 41.160703 ], [ -74.770845, 41.161314 ], [ -74.770646, 41.16165 ], [ -74.770858, 41.162266 ], [ -74.771061, 41.162855 ], [ -74.771157, 41.163137 ], [ -74.771254, 41.163417 ], [ -74.771391, 41.163815 ], [ -74.770645, 41.164433 ], [ -74.770523, 41.164534 ], [ -74.770398, 41.164638 ], [ -74.770151, 41.164842 ], [ -74.769905, 41.165046 ], [ -74.769781, 41.165149 ], [ -74.769661, 41.165252 ], [ -74.769023, 41.165247 ], [ -74.768178, 41.165833 ], [ -74.768325, 41.165971 ], [ -74.766838, 41.166675 ], [ -74.766678520290696, 41.166601426136729 ], [ -74.766701, 41.166596 ], [ -74.766771, 41.166588 ], [ -74.766794, 41.166588 ], [ -74.766844, 41.166601 ], [ -74.766899, 41.166633 ], [ -74.768209, 41.165906 ], [ -74.768088, 41.165821 ], [ -74.768032, 41.165908 ], [ -74.767936, 41.165937 ], [ -74.767854, 41.165933 ], [ -74.767707, 41.165968 ], [ -74.767644, 41.165988 ], [ -74.767589, 41.166004 ], [ -74.767546, 41.166015 ], [ -74.767378, 41.166127 ], [ -74.767222, 41.166193 ], [ -74.767104, 41.16623 ], [ -74.767002, 41.166241 ], [ -74.766976, 41.166223 ], [ -74.766994, 41.166198 ], [ -74.767146, 41.166152 ], [ -74.767291, 41.166087 ], [ -74.767509, 41.165977 ], [ -74.767553, 41.16591 ], [ -74.767629, 41.165856 ], [ -74.767856, 41.165716 ], [ -74.76786, 41.165717 ], [ -74.767878, 41.165725 ], [ -74.767891, 41.165734 ], [ -74.767921, 41.165748 ], [ -74.767939, 41.165747 ], [ -74.768107, 41.165635 ], [ -74.768099, 41.165625 ], [ -74.768099, 41.165623 ], [ -74.768092, 41.165614 ], [ -74.768087, 41.165609 ], [ -74.768022, 41.165547 ], [ -74.76801, 41.165533 ], [ -74.76801, 41.165519 ], [ -74.768015, 41.165512 ], [ -74.768059, 41.165487 ], [ -74.768114, 41.165455 ], [ -74.768139, 41.165446 ], [ -74.768166, 41.165436 ], [ -74.768197, 41.165421 ], [ -74.768219, 41.165406 ], [ -74.768231, 41.165381 ], [ -74.768253, 41.165358 ], [ -74.768271, 41.165344 ], [ -74.768301, 41.165332 ], [ -74.768354, 41.165314 ], [ -74.768388, 41.165302 ], [ -74.768422, 41.165289 ], [ -74.768456, 41.165271 ], [ -74.768466, 41.165264 ], [ -74.768442, 41.165173 ], [ -74.768456, 41.165101 ], [ -74.768525, 41.165019 ], [ -74.768663, 41.164935 ], [ -74.768749, 41.164906 ], [ -74.768771, 41.164949 ], [ -74.768794, 41.164993 ], [ -74.768833, 41.16502 ], [ -74.768883, 41.165011 ], [ -74.769003, 41.164999 ], [ -74.769005, 41.164996 ], [ -74.769005, 41.164986 ], [ -74.769, 41.164979 ], [ -74.768978, 41.164977 ], [ -74.768976, 41.164975 ], [ -74.768955, 41.164975 ], [ -74.768935, 41.164971 ], [ -74.768922, 41.164871 ], [ -74.768923, 41.164853 ], [ -74.768934, 41.164825 ], [ -74.768958, 41.164813 ], [ -74.76904, 41.164784 ], [ -74.769194, 41.164686 ], [ -74.769362, 41.164596 ], [ -74.769406, 41.164476 ], [ -74.7695, 41.164228 ], [ -74.769759, 41.163939 ], [ -74.770006, 41.163661 ], [ -74.770311, 41.163365 ], [ -74.770353, 41.16335 ], [ -74.7704, 41.163362 ], [ -74.770423, 41.163397 ], [ -74.770414, 41.163475 ], [ -74.770343, 41.164008 ], [ -74.77031, 41.164217 ], [ -74.77033, 41.164232 ], [ -74.770353, 41.164232 ], [ -74.770388, 41.164211 ], [ -74.770421, 41.164156 ], [ -74.770518, 41.164107 ], [ -74.770588, 41.164045 ], [ -74.770588, 41.163979 ], [ -74.770579, 41.163849 ], [ -74.77096, 41.162974 ], [ -74.770987, 41.162869 ], [ -74.77099, 41.162722 ], [ -74.770966, 41.162632 ], [ -74.770935, 41.162585 ], [ -74.770881, 41.162538 ], [ -74.770815, 41.1625 ], [ -74.770764, 41.162489 ], [ -74.770706, 41.16248 ], [ -74.770652, 41.16246 ], [ -74.770609, 41.162433 ], [ -74.770562, 41.162387 ], [ -74.770527, 41.162334 ], [ -74.77048, 41.162261 ], [ -74.770403, 41.162182 ], [ -74.770348, 41.162156 ], [ -74.770332, 41.162153 ], [ -74.770271, 41.162144 ], [ -74.77008, 41.162139 ], [ -74.769947, 41.162104 ], [ -74.769802, 41.162036 ], [ -74.769699, 41.161966 ], [ -74.769611, 41.161909 ], [ -74.769566, 41.161862 ], [ -74.769482, 41.162023 ], [ -74.769431, 41.16207 ], [ -74.769347, 41.162123 ] ] ], [ [ [ -74.766341916752978, 41.166446138528237 ], [ -74.765312, 41.165971 ], [ -74.765442, 41.165892 ], [ -74.765468, 41.165902 ], [ -74.765473, 41.165947 ], [ -74.765599, 41.166014 ], [ -74.765689, 41.166006 ], [ -74.765881, 41.16612 ], [ -74.765927, 41.166186 ], [ -74.766226, 41.166343 ], [ -74.766341916752978, 41.166446138528237 ] ] ], [ [ [ -74.769347, 41.162123 ], [ -74.769333, 41.162206 ], [ -74.769265, 41.162266 ], [ -74.769332, 41.162313 ], [ -74.769404, 41.162315 ], [ -74.769492, 41.162314 ], [ -74.769562, 41.162343 ], [ -74.769631, 41.162381 ], [ -74.769727, 41.162404 ], [ -74.769942, 41.162458 ], [ -74.76997, 41.162465 ], [ -74.770604, 41.162654 ], [ -74.770629, 41.162689 ], [ -74.770629, 41.162735 ], [ -74.770604, 41.162777 ], [ -74.770461, 41.162829 ], [ -74.76992, 41.163023 ], [ -74.769843, 41.163081 ], [ -74.769731, 41.16324 ], [ -74.769436, 41.163708 ], [ -74.768599, 41.164499 ], [ -74.768484, 41.164594 ], [ -74.768351, 41.164743 ], [ -74.768277, 41.164869 ], [ -74.768202, 41.164949 ], [ -74.768064, 41.165057 ], [ -74.767958, 41.165131 ], [ -74.767848, 41.165185 ], [ -74.767781, 41.165233 ], [ -74.767722, 41.165284 ], [ -74.767675, 41.165284 ], [ -74.767627, 41.165278 ], [ -74.76761, 41.165264 ], [ -74.767501, 41.165156 ], [ -74.767407, 41.165107 ], [ -74.7673, 41.165012 ], [ -74.767119, 41.165098 ], [ -74.767017, 41.165303 ], [ -74.766804, 41.165417 ], [ -74.767112, 41.165606 ], [ -74.76709, 41.165692 ], [ -74.766958, 41.165873 ], [ -74.766498, 41.165957 ], [ -74.766031, 41.165855 ], [ -74.765804, 41.165706 ], [ -74.766039, 41.165564 ], [ -74.766309, 41.165442 ], [ -74.766571, 41.165217 ], [ -74.766768, 41.165166 ], [ -74.766887, 41.165045 ], [ -74.767128, 41.164915 ], [ -74.76737, 41.164768 ], [ -74.767586, 41.164715 ], [ -74.767818, 41.164524 ], [ -74.768014, 41.164363 ], [ -74.768148, 41.164273 ], [ -74.768199, 41.164257 ], [ -74.76826, 41.16414 ], [ -74.768298, 41.16399 ], [ -74.76831, 41.163804 ], [ -74.768301, 41.163679 ], [ -74.768135, 41.163527 ], [ -74.768105, 41.163478 ], [ -74.768093, 41.163427 ], [ -74.768093, 41.163353 ], [ -74.768093, 41.163289 ], [ -74.768093, 41.16313 ], [ -74.768119, 41.163125 ], [ -74.768141, 41.1631 ], [ -74.768148, 41.163075 ], [ -74.768151, 41.163057 ], [ -74.768112, 41.16303 ], [ -74.768093, 41.16302 ], [ -74.768069, 41.162982 ], [ -74.768051, 41.162944 ], [ -74.768051, 41.162907 ], [ -74.768047, 41.162866 ], [ -74.768076, 41.162831 ], [ -74.768108, 41.162812 ], [ -74.768137, 41.16275 ], [ -74.768148, 41.162732 ], [ -74.768172, 41.162706 ], [ -74.768227, 41.162657 ], [ -74.768288, 41.162601 ], [ -74.768326, 41.162553 ], [ -74.768352, 41.162493 ], [ -74.768372, 41.162404 ], [ -74.76839, 41.162375 ], [ -74.768422, 41.162349 ], [ -74.768472, 41.162329 ], [ -74.768735, 41.162249 ], [ -74.76879, 41.16224 ], [ -74.768837, 41.162239 ], [ -74.768893, 41.162253 ], [ -74.769019, 41.162312 ], [ -74.769075, 41.162327 ], [ -74.769127, 41.162332 ], [ -74.769148, 41.162328 ], [ -74.769201, 41.162285 ], [ -74.769256, 41.162225 ], [ -74.769292, 41.162186 ], [ -74.769347, 41.162123 ] ] ] ] }) temp watershed_temp = shapely.geometry.shape(temp) watershed_temp try: n = 1 pwr = {} for geom in watershed_temp: print(n, end='') _x = json.dumps(shapely.geometry.mapping(geom)) _url = 'https://watersheds.cci.drexel.edu/api/osigeo/' _headers = {} _r_osi = requests.post(_url, data = _x , headers= _headers, allow_redirects=True, verify=True) pwr_loop = eval(_r_osi.text) # Convert to acres / feet for r, sqm in pwr_loop.items(): if r in pwr.keys(): if r == 'str_bank': _v = sqm / 1609.34 else: _v = sqm / 4046.86 pwr[r] += _v else: if r == 'str_bank': pwr[r] = sqm / 1609.34 else: pwr[r] = sqm / 4046.86 n += 1 # Get PWR percents pwr_percent = {} for r, acres in pwr.items(): try: value = acres / lu_total * 100 if value >= 100: value = 100 pwr_percent[r] = value except: pwr_percent[r] = 0.001 #print('\nValues: {}'.format(pwr)) #print('Percents: {}'.format(pwr_percent)) except Exception as e: print(e) print('test') try: n = 1 pwr = {} for geom in watershed_shapely: print(n, end='') _x = json.dumps(shapely.geometry.mapping(geom)) _url = 'https://watersheds.cci.drexel.edu/api/osigeo/' _headers = {} _r_osi = requests.post(_url, data = _x , headers= _headers, allow_redirects=True, verify=True) pwr_loop = eval(_r_osi.text) # Convert to acres / feet for r, sqm in pwr_loop.items(): if r in pwr.keys(): if r == 'str_bank': _v = sqm / 1609.34 else: _v = sqm / 4046.86 pwr[r] += _v else: if r == 'str_bank': pwr[r] = sqm / 1609.34 else: pwr[r] = sqm / 4046.86 n += 1 # Get PWR percents pwr_percent = {} for r, acres in pwr.items(): try: value = acres / lu_total * 100 if value >= 100: value = 100 pwr_percent[r] = value except: pwr_percent[r] = 0.001 #print('\nValues: {}'.format(pwr)) #print('Percents: {}'.format(pwr_percent)) except Exception as e: print(e) print('test') ###Output 12 ###Markdown Create the final visualization ###Code # Generate the second map # Show the polygon and its watershed on a new map try: zoom_level = round((-0.697 * np.log(lu_total)) + 18.003) except: zoom_level = 15.0 displaymap2 = Map(center = (watershed_shapely.centroid.coords[0][1], watershed_shapely.centroid.coords[0][0]) , min_zoom = 1, max_zoom = 20, scroll_wheel_zoom = True, basemap=basemaps.Esri.WorldStreetMap) zoom_slider2 = IntSlider(description='Zoom level:', min=0, max=20, value=zoom_level) jslink((zoom_slider2, 'value'), (displaymap2, 'zoom')) widget_control2 = WidgetControl(widget=zoom_slider2, position='topright') watershed = GeoJSON( data=watershed_geojson, style={ 'opacity': 1, 'dashArray': '2', 'fillOpacity': 0.2, 'weight': 1, 'color': 'blue' } ) polygon = GeoJSON( data=last_geom, style={ 'opacity': 1, 'fillOpacity': 0.1, 'weight': 2, 'color': 'green' } ) measure2 = MeasureControl( position='topright', active_color = 'red', primary_length_unit = 'kilometers' ) measure2.completed_color = 'red' measure2.add_length_unit('miles', 0.000621371, 1) measure2.secondary_length_unit = 'miles' measure2.add_area_unit('sqkm', 0.0000001, 1) measure2.secondary_area_unit = 'sqkm' displaymap2.add_layer(polygon) displaymap2.add_layer(watershed) # displaymap2.add_control(widget_control2) left_layer = basemap_to_tiles(basemaps.Esri.WorldImagery) right_layer = basemap_to_tiles(basemaps.Esri.WorldStreetMap) split_control = SplitMapControl(left_layer=left_layer, right_layer=right_layer) displaymap2.add_control(split_control) displaymap2.add_control(measure2) # displaymap2 ############################ # FINAL VISUALIZATION PAGE # ############################ # Show land cover summary print('Total Drainage Area Acres: {}'.format(round(lu_total_bmp,2))) # for lulc, sqm in lulcs.items(): # print('{}: {}'.format(lulc, round(sqm,2)), end =", ") print('Percent Impervious: {}%'.format(round(p_impervious, 2))) # Show PWR summary, use the wetlands from the landcover call pwr_labels = {'str_bank': 'Stream Bank (mi)', 'head_pwr': 'Headwaters (ac)', 'ara_pwr': 'Active River Area (ac)' , 'wet_pwr': 'Wetlands (ac)', 'tot_pwr': 'Total Priority Water Resources (PWR) (ac)'} wetlands_acres = 0 for lulc, acre in lulcs.items(): if lulc == '90' or lulc == '95': wetlands_acres += acre try: wetlands_percent = wetlands_acres / lu_total * 100 except: print("Total Area Returned Zero") for r, sqm in pwr.items(): if r == 'wet_pwr': print('{}: {}'.format(pwr_labels[r], round(wetlands_acres,2))) else: print('{}: {}'.format(pwr_labels[r], round(sqm,2))) ############################### # Pie charts for the PWR call # ############################### labels_head = 'Headwaters', '' sizes_head = [pwr_percent['head_pwr'], 100 - pwr_percent['head_pwr']] labels_ara = 'ARA', '' sizes_ara = [pwr_percent['ara_pwr'], 100 - pwr_percent['ara_pwr']] labels_wet = 'Wetlands', '' sizes_wet = [wetlands_percent, 100 - wetlands_percent] labels_pwr = 'Priority\nWater Resources', '' sizes_pwr = [pwr_percent['tot_pwr'], 100 - pwr_percent['tot_pwr']] explode = (0.1, 0.0) # only "explode" the 1st slice pie_colors = ["lightblue", "lightgrey"] fig1, (ax1, ax2, ax3, ax4) = plt.subplots(1,4) fig1.set_size_inches(15,15) ax1.pie(sizes_head, explode=explode, labels=labels_head, autopct='%1.1f%%', shadow=True, startangle=90, colors = pie_colors, textprops={'fontsize': 12}) ax2.pie(sizes_ara, explode=explode, labels=labels_ara, autopct='%1.1f%%', shadow=True, startangle=90, colors = pie_colors, textprops={'fontsize': 12}) ax3.pie(sizes_wet, explode=explode, labels=labels_wet, autopct='%1.1f%%', shadow=True, startangle=90, colors = pie_colors, textprops={'fontsize': 12}) ax4.pie(sizes_pwr, explode=explode, labels=labels_pwr, autopct='%1.1f%%', shadow=True, startangle=90, colors = pie_colors, textprops={'fontsize': 12}) plt.show() ########################## # Create Land Cover Plot # ########################## plot_length = int(len(lulcs)) if plot_length > 10: plot_length = 10 fig2 = plt.figure() fig2.set_size_inches(plot_length,5) ax2 = fig2.add_axes([0,0,1,1]) colormap = {'11': '#5475a8','21': '#e8d1d1','22': '#e29e8c','23': '#ff0000','24': '#b50000','31': '#d2cdc0', '41': '#86c77e','42': '#39814e','43': '#d5e7b0','52': '#dcca8f','71': '#fde9aa','81': '#fbf65c', '82': '#ca9146','90': '#c8e6f8','95': '#64b3d5'} crosswalk = {'11': 'Open Water', '21': 'Developed Open Space', '22': 'Developed Low Intensity', '23': 'Developed Medium Intensity', '24': 'Developed High Intensity', '31': 'Barren Land', '41': 'Deciduous Forest', '42': 'Evergreen Forest', '43': 'Mixed Forest', '52': 'Shrub/Scrub', '71': 'Grassland Herbaceous', '81': 'Pasture Hay', '82': 'Cultivated Crops', '90': 'Woody Wetlands', '95': 'Emergent Herbaceous Wetlands'} colors = {x: colormap[x] for x in lulcs} x_labels = {x: crosswalk[x] for x in lulcs} ax2.bar(list(lulcs.keys()), list(lulcs.values()), align='center', color=colors.values()) #ax.set_xticklabels(x_labels.values()) ax2.set_ylabel('Area (acres)') ax2.set_title('Watershed Land Cover Distribution (NLCD 2011)') handles = [plt.Rectangle((0,0),len(lulcs),len(lulcs), color=colors[label]) for label in x_labels] ax2.legend(handles, x_labels.values(), bbox_to_anchor=(1.02, 1), loc='upper left') plt.show() ########################## # Show Reductions # ########################## volume_cf = ((p_impervious * (lu_total_bmp * 6273000)) * runoff_capture) * 0.000578704 volume_acft = volume_cf * 0.0000229569 if reductions['tss'] <= 2000.0: print('The %s BMP treats %.1f acres (%.0f percent impervious), and is estimated to reduce:\n\tNitrogen: %.2f pounds\n' '\tPhosphorus: %.2f pounds\n' '\tSediment: %.2f pounds\n' '\t*Volume (cubic-ft): %.0f\n' '\t*Volume (acre-ft): %.2f\n' % (bmp, lu_total_bmp, p_impervious, reductions['tn'],reductions['tp'],reductions['tss'], volume_cf, volume_acft)) else: print('The %s BMP treats %.1f acres (%.0f percent impervious), and is estimated to reduce:\n\tNitrogen: %.2f pounds\n' '\tPhosphorus: %.2f pounds\n' '\tSediment: %.2f tons\n' '\t*Volume (cubic-ft): %.0f\n' '\t*Volume (acre-ft): %.2f\n' % (bmp, lu_total_bmp, p_impervious, reductions['tn'],reductions['tp'],reductions['tss'], volume_cf, volume_acft)) print('* Note: Volume reductions are applicable only to urban stormwater management.') if archetype == 'Urban Stormwater Management': if acres_treated > lu_total: print('** Warning: Number of sewershed acres treated given (%.2f) is larger than the expected overland drainage area (%.2f).'%(acres_treated, lu_total)) elif 0 < acres_treated < lu_total: print('** Warning: Number of sewershed acres treated given (%.2f) is smaller than the expected overland drainage area (%.2f). The calculated drainage area does not consider subsurface pipe networks so this is to be expected with urban stormwater networks.'%(acres_treated, lu_total)) elif archetype == 'Polygon Drainage' or archetype == 'Exclusion Buffer': if 'Buffer' in bmp and lu_total > 100.0: print("** Warning: The buffer drains a large area (%.2f acres) and may contain concentrated flow paths, which would reduce estimated reduction."%(lu_total)) ################ # Show the map # ################ displaymap2 ###Output Total Drainage Area Acres: 33.8 Percent Impervious: 0.92% Stream Bank (mi): 0.0 Headwaters (ac): 0.0 Active River Area (ac): 0.0 Wetlands (ac): 0 Total Priority Water Resources (PWR) (ac): 0.0
Mahfuzur_Rahman_01_Probability_Basics.ipynb
###Markdown **Basics Of Probability** ``` P(A) = (Event Outcomes favorable to A)/Sample space ``` ###Code # probability of getting head or tail while tossing the coin h = 1/2 t = 1/2 print(f"Probability of getting a head is {h*100} %") print(f"Probability of getting a tail is {t*100} %") # Probability of getting " 1 " while rolling the dice p1 = 1/6 p2 = 1/6 p3 = 1/6 p4 = 1/6 p5 = 1/6 p6 = 1/6 print(f"Probability to get 1 while rolling a dice {p1*100} %") # Example 3 ''' The data collected by an Advertisement agency has revealed that out of 2800 visitors, 56 visitors clicked on 1 Advertisement, 30 clicked on 2 advertisements and 14 clicked on 3 advertisements and the remaining did not click on any advertisement. Calculate a) The probability that a visitor to the website will not click on any advertisement. b) The probability that a visitor to the website will click on an advertisement. c) The probability that a visitor to the website will click on more than one advertisement. ''' num_visitors = 1800 people_who_clicked = 1800 - 100 total_avertisements = 56+30+14 people_who_click_more_than_one = 30+14 PE1 = round(people_who_clicked/num_visitors,4) PE2 = round(total_avertisements/num_visitors,4) PE3 = round(people_who_click_more_than_one/num_visitors,4) print(f'a. The probability that a visitor to the website will not click on any advertisement is {PE1} %') print(f'b. The probability that a visitor to the website will click on an advertisement is {PE2} %') print(f'c. The probability that a visitor to the website will click on more than one advertisement is {PE3} %') # Permutations code import math n = 8 k = 3 # determine the permutations and print result permutations = math.pow(8,3) print(permutations) # example 2 n = 5 k = 3 permutations = math.factorial(n)/math.factorial(n-k) print(permutations,"Possible Ways") # combinantions code n = 8 k = 3 # determine the combinantions and print permutations = math.factorial(n)/(math.factorial(n-k)*math.factorial(k)) print(permutations) ###Output 56.0 ###Markdown Joint Probability ###Code # example ''' what is the probability to get NUmber 2 and in red color? 52 cars in a deck total 4 card for #2 cards, when we filter those 4 card which is number 2 with red colour we will have only 2 card with number 2 Probability(2 and red) = 2/52 = 1/26 ''' prob2_red = 2/52 print("Probability for getting 2 red is %1.4f percent" % prob2_red) # Example 2 (Joint Probability) ''' At a popular company service center, a total of 100 complaints were received. 80 customers complained about late delivery of the items and 60 complained about poor product quality. Calculate the probability that a customer complaint will be about both product quality and late delivery. Let L = Late delivery Q = Poor quality n(L) = Number of cases in favour of L = 80 n(Q) = Number of cases in favour of Q = 60 N = Total Number of complaints = 100 ''' both_complaints = (80 + 60) - 100 total_complaints = 100 PE4 = round(both_complaints/total_complaints,4) print('Probability that a customer complaint will \n\ be about both, product quality and late delivery is about %1.3f percent' % PE4) ###Output Probability that a customer complaint will be about both, product quality and late delivery is about 0.400 percent ###Markdown Independent event Two events, A and B are independent if and only if P(A | B) = P(A), where P(A|B) is the conditional probability of A given B P(A) is the marginal probability of A ###Code # example ''' What is the probability of getting a "6" in two consecutive trials when rolling a dice? For each roll of a dice: Favorable events = {"6"} Total number of outcomes = {"1","2","3","4","5","6"} Let P1 be the probability of getting a "6" in the first roll of dice . Let P2 be the probability of getting a "6" in the second roll of dice. Since first roll of dice does not influence the second roll of dice, these events are independent. ''' first_roll = 1/6 second_roll = 1/6 PE5 = first_roll*second_roll print('Getting a 6 in two consecutive rolls of dice is %1.4f' % PE5) ###Output Getting a 6 in two consecutive rolls of dice is 0.0278
Data Structures/Recursion/Recurrence Relations.ipynb
###Markdown Problem StatementPreviously, we considered the following problem:>Given a positive integer `n`, write a function, `print_integers`, that uses recursion to print all numbers from `n` to `1`. >>For example, if `n` is `4`, the function shuld print `4 3 2 1`. Our solution was: ###Code def print_integers(n): if n <= 0: return print(n) print_integers(n - 1) print_integers(5) ###Output 5 4 3 2 1 ###Markdown We have already discussed that every time a function is called, a new *frame* is created in memory, which is then pushed onto the *call stack*. For the current function, `print_integers`, the call stack with all the frames would look like this: Note that in Python, the stack is displayed in an "upside down" manner. This can be seen in the illustration above—the last frame (i.e. the frame with `n = 0`) lies at the top of the stack (but is displayed last here) and the first frame (i.e., the frame with `n = 5`) lies at the bottom of the stack (but is displayed first).But don't let this confuse you. The frame with `n = 0` is indeed the top of the stack, so it will be discarded first. And the frame with `n = 5` is indeed at the bottom of the stack, so it will be discarded last. We define time complexity as a measure of amount of time it takes to run an algorithm. Similarly, the time complexity of our function `print_integers(5)`, would indicate the amount of time taken to exceute our function `print_integers`. But notice how when we call `print_integers()` with a particular value of `n`, it recursively calls itself multiple times. In other words, when we call `print_integers(n)`, it does operations (like checking for base case, printing number) and then calls `print_integers(n - 1)`.Therefore, the overall time taken by `print_integers(n)` to execute would be equal to the time taken to execute its own simple operations and the time taken to execute `print_integers(n - 1)`. Let the time taken to execute the function `print_integers(n)` be $T(n)$. And let the time taken to exceute the function's own simple operations be represented by some constant, $k$.In that case, we can say that$$T(n) = T(n - 1) + k$$where $T(n - 1)$ represents the time taken to execute the function `print_integers(n - 1)`.Similarly, we can represent $T(n - 1)$ as$$T(n - 1) = T(n - 2) + k$$We can see that a pattern is being formed here:1. $T(n)\ \ \ \ \ \ \ = T(n - 1) + k$2. $T(n - 1) = T(n - 2) + k$3. $T(n - 2) = T(n - 3) + k$4. $T(n - 3) = T(n - 4) + k$......5. $T(2) = T(1) + k$6. $T(1) = T(0) + k$7. $T(0) = k1$Notice that when `n = 0` we are only checking the base case and then returning. This time can be represented by some other constant, $k1$.If we add the respective left-hand sides and right-hand sides of all these equations, we get:$$T(n) = nk + k1$$We know that while calculating time complexity, we tend to ignore these added constants because for large input sizes on the order of $10^5$, these constants become irrelevant.Thus, we can simplify the above to:$$T(n) = nk $$We can see that the time complexity of our function `print_integers(n)` is a linear function of $n$. Hence, we can say that the time complexity of the function is $O(n)$. Binary Search OverviewGiven a **sorted** list (say `arr`), and a key (say `target`). The binary search algorithm returns the index of the `target` element if it is present in the given `arr` list, else returns -1. Here is an overview of how the the recursive version of binary search algorithm works:1. Given a list with the lower bound (`start_index`) and the upper bound (`end_index`). 1. Find the center (say `mid_index`) of the list. 1. Check if the element at the center is your `target`? If yes, return the `mid_index`. 1. Check if the `target` is greater than that element at `mid_index`? If yes, call the same function with right sub-array w.r.t center i.e., updated indexes as `mid_index + 1` to `end_index` 1. Check if the `target` is less than that element at `mid_index`? If yes, call the same function with left sub-array w.r.t center i.e., updated indexes as `start_index` to `mid_index - 1` 1. Repeat the step above until you find the target or until the bounds are the same or cross (the upper bound is less than the lower bound). Complexity AnalysisLet's look at the time complexity of the recursive version of binary search algorithm.>Note: The binary search function can also be written iteratively. But for the sake of understanding recurrence relations, we will have a look at the recursive algorithm.Here's the binary search algorithm, coded using recursion: ###Code def binary_search(arr, target): return binary_search_func(arr, 0, len(arr) - 1, target) def binary_search_func(arr, start_index, end_index, target): if start_index > end_index: return -1 mid_index = (start_index + end_index)//2 if arr[mid_index] == target: return mid_index elif arr[mid_index] > target: return binary_search_func(arr, start_index, mid_index - 1, target) else: return binary_search_func(arr, mid_index + 1, end_index, target) arr = [0, 1, 2, 3, 4, 5, 6, 7, 8] print(binary_search(arr, 5)) ###Output 5
Section 3/.ipynb_checkpoints/3.3_EstimatingARModel-checkpoint.ipynb
###Markdown Estimating an AR Model Introduction to Autoregression Model An autoregression model is a regression with a time series and itself, shifted by a time step or steps. These are called lags. I will demonstrate with five examples with the non-stationarized datasets so that you can see the results in the original dataset along with the forecasted dataset. ###Code import pandas as pd from pandas import read_csv from matplotlib import pyplot from pandas.plotting import lag_plot from statsmodels.graphics.tsaplots import plot_acf ###Output _____no_output_____ ###Markdown Example 1: Vacation dataset ###Code # Read in vacation dataset vacation = read_csv('~/Desktop/section_3/df_vacation.csv', index_col=0, parse_dates=True) vacation.head() # Plot the time series against its lag lag_plot(vacation) pyplot.show() from pandas import concat values = pd.DataFrame(vacation.values) dataframe = concat([values.shift(1), values], axis=1) dataframe.columns = ['t-1', 't+1'] result = dataframe.corr() print(result) # Plot the autocorrelation of the dataset from matplotlib import pyplot from pandas.plotting import autocorrelation_plot autocorrelation_plot(vacation) pyplot.show() # Plot the Autocorrelation Function, using candle sticks from statsmodels.graphics.tsaplots import plot_acf plot_acf(vacation, lags=50) pyplot.show() # Estimating an AR Model # Import the ARMA module from statsmodels from statsmodels.tsa.arima_model import ARMA # Fit an AR(1) model to the first simulated data mod = ARMA(vacation, order=(1,0)) # fit data to an AR1 model res = mod.fit() # use fit() to estimate model # Print out summary information on the fit print(res.summary()) print(res.params) # Estimated parameters are close to true parameters ###Output ARMA Model Results =============================================================================== Dep. Variable: Num_Search_Vacation No. Observations: 190 Model: ARMA(1, 0) Log Likelihood -694.604 Method: css-mle S.D. of innovations 9.338 Date: Sun, 17 Nov 2019 AIC 1395.209 Time: 21:02:32 BIC 1404.950 Sample: 01-01-2004 HQIC 1399.155 - 10-01-2019 ============================================================================================= coef std err z P>|z| [0.025 0.975] --------------------------------------------------------------------------------------------- const 60.4397 3.451 17.512 0.000 53.675 67.204 ar.L1.Num_Search_Vacation 0.8079 0.044 18.352 0.000 0.722 0.894 Roots ============================================================================= Real Imaginary Modulus Frequency ----------------------------------------------------------------------------- AR.1 1.2378 +0.0000j 1.2378 0.0000 ----------------------------------------------------------------------------- const 60.439736 ar.L1.Num_Search_Vacation 0.807885 dtype: float64 ###Markdown The best model chosen is the one with the lowest Information Criterion. The AIC shows the lowest. ###Code # Forecasting # Import the ARMA module from statsmodels from statsmodels.tsa.arima_model import ARMA # Forecast the first AR(1) model mod = ARMA(vacation, order=(1,0)) res = mod.fit() # Start the forecast 10 data points before the end of the point series at , #and end the forecast 10 data points after the end of the series at point res.plot_predict(start='2015', end='2025') pyplot.show() ###Output /Users/karenyang/opt/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning: No frequency information was provided, so inferred frequency MS will be used. % freq, ValueWarning) ###Markdown Example 2: Furniture dataset ###Code furn = read_csv('~/Desktop/section_3/df_furniture.csv', index_col=0, parse_dates=True) furn.head() # Plot the time series against its lag lag_plot(furn) pyplot.show() from pandas import concat values = pd.DataFrame(furn.values) dataframe = concat([values.shift(1), values], axis=1) dataframe.columns = ['t-1', 't+1'] result = dataframe.corr() print(result) # Plot the autocorrelation from matplotlib import pyplot from pandas.plotting import autocorrelation_plot autocorrelation_plot(furn) pyplot.show() # Plot the Autocorrelation Function, using candle sticks from pandas import read_csv from matplotlib import pyplot from statsmodels.graphics.tsaplots import plot_acf plot_acf(furn, lags=50) pyplot.show() # Estimating an AR Model # Import the ARMA module from statsmodels from statsmodels.tsa.arima_model import ARMA # Fit an AR(1) model to the first simulated data mod = ARMA(furn, order=(1,0)) # fit data to an AR1 model res = mod.fit() # use fit() to estimate model # Print out summary information on the fit print(res.summary()) print(res.params) # Estimated parameters are close to true parameters # S.D. of innovations is standard deviation of errors # L1 is lag1 # fitted model parameters # Import the ARMA module from statsmodels from statsmodels.tsa.arima_model import ARMA # Forecast the first AR(1) model mod = ARMA(furn, order=(1,0)) res = mod.fit() # Start the forecast 10 data points before the end of the point series at , #and end the forecast 10 data points after the end of the series at point res.plot_predict(start='2015', end='2025') pyplot.show() ###Output /Users/karenyang/opt/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning: No frequency information was provided, so inferred frequency MS will be used. % freq, ValueWarning) ###Markdown Example 3: Bank of America dataset ###Code # Read in BOA dataset, this is original with resampling to monthly data bac= read_csv('~/Desktop/section_3/df_bankofamerica.csv', index_col=0, parse_dates=True) # convert daily data to monthly bac= bac.resample(rule='M').last() bac.head() # Plot the time series against its lag lag_plot(bac) pyplot.show() from pandas import concat values = pd.DataFrame(bac.values) dataframe = concat([values.shift(1), values], axis=1) dataframe.columns = ['t-1', 't+1'] result = dataframe.corr() print(result) # Plot the autocorrelation from matplotlib import pyplot from pandas.plotting import autocorrelation_plot autocorrelation_plot(bac) pyplot.show() # Plot the Autocorrelation Function, using candle sticks from pandas import read_csv from matplotlib import pyplot from statsmodels.graphics.tsaplots import plot_acf plot_acf(bac, lags=50) pyplot.show() # Estimating an AR Model # Import the ARMA module from statsmodels from statsmodels.tsa.arima_model import ARMA # Fit an AR(1) model to the first simulated data mod = ARMA(bac, order=(1,0)) # fit data to an AR1 model res = mod.fit() # use fit() to estimate model # Print out summary information on the fit print(res.summary()) print(res.params) # Estimated parameters are close to true parameters # S.D. of innovations is standard deviation of errors # L1 is lag1 # fitted model parameters # Import the ARMA module from statsmodels from statsmodels.tsa.arima_model import ARMA # Forecast the first AR(1) model mod = ARMA(bac, order=(1,0)) res = mod.fit() # Start the forecast 10 data points before the end of the point series at , #and end the forecast 10 data points after the end of the series at point res.plot_predict(start='2015', end='2025') pyplot.show() ###Output _____no_output_____ ###Markdown Example 4: J.P. Morgan dataset ###Code # Read in JPM dataset jpm = read_csv('~/Desktop/section_3/df_jpmorgan.csv', index_col=0, parse_dates=True) # Convert the daily data to quarterly jpm= jpm.resample(rule='Q').last() # resample to quarterly data jpm.head() # Plot the time series against its lag lag_plot(jpm) pyplot.show() from pandas import concat values = pd.DataFrame(jpm.values) dataframe = concat([values.shift(1), values], axis=1) dataframe.columns = ['t-1', 't+1'] result = dataframe.corr() print(result) # Plot the autocorrelation from matplotlib import pyplot from pandas.plotting import autocorrelation_plot autocorrelation_plot(jpm) pyplot.show() # Plot the Autocorrelation Function, using candle sticks from pandas import read_csv from matplotlib import pyplot from statsmodels.graphics.tsaplots import plot_acf plot_acf(jpm, lags=50) pyplot.show() # Estimating an AR Model # Import the ARMA module from statsmodels from statsmodels.tsa.arima_model import ARMA # Fit an AR(1) model to the first simulated data mod = ARMA(jpm, order=(1,0)) # fit data to an AR1 model res = mod.fit() # use fit() to estimate model # Print out summary information on the fit print(res.summary()) print(res.params) # Estimated parameters are close to true parameters # S.D. of innovations is standard deviation of errors # L1 is lag1 # fitted model parameters # Import the ARMA module from statsmodels from statsmodels.tsa.arima_model import ARMA # Forecast the first AR(1) model mod = ARMA(jpm, order=(1,0)) res = mod.fit() # Start the forecast 10 data points before the end of the point series at , #and end the forecast 10 data points after the end of the series at point res.plot_predict(start='2015', end='2025') pyplot.show() ###Output _____no_output_____ ###Markdown Example 5: Average Temperature of St. Louis dataset ###Code # Read in temp dataset temp = read_csv('~/Desktop/section_3/df_temp.csv', index_col=0, parse_dates=True) temp.head() # Plot the time series against its lag lag_plot(temp) pyplot.show() from pandas import concat values = pd.DataFrame(temp.values) dataframe = concat([values.shift(1), values], axis=1) dataframe.columns = ['t-1', 't+1'] result = dataframe.corr() print(result) # Plot the autocorrelation from matplotlib import pyplot from pandas.plotting import autocorrelation_plot autocorrelation_plot(temp) pyplot.show() # Plot the Autocorrelation Function, using candle sticks from pandas import read_csv from matplotlib import pyplot from statsmodels.graphics.tsaplots import plot_acf plot_acf(temp, lags=50) pyplot.show() # Estimating an AR Model # Import the ARMA module from statsmodels from statsmodels.tsa.arima_model import ARMA # Fit an AR(1) model to the first simulated data mod = ARMA(temp, order=(1,0)) # fit data to an AR1 model res = mod.fit() # use fit() to estimate model # Print out summary information on the fit print(res.summary()) print(res.params) # Estimated parameters are close to true parameters # S.D. of innovations is standard deviation of errors # L1 is lag1 # fitted model parameters # Import the ARMA module from statsmodels from statsmodels.tsa.arima_model import ARMA # Forecast the first AR(1) model mod = ARMA(temp, order=(1,0)) res = mod.fit() # Start the forecast 10 data points before the end of the point series at , #and end the forecast 10 data points after the end of the series at point res.plot_predict(start='2015', end='2025') pyplot.show() # end ###Output _____no_output_____
Chapter07/06_ml_for_trading.ipynb
###Markdown ML for Trading: How to run an ML algorithm on Quantopian The code in this notebook is written for the Quantopian Research Platform and uses the 'Algorithms' rather than the 'Research' option we used before. To run it, you need to have a free Quantopian account, create a new algorithm and copy the content to the online development environment. Imports & Settings Quantopian Libraries ###Code from quantopian.algorithm import attach_pipeline, pipeline_output, order_optimal_portfolio from quantopian.pipeline import Pipeline, factors, filters, classifiers from quantopian.pipeline.data.builtin import USEquityPricing from quantopian.pipeline.data import Fundamentals from quantopian.pipeline.data.psychsignal import stocktwits from quantopian.pipeline.factors import (Latest, CustomFactor, SimpleMovingAverage, AverageDollarVolume, Returns, RSI, SimpleBeta, MovingAverageConvergenceDivergenceSignal as MACD) from quantopian.pipeline.filters import QTradableStocksUS from quantopian.pipeline.experimental import risk_loading_pipeline, Size, Momentum, Volatility, Value, ShortTermReversal import quantopian.optimize as opt from quantopian.optimize.experimental import RiskModelExposure ###Output _____no_output_____ ###Markdown Other Python Libraries ###Code from scipy.stats import spearmanr import talib import pandas as pd import numpy as np from time import time from collections import OrderedDict from scipy import stats from sklearn import linear_model, preprocessing, metrics, cross_validation from sklearn.pipeline import make_pipeline ###Output _____no_output_____ ###Markdown Strategy Positions ###Code # strategy parameters N_POSITIONS = 100 # Will be split 50% long and 50% short TRAINING_PERIOD = 126 # past periods for training HOLDING_PERIOD = 5 # predict returns N days into the future # How often to trade, for daily, alternative is date_rules.every_day() TRADE_FREQ = date_rules.week_start() ###Output _____no_output_____ ###Markdown Custom Universe We define a custom universe to limit duration of training. ###Code def Q250US(): """Define custom universe""" return filters.make_us_equity_universe( target_size=250, rankby=factors.AverageDollarVolume(window_length=200), mask=filters.default_us_equity_universe_mask(), groupby=classifiers.fundamentals.Sector(), max_group_weight=0.3, smoothing_func=lambda f: f.downsample('month_start'), ) ###Output _____no_output_____ ###Markdown Create Alpha Factors ###Code def make_alpha_factors(): def PriceToSalesTTM(): """Last closing price divided by sales per share""" return Fundamentals.ps_ratio.latest def PriceToEarningsTTM(): """Closing price divided by earnings per share (EPS)""" return Fundamentals.pe_ratio.latest def DividendYield(): """Dividends per share divided by closing price""" return Fundamentals.trailing_dividend_yield.latest def Capex_To_Cashflows(): return (Fundamentals.capital_expenditure.latest * 4.) / \ (Fundamentals.free_cash_flow.latest * 4.) def EBITDA_Yield(): return (Fundamentals.ebitda.latest * 4.) / \ USEquityPricing.close.latest def EBIT_To_Assets(): return (Fundamentals.ebit.latest * 4.) / \ Fundamentals.total_assets.latest def Return_On_Total_Invest_Capital(): return Fundamentals.roic.latest class Mean_Reversion_1M(CustomFactor): inputs = [Returns(window_length=21)] window_length = 252 def compute(self, today, assets, out, monthly_rets): out[:] = (monthly_rets[-1] - np.nanmean(monthly_rets, axis=0)) / \ np.nanstd(monthly_rets, axis=0) def MACD_Signal(): return MACD(fast_period=12, slow_period=26, signal_period=9) def Net_Income_Margin(): return Fundamentals.net_margin.latest def Operating_Cashflows_To_Assets(): return (Fundamentals.operating_cash_flow.latest * 4.) / \ Fundamentals.total_assets.latest def Price_Momentum_3M(): return Returns(window_length=63) class Price_Oscillator(CustomFactor): inputs = [USEquityPricing.close] window_length = 252 def compute(self, today, assets, out, close): four_week_period = close[-20:] out[:] = (np.nanmean(four_week_period, axis=0) / np.nanmean(close, axis=0)) - 1. def Returns_39W(): return Returns(window_length=215) class Vol_3M(CustomFactor): inputs = [Returns(window_length=2)] window_length = 63 def compute(self, today, assets, out, rets): out[:] = np.nanstd(rets, axis=0) def Working_Capital_To_Assets(): return Fundamentals.working_capital.latest / Fundamentals.total_assets.latest def sentiment(): return SimpleMovingAverage(inputs=[stocktwits.bull_minus_bear], window_length=5).rank(mask=universe) class AdvancedMomentum(CustomFactor): """ Momentum factor """ inputs = [USEquityPricing.close, Returns(window_length=126)] window_length = 252 def compute(self, today, assets, out, prices, returns): out[:] = ((prices[-21] - prices[-252])/prices[-252] - (prices[-1] - prices[-21])/prices[-21]) / np.nanstd(returns, axis=0) def SPY_Beta(): return SimpleBeta(target=sid(8554), regression_length=252) return { 'Price to Sales': PriceToSalesTTM, 'PE Ratio': PriceToEarningsTTM, 'Dividend Yield': DividendYield, # 'Capex to Cashflows': Capex_To_Cashflows, # 'EBIT to Assets': EBIT_To_Assets, # 'EBITDA Yield': EBITDA_Yield, 'MACD Signal Line': MACD_Signal, 'Mean Reversion 1M': Mean_Reversion_1M, 'Net Income Margin': Net_Income_Margin, # 'Operating Cashflows to Assets': Operating_Cashflows_To_Assets, 'Price Momentum 3M': Price_Momentum_3M, 'Price Oscillator': Price_Oscillator, # 'Return on Invested Capital': Return_On_Total_Invest_Capital, '39 Week Returns': Returns_39W, 'Vol 3M': Vol_3M, 'SPY_Beta': SPY_Beta, 'Advanced Momentum': AdvancedMomentum, 'Size': Size, 'Volatitility': Volatility, 'Value': Value, 'Short-Term Reversal': ShortTermReversal, 'Momentum': Momentum, # 'Materials': materials, # 'Consumer Discretionary': consumer_discretionary, # 'Financials': financials, # 'Real Estate': real_estate, # 'Consumer Staples': consumer_staples, # 'Healthcare': health_care, # 'Utilities': utilities, # 'Telecom ': telecom, # 'Energy': energy, # 'Industrials': industrials, # 'Technology': technology } ###Output _____no_output_____ ###Markdown Custom Machine Learning Factor Here we define a Machine Learning factor which trains a model and predicts forward returns ###Code class ML(CustomFactor): init = False def compute(self, today, assets, out, returns, *inputs): """Train the model using - shifted returns as target, and - factors in a list of inputs as features; each factor contains a 2-D array of shape [time x stocks] """ if (not self.init) or today.strftime('%A') == 'Monday': # train on first day then subsequent Mondays (memory) # get features features = pd.concat([pd.DataFrame(data, columns=assets).stack().to_frame(i) for i, data in enumerate(inputs)], axis=1) # shift returns and align features target = (pd.DataFrame(returns, columns=assets) .shift(-HOLDING_PERIOD) .dropna(how='all') .stack()) target.index.rename(['date', 'asset'], inplace=True) features = features.reindex(target.index) # finalize features features = (pd.get_dummies(features .assign(asset=features .index.get_level_values('asset')), columns=['asset'], sparse=True)) # train the model self.model_pipe = make_pipeline(preprocessing.Imputer(), preprocessing.MinMaxScaler(), linear_model.LinearRegression()) # run pipeline and train model self.model_pipe.fit(X=features, y=target) self.assets = assets # keep track of assets in model self.init = True # predict most recent factor values features = pd.DataFrame({i: d[-1] for i, d in enumerate(inputs)}, index=assets) features = features.reindex(index=self.assets).assign(asset=self.assets) features = pd.get_dummies(features, columns=['asset']) preds = self.model_pipe.predict(features) out[:] = pd.Series(preds, index=self.assets).reindex(index=assets) ###Output _____no_output_____ ###Markdown Create Factor Pipeline Create pipeline with predictive factors and target returns ###Code def make_ml_pipeline(alpha_factors, universe, lookback=21, lookahead=5): """Create pipeline with predictive factors and target returns""" # set up pipeline pipe = OrderedDict() # Returns over lookahead days. pipe['Returns'] = Returns(inputs=[USEquityPricing.open], mask=universe, window_length=lookahead + 1) # Rank alpha factors: pipe.update({name: f().rank(mask=universe) for name, f in alpha_factors.items()}) # ML factor gets `lookback` datapoints on each factor pipe['ML'] = ML(inputs=pipe.values(), window_length=lookback + 1, mask=universe) return Pipeline(columns=pipe, screen=universe) ###Output _____no_output_____ ###Markdown Define Algorithm ###Code def initialize(context): """ Called once at the start of the algorithm. """ set_slippage(slippage.FixedSlippage(spread=0.00)) set_commission(commission.PerShare(cost=0, min_trade_cost=0)) schedule_function(rebalance_portfolio, TRADE_FREQ, time_rules.market_open(minutes=1)) # Record tracking variables at the end of each day. schedule_function(log_metrics, date_rules.every_day(), time_rules.market_close()) # Set up universe # base_universe = AverageDollarVolume(window_length=63, mask=QTradableStocksUS()).percentile_between(80, 100) universe = AverageDollarVolume(window_length=63, mask=QTradableStocksUS()).percentile_between(40, 60) # create alpha factors and machine learning pipline ml_pipeline = make_ml_pipeline(alpha_factors=make_alpha_factors(), universe=universe, lookback=TRAINING_PERIOD, lookahead=HOLDING_PERIOD) attach_pipeline(ml_pipeline, 'alpha_model') attach_pipeline(risk_loading_pipeline(), 'risk_loading_pipeline') context.past_predictions = {} context.realized_rmse = 0 context.realized_ic = 0 context.long_short_spread = 0 ###Output _____no_output_____ ###Markdown Evaluate Model Evaluate model performance using past predictions on hold-out data ###Code def evaluate_past_predictions(context): """Evaluate model performance using past predictions on hold-out data""" # A day has passed, shift days and drop old ones context.past_predictions = {k-1: v for k, v in context.past_predictions.items() if k-1 >= 0} if 0 in context.past_predictions: # Past predictions for the current day exist, so we can use todays' n-back returns to evaluate them returns = pipeline_output('alpha_model')['Returns'].to_frame('returns') df = (context .past_predictions[0] .to_frame('predictions') .join(returns, how='inner') .dropna()) # Compute performance metrics context.realized_rmse = metrics.mean_squared_error(y_true=df['returns'], y_pred=df.predictions) context.realized_ic, _ = spearmanr(df['returns'], df.predictions) log.info('rmse {:.2%} | ic {:.2%}'.format(context.realized_rmse, context.realized_ic)) long_rets = df.loc[df.predictions >= df.predictions.median(), 'returns'].mean() short_rets = df.loc[df.predictions < df.predictions.median(), 'returns'].mean() context.long_short_spread = (long_rets - short_rets) * 100 # Store current predictions context.past_predictions[HOLDING_PERIOD] = context.predictions ###Output _____no_output_____ ###Markdown Algo Execution Prepare Trades ###Code def before_trading_start(context, data): """ Called every day before market open. """ context.predictions = pipeline_output('alpha_model')['ML'] context.predictions.index.rename(['date', 'equity'], inplace=True) context.risk_loading_pipeline = pipeline_output('risk_loading_pipeline') evaluate_past_predictions(context) ###Output _____no_output_____ ###Markdown Rebalance ###Code def rebalance_portfolio(context, data): """ Execute orders according to our schedule_function() timing. """ predictions = context.predictions predictions = predictions.loc[data.can_trade(predictions.index)] # Select long/short positions n_positions = int(min(N_POSITIONS, len(predictions)) / 2) to_trade = (predictions[predictions>0] .nlargest(n_positions) .append(predictions[predictions < 0] .nsmallest(n_positions))) # Model may produce duplicate predictions to_trade = to_trade[~to_trade.index.duplicated()] # Setup Optimization Objective objective = opt.MaximizeAlpha(to_trade) # Setup Optimization Constraints constrain_gross_leverage = opt.MaxGrossExposure(1.0) constrain_pos_size = opt.PositionConcentration.with_equal_bounds(-.02, .02) market_neutral = opt.DollarNeutral() constrain_risk = RiskModelExposure( risk_model_loadings=context.risk_loading_pipeline, version=opt.Newest) # Optimizer calculates portfolio weights and # moves portfolio toward the target. order_optimal_portfolio( objective=objective, constraints=[ constrain_gross_leverage, constrain_pos_size, market_neutral, constrain_risk ], ) ###Output _____no_output_____ ###Markdown Track Performance ###Code def log_metrics(context, data): """ Plot variables at the end of each day. """ record(leverage=context.account.leverage, #num_positions=len(context.portfolio.positions), realized_rmse=context.realized_rmse, realized_ic=context.realized_ic, long_short_spread=context.long_short_spread, ) ###Output _____no_output_____
nb/049_submission.ipynb
###Markdown Overview- nb046ベース(cv: 0.94114, sub: 0.945)- nb048で解析したbatch7のハズレ値を適切な値に置き換える Const ###Code NB = '049' isSmallSet = False if isSmallSet: LENGTH = 7000 else: LENGTH = 500_000 PATH_TRAIN = './../data/input/train_clean.csv' PATH_TEST = './../data/input/test_clean.csv' PATH_SMPLE_SUB = './../data/input/sample_submission.csv' DIR_OUTPUT = './../data/output/' DIR_OUTPUT_IGNORE = './../data/output_ignore/' cp = ['#f8b195', '#f67280', '#c06c84', '#6c5b7b', '#355c7d'] sr = 10*10**3 # 10 kHz ###Output _____no_output_____ ###Markdown Import everything I need :) ###Code import warnings warnings.filterwarnings('ignore') import time import gc import random import os import itertools import multiprocessing import numpy as np from scipy import signal # from pykalman import KalmanFilter import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from fastprogress import progress_bar from lightgbm import LGBMRegressor from sklearn.model_selection import KFold, train_test_split, StratifiedKFold, GroupKFold from sklearn.metrics import f1_score, mean_absolute_error, confusion_matrix from sklearn.ensemble import RandomForestRegressor from sklearn.tree import DecisionTreeRegressor # from sklearn.svm import SVR from sklearn.linear_model import Lasso # from dtreeviz.trees import dtreeviz import tensorflow as tf from tensorflow.keras.layers import * from tensorflow.keras.callbacks import Callback, LearningRateScheduler from tensorflow.keras.losses import categorical_crossentropy from tensorflow.keras.optimizers import Adam from tensorflow.keras import backend as K from tensorflow.keras import losses, models, optimizers # import tensorflow_addons as tfa ###Output _____no_output_____ ###Markdown My function ###Code def f1_macro(true, pred): return f1_score(true, pred, average='macro') def get_df_batch(df, batch): idxs = df['batch'] == batch assert any(idxs), 'そのようなbatchはありません' return df[idxs] def get_signal_mv_mean(df, n=3001): signal_mv = np.zeros(len(df)) for bt in df['batch'].unique(): idxs = df['batch'] == bt _signal_mv = df['signal'][idxs].rolling(n, center=True).mean().interpolate('spline', order=5, limit_direction='both').values signal_mv[idxs] = _signal_mv return signal_mv def get_signal_mv_std(df, n=3001): signal_mv = np.zeros(len(df)) for bt in df['batch'].unique(): idxs = df['batch'] == bt _signal_mv = df['signal'][idxs].rolling(n, center=True).std().interpolate('spline', order=5, limit_direction='both').values signal_mv[idxs] = _signal_mv return signal_mv def get_signal_mv_min(df, n=3001): signal_mv = np.zeros(len(df)) for bt in df['batch'].unique(): idxs = df['batch'] == bt _signal_mv = df['signal'][idxs].rolling(n, center=True).min().interpolate('spline', order=5, limit_direction='both').values signal_mv[idxs] = _signal_mv return signal_mv def get_signal_mv_max(df, n=3001): signal_mv = np.zeros(len(df)) for bt in df['batch'].unique(): idxs = df['batch'] == bt _signal_mv = df['signal'][idxs].rolling(n, center=True).max().interpolate('spline', order=5, limit_direction='both').values signal_mv[idxs] = _signal_mv return signal_mv def group_feat_train(_train): train = _train.copy() # group init train['group'] = int(0) # group 1 idxs = (train['batch'] == 3) | (train['batch'] == 7) train['group'][idxs] = int(1) # group 2 idxs = (train['batch'] == 5) | (train['batch'] == 8) train['group'][idxs] = int(2) # group 3 idxs = (train['batch'] == 2) | (train['batch'] == 6) train['group'][idxs] = int(3) # group 4 idxs = (train['batch'] == 4) | (train['batch'] == 9) train['group'][idxs] = int(4) return train[['group']] def group_feat_test(_test): test = _test.copy() # group init test['group'] = int(0) x_idx = np.arange(len(test)) # group 1 idxs = (100000<=x_idx) & (x_idx<200000) test['group'][idxs] = int(1) idxs = (900000<=x_idx) & (x_idx<=1000000) test['group'][idxs] = int(1) # group 2 idxs = (200000<=x_idx) & (x_idx<300000) test['group'][idxs] = int(2) idxs = (600000<=x_idx) & (x_idx<700000) test['group'][idxs] = int(2) # group 3 idxs = (400000<=x_idx) & (x_idx<500000) test['group'][idxs] = int(3) # group 4 idxs = (500000<=x_idx) & (x_idx<600000) test['group'][idxs] = int(4) idxs = (700000<=x_idx) & (x_idx<800000) test['group'][idxs] = int(4) return test[['group']] class permutation_importance(): def __init__(self, model, metric): self.is_computed = False self.n_feat = 0 self.base_score = 0 self.model = model self.metric = metric self.df_result = [] def compute(self, X_valid, y_valid): self.n_feat = len(X_valid.columns) if self.metric == 'auc': y_valid_score = self.model.predict_proba(X_valid)[:, 1] fpr, tpr, thresholds = roc_curve(y_valid, y_valid_score) self.base_score = auc(fpr, tpr) else: pred = np.round(self.model.predict(X_valid)).astype('int8') self.base_score = self.metric(y_valid, pred) self.df_result = pd.DataFrame({'feat': X_valid.columns, 'score': np.zeros(self.n_feat), 'score_diff': np.zeros(self.n_feat)}) # predict for i, col in enumerate(X_valid.columns): df_perm = X_valid.copy() np.random.seed(1) df_perm[col] = np.random.permutation(df_perm[col]) y_valid_pred = self.model.predict(df_perm) if self.metric == 'auc': y_valid_score = self.model.predict_proba(df_perm)[:, 1] fpr, tpr, thresholds = roc_curve(y_valid, y_valid_score) score = auc(fpr, tpr) else: score = self.metric(y_valid, np.round(y_valid_pred).astype('int8')) self.df_result['score'][self.df_result['feat']==col] = score self.df_result['score_diff'][self.df_result['feat']==col] = self.base_score - score self.is_computed = True def get_negative_feature(self): assert self.is_computed!=False, 'compute メソッドが実行されていません' idx = self.df_result['score_diff'] < 0 return self.df_result.loc[idx, 'feat'].values.tolist() def get_positive_feature(self): assert self.is_computed!=False, 'compute メソッドが実行されていません' idx = self.df_result['score_diff'] > 0 return self.df_result.loc[idx, 'feat'].values.tolist() def show_permutation_importance(self, score_type='loss'): '''score_type = 'loss' or 'accuracy' ''' assert self.is_computed!=False, 'compute メソッドが実行されていません' if score_type=='loss': ascending = True elif score_type=='accuracy': ascending = False else: ascending = '' plt.figure(figsize=(15, int(0.25*self.n_feat))) sns.barplot(x="score_diff", y="feat", data=self.df_result.sort_values(by="score_diff", ascending=ascending)) plt.title('base_score - permutation_score') def plot_corr(df, abs_=False, threshold=0.95): if abs_==True: corr = df.corr().abs()>threshold vmin = 0 else: corr = df.corr() vmin = -1 # Plot fig, ax = plt.subplots(figsize=(12, 10), dpi=100) fig.patch.set_facecolor('white') sns.heatmap(corr, xticklabels=df.corr().columns, yticklabels=df.corr().columns, vmin=vmin, vmax=1, center=0, annot=False) # Decorations ax.set_title('Correlation', fontsize=22) def get_low_corr_column(df, threshold): df_corr = df.corr() df_corr = abs(df_corr) columns = df_corr.columns # 対角線の値を0にする for i in range(0, len(columns)): df_corr.iloc[i, i] = 0 while True: columns = df_corr.columns max_corr = 0.0 query_column = None target_column = None df_max_column_value = df_corr.max() max_corr = df_max_column_value.max() query_column = df_max_column_value.idxmax() target_column = df_corr[query_column].idxmax() if max_corr < threshold: # しきい値を超えるものがなかったため終了 break else: # しきい値を超えるものがあった場合 delete_column = None saved_column = None # その他との相関の絶対値が大きい方を除去 if sum(df_corr[query_column]) <= sum(df_corr[target_column]): delete_column = target_column saved_column = query_column else: delete_column = query_column saved_column = target_column # 除去すべき特徴を相関行列から消す(行、列) df_corr.drop([delete_column], axis=0, inplace=True) df_corr.drop([delete_column], axis=1, inplace=True) return df_corr.columns # 相関が高い特徴量を除いた名前リスト def reduce_mem_usage(df, verbose=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024**2 for col in df.columns: if col!='open_channels': col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024**2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem)) return df def create_signal_mod(train): left = 3641000 right = 3829000 thresh_dict = { 3: [0.1, 2.0], 2: [-1.1, 0.7], 1: [-2.3, -0.6], 0: [-3.8, -2], } train['signal'] = train['signal'].values for ch in train[train['batch']==7]['open_channels'].unique(): idxs_noisy = (train['open_channels']==ch) & (left<train.index) & (train.index<right) idxs_not_noisy = (train['open_channels']==ch) & ~idxs_noisy mean = train[idxs_not_noisy]['signal'].mean() idxs_outlier = idxs_noisy & (thresh_dict[ch][1]<train['signal'].values) train['signal'][idxs_outlier] = mean idxs_outlier = idxs_noisy & (train['signal'].values<thresh_dict[ch][0]) train['signal'][idxs_outlier] = mean return train def train_lgbm(X, y, X_te, lgbm_params, random_state=5, n_fold=5, verbose=50, early_stopping_rounds=100, show_fig=True): # using features print(f'features({len(X.columns)}): \n{X.columns}') if not verbose==0 else None # folds = KFold(n_splits=n_fold, shuffle=True, random_state=random_state) folds = StratifiedKFold(n_splits=n_fold, shuffle=True, random_state=random_state) scores = [] oof = np.zeros(len(X)) oof_round = np.zeros(len(X)) test_pred = np.zeros(len(X_te)) df_pi = pd.DataFrame(columns=['feat', 'score_diff']) for fold_n, (train_idx, valid_idx) in enumerate(folds.split(X, y=y)): if verbose==0: pass else: print('\n------------------') print(f'- Fold {fold_n + 1}/{N_FOLD} started at {time.ctime()}') # prepare dataset X_train, X_valid = X.iloc[train_idx], X.iloc[valid_idx] y_train, y_valid = y[train_idx], y[valid_idx] # train model = LGBMRegressor(**lgbm_params, n_estimators=N_ESTIMATORS) model.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_valid, y_valid)], verbose=verbose, early_stopping_rounds=early_stopping_rounds) # pred y_valid_pred = model.predict(X_valid, model.best_iteration_) y_valid_pred_round = np.round(y_valid_pred).astype('int8') _test_pred = model.predict(X_te, model.best_iteration_) if show_fig==False: pass else: # permutation importance pi = permutation_importance(model, f1_macro) # model と metric を渡す pi.compute(X_valid, y_valid) pi_result = pi.df_result df_pi = pd.concat([df_pi, pi_result[['feat', 'score_diff']]]) # result oof[valid_idx] = y_valid_pred oof_round[valid_idx] = y_valid_pred_round score = f1_score(y_valid, y_valid_pred_round, average='macro') scores.append(score) test_pred += _test_pred if verbose==0: pass else: print(f'---> f1-score(macro) valid: {f1_score(y_valid, y_valid_pred_round, average="macro"):.4f}') print('') print('====== finish ======') print('score list:', scores) print('CV mean score(f1_macro): {0:.4f}, std: {1:.4f}'.format(np.mean(scores), np.std(scores))) print(f'oof score(f1_macro): {f1_score(y, oof_round, average="macro"):.4f}') print('') if show_fig==False: pass else: # visualization plt.figure(figsize=(5, 5)) plt.plot([0, 10], [0, 10], color='gray') plt.scatter(y, oof, alpha=0.05, color=cp[1]) plt.xlabel('true') plt.ylabel('pred') plt.show() # confusion_matrix plot_confusion_matrix(y, oof_round, classes=np.arange(11)) # permutation importance plt.figure(figsize=(15, int(0.25*len(X.columns)))) order = df_pi.groupby(["feat"]).mean()['score_diff'].reset_index().sort_values('score_diff', ascending=False) sns.barplot(x="score_diff", y="feat", data=df_pi, order=order['feat']) plt.title('base_score - permutation_score') plt.show() # submission test_pred = test_pred/N_FOLD test_pred_round = np.round(test_pred).astype('int8') return test_pred_round, test_pred, oof_round, oof def plot_confusion_matrix(truth, pred, classes, normalize=False, title=''): cm = confusion_matrix(truth, pred) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] plt.figure(figsize=(10, 10)) plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title('Confusion matrix', size=15) plt.colorbar(fraction=0.046, pad=0.04) tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.grid(False) plt.tight_layout() def train_test_split_lgbm(X, y, X_te, lgbm_params, random_state=5, test_size=0.3, verbose=50, early_stopping_rounds=100, show_fig=True): # using features print(f'features({len(X.columns)}): \n{X.columns}') if not verbose==0 else None # folds = KFold(n_splits=n_fold, shuffle=True, random_state=random_state) # folds = StratifiedKFold(n_splits=n_fold, shuffle=True, random_state=random_state) # prepare dataset X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=test_size, random_state=random_state) # train model = LGBMRegressor(**lgbm_params, n_estimators=N_ESTIMATORS) model.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_valid, y_valid)], verbose=verbose, early_stopping_rounds=early_stopping_rounds) # pred oof = model.predict(X_valid, model.best_iteration_) oof_round = np.round(oof).astype('int8') test_pred = model.predict(X_te, model.best_iteration_) test_pred_round = np.round(test_pred).astype('int8') print('====== finish ======') print(f'oof score(f1_macro): {f1_score(y_valid, oof_round, average="macro"):.4f}') print('') if show_fig==False: pass else: # visualization plt.figure(figsize=(5, 5)) plt.plot([0, 10], [0, 10], color='gray') plt.scatter(y_valid, oof, alpha=0.05, color=cp[1]) plt.xlabel('true') plt.ylabel('pred') plt.show() # confusion_matrix plot_confusion_matrix(y_valid, oof_round, classes=np.arange(11)) # permutation importance pi = permutation_importance(model, f1_macro) # model と metric を渡す pi.compute(X_valid, y_valid) pi.show_permutation_importance(score_type='accuracy') # loss or accuracy plt.show() return test_pred_round, test_pred, oof_round, oof ###Output _____no_output_____ ###Markdown ref: https://www.kaggle.com/martxelo/fe-and-ensemble-mlp-and-lgbm ###Code def calc_gradients(s, n_grads=4): ''' Calculate gradients for a pandas series. Returns the same number of samples ''' grads = pd.DataFrame() g = s.values for i in range(n_grads): g = np.gradient(g) grads['grad_' + str(i+1)] = g return grads def calc_low_pass(s, n_filts=10): ''' Applies low pass filters to the signal. Left delayed and no delayed ''' wns = np.logspace(-2, -0.3, n_filts) # wns = [0.3244] low_pass = pd.DataFrame() x = s.values for wn in wns: b, a = signal.butter(1, Wn=wn, btype='low') zi = signal.lfilter_zi(b, a) low_pass['lowpass_lf_' + str('%.4f' %wn)] = signal.lfilter(b, a, x, zi=zi*x[0])[0] low_pass['lowpass_ff_' + str('%.4f' %wn)] = signal.filtfilt(b, a, x) return low_pass def calc_high_pass(s, n_filts=10): ''' Applies high pass filters to the signal. Left delayed and no delayed ''' wns = np.logspace(-2, -0.1, n_filts) # wns = [0.0100, 0.0264, 0.0699, 0.3005, 0.4885, 0.7943] high_pass = pd.DataFrame() x = s.values for wn in wns: b, a = signal.butter(1, Wn=wn, btype='high') zi = signal.lfilter_zi(b, a) high_pass['highpass_lf_' + str('%.4f' %wn)] = signal.lfilter(b, a, x, zi=zi*x[0])[0] high_pass['highpass_ff_' + str('%.4f' %wn)] = signal.filtfilt(b, a, x) return high_pass def calc_roll_stats(s, windows=[10, 50, 100, 500, 1000, 3000]): ''' Calculates rolling stats like mean, std, min, max... ''' roll_stats = pd.DataFrame() for w in windows: roll_stats['roll_mean_' + str(w)] = s.rolling(window=w, min_periods=1).mean().interpolate('spline', order=5, limit_direction='both') roll_stats['roll_std_' + str(w)] = s.rolling(window=w, min_periods=1).std().interpolate('spline', order=5, limit_direction='both') roll_stats['roll_min_' + str(w)] = s.rolling(window=w, min_periods=1).min().interpolate('spline', order=5, limit_direction='both') roll_stats['roll_max_' + str(w)] = s.rolling(window=w, min_periods=1).max().interpolate('spline', order=5, limit_direction='both') roll_stats['roll_range_' + str(w)] = roll_stats['roll_max_' + str(w)] - roll_stats['roll_min_' + str(w)] roll_stats['roll_q10_' + str(w)] = s.rolling(window=w, min_periods=1).quantile(0.10).interpolate('spline', order=5, limit_direction='both') roll_stats['roll_q25_' + str(w)] = s.rolling(window=w, min_periods=1).quantile(0.25).interpolate('spline', order=5, limit_direction='both') roll_stats['roll_q50_' + str(w)] = s.rolling(window=w, min_periods=1).quantile(0.50).interpolate('spline', order=5, limit_direction='both') roll_stats['roll_q75_' + str(w)] = s.rolling(window=w, min_periods=1).quantile(0.75).interpolate('spline', order=5, limit_direction='both') roll_stats['roll_q90_' + str(w)] = s.rolling(window=w, min_periods=1).quantile(0.90).interpolate('spline', order=5, limit_direction='both') # add zeros when na values (std) # roll_stats = roll_stats.fillna(value=0) return roll_stats def calc_ewm(s, windows=[10, 50, 100, 500, 1000, 3000]): ''' Calculates exponential weighted functions ''' ewm = pd.DataFrame() for w in windows: ewm['ewm_mean_' + str(w)] = s.ewm(span=w, min_periods=1).mean() ewm['ewm_std_' + str(w)] = s.ewm(span=w, min_periods=1).std() # add zeros when na values (std) ewm = ewm.fillna(value=0) return ewm def divide_and_add_features(s, signal_size=500000): ''' Divide the signal in bags of "signal_size". Normalize the data dividing it by 15.0 ''' # normalize s = s/15.0 ls = [] for i in progress_bar(range(int(s.shape[0]/signal_size))): sig = s[i*signal_size:(i+1)*signal_size].copy().reset_index(drop=True) sig_featured = add_features(sig) ls.append(sig_featured) return pd.concat(ls, axis=0) ###Output _____no_output_____ ###Markdown ref: https://www.kaggle.com/nxrprime/single-model-lgbm-kalman-filter-ii ###Code def Kalman1D(observations,damping=1): # To return the smoothed time series data observation_covariance = damping initial_value_guess = observations[0] transition_matrix = 1 transition_covariance = 0.1 initial_value_guess kf = KalmanFilter( initial_state_mean=initial_value_guess, initial_state_covariance=observation_covariance, observation_covariance=observation_covariance, transition_covariance=transition_covariance, transition_matrices=transition_matrix ) pred_state, state_cov = kf.smooth(observations) return pred_state ###Output _____no_output_____ ###Markdown Preparation setting ###Code sns.set() ###Output _____no_output_____ ###Markdown load dataset ###Code df_tr = pd.read_csv(PATH_TRAIN) df_te = pd.read_csv(PATH_TEST) ###Output _____no_output_____ ###Markdown 処理のしやすさのために、バッチ番号を振る ###Code batch_list = [] for n in range(10): batchs = np.ones(500000)*n batch_list.append(batchs.astype(int)) batch_list = np.hstack(batch_list) df_tr['batch'] = batch_list batch_list = [] for n in range(4): batchs = np.ones(500000)*n batch_list.append(batchs.astype(int)) batch_list = np.hstack(batch_list) df_te['batch'] = batch_list ###Output _____no_output_____ ###Markdown smallset? ###Code if isSmallSet: print('small set mode') # train batchs = df_tr['batch'].values dfs = [] for i_bt, bt in enumerate(df_tr['batch'].unique()): idxs = batchs == bt _df = df_tr[idxs][:LENGTH].copy() dfs.append(_df) df_tr = pd.concat(dfs).reset_index(drop=True) # test batchs = df_te['batch'].values dfs = [] for i_bt, bt in enumerate(df_te['batch'].unique()): idxs = batchs == bt _df = df_te[idxs][:LENGTH].copy() dfs.append(_df) df_te = pd.concat(dfs).reset_index(drop=True) ###Output _____no_output_____ ###Markdown Train ###Code # configurations and main hyperparammeters # EPOCHS = 180 EPOCHS = 180 NNBATCHSIZE = 16 GROUP_BATCH_SIZE = 4000 SEED = 321 LR = 0.0015 SPLITS = 5 def seed_everything(seed): random.seed(seed) np.random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) # tf.random.set_seed(seed) # read data def read_data(): train = pd.read_csv(PATH_TRAIN, dtype={'time': np.float32, 'signal': np.float32, 'open_channels':np.int32}) test = pd.read_csv(PATH_TEST, dtype={'time': np.float32, 'signal': np.float32}) sub = pd.read_csv(PATH_SMPLE_SUB, dtype={'time': np.float32}) # Y_train_proba = np.load('./../data/input/Y_train_proba.npy') # Y_test_proba = np.load('./../data/input/Y_test_proba.npy') probas = np.load('./../data/output_ignore/probas_nb044_LGBMClassifier_cv_0.9385.npz') Y_train_proba = probas['arr_0'] Y_test_proba = probas['arr_1'] for i in range(11): train[f"proba_{i}"] = Y_train_proba[:, i] test[f"proba_{i}"] = Y_test_proba[:, i] # group1のスパイクを削除df_tr # batch_list = [] # for n in range(10): # batchs = np.ones(500000)*n # batch_list.append(batchs.astype(int)) # batch_list = np.hstack(batch_list) # train['batch'] = batch_list # max_ = train.loc[train['batch']==3]['signal'].max() # min_ = train.loc[train['batch']==3]['signal'].min() # idxs = (train['batch']==7) & (train['signal']>max_) # train['signal'][idxs] = max_ # idxs = (train['batch']==7) & (train['signal']<min_) # train['signal'][idxs] = min_ # train = train.drop(['batch'], axis=1) # add offset batch_list = [] for n in range(10): batchs = np.ones(500000)*n batch_list.append(batchs.astype(int)) batch_list = np.hstack(batch_list) train['batch'] = batch_list batch_list = [] for n in range(4): batchs = np.ones(500000)*n batch_list.append(batchs.astype(int)) batch_list = np.hstack(batch_list) test['batch'] = batch_list group = group_feat_train(train) train = pd.concat([train, group], axis=1) group = group_feat_test(test) test = pd.concat([test, group], axis=1) off_set_4 = 0.952472 - (-1.766044) off_set_9 = 0.952472 - (-1.770441) # batch4 idxs = train['batch'] == 4 train['signal'][idxs] = train['signal'].values + off_set_4 # batch9 idxs = train['batch'] == 9 train['signal'][idxs] = train['signal'].values + off_set_9 off_set_test = 2.750 # group4 idxs = test['group'] == 4 test['signal'][idxs] = test['signal'][idxs].values + off_set_test # mod batch7 train = create_signal_mod(train) plt.figure(figsize=(20, 3)) plt.plot(train['signal']) plt.show() plt.figure(figsize=(20, 3)) plt.plot(test['signal']) plt.show() train = train.drop(['batch', 'group'], axis=1) test = test.drop(['batch', 'group'], axis=1) return train, test, sub # create batches of 4000 observations def batching(df, batch_size): df['group'] = df.groupby(df.index//batch_size, sort=False)['signal'].agg(['ngroup']).values df['group'] = df['group'].astype(np.uint16) return df # normalize the data (standard scaler). We can also try other scalers for a better score! def normalize(train, test): train_input_mean = train.signal.mean() train_input_sigma = train.signal.std() train['signal'] = (train.signal - train_input_mean) / train_input_sigma test['signal'] = (test.signal - train_input_mean) / train_input_sigma return train, test # get lead and lags features def lag_with_pct_change(df, windows): for window in windows: df['signal_shift_pos_' + str(window)] = df.groupby('group')['signal'].shift(window).fillna(0) df['signal_shift_neg_' + str(window)] = df.groupby('group')['signal'].shift(-1 * window).fillna(0) return df # main module to run feature engineering. Here you may want to try and add other features and check if your score imporves :). def run_feat_engineering(df, batch_size): # create batches df = batching(df, batch_size = batch_size) # create leads and lags (1, 2, 3 making them 6 features) df = lag_with_pct_change(df, [1, 2, 3]) # create signal ** 2 (this is the new feature) df['signal_2'] = df['signal'] ** 2 return df # fillna with the mean and select features for training def feature_selection(train, test): features = [col for col in train.columns if col not in ['index', 'group', 'open_channels', 'time']] train = train.replace([np.inf, -np.inf], np.nan) test = test.replace([np.inf, -np.inf], np.nan) for feature in features: feature_mean = pd.concat([train[feature], test[feature]], axis = 0).mean() train[feature] = train[feature].fillna(feature_mean) test[feature] = test[feature].fillna(feature_mean) return train, test, features # model function (very important, you can try different arquitectures to get a better score. I believe that top public leaderboard is a 1D Conv + RNN style) def Classifier(shape_): def cbr(x, out_layer, kernel, stride, dilation): x = Conv1D(out_layer, kernel_size=kernel, dilation_rate=dilation, strides=stride, padding="same")(x) x = BatchNormalization()(x) x = Activation("relu")(x) return x def wave_block(x, filters, kernel_size, n): dilation_rates = [2**i for i in range(n)] x = Conv1D(filters = filters, kernel_size = 1, padding = 'same')(x) res_x = x for dilation_rate in dilation_rates: tanh_out = Conv1D(filters = filters, kernel_size = kernel_size, padding = 'same', activation = 'tanh', dilation_rate = dilation_rate)(x) sigm_out = Conv1D(filters = filters, kernel_size = kernel_size, padding = 'same', activation = 'sigmoid', dilation_rate = dilation_rate)(x) x = Multiply()([tanh_out, sigm_out]) x = Conv1D(filters = filters, kernel_size = 1, padding = 'same')(x) res_x = Add()([res_x, x]) return res_x inp = Input(shape = (shape_)) x = cbr(inp, 64, 7, 1, 1) x = BatchNormalization()(x) x = wave_block(x, 16, 3, 12) x = BatchNormalization()(x) x = wave_block(x, 32, 3, 8) x = BatchNormalization()(x) x = wave_block(x, 64, 3, 4) x = BatchNormalization()(x) x = wave_block(x, 128, 3, 1) x = cbr(x, 32, 7, 1, 1) x = BatchNormalization()(x) x = Dropout(0.2)(x) out = Dense(11, activation = 'softmax', name = 'out')(x) model = models.Model(inputs = inp, outputs = out) opt = Adam(lr = LR) # opt = tfa.optimizers.SWA(opt) # model.compile(loss = losses.CategoricalCrossentropy(), optimizer = opt, metrics = ['accuracy']) model.compile(loss = categorical_crossentropy, optimizer = opt, metrics = ['accuracy']) return model # function that decrease the learning as epochs increase (i also change this part of the code) def lr_schedule(epoch): if epoch < 30: lr = LR elif epoch < 40: lr = LR / 3 elif epoch < 50: lr = LR / 5 elif epoch < 60: lr = LR / 7 elif epoch < 70: lr = LR / 9 elif epoch < 80: lr = LR / 11 elif epoch < 90: lr = LR / 13 else: lr = LR / 100 return lr # class to get macro f1 score. This is not entirely necessary but it's fun to check f1 score of each epoch (be carefull, if you use this function early stopping callback will not work) class MacroF1(Callback): def __init__(self, model, inputs, targets): self.model = model self.inputs = inputs self.targets = np.argmax(targets, axis = 2).reshape(-1) def on_epoch_end(self, epoch, logs): pred = np.argmax(self.model.predict(self.inputs), axis = 2).reshape(-1) score = f1_score(self.targets, pred, average = 'macro') print(f'F1 Macro Score: {score:.5f}') # main function to perfrom groupkfold cross validation (we have 1000 vectores of 4000 rows and 8 features (columns)). Going to make 5 groups with this subgroups. def run_cv_model_by_batch(train, test, _splits, batch_col, feats, sample_submission, nn_epochs, nn_batch_size): seed_everything(SEED) K.clear_session() # config = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1, # gpu_options=tf.compat.v1.GPUOptions( # visible_device_list='4', # specify GPU number # allow_growth=True # ) # ) # sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=config) # tf.compat.v1.keras.backend.set_session(sess) # tf.compat.v1 ---> tf (tensorflow2系からtensorflow1系に変更) config = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1, # gpu_options=tf.GPUOptions( # visible_device_list='4', # specify GPU number # allow_growth=True # ) ) sess = tf.Session(graph=tf.get_default_graph(), config=config) tf.keras.backend.set_session(sess) oof_ = np.zeros((len(train), 11)) # build out of folds matrix with 11 columns, they represent our target variables classes (from 0 to 10) preds_ = np.zeros((len(test), 11)) target = ['open_channels'] group = train['group'] kf = GroupKFold(n_splits=_splits) splits = [x for x in kf.split(train, train[target], group)] new_splits = [] for sp in splits: new_split = [] new_split.append(np.unique(group[sp[0]])) new_split.append(np.unique(group[sp[1]])) new_split.append(sp[1]) new_splits.append(new_split) # pivot target columns to transform the net to a multiclass classification estructure (you can also leave it in 1 vector with sparsecategoricalcrossentropy loss function) tr = pd.concat([pd.get_dummies(train.open_channels), train[['group']]], axis=1) tr.columns = ['target_'+str(i) for i in range(11)] + ['group'] target_cols = ['target_'+str(i) for i in range(11)] train_tr = np.array(list(tr.groupby('group').apply(lambda x: x[target_cols].values))).astype(np.float32) train = np.array(list(train.groupby('group').apply(lambda x: x[feats].values))) test = np.array(list(test.groupby('group').apply(lambda x: x[feats].values))) for n_fold, (tr_idx, val_idx, val_orig_idx) in enumerate(new_splits[0:], start=0): train_x, train_y = train[tr_idx], train_tr[tr_idx] valid_x, valid_y = train[val_idx], train_tr[val_idx] print(f'Our training dataset shape is {train_x.shape}') print(f'Our validation dataset shape is {valid_x.shape}') gc.collect() shape_ = (None, train_x.shape[2]) # input is going to be the number of feature we are using (dimension 2 of 0, 1, 2) model = Classifier(shape_) # using our lr_schedule function cb_lr_schedule = LearningRateScheduler(lr_schedule) model.fit(train_x,train_y, epochs = nn_epochs, callbacks = [cb_lr_schedule, MacroF1(model, valid_x, valid_y)], # adding custom evaluation metric for each epoch batch_size = nn_batch_size,verbose = 2, validation_data = (valid_x,valid_y)) preds_f = model.predict(valid_x) f1_score_ = f1_score(np.argmax(valid_y, axis=2).reshape(-1), np.argmax(preds_f, axis=2).reshape(-1), average = 'macro') # need to get the class with the biggest probability print(f'Training fold {n_fold + 1} completed. macro f1 score : {f1_score_ :1.5f}') preds_f = preds_f.reshape(-1, preds_f.shape[-1]) oof_[val_orig_idx,:] += preds_f te_preds = model.predict(test) te_preds = te_preds.reshape(-1, te_preds.shape[-1]) preds_ += te_preds / _splits # calculate the oof macro f1_score f1_score_ = f1_score(np.argmax(train_tr, axis = 2).reshape(-1), np.argmax(oof_, axis = 1), average = 'macro') # axis 2 for the 3 Dimension array and axis 1 for the 2 Domension Array (extracting the best class) print(f'Training completed. oof macro f1 score : {f1_score_:1.5f}') # submission save_path = f'{DIR_OUTPUT}submission_nb{NB}_cv_{f1_score_:.4f}.csv' print(f'submission save path: {save_path}') sample_submission['open_channels'] = np.argmax(preds_, axis = 1).astype(int) sample_submission.to_csv(save_path, index=False, float_format='%.4f') # probas save_path = f'{DIR_OUTPUT_IGNORE}probas_nb{NB}_cv_{f1_score_:.4f}' print(f'probas save path: {save_path}') np.savez_compressed(save_path, oof_, preds_) return oof_ %%time # this function run our entire program def run_everything(): print(f'Reading Data Started...({time.ctime()})') train, test, sample_submission = read_data() train, test = normalize(train, test) print(f'Reading and Normalizing Data Completed') print(f'Creating Features({time.ctime()})') print(f'Feature Engineering Started...') train = run_feat_engineering(train, batch_size = GROUP_BATCH_SIZE) test = run_feat_engineering(test, batch_size = GROUP_BATCH_SIZE) train, test, features = feature_selection(train, test) print(f'Feature Engineering Completed...') print(f'Training Wavenet model with {SPLITS} folds of GroupKFold Started...({time.ctime()})') oof_ = run_cv_model_by_batch(train, test, SPLITS, 'group', features, sample_submission, EPOCHS, NNBATCHSIZE) print(f'Training completed...') return oof_ oof_ = run_everything() ###Output Reading Data Started...(Mon May 11 10:59:45 2020) ###Markdown analysis ###Code df_tr = pd.read_csv(PATH_TRAIN) batch_list = [] for n in range(10): batchs = np.ones(500000)*n batch_list.append(batchs.astype(int)) batch_list = np.hstack(batch_list) df_tr['batch'] = batch_list # group 特徴量を作成 group = group_feat_train(df_tr) df_tr = pd.concat([df_tr, group], axis=1) y = df_tr['open_channels'].values oof = np.argmax(oof_, axis=1).astype(int) for group in sorted(df_tr['group'].unique()): idxs = df_tr['group'] == group oof_grp = oof[idxs].astype(int) y_grp = y[idxs] print(f'group_score({group}): {f1_score(y_grp, oof_grp, average="micro"):4f}') max_ = df_tr.loc[df_tr['batch']==3]['signal'].max() min_ = df_tr.loc[df_tr['batch']==3]['signal'].min() idxs = (df_tr['batch']==7) & (df_tr['signal']>max_) df_tr['signal'][idxs] = max_ idxs = (df_tr['batch']==7) & (df_tr['signal']<min_) df_tr['signal'][idxs] = min_ ###Output _____no_output_____ ###Markdown 可視化 ###Code x_idx = np.arange(len(df_tr)) idxs = y != oof failed = np.zeros(len(df_tr)) failed[idxs] = 1 n = 200 b = np.ones(n)/n failed_move = np.convolve(failed, b, mode='same') fig, axs = plt.subplots(2, 1, figsize=(20, 6)) axs = axs.ravel() # fig = plt.figure(figsize=(20, 3)) for i_gr, group in enumerate(sorted(df_tr['group'].unique())): idxs = df_tr['group'] == group axs[0].plot(np.arange(len(df_tr))[idxs], df_tr['signal'].values[idxs], color=cp[i_gr], label=f'group={group}') for x in range(10): axs[0].axvline(x*500000 + 500000, color='gray') axs[0].text(x*500000 + 250000, 5, x) axs[0].plot(x_idx, failed_move*10, '.', color='black', label='failed_mv') axs[0].set_xlim(0, 5500000) axs[0].legend() axs[1].plot(x_idx, y) axs[1].set_xlim(0, 5500000) # fig.legend() ###Output _____no_output_____
python-note/python_notebooks-master/modules/logistic_regression_classifier.ipynb
###Markdown Logistic Regression Classifier**Logistic regression** helps prove the relationship between input/output variables.- input variables: independent- output variables: dependentDependent variable are restricted to a fixed set of values which involve classification classes.A _logistic function_ is used to estimate probabilities between input/output variables in order to extablish a relationship. Which is a _sigmoid curve_ used to incorporate various parameters. Relative to generalized linear model analysis, where a line is fitted a series of points in order to minimize erroneous results. So _logistic_ regression is used instead of _linear_. Logistic regression facilitates classification, even though it is not a classification technique. And common to machine learning for its simplicity.With [tkinter](https://docs.python.org/2/library/tkinter.html) installed, logistic regression will be used to visualize a classifier below: Import ###Code import numpy as np from sklearn import linear_model as lm import matplotlib.pyplot as plt from utilities import visualize_classifier as vc ###Output _____no_output_____ ###Markdown data arrayAssign `numpy` arrays to two variables: ###Code X = np.array([[3.1, 7.2], [4, 6.7], [2.9, 8], [5.1, 4.5], [6, 5], [5.6, 5], [3.3, 0.4], [3.9, 0.9], [2.8, 1], [0.5, 3.4], [1, 4], [0.6, 4.9]]) y = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]) ###Output _____no_output_____ ###Markdown create classifier ###Code c = lm.LogisticRegression(solver = 'liblinear', C = 1) ###Output _____no_output_____ ###Markdown train classifier ###Code c.fit(X, y) ###Output _____no_output_____ ###Markdown visualize classifier ###Code vc(c, X, y) ###Output _____no_output_____
.ipynb_checkpoints/exercise_210-checkpoint.ipynb
###Markdown A Simple Neural NetworkIt is easy to create a single-layer neural network using pytorch.The outputs of the neural network are merely linear combinations of the inputs. ###Code import torch inputs = torch.Tensor([[1, 2]]) print("The inputs are:") print(inputs) ###Output The inputs are: 1 2 [torch.FloatTensor of size 1x2] ###Markdown We've used horizontal matrices for the input and output vectors (matrices with 1 row).So, you have to multiply the inputs by the weights using $inputs * weights$ instead of $weights * inputs$. ###Code weights = torch.Tensor([[3, 7],[4, 1]]) print("The weights are:") print(weights) bias = torch.Tensor([[0.5, 0.3]]) print("The biases are:") print(bias) ###Output The weights are: 3 7 4 1 [torch.FloatTensor of size 2x2] The biases are: 0.5000 0.3000 [torch.FloatTensor of size 1x2] ###Markdown The if the input is $f$ and the output is $c$, then $c = f*W + b$ ###Code outputs = inputs.mm(weights) + bias print("The outputs are:") print(outputs) ###Output The outputs are: 11.5000 9.3000 [torch.FloatTensor of size 1x2]
paper/Advection_diffusion/AD_artificial/Loop_noise_only.ipynb
###Markdown 2D Advection-Diffusion equation in this notebook we provide a simple example of the DeepMoD algorithm and apply it on the 2D advection-diffusion equation. ###Code # General imports import numpy as np import torch # DeepMoD functions from deepymod import DeepMoD from deepymod.model.func_approx import NN from deepymod.model.library import Library2D_third from deepymod.model.constraint import LeastSquares from deepymod.model.sparse_estimators import Threshold,PDEFIND from deepymod.training import train from deepymod.training.sparsity_scheduler import TrainTestPeriodic from scipy.io import loadmat # Settings for reproducibility np.random.seed(1) torch.manual_seed(1) if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' ###Output _____no_output_____ ###Markdown Prepare the data Next, we prepare the dataset. ###Code data = loadmat('Diffusion_2D_space41.mat') data = np.real(data['Expression1']).reshape((41,41,41,4))[:,:,:,3] x_dim, y_dim, t_dim = data.shape time_range = [0.01,0.02,0.05,0.1,0.15,0.2,0.3,0.5,0.75,1,1.5,2,3,4] for i in time_range: # Downsample data and prepare data without noise: down_data= np.take(np.take(np.take(data,np.arange(0,x_dim,4),axis=0),np.arange(0,y_dim,4),axis=1),np.arange(0,t_dim,3),axis=2) print("Dowmsampled shape:",down_data.shape, "Total number of data points:", np.product(down_data.shape)) index = len(np.arange(0,t_dim,i)) width, width_2, steps = down_data.shape x_arr, y_arr, t_arr = np.linspace(0,1,width), np.linspace(0,1,width_2), np.linspace(0,1,steps) x_grid, y_grid, t_grid = np.meshgrid(x_arr, y_arr, t_arr, indexing='ij') X, y = np.transpose((t_grid.flatten(), x_grid.flatten(), y_grid.flatten())), np.float32(down_data.reshape((down_data.size, 1))) # Add noise noise_level = i y_noisy = y + noise_level * np.std(y) * np.random.randn(y.size, 1) # Randomize data idx = np.random.permutation(y.shape[0]) X_train = torch.tensor(X[idx, :], dtype=torch.float32, requires_grad=True).to(device) y_train = torch.tensor(y_noisy[idx, :], dtype=torch.float32).to(device) # Configure DeepMoD network = NN(3, [40, 40, 40, 40], 1) library = Library2D_third(poly_order=0) estimator = Threshold(0.05) sparsity_scheduler = TrainTestPeriodic(periodicity=50, patience=200, delta=1e-5) constraint = LeastSquares() model = DeepMoD(network, library, estimator, constraint).to(device) optimizer = torch.optim.Adam(model.parameters(), betas=(0.99, 0.99), amsgrad=True, lr=2e-3) logdir='final_runs/Noise_runs_11_11_14/'+str(i)+'/' train(model, X_train, y_train, optimizer,sparsity_scheduler, log_dir=logdir, split=0.8, max_iterations=50000, delta=1e-6, patience=200) ###Output Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 4.52e-05 Reg: 6.02e-06 L1: 1.01e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 2.57e-05 Reg: 2.99e-06 L1: 1.04e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 2.85e-05 Reg: 3.00e-06 L1: 1.25e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 3.23e-05 Reg: 4.60e-06 L1: 1.01e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 5.06e-05 Reg: 2.60e-06 L1: 1.20e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49025 MSE: 1.60e-04 Reg: 1.06e-05 L1: 1.00e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 1.34e-04 Reg: 5.44e-06 L1: 1.82e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 3.33e-04 Reg: 3.09e-06 L1: 1.27e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 7.10e-04 Reg: 1.01e-05 L1: 1.19e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 1.35e-03 Reg: 1.02e-05 L1: 1.24e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 2.17e-03 Reg: 5.04e-05 L1: 1.26e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 5.47e-03 Reg: 1.96e-04 L1: 1.03e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 1.52e-03 Reg: 2.82e-06 L1: 1.28e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (11, 11, 14) Total number of data points: 1694 49975 MSE: 1.72e-02 Reg: 2.26e-04 L1: 5.34e+00 Algorithm converged. Writing model to disk.
2019/code/04-dqn.ipynb
###Markdown Q-learningThis notebook will guide you through implementation of vanilla Q-learning algorithm.You need to implement QLearningAgent (follow instructions for each method) and use it on a number of tests below. ###Code # In google collab, uncomment this: # !wget https://bit.ly/2FMJP5K -q -O setup.py # !bash setup.py 2>&1 1>stdout.log | tee stderr.log # This code creates a virtual display to draw game images on. # If you are running locally, just ignore it # import os # if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY")) == 0: # !bash ../xvfb start # %env DISPLAY = : 1 import numpy as np import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 %%writefile qlearning.py from collections import defaultdict import random import math import numpy as np class QLearningAgent: def __init__(self, alpha, epsilon, discount, get_legal_actions): """ Q-Learning Agent based on https://inst.eecs.berkeley.edu/~cs188/sp19/projects.html Instance variables you have access to - self.epsilon (exploration prob) - self.alpha (learning rate) - self.discount (discount rate aka gamma) Functions you should use - self.get_legal_actions(state) {state, hashable -> list of actions, each is hashable} which returns legal actions for a state - self.get_qvalue(state,action) which returns Q(state,action) - self.set_qvalue(state,action,value) which sets Q(state,action) := value !!!Important!!! Note: please avoid using self._qValues directly. There's a special self.get_qvalue/set_qvalue for that. """ self.get_legal_actions = get_legal_actions self._qvalues = defaultdict(lambda: defaultdict(lambda: 0)) self.alpha = alpha self.epsilon = epsilon self.discount = discount def get_qvalue(self, state, action): """ Returns Q(state,action) """ return self._qvalues[state][action] def set_qvalue(self, state, action, value): """ Sets the Qvalue for [state,action] to the given value """ self._qvalues[state][action] = value #---------------------START OF YOUR CODE---------------------# def get_value(self, state): """ Compute your agent's estimate of V(s) using current q-values V(s) = max_over_action Q(state,action) over possible actions. Note: please take into account that q-values can be negative. """ possible_actions = self.get_legal_actions(state) # If there are no legal actions, return 0.0 if len(possible_actions) == 0: return 0.0 <YOUR CODE HERE > return value def update(self, state, action, reward, next_state): """ You should do your Q-Value update here: Q(s,a) := (1 - alpha) * Q(s,a) + alpha * (r + gamma * V(s')) """ # agent parameters gamma = self.discount learning_rate = self.alpha <YOUR CODE HERE > self.set_qvalue(state, action, < YOUR_QVALUE > ) def get_best_action(self, state): """ Compute the best action to take in a state (using current q-values). """ possible_actions = self.get_legal_actions(state) # If there are no legal actions, return None if len(possible_actions) == 0: return None <YOUR CODE HERE > return best_action def get_action(self, state): """ Compute the action to take in the current state, including exploration. With probability self.epsilon, we should take a random action. otherwise - the best policy action (self.get_best_action). Note: To pick randomly from a list, use random.choice(list). To pick True or False with a given probablity, generate uniform number in [0, 1] and compare it with your probability """ # Pick Action possible_actions = self.get_legal_actions(state) action = None # If there are no legal actions, return None if len(possible_actions) == 0: return None # agent parameters: epsilon = self.epsilon <YOUR CODE HERE > return chosen_action ###Output _____no_output_____ ###Markdown Try it on taxiHere we use the qlearning agent on taxi env from openai gym.You will need to insert a few agent functions here. ###Code import gym env = gym.make("Taxi-v2") n_actions = env.action_space.n from qlearning import QLearningAgent agent = QLearningAgent( alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions=lambda s: range(n_actions)) def play_and_train(env, agent, t_max=10**4): """ This function should - run a full game, actions given by agent's e-greedy policy - train agent using agent.update(...) whenever it is possible - return total reward """ total_reward = 0.0 s = env.reset() for t in range(t_max): # get agent to pick action given state s. a = <YOUR CODE > next_s, r, done, _ = env.step(a) # train (update) agent for state s <YOUR CODE HERE > s = next_s total_reward += r if done: break return total_reward from IPython.display import clear_output rewards = [] for i in range(1000): rewards.append(play_and_train(env, agent)) agent.epsilon *= 0.99 if i % 100 == 0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output _____no_output_____ ###Markdown Binarized state spacesUse agent to train efficiently on CartPole-v0.This environment has a continuous set of possible states, so you will have to group them into bins somehow.The simplest way is to use `round(x,n_digits)` (or numpy round) to round real number to a given amount of digits.The tricky part is to get the n_digits right for each state to train effectively.Note that you don't need to convert state to integers, but to __tuples__ of any kind of values. ###Code env = gym.make("CartPole-v0") n_actions = env.action_space.n print("first state:%s" % (env.reset())) plt.imshow(env.render('rgb_array')) ###Output _____no_output_____ ###Markdown Play a few gamesWe need to estimate observation distributions. To do so, we'll play a few games and record all states. ###Code all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:, obs_i], bins=20) plt.show() ###Output _____no_output_____ ###Markdown Binarize environment ###Code from gym.core import ObservationWrapper class Binarizer(ObservationWrapper): def observation(self, state): # state = <round state to some amount digits.> # hint: you can do that with round(x,n_digits) # you will need to pick a different n_digits for each dimension return tuple(state) env = Binarizer(gym.make("CartPole-v0")) all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:, obs_i], bins=20) plt.show() ###Output _____no_output_____ ###Markdown Learn binarized policyNow let's train a policy that uses binarized state space.__Tips:__ * If your binarization is too coarse, your agent may fail to find optimal policy. In that case, change binarization. * If your binarization is too fine-grained, your agent will take much longer than 1000 steps to converge. You can either increase number of iterations and decrease epsilon decay or change binarization.* Having 10^3 ~ 10^4 distinct states is recommended (`len(QLearningAgent._qvalues)`), but not required.* A reasonable agent should get to an average reward of >=50. ###Code agent = QLearningAgent( alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions=lambda s: range(n_actions)) rewards = [] for i in range(1000): rewards.append(play_and_train(env, agent)) # OPTIONAL YOUR CODE: adjust epsilon if i % 100 == 0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output _____no_output_____
notebooks/old_notebooks/datasets_showcase.ipynb
###Markdown 1-D Three-Region Dataset ###Code X_train, Y_train, X_val, Y_val, C, R = nregion.load_data(regions=10) nregion.graph(X_train, Y_train, size = 30) nregion.graph(X_val, Y_val, size = 30) X_train.shape ###Output _____no_output_____ ###Markdown 1-D Random Dataset ###Code X_train, Y_train, X_val, Y_val = nregion.load_random_data(points=100) nregion.graph(X_train, Y_train, size = 10) nregion.graph(X_val, Y_val, size = 10) ###Output _____no_output_____ ###Markdown 1-D Random Regions ###Code X_train, Y_train, X_val, Y_val, C, R = nregion.load_random_regions(regions=9, validation = 0.20, points=50) nregion.graph(X_train, Y_train, size = 10) nregion.graph(X_val, Y_val, size = 10) ###Output _____no_output_____ ###Markdown 2D Blobs Dataset ###Code X, Y = blobs.load_data(size=100) blobs.graph(X,Y) ###Output _____no_output_____ ###Markdown 2D Circles Dataset ###Code X, Y = circle.load_data(size=100, factor = 4) circle.graph(X,Y) ###Output _____no_output_____
notebooks/Introducing Spectacle.ipynb
###Markdown Introducing SpectacleSpectacle is an automated line finding and analysis package written in Python. Its primary use revolves around generating spectral models either explicitly, or as a reduction of input spectral data.- GitHub: https://github.com/misty-pipeline/spectacle- Docs: https://spectacle-py.rtfd.io Basic model generationSpectacle provides an easy way to define spectral lines, characterized by their column densities, doppler b parameters, and their offsets. These are added to a spectral model object, containing methods with which the spectrum can be altered (e.g. LSFs, redshift, etc).Ion information like oscillator strength and gamma values are determined by an internal lookup table which Spectacle references by finding the closest matching $\lambda_0$ or ion name defined in the table. ###Code # Imports from spectacle.modeling import Spectral1D, OpticalDepth1D import astropy.units as u import numpy as np import matplotlib.pyplot as plt # Ignore warnings for the notebook demonstration import warnings warnings.filterwarnings('ignore') # Suppress info messages for the notebook demonstration import logging logger = logging.getLogger() logger.setLevel(logging.CRITICAL) %matplotlib inline plt.rcParams["figure.figsize"] = [10, 4] ###Output _____no_output_____ ###Markdown We go ahead and define some ions we wish to use in the spectral model. Note that in the first case, the ion is defined by its $\lambda_0$ value. In the second, we use its lookup table name. ###Code line1 = OpticalDepth1D(lambda_0=1216 * u.AA, v_doppler=20 * u.km/u.s, column_density=13.5) line2 = OpticalDepth1D("OVI1038", v_doppler=30 * u.km/u.s, column_density=14) ###Output _____no_output_____ ###Markdown Spectral models are created with the `Spectral1D` class. We pass in the lines we defined above. Alternatively, we could have defined the lines as a list of names or $\lambda_0$ values and passed them in as the first argument. In that case, the parameters of the individual lines would be implicitly set to the internal defaults.The `Spectral1D` class also handles the input of the redshift at which the output flux values will be shown. Likewise, it is also here that we define the continuum to use for the spectrum. The continuum can be a numerical value, or an Astropy model.The `output` keyword determines whether the resulting data from evaluating the spectral model is flux, flux decrement, or optical depth. Here, we will just use `flux`. The `rest_wavelength` keyword argument is used for cases where multiple ions are given and the input dispersion is in velocity space. This is not necessary if the dispersion is given in wavelength space.Note also that we query the ion lookup table to get the exact value of `HI1216`, users can of course input a specific quantity themselves. ###Code from spectacle.registries import line_registry rest_wave = line_registry.with_name("HI1216")['wave'] spec_mod = Spectral1D([line1, line2], z=0, continuum=1, output='flux', rest_wavelength=rest_wave) ###Output _____no_output_____ ###Markdown Now that we've defined our spectral model, we need only plot it. To do so, we must pass it a dispersion in either wavelength or velocity space. Note that the dispersion must be an Astropy quantity, with proper units. ###Code # Define dispersion in wavelength space wav = np.linspace(1000, 1300, 1000) * u.Angstrom f, ax = plt.subplots() ax.step(wav, spec_mod(wav)) ###Output _____no_output_____ ###Markdown We can view several lines of the same ion in velocity space. Let's add a new line to the spectral model and focus just on `HI1216`. We'll giveit a `\Delta v` so that the two `HI1216` lines don't appear on top of each other. ###Code line3 = OpticalDepth1D("HI1216", v_doppler=20 * u.km/u.s, column_density=13, delta_v=40 * u.km/u.s) spec_mod = spec_mod.with_line(line3) # Define the dispersion in wavelength space vel = np.linspace(-100, 100, 100) * u.km/u.s f, ax = plt.subplots() ax.step(vel, spec_mod(vel)) ###Output _____no_output_____ ###Markdown We can check out our `OVI1038` line in velocity space as well, by adjusting the `rest_wavelength` on the spectral model. ###Code new_rest_wave = line_registry.with_name("OVI1038")['wave'] spec_mod.rest_wavelength = new_rest_wave f, ax = plt.subplots() ax.step(vel, spec_mod(vel)) ###Output _____no_output_____ ###Markdown Extending the spectral modelThe spectral model can be extended in many ways. Below, we show the effect of adding both the HST COS LSF as well as a Gaussian LSF with $sigma = 10$. ###Code # Let's see the effect of the LSFs on the HI1216 lines spec_mod.rest_wavelength = rest_wave spec_mod_cos_lsf = spec_mod.with_lsf('cos') spec_mod_gauss_lsf = spec_mod.with_lsf('gaussian', stddev=10) vel = np.linspace(-75, 75, 150) * u.km/u.s flux = spec_mod(vel) f, ax = plt.subplots() ax.step(vel, flux, label="No LSF") ax.step(vel, spec_mod_cos_lsf(vel), label="COS LSF") ax.step(vel, spec_mod_gauss_lsf(vel), label="Gaussian LSF ($\sigma = 10$)") plt.legend() ###Output _____no_output_____ ###Markdown We can also set the spectral model to output values to a particular redshift by setting the `z` argument in the `Spectral1D` class, or by calling the `with_redshift` method on an already created one. We'll focus just on the `OVI` line so that the effect of higher redshifts is more obvious. ###Code f, ax = plt.subplots(3, 1) for i, z in enumerate(np.linspace(0.0, 1, 3)): new_mod = spec_mod.with_redshift(z) # Adjust the bounds of the dispersion to encompass the new redshift range xmin = new_mod.lines[1].lambda_0.value / (1/(1 + z)) - 0.5 xmax = new_mod.lines[1].lambda_0.value / (1/(1 + z)) + 0.5 w = np.linspace(xmin, xmax, 100) * u.AA ax[i].step(w, new_mod(w), label="$z={}$".format(z)) ax[i].legend() f.set_size_inches(8,8) f.tight_layout() ###Output _____no_output_____ ###Markdown Generating models from dataSpectacle can also generate models automatically from input spectral data. This process uses a series of derivatives to find peaks and troughs, as well as bounding information, for each feature present in the spectrum. It then generates a line profile for each identified feature and constructs the `Spectral1D` model automatically.We'll use line parameters from KODIAQ data to construct a spectal model that will serve to generate our initial raw data. ###Code # Retrieve the data from astropy.io import ascii si4k = ascii.read("https://www.dropbox.com/s/sr24x6tdsagj6sn/tabfitsiiv.txt?dl=1") si4k_los = si4k.group_by('LOS') this_los = si4k_los.groups[0] lines = [] for comp in range(len(this_los)): line_params = { 'name': "SiIV1394", 'delta_v': this_los['dv'][comp] * u.Unit('km/s'), 'column_density': this_los['col'][comp], 'v_doppler': this_los['b'][comp] * u.Unit('km/s') } lines.append(OpticalDepth1D(**line_params)) spectrum = Spectral1D(lines, output='flux', continuum=1) vel = np.arange(-200, 75, 0.5) * u.Unit('km/s') flux = spectrum(vel) f, ax = plt.subplots() ax.step(vel, flux) ax.set_title("Raw KODIAQ Data") ###Output _____no_output_____ ###Markdown Now that we have our raw KODIAQ data, we can setup our line finder to help us automatically recover the lines of the spectrum. The `LineFinder1D` class accepts a list of ions that represent a subset of the ion lookup table. This tells the line finder that potential lines can only be one of these ions. This is useful for finding lines in wavelength space, where several different ions may be present. The line finder will find the ion information closest to the centroid of the feature from the lookup table subset.In our case, the entire spectrum is composed of `SiVI1394` and we're doing the line finding in velocity space, so we don't need to worry about that.The `auto_fit` keyword tells the line finder to automatically run a Levenberg-Marquart LSQ fitter on the resulting spectral model. The `continuum` keyword is the same as the one we use when constructing a `Spectral1D` object. The `output` keyword is similar to that of the `Spectral1D` object and tells the line finder that the input data is expected to be a flux/flux decrement/optical depth value. The `threshold` tells the line finding routine how far beyond the continuum to start considering things absorption features.Many fitting ###Code from spectacle.fitting import LineFinder1D line_finder = LineFinder1D(ions=["SiIV1394"], auto_fit=True, continuum=1, output='flux', threshold=0.05) result_spec_mod = line_finder(vel, flux) f, ax = plt.subplots() ax.step(vel, flux, label='Raw Data') ax.step(vel, result_spec_mod(vel), linestyle='--', label='Fitted Model') ax.legend() ###Output _____no_output_____ ###Markdown As we can see, the line finder did a pretty good job recoverying the absorption features of the spectrum. We can show the individual sub models representing each line to be sure that the correct number of features were identified. ###Code f, ax = plt.subplots() ax.step(vel, result_spec_mod(vel), color='tab:orange', label='Fitted Model') for line in result_spec_mod.lines: # The `reset` keyword means that the internal list of lists is dumped # and repopulated by the given line. line_mod = result_spec_mod.with_line(line, reset=True) ax.step(vel, line_mod(vel), linestyle='--', color='k', alpha=0.5) ax.axvline(line_mod.lines[0].delta_v.value, 0.9, 1.05) ax.legend() ### Retrieving fit uncertainties Both the LSQ `CurveFitter` and the MCMC `EmceeFitter` implemented in Spectacle contain an `unceratinti line_finder.fitter.uncertainties ###Output _____no_output_____ ###Markdown Line and region statisticsWe can also retrieve statistical information for the individual lines and the blended regions of the spectral model. For both lines and regions, three statistics are calculated: the equivalent width, the velocity widget at 90% maximum, and the full-width at half-maximum.The `line_stats` method takes a dispersion to use for calculating the statistics, and returns a table containing each individual line, their profile parameters, and the resulting statistics. ###Code # Individual line statistics line_stats = result_spec_mod.line_stats(vel) line_stats ###Output _____no_output_____ ###Markdown The `region_stats` also take a dispersion array, as well as a rest wavelength value `rest_wavelength`. This is used to do conversions of the dispersion array between wavelength and velocity space. An additional parameter can be provided, `abs_tol`, which dictates to the region finder the threshold above the continuum at which a region can be defined. ###Code # Region line statistics reg_stats = result_spec_mod.region_stats(vel, rest_wavelength=1393.755 * u.Angstrom, abs_tol=0.05) reg_stats ###Output _____no_output_____ ###Markdown We can plot the region information to get a better idea of what each found region encompasses. ###Code f, ax = plt.subplots() ax.step(vel, flux) clrs = ['tab:olive', 'tab:orange'] for i, row in enumerate(reg_stats): ax.fill_between(vel[(vel.value >= row['region_start'].value) & (vel.value <= row['region_end'].value)], -0.1, 1.5, color=clrs[i], alpha=0.25, label='Region {}'.format(i + 1)) ax.set_ylim(-0.05, 1.05) ax.legend() ###Output _____no_output_____
codici/old/loss.ipynb
###Markdown Rischio e minimizzazioneDato un qualunque algoritmo che fornisce per ogni valore di input $x$ una previsione $f(x)$, la qualità delle previsioni fornite dall'algoritmo può essere definita per mezzo di una *funzione di costo* (loss function) $L(x_1, x_2)$, dove $x_1$ è il valore predetto dal modello e $x_2$ è il valore corretto associato a $x$ . Sostanzialmente, il valore della funzione di costo $L(f(x),y)$ misura quindi quanto "costa" (secondo il modello di costo indotto dalla funzione stessa) prevedere, dato $x$, il valore $f(x)$ invece del valore corretto $y$.Dato che evidentemente il costo è dipendente dalla coppia di valori $x,y$, una valutazione complessiva della qualità delle predizioni dell'algoritmo potrà essere fornita considerando il valore atteso della funzione di costo al variare di $x$ e $y$, nell'ipotesi di una (densità di) distribuzione di probabilità congiunta di tali valori $p(x,y)$. La distribuzione $p(x,y)$ ci fornisce quindi la probabilità che il prossimo punto su cui effettuare la predizione sia $x$ e che il valore corretto da predire sia $y$. Si noti che non si fa l'ipotesi che due diverse occorrenze di $x$ siano associate allo stesso valore di $y$: non si assume quindi una relazione funzionale, seppure sconosciuta, tra $x$ e $y$, ma solo una relazione in probabilità $p(y\mid x)$. Questo permette di considerare la presenza di rumore nelle osservazioni effettuate.Da quanto detto, indicando con $D_x$ e $D_y$ i domini di definizione di $x$ e $y$, e assunta una distribuzione $p(x,y)$ che fornisce un modello statistico del contesto in cui si intende effettuare le predizioni, la qualità di un algoritmo di previsione che calcola la funzione $f(x)$ sarà data dal *rischio*$$\mathcal{R}(f)=\mathbb{E}_p[L(f(x),y)]=\int_{D_x}\int_{D_y} L(f(x),y)p(x,y)dxdy$$Il rischio di dice quindi quanto ci aspettiamo che ci costi prevedere $f(x)$, assumendo che:1. $x$ sia estratto a caso dalla distribuzione marginale $$ p(x)=\int_{D_y} p(x,y)dy $$2. il relativo valore corretto da predire sia estratto a caso dalla distribuzione condizionata $$p(y\mid x)=\frac{p(x,y)}{p(x)}$$3. il costo sia rappresentato dalla funzione $L(x_1,x_2)$ Esempio Consideriamo il caso in cui vogliamo effettuare previsioni sulla possibilità di pioggia in giornata, date le condizioni del cielo al mattino, assumendo che le possibili osservazioni siano "sereno" (S), "nuvoloso" (N), "coperto" (C), e che le previsioni siano "pioggia" (T) e "non pioggia" (F). La funzione di costo, sarà allora del tipo $L:\{T,F\}^2\mapsto\mathbb{R}$La definizione di una particolare funzione di costo è legata alla valutazione delle priorità dell'utente. Nel caso specifico, se si valuta allo stesso modo "sgradevole" uscire con l'ombrello (per una previsione T) senza poi doverlo usare che bagnarsi per la pioggia non avendo preso l'ombrello (per una previsione F) allora la funzione di costo risulta $L_1(x_1,x_2)$, definita dalla tabella seguente| $x_1$/$x_2$ | T | F || :---------: | :--: | :--: || T | 0 | 1 || F | 1 | 0 |Se invece reputiamo molto più sgradevole bagnarci per non aver preso l'ombrello rispetto a prendere l'ombrello stesso inutilmente, allora la funzione di costo $L_2(x_1,x_2)$, potrà essere definita come| $x_1$/$x_2$ | T | F || :---------: | :--: | :--: || T | 0 | 1 || F | 25 | 0 |Se facciamo l'ipotesi che la distribuzione congiunta su $\{S,N,C\}\times\{T,F\}$ sia | $x$/$y$ | T | F || :-----: | :--: | :--: || S | .05 | .2 || N | .25 | .25 || C | .2 | .05 |e consideriamo due possibili funzioni predittive $f_1(x)$ e $f_2(x)$| $x$ | $f_1(x)$ | $f_2(x)$ || :--: | :--------------------: | :------: || S | &nbsp; &nbsp; F &nbsp; &nbsp; &nbsp; | &nbsp; &nbsp; F &nbsp; &nbsp; &nbsp; || N | &nbsp; &nbsp; F | &nbsp; &nbsp; T || C | &nbsp; &nbsp; T | &nbsp; &nbsp; T |possiamo verificare che nel caso in cui la funzione di costo sia $L_1$ allora il rischio nei due casi è $\mathcal{R}(f_1)=0.65$ e $\mathcal{R}(f_2)=0.4$ per cui $f_2$ è preferibile a $f_1$. Al contrario, se la funzione di costo è $L_2$, allora risulta $\mathcal{R}(f_1)=1.55$ e $\mathcal{R}(f_2)=7.55$, per cui, al contrario, $f_1$ è preferibile a $f_2$.Come si vede, quindi, la scelta tra $f_1(x)$ e $f_2(x)$ è dipendente dalla funzione di costo adottata e dalla distribuzione $p(x,y)$ che invece è data e, tra l'altro, sconosciuta. Quindi, una diversa distribuzione potrebbe portare a conclusioni diverse anche considerando una stessa funzione di costo: se ad esempio si fa riferimento alla funzione di costo $L_1$, allora la distribuzione congiunta| $x$/$y$ | T | F || :-----: | :--: | :--: || S | .05 | .05 || N | .05 | .4 || C | .05 | .4 |determina dei valori di rischio $\mathcal{R}(f_1)=0.6$ e $\mathcal{R}(f_2)=0.9$, rendendo ora $f_1$ preferibile a $f_2$. Rischio empiricoDato che la distribuzione reale $p(x,y)$ è sconosciuta per ipotesi (se così non fosse potremmo sempre effettuare predizioni utilizzando la distribuzione condizionata reale $p(y\mid x)$) il calcolo del rischio reale è impossibile ed è necessario effettuare delle approssimazioni, sulla base dei dati disponibili. In particolare, possiamo applicare il metodo standard di utilizzando la media aritmetica su un campione come stimatore del valore atteso, e considerare il *rischio empirico* (empirical risk) calcolato effettuando l'operazione di media sul campione offerto dai dati disponibili nel training set $X=\{(x_1,y_1),\ldots,(x_n,y_n)\}$$$\overline{\mathcal{R}}(f; X)=\overline{L}(f(x), y; X)=\frac{1}{n}\sum_{i=1}^nL(f(x_i),y_i)$$La funzione utilizzata per le predizioni sarà allora quella che, nell'insieme di funzioni considerato, minimizza il rischio empirico$$f^*=\underset{f\in F}{\mathrm{argmin}}\;\overline{\mathcal{R}}(f;X)$$Si noti che, in effetti, il rischio empirico dipende sia dai dati in $X$ che dalla funzione $f$: in questo senso è una funzione rispetto a $X$ e un funzionale rispetto a $f$. La ricerca di $f^*$ comporta quindi una minimizzazione funzionale del rischio empirico. In generale, tale situazione viene semplificata limitando la ricerca all'interno di classi di funzioni definite da coefficienti: in questo modo, il rischio empirico può essere espresso come funzione dei coefficienti della funzione (oltre che di $X$) e la minimizzazione è una normale minimizzazione di funzione. Chiaramente, la speranza è che minimizzare il rischio empirico dia risultati simili a quelli che si otterrebbero minimizzando il rischio reale. Ciò dipende, in generale, da quattro fattori:- La dimensione del training set $X$. Al crescere della quantità di dati, $\overline{\mathcal{R}}(f; X)$ tende a $\mathcal{R}(f)$ per ogni funzione $f$- La distribuzione reale $p(x,y)$. Maggiore è la sua complessità, maggiore è la quantità di dati necessari per averne una buona approssimazione.- La funzione di costo $L$, che può creare problemi se assegna costi molto elevati in situazioni particolari e poco probabili- L'insieme $F$ delle funzioni considerate. Se la sua dimensione è elevata, e le funzioni hanno una struttura complessa, una maggior quantità di dati risulta necessaria per avere una buona approssimazione.Al tempo stesso, considerare un insieme piccolo di funzioni semplici rende sì la minimizzazione del rischio implicito su $F$ una buona approssimazione del minimo rischio reale su $F$ stesso, ma al tempo stesso comporta che tale minimo possa essere molto peggiore di quello ottenibile considerando classi più ampie di funzioni. Minimizzazione della funzione di rischio In generale, l'insieme $F$ delle funzioni è definito in modo parametrico $F=\{f(x;\theta)\}$ dove $\theta\in D_\theta$ è un coefficiente (tipicamente multidimensionale) che determina, all'interno della classe $F$ (definita tipicamente in termini ''strutturali'') la particolare funzione utilizzata. Un esempio tipico è offerto dalla *regressione lineare*, in cui si vuole prevedere il valore di un attributo $y$ con dominio $R$ sulla base dei valori di altri $m$ attributi $x_1,\ldots, x_m$ (che assumiamo per semplicità in $R$ anch'essi): nella regressione lineare, l'insieme delle possibili funzioni $f:R^m\mapsto R$ è limitato alle sole funzioni lineari $f_\mathbf{w}(x)=w_0+w_1x_1+\ldots+w_mx_m$, e il parametro $\theta$ corrisponde al vettore $\mathbf{w}=(w_0,\ldots,w_m)$ dei coefficienti.In questo caso, il rischio empirico, fissata la famiglia $F$ di funzioni, può essere ora inteso come funzione di $\theta$$$\overline{\mathcal{R}}(\theta; X)=\overline{L}(f(x;\theta), y; X)=\frac{1}{n}\sum_{i=1}^nL(f(x_i;\theta),y_i)\hspace{2cm}f\in F$$e la minimizzazione del rischio empirico può essere effettuata rispetto a $\theta$$$\theta^*=\underset{\theta\in D_\theta}{\mathrm{argmin}}\;\overline{\mathcal{R}}(\theta;X)$$da cui deriva la funzione ottima (nella famiglia $F$) $f^*=f(x;\theta^*)$la minimizzazione della funzione di rischio avrà luogo nel dominio di definizione $D_\theta$ di $\theta$, e potrà essere effettuata in modi diversi, in dipendenza della situazione e di considerazioni di efficienza di calcolo e di qualità delle soluzioni derivate. Ricerca analitica dell'ottimoSe il problema si pone in termini di minimizzazione *senza vincoli*, e quindi all'interno di $R^m$, un primo approccio è quello standard dell'analisi di funzioni, consistente nella ricerca di valori $\overline\theta$ di $\theta$ per i quali si annullano tutte le derivate parziali $\frac{\partial \overline{\mathcal{R}}(\theta; X)}{\partial \theta_i}$, tale cioè che, se indichiamo con $m$ la dimensione (numero delle componenti) di $\theta$, il sistema su $m$ incognite definito dalle $m$ equazioni $$\frac{\partial \overline{\mathcal{R}}(\theta; X)}{\partial \theta_i}\Bigr|_{\theta=\overline\theta}=0\hspace{2cm} i=1,\ldots,m$$risulta soddisfatto. La soluzione analitica di questo sistema risulta tipicamente ardua o impossibile, per cui vengono spesso adottate tecniche di tipo numerico. Gradient descentLa discesa del gradiente (*gradient descent*) è una delle tecniche di ottimizzazione più popolari, in particolare nel settore del Machine Learning e delle Reti Neurali. La tecnica consiste nel minimizzare una funzione obiettivo $J(\theta)$ definita sui parametri $\theta\in\mathbb{R}^d$ del modello mediante aggiornamenti successivi del valore di $\theta$ (a partire da un valore iniziale $\theta^{(0)}$) nella direzione opposta a quella del valore attuale del gradiente $J'(\theta)=\nabla J(\theta)$. Si ricorda, a tale proposito, che, data una funzione $f(x_1,x_2,\ldots,x_d)$, il gradiente $\nabla f$ di $f$ è il vettore $d$-dimensionale delle derivate di $f$ rispetto alle variabili $x_1,\ldots, x_d$: il vettore cioè tale che $[\nabla f]_i=\frac{\partial f}{\partial x_i}$. Un parametro $\eta$, detto *learning rate* determina la scala degli aggiornamenti effettuati, e quindi la dimensione dei passi effettuati nella direzione di un minimo locale.Possiamo interpretare la tecnica come il muoversi sulla superficie della funzione $J(\theta)$ seguendo sempre la direzione di massima pendenza verso il basso, fino a raggiungere un punto da cui è impossibile scendere ulteriormente. Varianti di discesa del gradienteIn molti casi, e sempre nell'ambito del ML, la funzione obiettivo corrisponde all'applicazione di una funzione di costo (*loss function*), predefinita e dipendente dal modello adottato, su un insieme dato di elementi di un dataset $X=(x_1,\ldots, x_n)$ (che nel caso di apprendimento supervisionato è un insieme di coppie $X=((x_1,t_1),\ldots,(x_n,t_n))$): rappresentiamo questa situazione con $J(\theta; X)$. Questo corrisponde all'approssimazione del *rischio* $$\mathcal{R}(\theta)=\int J(\theta,x)p(x)dx=E_{p}[\theta]$$In generale, la funzione di costo è definita in modo additivo rispetto agli elementi di $X$ (il costo relativo all'insieme $X$ è pari alla somma dei costi relativi ai suoi elementi), per cui il valore risulta $J(\theta;X)=\sum_{i=1}^nJ(\theta;x_i)$, o preferibilmente, per evitare una eccessiva dipendenza dal numero di elementi, come media $$J(\theta;X)=\frac{1}{n}\sum_{i=1}^nJ(\theta;x_i)$$ Si noti che, per le proprietà dell'operazione di derivazione, da questa ipotesi deriva l'additività anche del gradiente, per cui $$J'(\theta; X)=\sum_{i=1}^nJ'(\theta;x_i)$$ o $$J'(\theta;X)=\frac{1}{n}\sum_{i=1}^nJ'(\theta;x_i)$$Possiamo allora identificare tre varianti del metodo, che differiscono tra loro per la quantità di elementi di $X$ utilizzati, ad ogni passo, per calcolare il gradiente della funzione obiettivo. Una quantità maggiore di dati utilizzati aumenta l'accuratezza dell'aggiornamento, ma anche il tempo necessario per effettuare l'aggiornamento stesso (in particolare, per valutare il gradiente per il valore attuale di $\theta$). Batch gradient descentIn questo caso, il gradiente è valutato, ogni volta, considerando tutti gli elementi nel training set $X$. Quindi si ha che al passo $k$-esimo viene eseguito l'aggiornamento$$\theta^{(k+1)}=\theta^{(k)}-\eta\sum_{i=1}^nJ'(\theta^{(k)};x_i)$$ o anche, per i singoli coefficienti$$\theta_j^{(k+1)}=\theta_j^{(k)}-\eta\sum_{i=1}^n\frac{\partial J(\theta;x_i)}{\partial\theta_j}\Bigr\vert_{\small\theta=\theta^{(k)}}$$Dato che si richiede quindi, ad ogni iterazione, la valutazione del gradiente (con il valore attuale $\theta^{(k)}$ di tutti i coefficienti) su tutti gli elementi di $X$, questa soluzione tende ad essere molto lenta, soprattutto in presenza di dataset di dimensioni molto estese, come nel caso di reti neurali complesse e deep learning. Inoltre, l'approccio diventa del tutto impraticabile se il dataset è talmente esteso da non entrare neanche in memoria.In termini di codice, il metodo batch gradient descent si presenta come:```pythonfor i in range(n_epochs): g = 0 for k in range(dataset_size): g = g+evaluate_gradient(loss_function, theta, X[k]) theta = theta-eta*g```Il ciclo viene eseguito un numero di volte pari al numero di epoche, dove per *epoca* si intende una iterazione su tutti glielementi di $X$. Di conseguenza, la valutazione di $\theta$ viene aggiornata un numero di volte pari al numero di epoche. Ilmetodo batch gradient descent converge certamente al minimo globale se la funzione $J(\theta)$ è convessa, mentre altrimenticonverge a un minimo locale. EsempioApplichiamo le considerazioni a un semplice problema di classificazione su un dataset bidimensionale, riportato graficamente di seguito. ###Code data = pd.read_csv("../dataset/testSet.txt", delim_whitespace=True, header=None, names=['x1','x2','t']) plot_ds(data) n = len(data) nfeatures = len(data.columns)-1 X = np.array(data[['x1','x2']]) t = np.array(data['t']).reshape(-1,1) X = np.column_stack((np.ones(n), X)) ###Output _____no_output_____ ###Markdown Il metodo considerato per la classificazione è la *logistic regression*, che determina un iperpiano (retta, in questo caso) di separazione minimizzando rispetto al vettore $\theta$ dei coefficienti dell'equazione dell'iperpiano (3 in questo caso) il rischio empirico sul dataset associato alla funzione di costo *cross-entropy*, per la quale il costo associato a un singolo elemento $x=(x_1,\ldots,x_d)$ è$$ J(\theta, x)=-\left(t\log y + (1-t)\log (1-y)\right) $$dove $t$ è il valore *target* è il valore $0/1$ della classe dell'elemento e $y\in (0,1)$ è il valore predetto dal modello, definito come $$y = \sigma(x) = \frac{1}{1+e^{-\sum_{i=1}^d\theta_ix_i+\theta_0}}$$ ###Code def sigma(theta, X): return sp.expit(np.dot(X, theta)) ###Output _____no_output_____ ###Markdown Il rischio empirico associato all'intero dataset può essere allora definito come la corrispondente media$$J(\theta, X)=\frac{1}{n}\sum_{i=1}^n \left(t_i\log \sigma(x_i) -(1-t_i)\log (1-\sigma(x_i))\right)$$ ###Code def approx_zero(v): eps = 1e-50 v[v<eps]=eps return v def cost(theta, X, t): eps = 1e-50 v = sigma(theta,X) v[v<eps]=eps term1 = np.dot(np.log(v).T,t) v = 1.0 - sigma(theta,X) v[v<eps]=eps term2 = np.dot(np.log(v).T,1-t) return ((-term1 - term2) / len(X))[0] ###Output _____no_output_____ ###Markdown Il gradiente della funzione di costo risulta allora pari a\begin{align*}\frac{\partial J(\theta,x)}{\partial\theta_i}&=-(t-\sigma(x))x_i\hspace{1cm}i=1,\ldots,d\\\frac{\partial J(\theta,x)}{\partial\theta_0}&=-(t-\sigma(x))\end{align*}e il corrispondente gradiente del rischio empirico è dato da \begin{align*}\frac{\partial J(\theta,X)}{\partial\theta_i}&=-\frac{1}{n}\sum_{j=1}^n (t_j-\sigma(x_j))x_{ji}\hspace{1cm}i=1,\ldots,d\\\frac{\partial J(\theta,X)}{\partial\theta_0}&=-\frac{1}{n}\sum_{i=1}^n(t_j-\sigma(x_j))\end{align*} ###Code def gradient(theta, X, t): return -np.dot(X.T, (t-sigma(theta, X))) / len(X) ###Output _____no_output_____ ###Markdown Per quanto detto, una iterazione di BGD corrisponde agli aggiornamenti\begin{align*}\theta_j^{(k+1)}&=\theta_j^{(k)}-\eta\frac{\partial J(\theta,X)}{\partial\theta_j}{\LARGE\vert}_{\small\theta=\theta^{(k)}}=\theta_j^{(k)}+\frac{\eta}{n}\sum_{i=1}^n (t_i-\sigma(x_i))x_{ij}\hspace{1cm}j=1,\ldots,d\\\theta_0^{(k+1)}&=\theta_0^{(k)}-\eta\frac{\partial J(\theta,X)}{\partial\theta_0}{\LARGE\vert}_{\small\theta=\theta^{(k)}}=\theta_0^{(k)}+\frac{\eta}{n}\sum_{i=1}^n(t_i-\sigma(x_i))\end{align*} ###Code def batch_gd(X, t, eta = 0.1, epochs = 10000): theta = np.zeros(nfeatures+1).reshape(-1,1) theta_history = [] cost_history = [] for k in range(epochs): theta = theta - eta * gradient(theta,X,t) theta_history.append(theta) cost_history.append(cost(theta, X, t)) theta_history = np.array(theta_history).reshape(-1,3) cost_history = np.array(cost_history).reshape(-1,1) m = -theta_history[:,1]/theta_history[:,2] q = -theta_history[:,0]/theta_history[:,2] return cost_history, theta_history, m, q ###Output _____no_output_____ ###Markdown Applicando il metodo sul dataset, fissando un valore per il parametro $\eta$ e per il numero di epoche (dove una epoca corrisponde all'applicazione dell'iterazione su tutti gli elementi del dataset), otteniamo le sequenze dei costi e dei valori di coefficiente angolare e termine noto della retta di separazione. ###Code cost_history, theta_history, m, q = batch_gd(X, t, eta = 0.1, epochs = 100000) ###Output _____no_output_____ ###Markdown La convergenza regolare del metodo è evidente nella figura seguente, dove si mostrano un andamento tipico della funzione di costorispetto al numero di iterazioni e la sequenza di valori assunti da $\theta$, considerata bidimensionale. ###Code low, high, step = 0, 5000, 10 plot_all(cost_history, m, q, low, high, step) m_star = 0.62595499 q_star = 7.3662299 f = lambda i: np.sqrt((m_star-m[i])**2+(q_star-q[i])**2) dist = np.array([f(i) for i in range(len(m))]) np.argmin(dist>1e-2)+1 ###Output _____no_output_____ ###Markdown Di seguito, la retta di separazione risultante: ###Code plot_ds(data,m[-1],q[-1]) ###Output _____no_output_____ ###Markdown Stochastic gradient descentNella stochastic gradient descent, a differenza del caso precedente, la valutazione del gradiente effettuata ad ogni iterazione fa riferimento a un solo elemento $x_i$ del training set. Quindi si ha $$\theta^{(k+1)}=\theta^{(k)}-\eta J'(\theta^{(k)};x_i)$$e, per i singoli coefficienti,$$\theta_j^{(k+1)}=\theta_j^{(k)}-\eta\frac{\partial J(\theta;x_i)}{\partial\theta_j}\LARGE\vert_{\small\theta=\theta^{(k)}}$$ La discesa del gradiente batch valuta il gradiente per tutti gli elementi, anche quelli simili tra loro, a ogni iterazione,eseguendo così un insieme ridondante di operazioni. SGD risolve questo problema effettuando una sola valutazione, e quindioperando in modo più veloce.Al tempo stesso, però, mentre i valori della funzione di costo nel caso di BGD decrescono con regolarità verso il minimo locale,applicando SGD si riscontra un andamento molto più irregolare, con fluttuazione della funzione di costo intorno a un trendcomplessivo di decrescita, ma con incrementi locali anche significativi. Questo da un lato può non risultare negativo, in quantole oscillazioni locali posso consentire di uscire dall'intorno di un minimo locale, proseguendo la ricerca di nuovi minimi. Altempo stesso, l'oscillazione locale rende difficile la convergenza finale verso il minimo.Questa oscillazione si riscontra anche nell'andamento dei valori dei coefficienti. Si noti comunque che, considerando la sequenza dei valori della funzione di costo assunti al termine di ogni *epoca* (sequenzadelle iterazioni che considerano tutti gli elementi del dataset), emerge la tendenza di decrescita di fondo. In termini di codice, il metodo stochastic gradient descent si presenta come:```pythonfor i in range(n_epochs): np.random.shuffle(data) for k in range(dataset_size): g = evaluate_gradient(loss_function, theta, X[k]) theta = theta-eta*g```Nel caso della logistic regression, l'aggiornamento a ogni iterazione risulta quindi\begin{align*}\theta_j^{(k+1)}&=\theta_j^{(k)}+\eta(t_i-\sigma(x_i))x_{ij}\hspace{1cm}j=1,\ldots,d\\\theta_0^{(k+1)}&=\theta_0^{(k)}+\eta(t_i-\sigma(x_i))\end{align*} ###Code def stochastic_gd(X, t, eta = 0.01, epochs = 1000): theta = np.zeros(nfeatures+1).reshape(-1,1) theta_history = [] cost_history = [] for j in range(epochs): for i in range(n): e = (t[i] - sigma(theta, X[i,:]))[0] theta = theta + eta * e * X[i,:].reshape(-1,1) theta_history.append(theta) cost_history.append(cost(theta, X, t)) theta_history = np.array(theta_history).reshape(-1,3) cost_history = np.array(cost_history).reshape(-1,1) m = -theta_history[:,1]/theta_history[:,2] q = -theta_history[:,0]/theta_history[:,2] return cost_history, theta_history, m, q ###Output _____no_output_____ ###Markdown Applicando il metodo è necessario ancora specificare il valore di $\theta$ e il numero di epoche. Per la struttura dell'algoritmo, si avranno allora un numero di iterazioni pari al numero di epoche moltiplicato per la dimensionae $n$ del dataset. ###Code cost_history, theta_history, m, q = stochastic_gd(X, t, eta = 0.01, epochs = 10000) low, high, step = 0*n, 150*n, 30 plot_all(cost_history, m, q, low, high, step) dist = np.array([f(i) for i in range(len(m))]) np.argmin(dist>1e-2)+1 plot_ds(data,m[-1],q[-1]) ###Output _____no_output_____ ###Markdown Come si può vedere dalla figura seguente, considerando i valori di costo e dei coefficienti soltanto alla fine delle varie epoche risulta una andamento uniforme dei valori stessi. ###Code low, high, step = 0*n, 1000*n, n plot_all(cost_history, m, q, low, high, step) ###Output _____no_output_____ ###Markdown Mini-batch gradient descentQuesto approccio si pone in posizione intermedia rispetto ai due precedenti, generalizzando l'impostazione di SGD di considerare un solo elemento per iterazione a considerare sottoinsiemi diversi del dataset. L'algoritmo opera quindi partizionando, all'inizio di ogni epoca, il dataset in $\lceil n/s\rceil$ sottoinsiemi (*mini-batch*) di dimensione prefissata $s$, ed effettuando poi $\lceil n/s\rceil$ iterazioni all'interno di ognuna delle quali l'aggiornamento di $\theta$ viene effettuato valutando il gradiente sugli $s$ elementi del mini-batch attuale.La discesa del gradiente con mini-batch è l'algoritmo tipicamente utilizzato per l'addestramento di reti neurali, in particolare in presenza di reti *deep*.Se indichiamo con $X_i\subset X$ il mini-batch attualmente considerato, l'aggiornamento a ogni iterazione è il seguente$$\theta^{(k+1)}=\theta^{(k)}-\eta\sum_{x\in X_i}J'(\theta^{(k)};x)$$o anche$$\theta_j^{(k+1)}=\theta_j^{(k)}-\eta\sum_{x\in X_i}\frac{\partial J(\theta;x)}{\partial\theta_j}\LARGE\vert_{\small\theta=\theta^{(k)}}$$In questo modo, la varianza degli aggiornamenti dei coefficienti viene diminuita. Inoltre, è possibile fare uso, in pratica, di implementazioni molto efficienti del calcolo del gradiente rispetto a un mini-batch disponibili nelle più recenti librerie per il *deep learning*. La dimensione dei mini-batch varia tra $50$ e $256$.```pythonfor i in range(n_epochs): np.random.shuffle(data) for batch in get_batches(dataset, batch_size): g = 0 for x in batch: g = g+evaluate_gradient(loss_function, theta, batch) theta = theta-eta*g```Ne risulta un andamento oscillante sia della funzione di costo che dei valori stimati dei coefficienti. Chiaramente, l'oscillazione sarà tanto più marcata quanto minore è la dimensione dei mini-batch, e quindi quanto più si tende a SGD.![Andamento di costo e soluzione durante l'applicazione di gradient descent con mini batch.](assets/mbgd_all.jpg)Gli aggiornamenti nel caso della logistic regression derivano immediatamente da quanto sopra \begin{align*} \theta_j^{(k+1)}&=\theta_j^{(k)}+\eta\sum_{x_i\in MB}( t_i-y_i)x_{ij}\hspace{1cm}j=1,\ldots,d\\ \theta_0^{(k+1)}&=\theta_0^{(k)}+\eta\sum_{x_i\in MB}(t_i-y_i) \end{align*} ###Code def mb_gd(X, t, eta = 0.01, epochs = 1000, minibatch_size = 5): mb = int(np.ceil(float(n)/minibatch_size)) idx = np.arange(0,n) np.random.shuffle(idx) theta = np.zeros(nfeatures+1).reshape(-1,1) theta_history = [] cost_history = [] cost_history_iter = [] for j in range(epochs): for k in range(mb-1): g = 0 for i in idx[k*minibatch_size:(k+1)*minibatch_size]: e = (t[i] - sigma(theta, X[i,:]))[0] g = g + e * X[i,:] theta = theta + eta * g.reshape(-1,1) theta_history.append(theta) cost_history.append(cost(theta, X, t)) g = 0 for i in idx[k*minibatch_size:n]: e = (t[i] - sigma(theta, X[i,:]))[0] g = g + e * X[i,:] theta = theta + eta * g.reshape(-1,1) theta_history.append(theta) cost_history.append(cost(theta, X, t)) theta_history = np.array(theta_history).reshape(-1,3) cost_history = np.array(cost_history).reshape(-1,1) m = -theta_history[:,1]/theta_history[:,2] q = -theta_history[:,0]/theta_history[:,2] return cost_history, m, q cost_history, m, q = mb_gd(X, t, eta = 0.01, epochs = 10000, minibatch_size = 5) low, high, step = 0, 5000, 10 plot_all(cost_history, m, q, low, high, step) dist = np.array([f(i) for i in range(len(m))]) np.argmin(dist>1e-2)+1 plot_ds(data,m[-1],q[-1]) ###Output _____no_output_____ ###Markdown CriticitàI metodi elementari di discesa del gradiente illustrati sopra non garantiscono in generale una elevata convergenza. Inoltre, il loro utilizzo pone un insieme di questioni- la scelta del valore del learning rate $\eta$ può risultare difficile. Un valore troppo piccolo può comportare una convergenza eccessivamente lenta, mentre un valore troppo grande può portare ad oscillazioni intorno al minimo, o addirittura a divergenza- per ovviare a questa problematica è possibile utilizzare dei metodi di aggiustamento di $\eta$ nel tempo, ad esempio riducendolo secondo uno schema predefinito o quando il decremento della funzione di costo calcolata in due epoche successive risulti inferiore a una soglia data. Sia gli schemi che le soglie devono però essere predefiniti e non possono quindi adattarsi in dipendenza delle caratteristiche del dataset- lo stesso learning rate si applica per l'aggiornamento di tutti i coefficienti- in molti casi la funzione di costo, in particolare se si ha a che fare con reti neurali, risulta fortemente non convessa, caratterizzata quindi da numerosi minimi locali e da punti di sella. I metodi considerati possono avere difficoltà a uscire da situazioni di questo tipo, e in particolare dai punti di sella, spesso circondati da regioni a gradiente molto limitato. MomentoI metodi precedenti risultano poco efficienti in situazioni in cui la funzione di costo varia in modo molto diverso al variare della direzione considerata (ad esempio se si hanno valli che discendono lentamente e con pareti laterali ripide). In questo caso, infatti, gli algoritmi precedenti procedono molto lentamente in direzione del minimo, oscillando in modo sostanziale nella direzione trasversale ad essa: questa situazione è illustrata a sinistra nella figura sottostante.Il *metodo del momento* fa riferimento ad una interpretazione fisica del metodo di ottimizzazione, in cui il processo di discesa del gradiente viene visto come lo spostamento di un corpo di massa $m=1$ che si muove sulla superficie della funzione di costo $J(\theta)$ soggetto a una forza peso $F(\theta)=-\nabla U(\theta)$, dove $U(\theta)=\eta h(\theta)=\eta J(\theta)$ è l'energia potenziale del corpo nella posizione $\theta$ (si assume quindi che la costante fisica $g$ relativa alla forza peso $F=-mgh$ sia pari a $\eta$). In questo modello, il valore negativo del gradiente $-\eta J'(\theta)$ è quindi pari al vettore forza (e accelerazione, in quanto $a=\frac{F}{m}$) del corpo nel punto $\theta$. Nel metodo della discesa del gradiente, si assume che lo spostamento del corpo in un certo punto $\theta$ sia determinato dalla accelerazione calcolata nello stesso punto, e quindi dal gradiente $J'(\theta)$, in quanto vale la regola di aggiornamento $\theta^{(k+1)}=\theta^{(k)}-\eta J'(\theta^{(k)})$. Nel metodo del momento, si fa riferimento a un modello più consistente con la realtà fisica di un corpo che si muove su una superficie soggetto alla forza peso, modello che prevede di utilizzare il concetto di velocità $v(\theta)$. In questo modello, lo spostamento del corpo a partire da un certo punto $\theta$ è determinato dalla velocità calcolata nello stesso punto $\theta^{(k+1)}=\theta^{(k)}+v^{(k+1)}$, dove la variazione di velocità è data dalla accelerazione $v^{(k+1)}=v^{(k)}-\eta J'(\theta^{(k)})$. Come si può osservare, si ha che\begin{align*}v^{(k+1)}&=-\eta J'(\theta^{(k)})+v^{(k)}=-\eta J'(\theta^{(k)})-\eta J'(\theta^{(k-1)})+v^{(k-1)}=\cdots=-\eta\sum_{i=0}^kJ'(\theta^{(i)})+v^{(0)}\\\theta^{(k+1)}&=\theta^{(k)}+v^{(k+1)}=\theta^{(k)}-\eta\sum_{i=0}^kJ'(\theta^{(i)})+v^{(0)}\end{align*}che corrisponde all'associare lo spostamento alla somma (integrale nel caso della fisica) delle accelerazioni passate. ![Effetto dell'introduzione di momento nell'andamento del costo durante l'applicazione di gradient descent.](assets/momentum.jpg)Il riferimento a questo modello porta l'algoritmo a tendere ad ogni passo a mantenere, almeno in parte, la direzione del passo precedente (in quanto $v^{(k+1)}=-\eta J'(\theta^{(k)})+v^{(k)})$, premiando le direzioni che si manifestano con costanza in una sequenza di passi. Ne deriva il comportamento a destra della figura precedente, in cui l'inerzia nella direzione del minimo porta a una limitazione delle oscillazioni.Si noti che ciò non avviene nella discesa del gradiente, in cui si ha $v^{(k+1)}=-\eta J'(\theta^{(k)})$.Matematicamente, l'effetto di inerzia viene ottenuto sottraendo alla velocità (vettoriale) calcolata al passo precedente la valutazione del gradiente effettuata nella corrispondente posizione. Il gradiente viene sottratto in quanto, mantenendo la corrispondenza con la meccanica di , un gradiente positivo tende a ridurre la velocità.Il metodo del momento utilizza tipicamente un secondo parametro $\gamma$, che determina la frazione di $v^{(k)}$ che permane nella definizione di $v^{(k+1)}$, e che svolge la funzione (fisicamente) di un coefficiente di attrito. Si ottiene quindi la formulazione:\begin{align*}v^{(k+1)}&=\gamma v^{(k)} -\eta\sum_{i=1}^nJ'(\theta^{(k)};x_i)\\\theta^{(k+1)}&=\theta^{(k)}+v^{(k+1)}\end{align*}Il metodo del momento ad ogni passo determina inizialmente il vettore di spostamento attuale, a partire da quello al passo precedente e dal gradiente di $\theta$: il contributo relativo dei due termini è pesato dalla coppia di parametri $\gamma$ e $\eta$. Lo spostamento calcolato viene quindi applicato al valore attuale di $\theta$ (il segno meno deriva come sempre dal fatto che stiamo assumendo di cercare un minimo locale).Se il gradiente è orientato nella stessa direzione della velocità attuale, tale velocità viene incrementata, per cui l'aggiornamento di $\theta$ diviene maggiore, incrementandosi man mano che la direzione di spostamento rimane coerente con il gradiente nei punti attraversati.```pythonv = 0for i in range(n_epochs): g = 0 for k in range(dataset_size): g = g+evaluate_gradient(loss_function, theta, X[k]) v = gamma*v-eta*g theta = theta+v``` Come si può vedere, mentre $\theta^{(k)}=(\theta_1^{(k)},\ldots,\theta_d^{(k)})^T$ è la valutazione della soluzione ottima al passo $k$, $v^{(k)}=(v_1^{(k)},\ldots,v_d^{(k)})^T$ è l'aggiornamento applicato a tale valore per ottenere $\theta^{(k+1)}$: possiamo vedere quindi $v$ come il vettore velocità di spostamento di $\theta$ nello spazio delle soluzioni.Come già illustrato sopra, possiamo esprimere l'aggiornamento nel modo seguente, evidenziando come esso dipenda dal gradiente calcolato in tutte le posizioni precedentemente attraversate, con un effetto che va a diminuire esponenzialmente con $\gamma$ man mano che si risale nel passato. Assumendo $v^{(0)}=0$:\begin{align*}\theta^{(k+1)}&=\theta^{(k+1)}+v^{(k+1)}= \theta^{(k)}+\gamma v^{(k)}-\eta\sum_{i=1}^nJ'(\theta^{(k)};x_i)=\theta^{(k)}+\gamma^2 v^{(k-1)}-\gamma\eta\sum_{i=1}^nJ'(\theta^{(k-1)};x_i) -\eta\sum_{i=1}^nJ'(\theta^{(k)};x_i)\\&=\theta^{(k)}+\gamma^2 v^{(k-1)}-\eta\left(\sum_{i=1}^nJ'(\theta^{(k)};x_i)+\gamma\sum_{i=1}^nJ'(\theta^{(k-1)};x_i)\right)=\cdots=\theta^{(k)}-\eta\left(\sum_{j=0}^k\gamma^j\sum_{i=1}^nJ'(\theta^{(k-j)};x_i)\right)\end{align*}Gli aggiornamenti nel caso della logistic regression derivano immediatamente\begin{align*} v_j^{(k+1)}&=\gamma v_j^{(k)}+\frac{\eta}{n}\sum_{i=1}^n( t_i-\sigma(x_i))x_{ij}\hspace{1cm}j=1,\ldots,d\\ v_0^{(k+1)}&=\gamma v_0^{(k)}+\frac{\eta}{n}\sum_{i=1}^n(t_i-\sigma(x_i)) \\\theta_j^{(k+1)}&=\theta_j^{(k)}+v_j^{(k+1)}\hspace{1cm}j=0,\ldots,d\end{align*} ###Code def momentum_gd(X,t, eta = 0.1, gamma = 0.97, epochs = 1000): theta = np.zeros(nfeatures+1).reshape(-1,1) v = np.zeros(nfeatures+1).reshape(-1,1) theta_history = [] cost_history = [] for k in range(epochs): v = gamma*v - eta * gradient(theta,X,t) theta = theta + v theta_history.append(theta) cost_history.append(cost(theta, X, t)) theta_history = np.array(theta_history).reshape(-1,3) cost_history = np.array(cost_history).reshape(-1,1) m = -theta_history[:,1]/theta_history[:,2] q = -theta_history[:,0]/theta_history[:,2] return cost_history, m, q cost_history, m, q = momentum_gd(X, t, eta = 0.1, gamma = 0.97, epochs = 10000) low, high, step = 0, 5000, 10 plot_all(cost_history, m, q, low, high, step) dist = np.array([f(i) for i in range(len(m))]) np.argmin(dist>1e-2)+1 plot_ds(data,m[-1],q[-1]) ###Output _____no_output_____ ###Markdown Accelerazione del gradiente di NesterovNel metodo del momento, la conoscenza al passo $k$ di $\theta^{(k)}$ e di $v^{(k)}$ permette, senza calcolare il gradiente, di avere una valutazione approssimata $\tilde{\theta}^{(k+1)}=\theta^{(k)}+\gamma v^{(k)}$ di $$\theta^{(k+1)}=\theta^{(k)}+v^{(k+1)}=\theta^{(k)}+\gamma v^{(k)}-\eta\sum_{i=1}^nJ'(\theta^{(k)};x_i)=\tilde{\theta}^{(k+1)}-\eta\sum_{i=1}^nJ'(\theta^{(k)};x_i)$$Il metodo di Nesterov segue lo stesso approccio del metodo del momento, con la differenza che, ad ogni passo, la valutazione del gradiente viene effettuata, con un *look-ahead* approssimato, non nel punto attuale $\theta^{(k)}$ dello spazio delle soluzioni visitato ma, più o meno, nel punto successivo $\theta^{(k+1)}$ (approssimato da $\tilde{\theta}^{(k+1)}$). In questo modo, le variazioni di $v$ (e quindi di $\theta$) vengono anticipate rispetto a quanto avviene nel metodo del momento.\begin{align*}v^{(k+1)}&=\gamma v^{(k)} +\eta\sum_{i=1}^nJ'(\tilde{\theta}^{(k)};x_i)=\gamma v^{(k)} +\eta\sum_{i=1}^nJ'(\theta^{(k)}+\gamma v^{(k)};x_i)\\\theta^{(k+1)}&=\theta^{(k)}+v^{(k+1)}\end{align*}![Aggiornamento per momentum e per Nesterov.](assets/nesterov.png) ```pythonv = 0for i in range(n_epochs): g = 0 theta_approx = theta+gamma*v for k in range(dataset_size): g = g+evaluate_gradient(loss_function, theta_approx, X[k]) v = gamma*v-eta*g theta = theta+v``` ###Code def nesterov_gd(X,t, eta = 0.1, gamma = 0.97, epochs = 1000): theta = np.zeros(nfeatures+1).reshape(-1,1) v = np.zeros(nfeatures+1).reshape(-1,1) theta_history = [] cost_history = [] for k in range(epochs): v = gamma*v - eta * gradient(theta+gamma*v,X,t) theta = theta + v theta_history.append(theta) cost_history.append(cost(theta, X, t)) theta_history = np.array(theta_history).reshape(-1,3) cost_history = np.array(cost_history).reshape(-1,1) m = -theta_history[:,1]/theta_history[:,2] q = -theta_history[:,0]/theta_history[:,2] return cost_history, m, q cost_history, m, q = nesterov_gd(X, t, eta = 0.1, gamma = 0.97, epochs = 10000) low, high, step = 0, 5000, 10 plot_all(cost_history, m, q, low, high, step) dist = np.array([f(i) for i in range(len(m))]) np.argmin(dist>1e-2)+1 plot_ds(data,m[-1],q[-1]) ###Output _____no_output_____
uploads/EDA.ipynb
###Markdown Exploratory Data Analysis - EDAThis notebook reads in data created by INPUT_NN.ipynb and performs integrity checks as well as somesimple exploration prior to building a Neural Network.Two files are read in - the first are inputs which contain London and Tokyo index dataas inputs. The Nasdaq data is used as the target data.From INPUT_NN we know that the first two columns of nn_inputs correspond with LONDON exchange data.First Column is price change. Second Column is Trade Volume changeThird and fourth correspond to TOKYO exchange data.Similarly, 3rd column is price change. 4th Column is the associated Trade Volume Change.Target contains only one data type -price change (it is the only thing we're predicting) ###Code %autosave 0 import os print(os.getcwd()) from collections import Counter from datetime import datetime import matplotlib.pyplot as plt import pandas as pd import numpy as np np.set_printoptions(threshold=np.inf) # read output from INPUT_NN.ipynb inputs=np.load("nn_inputs" + '.npy') num_input_samples =inputs.shape[0] print("Number of samples in the input: %d" % num_input_samples) num_inputAttributes=inputs.shape[1] print("Number of Attributes in the input: %d" % num_inputAttributes) print("===========================") ''' for row in inputs: print(row) '''; targets=np.load("nn_targets" + '.npy') num_target_samples = targets.shape[0] print("Number of Samples in the Target file: %d" % num_target_samples) print("Note the shape of the target - it's a vector:") print(targets.shape) #print(targets) if num_target_samples != num_input_samples: print("ERROR: Number of input samples MUST equal the number of target samples to run the Neural Network! ") plt.hist(df_zip['price'], bins=20) plt.show() if include_volume: Symbol=INPUTS[0] test_volume_change= ('Vol_change_%s' % Symbol['label']) plt.plot(df_nn[test_volume_change]) plt.show() # Print info on the dataframe df_nn.info() # Fill in missing input data as 0s df_nn.fillna(value=0, inplace=True) df_nn.info() print(df_nn.columns) ###Output Index(['Change_LONDON', 'Vol_change_LONDON', 'Change_TOKYO', 'Vol_change_TOKYO', 'Target_change_NSDQ'], dtype='object') ###Markdown Now we're ready to convert our Dataframes into numpy arrays (matrices) and then plug them in a neural net. ###Code targets = df_nn[target_priceChange].values print("targets type is: ", type(targets) ) print(targets.shape) if target_priceChange in df_nn.columns: df_nn.drop(target_priceChange, axis=1, inplace=True) inputs = df_nn.values print(inputs.shape) print(inputs[0:5]) # Write them out...then read them back in to be sure. print("Writing out the following INPUT array: %s" % str(inputs.shape) ) np.save("nn_inputs", inputs) del inputs inputs=np.load("nn_inputs" + '.npy') print("Read Back: %s" % str(inputs.shape) ) print("Writing out the following TARGET array: %s" % str(targets.shape)) np.save("nn_targets", targets) del targets targets=np.load("nn_targets" + '.npy') print("Read Back: %s" % str(targets.shape) ) print("Done") ###Output Done
kaggle/notebooks/jsmp-basic-eda-starter.ipynb
###Markdown Data Loading ###Code %%time trainDf = pd.read_csv('/kaggle/input/jane-street-market-prediction/train.csv') ###Output _____no_output_____ ###Markdown Reducing Memory UsageI had trouble to use the dataset due to it using around 5GB of RAM just after being loaded. I found this function from [sbunzini](https://www.kaggle.com/sbunzini/reduce-memory-usage-by-75) to mitigate the issue. ###Code def reduce_memory_usage(df): start_memory = df.memory_usage().sum() / 1024**2 print(f"Memory usage of dataframe is {start_memory} MB") for col in df.columns: col_type = df[col].dtype if col_type != 'object': c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: pass else: df[col] = df[col].astype('category') end_memory = df.memory_usage().sum() / 1024**2 print(f"Memory usage of dataframe after reduction {end_memory} MB") print(f"Reduced by {100 * (start_memory - end_memory) / start_memory} % ") return df trainDf = reduce_memory_usage(trainDf) ###Output _____no_output_____ ###Markdown Data Preparation Removing columns that will not be used as feature for the training phase. ###Code dropCols = ["resp", "resp_1", "resp_2", "resp_3", "resp_4", "ts_id"] trainDf = trainDf.drop(columns=dropCols) ###Output _____no_output_____ ###Markdown Filling "na" with 0 for starter. It might be wiser to use some other techniques (imputing, mean, ...) but for a first version, this will do the job. ###Code trainDf.isnull().sum() trainDf.fillna(0, inplace=True) ###Output _____no_output_____ ###Markdown According to the data tab of the competition :> Trades with weight = 0 were intentionally included in the dataset for completeness, although such trades will not contribute towards the scoring evaluation.So, I make a slice without those rows before looking into the details. ###Code trainDfW = trainDf[trainDf["weight"] > 0] trainDfW.head() ###Output _____no_output_____ ###Markdown Data Exploration Basics ###Code trainDf.shape trainDfW.shape trainDfW.head() trainDfW.describe() ###Output _____no_output_____ ###Markdown Data Understanding Correlation Matrix ###Code %%time corrDfW = trainDfW.corr() fig, ax = plt.subplots(figsize=(25,25)) sn.heatmap(corrDfW, linewidths=.5, annot=False, ax=ax) plt.show() ###Output _____no_output_____ ###Markdown Although the matrix is quite heavy, it allows to identify some interesting clusters. Some features seems highly (positively or negatively) correlated. The next step would be to pinpoint those features and check from features.csv if they share the same tags... ToDo PCA ###Code %%time scaler = MinMaxScaler() scaledTrain = scaler.fit_transform(trainDfW) pca = PCA().fit(scaledTrain) exCumul = np.cumsum(pca.explained_variance_ratio_) px.area( x=range(1, exCumul.shape[0] + 1), y=exCumul, labels={"x": "# Components", "y": "Explained Variance"} ) ###Output _____no_output_____ ###Markdown Here, we can see that :* One of the component accounts for a third (36.9%) of the total variance* The threshold of 90% variance is explained by 8 components* The threshold of 95% variance is explained by 11 components ###Code pca = PCA(n_components=2) dfComp = pca.fit_transform(scaledTrain) total_var = pca.explained_variance_ratio_.sum() * 100 fig = px.scatter(dfComp, x=0, y=1, color=trainDfW['weight'], title=f'Total Explained Variance: {total_var:.3f}%', labels={'0': 'PC 1', '1': 'PC 2'}) fig.show() ###Output _____no_output_____ ###Markdown Now lets take a look of the two major principal components when we remove feature_0 from the dataset. ###Code dfNoF0 = trainDfW.drop("feature_0", 1) scaledTrainNoF0 = scaler.fit_transform(dfNoF0) pca = PCA(n_components=2) dfComp = pca.fit_transform(scaledTrainNoF0) total_var = pca.explained_variance_ratio_.sum() * 100 fig = px.scatter(dfComp, x=0, y=1, color=trainDfW['weight'], title=f'Total Explained Variance: {total_var:.3f}%', labels={'0': 'PC 1', '1': 'PC 2'}) fig.show() ###Output _____no_output_____
.ipynb_checkpoints/monkeyBread-checkpoint.ipynb
###Markdown Monkey Bread ###Code from SpectralCV import ecog_pipe as ep import numpy as np import scipy as sp import scipy.io as io import scipy.signal as sig import math as math import random from scipy import integrate import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D %matplotlib inline plt.style.use('seaborn-colorblind') plt.rcParams['image.cmap'] = 'RdBu' ###Output _____no_output_____ ###Markdown Baking all 4 loaves ###Code data_path1 ="\\Users\\Lauren\\Data\\NeuroTycho\\20120730PF_Anesthesia+and+Sleep_Chibi_Toru+Yanagawa_mat_ECoG128\\Session%d\\" data_path2 ="\\Users\\Lauren\\Data\\NeuroTycho\\20120802PF_Anesthesia+and+Sleep_Chibi_Toru+Yanagawa_mat_ECoG128\\Session%d\\" data_path3 ="\\Users\\Lauren\\Data\\NeuroTycho\\20120731PF_Anesthesia+and+Sleep_George_Toru+Yanagawa_mat_ECoG128\\Session%d\\" data_path4 ="\\Users\\Lauren\\Data\\NeuroTycho\\20120803PF_Anesthesia+and+Sleep_George_Toru+Yanagawa_mat_ECoG128\\Session%d\\" chan = 129 fs = 1000 nperseg = 500 noverlap = nperseg/2 #data1 = ep.monkeyBread(data_path1, chan, fs, nperseg, noverlap) #create h5py path to chibi bread import h5py scvh5 = h5py.File('scv.h5', 'a') monkey = scvh5['monkey'] monkey.create_dataset('chibiPF0730_2', data=ep.monkeyBread(data_path1, chan, fs, nperseg, noverlap)) monkey.create_dataset('chibiPF0802_2', data=ep.monkeyBread(data_path2, chan, fs, nperseg, noverlap)) monkey.create_dataset('georgePF0731_2', data=ep.monkeyBread(data_path3, chan, fs, nperseg, noverlap)) monkey.create_dataset('georgePF0803_2', data=ep.monkeyBread(data_path4, chan, fs, nperseg, noverlap)) scvh5.close() ###Output _____no_output_____ ###Markdown Using the data ###Code import matplotlib.pyplot as plt import h5py from SpectralCV import ecog_pipe as ep #load data from h5 h5_file = '../Voytek/scv.h5' def addattrs(dset, fs, nperseg, noverlap): dset.attrs['fs'] = fs dset.attrs['nperseg'] = nperseg dset.attrs['noverlap'] = noverlap with h5py.File(h5_file, 'a') as h5: dset = h5['monkey/chibiPF0730_05'] addattrs(dset, fs, nperseg, noverlap) dset = h5['monkey/chibiPF0802_05'] addattrs(dset, fs, nperseg, noverlap) dset = h5['monkey/georgePF0731_05'] addattrs(dset, fs, nperseg, noverlap) dset = h5['monkey/georgePF0803_05'] addattrs(dset, fs, nperseg, noverlap) with h5py.File(h5_file, 'a') as h5: print(h5['monkey/georgePF0803_2'].attrs['nperseg']) # plotting with h5py.File(h5_file, 'r') as h5: bread = h5['monkey/chibiPF0730_05k'] print(bread.shape) print(bread[0][1][:]) #for i in range(5): # plt.figure(i+1) # xaxis = np.arange(0,501,2) # plt.loglog(xaxis, bread[i][:][:].T) with h5py.File(h5_file, 'a') as h5: print([k for k in h5['monkey'].items()]) with h5py.File(h5_file, 'a') as h5: #del h5['monkey/georgePF0731_2'] #del h5['monkey/georgePF0731_05'] h5['monkey/georgePF0803_05'] = h5['monkey/georgePF0803_05k'] del h5['monkey/georgePF0803_05k'] ###Output _____no_output_____
analyses/SERV-1/Art-5min-ARIMA-p99.ipynb
###Markdown Time series forecasting using ARIMA Import necessary libraries ###Code %matplotlib notebook import numpy import pandas import datetime import sys import time import matplotlib.pyplot as ma import statsmodels.tsa.seasonal as st import statsmodels.tsa.arima_model as arima import statsmodels.tsa.stattools as tools ###Output /usr/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88 return f(*args, **kwds) ###Markdown Load necessary CSV file ###Code try: ts = pandas.read_csv('../../datasets/srv-1-art-5m.csv') except: print("I am unable to connect to read .csv file", sep=',', header=1) ts.index = pandas.to_datetime(ts['ts']) # delete unnecessary columns del ts['id'] del ts['ts'] del ts['min'] del ts['max'] del ts['sum'] del ts['cnt'] del ts['p50'] del ts['p95'] del ts['avg'] # print table info ts.info() ###Output <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 23727 entries, 2018-04-11 19:10:00 to 2018-07-16 11:45:00 Data columns (total 1 columns): p99 23727 non-null int64 dtypes: int64(1) memory usage: 370.7 KB ###Markdown Get values from specified range ###Code ts = ts['2018-06-16':'2018-07-15'] ###Output _____no_output_____ ###Markdown Remove possible zero and NA values (by interpolation)We are using MAPE formula for counting the final score, so there cannot occure any zero values in the time series. Replace them with NA values. NA values are later explicitely removed by linear interpolation. ###Code def print_values_stats(): print("Zero Values:\n",sum([(1 if x == 0 else 0) for x in ts.values]),"\n\nMissing Values:\n",ts.isnull().sum(),"\n\nFilled in Values:\n",ts.notnull().sum(), "\n") idx = pandas.date_range(ts.index.min(), ts.index.max(), freq="5min") ts = ts.reindex(idx, fill_value=None) print("Before interpolation:\n") print_values_stats() ts = ts.replace(0, numpy.nan) ts = ts.interpolate(limit_direction="both") print("After interpolation:\n") print_values_stats() ###Output Before interpolation: Zero Values: 0 Missing Values: p99 99 dtype: int64 Filled in Values: p99 8541 dtype: int64 After interpolation: Zero Values: 0 Missing Values: p99 0 dtype: int64 Filled in Values: p99 8640 dtype: int64 ###Markdown Plot values ###Code # Idea: Plot figure now and do not wait on ma.show() at the end of the notebook ma.ion() ma.show() fig1 = ma.figure(1) ma.plot(ts, color="blue") ma.draw() try: ma.pause(0.001) # throws NotImplementedError, ignore it except: pass ###Output _____no_output_____ ###Markdown Ignore timestamps, make the time series single dimensionalSince now the time series is represented by continuous single-dimensional Python list. ARIMA does not need timestamps or any irrelevant data. ###Code dates = ts.index # save dates for further use ts = [x[0] for x in ts.values] ###Output _____no_output_____ ###Markdown Split time series into train and test seriesWe have decided to split train and test time series by two weeks. ###Code train_data_length = 12*24*7 ts_train = ts[:train_data_length] ts_test = ts[train_data_length+1:] ###Output _____no_output_____ ###Markdown Estimate integrated (I) parameterCheck time series stationarity and estimate it's integrated parameter (maximum integration value is 2). The series itself is highly seasonal, so we can assume that the time series is not stationary. ###Code def check_stationarity(ts, critic_value = 0.05): try: result = tools.adfuller(ts) return result[0] < 0.0 and result[1] < critic_value except: # Program may raise an exception when there are NA values in TS return False integrate_param = 0 ts_copy = pandas.Series(ts_train, copy=True) # Create copy for stationarizing while not check_stationarity(ts_copy) and integrate_param < 2: integrate_param += 1 ts_copy = ts_copy - ts_copy.shift() ts_copy.dropna(inplace=True) # Remove initial NA values print("Estimated integrated (I) parameter: ", integrate_param, "\n") ###Output Estimated integrated (I) parameter: 0 ###Markdown Print ACF and PACF graphs for AR(p) and MA(q) order estimationAutoCorellation and Parcial AutoCorellation Functions are necessary for ARMA order estimation. Configure the *NLagsACF* and *NlagsPACF* variables for number of lagged values in ACF and PACF graphs. ###Code def plot_bar(ts, horizontal_line=None): ma.bar(range(0, len(ts)), ts, width=0.5) ma.axhline(0) if horizontal_line != None: ma.axhline(horizontal_line, linestyle="-") ma.axhline(-horizontal_line, linestyle="-") ma.draw() try: ma.pause(0.001) # throws NotImplementedError, ignore it except: pass NlagsACF = 100 NLagsPACF = 50 # ACF ma.figure(2) plot_bar(tools.acf(ts_train, nlags=NlagsACF), 1.96 / numpy.sqrt(len(ts))) # PACF ma.figure(3) plot_bar(tools.pacf(ts_train, nlags=NLagsPACF), 1.96 / numpy.sqrt(len(ts))) ###Output _____no_output_____ ###Markdown ARIMA order estimationAccording to the Box-Jenkins model (https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc446.htm) we assumed that this time series is an AR(p) model. We can that the ACF graph is exponentially decreasing and followed by some mixture of sinusoid. The PACF graph shows that there is one significant spike at index 0. We can also see large anomalies in the time series, so in my opinion we should consider ARIMA(1,1,0) model, even though it should be already stationary (we are aware of overdifferencing problem).You can specify how many values you want to use for ARIMA model fitting (by setting *N_train_data* variable) and how many new values you want to predict in single step (by setting *N_values_to_forecast* variable). Prediction configuration ###Code ARIMA_order = (1,1,0) M_train_data = sys.maxsize N_values_to_forecast = 1 ###Output _____no_output_____ ###Markdown Forecast new valuesUnexpectedly, we have a very large time series (over 8 thousand samples), so the forecasting takes much time. ###Code predictions = [] confidence = [] print("Forecasting started...") start_time = time.time() ts_len = len(ts) for i in range(train_data_length+1, ts_len, N_values_to_forecast): try: start = i-M_train_data if i-M_train_data >= 0 else 0 arima_model = arima.ARIMA(ts[start:i], order=ARIMA_order).fit(disp=0) forecast = arima_model.forecast(steps=N_values_to_forecast) for j in range(0, N_values_to_forecast): predictions.append(forecast[0][j]) confidence.append(forecast[2][j]) except: print("Error during forecast: ", i, i+N_values_to_forecast) # Push back last successful predictions for j in range(0, N_values_to_forecast): predictions.append(predictions[-1] if len(predictions) > 0 else 0) confidence.append(confidence[-1] if len(confidence) > 0 else 0) print("Forecasting finished") print("Time elapsed: ", time.time() - start_time) ###Output /home/stepan/.local/lib/python3.6/site-packages/scipy/signal/signaltools.py:1333: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. out_full[ind] += zi /home/stepan/.local/lib/python3.6/site-packages/scipy/signal/signaltools.py:1336: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. out = out_full[ind] /home/stepan/.local/lib/python3.6/site-packages/scipy/signal/signaltools.py:1342: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. zf = out_full[ind] ###Markdown Count mean absolute percentage errorWe use MAPE (https://www.forecastpro.com/Trends/forecasting101August2011.html) instead of MSE because the result of MAPE does not depend on size of values. ###Code values_sum = 0 for value in zip(ts_test, predictions): actual = value[0] predicted = value[1] values_sum += abs((actual - predicted) / actual) values_sum *= 100/len(predictions) print("MAPE: ", values_sum, "%\n") ###Output MAPE: 250.4248669381217 % ###Markdown Plot forecasted values ###Code fig2 = ma.figure(4) ma.plot(ts_test, color="blue") ma.plot(predictions, color="red") ts_len = len(ts) date_offset_indices = ts_len // 6 num_date_ticks = ts_len // date_offset_indices + 1 ma.xticks(range(0, ts_len, date_offset_indices), [x.date().strftime('%Y-%m-%d') for x in dates[::date_offset_indices]]) ma.draw() ###Output _____no_output_____
src/benchmark/Kim_Breast_Science_2021/PrepareInterfaceEntries.ipynb
###Markdown Prepare Interface Entries ###Code import os import os.path as op from pathlib import Path import sys import pandas as pd sys.path += ['../../..'] from src.benchmark.benchmark_utils import ReadyResults interface_entries_s3 = ReadyResults("ELASPIC_Output/allresults_s3.txt").get_interface_ready_results() interface_entries_s4 = ReadyResults("ELASPIC_Output/allresults_s4.txt").get_interface_ready_results() ###Output Separating Core and Interface entries .. Core data dimensions: (5, 103) Core data preview: UniProt_ID Mutation Interactor_UniProt_ID 0 P04637 R175H - 1 P38398 M1775R - 2 P38398 S1655F - Interface data dimensions: (83, 103) Interface data preview: UniProt_ID Mutation Interactor_UniProt_ID 0 O96017 K373E O96017-12 1 O96017 K373E O43293 2 O96017 K373E O43293-2 Dropping duplicated entries .. Size of dataframe before dropping duplicated entries: (5, 103) Size of dataframe after dropping duplicated entries: (5, 103) Dropping self interactions .. Dropping duplicated entries .. Size of dataframe before dropping duplicated entries: (76, 103) Size of dataframe after dropping duplicated entries: (76, 103) Separating Core and Interface entries .. Core data dimensions: (2, 103) Core data preview: UniProt_ID Mutation Interactor_UniProt_ID 0 P04637 R175H - 1 Q9BX63 A745T - Interface data dimensions: (76, 103) Interface data preview: UniProt_ID Mutation Interactor_UniProt_ID 0 O96017 K373E O96017-12 1 O96017 K373E O43293 2 O96017 K373E O43293-2 Dropping duplicated entries .. Size of dataframe before dropping duplicated entries: (2, 103) Size of dataframe after dropping duplicated entries: (2, 103) Dropping self interactions .. Dropping duplicated entries .. Size of dataframe before dropping duplicated entries: (71, 103) Size of dataframe after dropping duplicated entries: (71, 103) ###Markdown (Try to) Find in older results ELASPIC Errors in S3 and S4. ###Code def load_inputs_pairs(file_path): with open(file_path) as file: pairs = [tuple(line.strip().split('.')) for line in file.readlines()] return pairs inputs_pairs = load_inputs_pairs("ELASPIC_Input/input_pairs_20.txt") oldresults_path = r"C:/Users/ibrah/Documents/GitHub/My-ELASPIC-Web-API/Elaspic_Results/Vault/old_merged_core_interface_vault_2021-11-17.txt" def find_in_oldresults_data(old_data, protein, mutation): query = old_data[ (old_data["Type"] == "interface") & (old_data["UniProt_ID"] == protein) & (old_data["Mutation"] == mutation) ].copy() return query oldresults_data = pd.read_csv(oldresults_path, sep='\t', low_memory=False) oldresults_data.head() rescued_dataframes = [] for pair in inputs_pairs: rescued_dataframes.append(find_in_oldresults_data(oldresults_data, pair[0], pair[1])) rescued_data = pd.concat(rescued_dataframes) rescued_data ###Output _____no_output_____ ###Markdown merge and export ###Code concated_interface_results = pd.concat( [ interface_entries_s3, interface_entries_s4, rescued_data, ] ) concated_interface_results = concated_interface_results.drop_duplicates() print(concated_interface_results.shape) concated_interface_results.head() concated_interface_results.to_csv("Kim_et_at_elaspic_results_interface.txt", sep='\t', index=False) ###Output _____no_output_____
modeling_node-only.ipynb
###Markdown Non-Graph ModelingSome modeling done purely on node features (i.e. no network yet) ###Code import pandas as pd import numpy as np ###Output _____no_output_____ ###Markdown Data Prep Note: Here, we use data from the Human Protein Atlas along with labels based on OMIM searches. The labels implicityly assume that if a gene does not come up as positive in a search then it is not associated with LUAD. This assumption is not correct. A more careful labeling method is required. Thus, we can't draw any conclusions from the results of this notebook; we merely hope to gain some insights on the node features. ###Code HPA_data = pd.read_csv('data/HPA_Complete_v1.csv', index_col=0) HPA_data.set_index('Ensembl', inplace=True) HPA_data.head() label_col = 'Total_pos' # TODO: shuffle HPA data filt = HPA_data[label_col] == 1 pos_data = HPA_data[filt] num_pos = len(pos_data) neg_data = HPA_data[~filt].iloc[:num_pos] train_test_data = pos_data.append(neg_data) train_test_data = train_test_data.sample(frac=1) train_test_data.head() labels = train_test_data[label_col] feature_cols = [str(i) for i in range(100)] feat_data = train_test_data[feature_cols] feat_data.head() print('n_samples: ', len(feat_data)) # Train-Test Split from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(feat_data, labels, test_size=0.2) ###Output _____no_output_____ ###Markdown Modeling Random Forest ###Code # random forest from sklearn.ensemble import RandomForestClassifier # define RF classifier rf_clf = RandomForestClassifier(n_estimators=100)#, max_depth=5) # fit classifier rf_clf.fit(X_train, y_train) rf_clf.score(X_train, y_train) rf_clf.score(X_test, y_test) ###Output _____no_output_____ ###Markdown Adaboost ###Code from sklearn.ensemble import AdaBoostClassifier # define Adaboost classifier ada_clf = AdaBoostClassifier(n_estimators=100, algorithm='SAMME.R') # fit classifier ada_clf.fit(X_train, y_train) ada_clf.score(X_train, y_train) ada_clf.score(X_test, y_test) ###Output _____no_output_____ ###Markdown GradBoost ###Code from sklearn.ensemble import GradientBoostingClassifier # define GradBoost classifier gb_clf = GradientBoostingClassifier(loss='deviance', n_estimators=100, criterion='friedman_mse') # fit classifier gb_clf.fit(X_train, y_train) gb_clf.score(X_train, y_train) gb_clf.score(X_test, y_test) ###Output _____no_output_____ ###Markdown Grid Search over Parameters ###Code from sklearn.model_selection import GridSearchCV gradboost_clf = GradientBoostingClassifier() params = { 'n_estimators': [20, 50, 100, 150], 'learning_rate': [0.01, 0.05, 0.1, 0.2], 'loss': ['deviance', 'exponential'], 'criterion':['friedman_mse'] } # n_jobs=-1 => use all processors gridsearch_clf = GridSearchCV(gradboost_clf, param_grid=params, refit=True, cv=5, n_jobs=-1, verbose=4) gridsearch_clf.fit(X_train, y_train) gridsearch_clf.best_params_ gridsearch_clf.best_score_ gridsearch_clf.score(X_test, y_test) ###Output _____no_output_____
baseline_models/DLT/DLT.ipynb
###Markdown ARIMA Baseline Model ###Code data = df[target_column] def mean_absolute_percent_error(y_true, y_pred): pct_error = abs(y_true - y_pred) / abs(y_true) return pct_error.mean(axis=0) * 100 # 1 ARIMA Baseline Model def ARIMA_Model(holdout,dataset): # Fit a simple auto_arima model modl = pm.auto_arima(dataset, start_p=0, start_q=0, start_P=0, start_Q=0, max_p=5, max_q=5, max_P=5, max_Q=5, seasonal=True, stepwise=True, suppress_warnings=True, D=10, max_D=10, error_action='ignore') # Create predictions for the future, evaluate on test preds, conf_int = modl.predict(holdout, return_conf_int=True) return preds, conf_int # Validating the model (Sliding Window) loop_value = int(len(data)/100) train_window_size = 100 test_window_size = 10 step_size = train_window_size + test_window_size arima_prediction = [] for i in range(0,loop_value): arima_pred, arima_config = ARIMA_Model(test_window_size,data.iloc[i*train_window_size:(i+1)*train_window_size]) arima_prediction.append(arima_pred) # Compute Real Values every 100 hours r_value=[] for i in range(1,loop_value+1): v= data.iloc[i*100:i*train_window_size + test_window_size] r_value.append(v) # Computing metrics (MAPE) arima_mape_list=[] for i in range(0,len(r_value)): mape=mean_absolute_percent_error(r_value[i],arima_prediction[i]) arima_mape_list.append(mape) # Mean Value of MAPE arima_MAPE = sum(arima_mape_list)/len(arima_mape_list) # Print MAPE print("The Mean Absolute Percentage Error in ARIMA Model is equal to",round(arima_MAPE,2)) # Train-test Split train = data[10:] test = data.tail(10) # Forecasting t+10 timesteps arima_forecast, arima_config = ARIMA_Model(10,train) # Plot Forecasting Values fig, ax = plt.subplots(figsize=(16, 10)) ax.plot(train[2100:].index, train.values[2100:]); ax.plot(test.index, test.values, label='truth'); ax.plot(test.index, arima_forecast, linestyle='--', color='#ff7823'); ax.set_title("ARIMA t+10 Forecasting"); plt.savefig('ARIMA t+10 Forecasting.png') ###Output _____no_output_____ ###Markdown Theta Baseline Model ###Code # 2 Theta Baseline Model # Step 1: Check for seasonality # Step 2: Decompose Seasonality if it is deemed seasonal # Step 3: Applying Theta Method # Step 4: Reseasonalize the resulting forecast def sesThetaF(y, s_period , h = 10, level = np.array([90,95,99])): """ @param y : array-like time series data @param s_period : the no. of observations before seasonal pattern repeats @param h : number of period for forcasting @param level: confidence levels for prediction intervals """ if not s_period: print('ERROR: s_period variable only accepts positive integer.') sys.exit() fcast = {} # store result # Check seasonality x = y.copy() n = y.index.size m = s_period if m > 1 and n > 2 * m: r = (acf(x, nlags = m))[1:] temp = np.delete(r, m-1) stat = np.sqrt((1+ 2 * np.sum(np.square(temp))) / n) seasonal = (abs(r[m-1])/stat) > norm.cdf(0.95) else: seasonal = False # Seasonal Decomposition origx = x.copy() if seasonal: decomp = seasonal_decompose(x, model = 'multiplicative') if decomp.seasonal < 1e-10 : warnings.warn('Seasonal indexes equal to zero. Using non-seasonal Theta method') else: x = decomp.observed/decomp.seasonal # Find theta lines model = SimpleExpSmoothing(x).fit() fcast['mean'] = model.forecast(h) num = np.array(range(0,n)) temp = LinearRegression().fit(num.reshape(-1,1),x).coef_ temp = temp/2 alpha = np.maximum(1e-10, model.params['smoothing_level']) fcast['mean'] = fcast['mean'] + temp * (np.array(range(0,h)) + (1 - (1 - alpha)**n)/alpha) # Reseasonalize if seasonal: fcast['mean'] = fcast['mean'] * np.repeat(decomp.seasonal[-m:], (1 + h//m))[:h] fcast['fitted'] = model.predict(x.index[0], x.index[n-1]) * decomp.seasonal else: fcast['fitted'] = model.predict(x.index[0], x.index[n-1]) fcast['residuals'] = origx - fcast['fitted'] return fcast # Prediction Intervals data = pd.Series(df['close']).asfreq("H") data.fillna(method='ffill', inplace=True) np.all(np.isfinite(data)) # Validating the model (Sliding Window) theta_pred_list=[] for i in range(0,loop_value): theta_pred = sesThetaF(data[i*100:(i+1)*100],s_period=1,h = 10) theta_pred_list.append(theta_pred['mean']) r_value=[] for i in range(1,loop_value+1): v= data.iloc[i*100:i*train_window_size + test_window_size] r_value.append(v) # Computing metrics (MAPE) theta_mape_list=[] for i in range(0,len(r_value)): mape=mean_absolute_percent_error(r_value[i],theta_pred_list[i]) theta_mape_list.append(mape) # Mean Value of MAPE theta_MAPE = sum(theta_mape_list)/len(theta_mape_list) # Print MAPE print("The Mean Absolute Percentage Error in Theta Model is equal to",round(theta_MAPE,2)) # Forecasting t+10 timesteps theta_conf = sesThetaF(data,s_period=1,h = 10) # Plot Forecasting Values mean = theta_conf['mean'] fitted = theta_conf['fitted'] residuals = theta_conf['residuals'] plt.figure(figsize = (16,10)) plt.plot(fitted, marker = '.', color = 'red', label = 'In-sample Fitted') plt.plot(mean, marker = '*', color = 'blue', label = 'Forecast') plt.plot(residuals, marker = '', color = 'green', label = 'Residuals') plt.title('Standard Theta Model') plt.legend() plt.show() plt.savefig('Standard Theta Model t+10 Forecasting.png') ###Output _____no_output_____ ###Markdown HW Exponential Smoothing Baseline Model ###Code # Dataset pre-processing data = df[target_column] data = pd.Series(df['close']).asfreq("H") np.all(np.isfinite(data)) data.fillna(method='ffill', inplace=True) np.all(np.isfinite(data)) # 3 HWES Baseline Model exp_smooth_pred_list=[] for i in range(0,loop_value): model = ExponentialSmoothing(data[i*100:(i+1)*100],freq="H") model_fit = model.fit() # make prediction yhat = model_fit.predict(100, 109) exp_smooth_pred_list.append(yhat) exp_smooth_mape_list=[] for i in range(0,len(r_value)): mape=mean_absolute_percent_error(r_value[i],exp_smooth_pred_list[i]) exp_smooth_mape_list.append(mape) exp_smooth_MAPE = sum(exp_smooth_mape_list)/len(exp_smooth_mape_list) # Print MAPE print("The Mean Absolute Percentage Error in Exponential Smoothing Method is equal to",round(exp_smooth_MAPE,2)) # Train-test Split train = data[10:] test = data.tail(10) # Forecasting t+10 timesteps model = ExponentialSmoothing(train,freq="H") model_fit = model.fit() # make prediction yhat = model_fit.predict(len(train), len(train)+9) # Plot Forecasting Values fig, ax = plt.subplots(figsize=(16, 10)) ax.plot(train[2100:].index, train.values[2100:]); ax.plot(test.index, test.values, label='truth'); # ax.plot(test.index, yhat, linestyle='--', color='#ff7823'); ax.set_title("Holt-Winter's Seasonal Smoothing"); plt.savefig("Holt-Winter's Seasonal Smoothing t+10 Forecasting.png") ###Output _____no_output_____
DNA Embeddings/DNA_embedddings_INSECT.ipynb
###Markdown Classic CNN Model ###Code from tensorflow.keras import datasets, layers, models, optimizers, callbacks # CNN model architecture model = models.Sequential() model.add(layers.Conv2D(64, (3,3), activation='relu', input_shape=(sl, 5,1),padding="SAME")) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D((3,1))) model.add(layers.Conv2D(32, (3,3), activation='relu',padding="SAME")) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D((3,1))) model.add(layers.Conv2D(16, (3,3), activation='relu',padding="SAME")) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D((3,1))) # model.add(layers.Conv2D(16, (3,3), activation='relu',padding="SAME")) # model.add(layers.BatchNormalization()) # model.add(layers.MaxPooling2D((3,1))) model.add(layers.Flatten()) model.add(layers.BatchNormalization()) model.add(layers.Dense(500, activation='tanh')) model.add(layers.Dense(y_train.shape[1])) model.summary() # Step-decay learning rate scheduler def step_decay(epoch): initial_lrate = 0.001 drop = 0.5 epochs_drop = 2.0 lrate = initial_lrate * np.power(drop, np.floor((1+epoch)/epochs_drop)) return lrate class LossHistory(callbacks.Callback): def on_train_begin(self, logs={}): self.losses = [] self.lr = [] def on_epoch_end(self, batch, logs={}): self.losses.append(logs.get('loss')) self.lr.append(step_decay(len(self.losses))) loss_history = LossHistory() lrate = callbacks.LearningRateScheduler(step_decay) callbacks_list = [loss_history, lrate] from tensorflow.keras.metrics import top_k_categorical_accuracy #opt = tf.keras.optimizers.SGD(momentum=0.9, nesterov=True) opt = tf.keras.optimizers.Adam() model.compile(optimizer=opt, loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy','top_k_categorical_accuracy']) # Validation time history = model.fit(X_train, y_train, epochs=5, batch_size = 32, validation_data=(X_test, y_test), callbacks=callbacks_list, verbose=1) # Final Test time #history = model.fit(trainX, trainY, epochs=5, callbacks=callbacks_list) print('Learning rates through epochs:', loss_history.lr) from tensorflow.keras.models import Model # Getting the DNA embeddings of all data from the last dense layer layer_name = 'dense' model2= Model(inputs=model.input, outputs=model.get_layer(layer_name).output) dna_embeddings=model2.predict(allX) print(dna_embeddings.shape) # saving the results into csv file to be later read into matlab np.savetxt("DNA_CNN_embeddings_500_5e_adam.csv", dna_embeddings, delimiter=",") ###Output _____no_output_____
Split Image Sets.ipynb
###Markdown Make data set: ###Code #Setting path to images to the variable 'path' path="../Data/" #Getting the list of subdirectories in 'train', saved to 'categories' categories=os.listdir(path+'train') #Check categories #Making a test directory to move images to os.mkdir(path+'test') #Using a loop to move images from each class into a test set for each_category in categories: #Making the test folder with each subfolders os.mkdir(path + f'test/{each_category}') #Using list comprehension to get a list of images in each folder list_images = [file for file in os.listdir(path + f'train/{each_category}') if file.endswith('.bmp')] #Randomly shuffling the order shuffle(list_images) #Getting the names of the first 20% of images num_test_images = int(len(list_images)*0.2) for_test = list_images[:num_test_images] #Looping through each image that was split off for each_image in for_test: #Renaming the file path to move those images into the test set os.rename(path + f'train/{each_category}/{each_image}', path + f'test/{each_category}/{each_image}') #Checking that images have been moved print(f'{each_image} moved to "{each_category}" in test.') #Checking when images from a folder have finished moving print(f'{each_category} completed.') train_count=0 test_count=0 #Looping through each subdirectory in train and test for each_category in categories: #Get the list of images in each subdirectory train_images = [file for file in os.listdir(path + f'train/{each_category}')] #Add up the count of items in each subdirectory train_count+=len(train_images) test_images = [file for file in os.listdir(path + f'test/{each_category}')] test_count+=len(test_images) #Check print(f'Number of train images: {train_count} \nNumber of test images: {test_count}') ###Output Number of train images: 585 Number of test images: 145
_site/pages/clustering/Multivariate analysis.ipynb
###Markdown Data screening, multi-variate analysis and clusteringIn this chapter, you will analyze data from a large study investigating breast cancer subtypes (https://www.nature.com/articles/s41467-019-09018-y).![](resources/images/CancerPaperAbstract.png)The following topics are covered in this jupyter notebook:- Reading data into R- Basic visualization of relative protein abundances- General data properties- Principal component analysis to identify general trends- Hierarchical clustering to groups co-regulated proteins- Variance-sensitive cluster analysis using the VSClust appFor some accompanying slides, see http://computproteomics.bmb.sdu.dk/tmp/QuantWorkshop/48 Reading the dataWe will start by loading the data and visualize it carefully, also to find out how to proceed with the analysis.The next code fragments helps you to upload the file _PMC6453966.csv_ into R and look at its content. It is located in the subfolder _resources/data_.Also take a look into the original file of the paper: Supplementary table 1 in https://www.nature.com/articles/s41467-019-09018-yTask: 👨‍💻 Find the experimental design in the paper and/or data that allows assigning channels to tumor types. ###Code rQuantTable <-read.csv("AddTheCorrectFolderAndFile",row.names=1) # Which columns are there? colnames(rQuantTable) options(repr.matrix.max.cols = 100) head(rQuantTable,n = ) #Take only protein abundances # Add correct numbers for first_col and last_col first_col <- 1 last_col <-1 QuantTable <- rQuantTable[, first_col:last_col] # Assign tumor types by reading the file PMC6453966TumorTypes.csv TCateg <- read.csv("AddTheCorrectFolderAndFile") colnames(TCateg) colnames(QuantTable) <- paste(TCateg$PAM50.subtype, "Sample", 1:45) QuantTable <- QuantTable[,sort(colnames(QuantTable))] head(QuantTable) ###Output _____no_output_____ ###Markdown Add your answers here(double-click here to edit the cell) ❔ Question I: What do the different columns contain? How many cancer subtypes and how many replicates?_Answer_ ❔ Question II: What is in channel 131?_Answer_ ❔ Question II: Is the data log-transformed? How would you check that?_Answer_ VisualizationWe want to understand the data better by visualization. This helps also to identify important properties that might not be clear from the data description.[Boxplots](https://en.wikipedia.org/wiki/Box_plot) are useful for roughly comparing the vdistributions of the different samples. For even nicer visualization, use violin plots. A [histogram](https://en.wikipedia.org/wiki/Histogram) shows the distribution of values by binning them. Scatter plots allow direct comparison of the values between 2 samples_Tasks:_ 👨‍💻 Make a boxplot and discuss how and why it looks like that. 👨‍💻 Visualize the distribution of some of the channels and also compare them via a scatter plot. 👨‍💻 Repeat the same for the log-transformed data. 👨‍💻 Calculate the dynamics range of all values. ###Code # some figures boxplot(QuantTable) # Change the number of bins to find a nicer visualization numBin <- 10 hist(QuantTable[,1],numBin, main="Distribution of values") # Why is the distribution so assymetric? Take log? hist(log(QuantTable[,1]),numBin) # log-trafo lQuantTable <- log2(QuantTable) boxplot(lQuantTable) # scatter plot plot(lQuantTable$Set.1.TMT10Tag_126, lQuantTable$Set.1.TMT10Tag_129C, pch=15, col="#33333366") ###Output _____no_output_____ ###Markdown Add your answers here(double-click here to edit the cell) ❔ Question I: The data seems to centered. Around which value?_Answer_ ❔ Question II: Which normalization was used by the authors of the paper? On which data level (PSMs, peptides, proteins)? How is that visible in the plots_Answer_ ❔ Question III: Any idea why the distribution is so sharp?_Answer_ ❔ Question IV: Why can't you see any linear relationship between the samples?_Answer_ Dynamic range, similarity and missing valuesIn the following, we will calculate the dynamic range of the full data and get more insight into data similarity by calculating correlations. We also assess the number of missing valuesMissing values in proteomics data are a big problem. Value imputation, particularly wrong imputation will create bias in the statistical analysis. ###Code # What is the dynamics range of the data? # the functions min and max calculate the smallest (largest) value of an entire table. Add_your_code_here # Correlations between samples, replicates should show higher correlations library(lattice) levelplot(cor(lQuantTable)) # Number of missing values per column table(rowSums(is.nan(as.matrix(lQuantTable)))) ###Output _____no_output_____ ###Markdown Add your answers here(double-click here to edit the cell) ❔ Question I: What does the dynamics range mean? Is it larger or smaller than expected? Take a look at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938101/ to find more explanations._Answer_ ❔ Question II: Do you find similarity between replicates? Is there a sample that seems to be displaced? How are the types distributed over the TMT runs?_Answer_ ❔ Question II: How many missing values does the data have per column? Why so many/few? Would you analyze the data differently?_Answer_ Principal component analysisPCA analysis is a way to plot multi-dimensional data via projection to the so-called principal components. Simple explanation: A multi-dimensional data set is projected onto the coordinates that correspond to most variance. This means that we get a 2-dimensional projection when plotting the first 2 principal components.There is so much more and you can get some more idea [here](http://setosa.io/ev/principal-component-analysis/)We will use only the components of the new coordinates (also called loadings) to see how the different cancer subtypes and replicates compare to each other. ###Code # write into file for usage in VSClust later on write.csv(lQuantTable,"FolderOfYourChoice/PMC6453966_VSClust_in.csv") # PCA for some testing pca.out <- princomp(QuantTable, cor = T) #scoring plot plot(pca.out$loadings, pch=16, col=rep(1:5,each=9) ) text(pca.out$loadings, pos=2, labels=colnames(lQuantTable),cex=0.5) ###Output _____no_output_____ ###Markdown Add your answers here(double-click here to edit the cell) ❔ Question I: How would you interpret a PCA loading plot?_Answer_ ❔ Question II: Can the different cancer subtypes be distinguished? If yes/no, what could be the biological reason? _Answer_ ❔ Question III: Can you predict which subtype should show most of the differences?_Answer_ Hierarchical clusteringThis cluster analysis is super-easy in R and provides a nice view of common changes within the proteins. It is used everywhere.The disadvantage of this clustering method is its limitation to smaller data sets as the plots get very messy for thousands of proteins. Therefore, we will target a subset and cluster it in some examples.Note: The metric is based on a distance matrix, requiring to calculate the distances between each of the features (here proteins). This becomes computationally expensive for very large data sets.👨‍💻 You will retrieve the _100 proteins with the largest changes_ of their averaged abundance between the two cancer subtypes. The clustering will be carried out for the averaged and the full data. Basing the analysis on averaged values only would neglected biological variance, and thus most likely lead to erronenous interpretations. ###Code # heat map of the most changing proteins between the first 2 conditions # Calculate means of each cancer subtype AvQuant <- NULL for (i in 1:5) AvQuant <- cbind(AvQuant, rowMeans(lQuantTable[,(i-1)*9+(1:9)])) # Make a histogram of changes between the averages abundances hist(...) # What happens with the 100 most different proteins? mostDiffInd <- names(sort(abs(AvQuant[,1] - AvQuant[,2]), decreasing = T)[1:100]) heatmap(AvQuant[mostDiffInd,], Colv=NA) # Now look on the replicate level (full data). Do you still have the same impression about the significant changes? heatmap(as.matrix(lQuantTable[mostDiffInd,]), Colv = NA,cexRow = 0.3) ###Output _____no_output_____ ###Markdown Add your answers here(double-click here to edit the cell) ❔ Question I: Which is the expected fold-change of the most changing proteins?_Answer_ ❔ Question II: Is there a difference in the number of proteins increasing/decreasing in the second conditions (within the 100 most changing ones)?_Answer_ ❔ Question III: What does the this command do? `names(sort(abs(AvQuant[,1] - AvQuant[,2]), decreasing = T)[1:100])`_Answer_ ❔ Question IV: Would you still consider the top 100 proteins to show significant changes between the first 2 conditions? Assume an FDR of 1% or 5%_Answer_ Digging deeper into the behavior of one proteinLet's take one of the top 100 proteins (CRABP1) and check its quantitative values as well as its biological function. Will it be related to breast cancer? What does a simple Google search tell us?👨‍💻 Plot its abundance over all replicates and conditions using colors for the different cancer subtypes. 👨‍💻 Do some search in the web about the function of CRABP1 and whether it is related to any cancer.Use uniprot.org as starting point. 👨‍💻 Now search Google for _breast cancer_ and _CRABP1_. 👨‍💻 Get a random human protein from UniProt: https://www.uniprot.org/uniprot/?query=reviewed:yes+AND+organism:9606&random=yes👨‍💻 + 📓 Look it up again and do also the cancer search on Google. Get the gene name and also plot its quantitative changes. ###Code # Take e.g. MUC5B plot(t(lQuantTable["CRABP1",]), pch=16, col=rep(1:5,each=9)) ###Output _____no_output_____
backend/Nobel_data.ipynb
###Markdown ``` sqlCREATE TABLE usanobel ( id FLOAT, nobelwinners VARCHAR, category VARCHAR, year INT, name VARCHAR, organization VARCHAR, city VARCHAR, state VARCHAR, country VARCHAR, orgcount VARCHAR, gender VARCHAR, multiorg INT, lat FLOAT, lon FLOAT); ``` ###Code from sqlalchemy import create_engine engine = create_engine('postgres://postgres:2903@localhost:5432/nobel_winners') engine.table_names() usa_nobel_df.to_sql('usanobel', engine, if_exists='append', index=False) ncses_df = pd.read_csv("./ncsesdata.csv") ncsesF_df = ncses_df[(ncses_df['state']!= 'DC')] ncsesF_df !pip install chart_studio # Test out slider for one year of data fig = go.Figure(data=go.Choropleth( locations=ncsesF_df['state'], z = ncsesF_df['se_jobs'].astype(float), locationmode = 'USA-states', colorscale = 'Blues', colorbar_title = "% of SE Jobs", )) fig.update_layout( title_text = '2008 Science & Engineering Jobs by State', geo_scope = 'usa', ) fig.show() import numpy as np import pandas as pd import plotly.graph_objs as go import chart_studio.plotly as py # min year in your dataset year = 2008 # your color-scale scl = [[0.0, '#ecf2f9'],[0.2, '#c6d9ec'],[0.4, '#9fbfdf'], [0.6, '#6699cc'],[0.8, '#336699'],[1.0, '#204060']] data_slider = [] for year in ncsesF_df['year'].unique(): df_segmented = ncsesF_df[(ncsesF_df['year'] == year)].copy() for col in df_segmented.columns: df_segmented[col] = df_segmented[col].astype(str) df_segmented['text'] = df_segmented['se']+ ' (S&E Jobs) '+ df_segmented['jobs'] + ' (All Jobs)' data_each_yr = dict( type='choropleth', locations = df_segmented['state'], z=df_segmented['se_jobs'].astype(float), locationmode='USA-states', colorscale = scl, text = df_segmented['text'], colorbar= {'title':'% S&E Jobs'}) data_slider.append(data_each_yr) steps = [] for index in range(len(data_slider)): step = dict(method='restyle', args=['visible', [False] * len(data_slider)], label='Year {}'.format(index + 2008)) step['args'][1][index] = True steps.append(step) sliders = [dict(active=0, pad={"t": 1}, steps=steps)] layout = dict(title ='Science & Engineering Share of Jobs', geo=dict(scope='usa', projection={'type': 'albers usa'}), sliders=sliders) fig = go.Figure(data=data_slider, layout=layout) fig.show() # API returns {'data': data_slider, 'layout':layout} # JS: response # let data = response['data'] # let layout = response['layout'] # Plotly.newPlot('plot3', data, layout) import numpy as np import pandas as pd import plotly.graph_objs as go import chart_studio.plotly as py # min year in your dataset year = 2008 # your color-scale scl = [[0.0, '#ffffff'],[0.2, '#e6f2ff'],[0.4, '#99ccff'], [0.6, '#4da6ff'],[0.8, '#0066cc'],[1.0, '#004080']] # purples data_slider = [] for year in ncsesF_df['year'].unique(): df_segmented = ncsesF_df[(ncsesF_df['year'] == year)].copy() for col in df_segmented.columns: df_segmented[col] = df_segmented[col].astype(str) df_segmented['text'] = df_segmented['rd']+ '(R&D) '+ df_segmented['gdp'] + ' (GDP)' data_each_yr = dict( type='choropleth', locations = df_segmented['state'], z=df_segmented['rd_gdp'].astype(float), locationmode='USA-states', colorscale = scl, text = df_segmented['text'], colorbar= {'title':'% S&E Jobs'}) data_slider.append(data_each_yr) steps = [] for index in range(len(data_slider)): step = dict(method='restyle', args=['visible', [False] * len(data_slider)], label='Year {}'.format(index + 2008)) step['args'][1][index] = True steps.append(step) sliders = [dict(active=0, pad={"t": 1}, steps=steps)] layout = dict(title ='Research & Development of GDP by state (USD Millions)', geo=dict(scope='usa', projection={'type': 'albers usa'}), sliders=sliders) fig = go.Figure(data=data_slider, layout=layout) fig.show() ###Output _____no_output_____
Notebook-Class-exercises/Step-3-Prepare-Data-Task-7-Merge-Datasets.ipynb
###Markdown Step 3 - Prepare Data - Task 7 - Merge Dataset Import libraries ###Code import pandas as pd from datetime import date ###Output _____no_output_____ ###Markdown Set up environment flag ###Code using_Google_colab = False using_Anaconda_on_Mac_or_Linux = True using_Anaconda_on_windows = False ###Output _____no_output_____ ###Markdown If using Google colab, get connected to google drive ###Code if using_Google_colab: from google.colab import drive drive.mount('/content/drive') ###Output _____no_output_____ ###Markdown PD 7.1 Activity 1 - Upload county level covid cases data by county ###Code if using_Google_colab: df_sorted_confirmed_cases_county = pd.read_csv('/content/drive/MyDrive/COVID_Project/output/confirmed_cases_by_county.csv') if using_Anaconda_on_Mac_or_Linux: df_sorted_confirmed_cases_county = pd.read_csv('../output/confirmed_cases_by_county.csv') if using_Anaconda_on_windows: df_sorted_confirmed_cases_county = pd.read_csv(r'../output/confirmed_cases_by_county.csv') df_sorted_confirmed_cases_county = df_sorted_confirmed_cases_county.astype({'countyFIPS': int, 'stateFIPS': int, 'Date': 'datetime64[ns]'}) df_sorted_confirmed_cases_county ###Output _____no_output_____ ###Markdown PD 7.1 Activity 2 - Upload county level covid deaths by county ###Code if using_Google_colab: df_sorted_covid_deaths_county = pd.read_csv('/content/drive/MyDrive/COVID_Project/output/covid_deaths_by_county.csv') if using_Anaconda_on_Mac_or_Linux: df_sorted_covid_deaths_county = pd.read_csv('../output/covid_deaths_by_county.csv') if using_Anaconda_on_windows: df_sorted_covid_deaths_county = pd.read_csv(r'../output/covid_deaths_by_county.csv') df_sorted_covid_deaths_county = df_sorted_covid_deaths_county.astype({'countyFIPS': int, 'stateFIPS': int, 'Date': 'datetime64[ns]'}) df_sorted_covid_deaths_county ###Output _____no_output_____ ###Markdown PD 7.2 Activity 3 - Merge covid cases and deaths data for each county and date ###Code df_partial_abt_by_county = pd.merge(df_sorted_confirmed_cases_county, df_sorted_covid_deaths_county, on=['stateFIPS','countyFIPS', 'Date'], suffixes=('', '_DROP'), how='inner').filter(regex='^(?!.*_DROP)') df_partial_abt_by_county ###Output _____no_output_____ ###Markdown PD 7.3 Activity 4 - Upload county level Google social mobility data ###Code if using_Google_colab: df_google_mobility_data = pd.read_csv('/content/drive/MyDrive/COVID_Project/input/Google/Region_Mobility_Report_CSVs/2020_US_Region_Mobility_Report.csv') if using_Anaconda_on_Mac_or_Linux: df_google_mobility_data = pd.read_csv('../input/Google/Region_Mobility_Report_CSVs/2020_US_Region_Mobility_Report.csv') if using_Anaconda_on_windows: df_google_mobility_data = pd.read_csv('..\input\Google\Region_Mobility_Report_CSVs\2020_US_Region_Mobility_Report.csv') df_google_mobility_data = df_google_mobility_data.astype({'date': 'datetime64[ns]'}) df_google_mobility_data ###Output _____no_output_____ ###Markdown PD 7.3 Activity 5 - Understand Google Mobility data ###Code df_google_mobility_data.columns df_partial_abt_by_county[df_partial_abt_by_county['County Name'] == 'Los Angeles County'].count() df_google_mobility_data[df_google_mobility_data['sub_region_2'] == 'Los Angeles County'].count() df_google_mobility_data[df_google_mobility_data['sub_region_2'] == 'Los Angeles County'].date.min() df_google_mobility_data[df_google_mobility_data['sub_region_2'] == 'Los Angeles County'].date.max() df_partial_abt_by_county[df_partial_abt_by_county['County Name'] == 'Los Angeles County'].Date.min() df_partial_abt_by_county[df_partial_abt_by_county['County Name'] == 'Los Angeles County'].Date.max() ###Output _____no_output_____ ###Markdown PD 7.3 Activity 6: Reformat Google Mobility data ###Code df_google_mobility_data_clean = df_google_mobility_data.dropna(subset=['census_fips_code']) df_google_mobility_data_clean = df_google_mobility_data_clean.astype({'census_fips_code': int}) df_google_mobility_data_clean ###Output _____no_output_____ ###Markdown PD 7.4 Activity 7 - Merge Covid Cases, deaths and Google Data ###Code df_abt_by_county = pd.merge(df_partial_abt_by_county, df_google_mobility_data, left_on=['countyFIPS', 'Date'], right_on=['census_fips_code', 'date'], suffixes=('', '_DROP'), how='left').filter(regex='^(?!.*_DROP)') df_abt_by_county ###Output _____no_output_____ ###Markdown PD7.4 Activity 8: Save County Data as Analytics Base Table ###Code if using_Google_colab: df_abt_by_county.to_csv('/content/drive/MyDrive/COVID_Project/output/abt_by_county.csv') if using_Anaconda_on_Mac_or_Linux: df_abt_by_county.to_csv('../output/abt_by_county.csv') if using_Anaconda_on_windows: df_abt_by_county.to_csv('..\output\abt_by_county.csv') ###Output _____no_output_____
notebooks/NUTS_schools.ipynb
###Markdown 8 schools data ###Code from numpyro.infer import Predictive from numpyro.infer.reparam import TransformReparam, LocScaleReparam from jax import random from numpyro.infer import MCMC, HMC import numpyro.distributions as dist import numpyro import numpy as np ###Output _____no_output_____ ###Markdown Let us explore NumPyro using a simple example. We will use the eight schools example from Gelman et al., Bayesian Data Analysis: Sec. 5.5, 2003, which studies the effect of coaching on SAT performance in eight schools.The data is given by: ###Code J = 8 y = np.array([28.0, 8.0, -3.0, 7.0, -1.0, 1.0, 18.0, 12.0]) sigma = np.array([15.0, 10.0, 16.0, 11.0, 9.0, 11.0, 10.0, 18.0]) ###Output _____no_output_____ ###Markdown where `y` are the treatment effects and `sigma` the standard error. We build a hierarchical model for the study where we assume that the group-level parameters `theta` for each school are sampled from a Normal distribution with unknown mean `mu` and standard deviation `tau`, while the observed data are in turn generated from a Normal distribution with mean and standard deviation given by `theta` (true effect) and `sigma`, respectively. This allows us to estimate the population-level parameters `mu` and `tau` by pooling from all the observations, while still allowing for individual variation amongst the schools using the group-level `theta` parameters.This is written in `numpyro` using: ###Code def eight_schools(J, sigma, y=None): mu = numpyro.sample('mu', dist.Normal(0, 5)) tau = numpyro.sample('tau', dist.HalfCauchy(5)) with numpyro.plate('J', J): theta = numpyro.sample('theta', dist.Normal(mu, tau)) numpyro.sample('obs', dist.Normal(theta, sigma), obs=y) ###Output _____no_output_____ ###Markdown Let us infer the values of the unknown parameters in our model by running MCMC using the No-U-Turn Sampler (NUTS). Note the usage of the extra_fields argument in MCMC.run. By default, we only collect samples from the target (posterior) distribution when we run inference using MCMC. However, collecting additional fields like potential energy or the acceptance probability of a sample can be easily achieved by using the extra_fields argument. For a list of possible fields that can be collected, see the `HMCState` object. In this example, we will additionally collect the `potential_energy` for each sample. ###Code kernel = HMC(eight_schools) mcmc = MCMC(kernel, num_warmup=500, num_samples=1000) rng_key = random.PRNGKey(0) mcmc.run(rng_key, J, sigma, y=y, extra_fields=('potential_energy',)) mcmc.print_summary() pe = mcmc.get_extra_fields()['potential_energy'] print('Expected log joint density: {:.2f}'.format(np.mean(-pe))) ###Output Expected log joint density: -55.26 ###Markdown The values above 1 for the split Gelman Rubin diagnostic `r_hat` indicates that the chain has not fully converged. The low value for the effective sample size `n_eff`, particularly for `tau`, and the number of divergent transitions looks problematic. Fortunately, this is a common pathology that can be rectified by using a non-centered paramaterization for `tau` in our model. This is straightforward to do in `numpyro` by using a `TransformedDistribution` instance together with a "reparameterization effect handler". Let us rewrite the same model but instead of sampling `theta` from a Normal(`mu`, `tau`), we will instead sample it from a base Normal(0, 1) distribution that is transformed using an `AffineTransform`. Note that by doing so, `nunmpyro` runs HMC by generating samples `theta_base` for the base Normal(0, 1) distribution instead. We see that the resulting chain does not suffer from the same pathology — the Gelman Rubin diagnostic is 1 for all the parameters and the effective sample size looks quite good! ###Code def eight_schools_noncentered(J, sigma, y=None): mu = numpyro.sample('mu', dist.Normal(0, 5)) tau = numpyro.sample('tau', dist.HalfCauchy(5)) with numpyro.plate('J', J): with numpyro.handlers.reparam(config={'theta': TransformReparam()}): theta = numpyro.sample( 'theta', dist.TransformedDistribution(dist.Normal(0., 1.), dist.transforms.AffineTransform(mu, tau))) numpyro.sample('obs', dist.Normal(theta, sigma), obs=y) nuts_kernel = NUTS(eight_schools_noncentered) mcmc = MCMC(nuts_kernel, num_warmup=500, num_samples=1000) rng_key = random.PRNGKey(0) mcmc.run(rng_key, J, sigma, y=y, extra_fields=('potential_energy',)) mcmc.print_summary(exclude_deterministic=False) pe = mcmc.get_extra_fields()['potential_energy'] print('Expected log joint density: {:.2f}'.format(np.mean(-pe))) ###Output sample: 100%|██████████| 1500/1500 [00:04<00:00, 301.80it/s, 15 steps of size 3.87e-01. acc. prob=0.93] ###Markdown Now, assume that we have a new school for which we have not observed any test scores, but we would like to generate predictions. `numpyro` provides a `Predictive` class for such a purpose. Note that in the absence of any observed data, we simply use the population-level parameters to generate predictions. The `Predictive` utility conditions the unobserved `mu` and `tau` sites to values drawn from the posterior distribution from our last MCMC run, and runs the model forward to generate predictions. ###Code def new_school(): mu = numpyro.sample('mu', dist.Normal(0, 5)) tau = numpyro.sample('tau', dist.HalfCauchy(5)) return numpyro.sample('obs', dist.Normal(mu, tau)) predictive = Predictive(new_school, mcmc.get_samples()) samples_predictive = predictive(random.PRNGKey(1)) print(np.mean(samples_predictive['obs'])) ###Output 4.0959787
Keras/02_Deep_Learning_With_MNIST.ipynb
###Markdown Run Now in Colab View source on GitHub Deep Learning With MNIST Dataset ###Code import keras keras.__version__ import numpy as np from keras import models from keras import layers from keras.utils import to_categorical from keras.datasets import mnist (train_X, train_y), (test_X, test_y) = mnist.load_data() type(train_X) print("Training Data shape",train_X.shape,"Training Label shape",train_y.shape) print("Test Data shape",test_X.shape,"Training Label shape",test_y.shape) train_X[0] train_y[0] import matplotlib.pyplot as plt plt.imshow(train_X[0], cmap=plt.cm.binary) plt.show() from keras import models from keras import layers nn = models.Sequential() nn.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) nn.add(layers.Dense(10, activation='softmax')) nn.summary() nn.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) train_X = train_X.reshape((60000, 28 * 28)) train_X = train_X.astype('float32') / 255 test_X = test_X.reshape((10000, 28 * 28)) test_X = test_X.astype('float32') / 255 from keras.utils import to_categorical train_y = to_categorical(train_y) test_y = to_categorical(test_y) nn.fit(train_X, train_y, epochs=5, batch_size=128) test_loss, test_acc = nn.evaluate(test_X, test_y) print("Test Loss", test_loss * 100 ,"%") print('Test Accuracy:', test_acc * 100 ,"%") predicts = nn.predict([test_X]) target = 43 print(predicts[target]) test_y[target] np.argmax(predicts[target]) digit = test_X[target].reshape(28,28) plt.imshow(digit, cmap=plt.cm.binary) plt.show() np.argmax(predicts[target]) == np.argmax(test_y[target]) ###Output _____no_output_____
modeling_final.ipynb
###Markdown Data Load ###Code from google.colab import drive drive.mount('/content/drive') pip install catboost #Library Imports import os # 디렉토리 변경 import copy import numpy as np # 넘파이 import pandas as pd # 판다스 import matplotlib.pyplot as plt plt.style.use('seaborn') import seaborn as sns %matplotlib inline import statsmodels.api as sm import scipy.stats from scipy.stats import skew from scipy.stats import spearmanr import warnings warnings.filterwarnings('ignore') from tqdm import tqdm # Learning algorithms import sklearn from sklearn.linear_model import * from sklearn.svm import SVR from sklearn.cluster import KMeans import lightgbm as lgb from lightgbm import LGBMRegressor import catboost from catboost import CatBoostRegressor from xgboost import XGBRegressor # model validation from sklearn.model_selection import KFold from sklearn.model_selection import GridSearchCV # 파라미터 설정 고민을 줄여주는 고마운 친구 from sklearn.metrics import make_scorer # loss function 커스터마이징 os.chdir('/content/drive/MyDrive/Colab Notebooks/dacon/energy') # 데이터 로드 (인코딩은 euc-kr) train_df = pd.read_csv('train.csv', encoding='euc-kr') test_df = pd.read_csv('test.csv', encoding='euc-kr') submission = pd.read_csv('sample_submission.csv', encoding='euc-kr') # renaming columns # train origin columns name : num, date_time, 전력사용량(kWh), 기온(°C), 풍속(m/s), 습도(%), 강수량(mm), 일조(hr), 비전기냉방설비운영, 태양광보유 # test origin columns name : num, date_time, 기온(°C), 풍속(m/s), 습도(%), 강수량(mm), 일조(hr), 비전기냉방설비운영, 태양광보유 train_df.columns = ['num','datetime','target','temperature','windspeed','humidity','precipitation','insolation','nelec_cool_flag','solar_flag'] test_df.columns = ['num','datetime','temperature','windspeed','humidity','precipitation','insolation','nelec_cool_flag','solar_flag'] ###Output _____no_output_____ ###Markdown Feature Engineering Train Feature Engineering ###Code train_df['datetime'] = pd.to_datetime(train_df['datetime']) # 6월 제거 유무 #train_df['month'] = train_df['datetime'].dt.month # 월(숫자) #train_df = train_df.loc[train_df['month']!=6,:].reset_index(drop=True) #train_df = train_df.drop(columns=['month']) #쓸모없는 특징 drop train_df['dayofyear'] = train_df['datetime'].dt.dayofyear train_df['hour'] = train_df['datetime'].dt.hour train_df['weekday'] = train_df['datetime'].dt.weekday #time feature train_df['hour_te'] = np.sin(2*np.pi*(train_df['hour'])/23) #time encoding hour train_df['hour_te1'] = np.cos(2*np.pi*(train_df['hour'])/23) #time encoding hour # 체감온도 train_df['더위체감지수']=13.12+0.6215*train_df['temperature']-13.947*train_df['windspeed']**0.16+0.486*train_df['temperature']*train_df['windspeed']**0.16 train_df['더위체감지수']=pd.cut(train_df['더위체감지수'], bins=[0, 21, 25, 28, 31, 50], labels=[1,2,3,4,5]) # 불쾌지수 t = 9/5*train_df['temperature'] train_df['불쾌지수'] = t - 0.55*(1-train_df['humidity']/100)*(t-26)+32 train_df['불쾌지수'] = pd.cut(train_df['불쾌지수'], bins = [0, 68, 75, 80, 200], labels = [1,2,3,4]) #불쾌지수는 카테고리로 나누는게 성능상승에 도움이 됨 train_dfs = [] for i in range(1,61): train_dfs.append(train_df[train_df['num']==i]) for i in range(len(train_dfs)): train_dfs[i] = train_dfs[i].drop(columns=['windspeed','precipitation','insolation','num', 'datetime','nelec_cool_flag','solar_flag']) #쓸모없는 특징 drop ###Output _____no_output_____ ###Markdown Test Feature Engineering ###Code for i in range(1,61): test_df[test_df['num']==i] = test_df[test_df['num']==i].interpolate() #기상예보값 interpolat test_df['datetime'] = pd.to_datetime(test_df['datetime']) test_df['dayofyear'] = test_df['datetime'].dt.dayofyear test_df['hour'] = test_df['datetime'].dt.hour test_df['weekday'] = test_df['datetime'].dt.weekday #time feature test_df['hour_te'] = np.sin(2*np.pi*(test_df['hour'])/23) #time encoding hour test_df['hour_te1'] = np.cos(2*np.pi*(test_df['hour'])/23) #time encoding hour # 체감온도 test_df['더위체감지수']=13.12+0.6215*test_df['temperature']-13.947*test_df['windspeed']**0.16+0.486*test_df['temperature']*test_df['windspeed']**0.16 test_df['더위체감지수']=pd.cut(test_df['더위체감지수'], bins=[0, 21, 25, 28, 31, 50], labels=[1,2,3,4,5]) # 불쾌지수 t = 9/5*test_df['temperature'] test_df['불쾌지수'] = t - 0.55*(1-test_df['humidity']/100)*(t-26)+32 test_df['불쾌지수'] = pd.cut(test_df['불쾌지수'], bins = [0, 68, 75, 80, 200], labels = [1,2,3,4]) #불쾌지수는 카테고리로 나누는게 성능상승에 도움이 됨 test_dfs = [] for i in range(1,61): test_dfs.append(test_df[test_df['num']==i]) for i in range(len(test_dfs)): test_dfs[i] = test_dfs[i].drop(columns=['windspeed','precipitation','insolation','num', 'datetime','nelec_cool_flag','solar_flag']) #쓸모없는 특징 drop def CDH(xs): #cooling degree hour를 구현 ys = [] for i in range(len(xs)): if i < 11: ys.append(np.sum(xs[:(i+1)]-26)) else: ys.append(np.sum(xs[(i-11):(i+1)]-26)) return np.array(ys) for i in range(60): #cdh 특징 추가 train_dfs[i]['cdh'] = CDH(np.concatenate([train_dfs[i]['temperature'].values,test_dfs[i]['temperature'].values]))[:-len(test_dfs[i])] test_dfs[i]['cdh'] = CDH(np.concatenate([train_dfs[i]['temperature'].values,test_dfs[i]['temperature'].values]))[-len(test_dfs[i]):] train_dfs[0] #일단보류 #def detect_outliers(df,ratio): #iqr 이상치제거 # outlier_indices = [] # Q1 = np.percentile(df, 25) # Q3 = np.percentile(df, 75) # IQR = Q3 - Q1 # outlier_step = ratio * IQR # return ~(df < Q1 - outlier_step) | (df > Q3 + outlier_step) #이상치 제거 iqr은 1.25 #for i in range(60): # idx = detect_outliers(train_y[i],1.25) # train_y[i] = train_y[i][idx] # train_x[i] = train_x[i][idx] #train_x와 train_y로 나눔 train_x = [] train_y = [] for i in range(len(train_dfs)): train_x.append(copy.deepcopy(train_dfs[i][train_dfs[i].columns[1:]])) train_y.append(copy.deepcopy(train_dfs[i][train_dfs[i].columns[0]])) ###Output _____no_output_____ ###Markdown Hyperparameter Tuning Modeling after hyperparameter tuning for each building* 시간이 매우 오래 걸려서 pass ###Code # loss function : SMAPE 정의 # from sklearn.metrics import mean_absolute_error #def smape(true, pred): # true = np.array(true) # np.array로 바꿔야 에러 없음 # pred = np.array(pred) # return np.mean((np.abs(true-pred))/(np.abs(true) + np.abs(pred))) # *2 , *100은 상수이므로 생략 #SMAPE = make_scorer(smape, greater_is_better=False) # smape 값이 작아져야하므로 False # 파라미터 설정, 모델생성 함수 #def get_best_params(model, params, i): # grid_model = GridSearchCV( # model, # param_grid = params, # 파라미터 # cv=3, # Kfold : 5 # scoring= SMAPE) #loss function # # grid_model.fit(train_x[i], train_y[i], verbose=100) # scr = grid_model.best_score_ # # print('최적 하이퍼 파라미터:\n', grid_model.best_params_) # print(f'{model.__class__.__name__} 최적 score 값 {scr}\n\n') # # return grid_model.best_estimator_ # 파라미터 후보군 설정 # 어떤 파라미터로 하는게 좋을지 고민된다면 고민하는 것들을 리스트 안에 다 넣어보세요 알아서 골라줄겁니다. # 저는 예시로 learning_rate만 0.1 or 0.01 중 더 좋은걸 골라달라고 했습니다. #params = { # 'boosting_type':['goss'], # 'objective' : ['MAE'], # 'n_estimators' : [10000, 12000], # 'learning_rate' : [0.1, 0.01], # 'num_leaves' : [37, 39, 41], # 'subsample' : [1] #} # 모델정의 #model=LGBMRegressor(params) # #best_lgbm = [] #for i in range(len(train_dfs)): # print(str(i)+' buliding\'s optimize hyperparameter GridSearchCV') # # 학습진행 # best_lgbm.append(get_best_params(model, params, i)) # best_lgbm #for dc in data_cols:#d특정 feature dc를 drop 시킴 # for k in kfold_split:#kfold 의 nspilt 의 값 k # folds = [] # for i in range(len(train_dfs)): # cross=KFold(n_splits=k, shuffle=True, random_state=random_seed) # fold=[] # for train_idx, valid_idx in cross.split(train_x[i], train_y[i]): # fold.append((train_idx, valid_idx)) # folds.append(fold) # # for i in range(len(train_dfs)): # for fold in range(k): # print(dc,random_seed,k,i) # train_idx, valid_idx = folds[i][fold] # X_train=np.array(train_x[i].drop(columns=dc).iloc[train_idx]) # y_train=np.array(train_y[i].iloc[train_idx]) # X_valid=np.array(train_x[i].drop(columns=dc).iloc[valid_idx]) # y_valid=np.array(train_y[i].iloc[valid_idx]) # # model=best_lgbm[0] # model.fit(X_train, y_train, eval_set=[(X_valid, y_valid)], verbose=100) # v = model.predict(np.array(test_dfs[i][train_x[i].drop(columns=dc).columns])) # ###Output _____no_output_____ ###Markdown After setting model parameters, model each building ###Code #과적합 방지를 위해 여러 k_fold로 반복하도록 설정 #특징중 몇개를 뺄경우 성능 향상을 기대할수 있고 과적합 또한 방지 가능하다 #random_seed = 0 #dcs = [[],['temperature'], ['humidity'], ['hour_te','hour_te1'], ['불쾌지수'], ['cdh']] #ks = [2,3,4,5,6,7,8,9,10,4] #과적합 방지를 위해 여러 k_fold로 반복하도록 설정 #특징중 몇개를 뺄경우 성능 향상을 기대할수 있고 과적합 또한 방지 가능하다 random_seed = 0 data_cols = [[]] kfold_split = [5] # 최종 적용 파라미터 cat_mae_params = { 'objective': 'MAE', 'n_estimators': 10000, 'early_stopping_rounds': 4, } #catboost hyper parameter lgbm_mae_params = { 'objective': 'MAE', 'boosting_type': 'goss', 'n_estimators': 11000, 'early_stopping_round': 15, 'num_leaves': 39, } #lightgbm hyper parameter xgb_mae_params = { 'objective': 'reg:squarederror', 'n_estimators': 20000, 'max_depth': 8, 'learning_rate': 0.03, 'colsample_bytree': 0.9, 'subsample': 0.7, 'reg_alpha': 0.01, 'reg_lambda': 0.01, 'n_jobs': -1, 'early_stoppings': 100 } #eXtreme Gradient Boosting hyper parameter for dc in data_cols:#d특정 feature dc를 drop 시킴 for k in kfold_split:#kfold 의 nspilt 의 값 k folds = [] for i in range(len(train_dfs)): cross=KFold(n_splits=k, shuffle=True, random_state=random_seed) fold=[] for train_idx, valid_idx in cross.split(train_x[i], train_y[i]): fold.append((train_idx, valid_idx)) folds.append(fold) for i in range(len(train_dfs)): for fold in range(k): print(dc,random_seed,k,i) train_idx, valid_idx = folds[i][fold] X_train=np.array(train_x[i].drop(columns=dc).iloc[train_idx]) y_train=np.array(train_y[i].iloc[train_idx]) X_valid=np.array(train_x[i].drop(columns=dc).iloc[valid_idx]) y_valid=np.array(train_y[i].iloc[valid_idx]) #catboost 학습 #model=CatBoostRegressor(**cat_mae_params) #model.fit(X_train, y_train, eval_set=[(X_valid, y_valid)], verbose=100) #v = model.predict(np.array(test_dfs[i][train_x[i].drop(columns=dc).columns])) #lgbm 학습 model=LGBMRegressor(**lgbm_mae_params) model.fit(X_train, y_train, eval_set=[(X_valid, y_valid)], verbose=100) v = model.predict(np.array(test_dfs[i][train_x[i].drop(columns=dc).columns])) submission['answer'].iloc[(i)*168:(i+1)*168] += v/(len(kfold_split)*k*len(data_cols)) random_seed += 1 submission.to_csv('submission_out_month6.csv', index=False) submission ###Output _____no_output_____ ###Markdown XGBoost 실험(버려) ###Code for dc in data_cols:#d특정 feature dc를 drop 시킴 for k in kfold_split:#kfold 의 nspilt 의 값 k folds = [] for i in range(len(train_dfs)): cross=KFold(n_splits=k, shuffle=True, random_state=random_seed) fold=[] for train_idx, valid_idx in cross.split(train_x[i], train_y[i]): fold.append((train_idx, valid_idx)) folds.append(fold) for i in range(len(train_dfs)): for fold in range(k): print(dc,random_seed,k,i) train_idx, valid_idx = folds[i][fold] X_train=np.array(train_x[i].drop(columns=dc).iloc[train_idx]) y_train=np.array(train_y[i].iloc[train_idx]) X_valid=np.array(train_x[i].drop(columns=dc).iloc[valid_idx]) y_valid=np.array(train_y[i].iloc[valid_idx]) #catboost 학습 #model=CatBoostRegressor(**cat_mae_params) #model.fit(X_train, y_train, eval_set=[(X_valid, y_valid)], verbose=100) #v = model.predict(np.array(test_dfs[i][train_x[i].drop(columns=dc).columns])) #lgbm 학습 #model=LGBMRegressor(**lgbm_mae_params) #model.fit(X_train, y_train, eval_set=[(X_valid, y_valid)], verbose=100) #v = model.predict(np.array(test_dfs[i][train_x[i].drop(columns=dc).columns])) #xgb 학습 model=XGBRegressor(**xgb_mae_params) model.fit(X_train, y_train, eval_set=[(X_valid, y_valid)], verbose=100) v = model.predict(np.array(test_dfs[i][train_x[i].drop(columns=dc).columns])) submission['answer'].iloc[(i)*168:(i+1)*168] += v/(len(kfold_split)*k*len(data_cols)) random_seed += 1 submission.to_csv('submission_xgb_ver1.csv', index=False) submission ###Output _____no_output_____
0008/eval example.ipynb
###Markdown ```juliausing RCallx = 1f(var::String) = eval(:(@rput($(Symbol(var)))))module M2using RCallx = 2f(var::String) = eval(:(@rput($(Symbol(var)))))g(var::String) = Main.eval(:(@rput($(Symbol(var)))))g(m::Module, var::String) = Core.eval(m, :(@rput($(Symbol(var)))))end``````juliajulia> M2.f("x")2julia> R"x"RObject{IntSxp}[1] 2``````juliajulia> M2.g("x")1julia> R"x"RObject{IntSxp}[1] 1``````juliajulia> M2.g(M2, "x") equivalent to M2.f("x")2julia> R"x"RObject{IntSxp}[1] 2``` ###Code using RCall x = 1 f(var::String) = eval(:(@rput($(Symbol(var))))) module M2 using RCall x = 2 f(var::String) = eval(:(@rput($(Symbol(var))))) g(var::String) = Main.eval(:(@rput($(Symbol(var))))) g(m::Module, var::String) = Core.eval(m, :(@rput($(Symbol(var))))) end using RCall x = 1 f(var::String) = eval(:(@rput($(Symbol(var))))) module M2 using RCall x = 2 f(var::String) = eval(:(@rput($(Symbol(var))))) g(var::String) = Main.eval(:(@rput($(Symbol(var))))) g(m::Module, var::String) = Core.eval(m, :(@rput($(Symbol(var))))) end ###Output WARNING: replacing module M2.
Lecture 46 Dot Product and Angle between 2 Vectors.ipynb
###Markdown The dot product ###Code ## many ways to compute the dot product np.random.seed(100) v1 = np.random.rand(2) v2 = np.random.rand(2) # method 1 dp = sum( np.multiply(v1,v2) ) # method 2 dp = np.dot( v1,v2 ) # method 3 dp = np.matmul( v1,v2 ) def dot_product(v1, v2): return np.dot(v1, v2) w = dot_product(v1, v2) print(w) X = np.zeros(2) x,y = zip(X, v1) plt.plot(x, y, label='v1') x,y = zip(X, v2) plt.plot(x,y, label='v2') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown dot product : the geometric perspective $$\alpha = ||a||.||b||\cos\theta$$ Angle between two vectors ###Code Image(url= "https://i.imgur.com/zvFu6Du.png", width=400) def angle(u,v, degree=False): u_norm = np.linalg.norm(u, 2) v_norm = np.linalg.norm(v, 2) if degree: return np.degrees(math.acos(np.dot(u,v) * 1/u_norm * 1/v_norm)) else: return math.acos(np.dot(u,v) * 1/u_norm * 1/v_norm) np.random.seed(10) u = np.random.rand(2) v = np.random.rand(2) theta = angle(u,v) print(theta) v1 = np.array([2, 4, -3]) v2 = np.array([0,-3, -3]) theta = angle(v1,v2) print(round(theta, 3)) X = np.zeros(3) x,y,z = zip(X, v1) fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(x,y,z, label='v1') x,y,z = zip(X, v2) ax.plot(x,y,z, label='v2') plt.legend() plt.show() ###Output _____no_output_____
VAE in Pytorch.ipynb
###Markdown Test the VAE architecture with a simple example: a curve with Gaussian noise ###Code t.manual_seed(10) N = 1000 X1 = t.rand(N, requires_grad = True) X = t.transpose(t.stack((X1, -1.0*t.sqrt(0.25 - (X1-0.5)**2) +0.6 + 0.1*t.rand(N)), dim = 0 ), 0, 1) plt.figure(figsize = (8,4)) #plt.plot(X[:, 0].data.numpy(), X[:, 1].data.numpy()) plt.scatter(X[:, 0].data.numpy(), X[:, 1].data.numpy(), linewidths =.3, s=3, cmap=plt.cm.cool) plt.axis([0, 1, 0, 2]) plt.show() #X.shape[0] # declare the model enc_layer_sizes = [X.shape[1], 10, 10, 10, 1] enc_activations = [None, F.tanh, F.tanh, None, None] dec_layer_sizes = [enc_layer_sizes[-1], 10, 10, 10, X.shape[1]] dec_activations = [None, None, F.tanh, F.tanh, None] model = VAE(enc_layer_sizes, dec_layer_sizes, enc_activations, dec_activations) # parameters lr = 0.001 batch_size = 100 epochs = 1000 num_batch = X.shape[0]/ batch_size # optimizer optimizer = t.optim.Adam(model.parameters(), lr=lr) # training loop for i in range(int(epochs * num_batch)): k = i % num_batch x = X[int(k * batch_size):int((k+1) * batch_size), :] eps = t.rand(x.shape[0],enc_layer_sizes[-1], requires_grad = True) # loss function loss = model.forward(x, eps) # backpropagation optimizer.zero_grad() loss.backward(retain_graph=True) optimizer.step() if i%200 ==0: print(loss.data) # reconstruct the data with trained model eps = t.rand(X.shape[0],enc_layer_sizes[-1], requires_grad = True) Z = model.enc_mlp(X, eps)[0] X_projected = model.dec_mlp(Z, X)[0] plt.figure(figsize = (8,4)) plt.scatter(X[:, 0].data.numpy(), X[:, 1].data.numpy(), c='blue', lw=.3, s=3) plt.scatter(X_projected[:, 0].data.numpy(), X_projected[:, 1].data.numpy(), c='red', lw=.3, s=3) plt.axis([0, 1, 0, 1]) plt.show() ###Output _____no_output_____
1_Titanic_Exploratory_Analysis.ipynb
###Markdown Kaggle Training : Titanic Here we perform an exploratory analysis of the datasets for:* Titanic Kaggle competition ###Code # Required Libraries import pandas as pd import numpy as np %matplotlib inline ###Output _____no_output_____ ###Markdown Load the data ###Code # Path of dataset datasetFolder = 'datasets/' # Load datasets df_train = pd.read_csv(datasetFolder + 'train.csv') df_test = pd.read_csv(datasetFolder + 'test.csv') df_gendersub = pd.read_csv(datasetFolder + 'gender_submission.csv') ###Output _____no_output_____ ###Markdown Describe datasets ###Code # Datasets sizes print ("Train : ", df_train.shape) print ("Test : ", df_test.shape) print ("GenderSub : ", df_gendersub.shape) # Let's review the first records of the dataset df_train.head() # # Select just some rows # df_train[1:10] # # Select some cols # df_train[['PassengerId', 'Sex']] # # Select specific rows and columns # df_train.loc[0:10, ['PassengerId', 'Sex']] # Data types per column df_train.dtypes # Basic Statistics df_train.describe() df_test.describe() # Please note that We don't have the column Survived here df_gendersub.head() # This file is just an example, about how we should submit our results ###Output _____no_output_____ ###Markdown Let's review the data ###Code df_gendersub.groupby("Survived").count() df_train.groupby("Sex").count() df_train[['Survived', 'Sex', 'PassengerId']].pivot_table(index=['Survived', 'Sex'], aggfunc='count') df_train.groupby(['Survived', 'Sex'])['PassengerId'].count().unstack(0).plot.bar() ###Output _____no_output_____
Courses/Machine Learning Regression/Regression Week 4 Ridge Regression (gradient descent).ipynb
###Markdown Regression Week 4: Ridge Regression (gradient descent) In this notebook, you will implement ridge regression via gradient descent. You will:* Convert an SFrame into a Numpy array* Write a Numpy function to compute the derivative of the regression weights with respect to a single feature* Write gradient descent function to compute the regression weights given an initial weight vector, step size, tolerance, and L2 penalty Fire up Turi Create Make sure you have the latest version of Turi Create ###Code import turicreate ###Output The history saving thread hit an unexpected error (DatabaseError('database disk image is malformed',)).History will not be written to the database. ###Markdown Load in house sales dataDataset is from house sales in King County, the region where the city of Seattle, WA is located. ###Code sales = turicreate.SFrame('home_data.sframe/') ###Output _____no_output_____ ###Markdown If we want to do any "feature engineering" like creating new features or adjusting existing ones we should do this directly using the SFrames as seen in the first notebook of Week 2. For this notebook, however, we will work with the existing features. Import useful functions from previous notebook As in Week 2, we convert the SFrame into a 2D Numpy array. Copy and paste `get_numpy_data()` from the second notebook of Week 2. ###Code import numpy as np # note this allows us to refer to numpy as np instead def get_numpy_data(data_sframe, features, output): data_sframe['constant'] = 1 # this is how you add a constant column to an SFrame # add the column 'constant' to the front of the features list so that we can extract it along with the others: features = ['constant'] + features # this is how you combine two lists # select the columns of data_SFrame given by the features list into the SFrame features_sframe (now including constant): features_sframe = data_sframe[features] # the following line will convert the features_SFrame into a numpy matrix: feature_matrix = features_sframe.to_numpy() # assign the column of data_sframe associated with the output to the SArray output_sarray output_sarray = data_sframe[output] # the following will convert the SArray into a numpy array by first converting it to a list output_array = output_sarray.to_numpy() return(feature_matrix, output_array) ###Output _____no_output_____ ###Markdown Also, copy and paste the `predict_output()` function to compute the predictions for an entire matrix of features given the matrix and the weights: ###Code def predict_output(feature_matrix, weights): # assume feature_matrix is a numpy matrix containing the features as columns and weights is a corresponding numpy array # create the predictions vector by using np.dot() predictions = np.dot(feature_matrix, weights) return(predictions) ###Output _____no_output_____ ###Markdown Computing the Derivative We are now going to move to computing the derivative of the regression cost function. Recall that the cost function is the sum over the data points of the squared difference between an observed output and a predicted output, plus the L2 penalty term.```Cost(w)= SUM[ (prediction - output)^2 ]+ l2_penalty*(w[0]^2 + w[1]^2 + ... + w[k]^2).```Since the derivative of a sum is the sum of the derivatives, we can take the derivative of the first part (the RSS) as we did in the notebook for the unregularized case in Week 2 and add the derivative of the regularization part. As we saw, the derivative of the RSS with respect to `w[i]` can be written as: ```2*SUM[ error*[feature_i] ].```The derivative of the regularization term with respect to `w[i]` is:```2*l2_penalty*w[i].```Summing both, we get```2*SUM[ error*[feature_i] ] + 2*l2_penalty*w[i].```That is, the derivative for the weight for feature i is the sum (over data points) of 2 times the product of the error and the feature itself, plus `2*l2_penalty*w[i]`. **We will not regularize the constant.** Thus, in the case of the constant, the derivative is just twice the sum of the errors (without the `2*l2_penalty*w[0]` term).Recall that twice the sum of the product of two vectors is just twice the dot product of the two vectors. Therefore the derivative for the weight for feature_i is just two times the dot product between the values of feature_i and the current errors, plus `2*l2_penalty*w[i]`.With this in mind complete the following derivative function which computes the derivative of the weight given the value of the feature (over all data points) and the errors (over all data points). To decide when to we are dealing with the constant (so we don't regularize it) we added the extra parameter to the call `feature_is_constant` which you should set to `True` when computing the derivative of the constant and `False` otherwise. ###Code def feature_derivative_ridge(errors, feature, weight, l2_penalty, feature_is_constant): if feature_is_constant == True: derivative = 2 * np.dot(errors, feature) # Otherwise, derivative is twice the dot product plus 2*l2_penalty*weight else: derivative = 2 * np.dot(errors, feature) + 2 * l2_penalty * weight return derivative ###Output _____no_output_____ ###Markdown To test your feature derivartive run the following: ###Code (example_features, example_output) = get_numpy_data(sales, ['sqft_living'], 'price') my_weights = np.array([1., 10.]) test_predictions = predict_output(example_features, my_weights) errors = test_predictions - example_output # prediction errors # next two lines should print the same values print (feature_derivative_ridge(errors, example_features[:,1], my_weights[1], 1, False)) print (np.sum(errors*example_features[:,1])*2+20.) print ('') # next two lines should print the same values print (feature_derivative_ridge(errors, example_features[:,0], my_weights[0], 1, True)) print (np.sum(errors)*2.) ###Output -56554166782350.0 -56554166782350.0 -22446749336.0 -22446749336.0 ###Markdown Gradient Descent Now we will write a function that performs a gradient descent. The basic premise is simple. Given a starting point we update the current weights by moving in the negative gradient direction. Recall that the gradient is the direction of *increase* and therefore the negative gradient is the direction of *decrease* and we're trying to *minimize* a cost function. The amount by which we move in the negative gradient *direction* is called the 'step size'. We stop when we are 'sufficiently close' to the optimum. Unlike in Week 2, this time we will set a **maximum number of iterations** and take gradient steps until we reach this maximum number. If no maximum number is supplied, the maximum should be set 100 by default. (Use default parameter values in Python.)With this in mind, complete the following gradient descent function below using your derivative function above. For each step in the gradient descent, we update the weight for each feature before computing our stopping criteria. ###Code def ridge_regression_gradient_descent(feature_matrix, output, initial_weights, step_size, l2_penalty, max_iterations=100): print ('Starting gradient descent with l2_penalty = ' + str(l2_penalty)) weights = np.array(initial_weights) # make sure it's a numpy array iteration = 0 # iteration counter print_frequency = 1 # for adjusting frequency of debugging output #while not reached maximum number of iterations: while iteration <= max_iterations: iteration += 1 # increment iteration counter ### === code section for adjusting frequency of debugging output. === if iteration == 10: print_frequency = 10 if iteration == 100: print_frequency = 100 if iteration%print_frequency==0: print('Iteration = ' + str(iteration)) ### === end code section === # compute the predictions based on feature_matrix and weights using your predict_output() function predictions = predict_output(feature_matrix, weights) # compute the errors as predictions - output errors = predictions - output # from time to time, print the value of the cost function if iteration%print_frequency==0: print ('Cost function = ', str(np.dot(errors,errors) + l2_penalty*(np.dot(weights,weights) - weights[0]**2))) for i in range(len(weights)): # loop over each weight # Recall that feature_matrix[:,i] is the feature column associated with weights[i] # compute the derivative for weight[i]. #(Remember: when i=0, you are computing the derivative of the constant!) if i == 0: derivative = feature_derivative_ridge(errors, feature_matrix[:, i], weights[i], 0.0, True) else: derivative = feature_derivative_ridge(errors, feature_matrix[:, i], weights[i], l2_penalty, False) # subtract the step size times the derivative from the current weight weights[i] -= step_size*derivative print ('Done with gradient descent at iteration ', iteration) print ('Learned weights = ', str(weights)) return weights ###Output _____no_output_____ ###Markdown Visualizing effect of L2 penalty The L2 penalty gets its name because it causes weights to have small L2 norms than otherwise. Let's see how large weights get penalized. Let us consider a simple model with 1 feature: ###Code simple_features = ['sqft_living'] my_output = 'price' ###Output _____no_output_____ ###Markdown Let us split the dataset into training set and test set. Make sure to use `seed=0`: ###Code train_data,test_data = sales.random_split(.8,seed=0) ###Output _____no_output_____ ###Markdown In this part, we will only use `'sqft_living'` to predict `'price'`. Use the `get_numpy_data` function to get a Numpy versions of your data with only this feature, for both the `train_data` and the `test_data`. ###Code (simple_feature_matrix, output) = get_numpy_data(train_data, simple_features, my_output) (simple_test_feature_matrix, test_output) = get_numpy_data(test_data, simple_features, my_output) ###Output _____no_output_____ ###Markdown Let's set the parameters for our optimization: ###Code initial_weights = np.array([0., 0.]) step_size = 1e-12 max_iterations=1000 ###Output _____no_output_____ ###Markdown First, let's consider no regularization. Set the `l2_penalty` to `0.0` and run your ridge regression algorithm to learn the weights of your model. Call your weights:`simple_weights_0_penalty`we'll use them later. ###Code simple_weights_0_penalty = ridge_regression_gradient_descent(simple_feature_matrix, output, initial_weights, step_size, 0.0, max_iterations = 100) simple_weights_0_penalty ###Output Starting gradient descent with l2_penalty = 0.0 Iteration = 1 Cost function = 7433051851026171.0 Iteration = 2 Cost function = 5394267213135526.0 Iteration = 3 Cost function = 4023237736501159.0 Iteration = 4 Cost function = 3101256183922414.5 Iteration = 5 Cost function = 2481247644505113.5 Iteration = 6 Cost function = 2064308077891941.5 Iteration = 7 Cost function = 1783927097372279.5 Iteration = 8 Cost function = 1595378203154871.8 Iteration = 9 Cost function = 1468583991054997.2 Iteration = 10 Cost function = 1383318191484981.8 Iteration = 20 Cost function = 1211562140496239.0 Iteration = 30 Cost function = 1208313762678823.0 Iteration = 40 Cost function = 1208252326252869.8 Iteration = 50 Cost function = 1208251163612919.5 Iteration = 60 Cost function = 1208251140915263.0 Iteration = 70 Cost function = 1208251139777036.0 Iteration = 80 Cost function = 1208251139046557.0 Iteration = 90 Cost function = 1208251138323789.0 Iteration = 100 Cost function = 1208251137601168.0 Done with gradient descent at iteration 101 Learned weights = [7.85511563e-02 2.63024271e+02] ###Markdown Next, let's consider high regularization. Set the `l2_penalty` to `1e11` and run your ridge regression algorithm to learn the weights of your model. Call your weights:`simple_weights_high_penalty`we'll use them later. ###Code simple_weights_high_penalty = ridge_regression_gradient_descent(simple_feature_matrix, output, initial_weights, step_size, 1e11, max_iterations = 100) simple_weights_high_penalty ###Output Starting gradient descent with l2_penalty = 100000000000.0 Iteration = 1 Cost function = 7433051851026171.0 Iteration = 2 Cost function = 5618303898412631.0 Iteration = 3 Cost function = 4920613278115385.0 Iteration = 4 Cost function = 4652381942612294.0 Iteration = 5 Cost function = 4549258764014158.0 Iteration = 6 Cost function = 4509612390882265.0 Iteration = 7 Cost function = 4494370050281118.0 Iteration = 8 Cost function = 4488509984030220.5 Iteration = 9 Cost function = 4486256988531770.0 Iteration = 10 Cost function = 4485390752674688.0 Iteration = 20 Cost function = 4484848868034299.0 Iteration = 30 Cost function = 4484847880479027.0 Iteration = 40 Cost function = 4484846931081658.0 Iteration = 50 Cost function = 4484845981687379.5 Iteration = 60 Cost function = 4484845032293499.5 Iteration = 70 Cost function = 4484844082900019.0 Iteration = 80 Cost function = 4484843133506937.0 Iteration = 90 Cost function = 4484842184114254.5 Iteration = 100 Cost function = 4484841234721970.0 Done with gradient descent at iteration 101 Learned weights = [ 1.00782291 124.57384288] ###Markdown This code will plot the two learned models. (The blue line is for the model with no regularization and the red line is for the one with high regularization.) ###Code import matplotlib.pyplot as plt %matplotlib inline plt.plot(simple_feature_matrix,output,'k.', simple_feature_matrix,predict_output(simple_feature_matrix, simple_weights_0_penalty),'b-', simple_feature_matrix,predict_output(simple_feature_matrix, simple_weights_high_penalty),'r-') ###Output _____no_output_____ ###Markdown Compute the RSS on the TEST data for the following three sets of weights:1. The initial weights (all zeros)2. The weights learned with no regularization3. The weights learned with high regularizationWhich weights perform best? ###Code print (((test_output - predict_output(simple_test_feature_matrix, initial_weights))**2).sum()) print (predict_output(simple_test_feature_matrix, initial_weights)[0]) print (((test_output - predict_output(simple_test_feature_matrix, simple_weights_0_penalty))**2).sum()) print (predict_output(simple_test_feature_matrix, simple_weights_0_penalty)[0]) print (((test_output - predict_output(simple_test_feature_matrix, simple_weights_high_penalty))**2).sum()) print (predict_output(simple_test_feature_matrix, simple_weights_high_penalty)[0]) ###Output 694653077641343.2 178141.60313616588 ###Markdown ***QUIZ QUESTIONS***1. What is the value of the coefficient for `sqft_living` that you learned with no regularization, rounded to 1 decimal place? What about the one with high regularization?2. Comparing the lines you fit with the with no regularization versus high regularization, which one is steeper? no regularization was steeper3. What are the RSS on the test data for each of the set of weights above (initial, no regularization, high regularization)? initial: 1784273282524564.0 no regularization: 275723643923134.44high regularization: 694653077641343.2 Running a multiple regression with L2 penalty Let us now consider a model with 2 features: `['sqft_living', 'sqft_living15']`. First, create Numpy versions of your training and test data with these two features. ###Code model_features = ['sqft_living', 'sqft_living15'] # sqft_living15 is the average squarefeet for the nearest 15 neighbors. my_output = 'price' (feature_matrix, output) = get_numpy_data(train_data, model_features, my_output) (test_feature_matrix, test_output) = get_numpy_data(test_data, model_features, my_output) ###Output _____no_output_____ ###Markdown We need to re-inialize the weights, since we have one extra parameter. Let us also set the step size and maximum number of iterations. ###Code initial_weights = np.array([0.0,0.0,0.0]) step_size = 1e-12 max_iterations = 1000 ###Output _____no_output_____ ###Markdown First, let's consider no regularization. Set the `l2_penalty` to `0.0` and run your ridge regression algorithm to learn the weights of your model. Call your weights:`multiple_weights_0_penalty` ###Code multiple_weights_0_penalty = ridge_regression_gradient_descent(feature_matrix, output, initial_weights, step_size, 0.0, max_iterations) multiple_weights_0_penalty ###Output Starting gradient descent with l2_penalty = 0.0 Iteration = 1 Cost function = 7433051851026171.0 Iteration = 2 Cost function = 4056752331500973.0 Iteration = 3 Cost function = 2529565114333592.0 Iteration = 4 Cost function = 1838556694275926.8 Iteration = 5 Cost function = 1525675575208603.5 Iteration = 6 Cost function = 1383789498674793.8 Iteration = 7 Cost function = 1319232606276634.5 Iteration = 8 Cost function = 1289648872028920.8 Iteration = 9 Cost function = 1275884724079266.8 Iteration = 10 Cost function = 1269278807577156.8 Iteration = 20 Cost function = 1257812386316614.8 Iteration = 30 Cost function = 1251954571266786.0 Iteration = 40 Cost function = 1246755423155437.5 Iteration = 50 Cost function = 1242139508748821.0 Iteration = 60 Cost function = 1238041401137188.0 Iteration = 70 Cost function = 1234403013463993.5 Iteration = 80 Cost function = 1231172774976820.2 Iteration = 90 Cost function = 1228304900059555.0 Iteration = 100 Cost function = 1225758739263725.8 Iteration = 200 Cost function = 1211738881421532.5 Iteration = 300 Cost function = 1207473080962631.5 Iteration = 400 Cost function = 1206175125770960.0 Iteration = 500 Cost function = 1205780190233996.0 Iteration = 600 Cost function = 1205660014471676.0 Iteration = 700 Cost function = 1205623439252682.0 Iteration = 800 Cost function = 1205612300984401.0 Iteration = 900 Cost function = 1205608902360341.5 Iteration = 1000 Cost function = 1205607858660559.5 Done with gradient descent at iteration 1001 Learned weights = [ -0.35780713 243.0557255 22.41312582] ###Markdown Next, let's consider high regularization. Set the `l2_penalty` to `1e11` and run your ridge regression algorithm to learn the weights of your model. Call your weights:`multiple_weights_high_penalty` ###Code multiple_weights_high_penalty = ridge_regression_gradient_descent(feature_matrix, output, initial_weights, step_size, 1e11, max_iterations) multiple_weights_high_penalty ###Output Starting gradient descent with l2_penalty = 100000000000.0 Iteration = 1 Cost function = 7433051851026171.0 Iteration = 2 Cost function = 4460489790285892.0 Iteration = 3 Cost function = 3796674468844608.5 Iteration = 4 Cost function = 3648319530437361.0 Iteration = 5 Cost function = 3615091103216103.0 Iteration = 6 Cost function = 3607602742514732.0 Iteration = 7 Cost function = 3605886322161656.0 Iteration = 8 Cost function = 3605474874533295.5 Iteration = 9 Cost function = 3605365167765576.0 Iteration = 10 Cost function = 3605329402184649.0 Iteration = 20 Cost function = 3605294281022695.0 Iteration = 30 Cost function = 3605293537267099.5 Iteration = 40 Cost function = 3605293082749905.0 Iteration = 50 Cost function = 3605292631106358.0 Iteration = 60 Cost function = 3605292179491500.5 Iteration = 70 Cost function = 3605291727877070.0 Iteration = 80 Cost function = 3605291276262785.0 Iteration = 90 Cost function = 3605290824648642.5 Iteration = 100 Cost function = 3605290373034643.5 Iteration = 200 Cost function = 3605285856902500.0 Iteration = 300 Cost function = 3605281340784634.5 Iteration = 400 Cost function = 3605276824681046.0 Iteration = 500 Cost function = 3605272308591734.5 Iteration = 600 Cost function = 3605267792516700.0 Iteration = 700 Cost function = 3605263276455942.0 Iteration = 800 Cost function = 3605258760409461.0 Iteration = 900 Cost function = 3605254244377257.0 Iteration = 1000 Cost function = 3605249728359329.0 Done with gradient descent at iteration 1001 Learned weights = [ 6.74968593 91.48927271 78.43658678] ###Markdown Compute the RSS on the TEST data for the following three sets of weights:1. The initial weights (all zeros)2. The weights learned with no regularization3. The weights learned with high regularizationWhich weights perform best? ###Code ((test_output - predict_output(test_feature_matrix, initial_weights))**2).sum() ((test_output - predict_output(test_feature_matrix, multiple_weights_0_penalty))**2).sum() ((test_output - predict_output(test_feature_matrix, multiple_weights_high_penalty))**2).sum() ###Output _____no_output_____ ###Markdown Predict the house price for the 1st house in the test set using the no regularization and high regularization models. (Remember that python starts indexing from 0.) How far is the prediction from the actual price? Which weights perform best for the 1st house? ###Code test_output[0] mult_0_predictions_test = predict_output(test_feature_matrix, multiple_weights_0_penalty) mult_0_predictions_test[0] mult_high_predictions_test = predict_output(test_feature_matrix, multiple_weights_high_penalty) mult_high_predictions_test[0] ###Output _____no_output_____
notebooks/Parallel.ipynb
###Markdown Testing different libraries for parallel processing in Python ###Code import numpy as np # Different ways to speed up your computations using multiple cpu cores def slow_function(n=1000): total = 0.0 for i, _ in enumerate(range(n)): for j, _ in enumerate(range(1, n)): total += (i * j) return total data = range(100) ###Output _____no_output_____ ###Markdown Option 0: sequential loop ###Code results = [] for _ in data: results.append(slow_function()) print(results[:10]) ###Output [249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0] ###Markdown Option 1: Multiprocessing- Advantage: native python library- Disadvantage: verbose ###Code import multiprocessing as mp pool = mp.Pool(mp.cpu_count()) results = [pool.apply_async(slow_function, args=()) for row in data] pool.close() pool.join() results = [r.get() for r in results] print(results[:10]) ###Output [249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0, 249001249500.0] ###Markdown Option 2: Ray - Advantage: one of the least verbose library I'm aware of- Disadvantage: NOT native python library- More: * Docs: https://docs.ray.io/en/latest/index.html * Github: https://github.com/ray-project/ray (14.4k stars) * Install it first: `pip install ray`. * Bunch of useful tips: https://docs.ray.io/en/latest/auto_examples/tips-for-first-time.html ###Code import ray ray.init() @ray.remote def paralel_slow_function(x=1000): return slow_function(x) futures = [paralel_slow_function.remote() for _ in data] print(ray.get(futures[:10])) #ray.shutdown() ###Output 2021-01-09 21:49:39,719 INFO services.py:1090 -- View the Ray dashboard at http://127.0.0.1:8265 ###Markdown Option 4: pandarallel- Advantage: Do not need anything else if you are doing your work on pandas- Disadvantage: only works with pandas- More: * Docs: * Github: https://github.com/nalepae/pandarallel (1.3K stars) * Install it first: `pip install pandarallel`. * Bunch of useful tips: https://github.com/nalepae/pandarallel/blob/master/docs/examples.ipynb ###Code import pandas as pd s = pd.Series(data) s.head() # Usual way to apply a function with Pandas. Applying the `slow_function`. # Got the similar running time as shown above. s.apply(lambda x: slow_function()) from pandarallel import pandarallel pandarallel.initialize(progress_bar=False) # You can specify number of cores, memory, progress_bar s.parallel_apply(lambda x: slow_function()) ###Output _____no_output_____ ###Markdown Option 5: Dask- Advantage: It is fast and provides parallel implementations for numpy/pandas/sklean...- Disadvantage: implementation is similar to native numpy/pandas/sklean but not always the same- More: * Docs: https://docs.dask.org/en/latest/ * Github: https://github.com/dask/dask (7.7K stars) * Install it first: `pip install dask`. * Bunch of useful tips: https://mybinder.org/v2/gh/dask/dask-examples/master?urlpath=lab ###Code import dask.dataframe as dd import pandas as pd s = pd.Series(data) ds = dd.from_pandas(s, 12) ds.apply(lambda x: slow_function(), meta=('float64')).head(10) ###Output /home/palotti/.conda/envs/cp38/lib/python3.8/site-packages/dask/dataframe/core.py:6194: UserWarning: Insufficient elements for `head`. 10 elements requested, only 9 elements available. Try passing larger `npartitions` to `head`. warnings.warn(msg.format(n, len(r)))
Investigate a dataset/.ipynb_checkpoints/investigate-a-dataset-template-checkpoint.ipynb
###Markdown > **Tip**: Welcome to the Investigate a Dataset project! You will find tips in quoted sections like this to help organize your approach to your investigation. Before submitting your project, it will be a good idea to go back through your report and remove these sections to make the presentation of your work as tidy as possible. First things first, you might want to double-click this Markdown cell and change the title so that it reflects your dataset and investigation. Project: Investigate a Dataset (Replace this with something more specific!) Table of ContentsIntroductionData WranglingExploratory Data AnalysisConclusions Introduction> **Tip**: In this section of the report, provide a brief introduction to the dataset you've selected for analysis. At the end of this section, describe the questions that you plan on exploring over the course of the report. Try to build your report around the analysis of at least one dependent variable and three independent variables.>> If you haven't yet selected and downloaded your data, make sure you do that first before coming back here. If you're not sure what questions to ask right now, then make sure you familiarize yourself with the variables and the dataset context for ideas of what to explore. ###Code # Use this cell to set up import statements for all of the packages that you # plan to use. # Remember to include a 'magic word' so that your visualizations are plotted # inline with the notebook. See this page for more: # http://ipython.readthedocs.io/en/stable/interactive/magics.html ###Output _____no_output_____ ###Markdown Data Wrangling> **Tip**: In this section of the report, you will load in the data, check for cleanliness, and then trim and clean your dataset for analysis. Make sure that you document your steps carefully and justify your cleaning decisions. General Properties ###Code # Load your data and print out a few lines. Perform operations to inspect data # types and look for instances of missing or possibly errant data. ###Output _____no_output_____ ###Markdown > **Tip**: You should _not_ perform too many operations in each cell. Create cells freely to explore your data. One option that you can take with this project is to do a lot of explorations in an initial notebook. These don't have to be organized, but make sure you use enough comments to understand the purpose of each code cell. Then, after you're done with your analysis, create a duplicate notebook where you will trim the excess and organize your steps so that you have a flowing, cohesive report.> **Tip**: Make sure that you keep your reader informed on the steps that you are taking in your investigation. Follow every code cell, or every set of related code cells, with a markdown cell to describe to the reader what was found in the preceding cell(s). Try to make it so that the reader can then understand what they will be seeing in the following cell(s). Data Cleaning (Replace this with more specific notes!) ###Code # After discussing the structure of the data and any problems that need to be # cleaned, perform those cleaning steps in the second part of this section. ###Output _____no_output_____ ###Markdown Exploratory Data Analysis> **Tip**: Now that you've trimmed and cleaned your data, you're ready to move on to exploration. Compute statistics and create visualizations with the goal of addressing the research questions that you posed in the Introduction section. It is recommended that you be systematic with your approach. Look at one variable at a time, and then follow it up by looking at relationships between variables. Research Question 1 (Replace this header name!) ###Code # Use this, and more code cells, to explore your data. Don't forget to add # Markdown cells to document your observations and findings. ###Output _____no_output_____ ###Markdown Research Question 2 (Replace this header name!) ###Code # Continue to explore the data to address your additional research # questions. Add more headers as needed if you have more questions to # investigate. ###Output _____no_output_____
labs/lab_01_Moreno.ipynb
###Markdown MAT281 - Laboratorio N°01 Problema 01 a) Calcular el número $\pi$En los siglos XVII y XVIII, James Gregory y Gottfried Leibniz descubrieron una serie infinita que sirve para calcular $\pi$:$$\displaystyle \pi = 4 \sum_{k=1}^{\infty}\dfrac{(-1)^{k+1}}{2k-1} = 4(1-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7} + ...) $$Desarolle un programa para estimar el valor de $\pi$ ocupando el método de Leibniz, donde la entrada del programa debe ser un número entero $n$ que indique cuántos términos de la suma se utilizará.* **Ejemplo**: *calcular_pi(3)* = 3.466666666666667, *calcular_pi(1000)* = 3.140592653839794 Definir Función ###Code def calcular_pi(n): """ calcular_pi(n) Aproximacion del valor de pi mediante el método de Leibniz Parameters ---------- n : int Numero de terminos de la suma que se usarán Returns ------- output : float Valor aproximado de pi. Examples -------- >>> calcular_pi(3) 3.466666666666667 >>> calcular_pi(1000) 3.140592653839794 """ pi = 0 # valor incial for k in range(1,n+1): numerador = (-1)**(k+1) # numerador de la iteracion i denominador = 2*k-1 # denominador de la iteracion i pi+=numerador/denominador # suma hasta el i-esimo termino return 4*pi # Acceso a la documentación help(calcular_pi) ###Output Help on function calcular_pi in module __main__: calcular_pi(n) calcular_pi(n) Aproximacion del valor de pi mediante el método de Leibniz Parameters ---------- n : int Numero de terminos de la suma que se usarán Returns ------- output : float Valor aproximado de pi. Examples -------- >>> calcular_pi(3) 3.466666666666667 >>> calcular_pi(1000) 3.140592653839794 ###Markdown Verificar ejemplos ###Code # ejemplo 01 assert calcular_pi(3) == 3.466666666666667, "ejemplo 01 incorrecto" # ejemplo 02 assert calcular_pi(1000) == 3.140592653839794, "ejemplo 02 incorrecto" ###Output _____no_output_____ ###Markdown **Observación**:* Note que si corre la línea de comando `calcular_pi(3.0)` le mandará un error ... ¿ por qué ?* En los laboratorio, no se pide ser tan meticuloso con la documentacion.* Lo primero es definir el código, correr los ejemplos y luego documentar correctamente. b) Calcular el número $e$Euler realizó varios aportes en relación a $e$, pero no fue hasta 1748 cuando publicó su **Introductio in analysin infinitorum** que dio un tratamiento definitivo a las ideas sobre $e$. Allí mostró que:En los siglos XVII y XVIII, James Gregory y Gottfried Leibniz descubrieron una serie infinita que sirve para calcular π:$$\displaystyle e = \sum_{k=0}^{\infty}\dfrac{1}{k!} = 1+\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!} + ... $$Desarolle un programa para estimar el valor de $e$ ocupando el método de Euler, donde la entrada del programa debe ser un número entero $n$ que indique cuántos términos de la suma se utilizará.* **Ejemplo**: *calcular_e(3)* =2.5, *calcular_e(1000)* = 2.7182818284590455 Definir función ###Code from math import factorial def calcular_e(n): """ calcular_e(n) Aproximacion del valor de e mediante el método de Euler Parameters ---------- n : int Numero de terminos de la suma que se usarán Returns ------- output : float Valor aproximado de e. Examples -------- >>> calcular e(3) 2.5 >>> calcular_e(1000) 2.7182818284590455 """ euler = 0 for k in range(0, n): numerador = 1 denominador = factorial(k) euler += numerador / denominador return euler ###Output _____no_output_____ ###Markdown Verificar ejemplos ###Code # ejemplo 01 assert calcular_e(3) == 2.5, "ejemplo 01 incorrecto" # ejemplo 02 assert calcular_e(1000) == 2.7182818284590455, "ejemplo 02 incorrecto" ###Output _____no_output_____ ###Markdown Problema 02Sea $\sigma(n)$ definido como la suma de los divisores propios de $n$ (números menores que n que se dividen en $n$).Los [números amigos](https://en.wikipedia.org/wiki/Amicable_numbers) son enteros positivos $n_1$ y $n_2$ tales que la suma de los divisores propios de uno es igual al otro número y viceversa, es decir, $\sigma(n_1)=n_2$ y $\sigma(n_2)=n_1$.Por ejemplo, los números 220 y 284 son números amigos.* los divisores propios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110; por lo tanto $\sigma(220) = 284$. * los divisores propios de 284 son 1, 2, 4, 71 y 142; entonces $\sigma(284) = 220$.Implemente una función llamada `amigos` cuyo input sean dos números naturales $n_1$ y $n_2$, cuyo output sea verifique si los números son amigos o no.* **Ejemplo**: *amigos(220,284)* = True, *amigos(6,5)* = False Definir Función ###Code def amigos (n1,n2): """ amigos (n1,n2) función para ver si dos números son amigos (suma de los divisores propios de uno es igual al otro número y viceversa). Parameters ---------- n1 : int Primer número entero positivo n2 : int Segundo número entero positivo Returns ------- output: "Error: usted ha ingresado un parámetro negativo" Uno o ambos parámetros ingresados es un entero negativo. output : True Los dos enteros positivos son amigos output: False Los dos enteros positivos no son amigos Examples -------- >>> amigos(220,284) == True >>> amigos(6,5) == False """ if (n1<0): return("Error: usted ha ingresado un parámetro negativo") if (n2<0): return("Error: usted ha ingresado un parámetro negativo") else: suma1=0 suma2=0 i=1 j=1 while i<n1: if n1%i==0: suma1+=i i+=1 while j<n2: if n2%j==0: suma2+=j j+=1 if(suma1==n2) and (suma2==n1): return True else: return False ###Output _____no_output_____ ###Markdown Verificar ejemplos ###Code # ejemplo 01 assert amigos(220,284) == True, "ejemplo 01 incorrecto" # ejemplo 02 assert amigos(6,5) == False, "ejemplo 02 incorrecto" ###Output _____no_output_____ ###Markdown Problema 03La [conjetura de Collatz](https://en.wikipedia.org/wiki/Collatz_conjecture), conocida también como conjetura $3n+1$ o conjetura de Ulam (entre otros nombres), fue enunciada por el matemático Lothar Collatz en 1937, y a la fecha no se ha resuelto.Sea la siguiente operación, aplicable a cualquier número entero positivo:* Si el número es par, se divide entre 2.* Si el número es impar, se multiplica por 3 y se suma 1.La conjetura dice que siempre alcanzaremos el 1 (y por tanto el ciclo 4, 2, 1) para cualquier número con el que comencemos. Implemente una función llamada `collatz` cuyo input sea un número natural positivo $N$ y como output devulva la secuencia de números hasta llegar a 1.* **Ejemplo**: *collatz(9)* = [9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1] Definir Función ###Code def collatz(N): """ collatz (N) función para comprobar la conjetura de Collatz Parameters ---------- N : int Numero entero con el cual se comprueba la conjetura de Collatz. Returns ------- output : list lista con los números de la secuencia de la conjetura de Collatz del entero parámetro. Examples -------- >>> collatz(9) == [9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1] """ lista=list() lista.append(N) numero=0 while (numero!=1): if N%2==0: numero=N/2 lista.append(int(numero)) N=numero else: numero=N*3+1 lista.append(int(numero)) N=numero return lista ###Output _____no_output_____ ###Markdown Verificar ejemplos ###Code # ejemplo 01 assert collatz(9) == [9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], "ejemplo 01 incorrecto" ###Output _____no_output_____ ###Markdown Problema 04La [conjetura de Goldbach](https://en.wikipedia.org/wiki/Goldbach%27s_conjecture) es uno de los problemas abiertos más antiguos en matemáticas. Concretamente, G.H. Hardy, en 1921, en su famoso discurso pronunciado en la Sociedad Matemática de Copenhague, comentó que probablemente la conjetura de Goldbach no es solo uno de los problemas no resueltos más difíciles de la teoría de números, sino de todas las matemáticas. Su enunciado es el siguiente:$$\textrm{Todo número par mayor que 2 puede escribirse como suma de dos números primos - Christian Goldbach (1742)}$$Implemente una función llamada `goldbach` cuyo input sea un número natural positivo $N$ y como output devuelva la suma de dos primos ($N1$ y $N2$) tal que: $N1+N2=N$. * **Ejemplo**: goldbash(4) = (2,2), goldbash(6) = (3,3) , goldbash(8) = (3,5) Definir función ###Code def primo(N): """ Primo(N) función para comprobar si un número es primo Parameters ---------- N : int número entero para el cual queremos saber si es primo o no. Returns ------- output : True el entero N es primo output: False el entero N no es primo Examples -------- >>> primo (2)=True """ if N<2: return False for i in range (2,N): if N%i==0: return False return True def goldbash(N): """ goldbash (N) función para comprobar la conjetura de Goldbash Parameters ---------- N : int Numero entero con el cual se comprueba la conjetura de Goldbash. Returns ------- output : tuple tupla con dos números enteros cuya suma es N. Examples -------- >>> goldbash(4) == (2,2) >>> goldbash(6) == (3,3) >>> goldbash(8) == (3,5) """ tupla=tuple() lista=list() for i in range (2,N): if primo(i)==True: lista.append(i) i+=1 a=len(lista) lista2=list() for j in range(0,a): for k in range (0,a): if (lista[j]+lista[k])==N: lista2.append((lista[j],lista[k])) k+=1 j+=1 hola=(tuple(lista2)) return(hola[0]) ###Output _____no_output_____ ###Markdown Verificar ejemplos ###Code # ejemplo 01 assert goldbash(4) == (2,2), "ejemplo 01 incorrecto" # ejemplo 02 assert goldbash(6) == (3,3), "ejemplo 02 incorrecto" # ejemplo 03 assert goldbash(8) == (3,5), "ejemplo 03 incorrecto" ###Output _____no_output_____
ProyectoFinal_TwitterAnalysis.ipynb
###Markdown ###Code # Tweepy - Python library for accessing the Twitter API. import tweepy # TextBlob - Python library for processing textual data from textblob import TextBlob # WordCloud - Python linrary for creating image wordclouds from wordcloud import WordCloud # Pandas - Data manipulation and analysis library import pandas as pd # NumPy - mathematical functions on multi-dimensional arrays and matrices import numpy as np # Regular Expression Python module import re # Matplotlib - plotting library to create graphs and charts import matplotlib.pyplot as plt # Settings for Matplotlib graphs and charts from pylab import rcParams rcParams['figure.figsize'] = 12, 8 config = pd.read_csv("./config.csv") # Twitter API config twitterApiKey = config['twitterApiKey'][0] twitterApiSecret = config['twitterApiSecret'][0] twitterApiAccessToken = config['twitterApiAccessToken'][0] twitterApiAccessTokenSecret = config['twitterApiAccessTokenSecret'][0] # Authenticate auth = tweepy.OAuthHandler(twitterApiKey, twitterApiSecret) auth.set_access_token(twitterApiAccessToken, twitterApiAccessTokenSecret) twetterApi = tweepy.API(auth, wait_on_rate_limit = True) twitterAccount = "joeBiden" tweets = tweepy.Cursor(twetterApi.user_timeline, screen_name=twitterAccount, count=None, since_id=None, max_id=None, trim_user=True, exclude_replies=True, contributor_details=False, include_entities=False ).items(50); df = pd.DataFrame(data=[tweet.text for tweet in tweets], columns=['Tweet']) df.head() # Cleaning the tweets def cleanUpTweet(txt): # Remove mentions txt = re.sub(r'@[A-Za-z0-9_]+', '', txt) # Remove hashtags txt = re.sub(r'#', '', txt) # Remove retweets: txt = re.sub(r'RT : ', '', txt) # Remove urls txt = re.sub(r'https?:\/\/[A-Za-z0-9\.\/]+', '', txt) return txt df['Tweet'] = df['Tweet'].apply(cleanUpTweet) def getTextSubjectivity(txt): return TextBlob(txt).sentiment.subjectivity def getTextPolarity(txt): return TextBlob(txt).sentiment.polarity df['Subjectivity'] = df['Tweet'].apply(getTextSubjectivity) df['Polarity'] = df['Tweet'].apply(getTextPolarity) df.head(50) df = df.drop(df[df['Tweet'] == ''].index) df.head(50) # negative, nautral, positive analysis def getTextAnalysis(a): if a < 0: return "Negative" elif a == 0: return "Neutral" else: return "Positive" df['Score'] = df['Polarity'].apply(getTextAnalysis) df.head(50) positive = df[df['Score'] == 'Positive'] print(str(positive.shape[0]/(df.shape[0])*100) + " % of positive tweets") labels = df.groupby('Score').count().index.values values = df.groupby('Score').size().values plt.bar(labels, values) for index, row in df.iterrows(): if row['Score'] == 'Positive': plt.scatter(row['Polarity'], row['Subjectivity'], color="green") elif row['Score'] == 'Negative': plt.scatter(row['Polarity'], row['Subjectivity'], color="red") elif row['Score'] == 'Neutral': plt.scatter(row['Polarity'], row['Subjectivity'], color="blue") plt.title('Twitter Sentiment Analysis') plt.xlabel('Polarity') plt.ylabel('Subjectivity') # add legend plt.show() objective = df[df['Subjectivity'] == 0] print(str(objective.shape[0]/(df.shape[0])*100) + " % of objective tweets") # Creating a word cloud words = ' '.join([tweet for tweet in df['Tweet']]) wordCloud = WordCloud(width=600, height=400).generate(words) plt.imshow(wordCloud) plt.show() ###Output _____no_output_____
Model/ResNet50 - 50 epochs.ipynb
###Markdown ###Code from google.colab import drive drive.mount('/content/drive') train_df = pd.read_csv('/content/drive/MyDrive/COURSES/CS231/train_split.txt', sep=" ", header=None) train_df.columns = ['patient id', 'file_paths', 'labels', 'data source'] train_df = train_df.drop(['patient id', 'data source'], axis=1) train_df.head() test_df = pd.read_csv('/content/drive/MyDrive/COURSES/CS231/test_split.txt', sep=" ", header=None) test_df.columns = ['patient id', 'file_paths', 'labels', 'data source'] test_df = test_df.drop(['patient id', 'data source'], axis=1) test_df.head() TRAIN_PATH = "/content/drive/MyDrive/COURSES/CS231/data/train" TEST_PATH = "/content/drive/MyDrive/COURSES/CS231/data/test" ###Output _____no_output_____ ###Markdown Balancing Classes ###Code train_df['labels'].value_counts() file_count = 4649 samples = [] for category in train_df['labels'].unique(): category_slice = train_df.query("labels == @category") samples.append(category_slice.sample(file_count, replace=False, random_state=1)) train_df = pd.concat(samples, axis=0).sample(frac=1.0, random_state=1).reset_index(drop=True) print(train_df['labels'].value_counts()) print(len(train_df)) ###Output normal 4649 COVID-19 4649 pneumonia 4649 Name: labels, dtype: int64 13947 ###Markdown Spliting train_df into train_df and valid_df ###Code train_df, valid_df = train_test_split(train_df, train_size=0.9, random_state=0) print(train_df.labels.value_counts()) print(valid_df.labels.value_counts()) print(test_df.labels.value_counts()) ###Output COVID-19 4213 normal 4189 pneumonia 4150 Name: labels, dtype: int64 pneumonia 499 normal 460 COVID-19 436 Name: labels, dtype: int64 COVID-19 274 pneumonia 105 normal 100 Name: labels, dtype: int64 ###Markdown Image Data Generators ###Code batch_size = 32 img_height = 224 img_width = 224 target_size = (img_height, img_width) train_datagen = ImageDataGenerator(preprocessing_function=tf.keras.applications.resnet_v2.preprocess_input, horizontal_flip=True, zoom_range=0.1) test_datagen = ImageDataGenerator(preprocessing_function=tf.keras.applications.resnet_v2.preprocess_input) train_generator = train_datagen.flow_from_dataframe(train_df, directory=TRAIN_PATH, x_col='file_paths', y_col='labels', target_size=target_size, batch_size=batch_size, color_mode='rgb', class_mode='categorical') valid_generator = test_datagen.flow_from_dataframe(valid_df, directory=TRAIN_PATH, x_col='file_paths', y_col='labels', target_size=target_size, batch_size=batch_size, color_mode='rgb', class_mode='categorical') test_generator = test_datagen.flow_from_dataframe(test_df, directory=TEST_PATH, x_col='file_paths', y_col='labels', target_size=target_size, batch_size=batch_size, color_mode='rgb', class_mode='categorical', shuffle = False) ###Output Found 12552 validated image filenames belonging to 3 classes. Found 1395 validated image filenames belonging to 3 classes. Found 479 validated image filenames belonging to 3 classes. ###Markdown Create Model ###Code base_model = ResNet50V2(include_top=False, weights="imagenet", input_shape=(img_height, img_width, 3)) for layer in base_model.layers[:190]: layer.trainable = False for i, layer in enumerate(base_model.layers): print(i, layer.name, "-", layer.trainable) model = tf.keras.Sequential([ base_model, Flatten(), BatchNormalization(), Dense(256, activation='relu'), Dropout(0.5), BatchNormalization(), Dense(128, activation='relu'), Dropout(0.5), BatchNormalization(), Dense(64, activation='relu'), Dropout(0.5), BatchNormalization(), Dense(3, activation='softmax'), ]) lr = 5e-3 model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=lr), metrics=['accuracy']) model.summary() ###Output Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= resnet50v2 (Functional) (None, 7, 7, 2048) 23564800 _________________________________________________________________ flatten (Flatten) (None, 100352) 0 _________________________________________________________________ batch_normalization (BatchNo (None, 100352) 401408 _________________________________________________________________ dense (Dense) (None, 256) 25690368 _________________________________________________________________ dropout (Dropout) (None, 256) 0 _________________________________________________________________ batch_normalization_1 (Batch (None, 256) 1024 _________________________________________________________________ dense_1 (Dense) (None, 128) 32896 _________________________________________________________________ dropout_1 (Dropout) (None, 128) 0 _________________________________________________________________ batch_normalization_2 (Batch (None, 128) 512 _________________________________________________________________ dense_2 (Dense) (None, 64) 8256 _________________________________________________________________ dropout_2 (Dropout) (None, 64) 0 _________________________________________________________________ batch_normalization_3 (Batch (None, 64) 256 _________________________________________________________________ dense_3 (Dense) (None, 3) 195 ================================================================= Total params: 49,699,715 Trainable params: 25,933,315 Non-trainable params: 23,766,400 _________________________________________________________________ ###Markdown Callbacks ###Code patience = 10 # stop_patience = 10 factor = 0.1 callbacks = [ ModelCheckpoint("resnet50v2-final.h5", save_best_only=True, verbose = 0), # EarlyStopping(patience=stop_patience, monitor='val_loss', verbose=1), ReduceLROnPlateau(monitor='val_loss', factor=factor, patience=patience, min_lr=1e-6, verbose=1) ] ###Output _____no_output_____ ###Markdown Model Training ###Code epochs = 50 history = model.fit(train_generator, validation_data=valid_generator, epochs=epochs, callbacks=callbacks, verbose=1) train_loss = [0.6487, 0.4469, 0.4074, 0.3849, 0.3576, 0.3427, 0.3471, 0.3380, 0.3410, 0.3383, 0.3361, 0.2940, 0.2783, 0.2717, 0.26, 0.2624, 0.2369, 0.2470, 0.2358, 0.2311, 0.2263, 0.2218, 0.2233, 0.2167, 0.2231, 0.2227, 0.2213, 0.2096, 0.2241, 0.2239, 0.2176, 0.2176, 0.2072, 0.2219, 0.2164, 0.2101, 0.2049, 0.2178, 0.2090, 0.2152, 0.2185, 0.2181, 0.2128, 0.2176, 0.2096, 0.2130, 0.2160, 0.2083, 0.2108, 0.2143] val_loss = [0.3612, 0.3654, 0.6374, 0.3819, 0.5943, 1.1585, 0.4505, 0.4302, 0.5506, 0.6574, 1.1695, 1.3079, 1.7884, 3.1584, 5.1392, 4.6225, 4.8016, 4.9733, 4.8234, 5.7820, 6.4980, 4.4179, 4.2063, 4.1806, 4.2003, 5.5932, 1.5663, 1.1069, 3.2203, 2.6253, 3.3542, 4.0708, 4.2337, 5.4792, 4.8195, 3.8897, 4.0073, 4.3476, 5.2787, 5.0320, 5.5412, 3.6614, 3.8046, 4.0843, 3.6718, 3.9051, 4.3147, 4.5132, 6.02, 4.8454] plt.plot(train_loss, label='Loss (training data)') plt.plot(val_loss, label='Loss (validation data)') plt.title('Loss for Training') plt.ylabel('Loss') plt.xlabel('No. epoch') plt.legend(['train', 'validation'], loc="upper left") plt.savefig('/content/drive/MyDrive/COURSES/CS231/results/resnet50_50-1') plt.show() plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.savefig("plot/resnet50_plot.png") plt.show() ###Output _____no_output_____ ###Markdown Predictions on Test Set ###Code best_model = model best_model.load_weights('/content/drive/MyDrive/COURSES/CS231/resnet50v2-final.h5') best_model.evaluate(test_generator) preds = best_model.predict(test_generator) def print_info( test_gen, preds, print_code, save_dir, subject ): class_dict=test_gen.class_indices labels= test_gen.labels file_names= test_gen.filenames error_list=[] true_class=[] pred_class=[] prob_list=[] new_dict={} error_indices=[] y_pred=[] for key,value in class_dict.items(): new_dict[value]=key # dictionary {integer of class number: string of class name} # store new_dict as a text fine in the save_dir classes=list(new_dict.values()) # list of string of class names dict_as_text=str(new_dict) dict_name= subject + '-' +str(len(classes)) +'.txt' dict_path=os.path.join(save_dir, dict_name) with open(dict_path, 'w') as x_file: x_file.write(dict_as_text) errors=0 for i, p in enumerate(preds): pred_index=np.argmax(p) true_index=labels[i] # labels are integer values if pred_index != true_index: # a misclassification has occurred error_list.append(file_names[i]) true_class.append(new_dict[true_index]) pred_class.append(new_dict[pred_index]) prob_list.append(p[pred_index]) error_indices.append(true_index) errors=errors + 1 y_pred.append(pred_index) if print_code !=0: if errors>0: if print_code>errors: r=errors else: r=print_code msg='{0:^28s}{1:^28s}{2:^28s}{3:^16s}'.format('Filename', 'Predicted Class' , 'True Class', 'Probability') print_in_color(msg, (0,255,0),(55,65,80)) for i in range(r): msg='{0:^28s}{1:^28s}{2:^28s}{3:4s}{4:^6.4f}'.format(error_list[i], pred_class[i],true_class[i], ' ', prob_list[i]) print_in_color(msg, (255,255,255), (55,65,60)) #print(error_list[i] , pred_class[i], true_class[i], prob_list[i]) else: msg='With accuracy of 100 % there are no errors to print' print_in_color(msg, (0,255,0),(55,65,80)) if errors>0: plot_bar=[] plot_class=[] for key, value in new_dict.items(): count=error_indices.count(key) if count!=0: plot_bar.append(count) # list containg how many times a class c had an error plot_class.append(value) # stores the class fig1=plt.figure() fig1.set_figheight(len(plot_class)/3) fig1.set_figwidth(10) plt.style.use('fivethirtyeight') for i in range(0, len(plot_class)): c=plot_class[i] x=plot_bar[i] plt.barh(c, x, ) plt.title( ' Errors by Class on Test Set') if len(classes)<= 30: # create a confusion matrix and a test report y_true= np.array(labels) y_pred=np.array(y_pred) cm = confusion_matrix(y_true, y_pred ) clr = classification_report(y_true, y_pred, target_names=classes) length=len(classes) if length<8: fig_width=8 fig_height=8 else: fig_width= int(length * .5) fig_height= int(length * .5) fig2 = plt.figure(figsize=(fig_width, fig_height)) sns.heatmap(cm, annot=True, vmin=0, fmt='g', cmap='Blues', cbar=False) plt.xticks(np.arange(length)+.5, classes, rotation= 90) plt.yticks(np.arange(length)+.5, classes, rotation=0) plt.xlabel("Predicted") plt.ylabel("Actual") plt.title("Confusion Matrix") plt.savefig("/content/drive/MyDrive/COURSES/CS231/results/resnet50_50-4.png", dpi = 100) plt.show() print("Classification Report:\n----------------------\n", clr) fig1.savefig("/content/drive/MyDrive/COURSES/CS231/results/resnet50_50-3.png", dpi = 100) save_dir = '/content/drive/MyDrive/COURSES/CS231' subject = "kq" print_code = 0 print_info(test_generator, preds, print_code, save_dir, subject) ###Output _____no_output_____
AWS Machine Learning Foundations Course/Object_Oriented_Programming/shirt_exercise/Shirt_exercise.ipynb
###Markdown Use the Shirt ClassYou've seen what a class looks like and how to instantiate an object. Now it's your turn to write code that insantiates a shirt object. Explanation of the CodeThis exercise using Jupyter notebook includes three files:- shirt_exercise.ipynb, which is the file you are currently looking at- answer.py containing answers to the exercise- tests.py, tests for checking your code - you can run these tests using the last code cell at the bottom of this notebook Your TaskThe shirt_exercise.ipynb file, which you are currently looking at if you are reading this, has an exercise to help guide you through coding with an object in Python.Fill out the TODOs in each section of the Jupyter notebook. You can find a solution in the answer.py file.First, run this code cell below to load the Shirt class. ###Code class Shirt: def __init__(self, shirt_color, shirt_size, shirt_style, shirt_price): self.color = shirt_color self.size = shirt_size self.style = shirt_style self.price = shirt_price def change_price(self, new_price): self.price = new_price def discount(self, discount): return self.price * (1 - discount) ### TODO: # - insantiate a shirt object with the following characteristics: # - color red, size S, style long-sleeve, and price 25 # - store the object in a variable called shirt_one # # ### Shirt('red', 'S', 'long-sleeve', 25) shirt_one = Shirt('red', 'S', 'long-sleeve', 25) ### TODO: # - print the price of the shirt using the price attribute # - use the change_price method to change the price of the shirt to 10 # - print the price of the shirt using the price attribute # - use the discount method to print the price of the shirt with a 12% discount # ### print(shirt_one.price) shirt_one.change_price(10) print(shirt_one.price) print(shirt_one.discount(.12)) ### TODO: # # - instantiate another object with the following characteristics: # . - color orange, size L, style short-sleeve, and price 10 # - store the object in a variable called shirt_two # ### shirt_two = Shirt('orange', 'L', 'short-sleeve', 10) ### TODO: # # - calculate the total cost of shirt_one and shirt_two # - store the results in a variable called total # ### total = shirt_one.price + shirt_two.price #print(total) ### TODO: # # - use the shirt discount method to calculate the total cost if # shirt_one has a discount of 14% and shirt_two has a discount # of 6% # - store the results in a variable called total_discount ### total_discount = shirt_one.discount(.14) + shirt_two.discount(.06) #print(total_discount) ###Output _____no_output_____ ###Markdown Test your CodeThe following code cell tests your code. There is a file called tests.py containing a function called run_tests(). The run_tests() function executes a handful of assert statements to check your work. You can see this file if you go to the Jupyter Notebook menu and click on "File->Open" and then open the tests.py file.Execute the next code cell. The code will produce an error if your answers in this exercise are not what was expected. Keep working on your code until all tests are passing.If you run the code cell and there is no output, then you passed all the tests!As mentioned previously, there's also a file with a solution. To find the solution, click on the Jupyter logo at the top of the workspace, and then enter the folder titled 1.OOP_syntax_shirt_practice ###Code # Unit tests to check your solution from tests import run_tests run_tests(shirt_one, shirt_two, total, total_discount) ###Output _____no_output_____
1b_step_functions_sagemaker/sagemaker-custom/2_pipeline/wip/3_ml-pipeline-add.ipynb
###Markdown TODO: As of 08/11/20 SageMaker Python SDK doesn't support Scaling policies:https://github.com/aws/sagemaker-python-sdk/issues/1123Add Model MonitorThis might help:https://github.com/aws-samples/reinvent2019-aim362-sagemaker-debugger-model-monitor/blob/master/02_deploy_and_monitor/deploy_and_monitor.ipynbhttps://github.com/aws-samples/reinvent2019-aim362-sagemaker-debugger-model-monitor/blob/master/02_deploy_and_monitor/monitoringjob_utils.py ###Code from stress import stress_button stress_button ###Output _____no_output_____
new_toxic_predict.ipynb
###Markdown ###Code !pip install transformers !git clone https://github.com/NVIDIA/apex %cd apex !pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ !pip install fast-bert !pip install torch from transformers import BertTokenizer from pathlib import Path import torch from box import Box import pandas as pd import collections import os from tqdm import tqdm, trange import sys import random import numpy as np import apex from sklearn.model_selection import train_test_split import datetime from fast_bert.modeling import BertForMultiLabelSequenceClassification from fast_bert.data_cls import BertDataBunch, InputExample, InputFeatures, MultiLabelTextProcessor, convert_examples_to_features from fast_bert.learner_cls import BertLearner from fast_bert.metrics import accuracy_multilabel, accuracy_thresh, fbeta, roc_auc torch.cuda.empty_cache() pd.set_option('display.max_colwidth', -1) run_start_time = datetime.datetime.today().strftime('%Y-%m-%d_%H-%M-%S') DATA_PATH = Path('../data/') LABEL_PATH = Path('../labels/') AUG_DATA_PATH = Path('../data/data_augmentation/') MODEL_PATH=Path('../models/') LOG_PATH=Path('../logs/') MODEL_PATH.mkdir(exist_ok=True) model_state_dict = None # BERT_PRETRAINED_PATH = Path('../../bert_models/pretrained-weights/cased_L-12_H-768_A-12/') BERT_PRETRAINED_PATH = Path('../../bert_models/pretrained-weights/uncased_L-12_H-768_A-12/') # BERT_PRETRAINED_PATH = Path('../../bert_fastai/pretrained-weights/uncased_L-24_H-1024_A-16/') # FINETUNED_PATH = Path('../models/finetuned_model.bin') FINETUNED_PATH = None # model_state_dict = torch.load(FINETUNED_PATH) LOG_PATH.mkdir(exist_ok=True) OUTPUT_PATH = MODEL_PATH/'output' OUTPUT_PATH.mkdir(exist_ok=True) args = Box({ "run_text": "multilabel toxic comments with freezable layers", "train_size": -1, "val_size": -1, "log_path": LOG_PATH, "full_data_dir": DATA_PATH, "data_dir": DATA_PATH, "task_name": "toxic_classification_lib", "no_cuda": False, "bert_model": BERT_PRETRAINED_PATH, "output_dir": OUTPUT_PATH, "max_seq_length": 512, "do_train": True, "do_eval": True, "do_lower_case": True, "train_batch_size": 8, "eval_batch_size": 16, "learning_rate": 5e-5, "num_train_epochs": 6, "warmup_proportion": 0.0, "no_cuda": False, "local_rank": -1, "seed": 42, "gradient_accumulation_steps": 1, "optimize_on_cpu": False, "fp16": True, "fp16_opt_level": "O1", "weight_decay": 0.0, "adam_epsilon": 1e-8, "max_grad_norm": 1.0, "max_steps": -1, "warmup_steps": 500, "logging_steps": 50, "eval_all_checkpoints": True, "overwrite_output_dir": True, "overwrite_cache": False, "seed": 42, "loss_scale": 128, "task_name": 'intent', "model_name": 'xlnet-base-cased', "model_type": 'xlnet' }) import logging logfile = str(LOG_PATH/'log-{}-{}.txt'.format(run_start_time, args["run_text"])) logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[ logging.FileHandler(logfile), logging.StreamHandler(sys.stdout) ]) logger = logging.getLogger() logger.info(args) # tokenizer = BertTokenizer.from_pretrained(BERT_PRETRAINED_PATH, do_lower_case=args['do_lower_case']) device = torch.device('cuda') if torch.cuda.device_count() > 1: args.multi_gpu = True else: args.multi_gpu = False label_cols = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] from fast_bert.prediction import BertClassificationPredictor predictor = BertClassificationPredictor(args.output_dir/'model_out', args.output_dir, LABEL_PATH, multi_label=True, model_type='xlnet', do_lower_case=False) predictor = BertClassificationPredictor('../models/output/model_out', args.output_dir, LABEL_PATH, model_type='xlnet', do_lower_case=False) args.output_dir output = predictor.predict_batch(list(pd.read_csv("../data/test.csv")['comment_text'].values)) pd.DataFrame(output).to_csv('../data/output_xlnet.csv') results = pd.read_csv('../data/output_xlnet.csv') preds = pd.DataFrame([{item[0]: item[1] for item in pred} for pred in output]) preds.head() test_df = pd.read_csv("../data/train.csv") test_df.head() output_df = pd.merge(test_df, preds, how='left', left_index=True, right_index=True) del output_df['comment_text'] columns = ['id','toxic','severe_toxic','obscene','threat','insult','identity_hate'] output_df = output_df[columns] output_df.to_csv('../data/output_xlnet.csv', index=None) pd.read_csv('../data/output_xlnet.csv', index_col='id') ###Output _____no_output_____
3_classification.ipynb
###Markdown MNIST data set ###Code from sklearn.datasets import fetch_openml mnist = fetch_openml('mnist_784', version=1) type(mnist) X, y = mnist['data'], mnist['target'] X.shape, y.shape digit = X[0] plt.imshow(digit.reshape(28, 28), cmap='binary'); y[0] y = y.astype(int) ###Output _____no_output_____ ###Markdown Figure 3-1. Sample digits from the MNIST data set ###Code rng = np.random.default_rng(42) fig, axs = plt.subplots(10, 10, figsize=(16, 16), sharex=True, sharey=True) for i in range(10): X_new = X[y == i] selected = rng.choice(X_new, size=10, replace=False) for j in range(10): axs[i, j].imshow(selected[j].reshape(28, 28), cmap='binary') axs[i, j].axis('off') split = 60000 X_train, X_test, y_train, y_test = X[:split], X[split:], y[:split], y[split:] X_train.shape, y_test.shape ###Output _____no_output_____ ###Markdown Binary classifier to detect 5 ###Code from sklearn.linear_model import SGDClassifier y_train_5 = (y_train == 5) y_test_5 = (y_test == 5) sgd_clf = SGDClassifier(random_state=42) sgd_clf.fit(X_train, y_train_5) # only classify 5's from others sgd_clf.predict([digit]) # True if digit is 5, else False from sklearn.model_selection import cross_val_score scores_5 = cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring='accuracy') scores_5 ###Output _____no_output_____ ###Markdown Confusion matrixNOTE: below, confusion_matrix from cross_val_predict is more accurate than the confusion_matrix from the full training set.cross_val_predict divides the training data into folds and makes predictions for validation fold by learning ONLY from training fold. This way when predictions are made using cross_val_predict, the estimator doesn't learn from a sample before making a prediction for the same sample. This avoids overfitting to the training data? ###Code from sklearn.model_selection import cross_val_predict from sklearn.metrics import confusion_matrix y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3) confusion_matrix(y_train_5, y_train_pred) confusion_matrix(y_train_5, sgd_clf.predict(X_train)) ###Output _____no_output_____ ###Markdown precision & recall In a binary classification setting:1. recall is the fraction of the positives the model is able to predict. Also known as sensitiviy, true positive rate (TPR). - tp / (tp + fn)2. precision is the fraction of correct positive predictions. - tp / (tp + fp)3. specificity is the fraction of correct negative predictions. - tn / (tn + fp) precision-recall tradeoff ###Code from sklearn.metrics import plot_precision_recall_curve disp = plot_precision_recall_curve(sgd_clf, X_train, y_train_5, response_method='decision_function') y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3, method='decision_function') # use decision_function (instead of predict) to return scores print(y_scores[:5]) print(y_train_pred[:5]) # scores above 0 are classified as positive class, else negative class from sklearn.metrics import precision_recall_curve precision, recall, threshold = precision_recall_curve(y_train_5, y_scores) print(len(precision), len(recall), len(threshold)) # p & r one more than t plt.plot(threshold, precision[:-1], 'b--', label='precision') plt.plot(threshold, recall[:-1], 'g-', label='recall') plt.xlabel('Threshold') plt.legend() plt.xlim([-50000, 50000]) plt.show(); from sklearn.metrics import precision_score, recall_score # scores at default threshold of 0 print(precision_score(y_train_5, y_train_pred)) print(recall_score(y_train_5, y_train_pred)) ###Output 0.8370879772350012 0.6511713705958311 ###Markdown NOTE that pr curves from full training set are more optimistic than from cross-validation. The pr curve from cross-validation is more accurate representation of the models ability to generalize well for unseen data. ###Code plt.plot(recall[:-1], precision[:-1]); ###Output _____no_output_____ ###Markdown can we make our own precision-recall curves? ###Code def my_pr_curve(labels, scores): my_p, my_r, my_t = [], [], [] sorted_scores = np.sort(scores) for thresh in sorted_scores: preds = (scores >= thresh) tn, fp, fn, tp = confusion_matrix(labels, preds).ravel() my_p.append(tp / (tp + fp)) my_r.append(tp / (tp + fn)) my_t.append(thresh) return (my_p, my_r, my_t) # my_p, my_r, my_t = my_pr_curve(y_train_5, y_scores) # print(len(my_p), len(my_r), len(my_t)) # plt.plot(my_t, my_p, 'b--', label='precision') # plt.plot(my_t, my_r, 'g-', label='recall') # plt.xlabel('Threshold') # plt.legend() # plt.xlim([-50000, 50000]) # plt.savefig('./figures/3_clf/my_precision_recall_curve.png', dpi=200) # plt.show(); ###Output 60000 60000 60000 ###Markdown Yes, we can make our own pr curve, but it is INSANELY slow compared to sklearn's pr curve. Below is the picture generated by 'my_pr_curve'![title](./figures/3_clf/my_precision_recall_curve.png) ###Code from sklearn.metrics import roc_curve, plot_roc_curve fpr, tpr, thresholds = roc_curve(y_train_5, y_scores) plt.plot(fpr, tpr) plt.plot([0, 1], [0, 1], 'k--', alpha=0.5) plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve') plt.show(); ###Output _____no_output_____ ###Markdown Multiclass classification Inherently, some classifiers are binary; others are multiclass.Examples: - binary: SGD, SVM - multiclass: logistic, LDA, QDA, RandomForest, naive Bayes (NB), knn However, sklearn allows using binary classifiers for multiclass classification. Internally, sklearn ovr or ovo strategies when using binary classifiers for multiclass classification task. - ovr (one-vs-rest): train one binary classifier for each class; choose the class with maximum score. - ovo (one-vs-one): train a binary classifier for each pair of classes; choose the class that wins most duels. sklearn automatically chooses either ovr or ovo based on the model and training data. we can explicitly control which of the two strategies (ovr or ovo) is used by OneVsRestClassifier & OneVsOneClassifers ###Code %%timeit -n 1 -r 1 # train a binary classifier (SGD) on multiclass # sklearn automatically chooses either ovr or ovo strategy from sklearn.linear_model import SGDClassifier sgd_clf = SGDClassifier() sgd_clf.fit(X_train, y_train) # NOT y_train_5 print(sgd_clf.predict([digit])) # true class is 5 ###Output [5] 312 µs ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each) ###Markdown ovr & ovo classifiersHowever, we can specify the strategy explicitly. ###Code from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier ovr_clf = OneVsRestClassifier(SGDClassifier()) ovo_clf = OneVsOneClassifier(SGDClassifier()) ovr_clf.fit(X_train, y_train) len(ovr_clf.estimators_) # equal to n_classes ovr_clf.decision_function([digit]) ovr_clf.estimators_[0].decision_function([digit]) sgd_clf.decision_function([digit]) ovo_clf.fit(X_train, y_train) len(ovo_clf.estimators_) ovo_clf.decision_function([digit]) ovo_clf.predict([digit]) from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis from sklearn.neighbors import KNeighborsClassifier # scale training data scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) # let's fit a few models sgd_clf = SGDClassifier() svm_clf = SVC() log_clf = LogisticRegression() lda_clf = LinearDiscriminantAnalysis() qda_clf = QuadraticDiscriminantAnalysis() knn_clf = KNeighborsClassifier() %time sgd_scores = cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring='accuracy') %time svm_scores = cross_val_score(svm_clf, X_train_scaled, y_train, cv=3, scoring='accuracy') %time log_scores = cross_val_score(log_clf, X_train_scaled, y_train, cv=3, scoring='accuracy') %time lda_scores = cross_val_score(lda_clf, X_train_scaled, y_train, cv=3, scoring='accuracy') %time qda_scores = cross_val_score(qda_clf, X_train_scaled, y_train, cv=3, scoring='accuracy') %time knn_scores = cross_val_score(knn_clf, X_train_scaled, y_train, cv=3, scoring='accuracy') print(sgd_scores.mean(), sgd_scores.std()) print(svm_scores.mean(), svm_scores.std()) print(log_scores.mean(), log_scores.std()) print(lda_scores.mean(), lda_scores.std()) print(qda_scores.mean(), qda_scores.std()) print(knn_scores.mean(), knn_scores.std()) ###Output 0.9007333333333333 0.007053879941012768 0.9602666666666666 0.000573488351136155 0.9080333333333334 0.0016744816776808513 0.33349999999999996 0.28691871090374477 0.5289833333333335 0.009337766804160881 0.9403666666666667 0.002027039439401452 ###Markdown Error analysis ###Code # sgd_clf = SGDClassifier() # sgd_clf.fit(X_train_scaled, y_train) y_train_pred = sgd_clf.predict(X_train_scaled); sns.heatmap(confusion_matrix(y_train, y_train_pred, normalize='true'), annot=False); confusion_matrix(y_train, y_train_pred, normalize='true').round(2) from sklearn.metrics import plot_confusion_matrix fig, ax = plt.subplots(1, 1, figsize=(10, 10)) plot_confusion_matrix(sgd_clf, X_train_scaled, y_train, normalize='true', ax=ax); # ugh, that looks ugly!! ###Output _____no_output_____
paper/Advection_diffusion/AD_artificial/Testing/41_41_2.ipynb
###Markdown 2D Advection-Diffusion equation in this notebook we provide a simple example of the DeepMoD algorithm and apply it on the 2D advection-diffusion equation. ###Code # General imports import numpy as np import torch import matplotlib.pylab as plt # DeepMoD functions from deepymod import DeepMoD from deepymod.model.func_approx import NN from deepymod.model.library import Library2D_third from deepymod.model.constraint import LeastSquares from deepymod.model.sparse_estimators import Threshold,PDEFIND from deepymod.training import train from deepymod.training.sparsity_scheduler import TrainTestPeriodic from scipy.io import loadmat # Settings for reproducibility np.random.seed(1) torch.manual_seed(1) if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' %load_ext autoreload %autoreload 2 ###Output _____no_output_____ ###Markdown Prepare the data Next, we prepare the dataset. ###Code data = loadmat('Diffusion_2D_space41.mat') data = np.real(data['Expression1']).reshape((41,41,41,4))[:,:,:,3] down_data= np.take(np.take(np.take(data,np.arange(0,data.shape[0],1),axis=0),np.arange(0,data.shape[1],1),axis=1),np.arange(0,data.shape[2],22),axis=2) print("Dowmsampled shape:",down_data.shape) width, width_2, steps = down_data.shape x_arr = np.linspace(0,1,width) y_arr = np.linspace(0,1,width_2) t_arr = np.linspace(0,1,steps) x_grid, y_grid, t_grid = np.meshgrid(x_arr, y_arr, t_arr, indexing='ij') X = np.transpose((t_grid.flatten(), x_grid.flatten(), y_grid.flatten())) y = np.float32(down_data.reshape((down_data.size, 1))) ###Output _____no_output_____ ###Markdown We select the noise level we add to the data-set ###Code noise_level = 0.0 y_noisy = y + noise_level * np.std(y) * np.random.randn(y.size, 1) ###Output _____no_output_____ ###Markdown Select the number of samples: ###Code y_noisy.shape number_of_samples = 3362 idx = np.random.permutation(y.shape[0]) X_train = torch.tensor(X[idx, :][:number_of_samples], dtype=torch.float32, requires_grad=True).to(device) y_train = torch.tensor(y_noisy[idx, :][:number_of_samples], dtype=torch.float32).to(device) ###Output _____no_output_____ ###Markdown Configuration of DeepMoD Configuration of the function approximator: Here the first argument is the number of input and the last argument the number of output layers. ###Code network = NN(3, [40, 40, 40, 40], 1) ###Output _____no_output_____ ###Markdown Configuration of the library function: We select athe library with a 2D spatial input. Note that that the max differential order has been pre-determined here out of convinience. So, for poly_order 1 the library contains the following 12 terms:* [$1, u_x, u_y, u_{xx}, u_{yy}, u_{xy}, u, u u_x, u u_y, u u_{xx}, u u_{yy}, u u_{xy}$] ###Code library = Library2D_third(poly_order=0) ###Output _____no_output_____ ###Markdown Configuration of the sparsity estimator and sparsity scheduler used. In this case we use the most basic threshold-based Lasso estimator and a scheduler that asseses the validation loss after a given patience. If that value is smaller than 1e-5, the algorithm is converged. ###Code estimator = Threshold(0.05) sparsity_scheduler = TrainTestPeriodic(periodicity=50, patience=200, delta=1e-5) ###Output _____no_output_____ ###Markdown Configuration of the sparsity estimator ###Code constraint = LeastSquares() # Configuration of the sparsity scheduler ###Output _____no_output_____ ###Markdown Now we instantiate the model and select the optimizer ###Code model = DeepMoD(network, library, estimator, constraint).to(device) # Defining optimizer optimizer = torch.optim.Adam(model.parameters(), betas=(0.99, 0.99), amsgrad=True, lr=2e-3) ###Output _____no_output_____ ###Markdown Run DeepMoD We can now run DeepMoD using all the options we have set and the training data:* The directory where the tensorboard file is written (log_dir)* The ratio of train/test set used (split)* The maximum number of iterations performed (max_iterations)* The absolute change in L1 norm considered converged (delta)* The amount of epochs over which the absolute change in L1 norm is calculated (patience) ###Code train(model, X_train, y_train, optimizer,sparsity_scheduler, log_dir='runs/no_noise_2/', split=0.8, max_iterations=100000, delta=1e-6, patience=200) ###Output 8650 MSE: 1.05e-05 Reg: 2.85e-06 L1: 1.36e+00 ###Markdown Sparsity masks provide the active and non-active terms in the PDE: ###Code model.sparsity_masks ###Output _____no_output_____ ###Markdown estimatior_coeffs gives the magnitude of the active terms: ###Code print(model.estimator_coeffs()) data = loadmat('Diffusion_2D.mat') usol = np.real(data['Expression1']) usol= usol.reshape((51,51,41,4)) data_tot = usol[:,:,:,3] print("Total data shape:",data_tot.shape) width_tot, width_2_tot, steps_tot = data_tot.shape x_tot = np.linspace(0,1,width_tot) y_tot = np.linspace(0,1,width_2_tot) t_tot = np.linspace(0,1,steps_tot) x_grid_tot, y_grid_tot, t_grid_tot = np.meshgrid(x_tot, y_tot, t_tot, indexing='ij') X_tot = np.transpose((t_grid_tot.flatten(), x_grid_tot.flatten(), y_grid_tot.flatten())) noisy_sol = y_noisy.reshape(down_data.shape) solution = model(torch.tensor(X_tot, dtype=torch.float32)) sol = solution[0].reshape(data_tot.shape).detach().numpy() ux = solution[2][0][:,1].reshape(data_tot.shape).detach().numpy() uy = solution[2][0][:,2].reshape(data_tot.shape).detach().numpy() ut = solution[1][0].reshape(data_tot.shape).detach().numpy() uxx = solution[2][0][:,3].reshape(data_tot.shape).detach().numpy() uyy = solution[2][0][:,4].reshape(data_tot.shape).detach().numpy() import pysindy as ps fd_spline = ps.SINDyDerivative(kind='spline', s=1e-2) fd_spectral = ps.SINDyDerivative(kind='spectral') fd_sg = ps.SINDyDerivative(kind='savitzky_golay', left=0.5, right=0.5, order=3) dim_w = 3 denoised_sol = [] for i in np.arange(down_data.shape[2]): uwn,sigmawn,vwn= np.linalg.svd(down_data[:,:,i]) vwn = vwn.T denoised_sol.append(uwn[:,0:dim_w].dot(np.diag(sigmawn[0:dim_w]).dot(vwn[:,0:dim_w].T))) denoised_sol = np.array(denoised_sol).T denoised_sol= np.transpose(denoised_sol,axes=(1,0,2)) data_tot.shape plt.imshow(noisy_sol[:,:,10]) plt.plot(y_arr,noisy_sol[5,:,30], 'ro') plt.plot(y_tot,data_tot[25,:,30], 'go--') plt.plot(y_tot,sol[25,:,30],'g', label='t = 5',linewidth=3) plt.plot(y_arr,noisy_sol[5,:,5], 'ro') plt.plot(y_tot,data_tot[25,:,5], 'go--') plt.plot(y_tot,sol[25,:,5],'g', label='t = 5',linewidth=3) plt.plot(y_tot,data_tot[:,25,2], 'go--') plt.plot(y_tot,sol[:,25,2],'g', label='t = 5',linewidth=3) plt.plot(y_arr,noisy_sol[:,5,2], 'ro') plt.plot(y_tot,data_tot[25,:,1], 'bo--') plt.plot(y_tot,sol[25,:,1],'b', label='t = 1',linewidth=3) plt.plot(y_arr,noisy_sol[5,:,1], 'o') plt.plot(y_tot,data_tot[25,:,30], 'go--') plt.plot(y_tot,sol[25,:,30],'g', label='t = 5',linewidth=3) plt.plot(y_arr,noisy_sol[5,:,30], 'o') plt.plot(y_tot,data_tot[25,:,10], 'ro--') plt.plot(y_tot,sol[25,:,10],'r', label='t = 10',linewidth=3) plt.legend() y = down_data[5,:,1] x = y_arr plt.plot(x,fd_spline(y,x), 'bo--') plt.plot(x_tot,uy[25,:,1]*np.max(data_tot)/np.max(y_tot),'b', label='x = 1',linewidth=3) plt.plot(x_tot,fd_spectral(data_tot[25,:,1],x_tot)*np.max(data_tot)/np.max(y_tot),'r', label='x = 1',linewidth=3) y = down_data[5,:,1] x = y_arr plt.plot(x,fd_spline(fd_spline(y,x),x), 'bo--') plt.plot(x_tot,uyy[25,:,1]*np.max(data_tot)/np.max(y_tot),'b', label='x = 1',linewidth=3) plt.plot(x_tot,fd_spectral(fd_spectral(data_tot[25,:,1],x_tot),x_tot),'r', label='x = 1',linewidth=3) y = down_data[5,:,1] x = y_arr plt.plot(x,fd_spline(y,x), 'bo--') plt.plot(x_tot,uy[25,:,1]*np.max(data_tot)/np.max(y_tot),'b', label='x = 1',linewidth=3) y = down_data[5,:,1] x = y_arr plt.plot(x,fd_spline(y,x), 'bo--') plt.plot(x,uy[5,:,1]*np.max(tot_data)/np.max(y_tot),'b', label='x = 1',linewidth=3) y = down_data[5,:,2] x = y_arr plt.plot(x,fd_spline(y,x), 'go--') plt.plot(x,uy[5,:,2]*np.max(down_data)/np.max(y_grid),'g', label='x = 5',linewidth=3) y = down_data[5,:,4] x = y_arr plt.plot(x,fd_spline(y,x), 'ro--') plt.plot(x,uy[5,:,4]*np.max(down_data)/np.max(y_grid),'r', label='x = 10',linewidth=3) plt.legend() t = t_tot down_data[5,2,:].shape y = down_data[5,2,:] t = t_arr plt.plot(t_tot,fd_sg(y_tot,t_tot), 'bo--') plt.plot(t,ut[5,2,:]*np.max(down_data)/np.max(t_grid),'b', label='y = 12',linewidth=3) y = down_data[5,5,:] t = t_arr plt.plot(t,fd_sg(y,t), 'go--') plt.plot(t,ut[5,5,:]*np.max(down_data)/np.max(t_grid),'g', label='y = 6',linewidth=3) y = down_data[5,8,:] t = t_arr plt.plot(t,fd_sg(y,t), 'ro--') plt.plot(t,ut[5,8,:]*np.max(down_data)/np.max(t_grid),'r', label='y = 18',linewidth=3) plt.legend() plt.style.use('seaborn-paper') fig = plt.figure(figsize=(9,6)) plt.subplot(2,2, 1) y = down_data[5,2,:] t = t_arr plt.plot(t,fd_sg(y,t), 'bo--') plt.plot(t,ut[5,2,:],'b', label='y = 12',linewidth=3) y = down_data[5,5,:] t = t_arr plt.plot(t,fd_sg(y,t), 'go--') plt.plot(t,ut[5,5,:],'g', label='y = 6',linewidth=3) y = down_data[5,8,:] t = t_arr plt.plot(t,fd_sg(y,t), 'ro--') plt.plot(t,ut[5,8,:],'r', label='y = 18',linewidth=3) plt.legend() plt.subplot(2,2, 2) y = down_data[5,:,1] x = y_arr plt.plot(x,y, 'bo--') plt.plot(x,sol[5,:,1],'b', label='t = 1',linewidth=3) y = down_data[5,:,2] x = y_arr plt.plot(x,y, 'go--') plt.plot(x,sol[5,:,2],'g', label='t = 5',linewidth=3) y = down_data[5,:,4] x = y_arr plt.plot(x,y, 'ro--') plt.plot(x,sol[5,:,4],'r', label='t = 10',linewidth=3) plt.legend() plt.subplot(2,2, 3) y = down_data[5,:,1] x = y_arr plt.plot(x,fd_spline(y,x), 'bo--') plt.plot(x,uy[5,:,1]*np.max(down_data)/np.max(y_grid),'b', label='x = 1',linewidth=3) y = down_data[5,:,2] x = y_arr plt.plot(x,fd_spline(y,x), 'go--') plt.plot(x,uy[5,:,2]*np.max(down_data)/np.max(y_grid),'g', label='x = 5',linewidth=3) y = down_data[5,:,4] x = y_arr plt.plot(x,fd_spline(y,x), 'ro--') plt.plot(x,uy[5,:,4]*np.max(down_data)/np.max(y_grid),'r', label='x = 10',linewidth=3) plt.legend() plt.subplot(2,2,4) y = down_data[5,:,1] x = y_arr plt.plot(x,fd_spline(fd_spline(y,x)), 'bo--') plt.plot(x,uyy[5,:,1]*np.max(down_data)/(np.max(y_grid)*np.max(y_grid)),'b',label='x = 1',linewidth=3) y = down_data[5,:,2] x = y_arr plt.plot(x,fd_spline(fd_spline(y,x)), 'go--') plt.plot(x,uyy[5,:,2]*np.max(down_data)/(np.max(y_grid)*np.max(y_grid)),'g',label='x = 5',linewidth=3) y = down_data[5,:,4] x = y_arr plt.plot(x,fd_spline(fd_spline(y,x)), 'ro--') plt.plot(x,uyy[5,:,4]*np.max(down_data)/(np.max(y_grid)*np.max(y_grid)),'r',label='x = 10',linewidth=3) plt.ylim(-10,10) plt.legend() #plt.savefig('derivatives.pdf') plt.style.use('seaborn-paper') fig = plt.figure(figsize=(13,9)) plt.subplot(2,2, 1) y = denoised_sol[10,12,:] t = t_arr plt.plot(t,fd_sg(y,t), 'bo--') plt.plot(t,ut[10,12,:]*np.max(down_data)/np.max(t_grid),'b', label='y = 12',linewidth=3) y = denoised_sol[10,6,:] t = t_arr plt.plot(t,fd_sg(y,t), 'go--') plt.plot(t,ut[10,6,:]*np.max(down_data)/np.max(t_grid),'g', label='y = 6',linewidth=3) y = denoised_sol[10,18,:] t = t_arr plt.plot(t,fd_sg(y,t), 'ro--') plt.plot(t,ut[10,18,:]*np.max(down_data)/np.max(t_grid),'r', label='y = 18',linewidth=3) plt.legend() plt.subplot(2,2, 2) y = denoised_sol[10,:,1] x = y_arr plt.plot(x,y, 'bo--') plt.plot(x,sol[10,:,1]*np.max(down_data),'b', label='t = 1',linewidth=3) y = denoised_sol[10,:,2] x = y_arr plt.plot(x,y, 'go--') plt.plot(x,sol[10,:,2]*np.max(down_data),'g', label='t = 5',linewidth=3) y = denoised_sol[10,:,4] x = y_arr plt.plot(x,y, 'ro--') plt.plot(x,sol[10,:,4]*np.max(down_data),'r', label='t = 10',linewidth=3) plt.legend() plt.subplot(2,2, 3) y = denoised_sol[10,:,1] x = y_arr plt.plot(x,fd_spline(y,x), 'bo--') plt.plot(x,uy[10,:,1]*np.max(down_data)/np.max(y_grid),'b', label='x = 1',linewidth=3) y = denoised_sol[10,:,2] x = y_arr plt.plot(x,fd_spline(y,x), 'go--') plt.plot(x,uy[10,:,2]*np.max(down_data)/np.max(y_grid),'g', label='x = 5',linewidth=3) y = denoised_sol[10,:,4] x = y_arr plt.plot(x,fd_spline(y,x), 'ro--') plt.plot(x,uy[10,:,4]*np.max(down_data)/np.max(y_grid),'r', label='x = 10',linewidth=3) plt.legend() plt.subplot(2,2,4) y = down_data[10,:,1] x = y_arr plt.plot(x,fd_spline(fd_spline(y,x)), 'bo--') plt.plot(x,uyy[10,:,1]*np.max(down_data)/(np.max(y_grid)*np.max(y_grid)),'b',label='x = 1',linewidth=3) y = denoised_sol[10,:,2] x = y_arr plt.plot(x,fd_spline(fd_spline(y,x)), 'go--') plt.plot(x,uyy[10,:,2]*np.max(down_data)/(np.max(y_grid)*np.max(y_grid)),'g',label='x = 5',linewidth=3) y = denoised_sol[10,:,4] x = y_arr plt.plot(x,fd_spline(fd_spline(y,x)), 'ro--') plt.plot(x,uyy[10,:,4]*np.max(down_data)/(np.max(y_grid)*np.max(y_grid)),'r',label='x = 10',linewidth=3) plt.ylim(-10,10) plt.legend() #plt.savefig('derivatives.pdf') ###Output _____no_output_____
03_pd.ipynb
###Markdown pd> Pandas related BigQuery functionality. ###Code # export def clean_colnames(df: pd.DataFrame, char_default: str = '_', bad_chars: str = '#:!. -') -> pd.DataFrame: cols_to_rename = {} for col in df.columns: if type(col) != str: cols_to_rename[col] = f"{char_default}{col}" if len(cols_to_rename) > 0: df = df.rename(columns=cols_to_rename) df.columns = df.columns.str.replace(f'[{bad_chars}]', char_default) return df # hide # tests df = pd.DataFrame([[1, 2]], columns=[0, 'col2']) df = clean_colnames(df) assert list(df.columns) == ['_0', 'col2'] # hide from nbdev.showdoc import * # export def cols_to_str(df: pd.DataFrame) -> pd.DataFrame: """ Convert all columns in df to string. """ for col, dtype in df.dtypes.iteritems(): if dtype != 'object': df[col] = df[col].astype(str) return df # hide # tests df = pd.DataFrame([[1, 'b0'],[2, 'b1']], columns=['col_a_int', 'col_b']) df = cols_to_str(df) assert str(df.dtypes) == 'col_a_int object\ncol_b object\ndtype: object' # export def df_to_gbq( df: pd.DataFrame, destination_table: str, project_id: str, if_exists: str = 'append', print_info: bool = True, mode: str = 'pandas', cols_as_str: bool = False, clean_col_names: bool = True) -> pd.DataFrame: """ Save df to BigQuery enforcing schema consistency between df and destination table if it exists. """ # remove bad chars that are not allowed in field names in bq if clean_col_names: df = clean_colnames(df) # only do anything if mode set to wrangle, otherwise just use pandas if mode == 'wrangle': table_id = f'{project_id}.{destination_table}' bq_client = bigquery.Client() # only need to handle schema's if table already exists and if_exists != 'replace' if does_table_exist(bq_client, table_id) and if_exists != 'replace' : old_schema = get_schema(table_id) new_schema = df_to_bq_schema(df) diffs = schema_diff(old_schema, new_schema) if len(diffs) > 0: # update the table schema in BigQuery update_bq_schema(bq_client, table_id, diffs, print_info=print_info) # update the df schema to be as expected by BigQuery df = update_df_schema(bq_client, table_id, diffs, df, print_info=print_info) if cols_as_str: df = cols_to_str(df) # load to BigQuery with a retry try: #print(f'... loading to {project_id}:{destination_table} (if_exists={if_exists})') df.to_gbq(destination_table, project_id=project_id, if_exists=if_exists) except Exception as e: print(e) print(f'... retry loading to {project_id}:{destination_table} (if_exists={if_exists})') df.to_gbq(destination_table, project_id=project_id, if_exists=if_exists) return df # hide # tests # make a dummy df df = pd.DataFrame([['a0', 'b0'],['a1', 'b1']], columns=['col_a', 'col_b']) # send to bq df = df_to_gbq(df, 'tmp.tmp', project_id=bq_project_id, if_exists='replace', mode='wrangle') # read back from bq df_bq = pd.read_gbq("select * from tmp.tmp") assert str(df) == str(df_bq) # add a new col to df df['col_c'] = ['c0', 'c1'] # drop col_b df = df.drop(['col_b'], axis=1) # save to bq df = df_to_gbq(df, 'tmp.tmp', project_id=bq_project_id, if_exists='append', print_info=False, mode='wrangle') # read back from bq df_bq = pd.read_gbq("select * from tmp.tmp order by 1,2,3") assert str(df_bq) == ' col_a col_b col_c\n0 a0 None c0\n1 a0 b0 None\n2 a1 None c1\n3 a1 b1 None' # hide # tests # make a dummy df df = pd.DataFrame([['a0', 'b0'],['a1', 'b1']], columns=['col_a', 'col_b']) # send to bq df = df_to_gbq(df, 'tmp.tmp', project_id=bq_project_id, if_exists='replace', mode='wrangle') # read back from bq df_bq = pd.read_gbq("select * from tmp.tmp") assert str(df) == str(df_bq) # add two new cols to df df['col_c'] = ['c0', 'c1'] df['col_d'] = ['d0', 'd1'] # save to bq df = df_to_gbq(df, 'tmp.tmp', project_id=bq_project_id, if_exists='append', print_info=False, mode='wrangle') # read back from bq df_bq = pd.read_gbq("select * from tmp.tmp order by 1,2,3,4") assert str(df_bq) == ' col_a col_b col_c col_d\n0 a0 b0 None None\n1 a0 b0 c0 d0\n2 a1 b1 None None\n3 a1 b1 c1 d1' ###Output 1it [00:03, 3.18s/it] Downloading: 100%|██████████| 2/2 [00:00<00:00, 13.11rows/s] 1it [00:02, 2.25s/it] Downloading: 100%|██████████| 4/4 [00:00<00:00, 21.47rows/s]
UTSA/Lab2b-Pytorch_tutorial.ipynb
###Markdown What is PyTorch?================It’s a Python-based scientific computing package targeted at two sets ofaudiences:- A replacement for NumPy to use the power of GPUs- a deep learning research platform that provides maximum flexibility and speedGetting Started---------------Tensors^^^^^^^Tensors are similar to NumPy’s ndarrays, with the addition being thatTensors can also be used on a GPU to accelerate computing.** Here are some high frequency operations you should get used to ** ###Code import cv2 import numpy as np %matplotlib inline #The line above is necesary to show Matplotlib's plots inside a Jupyter Notebook from matplotlib import pyplot as plt from __future__ import print_function import torch ###Output _____no_output_____ ###Markdown Construct a 5x3 matrix, uninitialized using [torch.empty]() ###Code x = torch.empty(5, 3) print(x) # other examples torch.normal(0,1,[2,2]) torch.randperm(10) torch.linspace(1,10,10) ###Output _____no_output_____ ###Markdown Print out the size of a tensor. you will be doing this frequently if developing/debuggin a neural network ###Code x.size() ###Output _____no_output_____ ###Markdown Construct a matrix filled zeros and of dtype floating point 16. Here is a link to available [types](https://pytorch.org/docs/stable/tensor_attributes.htmltorch.torch.dtype)Can you change long to floating point16 belowHint torch.zeros(5, 3, dtype=torch.float16) ###Code x = torch.zeros(5, 3, dtype=torch.long) print(x) ###Output _____no_output_____ ###Markdown Element operationsexamples of element operations![image.png](attachment:image.png)do an element wise add of A and B ###Code A = torch.rand(5, 3) B = torch.rand(5, 3) print(A) print(B) print(A + B) ###Output tensor([[0.4264, 0.2224, 0.0761], [0.8171, 0.4646, 0.7379], [0.7076, 0.6894, 0.8530], [0.9537, 0.5361, 0.7773], [0.5330, 0.5835, 0.0498]]) tensor([[0.4726, 0.2186, 0.3730], [0.8941, 0.0974, 0.9308], [0.5303, 0.2047, 0.1537], [0.4307, 0.0230, 0.6193], [0.7310, 0.4267, 0.3674]]) tensor([[0.8989, 0.4410, 0.4491], [1.7112, 0.5620, 1.6686], [1.2378, 0.8941, 1.0066], [1.3844, 0.5591, 1.3965], [1.2640, 1.0103, 0.4172]]) ###Markdown Alternate method using torch.add ###Code # more than one way to do it [operator overloading] orch.add(A, B) A.add(B) ###Output tensor([[0.8989, 0.4410, 0.4491], [1.7112, 0.5620, 1.6686], [1.2378, 0.8941, 1.0066], [1.3844, 0.5591, 1.3965], [1.2640, 1.0103, 0.4172]]) ###Markdown Addition: providing an output tensor as argument ###Code result = torch.empty(5, 3) torch.add(A, B, out=result) print(result) ###Output _____no_output_____ ###Markdown Addition: in-place ###Code #### adds x to y B.add_(A) print(B) ###Output _____no_output_____ ###Markdown NoteAny operation that mutates a tensor in-place is post-fixed with an ``_``. For example: ``x.copy_(y)``, ``x.t_()``, will change ``x``. Linear Alg operations - Matrix Multiply Example![image.png](attachment:image.png) ###Code a = torch.randint(4,(2,3)) b = torch.randint(4,(3,2)) print(a) print(b) # all equivalent! # 2x3 @ 3x2 ~ 2x2 a.mm(b) torch.matmul(a,b) torch.mm(a,b) a.T.mm(a) ###Output _____no_output_____ ###Markdown Create a onehot vector ###Code batch_size = 5 nb_digits = 10 # Dummy input that HAS to be 2D for the scatter (you can use view(-1,1) if needed) y = torch.LongTensor(batch_size,1).random_() % nb_digits # One hot encoding buffer that you create out of the loop and just keep reusing y_onehot = torch.FloatTensor(batch_size, nb_digits) # In your for loop y_onehot.zero_() y_onehot.scatter_(1, y, 1) print(y) print(y_onehot) ###Output tensor([[ 8], [ 1], [ 4], [ 5], [ 7]]) tensor([[ 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.], [ 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.]]) ###Markdown Use argmax to grab the index of the highest value ###Code A = torch.rand(3,4,5) print(A) A.argmax(dim=2) ###Output tensor([[[0.4791, 0.6427, 0.4850, 0.8918, 0.5046], [0.3802, 0.1974, 0.8807, 0.3322, 0.3854], [0.1450, 0.6710, 0.1567, 0.8760, 0.7838], [0.9900, 0.4326, 0.6907, 0.3431, 0.7704]], [[0.6741, 0.7869, 0.0707, 0.4947, 0.5580], [0.4630, 0.4901, 0.9552, 0.2336, 0.9802], [0.4147, 0.4719, 0.8765, 0.7198, 0.9070], [0.8264, 0.2374, 0.0944, 0.4895, 0.1953]], [[0.9034, 0.9578, 0.1266, 0.4522, 0.4032], [0.2456, 0.0185, 0.1444, 0.8930, 0.6270], [0.8786, 0.2491, 0.2291, 0.0037, 0.8230], [0.9096, 0.9918, 0.5614, 0.6948, 0.9402]]]) ###Markdown Aggregation over a dimension ###Code x = torch.ones([2,3,4]) # inplace multiply a selected column x[0,:,0].mul_(30) x #Suppose the shape of the input is (m, n, k) #If dim=0 is specified, the shape of the output is (1, n, k) or (n, k) #If dim=1 is specified, the shape of the output is (m, 1, k) or (m, k) #If dim=2 is specified, the shape of the output is (m, n, 1) or (m, n) x.sum(dim=1) ###Output _____no_output_____ ###Markdown Broadcasting ###Code x = torch.ones([10,10]) y = torch.linspace(1,10,10) print(x.size()) print(y.size()) z = x + y ### Masking mask = z>4 print(mask.size()) mask # Apply mask, but observe dim change new =z[z>4] print(new.size()) new ###Output torch.Size([70]) ###Markdown You can use standard NumPy-like indexing with all bells and whistles!Example Grab the middle column of A (index = 1) ###Code A = torch.rand(3,3) print(A) print(A[:, 1]) ###Output tensor([[ 0.0591, 0.6838, 0.4621], [ 0.7117, 0.8484, 0.3358], [ 0.4537, 0.3042, 0.0450]]) tensor([ 0.6838, 0.8484, 0.3042]) ###Markdown Resizing: If you want to resize/reshape tensor, you can use ``torch.view``: ###Code x = torch.randn(4, 4) y = x.view(16) z = x.view(-1, 8) # the size -1 is inferred from other dimensions print(x.size(), y.size(), z.size()) ###Output _____no_output_____ ###Markdown If you have a one element tensor, use ``.item()`` to get the value as aPython number ###Code x = torch.randn(1) print(x) print(x.item()) ###Output _____no_output_____ ###Markdown **Read later:** 100+ Tensor operations, including transposing, indexing, slicing, mathematical operations, linear algebra, random numbers, etc., are described `here `_. NumPy Bridge------------Converting a Torch Tensor to a NumPy array and vice versa is a breeze.The Torch Tensor and NumPy array will share their underlying memorylocations, and changing one will change the other. Converting a Torch Tensor to a NumPy Array ###Code a = torch.ones(5) print(a) b = a.numpy() print(b) ###Output _____no_output_____ ###Markdown See how the numpy array changed in value. ###Code a.add_(1) print(a) print(b) ###Output _____no_output_____ ###Markdown Converting NumPy Array to Torch Tensor^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^See how changing the np array changed the Torch Tensor automatically ###Code import numpy as np a = np.ones(5) b = torch.from_numpy(a) np.add(a, 1, out=a) print(a) print(b) ###Output _____no_output_____ ###Markdown All the Tensors on the CPU except a CharTensor support converting toNumPy and back.CUDA Tensors------------Tensors can be moved onto any device using the ``.to`` method. ###Code # let us run this cell only if CUDA is available # We will use ``torch.device`` objects to move tensors in and out of GPU x = torch.rand(2,2,2) if torch.cuda.is_available(): device = torch.device("cuda") # a CUDA device object y = torch.ones_like(x, device=device) # directly create a tensor on GPU x = x.to(device) # or just use strings ``.to("cuda")`` z = x + y print(z) print(z.to("cpu", torch.double)) # ``.to`` can also change dtype together! ###Output tensor([[[1.9808, 1.5752], [1.1940, 1.8054]], [[1.0169, 1.5552], [1.6047, 1.3726]]], device='cuda:0') tensor([[[1.9808, 1.5752], [1.1940, 1.8054]], [[1.0169, 1.5552], [1.6047, 1.3726]]], dtype=torch.float64) ###Markdown ND TensorsWhen working with neural networks, you are always dealing with multidimensional arrays. Here are some quick tricks Assume A is a 32x32 RGB image ###Code ## 3D Tensors import torch A = torch.rand(32,32,3) plt.imshow(A) ###Output _____no_output_____ ###Markdown Slicing Tensors - grab 'RED' dimension ###Code red_data = A[:,:,0] #0 represents the first channel of RGB red_data.size() ###Output _____no_output_____ ###Markdown Swap the RGB dimension and make the tensor a 3x32x32 tensor ###Code A_rgb_first = A.permute(2,0,1) print(A_rgb_first.size()) ###Output torch.Size([3, 32, 32]) ###Markdown Add a BatchSize to our Image TensorUsually you need to do this to run inference on your trained model ###Code Anew = A.unsqueeze(0) print(Anew.size()) ###Output torch.Size([1, 32, 32, 3]) torch.Size([32, 32, 3]) ###Markdown Drop the tensor dimension. sometimes like in the example above, you might have a tensor with on of the dimensions equal to one. Use **squeeze()** to drop that dimension> ###Code print(Anew.squeeze(0).size()) ###Output torch.Size([32, 32, 3])
Repo-Ayudante/clases/clase_28_05_20_tp3/clase.ipynb
###Markdown Clase 28/05/2020 Ejercicios TP3 Ejercicio 2Obtener la Z(s) que corresponde a la siguiente función de fase:$ \phi_{(w)} = tg^{-1} \frac{-w^5 + 5 w^3 - 2w}{2 w^4 - w^2 + 5}$Ayudas:- Revisar [apunte campus](https://www.campusvirtual.frba.utn.edu.ar/especialidad/pluginfile.php/61513/mod_resource/content/2/FASC03conFiguras.pdf) y [notebook](https://nbviewer.jupyter.org/github/agalbachicar/tc2/blob/master/notebooks/parte_de_funcion.ipynb) sobre parte de función. - ¡Tengan cuidado al pasar de $w$ a $s$! Ejercicio 5El siguiente diagrama de Bode corresponde a la respuesta en módulo de la transferencia de una red de énfasis, utilizada en un transmisor de FM para Broadcasting. Diseñar el circuito, verificando el mismo mediante simulación.Ayudas:- ¿Qué es una octava?- ¿Qué estructura me sirve para implementar una bilineal? ¿Y una bicuadrática? Solucion Ej 2 ###Code # Inserte aquí imagen o codigo! # Para imagen: <img src='path_a_mi_imagen'> # Para codigo de Python simplemente escriba, si es Markdown cambie el tipo de celda. ###Output _____no_output_____ ###Markdown Solucion Ej 5 ###Code # Inserte aquí imagen o codigo! # Para imagen: <img src='path_a_mi_imagen'> # Para codigo de Python simplemente escriba, si es Markdown cambie el tipo de celda. ###Output _____no_output_____
project_eular.ipynb
###Markdown Problem 2 ###Code def solution(limit = 4000000): s = 2 m = 1 n = 2 x = 0 while x <= limit: x = m+n if x%2 == 0: s+=x m = n n = x return s ###Output _____no_output_____ ###Markdown Problem 3 ###Code def is_prime(s): mm = s-1 while mm > 1: if s%mm == 0: return False mm -= 1 return True n = 1 x = 600851475143 while x != 1: n+=1 while is_prime(n)==False: n+=1 if x%n == 0: x = x/n print('factor',n) print("largest prime factor is: {}".format(n)) ###Output factor 71 factor 839 factor 1471 factor 6857 largest prime factor is: 6857 ###Markdown Problem 4 ###Code x = 999 y = 999 largest = 0 while x>499: while y>1: n = x*y if str(n) == str(n)[::-1]: if n>largest: largest = n print(x,y,largest) break y-=1 y=999 x-=1 ###Output 999 91 90909 995 583 580085 993 913 906609 ###Markdown Problem 5 ###Code def not_evenly_divisible_20(x): if sum(x%y for y in [20,19,18,17,16,15,14,13,11])==0: return False return True x = 2520 while not_evenly_divisible_20(x): x+=20 x ###Output _____no_output_____ ###Markdown Problem 6 ###Code sum([x for x in range(1,101)])**2 - sum([x**2 for x in range(1, 101)]) ###Output _____no_output_____ ###Markdown Problem 7 ###Code i = 1 x = 2 while i != 10001: x+=1 if str(x)[-1] in ['2', '4', '6', '8', '0']: continue else: if is_prime(x): i+=1 if i % 1000 == 0: print(x,i) x, i def get_nth_prime(n): """ The point here is: if a number `x` can't be evenly divided by any prime numbers that's smaller than `x`, then `x` is prime. """ prime_list = [2] # initiate the list with the first prime number x = 3 while len(prime_list) < n: prime = True for i in prime_list: if x % i == 0: prime = False x += 2 # even numbers>2 can't be prime break # we don't want to waste time checking the rest if prime: prime_list.append(x) x += 2 return prime_list get_nth_prime(10001)[-1] def get_n_prime(limit): p_no = [2,3] i = 3 n = p_no[-1] + 2 while len(p_no) <= limit: prime = True for i in p_no: if n % i == 0: prime = False break if prime: p_no.append(n) n += 2 return p_no[-1] get_n_prime(10000) def str_prod(x): n="""73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 """ n = n.replace('\n', '') n_proc = [x for x in n.split('0') if len(x) >=13] p_max = 0 record = '' for x in n_proc: for i in range(len(x)-12): slis = x[i: i+13] p = 1 for e in slis: p *= int(e) if p > p_max: p_max,record = p,slis p_max, record n = n.replace('\n', '') p_max = 0 record = '' for i in range(len(n)-13-1): slis = n[i: i+13] p = 1 for x in slis: p *= int(x) if p > p_max: p_max,record = p,slis p_max, record [record in x for x in n_proc] ###Output _____no_output_____ ###Markdown Problem10 ###Code def get_limit_prime(n): """ The point here is: if a number `x` can't be evenly divided by any prime numbers that's smaller than `x`, then `x` is prime. """ prime_list = [2] # initiate the list with the first prime number x = 3 while x < n: prime = True for i in prime_list: if x % i == 0: prime = False x += 2 # even numbers>2 can't be prime break # we don't want to waste time checking the rest if prime: prime_list.append(x) x += 2 # if x % 50000 == 1: # print(x) return prime_list n = 2000000 l = get_limit_prime(n) sum(l) ###Output _____no_output_____ ###Markdown Filter by correlation ###Code def ftr_select_corr(X, corr_bar, iv_df): """ Drop features that have correlation higher than `corr_bar` and keep whichever has the higher iv according to `auc_df`. """ cols = list(X.columns) cols_drop = [] corr_df = X.corr() # print("corr_df created.") i = 0 while i < len(cols) - 1: col_1 = cols[i] j = i + 1 while j < len(cols): col_2 = cols[j] corr = corr_df.loc[col_2, col_1] if abs(corr) > corr_bar: iv_1 = iv_df.query('feature == @col_1')['iv'].squeeze() iv_2 = iv_df.query('feature == @col_2')['iv'].squeeze() col_drop = col_2 if iv_1 > iv_2 else col_1 cols_drop.append(col_drop) cols.remove(col_drop) X = X.drop(col_drop, axis=1) j -= 1 if col_drop == col_1: i -= 1 break j += 1 i += 1 return [X, cols_drop] ###Output _____no_output_____ ###Markdown 1402. Reducing Dishes ###Code def maxSatisfaction(satisfaction): """ Early stopping could be added to make the method more efficient. """ max_coef = 0 best_combo = [] satisfaction_sorted = sorted(satisfaction) for n in range(1, len(satisfaction)+1): coef = sum([satisfaction_sorted[-n:][i] * (i+1) for i in range(n)]) if coef > max_coef: max_coef = coef best_combo = satisfaction_sorted[-n:] return max_coef ###Output _____no_output_____ ###Markdown Recover a Tree From Preorder Traversal ###Code s = "1-2--3---4-5--6---7" s.split('-') a,b = get_num_and_level(s) c = get_parents(a,b) a,b,c def get_num_and_level(s): """ Given a string of the format, return the list of numbers contained in it, and the list of the levels of the numbers. """ s_split = s.split('-') numbers = [int(s_split[0])] levels = [0] level_count = 1 for x in s_split[1:]: try: numbers.append(int(x)) levels.append(level_count) level_count = 1 except: level_count += 1 return numbers, levels def get_parents(numbers, levels): """ Given the numbers and their corresponding levels, get the list of the parents of each number. """ parents = [numbers[0], numbers[0]] for n in range(2,len(numbers)): numbers_sub = numbers[:n+1] levels_sub = levels[:n+1] level_dict = dict(zip(numbers_sub, levels_sub)) x = numbers[n] parents.append([y for y in numbers_sub if level_dict[y] < level_dict[x]][-1]) return parents def convert_func(n_l, n_p_dict, l_max): """ Given the subset of numbers of a certain level, and the n_p_dict, covert the numbers to the desired list format. """ s = [] if len(n_l) == 1: s = n_l if l < l_max: s.append('null') else: while len(n_l) > 1: a = n_l[0] b = n_l[1] if n_p_dict[a] == n_p_dict[b]: s.append(a) s.append(b) n_l.remove(a) n_l.remove(b) else: s.append(a) s.append('null') n_l.remove(a) if len(n_l) == 1: s.append(n_l[0]) if l < l_max: s.append('null') return s numbers, levels = get_num_and_level("1-2--3--4-5--6--7") parents = get_parents(numbers,levels) n_p_dict = dict(zip(numbers, parents)) n_l_dict = dict(zip(numbers, levels)) l_max = max(levels) result = [numbers[0]] for l in set(levels): if l!=0: n_l = [x for x in numbers if n_l_dict[x] == l] result.extend(convert_func(n_l, n_p_dict, l_max)) result # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution(object): def get_num_and_level(self, s): """ Given a string of the format, return the list of numbers contained in it, and the list of the levels of the numbers. """ s_split = s.split('-') numbers = [int(s_split[0])] levels = [0] level_count = 1 for x in s_split[1:]: try: numbers.append(int(x)) levels.append(level_count) level_count = 1 except: level_count += 1 return numbers, levels def get_parents(self, numbers, levels): """ Given the numbers and their corresponding levels, get the list of the parents of each number. """ parents = [numbers[0], numbers[0]] for n in range(2,len(numbers)): numbers_sub = numbers[:n+1] levels_sub = levels[:n+1] level_dict = dict(zip(numbers_sub, levels_sub)) x = numbers[n] parents.append([y for y in numbers_sub if level_dict[y] < level_dict[x]][-1]) return parents def convert_func(self, n_l, n_p_dict, l_max): """ Given the subset of numbers of a certain level, and the n_p_dict, covert the numbers to the desired list format. """ s = [] if len(n_l) == 1: s = n_l if l < l_max: s.append('null') else: while len(n_l) > 1: a = n_l[0] b = n_l[1] if n_p_dict[a] == n_p_dict[b]: s.append(a) s.append(b) n_l.remove(a) n_l.remove(b) else: s.append(a) s.append('null') n_l.remove(a) if len(n_l) == 1: s.append(n_l[0]) if l < l_max: s.append('null') return s def recoverFromPreorder(self, S): """ :type S: str :rtype: TreeNode """ numbers, levels = self.get_num_and_level(S) if len(numbers)==1: return numbers if len(numbers)==2: numbers.append('null') return numbers parents = self.get_parents(numbers,levels) n_p_dict = dict(zip(numbers, parents)) n_l_dict = dict(zip(numbers, levels)) l_max = max(levels) result = [numbers[0]] for l in set(levels): if l!=0: n_l = [x for x in numbers if n_l_dict[x] == l] result.extend(self.convert_func(n_l, n_p_dict, l_max)) return result ###Output _____no_output_____ ###Markdown 1375. Bulb Switcher III ###Code light = [2,1,3,5,4] for a,b in enumerate(light): print(a,b) def numTimesAllBlue(light): n = len(light) lit = [0] * n blue = 0 for i in range(n): x = light[i] lit[x-1] = 1 if i>=1: if x <= max(light[:i])+1: if sum(lit[:i+1]) == i+1: blue += 1 else: if light[i] == 1: blue +=1 return blue numTimesAllBlue([4,1,2,3]) [1, 1, 0, 0, 0] # def numTimesAllBlue(light): # """ # :type light: List[int] # :rtype: int # """ # n = len(light) # lit = [0] * n # blue = 0 # for i in range(n): # x = light[i] # lit[x-1] = 1 # if sum(lit[:i+1]) == i+1: # blue += 1 # return blue ###Output _____no_output_____ ###Markdown 1094. Car Pooling ###Code trips = [[7,5,6],[6,7,8],[10,1,6]] capacity = 16 pick_up = [x[1] for x in trips] drop_off = [x[-1] for x in trips] n = [x[0] for x in trips] stops_on = dict(zip(pick_up, n)) stops_off = dict(zip(drop_off, n)) stops = set(pick_up + drop_off) p = 0 for x in stops: try: p += stops_on[x] except: pass try: p -= stops_off[x] except: pass if p > capacity: print(False) print(True) stops = [0] * max(drop_off) for i, x in enumerate(pick_up): stops[x-1] += n[i] for i, x in enumerate(drop_off): stops[x-1] -= n[i] stops def carPooling(trips, capacity): """ :type trips: List[List[int]] :type capacity: int :rtype: bool """ pick_up = [x[1] for x in trips] drop_off = [x[-1] for x in trips] n = [x[0] for x in trips] stops_on = dict(zip(pick_up, n)) stops_off = dict(zip(drop_off, n)) stops = set(pick_up + drop_off) p = 0 for x in stops: try: p += stops_on[x] except: pass try: p -= stops_off[x] except: pass if p > capacity: print(x,p) return False return True carPooling([[7,5,6],[6,7,8],[10,1,6]], 16) ###Output 5 17 ###Markdown 679. 24 Game ###Code 6*6*2*6*1*6 a = 2 b = 3 def comb(a, b): if a == 0: return list(set([b, -b, 0])) if b == 0: return list(set([a, -a, 0])) return list(set([a+b, a-b, a*b, a/b, b-a, b/a])) i = [3,33,2,8] results = [] for x in i: i_1 = i.copy() i_1.remove(x) for y in i_1: r_1 = comb(x, y) for z in r_1: i_2 = i_1.copy() i_2.remove(y) for a in i_2: i_3 = i_2.copy() i_3.remove(a) i_3 = i_3[0] r_2 = comb(z, a) for b in r_2: r_3 = comb(b, i_3) results.extend(r_3) for x in i: i_1 = i.copy() i_1.remove(x) for y in i_1: r_1 = comb(x, y) for z in r_1: i_2 = i_1.copy() i_2.remove(y) r_2 = comb(i_2[0], i_2[1]) for a in r_2: r_3 = comb(z, a) results.extend(r_3) 24 in set([round(x, 4) for x in results]) a = [2,1] ###Output _____no_output_____ ###Markdown 51. N-Queens ###Code n = 4 def create_remove(remove_all, i): remove_all.append(i) remove_next = [i-1, i+1] remove_next = [x for x in remove_next if (x>=0 and x<n)] remove = list(set(remove_all + remove_next)) print('all,r',remove_all, remove) return remove_all, remove remove_all = [] remove_next = [] level = list(range(n)) solution = [] # for i_1 in level: i_1 = 0 solution_i = [i_1] remove_all, remove = create_remove(remove_all, i_1) m = n while m>0: m-=1 temp = level.copy() for x in remove: temp.remove(x) print('temp:', temp) if len(temp)>0: for i_m in temp: remove_all, remove = create_remove(remove_all, i_m) solution_i.append(i_m) if len(solution_i) == n: solution.append(solution_i) i_1 = 0 solution_i = [i_1] remove_all, remove = create_remove(remove_all, i_1) while len(remove) < 4: temp = level.copy() for x in remove: temp.remove(x) remove_all, remove = create_remove(remove_all, i_m) solution n = 4 i = 0 space = [space] possible = [[], [], [], []] i = 0 for x in possible[i]: solution.append(x) possible_temp = possible.copy() possible_temp = update_possible() while i <= n: i += 1 if len(solution) == n: solutions.append(solution) break if len(possible[i]) == 0: break for y in possible_temp[i]: solution.append(y) ###Output _____no_output_____
practices/MLP_MNIST.ipynb
###Markdown 資料前置處理 ###Code from keras.utils import np_utils import numpy as np np.random.seed(10) from keras.datasets import mnist (x_train_image, y_train_label), \ (x_test_image, y_test_label) = mnist.load_data() x_Train = x_train_image.reshape(60000, 784).astype('float32') x_Test = x_test_image.reshape(10000, 784).astype('float32') x_Train_normalize = x_Train / 255 x_Test_normalize = x_Test / 255 ###Output _____no_output_____ ###Markdown 建立模型 ###Code y_Train_OneHot = np_utils.to_categorical(y_train_label) y_Test_OneHot = np_utils.to_categorical(y_test_label) from keras.models import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(units=256, input_dim=784, kernel_initializer='normal', activation='relu')) model.add(Dense(units=10, kernel_initializer='normal', activation='softmax')) print(model.summary()) ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_1 (Dense) (None, 256) 200960 _________________________________________________________________ dense_2 (Dense) (None, 10) 2570 ================================================================= Total params: 203,530 Trainable params: 203,530 Non-trainable params: 0 _________________________________________________________________ None ###Markdown 進行訓練 ###Code model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) train_history = model.fit(x = x_Train_normalize, y = y_Train_OneHot, validation_split = 0.2, epochs = 10, batch_size = 200, verbose = 2) import matplotlib.pyplot as plt def show_train_history(train_history, train, validation): plt.plot(train_history.history[train]) plt.plot(train_history.history[validation]) plt.title('Train History') plt.ylabel(train) plt.xlabel('Epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show() show_train_history(train_history, 'acc', 'val_acc') show_train_history(train_history, 'loss', 'val_loss') ###Output _____no_output_____ ###Markdown 以測試資料評估模型準確率 ###Code score = model.evaluate(x_Test_normalize, y_Test_OneHot) print() print('accuracy =', score[1]) ###Output 10000/10000 [==============================] - 1s 54us/step accuracy = 0.9757 ###Markdown 進行預測 ###Code prediction = model.predict_classes(x_Test) prediction def plot_images_labels_prediction(images, labels, prediction, idx, num = 10): fig = plt.gcf() fig.set_size_inches(12, 14) if num > 25: num = 25 for i in range(0, num): ax = plt.subplot(5, 5, i+1) ax.imshow(images[idx], cmap = 'binary') title = f"label = {labels[idx]}" if len(prediction) > 0: title += f", predict = {prediction[idx]}" ax.set_title(title, fontsize = 12) ax.set_xticks([]); ax.set_yticks([]) idx += 1 plt.show() plot_images_labels_prediction(x_test_image, y_test_label, prediction, idx = 340) ###Output _____no_output_____ ###Markdown 顯示混淆矩陣 ###Code import pandas as pd pd.crosstab(y_test_label, prediction, rownames = ['label'], colnames=['predic']) df = pd.DataFrame({'label': y_test_label, 'predict': prediction}) df[:2] df[(df.label == 5) & (df.predict == 3)] plot_images_labels_prediction(x_test_image, y_test_label, prediction, idx = 340, num = 1) del model model = Sequential() model.add(Dense(units = 1000, input_dim = 784, kernel_initializer = 'normal', activation = 'relu')) model.add(Dense(units=10, kernel_initializer = 'normal', activation = 'softmax')) print(model.summary()) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) train_history = model.fit(x = x_Train_normalize, y = y_Train_OneHot, validation_split = 0.2, epochs = 10, batch_size = 200, verbose = 2) show_train_history(train_history, 'acc', 'val_acc') score = model.evaluate(x_Test_normalize, y_Test_OneHot) print() print('accuracy =', score[1]) ###Output 10000/10000 [==============================] - 1s 95us/step accuracy = 0.9796 ###Markdown 多層感知器加入DropOut功能以避免 overfitting ###Code from keras.layers import Dropout del model model = Sequential() model.add(Dense(units = 1000, input_dim = 784, kernel_initializer = 'normal', activation = 'relu')) model.add(Dropout(0.5)) model.add(Dense(units = 10, kernel_initializer = 'normal', activation = 'softmax')) print(model.summary()) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) train_history = model.fit(x = x_Train_normalize, y = y_Train_OneHot, validation_split = 0.2, epochs = 10, batch_size = 200, verbose = 2) show_train_history(train_history, 'acc', 'val_acc') score = model.evaluate(x_Test_normalize, y_Test_OneHot) print() print('accuracy =', score[1]) ###Output 10000/10000 [==============================] - 1s 108us/step accuracy = 0.9812 ###Markdown 建立多層感知器模型包含2個隱藏層 ###Code del model model = Sequential() model.add(Dense(units = 1000, input_dim = 784, kernel_initializer = 'normal', activation = 'relu')) model.add(Dropout(0.5)) model.add(Dense(units = 1000, kernel_initializer = 'normal', activation = 'relu')) model.add(Dropout(0.5)) model.add(Dense(units = 10, kernel_initializer = 'normal', activation = 'softmax')) print(model.summary()) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) train_history = model.fit(x = x_Train_normalize, y = y_Train_OneHot, validation_split = 0.2, epochs = 10, batch_size = 200, verbose = 2) show_train_history(train_history, 'acc', 'val_acc') score = model.evaluate(x_Test_normalize, y_Test_OneHot) print() print('accuracy =', score[1]) ###Output 10000/10000 [==============================] - 2s 168us/step accuracy = 0.9803
diet_optimizer_notebook.ipynb
###Markdown https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html ###Code food_list = [] serving_list = [] price_list = [] calorie_list = [] carb_list = [] protein_list = [] fat_list = [] def add_food(name, serving, price, carbs, protein, fat): food_list.append(name) serving_list.append(serving) price_list.append(price) calorie_list.append(carbs*4 + protein*4 + fat*9) carb_list.append(carbs) protein_list.append(protein) fat_list.append(fat) ###Output _____no_output_____ ###Markdown ADD FOODS HERE ###Code add_food("Quark (Magerstuffe Aldi)",100,0.60/5,4.1,12,0.2) add_food("Berries (Aldi)",100,3/5,9.3,1.7,0.4) add_food("Almonds (Aldi)",100,2.60/2,5.3,18,0.54) ###Output _____no_output_____ ###Markdown =========== ###Code d = {'Food': food_list, 'Serving': serving_list,'Price':price_list,"Calories":calorie_list,"Carbs":carb_list,"Proteins":protein_list,"Fats":fat_list} df = pd.DataFrame(data=d) daily_calories = 469 daily_carbs_percentage = 14 daily_protein_percentage = 17 daily_fat_percentage = 69 daily_carbs = daily_carbs_percentage * daily_calories / 4 daily_protein = daily_protein_percentage * daily_calories / 4 daily_fat = daily_fat_percentage * daily_calories / 9 A_eq = [] b_eq = [] def add_equality_constrain(params, const): A_eq.append(params) b_eq.append(const) A_ub = [] b_ub = [] def add_inequality_constrain(params, const): A_ub.append(params) b_ub.append(const) bounds = [] for i in range(df.shape[0]): bounds.append((0,None)) def add_bounds(food_index, min_servings, max_servings): bounds[food_index] = (min_servings,max_servings) df ###Output _____no_output_____ ###Markdown ADD CONSTRAINS HERE ###Code c = list(df.Price) #add_equality_constrain(list(df.Calories), daily_calories) add_equality_constrain(list(df.Proteins), daily_protein) add_equality_constrain(list(df.Carbs), daily_carbs) add_equality_constrain(list(df.Fats), daily_fat) #add_bounds(0, 0.5, None) #add_bounds(1, 1, None) #add_bounds(2, 0.5, None) ###Output _____no_output_____ ###Markdown =============== ###Code if(len(A_eq) == 0): A_eq = None B_eq = None print("A_eq is empty") if(len(A_ub) == 0): A_ub = None b_ub = None print("A_ub is empty") res = linprog(c, A_eq=A_eq, b_eq=b_eq, A_ub=A_ub, b_ub=b_ub, method='revised simplex', options={'tol':1e+04}) if(res.success): food_ammount = round(res.x * df.Serving,4) res_calories = round(res.x * df.Calories,4) res_carbs = round(res.x * df.Carbs,4) res_proteins = round(res.x * df.Proteins,4) res_fats = round(res.x * df.Fats,4) out = {'Food':df.Food, "Servings":res.x,'Ammount g':food_ammount,'Carbs':res_carbs,'Protein':res_proteins,'Fat':res_fats,'Calories':res_calories} out_df = pd.DataFrame(data=out) print(out_df) print(100*"=") total_price = round(sum(res.x * df.Price),2) total_calories = round(sum(res.x * df.Calories),2) total_carbs = round(sum(res.x * df.Carbs),2) total_protein = round(sum(res.x * df.Proteins),2) total_fat = round(sum(res.x * df.Fats),2) print("Total price:",total_price,"Eur") print("Total calories:",total_calories,'g of',daily_calories, 'g ---> Delta is', daily_calories - total_calories, 'g') print("Total carbs:",total_carbs,'g of',daily_carbs, 'g ---> Delta is', daily_carbs - total_carbs, 'g') print("Total protein:",total_protein,'g of',daily_carbs, 'g ---> Delta is', daily_protein - total_protein, 'g') print("Total fat:",total_fat,'g of',daily_carbs, 'g ---> Delta is', daily_fat - total_fat, 'g') else: print("There is no solution") print(res) ###Output _____no_output_____
16_Likelihood_Method.ipynb
###Markdown Autograd ###Code # theta = np.random.beta(a=1,b=1,size=(4,)) theta = np.array([0.0, 1.0, 0.0,1.0, 0.0,1.0, 0.0,1.0, 0.0,1.0, 0.0,1.0, 0.0,1.0]) gradTheta = grad(negativeLogLikelihood(x),) maes = [] for i in range(1500): theta = theta - 0.001 * gradTheta(theta) aes = 0 for i in range(int(len(theta)/2)): aes += np.abs(theta[2*i] - muStar[i]) maes.append(aes/(len(theta)/2)) # jacobian_ = jacobian(negativeLogLikelihood(x)) # hessian_ = hessian(negativeLogLikelihood(x)) # for i in range(1000): # j = jacobian_(theta) # h = hessian_(theta) # theta = theta + 0.001 * np.linalg.inv(h) @ j # aes = np.abs(theta[0] - muStar[0]) + np.abs(theta[2] - muStar[1]) # maes.append(aes) plt.plot(maes) ###Output _____no_output_____ ###Markdown In terms of Bag Estimates ###Code def logLikelihood(xi,mu,sigma,normalize): LL = (-len(xi)/2 * np.log(2*np.pi*(sigma + 1e-8)**2) - (1/(2*(sigma + 1e-8)**2)) * np.sum((xi - mu)**2)) if normalize: LL = LL * (1/len(xi)) return LL def getChildren(idx,N): if idx > N - 1: return np.array([idx]) left = 2 * idx + 1 right = left + 1 return np.concatenate([getChildren(left,N),getChildren(right,N)]) def treeNegativeLogLikelihood(x,leafN,normalize=True): def LL(leafMeans,bagSigma): NBags = len(bagSigma) NInternal_Nodes = np.floor(NBags/2) ll = 0 for idx in range(NBags): leafIndices = (getChildren(idx, NInternal_Nodes) - NInternal_Nodes).astype(int) ln = leafN[leafIndices] mu = np.dot(leafMeans[leafIndices],ln)/np.sum(ln) sigma = bagSigma[idx] ll = ll + logLikelihood(x[idx],mu,sigma,normalize) return -1 * ll return LL ###Output _____no_output_____ ###Markdown Right now I'm assuming N = $2^j$ for some j Generate Data ###Code N = 7 N_Internal = int(np.floor((N)/2)) NLeaves = int(N - N_Internal) bagMuStar = np.random.normal(loc=0,scale=10,size=NLeaves) bagN = np.random.poisson(lam=10,size=NLeaves) X = [] for level in range(3): NBagsInLevel = 2**level start = 2**level - 1 for bagNum in range(start,start+NBagsInLevel): childrenIndices = (getChildren(bagNum,N_Internal) - N_Internal).astype(int) childrenMus = bagMuStar[childrenIndices] childrenNs = bagN[childrenIndices] loc = np.dot(childrenMus, childrenNs) / np.sum(childrenNs) scale = 2**level X.append(np.random.normal(loc=loc,scale=scale,size=np.sum(childrenNs))) ###Output _____no_output_____ ###Markdown Initialize as local estimates ###Code mu = np.zeros(bagMuStar.shape) sigma = np.ones(len(X)) for leafNum in range(NLeaves): idx = N_Internal + leafNum xi = X[idx] mu[leafNum],sigma[idx] = ss.norm.fit(xi) ###Output _____no_output_____ ###Markdown Run Algorithm ###Code maes = [] gradNLL_mu = grad(treeNegativeLogLikelihood(X,bagN),0) gradNLL_sigma = grad(treeNegativeLogLikelihood(X,bagN),1) NIter= 1000 lr = 0.01 for i in tqdm(range(NIter),total=NIter): if not i % 5000: lr = lr * .5 deltaMu = gradNLL_mu(mu,sigma) deltaSigma = gradNLL_sigma(mu,sigma) mu = mu - lr * deltaMu sigma = sigma - lr * deltaSigma maes.append(np.mean(np.abs(mu - bagMuStar))) plt.plot(maes) maes = [] gradNLL_mu = grad(treeNegativeLogLikelihood(X,bagN,normalize=False),0) gradNLL_sigma = grad(treeNegativeLogLikelihood(X,bagN,normalize=False),1) NIter= 5000 lr = 0.01 for i in tqdm(range(NIter),total=NIter): if not i % 5000: lr = lr * .5 deltaMu = gradNLL_mu(mu,sigma) deltaSigma = gradNLL_sigma(mu,sigma) mu = mu - lr * deltaMu sigma = sigma - lr * deltaSigma maes.append(np.mean(np.abs(mu - bagMuStar))) plt.plot(maes) ###Output _____no_output_____ ###Markdown Try on real data ###Code from multiinstance.data.realData import buildDataset from multiinstance.utils import * from multiinstance.agglomerative_clustering import AgglomerativeClustering absErrs = {"local":[], "global":[], "likelihood":[]} fileNames = glob("/data/dzeiberg/ClassPriorEstimation/rawDatasets/*.mat") for fileName in tqdm(fileNames,total=len(fileNames)): dsi = buildDataset(fileName,4, alphaDistr=lambda: np.random.uniform(.01,.95), nPDistr=lambda: 1 + np.random.poisson(100), nUDistr=lambda: 1 + np.random.poisson(5000)) dsi = addTransformScores(dsi) dsi = addGlobalEsts(dsi) dsi.alphaHats,dsi.curves = getBagAlphaHats(dsi,numbootstraps=50) dsi.numLeaves = dsi.alphaHats.shape[0] dsi.numNodes = dsi.numLeaves + (dsi.numLeaves - 1) dsi.numInternal = dsi.numNodes - dsi.numLeaves dsi.mu = np.zeros(dsi.alphaHats.shape[0]) dsi.sigma = np.ones(dsi.numNodes) dsi.leafN = np.ones_like(dsi.mu) * dsi.alphaHats.shape[1] dsi.treeAlphaHats = [[] for _ in range(dsi.numNodes)] for nodeNum in range(dsi.numInternal): children = getChildren(nodeNum, dsi.numInternal) leafNums = children - dsi.numInternal pos,unlabeled = list(zip(*[getTransformScores(dsi,n) for n in leafNums])) pos = np.concatenate(pos).reshape((-1,1)) unlabeled = np.concatenate(unlabeled).reshape((-1,1)) NEstimates = int(np.sum([dsi.leafN[l] for l in leafNums])) dsi.treeAlphaHats[nodeNum],_ = getEsts(pos, unlabeled, NEstimates) for leafNum in range(dsi.numLeaves): nodeNum = leafNum + dsi.numInternal dsi.treeAlphaHats[nodeNum] = dsi.alphaHats[leafNum] dsi.mu[leafNum],dsi.sigma[nodeNum] = ss.norm.fit(dsi.treeAlphaHats[nodeNum]) maes = [np.mean(np.abs(dsi.mu - dsi.trueAlphas.flatten()))] lr = 0.001 gradNLL_mu = grad(treeNegativeLogLikelihood(dsi.treeAlphaHats,dsi.leafN),0) gradNLL_sigma = grad(treeNegativeLogLikelihood(dsi.treeAlphaHats,dsi.leafN),1) NIter= 5000 for i in tqdm(range(NIter),total=NIter): if not i % 1500: lr = lr * .5 deltaMu = gradNLL_mu(dsi.mu,dsi.sigma) deltaSigma = gradNLL_sigma(dsi.mu,dsi.sigma) dsi.mu = dsi.mu - lr * deltaMu dsi.sigma = dsi.sigma - lr * deltaSigma maes.append(np.mean(np.abs(dsi.mu - dsi.trueAlphas.flatten()))) absErrs["local"].append(maes[0]) absErrs["likelihood"].append(maes[-1]) absErrs["global"].append(np.mean(np.abs(dsi.globalAlphaHats.mean() - dsi.trueAlphas.flatten()))) plt.plot(maes) plt.hlines(absErrs["global"][-1],0,len(maes),color="black") plt.title(fileName.split("/")[-1]) plt.show() dsi.globalAlphaHats.mean() dsi.sigma dsi.curves.shape plt.plot(dsi.curves[2,0]) dsi.alphaHats dsi.trueAlphas[0] ###Output _____no_output_____ ###Markdown Final Results ###Code for k,v in absErrs.items(): print(k, "{:.3f}".format(np.mean(v))) ###Output _____no_output_____
nlp_with_python_for_ml/Exercise Files/Ch05/05_10/Start/.ipynb_checkpoints/05_09-checkpoint.ipynb
###Markdown Building Machine Learning Classifiers: Evaluate Gradient Boosting with GridSearchCV **Grid-search:** Exhaustively search all parameter combinations in a given grid to determine the best model.**Cross-validation:** Divide a dataset into k subsets and repeat the holdout method k times where a different subset is used as the holdout set in each iteration. Read in text ###Code import nltk import pandas as pd import re from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer import string stopwords = nltk.corpus.stopwords.words('english') ps = nltk.PorterStemmer() data = pd.read_csv("SMSSpamCollection.tsv", sep='\t') data.columns = ['label', 'body_text'] def count_punct(text): count = sum([1 for char in text if char in string.punctuation]) return round(count/(len(text) - text.count(" ")), 3) data['body_len'] = data['body_text'].apply(lambda x: len(x) - x.count(" ")) data['punct%'] = data['body_text'].apply(lambda x: count_punct(x)) def clean_text(text): text = "".join([word.lower() for word in text if word not in string.punctuation]) tokens = re.split('\W+', text) text = [ps.stem(word) for word in tokens if word not in stopwords] return text # TF-IDF tfidf_vect = TfidfVectorizer(analyzer=clean_text) X_tfidf = tfidf_vect.fit_transform(data['body_text']) X_tfidf_feat = pd.concat([data['body_len'], data['punct%'], pd.DataFrame(X_tfidf.toarray())], axis=1) # CountVectorizer count_vect = CountVectorizer(analyzer=clean_text) X_count = count_vect.fit_transform(data['body_text']) X_count_feat = pd.concat([data['body_len'], data['punct%'], pd.DataFrame(X_count.toarray())], axis=1) X_count_feat.head() ###Output _____no_output_____ ###Markdown Exploring parameter settings using GridSearchCV ###Code from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import GridSearchCV ###Output _____no_output_____
01.air_quality_prediction/03.Solution_with_LSTM.ipynb
###Markdown Import Libraries ###Code #from __future__ import print_function from pandas import read_csv from pandas import DataFrame from pandas import concat from datetime import datetime from matplotlib import pyplot from math import sqrt from numpy import concatenate from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder from sklearn.metrics import mean_squared_error from keras.layers import Dense, LSTM from keras.models import Sequential ###Output Using TensorFlow backend. /home/burak/anaconda3/envs/intro_to_pytorch/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /home/burak/anaconda3/envs/intro_to_pytorch/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /home/burak/anaconda3/envs/intro_to_pytorch/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:528: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /home/burak/anaconda3/envs/intro_to_pytorch/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:529: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /home/burak/anaconda3/envs/intro_to_pytorch/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:530: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /home/burak/anaconda3/envs/intro_to_pytorch/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:535: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) ###Markdown Preprocessing ###Code inputFile = 'data.csv' def parse(x): #function for parsing data into required format return datetime.strptime(x, '%Y %m %d %H') df = read_csv(inputFile, parse_dates = [['year', 'month', 'day', 'hour']], index_col=0, date_parser=parse) df.head() df.drop('No', axis=1, inplace=True) df.head() # manually specify column names df.columns = ['pollution', 'dew', 'temp', 'press', 'wnd_dir', 'wnd_spd', 'snow', 'rain'] df.index.name = 'date' df.head() # mark all NA values with 0 df['pollution'].fillna(0, inplace=True) df.head() # drop the first 24 hours as it has 0 value df = df[24:] df.head() def visualize(df,groups): # plot columns definded in "groups" from inputFile values = df.values i = 1 # plot each column pyplot.figure() for group in groups: pyplot.subplot(len(groups), 1, i) pyplot.plot(values[:, group]) pyplot.title(df.columns[group], y=0.5, loc='right') i += 1 pyplot.show() #call function for visualizing data visualize(df,[0, 1, 2, 3, 5, 6, 7]) def convert_timeseries(data, n_in=1, n_out=1, dropnan=True): #covert timeseries data to t-n to t-1 form #n defines how many previous value should be taken into consideration n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg ###Output _____no_output_____ ###Markdown Actual code starts here ###Code # load dataset values = df.values print(values) # encode direction into integer encoder = LabelEncoder() values[:,4] = encoder.fit_transform(values[:,4]) print(values[:,4]) # ensure all data is float values = values.astype('float32') print(values) # normalize features scaler = MinMaxScaler(feature_range=(0, 1)) scaled = scaler.fit_transform(values) print(scaled) # frame as supervised learning reframed = convert_timeseries(scaled, 1, 1) print(reframed.head()) # drop columns we don't want to predict # need to change this if we change N or change dataset reframed.drop(reframed.columns[[9,10,11,12,13,14,15]], axis=1, inplace=True) print(reframed.head()) ###Output var1(t-1) var2(t-1) var3(t-1) var4(t-1) var5(t-1) var6(t-1) \ 1 0.129779 0.352941 0.245902 0.527273 0.666667 0.002290 2 0.148893 0.367647 0.245902 0.527273 0.666667 0.003811 3 0.159960 0.426471 0.229508 0.545454 0.666667 0.005332 4 0.182093 0.485294 0.229508 0.563637 0.666667 0.008391 5 0.138833 0.485294 0.229508 0.563637 0.666667 0.009912 var7(t-1) var8(t-1) var1(t) 1 0.000000 0.0 0.148893 2 0.000000 0.0 0.159960 3 0.000000 0.0 0.182093 4 0.037037 0.0 0.138833 5 0.074074 0.0 0.109658 ###Markdown Splitting Dataset ###Code # split into train and test sets values = reframed.values print(values) n_train_hours = 365 * 24 #1 year train = values[:n_train_hours, :] test = values[n_train_hours:, :] print('train shape: ', train.shape) print('test shape: ',test.shape) # split into input and outputs train_X= train[:, :-1] train_y= train[:, -1] test_X= test[:, :-1] test_y= test[:, -1] print('train_X shape: ', train_X.shape) print('test_X shape: ',test_X.shape) print('train_y shape: ', train_y.shape) print('test_y shape: ',test_y.shape) print(train_X) # reshape input to be 3D [samples, timesteps, features] train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) print(train_X.shape, train_y.shape, test_X.shape, test_y.shape) ###Output (8760, 1, 8) (8760,) (35039, 1, 8) (35039,) ###Markdown Create the LSTM Model ###Code # design network model = Sequential() model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2]))) model.add(Dense(1)) model.compile(loss='mae', optimizer='adam') # fit network history = model.fit(train_X, train_y, epochs=50, batch_size=72, validation_data=(test_X, test_y), verbose=2, shuffle=False) # plot history pyplot.plot(history.history['loss'], label='Training Loss') pyplot.plot(history.history['val_loss'], label='Validation Loss') pyplot.legend() pyplot.show() ###Output _____no_output_____ ###Markdown Make a Prediction ###Code # make a prediction yhat = model.predict(test_X) test_X = test_X.reshape((test_X.shape[0], test_X.shape[2])) print(yhat) print(yhat.shape) print(test_X) print(test_X.shape) # invert scaling for forecast to revert data into original form inv_yhat = concatenate((yhat, test_X[:, 1:]), axis=1) print(inv_yhat) inv_yhat = scaler.inverse_transform(inv_yhat) print(inv_yhat) # Actial Input inv_xp=inv_yhat[:,1:] #predicted output inv_yhat = inv_yhat[:,0] print('inv_xp: ', inv_xp) print('inv_yhat: ', inv_yhat) # invert scaling for actual test_y = test_y.reshape((len(test_y), 1)) inv_y = concatenate((test_y, test_X[:, 1:]), axis=1) inv_y = scaler.inverse_transform(inv_y) #Actual output inv_y = inv_y[:,0] print("Actual Input:") print(inv_xp) print("Actual Output:") print(inv_y) #predicted output will be offset by 1 print("Predicted Output:") print(inv_yhat) # calculate RMSE rmse = sqrt(mean_squared_error(inv_y, inv_yhat)) print('Test RMSE: %.3f' % rmse) ###Output Test RMSE: 26.630
SAS_Viya_Explainable_ML.ipynb
###Markdown This is the notebook associated with the blog post titled Interactive Explainable Machine Learning with SAS Viya, Streamlit and Docker Install SWAT if you haven't done so already. Import the required modules ###Code #!pip install swat from swat import CAS, options import pandas as pd import numpy as np ###Output _____no_output_____ ###Markdown Connect to CAS and load the required action sets ###Code host = "" port = "" username = "" password = "" s = CAS(host, port, username, password) s.loadActionSet('autotune') s.loadactionset('aStore') s.loadactionset('decisionTree') s.loadactionset("explainModel") s.loadactionset('table') ###Output NOTE: Added action set 'autotune'. NOTE: Added action set 'aStore'. NOTE: Added action set 'decisionTree'. NOTE: Added action set 'explainModel'. NOTE: Added action set 'table'. ###Markdown Load and inspect the dataset ###Code hmeq = pd.read_csv('hmeq.csv') hmeq ###Output _____no_output_____ ###Markdown Load the dataframe to a CASTable and train a model and perform hyperparameter optimization ###Code s.upload(hmeq,casout={'name' : 'hmeqTest', 'caslib' : 'public','replace' : True}) result = s.autotune.tuneGradientBoostTree( trainOptions = { "table" : {"name":'hmeqTest', 'caslib' : 'public'}, "inputs" : {'LOAN','MORTDUE','VALUE','YOJ','DEROG','DELINQ','CLAGE','NINQ','CLNO','DEBTINC','REASON', 'JOB'}, "target" : 'BAD', "nominal" : {'BAD','REASON', 'JOB'}, "casout" : {"name":"gradboosthmeqtest", "caslib":"public",'replace':True}, "varImp" : True }, tunerOptions={"seed":12345, "maxTime":60} ) ###Output WARNING: The table HMEQTEST exists as a global table in caslib public. By adding a session table with the same name, the session-scope table takes precedence over the global-scope table. NOTE: Cloud Analytic Services made the uploaded file available as table HMEQTEST in caslib public. NOTE: The table HMEQTEST has been created in caslib public from binary data uploaded to Cloud Analytic Services. NOTE: Autotune is started for 'Gradient Boosting Tree' model. NOTE: Autotune option SEARCHMETHOD='GA'. NOTE: Autotune option MAXTIME=60 (sec.). NOTE: Autotune option SEED=12345. NOTE: Autotune objective is 'Misclassification Error Percentage'. NOTE: Early stopping is activated; 'NTREE' will not be tuned. NOTE: Autotune number of parallel evaluations is set to 4, each using 0 worker nodes. NOTE: Automatic early stopping is activated with STAGNATION=4; set EARLYSTOP=false to deactivate. Iteration Evals Best Objective Elapsed Time 0 1 19.966 1.08 1 25 7.6063 17.50 2 47 7.047 39.90 3 68 6.5996 60.00 NOTE: Autotune process reached maximum tuning time. WARNING: Objective evaluation 68 was terminated. WARNING: Objective evaluation 66 was terminated. WARNING: Objective evaluation 67 was terminated. NOTE: Data was partitioned during tuning, to tune based on validation score; the final model is trained and scored on all data. NOTE: The number of trees used in the final model is 30. NOTE: Autotune time is 64.60 seconds. ###Markdown Promote the table with training data, export the astore and promote the astore to global scope. Important for the Streamlit portion ###Code s.table.promote(name="hmeqTest", caslib='public',target="hmeqTest",targetLib='public') modelAstore = s.decisionTree.dtreeExportModel(modelTable = {"caslib":"public","name":"gradboosthmeqtest" }, casOut = {"caslib":"public","name":'hmeqTestAstore','replace':True}) s.table.promote(name='hmeqTestAstore', caslib='public',target='hmeqTestAstore',targetLib='public') ###Output _____no_output_____ ###Markdown Let's test out the model. Create a sample observation, convert it to a pandas dataframe, then a cas table and score against the model ###Code #Convert dictonary of input data to pandas dataframe (a tabular data format for scoring) datadict = {'LOAN':140,'MORTDUE':3000, 'VALUE':40000, 'REASON':'HomeImp','JOB':'Other','YOJ':12, 'DEROG':0.0,'DELINQ':0.0, 'CLAGE':89,'NINQ':1.0, 'CLNO':10.0, 'DEBTINC':0.05} ###Output _____no_output_____ ###Markdown Create a small helper function to convert the python dictionary to a pandas DataFrame. This could be done with a single line of code but the data types end up changing. Hence this slightly verbose function ###Code def dicttopd(datadict): for key in datadict: datadict[key] = [datadict[key]] return pd.DataFrame.from_dict(datadict) samplepd = dicttopd(datadict) samplepd ###Output _____no_output_____ ###Markdown score this against the model ###Code s.upload(samplepd,casout={'name' : 'realtime', 'caslib' : 'public','replace' : True}) s.aStore.score(rstore = {"caslib":"public","name":"hmeqTestAstore"}, table = {"caslib":'public',"name":'realtime'}, out = {"caslib":'public',"name":'realscore', 'replace':True}) ###Output NOTE: Cloud Analytic Services made the uploaded file available as table REALTIME in caslib public. NOTE: The table REALTIME has been created in caslib public from binary data uploaded to Cloud Analytic Services. ###Markdown Inspect the scores ###Code scoredData = s.CASTable(name='realscore',caslib='public') datasetDict = scoredData.to_dict() scores = pd.DataFrame(datasetDict, index=[0]) scores ###Output _____no_output_____ ###Markdown Convert this to a neat little function for later use in the app ###Code def score(samplepd): s.upload(samplepd,casout={'name' : 'realtime', 'caslib' : 'public','replace' : True}) s.aStore.score(rstore = {"caslib":"public","name":"hmeqTestAstore"}, table = {"caslib":'public',"name":'realtime'}, out = {"caslib":'public',"name":'realscore', 'replace':True}) #scoretable2= s.table.fetch(score_tableName) scoredData = s.CASTable(name='realscore',caslib='public') datasetDict = scoredData.to_dict() scores = pd.DataFrame(datasetDict, index=[0]) return scores ###Output _____no_output_____ ###Markdown Test to make sure this works ###Code score(samplepd) ###Output NOTE: Cloud Analytic Services made the uploaded file available as table REALTIME in caslib public. NOTE: The table REALTIME has been created in caslib public from binary data uploaded to Cloud Analytic Services. ###Markdown Let's add the I_BAD value to the 'BAD' field in sample pd ###Code samplepd['BAD'] = scores.I_BAD.to_list() samplepd ###Output _____no_output_____ ###Markdown Get interpretability scores using kernelshap algorithm in the linearexplainer action set ###Code s.upload(samplepd,casout={'name' : 'realtime', 'caslib' : 'public','replace' : True}) shapvals = s.linearExplainer( table = {"name" : 'hmeqTest','caslib':'public'}, query = {"name" : 'realtime','caslib':'public'}, modelTable = {"name" :"hmeqTestAstore",'caslib':'public'}, modelTableType = "ASTORE", predictedTarget = 'P_BAD1', seed = 1234, preset = "KERNELSHAP", inputs = ['LOAN','MORTDUE','VALUE','YOJ','DEROG','DELINQ','CLAGE','NINQ','CLNO','DEBTINC','REASON', 'JOB','BAD'], nominals = ['REASON', 'JOB','BAD'] ) shap1 = shapvals['ParameterEstimates'] shap = shap1[['Variable','Estimate']][0:10] ###Output NOTE: Cloud Analytic Services made the uploaded file available as table REALTIME in caslib public. NOTE: The table REALTIME has been created in caslib public from binary data uploaded to Cloud Analytic Services. NOTE: Starting the Linear Explainer action. WARNING: Unseen level in query variable 'BAD'. NOTE: The generated number of samples is automatically set to 6500. NOTE: Generating kernel weights. NOTE: Kernel weights generated. ###Markdown Inspect the results ###Code shap !pip install altair import altair as alt alt.Chart(shap).mark_bar().encode( x='Variable', y='Estimate' ) ###Output _____no_output_____
Titanic Clean.ipynb
###Markdown Load data ###Code df = pd.read_csv('train.csv') df_predict = pd.read_csv('predict.csv') ###Output _____no_output_____ ###Markdown Split data into training and testing sets ###Code #all columns except survived column X = df.iloc[:,2:] # only survived column y = pd.DataFrame(df['Survived']) Xtrain1, Xtest1, ytrain1,ytest1 = train_test_split(X,y, test_size = 0.2, random_state = 42, stratify =y) df_train = pd.merge(Xtrain1, ytrain1, left_index= True, right_index = True) df_test = pd.merge(Xtest1, ytest1, left_index= True, right_index = True) df_train.shape, df_test.shape df_train.head(3) ###Output _____no_output_____ ###Markdown Visualization ###Code # Gender pivot_gender = df_train.pivot_table(index="Sex",values="Survived") pivot_gender.plot.bar() plt.show() # Gender & Class pivot_gender = df_train.pivot_table(index=["Pclass","Sex"],values="Survived") pivot_gender.plot.bar() plt.show() # Agegroup df_train['Age_group'] =(df_train['Age'] // 10*10) pivot_age = df_train.pivot_table(index="Age_group",values="Survived") pivot_age.plot.bar() plt.show() # Class pivot_class= df_train.pivot_table(index="Pclass",values="Survived") pivot_class.plot.bar() plt.show() # Title df_train['Titles'] = df_train['Name'].str.split(r'\s*,\s*|\s*\.\s*').str[1] pivot_class= df_train.pivot_table(index="Titles",values="Survived") pivot_class.plot.bar() plt.show() df_train.drop(['Titles'], axis=1, inplace=True) ###Output _____no_output_____ ###Markdown Clean Data ###Code # missing data miss = df_train.isna().sum() miss_perc =(1-df_train.notnull().mean())*100 pd.concat([miss,round(miss_perc)], axis=1, keys=['missing', 'in %']) def cleaning(dataframe): ### Age #for dataset in dataframe: mean = dataframe['Age'].mean() std = dataframe['Age'].std() is_null = dataframe['Age'].isnull().sum() # compute random numbers rand_age = np.random.randint(mean - std, mean + std, size = is_null) # fill NaN values in Age column age_slice = dataframe['Age'].copy() age_slice[np.isnan(age_slice)] = rand_age dataframe['Age'] = age_slice dataframe['Age'] = dataframe['Age'].astype(int) ### recoding the gender in two columns f = dataframe['Sex'] == 'female' dataframe['Gender'] =f.astype(int) ### defining age groups def agegroup(row): # age 0-5 if row < 6: return 1 # age 6-14 elif row < 15: return 2 # age 15-36 elif row < 37: return 3 # age 37-55 elif row < 56: return 4 # 56-80 elif row < 81: return 5 else: return 6 dataframe['Agegroup'] = dataframe['Age'].apply(agegroup) ### recoding the cabin into floor # to get starting letter: df_train['Cabin'].str[:1].unique() characters = ('N','A','B','C','D','E','F','G','T') numbers = ('0','1','2','3','4','5','6','7','8') df_deck = pd.DataFrame( {'Deck': characters, 'Deck_No': numbers}) #replace NaN with N as cabin dataframe['Cabin'].fillna('N', inplace=True) #Cabin indicator as column dataframe['Deck'] = dataframe['Cabin'].str[:1] #merge with lookup of level aka deck no dataframe = pd.merge(dataframe,df_deck, on='Deck', how='left') ### Embarking ports port_dict = {'Q': 1, 'C': 2, 'S':3 } dataframe['Ports'] = dataframe['Embarked'].map(port_dict) dataframe['Ports'] = dataframe['Ports'].fillna(1) ### titles # how it works: take the substring that is preceded by , (but do not include), # consists of at least one word character, and ends with a . dataframe['Title'] = dataframe['Name'].str.split(r'\s*,\s*|\s*\.\s*').str[1] titles_dummies = pd.get_dummies(dataframe['Title'], prefix='Title') dataframe = pd.concat([dataframe, titles_dummies], axis=1) ### "Women and children first" dataframe.loc[( (dataframe['Sex'] == 'female') & (dataframe['Age'] >= 15) ), 'Category_Code'] = 1 dataframe.loc[( (dataframe['Sex'] == 'male') & (dataframe['Age'] >= 15) ), 'Category_Code'] = 2 dataframe.loc[( dataframe['Age'] < 15 ), 'Category_Code'] = 3 return dataframe df_train = cleaning(df_train) df_test = cleaning(df_test) # dropping unused columns def dropping(dataframe): dataframe.drop(['Sex','Name','Ticket','Cabin','Deck','Embarked'], axis=1, inplace=True) return dataframe df_train = dropping(df_train) df_test = dropping(df_test) ###Output _____no_output_____ ###Markdown Build a Logistic Regression model ###Code # Define X and Y for train data y_train = df_train['Survived'] X_train = df_train[['Age', 'Pclass', 'SibSp', 'Parch', 'Fare','Deck_No','Gender', 'Title_Master','Title_Miss','Title_Mr','Title_Mrs','Title_Rev', 'Agegroup','Ports','Category_Code' ]] m = LogisticRegression() m.fit(X_train,y_train) m.intercept_, m.coef_ m.score(X_train,y_train) # Define X and Y for test data y_test = df_test['Survived'] X_test = df_test[['Age', 'Pclass', 'SibSp', 'Parch', 'Fare','Deck_No','Gender', 'Title_Master','Title_Miss','Title_Mr','Title_Mrs','Title_Rev', 'Agegroup','Ports','Category_Code' ]] m.score(X_test,y_test) df_predict=pd.DataFrame(m.predict_proba(X_train), columns = ['Survived_No', 'Survived_Yes']) df_predict.round(decimals=2) df_predict.head(3) ###Output _____no_output_____ ###Markdown Merge Data ###Code df_predict2 = pd.merge(df_test,df_predict, left_index= True, right_index = True) #df_predict2.head(3) y_pred =m.predict(X_train) confusion_matrix(y_pred, y_train) precision_score(y_pred=y_pred, y_true=y_train) recall_score(y_true=y_train,y_pred=y_pred) ###Output _____no_output_____ ###Markdown Precision-Recall-Curve ###Code y_pred_prob = m.predict_proba(X_train)[:,1] precision, recall, thresholds = precision_recall_curve(y_train, y_pred_prob) plt.plot(precision, recall) plt.xlabel('precision') plt.ylabel('recall') plt.title('Precision-Recall-Curve') plt.show() ###Output _____no_output_____ ###Markdown Random Forest ###Code rf_model = RandomForestRegressor (n_estimators=100, oob_score=True, random_state=42 ) rf_model.fit(X_test,y_test) rf_model.oob_score_ y_oob = rf_model.oob_prediction_ "C-stat: ", roc_auc_score(y_test, y_oob) ###Output _____no_output_____ ###Markdown Crossvalidation ###Code scores = cross_val_score(rf_model, X_test,y_test, cv=5) print(scores) print(sum(scores)/5) for ntrees in range(1,20,3): for depth in range (1,11): rf_model = RandomForestClassifier(max_depth=depth, n_estimators=ntrees) scores = cross_val_score(rf_model, X_test,y_test, cv=5) print(ntrees, depth, sum(scores)/5) rf_model = RandomForestClassifier(random_state=42) params = { 'max_depth':[2,3,4,5,6], 'n_estimators':[1,3,5,7,10,15,20] } g = GridSearchCV(rf_model, param_grid=params) g.fit (X_test,y_test) g.score(X_test,y_test) g.best_params_ g.cv_results_['mean_test_score'].reshape((5,7)) mtx= g.cv_results_['mean_test_score'].reshape((5,7)) sns.heatmap(mtx) ###Output _____no_output_____
Visualization/Lux_college_demo.ipynb
###Markdown This dataset contains 1295 records of American colleges and their properties, collected by the [US Department of Education](https://collegescorecard.ed.gov/data/documentation/). ###Code import pandas as pd import lux # Collecting basic usage statistics for Lux (For more information, see: https://tinyurl.com/logging-consent) #lux.logger = True # Remove this line if you do not want your interactions recorded df = pd.read_csv("college.csv") df ###Output _____no_output_____ ###Markdown We see that the information about ACTMedian and SATAverage has a very strong correlation. This means that we could probably just keep one of the columns and still get about the same information. So let's drop the ACTMedian column. ###Code df = df.drop(columns=["ACTMedian"]) df ###Output _____no_output_____ ###Markdown From the Category tab, we see that there are few records where `PredominantDegree` is "Certificate". In addition, there are not a lot of colleges with "Private For-Profit" as `FundingModel`. We can take a look at this by inspecting the `Series` corresponding to the column `PredominantDegree`. Note that Lux not only helps with visualizing dataframes, but also displays visualizations of Series objects. ###Code df["PredominantDegree"] df[df["PredominantDegree"]=="Certificate"].to_pandas() ###Output _____no_output_____ ###Markdown Upon inspection, there is only a single record for Certificate, we look at the [webpage for programs offered at Cleveland State Community College](http://catalog.clevelandstatecc.edu/content.php?catoid=2&navoid=90) and it looks like there is a large number of associate as well as certificate degrees offered. So we decide that this is more appropriately labelled as "Associate" for the `PredominantDegree` field. ###Code df.loc[df["PredominantDegree"]=="Certificate","PredominantDegree"] = "Associate" ###Output _____no_output_____ ###Markdown By inspecting the subset of 9 colleges that are "Private For-Profit", we do not find any commonalities across them, so we can just leave the data as-is for now. ###Code df[df["FundingModel"]=="Private For-Profit"] ###Output _____no_output_____ ###Markdown Back to looking at the entire dataset: ###Code df ###Output _____no_output_____ ###Markdown We are interested in picking a college to attend and want to understand the `AverageCost` of attending different colleges and how that relates to other information in the dataset. ###Code df.intent = ["AverageCost"] df ###Output _____no_output_____ ###Markdown We see that there are a large number of colleges that cost around $20000 per year. We also see that Bachelor degree colleges and colleges in New England and large cities tend to have a higher `AverageCost` than its counterparts. We are interested in the trend of `AverageCost` v.s. `SATAverage` since there is a rough upwards relationship above `AverageCost` of $30000, but below that the trend is less clear. ###Code df.intent = ["AverageCost","SATAverage"] df ###Output _____no_output_____
backend_tests/.ipynb_checkpoints/test-checkpoint.ipynb
###Markdown My first automatic Jupyter Notebook This is an auto-generated notebook. ###Code %pylab inline hist(normal(size=2000), bins=50); ###Output _____no_output_____
notebooks/Calculating radial coordinates.ipynb
###Markdown The InfiniteHMM class is capable of reading a GROMACS trajectory file and converting the xy coordinates to radial coordinates with respect to the pore centers. This is all done in the __init__ function. This notebook outlines how the radial coordinates are calculated. ###Code import hdphmm import mdtraj as md ###Output _____no_output_____ ###Markdown First, let's load the trajectory. ###Code traj = '5ms_nojump.xtc' gro = 'em.gro' first_frame = 7000 t = md.load(traj, top=gro)[first_frame:] ###Output _____no_output_____ ###Markdown Now we will calculate the center of mass of the residue whose coordinates are being tracked ###Code from hdphmm.utils import physical_properties res = 'MET' residue = physical_properties.Residue(res) ndx = [a.index for a in t.topology.atoms if a.residue.name == res] names = [a.name for a in t.topology.atoms if a.residue.name == res][:residue.natoms] # names of atoms in one residue mass = [residue.mass[x] for x in names] com = physical_properties.center_of_mass(t.xyz[:, ndx, :], mass) ###Output _____no_output_____ ###Markdown Now we need to locate the pore centers. The pores are not perfectly straight, so we create a spline that runs through them and is a function of z. ###Code monomer = physical_properties.Residue('NAcarb11V') pore_atoms = [a.index for a in t.topology.atoms if a.name in monomer.pore_defining_atoms and a.residue.name in monomer.residues] spline_params = {'npts_spline': 10, 'save': True, 'savename': 'test_spline.pl'} spline = physical_properties.trace_pores(t.xyz[:, pore_atoms, :], t.unitcell_vectors, spline_params['npts_spline'], save=spline_params['save'], savename=spline_params['savename'])[0] ###Output Attempting to load spline ... Success! ###Markdown The physical_properties module can write out the coordinates of the spline in .gro format if you'd like to compare it to the actual system. ###Code physical_properties.write_spline_coordinates(spline) ###Output _____no_output_____ ###Markdown Now we just need to calculate the distance between each solute center of mass and the closest spline ###Code import numpy as np import tqdm nres = com.shape[1] radial_distances = np.zeros([t.n_frames, nres]) npores = 4 for f in tqdm.tqdm(range(t.n_frames), unit=' Frames'): d = np.zeros([npores, nres]) for p in range(npores): # calculate radial distance between each solute and all splines d[p, :] = physical_properties.radial_distance_spline(spline[f, p, ...], com[f, ...], t.unitcell_vectors[f, ...]) # record distance to closest pore center radial_distances[f, :] = d[np.argmin(d, axis=0), np.arange(nres)] radial_distances.shape import matplotlib.pyplot as plt traj_no = 2 rd = radial_distances[:, traj_no] diff = rd[1:] - rd[:-1] fig, ax = plt.subplots(2, 1, figsize=(12, 5)) ax[0].plot(rd) ax[1].plot(diff) plt.show() ###Output _____no_output_____
vertex_metrics_experiment/chalboards/nlp_chalkboard.ipynb
###Markdown load similarity matrix ###Code similarity_matrix = load_sparse_csr(filename=experiment_data_dir + 'cosine_sims.npz') with open(experiment_data_dir + 'CLid_to_index.p', 'rb') as f: CLid_to_index = pickle.load(f) ###Output _____no_output_____ ###Markdown Look at similarities ###Code def get_similarities(similarity_matrix, CLid_A, CLid_B, CLid_to_index): """ Returns the similarities for cases index by CL ids as a list Parameters ---------- similarity_matrix: precomputed similarity matrix CLid_A, CLid_B: two lists of CL ids whose similarities we want CLid_to_index: dict that maps CL ids to similarity_matrix indices """ if len(CLid_A) != len(CLid_B): raise ValueError('lists not the same length') else: N = len(CLid_A) # list to return similarities = [0] * N # grab each entry for i in range(N): try: # convet CL id to matrix index idA = CLid_to_index[CLid_A[i]] idB = CLid_to_index[CLid_B[i]] similarities[i] = similarity_matrix[idA, idB] except KeyError: # if one of the CLid's is not in the similarity matrix return nan similarities[i] = np.nan return similarities def save_similarity_matrix(experiment_data_dir, similarity_matrix, CLid_to_index): """ saves similarity matrix and CLid_to_index dict """ # save similarity matrix save_sparse_csr(filename=experiment_data_dir + 'cosine_sims', array=S) # save clid to index map with open(experiment_data_dir + 'CLid_to_index.p', 'wb') as fp: pickle.dump(CLid_to_index, fp) def load_similarity_matrix(experiment_data_dir): """ Load similarity matrix and CLid_to_index dict Parameters ---------- experiment_data_dir: Output ------ similarity_matrix, CLid_to_index """ similarity_matrix = load_sparse_csr(filename=experiment_data_dir + 'cosine_sims.npz') with open(experiment_data_dir + 'CLid_to_index.p', 'rb') as f: CLid_to_index = pickle.load(f) return similarity_matrix, CLid_to_index CLid_ing = [] CLid_ed = [] for e in G.es: CLid_ing.append(G.vs[e.source]['name']) CLid_ed.append(G.vs[e.target]['name']) start = time.time() sims = get_similarities(S, CLid_ing, CLid_ed, CLid_to_index) runtime = time.time() - start ###Output _____no_output_____ ###Markdown surgery ###Code len(CLid_to_index.keys()) map_clids = CLid_to_index.keys() print 'there are %d keys' % len(CLid_to_index.keys()) len(G.vs) G_clids = G.vs['name'] print 'there are %d vertices in the graph' % len(G.vs) set(G_clids).difference(set(map_clids)) len(os.listdir(experiment_data_dir + 'textfiles/')) ###Output _____no_output_____
Game development information.ipynb
###Markdown This is a bit off topic but still crucial for the ultimate production of project gardener. ###Code # This game has a number of features I quite like. Simplistic ui and environment. A lot of upgrades and bonuses. # Game: The Tower - Idle Tower Defense # Developer: Tech Tree Games # Website: https://www.techtreegames.com/ # Dev active: 2018 # Owner: Anthony Tirone # Linked in profile: https://www.linkedin.com/in/anthony-tirone-7b143043/ # Possible reddit profile: https://www.reddit.com/user/Fuddsworth/ ###Output _____no_output_____
Week2/week-2-multiple-regression-assignment-2.ipynb
###Markdown Regression Week 2: Multiple Regression (gradient descent) In the first notebook we explored multiple regression using graphlab create. Now we will use graphlab along with numpy to solve for the regression weights with gradient descent.In this notebook we will cover estimating multiple regression weights via gradient descent. You will:* Add a constant column of 1's to a graphlab SFrame to account for the intercept* Convert an SFrame into a Numpy array* Write a predict_output() function using Numpy* Write a numpy function to compute the derivative of the regression weights with respect to a single feature* Write gradient descent function to compute the regression weights given an initial weight vector, step size and tolerance.* Use the gradient descent function to estimate regression weights for multiple features Fire up graphlab create Make sure you have the latest version of graphlab (>= 1.7) ###Code import graphlab ###Output _____no_output_____ ###Markdown Load in house sales dataDataset is from house sales in King County, the region where the city of Seattle, WA is located. ###Code sales = graphlab.SFrame('kc_house_data.gl/') ###Output This non-commercial license of GraphLab Create for academic use is assigned to [email protected] and will expire on September 10, 2017. ###Markdown If we want to do any "feature engineering" like creating new features or adjusting existing ones we should do this directly using the SFrames as seen in the other Week 2 notebook. For this notebook, however, we will work with the existing features. Convert to Numpy Array Although SFrames offer a number of benefits to users (especially when using Big Data and built-in graphlab functions) in order to understand the details of the implementation of algorithms it's important to work with a library that allows for direct (and optimized) matrix operations. Numpy is a Python solution to work with matrices (or any multi-dimensional "array").Recall that the predicted value given the weights and the features is just the dot product between the feature and weight vector. Similarly, if we put all of the features row-by-row in a matrix then the predicted value for *all* the observations can be computed by right multiplying the "feature matrix" by the "weight vector". First we need to take the SFrame of our data and convert it into a 2D numpy array (also called a matrix). To do this we use graphlab's built in .to_dataframe() which converts the SFrame into a Pandas (another python library) dataframe. We can then use Panda's .as_matrix() to convert the dataframe into a numpy matrix. ###Code import numpy as np # note this allows us to refer to numpy as np instead ###Output _____no_output_____ ###Markdown Now we will write a function that will accept an SFrame, a list of feature names (e.g. ['sqft_living', 'bedrooms']) and an target feature e.g. ('price') and will return two things:* A numpy matrix whose columns are the desired features plus a constant column (this is how we create an 'intercept')* A numpy array containing the values of the outputWith this in mind, complete the following function (where there's an empty line you should write a line of code that does what the comment above indicates)**Please note you will need GraphLab Create version at least 1.7.1 in order for .to_numpy() to work!** ###Code def get_numpy_data(data_sframe, features, output): data_sframe['constant'] = 1 # this is how you add a constant column to an SFrame # add the column 'constant' to the front of the features list so that we can extract it along with the others: features = ['constant'] + features # this is how you combine two lists # select the columns of data_SFrame given by the features list into the SFrame features_sframe (now including constant): features_sframe = data_sframe[features] # the following line will convert the features_SFrame into a numpy matrix: feature_matrix = features_sframe.to_numpy() # assign the column of data_sframe associated with the output to the SArray output_sarray output_sarray = data_sframe[output] # the following will convert the SArray into a numpy array by first converting it to a list output_array = output_sarray.to_numpy() return(feature_matrix, output_array) ###Output _____no_output_____ ###Markdown For testing let's use the 'sqft_living' feature and a constant as our features and price as our output: ###Code (example_features, example_output) = get_numpy_data(sales, ['sqft_living'], 'price') # the [] around 'sqft_living' makes it a list print example_features[0,:] # this accesses the first row of the data the ':' indicates 'all columns' print example_output[0] # and the corresponding output ###Output [ 1.00000000e+00 1.18000000e+03] 221900.0 ###Markdown Predicting output given regression weights Suppose we had the weights [1.0, 1.0] and the features [1.0, 1180.0] and we wanted to compute the predicted output 1.0\*1.0 + 1.0\*1180.0 = 1181.0 this is the dot product between these two arrays. If they're numpy arrayws we can use np.dot() to compute this: ###Code my_weights = np.array([1., 1.]) # the example weights my_features = example_features[0,] # we'll use the first data point predicted_value = np.dot(my_features, my_weights) print predicted_value ###Output 1181.0 ###Markdown np.dot() also works when dealing with a matrix and a vector. Recall that the predictions from all the observations is just the RIGHT (as in weights on the right) dot product between the features *matrix* and the weights *vector*. With this in mind finish the following predict_output function to compute the predictions for an entire matrix of features given the matrix and the weights: ###Code def predict_output(feature_matrix, weights): # assume feature_matrix is a numpy matrix containing the features as columns and weights is a corresponding numpy array # create the predictions vector by using np.dot() predictions = np.dot(feature_matrix, weights) return(predictions) ###Output _____no_output_____ ###Markdown If you want to test your code run the following cell: ###Code test_predictions = predict_output(example_features, my_weights) print test_predictions[0] # should be 1181.0 print test_predictions[1] # should be 2571.0 ###Output 1181.0 2571.0 ###Markdown Computing the Derivative We are now going to move to computing the derivative of the regression cost function. Recall that the cost function is the sum over the data points of the squared difference between an observed output and a predicted output.Since the derivative of a sum is the sum of the derivatives we can compute the derivative for a single data point and then sum over data points. We can write the squared difference between the observed output and predicted output for a single point as follows:(w[0]\*[CONSTANT] + w[1]\*[feature_1] + ... + w[i] \*[feature_i] + ... + w[k]\*[feature_k] - output)^2Where we have k features and a constant. So the derivative with respect to weight w[i] by the chain rule is:2\*(w[0]\*[CONSTANT] + w[1]\*[feature_1] + ... + w[i] \*[feature_i] + ... + w[k]\*[feature_k] - output)\* [feature_i]The term inside the paranethesis is just the error (difference between prediction and output). So we can re-write this as:2\*error\*[feature_i]That is, the derivative for the weight for feature i is the sum (over data points) of 2 times the product of the error and the feature itself. In the case of the constant then this is just twice the sum of the errors!Recall that twice the sum of the product of two vectors is just twice the dot product of the two vectors. Therefore the derivative for the weight for feature_i is just two times the dot product between the values of feature_i and the current errors. With this in mind complete the following derivative function which computes the derivative of the weight given the value of the feature (over all data points) and the errors (over all data points). ###Code def feature_derivative(errors, feature): # Assume that errors and feature are both numpy arrays of the same length (number of data points) # compute twice the dot product of these vectors as 'derivative' and return the value derivative = 2 * np.dot(errors, feature) return(derivative) ###Output _____no_output_____ ###Markdown To test your feature derivartive run the following: ###Code (example_features, example_output) = get_numpy_data(sales, ['sqft_living'], 'price') my_weights = np.array([0., 0.]) # this makes all the predictions 0 test_predictions = predict_output(example_features, my_weights) # just like SFrames 2 numpy arrays can be elementwise subtracted with '-': errors = test_predictions - example_output # prediction errors in this case is just the -example_output feature = example_features[:,0] # let's compute the derivative with respect to 'constant', the ":" indicates "all rows" derivative = feature_derivative(errors, feature) print derivative print -np.sum(example_output)*2 # should be the same as derivative ###Output -23345850022.0 -23345850022.0 ###Markdown Gradient Descent Now we will write a function that performs a gradient descent. The basic premise is simple. Given a starting point we update the current weights by moving in the negative gradient direction. Recall that the gradient is the direction of *increase* and therefore the negative gradient is the direction of *decrease* and we're trying to *minimize* a cost function. The amount by which we move in the negative gradient *direction* is called the 'step size'. We stop when we are 'sufficiently close' to the optimum. We define this by requiring that the magnitude (length) of the gradient vector to be smaller than a fixed 'tolerance'.With this in mind, complete the following gradient descent function below using your derivative function above. For each step in the gradient descent we update the weight for each feature befofe computing our stopping criteria ###Code from math import sqrt # recall that the magnitude/length of a vector [g[0], g[1], g[2]] is sqrt(g[0]^2 + g[1]^2 + g[2]^2) def regression_gradient_descent(feature_matrix, output, initial_weights, step_size, tolerance): converged = False weights = np.array(initial_weights) # make sure it's a numpy array while not converged: # compute the predictions based on feature_matrix and weights using your predict_output() function pred_output = predict_output(feature_matrix, weights) # compute the errors as predictions - output errors = pred_output - output gradient_sum_squares = 0 # initialize the gradient sum of squares # while we haven't reached the tolerance yet, update each feature's weight for i in range(len(weights)): # loop over each weight # Recall that feature_matrix[:, i] is the feature column associated with weights[i] # compute the derivative for weight[i]: derivative = feature_derivative(errors, feature_matrix[:, i]) # add the squared value of the derivative to the gradient sum of squares (for assessing convergence) gradient_sum_squares += derivative ** 2 # subtract the step size times the derivative from the current weight weights[i] -= derivative * step_size # compute the square-root of the gradient sum of squares to get the gradient magnitude: gradient_magnitude = sqrt(gradient_sum_squares) if gradient_magnitude < tolerance: converged = True return(weights) ###Output _____no_output_____ ###Markdown A few things to note before we run the gradient descent. Since the gradient is a sum over all the data points and involves a product of an error and a feature the gradient itself will be very large since the features are large (squarefeet) and the output is large (prices). So while you might expect "tolerance" to be small, small is only relative to the size of the features. For similar reasons the step size will be much smaller than you might expect but this is because the gradient has such large values. Running the Gradient Descent as Simple Regression First let's split the data into training and test data. ###Code train_data,test_data = sales.random_split(.8,seed=0) ###Output _____no_output_____ ###Markdown Although the gradient descent is designed for multiple regression since the constant is now a feature we can use the gradient descent function to estimat the parameters in the simple regression on squarefeet. The folowing cell sets up the feature_matrix, output, initial weights and step size for the first model: ###Code # let's test out the gradient descent simple_features = ['sqft_living'] my_output = 'price' (simple_feature_matrix, output) = get_numpy_data(train_data, simple_features, my_output) initial_weights = np.array([-47000., 1.]) step_size = 7e-12 tolerance = 2.5e7 ###Output _____no_output_____ ###Markdown Next run your gradient descent with the above parameters. ###Code simple_weights = regression_gradient_descent(simple_feature_matrix, output, initial_weights, step_size, tolerance) print simple_weights ###Output [-46999.88716555 281.91211912] ###Markdown How do your weights compare to those achieved in week 1 (don't expect them to be exactly the same)? **Quiz Question: What is the value of the weight for sqft_living -- the second element of ‘simple_weights’ (rounded to 1 decimal place)?** Use your newly estimated weights and your predict_output() function to compute the predictions on all the TEST data (you will need to create a numpy array of the test feature_matrix and test output first: ###Code (test_simple_feature_matrix, test_output) = get_numpy_data(test_data, simple_features, my_output) ###Output _____no_output_____ ###Markdown Now compute your predictions using test_simple_feature_matrix and your weights from above. ###Code simple_predictions = predict_output(test_simple_feature_matrix, simple_weights) print simple_predictions[0] print test_output[0] ###Output 356134.443171 310000.0 ###Markdown **Quiz Question: What is the predicted price for the 1st house in the TEST data set for model 1 (round to nearest dollar)?** Now that you have the predictions on test data, compute the RSS on the test data set. Save this value for comparison later. Recall that RSS is the sum of the squared errors (difference between prediction and output). ###Code simpleRSS = (np.dot((simple_predictions - test_output), (simple_predictions - test_output))).sum() print simpleRSS ###Output 2.75400047593e+14 ###Markdown Running a multiple regression Now we will use more than one actual feature. Use the following code to produce the weights for a second model with the following parameters: ###Code model_features = ['sqft_living', 'sqft_living15'] # sqft_living15 is the average squarefeet for the nearest 15 neighbors. my_output = 'price' (feature_matrix, output) = get_numpy_data(train_data, model_features, my_output) initial_weights = np.array([-100000., 1., 1.]) step_size = 4e-12 tolerance = 1e9 ###Output _____no_output_____ ###Markdown Use the above parameters to estimate the model weights. Record these values for your quiz. ###Code two_weights = regression_gradient_descent(feature_matrix, output, initial_weights, step_size, tolerance) print two_weights ###Output [ -9.99999688e+04 2.45072603e+02 6.52795277e+01] ###Markdown Use your newly estimated weights and the predict_output function to compute the predictions on the TEST data. Don't forget to create a numpy array for these features from the test set first! ###Code (test_two_feature_matrix, test_two_output) = get_numpy_data(test_data, model_features, my_output) two_predictions = predict_output(test_two_feature_matrix, two_weights) print two_predictions[0] ###Output 366651.412037 ###Markdown **Quiz Question: What is the predicted price for the 1st house in the TEST data set for model 2 (round to nearest dollar)?** What is the actual price for the 1st house in the test data set? ###Code print test_two_output[0] ###Output 310000.0 ###Markdown **Quiz Question: Which estimate was closer to the true price for the 1st house on the TEST data set, model 1 or model 2?** Now use your predictions and the output to compute the RSS for model 2 on TEST data. ###Code twoRSS = (np.dot((two_predictions - test_two_output), (two_predictions - test_two_output))).sum() print twoRSS ###Output 2.70263446465e+14
Day 3 - Using descriptors for matching.ipynb
###Markdown Strategy- Identify keypoints and descriptor vectors in both Nemo and the world.- Match keypoints between Nemo and the world.- Visualize those matches. ###Code detector = cv2.ORB_create(nfeatures=30) #Default = 500 kp_nemo, des_nemo = detector.detectAndCompute(nemo, mask=None) kp_world, des_world = detector.detectAndCompute(world, mask=None) ###Output _____no_output_____ ###Markdown Once we have keypoints and descriptors, we need to match. ###Code matcher = cv2.BFMatcher_create(cv2.NORM_HAMMING2) matches = matcher.match(des_nemo,des_world) out = cv2.drawMatches( nemo, kp_nemo, world, kp_world, matches, None #out image ) plt.figure(figsize=(10,10)) plt.imshow(out[:,:,::-1]) ###Output _____no_output_____
examples/ipynb/histogram.ipynb
###Markdown Draw two histograms, on of which is log scaled ###Code H = histograms(figsize=(10,5)) H.histogram(x, num_bins=10, title='Basic Histogram', facecolor='blue', α=0.5, path=None, subplot=121) H.histogram(x, num_bins=10, title='Y Log Scaled Histogram', facecolor='blue', α=0.5, path=None, subplot=122, ylogScale=True) H.show() ###Output _____no_output_____
3_Vector_interpolation_with_wind_and_air_pollution_dataset/3D_vector_Interpolation_TEST.ipynb
###Markdown 1. Import Packages ###Code import matplotlib.pyplot as plt import numpy as np from scipy import interpolate ###Output _____no_output_____ ###Markdown 2. Data Visualization ###Code x = [0, 0, 1, 1, 2, 2, 0, 1, 2] y = [1, 2, 1, 2, 1, 2, 1.5, 1.5, 1.5] u = [50, -100, 100, 100, 25, 100, 0, 0, 75] v = [100, 100, 100, 100, 100, 100, 100, 100, 100] plt.figure(1) plt.quiver(x, y, u, v) plt.show() ###Output _____no_output_____ ###Markdown 3. Simple interploation with Scipy ###Code xx = np.linspace(0, 2, 10) yy = np.linspace(1, 2, 10) xx, yy = np.meshgrid(xx, yy) plt.figure(2) points = np.transpose(np.vstack((x, y))) u_interp = interpolate.griddata(points, u, (xx, yy), method = 'cubic') v_interp = interpolate.griddata(points, v, (xx, yy), method = 'cubic') plt.quiver(xx, yy, u_interp, v_interp) plt.show() v_interp ###Output _____no_output_____
modern-python/6 cluster analysis for voting blocks.ipynb
###Markdown Load votes ###Code for filename in glob.glob('congress_data/*.csv'): with open(filename, encoding='utf-8') as f: reader = csv.reader(f) vote_topic = next(reader) headers = next(reader) for person, state, distric, vote, name, party in reader: senator = Senator(name, party, state) accumulated_record[senator].append(vote_value[vote]) ###Output _____no_output_____ ###Markdown Transform the record into a plain dict that maps to tuple of votes ###Code record = {senator: tuple(votes) for senator, votes in accumulated_record.items()} # type: Dict[Senator, VoteHistory] ###Output _____no_output_____ ###Markdown Use k-means to locate the cluster centroids, assign each senator to the nearest cluster ###Code from kmeans import k_means, assign_data centroids = k_means(record.values(), k=3) clustered_votes = assign_data(centroids, record.values()) ###Output _____no_output_____ ###Markdown Build a reverse mapping from a vote history to a list of senators who voted that way ###Code votes_to_senators = defaultdict(list) # type: DefaultDict[VoteHistory, List[Senator]] for senator, votehistory in record.items(): votes_to_senators[votehistory].append(senator) assert sum([len(cluster) for cluster in votes_to_senators.values()]) == NUM_SENATORS ###Output _____no_output_____ ###Markdown Display the clusters and the members (senators) of each cluster ###Code for i, votes_in_cluster in enumerate(clustered_votes.values(), start=1): print(f'----- Voting Cluster #{i} -----') party_totals = Counter() for votes in set(votes_in_cluster): for senator in votes_to_senators[votes]: print(senator) party_totals[senator.party] += 1 print(party_totals) ###Output ----- Voting Cluster #1 ----- Senator(name='Sen. Cory Gardner [R]', party='Republican', state='CO') Senator(name='Sen. Timothy Kaine [D]', party='Democrat', state='VA') Senator(name='Sen. Robert “Bob” Casey Jr. [D]', party='Democrat', state='PA') Senator(name='Sen. Thomas Carper [D]', party='Democrat', state='DE') Senator(name='Sen. Alan “Al” Franken [D]', party='Democrat', state='MN') Senator(name='Sen. Mark Warner [D]', party='Democrat', state='VA') Senator(name='Sen. Daniel Coats [R]', party='Republican', state='IN') Senator(name='Sen. Mark Kirk [R]', party='Republican', state='IL') Senator(name='Sen. Orrin Hatch [R]', party='Republican', state='UT') Senator(name='Sen. Richard Burr [R]', party='Republican', state='NC') Senator(name='Sen. John “Johnny” Isakson [R]', party='Republican', state='GA') Senator(name='Sen. Richard Blumenthal [D]', party='Democrat', state='CT') Senator(name='Sen. Angus King [I]', party='Independent', state='ME') Senator(name='Sen. Bob Corker [R]', party='Republican', state='TN') Senator(name='Sen. James Risch [R]', party='Republican', state='ID') Senator(name='Sen. Lamar Alexander [R]', party='Republican', state='TN') Senator(name='Sen. Michael Enzi [R]', party='Republican', state='WY') Senator(name='Sen. James Lankford [R]', party='Republican', state='OK') Senator(name='Sen. Ron Johnson [R]', party='Republican', state='WI') Senator(name='Sen. Patrick “Pat” Toomey [R]', party='Republican', state='PA') Senator(name='Sen. Michael Crapo [R]', party='Republican', state='ID') Senator(name='Sen. Claire McCaskill [D]', party='Democrat', state='MO') Senator(name='Sen. John McCain [R]', party='Republican', state='AZ') Senator(name='Sen. Chris Coons [D]', party='Democrat', state='DE') Senator(name='Sen. Dianne Feinstein [D]', party='Democrat', state='CA') Senator(name='Sen. Bill Nelson [D]', party='Democrat', state='FL') Senator(name='Sen. Amy Klobuchar [D]', party='Democrat', state='MN') Senator(name='Sen. Jeanne Shaheen [D]', party='Democrat', state='NH') Senator(name='Sen. Michael Bennet [D]', party='Democrat', state='CO') Senator(name='Sen. Kelly Ayotte [R]', party='Republican', state='NH') Senator(name='Sen. Gary Peters [D]', party='Democrat', state='MI') Senator(name='Sen. Marco Rubio [R]', party='Republican', state='FL') Senator(name='Sen. Tom Udall [D]', party='Democrat', state='NM') Senator(name='Sen. Martin Heinrich [D]', party='Democrat', state='NM') Senator(name='Sen. Dan Sullivan [R]', party='Republican', state='AK') Senator(name='Sen. John Cornyn [R]', party='Republican', state='TX') Counter({'Republican': 19, 'Democrat': 16, 'Independent': 1}) ----- Voting Cluster #2 ----- Senator(name='Sen. Jeff Flake [R]', party='Republican', state='AZ') Senator(name='Sen. Maria Cantwell [D]', party='Democrat', state='WA') Senator(name='Sen. Patty Murray [D]', party='Democrat', state='WA') Senator(name='Sen. Richard Durbin [D]', party='Democrat', state='IL') Senator(name='Sen. Barbara Boxer [D]', party='Democrat', state='CA') Senator(name='Sen. Dean Heller [R]', party='Republican', state='NV') Senator(name='Sen. Edward “Ed” Markey [D]', party='Democrat', state='MA') Senator(name='Sen. Brian Schatz [D]', party='Democrat', state='HI') Senator(name='Sen. Cory Booker [D]', party='Democrat', state='NJ') Senator(name='Sen. Charles “Chuck” Schumer [D]', party='Democrat', state='NY') Senator(name='Sen. Mazie Hirono [D]', party='Democrat', state='HI') Senator(name='Sen. Rand Paul [R]', party='Republican', state='KY') Senator(name='Sen. John “Jack” Reed [D]', party='Democrat', state='RI') Senator(name='Sen. Elizabeth Warren [D]', party='Democrat', state='MA') Senator(name='Sen. Bernard “Bernie” Sanders [I]', party='Independent', state='VT') Senator(name='Sen. Benjamin Sasse [R]', party='Republican', state='NE') Senator(name='Sen. Jefferson “Jeff” Sessions [R]', party='Republican', state='AL') Senator(name='Sen. Kirsten Gillibrand [D]', party='Democrat', state='NY') Senator(name='Sen. Ted Cruz [R]', party='Republican', state='TX') Senator(name='Sen. Mike Lee [R]', party='Republican', state='UT') Senator(name='Sen. Harry Reid [D]', party='Democrat', state='NV') Senator(name='Sen. Jeff Merkley [D]', party='Democrat', state='OR') Senator(name='Sen. Patrick Leahy [D]', party='Democrat', state='VT') Senator(name='Sen. Sheldon Whitehouse [D]', party='Democrat', state='RI') Senator(name='Sen. Robert “Bob” Menéndez [D]', party='Democrat', state='NJ') Senator(name='Sen. Ron Wyden [D]', party='Democrat', state='OR') Counter({'Democrat': 18, 'Republican': 7, 'Independent': 1}) ----- Voting Cluster #3 ----- Senator(name='Sen. David Vitter [R]', party='Republican', state='LA') Senator(name='Sen. Tim Scott [R]', party='Republican', state='SC') Senator(name='Sen. Charles “Chuck” Grassley [R]', party='Republican', state='IA') Senator(name='Sen. Steve Daines [R]', party='Republican', state='MT') Senator(name='Sen. Joni Ernst [R]', party='Republican', state='IA') Senator(name='Sen. Thom Tillis [R]', party='Republican', state='NC') Senator(name='Sen. Heidi Heitkamp [D]', party='Democrat', state='ND') Senator(name='Sen. Lisa Murkowski [R]', party='Republican', state='AK') Senator(name='Sen. Tammy Baldwin [D]', party='Democrat', state='WI') Senator(name='Sen. Lindsey Graham [R]', party='Republican', state='SC') Senator(name='Sen. Tom Cotton [R]', party='Republican', state='AR') Senator(name='Sen. Jon Tester [D]', party='Democrat', state='MT') Senator(name='Sen. John Boozman [R]', party='Republican', state='AR') Senator(name='Sen. Deb Fischer [R]', party='Republican', state='NE') Senator(name='Sen. Susan Collins [R]', party='Republican', state='ME') Senator(name='Sen. Jerry Moran [R]', party='Republican', state='KS') Senator(name='Sen. Roger Wicker [R]', party='Republican', state='MS') Senator(name='Sen. Debbie Stabenow [D]', party='Democrat', state='MI') Senator(name='Sen. Bill Cassidy [R]', party='Republican', state='LA') Senator(name='Sen. James “Jim” Inhofe [R]', party='Republican', state='OK') Senator(name='Sen. Mike Rounds [R]', party='Republican', state='SD') Senator(name='Sen. Joe Manchin III [D]', party='Democrat', state='WV') Senator(name='Sen. Sherrod Brown [D]', party='Democrat', state='OH') Senator(name='Sen. Barbara Mikulski [D]', party='Democrat', state='MD') Senator(name='Sen. Benjamin Cardin [D]', party='Democrat', state='MD') Senator(name='Sen. Christopher Murphy [D]', party='Democrat', state='CT') Senator(name='Sen. David Perdue [R]', party='Republican', state='GA') Senator(name='Sen. Mitch McConnell [R]', party='Republican', state='KY') Senator(name='Sen. Roy Blunt [R]', party='Republican', state='MO') Senator(name='Sen. John Thune [R]', party='Republican', state='SD') Senator(name='Sen. Joe Donnelly [D]', party='Democrat', state='IN') Senator(name='Sen. John Barrasso [R]', party='Republican', state='WY') Senator(name='Sen. John Hoeven [R]', party='Republican', state='ND') Senator(name='Sen. Richard Shelby [R]', party='Republican', state='AL') Senator(name='Sen. Thad Cochran [R]', party='Republican', state='MS') Senator(name='Sen. Pat Roberts [R]', party='Republican', state='KS') Senator(name='Sen. Shelley Capito [R]', party='Republican', state='WV') Senator(name='Sen. Robert “Rob” Portman [R]', party='Republican', state='OH') Counter({'Republican': 28, 'Democrat': 10})
jwolf-AI/tensorflow2_tutorials_chinese-master/103-example_overfitting_and_underfitting.ipynb
###Markdown TensorFlow2.0教程-过拟合和欠拟合 ###Code from __future__ import absolute_import, division, print_function import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as plt print(tf.__version__) NUM_WORDS = 10000 (train_data, train_labels), (test_data, test_labels) = keras.datasets.imdb.load_data(num_words=NUM_WORDS) def multi_hot_sequences(sequences, dimension): results = np.zeros((len(sequences), dimension)) for i, word_indices in enumerate(sequences): results[i, word_indices] = 1.0 return results train_data = multi_hot_sequences(train_data, dimension=NUM_WORDS) test_data = multi_hot_sequences(test_data, dimension=NUM_WORDS) plt.plot(train_data[0]) ###Output _____no_output_____ ###Markdown 防止过度拟合的最简单方法是减小模型的大小,即模型中可学习参数的数量。深度学习模型往往善于适应训练数据,但真正的挑战是概括,而不是适合。另一方面,如果网络具有有限的记忆资源,则将不能容易地学习映射。为了最大限度地减少损失,它必须学习具有更强预测能力的压缩表示。同时,如果您使模型太小,则难以适应训练数据。 “太多容量”和“容量不足”之间存在平衡。要找到合适的模型大小,最好从相对较少的图层和参数开始,然后开始增加图层的大小或添加新图层,直到看到验证损失的收益递减为止。我们将在电影评论分类网络上使用Dense图层作为基线创建一个简单模型,然后创建更小和更大的版本,并进行比较。 1.创建一个baseline模型 ###Code import tensorflow.keras.layers as layers baseline_model = keras.Sequential( [ layers.Dense(16, activation='relu', input_shape=(NUM_WORDS,)), layers.Dense(16, activation='relu'), layers.Dense(1, activation='sigmoid') ] ) baseline_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'binary_crossentropy']) baseline_model.summary() baseline_history = baseline_model.fit(train_data, train_labels, epochs=20, batch_size=512, validation_data=(test_data, test_labels), verbose=2) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/20 25000/25000 - 3s - loss: 0.4808 - accuracy: 0.8096 - binary_crossentropy: 0.4808 - val_loss: 0.3333 - val_accuracy: 0.8762 - val_binary_crossentropy: 0.3333 Epoch 2/20 25000/25000 - 2s - loss: 0.2450 - accuracy: 0.9126 - binary_crossentropy: 0.2450 - val_loss: 0.2831 - val_accuracy: 0.8882 - val_binary_crossentropy: 0.2831 Epoch 3/20 25000/25000 - 2s - loss: 0.1806 - accuracy: 0.9374 - binary_crossentropy: 0.1806 - val_loss: 0.2921 - val_accuracy: 0.8832 - val_binary_crossentropy: 0.2921 Epoch 4/20 25000/25000 - 2s - loss: 0.1450 - accuracy: 0.9511 - binary_crossentropy: 0.1450 - val_loss: 0.3135 - val_accuracy: 0.8788 - val_binary_crossentropy: 0.3135 Epoch 5/20 25000/25000 - 2s - loss: 0.1187 - accuracy: 0.9614 - binary_crossentropy: 0.1187 - val_loss: 0.3406 - val_accuracy: 0.8752 - val_binary_crossentropy: 0.3406 Epoch 6/20 25000/25000 - 2s - loss: 0.1000 - accuracy: 0.9676 - binary_crossentropy: 0.1000 - val_loss: 0.3765 - val_accuracy: 0.8692 - val_binary_crossentropy: 0.3765 Epoch 7/20 25000/25000 - 2s - loss: 0.0827 - accuracy: 0.9750 - binary_crossentropy: 0.0827 - val_loss: 0.4124 - val_accuracy: 0.8659 - val_binary_crossentropy: 0.4124 Epoch 8/20 25000/25000 - 2s - loss: 0.0685 - accuracy: 0.9815 - binary_crossentropy: 0.0685 - val_loss: 0.4567 - val_accuracy: 0.8610 - val_binary_crossentropy: 0.4567 Epoch 9/20 25000/25000 - 2s - loss: 0.0581 - accuracy: 0.9857 - binary_crossentropy: 0.0581 - val_loss: 0.4987 - val_accuracy: 0.8597 - val_binary_crossentropy: 0.4987 Epoch 10/20 25000/25000 - 2s - loss: 0.0481 - accuracy: 0.9889 - binary_crossentropy: 0.0481 - val_loss: 0.5402 - val_accuracy: 0.8569 - val_binary_crossentropy: 0.5402 Epoch 11/20 25000/25000 - 2s - loss: 0.0392 - accuracy: 0.9923 - binary_crossentropy: 0.0392 - val_loss: 0.5883 - val_accuracy: 0.8540 - val_binary_crossentropy: 0.5883 Epoch 12/20 25000/25000 - 2s - loss: 0.0310 - accuracy: 0.9946 - binary_crossentropy: 0.0310 - val_loss: 0.6316 - val_accuracy: 0.8534 - val_binary_crossentropy: 0.6316 Epoch 13/20 25000/25000 - 2s - loss: 0.0242 - accuracy: 0.9964 - binary_crossentropy: 0.0242 - val_loss: 0.6779 - val_accuracy: 0.8515 - val_binary_crossentropy: 0.6779 Epoch 14/20 25000/25000 - 2s - loss: 0.0185 - accuracy: 0.9978 - binary_crossentropy: 0.0185 - val_loss: 0.7149 - val_accuracy: 0.8510 - val_binary_crossentropy: 0.7149 Epoch 15/20 25000/25000 - 2s - loss: 0.0143 - accuracy: 0.9989 - binary_crossentropy: 0.0143 - val_loss: 0.7571 - val_accuracy: 0.8496 - val_binary_crossentropy: 0.7571 Epoch 16/20 25000/25000 - 2s - loss: 0.0111 - accuracy: 0.9994 - binary_crossentropy: 0.0111 - val_loss: 0.7954 - val_accuracy: 0.8492 - val_binary_crossentropy: 0.7954 Epoch 17/20 25000/25000 - 2s - loss: 0.0087 - accuracy: 0.9997 - binary_crossentropy: 0.0087 - val_loss: 0.8301 - val_accuracy: 0.8497 - val_binary_crossentropy: 0.8301 Epoch 18/20 25000/25000 - 3s - loss: 0.0068 - accuracy: 0.9998 - binary_crossentropy: 0.0068 - val_loss: 0.8629 - val_accuracy: 0.8490 - val_binary_crossentropy: 0.8629 Epoch 19/20 25000/25000 - 3s - loss: 0.0055 - accuracy: 0.9999 - binary_crossentropy: 0.0055 - val_loss: 0.8937 - val_accuracy: 0.8492 - val_binary_crossentropy: 0.8937 Epoch 20/20 25000/25000 - 3s - loss: 0.0044 - accuracy: 0.9999 - binary_crossentropy: 0.0044 - val_loss: 0.9217 - val_accuracy: 0.8488 - val_binary_crossentropy: 0.9217 ###Markdown 2.创建一个小模型 ###Code small_model = keras.Sequential( [ layers.Dense(4, activation='relu', input_shape=(NUM_WORDS,)), layers.Dense(4, activation='relu'), layers.Dense(1, activation='sigmoid') ] ) small_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'binary_crossentropy']) small_model.summary() small_history = small_model.fit(train_data, train_labels, epochs=20, batch_size=512, validation_data=(test_data, test_labels), verbose=2) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/20 25000/25000 - 3s - loss: 0.6170 - accuracy: 0.6609 - binary_crossentropy: 0.6170 - val_loss: 0.5217 - val_accuracy: 0.8034 - val_binary_crossentropy: 0.5217 Epoch 2/20 25000/25000 - 2s - loss: 0.4356 - accuracy: 0.8661 - binary_crossentropy: 0.4356 - val_loss: 0.3979 - val_accuracy: 0.8781 - val_binary_crossentropy: 0.3979 Epoch 3/20 25000/25000 - 2s - loss: 0.3002 - accuracy: 0.9146 - binary_crossentropy: 0.3002 - val_loss: 0.3160 - val_accuracy: 0.8866 - val_binary_crossentropy: 0.3160 Epoch 4/20 25000/25000 - 2s - loss: 0.2255 - accuracy: 0.9322 - binary_crossentropy: 0.2255 - val_loss: 0.2930 - val_accuracy: 0.8880 - val_binary_crossentropy: 0.2930 Epoch 5/20 25000/25000 - 2s - loss: 0.1884 - accuracy: 0.9416 - binary_crossentropy: 0.1884 - val_loss: 0.2901 - val_accuracy: 0.8858 - val_binary_crossentropy: 0.2901 Epoch 6/20 25000/25000 - 2s - loss: 0.1632 - accuracy: 0.9507 - binary_crossentropy: 0.1632 - val_loss: 0.2918 - val_accuracy: 0.8848 - val_binary_crossentropy: 0.2918 Epoch 7/20 25000/25000 - 2s - loss: 0.1449 - accuracy: 0.9560 - binary_crossentropy: 0.1449 - val_loss: 0.2991 - val_accuracy: 0.8817 - val_binary_crossentropy: 0.2991 Epoch 8/20 25000/25000 - 2s - loss: 0.1295 - accuracy: 0.9618 - binary_crossentropy: 0.1295 - val_loss: 0.3087 - val_accuracy: 0.8796 - val_binary_crossentropy: 0.3087 Epoch 9/20 25000/25000 - 2s - loss: 0.1167 - accuracy: 0.9669 - binary_crossentropy: 0.1167 - val_loss: 0.3210 - val_accuracy: 0.8772 - val_binary_crossentropy: 0.3210 Epoch 10/20 25000/25000 - 2s - loss: 0.1059 - accuracy: 0.9709 - binary_crossentropy: 0.1059 - val_loss: 0.3325 - val_accuracy: 0.8748 - val_binary_crossentropy: 0.3325 Epoch 11/20 25000/25000 - 2s - loss: 0.0961 - accuracy: 0.9742 - binary_crossentropy: 0.0961 - val_loss: 0.3468 - val_accuracy: 0.8727 - val_binary_crossentropy: 0.3468 Epoch 12/20 25000/25000 - 2s - loss: 0.0877 - accuracy: 0.9780 - binary_crossentropy: 0.0877 - val_loss: 0.3602 - val_accuracy: 0.8715 - val_binary_crossentropy: 0.3602 Epoch 13/20 25000/25000 - 2s - loss: 0.0800 - accuracy: 0.9807 - binary_crossentropy: 0.0800 - val_loss: 0.3759 - val_accuracy: 0.8693 - val_binary_crossentropy: 0.3759 Epoch 14/20 25000/25000 - 2s - loss: 0.0727 - accuracy: 0.9837 - binary_crossentropy: 0.0727 - val_loss: 0.3923 - val_accuracy: 0.8690 - val_binary_crossentropy: 0.3923 Epoch 15/20 25000/25000 - 2s - loss: 0.0667 - accuracy: 0.9858 - binary_crossentropy: 0.0667 - val_loss: 0.4089 - val_accuracy: 0.8672 - val_binary_crossentropy: 0.4089 Epoch 16/20 25000/25000 - 2s - loss: 0.0610 - accuracy: 0.9876 - binary_crossentropy: 0.0610 - val_loss: 0.4255 - val_accuracy: 0.8646 - val_binary_crossentropy: 0.4255 Epoch 17/20 25000/25000 - 2s - loss: 0.0555 - accuracy: 0.9899 - binary_crossentropy: 0.0555 - val_loss: 0.4422 - val_accuracy: 0.8651 - val_binary_crossentropy: 0.4422 Epoch 18/20 25000/25000 - 2s - loss: 0.0509 - accuracy: 0.9912 - binary_crossentropy: 0.0509 - val_loss: 0.4614 - val_accuracy: 0.8626 - val_binary_crossentropy: 0.4614 Epoch 19/20 25000/25000 - 2s - loss: 0.0466 - accuracy: 0.9925 - binary_crossentropy: 0.0466 - val_loss: 0.4780 - val_accuracy: 0.8622 - val_binary_crossentropy: 0.4780 Epoch 20/20 25000/25000 - 2s - loss: 0.0426 - accuracy: 0.9936 - binary_crossentropy: 0.0426 - val_loss: 0.4976 - val_accuracy: 0.8608 - val_binary_crossentropy: 0.4976 ###Markdown 3.创建一个大模型 ###Code big_model = keras.Sequential( [ layers.Dense(512, activation='relu', input_shape=(NUM_WORDS,)), layers.Dense(512, activation='relu'), layers.Dense(1, activation='sigmoid') ] ) big_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'binary_crossentropy']) big_model.summary() big_history = big_model.fit(train_data, train_labels, epochs=20, batch_size=512, validation_data=(test_data, test_labels), verbose=2) def plot_history(histories, key='binary_crossentropy'): plt.figure(figsize=(16,10)) for name, history in histories: val = plt.plot(history.epoch, history.history['val_'+key], '--', label=name.title()+' Val') plt.plot(history.epoch, history.history[key], color=val[0].get_color(), label=name.title()+' Train') plt.xlabel('Epochs') plt.ylabel(key.replace('_',' ').title()) plt.legend() plt.xlim([0,max(history.epoch)]) plot_history([('baseline', baseline_history), ('small', small_history), ('big', big_history)]) ###Output _____no_output_____ ###Markdown 请注意,较大的网络在仅仅一个时期之后几乎立即开始过度拟合,并且更过拟合更严重。 网络容量越大,能够越快地对训练数据进行建模(导致训练损失低),但过度拟合的可能性越大(导致训练和验证损失之间的差异很大)。 4.添加l2正则 ###Code l2_model = keras.Sequential( [ layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001), activation='relu', input_shape=(NUM_WORDS,)), layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001), activation='relu'), layers.Dense(1, activation='sigmoid') ] ) l2_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'binary_crossentropy']) l2_model.summary() l2_history = l2_model.fit(train_data, train_labels, epochs=20, batch_size=512, validation_data=(test_data, test_labels), verbose=2) plot_history([('baseline', baseline_history), ('l2', l2_history)]) ###Output _____no_output_____ ###Markdown 5.添加dropout ###Code dpt_model = keras.Sequential( [ layers.Dense(16, activation='relu', input_shape=(NUM_WORDS,)), layers.Dropout(0.5), layers.Dense(16, activation='relu'), layers.Dropout(0.5), layers.Dense(1, activation='sigmoid') ] ) dpt_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'binary_crossentropy']) dpt_model.summary() dpt_history = dpt_model.fit(train_data, train_labels, epochs=20, batch_size=512, validation_data=(test_data, test_labels), verbose=2) plot_history([('baseline', baseline_history), ('dropout', dpt_history)]) ###Output _____no_output_____
Workshop Week 6a.ipynb
###Markdown Linear Regression - Data NormalisationThis notebook presents a problem that requires some normalisation of data before a linear regression model can be applied. The data we will use is the Sea Ice data from Chapter 6 of the text (also referenced in [the accompanying notebooks](https://github.com/MQCOMP257/introduction-datascience-python-book/blob/master/ch06_Regression_Analysis.ipynb)). Our goal is to observe the relationship between `year` and `extent` of the Sea Ice and to build a linear regression model to predict the extent for a given year. ###Code import seaborn as sns import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from sklearn import metrics import matplotlib.pylab as plt %matplotlib inline # Load the data and show the info and contents: ice = pd.read_csv('files/SeaIce.txt', delim_whitespace = True) ice.head() ###Output _____no_output_____ ###Markdown Summarize the Dataset- Dimensions of the dataset- Peek at the data itself- Statistical summary of all attributes. ###Code # your code here for data shape ice.shape # your code here for statistical summary ice.describe() # Visualize the data with a scatter plot (x is year, y as extent) sns.lmplot(x='year', y='extent', data=ice) ###Output _____no_output_____ ###Markdown Clean your data Note what is wrong with the data and what needs to be cleaned before proceeding. Exclude the outlier data and repeat the plot to check the outlier data is now exluded. ###Code # Remove the outlier data and and repeat the plot to confirm data is clean # insert code here ice = ice[ice['extent'] >= 0] ###Output _____no_output_____ ###Markdown Normalize the DataThe plot above should reveal that we need to normalize the data (it has a sinusoidal shape) and to do this we need to compute the mean for each month and subtract the monthly mean from each record. This will remove the effect of seasons on the `extent` variable and reveal the longer term trend in the data.You can use the Pandas [groupby](http://pandas.pydata.org/pandas-docs/stable/groupby.html) method to group rows in a data frame according to some value. This returns a __group__ object that can be used to operate on the groups. The [notebook for Chapter 6](https://github.com/MQCOMP257/introduction-datascience-python-book/blob/master/ch06_Regression_Analysis.ipynb) shows how to use this to normalise the data.(Advanced Hint: it is possible to avoid using a for loop to normalise this data - look at the [groupby.transform method](http://pandas.pydata.org/pandas-docs/stable/groupby.htmltransformation)) ###Code # Compute the mean extent for each month and subtract from each row of the data frame # re-plot the data sns.lmplot(x='mo', y='extent', data=ice) grouped=ice.groupby('mo') for key, item in grouped: print(grouped.get_group(key)) month_means=grouped.extent.mean() ice_2 = ice[ice['extent'] >= 0] mean=grouped.transform(np.mean) #std=grouped.transform(np.std) ice_2['extent']=ice_2['extent']-mean['extent'] sns.lmplot(x='mo', y='extent', data=ice_2) ###Output _____no_output_____ ###Markdown Now you can plot `year` vs `extent` to look at the relationship we are trying to model. What are your initial thoughts on the relationship? Is a linear model going to work? ###Code # Plot Year vs Extent ###Output _____no_output_____
notebooks/community/migration/UJ6 AutoML for natural language with Vertex AI Text Classification.ipynb
###Markdown Vertex SDK: AutoML natural language text classification model InstallationInstall the latest (preview) version of Vertex SDK. ###Code ! pip3 install -U google-cloud-aiplatform --user ###Output _____no_output_____ ###Markdown Install the Google *cloud-storage* library as well. ###Code ! pip3 install google-cloud-storage ###Output _____no_output_____ ###Markdown Restart the KernelOnce you've installed the Vertex SDK and Google *cloud-storage*, you need to restart the notebook kernel so it can find the packages. ###Code import os if not os.getenv("AUTORUN"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin GPU run-time*Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select* **Runtime > Change Runtime Type > GPU** Set up your GCP project**The following steps are required, regardless of your notebook environment.**1. [Select or create a GCP project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.2. [Make sure that billing is enabled for your project.](https://cloud.google.com/billing/docs/how-to/modify-project)3. [Enable the Vertex APIs and Compute Engine APIs.](https://console.cloud.google.com/flows/enableapi?apiid=ml.googleapis.com,compute_component)4. [Google Cloud SDK](https://cloud.google.com/sdk) is already installed in Google Cloud Notebooks.5. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. ###Code PROJECT_ID = "[your-project-id]" # @param {type:"string"} if PROJECT_ID == "" or PROJECT_ID is None or PROJECT_ID == "[your-project-id]": # Get your GCP project id from gcloud shell_output = !gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID:", PROJECT_ID) ! gcloud config set project $PROJECT_ID ###Output _____no_output_____ ###Markdown RegionYou can also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Below are regions supported for Vertex AI. We recommend when possible, to choose the region closest to you. - Americas: `us-central1`- Europe: `europe-west4`- Asia Pacific: `asia-east1`You cannot use a Multi-Regional Storage bucket for training with Vertex. Not all regions provide support for all Vertex services. For the latest support per region, see [Region support for Vertex AI services](https://cloud.google.com/vertex-ai/docs/general/locations) ###Code REGION = "us-central1" # @param {type: "string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append onto the name of resources which will be created in this tutorial. ###Code from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Authenticate your GCP account **If you are using Google Cloud Notebooks**, your environment is already authenticated. Skip this step. *Note: If you are on an Vertex notebook and run the cell, the cell knows to skip executing the authentication steps.* ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your Google Cloud account. This provides access # to your Cloud Storage bucket and lets you submit training jobs and prediction # requests. # If on Vertex, then don't execute this code if not os.path.exists("/opt/deeplearning/metadata/env_version"): if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this tutorial in a notebook locally, replace the string # below with the path to your service account key and run this cell to # authenticate your Google Cloud account. else: %env GOOGLE_APPLICATION_CREDENTIALS your_path_to_credentials.json # Log in to your account on Google Cloud ! gcloud auth login ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**This tutorial is designed to use training data that is in a public Cloud Storage bucket and a local Cloud Storage bucket for your batch predictions. You may alternatively use your own training data that you have stored in a local Cloud Storage bucket.Set the name of your Cloud Storage bucket below. It must be unique across all Cloud Storage buckets. ###Code BUCKET_NAME = "[your-bucket-name]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "[your-bucket-name]": BUCKET_NAME = PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION gs://$BUCKET_NAME ###Output _____no_output_____ ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al gs://$BUCKET_NAME ###Output _____no_output_____ ###Markdown Set up variablesNext, set up some variables used throughout the tutorial. Import libraries and define constants Import Vertex SDKImport the Vertex SDK into our Python environment. ###Code import base64 import json import os import sys import time from google.cloud.aiplatform import gapic as aip from google.protobuf import json_format from google.protobuf.json_format import MessageToJson, ParseDict from google.protobuf.struct_pb2 import Struct, Value ###Output _____no_output_____ ###Markdown Vertex AI constantsSetup up the following constants for Vertex AI:- `API_ENDPOINT`: The Vertex AI API service endpoint for dataset, model, job, pipeline and endpoint services.- `PARENT`: The Vertex AI location root path for dataset, model and endpoint resources. ###Code # API Endpoint API_ENDPOINT = "{}-aiplatform.googleapis.com".format(REGION) # Vertex AI location root path for your dataset, model and endpoint resources PARENT = "projects/" + PROJECT_ID + "/locations/" + REGION ###Output _____no_output_____ ###Markdown AutoML constantsNext, setup constants unique to AutoML Text Classification datasets and training:- Dataset Schemas: Tells the managed dataset service which type of dataset it is.- Data Labeling (Annotations) Schemas: Tells the managed dataset service how the data is labeled (annotated).- Dataset Training Schemas: Tells the Vertex AI Pipelines service the task (e.g., classification) to train the model for. ###Code # Text Dataset type TEXT_SCHEMA = "google-cloud-aiplatform/schema/dataset/metadata/text_1.0.0.yaml" # Text Labeling type IMPORT_SCHEMA_TEXT_CLASSIFICATION = "gs://google-cloud-aiplatform/schema/dataset/ioformat/text_classification_single_label_io_format_1.0.0.yaml" # Text Training task TRAINING_TEXT_CLASSIFICATION_SCHEMA = "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_classification_1.0.0.yaml" ###Output _____no_output_____ ###Markdown Clients Vertex AIThe Vertex SDK works as a client/server model. On your side (the Python script) you will create a client that sends requests and receives responses from the server (Vertex).You will use several clients in this tutorial, so set them all up upfront.- Dataset Service for managed datasets.- Model Service for managed models.- Pipeline Service for training.- Endpoint Service for deployment.- Prediction Service for serving. *Note*: Prediction has a different service endpoint. ###Code # client options same for all services client_options = {"api_endpoint": API_ENDPOINT} def create_dataset_client(): client = aip.DatasetServiceClient(client_options=client_options) return client def create_model_client(): client = aip.ModelServiceClient(client_options=client_options) return client def create_pipeline_client(): client = aip.PipelineServiceClient(client_options=client_options) return client def create_endpoint_client(): client = aip.EndpointServiceClient(client_options=client_options) return client def create_prediction_client(): client = aip.PredictionServiceClient(client_options=client_options) return client def create_job_client(): client = aip.JobServiceClient(client_options=client_options) return client clients = {} clients["dataset"] = create_dataset_client() clients["model"] = create_model_client() clients["pipeline"] = create_pipeline_client() clients["endpoint"] = create_endpoint_client() clients["prediction"] = create_prediction_client() clients["job"] = create_job_client() for client in clients.items(): print(client) IMPORT_FILE = "gs://cloud-ml-data/NL-classification/happiness.csv" ! gsutil cat $IMPORT_FILE | head -n 10 ###Output _____no_output_____ ###Markdown *Example output*:```I went on a successful date with someone I felt sympathy and connection with.,affectionI was happy when my son got 90% marks in his examination,affectionI went to the gym this morning and did yoga.,exerciseWe had a serious talk with some friends of ours who have been flaky lately. They understood and we had a good evening hanging out.,bondingI went with grandchildren to butterfly display at Crohn Conservatory,affectionI meditated last night.,leisure"I made a new recipe for peasant bread, and it came out spectacular!",achievementI got gift from my elder brother which was really surprising me,affectionYESTERDAY MY MOMS BIRTHDAY SO I ENJOYED,enjoy_the_momentWatching cupcake wars with my three teen children,affection``` Create a dataset [projects.locations.datasets.create](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.datasets/create) Request ###Code DATA_SCHEMA = TEXT_SCHEMA dataset = { "display_name": "happiness_" + TIMESTAMP, "metadata_schema_uri": "gs://" + DATA_SCHEMA, } print( MessageToJson( aip.CreateDatasetRequest(parent=PARENT, dataset=dataset).__dict__["_pb"] ) ) ###Output _____no_output_____ ###Markdown *Example output*:```{ "parent": "projects/migration-ucaip-training/locations/us-central1", "dataset": { "displayName": "happiness_20210226015238", "metadataSchemaUri": "gs://google-cloud-aiplatform/schema/dataset/metadata/text_1.0.0.yaml" }}``` Call ###Code request = clients["dataset"].create_dataset(parent=PARENT, dataset=dataset) ###Output _____no_output_____ ###Markdown Response ###Code result = request.result() print(MessageToJson(result.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "projects/116273516712/locations/us-central1/datasets/574578388396670976", "displayName": "happiness_20210226015238", "metadataSchemaUri": "gs://google-cloud-aiplatform/schema/dataset/metadata/text_1.0.0.yaml", "labels": { "aiplatform.googleapis.com/dataset_metadata_schema": "TEXT" }, "metadata": { "dataItemSchemaUri": "gs://google-cloud-aiplatform/schema/dataset/dataitem/text_1.0.0.yaml" }}``` ###Code # The full unique ID for the dataset dataset_id = result.name # The short numeric ID for the dataset dataset_short_id = dataset_id.split("/")[-1] print(dataset_id) ###Output _____no_output_____ ###Markdown [projects.locations.datasets.import](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.datasets/import) Request ###Code LABEL_SCHEMA = IMPORT_SCHEMA_TEXT_CLASSIFICATION import_config = { "gcs_source": {"uris": [IMPORT_FILE]}, "import_schema_uri": LABEL_SCHEMA, } print( MessageToJson( aip.ImportDataRequest( name=dataset_short_id, import_configs=[import_config] ).__dict__["_pb"] ) ) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "574578388396670976", "importConfigs": [ { "gcsSource": { "uris": [ "gs://cloud-ml-data/NL-classification/happiness.csv" ] }, "importSchemaUri": "gs://google-cloud-aiplatform/schema/dataset/ioformat/text_classification_single_label_io_format_1.0.0.yaml" } ]}``` Call ###Code request = clients["dataset"].import_data( name=dataset_id, import_configs=[import_config] ) ###Output _____no_output_____ ###Markdown Response ###Code result = request.result() print(MessageToJson(result.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{}``` Train a model [projects.locations.trainingPipelines.create](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.trainingPipelines/create) Request ###Code TRAINING_SCHEMA = TRAINING_TEXT_CLASSIFICATION_SCHEMA task = json_format.ParseDict( { "multi_label": False, }, Value(), ) training_pipeline = { "display_name": "happiness_" + TIMESTAMP, "input_data_config": {"dataset_id": dataset_short_id}, "model_to_upload": {"display_name": "happiness_" + TIMESTAMP}, "training_task_definition": TRAINING_SCHEMA, "training_task_inputs": task, } print( MessageToJson( aip.CreateTrainingPipelineRequest( parent=PARENT, training_pipeline=training_pipeline ).__dict__["_pb"] ) ) ###Output _____no_output_____ ###Markdown *Example output*:```{ "parent": "projects/migration-ucaip-training/locations/us-central1", "trainingPipeline": { "displayName": "happiness_20210226015238", "inputDataConfig": { "datasetId": "574578388396670976" }, "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_classification_1.0.0.yaml", "trainingTaskInputs": { "multi_label": false }, "modelToUpload": { "displayName": "happiness_20210226015238" } }}``` Call ###Code request = clients["pipeline"].create_training_pipeline( parent=PARENT, training_pipeline=training_pipeline ) ###Output _____no_output_____ ###Markdown Response ###Code print(MessageToJson(request.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "projects/116273516712/locations/us-central1/trainingPipelines/2903115317607661568", "displayName": "happiness_20210226015238", "inputDataConfig": { "datasetId": "574578388396670976" }, "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_classification_1.0.0.yaml", "trainingTaskInputs": {}, "modelToUpload": { "displayName": "happiness_20210226015238" }, "state": "PIPELINE_STATE_PENDING", "createTime": "2021-02-26T02:23:54.166560Z", "updateTime": "2021-02-26T02:23:54.166560Z"}``` ###Code # The full unique ID for the training pipeline training_pipeline_id = request.name # The short numeric ID for the training pipeline training_pipeline_short_id = training_pipeline_id.split("/")[-1] print(training_pipeline_id) ###Output _____no_output_____ ###Markdown [projects.locations.trainingPipelines.get](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.trainingPipelines/get) Call ###Code request = clients["pipeline"].get_training_pipeline(name=training_pipeline_id) ###Output _____no_output_____ ###Markdown Response ###Code print(MessageToJson(request.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "projects/116273516712/locations/us-central1/trainingPipelines/2903115317607661568", "displayName": "happiness_20210226015238", "inputDataConfig": { "datasetId": "574578388396670976" }, "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_classification_1.0.0.yaml", "trainingTaskInputs": {}, "modelToUpload": { "name": "projects/116273516712/locations/us-central1/models/2369051733671280640", "displayName": "happiness_20210226015238" }, "state": "PIPELINE_STATE_SUCCEEDED", "createTime": "2021-02-26T02:23:54.166560Z", "startTime": "2021-02-26T02:23:54.396088Z", "endTime": "2021-02-26T06:08:06.548524Z", "updateTime": "2021-02-26T06:08:06.548524Z"}``` ###Code while True: response = clients["pipeline"].get_training_pipeline(name=training_pipeline_id) if response.state != aip.PipelineState.PIPELINE_STATE_SUCCEEDED: print("Training job has not completed:", response.state) model_to_deploy_name = None if response.state == aip.PipelineState.PIPELINE_STATE_FAILED: break else: model_id = response.model_to_upload.name print("Training Time:", response.end_time - response.start_time) break time.sleep(20) print(model_id) ###Output _____no_output_____ ###Markdown Evaluate the model [projects.locations.models.evaluations.list](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.models.evaluations/list) Call ###Code request = clients["model"].list_model_evaluations(parent=model_id) ###Output _____no_output_____ ###Markdown Response ###Code model_evaluations = [json.loads(MessageToJson(mel.__dict__["_pb"])) for mel in request] print(json.dumps(model_evaluations, indent=2)) # The evaluation slice evaluation_slice = request.model_evaluations[0].name ###Output _____no_output_____ ###Markdown *Example output*:```[ { "name": "projects/116273516712/locations/us-central1/models/2369051733671280640/evaluations/1541152463304785920", "metricsSchemaUri": "gs://google-cloud-aiplatform/schema/modelevaluation/classification_metrics_1.0.0.yaml", "metrics": { "confusionMatrix": { "annotationSpecs": [ { "displayName": "exercise", "id": "952213353537732608" }, { "id": "1528674105841156096", "displayName": "achievement" }, { "id": "3258056362751426560", "displayName": "leisure" }, { "id": "3834517115054850048", "displayName": "bonding" }, { "id": "5563899371965120512", "displayName": "enjoy_the_moment" }, { "id": "6140360124268544000", "displayName": "nature" }, { "id": "8446203133482237952", "displayName": "affection" } ], "rows": [ [ 19.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 0.0, 342.0, 5.0, 2.0, 13.0, 2.0, 13.0 ], [ 2.0, 10.0, 42.0, 1.0, 12.0, 0.0, 2.0 ], [ 0.0, 4.0, 0.0, 121.0, 1.0, 0.0, 4.0 ], [ 2.0, 29.0, 3.0, 2.0, 98.0, 0.0, 6.0 ], [ 0.0, 3.0, 0.0, 1.0, 0.0, 21.0, 1.0 ], [ 0.0, 7.0, 0.0, 1.0, 6.0, 0.0, 409.0 ] ] }, "confidenceMetrics": [ { "f1Score": 0.25, "recall": 1.0, "f1ScoreAt1": 0.88776374, "precisionAt1": 0.88776374, "precision": 0.14285715, "recallAt1": 0.88776374 }, { "confidenceThreshold": 0.05, "recall": 0.9721519, "f1Score": 0.8101266, "recallAt1": 0.88776374, "f1ScoreAt1": 0.88776374, "precisionAt1": 0.88776374, "precision": 0.69439423 }, REMOVED FOR BREVITY { "f1Score": 0.0033698399, "recall": 0.0016877637, "confidenceThreshold": 1.0, "recallAt1": 0.0016877637, "f1ScoreAt1": 0.0033698399, "precisionAt1": 1.0, "precision": 1.0 } ], "auPrc": 0.95903283, "logLoss": 0.08260541 }, "createTime": "2021-02-26T06:07:48.967028Z", "sliceDimensions": [ "annotationSpec" ] }]``` [projects.locations.models.evaluations.get](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.models.evaluations/get) Call ###Code request = clients["model"].get_model_evaluation(name=evaluation_slice) ###Output _____no_output_____ ###Markdown Response ###Code print(MessageToJson(request.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "projects/116273516712/locations/us-central1/models/2369051733671280640/evaluations/1541152463304785920", "metricsSchemaUri": "gs://google-cloud-aiplatform/schema/modelevaluation/classification_metrics_1.0.0.yaml", "metrics": { "confusionMatrix": { "annotationSpecs": [ { "displayName": "exercise", "id": "952213353537732608" }, { "displayName": "achievement", "id": "1528674105841156096" }, { "id": "3258056362751426560", "displayName": "leisure" }, { "id": "3834517115054850048", "displayName": "bonding" }, { "displayName": "enjoy_the_moment", "id": "5563899371965120512" }, { "displayName": "nature", "id": "6140360124268544000" }, { "id": "8446203133482237952", "displayName": "affection" } ], "rows": [ [ 19.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 0.0, 342.0, 5.0, 2.0, 13.0, 2.0, 13.0 ], [ 2.0, 10.0, 42.0, 1.0, 12.0, 0.0, 2.0 ], [ 0.0, 4.0, 0.0, 121.0, 1.0, 0.0, 4.0 ], [ 2.0, 29.0, 3.0, 2.0, 98.0, 0.0, 6.0 ], [ 0.0, 3.0, 0.0, 1.0, 0.0, 21.0, 1.0 ], [ 0.0, 7.0, 0.0, 1.0, 6.0, 0.0, 409.0 ] ] }, "logLoss": 0.08260541, "confidenceMetrics": [ { "precision": 0.14285715, "precisionAt1": 0.88776374, "recall": 1.0, "f1ScoreAt1": 0.88776374, "recallAt1": 0.88776374, "f1Score": 0.25 }, { "f1Score": 0.8101266, "recall": 0.9721519, "precision": 0.69439423, "confidenceThreshold": 0.05, "recallAt1": 0.88776374, "precisionAt1": 0.88776374, "f1ScoreAt1": 0.88776374 }, REMOVED FOR BREVITY { "confidenceThreshold": 1.0, "f1Score": 0.0033698399, "f1ScoreAt1": 0.0033698399, "precisionAt1": 1.0, "precision": 1.0, "recall": 0.0016877637, "recallAt1": 0.0016877637 } ], "auPrc": 0.95903283 }, "createTime": "2021-02-26T06:07:48.967028Z", "sliceDimensions": [ "annotationSpec" ]}``` Make batch predictions Prepare files for batch prediction ###Code test_item = ! gsutil cat $IMPORT_FILE | head -n1 test_item, test_label = str(test_item[0]).split(",") print(test_item, test_label) ###Output _____no_output_____ ###Markdown *Example output*:```I went on a successful date with someone I felt sympathy and connection with. affection``` Make the batch input fileLet's now make a batch input file, which you store in your local Cloud Storage bucket. The batch input file can be either CSV or JSONL. You will use JSONL in this tutorial. For JSONL file, you make one dictionary entry per line for each text file. The dictionary contains the key/value pairs:- `content`: The Cloud Storage path to the text file.- `mimeType`: The content type. In our example, it is an `text/plain` file. ###Code import json import tensorflow as tf test_item_uri = "gs://" + BUCKET_NAME + "/test.txt" with tf.io.gfile.GFile(test_item_uri, "w") as f: f.write(test_item + "\n") gcs_input_uri = "gs://" + BUCKET_NAME + "/test.jsonl" with tf.io.gfile.GFile(gcs_input_uri, "w") as f: data = {"content": test_item_uri, "mime_type": "text/plain"} f.write(json.dumps(data) + "\n") ! gsutil cat $gcs_input_uri ! gsutil cat $test_item_uri ###Output _____no_output_____ ###Markdown *Example output*:```{"content": "gs://migration-ucaip-trainingaip-20210226015238/test.txt", "mime_type": "text/plain"}I went on a successful date with someone I felt sympathy and connection with.``` [projects.locations.batchPredictionJobs.create](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.batchPredictionJobs/create) Request ###Code batch_prediction_job = { "display_name": "happiness_" + TIMESTAMP, "model": model_id, "input_config": { "instances_format": "jsonl", "gcs_source": {"uris": [gcs_input_uri]}, }, "output_config": { "predictions_format": "jsonl", "gcs_destination": { "output_uri_prefix": "gs://" + f"{BUCKET_NAME}/batch_output/" }, }, "dedicated_resources": { "machine_spec": { "machine_type": "n1-standard-2", "accelerator_count": 0, }, "starting_replica_count": 1, "max_replica_count": 1, }, } print( MessageToJson( aip.CreateBatchPredictionJobRequest( parent=PARENT, batch_prediction_job=batch_prediction_job ).__dict__["_pb"] ) ) ###Output _____no_output_____ ###Markdown *Example output*:```{ "parent": "projects/migration-ucaip-training/locations/us-central1", "batchPredictionJob": { "displayName": "happiness_20210226015238", "model": "projects/116273516712/locations/us-central1/models/2369051733671280640", "inputConfig": { "instancesFormat": "jsonl", "gcsSource": { "uris": [ "gs://migration-ucaip-trainingaip-20210226015238/test.jsonl" ] } }, "outputConfig": { "predictionsFormat": "jsonl", "gcsDestination": { "outputUriPrefix": "gs://migration-ucaip-trainingaip-20210226015238/batch_output/" } }, "dedicatedResources": { "machineSpec": { "machineType": "n1-standard-2" }, "startingReplicaCount": 1, "maxReplicaCount": 1 } }}``` Call ###Code request = clients["job"].create_batch_prediction_job( parent=PARENT, batch_prediction_job=batch_prediction_job ) ###Output _____no_output_____ ###Markdown Response ###Code print(MessageToJson(request.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "projects/116273516712/locations/us-central1/batchPredictionJobs/4770983263059574784", "displayName": "happiness_20210226015238", "model": "projects/116273516712/locations/us-central1/models/2369051733671280640", "inputConfig": { "instancesFormat": "jsonl", "gcsSource": { "uris": [ "gs://migration-ucaip-trainingaip-20210226015238/test.jsonl" ] } }, "outputConfig": { "predictionsFormat": "jsonl", "gcsDestination": { "outputUriPrefix": "gs://migration-ucaip-trainingaip-20210226015238/batch_output/" } }, "state": "JOB_STATE_PENDING", "completionStats": { "incompleteCount": "-1" }, "createTime": "2021-02-26T09:37:44.471843Z", "updateTime": "2021-02-26T09:37:44.471843Z"}``` ###Code # The fully qualified ID for the batch job batch_job_id = request.name # The short numeric ID for the batch job batch_job_short_id = batch_job_id.split("/")[-1] print(batch_job_id) ###Output _____no_output_____ ###Markdown [projects.locations.batchPredictionJobs.get](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.batchPredictionJobs/get) Call ###Code request = clients["job"].get_batch_prediction_job(name=batch_job_id) ###Output _____no_output_____ ###Markdown Response ###Code print(MessageToJson(request.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "projects/116273516712/locations/us-central1/batchPredictionJobs/4770983263059574784", "displayName": "happiness_20210226015238", "model": "projects/116273516712/locations/us-central1/models/2369051733671280640", "inputConfig": { "instancesFormat": "jsonl", "gcsSource": { "uris": [ "gs://migration-ucaip-trainingaip-20210226015238/test.jsonl" ] } }, "outputConfig": { "predictionsFormat": "jsonl", "gcsDestination": { "outputUriPrefix": "gs://migration-ucaip-trainingaip-20210226015238/batch_output/" } }, "state": "JOB_STATE_PENDING", "completionStats": { "incompleteCount": "-1" }, "createTime": "2021-02-26T09:37:44.471843Z", "updateTime": "2021-02-26T09:37:44.471843Z"}``` ###Code def get_latest_predictions(gcs_out_dir): """ Get the latest prediction subfolder using the timestamp in the subfolder name""" folders = !gsutil ls $gcs_out_dir latest = "" for folder in folders: subfolder = folder.split("/")[-2] if subfolder.startswith("prediction-"): if subfolder > latest: latest = folder[:-1] return latest while True: response = clients["job"].get_batch_prediction_job(name=batch_job_id) if response.state != aip.JobState.JOB_STATE_SUCCEEDED: print("The job has not completed:", response.state) if response.state == aip.JobState.JOB_STATE_FAILED: break else: folder = get_latest_predictions( response.output_config.gcs_destination.output_uri_prefix ) ! gsutil ls $folder/prediction*.jsonl ! gsutil cat $folder/prediction*.jsonl break time.sleep(60) ###Output _____no_output_____ ###Markdown *Example output*:```gs://migration-ucaip-trainingaip-20210226015238/batch_output/prediction-happiness_20210226015238-2021-02-26T09:37:44.261133Z/predictions_00001.jsonl{"instance":{"content":"gs://migration-ucaip-trainingaip-20210226015238/test.txt","mimeType":"text/plain"},"prediction":{"ids":["8446203133482237952","3834517115054850048","1528674105841156096","5563899371965120512","952213353537732608","3258056362751426560","6140360124268544000"],"displayNames":["affection","bonding","achievement","enjoy_the_moment","exercise","leisure","nature"],"confidences":[0.9183423,0.045685068,0.024327256,0.0057157497,0.0040851077,0.0012627868,5.8173126E-4]}}``` Make online predictions [projects.locations.endpoints.create](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.endpoints/create) Request ###Code endpoint = {"display_name": "happiness_" + TIMESTAMP} print( MessageToJson( aip.CreateEndpointRequest(parent=PARENT, endpoint=endpoint).__dict__["_pb"] ) ) ###Output _____no_output_____ ###Markdown *Example output*:```{ "parent": "projects/migration-ucaip-training/locations/us-central1", "endpoint": { "displayName": "happiness_20210226015238" }}``` Call ###Code request = clients["endpoint"].create_endpoint(parent=PARENT, endpoint=endpoint) ###Output _____no_output_____ ###Markdown Response ###Code result = request.result() print(MessageToJson(result.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "projects/116273516712/locations/us-central1/endpoints/7367713068517687296"}``` ###Code # The fully qualified ID for the endpoint endpoint_id = result.name # The short numeric ID for the endpoint endpoint_short_id = endpoint_id.split("/")[-1] print(endpoint_id) ###Output _____no_output_____ ###Markdown [projects.locations.endpoints.deployModel](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.endpoints/deployModel) Request ###Code deployed_model = { "model": model_id, "display_name": "happiness_" + TIMESTAMP, "automatic_resources": {"min_replica_count": 1, "max_replica_count": 1}, } traffic_split = {"0": 100} print( MessageToJson( aip.DeployModelRequest( endpoint=endpoint_id, deployed_model=deployed_model, traffic_split=traffic_split, ).__dict__["_pb"] ) ) ###Output _____no_output_____ ###Markdown *Example output*:```{ "endpoint": "projects/116273516712/locations/us-central1/endpoints/7367713068517687296", "deployedModel": { "model": "projects/116273516712/locations/us-central1/models/2369051733671280640", "displayName": "happiness_20210226015238", "automaticResources": { "minReplicaCount": 1, "maxReplicaCount": 1 } }, "trafficSplit": { "0": 100 }}``` Call ###Code request = clients["endpoint"].deploy_model( endpoint=endpoint_id, deployed_model=deployed_model, traffic_split=traffic_split ) ###Output _____no_output_____ ###Markdown Response ###Code result = request.result() print(MessageToJson(result.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "deployedModel": { "id": "418518105996656640" }}``` ###Code # The unique ID for the deployed model deployed_model_id = result.deployed_model.id print(deployed_model_id) ###Output _____no_output_____ ###Markdown [projects.locations.endpoints.predict](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.endpoints/predict) Request ###Code test_item = ! gsutil cat $IMPORT_FILE | head -n1 test_item, test_label = str(test_item[0]).split(",") instances_list = [{"content": test_item}] instances = [json_format.ParseDict(s, Value()) for s in instances_list] request = aip.PredictRequest( endpoint=endpoint_id, ) request.instances.append(instances) print(MessageToJson(request.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "endpoint": "projects/116273516712/locations/us-central1/endpoints/7367713068517687296", "instances": [ [ { "content": "I went on a successful date with someone I felt sympathy and connection with." } ] ]}``` Call ###Code request = clients["prediction"].predict(endpoint=endpoint_id, instances=instances) ###Output _____no_output_____ ###Markdown Response ###Code print(MessageToJson(request.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "predictions": [ { "confidences": [ 0.8867673277854919, 0.024743923917412758, 0.0034913308918476105, 0.07936617732048035, 0.0013463868526741862, 0.0002393187169218436, 0.0040455833077430725 ], "displayNames": [ "affection", "achievement", "enjoy_the_moment", "bonding", "leisure", "nature", "exercise" ], "ids": [ "8446203133482237952", "1528674105841156096", "5563899371965120512", "3834517115054850048", "3258056362751426560", "6140360124268544000", "952213353537732608" ] } ], "deployedModelId": "418518105996656640"}``` [projects.locations.endpoints.undeployModel](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.endpoints/undeployModel) Call ###Code request = clients["endpoint"].undeploy_model( endpoint=endpoint_id, deployed_model_id=deployed_model_id, traffic_split={} ) ###Output _____no_output_____ ###Markdown Response ###Code result = request.result() print(MessageToJson(result.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{}``` Cleaning up To clean up all GCP resources used in this project, you can [delete the GCP project](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial. Otherwise, you can delete the individual resources you created in this tutorial. ###Code delete_dataset = True delete_model = True delete_endpoint = True delete_pipeline = True delete_batchjob = True delete_bucket = True # Delete the dataset using the Vertex AI fully qualified identifier for the dataset try: if delete_dataset: clients["dataset"].delete_dataset(name=dataset_id) except Exception as e: print(e) # Delete the model using the Vertex AI fully qualified identifier for the model try: if delete_model: clients["model"].delete_model(name=model_id) except Exception as e: print(e) # Delete the endpoint using the Vertex AI fully qualified identifier for the endpoint try: if delete_endpoint: clients["endpoint"].delete_endpoint(name=endpoint_id) except Exception as e: print(e) # Delete the training pipeline using the Vertex AI fully qualified identifier for the training pipeline try: if delete_pipeline: clients["pipeline"].delete_training_pipeline(name=training_pipeline_id) except Exception as e: print(e) # Delete the batch job using the Vertex AI fully qualified identifier for the batch job try: if delete_batchjob: clients["job"].delete_batch_prediction_job(name=batch_job_id) except Exception as e: print(e) if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil rm -r gs://$BUCKET_NAME ###Output _____no_output_____
tour2_constant_bond/2_1_1_PO_observation.ipynb
###Markdown **2.1 Pull-out of elastic fiber from rigid matrix** [![title](../fig/bmcs_video.png)](https://moodle.rwth-aachen.de/mod/page/view.php?id=551807) The simplest possible pull-out model An analytical solution of the pull-out problem is obtained by 1. Integrate the differential equilibrium equation relating the shear flow with the change of the normal force $A_\mathrm{f} \mathrm{d}\sigma_\mathrm{f}$ in the fiber on an infinitesimal element $\mathrm{d}x$\begin{align}\dfrac{\mathrm{d}\sigma_\mathrm{f}}{\mathrm{d}x} = \dfrac{p\bar{\tau}}{A_\mathrm{f}}\end{align}2. Substitute the result into the elastic constitutive law of the reinforcement\begin{align}\varepsilon_\mathrm{f} = \dfrac{\sigma_\mathrm{f}}{E_\mathrm{f}}\end{align}3. Substitute the result into the kinematic relation stating that the pull-out displacement is equal to the integral of fiber strain along the debonded length\begin{align}u_\mathrm{f} = \int_{a}^0 \varepsilon_\mathrm{f} \, \mathrm{d}x\end{align}4. Identify the integration constants by applying boundary conditions: equilibrium at loaded end and compatibility and smoothness at the end of the debonded zone $x = a$These step deliver the pull-out curve as a square root function\begin{align}P = \sqrt{p \bar{\tau} E_\mathrm{f} A_\mathrm{f} w}\end{align} Graphical summary of the model derivation ![image.png](attachment:6ef958fc-7d8f-4dc2-848a-36d05b0e32b8.png) Model applicationLet us utilize the the derived model to simulate the test results of the RILEM pull-out test![image.png](attachment:image.png) | Symbol | Unit |Description ||:- |:- |:- || $E_\mathrm{f}$ | MPa | Young's modulus of reinforcement || $\bar{\tau}$ | MPa | Bond stress || $A_\mathrm{f}$ | mm$^2$ | Cross-sectional area of reinforcement || $p$ | mm | Perimeter of contact between concrete and reinforcement | **Observation** - The measured displament at the loaded and unloaded end are different - Their difference increases with increasing bond length $L_\mathrm{b}$ - The shape of the pull-out curve has a shape of a square root function **Question** - Can the above derived model describe the debonding process correctly? Look inside the specimen using the model The parameters of the above experiment are specified as follows ###Code ds = 16 A_f = (ds/2)**2 * 3.14 # mm^2 - reinforcement area L_b = 5 * ds # mm - bond length E_f = 210000 # MPa - reinforcement stiffness p_b = 3.14 * ds # mm - bond perimeter w_max = 0.12 # mm - maximum displacement ###Output _____no_output_____ ###Markdown **Construct the model:** To study the model behavior import the class `PO_ELF_RLM`, construct it with the defined parameters and run the `interact` method ###Code %matplotlib widget from pull_out import PO_ELF_RLM po = PO_ELF_RLM(E_f=E_f, L_b=L_b, p=p_b, A_f=A_f, w_max=w_max) ###Output _____no_output_____ ###Markdown **Remark:** that the length $L_b$ is not the end of the bond zone. It only measures the slip at the position $x = L_\mathrm{b}$ from the loadedend. However, the debonding process can continue beyond this length. ###Code po.interact() ###Output _____no_output_____
10A/Lista10A.ipynb
###Markdown 1) Determine se os dados são qualitativos ou quantitativos. Explique seu raciocínio.- Alturas de balões de ar quente -> Quantitativa, por que podemos dizer quantos metros os balões podem chegar em média.- Capacidades de carga de caminhonetes -> Quantitativa, podemos calcular a quantidade de carga que o caminhão suporta.- Cores dos olhos de modelos -> Qualitativa. Estamos observando as cores dos olhos das modelos, portanto estamos dando uma qualidade.- Números de identidade de estudantes -> Quantitativa, estamos observando quantas identidades existem de estudantes.- Respostas em uma pesquisa de opinião. -> Quantitativa. Quantas respostas da pesquisa foram coletadas. 2) A)- Sexo: Qualitativa, porque estamos categorizando se é masculino ou feminino e é qualitativa nominal porque não podemos ordená-las quantitativamente.(**Qualitativa nominal**).- Predileta: Qualitativa, porque estamos categorizando nomes, nesse caso são as matérias elas são nominais, porque não podemos ordenar quantitativamente os nomes.(**Qualitativa nominal**).- Nota: **Quantitativa discreta**, pois, podemos enumerar os valores e podemos ordena-los. ###Code #B) #TABVELA DFDOIS = pd.DataFrame({"SEXO": ['MASCULINO', 'FEMININO'], "Frequência absoluta":[21, 21], "Frequência relativa":[0.50,0.50]}) DFDOIS DFTRES= pd.DataFrame({"Predileta":['Português','Matemática', 'História','Geografia','Ciências'],"frq abs Masculino":[3,6,4,5,3],"frq abs Feminino":[7,8,3,3,0]}) DFTRES DFDOIS = pd.DataFrame({"NOTA": ['Português','Matemática', 'História','Geografia','Ciências'], "Frequência absoluta":[21, 21], "Frequência relativa":[0.50,0.50]}) DFDOIS ###Output _____no_output_____ ###Markdown **QUESTÃO 3**- PAP; Quantitativa discreta, aqui temos valores finitos 1 ou 0, sendo assim possível enumerar.- GI; Qualitativa ordinal, podemos colocar em ordem por escolaridade, mas não podemos quantificar a diferença entre chefes.- RES: Quantitativa discreta, pois o conjunto é finito. Podemos dizer exatamente quantos membros existem na casa A ou na casa B.- RENDA Quantitativa contínua, pois temos valores expressos como número real, que pode ser somado. **QUESTÃO 3** ###Code totalPAP = 40 frqNAO = 16/40 frqSIM = 24/40 df2 = pd.DataFrame({"PAP": ['1/SIM', '0/NÃO'], "Frequência absoluta":[24, 16], "Frequência relativa":[frqSIM,frqNAO]}) df2 gi1 = 6/40 gi2 = 11/40 gi3 = 23/40 df3 = pd.DataFrame({"GI": ['1 = nenhum grau oficialmente completo', ' 2 = primeiro grau completo',' 3 = segundo grau completo '], "Frequência absoluta":[6, 11,23], "Frequência relativa":[gi1,gi2,gi3]}) df3 n1=1/40 n2=3/40 n3=6/40 n4=13/40 n5=11/40 n6=4/40 n8=2/40 df4 = pd.DataFrame({"Número de pessoas redesentes na casa/RES":['1Pessoas','2Pessoas','3Pessoas','4Pessoas','5Pessoas','6Pessoas','8Pessoas'],"Frequência absoluta":[1,3,6,13,11,4,2],"Frequência relativa":[n1,n2,n3,n4,n5,n6,n8]}) df4 ###Output _____no_output_____
perceptron/non-separable.ipynb
###Markdown Linearly non-separable classesThe main limitation of perceptrons is that they only work with linearly separable classes.This is a variation of a previous exercise, with a slightly different dataset. ###Code import numpy as np import sklearn.linear_model import matplotlib.pyplot as plt from packages.plot import plot_decision_boundary, plot_data %matplotlib inline ###Output _____no_output_____ ###Markdown Load in the dataAgain, there are two classes of dots (red and black), and each dot is defined by two features as before. So the structure of the dataset is exactly the same, consising of a matrix `x` with as many rows as dots, and two columns, and the vector `y` with as many elements as dots. The value of `y[i]` is 0 for red dots and 1 for black dots.In fact, the values in `x` are exactly the same as in the previous exercise, but you must define the values in `y` so that the data points become linealy non-separable. ###Code x = np.array([[2,2],[1,3],[2,3],[5,3],[7,3],[2,4],[3,4],\ [6,4],[1,5],[2,5],[5,5],[4,6],[6,6],[5,7]]) y = np.array([0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1]) ###Output _____no_output_____ ###Markdown Plot the dataLet's represent graphically the data. Here you can see that the classes can't be separated by a single straight line. ###Code plot_data(x, y) plt.axis([0,8,0,8]); ###Output _____no_output_____ ###Markdown Build the modelCreate a [perceptron object](http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html). ###Code net = sklearn.linear_model.Perceptron(n_iter=1, warm_start=True) ###Output _____no_output_____ ###Markdown TrainRepeat the following cell (`Ctrl+Enter`) until the model converges (or you are tired). ###Code net.fit(x,y) print("Coefficient 0: %6.3f" % net.coef_[0,0]) print("Coefficient 1: %6.3f" % net.coef_[0,1]) print(" Bias: %6.3f" % net.intercept_) plot_data(x, y) plt.axis([0,8,0,8]); plot_decision_boundary(net) print(' Target: %s' % np.array_str(y)) print('Prediction: %s' % np.array_str(net.predict(x))) ###Output _____no_output_____
Spectral_Methods_Project_Random_SVD.ipynb
###Markdown Spectral Methods in Data Processing (Fall 2019) - Final Project Random SVD and Random ID Results Reconstruction- Elad Eatah[![MIT License](https://img.shields.io/apm/l/atomic-design-ui.svg?)](https://github.com/tterb/atomic-design-ui/blob/master/LICENSEs)Complete description of this project is available in [this repo](https://github.com/RedCrow9564/SpectralMethodsProject-RandomSVD.git). Getting StartedFirst run the nodes under "Infrastructure" one by one.Second, run the first two nodes under "Main Components". Running Unit-TestsYou can then run the nodes under "UnitTests" one by one. The results of the last node are the results of these Unit-Tests. Performing an experimentThis is done by running the "main" node. The number of the experiment to perform can be set in the form. It can be any integer between 1 and 5. Its results are then saved to a local directory in the remote machine. Make sure this directory exists on the remote machine. Infrastructure ###Code #@title Dependencies installations !pip install pandas nptyping sacred from IPython.display import clear_output import numpy as np import warnings import psutil from multiprocessing import Pool import pandas as pd import os import pyximport import cython from sacred import Experiment from time import perf_counter import cpuinfo #warnings.filterwarnings("error") # Uncomment to see warnings as errors. %load_ext Cython # Defining the "sacred" experiment object. ex = Experiment(name="Initializing project", interactive=True) cpu_info = cpuinfo.get_cpu_info() cpu_count: int = cpu_info['count'] clear_output() print(cpu_info['brand']) print(f'Total CPUs: {cpu_count}') print("Installation is done!") #@title Common Utils # -*- coding: utf-8 -*- """ utils.py - The common utilities functions and objects ===================================================== This module contains all frequently-used methods and objects which can be shared among the entire project. For example, data types name used for type-hinting, a basic enum class :class:`BaseEnum`, methods for measuring run-time of a given function. """ from typing import List, Dict, Callable, Union, Iterator from nptyping import Array import inspect # Defining the "sacred" experiment object. ex = Experiment(name="Initializing project", interactive=True) pyximport.install(setup_args={"include_dirs": np.get_include()}, reload_support=True) # Naming data types for type hinting. Number = Union[int, float] Scalar = Union[Number, Array[float, 1, 1], Array[int, 1, 1]] RowVector = Union[List[Scalar], Array[float, 1, ...], Array[int, 1, ...], Scalar] ColumnVector = Union[List[Scalar], Array[float, ..., 1], Array[int, ..., 1], Scalar] Vector = Union[RowVector, ColumnVector] Matrix = Union[List[Vector], Array[float], Array[int], Vector, Scalar] class _MetaEnum(type): """ A private meta-class which given any :class:`BaseEnum` object to be an iterable. This can be used for iterating all possible values of this enum. Should not be used explicitly. """ def __iter__(self) -> Iterator: """ This method gives any BaseEnum the ability of iterating over all the enum's values. Returns: An iterator for the collection of all the enum's values. """ # noinspection PyUnresolvedReferences return self.enum_iter() def __contains__(self, item) -> bool: """ This method give any BaseEnum the ability to test if a given item is a possible value for this enum class. Returns: A flag which indicates if 'item' is a possible value for this enum class. """ # noinspection PyUnresolvedReferences return self.enum_contains(item) class BaseEnum(metaclass=_MetaEnum): """ A basic interface for all enum classes. Should be sub-classed in eny enum, i.e ``class ExperimentType(BaseEnum)`` """ @classmethod def enum_iter(cls) -> Iterator: """ This method gives any BaseEnum the ability of iterating over all the enum's values. Returns: An iterator for the collection of all the enum's values. """ return iter(cls.get_all_values()) @classmethod def enum_contains(cls, item) -> bool: """ This method give any BaseEnum the ability to test if a given item is a possible value for this enum class. Returns: A flag which indicates if 'item' is a possible value for this enum class. """ return item in cls.get_all_values() @classmethod def get_all_values(cls) -> List: """ A method which fetches all possible values of an enum. Used for iterating over an enum. Returns: A list of all possible enum's values. """ all_attributes: List = inspect.getmembers(cls, lambda a: not inspect.ismethod(a)) all_attributes = [value for name, value in all_attributes if not (name.startswith('__') or name.endswith('__'))] return all_attributes def create_factory(possibilities_dict: Dict[str, Callable], are_methods: bool = False) -> Callable: """ A generic method for creating factories for the entire project. Args: possibilities_dict(Dict[str, Callable]): The dictionary which maps object types (as strings!) and returns the relevant class constructors. are_methods(bool): A flag, true if the factory output are methods, rather than objects. Defaults to False Returns: The factory function for the given classes/methods mapping. """ def factory_func(requested_object_type: str): # Inner function! if requested_object_type not in possibilities_dict: raise ValueError("Object type {0} is NOT supported".format(requested_object_type)) else: if are_methods: return possibilities_dict[requested_object_type] else: return possibilities_dict[requested_object_type]() return factory_func def measure_time(method: Callable) -> Callable: """ A method which receives a method and returns the same method, while including run-time measure output for the given method, in seconds. Args: method(Callable): A method whose run-time we are interested in measuring. Returns: A function which does exactly the same, with an additional run-time output value in seconds. """ def timed(*args, **kw): ts = perf_counter() result = method(*args, **kw) te = perf_counter() duration_in_ms: float = te - ts if isinstance(result, tuple): return result + (duration_in_ms,) else: return result, duration_in_ms timed.__name__ = method.__name__ + " with time measure" return timed def is_empty(collection: List) -> bool: return len(collection) == 0 class DataLog: """ A class for log-management objects. See the following example for creating it: ``DataLog(["Column 1", "Column 2"])`` """ def __init__(self, log_fields: List): """ This methods initializes an empty log. Args: log_fields(List) - A list of column names for this log. """ self._data: Dict = dict() self._log_fields: List = log_fields for log_field in log_fields: self._data[log_field] = list() def append(self, data_type: str, value: Scalar) -> None: """ This methods appends given data to the given column inside the log. Example of usage:``log.append(DataFields.DataSize, 20)`` Args: data_type(LogFields): The column name in which the input data in inserted to. value(Scalar): The value to insert to the log. """ self._data[data_type].append(value) def append_dict(self, data_dict: Dict) -> None: """ This methods takes the data from the input dictionary and inserts it to this log. Args: data_dict(Dict): The dictionary from which new data is taken and inserted to the log. """ for log_field, data_value in data_dict.items(): self.append(log_field, data_value) def save_log(self, log_file_name: str, results_folder_path: str) -> None: """ This method saves the log to a file, with the input name, in the input folder path. Args: log_file_name(str): The name for this log file. results_folder_path(str): The path in which this log will be saved. """ df = pd.DataFrame(self._data, columns=self._log_fields) df.to_csv(os.path.join(results_folder_path, log_file_name + ".csv"), sep=",", float_format="%.2E", index=False) ex.info["Experiment Log"] = self._data print("Utils loaded successfully!") #@title Enums # -*- coding: utf-8 -*- """ enums.py - All enums section ============================ This module contains all possible enums of this project. Most of them are used by the configuration section in :mod:`main`. An example for using enum: ``ExperimentType.ExampleNo1`` """ from typing import Iterator, List class LogFields(BaseEnum): """ The enum class of fields within experiments logs. Possible values: * ``LogFields.DataSize`` * ``LogFields.ApproximationRank`` * ``LogFields.Increment`` * ``LogFields.NextSingularValue`` * ``LogFields.RandomSVDDuration`` * ``LogFields.RandomIDDuration`` * ``LogFields.RandomSVDAccuracy`` * ``LogFields.RandomIDAccuracy`` """ DataSize: str = "Data size" ApproximationRank: str = "k" Increment: str = "increment" NextSingularValue: str = "K+1 singular value" RandomSVDDuration: str = "Random SVD Duration in seconds" RandomIDDuration: str = "Random ID Duration in seconds" RandomSVDAccuracy: str = "Random SVD Accuracy" RandomIDAccuracy: str = "Random ID Accuracy" class ExperimentType(BaseEnum): """ The enum class of experiment types. Possible values: * ``ExperimentType.ExampleNo1`` * ``ExperimentType.ExampleNo2`` * ``ExperimentType.ExampleNo3`` * ``ExperimentType.ExampleNo4`` * ``ExperimentType.ExampleNo5`` """ ExampleNo1: str = "Example No. 1" ExampleNo2: str = "Example No. 2" ExampleNo3: str = "Example No. 3" ExampleNo4: str = "Example No. 4" ExampleNo5: str = "Example No. 5" print("Enums loaded successfully!") ###Output Enums loaded successfully! ###Markdown Main Components ###Code #@title Data Loading for Experiments # -*- coding: utf-8 -*- """ data_loader.py - The data management module =========================================== This module handles the fetching of the data from the local resources path, given in the configuration and arranging it for our purposes of estimations. See the example for fetching the data for Example no. 1. Example: get_data(ExperimentType.ExampleNo1) - Creating the data for Example no. 1 of the paper. """ from scipy.linalg import qr def _random_orthonormal_cols(data_size: int, columns: int) -> Matrix: return np.ascontiguousarray(qr(np.random.randn(data_size, columns), mode="economic", overwrite_a=True, check_finite=False)[0]) def _get_first_3_examples_data(data_size: int, singular_values: RowVector) -> Matrix: """ A method which creates a random matrix of size data_size x data_size with given singular values. Args: data_size(int): The input data size n. singular_values(RowVector): The singular values to be set for the matrix to create. Returns: A random size data_size x data_size Matrix awith the given singular values. """ rank: int = len(singular_values) U: Matrix = _random_orthonormal_cols(data_size, rank) V: Matrix = _random_orthonormal_cols(data_size, rank) return MatInSVDForm(U, singular_values, V) def _get_example_4_data(data_size: int, singular_values: RowVector) -> Matrix: """ A method which creates a data_size x data_size matrix whose singular values are the input values. Args: data_size(int): The input data size n. singular_values(RowVector): The singular values to be set for the matrix to create. Returns: A data_size x data_size Matrix with the given singular values. """ U: Matrix = np.ascontiguousarray( np.stack([ np.ones(data_size), np.tile([1, -1], data_size // 2), np.tile([1, 1, -1, -1], data_size // 4), np.tile([1, 1, 1, 1, -1, -1, -1, -1], data_size // 8)]).T) / np.sqrt(data_size) V: Matrix = np.ascontiguousarray( np.stack([ np.concatenate([np.ones(data_size - 1), [0]]) / np.sqrt(data_size - 1), np.concatenate([np.zeros(data_size - 1), [1]]), np.concatenate([np.tile([1, -1], (data_size - 2) // 2) / np.sqrt(data_size - 2), [0, 0]]), np.concatenate([[1, 0, -1], np.zeros(data_size - 3)]) / np.sqrt(2)]).T) return MatInSVDForm(U, np.array(singular_values), V) def _get_example_5_data(data_size: int, singular_values: RowVector) -> Matrix: """ A method which creates a data_size x data_size matrix with singular values 1 and the other input singular values. Args: data_size(int): The input data size n. singular_value(RowVector): A 1x2 vector of singular values for the created matrix. Returns: A random size data_size x data_size Matrix with singular values 1 and the other input singular value. """ return ExperimentNo5Form((data_size, data_size), singular_values[0]) # A private dictionary used to create the method "get_data" _data_type_to_function: Dict[str, Callable] = { ExperimentType.ExampleNo1: _get_first_3_examples_data, ExperimentType.ExampleNo2: _get_first_3_examples_data, ExperimentType.ExampleNo3: _get_first_3_examples_data, ExperimentType.ExampleNo4: _get_example_4_data, ExperimentType.ExampleNo5: _get_example_5_data } # The public method which fetches the data loading methods. get_data: Callable = create_factory(_data_type_to_function, are_methods=True) print("Data loading Methods loaded successfully!") #@title Randomized Decomposition Algorithms %%cython # cython: language_level=3, boundscheck=False, wraparound=False # cython: initializedcheck=False, cdivision=True, nonecheck=False import numpy as np cimport numpy as np cimport cython from libc.math cimport sqrt from numpy.linalg import svd from scipy.linalg.interpolative import interp_decomp """ randomized_decompositions.pyx - ================================ dffdgdg """ cdef inline double[:, ::1] mat_scalar_product(const double[:, ::1] mat, const double scalar): cdef double[:, ::1] result = np.empty_like(mat) cdef Py_ssize_t i, j for i in range(result.shape[0]): for j in range(result.shape[1]): result[i, j] = scalar * mat[i, j] return result cdef inline void vector_scalar_div(double[::1] vec, const double scalar): cdef Py_ssize_t i, j for j in range(vec.shape[0]): vec[j] /= scalar cdef inline double[:, :] multiply_by_diagonal_mat(const double[:, :] mat, const double[::1] vec): cdef ssize_t i,j cdef double[:, ::1] result = mat.copy() for i in range(mat.shape[0]): for j in range(mat.shape[1]): result[i, j] = mat[i, j] * vec[i] return result cdef class ExperimentNo5Form: cdef double sigma cdef readonly Py_ssize_t shape[2] cdef readonly np.dtype dtype cdef double[:, ::1] common_vector def __init__(self, const (Py_ssize_t, Py_ssize_t) mat_shape, const double sigma): self.shape[0] = mat_shape[0] self.shape[1] = mat_shape[1] self.sigma = sigma self.dtype = np.dtype(np.double) cdef inline double[:, ::1] dot(self, const double[:, ::1] other_vector): cdef double[::1] column_sums = np.sum(other_vector, axis=0) cdef double[:, ::1] result = mat_scalar_product(other_vector, self.sigma) for j in range(other_vector.shape[1]): result[0, j] += column_sums[j] / sqrt(<double>self.shape[1]) return result cdef inline double[:, ::1] transpose_dot(self, const double[:, ::1] other_vector): cdef double[:, ::1] result = mat_scalar_product(other_vector, self.sigma) cdef double[::1] first_row = other_vector[0, :].copy() vector_scalar_div(first_row, sqrt(<double>self.shape[1])) return np.tile(first_row, (self.shape[0], 1)) + result cdef inline double[:, ::1] left_dot(self, const double[:, ::1] other_vector): cdef double[:, ::1] result = mat_scalar_product(other_vector, self.sigma) cdef double[::1] first_col = other_vector[:, 0].copy() vector_scalar_div(first_col, sqrt(<double>self.shape[1])) return np.tile(np.reshape(first_col, (-1, 1)), (1, self.shape[1])) + result cdef inline double[:, ::1] slice_columns(self, const int[::1] idx): cdef double[:, ::1] result = np.zeros((self.shape[0], len(idx)), dtype=np.double) cdef Py_ssize_t i for i in range(len(idx)): result[0, i] += 1 / sqrt(<double>self.shape[1]) result[idx[i], i] += self.sigma return result def as_numpy_arr(self): cdef double[:, ::1] result = self.sigma * np.eye(self.shape[0], self.shape[1]) cdef Py_ssize_t j for j in range(self.shape[1]): result[0, j] += 1 / sqrt(<double>self.shape[1]) return result.base def matmat(self, other): return self.dot(other) def matvec(self, other): return self.dot(other[:, None]) def rmatvec(self, other): return self.transpose_dot(other[:, None]) cdef class MatInSVDForm: cdef readonly const double[:, ::1] U, V cdef readonly const double[::1] sigma cdef readonly (Py_ssize_t, Py_ssize_t) shape cdef readonly np.dtype dtype def __init__(self, const double[:, ::1] mat_U, const double[::1] sigmas, const double[:, ::1] mat_V): self.U = mat_U self.sigma = sigmas self.V = mat_V self.shape = (mat_U.shape[0], mat_V.shape[0]) self.dtype = np.dtype(np.double) cdef inline double[:, ::1] dot(self, const double[:, ::1] other_vector): return np.dot(self.U, multiply_by_diagonal_mat(np.dot(self.V.T, other_vector), self.sigma)) cdef inline double[:, ::1] transpose_dot(self, const double[:, ::1] other_vector): return np.dot(self.V, multiply_by_diagonal_mat(np.dot(self.U.T, other_vector), self.sigma)) cdef inline double[:, ::1] left_dot(self, const double[:, ::1] other_vector): return np.dot(np.dot(other_vector, self.U), multiply_by_diagonal_mat(self.V.T, self.sigma)) cdef inline double[:, ::1] slice_columns(self, const int[::1] idx): return np.dot(self.U, multiply_by_diagonal_mat(self.V.base[idx, :].T, self.sigma)) def as_numpy_arr(self): return np.array(np.dot(self.U, np.multiply(self.V, self.sigma).T)) def matmat(self, other): return self.dot(other) def matvec(self, other): return self.dot(other[:, None]) def rmatvec(self, other): return self.transpose_dot(other[:, None]) cdef class MatInIDForm: cdef readonly const double[:, ::1] B cdef readonly const double[::1, :] P cdef readonly (Py_ssize_t, Py_ssize_t) shape cdef readonly np.dtype dtype def __init__(self, const double[:, ::1] mat_B, const double[::1, :] mat_P): self.B = mat_B self.P = mat_P self.shape = (mat_B.shape[0], mat_P.shape[1]) self.dtype = np.dtype(np.double) cdef inline double[:, ::1] dot(self, const double[:, ::1] other_vector): return np.dot(self.B, np.dot(self.P, other_vector)) cdef inline double[:, ::1] transpose_dot(self, const double[:, ::1] other_vector): return np.dot(self.P.T, np.dot(self.B.T, other_vector)) cdef inline double[:, ::1] left_dot(self, const double[:, ::1] other_vector): return np.dot(np.dot(other_vector, self.B), self.P) cdef inline double[:, ::1] slice_columns(self, const int[::1] idx): return np.dot(self.B, self.P.base[idx, :].T) def as_numpy_arr(self): return np.array(np.dot(self.B, self.P)) def matmat(self, other): return self.dot(other) def matvec(self, other): return self.dot(other[:, None]) def rmatvec(self, other): return self.transpose_dot(other[:, None]) ctypedef fused GeneralMat: MatInSVDForm MatInIDForm ExperimentNo5Form def random_svd(GeneralMat A, const int k, const int increment): """ Args: A(Matrix): ffff k(int): Approximation rank. increment(int): The extra sampled columns in the approximation (beyond the first ``k`` columns. Returns: Matrices :math:`U, V` and :math:`\sigma` for which the SVD approximation is :math:`U\sigmaV^{T} """ cdef Py_ssize_t m = A.shape[0] cdef const double[::1] sigma cdef const double[:, ::1] Q, U, H Q = svd(A.transpose_dot(np.random.randn(m, k + increment)), full_matrices=False, compute_uv=True)[0] Q = np.ascontiguousarray(Q[:, :k]) U, sigma, H = svd(A.dot(Q), full_matrices=False, compute_uv=True) return MatInSVDForm(U, sigma, np.dot(Q, H.T)) def random_id(GeneralMat A, const int k, const int increment): cdef Py_ssize_t m = A.shape[0] cdef const int[::1] idx cdef const double[::1, :] P, proj cdef const double[:, ::1] B idx, proj = interp_decomp(A.left_dot(np.random.randn(k + increment, m)).base, k, rand=False)[:2] P = np.hstack([np.eye(k), proj])[:, np.argsort(idx)] B = A.slice_columns(idx[:k]) return MatInIDForm(B, P) print("Randommized Algorithms loaded successfully!") #@title Main experiment_number_from_one_to_five = 5 #@param {type:"integer"} #!/usr/bin/python # -*- coding: utf-8 -*- """ main.py - The main module of the project ======================================== This module contains the config for the experiment in the "config" function. Running this module invokes the :func:`main` function, which then performs the experiment and saves its results to the configured results folder. Example for running an experiment: ``python -m main.py`` """ from scipy.linalg.interpolative import estimate_spectral_norm_diff, seed def choose_singular_values(experiment_type: ExperimentType) -> RowVector: """ This function sets the needed singular values, according to the given experiment_type Args: experiment_type(ExperimentType): The performed experiment. For example, ``ExperimentType.ExampleNo1``. Returns: A RowVector of the required singular values. """ if experiment_type == ExperimentType.ExampleNo1: return np.concatenate([np.flip(np.geomspace(0.2e-15, 1, num=10)), 0.2e-15 * np.ones(10)]) elif experiment_type == ExperimentType.ExampleNo2: return np.concatenate([np.flip(np.geomspace(1e-8, 1, num=10)), 1e-8 * np.ones(10)]) elif experiment_type == ExperimentType.ExampleNo3: return np.concatenate([np.flip(np.geomspace(1e-9, 1, num=30)), 1e-9 * np.ones(30)]) elif experiment_type == ExperimentType.ExampleNo4: return [1, 1, 1e-8, 1e-8] elif experiment_type == ExperimentType.ExampleNo5: return [1e-7] return [-1] def choose_increments(experiment_type: ExperimentType) -> List: """ This function sets the needed increments, according to the given experiment_type Args: experiment_type(ExperimentType): The performed experiment. For example, ``ExperimentType.ExampleNo1``. Returns: A list of the required increments. """ if experiment_type in [ExperimentType.ExampleNo1, ExperimentType.ExampleNo2, ExperimentType.ExampleNo4, ExperimentType.ExampleNo5]: return [0] elif experiment_type == ExperimentType.ExampleNo3: return [0, 1] + np.round(np.geomspace(2, 16, 4)).astype(int).tolist() return [-1] def choose_approximation_ranks(experiment_type: ExperimentType) -> List: """ This function sets the needed approximation ranks, according to the given experiment_type Args: experiment_type(ExperimentType): The performed experiment. For example, ``ExperimentType.ExampleNo1``. Returns: A list of the required approximation ranks. """ if experiment_type in [ExperimentType.ExampleNo1, ExperimentType.ExampleNo2, ExperimentType.ExampleNo5]: return [10] elif experiment_type == ExperimentType.ExampleNo3: return [30] elif experiment_type == ExperimentType.ExampleNo4: return [2] return [-1] def choose_data_sizes(experiment_type: ExperimentType) -> List: """ This function sets the needed data sizes, according to the given experiment_type Args: experiment_type(ExperimentType): The performed experiment. For example, ``ExperimentType.ExampleNo1``. Returns: A list of the required data sizes. """ if experiment_type in [ExperimentType.ExampleNo1, ExperimentType.ExampleNo2, ExperimentType.ExampleNo5]: return np.geomspace(1e+2, 1e+6, 5, dtype=int).tolist() elif experiment_type == ExperimentType.ExampleNo3: return [int(1e+5)] elif experiment_type == ExperimentType.ExampleNo4: return (4 * np.geomspace(1e+2, 1e+6, 5, dtype=int)).tolist() return [-1] @ex.config def config(): """ Config section This function contains all possible configuration for all experiments. Full details on each configuration values can be found in :mod:`enums.py`. """ experiment_type: str = f'Example No. {experiment_number_from_one_to_five}' singular_values: RowVector = choose_singular_values(experiment_type) used_data_factory: Callable = get_data(experiment_type) data_sizes: List = choose_data_sizes(experiment_type) approximation_ranks: List = choose_approximation_ranks(experiment_type) increments: List = choose_increments(experiment_type) results_path: str = r'Results/' power_method_iterations: int = 100 @ex.main def main(data_sizes: List, approximation_ranks: List, increments: List, singular_values: RowVector, used_data_factory: Callable, results_path: str, experiment_type: str, power_method_iterations: int, _seed) -> DataLog: """ The main function of this project This functions performs the desired experiment according to the given configuration. The function runs the random_svd and random_id for every combination of data_size, approximation rank and increment given in the config and saves all the results to a csv file in the results folder (given in the configuration). """ seed(_seed) results_log = DataLog(LogFields) # Initializing an empty results log. random_svd_with_run_time: Callable = measure_time(random_svd) random_id_with_run_time: Callable = measure_time(random_id) for data_size in data_sizes: data_matrix: Matrix = used_data_factory(data_size, singular_values) for approximation_rank in approximation_ranks: next_singular_value: Scalar = singular_values[approximation_rank + 1] if \ approximation_rank < len(singular_values) else singular_values[-1] for increment in increments: # Executing all the tested methods. random_svd_approximation, svd_duration = random_svd_with_run_time(data_matrix, approximation_rank, increment) random_svd_accuracy: Scalar = estimate_spectral_norm_diff(data_matrix, random_svd_approximation, power_method_iterations) random_id_approximation, id_duration = random_id_with_run_time(data_matrix, approximation_rank, increment) random_id_accuracy: Scalar = estimate_spectral_norm_diff(data_matrix, random_id_approximation, power_method_iterations) # Appending all the experiment results to the log. results_log.append(LogFields.DataSize, data_size) results_log.append(LogFields.ApproximationRank, approximation_rank) results_log.append(LogFields.Increment, increment + approximation_rank) results_log.append(LogFields.NextSingularValue, next_singular_value) results_log.append(LogFields.RandomSVDAccuracy, random_svd_accuracy) results_log.append(LogFields.RandomIDAccuracy, random_id_accuracy) results_log.append(LogFields.RandomSVDDuration, svd_duration) results_log.append(LogFields.RandomIDDuration, id_duration) results_log.save_log(experiment_type + " results", results_folder_path=results_path) print(f'{experiment_type} was performed and results were saved!') return results_log pd.DataFrame(ex.run().result._data) ###Output WARNING - Initializing project - No observers have been added to this run INFO - Initializing project - Running command 'main' INFO - Initializing project - Started INFO - Initializing project - Result: <__main__.DataLog object at 0x7f6b0ec57630> INFO - Initializing project - Completed after 0:00:23 ###Markdown Unit-Tests ###Code #@title Test data creation methods # -*- coding: utf-8 -*- """ test_data_creation.py - tests for data creation methods ======================================================= This module contains the tests for the data creation in all the examples. """ import unittest from scipy.linalg import svdvals class TestDataCreation(unittest.TestCase): """ A class which contains tests for the validity of the created data in all the examples """ def test_example_no_1_data(self): """ Test data creation for Example no. 1 This test validates the data created is ``data_size x data_size``, has rank 20 and posses the expected singular values. """ experiment_type: str = ExperimentType.ExampleNo1 data_size: int = 70 singular_values: RowVector = choose_singular_values(experiment_type) rank: int = len(singular_values) data: Matrix = get_data(experiment_type)(data_size, singular_values).as_numpy_arr() calculated_singular_values: RowVector = svdvals(data, check_finite=False)[:rank] self.assertTrue(np.allclose(data.shape, (data_size, data_size))) # Validate data shape. self.assertEqual(np.linalg.matrix_rank(data, tol=1.7e-16), rank) # Validate data rank. self.assertTrue(np.allclose(singular_values, calculated_singular_values)) # Validate singular values. def test_example_no_2_data(self): """ Test data creation for Example no. 2 This test validates the data created is ``data_size x data_size``, has rank 20 and posses the expected singular values. """ experiment_type: str = ExperimentType.ExampleNo2 data_size: int = 70 singular_values: RowVector = choose_singular_values(experiment_type) rank: int = len(singular_values) data: Matrix = get_data(experiment_type)(data_size, singular_values).as_numpy_arr() calculated_singular_values: RowVector = svdvals(data, check_finite=False)[:rank] self.assertTrue(np.allclose(data.shape, (data_size, data_size))) # Validate data shape. self.assertEqual(np.linalg.matrix_rank(data, tol=singular_values[rank - 1] / 2), rank) # Validate data rank. self.assertTrue(np.allclose(singular_values, calculated_singular_values)) # Validate singular values. def test_example_no_3_data(self): """ Test data creation for Example no. 3 This test validates the data created is ``data_size x data_size``, has rank 60 and posses the expected singular values. """ experiment_type: str = ExperimentType.ExampleNo3 data_size: int = 70 singular_values: RowVector = choose_singular_values(experiment_type) rank: int = len(singular_values) data: Matrix = get_data(experiment_type)(data_size, singular_values).as_numpy_arr() calculated_singular_values: RowVector = svdvals(data, check_finite=False)[:rank] self.assertTrue(np.allclose(data.shape, (data_size, data_size))) # Validate data shape. self.assertEqual(np.linalg.matrix_rank(data, tol=singular_values[rank - 1] / 2), rank) # Validate data rank. self.assertTrue(np.allclose(singular_values, calculated_singular_values)) # Validate singular values. def test_example_no_4_data(self): """ Test data creation for Example no. 4 This test validates the data created is ``data_size x data_size`` and posses the expected singular values. """ experiment_type: str = ExperimentType.ExampleNo4 data_size: int = 80 singular_values: RowVector = choose_singular_values(experiment_type) known_singular_values_num: int = len(singular_values) data: Matrix = get_data(experiment_type)(data_size, singular_values).as_numpy_arr() calculated_singular_values: RowVector = svdvals(data, check_finite=False)[:known_singular_values_num] self.assertTrue(np.allclose(data.shape, (data_size, data_size))) # Validate data shape. self.assertTrue(np.allclose(singular_values, calculated_singular_values)) # Validate singular values. def test_example_no_5_data(self): """ Test data creation for Example no. 5 This test validates the data created is ``data_size x data_size`` and posses the expected singular value :math:`10^{-17}` as the second largest singular value with multiplicity of at least ``data_size - 2``. """ experiment_type: str = ExperimentType.ExampleNo5 data_size: int = 70 singular_values: RowVector = choose_singular_values(experiment_type) known_singular_values_num: int = data_size - 2 data: Matrix = get_data(experiment_type)(data_size, singular_values).as_numpy_arr() calculated_singular_values: RowVector = svdvals(data, check_finite=False)[1:known_singular_values_num + 1] known_singular_values: RowVector = singular_values[0] * np.ones(known_singular_values_num) self.assertTrue(np.allclose(data.shape, (data_size, data_size))) # Validate data shape. self.assertTrue(np.allclose(known_singular_values, calculated_singular_values)) # Validate singular values. print("Loaded Unit-Tests for data creation successfully!") #@title Test Randomized Algorithms # -*- coding: utf-8 -*- """ test_random_id.py - tests for Randomized Interpolative Decomposition ==================================================================== This module contains the tests for the implementation of randomized ID algorithm. """ from numpy.random import randn as _randn pyximport.install(setup_args={"include_dirs": np.get_include()}, reload_support=True) class TestRandomID(unittest.TestCase): """ A class which contains tests for the validity of the random_id algorithm implementation. """ def setUp(self): """ This method sets the variables for the following tests. """ self._m = 100 self._n = 30 self._k = 5 self._increment = 20 self._A = get_data(ExperimentType.ExampleNo2)(self._m, np.arange(2 * self._k).astype(float)) self._approximation = random_id(self._A, self._k, self._increment) self._B = self._approximation.B self._P = self._approximation.P.base self._A = self._A.as_numpy_arr() self._n = self._A.shape[1] self._approximation = self._approximation.as_numpy_arr() def test_matrices_shapes(self): """ This methods tests the shapes of the matrices :math:`B` and :math:`P` in the decomposition. """ self.assertTrue(self._B.shape, (self._m, self._k)) self.assertTrue(self._P.shape, (self._k, self._n)) def test_interpolative_decomposition(self): """ This methods tests if the decomposition satisfies the properties of interpolative-decomposition. """ self.assertTrue(np.all(self._P <= 2)) # Validate entries of P are between -1 and 2. self.assertTrue(np.all(self._P >= -2)) # Validate P's norm is bound by the theoretical bound self.assertLessEqual(np.linalg.norm(self._P), np.sqrt(self._k * (self._n - self._k) + 1)) self.assertGreaterEqual(svdvals(self._P)[-1], 1) # Validate the least singular value of P is at least 1. for unit_vector in np.eye(self._k): # Validate P has kxk identity matrix as a sub-matrix. self.assertIn(unit_vector, self._P.T) for col in self._B.T: # Validate every column of B is also a column of A. self.assertIn(col, self._A.T) def test_approximation_estimate(self): """ This methods tests if the random ID satisfies the theoretical bound. There is a probability of less then :math:`10^{-17}` this bound won't be satisfied... """ real_sigmas = np.linalg.svd(self._A, full_matrices=False, compute_uv=False) estimate_error = np.linalg.norm(self._A - self._approximation) expected_bound = 10 * np.sqrt(self._n * (self._k + self._increment) * self._m * self._k) expected_bound *= real_sigmas[self._k] self.assertLessEqual(estimate_error, expected_bound) print("Loaded Unit-Tests for Random ID successfully!") #@title Test Randomized SVD # -*- coding: utf-8 -*- """ test_random_svd.py - tests for Randomized Singular-Value Decomposition ====================================================================== This module contains the tests for the implementation of randomized SVD algorithm. """ pyximport.install(setup_args={"include_dirs": np.get_include()}, reload_support=True) class TestRandomSVD(unittest.TestCase): """ A class which contains tests for the validity of the random_svd algorithm implementation. """ def setUp(self): """ This method sets the variables for the following tests. """ self._m = 100 self._n = 30 self._k = 5 self._increment = 20 self._A = get_data(ExperimentType.ExampleNo2)(self._m, np.arange(2 * self._k).astype(float)) self._approximation = random_svd(self._A, self._k, self._increment) self._U = self._approximation.U self._sigma = self._approximation.sigma self._VT = self._approximation.V.T self._approximation = self._approximation.as_numpy_arr() self._A = self._A.as_numpy_arr() def test_matrices_shapes(self): """ This methods tests the shapes of the matrices :math:`U` and :math:`V` in the decomposition. """ self.assertTrue(self._U.shape, (self._m, self._k)) self.assertTrue(self._VT.shape, (self._k, self._n)) def test_matrices_svd_decomposition(self): """ This methods tests if the output decomposition satisfies the properties of SVD decomposition. """ self.assertTrue(np.allclose(np.dot(self._U.T, self._U), np.eye(self._k))) self.assertTrue(np.allclose(np.dot(self._VT, self._VT.T), np.eye(self._k))) self.assertTrue(np.all(self._sigma.base > 0)) def test_decomposition_rank(self): """ This methods tests if the number of positive singular values is equal to the approximation rank. """ self.assertEqual(len(self._sigma), self._k) def test_approximation_estimate(self): """ This methods tests if the random SVD satisfies the theoretical bound. There is a probability of less then :math:`10^{-17}` this bound won't be satisfied... """ real_sigmas = np.linalg.svd(self._A, full_matrices=False, compute_uv=False) estimate_error = np.linalg.norm(self._A - self._approximation) expected_bound = 10 * np.sqrt(self._n * (self._k + self._increment)) expected_bound *= real_sigmas[self._k] self.assertLessEqual(estimate_error, expected_bound) print("Loaded Unit-Tests for Random SVD successfully!") #@title Running all these Unit-Tests unittest.main(argv=[''], verbosity=2, exit=False) ###Output _____no_output_____
3. Numpy, Pandas, Mathplotlib/NumPy/accessing-deleting-and-inserting-elements-into-ndarrays.ipynb
###Markdown Example 1. Access individual elements of 1-D array ###Code import numpy as np # We create a rank 1 ndarray that contains integers from 1 to 5 x = np.array([1, 2, 3, 4, 5]) # We print x print() print('x = ', x) print() # Let's access some elements with positive indices print('This is First Element in x:', x[0]) print('This is Second Element in x:', x[1]) print('This is Fifth (Last) Element in x:', x[4]) print() # Let's access the same elements with negative indices print('This is First Element in x:', x[-5]) print('This is Second Element in x:', x[-4]) print('This is Fifth (Last) Element in x:', x[-1]) ###Output _____no_output_____ ###Markdown Example 2. Modify an element of 1-D array ###Code # We create a rank 1 ndarray that contains integers from 1 to 5 x = np.array([1, 2, 3, 4, 5]) # We print the original x print() print('Original:\n x = ', x) print() # We change the fourth element in x from 4 to 20 x[3] = 20 # We print x after it was modified print('Modified:\n x = ', x) ###Output _____no_output_____ ###Markdown Example 3. Access individual elements of 2-D array ###Code # We create a 3 x 3 rank 2 ndarray that contains integers from 1 to 9 X = np.array([[1,2,3],[4,5,6],[7,8,9]]) # We print X print() print('X = \n', X) print() # Let's access some elements in X print('This is (0,0) Element in X:', X[0,0]) print('This is (0,1) Element in X:', X[0,1]) print('This is (2,2) Element in X:', X[2,2]) ###Output _____no_output_____ ###Markdown Example 4. Modify an element of 2-D array ###Code # We create a 3 x 3 rank 2 ndarray that contains integers from 1 to 9 X = np.array([[1,2,3],[4,5,6],[7,8,9]]) # We print the original x print() print('Original:\n X = \n', X) print() # We change the (0,0) element in X from 1 to 20 X[0,0] = 20 # We print X after it was modified print('Modified:\n X = \n', X) ###Output _____no_output_____ ###Markdown Example 5. Delete elements ###Code # We create a rank 1 ndarray x = np.array([1, 2, 3, 4, 5]) # We create a rank 2 ndarray Y = np.array([[1,2,3],[4,5,6],[7,8,9]]) # We print x print() print('Original x = ', x) # We delete the first and last element of x x = np.delete(x, [0,4]) # We print x with the first and last element deleted print() print('Modified x = ', x) # We print Y print() print('Original Y = \n', Y) # We delete the first row of y w = np.delete(Y, 0, axis=0) # We delete the first and last column of y v = np.delete(Y, [0,2], axis=1) # We print w print() print('w = \n', w) # We print v print() print('v = \n', v) ###Output _____no_output_____ ###Markdown Example 6. Append elements ###Code # We create a rank 1 ndarray x = np.array([1, 2, 3, 4, 5]) # We create a rank 2 ndarray Y = np.array([[1,2,3],[4,5,6]]) # We print x print() print('Original x = ', x) # We append the integer 6 to x x = np.append(x, 6) # We print x print() print('x = ', x) # We append the integer 7 and 8 to x x = np.append(x, [7,8]) # We print x print() print('x = ', x) # We print Y print() print('Original Y = \n', Y) # We append a new row containing 7,8,9 to y v = np.append(Y, [[7,8,9]], axis=0) # We append a new column containing 9 and 10 to y q = np.append(Y,[[9],[10]], axis=1) # We print v print() print('v = \n', v) # We print q print() print('q = \n', q) ###Output _____no_output_____ ###Markdown Example 7. Insert elements ###Code # We create a rank 1 ndarray x = np.array([1, 2, 5, 6, 7]) # We create a rank 2 ndarray Y = np.array([[1,2,3],[7,8,9]]) # We print x print() print('Original x = ', x) # We insert the integer 3 and 4 between 2 and 5 in x. x = np.insert(x,2,[3,4]) # We print x with the inserted elements print() print('x = ', x) # We print Y print() print('Original Y = \n', Y) # We insert a row between the first and last row of y w = np.insert(Y,1,[4,5,6],axis=0) # We insert a column full of 5s between the first and second column of y v = np.insert(Y,1,5, axis=1) # We print w print() print('w = \n', w) # We print v print() print('v = \n', v) ###Output _____no_output_____ ###Markdown Example 8. Stack arrays ###Code # We create a rank 1 ndarray x = np.array([1,2]) # We create a rank 2 ndarray Y = np.array([[3,4],[5,6]]) # We print x print() print('x = ', x) # We print Y print() print('Y = \n', Y) # We stack x on top of Y z = np.vstack((x,Y)) # We stack x on the right of Y. We need to reshape x in order to stack it on the right of Y. w = np.hstack((Y,x.reshape(2,1))) # We print z print() print('z = \n', z) # We print w print() print('w = \n', w) ###Output _____no_output_____
jupyter_notebooks/rebound_inner_solar_system_plus_eccentric.ipynb
###Markdown Rebound Inner Solar System plus Eccentric Planet Simulation ###Code import rebound import numpy as np from datetime import date,datetime from IPython.display import Image # get the file path of this Jupyter notebook import ipynb_path # pip install ipynb-path import os path = os.path.dirname(ipynb_path.get()) # display notebook path path # paths of simulation directories relative to notebook path sims_dir = '/sims' sim_dir = '/sims/sim-01' # create simulation directories if they do not exist if not os.path.exists(path + sims_dir): os.mkdir(path + sims_dir) if not os.path.exists(path + sim_dir): os.mkdir(path + sim_dir) # disylay simulation directory path path + sim_dir # setup SIM or use an existing setup # set to True if you want to create an updated simulation setup snapshot force_new_snapshot = False if os.path.exists(path + sim_dir + '/' + 'snapshot.bin'): sim = rebound.Simulation(path + sim_dir + '/' + 'snapshot.bin') print('existing simulation snapshot loaded') elif not os.path.exists(path + sim_dir + '/' + 'snapshot.bin') or force_new_snapshot: # Create simulation sim = rebound.Simulation() # Set initial value of G sim.G = 6.6743e-11 # m^3 / kg s^2 for time (s), mass (kg), distance (m) # Set simulation units. G will be automatically adjusted to match these units sim.units = ['AU','yr','Msun'] # Add the Sun from JPL Horizons. This will take a few moments. sim.add('Sun') # Add Mercury from JPL Horizons sim.add('Mercury') # Add Venus from JPL Horizons sim.add('Venus') # Add Earth from JPL Horizons sim.add('Earth') # Add Mars from JPL Horizons sim.add('Mars') # Add our Eccentric orbit planet sim.add(a=1.5, e=0.4) # Save snapshot of simulation sim.save(path + sim_dir + '/' + 'snapshot.bin') print('new simulation created and saved') # Current Simulation Time. Should be 0.0 years sim.t # Get the current time. This will be the simulation start time. from astropy.time import Time nt = Time.now() nt.format = 'decimalyear' time_now = nt.value time_now import imageio import os filenames = [] from IPython.display import display, clear_output import matplotlib.pyplot as plt # Move to the centre of mass of the system sim.move_to_com() # Simulation for i in range(60): # Timestep sim.integrate(sim.t+0.03) # Plot orbits. Use the 'fancy' option with stars and a glowing star. fig, ax1, ax2, ax3 = rebound.OrbitPlot(sim, figsize=(15,13), slices=0.5, unitlabel='[AU]', color = ['lightsteelblue', 'orange', 'dodgerblue', 'chocolate', 'limegreen'], lw=2, fancy=True, xlim=[-2.6,2.6], ylim=[-2.6,2.6]) # Calculate current time in years and convert to 'YYYY, DD, Abreviated Month' format # See here for options: https://docs.python.org/3.7/library/datetime.html#strftime-strptime-behavior current_time = Time(str(time_now + round(sim.t,2)), format='decimalyear') current_time_dt = datetime.strptime(current_time.to_value('iso', subfmt='date'), "%Y-%m-%d") # Display current time ax2.text(-2.1, 0.6, current_time_dt.strftime('%Y, %d %b'), color='white', fontsize=13) display(fig) # Create file name and append it to a list filename = f'{i}.png' filenames.append(path + sim_dir + '/' + filename) # Save frame to directory plt.savefig(path + sim_dir + '/' + filename, dpi=96) plt.close() clear_output(wait=True) # Build GIF with imageio.get_writer(path + sim_dir + '/' + 'rebound-inner-solar-system.gif', mode='I') as writer: for filename in filenames: image = imageio.imread(filename) writer.append_data(image) # Remove temporary files containing animation frame images for filename in set(filenames): os.remove(filename) # Display completed GIF Animation # with open(path + sim_dir + '/' + 'rebound-inner-solar-system.gif','rb') as file: # display(Image(file.read())) # Omitted: This adds GIF to notebook making the file much larger. ###Output _____no_output_____
6_DQN_LunarLander.ipynb
###Markdown Deep Q-Network with Lunar LanderThis notebook shows an implementation of a DQN on the LunarLander environment.Details on the environment can be found [here](https://gym.openai.com/envs/LunarLander-v2/).Note: The following code is heavily inspired by [this]( https://www.katnoria.com/nb_dqn_lunar/) blog post. 1. SetupWe first need to install some dependencies for using the environment: ###Code !pip3 install box2d-py import random import sys from time import time from collections import deque, defaultdict, namedtuple import numpy as np import gym import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim env = gym.make('LunarLander-v2') env.seed(0) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') device ###Output _____no_output_____ ###Markdown 2. Define the neural network, the replay buffer and the agent First, we define the neural network that predicts the Q-values for all actions, given a state as input.This is a fully-connected neural net with two hidden layers using Relu activations.The last layer does not have any activation and outputs a Q-value for every action. ###Code class QNetwork(nn.Module): def __init__(self, state_size, action_size, seed): super(QNetwork, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, 32) self.fc2 = nn.Linear(32, 64) self.fc3 = nn.Linear(64, action_size) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return self.fc3(x) ###Output _____no_output_____ ###Markdown Next, we define a replay buffer that saves previous transitions (so-called `experiences`) and provides a `sample` function to randomly extract a batch of experiences from the buffer.Note that experiences are internally saved as `numpy`-arrays. They are converted back to PyTorch tensors before being returned by the `sample`-method. ###Code class ReplayBuffer: def __init__(self, buffer_size, batch_size, seed): self.batch_size = batch_size self.seed = random.seed(seed) self.memory = deque(maxlen=buffer_size) # maximum size of buffer self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) def add(self, state, action, reward, next_state, done): experience = self.experience(state, action, reward, next_state, done) self.memory.append(experience) def sample(self): experiences = random.sample(self.memory, self.batch_size) # Convert to PyTorch tensors states = np.vstack([experience.state for experience in experiences if experience is not None]) states_tensor = torch.from_numpy(states).float().to(device) actions = np.vstack([experience.action for experience in experiences if experience is not None]) actions_tensor = torch.from_numpy(actions).long().to(device) rewards = np.vstack([experience.reward for experience in experiences if experience is not None]) rewards_tensor = torch.from_numpy(rewards).float().to(device) next_states = np.vstack([experience.next_state for experience in experiences if experience is not None]) next_states_tensor = torch.from_numpy(next_states).float().to(device) # Convert done flag from boolean to int dones = np.vstack([experience.done for experience in experiences if experience is not None]).astype(np.uint8) dones_tensor = torch.from_numpy(dones).float().to(device) return (states_tensor, actions_tensor, rewards_tensor, next_states_tensor, dones_tensor) def __len__(self): return len(self.memory) BUFFER_SIZE = int(1e5) # Replay memory size BATCH_SIZE = 64 # Number of experiences to sample from memory GAMMA = 0.99 # Discount factor TAU = 1e-3 # Soft update parameter for updating fixed q network LR = 1e-4 # Q Network learning rate UPDATE_EVERY = 4 # How often to update Q network class DQNAgent: def __init__(self, state_size, action_size, seed): self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Initialize Q and Fixed Q networks self.q_network = QNetwork(state_size, action_size, seed).to(device) self.fixed_network = QNetwork(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.q_network.parameters()) # Initiliase memory self.memory = ReplayBuffer(BUFFER_SIZE, BATCH_SIZE, seed) self.timestep = 0 def step(self, state, action, reward, next_state, done): self.memory.add(state, action, reward, next_state, done) self.timestep += 1 # trigger training if self.timestep % UPDATE_EVERY == 0: if len(self.memory) > BATCH_SIZE: # only when buffer is filled sampled_experiences = self.memory.sample() self.learn(sampled_experiences) def learn(self, experiences): states, actions, rewards, next_states, dones = experiences action_values = self.fixed_network(next_states).detach() max_action_values = action_values.max(1)[0].unsqueeze(1) # If "done" just use reward, else update Q_target with discounted action values Q_target = rewards + (GAMMA * max_action_values * (1 - dones)) Q_expected = self.q_network(states).gather(1, actions) # Calculate loss and update weights loss = F.mse_loss(Q_expected, Q_target) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update fixed weights self.update_fixed_network(self.q_network, self.fixed_network) def update_fixed_network(self, q_network, fixed_network): for source_parameters, target_parameters in zip(q_network.parameters(), fixed_network.parameters()): target_parameters.data.copy_(TAU * source_parameters.data + (1.0 - TAU) * target_parameters.data) def act(self, state, eps=0.0): rnd = random.random() if rnd < eps: return np.random.randint(self.action_size) else: state = torch.from_numpy(state).float().unsqueeze(0).to(device) action_values = self.q_network(state) action = np.argmax(action_values.cpu().data.numpy()) return action ###Output _____no_output_____ ###Markdown 3. Executes episodes and train the model We first define some paramters which are guiding the training process: ###Code MAX_EPISODES = 2000 # Max number of episodes to play MAX_STEPS = 1000 # Max steps allowed in a single episode/play # Epsilon schedule EPS_START = 1.0 # Default/starting value of eps EPS_DECAY = 0.999 # Epsilon decay rate EPS_MIN = 0.01 # Minimum epsilon ###Output _____no_output_____ ###Markdown Then we start executing episodes and observe the mean score per episode.The environment is considered as solved if this score is above 200. ###Code # Get state and action sizes state_size = env.observation_space.shape[0] action_size = env.action_space.n print('State size: {}, action size: {}'.format(state_size, action_size)) dqn_agent = DQNAgent(state_size, action_size, seed=0) start = time() # Maintain a list of last 100 scores scores_window = deque(maxlen=100) eps = EPS_START for episode in range(1, MAX_EPISODES + 1 ): state = env.reset() score = 0 for t in range(MAX_STEPS): action = dqn_agent.act(state, eps) next_state, reward, done, info = env.step(action) dqn_agent.step(state, action, reward, next_state, done) state = next_state score += reward if done: break eps = max(eps * EPS_DECAY, EPS_MIN) scores_window.append(score) if episode % 99 == 0: mean_score = np.mean(scores_window) print('Progress {}/{}, average score:{:.2f}'.format(episode, MAX_EPISODES, mean_score)) mean_score = np.mean(scores_window) if mean_score >= 200: print('\rEnvironment solved in {} episodes, average score: {:.2f}'.format(episode, mean_score)) sys.stdout.flush() break end = time() print('Took {} seconds'.format(end - start)) ###Output State size: 8, action size: 4 Progress 99/2000, average score:-224.36 Progress 198/2000, average score:-64.88 Progress 297/2000, average score:-40.87 Progress 396/2000, average score:66.95 Progress 495/2000, average score:135.91 Progress 594/2000, average score:161.32 Progress 693/2000, average score:184.81 Progress 792/2000, average score:159.74 Progress 891/2000, average score:188.38 Progress 990/2000, average score:176.10 ###Markdown 4. Play epsiode and record it Use the trained model to play and record one episode. The recorded video will be stored into the `video`-subfolder on disk. ###Code import time FPS = 25 record_folder="video" env = gym.make('LunarLander-v2') env = gym.wrappers.Monitor(env, record_folder, force=True) state = env.reset() total_reward = 0.0 while True: start_ts = time.time() env.render() state = torch.from_numpy(state).float().unsqueeze(0).to(device) action_values = dqn_agent.q_network(state) action = np.argmax(action_values.cpu().data.numpy()) state, reward, done, _ = env.step(action) total_reward += reward if done: break delta = 1/FPS - (time.time() - start_ts) if delta > 0: time.sleep(delta) print("Total reward: %.2f" % total_reward) env.close() ###Output _____no_output_____
Big-Data-Clusters/CU8/Public/content/repair/tsg050-timeout-expired-waiting-for-volumes.ipynb
###Markdown TSG050 - Cluster create hangs with “timeout expired waiting for volumes to attach or mount for pod”===================================================================================================Description-----------The controller gets stuck during the `bdc create` create process.> Events: Type Reason Age From Message —- —— —- —- ——- Warning> FailedScheduling 12m (x7 over 12m) default-scheduler pod has unbound> immediate PersistentVolumeClaims (repeated 3 times) Normal Scheduled> 12m default-scheduler Successfully assigned> bdc/mssql-monitor-influxdb-0 to aks-nodepool1-32258814-0 Warning> FailedMount 1m (x5 over 10m) kubelet, aks-nodepool1-32258814-0 Unable> to mount volumes for pod> “mssql-monitor-influxdb-0\_bdc(888fb098-4857-11e9-92d1-0e4531614717)”:> timeout expired waiting for volumes to attach or mount for pod> “bdc”/“mssql-controller-0”. list of unmounted volumes=\[storage\].> list of unattached volumes=\[storage default-token-pj765\]NOTE: This Warning does often appear during a normally, but it shouldclear up with a couple of minutes.Steps----- Common functionsDefine helper functions used in this notebook. ###Code # Define `run` function for transient fault handling, suggestions on error, and scrolling updates on Windows import sys import os import re import json import platform import shlex import shutil import datetime from subprocess import Popen, PIPE from IPython.display import Markdown retry_hints = {} # Output in stderr known to be transient, therefore automatically retry error_hints = {} # Output in stderr where a known SOP/TSG exists which will be HINTed for further help install_hint = {} # The SOP to help install the executable if it cannot be found first_run = True rules = None debug_logging = False def run(cmd, return_output=False, no_output=False, retry_count=0, base64_decode=False, return_as_json=False): """Run shell command, stream stdout, print stderr and optionally return output NOTES: 1. Commands that need this kind of ' quoting on Windows e.g.: kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='data-pool')].metadata.name} Need to actually pass in as '"': kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='"'data-pool'"')].metadata.name} The ' quote approach, although correct when pasting into Windows cmd, will hang at the line: `iter(p.stdout.readline, b'')` The shlex.split call does the right thing for each platform, just use the '"' pattern for a ' """ MAX_RETRIES = 5 output = "" retry = False global first_run global rules if first_run: first_run = False rules = load_rules() # When running `azdata sql query` on Windows, replace any \n in """ strings, with " ", otherwise we see: # # ('HY090', '[HY090] [Microsoft][ODBC Driver Manager] Invalid string or buffer length (0) (SQLExecDirectW)') # if platform.system() == "Windows" and cmd.startswith("azdata sql query"): cmd = cmd.replace("\n", " ") # shlex.split is required on bash and for Windows paths with spaces # cmd_actual = shlex.split(cmd) # Store this (i.e. kubectl, python etc.) to support binary context aware error_hints and retries # user_provided_exe_name = cmd_actual[0].lower() # When running python, use the python in the ADS sandbox ({sys.executable}) # if cmd.startswith("python "): cmd_actual[0] = cmd_actual[0].replace("python", sys.executable) # On Mac, when ADS is not launched from terminal, LC_ALL may not be set, which causes pip installs to fail # with: # # UnicodeDecodeError: 'ascii' codec can't decode byte 0xc5 in position 4969: ordinal not in range(128) # # Setting it to a default value of "en_US.UTF-8" enables pip install to complete # if platform.system() == "Darwin" and "LC_ALL" not in os.environ: os.environ["LC_ALL"] = "en_US.UTF-8" # When running `kubectl`, if AZDATA_OPENSHIFT is set, use `oc` # if cmd.startswith("kubectl ") and "AZDATA_OPENSHIFT" in os.environ: cmd_actual[0] = cmd_actual[0].replace("kubectl", "oc") # To aid supportability, determine which binary file will actually be executed on the machine # which_binary = None # Special case for CURL on Windows. The version of CURL in Windows System32 does not work to # get JWT tokens, it returns "(56) Failure when receiving data from the peer". If another instance # of CURL exists on the machine use that one. (Unfortunately the curl.exe in System32 is almost # always the first curl.exe in the path, and it can't be uninstalled from System32, so here we # look for the 2nd installation of CURL in the path) if platform.system() == "Windows" and cmd.startswith("curl "): path = os.getenv('PATH') for p in path.split(os.path.pathsep): p = os.path.join(p, "curl.exe") if os.path.exists(p) and os.access(p, os.X_OK): if p.lower().find("system32") == -1: cmd_actual[0] = p which_binary = p break # Find the path based location (shutil.which) of the executable that will be run (and display it to aid supportability), this # seems to be required for .msi installs of azdata.cmd/az.cmd. (otherwise Popen returns FileNotFound) # # NOTE: Bash needs cmd to be the list of the space separated values hence shlex.split. # if which_binary == None: which_binary = shutil.which(cmd_actual[0]) # Display an install HINT, so the user can click on a SOP to install the missing binary # if which_binary == None: print(f"The path used to search for '{cmd_actual[0]}' was:") print(sys.path) if user_provided_exe_name in install_hint and install_hint[user_provided_exe_name] is not None: display(Markdown(f'HINT: Use [{install_hint[user_provided_exe_name][0]}]({install_hint[user_provided_exe_name][1]}) to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") else: cmd_actual[0] = which_binary start_time = datetime.datetime.now().replace(microsecond=0) print(f"START: {cmd} @ {start_time} ({datetime.datetime.utcnow().replace(microsecond=0)} UTC)") print(f" using: {which_binary} ({platform.system()} {platform.release()} on {platform.machine()})") print(f" cwd: {os.getcwd()}") # Command-line tools such as CURL and AZDATA HDFS commands output # scrolling progress bars, which causes Jupyter to hang forever, to # workaround this, use no_output=True # # Work around a infinite hang when a notebook generates a non-zero return code, break out, and do not wait # wait = True try: if no_output: p = Popen(cmd_actual) else: p = Popen(cmd_actual, stdout=PIPE, stderr=PIPE, bufsize=1) with p.stdout: for line in iter(p.stdout.readline, b''): line = line.decode() if return_output: output = output + line else: if cmd.startswith("azdata notebook run"): # Hyperlink the .ipynb file regex = re.compile(' "(.*)"\: "(.*)"') match = regex.match(line) if match: if match.group(1).find("HTML") != -1: display(Markdown(f' - "{match.group(1)}": "{match.group(2)}"')) else: display(Markdown(f' - "{match.group(1)}": "[{match.group(2)}]({match.group(2)})"')) wait = False break # otherwise infinite hang, have not worked out why yet. else: print(line, end='') if rules is not None: apply_expert_rules(line) if wait: p.wait() except FileNotFoundError as e: if install_hint is not None: display(Markdown(f'HINT: Use {install_hint} to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") from e exit_code_workaround = 0 # WORKAROUND: azdata hangs on exception from notebook on p.wait() if not no_output: for line in iter(p.stderr.readline, b''): try: line_decoded = line.decode() except UnicodeDecodeError: # NOTE: Sometimes we get characters back that cannot be decoded(), e.g. # # \xa0 # # For example see this in the response from `az group create`: # # ERROR: Get Token request returned http error: 400 and server # response: {"error":"invalid_grant",# "error_description":"AADSTS700082: # The refresh token has expired due to inactivity.\xa0The token was # issued on 2018-10-25T23:35:11.9832872Z # # which generates the exception: # # UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa0 in position 179: invalid start byte # print("WARNING: Unable to decode stderr line, printing raw bytes:") print(line) line_decoded = "" pass else: # azdata emits a single empty line to stderr when doing an hdfs cp, don't # print this empty "ERR:" as it confuses. # if line_decoded == "": continue print(f"STDERR: {line_decoded}", end='') if line_decoded.startswith("An exception has occurred") or line_decoded.startswith("ERROR: An error occurred while executing the following cell"): exit_code_workaround = 1 # inject HINTs to next TSG/SOP based on output in stderr # if user_provided_exe_name in error_hints: for error_hint in error_hints[user_provided_exe_name]: if line_decoded.find(error_hint[0]) != -1: display(Markdown(f'HINT: Use [{error_hint[1]}]({error_hint[2]}) to resolve this issue.')) # apply expert rules (to run follow-on notebooks), based on output # if rules is not None: apply_expert_rules(line_decoded) # Verify if a transient error, if so automatically retry (recursive) # if user_provided_exe_name in retry_hints: for retry_hint in retry_hints[user_provided_exe_name]: if line_decoded.find(retry_hint) != -1: if retry_count < MAX_RETRIES: print(f"RETRY: {retry_count} (due to: {retry_hint})") retry_count = retry_count + 1 output = run(cmd, return_output=return_output, retry_count=retry_count) if return_output: if base64_decode: import base64 return base64.b64decode(output).decode('utf-8') else: return output elapsed = datetime.datetime.now().replace(microsecond=0) - start_time # WORKAROUND: We avoid infinite hang above in the `azdata notebook run` failure case, by inferring success (from stdout output), so # don't wait here, if success known above # if wait: if p.returncode != 0: raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(p.returncode)}.\n') else: if exit_code_workaround !=0 : raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(exit_code_workaround)}.\n') print(f'\nSUCCESS: {elapsed}s elapsed.\n') if return_output: if base64_decode: import base64 return base64.b64decode(output).decode('utf-8') else: return output def load_json(filename): """Load a json file from disk and return the contents""" with open(filename, encoding="utf8") as json_file: return json.load(json_file) def load_rules(): """Load any 'expert rules' from the metadata of this notebook (.ipynb) that should be applied to the stderr of the running executable""" # Load this notebook as json to get access to the expert rules in the notebook metadata. # try: j = load_json("tsg050-timeout-expired-waiting-for-volumes.ipynb") except: pass # If the user has renamed the book, we can't load ourself. NOTE: Is there a way in Jupyter, to know your own filename? else: if "metadata" in j and \ "azdata" in j["metadata"] and \ "expert" in j["metadata"]["azdata"] and \ "expanded_rules" in j["metadata"]["azdata"]["expert"]: rules = j["metadata"]["azdata"]["expert"]["expanded_rules"] rules.sort() # Sort rules, so they run in priority order (the [0] element). Lowest value first. # print (f"EXPERT: There are {len(rules)} rules to evaluate.") return rules def apply_expert_rules(line): """Determine if the stderr line passed in, matches the regular expressions for any of the 'expert rules', if so inject a 'HINT' to the follow-on SOP/TSG to run""" global rules for rule in rules: notebook = rule[1] cell_type = rule[2] output_type = rule[3] # i.e. stream or error output_type_name = rule[4] # i.e. ename or name output_type_value = rule[5] # i.e. SystemExit or stdout details_name = rule[6] # i.e. evalue or text expression = rule[7].replace("\\*", "*") # Something escaped *, and put a \ in front of it! if debug_logging: print(f"EXPERT: If rule '{expression}' satisfied', run '{notebook}'.") if re.match(expression, line, re.DOTALL): if debug_logging: print("EXPERT: MATCH: name = value: '{0}' = '{1}' matched expression '{2}', therefore HINT '{4}'".format(output_type_name, output_type_value, expression, notebook)) match_found = True display(Markdown(f'HINT: Use [{notebook}]({notebook}) to resolve this issue.')) print('Common functions defined successfully.') # Hints for binary (transient fault) retry, (known) error and install guide # retry_hints = {'kubectl': ['A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond']} error_hints = {'kubectl': [['no such host', 'TSG010 - Get configuration contexts', '../monitor-k8s/tsg010-get-kubernetes-contexts.ipynb'], ['No connection could be made because the target machine actively refused it', 'TSG056 - Kubectl fails with No connection could be made because the target machine actively refused it', '../repair/tsg056-kubectl-no-connection-could-be-made.ipynb']]} install_hint = {'kubectl': ['SOP036 - Install kubectl command line interface', '../install/sop036-install-kubectl.ipynb']} ###Output _____no_output_____ ###Markdown Instantiate Kubernetes client ###Code # Instantiate the Python Kubernetes client into 'api' variable import os from IPython.display import Markdown try: from kubernetes import client, config from kubernetes.stream import stream if "KUBERNETES_SERVICE_PORT" in os.environ and "KUBERNETES_SERVICE_HOST" in os.environ: config.load_incluster_config() else: try: config.load_kube_config() except: display(Markdown(f'HINT: Use [TSG118 - Configure Kubernetes config](../repair/tsg118-configure-kube-config.ipynb) to resolve this issue.')) raise api = client.CoreV1Api() print('Kubernetes client instantiated') except ImportError: display(Markdown(f'HINT: Use [SOP059 - Install Kubernetes Python module](../install/sop059-install-kubernetes-module.ipynb) to resolve this issue.')) raise ###Output _____no_output_____ ###Markdown Get the namespace for the big data clusterGet the namespace of the Big Data Cluster from the Kuberenetes API.**NOTE:**If there is more than one Big Data Cluster in the target Kubernetescluster, then either:- set \[0\] to the correct value for the big data cluster.- set the environment variable AZDATA\_NAMESPACE, before starting Azure Data Studio. ###Code # Place Kubernetes namespace name for BDC into 'namespace' variable if "AZDATA_NAMESPACE" in os.environ: namespace = os.environ["AZDATA_NAMESPACE"] else: try: namespace = api.list_namespace(label_selector='MSSQL_CLUSTER').items[0].metadata.name except IndexError: from IPython.display import Markdown display(Markdown(f'HINT: Use [TSG081 - Get namespaces (Kubernetes)](../monitor-k8s/tsg081-get-kubernetes-namespaces.ipynb) to resolve this issue.')) display(Markdown(f'HINT: Use [TSG010 - Get configuration contexts](../monitor-k8s/tsg010-get-kubernetes-contexts.ipynb) to resolve this issue.')) display(Markdown(f'HINT: Use [SOP011 - Set kubernetes configuration context](../common/sop011-set-kubernetes-context.ipynb) to resolve this issue.')) raise print('The kubernetes namespace for your big data cluster is: ' + namespace) ###Output _____no_output_____ ###Markdown Get the name of controller pod ###Code label_selector = 'app=controller' name=api.list_namespaced_pod(namespace, label_selector=label_selector).items[0].metadata.name print ("Controller pod name: " + name) ###Output _____no_output_____ ###Markdown Set the text for look for in pod eventsSet the text to look for in pod events that demonstrates this TSG isapplicable to a current cluster state ###Code kind="Pod" precondition_text="timeout expired waiting for volumes to attach or mount for pod" ###Output _____no_output_____ ###Markdown Get events for a kubernetes resourcesGet the events for a kubernetes named space resource: ###Code V1EventList=api.list_namespaced_event(namespace) for event in V1EventList.items: if (event.involved_object.kind==kind and event.involved_object.name==name): print(event.message) ###Output _____no_output_____ ###Markdown PRECONDITION CHECK ###Code precondition=False for event in V1EventList.items: if (event.involved_object.kind==kind and event.involved_object.name==name): if event.message.find(precondition_text) != -1: precondition=True if not precondition: raise Exception("PRECONDITION NON-MATCH: 'tsg050-timeout-expired-waiting-for-volumes' is not a match for an active problem") print("PRECONDITION MATCH: 'tsg050-timeout-expired-waiting-for-volumes' is a match for an active problem in this cluster") ###Output _____no_output_____ ###Markdown Resolution----------Delete the pod that is stuck trying to mount a PV (Persisted Volume),the higher level kubernetes resource (statefulset, replicaset etc.) willre-create the Pod. ###Code run(f'kubectl delete pod/{name} -n {namespace}') ###Output _____no_output_____ ###Markdown Get the name of the new controller podGet the name of the new controller pod, and view the events to ensurethe issue has cleaned-up ###Code name=api.list_namespaced_pod(namespace, label_selector=label_selector).items[0].metadata.name print("New controller pod name: " + name) ###Output _____no_output_____ ###Markdown Get events for a kubernetes resourcesGet the events for a kubernetes named space resource: ###Code V1EventList=api.list_namespaced_event(namespace) for event in V1EventList.items: if (event.involved_object.kind==kind and event.involved_object.name==name): print(event.message) ###Output _____no_output_____ ###Markdown Validate the new controller pod gettings into a ‘Running’ state ###Code run('kubectl get pod/{name} -n {namespace}') print('Notebook execution complete.') ###Output _____no_output_____
Exercises/ANN/ANN.ipynb
###Markdown Artificial Neural NetworkThis notebook was created by Camille-Amaury JUGE, in order to better understand ANN principles and how they work.(it follows the exercices proposed by Hadelin de Ponteves on Udemy : https://www.udemy.com/course/le-deep-learning-de-a-a-z/) Imports ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt # scikit from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.model_selection import train_test_split, cross_val_score, RandomizedSearchCV from sklearn.metrics import confusion_matrix, accuracy_score # keras import keras from keras.models import Sequential from keras.layers import Dense, Dropout from keras.wrappers.scikit_learn import KerasClassifier ###Output Using TensorFlow backend. ###Markdown DatasetThe dataset deals with banking customer's account, with several information on each individuals. The major problem to explore is that some of the customers are leaving the bank for some reasons that we don't know. Our aim is then to find profile(s) which match the leaving conditions and find a solution to keep the customers matching. ###Code df = pd.read_csv("Churn_Modelling.csv") df.head() ###Output _____no_output_____ ###Markdown Firstly, we see that we only have categorical or continuous data. This will be easy do deal with by using sklearn encoders.Nextly, we want to check the different distribution of the dataset. ###Code df.isna().sum() df.describe().transpose().round() ###Output _____no_output_____ ###Markdown Here we can clearly see that :* The percentage of people who leaved is lower than 25% (which is quite comforting).* The distribution over the credit score is balanced (mean ~ median).* The distribution over the Balance is going lower meaning that there are more outliers with little of money (mean < median).* The distribution over the estimated Salary seems quite balanced too.* The overall age is also balanced between younger and older people (which may earns more) around 37 years old for the median ###Code pd.DataFrame(df["Geography"].value_counts().transpose()) ###Output _____no_output_____ ###Markdown Here, we can see that the Bank has collected the double of information in France than in Germany and Spain. Then the network could perform better on the France's customers. ###Code pd.DataFrame(df["Gender"].value_counts().transpose()) ###Output _____no_output_____ ###Markdown Then, the gender distribution is quite balanced, there is just less women. Pre-ProcessingWe will now convert categorical variables for the network, and also deal with useless variable such as id, name ... ###Code df_train = df.loc[:,df.columns[3:]] df_train.head() def label_encoder_converting(x): label_encoder = LabelEncoder() return label_encoder.fit_transform(x) df_train["Gender"] = label_encoder_converting(df_train["Gender"]) df_train.head() def one_hot_encoder_converting(x): one_hot_encoder = OneHotEncoder(handle_unknown='ignore') return one_hot_encoder.fit_transform(x).toarray() geo_df = pd.DataFrame(one_hot_encoder_converting(df_train[["Geography"]])) geo_df.head() ###Output _____no_output_____ ###Markdown Since we only have three values (following binary theory) and we have three columns, we will delete one which is useless. ###Code geo_df = geo_df.drop(labels=[0], axis=1) df_train = df_train.drop(labels=["Geography"], axis=1) df_train = pd.concat([df_train, geo_df], axis=1) df_train.head() y = df_train["Exited"] X = df_train.drop(labels=["Exited"], axis=1) ###Output _____no_output_____ ###Markdown We will now scale every values to help the network ###Code std_scaler = StandardScaler() X = pd.DataFrame(std_scaler.fit_transform(X)) X.head() X_train, X_test, y_train, y_test = train_test_split(X, y) ###Output _____no_output_____ ###Markdown Model creation ###Code def create_labels(labels, length): x_labels = [] for i in range(length): x_labels.append("Predicted {}".format(labels[i])) y_labels = [] for i in range(length): y_labels.append("Is {}".format(labels[i])) return (x_labels, y_labels) def heatmap_numbers(m, labels, title): lenght = len(labels) # Creating plot base config fig, ax = plt.subplots(figsize=(16,10)) im = ax.imshow(m, cmap="copper") # Creating labels (x_axis_labels, y_axis_labels) = create_labels(labels, lenght) # Positionning Labels on axis ax.set_xticks(np.arange(lenght)) ax.set_xticklabels(x_axis_labels) ax.set_yticks(np.arange(lenght)) ax.set_yticklabels(y_axis_labels) ax.grid(False) # Rotate labels on x axis plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Put values in each case for i in range(lenght): for j in range(lenght): text = ax.text(j, i, m[i, j], ha="center", va="center", color="red", fontsize="large") ax.set_title(title) fig.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Simple Hidden Layer ###Code # model creation clf_model_1 = Sequential() # Input layer and first Hidden Layer clf_model_1.add(Dense(units=6, activation="relu", kernel_initializer="uniform", input_dim=X_train.shape[1])) # OutputLayer clf_model_1.add(Dense(units=1, activation="sigmoid", kernel_initializer="uniform")) clf_model_1.summary() clf_model_1.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) clf_model_1.fit(X_train, y_train, validation_split=0.1, epochs=100) seuil = 0.5 y_pred = (clf_model_1.predict(X_test) > seuil) cf_matrix = confusion_matrix(y_test, y_pred) heatmap_numbers(cf_matrix, ["Staying", "Leaving"], "Simple Hidden Layer NN, confusion matrix") print("Accuracy on test set : {}".format(accuracy_score(y_test, y_pred))) ###Output Accuracy on test set : 0.8372 ###Markdown Two Hidden Layer ###Code clf_model_2 = Sequential() clf_model_2.add(Dense(units=6, activation="relu", kernel_initializer="uniform", input_dim=X_train.shape[1])) clf_model_2.add(Dense(units=3, activation="relu", kernel_initializer="uniform")) clf_model_2.add(Dense(units=1, activation="sigmoid", kernel_initializer="uniform")) clf_model_2.summary() clf_model_2.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) clf_model_2.fit(X_train.values, y_train, validation_split=0.1, epochs=100) seuil = 0.5 y_pred = (clf_model_2.predict(X_test) > seuil) cf_matrix = confusion_matrix(y_test, y_pred) heatmap_numbers(cf_matrix, ["Staying", "Leaving"], "Multi Hidden Layer NN, confusion matrix") print("Accuracy on test set : {}".format(accuracy_score(y_test, y_pred))) ###Output Accuracy on test set : 0.8328 ###Markdown Two Hidden Layer Increased ###Code clf_model_3 = Sequential() clf_model_3.add(Dense(units=10, activation="relu", kernel_initializer="uniform", input_dim=X_train.shape[1])) clf_model_3.add(Dense(units=6, activation="relu", kernel_initializer="uniform")) clf_model_3.add(Dense(units=1, activation="sigmoid", kernel_initializer="uniform")) clf_model_3.summary() clf_model_3.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) clf_model_3.fit(X_train.values, y_train, validation_split=0.1, epochs=100) seuil = 0.5 y_pred = (clf_model_3.predict(X_test) > seuil) cf_matrix = confusion_matrix(y_test, y_pred) heatmap_numbers(cf_matrix, ["Staying", "Leaving"], "Multi Hidden Improved Layer NN, confusion matrix") print("Accuracy on test set : {}".format(accuracy_score(y_test, y_pred))) ###Output Accuracy on test set : 0.8556 ###Markdown Cross ValidationNow that we have done some basic neural networks tests, we are going to try a more advanced method which is cross validation (K-Fold).We seek for a low variance(regularity in training) and a low biais (good accuracy) ###Code def build_classifier(): clf_model = Sequential() clf_model.add(Dense(units=10, activation="relu", kernel_initializer="uniform", input_dim=X_train.shape[1])) clf_model.add(Dense(units=6, activation="relu", kernel_initializer="uniform")) clf_model.add(Dense(units=1, activation="sigmoid", kernel_initializer="uniform")) clf_model.summary() clf_model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) return clf_model clf_1 = KerasClassifier(build_fn=build_classifier) k_fold_scores = cross_val_score(clf_1, X=X_train, y=y_train, cv=10, verbose=4, n_jobs=-1) k_fold_scores.mean().round(3) k_fold_scores.std().round(3) ###Output _____no_output_____ ###Markdown DropoutWe will explore here a way to counterbalance overfitting called dropout ###Code clf_model = Sequential() clf_model.add(Dense(units=10, activation="relu", kernel_initializer="uniform", input_dim=X_train.shape[1])) clf_model.add(Dropout(rate=0.1)) clf_model.add(Dense(units=6, activation="relu", kernel_initializer="uniform")) clf_model.add(Dropout(rate=0.1)) clf_model.add(Dense(units=1, activation="sigmoid", kernel_initializer="uniform")) clf_model.summary() ###Output Model: "sequential_4" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_9 (Dense) (None, 10) 120 _________________________________________________________________ dropout_1 (Dropout) (None, 10) 0 _________________________________________________________________ dense_10 (Dense) (None, 6) 66 _________________________________________________________________ dropout_2 (Dropout) (None, 6) 0 _________________________________________________________________ dense_11 (Dense) (None, 1) 7 ================================================================= Total params: 193 Trainable params: 193 Non-trainable params: 0 _________________________________________________________________ ###Markdown Improve by increasing hyperparametersUsing gridsearch or randomsearch to optimize ###Code def build_classifier(input_dim, layers_nb, function, kernel_init, optimizer): clf_model = Sequential() layers_nb = layers_nb.split("-") for i in range(len(layers_nb)): if i == 0: clf_model.add(Dense(units=int(layers_nb[i]), activation="relu", kernel_initializer=kernel_init, input_dim=input_dim)) elif i == len(layers_nb) - 1: clf_model.add(Dense(units=int(layers_nb[i]), activation=function, kernel_initializer=kernel_init)) else: clf_model.add(Dense(units=int(layers_nb[i]), activation="relu", kernel_initializer=kernel_init)) clf_model.compile(optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"]) return clf_model layer_nb = [] for i in range(3,11): # single-layer layer_nb.append("{}-1".format(i)) # multi-layer for j in range(2,i+1): layer_nb.append("{}-{}-1".format(i,j)) params = { "epochs": range(20,101,20), "optimizer":["adam", "rmsprop"], "function":["sigmoid"], "kernel_init":["uniform"], "input_dim":[X_train.shape[1]], "layers_nb":layer_nb } clf_1 = KerasClassifier(build_fn=build_classifier) rs_cv = RandomizedSearchCV(estimator=clf_1, param_distributions=params, scoring="accuracy", cv=10, verbose=1, n_jobs=-1) rs_cv = rs_cv.fit(X_train, y_train) rs_cv.best_params_ rs_cv.best_score_ ###Output _____no_output_____
Workshop2/notebooks/02 - Cross-validation and Grid Search.ipynb
###Markdown Cross-validation ###Code import matplotlib.pyplot as plt import numpy as np import sklearn sklearn.set_config(print_changed_only=True) from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split digits = load_digits() X_train, X_test, y_train, y_test = train_test_split( digits.data, digits.target) from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier cross_val_score(KNeighborsClassifier(), X_train, y_train, cv=5) from sklearn.model_selection import KFold, RepeatedStratifiedKFold cross_val_score(KNeighborsClassifier(), X_train, y_train, cv=KFold(n_splits=10, shuffle=True, random_state=42)) cross_val_score(KNeighborsClassifier(), X_train, y_train, cv=RepeatedStratifiedKFold(n_splits=10, n_repeats=10, random_state=42)) ###Output _____no_output_____ ###Markdown Grid Searches================= Grid-Search with build-in cross validation ###Code from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC ###Output _____no_output_____ ###Markdown Define parameter grid: ###Code import numpy as np rs = RepeatedStratifiedKFold(n_splits=5, n_repeats=2) param_grid = {'C': 10. ** np.arange(-3, 3), 'gamma' : 10. ** np.arange(-5, 0)} np.set_printoptions(suppress=True) print(param_grid) grid_search = GridSearchCV(SVC(), param_grid, verbose=3,cv=rs) ###Output _____no_output_____ ###Markdown A GridSearchCV object behaves just like a normal classifier. ###Code grid_search.fit(X_train, y_train) grid_search.predict(X_test) grid_search.score(X_test, y_test) grid_search.best_params_ grid_search.best_score_ grid_search.best_estimator_ # We extract just the scores scores = grid_search.cv_results_['mean_test_score'] scores = np.array(scores).reshape(6, 5) plt.matshow(scores) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(5), param_grid['gamma']) plt.yticks(np.arange(6), param_grid['C']); ###Output _____no_output_____ ###Markdown ExercisesUse GridSearchCV to adjust n_neighbors of KNeighborsClassifier. ###Code from sklearn.neighbors import KNeighborsClassifier param_grid = {'n_neighbors': [1, 3, 5, 7, 10]} grid = GridSearchCV(KNeighborsClassifier(), param_grid=param_grid, return_train_score=True) grid.fit(X_train, y_train) print("best parameters: %s" % grid.best_params_) print("Training set accuracy: %s" % grid.score(X_train, y_train)) print("Test set accuracy: %s" % grid.score(X_test, y_test)) results = grid.cv_results_ plt.plot(param_grid['n_neighbors'], results['mean_train_score'], label="train") plt.plot(param_grid['n_neighbors'], results['mean_test_score'], label="test") plt.legend() ###Output best parameters: {'n_neighbors': 1} Training set accuracy: 1.0 Test set accuracy: 0.9822222222222222
My_GAN_Learning_1D_Gaussian.ipynb
###Markdown ###Code import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from scipy.stats import norm import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Function to generate samples from Uniform [-1,1] for input for generator ###Code def sample_noise(M): z = np.float32(np.linspace(-1.0, 1.0, M) + np.random.random(M) * 0.01) return z sample_noise(10) ###Output _____no_output_____ ###Markdown PLOT METRICS ###Code def plot_fig(generate, discriminate): xs = np.linspace(-5, 5, 1000) plt.plot(xs, norm.pdf(xs, loc=mu, scale=sigma), label='p_data') r = 100 xs = np.float32(np.linspace(-3, 3, r)) xs_tensor = Variable(torch.from_numpy(xs.reshape(r, 1))) ds_tensor = discriminate(xs_tensor) ds = ds_tensor.data.numpy() plt.plot(xs, ds, label='decision boundary') n=1000 zs = sample_noise(n) plt.hist(zs, bins=20, density=True, label='noise') zs_tensor = Variable(torch.from_numpy(np.float32(zs.reshape(n, 1)))) gs_tensor = generate(zs_tensor) gs = gs_tensor.data.numpy() plt.hist(gs, bins=20, density=True, label='generated') plt.plot(xs, norm.pdf(xs, loc=np.mean(gs), scale=np.std(gs)), label='generated_dist') plt.legend() plt.xlim(-3,3) plt.ylim(0,5) plt.show() ###Output _____no_output_____ ###Markdown GENERATOR ###Code class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.l1 = nn.Linear(1, 10) self.l1_relu = nn.ReLU() self.l2 = nn.Linear(10, 10) self.l2_relu = nn.ReLU() self.l3 = nn.Linear(10, 1) def forward(self, input): output = self.l1(input) output = self.l1_relu(output) output = self.l2(output) output = self.l2_relu(output) output = self.l3(output) return output ###Output _____no_output_____ ###Markdown DISCRIMINATOR ###Code class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.l1 = nn.Linear(1, 10) self.l1_tanh = nn.Tanh() self.l2 = nn.Linear(10, 10) self.l2_tanh = nn.Tanh() self.l3 = nn.Linear(10, 1) self.l3_sigmoid = nn.Sigmoid() def forward(self, input): output = self.l1_tanh(self.l1(input)) output = self.l2_tanh(self.l2(output)) output = self.l3_sigmoid(self.l3(output)) return output def generator_criterion(d_output_g): return -0.5 * torch.mean(torch.log(d_output_g)) def discriminator_criterion(d_output_true, d_output_g): return -0.5 * torch.mean(torch.log(d_output_true) + torch.log(1-d_output_g)) mu = 2 sigma = 0.2 M = 200 discriminate = Discriminator() generate = Generator() plot_fig(generate, discriminate) epochs = 500 histd, histg = np.zeros(epochs), np.zeros(epochs) k = 20 ###Output _____no_output_____ ###Markdown TRAIN ###Code discriminate_optimizer = torch.optim.SGD(discriminate.parameters(), lr=0.1, momentum=0.6) generate_optimizer = torch.optim.SGD(generate.parameters(), lr=0.01, momentum=0.6) for i in range(epochs): for j in range(k): discriminate.zero_grad() x = np.float32(np.random.normal(mu, sigma, M)) z = sample_noise(M) z_tensor = Variable(torch.from_numpy(np.float32(z.reshape(M, 1)))) x_tensor = Variable(torch.from_numpy(np.float32(x.reshape(M, 1)))) g_out = generate(z_tensor) d_out_true = discriminate(x_tensor) d_out_g = discriminate(g_out) loss = discriminator_criterion(d_out_true, d_out_g) loss.backward() discriminate_optimizer.step() histd[i] = loss.data.numpy() generate.zero_grad() z = sample_noise(M) z_tensor = Variable(torch.from_numpy(np.float32(z.reshape(M, 1)))) g_out = generate(z_tensor) d_out_g = discriminate(g_out) loss = generator_criterion(d_out_g) loss.backward() generate_optimizer.step() histg[i] = loss.data.numpy() if i % 10 == 0: for param_group in generate_optimizer.param_groups: param_group['lr'] *= 0.999 for param_group in discriminate_optimizer.param_groups: param_group['lr'] *= 0.999 if i % 50 == 0: plt.clf() plot_fig(generate, discriminate) plt.draw() #LOSS CONVERGE plt.plot(range(epochs), histd, label='Discriminator') plt.plot(range(epochs), histg, label='Generator') plt.legend() plt.show() plot_fig(generate, discriminate) plt.show() ###Output _____no_output_____
CNN_Speech_Keyword_Recognition.ipynb
###Markdown For convenience, we can increase the display width of the Notebook to make better use of widescreen format ###Code from IPython.core.display import display, HTML display(HTML("<style>.container { width:90% !important; }</style>")) ###Output _____no_output_____ ###Markdown Next, we will import all the libraries that we need. ###Code import numpy as np import tensorflow as tf from tensorflow import keras from pathlib import Path from scipy.io import wavfile import python_speech_features from tqdm.notebook import tqdm from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from livelossplot import PlotLossesKeras import sounddevice as sd %matplotlib inline import matplotlib.pyplot as plt from datetime import datetime from scipy.signal import butter, sosfilt from timeit import default_timer as timer from IPython.display import clear_output ###Output _____no_output_____ ###Markdown The Google Speech Command Dataset which we'll be using contains 30 different words, 20 core words and 10 auxiliary words. In this project we'll be using only the 20 core words.We can define ourselves a dictionary that maps each different word to a number and a list that does the inverse mapping. This is necessary because we need numerical class labels for our Neural Network. ###Code word2index = { # core words "yes": 0, "no": 1, "up": 2, "down": 3, "left": 4, "right": 5, "on": 6, "off": 7, "stop": 8, "go": 9, "zero": 10, "one": 11, "two": 12, "three": 13, "four": 14, "five": 15, "six": 16, "seven": 17, "eight": 18, "nine": 19, } index2word = [word for word in word2index] ###Output _____no_output_____ ###Markdown Next, we will go trough the dataset and save all the paths to the data samples in a list.You can download the Google Speech Commands dataset [here](http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz) (1.4 GB!)and decompress it (e.g. with 7zip). Define the path where you stored the decommpressed dataset as *speech_commands_dataset_basepath*.The dataset doesn't contain an equal number of samples for each word, but it contains >2000 valid samples for each of the 20 core words.Each sample is supposed to be exactly 1s long, which at a sampling rate of 16kHz and 16bit quantization should result in 32044 Byte large files.Somehow some samples in the dataset are not exactly that size, we skip those.Additionally we'll use a nice [tqdm](https://tqdm.github.io/) progress bar to make it more fancy. In the end, we should have gathered a total of 40000 samples. ###Code num_classes = len(word2index) num_samples_per_class = 2000 speech_commands_dataset_basepath = Path(r"C:\Users\tunin\Desktop\Marcel_Python\speech_command_dataset") print("loading dataset...") samples = [] classes = [] with tqdm(total=num_samples_per_class*20) as pbar: for word_class in word2index: folder = speech_commands_dataset_basepath / word_class # sub-folder for each word count = 0 for file in folder.iterdir(): # iterate over all files in the folder # somehow, there are samples which aren't exactly 1 s long in the dataset. ignore those if file.stat().st_size == 32044: samples.append(file) # store path of sample file classes.append(word2index[word_class]) # append word class index to list count +=1 pbar.update() if count >= num_samples_per_class: break classes = np.array(classes, dtype=np.int) ###Output loading dataset... ###Markdown Next we'll define two functions to compute some [features](https://en.wikipedia.org/wiki/Feature_(machine_learning)) of the audio samples and another function which loads the sample wav-file and then computes the features. Before computing features, it is a good idea to normalize our input data. Depending on your recording device and other parameters, the amplitudes of the recorded audio signals may vary drastically and might even have an offset. Thus we can subtract the mean value to remove the offset and divide by the absolute maximum value of the signal, so that it's new range lies between -1.0 and +1.0.In this case, we'll use the so called "Mel-Frequency Cepstrum Coefficients", which are very commonly used for speech recognition tasks. The MFCCs are computed as follows:* Apply a simple pre-emphasis filter to the signal, to emphasize higher frequencies (optional): $y_t \leftarrow y_t - \alpha \cdot y_{t-1} \hspace{1mm} , \hspace{2mm} t=1...T$ * Extract snippets from the audio signal. A good choice for the length of the snippets is 25ms. The stride between snippets is 10ms, so the snippets will overlap. To "cut" the snippets from the audio signal, a window like the Hamming window is appropriate to mitigate the leakage effect when performing the Fourier Transform in the next step.* Calculate the FFT of the signal and then the power spectrum, i.e. the squared magnitude of the spectrum for each snippet.* Apply a Mel filterbank to the power spectrum of each snippet. The [Mel scale](https://en.wikipedia.org/wiki/Mel_scale) is a scale, that takes into account the fact, that in human auditory perception, the perceivable pitch (i.e. frequency) changes decrease with higher frequencies. This means e.g. that we can distinguish much better between a 200Hz and 300Hz tone than between a 10200 Hz and a 10300 Hz tone even though the absolute difference is the same. The filterbank consists of $N=40$ triangular filters evenly spaced in the Mel scale (and nonlinearly spaced in frequency scale). These filters are multiplied with the power spectrum, which gives us the sum of "energies" in each filter. Additionally, we take the log() of these energies.* The log-energies of adjacent filters usually correlate strongly. Therefore, a [Discrete Cosine Transform](https://en.wikipedia.org/wiki/Discrete_cosine_transform) is applied to the log filterbank energies of each snippet. The resulting values are called *Cepstral coefficients*. The zeroth coefficient represents the average log-energy in each snippet, it may or may not be discarded (here we'll keep it as a feature). Usually, only a subset, e.g. the first 8-12 Cepstral coefficients are used (here we'll use 20), the rest are discarded For more details about MFCC, a good source is: *pp. 85-72 in K.S. Rao and Manjunath K.E., "Speech Recognition Using Articulatory and Excitation Source Features", 2017, Springer* (pp. 85-92 available for preview at [https://link.springer.com/content/pdf/bbm%3A978-3-319-49220-9%2F1.pdf])Thankfully we don't have to implement the MFCC computation ourselves, we'll use the library [python_speech_features](https://python-speech-features.readthedocs.io/en/latest/). ###Code # compute MFCC features from audio signal def audio2feature(audio): audio = audio.astype(np.float) # normalize data audio -= audio.mean() audio /= np.max((audio.max(), -audio.min())) # compute MFCC coefficients features = python_speech_features.mfcc(audio, samplerate=16000, winlen=0.025, winstep=0.01, numcep=20, nfilt=40, nfft=512, lowfreq=100, highfreq=None, preemph=0.97, ceplifter=22, appendEnergy=True, winfunc=np.hamming) return features # load .wav-file, add some noise and compute MFCC features def wav2feature(filepath): samplerate, data = wavfile.read(filepath) data = data.astype(np.float) # normalize data data -= data.mean() data /= np.max((data.max(), -data.min())) # add gaussian noise data += np.random.normal(loc=0.0, scale=0.025, size=data.shape) # compute MFCC coefficients features = python_speech_features.mfcc(data, samplerate=16000, winlen=0.025, winstep=0.01, numcep=20, nfilt=40, nfft=512, lowfreq=100, highfreq=None, preemph=0.97, ceplifter=22, appendEnergy=True, winfunc=np.hamming) return features ###Output _____no_output_____ ###Markdown If we compute the features for one audio sample, we see that the feature shape is (99, 20). The first index is that of the 10ms long snippet of the 1s long audio signal, so we have 1s/10ms-1=99 snippets. The second dimension is the number of MFC coefficients, in this case we have 20.Now we can load all audio samples and pre-compute the MFCC features for each sample. Note that this will take quite a long time! ###Code feature_shape = wav2feature(samples[0]).shape features = np.empty((num_classes*num_samples_per_class, )+(feature_shape), dtype=np.float) print("features.shape", features.shape) print("pre-computing features from audio files...") with tqdm(total=num_samples_per_class*num_classes) as pbar: for k, sample in enumerate(samples): features[k] = wav2feature(sample) pbar.update() ###Output features.shape (40000, 99, 20) pre-computing features from audio files... ###Markdown Now we can save the pre-computed training dataset containing the features of the training samples and their class labels. This way, we won't have to re-compute the features next time. ###Code # save computed features and classes to hard drive np.save("mfcc_plus_energy_features_40000x99x20", features) np.save("classes", np.array(classes, dtype=np.int)) ###Output _____no_output_____ ###Markdown We can load the pre-computed features and class labels as follows: ###Code # load pre-computed training features dataset and training class labels features = np.load("mfcc_plus_energy_features_40000x99x20.npy") classes = np.load("classes.npy") ###Output _____no_output_____ ###Markdown Now the next thing to do is divide our dataset into a training dataset and a validation dataset. The training dataset is used for training our Neural Network, i.e. the Neural Network will learn to correctly predict a sample's class label based on it's features.One problem that can occur in Machine Learning is so called *Overfitting*. Our basic goal is to train our Neural Network so that it does not only classify the training samples correctly, but also new samples, which it has never "seen" before. This is called *Generalization*. But with complex networks it can happen that instead of really learning to classify samples based on their features, the network simply "learns by heart" to which class each training sample belongs. This is called Overfitting. In this case, the network will perform great on the training data, but poorly on new previously unseen data.One method to mitigate, is the use of a separate validation dataset. So we split the whole dataset, and use a small subset (e.g. here one third of the data) for validation, the rest is our training set. Now during training, only the training dataset will be used to calculate the weigths of the Neural Network (which is the "learning" part). After each epoch (i.e. once all training samples have been considered once), we will tell the network to try and predict the class labels of all samples in our validation dataset and based on that, calculate the accuracy on the validation set.So during training, after each training epoch, we can look at the accuracy of the network on the training set and on the validation set. At the beginning of the training, both accuracies will typically improve. At one point we might see that the validation accuracy plateaus or evendecreases, while the training accuracy still improves. This indicates that the network is starting to overfit, thus it is a good time to stop the training.Another method to mitigate overfitting is the use of so called [Dropout-Layers](https://en.wikipedia.org/wiki/Dilution_(neural_networks)) which randomly set a subset of the weigths of a layer to zero. In this project, we won't use them. ###Code train_data, validation_data, train_classes, validation_classes = train_test_split(features, classes, test_size=0.30, random_state=42, shuffle=True) ###Output _____no_output_____ ###Markdown The next step is to define our Neural Network's architecture. The network can be described by a sequence of layers. For this task we will implement a [Convolutional Neural Network (CNN)](https://en.wikipedia.org/wiki/Convolutional_neural_network). The two main characteristics of CNNs are convolutional layers and pooling layers.Convolutional layers convolve a filter vector (1D) or matrix (2D) with the input data. The main advantage of convolutional layers (and thus of CNNs) is, that they can achieve a high degree of shift-/translation-invariance. Picture the following example: we have two 2s long recordings of the same spoken word, but in one recording the word is right at the beginning of the recording, and in the other one at the end. Now a conventional Neural Network might have a hard time learning to recognize the words, because it expects certain features at certain position in time. Another example migth be an image classifier that recognizes objects well if they're all in the center of the image and in the same orientation, but fails if the objects are in a corner of the image or rotated. So we want the network to be invariant to translations and rotations of the features, i.e. recognize features regardless of their position in time (e.g. in case of audio) or space (e.g. in case of an image). A convolutional layer needs 3 parameters:* filter size $F$: width (1D) or height and width (2D) of filter vector/matrix. Determines number of weigths of the layer.* stride $S$: determines the step size with which we move the filter across the signal or image* padding $P$: pad the input data with zeros The size of the convolutional layer's output is: $W_{out}=\frac{W_{in}-F-2P}{S}+1$ In Keras, the default stride is one and the default padding is zero.A pooling layer is somewhat similar in that it also convolves a "filter"-vector/matrix across the input with a certain stride and possibly padding. But instead of multiplying the input values with the filter values, the pooling layer computes either the average or maximum value of the values. Max-pooling layers are commonly used, average pooling rarely. So e.g. a 3x3 max-pooling layer will slide a 3x3-filter over the input and deliver the maximum of the 3*3=9 values as output. In contrary to the convolutional layer, a pooling layer introduces no additional weights. The output size of a pooling layer can be calculated with the same formula as for the convolutional layer. In Keras, the default stride is equal to the filter size and the default padding is zero. In this case the formula simplifies to: $W_{out}=\frac{W_{in}-F-2P}{S}+1=\frac{W_{in}-F}{F}+1=\frac{W_{in}}{F}$ A max-pooling layer achieves a down-sampling of the feature vector/matrix and also a translation/shift-invariance of the features. It is common to use a pooling layer after a convolution layer. We'll be creating our CNN model using keras' [Sequential](https://keras.io/guides/sequential_model/) model. At first, we add an input layer whose input size matches the dimensions of our MFCC features. In this case wee have 20 MFC coefficients and 99 timeframes, thus the feature matrix for an audio sample is of size (99, 20). In Keras, the input shapes are by default as follows:* (batch, axis, channel): one-dimensional data with $\geq$1 channels. This most commonly represents a timeseries, i.e. a number of features that change over time. In our case, the (99, 20) feature matrix is interpreted as a time series (i.e. axis represents time(-frame)) with 20 channels (the MFC coefficients. We can perform a 1D-convolution on such data.* (batch, axis0, axis1, channel): two-dimensional data with $\geq$1 channels. This is most often a color image, where axis0 and axis1 are the horizontal and vertical position of an image pixel and each pixel has 3 channels for the red, green and blue color values. We can perform a 2D-convolution on such data.* (batch, axis0, axis1, ..., axisN-1, channel): n-dimensional data with $\geq$1 channels.Now you may wonder about the batch dimension. This is another dimension that specifies the number of samples, because during training we often load batches of more than one sample in one iteration to average the gradients during optimization. In Keras, during model specification the batch dimension is ignored, so we won't have to specify it explicitly. But as you can see, our *features* variable, which contains all training samples has the shape (40000, 99, 20), so its first axis is the batch dimension. This way when we'll later pass the training data to the *fit()*-function, it can fetch a batch, i.e. a subset of the dataset for each training iteration.Next, we add a 1-D convolutional layer ([Conv1D](https://keras.io/api/layers/convolution_layers/convolution1d/)). This layer performs a one dimensional convolution along the (in our case) time (or more precisely timeframe) axis. The first argument is the number of filters to apply. Most often we use many filters, thus performing the convolution multiple times with different filter kernels. This way, the number of channels of the convolutional layer's output is the number of filters used. The second argument is the kernel size, this is the size of our convolution filter. At last, we specify an activation function used, in this case the ReLU-function is used. After the first convolutional layer, we add a max pooling layer with a size of 3 that reduces the data size along the time axis. Note that in case the division is fractional, the resulting size will be the floor value.Such a combination of convolutional layer and pooling layer is very common in CNNs. The main idea is to repeatedly stack convolution and pooling layers, so that the dimension (in time or space) of the input data is subsequently reduced, while the feature space dimensionality (i.e. number of channels) increases. Next, we add two more stacks of convolutional and max pooling layer. For the last pooling layer, we use a global pooling layer, which behaves just like the normal pooling layer, but with a filter that spans the whole axis size. After the global max pooling operation, our data is one-dimensional, with the time axis completely removed and only the feature dimension remaining.In the next step, we add a couple of fully connected (Keras calles them "dense") layers, just like in a regular Multi Layer Perceptron (MLP). Each layer reduces the feature dimensionality, so that the last layer has an output dimension equal to the number of different classes (in our case words). Using the Softmax activation function on the last dense layer, we can interpret the networks output as an a posteriori probability distribution of the sample belonging to a certain class, given the audio sample's input features. ###Code keras.backend.clear_session() # clear previous model (if cell is executed more than once) ### CNN MODEL DEFINITION ### model = keras.models.Sequential() model.add(keras.layers.Input(shape=(99, 20))) model.add(keras.layers.Conv1D(64, kernel_size=8, activation="relu")) model.add(keras.layers.MaxPooling1D(pool_size=3)) model.add(keras.layers.Conv1D(128, kernel_size=8, activation="relu")) model.add(keras.layers.MaxPooling1D(pool_size=3)) model.add(keras.layers.Conv1D(256, kernel_size=5, activation="relu")) model.add(keras.layers.GlobalMaxPooling1D()) model.add(keras.layers.Dense(128, activation="relu")) model.add(keras.layers.Dense(64, activation="relu")) model.add(keras.layers.Dense(num_classes, activation='softmax')) # print model architecture model.summary() ###Output Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv1d (Conv1D) (None, 92, 64) 10304 _________________________________________________________________ max_pooling1d (MaxPooling1D) (None, 30, 64) 0 _________________________________________________________________ conv1d_1 (Conv1D) (None, 23, 128) 65664 _________________________________________________________________ max_pooling1d_1 (MaxPooling1 (None, 7, 128) 0 _________________________________________________________________ conv1d_2 (Conv1D) (None, 3, 256) 164096 _________________________________________________________________ global_max_pooling1d (Global (None, 256) 0 _________________________________________________________________ dense (Dense) (None, 128) 32896 _________________________________________________________________ dense_1 (Dense) (None, 64) 8256 _________________________________________________________________ dense_2 (Dense) (None, 20) 1300 ================================================================= Total params: 282,516 Trainable params: 282,516 Non-trainable params: 0 _________________________________________________________________ ###Markdown Now that our CNN model is defined, we can configure it for training. Therefore we choose an optimization algorithm, e.g. Stochastic Gradient Descent (SGD) or ADAM. Additionally, we need to specify a loss function for training. The loss function determines, how the performance of the network is evaluated. In this case, we have a multi-class classification problem, where the class labels are represented as integer values. In this case, the sparse categorical cross-entropy loss can be used. If our class labels were encoded using a one-hot encoding scheme, we would use the normal (non-sparse) variant. As a metric we specify the accuracy so that after every epoch, the accuracy of the network is computed. ###Code sgd = keras.optimizers.SGD() loss_fn = keras.losses.SparseCategoricalCrossentropy() # use Sparse because classes are represented as integers not as one-hot encoding model.compile(optimizer=sgd, loss=loss_fn, metrics=["accuracy"]) ###Output _____no_output_____ ###Markdown Before starting the training, it can be useful to define an early stopping criterion in order to avoid overfitting as explained previously. We define a callback function which checks if the accuracy on the validation set has increased in the last 5 epochs and stops training if this is not the case. After stopping, the model is reverted to the state (i.e. the weigths) which had achieved the best result. We'll also use the [livelossplot](https://github.com/stared/livelossplot) library, which provides functions to plot a live graph of the accuracy and loss metrics during training. We pass the plot function as a callback too.Finally, we can start training using *model.fit()*. We specify the training and validation dataset, the max number of epochs to train, the callbacks and the batch size. In this case, a batch size of 32 is used, so that in every iteration, a batch of 32 samples is used to compute the gradient. Especially when using SGD, the batch size influences the training. In each iteration, the average of the gradients for the batch is computed and used to update the weights. A smaller batch leads to a "noisy" gradient which can be good to explore the weigth space further (and not get stuck very early in a local minimum), but affects convergence towards the end of training negatively. A larger batch leads to less noisy gradients, so that larger steps can be made (i.e. a higher learning-rate) which lead to faster training. Additionally, larger batches tend to reduce computation overhead. A batch size of one would be "pure" stochastic gradient descent, while a batch equal to the whole training set would be considered standard (i.e. non-stochastic) gradient descent. With a batch size in between (often called "mini batch"), a good compromise can be found. Sidenote: It seems that matplotlib's *notebook* mode (which is for use in Jupyter Notebooks) doesn't work well with the live plotting, so we use *inline* mode. ###Code early_stopping = tf.keras.callbacks.EarlyStopping(monitor="val_accuracy", patience=5, restore_best_weights=True) plt.close() history = model.fit(train_data, train_classes, batch_size=32, epochs=100, validation_data=(validation_data, validation_classes), callbacks=[PlotLossesKeras(), early_stopping]) ###Output _____no_output_____ ###Markdown As we can see, during the training, the losses decrease and the accuracy increases.After training, we can save our model for later use if we want to. ###Code # save model model.save(datetime.now().strftime("%d_%m_%Y__%H_%M")+".h5") # load model model = keras.models.load_model("05_08_2020__19_23.h5") ###Output _____no_output_____ ###Markdown Another useful tool for evaluating a classifier's performance is a so called confusion matrix.To compute the confusion matrix, we use our network to predict the class labels of all samples in the validation set.The confusion matrix plots the probability with which a sample of a certain class is classified as belonging to a certain class. Thus, the values on the matrix' diagonal represent the correct classifications and those outside the diagonal the incorrect classifications. The matrix is thus by nanture symmetric. The interesting thing to see is that the confusion matrix allows us to see if a certain pair of class labels are often falsely classified, i.e. confused with each other. If two classes would often be confused (e.g. because two words sound very similar) we would find a high value outside the diagonal. For example, if we look closely at the matrix below, we can see a slightly larger value (darker color) at "go"-"no". This means that these two words are more often confused with eachother, which is plausible since they sound very similar. The ideal result would be a value of $\frac1N$ ($N$=number of classes) on the diagonals (assuming classes are equally represented in the dataset) and zeros everywhere outside the diagonal. ###Code # plot confusion matrix y = np.argmax(model.predict(validation_data), axis=1) cm = confusion_matrix(validation_classes, y, normalize="all") %matplotlib inline plt.close() plt.figure(figsize = (8,8)) plt.imshow(cm, cmap=plt.cm.Blues) plt.xlabel("Predicted labels") plt.ylabel("True labels") plt.xticks(np.arange(0, 20, 1), index2word, rotation=90) plt.yticks(np.arange(0, 20, 1), index2word) plt.tick_params(labelsize=12) plt.title('Confusion matrix ') plt.colorbar() plt.show() ###Output _____no_output_____ ###Markdown Ok, now we can try the keyword recognizer ourselves! To easily record and play audio, we'll use the library [sounddevice](https://python-sounddevice.readthedocs.io/en/0.4.0/index.html). One thing to consider is, that we have created our CNN model so that it accepts an input feature vector that corresponds to an audio snippet of exactly 1s length at 16kHz sampling rate, i.e. 16000 samples. So we could record for exactly 1s, but this is not very practical, as you would have to say the word just at the right time after starting the recording so that it lies within the 1s time window. A more elegant solution is to record for a longer duration, e.g. 3s and then extract a 1s long snippet which we can then feed to our CNN. For this simple case we'll assume that the user says only one word during the recording, so we extract the 1s long snippet of the recording which contains the maximum signal energy. This sounds complicated, but can be quite easily computed using a [convolution](https://en.wikipedia.org/wiki/Convolution). First, we compute the power signal by element-wise squaring the audio signal. Then we create a 1s (i.e. 16000 points) long rectangle window and convolve the power signal with the window. We use ["valid" mode](https://numpy.org/doc/stable/reference/generated/numpy.convolve.html) which means that only points where the signals overlap completely are computed (i.e. no zero-padding). This way, by computing the time at which the convolution is maximal, we get the starting time of the rectangle window which leads to maximal signal energy in the extracted snippet. We can then extract a 1s long snippet from the recording.After defining a function to extract the 1s snippet, we configure the samplerate and device for recording. You can find out the number of the devices via *sd.query_devices()*. After recording for 3s and extracting the 1s snippet we can play it back. Then we compute the MFCC features and add a "fake" batch dimension to our sample before feeding it into our CNN mmodel for prediction. This is needed because the model expects batches of $\geq1$ samples as input, so since we have only one sample, we append a dimension to get a batch of one single sample. Additionally, we'll time the computation and model prediction to see how fast it is. We can normalize the CNN model's output to get a probability distribution (not strictly mathematical, but we can interpret it that way). Then we get the 3 candidates with highest probability and print the result. We'll also plot the raw audio signal and visulize the MFC coefficients. ###Code def extract_loudest_section(audio, length): audio = audio[:, 0].astype(np.float) # to avoid integer overflow when squaring audio_pw = audio**2 # power window = np.ones((length, )) conv = np.convolve(audio_pw, window, mode="valid") begin_index = conv.argmax() return audio[begin_index:begin_index+length] sd.default.samplerate = 16000 sd.default.channels = 1, 2 # mono record, stereo playback recording = sd.rec(int(3*sd.default.samplerate), channels=1, samplerate=sd.default.samplerate, dtype=np.float, blocking=True) recording = extract_loudest_section(recording, int(1*sd.default.samplerate)) # extract 1s snippet with highest energy (only necessary if recording is >3s long) sd.play(recording, blocking=True) t1 = timer() recorded_feature = audio2feature(recording) t2 = timer() recorded_feature = np.expand_dims(recorded_feature, 0) # add "fake" batch dimension 1 prediction = model.predict(recorded_feature).reshape((20, )) t3 = timer() # normalize prediction output to get "probabilities" prediction /= prediction.sum() # print the 3 candidates with highest probability prediction_sorted_indices = prediction.argsort() print("candidates:\n-----------------------------") for k in range(3): i = int(prediction_sorted_indices[-1-k]) print("%d.)\t%s\t:\t%2.1f%%" % (k+1, index2word[i], prediction[i]*100)) print("-----------------------------") print("feature computation time: %2.1f ms" % ((t2-t1)*1e3)) print("CNN model prediction time: %2.1f ms" % ((t3-t2)*1e3)) print("total time: %2.1f ms" % ((t3-t1)*1e3)) plt.close() plt.figure(1, figsize=(10, 7)) plt.subplot(211) plt.plot(recording) plt.subplot(212) plt.imshow(recorded_feature.reshape(99, 20).T, aspect="auto") plt.show() ###Output candidates: ----------------------------- 1.) yes : 99.8% 2.) no : 0.1% 3.) left : 0.0% ----------------------------- feature computation time: 5.3 ms CNN model prediction time: 92.4 ms total time: 97.7 ms ###Markdown As we see in this case, the results look really good. If the probability for the best candidate is very high and those of the second-best and third-best candidates are pretty low, the prediction seems quite trustworthy. Additionally, we can see that the feauture computation and CNN model prediction are quite fast. The total execution time is around 100ms, which means that our method is quite able to work in "real-time". So now let's adapt and extend this little demo to work in real-time. For this, we'll use a buffer that contains 5 succeeding snippets of 3200 samples, i.e. 200ms each. We implement this audio buffer as a ringbuffer, which means that every time a new 200ms long snippet has been recorded, the oldest snippet in the buffer is discarded, the buffer is moved one step back and the newest snippet is put at the last position. This way, our buffer is updated every 200ms and always contains the last 1s of recorded audio. Since our prediction takes approximately 100ms and we have 200ms between each update, we have enough time for computation and achieve a latency of <200ms (so I think it can be considered "real time" in this context). To implement the buffer in python, we can make use of numpy's [roll()](https://numpy.org/doc/stable/reference/generated/numpy.roll.html) function. We roll our buffer with a step of -1 along the first axis, which means that all 5 snippets are shifted to the left and the first snippet rolls over to the last position. Then we replace the snippet at the last position (which is the oldest snippet we whish to discard) with the newest snippet. We define a callback function with an appropriate signature for the sounddevice Stream API (see [here](https://python-sounddevice.readthedocs.io/en/0.4.0/api/streams.htmlsounddevice.Stream)) that updates the audio buffer and makes a new prediction each time a new snippet is recorded. We use a simple threshold of 70% probability to check if a word has been recognized. When a word is recognized, it will also appear in the buffer after the next couple of updates, so it will be recognized more than once in a row. To avoid this, we can implement a timeout that ignores a recognized word, if the same word has already been recognized shortly before. ###Code audio_buffer = np.zeros((5, 3200)) last_recognized_word = None last_recognition_time = 0 recognition_timeout = 1.0 def audio_stream_callback(indata, frames, time, status): global audio_buffer global model global index2word global last_recognized_word global last_recognition_time audio_buffer = np.roll(audio_buffer, shift=-1, axis=0) audio_buffer[-1, :] = np.squeeze(indata) t1 = timer() recorded_feature = audio2feature(audio_buffer.flatten()) recorded_feature = np.expand_dims(recorded_feature, 0) # add "fake" batch dimension 1 t2 = timer() prediction = model.predict(recorded_feature).reshape((20, )) # normalize prediction output to get "probabilities" prediction /= prediction.sum() #print(prediction) best_candidate_index = prediction.argmax() best_candidate_probability = prediction[best_candidate_index] t3 = timer() if(best_candidate_probability > 0.7): # treshold word = index2word[best_candidate_index] if( (timer()-last_recognition_time)>recognition_timeout or word!=last_recognized_word ): last_recognition_time = timer() last_recognized_word = word clear_output(wait=True) # clear ouput as soon as new output is available to replace it print("%s\t:\t%2.1f%%" % (word, best_candidate_probability*100)) print("-----------------------------") ###Output _____no_output_____ ###Markdown Now we can finally start the real-time demo of our CNN keyword recognizer. Therefore we start an input stream which calls our callback function each time a new block of 3200 samples has been recorded. We'll let the recognizer run for one minute so we have plenty of time to try it out. ###Code # REALTIME KEYWORD RECOGNITION DEMO (60s long) with sd.InputStream(samplerate=16000, blocksize=3200, device=None, channels=1, dtype="float32", callback=audio_stream_callback): sd.sleep(60*1000) ###Output stop : 99.0% -----------------------------
quiz/m7/m7l6/calculate_shap.ipynb
###Markdown Calculate Shapley values Shapley values as used in coalition game theory were introduced by William Shapley in 1953. [Scott Lundberg](http://scottlundberg.com/) applied Shapley values for calculating feature importance in [2017](http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf). If you want to read the paper, I recommend reading: Abstract, 1 Introduction, 2 Additive Feature Attribution Methods, (skip 2.1, 2.2, 2.3), and 2.4 Classic Shapley Value Estimation.Lundberg calls this feature importance method "SHAP", which stands for SHapley Additive exPlanations.Here’s the formula for calculating Shapley values:$ \phi_{i} = \sum_{S \subseteq M \setminus i} \frac{|S|! (|M| - |S| -1 )!}{|M|!} [f(S \cup i) - f(S)]$A key part of this is the difference between the model’s prediction with the feature $i$, and the model’s prediction without feature $i$. $S$ refers to a subset of features that doesn’t include the feature for which we're calculating $\phi_i$. $S \cup i$ is the subset that includes features in $S$ plus feature $i$. $S \subseteq M \setminus i$ in the $\Sigma$ symbol is saying, all sets $S$ that are subsets of the full set of features $M$, excluding feature $i$. Options for your learning journey* If you’re okay with just using this formula, you can skip ahead to the coding section below. * If you would like an explanation for what this formula is doing, please continue reading here. Optional (explanation of this formula)The part of the formula with the factorials calculates the number of ways to generate the collection of features, where order matters.$\frac{|S|! (|M| - |S| -1 )!}{|M|!}$ Adding features to a CoalitionThe following concepts come from coalition game theory, so when we say "coalition", think of it as a team, where members of the team are added, one after another, in a particular order.Let’s imagine that we’re creating a coalition of features, by adding one feature at a time to the coalition, and including all $|M|$ features. Let’s say we have 3 features total. Here are all the possible ways that we can create this “coalition” of features. $x_0,x_1,x_2$ $x_0,x_2,x_1$ $x_1,x_0,x_2$ $x_1,x_2,x_0$ $x_2,x_0,x_1$ $x_2,x_1,x_0$Notice that for $|M| = 3$ features, there are $3! = 3 \times 2 \times 1 = 6$ possible ways to create the coalition. marginal contribution of a featureFor each of the 6 ways to create a coalition, let's see how to calculate the marginal contribution of feature $x_2$.Model’s prediction when it includes features 0,1,2, minus the model’s prediction when it includes only features 0 and 1. $x_0,x_1,x_2$: $f(x_0,x_1,x_2) - f(x_0,x_1)$ Model’s prediction when it includes features 0 and 2, minus the prediction when using only feature 0. Notice that feature 1 is added after feature 2, so it’s not included in the model. $x_0,x_2,x_1$: $f(x_0,x_2) - f(x_0)$Model's prediction including all three features, minus when the model is only given features 1 and 0. $x_1,x_0,x_2$: $f(x_1,x_0,x_2) - f(x_1,x_0)$Model's prediction when given features 1 and 2, minus when the model is only given feature 1. $x_1,x_2,x_0$: $f(x_1,x_2) - f(x_1)$Model’s prediction if it only uses feature 2, minus the model’s prediction if it has no features. When there are no features, the model’s prediction would be the average of the labels in the training data. $x_2,x_0,x_1$: $f(x_2) - f( )$Model's prediction (same as the previous one) $x_2,x_1,x_0$: $f(x_2) - f( )$Notice that some of these marginal contribution calculations look the same. For example the first and third sequences, $f(x_0,x_1,x_2) - f(x_0,x_1)$ would get the same result as $f(x_1,x_0,x_2) - f(x_1,x_0)$. Same with the fifth and sixth. So we can use factorials to help us calculate the number of permutations that result in the same marginal contribution. break into 2 partsTo get to the formula that we saw above, we can break up the sequence into two sections: the sequence of features before adding feature $i$; and the sequence of features that are added after feature $i$.For the set of features that are added before feature $i$, we’ll call this set $S$. For the set of features that are added after feature $i$ is added, we’ll call this $Q$.So, given the six sequences, and that feature $i$ is $x_2$ in this example, here’s what set $S$ and $Q$ are for each sequence: $x_0,x_1,x_2$: $S$ = {0,1}, $Q$ = {} $x_0,x_2,x_1$: $S$ = {0}, $Q$ = {1} $x_1,x_0,x_2$: $S$ = {1,0}, $Q$ = {} $x_1,x_2,x_0$: $S$ = {1}, $Q$ = {0} $x_2,x_0,x_1$: $S$ = {}, $Q$ = {0,1} $x_2,x_1,x_0$: $S$ = {}, $Q$ = {1,0} So for the first and third sequences, these have the same set S = {0,1} and same set $Q$ = {}. Another way to calculate that there are two of these sequences is to take $|S|! \times |Q|! = 2! \times 0! = 2$.Similarly, the fifth and sixth sequences have the same set S = {} and Q = {0,1}. Another way to calculate that there are two of these sequences is to take $|S|! \times |Q|! = 0! \times 2! = 2$. And now, the original formulaTo use the notation of the original formula, note that $|Q| = |M| - |S| - 1$.Recall that to calculate that there are 6 total sequences, we can use $|M|! = 3! = 3 \times 2 \times 1 = 6$. We’ll divide $|S|! \times (|M| - |S| - 1)!$ by $|M|!$ to get the proportion assigned to each marginal contribution. This is the weight that will be applied to each marginal contribution, and the weights sum to 1.So that’s how we get the formula: $\frac{|S|! (|M| - |S| -1 )!}{|M|!} [f(S \cup i) - f(S)]$ for each set $S \subseteq M \setminus i$We can sum up the weighted marginal contributions for all sets $S$, and this represents the importance of feature $i$.You’ll get to practice this in code! ###Code import sys !{sys.executable} -m pip install numpy==1.14.5 !{sys.executable} -m pip install scikit-learn==0.19.1 !{sys.executable} -m pip install graphviz==0.9 !{sys.executable} -m pip install shap==0.25.2 import sklearn import shap import numpy as np import graphviz from math import factorial ###Output _____no_output_____ ###Markdown Generate input data and fit a tree modelWe'll create data where features 0 and 1 form the "AND" operator, and feature 2 does not contribute to the prediction (because it's always zero). ###Code # AND case (features 0 and 1) N = 100 M = 3 X = np.zeros((N,M)) X.shape y = np.zeros(N) X[:1 * N//4, 1] = 1 X[:N//2, 0] = 1 X[N//2:3 * N//4, 1] = 1 y[:1 * N//4] = 1 # fit model model = sklearn.tree.DecisionTreeRegressor(random_state=0) model.fit(X, y) # draw model dot_data = sklearn.tree.export_graphviz(model, out_file=None, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph ###Output _____no_output_____ ###Markdown Calculate Shap valuesWe'll try to calculate the local feature importance of feature 0. We have 3 features, $x_0, x_1, x_2$. For feature $x_0$, determine what the model predicts with or without $x_0$. Subsets S that exclude feature $x_0$ are: {} {$x_1$} {$x_2$} {$x_1,x_2$} We want to see what the model predicts with feature $x_0$ compared to the model without feature $x_0$: $f(x_0) - f( )$ $f(x_0,x_1) - f(x_1)$ $f(x_0,x_2) - f(x_2)$ $f(x_0,x_1,x_2) - f(x_1,x_2)$ Sample data pointWe'll calculate the local feature importance of a sample data point, where feature $x_0 = 1$ feature $x_1 = 1$ feature $x_2 = 1$ ###Code sample_values = np.array([1,1,1]) print(f"sample values to calculate local feature importance on: {sample_values}") ###Output _____no_output_____ ###Markdown helper functionTo make things easier, we'll use a helper function that takes the entire feature set M, and also a list of the features (columns) that we want, and puts them together into a 2D array. ###Code def get_subset(X, feature_l): """ Given a 2D array containing all feature columns, and a list of integers representing which columns we want, Return a 2D array with just the subset of features desired """ cols_l = [] for f in feature_l: cols_l.append(X[:,f].reshape(-1,1)) return np.concatenate(cols_l, axis=1) # try it out tmp = get_subset(X,[0,2]) tmp[0:10] ###Output _____no_output_____ ###Markdown helper function to calculate permutation weightThis helper function calculates $\frac{|S|! (|M| - |S| - 1)!}{|M|!}$ ###Code from math import factorial def calc_weight(size_S, num_features): return factorial(size_S) * factorial(num_features - size_S - 1) / factorial(num_features) ###Output _____no_output_____ ###Markdown Try it out when size of S is 2 and there are 3 features total. The answer should be equal to $\frac{2! \times (3-2-1)!}{3!} = \frac{2 \times 1}{6} = \frac{1}{3}$ ###Code calc_weight(size_S=2,num_features=3) ###Output _____no_output_____ ###Markdown case A Calculate the prediction of a model that uses features 0 and 1 Calculate the prediction of a model that uses feature 1 Calculate the difference (the marginal contribution of feature 0)$f(x_0,x_1) - f(x_1)$ Calculate $f(x_0,x_1)$ ###Code # S_union_i S_union_i = get_subset(X,[0,1]) # fit model f_S_union_i = sklearn.tree.DecisionTreeRegressor() f_S_union_i.fit(S_union_i, y) ###Output _____no_output_____ ###Markdown Remember, for the sample input for which we'll calculate feature importance, we chose values of 1 for all features. ###Code # This will throw an error try: f_S_union_i.predict(np.array([1,1])) except Exception as e: print(e) ###Output _____no_output_____ ###Markdown The error message says:>Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.So we'll reshape the data so that it represents a sample (a row), which means it has 1 row and 1 or more columns. ###Code # feature 0 and feature 1 are both 1 in the sample input sample_input = np.array([1,1]).reshape(1,-1) sample_input ###Output _____no_output_____ ###Markdown The prediction of the model when it has features 0 and 1 is: ###Code pred_S_union_i = f_S_union_i.predict(sample_input) pred_S_union_i ###Output _____no_output_____ ###Markdown When feature 0 and feature 1 are both 1, the prediction of the model is 1 Calculate $f(x_1)$ ###Code # S S = get_subset(X,[1]) f_S = sklearn.tree.DecisionTreeRegressor() f_S.fit(S, y) ###Output _____no_output_____ ###Markdown The sample input for feature 1 is 1. ###Code sample_input = np.array([1]).reshape(1,-1) ###Output _____no_output_____ ###Markdown The model's prediction when it is only training on feature 1 is: ###Code pred_S = f_S.predict(sample_input) pred_S ###Output _____no_output_____ ###Markdown When feature 1 is 1, then the prediction of this model is 0.5. If you look at the data in X, this makes sense, because when feature 1 is 1, half of the time, the label in y is 0, and half the time, the label in y is 1. So on average, the prediction is 0.5 Calculate difference ###Code diff_A = pred_S_union_i - pred_S diff_A ###Output _____no_output_____ ###Markdown Calculate the weightCalculate the weight assigned to the marginal contribution. In this case, if this marginal contribution occurs 1 out of the 6 possible permutations of the 3 features, then its weight is 1/6 ###Code size_S = S.shape[1] # should be 1 weight_A = calc_weight(size_S, M) weight_A # should be 1/6 ###Output _____no_output_____ ###Markdown Quiz: Case BCalculate the prediction of a model that uses features 0 and 2 Calculate the prediction of a model that uses feature 2 Calculate the difference$f(x_0,x_2) - f(x_2)$ Calculate $f(x_0,x_2)$ ###Code # TODO S_union_i = # ... f_S_union_i = # ... #f_S_union_i.fit(?, ?) sample_input = # ... pred_S_union_i = # ... pred_S_union_i ###Output _____no_output_____ ###Markdown Since we're using features 0 and 2, and feature 2 doesn't help with predicting the output, then the model really just depends on feature 0. When feature 0 is 1, half of the labels are 0, and half of the labels are 1. So the average prediction is 0.5 Calculate $f(x_2)$ ###Code # TODO S = # ... f_S = # ... # f_S.fit(?, ?) sample_input = # ... pred_S = # ... pred_S ###Output _____no_output_____ ###Markdown Since feature 2 doesn't help with predicting the labels in y, and feature 2 is 0 for all 100 training observations, then the prediction of the model is the average of all 100 training labels. 1/4 of the labels are 1, and the rest are 0. So that prediction is 0.25 Calculate the difference in predictions ###Code # TODO diff_B = # ... diff_B ###Output _____no_output_____ ###Markdown Calculate the weight ###Code # TODO size_S = #... # is 1 weight_B = # ... weight_B # should be 1/6 ###Output _____no_output_____ ###Markdown Quiz: Case CCalculate the prediction of a model that uses features 0,1 and 2 Calculate the prediction of a model that uses feature 1 and 2 Calculate the difference$f(x_0,x_1,x_2) - f(x_1,x_2)$ Calculate $f(x_0,x_1,x_2) $ ###Code # TODO S_union_i = # ... f_S_union_i = # ... # f_S_union_i.fit(?, ?) sample_input = # ... pred_S_union_i = # ... pred_S_union_i ###Output _____no_output_____ ###Markdown When we use all three features, the model is able to predict that if feature 0 and feature 1 are both 1, then the label is 1. Calculate $f(x_1,x_2)$ ###Code # TODO S = # ... f_S = # ... #f_S.fit(?, ?) sample_input = # ... pred_S = # ... pred_S ###Output _____no_output_____ ###Markdown When the model is trained on features 1 and 2, then its training data tells it that half of the time, when feature 1 is 1, the label is 0; and half the time, the label is 1. So the average prediction of the model is 0.5 Calculate difference in predictions ###Code # TODO diff_C = # ... diff_C ###Output _____no_output_____ ###Markdown Calculate weights ###Code # TODO size_S = # ... weight_C = # ... # should be 2 / 6 = 1/3 weight_C ###Output _____no_output_____ ###Markdown Quiz: case D: remember to include the empty set!The empty set is also a set. We'll compare how the model does when it has no features, and see how that compares to when it gets feature 0 as input.Calculate the prediction of a model that uses features 0. Calculate the prediction of a model that uses no features Calculate the difference$f(x_0) - f()$ Calculate $f(x_0)$ ###Code # TODO S_union_i = # ... f_S_union_i = # ... #f_S_union_i.fit(?, ?) sample_input = # ... pred_S_union_i = # ... pred_S_union_i ###Output _____no_output_____ ###Markdown With just feature 0 as input, the model predicts 0.5 Calculate $f()$**hint**: you don't have to fit a model, since there are no features to input into the model. ###Code # TODO # with no input features, the model will predict the average of the labels, which is 0.25 pred_S = # ... pred_S ###Output _____no_output_____ ###Markdown With no input features, the model's best guess is the average of the labels, which is 0.25 Calculate difference in predictions ###Code # TODO diff_D = # ... diff_D ###Output _____no_output_____ ###Markdown Calculate weightWe expect this to be: 0! * (3-0-1)! / 3! = 2/6 = 1/3 ###Code # TODO size_S = # ... weight_D = # ... # weight is 1/3 weight_D ###Output _____no_output_____ ###Markdown Calculate Shapley valueFor a single sample observation, where feature 0 is 1, feature 1 is 1, and feature 2 is 1, calculate the shapley value of feature 0 as the weighted sum of the differences in predictions.$\phi_{i} = \sum_{S \subseteq N \setminus i} weight_S \times (f(S \cup i) - f(S))$ ###Code # TODO shap_0 = # ... shap_0 ###Output _____no_output_____ ###Markdown Verify with the shap libraryThe [shap](https://github.com/slundberg/shap) library is written by Scott Lundberg, the creator of Shapley Additive Explanations. ###Code sample_values = np.array([1,1,1]) shap_values = shap.TreeExplainer(model).shap_values(sample_values) print(f"Shapley value for feature 0 that we calculated: {shap_0}") print(f"Shapley value for feature 0 is {shap_values[0]}") print(f"Shapley value for feature 1 is {shap_values[1]}") print(f"Shapley value for feature 2 is {shap_values[2]}") ###Output _____no_output_____
3D_landslide_detection_workflow.ipynb
###Markdown 3D landslide detection and volume estimation Workflow Getting started This code takes 2 point clouds (pre-event and post-event) and 1 point cloud defining the core points as input. The outputs are:* 1 point cloud with the 3D-M3C2 fields* 1 point cloud of the significant changes* 1 point cloud of landslide sources with the corresponding id and additional information.* 1 point cloud of landslide deposits with the corresponding id and additional information.* 1 .csv file with the landslide source information* 1 .csv file with the landslide deposits information 1. Define your paths, filenames of the LiDAR data and the parameters in the "parameters.py" file2. Execute this Jupyter Notebook Note that the present version of the code does not include the iterative procedure that progressively increases the depth of the cylinder (pmax) used by M3C2. A new version will be available when this option will be available in Cloudcompare. Geomorphic change detection ###Code %%time import scripts.Landslide_detection as LD import scripts.functions as fc from scripts.parameters import * import importlib importlib.reload(fc) importlib.reload(LD) LD.Geomorphic_change_detection() ###Output Wall time: 13min 58s ###Markdown Here the significant changes located in the river are manually filtered out. Landslide segmentation and volume estimation ###Code import importlib import scripts.Landslide_detection as LD import scripts.functions as fc importlib.reload(LD) importlib.reload(fc) import scripts.cloudcompare as cc importlib.reload(cc) from scripts.parameters import * %%time LD.Landslide_segmentation() ###Output Wall time: 29min 56s ###Markdown Results: Landslide properties ###Code path = 'D:/Beyond_2D_inventories_synoptic_3D_landslide_volume_calculation_from_repeat_LiDAR_data/data_to_publish/Code/Landslide_detection/res/' filenames = {'Sources':'Landslide_source_infos.csv','Deposits':'Landslide_deposits_infos.csv'} importlib.reload(fc) fc.read_landslide_prop(path,filenames) ###Output _____no_output_____
exercises/CNNExercises.ipynb
###Markdown Exercise 1You've been hired by a shipping company to overhaul the way they route mail, parcels and packages. They want to build an image recognition system capable of recognizing the digits in the zipcode on a package, so that it can be automatically routed to the correct location. You are tasked to build the digit recognition system. Luckily, you can rely on the MNIST dataset for the intial training of your model!Build a deep convolutional neural network with at least two convolutional and two pooling layers before the fully connected layer.Start from the network we have just builtInsert a Conv2D layer after the first MaxPool2D, give it 64 filters.Insert a MaxPool2D after that oneInsert an Activation layerretrain the modeldoes performance improve?how many parameters does this new model have? More or less than the previous model? Why?how long did this second model take to train? Longer or shorter than the previous model? Why?did it perform better or worse than the previous model? ###Code (X_train, y_train), (X_test, y_test) = mnist.load_data('/tmp/mnist.npz') X_train.shape X_test.shape plt.imshow(X_train[0], cmap='gray') X_train = X_train.astype('float32') / 255.0 X_test = X_test.astype('float32') / 255.0 X_train = X_train.reshape(-1, 28, 28, 1) X_test = X_test.reshape(-1, 28, 28, 1) y_train_cat = to_categorical(y_train, 10) y_test_cat = to_categorical(y_test, 10) K.clear_session() model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) model.summary() model.fit(X_train, y_train_cat, batch_size=128, epochs=2, verbose=1, validation_split=0.3) model.evaluate(X_test, y_test_cat) Exercise 2 Pleased with your performance with the digits recognition task, your boss decides to challenge you with a harder task. Their online branch allows people to upload images to a website that generates and prints a postcard that is shipped to destination. Your boss would like to know what images people are loading on the site in order to provide targeted advertising on the same page, so he asks you to build an image recognition system capable of recognizing a few objects. Luckily for you, there's a dataset ready made with a collection of labeled images. This is the Cifar 10 Dataset, a very famous dataset that contains images for 10 different categories: airplane automobile bird cat deer dog frog horse ship truck In this exercise we will reach the limit of what you can achieve on your laptop and get ready for the next session on cloud GPUs. Here's what you have to do: load the cifar10 dataset using keras.datasets.cifar10.load_data() display a few images, see how hard/easy it is for you to recognize an object with such low resolution check the shape of X_train, does it need reshape? check the scale of X_train, does it need rescaling? check the shape of y_train, does it need reshape? build a model with the following architecture, and choose the parameters and activation functions for each of the layers: conv2d conv2d maxpool conv2d conv2d maxpool flatten dense output compile the model and check the number of parameters attempt to train the model with the optimizer of your choice. How fast does training proceed? If training is too slow (as expected) stop the execution and move to the next session! from keras.datasets import cifar10 (X_train, y_train), (X_test, y_test) = cifar10.load_data() X_train.shape plt.imshow(X_train[1]) X_train = X_train.astype('float32') / 255.0 X_test = X_test.astype('float32') / 255.0 y_train.shape y_train_cat = to_categorical(y_train, 10) y_test_cat = to_categorical(y_test, 10) y_train_cat.shape model = Sequential() model.add(Conv2D(32, (3, 3), padding='same', input_shape=(32, 32, 3), activation='relu')) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) model.summary() model.fit(X_train, y_train_cat, batch_size=32, epochs=2, validation_data=(X_test, y_test_cat), shuffle=True) ###Output Train on 50000 samples, validate on 10000 samples Epoch 1/2 50000/50000 [==============================] - 160s 3ms/step - loss: 1.3978 - acc: 0.5013 - val_loss: 1.0818 - val_acc: 0.6284 Epoch 2/2 50000/50000 [==============================] - 164s 3ms/step - loss: 0.9177 - acc: 0.6818 - val_loss: 1.1016 - val_acc: 0.6423