path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
Model backlog/EfficientNet/EfficientNetB4/5-Fold/283 - EfficientNetB4-Reg-Img256 Old Pretrain Fold5.ipynb
###Markdown Dependencies ###Code import os import sys import cv2 import shutil import random import warnings import numpy as np import pandas as pd import seaborn as sns import multiprocessing as mp import matplotlib.pyplot as plt from tensorflow import set_random_seed from sklearn.utils import class_weight from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, cohen_kappa_score from keras import backend as K from keras.models import Model from keras.utils import to_categorical from keras import optimizers, applications from keras.preprocessing.image import ImageDataGenerator from keras.layers import Dense, Dropout, GlobalAveragePooling2D, Input from keras.callbacks import EarlyStopping, ReduceLROnPlateau, Callback, LearningRateScheduler, ModelCheckpoint def seed_everything(seed=0): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) set_random_seed(0) seed = 0 seed_everything(seed) %matplotlib inline sns.set(style="whitegrid") warnings.filterwarnings("ignore") sys.path.append(os.path.abspath('../input/efficientnet/efficientnet-master/efficientnet-master/')) from efficientnet import * ###Output /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) Using TensorFlow backend. ###Markdown Load data ###Code fold_set = pd.read_csv('../input/aptos-data-split/5-fold.csv') X_train = fold_set[fold_set['fold_4'] == 'train'] X_val = fold_set[fold_set['fold_4'] == 'validation'] test = pd.read_csv('../input/aptos2019-blindness-detection/test.csv') # Preprocecss data X_train["id_code"] = X_train["id_code"].apply(lambda x: x + ".png") X_val["id_code"] = X_val["id_code"].apply(lambda x: x + ".png") test["id_code"] = test["id_code"].apply(lambda x: x + ".png") print('Number of train samples: ', X_train.shape[0]) print('Number of validation samples: ', X_val.shape[0]) print('Number of test samples: ', test.shape[0]) display(X_train.head()) ###Output Number of train samples: 2931 Number of validation samples: 731 Number of test samples: 1928 ###Markdown Model parameters ###Code # Model parameters model_path = '../working/effNetB4_img256_noBen_fold5.h5' FACTOR = 4 BATCH_SIZE = 8 * FACTOR EPOCHS = 10 WARMUP_EPOCHS = 5 LEARNING_RATE = 1e-4 * FACTOR WARMUP_LEARNING_RATE = 1e-3 * FACTOR HEIGHT = 256 WIDTH = 256 CHANNELS = 3 TTA_STEPS = 1 ES_PATIENCE = 5 RLROP_PATIENCE = 3 LR_WARMUP_EPOCHS = 3 STEP_SIZE = len(X_train) // BATCH_SIZE TOTAL_STEPS = EPOCHS * STEP_SIZE WARMUP_STEPS = LR_WARMUP_EPOCHS * STEP_SIZE ###Output _____no_output_____ ###Markdown Pre-procecess images ###Code new_data_base_path = '../input/aptos2019-blindness-detection/train_images/' test_base_path = '../input/aptos2019-blindness-detection/test_images/' train_dest_path = 'base_dir/train_images/' validation_dest_path = 'base_dir/validation_images/' test_dest_path = 'base_dir/test_images/' # Making sure directories don't exist if os.path.exists(train_dest_path): shutil.rmtree(train_dest_path) if os.path.exists(validation_dest_path): shutil.rmtree(validation_dest_path) if os.path.exists(test_dest_path): shutil.rmtree(test_dest_path) # Creating train, validation and test directories os.makedirs(train_dest_path) os.makedirs(validation_dest_path) os.makedirs(test_dest_path) def crop_image(img, tol=7): if img.ndim ==2: mask = img>tol return img[np.ix_(mask.any(1),mask.any(0))] elif img.ndim==3: gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) mask = gray_img>tol check_shape = img[:,:,0][np.ix_(mask.any(1),mask.any(0))].shape[0] if (check_shape == 0): # image is too dark so that we crop out everything, return img # return original image else: img1=img[:,:,0][np.ix_(mask.any(1),mask.any(0))] img2=img[:,:,1][np.ix_(mask.any(1),mask.any(0))] img3=img[:,:,2][np.ix_(mask.any(1),mask.any(0))] img = np.stack([img1,img2,img3],axis=-1) return img def circle_crop(img): img = crop_image(img) height, width, depth = img.shape largest_side = np.max((height, width)) img = cv2.resize(img, (largest_side, largest_side)) height, width, depth = img.shape x = width//2 y = height//2 r = np.amin((x, y)) circle_img = np.zeros((height, width), np.uint8) cv2.circle(circle_img, (x, y), int(r), 1, thickness=-1) img = cv2.bitwise_and(img, img, mask=circle_img) img = crop_image(img) return img def preprocess_image(image_id, base_path, save_path, HEIGHT=HEIGHT, WIDTH=WIDTH, sigmaX=10): image = cv2.imread(base_path + image_id) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = circle_crop(image) image = cv2.resize(image, (HEIGHT, WIDTH)) # image = cv2.addWeighted(image, 4, cv2.GaussianBlur(image, (0,0), sigmaX), -4 , 128) cv2.imwrite(save_path + image_id, image) def preprocess_data(df, HEIGHT=HEIGHT, WIDTH=WIDTH, sigmaX=10): df = df.reset_index() for i in range(df.shape[0]): item = df.iloc[i] image_id = item['id_code'] item_set = item['fold_4'] if item_set == 'train': preprocess_image(image_id, new_data_base_path, train_dest_path) if item_set == 'validation': preprocess_image(image_id, new_data_base_path, validation_dest_path) def preprocess_test(df, base_path=test_base_path, save_path=test_dest_path, HEIGHT=HEIGHT, WIDTH=WIDTH, sigmaX=10): df = df.reset_index() for i in range(df.shape[0]): image_id = df.iloc[i]['id_code'] preprocess_image(image_id, base_path, save_path) n_cpu = mp.cpu_count() train_n_cnt = X_train.shape[0] // n_cpu val_n_cnt = X_val.shape[0] // n_cpu test_n_cnt = test.shape[0] // n_cpu # Pre-procecss old data train set pool = mp.Pool(n_cpu) dfs = [X_train.iloc[train_n_cnt*i:train_n_cnt*(i+1)] for i in range(n_cpu)] dfs[-1] = X_train.iloc[train_n_cnt*(n_cpu-1):] res = pool.map(preprocess_data, [x_df for x_df in dfs]) pool.close() # Pre-procecss validation set pool = mp.Pool(n_cpu) dfs = [X_val.iloc[val_n_cnt*i:val_n_cnt*(i+1)] for i in range(n_cpu)] dfs[-1] = X_val.iloc[val_n_cnt*(n_cpu-1):] res = pool.map(preprocess_data, [x_df for x_df in dfs]) pool.close() # Pre-procecss test set pool = mp.Pool(n_cpu) dfs = [test.iloc[test_n_cnt*i:test_n_cnt*(i+1)] for i in range(n_cpu)] dfs[-1] = test.iloc[test_n_cnt*(n_cpu-1):] res = pool.map(preprocess_test, [x_df for x_df in dfs]) pool.close() ###Output _____no_output_____ ###Markdown Data generator ###Code datagen=ImageDataGenerator(rescale=1./255, rotation_range=360, horizontal_flip=True, vertical_flip=True) train_generator=datagen.flow_from_dataframe( dataframe=X_train, directory=train_dest_path, x_col="id_code", y_col="diagnosis", class_mode="raw", batch_size=BATCH_SIZE, target_size=(HEIGHT, WIDTH), seed=seed) valid_generator=datagen.flow_from_dataframe( dataframe=X_val, directory=validation_dest_path, x_col="id_code", y_col="diagnosis", class_mode="raw", batch_size=BATCH_SIZE, target_size=(HEIGHT, WIDTH), seed=seed) test_generator=datagen.flow_from_dataframe( dataframe=test, directory=test_dest_path, x_col="id_code", batch_size=1, class_mode=None, shuffle=False, target_size=(HEIGHT, WIDTH), seed=seed) def classify(x): if x < 0.5: return 0 elif x < 1.5: return 1 elif x < 2.5: return 2 elif x < 3.5: return 3 return 4 labels = ['0 - No DR', '1 - Mild', '2 - Moderate', '3 - Severe', '4 - Proliferative DR'] def plot_confusion_matrix(train, validation, labels=labels): train_labels, train_preds = train validation_labels, validation_preds = validation fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', figsize=(24, 7)) train_cnf_matrix = confusion_matrix(train_labels, train_preds) validation_cnf_matrix = confusion_matrix(validation_labels, validation_preds) train_cnf_matrix_norm = train_cnf_matrix.astype('float') / train_cnf_matrix.sum(axis=1)[:, np.newaxis] validation_cnf_matrix_norm = validation_cnf_matrix.astype('float') / validation_cnf_matrix.sum(axis=1)[:, np.newaxis] train_df_cm = pd.DataFrame(train_cnf_matrix_norm, index=labels, columns=labels) validation_df_cm = pd.DataFrame(validation_cnf_matrix_norm, index=labels, columns=labels) sns.heatmap(train_df_cm, annot=True, fmt='.2f', cmap="Blues",ax=ax1).set_title('Train') sns.heatmap(validation_df_cm, annot=True, fmt='.2f', cmap=sns.cubehelix_palette(8),ax=ax2).set_title('Validation') plt.show() def plot_metrics(history, figsize=(20, 14)): fig, (ax1, ax2) = plt.subplots(2, 1, sharex='col', figsize=figsize) ax1.plot(history['loss'], label='Train loss') ax1.plot(history['val_loss'], label='Validation loss') ax1.legend(loc='best') ax1.set_title('Loss') ax2.plot(history['acc'], label='Train accuracy') ax2.plot(history['val_acc'], label='Validation accuracy') ax2.legend(loc='best') ax2.set_title('Accuracy') plt.xlabel('Epochs') sns.despine() plt.show() def apply_tta(model, generator, steps=10): step_size = generator.n//generator.batch_size preds_tta = [] for i in range(steps): generator.reset() preds = model.predict_generator(generator, steps=step_size) preds_tta.append(preds) return np.mean(preds_tta, axis=0) def evaluate_model(train, validation): train_labels, train_preds = train validation_labels, validation_preds = validation print("Train Cohen Kappa score: %.3f" % cohen_kappa_score(train_preds, train_labels, weights='quadratic')) print("Validation Cohen Kappa score: %.3f" % cohen_kappa_score(validation_preds, validation_labels, weights='quadratic')) print("Complete set Cohen Kappa score: %.3f" % cohen_kappa_score(np.append(train_preds, validation_preds), np.append(train_labels, validation_labels), weights='quadratic')) def cosine_decay_with_warmup(global_step, learning_rate_base, total_steps, warmup_learning_rate=0.0, warmup_steps=0, hold_base_rate_steps=0): """ Cosine decay schedule with warm up period. In this schedule, the learning rate grows linearly from warmup_learning_rate to learning_rate_base for warmup_steps, then transitions to a cosine decay schedule. :param global_step {int}: global step. :param learning_rate_base {float}: base learning rate. :param total_steps {int}: total number of training steps. :param warmup_learning_rate {float}: initial learning rate for warm up. (default: {0.0}). :param warmup_steps {int}: number of warmup steps. (default: {0}). :param hold_base_rate_steps {int}: Optional number of steps to hold base learning rate before decaying. (default: {0}). :param global_step {int}: global step. :Returns : a float representing learning rate. :Raises ValueError: if warmup_learning_rate is larger than learning_rate_base, or if warmup_steps is larger than total_steps. """ if total_steps < warmup_steps: raise ValueError('total_steps must be larger or equal to warmup_steps.') learning_rate = 0.5 * learning_rate_base * (1 + np.cos( np.pi * (global_step - warmup_steps - hold_base_rate_steps ) / float(total_steps - warmup_steps - hold_base_rate_steps))) if hold_base_rate_steps > 0: learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps, learning_rate, learning_rate_base) if warmup_steps > 0: if learning_rate_base < warmup_learning_rate: raise ValueError('learning_rate_base must be larger or equal to warmup_learning_rate.') slope = (learning_rate_base - warmup_learning_rate) / warmup_steps warmup_rate = slope * global_step + warmup_learning_rate learning_rate = np.where(global_step < warmup_steps, warmup_rate, learning_rate) return np.where(global_step > total_steps, 0.0, learning_rate) class WarmUpCosineDecayScheduler(Callback): """Cosine decay with warmup learning rate scheduler""" def __init__(self, learning_rate_base, total_steps, global_step_init=0, warmup_learning_rate=0.0, warmup_steps=0, hold_base_rate_steps=0, verbose=0): """ Constructor for cosine decay with warmup learning rate scheduler. :param learning_rate_base {float}: base learning rate. :param total_steps {int}: total number of training steps. :param global_step_init {int}: initial global step, e.g. from previous checkpoint. :param warmup_learning_rate {float}: initial learning rate for warm up. (default: {0.0}). :param warmup_steps {int}: number of warmup steps. (default: {0}). :param hold_base_rate_steps {int}: Optional number of steps to hold base learning rate before decaying. (default: {0}). :param verbose {int}: quiet, 1: update messages. (default: {0}). """ super(WarmUpCosineDecayScheduler, self).__init__() self.learning_rate_base = learning_rate_base self.total_steps = total_steps self.global_step = global_step_init self.warmup_learning_rate = warmup_learning_rate self.warmup_steps = warmup_steps self.hold_base_rate_steps = hold_base_rate_steps self.verbose = verbose self.learning_rates = [] def on_batch_end(self, batch, logs=None): self.global_step = self.global_step + 1 lr = K.get_value(self.model.optimizer.lr) self.learning_rates.append(lr) def on_batch_begin(self, batch, logs=None): lr = cosine_decay_with_warmup(global_step=self.global_step, learning_rate_base=self.learning_rate_base, total_steps=self.total_steps, warmup_learning_rate=self.warmup_learning_rate, warmup_steps=self.warmup_steps, hold_base_rate_steps=self.hold_base_rate_steps) K.set_value(self.model.optimizer.lr, lr) if self.verbose > 0: print('\nBatch %02d: setting learning rate to %s.' % (self.global_step + 1, lr)) class RAdam(optimizers.Optimizer): """RAdam optimizer. # Arguments lr: float >= 0. Learning rate. beta_1: float, 0 < beta < 1. Generally close to 1. beta_2: float, 0 < beta < 1. Generally close to 1. epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`. decay: float >= 0. Learning rate decay over each update. weight_decay: float >= 0. Weight decay for each param. amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and Beyond". # References - [Adam - A Method for Stochastic Optimization](https://arxiv.org/abs/1412.6980v8) - [On the Convergence of Adam and Beyond](https://openreview.net/forum?id=ryQu7f-RZ) - [On The Variance Of The Adaptive Learning Rate And Beyond](https://arxiv.org/pdf/1908.03265v1.pdf) """ def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0., weight_decay=0., amsgrad=False, **kwargs): super(RAdam, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.lr = K.variable(lr, name='lr') self.beta_1 = K.variable(beta_1, name='beta_1') self.beta_2 = K.variable(beta_2, name='beta_2') self.decay = K.variable(decay, name='decay') self.weight_decay = K.variable(weight_decay, name='weight_decay') if epsilon is None: epsilon = K.epsilon() self.epsilon = epsilon self.initial_decay = decay self.initial_weight_decay = weight_decay self.amsgrad = amsgrad def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) t = K.cast(self.iterations, K.floatx()) + 1 ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='m_' + str(i)) for (i, p) in enumerate(params)] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='v_' + str(i)) for (i, p) in enumerate(params)] if self.amsgrad: vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='vhat_' + str(i)) for (i, p) in enumerate(params)] else: vhats = [K.zeros(1, name='vhat_' + str(i)) for i in range(len(params))] self.weights = [self.iterations] + ms + vs + vhats beta_1_t = K.pow(self.beta_1, t) beta_2_t = K.pow(self.beta_2, t) sma_inf = 2.0 / (1.0 - self.beta_2) - 1.0 sma_t = sma_inf - 2.0 * t * beta_2_t / (1.0 - beta_2_t) for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) m_corr_t = m_t / (1.0 - beta_1_t) if self.amsgrad: vhat_t = K.maximum(vhat, v_t) v_corr_t = K.sqrt(vhat_t / (1.0 - beta_2_t) + self.epsilon) self.updates.append(K.update(vhat, vhat_t)) else: v_corr_t = K.sqrt(v_t / (1.0 - beta_2_t) + self.epsilon) r_t = K.sqrt((sma_t - 4.0) / (sma_inf - 4.0) * (sma_t - 2.0) / (sma_inf - 2.0) * sma_inf / sma_t) p_t = K.switch(sma_t > 5, r_t * m_corr_t / v_corr_t, m_corr_t) if self.initial_weight_decay > 0: p_t += self.weight_decay * p p_t = p - lr * p_t self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates def get_config(self): config = { 'lr': float(K.get_value(self.lr)), 'beta_1': float(K.get_value(self.beta_1)), 'beta_2': float(K.get_value(self.beta_2)), 'decay': float(K.get_value(self.decay)), 'weight_decay': float(K.get_value(self.weight_decay)), 'epsilon': self.epsilon, 'amsgrad': self.amsgrad, } base_config = super(RAdam, self).get_config() return dict(list(base_config.items()) + list(config.items())) ###Output _____no_output_____ ###Markdown Model ###Code def create_model(input_shape): input_tensor = Input(shape=input_shape) base_model = EfficientNetB4(weights=None, include_top=False, input_tensor=input_tensor) # base_model.load_weights('../input/efficientnet-keras-weights-b0b5/efficientnet-b5_imagenet_1000_notop.h5') x = GlobalAveragePooling2D()(base_model.output) final_output = Dense(1, activation='linear', name='final_output')(x) model = Model(input_tensor, final_output) model.load_weights('../input/aptos-pretrain-olddata-effnetb4/effNetB4_img224_noBen_oldData.h5') return model ###Output _____no_output_____ ###Markdown Train top layers ###Code model = create_model(input_shape=(HEIGHT, WIDTH, CHANNELS)) for layer in model.layers: layer.trainable = False for i in range(-2, 0): model.layers[i].trainable = True metric_list = ["accuracy"] optimizer = RAdam(lr=WARMUP_LEARNING_RATE) model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=metric_list) model.summary() STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size STEP_SIZE_VALID = valid_generator.n//valid_generator.batch_size history_warmup = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, epochs=WARMUP_EPOCHS, verbose=2).history ###Output Epoch 1/5 - 63s - loss: 0.4938 - acc: 0.6271 - val_loss: 0.5748 - val_acc: 0.5597 Epoch 2/5 - 51s - loss: 0.4479 - acc: 0.6615 - val_loss: 0.4141 - val_acc: 0.6824 Epoch 3/5 - 51s - loss: 0.4343 - acc: 0.6650 - val_loss: 0.4668 - val_acc: 0.6023 Epoch 4/5 - 50s - loss: 0.4369 - acc: 0.6508 - val_loss: 0.4036 - val_acc: 0.6867 Epoch 5/5 - 51s - loss: 0.4324 - acc: 0.6678 - val_loss: 0.4718 - val_acc: 0.6052 ###Markdown Fine-tune the model ###Code for layer in model.layers: layer.trainable = True checkpoint = ModelCheckpoint(model_path, monitor='val_loss', mode='min', save_best_only=True, save_weights_only=True) es = EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1) cosine_lr = WarmUpCosineDecayScheduler(learning_rate_base=LEARNING_RATE, total_steps=TOTAL_STEPS, warmup_learning_rate=0.0, warmup_steps=WARMUP_STEPS, hold_base_rate_steps=(2 * STEP_SIZE)) callback_list = [checkpoint, es, cosine_lr] optimizer = RAdam(lr=LEARNING_RATE) model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=metric_list) model.summary() history = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, epochs=EPOCHS, callbacks=callback_list, verbose=2).history fig, ax = plt.subplots(1, 1, sharex='col', figsize=(20, 4)) ax.plot(cosine_lr.learning_rates) ax.set_title('Fine-tune learning rates') plt.xlabel('Steps') plt.ylabel('Learning rate') sns.despine() plt.show() ###Output _____no_output_____ ###Markdown Model loss graph ###Code plot_metrics(history) # Create empty arays to keep the predictions and labels df_preds = pd.DataFrame(columns=['label', 'pred', 'set']) train_generator.reset() valid_generator.reset() # Add train predictions and labels for i in range(STEP_SIZE_TRAIN + 1): im, lbl = next(train_generator) preds = model.predict(im, batch_size=train_generator.batch_size) for index in range(len(preds)): df_preds.loc[len(df_preds)] = [lbl[index], preds[index][0], 'train'] # Add validation predictions and labels for i in range(STEP_SIZE_VALID + 1): im, lbl = next(valid_generator) preds = model.predict(im, batch_size=valid_generator.batch_size) for index in range(len(preds)): df_preds.loc[len(df_preds)] = [lbl[index], preds[index][0], 'validation'] df_preds['label'] = df_preds['label'].astype('int') # Classify predictions df_preds['predictions'] = df_preds['pred'].apply(lambda x: classify(x)) train_preds = df_preds[df_preds['set'] == 'train'] validation_preds = df_preds[df_preds['set'] == 'validation'] ###Output _____no_output_____ ###Markdown Model Evaluation Confusion Matrix Original thresholds ###Code plot_confusion_matrix((train_preds['label'], train_preds['predictions']), (validation_preds['label'], validation_preds['predictions'])) ###Output _____no_output_____ ###Markdown Quadratic Weighted Kappa ###Code evaluate_model((train_preds['label'], train_preds['predictions']), (validation_preds['label'], validation_preds['predictions'])) ###Output Train Cohen Kappa score: 0.965 Validation Cohen Kappa score: 0.898 Complete set Cohen Kappa score: 0.952 ###Markdown Apply model to test set and output predictions ###Code preds = apply_tta(model, test_generator, TTA_STEPS) predictions = [classify(x) for x in preds] results = pd.DataFrame({'id_code':test['id_code'], 'diagnosis':predictions}) results['id_code'] = results['id_code'].map(lambda x: str(x)[:-4]) # Cleaning created directories if os.path.exists(train_dest_path): shutil.rmtree(train_dest_path) if os.path.exists(validation_dest_path): shutil.rmtree(validation_dest_path) if os.path.exists(test_dest_path): shutil.rmtree(test_dest_path) ###Output _____no_output_____ ###Markdown Predictions class distribution ###Code fig = plt.subplots(sharex='col', figsize=(24, 8.7)) sns.countplot(x="diagnosis", data=results, palette="GnBu_d").set_title('Test') sns.despine() plt.show() results.to_csv('submission.csv', index=False) display(results.head()) ###Output _____no_output_____
nbs/course2020/vision/07_Siamese.ipynb
###Markdown Lesson 7 - Siamese Lesson Video: ###Code #hide_input from IPython.lib.display import YouTubeVideo from datetime import timedelta start = int(timedelta(minutes=16, seconds=44).total_seconds()) YouTubeVideo('0IQYJNkAI3k', start=start) #hide #Run once per session !pip install fastai wwf -q --upgrade #hide_input from wwf.utils import state_versions state_versions(['fastai', 'fastcore', 'wwf']) ###Output _____no_output_____ ###Markdown This notebook goes through how to build a Siamese dataset from scratch. What is a Siamese Problem?Identifying if two images belong to the same class: ![](https://i.imgur.com/OtRWVFL.png) Common use cases:* Person identification* Small classification sample size Why Siamese?Let's think of an example problem:> I own 3 dogs and I want to differentiate between the three of them from a photo, but I only have 5 images of each animal.By our normal standards, we would say that is *far* too little of data for us to work with. But in this case, we have now **120** training samples (not including augmentation). Our example will use the `PETS` dataset. We won't be training, but if you're dealing with this problem, you should have all the tools you need by now Installing the library and *starting* to build the Dataset ###Code from fastai.vision.all import * src = untar_data(URLs.PETS)/'images' ###Output _____no_output_____ ###Markdown We'll grab all the file names: ###Code items = get_image_files(src) ###Output _____no_output_____ ###Markdown And now we can start preparing our dataset. We will be doing everything at the *lowest* level possible today. First let's make a transform that will open some image from a filename and resize it. ###Code def resized_image(fn:Path, sz=128): "Opens an image from `fn` and resizes it to `sz`" x = Image.open(fn).convert('RGB').resize((sz,sz)) return tensor(array(x)).permute(2,0,1).float()/255. ###Output _____no_output_____ ###Markdown Now let's get two random images (that we know are different) ###Code img1 = resized_image(items[0], 448) img2 = resized_image(items[1], 448) ###Output _____no_output_____ ###Markdown Now we need some way of viewing our image, along with a title. Let's make a `TitledImage` class: ###Code class TitledImage(Tuple): def show(self, ctx=None, **kwargs): show_titled_image(self, ctx=ctx, **kwargs) TitledImage(img1, 'Test').show() ###Output _____no_output_____ ###Markdown Now let's make something similar for a pair of images (our `Siamese`) ###Code class SiameseImage(Tuple): def show(self, ctx=None, **kwargs): im1, im2, is_same = self return show_image(torch.cat([im1,im2], dim=2), title=is_same, ctx=ctx, **kwargs) ###Output _____no_output_____ ###Markdown Let's look at two examples (which look *remarkably*) similar to that image earlier: ###Code SiameseImage(img1, img1, True).show(figsize=(7,7)); SiameseImage(img1, img2, False).show(figsize=(7,7)); ###Output _____no_output_____ ###Markdown SiamesePairNow we need some transform to generate our `Siamese` dataset. We'll want it to take in a list of items and labels: ###Code class SiamesePair(Transform): "A transform to generate Siamese data" def __init__(self, items, labels): self.items, self.labels, self.assoc = items,labels,self sortlbl = sorted(enumerate(labels), key=itemgetter(1)) self.clsmap = {k:L(v).itemgot(0) for k,v in itertools.groupby(sortlbl, key=itemgetter(1))} self.idxs = range_of(self.items) def encodes(self,i): "x: tuple of `i`th image and a random image from same or different class; y: True if same class" othercls = self.clsmap[self.labels[i]] if random.random()>0.5 else self.idxs otherit = random.choice(othercls) same = tensor([self.labels[otherit]==self.labels[i]]).int() return SiameseImage(self.items[i], self.items[otherit], same) ###Output _____no_output_____ ###Markdown We are going to want some labels to be sued, so let's grab some: ###Code labeller = RegexLabeller(pat = r'/([^/]+)_\d+.jpg$') labels = items.map(labeller) labels[:5], len(labels) ###Output _____no_output_____ ###Markdown Now we can build our `SiamesePair` transform ###Code sp = SiamesePair(items, labels) ###Output _____no_output_____ ###Markdown Let's look at a few bits ###Code sp.clsmap sp.labels ###Output _____no_output_____ ###Markdown Now finally, we can build our `Pipeline` Bringing it to a DataLoaderFirst we'll want to make a `Transform` out of that `resized_image` function we had ###Code OpenAndResize = Transform(resized_image) ###Output _____no_output_____ ###Markdown And now that we have all the pieces together, let's build a `Pipeline`: ###Code pipe = Pipeline([sp, OpenAndResize]) ###Output _____no_output_____ ###Markdown And take a look at it's first set: ###Code x,y,z = pipe(0) x.shape, y.shape, z ###Output _____no_output_____ ###Markdown To turn anything into a `DataLoader`, we want it to first be a `TfmdList`. We can accomplish this by passing in a list of index's and a `Pipeline` to run through: ###Code tls = TfmdLists(range_of(items), pipe) ###Output _____no_output_____ ###Markdown And now make our `Dataloaders` ###Code dls = tls.dataloaders(bs=16, after_batch=[Normalize.from_stats(*imagenet_stats)]) ###Output _____no_output_____ ###Markdown And we can look at a batch! ###Code batch = dls.one_batch() ###Output _____no_output_____ ###Markdown Now I did not get the `show` function working, so let's take a look the very "simple" way ###Code a,b,c = batch[0][0], batch[1][0], batch[2][0] a.shape, b.shape, c from torchvision import transforms im1 = transforms.ToPILImage()(batch[0][0]).convert("RGB") im2 = transforms.ToPILImage()(batch[1][0]).convert("RGB") display(im1, im2) ###Output _____no_output_____
lab6_exercises_ANSWERS.ipynb
###Markdown Programming Bootcamp 2016 Lesson 6 Exercises -- ANSWERS--- ** Earning points (optional) **- Enter your name below.- Email your `.ipynb` file to me ([email protected]) **before 9:00 am on 9/27**. - You do not need to complete all the problems to get points. - I will give partial credit for effort when possible.- At the end of the course, everyone who gets at least 90% of the total points will get a prize (bootcamp mug!). **Name**: --- 1. Guess the output: scope practice (2pts)Refer to the code below to answer the following questions: ###Code def fancy_calc(a, b, c): x1 = basic_calc(a,b) x2 = basic_calc(b,c) x3 = basic_calc(c,a) z = x1 * x2 * x3 return z def basic_calc(x, y): result = x + y return result x = 1 y = 2 z = 3 result = fancy_calc(x, y, z) ###Output _____no_output_____ ###Markdown **(A)** List the line numbers of the code above in the order that they will be **executed**. If a line will be executed more than once, list it each time. **NOTE**: Select the cell above and hit "L" to activate line numbering! Answer:```1213141512891023891034891045615``` **(B)** Guess the output if you were to run each of the following pieces of code immediately after running the code above. Then run the code to see if you're right. (Remember to run the code above first) ###Code print x print z print x1 print result ###Output 60 ###Markdown --- 2. Data structure woes (2pt)**(A) Passing a data structure to a function.** Guess the output of the following lines of code if you were to run them immediately following the code block below. Then run the code yourself to see if you're right. ###Code # run this first! def getMax(someList): someList.sort() x = someList[-1] return x scores = [9, 5, 7, 1, 8] maxScore = getMax(scores) print maxScore print someList print scores ###Output [1, 5, 7, 8, 9] ###Markdown > Why does scores get sorted? > When you pass a data structure as a parameter to a function, it's not a **copy** of the data structure that gets passed (as what happens with regular variables). What gets passed is a **direct reference** to the data structure itself. > The reason this is done is because data structures are typically expected to be fairly large, and copying/re-assigning the whole thing can be both time- and memory-consuming. So doing things this way is more efficient. It can also surprise you, though, if you're not aware it's happening. If you would like to learn more about this, look up "Pass by reference vs pass by value". **(B) Copying data structures.** Guess the output of the following code if you were to run them immediately following the code block below. Then run the code yourself to see if you're right. ###Code # run this first! list1 = [1, 2, 3, 4] list2 = list1 list2[0] = "HELLO" print list2 print list1 ###Output ['HELLO', 2, 3, 4] ###Markdown > Yes, that's right--even when you try to make a new copy of a list, it's actually just a reference to the same list! This is called aliasing. The same thing will happen with a dictionary. This can really trip you up if you don't know it's happening. So what if we want to make a truly separate copy? Here's a way for lists: ###Code # for lists list1 = [1, 2, 3, 4] list2 = list(list1) #make a true copy of the list list2[0] = "HELLO" print list2 print list1 ###Output ['HELLO', 2, 3, 4] [1, 2, 3, 4] ###Markdown And here's a way for dictionaries: ###Code # for dictionaries dict1 = {'A':1, 'B':2, 'C':3} dict2 = dict1.copy() #make a true copy of the dict dict2['A'] = 99 print dict2 print dict1 ###Output {'A': 99, 'C': 3, 'B': 2} {'A': 1, 'C': 3, 'B': 2} ###Markdown --- 3. Writing custom functions (8pts)Complete the following. For some of these problems, you can use your code from previous labs as a starting point. (If you didn't finish those problems, feel free to use the code from the answer sheet, just make sure you understand how they work! Optionally, for extra practice you can try re-writing them using some of the new things we've learned since then.) **(A)** (1pt) Create a function called "gc" that takes a single sequence as a parameter and returns the GC content of the sequence (as a 2 decimal place float). ###Code def gc(seq): gcCount = seq.count("C") + seq.count("G") gcFrac = float(gcCount) / len(seq) return round(gcFrac,2) ###Output _____no_output_____ ###Markdown **(B)** (1pt) Create a function called "reverse_compl" that takes a single sequence as a parameter and returns the reverse complement. ###Code def reverse_compl(seq): complements = {'A':'T', 'C':'G', 'G':'C', 'T':'A'} compl = "" for char in seq: compl = complements[char] + compl return compl ###Output _____no_output_____ ###Markdown **(C)** (1pt) Create a function called "read_fasta" that takes a file name as a parameter (which is assumed to be in fasta format), puts each fasta entry into a dictionary (using the header line as a key and the sequence as a value), and then returns the dictionary. ###Code def read_fasta(fileName): ins = open(fileName, 'r') seqDict = {} activeID = "" for line in ins: line = line.rstrip('\r\n') if line[0] == ">": activeID = line[1:] if activeID in seqDict: print ">>> Warning: repeat id:", activeID, "-- overwriting previous ID." seqDict[activeID] = "" else: seqDict[activeID] += line ins.close() return seqDict ###Output _____no_output_____ ###Markdown **(D)** (2pts) Create a function called "rand_seq" that takes an integer length as a parameter, and then returns a random DNA sequence of that length. *Hint: make a list of the possible nucleotides* ###Code def rand_seq(length): import random nts = ['A','C','G','T'] seq = "" for i in range(length): seq += random.choice(nts) return seq ###Output _____no_output_____ ###Markdown **(E)** (2pts) Create a function called "shuffle_nt" that takes a single sequence as a parameter and returns a string that is a shuffled version of the sequence (i.e. the same nucleotides, but in a random order). *Hint: Look for Python functions that will make this easier. For example, the `random` module has some functions for shuffling. There may also be some built-in string functions that are useful. However, you can also do this just using things we've learned.* ###Code def shuffle_nt(seq): import random strList = list(seq) random.shuffle(strList) shuffSeq = "".join(strList) return shuffSeq ###Output _____no_output_____ ###Markdown **(F)** (1pt) Run the code below to show that all of your functions work. Try to fix any that have problems. ###Code ##### testing gc gcCont = gc("ATGGGCCCAATGG") if type(gcCont) != float: print ">> Problem with gc: answer is not a float, it is a %s." % type(gcCont) elif gcCont != 0.62: print ">> Problem with gc: incorrect answer (should be 0.62; your code gave", gcCont, ")" else: print "gc: Passed." ##### testing reverse_compl revCompl = reverse_compl("GGGGTCGATGCAAATTCAAA") if type(revCompl) != str: print ">> Problem with reverse_compl: answer is not a string, it is a %s." % type(revCompl) elif revCompl != "TTTGAATTTGCATCGACCCC": print ">> Problem with reverse_compl: answer (%s) does not match expected (%s)" % (revCompl, "TTTGAATTTGCATCGACCCC") else: print "reverse_compl: Passed." ##### testing read_fasta try: ins = open("horrible.fasta", 'r') except IOError: print ">> Can not test read_fasta because horrible.fasta is missing. Please add it to the directory with this notebook." else: seqDict = read_fasta("horrible.fasta") if type(seqDict) != dict: print ">> Problem with read_fasta: answer is not a dictionary, it is a %s." % type(seqDict) elif len(seqDict) != 22: print ">> Problem with read_fasta: # of keys in dictionary (%s) does not match expected (%s)" % (len(seqDict), 22) else: print "read_fasta: Passed." ##### testing rand_seq randSeq1 = rand_seq(23) randSeq2 = rand_seq(23) if type(randSeq1) != str: print ">> Problem with rand_seq: answer is not a string, it is a %s." % type(randSeq1) elif len(randSeq1) != 23: print ">> Problem with rand_seq: answer length (%s) does not match expected (%s)." % (len(randSeq1), 23) elif randSeq1 == randSeq2: print ">> Problem with rand_seq: generated the same sequence twice (%s) -- are you sure this is random?" % randSeq1 else: print "rand_seq: Passed." ##### testing shuffle_nt shuffSeq = shuffle_nt("AAAAAAGTTTCCC") if type(shuffSeq) != str: print ">> Problem with shuffle_nt: answer is not a string, it is a %s." % type(shuffSeq) elif len(shuffSeq) != 13: print ">> Problem with shuffle_nt: answer length (%s) does not match expected (%s)." % (len(shuffSeq), 12) elif shuffSeq == "AAAAAAGTTTCCC": print ">> Problem with shuffle_nt: answer is exactly the same as the input. Are you sure this is shuffling?" elif shuffSeq.count('A') != 6: print ">> Problem with shuffle_nt: answer doesn't contain the same # of each nt as the input." else: print "shuff_seq: Passed." ###Output gc: Passed. reverse_compl: Passed. read_fasta: Passed. rand_seq: Passed. shuff_seq: Passed. ###Markdown --- 4. Using your functions (5pts)Use the **functions you created above** to complete the following. **(A)** (1pt) Create 20 random nucleotide sequences of length 50 and print them to the screen. ###Code for i in range(20): print rand_seq(50) ###Output AGGATTGGTATTTACAATCCAGGGATATATTACATGTGCTCGACCCCGGA GCAGCGGACGAACAGCTTGGCCCTCAATCGCACGGAGCCATAAACCCATC TTGTGCGCACTCGCAGGGCCTCAATCTGCTTCGGTCCTGCAATCCTCCTG TTCAGCGTGGTGAGGGGGGTGACTGTTAGCCAGCCGGGTACAGTGGGGAG GGGAACTATGCATCTAGGCCCCGTTGTACGTACAACCTCGGCTAAGCTCC ATTCAACAAGCGTAATGCCACAATCAATTAGTTTATCGATGGCCTAAGCT TCGCCGGGTTACGAGACGGGCTCCGTGGTAGAGGGGCGCCACCTTGATGG CGCGTGTATCTAATCCCAGAAACGGATGCCCCTCTCGTACCCGCCCCACA CGGTGGGGCGAAGCGAGATCCCACTTCATTAATGTGCCCCTTACTCGATG GCGTCGGAAGATCACAAACGTGTGCATAAAGCCCCAAGAAGCCACTAGCT CCTACATTAAGACATTCAGCAATAATATTCTTTCTTGTGGGTAGTACGGA AGTTGTGCTTGACGGGGTATGTACATGGCGTAATAAAGACCGTAACGACA AAATGGCACCTAGACTTGCCGACGCTTGCCAGTTTATTTAGTTTGCGAAC GTGGGTTGCGCCAGACACTGAGTGTTGAGTCGGCAGGCGTGATCAAATTA TAAGTCTCAGGGAGGACCCATCCATTTCATGCTGTAAATATCGAACAGTC TAGATGGGCAAGGTGCTTCGGTACAACCTCTCGCTTCATTCATGCCCTAC TCATCGATCAATACCCTATACACTGCCAGCCGGAAGCGAGGAGAGATATG AACATGGTCTATCTACGGCCCTAGACAAAGACCCGAGACTTTTGATCGCC TAGGGAATGCTGTATATCCACAATAGTGGGATCTCAGCTTACACATGCGG TCTTCCGCTCGTCTGTAACTCCACAATTCTGTGTCATAAAGTGCCCGAAG ###Markdown **(B)** (1pt) Read in `horrible.fasta` into a dictionary. For each sequence, print its reverse complement to the screen. ###Code seqDict = read_fasta("horrible.fasta") for seqID in seqDict: print reverse_compl(seqDict[seqID]) ###Output AACCTCCTGGGGAGGTGGTGGCGGCTCTTGCAGATGTGGAACCAGCAGAGGTTGTGCTTACAGCTGGGCCTGTGGTGCTGCCAGCTGTTTCAGCCGGTGT CTGATCACTGAGCTGAAACTAAACGTTTTAGGTGGAAAAAAAGCGTCCGAAGGCACCGTGAAATGATTAAGGAACTAAAGAGCTTCTCGCCATGTGAGATCATGTCCTGTTCTCGCCAACATCACAAGATGTCCCCAGACACGCCGCGCCCCCAGCGCGCCGCCCCACACTGCCGGCCCGGAGCGAGGAAAGGGTAGGCGCTGCGCGG TAGGTGAAAATTCCTTCTGCTGGTTCCCAGAGATACCTAGGAAGACTCTGGGGAACCCTTGGCTAATTATCCCAGGAAAACTGCTGCCTCGGCTGAAACTGGAAGCTCATGGTGGACCCCAAGATATCTTATCTTTGGGACACTTAAAAAAAAAAAGCTATTTTATTCCAATTAAGCCAGTCTTTTGAGAGACACCTAGAAAGAAAGGGCTTCTAAAACATGAACATGAGCTCTGATGTTAGCAACCCAACTTCCACTCCAAAATTACTGAAATATTTATGGGTAAAATTAACTCATAAAAACCTTCTTCT ACCCCTAAGGAACGTCCCTCGCGTCGGTTTGAGGAGGAAGGCGCACTTCTCTTGATGACCGTTGG GGTAAGCACAGGATCCAAGAAACAGAGATTACACACAGGAGAGAGGCCAAGCAAAGCTCTGTGATGAAAGGTATGAAGTATGCCCACGGAGCAGCCAGCTGAGACTGGAACAAGAGGATGTAGCACTCCATGCAGGAAAATTCCATGGAATCTAGCACTTTGGGACATCCAGGTGGGCG AGCAATACTTTCACTGCTGCCAGCCCGAG GTATCACCTTCAATTTCTTAAGAGCCATTCTTCT ATTTTCTGAGCTTCTTCTCTCGCAAGGTCTTGTTCATTTGGCAATACTGATATTTGATCTTTGTACACA GTACCTTCTCGGAAGGCCAGAGTCAATTGTACCACCACAGATCCTGGCCTGAACTTAATATTGGAGAGGCCCAGAAAACCCCCTT CAAAGCACACAGAGATTCTGTCAGGTGCTGAGACACCACAGCCTTCTCAATTTTGTCCTTAAGGGCTTTATCTTTCATCCAATTGAGCAGAGGCTCAAATTCTTTCTCAACTGCTTCATGACTCTCCTTAGTTTTCTCACTTTTATCAAACTTCATTCCTTCCTTGACAACATTCTGGAACCTCTTCCCATCAAATTTG GGGCCCGGGACCCGGGTGGGGGGGACCGCCGAGAGGCCCAGCGCAGCGA GCTTTGGAAACTGGAATGAGGATCACCAACAGGATCCTCATTTTACACAGGAGTTATGAGAGTTACATCCTCTAGCAGAGATGCTTGGTCATTACCTGTGGTACATGAGATTACCGAGCTAAAAGGGAAAAAAAACGATCTTAATGTTCTCCCATGAACTCAACTTAAGCTTTTTATGGAGGCACTGAGGCCATGCAGCTCCTTTTCCAAAAGACACAGATAAAAGCCAAATAAGGTAGAGGACTTTGGAAATTTTCTCTGAAAAGTTAAATTCCACATAATAGTAAGA TTTTAATCTTCTTCCTTCCCGTCGACTGTCTTTCTTTAAAGCAACTGCAATTTCTTCCCTTACTTCCTCACTGTCTGTTGCTATAATTTGCCCATTGTGAACCATCTGTGAATTCTGTCTTAGGTATTCCATGAATCCATTCACATCTTCATTTAAGTACTCTTTTTTCTTTTTGTTCTTTTTATGTTTTGCTTGGGGTGCATCATTTTTGAGGGATAGCCTATTGGCTTCAAGTTGTTTACGCTTTGGTAGGTTTTGGCTTGTTCCCTCAAAGGATCCCTTCTTCATGTCCTCCCATGATGTTGCAGGCAAGGGTCTCTTGTTATATGTGGTACTAACTCGGGCCCACCTGGTCATAATTTCATCAGTGGTACCGCGCACGAATCCCCCAGAGCAGCCGAGTTGGCGAGCCGGGGAAGACCGCCCTCCTGCGGTATTGGAGACCGGAAGCACATAGTG TCAATGTTTTCTTCTTTAATCACAGATGATGTACAGACACCAGCATAATTTGCTGATGTAATTTCCTTATCCAAGG CTTCATATATATTTAATTTTCTCTTTGCTTCACTACTGCAAGGTAGGTGTTTATTATCTCCTTTTACAGATGTGGAAACTTAGGCTCAGAGGTGAAGTAACTTGCACAAGTTTCTACAGCTAGAATTTGAACCAGGTCTGACCCCCGAATTGTGCTCGTCCATAAAGGCCAGCATTTGCCAAATTATGGCACACAGTACCACCAGTGGTACGTGACTTCTTTGGTTGAAAACAGACAAATTTATTTTGTTTTGATAGTTATGTCTTTTAATATGTATTAGAAGAATACATAATTAGCACACATCAAACCTGTGATTTCACAGATATCACTACTTGGGATGAAAATGATATAGGATAACAATGTTAGACCTCAG AAGATTTCCAGAGTGG CCATGGTTAGTTAAATTCCCTAGAGATGTAGCCGTGACTCTCCCAATACCTGAAGTGTGCCTCCCCTGACTCTGTGGCATCCTCTGGAAGAGATCATGGTTGTATTCATAATATCTGTAATCTTCTTGTGCACGATCTCCAAGTGGCCGCCTTCTCTGTCCATCAAAAAAGTTATCTGAGAAGAAGTATCGGGAGCCAGAGTCTCCATTCTCAACAGCAAAGTTAACTTCTGTCAAAAATGACTGTGATGAGCCACACTCTCGAGGGACATCTGCTAGGCTCCTGACAAGGTAAGAAGGGGCAGACAGTCTGTGGCTTTCTCTTCTCATTACTTCATGAGGTGTCCTTTGAATTGCAGTTCTCAGGAAACTCTGGTTTCTTGAAACTACACCATCTCCAGAAGCTGAGAAAGCAGTAGCACTTGAATCTGGAAGACAGAGGTCAGTCC CCTTTCCGGGACTGGTTT AAATTGACTTCTGCCATAATAAAATC TGAACAGCTGCTGTGTAGCCCATACTGTGAAAAGTAAAACATCACCCCAGTTCTCGGTACACACAGAGCTCATGCTCCAGCGGGCTGAGCCT GCTTAAGCCTAGGAGTTTGAGACCAGCCTGGGCAACACAGCAAGACCCCATCTCTACCAAAAAAAAAAAAAAATTAAAGAGTCCTATAGAGAATTCTTATACTCCAATGTGAAGACAACATTGGAAAGGGCCAAGTTTCTCATGCCCTCCAACTAAGAAACCCCTAATAAAAAATGAAGTGACACTTGAACAGGACTTAAGGATTCTACAGTTGGTCTTTGGCAGCAGTATGTTTTAGGAAATGTAATGCGGCGGGTGGGGCGGTGACTTAGCCAGTTATGCTTTTAAATGGAACTGCAATAATAAAAGTGATACTAGTGCAGAAAGTATCTGTATTAGAATTCTAGAGTAAGTCAAGAGCTCACATTCATTAAAATAATGACACAACTCCACGGGGGTGGGGAGAACAGCAGTAAAGCAACCACATACTATACTATTAGACTGGCAACATTGAGACTGAAAATATCCATGAGGAGAATACTGACATCTTA GCATGGTTGGCCTGAAGGTATTAGTGCGCAGGAGATGATTCAAACTTCCATGGGTCCCATTATTAGGAGCTGGCTTCAATCCCAGGAGATCACACATAACATTGTAAAGTTCAATGTTTTCAAATGGAGGCACTTTAGTCTTGTACTTAAATGTTGAGCCATAACCTACAAAAACAGTCTGCATGCTGTTGACCTTGTTATCAAATCCGTGGTCTCCCTGGAAAAAGCATTTTCCTGATGG ###Markdown **(C)** (3pts) Read in horrible.fasta into a dictionary. For each sequence, find the length and the gc content. Print the results to the screen in the following format:```SeqID Len GC... ... ...```That is, print the header shown above (separating each column's title by a tab (`\t`)), followed by the corresponding info about each sequence on a separate line. The "columns" should be separated by tabs. Remember that you can do this printing as you loop through the dictionary... that way you don't have to store the length and gc content.(In general, this is the sort of formatting you should use when printing data files!) ###Code seqDict = read_fasta("horrible.fasta") print "SeqID\tLen\tGC" for seqID in seqDict: seq = seqDict[seqID] seqLen = len(seq) seqGC = gc(seq) print seqID + "\t" + str(seqLen) + "\t" + str(seqGC) ###Output SeqID Len GC varlen2_uc007xie.1_4456 100 0.61 varlen2_uc010mlp.1_79 208 0.57 varlen2_uc009bxt.1_1728 311 0.4 varlen2_uc009div.2_242 65 0.58 varlen2_uc003its.2_2976 179 0.5 varlen2_uc003nvg.4_2466 29 0.55 varlen2_uc029ygd.1_73 34 0.35 varlen2_uc007kxx.1_2963 69 0.36 varlen2_uc009wph.3_423 85 0.51 varlen2_uc010osx.2_1007 199 0.41 varlen2_uc001agr.3_7 49 0.84 varlen2_uc001pmn.3_3476 289 0.39 varlen2_uc003khi.3_3 459 0.45 varlen2_uc021qfk.1>2_1472 76 0.34 varlen2_uc011moe.2_5914 373 0.36 varlen2_uc003hyy.2_273 16 0.44 varlen2_uc007nte.2_374 448 0.46 varlen2_uc007fws.1_377 18 0.56 varlen2_uc003pij.1_129 26 0.27 varlen2_uc002wkt.1_1569 92 0.52 varlen2_uc010suq.2_3895 491 0.4 varlen2_uc003yos.2_1634 241 0.42 ###Markdown --- Bonus question: K-mer generation (+2 bonus points)This question is optional, but if you complete it, I'll give you two bonus points. You won't lose points if you skip it.Create a function called `get_kmers` that takes a single integer parameter, `k`, and returns a list of all possible k-mers of A/T/G/C. For example, if the supplied `k` was 2, you would generate all possible 2-mers, i.e. [AA, AT, AG, AC, TA, TT, TG, TC, GA, GT, GG, GC, CA, CT, CG, CC]. Notes:- This function must be *generic*, in the sense that it can take *any* integer value of `k` and produce the corresponding set of k-mers.- As there are $4^k$ possible k-mers for a given k, stick to smaller values of k for testing!!- I have not really taught you any particularly obvious way to solve this problem, so feel free to get creative in your solution!*There are many ways to do this, and plenty of examples online. Since the purpose of this question is to practice problem solving, don't directly look up "k-mer generation"... try to figure it out yourself. You're free to look up more generic things, though.* ###Code # Method 1 # Generic kmer generation for any k and any alphabet (default is DNA nt) # Pretty fast def get_kmers1(k, letters=['A','C','G','T']): kmers = [] choices = len(letters) finalNum = choices ** k # initialize to blank strings for i in range(finalNum): kmers.append("") # imagining the kmers lined up vertically, generate one "column" at a time for i in range(k): consecReps = choices ** (k - (i + 1)) #number of times to consecutively repeat each letter patternReps = choices ** i #number of times to repeat pattern of letters # create the current column of letters index = 0 for j in range(patternReps): for m in range(choices): for n in range(consecReps): kmers[index] += letters[m] index += 1 return kmers get_kmers1(3) # Method 2 # Generate numbers, discard any that aren't 1/2/3/4's, convert to letters. # Super slow~ def get_kmers2(k): discard = ["0", "5", "6", "7", "8", "9"] convert = {"1": "A", "2": "T", "3": "G", "4": "C"} min = int("1" * k) max = int("4" * k) kmers = [] tmp = [] for num in range(min, (max + 1)): # generate numerical kmers good = True for digit in str(num): if digit in discard: good = False break if good == True: tmp.append(num) for num in tmp: # convert numerical kmers to ATGC result = "" for digit in str(num): result += convert[digit] kmers.append(result) return kmers # Method 3 (by Nate) # A recursive solution. Fast! # (A recursive function is a function that calls itself) def get_kmers3(k): nt = ['A', 'T', 'G', 'C'] k_mers = [] if k == 1: return nt else: for i in get_kmers3(k - 1): for j in nt: k_mers.append(i + j) return k_mers # Method 4 (by Nate) # Fast def get_kmers4(k): nt = ['A', 'T', 'G', 'C'] k_mers = [] total_kmers = len(nt)**k # make a list of size k with all zeroes. # this keeps track of which base we need at each position pointers = [] for p in range(k): pointers.append(0) for k in range(total_kmers): # use the pointers to generate the next k-mer k_mer = "" for p in pointers: k_mer += nt[p] k_mers.append(k_mer) # get the pointers ready for the next k-mer by updating them left to right pointersUpdated = False i = 0 while not pointersUpdated and i < len(pointers): if pointers[i] < len(nt) - 1: pointers[i] += 1 pointersUpdated = True else: pointers[i] = 0 i += 1 return k_mers # Method 5 (by Justin Becker, bootcamp 2013) # Fast! def get_kmers5(k): #function requires int as an argument kmers = [""] for i in range(k): #after each loop, kmers will store the complete set of i-mers currentNumSeqs = len(kmers) for j in range(currentNumSeqs): #each loop takes one i-mer and converts it to 4 (i+1)=mers currentSeq = kmers[j] kmers.append(currentSeq + 'C') kmers.append(currentSeq + 'T') kmers.append(currentSeq + 'G') kmers[j] += 'A' return kmers # Method 6 (by Nick) # Convert to base-4 def get_kmers6(k): bases = ['a', 'g', 'c', 't'] kmers = [] for i in range(4**k): digits = to_base4(i, k) mystr = "" for baseidx in digits: mystr += bases[baseidx] kmers.append(mystr) return kmers # convert num to a k-digit base-4 int def to_base4(num, k): digits = [] while k > 0: digits.append(num/4**(k-1)) num %= 4**(k-1) k -= 1 return digits # Below: more from Nate import random import time alphabet = ['A', 'C', 'G', 'T'] ## Modulus based def k_mer_mod(k): k_mers = [] for i in range(4**k): k_mer = '' for j in range(k): k_mer = alphabet[(i/4**j) % 4]+ k_mer k_mers.append(k_mer) return k_mers ## maybe the range operator slows things down by making a big tuple def k_mer_mod_1(k): k_mers = [] total = 4**k i = 0 while i < total: k_mer = '' for j in range(k): k_mer = alphabet[(i/4**j) % 4]+ k_mer k_mers.append(k_mer) i += 1 return k_mers ## Does initializing the list of k_mers help? def k_mer_mod_2(k): k_mers = [''] * 4**k for i in range(4**k): k_mer = '' for j in range(k): k_mer = alphabet[(i/4**j) % 4] + k_mer k_mers[i] = k_mer return k_mers ## What's faster? element assignment or hashing? def k_mer_mod_set(k): k_mers = set() for i in range(4**k): k_mer = '' for j in range(k): k_mer = alphabet[(i/4**j) % 4] + k_mer k_mers.add(k_mer) return list(k_mers) ## does creating the string up front help? #def k_mer_mod_3(k): #n k_mers = [] # k_mer = "N" * k # for i in range(4**k): # for j in range(k): # k_mer[j] = alphabet[(i/4**j) % 4] # k_mers.append(k_mer) # return k_mers # Nope! String are immutable, dummy! # maybe we can do something tricky with string substitution def k_mer_mod_ssub(k): template = "\%s" * k k_mers = [] for i in range(4**k): k_mer = [] for j in range(k): k_mer.append(alphabet[(i/4**j) % 4]) k_mers.append(template % k_mer) return k_mers # what about using a list? def k_mer_mod_4(k): k_mers = [''] * 4**k k_mer = [''] * k for i in range(4**k): for j in range(k): k_mer[j] = alphabet[(i/4**j) % 4] k_mers[i] = "".join(k_mer) return k_mers ## recursive version def k_mer_recursive(k): if k == 0: return [''] else: k_mers = [] for k_mer in k_mer_recursive(k-1): for n in alphabet: k_mers.append("%s%s" % (k_mer, n)) return k_mers ## That works, but what I wanted to be like, really obnoxious about it def k_mer_recursive_2(k): if k == 0: return [''] else: k_mers = [] [[k_mers.append("%s%s" % (k_mer, n)) for n in alphabet] for k_mer in k_mer_recursive_2(k-1)] return k_mers # using list instead of strings to store the k_mers def k_mer_recursive_3(k, j = False): if k == 0: return [[]] else: k_mers = [] [[k_mers.append((k_mer + [n])) if j else k_mers.append("".join(k_mer + [n])) for n in alphabet] for k_mer in k_mer_recursive_3(k-1, True)] return k_mers ## stochastic (I have a good feeling about this one!) def k_mer_s(k): s = set() i = 0 while i < 4**k: k_mer = '' for j in range(k): k_mer = k_mer + random.choice(alphabet) if k_mer not in s: s.add(k_mer) i += 1 return list(s) ## I sure hope this works because now we're pretty much cheating import array def k_mer_mod_array(k): k_mers = [] k_mer = array.array('c', ['N'] * k) for i in range(4**k): for j in range(k): k_mer[j] = alphabet[(i/4**j) % 4] k_mers.append("".join(k_mer)) return k_mers ## That could have gone better. ###Output _____no_output_____ ###Markdown ------ Extra problems (0pts) **(A)** Create a function that counts the number of occurences of each nt in a specified string. Your function should accept a nucleotide string as a parameter, and should return a dictionary with the counts of each nucleotide (where the nt is the key and the count is the value). ###Code def nt_counts(seq): counts = {} for nt in seq: if nt not in counts: counts[nt] = 1 else: counts[nt] += 1 return counts nt_counts("AAAAATTTTTTTGGGGC") ###Output _____no_output_____ ###Markdown **(B)** Create a function that generates a random nt sequence of a specified length with specified nt frequencies. Your function should accept as parameters: - a length- a dictionary of nt frequences.and should return the generated string. You'll need to figure out a way to use the supplied frequencies to generate the sequence.An example of the nt freq dictionary could be: {'A':0.60, 'G':0.10, 'C':0.25, 'T':0.05} ###Code def generate_nucleotide(length, freqs): import random seq = "" samplingStr = "" # maybe not the best way to do this, but fun: # create a list with the indicated freq of nt for nt in freqs: occurPer1000 = int(1000*freqs[nt]) samplingStr += nt*occurPer1000 samplingList = list(samplingStr) # sample from the list for i in range(length): newChar = random.choice(samplingList) seq += newChar return seq generate_nucleotide(100, {'A':0.60, 'G':0.10, 'C':0.25, 'T':0.05}) # let's check if it's really working n = 10000 testSeq = generate_nucleotide(n, {'A':0.60, 'G':0.10, 'C':0.25, 'T':0.05}) obsCounts = nt_counts(testSeq) for nt in obsCounts: print nt, float(obsCounts[nt]) / n ###Output A 0.5941 C 0.2568 T 0.0457 G 0.1034
05_training_with_imputed_mf_data.ipynb
###Markdown Loan Prediction 05 - Training and Validation of Models with MissForest Imputed Dataset ###Code import math import sys sys.path.append('utils') import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from joblib import dump, load plt.style.use('seaborn') from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.linear_model import LogisticRegression, RidgeClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from xgboost import XGBClassifier import metrics_utils import model_utils df_import = pd.read_csv('dataset/train_rf_imputed.csv') df_import columns_x = df_import.drop(columns=['Loan_Status']).columns column_y = ['Loan_Status'] X_train, X_validation, y_train, y_validation = train_test_split( df_import[columns_x], df_import[column_y], test_size=0.20, random_state=42) scaler = MinMaxScaler() scaler.fit(df_import[columns_x]) dump(scaler, 'saves/minmax_scaler_miss_forest_imputation.bin', compress=True) X_train_norm = pd.DataFrame(data=scaler.transform(X_train),columns=X_train.columns) X_validation_norm = pd.DataFrame(data=scaler.transform(X_validation),columns=X_train.columns) X_train_norm.describe() print(X_train_norm.shape) X_validation_norm.describe() print(X_validation_norm.shape) ###Output (114, 13) ###Markdown Logistic Regression Classifier ###Code logistic_regression_params = { 'C' : [1,10,100,1000], 'penalty' : ['l1', 'l2', 'elasticnet', 'none'], 'solver' : ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'] } best_lr,best_lr_params,best_lr_score = model_utils.find_best_classification_model_with_cross_validation( LogisticRegression(random_state=0, class_weight = 'balanced'), logistic_regression_params, X_train_norm.values, y_train.values.ravel(), metric = 'f1') df_result = model_utils.predict(best_lr,X_validation_norm,y_validation); metrics_utils.evalute_model_performance(best_lr, 'Logistic Regression',X_validation_norm,y_validation,df_result) dump(best_lr, 'saves/logistic_regression_miss_forest_imputation.bin', compress=True) ###Output _____no_output_____ ###Markdown Ridge Regression ###Code ridge_regression_params = { 'alpha' : [1,10,100], 'solver' : ['auto', 'svd', 'lsqr', 'sag', 'cholesky','saga','sparse_cg'] } best_ridge,best_ridge_params,best_ridge_score = model_utils.find_best_classification_model_with_cross_validation( RidgeClassifier(random_state=0, class_weight = 'balanced'), ridge_regression_params, X_train_norm.values, y_train.values.ravel(), metric = 'f1') df_result = model_utils.predict(best_ridge,X_validation_norm,y_validation); metrics_utils.evalute_model_performance(best_ridge, 'Ridge Regression',X_validation_norm,y_validation,df_result) dump(best_ridge, 'saves/ridge_regression_miss_forest_imputation.bin', compress=True) ###Output _____no_output_____ ###Markdown Random Forest Classifier ###Code random_forest_params = { 'n_estimators' : [50,100,150,200], 'min_samples_split': [2,3,4,5], 'max_depth':[5,8,10,13,15], 'criterion':['gini','entropy'], 'oob_score':[True] } best_random_forest,best_random_forest_params,best_random_forest_score = model_utils.find_best_classification_model_with_cross_validation( RandomForestClassifier(random_state=0, class_weight = 'balanced'), random_forest_params, X_train_norm.values, y_train.values.ravel(), metric = 'f1') df_result = model_utils.predict(best_random_forest,X_validation_norm,y_validation) metrics_utils.evalute_model_performance(model = best_random_forest, model_name = 'Random Forest', X = X_validation_norm, y = y_validation, df_result = df_result) dump(best_random_forest, 'saves/random_forest_miss_forest_imputation.bin', compress=True) ###Output _____no_output_____ ###Markdown Gradient Boosting ###Code gboost_params = { 'loss':['deviance', 'exponential'], 'learning_rate':[0.01,0.1], 'n_estimators' : [50,100,150], 'min_samples_split': [2,3,4,5], 'max_depth':[2,3,5,8] } best_gboost,best_gboost_params,best_gboost_score = model_utils.find_best_classification_model_with_cross_validation( GradientBoostingClassifier(random_state=0), gboost_params, X_train_norm.values, y_train.values.ravel(), metric = 'f1') df_result = model_utils.predict(best_gboost,X_validation_norm,y_validation) metrics_utils.evalute_model_performance(model = best_gboost, model_name = 'Gradient Boosting', X = X_validation_norm, y = y_validation, df_result = df_result) dump(best_gboost, 'saves/gradient_boosting_miss_forest_imputation.bin', compress=True) ###Output _____no_output_____ ###Markdown Extreme Gradient Boosting ###Code xgb_params = {'objective':['binary:logistic'], 'learning_rate': [0.1,0.3,0.5], 'gamma':[0,1], 'max_depth': [3,4,6,10], 'subsample': [0.5, 1], 'n_estimators': [50,100,150], 'missing':[-999]} best_xgb,best_gboost_params,best_gboost_score = model_utils.find_best_classification_model_with_cross_validation( XGBClassifier(seed=0), xgb_params, X_train_norm.values, y_train.values.ravel(), metric = 'f1') df_result = model_utils.predict(best_xgb,X_validation_norm,y_validation) metrics_utils.evalute_model_performance(model = best_gboost, model_name = 'Extreme Gradient Boosting', X = X_validation_norm, y = y_validation, df_result = df_result) dump(best_gboost, 'saves/extreme_gradient_boosting_miss_forest_imputation.bin', compress=True) ###Output _____no_output_____
notebooks/archive/calc_w.ipynb
###Markdown An attempt to calculate vertical velocity using continuity ###Code import xarray as xr import numpy as np from verticalvelocity_xr import calc_w_continuity as calc_w from matplotlib import pyplot as plt %matplotlib inline # Specify the location of the file rootdir = '/archive/oar.gfdl.cmip6/ESM4/DECK/ESM4_piControl_D/gfdl.ncrc4-intel16-prod-openmp/pp/' datadir = 'ocean_annual_rho2/av/annual_5yr/' filename = 'ocean_annual_rho2.0866-0870.ann.nc' ds = xr.open_dataset(rootdir+datadir+filename) w = calc_w(u=ds.umo,v=ds.vmo,z=ds.rho2_i,wrapx=True,wrapy=False) w.sum(dim=['xh','yh']).plot() im = w.isel(z_i=10).plot() im.set_clim([-0.5E8,0.5E8]) ###Output _____no_output_____
#MentalHealthBIllKenya.ipynb
###Markdown The State of Mental Health in Kenya An analysis of Kenyans' expressions on Mental Health Bill [@gyleodhis](https://www.twitter.com/gyleodhis) ![Kenya](./static/kenya.png) Authorizing an application to access Twitter account data ###Code import twitter CONSUMER_KEY = '' #Intentionaly removed CONSUMER_SECRET = '' #Intentionaly removed OAUTH_TOKEN = '' #Intentionaly removed OAUTH_TOKEN_SECRET = '' #Intentionaly removed auth = twitter.oauth.OAuth(OAUTH_TOKEN, OAUTH_TOKEN_SECRET, CONSUMER_KEY, CONSUMER_SECRET) twitter_api = twitter.Twitter(auth=auth) print(twitter_api) # This confirms connection to twitter api ###Output <twitter.api.Twitter object at 0x7fa35c3d0048> ###Markdown Retrieving trendsFirst we need to identify what are the trending topics in two major cities in Kenya and then try to find a relationship between these tweets and the resently passed MENTAL HEALTH BILL. ###Code # The Yahoo! Where On Earth ID for the entire world is 1. # See https://dev.twitter.com/docs/api/1.1/get/trends/place and # http://developer.yahoo.com/geo/geoplanet/ Nairobi_ID = 1528488 Mombasa_ID = 1528335 # Prefix ID with the underscore for query string parameterization. # Without the underscore, the twitter package appends the ID value # to the URL itself as a special case keyword argument. nairobi_trends = twitter_api.trends.place(_id=Nairobi_ID) mombasa_trends = twitter_api.trends.place(_id=Mombasa_ID) #print(nairobi_trends) print() #print(mombasa_trends) ###Output ###Markdown Topics Trending in the city of Nairobi ###Code for trend in nairobi_trends[0]['trends']: print(trend['name']) ###Output #Turkanadrought #mightiestprophetinnairobi Kindly Ruto Shame Baringo #WeCannotIgnore #TuesdayThoughts #AMLiveNTV DCI Kinoti Cuba Ekeza Sacco Linus Kaikai Kenyans kenyatta university M-Pesa James Oduor Maseno University Patrick Hinga Pastor Ng'ang'a Wanja The E Review #AdelleAndShaffieOnKISS #BeyondPressConfrences #JeffAndHamoOnHot #Brekko #SpencerBuyingJustice #AlexNaJalas #NyakundiStrong #MainaAndKingangi #GMITM #BarakaZaQwetu #Breakfast984 #BillyNaTricky #BarakaZaMilele #mondaymotivation #NyakundiTheLiar #SautiYaMayouths #PrisonDiaries #presspass #mondaythoughts #Sirkal #MondayReport #totalcafcc #Messi #Home4MauMauHeroes #KTNMorningExpress #DayBreak #NTVTonight #helpachildreach5 ###Markdown Topics Trending in the City of Mombasa ###Code for trend in mombasa_trends[0]['trends']: print(trend['name']) ###Output #AdelleAndShaffieOnKISS Turkana #TheScoreKE #WeCannotIgnore #TuesdayThoughts #AMLiveNTV DCI Kinoti Cuba Ekeza Sacco Linus Kaikai Kenyans kenyatta university M-Pesa James Oduor Maseno University Patrick Hinga Pastor Ng'ang'a Wanja The E Review Nanok James Ng'ang'a everton #BeyondPressConfrences #JeffAndHamoOnHot #Brekko #SpencerBuyingJustice #AlexNaJalas #NyakundiStrong #MainaAndKingangi #GMITM #BarakaZaQwetu #Breakfast984 #BillyNaTricky #BarakaZaMilele #mondaymotivation #NyakundiTheLiar #mightiestprophetinnairobi #SautiYaMayouths #PrisonDiaries #presspass #mondaythoughts #Sirkal #MondayReport #totalcafcc #Messi #Home4MauMauHeroes #KTNMorningExpress #DayBreak #NTVTonight #helpachildreach5 ###Markdown Common Trends in relation to Mental Health. SautiYaMayouths (The voice of the youths) presspass MondayReport mondaymotivation Kenyatta University (increased suicides in the university) TheScoreKE WeCannotIgnore (In relation to Kenyatta University) TuesdayThoughts MentalHealthBillKe analysisAfter Seversl dull incidences in relation to mental health happening throught the country, a bill was tabled to parliament to revisit the mental health act to make it more protective of the most vulnerable; women and youth. The analysis below is how kenyans reacted to it on twitter. First let us look at top 10 tweets with most 'fevorite' and those retweeted most. ###Code for i in range(10): print() print(statuses[i]['text']) print('Favorites: ', statuses[i]['favorite_count']) print('Retweets: ', statuses[i]['retweet_count']) ###Output RT @_fels1: One man can impregnate 365+ women in 1 yr. 1 woman can only be impregnated by 1 man in 1 yr. Why dont we focus more on male con… Favorites: 0 Retweets: 57 RT @Gachee: If we continue to overlook mental health The economy as a whole will be affected. Mental illness will afflict more people, unem… Favorites: 0 Retweets: 14 RT @_fels1: One man can impregnate 365+ women in 1 yr. 1 woman can only be impregnated by 1 man in 1 yr. Why dont we focus more on male con… Favorites: 0 Retweets: 57 #socialanxiety #me #yes #mentalhealthbillke https://t.co/3zs14UYatp Favorites: 1 Retweets: 0 RT @FaithArimba: #MentalHealthBillKE Young people in Kenyan social setting today tend to be depressed when they lack jobs; when they feel l… Favorites: 0 Retweets: 38 RT @enock_kiptanui: #MentalHealthBillKE In the event you run into someone you know has mental illness,do you whisper to him because you th… Favorites: 0 Retweets: 41 RT @MzalendoWatch: I was diagnosed with severe depression and bipolar in January. It's only my sister who believed and therefore support in… Favorites: 0 Retweets: 16 RT @SylviaKasanga: Very interesting submissions on the #MentalHealthBillKe https://t.co/jXfJu1PBsq Favorites: 0 Retweets: 11 RT @Gachee: If we continue to overlook mental health The economy as a whole will be affected. Mental illness will afflict more people, unem… Favorites: 0 Retweets: 14 RT @InspectorDhola: Visual reminders of disorganisation can have negative effects on our physical and mental health. Well said @LibbySander… Favorites: 0 Retweets: 1 ###Markdown Let us pull down one of the tweets ###Code import json # Set this variable to a trending topic, # or anything else for that matter. The example query below # was a trending topic when this content was being developed # and is used throughout the remainder of this chapter. q = '#MentalHealthBillKe' count = 1000 # Import unquote to prevent url encoding errors in next_results from urllib.parse import unquote # See https://dev.twitter.com/rest/reference/get/search/tweets search_results = twitter_api.search.tweets(q=q, count=count) statuses = search_results['statuses'] # Iterate through 5 more batches of results by following the cursor for _ in range(5): print('Length of statuses', len(statuses)) try: next_results = search_results['search_metadata']['next_results'] except KeyError as e: # No more results when next_results doesn't exist break # Create a dictionary from next_results, which has the following form: # ?max_id=847960489447628799&q=%23RIPSelena&count=100&include_entities=1 kwargs = dict([ kv.split('=') for kv in unquote(next_results[1:]).split("&") ]) search_results = twitter_api.search.tweets(**kwargs) statuses += search_results['statuses'] # Show one sample search result by slicing the list... print(json.dumps(statuses[0], indent=1)) ###Output Length of statuses 100 Length of statuses 200 Length of statuses 289 Length of statuses 376 Length of statuses 468 { "is_quote_status": false, "metadata": { "result_type": "recent", "iso_language_code": "en" }, "in_reply_to_status_id": null, "contributors": null, "created_at": "Mon Mar 18 23:24:18 +0000 2019", "lang": "en", "in_reply_to_status_id_str": null, "favorite_count": 0, "id": 1107784823463165952, "in_reply_to_user_id_str": null, "coordinates": null, "place": null, "truncated": false, "retweeted": false, "in_reply_to_user_id": null, "retweet_count": 57, "id_str": "1107784823463165952", "geo": null, "text": "RT @_fels1: One man can impregnate 365+ women in 1 yr. 1 woman can only be impregnated by 1 man in 1 yr. Why dont we focus more on male con\u2026", "retweeted_status": { "is_quote_status": false, "metadata": { "result_type": "recent", "iso_language_code": "en" }, "in_reply_to_status_id": null, "contributors": null, "created_at": "Tue Mar 12 08:54:52 +0000 2019", "lang": "en", "in_reply_to_status_id_str": null, "favorite_count": 137, "id": 1105391696047673344, "in_reply_to_user_id_str": null, "coordinates": null, "place": null, "truncated": true, "retweeted": false, "in_reply_to_user_id": null, "retweet_count": 57, "id_str": "1105391696047673344", "geo": null, "text": "One man can impregnate 365+ women in 1 yr. 1 woman can only be impregnated by 1 man in 1 yr. Why dont we focus more\u2026 https://t.co/3kwsb369f8", "source": "<a href=\"http://twitter.com/download/iphone\" rel=\"nofollow\">Twitter for iPhone</a>", "entities": { "urls": [ { "display_url": "twitter.com/i/web/status/1\u2026", "expanded_url": "https://twitter.com/i/web/status/1105391696047673344", "url": "https://t.co/3kwsb369f8", "indices": [ 117, 140 ] } ], "user_mentions": [], "hashtags": [], "symbols": [] }, "user": { "profile_image_url": "http://pbs.twimg.com/profile_images/1107618815444176897/tQq2RqaX_normal.jpg", "profile_background_image_url_https": null, "entities": { "description": { "urls": [] } }, "default_profile": true, "profile_sidebar_border_color": "C0DEED", "profile_background_image_url": null, "created_at": "Sat Jan 14 16:40:42 +0000 2017", "protected": false, "url": null, "is_translator": false, "lang": "en", "translator_type": "none", "has_extended_profile": true, "id": 820309675245760512, "statuses_count": 9409, "notifications": false, "default_profile_image": false, "geo_enabled": true, "profile_text_color": "333333", "profile_background_tile": false, "verified": false, "is_translation_enabled": false, "profile_banner_url": "https://pbs.twimg.com/profile_banners/820309675245760512/1552839383", "time_zone": null, "contributors_enabled": false, "screen_name": "_fels1", "location": "Kenya", "description": "Chelsea Fan|| Raila is a LIAR|| Faith is a form of madness....", "profile_link_color": "1DA1F2", "profile_image_url_https": "https://pbs.twimg.com/profile_images/1107618815444176897/tQq2RqaX_normal.jpg", "utc_offset": null, "favourites_count": 19336, "profile_use_background_image": true, "profile_background_color": "F5F8FA", "profile_sidebar_fill_color": "DDEEF6", "followers_count": 15653, "listed_count": 5, "follow_request_sent": false, "name": "Wuod Japuonj\ud83c\uddf0\ud83c\uddea", "friends_count": 13710, "id_str": "820309675245760512", "following": false }, "favorited": false, "in_reply_to_screen_name": null }, "source": "<a href=\"http://twitter.com/download/iphone\" rel=\"nofollow\">Twitter for iPhone</a>", "entities": { "urls": [], "user_mentions": [ { "screen_name": "_fels1", "id_str": "820309675245760512", "id": 820309675245760512, "name": "Wuod Japuonj\ud83c\uddf0\ud83c\uddea", "indices": [ 3, 10 ] } ], "hashtags": [], "symbols": [] }, "user": { "profile_image_url": "http://pbs.twimg.com/profile_images/1103766261966745603/YffrAQr6_normal.jpg", "profile_background_image_url_https": "https://abs.twimg.com/images/themes/theme1/bg.png", "entities": { "description": { "urls": [] } }, "default_profile": true, "profile_sidebar_border_color": "C0DEED", "profile_background_image_url": "http://abs.twimg.com/images/themes/theme1/bg.png", "created_at": "Mon Oct 12 14:07:52 +0000 2015", "protected": false, "url": null, "is_translator": false, "lang": "en", "translator_type": "none", "has_extended_profile": true, "id": 3937753342, "statuses_count": 45697, "notifications": false, "geo_enabled": false, "default_profile_image": false, "profile_background_tile": false, "verified": false, "is_translation_enabled": false, "profile_text_color": "333333", "time_zone": null, "contributors_enabled": false, "screen_name": "MbeniaJP", "location": "", "description": "", "profile_link_color": "1DA1F2", "profile_image_url_https": "https://pbs.twimg.com/profile_images/1103766261966745603/YffrAQr6_normal.jpg", "utc_offset": null, "favourites_count": 104332, "profile_use_background_image": true, "profile_background_color": "C0DEED", "profile_sidebar_fill_color": "DDEEF6", "followers_count": 3614, "listed_count": 19, "follow_request_sent": false, "name": "JayP.O", "friends_count": 3114, "id_str": "3937753342", "following": false }, "favorited": false, "in_reply_to_screen_name": null } ###Markdown Extracting text, screen names, and hashtags from tweets ###Code status_texts = [ status['text'] for status in statuses ] screen_names = [ user_mention['screen_name'] for status in statuses for user_mention in status['entities']['user_mentions'] ] hashtags = [ hashtag['text'] for status in statuses for hashtag in status['entities']['hashtags'] ] # Compute a collection of all words from all tweets words = [ w for t in status_texts for w in t.split() ] # Explore the first 5 items for each... print(json.dumps(status_texts[0:5], indent=1)) print(json.dumps(screen_names[0:5], indent=1) ) print(json.dumps(hashtags[0:5], indent=1)) print(json.dumps(words[0:5], indent=1)) ###Output [ "RT @_fels1: One man can impregnate 365+ women in 1 yr. 1 woman can only be impregnated by 1 man in 1 yr. Why dont we focus more on male con\u2026", "RT @Gachee: If we continue to overlook mental health The economy as a whole will be affected. Mental illness will afflict more people, unem\u2026", "RT @_fels1: One man can impregnate 365+ women in 1 yr. 1 woman can only be impregnated by 1 man in 1 yr. Why dont we focus more on male con\u2026", "#socialanxiety #me #yes #mentalhealthbillke https://t.co/3zs14UYatp", "RT @FaithArimba: #MentalHealthBillKE Young people in Kenyan social setting today tend to be depressed when they lack jobs; when they feel l\u2026" ] [ "_fels1", "Gachee", "_fels1", "FaithArimba", "enock_kiptanui" ] [ "socialanxiety", "me", "yes", "mentalhealthbillke", "MentalHealthBillKE" ] [ "RT", "@_fels1:", "One", "man", "can" ] ###Markdown Creating a basic frequency distribution from the words in tweets ###Code from collections import Counter for item in [words, screen_names, hashtags]: c = Counter(item) print(c.most_common()[:10]) # top 10 print() ###Output [('RT', 451), ('the', 309), ('to', 262), ('#MentalHealthBillKE', 249), ('in', 203), ('of', 188), ('and', 182), ('1', 181), ('be', 151), ('a', 143)] [('MzalendoWatch', 59), ('enock_kiptanui', 55), ('Dmarigiri_', 54), ('_fels1', 44), ('SylviaKasanga', 43), ('Gachee', 28), ('FaithArimba', 28), ('ChiromoLMC', 20), ('EvyonK', 19), ('Nichonasri1', 18)] [('MentalHealthBillKE', 250), ('MentalHealthBillKe', 24), ('ProtectingTheRightsOfTheMentallySick', 5), ('TuesdayThoughts', 3), ('ProtectingTheRightsOfMentallySick', 3), ('WeShallOvercome', 3), ('BeUnstoppable', 3), ('GameOfPhonesKE', 3), ('Kenya', 2), ('AfricaNow19', 2)] ###Markdown Tabulating our results ###Code from prettytable import PrettyTable for label, data in (('Word', words), ('Screen Name', screen_names), ('Hashtag', hashtags)): pt = PrettyTable(field_names=[label, 'Count']) c = Counter(data) [ pt.add_row(kv) for kv in c.most_common()[:10] ] pt.align[label], pt.align['Count'] = 'l', 'r' # Set column alignment print(pt) ###Output +---------------------+-------+ | Word | Count | +---------------------+-------+ | RT | 451 | | the | 309 | | to | 262 | | #MentalHealthBillKE | 249 | | in | 203 | | of | 188 | | and | 182 | | 1 | 181 | | be | 151 | | a | 143 | +---------------------+-------+ +----------------+-------+ | Screen Name | Count | +----------------+-------+ | MzalendoWatch | 59 | | enock_kiptanui | 55 | | Dmarigiri_ | 54 | | _fels1 | 44 | | SylviaKasanga | 43 | | Gachee | 28 | | FaithArimba | 28 | | ChiromoLMC | 20 | | EvyonK | 19 | | Nichonasri1 | 18 | +----------------+-------+ +--------------------------------------+-------+ | Hashtag | Count | +--------------------------------------+-------+ | MentalHealthBillKE | 250 | | MentalHealthBillKe | 24 | | ProtectingTheRightsOfTheMentallySick | 5 | | TuesdayThoughts | 3 | | ProtectingTheRightsOfMentallySick | 3 | | WeShallOvercome | 3 | | BeUnstoppable | 3 | | GameOfPhonesKE | 3 | | Kenya | 2 | | AfricaNow19 | 2 | +--------------------------------------+-------+ ###Markdown Calculating lexical diversity for tweets How are the actual words used related to mental health? Let us find out ###Code # A function for computing lexical diversity def lexical_diversity(tokens): return len(set(tokens))/len(tokens) # A function for computing the average number of words per tweet def average_words(statuses): total_words = sum([ len(s.split()) for s in statuses ]) return total_words/len(statuses) print(lexical_diversity(words)) print(lexical_diversity(hashtags)) ###Output 0.11945857558139535 0.0732484076433121 ###Markdown Both "words" and "hashtags" have lexical values of less than 0.5 . This means that they are strongly co-related mental health Finding the most popular retweets ###Code retweets = [ # Store out a tuple of these three values ... (status['retweet_count'], status['retweeted_status']['user']['screen_name'], status['retweeted_status']['id'], status['text']) # ... for each status ... for status in statuses # ... so long as the status meets this condition. if 'retweeted_status' in status.keys() ] # Slice off the first 5 from the sorted results and display each item in the tuple pt = PrettyTable(field_names=['Count', 'Screen Name', 'Tweet ID', 'Text']) [ pt.add_row(row) for row in sorted(retweets, reverse=True)[:50] ] pt.max_width['Text'] = 50 pt.align= 'l' print(pt) ###Output +-------+----------------+---------------------+----------------------------------------------------+ | Count | Screen Name | Tweet ID | Text | +-------+----------------+---------------------+----------------------------------------------------+ | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 57 | _fels1 | 1105391696047673344 | RT @_fels1: One man can impregnate 365+ women in 1 | | | | | yr. 1 woman can only be impregnated by 1 man in 1 | | | | | yr. Why dont we focus more on male con… | | 41 | enock_kiptanui | 1105370472181624833 | RT @enock_kiptanui: #MentalHealthBillKE | | | | | | | | | | In the event you run into someone you know has | | | | | mental illness,do you whisper to him because you | | | | | th… | | 41 | enock_kiptanui | 1105370472181624833 | RT @enock_kiptanui: #MentalHealthBillKE | | | | | | | | | | In the event you run into someone you know has | | | | | mental illness,do you whisper to him because you | | | | | th… | | 41 | enock_kiptanui | 1105370472181624833 | RT @enock_kiptanui: #MentalHealthBillKE | | | | | | | | | | In the event you run into someone you know has | | | | | mental illness,do you whisper to him because you | | | | | th… | | 41 | enock_kiptanui | 1105370472181624833 | RT @enock_kiptanui: #MentalHealthBillKE | | | | | | | | | | In the event you run into someone you know has | | | | | mental illness,do you whisper to him because you | | | | | th… | | 41 | enock_kiptanui | 1105370472181624833 | RT @enock_kiptanui: #MentalHealthBillKE | | | | | | | | | | In the event you run into someone you know has | | | | | mental illness,do you whisper to him because you | | | | | th… | | 41 | enock_kiptanui | 1105370472181624833 | RT @enock_kiptanui: #MentalHealthBillKE | | | | | | | | | | In the event you run into someone you know has | | | | | mental illness,do you whisper to him because you | | | | | th… | +-------+----------------+---------------------+----------------------------------------------------+ ###Markdown Irresposible men impregnating women is seen as number one course of mental health amongst women as they are left to take care of the babies all by themselves. Plotting frequencies of words ###Code import matplotlib.pyplot as plt %matplotlib inline word_counts = sorted(Counter(words).values(), reverse=True) plt.loglog(word_counts) plt.ylabel("Freq") plt.xlabel("Word Rank") ###Output _____no_output_____ ###Markdown Generating histograms of words, screen names, and hashtags ###Code for label, data in (('Words', words), ('Screen Names', screen_names), ('Hashtags', hashtags)): # Build a frequency map for each set of data # and plot the values c = Counter(data) plt.hist(list(c.values())) # Add a title and y-label ... plt.title(label) plt.ylabel("Number of tims it appeard") plt.xlabel("Hashtag") # ... and display as a new figure plt.figure() ###Output _____no_output_____ ###Markdown Generating a histogram of retweet counts ###Code # Using underscores while unpacking values in # a tuple is idiomatic for discarding them counts = [count for count, _, _, _ in retweets] plt.hist(counts) plt.title('Retweets') plt.xlabel('Bins (number of times retweeted)') plt.ylabel('Number of tweets in bin') ###Output _____no_output_____ ###Markdown Sentiment Analysis ###Code # pip install nltk import nltk #nltk.download('vader_lexicon') import numpy as np from nltk.sentiment.vader import SentimentIntensityAnalyzer twitter_stream = twitter.TwitterStream(auth=auth) iterator = twitter_stream.statuses.sample() tweets = [] for tweet in iterator: try: if tweet['lang'] == 'en': tweets.append(tweet) except: pass if len(tweets) == 100: break analyzer = SentimentIntensityAnalyzer() analyzer.polarity_scores('Mental Health') analyzer.polarity_scores('In the event you run into someone you know has mental illness,do you whisper to him because you.') analyzer.polarity_scores('1 woman can only be impregnated by 1 man in 1 year.Why dont we focus more on male con..') ###Output _____no_output_____ ###Markdown From the above three samples it is clear that were very neutral in their discussions as the tweets score are neutral polarity status. ###Code scores = np.zeros(len(tweets)) for i, t in enumerate(tweets): # Extract the text portion of the tweet text = t['text'] # Measure the polarity of the tweet polarity = analyzer.polarity_scores(text) # Store the normalized, weighted composite score scores[i] = polarity['compound'] most_positive = np.argmax(scores) most_negative = np.argmin(scores) ###Output _____no_output_____ ###Markdown Let's Find out what the most negative tweet is ###Code print('{0:6.3f} : "{1}"'.format(scores[most_negative], tweets[most_negative]['text'])) ###Output -0.862 : "RT @icrbthomas: Those who have suffered under this disease can confirm that cancer is not good, let alone very good, and that a god who say…"
deeplearning.ai-tensorflow-developer-certificate/1-of-4-intro-to-tf/Week_2/Course_1_Part_4_Lesson_2_Notebook.ipynb
###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Beyond Hello World, A Computer Vision ExampleIn the previous exercise you saw how to create a neural network that figured out the problem you were trying to solve. This gave an explicit example of learned behavior. Of course, in that instance, it was a bit of overkill because it would have been easier to write the function Y=2x-1 directly, instead of bothering with using Machine Learning to learn the relationship between X and Y for a fixed set of values, and extending that for all values.But what about a scenario where writing rules like that is much more difficult -- for example a computer vision problem? Let's take a look at a scenario where we can recognize different items of clothing, trained from a dataset containing 10 different types. Start CodingLet's start with our import of TensorFlow ###Code import tensorflow as tf print(tf.__version__) ###Output _____no_output_____ ###Markdown The Fashion MNIST data is available directly in the tf.keras datasets API. You load it like this: ###Code mnist = tf.keras.datasets.fashion_mnist ###Output _____no_output_____ ###Markdown Calling load_data on this object will give you two sets of two lists, these will be the training and testing values for the graphics that contain the clothing items and their labels. ###Code (training_images, training_labels), (test_images, test_labels) = mnist.load_data() ###Output _____no_output_____ ###Markdown What does these values look like? Let's print a training image, and a training label to see...Experiment with different indices in the array. For example, also take a look at index 42...that's a a different boot than the one at index 0 ###Code import numpy as np np.set_printoptions(linewidth=200) import matplotlib.pyplot as plt plt.imshow(training_images[0]) print(training_labels[0]) print(training_images[0]) ###Output _____no_output_____ ###Markdown You'll notice that all of the values in the number are between 0 and 255. If we are training a neural network, for various reasons it's easier if we treat all values as between 0 and 1, a process called '**normalizing**'...and fortunately in Python it's easy to normalize a list like this without looping. You do it like this: ###Code training_images = training_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown Now you might be wondering why there are 2 sets...training and testing -- remember we spoke about this in the intro? The idea is to have 1 set of data for training, and then another set of data...that the model hasn't yet seen...to see how good it would be at classifying values. After all, when you're done, you're going to want to try it out with data that it hadn't previously seen! Let's now design the model. There's quite a few new concepts here, but don't worry, you'll get the hang of them. ###Code model = tf.keras.models.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation=tf.nn.relu), tf.keras.layers.Dense(10, activation=tf.nn.softmax)]) ###Output _____no_output_____ ###Markdown **Sequential**: That defines a SEQUENCE of layers in the neural network**Flatten**: Remember earlier where our images were a square, when you printed them out? Flatten just takes that square and turns it into a 1 dimensional set.**Dense**: Adds a layer of neuronsEach layer of neurons need an **activation function** to tell them what to do. There's lots of options, but just use these for now. **Relu** effectively means "If X>0 return X, else return 0" -- so what it does it it only passes values 0 or greater to the next layer in the network.**Softmax** takes a set of values, and effectively picks the biggest one, so, for example, if the output of the last layer looks like [0.1, 0.1, 0.05, 0.1, 9.5, 0.1, 0.05, 0.05, 0.05], it saves you from fishing through it looking for the biggest value, and turns it into [0,0,0,0,1,0,0,0,0] -- The goal is to save a lot of coding! The next thing to do, now the model is defined, is to actually build it. You do this by compiling it with an optimizer and loss function as before -- and then you train it by calling **model.fit ** asking it to fit your training data to your training labels -- i.e. have it figure out the relationship between the training data and its actual labels, so in future if you have data that looks like the training data, then it can make a prediction for what that data would look like. ###Code model.compile(optimizer = tf.optimizers.Adam(), loss = 'sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(training_images, training_labels, epochs=5) ###Output _____no_output_____ ###Markdown Once it's done training -- you should see an accuracy value at the end of the final epoch. It might look something like 0.9098. This tells you that your neural network is about 91% accurate in classifying the training data. I.E., it figured out a pattern match between the image and the labels that worked 91% of the time. Not great, but not bad considering it was only trained for 5 epochs and done quite quickly.But how would it work with unseen data? That's why we have the test images. We can call model.evaluate, and pass in the two sets, and it will report back the loss for each. Let's give it a try: ###Code model.evaluate(test_images, test_labels) ###Output _____no_output_____ ###Markdown For me, that returned a accuracy of about .8838, which means it was about 88% accurate. As expected it probably would not do as well with *unseen* data as it did with data it was trained on! As you go through this course, you'll look at ways to improve this. To explore further, try the below exercises: Exploration Exercises Exercise 1:For this first exercise run the below code: It creates a set of classifications for each of the test images, and then prints the first entry in the classifications. The output, after you run it is a list of numbers. Why do you think this is, and what do those numbers represent? ###Code classifications = model.predict(test_images) print(classifications[0]) ###Output _____no_output_____ ###Markdown Hint: try running print(test_labels[0]) -- and you'll get a 9. Does that help you understand why this list looks the way it does? ###Code print(test_labels[0]) ###Output _____no_output_____ ###Markdown What does this list represent?1. It's 10 random meaningless values2. It's the first 10 classifications that the computer made3. It's the probability that this item is each of the 10 classes Answer: The correct answer is (3)The output of the model is a list of 10 numbers. These numbers are a probability that the value being classified is the corresponding value (https://github.com/zalandoresearch/fashion-mnistlabels), i.e. the first value in the list is the probability that the image is of a '0' (T-shirt/top), the next is a '1' (Trouser) etc. Notice that they are all VERY LOW probabilities.For the 9 (Ankle boot), the probability was in the 90's, i.e. the neural network is telling us that it's almost certainly a 7. How do you know that this list tells you that the item is an ankle boot?1. There's not enough information to answer that question2. The 10th element on the list is the biggest, and the ankle boot is labelled 92. The ankle boot is label 9, and there are 0->9 elements in the list AnswerThe correct answer is (2). Both the list and the labels are 0 based, so the ankle boot having label 9 means that it is the 10th of the 10 classes. The list having the 10th element being the highest value means that the Neural Network has predicted that the item it is classifying is most likely an ankle boot Exercise 2: Let's now look at the layers in your model. Experiment with different values for the dense layer with 512 neurons. What different results do you get for loss, training time etc? Why do you think that's the case? ###Code import tensorflow as tf print(tf.__version__) mnist = tf.keras.datasets.mnist (training_images, training_labels) , (test_images, test_labels) = mnist.load_data() training_images = training_images/255.0 test_images = test_images/255.0 model = tf.keras.models.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(1024, activation=tf.nn.relu), tf.keras.layers.Dense(10, activation=tf.nn.softmax)]) model.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy') model.fit(training_images, training_labels, epochs=5) model.evaluate(test_images, test_labels) classifications = model.predict(test_images) print(classifications[0]) print(test_labels[0]) ###Output _____no_output_____ ###Markdown Question 1. Increase to 1024 Neurons -- What's the impact?1. Training takes longer, but is more accurate2. Training takes longer, but no impact on accuracy3. Training takes the same time, but is more accurate AnswerThe correct answer is (1) by adding more Neurons we have to do more calculations, slowing down the process, but in this case they have a good impact -- we do get more accurate. That doesn't mean it's always a case of 'more is better', you can hit the law of diminishing returns very quickly! Exercise 3: What would happen if you remove the Flatten() layer. Why do you think that's the case? You get an error about the shape of the data. It may seem vague right now, but it reinforces the rule of thumb that the first layer in your network should be the same shape as your data. Right now our data is 28x28 images, and 28 layers of 28 neurons would be infeasible, so it makes more sense to 'flatten' that 28,28 into a 784x1. Instead of wriitng all the code to handle that ourselves, we add the Flatten() layer at the begining, and when the arrays are loaded into the model later, they'll automatically be flattened for us. ###Code import tensorflow as tf print(tf.__version__) mnist = tf.keras.datasets.mnist (training_images, training_labels) , (test_images, test_labels) = mnist.load_data() training_images = training_images/255.0 test_images = test_images/255.0 model = tf.keras.models.Sequential([#tf.keras.layers.Flatten(), tf.keras.layers.Dense(64, activation=tf.nn.relu), tf.keras.layers.Dense(10, activation=tf.nn.softmax)]) model.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy') model.fit(training_images, training_labels, epochs=5) model.evaluate(test_images, test_labels) classifications = model.predict(test_images) print(classifications[0]) print(test_labels[0]) ###Output _____no_output_____ ###Markdown Exercise 4: Consider the final (output) layers. Why are there 10 of them? What would happen if you had a different amount than 10? For example, try training the network with 5You get an error as soon as it finds an unexpected value. Another rule of thumb -- the number of neurons in the last layer should match the number of classes you are classifying for. In this case it's the digits 0-9, so there are 10 of them, hence you should have 10 neurons in your final layer. ###Code import tensorflow as tf print(tf.__version__) mnist = tf.keras.datasets.mnist (training_images, training_labels) , (test_images, test_labels) = mnist.load_data() training_images = training_images/255.0 test_images = test_images/255.0 model = tf.keras.models.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(64, activation=tf.nn.relu), tf.keras.layers.Dense(5, activation=tf.nn.softmax)]) model.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy') model.fit(training_images, training_labels, epochs=5) model.evaluate(test_images, test_labels) classifications = model.predict(test_images) print(classifications[0]) print(test_labels[0]) ###Output _____no_output_____ ###Markdown Exercise 5: Consider the effects of additional layers in the network. What will happen if you add another layer between the one with 512 and the final layer with 10. Ans: There isn't a significant impact -- because this is relatively simple data. For far more complex data (including color images to be classified as flowers that you'll see in the next lesson), extra layers are often necessary. ###Code import tensorflow as tf print(tf.__version__) mnist = tf.keras.datasets.mnist (training_images, training_labels) , (test_images, test_labels) = mnist.load_data() training_images = training_images/255.0 test_images = test_images/255.0 model = tf.keras.models.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation=tf.nn.relu), tf.keras.layers.Dense(256, activation=tf.nn.relu), tf.keras.layers.Dense(10, activation=tf.nn.softmax)]) model.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy') model.fit(training_images, training_labels, epochs=5) model.evaluate(test_images, test_labels) classifications = model.predict(test_images) print(classifications[0]) print(test_labels[0]) ###Output _____no_output_____ ###Markdown Exercise 6: Consider the impact of training for more or less epochs. Why do you think that would be the case? Try 15 epochs -- you'll probably get a model with a much better loss than the one with 5Try 30 epochs -- you might see the loss value stops decreasing, and sometimes increases. This is a side effect of something called 'overfitting' which you can learn about [somewhere] and it's something you need to keep an eye out for when training neural networks. There's no point in wasting your time training if you aren't improving your loss, right! :) ###Code import tensorflow as tf print(tf.__version__) mnist = tf.keras.datasets.mnist (training_images, training_labels) , (test_images, test_labels) = mnist.load_data() training_images = training_images/255.0 test_images = test_images/255.0 model = tf.keras.models.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation=tf.nn.relu), tf.keras.layers.Dense(10, activation=tf.nn.softmax)]) model.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy') model.fit(training_images, training_labels, epochs=30) model.evaluate(test_images, test_labels) classifications = model.predict(test_images) print(classifications[34]) print(test_labels[34]) ###Output _____no_output_____ ###Markdown Exercise 7: Before you trained, you normalized the data, going from values that were 0-255 to values that were 0-1. What would be the impact of removing that? Here's the complete code to give it a try. Why do you think you get different results? ###Code import tensorflow as tf print(tf.__version__) mnist = tf.keras.datasets.mnist (training_images, training_labels), (test_images, test_labels) = mnist.load_data() training_images=training_images/255.0 test_images=test_images/255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation=tf.nn.relu), tf.keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy') model.fit(training_images, training_labels, epochs=5) model.evaluate(test_images, test_labels) classifications = model.predict(test_images) print(classifications[0]) print(test_labels[0]) ###Output _____no_output_____ ###Markdown Exercise 8: Earlier when you trained for extra epochs you had an issue where your loss might change. It might have taken a bit of time for you to wait for the training to do that, and you might have thought 'wouldn't it be nice if I could stop the training when I reach a desired value?' -- i.e. 95% accuracy might be enough for you, and if you reach that after 3 epochs, why sit around waiting for it to finish a lot more epochs....So how would you fix that? Like any other program...you have callbacks! Let's see them in action... ###Code import tensorflow as tf print(tf.__version__) class myCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if(logs.get('loss')<0.4): print("\nReached 60% accuracy so cancelling training!") self.model.stop_training = True callbacks = myCallback() mnist = tf.keras.datasets.fashion_mnist (training_images, training_labels), (test_images, test_labels) = mnist.load_data() training_images=training_images/255.0 test_images=test_images/255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation=tf.nn.relu), tf.keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy') model.fit(training_images, training_labels, epochs=5, callbacks=[callbacks]) ###Output _____no_output_____
NLP_week2.ipynb
###Markdown ###Code import nltk nltk.download('all') from nltk.corpus import stopwords stopwords.words('english') entries=nltk.corpus.cmudict.entries() len(entries) entries[50000:5000000] # Contains extra information for Pronounciation from nltk.corpus import wordnet as wn wn.synsets('motorcar') wn.synset('car.n.01').lemma_names() import nltk from nltk.stem import PorterStemmer PS=PorterStemmer() PS.stem('Happiness') import nltk from nltk.stem import LancasterStemmer LS=LancasterStemmer() LS.stem('Happiness') import nltk from nltk.stem import SnowballStemmer SS=SnowballStemmer('french') SS.stem('manges') stemmer=PS example="A quick brown fox jumps over a lazy dog" example=[stemmer.stem(token) for token in example.split()] print(" ".join(example)) from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() print(lemmatizer.lemmatize('cacti')) print(lemmatizer.lemmatize('better',pos='a')) # adjective print(lemmatizer.lemmatize('as',pos='v')) # forms of be ! pip install jieba import jieba seg=jieba.cut("拉梅什·萨尚",cut_all=True) ' '.join(seg) ###Output Building prefix dict from the default dictionary ... Dumping model to file cache /tmp/jieba.cache Loading model cost 0.937 seconds. Prefix dict has been built successfully.
ML-extremes-mcs/sample_dlworkflow.ipynb
###Markdown Sample workflow for training ML model **Notebook Author:** Maria J. Molina, _National Center for Atmospheric Research, Boulder, CO._ Import relevant libraries and modulesFirst lets see if GPU is available in notebook session. ###Code import tensorflow as tf print("Is GPU available?", tf.test.is_gpu_available()) # True/False print("Is GPU with CUDA available?", tf.test.is_gpu_available(cuda_only=True)) # if GPU is available, tf and keras will automatically train on GPU. All set! :) # this is another way to check devices available with greater detail: # from tensorflow.python.client import device_lib # print(device_lib.list_local_devices()) ###Output WARNING:tensorflow:From <ipython-input-1-0f0433ab9b75>:2: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.config.list_physical_devices('GPU')` instead. Is GPU available? False Is GPU with CUDA available? False ###Markdown Now, load standard/useful python libraries for visualization and testing along the way. ###Code import numpy as np import xarray as xr import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown And now these are modules and items needed for training MCS feature detector. ###Code import dataloader from config import main_path_era from id_selector import IDSelector import dlfront_style ###Output _____no_output_____ ###Markdown Generate list of IDs for trainingLets select IDs for training by choosing from available options in IDSelector.Select from the respective options (e.g., train only with MCSs in masks, certain months, etc). ###Code class_ids = IDSelector(main_path = main_path_era, start_year = 2004, end_year = 2019, month_only=[4], year_only=[2004], mcs_only=True, percent_train=0.7, percent_validate=0.1,) # here we generate the list of IDs by loading from a presaved dictionary IDlist = class_ids.generate_IDarray(dict_freq='3H') # here we shuffle and split the IDs into a testing and training set # train_IDs, test_IDs = class_ids.generate_traintest_split(IDlist, seed=0) train_IDs, valid_IDs, test_IDs = class_ids.generate_traintest_split(IDlist, seed=0) print(f"Training set contains ",len(train_IDs)," total training MCSs.") ###Output Training set contains 113 total training MCSs. ###Markdown Initiate Keras DataGenerator class object with select variables and pre-generated data IDsCreate list of variables to use for training from ERA5 and that correspond to CESM for later.Then, instantiate keras/tf data generator. ###Code variables = ["cp","u850", "v850", "q850"] training_generator = dataloader.DataGenerator(list_IDs = train_IDs, path_dataID = f"{main_path_era}/dl_files/3H/", variable = variables, h_num = None, height = None, batch_size = 16, dim = (121, 321), n_channels = len(variables), n_classes = 2, shuffle = False,) ###Output _____no_output_____ ###Markdown Quick test of keras dataloader for sanity check.Lets visualize input variables and output class(es). ###Code a, b = training_generator.__getitem__(0) cs = plt.pcolormesh(a[0,:,:,0]); plt.colorbar(cs); plt.title(variables[0]); plt.show() cs = plt.pcolormesh(a[0,:,:,1]); plt.colorbar(cs); plt.title(variables[1]); plt.show() cs = plt.pcolormesh(a[0,:,:,2]); plt.colorbar(cs); plt.title(variables[2]); plt.show() cs = plt.pcolormesh(a[0,:,:,3]); plt.colorbar(cs); plt.title(variables[3]); plt.show() cs = plt.pcolormesh(b[0,:,:,0]); plt.colorbar(cs); plt.show() cs = plt.pcolormesh(b[0,:,:,1]); plt.colorbar(cs); plt.show() ###Output _____no_output_____ ###Markdown Now, lets build the machine learning model with Keras and train!Instantiate the ml model class with desired class options and compile the model. ###Code #mlmodel = dlfront_style.DLFrontStyle(variable=variables, learning_rate=0.01, scheduler=1, epochs=30, batch_norm=True, spatial_drop=0.3) mlmodel = dlfront_style.DLFrontStyle(variable=variables, dim=(121, 321), learning_rate=0.01, epochs=30, batch_norm=True, spatial_drop=0.3) the_model = mlmodel.compile_model() variables = ["cp","u850", "v850", "q850"] validation_generator = dataloader.DataGenerator(list_IDs = valid_IDs, path_dataID = f"{main_path_era}/dl_files/3H/", variable = variables, h_num = None, height = None, batch_size = 16, dim = (121, 321), n_channels = len(variables), n_classes = 2, shuffle = False,) mlmodel.train_model(the_model, training_generator, validation=validation_generator) variables = ["cp","u850", "v850", "q850"] testing_generator = dataloader.DataGenerator(list_IDs = test_IDs, path_dataID = f"{main_path_era}/dl_files/3H/", variable = variables, h_num = None, height = None, batch_size = 32, dim = (121, 321), n_channels = len(variables), n_classes = 2, shuffle = False,) y=the_model.predict(x=a[:,:,:,:]) plt.pcolormesh(y[11,:,:,0]); plt.show() a, b = testing_generator.__getitem__(0) cs = plt.pcolormesh(a[11,:,:,0]); plt.colorbar(cs); plt.title(variables[0]); plt.show() cs = plt.pcolormesh(a[11,:,:,1]); plt.colorbar(cs); plt.title(variables[1]); plt.show() cs = plt.pcolormesh(a[11,:,:,2]); plt.colorbar(cs); plt.title(variables[2]); plt.show() cs = plt.pcolormesh(a[11,:,:,3]); plt.colorbar(cs); plt.title(variables[3]); plt.show() cs = plt.pcolormesh(b[11,:,:,0]); plt.colorbar(cs); plt.show() cs = plt.pcolormesh(b[11,:,:,1]); plt.colorbar(cs); plt.show() mlmodel = dlfront_style.DLFrontStyle(variable=variables, learning_rate=0.01, scheduler=1, epochs=30, batch_norm=True, spatial_drop=0.3) the_model = mlmodel.compile_model() ###Output Model: "dlfront_style" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 105, 161, 5)] 0 _________________________________________________________________ conv2d (Conv2D) (None, 105, 161, 80) 10080 _________________________________________________________________ batch_normalization (BatchNo (None, 105, 161, 80) 320 _________________________________________________________________ spatial_dropout2d (SpatialDr (None, 105, 161, 80) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 105, 161, 80) 160080 _________________________________________________________________ batch_normalization_1 (Batch (None, 105, 161, 80) 320 _________________________________________________________________ spatial_dropout2d_1 (Spatial (None, 105, 161, 80) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 105, 161, 80) 160080 _________________________________________________________________ batch_normalization_2 (Batch (None, 105, 161, 80) 320 _________________________________________________________________ spatial_dropout2d_2 (Spatial (None, 105, 161, 80) 0 _________________________________________________________________ conv2d_transpose (Conv2DTran (None, 105, 161, 2) 4002 ================================================================= Total params: 335,202 Trainable params: 334,722 Non-trainable params: 480 _________________________________________________________________ None ###Markdown Now, start training!Should go quick if GPU is available. ###Code mlmodel.train_model(the_model, training_generator) variables = ["2d","10u","10v", "sp", "2t"] testing_generator = dataloader.DataGenerator(list_IDs = test_IDs, path_dataID = f"{main_path_era}/dl_files/3H/", variable = variables, ens_num = "era5", h_num = None, height = None, batch_size = 32, dim = (105, 161), n_channels = len(variables), n_classes = 2, shuffle = False, stats_path = main_path_era, norm = 'zscore') a, b = testing_generator.__getitem__(0) cs = plt.imshow(a[0,:,:,0]); plt.colorbar(cs); plt.title(variables[0]); plt.show() cs = plt.imshow(a[0,:,:,1]); plt.colorbar(cs); plt.title(variables[1]); plt.show() cs = plt.imshow(a[0,:,:,2]); plt.colorbar(cs); plt.title(variables[2]); plt.show() cs = plt.imshow(a[0,:,:,3]); plt.colorbar(cs); plt.title(variables[3]); plt.show() cs = plt.imshow(a[0,:,:,4]); plt.colorbar(cs); plt.title(variables[4]); plt.show() cs = plt.imshow(b[7,:,:,0]); plt.colorbar(cs); plt.show() cs = plt.imshow(b[0,:,:,1]); plt.colorbar(cs); plt.show() a[0,:,:,:].shape y=the_model.predict(x=a[:,:,:,:]) plt.imshow(y[7,:,:,0], vmin=0, vmax=1); mlmodel = dlfront_style.DLFrontStyle(variable=variables, learning_rate=0.01, scheduler=1, epochs=30, batch_norm=True, spatial_drop=0.3, output_shape=1, output_activation='sigmoid', loss_function='mean_squared_error') the_model = mlmodel.compile_model() mlmodel.train_model(the_model, training_generator) ###Output 0.009999999776482582 Epoch 1/30 2/2 [==============================] - 1s 599ms/step - loss: 0.3430 - accuracy: 0.7444 - mean_squared_error: 0.1599 - mean_absolute_error: 0.2660 0.009999999776482582 Epoch 2/30 2/2 [==============================] - 1s 552ms/step - loss: 0.2992 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.009999999776482582 Epoch 3/30 2/2 [==============================] - 1s 555ms/step - loss: 0.3722 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.009999999776482582 Epoch 4/30 2/2 [==============================] - 1s 547ms/step - loss: 0.4229 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.009999999776482582 Epoch 5/30 2/2 [==============================] - 1s 539ms/step - loss: 0.4502 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.009999999776482582 Epoch 6/30 2/2 [==============================] - 1s 550ms/step - loss: 0.4577 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.009999999776482582 Epoch 7/30 2/2 [==============================] - 1s 548ms/step - loss: 0.4501 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.009999999776482582 Epoch 8/30 2/2 [==============================] - 1s 568ms/step - loss: 0.4318 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.009999999776482582 Epoch 9/30 2/2 [==============================] - 1s 561ms/step - loss: 0.4071 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.009048373438417912 Epoch 10/30 2/2 [==============================] - 1s 551ms/step - loss: 0.3807 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.008187306113541126 Epoch 11/30 2/2 [==============================] - 1s 549ms/step - loss: 0.3547 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.0074081807397305965 Epoch 12/30 2/2 [==============================] - 1s 544ms/step - loss: 0.3301 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.00670319888740778 Epoch 13/30 2/2 [==============================] - 1s 546ms/step - loss: 0.3075 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.006065304856747389 Epoch 14/30 2/2 [==============================] - 1s 545ms/step - loss: 0.2872 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.005488114431500435 Epoch 15/30 2/2 [==============================] - 1s 555ms/step - loss: 0.2691 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.004965851083397865 Epoch 16/30 2/2 [==============================] - 1s 556ms/step - loss: 0.2532 - accuracy: 0.9592 - mean_squared_error: 0.0408 - mean_absolute_error: 0.0408 0.004493287764489651 Epoch 17/30
Jupyter/BMRS20_mos_their_cuts.ipynb
###Markdown An analysis of the dataset presented in [this technical comment](https://arxiv.org/abs/2004.06601), but *without* our quality cuts appliedIn the previous notebook, `BMRS20_mos_our_cuts.ipynb`, we analyzed the subset of the the [BRMS](https://arxiv.org/abs/2004.06601) dataset that passed our quality cuts as defined in [Dessert et al. _Science_ 2020](https://science.sciencemag.org/content/367/6485/1465) (DRS20). We found no evidence for the 3.5 keV line and ruled out the relevant region of parameter space even with our conservative analysis.In this notebook, we repeat this analysis on the entire 17 Ms BRMS dataset: all of the data, not just the subset that passes the quality cuts. If you use the data in this example in a publication, please cite Dessert et al. _Science_ 2020.**Please direct any questions to [email protected].** ###Code # Import required modules %matplotlib inline %load_ext autoreload %autoreload 2 import sys,os import numpy as np from scipy.stats import chi2 as chi2_scipy from scipy.optimize import dual_annealing from scipy.optimize import minimize import matplotlib.pyplot as plt from matplotlib import rc from matplotlib import rcParams rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}) rcParams['text.usetex'] = True rcParams['text.latex.unicode'] = True ###Output _____no_output_____ ###Markdown **NB**: In this notebook, we minimize with `scipy` so that it is easy to run for the interested reader. For scientific analysis, we recommend [Minuit](https://iminuit.readthedocs.io/en/latest/) as a minimizer. In our paper, we used Minuit. Define signal line energyBy default we will look for an anomalous line at 3.48 keV, as defined by the EUXL parameter below, denoting the energy of the unidentified X-ray line. Lines at different energies can be searched for by changing this parameter accordingly (for example to 3.55 keV as in the first notebook). We start with 3.48 keV as this is the fiducial line energy in BMRS. ###Code EUXL = 3.48 # [keV] ###Output _____no_output_____ ###Markdown **NB:** changing EUXL will of course vary the results below, and values in the surrounding discussion will not necessarily be reflective. Load in the data and modelsFirst we will load in the data products that we will use in the analysis. These include the stacked MOS data, associated energy bins, and uncertainties. We will use data from two regions of interest (ROI):- **Signal Region (SR)**: 20-35 degrees from the Galactic Center, this was the fiducial ROI in BRMS (DRS20 instead used 5-45);- **Background Region (BR)**: 60-90 degrees from the Galactic Center, a useful region for studying background as it contains less dark matter.We also load the appropriately averaged D-factors for these two regions (ROIs) for our fiducial NFW profile, along with the respective exposure times. ###Code ## Signal Region (20-35 degrees) data = np.load("../data/data_mos_boyarsky_ROI_their_cuts.npy") # [cts/s/keV] data_yerrs = np.load("../data/data_yerrs_mos_boyarsky_ROI_their_cuts.npy") # [cts/s/keV] QPB = np.load("../data/QPB_mos_boyarsky_ROI_their_cuts.npy") # [cts/s/keV] # Exposure time Exp = 16.55e6 # [s] # D-factor averaged over the signal ROI D_signal = 4.46e28 # [keV/cm^2] ## Background Region (60-90 degrees) # Data and associated errors data_bkg = np.load("../data/data_mos_bkg_ROI.npy") # [cts/s/keV] data_yerrs_bkg = np.load("../data/data_yerrs_mos_bkg_ROI.npy") # [cts/s/keV] # Exposure time Exp_bkg = 67.64e6 # [s] # D-factor averaged over the background ROI D_bkg = 1.91e28 # [keV/cm^2] ## Energy binning appropriate for both the signal and background Energies=np.load("../data/mos_energies.npy") # [keV] ###Output _____no_output_____ ###Markdown Load in the ModelsNext we use the models that will be used in fitting the above data.There are a sequence of models corresponding to physical line fluxes at the energies specified by `Es_line`. That is, `mod_UXL` gives the detectors counts as a function of energy after forward modeling a physical line at EUXL keV with a flux of 1 cts/cm$^2$/s/sr. ###Code # Load the forward-modeled lines and energies mods = np.load("../data/mos_mods.npy") Es_line = np.load("../data/mos_mods_line_energies.npy") # Load the detector response det_res = np.load("../data/mos_det_res.npy") arg_UXL = np.argmin((Es_line-EUXL)**2) mod_UXL = mods[arg_UXL] print "The energy of our "+str(EUXL)+" keV line example will be: "+str(Es_line[arg_UXL])+" keV" # How to go from flux to sin^2(2\theta) def return_sin_theta_lim(E_line,flux,D_factor): """ D_factor [keV/cm^2] flux [cts/cm^2/s/sr] E_line [keV] (dark matter mass is twice this value) returns: associated sin^2(2theta) """ DMmass = 2.*E_line res = (4.*np.pi*DMmass/D_factor)/1.361e-22*(1/DMmass)**5*flux return res ###Output The energy of our 3.48 keV line example will be: 3.4824707846410687 keV ###Markdown Visualize the dataData in the signal region, where the dashed vertical line denotes the location of a putative signal line. Note that the BMRS dataset has a flux 50% larger than when restricted to the set that passes our quality cuts, highlighting the importance of implementing these cuts. In addition, this extra extended emission (above the irreducible detector and cosmic backgrounds) may have complicated energy-dependence that cannot be described by a simple background model such as a power law. Finally, these backgrounds are stacked, further increasing the likelihood that the background may systematically deviate from a simple model. ###Code fig = plt.figure(figsize=(10,8)) plt.errorbar(Energies,data,yerr=data_yerrs,xerr=(Energies[1]-Energies[0])/2., color="black",label="data",marker="o", fmt='none',capsize=4) plt.axvline(EUXL,color="black",linestyle="dashed") plt.xlim(EUXL-0.25,EUXL+0.25) plt.ylim(0.125,0.15) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.xlabel(r"$E$ [keV]",fontsize=22) plt.ylabel(r"SR Flux [cts/s/keV]",fontsize=22) plt.show() ###Output /sw/lsa/centos7/python-anaconda2/2019.03/lib/python2.7/site-packages/matplotlib/font_manager.py:1331: UserWarning: findfont: Font family [u'serif'] not found. Falling back to DejaVu Sans (prop.get_family(), self.defaultFamily[fontext])) ###Markdown Statistical analysisNow, let's perform a rigorous statistical analysis, using profile likelihood. As we operate in the large counts limit for the stacked data, we can perform a simple $\chi^2$ analysis rather than a full joint likelihood analysis as used by default in Dessert et al. 2020. ###Code ## Define the functions we will use class chi2: """ A set offunctions for calculation the chisq associated with different hypotheses """ def __init__(self,ens,dat,err,null_mod,sig_template): self._ens = ens self._dat = dat self._err = err self._null_mod = null_mod self._sig_template = sig_template self._A_sig = 0.0 def chi2(self,x): null_mod = self._null_mod(self._ens,x[1:]) sig_mod = self._sig_template*x[0] return np.sum((self._dat - null_mod - sig_mod)**2/self._err**2) def chi2_null(self,x): null_mod = self._null_mod(self._ens,x) return np.sum((self._dat - null_mod)**2/self._err**2) def chi2_fixed_signal(self,x): null_mod = self._null_mod(self._ens,x) sig_mod = self._sig_template*self._A_sig return np.sum((self._dat - null_mod - sig_mod)**2/self._err**2) def fix_signal_strength(self,A_sig): self._A_sig = A_sig ###Output _____no_output_____ ###Markdown Fit within $E_{\rm UXL} \pm 0.25$ keVFirst, we will fit the models from $[E_{\rm UXL}-0.25,\,E_{\rm UXL}+0.25]$ keV. Later in this notebook, we broaden this range to 3.0 to 4.0 keV. For the default $E_{\rm UXL} = 3.48$ keV, this corresponds to $3.23~{\rm keV} < E < 3.73~{\rm keV}$.To begin with then, let's reduce the dataset to this restricted range. ###Code whs_reduced = np.where((Energies >= EUXL-0.25) & (Energies <= EUXL+0.25))[0] Energies_reduced = Energies[whs_reduced] data_reduced = data[whs_reduced] data_yerrs_reduced = data_yerrs[whs_reduced] data_bkg_reduced = data_bkg[whs_reduced] data_yerrs_bkg_reduced = data_yerrs_bkg[whs_reduced] mod_UXL_reduced = mod_UXL[whs_reduced] ###Output _____no_output_____ ###Markdown Next, let's fit this data with the background only hypothesis and consider the quality of fit. The background modelHere we model the continuum background as a quadratic. In addition, we add degrees of freedom associated with the possible background lines at 3.3 keV and 3.7 keV. ###Code arg_3p3 = np.argmin((Es_line-3.32)**2) mod_3p3 = mods[arg_3p3] arg_3p7 = np.argmin((Es_line-3.68)**2) mod_3p7 = mods[arg_3p7] def mod_poly_two_lines(ens,x): "An extended background model to include two additional lines" A, B, C, S1, S2 = x return A+B*ens + C*ens**2 + S1*mod_3p3[whs_reduced] + S2*mod_3p7[whs_reduced] chi2_instance = chi2(Energies_reduced,data_reduced,data_yerrs_reduced,mod_poly_two_lines,mod_UXL_reduced) mn_null_line = minimize(chi2_instance.chi2_null,np.array([0.50053349, -0.18701816, 0.02353692, 0.06814053, 0.01880195]),method='Nelder-Mead') mn_line = minimize(chi2_instance.chi2,np.array([1.e-2,mn_null_line.x[0],mn_null_line.x[1],mn_null_line.x[2],mn_null_line.x[3],mn_null_line.x[4]]),method='Nelder-Mead',options={'fatol':1e-10,'xatol':1e-10,'adaptive':True}) print "The Delta chi^2 between signal and null model is:", mn_null_line.fun - mn_line.fun print "The chi^2/DOF of the null-model fit is:", mn_null_line.fun/(len(whs_reduced)-5.) print "Expected 68% containment for the chi^2/DOF:", np.array(chi2_scipy.interval(0.68,len(whs_reduced)-5.))/float(len(whs_reduced)-5.) print "Expected 95% containment for the chi^2/DOF:", np.array(chi2_scipy.interval(0.95,len(whs_reduced)-5.))/float(len(whs_reduced)-5.) ###Output The Delta chi^2 between signal and null model is: 1.0568783470870926 The chi^2/DOF of the null-model fit is: 0.8595653580677374 Expected 68% containment for the chi^2/DOF: [0.85614219 1.14370943] Expected 95% containment for the chi^2/DOF: [0.73605123 1.30376807] ###Markdown The inclusion of additional lines has not changed our conclusion. The null model is still a good fit to the data, although we find a very mild preference for nonzero signal $\Delta \chi^2 \sim 1$.Here we plot the best fit signal and background model. ###Code fig = plt.figure(figsize=(10,8)) plt.errorbar(Energies,data,yerr=data_yerrs,xerr=(Energies[1]-Energies[0])/2., color="black",label="data",marker="o", fmt='none',capsize=4) plt.plot(Energies_reduced,mod_poly_two_lines(Energies_reduced,mn_null_line.x),'k-',label =r"Null model") plt.plot(Energies_reduced,mod_poly_two_lines(Energies_reduced,mn_line.x[1:])+mn_line.x[0]*mod_UXL_reduced, 'r-',label =r"Signal model") plt.axvline(EUXL,color="black",linestyle="dashed") plt.xlim(EUXL-0.25,EUXL+0.25) plt.ylim(0.125,0.15) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.xlabel(r"$E$ [keV]",fontsize=22) plt.ylabel(r"SR Flux [cts/s/keV]",fontsize=22) plt.legend(fontsize=22) plt.show() ###Output _____no_output_____ ###Markdown Finally let's compute the associated limit via profile likelihood. ###Code A_sig_array = np.linspace(mn_line.x[0],0.05,100) chi2_sig_array = np.zeros(len(A_sig_array)) bf = mn_line.x[1:] for i in range(len(A_sig_array)): chi2_instance.fix_signal_strength(A_sig_array[i]) mn_profile = minimize(chi2_instance.chi2_fixed_signal,bf,method='Nelder-Mead', options={'fatol':1e-10,'xatol':1e-10,'adaptive':True}) bf = mn_profile.x chi2_sig_array[i] = mn_profile.fun amin = np.argmin((chi2_sig_array-chi2_sig_array[0] - 2.71)**2) limit_signal_strength = A_sig_array[amin] print "The 95% upper limit on the signal flux is", limit_signal_strength, "cts/cm^2/s/sr" print "This corresponds to a limit on sin^2(2theta) of", return_sin_theta_lim(EUXL,limit_signal_strength,D_signal) ###Output The 95% upper limit on the signal flux is 0.03494126304163253 cts/cm^2/s/sr This corresponds to a limit on sin^2(2theta) of 3.082609562443865e-11 ###Markdown Recall that this same analysis on the clean dataset in the previous notebook found a limit of $\sin^2(2\theta) = 2.38 \times 10^{-11}$, but despite the increased exposure time the limit here is worse, partially due to the increased background rate. Nevertheless even this limit is fairly safely excluding the 3.5 keV line. Powerlaw background modelNow let's try a power law for the continuum background model (along with the two lines) as done in BMRS. Given that the stacked data is the sum of power laws, we would not expect the stacked data to be a power law itself, although we find it to be a reasonable description. ###Code def mod_power_two_lines(ens,x): "An extended background model to include two additional lines" A, n, S1, S2 = x return A*ens**n + S1*mod_3p3[whs_reduced] + S2*mod_3p7[whs_reduced] chi2_instance = chi2(Energies_reduced,data_reduced,data_yerrs_reduced,mod_power_two_lines,mod_UXL_reduced) mn_null_line = minimize(chi2_instance.chi2_null,np.array([0.30859773, -0.66268936, 0.06355456, 0.03587628]),method='Nelder-Mead') mn_line = minimize(chi2_instance.chi2,np.array([1.e-2,mn_null_line.x[0],mn_null_line.x[1],mn_null_line.x[2],mn_null_line.x[3]]),method='Nelder-Mead',options={'fatol':1e-10,'xatol':1e-10,'adaptive':True}) print "The Delta chi^2 between signal and null model is:", mn_null_line.fun - mn_line.fun print "The chi^2/DOF of the null-model fit is:", mn_null_line.fun/(len(whs_reduced)-4.) fig = plt.figure(figsize=(10,8)) plt.errorbar(Energies,data,yerr=data_yerrs,xerr=(Energies[1]-Energies[0])/2., color="black",label="data",marker="o", fmt='none',capsize=4) plt.plot(Energies_reduced,mod_power_two_lines(Energies_reduced,mn_null_line.x),'k-',label =r"Null model") plt.plot(Energies_reduced,mod_power_two_lines(Energies_reduced,mn_line.x[1:])+mn_line.x[0]*mod_UXL_reduced, 'r-',label =r"Signal model") plt.axvline(EUXL,color="black",linestyle="dashed") plt.xlim(EUXL-0.25,EUXL+0.25) plt.ylim(0.125,0.15) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.xlabel(r"$E$ [keV]",fontsize=22) plt.ylabel(r"SR Flux [cts/s/keV]",fontsize=22) plt.legend(fontsize=22) plt.show() A_sig_array = np.linspace(mn_line.x[0],0.05,100) chi2_sig_array = np.zeros(len(A_sig_array)) bf = mn_line.x[1:] for i in range(len(A_sig_array)): chi2_instance.fix_signal_strength(A_sig_array[i]) mn_profile = minimize(chi2_instance.chi2_fixed_signal,bf,method='Nelder-Mead', options={'fatol':1e-10,'xatol':1e-10,'adaptive':True}) bf = mn_profile.x chi2_sig_array[i] = mn_profile.fun amin = np.argmin((chi2_sig_array-chi2_sig_array[0] - 2.71)**2) limit_signal_strength = A_sig_array[amin] print "The 95% upper limit on the signal flux is", limit_signal_strength, "cts/cm^2/s/sr" print "This corresponds to a limit on sin^2(2theta) of", return_sin_theta_lim(EUXL,limit_signal_strength,D_signal) ###Output The 95% upper limit on the signal flux is 0.027480758948516815 cts/cm^2/s/sr This corresponds to a limit on sin^2(2theta) of 2.4244243894955322e-11 ###Markdown The power law continuum background does not substantively change the results, although any mild preference for a line has decreased to $\Delta \chi^2 \sim 0.6$. For reference, on the clean dataset, we found $\sin^2(2\theta) = 1.82 \times 10^{-11}$. Note this is the same procedure as in BMRS's test color-coded red in their Fig. 1 and Tab. 1, and performed on the same dataset. In that analysis, they find marginal 1.3$\sigma$ evidence for a line, although here we are unable to reproduce the result with the same significance. Departing from $[E_{\rm UXL}-0.25,\,E_{\rm UXL}+0.25]$ keVWe now fit the same dataset over the 3-4 keV range. Note that going to a wider energy range can open the analysis up to a variety of systematic issues associated with deviations from the background model around the energy of interest. This is exactly why in our fiducial analysis we stuck to the narrow energy range. In this case, the inclusion of data with high backgrounds can exacerbate these issues.Our procedure is as follows. Firstly, we update the dataset. Then we will define a new background model incorporating these additional lines. Finally we repeat our default $\chi^2$ fit procedure. Note that we continue to use a power law continuum background model here. As such, the following analysis is a reproduction of the BMRS magenta color-coded analysis. In that magenta analysis, they claim a 4.0$\sigma$ detection of a line at 3.48 keV. Let us see what we obtain. ###Code whs_reduced = np.where((Energies >= 3.0) & (Energies <= 4.0))[0] Energies_reduced = Energies[whs_reduced] data_reduced = data[whs_reduced] data_yerrs_reduced = data_yerrs[whs_reduced] data_bkg_reduced = data_bkg[whs_reduced] data_yerrs_bkg_reduced = data_yerrs_bkg[whs_reduced] mod_UXL_reduced = mod_UXL[whs_reduced] arg_3p1 = np.argmin((Es_line-3.12)**2) mod_3p1 = mods[arg_3p1] arg_3p9 = np.argmin((Es_line-3.90)**2) mod_3p9 = mods[arg_3p9] arg_3p7 = np.argmin((Es_line-3.68)**2) mod_3p7 = mods[arg_3p7] arg_3p3 = np.argmin((Es_line-3.32)**2) mod_3p3 = mods[arg_3p3] def mod_power_four_lines(ens,x): A, n,S1, S2, S3, S4 = x return A*ens**n + S1*mod_3p3[whs_reduced] + S2*mod_3p7[whs_reduced]+ S3*mod_3p1[whs_reduced] + S4*mod_3p9[whs_reduced] chi2_instance = chi2(Energies_reduced,data_reduced,data_yerrs_reduced,mod_power_four_lines,mod_UXL_reduced) x0 = np.array([0.33315606 ,-0.72351094, 0.0494905 , 0.04189487, 0.14450233, 0.06215284]) bounds = np.array([[1e-6,5],[-3,0],[0,0.5],[0,0.5],[0,0.5],[0,0.5]]) mn_null = dual_annealing(chi2_instance.chi2_null,x0=x0,bounds=bounds,local_search_options={"method": "Nelder-Mead"},seed=1234,maxiter=1000) boundss = np.array([[-0.5,0.5],[1e-6,5],[-3,0],[0,0.1],[0,0.1],[0,0.1],[0,0.2]]) x0s=np.array([1.e-2,mn_null.x[0],mn_null.x[1],mn_null.x[2],mn_null.x[3],mn_null.x[4],mn_null.x[5]]) mn = dual_annealing(chi2_instance.chi2,x0=x0s,bounds=boundss,local_search_options={"method": "Nelder-Mead"},seed=1234,maxiter=1000) print "Best fit background parameters:", mn_null.x print "Best fit signal+background parameters:", mn.x print "The Delta chi^2 between signal and null model is:", mn_null.fun - mn.fun print "The chi^2/DOF of the null-model fit is:", mn_null.fun/(len(whs_reduced)-6.) print "NB: the best-fit signal strength in this case is:", mn.x[0], "cts/cm$^2$/s/sr" ###Output Best fit background parameters: [ 0.33325016 -0.72372844 0.0503624 0.04251432 0.14438536 0.06221247] Best fit signal+background parameters: [ 0.00886512 0.33312208 -0.72409931 0.05170324 0.04417607 0.14438536 0.06497322] The Delta chi^2 between signal and null model is: 2.6285143425577644 The chi^2/DOF of the null-model fit is: 0.9174177924724561 NB: the best-fit signal strength in this case is: 0.008865118945648565 cts/cm$^2$/s/sr ###Markdown Now we find modest evidence for the line with $\Delta \chi^2 \sim 2.6$, corresponding to $\sim 1.6 \sigma$. Note that on our cleaner dataset we found no evidence for the line, and in the analysis in the narrower energy range we also found no evidence. Note that the best-fit signal strength is much smaller than would be expected for the 3.5 keV line. There is no reason to expect that the background models employed here are reasonable physical descriptions of the data at the level of the signal, given the lack of quality cuts and stacking procedure. In fact, if one compares the plots of the data over the 3-4 keV range between the datasets with and without the quality cuts, the additional lines are prominent in the data without the quality cuts. This highlights that the full BMRS dataset includes significant reducible background that could easily systematically differ from the models used in this notebook and in BMRS.Let's have a look at the best fit signal and background models in this case. There are subtle difference between the two, but no clear excess is appearing at 3.48 keV. We also look at the downward fluctuation interpretation of the Chandra blank sky detection, as in previous notebooks. ###Code flux_ill = 4.8e-11 / return_sin_theta_lim(EUXL,1.,D_signal) print "Flux [cts/cm^2/s/sr] and sin^(2\theta) for illustration: ", flux_ill, return_sin_theta_lim(EUXL,flux_ill,D_signal) chi2_instance.fix_signal_strength(flux_ill) mn_f = dual_annealing(chi2_instance.chi2_fixed_signal,x0=x0,bounds=bounds,local_search_options={"method": "Nelder-Mead"},seed=1234,maxiter=500) print "Delta chi^2 between fixed signal and null:", mn_null.fun-mn_f.fun ###Output Flux [cts/cm^2/s/sr] and sin^(2 heta) for illustration: 0.0544078188309 4.8e-11 Delta chi^2 between fixed signal and null: -25.166893035737758 ###Markdown Let's have a look at the best fit signal and background models in this case. There are subtle difference between the two, but no clear excess is appearing at 3.55 keV. Again, we emphasize that while we are averaging the data in the plot, we didn't in the analysis. ###Code def avg_data(data,n): return np.mean(data.reshape(-1, n), axis=1) fig = plt.figure(figsize=(10,8)) plt.errorbar(avg_data(Energies,6),avg_data(data,6),yerr=np.sqrt(6*avg_data(data_yerrs**2,6))/6.,xerr=6*(Energies[1]-Energies[0])/2., color="black",marker="o", fmt='none',capsize=4) plt.plot(Energies_reduced,mod_power_four_lines(Energies_reduced,mn_null.x), 'k-',label =r"Null P.L. model") plt.plot(Energies_reduced,mod_power_four_lines(Energies_reduced,mn.x[1:])+mn.x[0]*mod_UXL_reduced, 'r-',label =r"Best fit signal model") plt.plot(Energies_reduced,mod_power_four_lines(Energies_reduced,mn_f.x)+chi2_instance._A_sig*mod_UXL_reduced, 'r--',label =r"$\sin^2(2\theta) = 4.8 \times 10^{-11}$") plt.xlim(3,4) plt.ylim(0.12,0.16) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.xlabel(r"$E$ [keV]",fontsize=22) plt.ylabel(r"Flux [cts/s/keV]",fontsize=22) plt.legend(fontsize=22) plt.show() ###Output _____no_output_____ ###Markdown Finally, we compute the limit in this case using the by now familiar procedure. ###Code A_sig_array = np.linspace(mn.x[0],0.05,100) chi2_sig_array = np.zeros(len(A_sig_array)) bf = mn.x[1:] for i in range(len(A_sig_array)): chi2_instance.fix_signal_strength(A_sig_array[i]) mn_profile = minimize(chi2_instance.chi2_fixed_signal,bf,method='Nelder-Mead') bf = mn_profile.x chi2_sig_array[i] = mn_profile.fun amin = np.argmin((chi2_sig_array-chi2_sig_array[0] - 2.71)**2) limit_signal_strength = A_sig_array[amin] print "The 95% upper limit on the signal flux is", limit_signal_strength, "cts/cm^2/s/sr" print "This corresponds to a limit on sin^2(2theta) of", return_sin_theta_lim(EUXL,limit_signal_strength,D_signal) ###Output The 95% upper limit on the signal flux is 0.0279782960012058 cts/cm^2/s/sr This corresponds to a limit on sin^2(2theta) of 2.46831840885201e-11 ###Markdown Although this analysis found mild evidence for a feature at 3.48 keV, the signal strength is incompatible with previous detections. The limits from the analysis strongly rule out the 3.5 keV line. Note that in when run on the clean data the limit we obtain with this procedure is $\sin^2(2\theta) = 1.34 \times 10^{-11}$. Now with a polynomial background Here we repeat the earlier analysis but with a polynomial background model, as used in the stacked analysis in DRS20 Supplementary Material Sec. 2.9. ###Code whs_reduced = np.where((Energies >= 3.0) & (Energies <= 4.0))[0] Energies_reduced = Energies[whs_reduced] data_reduced = data[whs_reduced] data_yerrs_reduced = data_yerrs[whs_reduced] data_bkg_reduced = data_bkg[whs_reduced] data_yerrs_bkg_reduced = data_yerrs_bkg[whs_reduced] mod_UXL_reduced = mod_UXL[whs_reduced] arg_3p1 = np.argmin((Es_line-3.12)**2) #3.12 #should really be 3.128 mod_3p1 = mods[arg_3p1] arg_3p9 = np.argmin((Es_line-3.90)**2) mod_3p9 = mods[arg_3p9] arg_3p7 = np.argmin((Es_line-3.68)**2) mod_3p7 = mods[arg_3p7] arg_3p3 = np.argmin((Es_line-3.32)**2) mod_3p3 = mods[arg_3p3] def mod_poly_four_lines(ens,x): A, B, C,S1, S2, S3, S4 = x return A+B*ens + C*ens**2 + S1*mod_3p3[whs_reduced] + S2*mod_3p7[whs_reduced]+ S3*mod_3p1[whs_reduced] + S4*mod_3p9[whs_reduced] chi2_instance = chi2(Energies_reduced,data_reduced,data_yerrs_reduced,mod_poly_four_lines,mod_UXL_reduced) x0 = np.array([ 0.30869963, -0.0713862, 0.00615966, 0.05397736, 0.05030442, 0.15154157 , 0.07303334 ]) bounds = np.array([[-1,1],[-0.5,0.5],[-0.1,0.1],[0,0.4],[0,0.4],[0,0.4],[0,0.4]]) mn_null = dual_annealing(chi2_instance.chi2_null,x0=x0,bounds=bounds,local_search_options={"method": "Nelder-Mead"},seed=1234,maxiter=3000) boundss = np.array([[-0.5,0.5],[-1,1],[-0.5,0.5],[-0.1,0.1],[0,0.4],[0,0.4],[0,0.4],[0,0.4]]) x0s=np.array([1.e-2,mn_null.x[0],mn_null.x[1],mn_null.x[2],mn_null.x[3],mn_null.x[4],mn_null.x[5],mn_null.x[6]]) mn = dual_annealing(chi2_instance.chi2,x0=x0s,bounds=boundss,local_search_options={"method": "Nelder-Mead"},seed=1234,maxiter=3000) print "Best fit background parameters:", mn_null.x print "Best fit signal+background parameters:", mn.x print "The Delta chi^2 between signal and null model is:", mn_null.fun - mn.fun print "The chi^2/DOF of the null-model fit is:", mn_null.fun/(len(whs_reduced)-7.) print "NB: the best-fit signal strength in this case is:", mn.x[0], "cts/cm$^2$/s/sr" fig = plt.figure(figsize=(10,8)) plt.errorbar(avg_data(Energies,6),avg_data(data,6),yerr=np.sqrt(6*avg_data(data_yerrs**2,6))/6.,xerr=6*(Energies[1]-Energies[0])/2., color="black",marker="o", fmt='none',capsize=4) plt.plot(Energies_reduced,mod_poly_four_lines(Energies_reduced,mn_null.x), 'k-',label =r"Null P.L. model") plt.plot(Energies_reduced,mod_poly_four_lines(Energies_reduced,mn.x[1:])+mn.x[0]*mod_UXL_reduced, 'r-',label =r"Best fit signal model") plt.xlim(3,4) plt.ylim(0.12,0.16) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.xlabel(r"$E$ [keV]",fontsize=22) plt.ylabel(r"Flux [cts/s/keV]",fontsize=22) plt.legend(fontsize=22) plt.show() A_sig_array = np.linspace(mn.x[0],0.05,100) chi2_sig_array = np.zeros(len(A_sig_array)) bf = mn.x[1:] for i in range(len(A_sig_array)): chi2_instance.fix_signal_strength(A_sig_array[i]) mn_profile = minimize(chi2_instance.chi2_fixed_signal,bf,method='Nelder-Mead', options={'fatol':1e-10,'xatol':1e-10,'adaptive':True}) bf = mn_profile.x chi2_sig_array[i] = mn_profile.fun amin = np.argmin((chi2_sig_array-chi2_sig_array[0] - 2.71)**2) limit_signal_strength = A_sig_array[amin] print "The 95% upper limit on the signal flux is", limit_signal_strength, "cts/cm^2/s/sr" print "This corresponds to a limit on sin^2(2theta) of", return_sin_theta_lim(EUXL,limit_signal_strength,D_signal) ###Output The 95% upper limit on the signal flux is 0.037384105228592736 cts/cm^2/s/sr This corresponds to a limit on sin^2(2theta) of 3.2981234857983934e-11 ###Markdown This change to the background continuum model does not change any conclusions. The 3.5 keV line is ruled out by these limits. Note that when we analyze the clean data the limit we obtain with this procedure is $\sin^2(2\theta) = 2.45 \times 10^{-11}$. Subtract backgroundNow, we subract off the data taken far away from the Galactic Center. We use a folded powerlaw under the assumption that the residual flux in the signal region should be astrophysical. ###Code def folded_PL(A,n): mod_F = np.matmul(det_res,A*Energies**n) return mod_F def mod_folded_power_four_lines(ens,x): A, n,S1, S2, S3, S4 = x return folded_PL(A,n)[whs_reduced] + S1*mod_3p3[whs_reduced] + S2*mod_3p7[whs_reduced]+ S3*mod_3p1[whs_reduced] + S4*mod_3p9[whs_reduced] chi2_instance = chi2(Energies_reduced,data_reduced- data_bkg[whs_reduced],np.sqrt(data_yerrs_reduced**2+data_yerrs_bkg_reduced**2),mod_folded_power_four_lines,mod_UXL_reduced) x0 = np.array([0.20973079, -0.93929346, 0.0378921, 0.02026992, 0.11586201, 0.04131473]) bounds = np.array([[0.0,0.5],[-2,0],[0,0.1],[0,0.2],[0,0.2],[0,0.2]]) mn_null = dual_annealing(chi2_instance.chi2_null,x0=x0,bounds=bounds,local_search_options={"method": "Nelder-Mead"},seed=1234,maxiter=1000) boundss = np.array([[-0.5,0.5],[0.0,0.5],[-2,0],[0,0.1],[0,0.2],[0,0.2],[0,0.2]]) x0s=np.array([1.e-2,mn_null.x[0],mn_null.x[1],mn_null.x[2],mn_null.x[3],mn_null.x[4],mn_null.x[5]]) mn = dual_annealing(chi2_instance.chi2,x0=x0s,bounds=boundss,local_search_options={"method": "Nelder-Mead"},seed=1234,maxiter=1000) print "Best fit background parameters:", mn_null.x print "Best fit signal+background parameters:", mn.x print "The Delta chi^2 between signal and null model is:", mn_null.fun - mn.fun print "The chi^2/DOF of the null-model fit is:", mn_null.fun/(len(whs_reduced)-6.) print "NB: the best-fit signal strength in this case is:", mn.x[0], "cts/cm$^2$/s/sr or \n\ sin^2(2theta) =",return_sin_theta_lim(EUXL,mn.x[0],D_signal-D_bkg) fig = plt.figure(figsize=(10,8)) plt.errorbar(avg_data(Energies,6),avg_data(data-data_bkg,6),yerr=np.sqrt(6*avg_data(data_yerrs**2+data_yerrs_bkg**2,6))/6.,xerr=6*(Energies[1]-Energies[0])/2., color="black",marker="o", fmt='none',capsize=4) #label="data" plt.plot(Energies_reduced,mod_folded_power_four_lines(Energies_reduced,mn_null.x), 'k-',label =r"Null model") plt.plot(Energies_reduced,mod_folded_power_four_lines(Energies_reduced,mn.x[1:])+mn.x[0]*mod_UXL_reduced, 'r-',label =r"Best fit signal model") plt.xlim(3,4) plt.ylim(0.045,0.075) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.xlabel(r"$E$ [keV]",fontsize=22) plt.ylabel(r"SR Flux [cts/s/keV]",fontsize=22) plt.legend(fontsize=22) plt.show() ###Output _____no_output_____ ###Markdown Note that the null model is generally underpredicting the data between 3.4 and 3.6 keV, and correspondingly a line at 3.45 is mildly preferred with TS ~ 5.6. ###Code A_sig_array = np.linspace(mn.x[0],0.05,100) chi2_sig_array = np.zeros(len(A_sig_array)) bf = mn.x[1:] for i in range(len(A_sig_array)): chi2_instance.fix_signal_strength(A_sig_array[i]) mn_profile = minimize(chi2_instance.chi2_fixed_signal,bf,method='Nelder-Mead') bf = mn_profile.x chi2_sig_array[i] = mn_profile.fun amin = np.argmin((chi2_sig_array-chi2_sig_array[0] - 2.71)**2) limit_signal_strength = A_sig_array[amin] print "The 95% upper limit on the signal flux is", limit_signal_strength, "cts/cm^2/s/sr" print "This corresponds to a limit on sin^2(2theta) of", return_sin_theta_lim(EUXL,limit_signal_strength,D_signal-D_bkg) ###Output The 95% upper limit on the signal flux is 0.03156123531128337 cts/cm^2/s/sr This corresponds to a limit on sin^2(2theta) of 4.8699958727995207e-11 ###Markdown Despite the mild evidence for a feature (ignoring the possibility for the moment that it is likely due to background mismodeling), the analysis still place strong tension on the conventional 3.5 keV line parameters, indicating that even if this feature was real it is not naively consistent with the original detection. That said, the background mismodeling in the vicinity of the line points to a more likely explanation as a local systematic deviation from the simplistic background models employed here. Note that when analyzing only the dataset passing our quality cuts, we see no such feature nor background mismodeling, and we obtain a much stronger limit of $\sin^2(2\theta) = 2.48 \times 10^{-11}$, in mild tension with the best-fit point here of $\sin^2(2\theta) = 2.86 \times 10^{-11}$. Include the Quiescent Particle Background (QPB)Now we will do a joint likelihood including the QPB data. The QPB data is complicated because the data is correlated from observation to observation. Thus, summing the data leads to correlated uncertainties. Thus, we will estimate the uncertainties on the QPB data in a data-driven way by fixing the normalization of the $\chi^2$ function such that the powerlaw gives the expected $\chi^2/{\rm DOF}$. We note that this is just an approximation, which is not necessary within the context of the full joint likelihood framework. ###Code # We are going to fix a powerlaw to the QPB data and then renormalize the chi^2 function def PL(A,n,ens): return A*ens**n def chi2_QPB_UN(x): A,n = x mod = PL(A,n,Energies_reduced) return np.sum((mod-QPB[whs_reduced])**2) mn_QPB = minimize(chi2_QPB_UN,[0.084,-0.20],method="Nelder-Mead") bf_QPB=mn_QPB.x chi2_not_reduced = chi2_QPB_UN(bf_QPB) # The function below has the expected normalization chi2_QPB = lambda x: chi2_QPB_UN(x)/chi2_not_reduced*((len(QPB[whs_reduced])-2.)) fig = plt.figure(figsize=(10,8)) plt.scatter(Energies_reduced,QPB[whs_reduced],marker="o",color="black") plt.plot(Energies_reduced,PL(bf_QPB[0],bf_QPB[1],Energies_reduced),'r-',label="best-fit P.L.") plt.xlim(3,4) plt.ylim(0.075,0.09) plt.xlabel(r"$E$ [keV]",fontsize=22) plt.ylabel(r"QPB [cts/s/keV]",fontsize=22) plt.legend(fontsize=22) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.show() def mod_2power_four_lines(ens,x): AQPB, nQPB,A, n,S1, S2, S3, S4 = x return PL(AQPB,nQPB,ens)+ folded_PL(A,n)[whs_reduced] + S1*mod_3p3[whs_reduced] + S2*mod_3p7[whs_reduced]+ S3*mod_3p1[whs_reduced] + S4*mod_3p9[whs_reduced] chi2_instance = chi2(Energies_reduced,data_reduced,data_yerrs_reduced,mod_2power_four_lines,mod_UXL_reduced) x0 = np.array([0.11129247, -0.25195735 , 0.40423702 ,-1.50156748 ,0.06552511, 0.04919298 , 0.14941789 ,0.06836176]) bounds = np.array([[0.75*bf_QPB[0],1.25*bf_QPB[0]],[-1,0],[0.0001,2.0],[-3,0],[0,0.5],[0,0.5],[0,0.5],[0,0.5]]) # Below is the joint likelihood for the null model def joint_chi2(x): return chi2_QPB(x[:2])+chi2_instance.chi2_null(x) mn_null = dual_annealing(joint_chi2,x0=x0,bounds=bounds,local_search_options={"method": "Nelder-Mead"},seed=1234,maxiter=1000) # Below is the joint likelihood for the signal model def joint_chi2_sig(x): return chi2_QPB(x[1:3])+chi2_instance.chi2(x) boundss = np.array([[-0.5,0.5],[0.75*bf_QPB[0],1.25*bf_QPB[0]],[-1,0],[0.0001,2.0],[-3,0],[0,0.5],[0,0.5],[0,0.5],[0,0.5]]) x0s=np.array([1.e-2,mn_null.x[0],mn_null.x[1],mn_null.x[2],mn_null.x[3],mn_null.x[4],mn_null.x[5],mn_null.x[6],mn_null.x[7]]) mn = dual_annealing(joint_chi2_sig,x0=x0s,bounds=boundss,local_search_options={"method": "Nelder-Mead"},seed=1234,maxiter=1000) print "Best fit background parameters:", mn_null.x print "Best fit signal+background parameters:", mn.x print "The Delta chi^2 between signal and null model is:", mn_null.fun - mn.fun print "NB: the best-fit signal strength in this case is:", mn.x[0], "cts/cm$^2$/s/sr or \n\ sin^2(2theta) =",return_sin_theta_lim(EUXL,mn.x[0],D_signal-D_bkg) fig = plt.figure(figsize=(10,8)) plt.errorbar(avg_data(Energies,6),avg_data(data,6),yerr=np.sqrt(6*avg_data(data_yerrs**2,6))/6.,xerr=6*(Energies[1]-Energies[0])/2., color="black",marker="o", fmt='none',capsize=4) #label="data" plt.plot(Energies_reduced,mod_2power_four_lines(Energies_reduced,mn.x[1:])+mn.x[0]*mod_UXL_reduced, 'r-',label =r"Best fit signal model") x0 = np.array([bf_QPB[0],bf_QPB[1], 0.064218, -0.4306988 , 0.02542355 , 0.01451921 , 0.09027154, 0.03331636]) plt.plot(Energies_reduced,mod_2power_four_lines(Energies_reduced,mn_null.x), 'k-',label =r"Null P.L. model") plt.xlim(3,4) plt.ylim(0.12,0.16) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.xlabel(r"$E$ [keV]",fontsize=22) plt.ylabel(r"Flux [cts/s/keV]",fontsize=22) plt.legend(fontsize=22) plt.show() A_sig_array = np.linspace(mn.x[0],0.05,100) chi2_sig_array = np.zeros(len(A_sig_array)) bf = mn.x[1:] for i in range(len(A_sig_array)): chi2_instance.fix_signal_strength(A_sig_array[i]) mn_profile = minimize(chi2_instance.chi2_fixed_signal,bf,method='Nelder-Mead') bf = mn_profile.x chi2_sig_array[i] = mn_profile.fun amin = np.argmin((chi2_sig_array-chi2_sig_array[0] - 2.71)**2) limit_signal_strength = A_sig_array[amin] print "The 95% upper limit on the signal flux is", limit_signal_strength, "cts/cm^2/s/sr" print "This corresponds to a limit on sin^2(2theta) of", return_sin_theta_lim(EUXL,limit_signal_strength,D_signal) ###Output The 95% upper limit on the signal flux is 0.04332893986686534 cts/cm^2/s/sr This corresponds to a limit on sin^2(2theta) of 3.822592337461016e-11 ###Markdown In this analysis we find a large feature at 3.48 keV with TS $\sim 10$. As in the previous section, let's for a moment assume this feature is physical. We find a best-fit $\sin^2(2\theta) = 3.64 \times 10^{-11}$ and a 95% limit $\sin^2(2\theta) = 3.82 \times 10^{-11}$. This is immediately inconsistent with an interpretation as the 3.5 keV line. More strikingly, the same analysis on the cleaned data in the previous notebook found a 95% limit of $\sin^2(2\theta) = 1.70 \times 10^{-11}$, ruling out this detection, highlighting the importance of clean data.Further we caution against a naive interpretation of TS $\sim 10$ as 3$\sigma$ anomaly. 3.48 is not the central value preferred by all UXL values, so the fact a line is preferred at this energy carries with it an additional degree of freedom in terms of the central line energy.As we have seen, the lack of quality cuts on the data selection means that observations with extended emission have crept into the analysis. As compared to the reduced dataset with quality cuts, the flux is higher, and there are additional energy-dependent features in the data that complicate the analysis. In addition, observations with different backgrounds have been added together. As such, there is no reason to expect that these simple background models to reasonably describe the data at the level required to resolve weak signals. In this notebook, we have shown that not only can the addition of these high-background observations introduce artificial features into the data that can resemble an emission line, but they actually decrease the sensitivity to the signal. This is precisely why we implemented the quality cuts in our fiducial analysis. Previous analysis with a narrower energy rangeBefore finishing, let's repeat the above analysis in a narrower energy range. ###Code whs_reduced = np.where((Energies >= EUXL-0.25) & (Energies <= EUXL+0.25))[0] Energies_reduced = Energies[whs_reduced] data_reduced = data[whs_reduced] data_yerrs_reduced = data_yerrs[whs_reduced] data_bkg_reduced = data_bkg[whs_reduced] data_yerrs_bkg_reduced = data_yerrs_bkg[whs_reduced] mod_UXL_reduced = mod_UXL[whs_reduced] # We are going to fix a powerlaw to the QPB data and then renormalize the chi^2 function def PL(A,n,ens): return A*ens**n def chi2_QPB_UN(x): A,n = x mod = PL(A,n,Energies_reduced) return np.sum((mod-QPB[whs_reduced])**2) mn_QPB = minimize(chi2_QPB_UN,[0.084,-0.20],method="Nelder-Mead") bf_QPB=mn_QPB.x chi2_not_reduced = chi2_QPB_UN(bf_QPB) # The function below has the expected normalization chi2_QPB = lambda x: chi2_QPB_UN(x)/chi2_not_reduced*((len(QPB[whs_reduced])-2.)) fig = plt.figure(figsize=(10,8)) plt.scatter(Energies_reduced,QPB[whs_reduced],marker="o",color="black") plt.plot(Energies_reduced,PL(bf_QPB[0],bf_QPB[1],Energies_reduced),'r-',label="best-fit P.L.") plt.xlabel(r"$E$ [keV]",fontsize=22) plt.ylabel(r"QPB [cts/s/keV]",fontsize=22) plt.xlim(EUXL-0.25,EUXL+0.25) plt.ylim(0.075,0.095) plt.legend(fontsize=22) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.show() def mod_2power_two_lines(ens,x): AQPB, nQPB,A, n,S1, S2 = x return PL(AQPB,nQPB,ens)+ folded_PL(A,n)[whs_reduced] + S1*mod_3p3[whs_reduced] + S2*mod_3p7[whs_reduced] chi2_instance = chi2(Energies_reduced,data_reduced,data_yerrs_reduced,mod_2power_two_lines,mod_UXL_reduced) x0 = np.array([0.11129247, -0.25195735 , 0.40423702 ,-1.50156748 ,0.06552511, 0.04919298 ]) bounds = np.array([[0.75*bf_QPB[0],1.25*bf_QPB[0]],[-1,0],[0.0001,2.0],[-3,0],[0,0.5],[0,0.5]]) # Below is the joint likelihood for the null model def joint_chi2(x): return chi2_QPB(x[:2])+chi2_instance.chi2_null(x) mn_null = dual_annealing(joint_chi2,x0=x0,bounds=bounds,local_search_options={"method": "Nelder-Mead"},seed=1234,maxiter=1000) # Below is the joint likelihood for the signal model def joint_chi2_sig(x): return chi2_QPB(x[1:3])+chi2_instance.chi2(x) boundss = np.array([[-0.5,0.5],[0.75*bf_QPB[0],1.25*bf_QPB[0]],[-1,0],[0.0001,2.0],[-3,0],[0,0.5],[0,0.5]]) x0s=np.array([1.e-2,mn_null.x[0],mn_null.x[1],mn_null.x[2],mn_null.x[3],mn_null.x[4],mn_null.x[5]]) mn = dual_annealing(joint_chi2_sig,x0=x0s,bounds=boundss,local_search_options={"method": "Nelder-Mead"},seed=1234,maxiter=1000) print "Best fit background parameters:", mn_null.x print "Best fit signal+background parameters:", mn.x print "The Delta chi^2 between signal and null model is:", mn_null.fun - mn.fun print "NB: the best-fit signal strength in this case is:", mn.x[0], "cts/cm$^2$/s/sr" fig = plt.figure(figsize=(10,8)) plt.errorbar(avg_data(Energies,6),avg_data(data,6),yerr=np.sqrt(6*avg_data(data_yerrs**2,6))/6.,xerr=6*(Energies[1]-Energies[0])/2., color="black",marker="o", fmt='none',capsize=4) #label="data" plt.plot(Energies_reduced,mod_2power_two_lines(Energies_reduced,mn.x[1:])+mn.x[0]*mod_UXL_reduced, 'r-',label =r"Best fit signal model") x0 = np.array([bf_QPB[0],bf_QPB[1], 0.064218, -0.4306988 , 0.02542355 , 0.01451921 , 0.09027154, 0.03331636]) plt.plot(Energies_reduced,mod_2power_two_lines(Energies_reduced,mn_null.x), 'k-',label =r"Null P.L. model") plt.xlim(EUXL-0.25,EUXL+0.25) plt.ylim(0.13,0.15) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.xlabel(r"$E$ [keV]",fontsize=22) plt.ylabel(r"Flux [cts/s/keV]",fontsize=22) plt.legend(fontsize=22) plt.show() A_sig_array = np.linspace(mn.x[0],0.05,100) chi2_sig_array = np.zeros(len(A_sig_array)) bf = mn.x[1:] for i in range(len(A_sig_array)): chi2_instance.fix_signal_strength(A_sig_array[i]) mn_profile = minimize(chi2_instance.chi2_fixed_signal,bf,method='Nelder-Mead') bf = mn_profile.x chi2_sig_array[i] = mn_profile.fun amin = np.argmin((chi2_sig_array-chi2_sig_array[0] - 2.71)**2) limit_signal_strength = A_sig_array[amin] print "The 95% upper limit on the signal flux is", limit_signal_strength, "cts/cm^2/s/sr" print "This corresponds to a limit on sin^2(2theta) of", return_sin_theta_lim(EUXL,limit_signal_strength,D_signal) ###Output The 95% upper limit on the signal flux is 0.030215176915257585 cts/cm^2/s/sr This corresponds to a limit on sin^2(2theta) of 2.665661890325141e-11
_notebooks/2020-08-11-part2.ipynb
###Markdown Distinguish Your Own Digits (DYOD) You are going to write a classifier that distinguishes between the number 3 and number 8. ###Code %load_ext autoreload %autoreload 2 %matplotlib inline import numpy as np import matplotlib.pyplot as plt import pandas as pd ###Output _____no_output_____ ###Markdown From the command line run `pip install mnist`. This is a library that will help you bring down the mnist dataset. If you run this from a notebook, you need to put `!pip install mnist` in a cell by itself. ###Code !pip install mnist ###Output Collecting mnist ###Markdown Preparing the Data ###Code import mnist train_images = mnist.train_images() train_labels = mnist.train_labels() train_images.shape, train_labels.shape test_images = mnist.test_images() test_labels = mnist.test_labels() test_images.shape, test_labels.shape image_index = 7776 # You may select anything up to 60,000 print(train_labels[image_index]) plt.imshow(train_images[image_index], cmap='Greys') ###Output 2 ###Markdown Filter data to get 3 and 8 out ###Code train_filter = np.where((train_labels == 3 ) | (train_labels == 8)) test_filter = np.where((test_labels == 3) | (test_labels == 8)) X_train, y_train = train_images[train_filter], train_labels[train_filter] X_test, y_test = test_images[test_filter], test_labels[test_filter] ###Output _____no_output_____ ###Markdown We normalize the pizel values in the 0 to 1 range ###Code X_train = X_train/255. X_test = X_test/255. ###Output _____no_output_____ ###Markdown And setup the labels as 1 (when the digit is 3) and 0 (when the digit is 8) ###Code y_train = 1*(y_train==3) y_test = 1*(y_test==3) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown We reshape the data to flatten the image pixels into a set of features or co-variates: ###Code X_train = X_train.reshape(X_train.shape[0], -1) X_test = X_test.reshape(X_test.shape[0], -1) X_train.shape, X_test.shape #Impoting functions from 'Kudzu' from kudzu.model import Model from kudzu.train import Learner from kudzu.optim import GD from kudzu.data import Data, Sampler,Dataloader from kudzu.callbacks import AccCallback from kudzu.callbacks import ClfCallback from kudzu.loss import MSE from kudzu.layer import Sigmoid,Relu from kudzu.layer import Affine ###Output _____no_output_____ ###Markdown Let us create a `Config` class, to store important parameters. This class essentially plays the role of a dictionary. ###Code class Config: pass config = Config() config.lr = 0.001 config.num_epochs = 250 config.bs = 50 ###Output _____no_output_____ ###Markdown Running Models with the Training dataDetails about the network layers:- A first affine layer has 784 inputs and does 100 affine transforms. These are followed by a Relu- A second affine layer has 100 inputs from the 100 activations of the past layer, and does 100 affine transforms. These are followed by a Relu- A third affine layer has 100 activations and does 2 affine transformations to create an embedding for visualization. There is no non-linearity here.- A final "logistic regression" which has an affine transform from 2 inputs to 1 output, which is squeezed through a sigmoid. ###Code data = Data(X_train, y_train.reshape(-1,1)) sampler = Sampler(data, config.bs, shuffle=True) dl = Dataloader(data, sampler) opt = GD(config.lr) loss = MSE() training_data_x = X_train testing_data_x = X_test training_data_y = y_train.reshape(-1,1) testing_data_y = y_test.reshape(-1,1) layers = [Affine("first", 784, 100), Relu("first"), Affine("second", 100, 100), Relu("second"), Affine("third", 100, 2), Affine("last", 2, 1), Sigmoid("last")] model_nn = Model(layers) model_lr = Model([Affine("logits", 784, 1), Sigmoid("sigmoid")]) nn_learner = Learner(loss, model_nn, opt, config.num_epochs) acc_nn = ClfCallback(nn_learner, config.bs, training_data_x , testing_data_x, training_data_y, testing_data_y) nn_learner.set_callbacks([acc_nn]) lr_learner = Learner(loss, model_lr, opt, config.num_epochs) acc_lr = ClfCallback(lr_learner, config.bs, training_data_x , testing_data_x, training_data_y, testing_data_y) lr_learner.set_callbacks([acc_lr]) nn_learner.train_loop(dl) lr_learner.train_loop(dl) #comparing the results of NN and LR plt.figure(figsize=(15,10)) # Neural Network plots plt.plot(acc_nn.accuracies, 'r-', label = "Training Accuracies - NN") plt.plot(acc_nn.test_accuracies, 'g-', label = "Testing Accuracies - NN") # Logistic Regression plots plt.plot(acc_lr.accuracies, 'k-', label = "Training Accuracies - LR") plt.plot(acc_lr.test_accuracies, 'b-', label = "Testing Accuracies - LR") plt.legend() ###Output _____no_output_____ ###Markdown Plotting the outputs of this layer of the NN. ###Code new_model = Model(layers[:-2]) testing_plot = new_model(testing_data_x) # Plotting the scatter plot of points and color coding by class plt.figure(figsize=(8,7)) plt.scatter(testing_plot[:,0], testing_plot[:,1], alpha = 0.1, c = y_test.ravel()); plt.title('Outputs') ###Output _____no_output_____ ###Markdown Probability contours ###Code model_prob = Model(layers[-2:]) #creating the x and y ranges according to the above generated plot. x_range = np.linspace(-4, 1, 100) y_range = np.linspace(-6, 6, 100) x_grid, y_grid = np.meshgrid(x_range, y_range) # x_grid and y_grig are of size 100 X 100 # converting x_grid and y_grid to continuous arrays x_gridflat = np.ravel(x_grid) y_gridflat = np.ravel(y_grid) # The last layer of the current model takes two columns as input. Hence transpose of np.vstack() is required. X = np.vstack((x_gridflat, y_gridflat)).T prob_contour = model_prob(X).reshape(100,100) plt.figure(figsize=(10,9)) plt.scatter(testing_plot[:,0], testing_plot[:,1], alpha = 0.1, c = y_test.ravel()) contours = plt.contour(x_grid,y_grid,prob_contour) plt.title('Probability Contours') plt.clabel(contours, inline = True ); ###Output _____no_output_____
8960_Candida_Practical_4.ipynb
###Markdown **Name : Candida Ruth Noronha****Class : SE COMPS B****Roll No. : 8960****Title : Python Experiment 4** **Aim : Implement different data structures in Python.**1. Write a program to sort a queue in python without using extra space**Code :** ###Code import queue def minIndex(q, sortedIndex): min_index = -1 min_val = 999999999999 n = q.qsize() for i in range(n): curr = q.queue[0] q.get() if (curr <= min_val and i <= sortedIndex): min_index = i min_val = curr q.put(curr) return min_index def insertMinToRear(q, min_index): min_val = None n = q.qsize() for i in range(n): curr = q.queue[0] q.get() if (i != min_index): q.put(curr) else: min_val = curr q.put(min_val) def sortQueue(q): for i in range(1, q.qsize() + 1): min_index = minIndex(q, q.qsize() - i) insertMinToRear(q, min_index) if __name__ == '__main__': q = queue.Queue() n = int(input("Enter the number of elements: ")) for i in range(n): q.put(int(input("Enter the element you want to insert: "))) sortQueue(q) print('\nQueue after sorting: ') while (q.empty() == False): print(q.queue[0], end = " ") q.get() ###Output Enter the number of elements: 5 Enter the element you want to insert: 2 Enter the element you want to insert: 3 Enter the element you want to insert: 1 Enter the element you want to insert: 5 Enter the element you want to insert: 4 Queue after sorting: 1 2 3 4 5 ###Markdown 2. Write a python program to Implement shopping cart using linked-list. The user should be able to add item, remove item, display all the items and calculate total amount of the cart. Each Item details contains (Item name, quantity, price). ###Code class Node: def __init__(self,name=None,quantity=None,price=None): self.name = name self.quantity = quantity self.price = price self.next = None class LinkedList: def AtEnd(self, name, quantity,price): NewNode = Node(name,quantity,price) if self.headNode is None: self.headNode = NewNode else: last = self.headNode while(last.next): last = last.next last.next = NewNode print("Product added !") return def listprint(self): printval = self.headNode print('===================================================================') print('\t\t\tSHOPPING CART') print('===================================================================') while printval is not None: print ("Name of the product: ",printval.name) print("Quantity: ",printval.quantity) print("Price: ",printval.price) print("==================================================================") printval = printval.next return def RemoveNode(self, name): HeadVal = self.headNode result = 0 if(HeadVal is not None): if(HeadVal.name == name): self.headNode = HeadVal.next HeadVal = None result = 1 return result while(HeadVal is not None): if(HeadVal.name == name): break prev = HeadVal HeadVal = HeadVal.next if (HeadVal == None): return result prev.next = HeadVal.next HeadVal = None result = 1 return result def sumofcart(self): val = self.headNode if val is None: return 0 sum = float(0) while val is not None: sum += float(val.price)*val.quantity val = val.next return sum def __init__(self): self.headNode = None list = LinkedList() while True: print("\n1. Add an item to the cart") print("2. Delete an item from the cart") print("3. Display Items in the cart") print("4. Total amount") print("5. Exit") choice = int(input("\nEnter the choice: ")) if(choice == 1): name = input("\nEnter product name: ") price = input("Enter product price per item(in Rs): ") quantity = float(input("Enter quantity(in units): ")) list.AtEnd(name, quantity, price) elif(choice == 2): name = input("Enter the product name you want to remove: ") if(list.headNode is None): print("Cart is empty") else: output = int(list.RemoveNode(name)) if(output == 1): print("Product deleted !") else: print("Product not found") elif(choice == 3): if(list.headNode is None): print("Cart is empty") else: list.listprint() elif(choice == 4): if(list.headNode is None): print("Cart is empty") else: sum = float(list.sumofcart()) print("\nTotal Amount: ",sum) elif(choice == 5): print("Exiting the application") break else: print("Invalid input") ###Output 1. Add an item to the cart 2. Delete an item from the cart 3. Display Items in the cart 4. Total amount 5. Exit Enter the choice: 1 Enter product name: onion Enter product price per item(in Rs): 30 Enter quantity(in units): 3 Product added ! 1. Add an item to the cart 2. Delete an item from the cart 3. Display Items in the cart 4. Total amount 5. Exit Enter the choice: 1 Enter product name: potato Enter product price per item(in Rs): 35 Enter quantity(in units): 3 Product added ! 1. Add an item to the cart 2. Delete an item from the cart 3. Display Items in the cart 4. Total amount 5. Exit Enter the choice: 1 Enter product name: cabbage Enter product price per item(in Rs): 20 Enter quantity(in units): 2 Product added ! 1. Add an item to the cart 2. Delete an item from the cart 3. Display Items in the cart 4. Total amount 5. Exit Enter the choice: 1 Enter product name: peas Enter product price per item(in Rs): 45 Enter quantity(in units): 4 Product added ! 1. Add an item to the cart 2. Delete an item from the cart 3. Display Items in the cart 4. Total amount 5. Exit Enter the choice: 1 Enter product name: mint Enter product price per item(in Rs): 10 Enter quantity(in units): 3 Product added ! 1. Add an item to the cart 2. Delete an item from the cart 3. Display Items in the cart 4. Total amount 5. Exit Enter the choice: 3 =================================================================== SHOPPING CART =================================================================== Name of the product: onion Quantity: 3.0 Price: 30 ================================================================== Name of the product: potato Quantity: 3.0 Price: 35 ================================================================== Name of the product: cabbage Quantity: 2.0 Price: 20 ================================================================== Name of the product: peas Quantity: 4.0 Price: 45 ================================================================== Name of the product: mint Quantity: 3.0 Price: 10 ================================================================== 1. Add an item to the cart 2. Delete an item from the cart 3. Display Items in the cart 4. Total amount 5. Exit Enter the choice: 2 Enter the product name you want to remove: peas Product deleted ! 1. Add an item to the cart 2. Delete an item from the cart 3. Display Items in the cart 4. Total amount 5. Exit Enter the choice: 3 =================================================================== SHOPPING CART =================================================================== Name of the product: onion Quantity: 3.0 Price: 30 ================================================================== Name of the product: potato Quantity: 3.0 Price: 35 ================================================================== Name of the product: cabbage Quantity: 2.0 Price: 20 ================================================================== Name of the product: mint Quantity: 3.0 Price: 10 ================================================================== 1. Add an item to the cart 2. Delete an item from the cart 3. Display Items in the cart 4. Total amount 5. Exit Enter the choice: 4 Total Amount: 265.0 1. Add an item to the cart 2. Delete an item from the cart 3. Display Items in the cart 4. Total amount 5. Exit Enter the choice: 5 Exiting the application ###Markdown Post Labs: ###Code class Node: def __init__(self, x): self.data = x self.prev = None self.next = None def push(head_ref, new_data): new_node = Node(new_data) new_node.data = new_data new_node.next = head_ref new_node.prev = None if (head_ref != None): head_ref.prev = new_node head_ref = new_node return head_ref def insertBefore(head_ref, next_node, new_data): if (next_node == None): print("the given next node cannot be NULL") return new_node = Node(new_data) new_node.prev = next_node.prev next_node.prev = new_node new_node.next = next_node if (new_node.prev != None): new_node.prev.next = new_node else: head_ref = new_node return head_ref def printList(node): last = None print("Traversal in forward direction ") while (node != None): print(node.data, end=" ") last = node node = node.next print("\nTraversal in reverse direction ") while (last != None): print(last.data, end=" ") last = last.prev if __name__ == '__main__': head = None head = push(head, 6) head = push(head, 2) head = push(head, 4) head = insertBefore(head, head.next, 3) print("Created Doubly Linked List is: ") printList(head) ###Output Created Doubly Linked List is: Traversal in forward direction 4 3 2 6 Traversal in reverse direction 6 2 3 4 ###Markdown Q2. Write a python program to implement linked list using collection.dequeue(). ###Code import collections linked_list = collections.deque() while True: print("\n1. Add an element to the Linked List") print("2. Add an element at a given loc in the Linked List") print("3. Delete an element from the Linked List") print("4. Display the Linked List") print("5. Exit") choice = int (input("\nEnter the choice : ")) if (choice == 1): ele = int(input("Enter the element : ")) linked_list.append(ele) print("{} is added to the Linked List".format(ele)) elif (choice == 2): ele = int(input("Enter the element : ")) loc = int(input("Enter the location : ")) linked_list.insert(loc,ele) print("{} is added to the Linked List at location {}".format(ele, loc)) elif (choice == 3): ele = int(input("\nEnter the element you want to delete : ")) linked_list.remove(ele) print("{} is deleted from the Linked List".format(ele)) elif (choice == 4): print("\nElements in the Linked List are : ") print(linked_list) elif (choice == 5): print("Exiting !") break else: print("Invalid Input") ###Output 1. Add an element to the Linked List 2. Add an element at a given loc in the Linked List 3. Delete an element from the Linked List 4. Display the Linked List 5. Exit Enter the choice : 1 Enter the element : 10 10 is added to the Linked List 1. Add an element to the Linked List 2. Add an element at a given loc in the Linked List 3. Delete an element from the Linked List 4. Display the Linked List 5. Exit Enter the choice : 1 Enter the element : 30 30 is added to the Linked List 1. Add an element to the Linked List 2. Add an element at a given loc in the Linked List 3. Delete an element from the Linked List 4. Display the Linked List 5. Exit Enter the choice : 1 Enter the element : 40 40 is added to the Linked List 1. Add an element to the Linked List 2. Add an element at a given loc in the Linked List 3. Delete an element from the Linked List 4. Display the Linked List 5. Exit Enter the choice : 2 Enter the element : 20 Enter the location : 1 20 is added to the Linked List at location 1 1. Add an element to the Linked List 2. Add an element at a given loc in the Linked List 3. Delete an element from the Linked List 4. Display the Linked List 5. Exit Enter the choice : 4 Elements in the Linked List are : deque([10, 20, 30, 40]) 1. Add an element to the Linked List 2. Add an element at a given loc in the Linked List 3. Delete an element from the Linked List 4. Display the Linked List 5. Exit Enter the choice : 3 Enter the element you want to delete : 30 30 is deleted from the Linked List 1. Add an element to the Linked List 2. Add an element at a given loc in the Linked List 3. Delete an element from the Linked List 4. Display the Linked List 5. Exit Enter the choice : 4 Elements in the Linked List are : deque([10, 20, 40]) 1. Add an element to the Linked List 2. Add an element at a given loc in the Linked List 3. Delete an element from the Linked List 4. Display the Linked List 5. Exit Enter the choice : 5 Exiting !
2020WinterIPS-Tech/liuchengbi/.ipynb_checkpoints/first-checkpoint.ipynb
###Markdown 非常严格的缩进要求 ###Code #缩进是基本能力 if A==10:#冒号 print('A==10') #缩进问题 content=input('请输入,并回车') print(content) numberInput=input("输入年龄") if int (numberInput)>18: print('Adault') else: print("child") print("Monday") print('sunday') #print('123',end=",") 不换行,隔开 ###Output _____no_output_____ ###Markdown --------- 经典的星星游戏------- ###Code print("*") print("**") print("***") print("*") print("**") print("***") print("*****") print("*****") print("*****") print("*****") #循环和判断 #运算符 **是次幂 //整除 %取余,模 #位运算 二进制 & | || 看课件 #and or not #有复数 a+bj #int ,float, complex #函数记忆abs(x)等 使用前要导入math包 import math math.abs(-10) math.ceil(4.1) #随机数 导入random包 import random random.random() random.random() random.random()*10 random.uniform(3,5) math.e #/n换行 %格式化 记忆 %d 整数 %f 小数 %c 字符串 #字符串函数 四十个背 ###Output _____no_output_____ ###Markdown 循环 ###Code #if for循环 print("*****") print("*****") print("*****") print("*****") for i in range(20): print("*") for i in range(20): print("*",end='') ###Output ******************** ###Markdown 作业------------------------ ###Code for i in range(5): print("*"*(i+1)) for i in range(5): print("*"*(i+(i+1))) for i in range(5): print(" "*(4-i),end="") print("*"*(i+1)) for i in range(4): print(" "*(4-(i+1)),end="") print("*"*(i+(i+1))) for i in range(4): print(" "*(4-(i+1)),end="") print("*"*(i+(i+1))) for i in range(4): print("*"*(4-(i+1)),end="") print(" "*(i+(i+1))) for i in range(5): print("*"*(6-(i+i+1))) print(" "*(i+1),end="") for i in range(4): print(" "*(4-(i+1)),end="") print("*"*(i+(i+1))) for i in range(5): print(" "*(i+1),end="") print("*"*(6-(i+i+1))) ###Output * *** ***** ******* ***** *** *
04_ingest/archive/10_Redshift_ML.ipynb
###Markdown Query Both Athena And Redshift With `Redshift Spectrum` We can leverage our previously created table in Amazon Athena with its metadata and schema information stored in the AWS Glue Data Catalog to access our data in S3 through Redshift Spectrum. All we need to do is create an external schema in Redshift, point it to our AWS Glue Data Catalog, and point Redshift to the database we’ve created. ###Code import boto3 import sagemaker # Get region session = boto3.session.Session() region_name = session.region_name # Get SageMaker session & default S3 bucket sagemaker_session = sagemaker.Session() bucket = sagemaker_session.default_bucket() ###Output _____no_output_____ ###Markdown Connect to Redshift ###Code redshift = boto3.client('redshift') secretsmanager = boto3.client('secretsmanager') ###Output _____no_output_____ ###Markdown Setup Redshift Connection Via SQLAlchemyThe Python SQL Toolkit and Object Relational Mapper (https://pypi.org/project/SQLAlchemy/) ###Code !pip install -q SQLAlchemy==1.3.13 from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker import pandas as pd ###Output _____no_output_____ ###Markdown Get Redshift Credentials ###Code import json secret = secretsmanager.get_secret_value(SecretId='dsoaws_redshift_login') cred = json.loads(secret['SecretString']) master_user_name = cred[0]['username'] master_user_pw = cred[1]['password'] master_user_name ###Output _____no_output_____ ###Markdown Redshift Configuration Parameters ###Code redshift_cluster_identifier = 'dsoaws' database_name_redshift = 'dsoaws' database_name_athena = 'dsoaws' redshift_port = '5439' schema_redshift = 'redshift' schema_athena = 'athena' table_name_tsv = 'amazon_reviews_tsv' ###Output _____no_output_____ ###Markdown Please Wait for Cluster Status `Available` ###Code import time response = redshift.describe_clusters(ClusterIdentifier=redshift_cluster_identifier) cluster_status = response['Clusters'][0]['ClusterStatus'] print(cluster_status) while cluster_status != 'available': time.sleep(10) response = redshift.describe_clusters(ClusterIdentifier=redshift_cluster_identifier) cluster_status = response['Clusters'][0]['ClusterStatus'] print(cluster_status) ###Output _____no_output_____ ###Markdown Get Redshift Endpoint Address & IAM Role ###Code redshift_endpoint_address = response['Clusters'][0]['Endpoint']['Address'] iam_role = response['Clusters'][0]['IamRoles'][0]['IamRoleArn'] print('Redshift endpoint: {}'.format(redshift_endpoint_address)) print('IAM Role: {}'.format(iam_role)) ###Output _____no_output_____ ###Markdown Connect to Redshift Database Engine ###Code engine = create_engine('postgresql://{}:{}@{}:{}/{}'.format(master_user_name, master_user_pw, redshift_endpoint_address, redshift_port, database_name_redshift)) ###Output _____no_output_____ ###Markdown Configure Session ###Code session = sessionmaker() session.configure(bind=engine) s = session() ###Output _____no_output_____ ###Markdown Redshift SpectrumAmazon Redshift Spectrum directly queries data in S3, using the same SQL syntax of Amazon Redshift. You can also run queries that span both the frequently accessed data stored locally in Amazon Redshift and your full datasets stored cost-effectively in S3.To use Redshift Spectrum, your cluster needs authorization to access data catalog in Amazon Athena and your data files in Amazon S3. You provide that authorization by referencing an AWS Identity and Access Management (IAM) role that is attached to your cluster. To use this capability in from your Amazon SageMaker notebook:* Register your Athena database `dsoaws` with Redshift Spectrum* Query Your Data in Amazon S3 Query RedshiftLet's query results across Athena and Redshift tables using just Redshift. This feature is called Redshift Spectrum. We will use a `UNION ALL` for this. Similarly, if we need to delete data, we would drop the tables using `UNION ALL`. Use `UNION ALL` across 2 tables (2015, 2014) in our `redshift` schema ###Code statement = """ SELECT review_body, star_rating FROM redshift.amazon_reviews_tsv_2015 UNION ALL SELECT review_body, star_rating FROM redshift.amazon_reviews_tsv_2014 """ print(statement) df = pd.read_sql_query(statement, engine) df.head(20) ###Output _____no_output_____ ###Markdown Run Same Query on Original Data in S3 using `athena` Schema to Verify the Results Match ###Code statement = """ SELECT CAST(DATE_PART_YEAR(TO_DATE(review_date, 'YYYY-MM-DD')) AS INTEGER) AS year, product_category, COUNT(star_rating) AS count_star_rating FROM athena.amazon_reviews_tsv WHERE year = 2015 OR year = 2014 GROUP BY athena.amazon_reviews_tsv.product_category, year ORDER BY product_category ASC, year DESC """ print(statement) df = pd.read_sql_query(statement, engine) df.head(20) ###Output _____no_output_____ ###Markdown Create Modelhttps://aws.amazon.com/blogs/aws/amazon-redshift-ml-is-now-generally-available-use-sql-to-create-machine-learning-models-and-make-predictions-from-your-data/ `CREATE MODEL` SQL APIhttps://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_MODEL.htmlr_byom_create_model ###Code # statement = """ # SELECT review_body, star_rating # FROM ( # SELECT review_body, star_rating # FROM redshift.amazon_reviews_tsv_2015 # ) # """ # # TODO: Union with 2014 # #UNION ALL # #SELECT review_body, star_rating # # FROM redshift.amazon_reviews_tsv_2014 statement = """ CREATE MODEL predict_star_rating FROM ( SELECT review_body, star_rating FROM redshift.amazon_reviews_tsv_2015 ) TARGET star_rating FUNCTION predict_star_rating IAM_ROLE 'arn:aws:iam::{}:role/DSOAWS_Redshift' SETTINGS ( S3_BUCKET 'sagemaker-us-east-1-{}' ) """.format(account_id, account_id) s.execute(statement) # pd.read_sql_query?? # df_create_model = pd.read_sql_query?? (statement, engine, ) # df_create_model.head(20) ###Output _____no_output_____ ###Markdown Now Query Across Both Redshift and Athena in a single queryUse `UNION ALL` across 2 Redshift tables (2015, 2014) and the rest from Athena/S3 (2013-1995) ###Code statement = """ SELECT review_body, star_rating FROM redshift.amazon_reviews_tsv_2015 UNION ALL SELECT year, product_category, COUNT(star_rating) AS count_star_rating FROM redshift.amazon_reviews_tsv_2014 UNION ALL SELECT CAST(DATE_PART_YEAR(TO_DATE(review_date, 'YYYY-MM-DD')) AS INTEGER) AS year, review_body, star_rating FROM athena.amazon_reviews_tsv WHERE year <= 2013 GROUP BY athena.amazon_reviews_tsv.product_category, year """ print(statement) # statement = """ # SELECT year, product_category, COUNT(star_rating) AS count_star_rating # FROM redshift.amazon_reviews_tsv_2015 # GROUP BY redshift.amazon_reviews_tsv_2015.product_category, year # UNION ALL # SELECT year, product_category, COUNT(star_rating) AS count_star_rating # FROM redshift.amazon_reviews_tsv_2014 # GROUP BY redshift.amazon_reviews_tsv_2014.product_category, year # ORDER BY product_category ASC, year DESC # """ # print(statement) df = pd.read_sql_query(statement, engine) df.head(20) ###Output _____no_output_____ ###Markdown Use `EXPLAIN` to Verify that Both Redshift and S3 are Part of the Same Query ###Code statement = """ EXPLAIN SELECT year, product_category, COUNT(star_rating) AS count_star_rating FROM redshift.amazon_reviews_tsv_2015 GROUP BY redshift.amazon_reviews_tsv_2015.product_category, year UNION ALL SELECT year, product_category, COUNT(star_rating) AS count_star_rating FROM redshift.amazon_reviews_tsv_2014 GROUP BY redshift.amazon_reviews_tsv_2014.product_category, year UNION ALL SELECT CAST(DATE_PART_YEAR(TO_DATE(review_date, 'YYYY-MM-DD')) AS INTEGER) AS year, product_category, COUNT(star_rating) AS count_star_rating FROM athena.amazon_reviews_tsv WHERE year <= 2013 GROUP BY athena.amazon_reviews_tsv.product_category, year ORDER BY product_category ASC, year DESC """ print(statement) pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', 1024) df = pd.read_sql_query(statement, engine) df.head(100) ###Output _____no_output_____ ###Markdown Expected Output```QUERYPLANXN Merge (cost=1000177373551.14..1000177373584.69 rows=13420 width=1040) Merge Key: product_category, year -> XN Network (cost=1000177373551.14..1000177373584.69 rows=13420 width=1040) Send to leader -> XN Sort (cost=1000177373551.14..1000177373584.69 rows=13420 width=1040) Sort Key: product_category, year -> XN Append (cost=733371.52..177372631.06 rows=13420 width=1040) -> XN Subquery Scan *SELECT* 1 (cost=733371.52..733372.06 rows=43 width=22) -> XN HashAggregate (cost=733371.52..733371.63 rows=43 width=22) -> XN Seq Scan on amazon_reviews_tsv_2015 (cost=0.00..419069.44 rows=41906944 width=22) -> XN Subquery Scan *SELECT* 2 (cost=772258.45..772258.98 rows=43 width=23) -> XN HashAggregate (cost=772258.45..772258.55 rows=43 width=23) -> XN Seq Scan on amazon_reviews_tsv_2014 (cost=0.00..441290.54 rows=44129054 width=23) -> XN Subquery Scan *SELECT* 3 (cost=175866766.67..175867000.02 rows=13334 width=1040) -> XN HashAggregate (cost=175866766.67..175866866.68 rows=13334 width=1040) -> XN S3 Query Scan amazon_reviews_tsv (cost=175000000.00..175766766.67 rows=13333334 width=1040) Filter: (date_part_year(to_date((derived_col1)::text, 'YYYY-MM-DD'::text)) <= 2013) -> S3 HashAggregate (cost=175000000.00..175000100.00 rows=40000000 width=1036) -> S3 Seq Scan athena.amazon_reviews_tsv location:s3://sagemaker-us-west-2-237178646982/amazon-reviews-pds/tsv format:TEXT (cost=0.00..100000000.00 rows=10000000000 width=1036)----- Tables missing statistics: amazon_reviews_tsv_2015, amazon_reviews_tsv_2014 ---------- Update statistics by running the ANALYZE command on these tables -----``` When to use Athena vs. Redshift? Amazon AthenaAthena should be your preferred choice when running ad-hoc SQL queries on data that is stored in Amazon S3. It doesn’t require you to set up or manage any infrastructure resources, and you don’t need to move any data. It supports structured, unstructured, and semi-structured data. With Athena, you are defining a **“schema on read”** - you basically just log in, create a table and you are good to go. Amazon RedshiftRedshift is targeted for modern data analytics on large sets of structured data. Here, you need to have a predefined **“schema on write”**. Unlike serverless Athena, Redshift requires you to create a cluster (compute and storage resources), ingest the data and build tables before you can start to query, but caters to performance and scale. So for any highly-relational data with a transactional nature (data gets updated), workloads which involve complex joins, and latency requirements to be sub-second, Redshift is the right choice. ###Code %%javascript try { Jupyter.notebook.save_checkpoint(); Jupyter.notebook.session.delete(); } catch(err) { // NoOp } ###Output _____no_output_____
Python-Drills/02-Text_Wrap/Text_Wrap.ipynb
###Markdown Text WrapWrite a function that will accept a string and a length N and print every N characters for the string on a separate line.Input:```N = 4test_string = "abcdefghijklmn"```Output:```abcdefghijklmn``` ###Code test_string = "abcdefghijklmn" ###Output _____no_output_____ ###Markdown YOUR CODE HERE ###Code n = 4| >>> [test_string[i:i+n] for i in range(0, len(test_string), n)] ###Output _____no_output_____
20160202_Nottingham_GIServices_Lecture3_Beck_InteroperabilitySemanticsAndOpenData/20160202_Nottingham_GIServices_Lecture3_Beck_InteroperabilitySemanticsAndOpenData_localised.ipynb
###Markdown ![](https://dl.dropboxusercontent.com/u/393477/ImageBank/ForOGC/InteroperabilitySemanticsAndOpenData.png)Go down for licence and other metadata about this presentation \newpage Preamble LicenceUnless stated otherwise all content is released under a [CC0]+BY licence. I'd appreciate it if you reference this but it is not necessary.![](https://dl.dropboxusercontent.com/u/393477/SharedPresentations/Shared_HTML5/Images/CC_BY.png) \newpage Using Ipython for presentationsA short video showing how to use Ipython for presentations ###Code from IPython.display import YouTubeVideo YouTubeVideo('F4rFuIb1Ie4') ## PDF output using pandoc import os ### Export this notebook as markdown commandLineSyntax = 'ipython nbconvert --to markdown 20160202_Nottingham_GIServices_Lecture3_Beck_InteroperabilitySemanticsAndOpenData.ipynb' print (commandLineSyntax) os.system(commandLineSyntax) ### Export this notebook and the document header as PDF using Pandoc commandLineSyntax = 'pandoc -f markdown -t latex -N -V geometry:margin=1in DocumentHeader.md 20160202_Nottingham_GIServices_Lecture3_Beck_InteroperabilitySemanticsAndOpenData.md --filter pandoc-citeproc --latex-engine=xelatex --toc -o interim.pdf ' os.system(commandLineSyntax) ### Remove cruft from the pdf commandLineSyntax = 'pdftk interim.pdf cat 1-5 18-end output 20160202_Nottingham_GIServices_Lecture3_Beck_InteroperabilitySemanticsAndOpenData.pdf' os.system(commandLineSyntax) ### Remove the interim pdf commandLineSyntax = 'rm interim.pdf' os.system(commandLineSyntax) ###Output ipython nbconvert --to markdown 20160202_Nottingham_GIServices_Lecture3_Beck_InteroperabilitySemanticsAndOpenData.ipynb ###Markdown The environmentIn order to replicate my environment you need to know what I have installed! Set up watermarkThis describes the versions of software used during the creation. Please note that critical libraries can also be watermarked as follows:```python%watermark -v -m -p numpy,scipy``` ###Code %install_ext https://raw.githubusercontent.com/rasbt/python_reference/master/ipython_magic/watermark.py %load_ext watermark %watermark -a "Anthony Beck" -d -v -m -g #List of installed conda packages !conda list #List of installed pip packages !pip list ###Output abstract-rendering (0.5.1) accelerate (2.0.0) affine (1.2.0) alabaster (0.7.6) anaconda-client (1.2.1) argcomplete (1.0.0) astropy (1.1.1) Babel (2.1.1) basemap (1.0.7) beautifulsoup4 (4.4.1) bitarray (0.8.1) blaze (0.9.0) bokeh (0.11.0) boto (2.38.0) Bottleneck (1.0.0) cffi (1.2.1) click (4.1) click-plugins (1.0.2) cligj (0.2.0) clyent (1.2.0) colorama (0.3.3) colorlover (0.2.1) conda (3.19.0) conda-build (1.18.2) conda-env (2.4.5) configobj (5.0.6) cryptography (0.9.3) cufflinks (0.7.1) cycler (0.9.0) Cython (0.23.4) cytoolz (0.7.4) datashape (0.5.0) decorator (4.0.6) descartes (1.0.1) docutils (0.12) dynd (9b63882) et-xmlfile (1.0.1) fastcache (1.0.2) Fiona (1.6.0) Flask (0.10.1) funcsigs (0.4) GDAL (2.0.0) greenlet (0.4.9) h5py (2.5.0) html5lib (0.9999999) idna (2.0) iopro (1.7.2) ipykernel (4.2.2) ipython (4.0.2) ipython-genutils (0.1.0) ipywidgets (4.1.1) itsdangerous (0.24) jdcal (1.2) jedi (0.9.0) Jinja2 (2.8) jsonschema (2.4.0) jupyter (1.0.0) jupyter-client (4.1.1) jupyter-console (4.1.0) jupyter-core (4.0.6) llvmlite (0.8.0) lxml (3.5.0) MarkupSafe (0.23) matplotlib (1.5.1) mistune (0.7.1) mock (1.3.0) multipledispatch (0.4.8) nbconvert (4.1.0) nbformat (4.0.1) networkx (1.10) nltk (3.1) nose (1.3.7) notebook (4.1.0) numba (0.22.1) numbapro (0.22.1) numexpr (2.4.4) numpy (1.10.2) odo (0.4.0) openpyxl (2.3.2) OWSLib (0.10.3) pandas (0.17.1) path.py (0.0.0) patsy (0.4.0) pbr (1.3.0) pep8 (1.6.2) pexpect (3.3) pickleshare (0.5) Pillow (3.1.0) pip (8.0.2) plotly (1.9.5) ply (3.8) psutil (3.3.0) ptyprocess (0.5) py (1.4.30) pyasn1 (0.1.9) pycosat (0.6.1) pycparser (2.14) pycrypto (2.6.1) pycurl (7.19.5.1) pyepsg (0.2.0) pyflakes (1.0.0) Pygments (2.0.2) pyodbc (3.0.10) pyOpenSSL (0.15.1) pyparsing (2.0.3) pyproj (1.9.4) pyshp (1.2.3) pytest (2.8.1) python-dateutil (2.4.2) pytz (2015.7) PyYAML (3.11) pyzmq (15.2.0) qtconsole (4.1.1) rasterio (0.25.0) redis (2.10.3) requests (2.9.1) rope-py3k (0.9.4.post1) scikit-image (0.11.3) scikit-learn (0.17) scipy (0.16.1) seaborn (0.6.0) setuptools (19.2) Shapely (1.5.11) simplegeneric (0.8.1) simplejson (3.8.1) six (1.10.0) snowballstemmer (1.2.0) snuggs (1.3.1) sockjs-tornado (1.0.1) Sphinx (1.3.1) sphinx-rtd-theme (0.1.7) spyder (2.3.8) SQLAlchemy (1.0.11) statsmodels (0.6.1) sympy (0.7.6.1) tables (3.2.2) terminado (0.5) Theano (0.7.0) toolz (0.7.4) tornado (4.3) traitlets (4.1.0) ujson (1.33) unicodecsv (0.14.1) Werkzeug (0.11.3) wheel (0.26.0) xlrd (0.9.4) XlsxWriter (0.8.2) xlwt (1.0.0) ###Markdown Running dynamic presentationsYou need to install the [RISE Ipython Library](https://github.com/damianavila/RISE) from [Damián Avila](https://github.com/damianavila) for dynamic presentations To convert and run this as a static presentation run the following command: ###Code # Notes don't show in a python3 environment !ipython nbconvert 20160202_Nottingham_GIServices_Lecture3_Beck_InteroperabilitySemanticsAndOpenData.ipynb --to slides --post serve ###Output _____no_output_____ ###Markdown To close this instances press *control 'c'* in the *ipython notebook* terminal consoleStatic presentations allow the presenter to see *speakers notes* (use the 's' key)If running dynamically run the scripts below Pre load some useful libraries ###Code #Future proof python 2 from __future__ import print_function #For python3 print syntax from __future__ import division # def import IPython.core.display # A function to collect user input - ipynb_input(varname='username', prompt='What is your username') def ipynb_input(varname, prompt=''): """Prompt user for input and assign string val to given variable name.""" js_code = (""" var value = prompt("{prompt}",""); var py_code = "{varname} = '" + value + "'"; IPython.notebook.kernel.execute(py_code); """).format(prompt=prompt, varname=varname) return IPython.core.display.Javascript(js_code) # inline %pylab inline ###Output Populating the interactive namespace from numpy and matplotlib ###Markdown \newpage About me ![It's all about me - details about Anthony Beck](https://dl.dropboxusercontent.com/u/393477/ImageBank/Geolytics_ARB_Banner.png)* Honorary Research Fellow, University of Nottingham: [orcid](http://orcid.org/0000-0002-2991-811X)* Director, Geolytics Limited - A spatial data analytics consultancy About this presentation* [Available on GitHub](https://github.com/AntArch/Presentations_Github/tree/master/20151008_OpenGeo_Reuse_under_licence) - https://github.com/AntArch/Presentations_Github/* [Fully referenced PDF](https://github.com/AntArch/Presentations_Github/blob/master/20160202_Nottingham_GIServices_Lecture3_Beck_InteroperabilitySemanticsAndOpenData/20160202_Nottingham_GIServices_Lecture3_Beck_InteroperabilitySemanticsAndOpenData.pdf) \newpage Contribution to GIScience learning outcomesThis presentation contributes to the following learning outcomes for this course.1. Knowledge and Understanding: * Appreciate the importance of standards for Geographic Information and the role of the Open Geospatial Consortium. * Understand the term 'interoperability'. * Appreciate the different models for database design. * Understand the basis of Linked Data. * Find UK government open data and understand some of the complexities in the use of this data. * Appreciate the data issues involved in managing large distributed databases, Location-Based Services and the emergence of real-time data gathering through the 'Sensor-Web'. * Understand the different models for creating international Spatial Data Infrastructures.1. Intellectual Skills: * Evaluate the role of standards and professional bodies in GIS. * Articulate the meaning and importance of interoperability, semantics and ontologies. * Assess the technical and organisational issues which come into play when attempting to design large distributed geographic databases aimed at supporting 'real-world' problems. A potted history of mapping In the beginning was the geoword and the word was ***cartography*** ![The lens of cartography @TheLensOfCartography_beck_2015](https://upload.wikimedia.org/wikipedia/commons/thumb/8/85/TheLensOfCartography.svg/1024px-TheLensOfCartography.svg.png) \newpage ![A static map (public domain) encapsulating spatial knowledge in a portable manner](https://upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Claudius_Ptolemy-_The_World.jpg/1024px-Claudius_Ptolemy-_The_World.jpg) * Cartography was king. * Static representations of spatial knowledge with the cartographer deciding what to represent. * Hence, maps are domain specific knowledge repositories for spatial data \newpage And then there was data ......... ![Data @Data_types_en_beck_2015](https://upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Data_types_-_en.svg/576px-Data_types_-_en.svg.png) \newpage ![But the data was siloed (restricted use)](https://dl.dropboxusercontent.com/u/393477/ImageBank/ForOGC/TheEndOfThe20thCentury.png) Restrictive data \newpage ![The implications of a landscape of silo-ed data @IslandsOfData_en_beck_2015](https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Islands_Of_Data.svg/1017px-Islands_Of_Data.svg.png) Disconnected data with different: * Standards* Quality* Databases* Semantics \newpage Why is this an issue?Over to you...... * Decision Making * certainty * uncertainty* Co-ordination* Policy formation* Efficiencies* Best Practice \newpage [INSPIRE](http://inspire.ec.europa.eu/) ###Code from IPython.display import YouTubeVideo YouTubeVideo('xew6qI-6wNk') ###Output _____no_output_____ ###Markdown \newpage INSPIRE principles* Data should be collected only once and kept where it can be maintained most effectively* It should be possible to combine seamless spatial information from different sources across Europe and share it with many users and applications* It should be possible for information collected at one level/scale to be shared with all levels/scales; detailed for thorough investigations, general for strategic purposes* Geoinformation needed for good governance at all levels should be readily and transparently available* Easy to find what geoinformation is available, how it can be used to meet a particular need, and under which conditions it can be acquired and used \newpage ![Concerted efforts to de-silo data and make data interoperable (restricted use)](https://dl.dropboxusercontent.com/u/393477/ImageBank/ForOGC/TheCatalyst.png) Making data interoperable and open \newpage Interoperability> is a property of a product or system, whose interfaces are completely understood, to work with other products or systems, present or future, without any restricted access or implementation.@wikipedia_interoperability_2016 \newpage Technical interoperability - levelling the field![Interoperable integration of spatial data - the technological issues @TechnicalInteroperableIntegrationOfSpatialData_beck_2015](https://upload.wikimedia.org/wikipedia/commons/thumb/5/53/TechnicalInteroperableIntegrationOfSpatialData.svg/1024px-TechnicalInteroperableIntegrationOfSpatialData.svg.png) \newpage Syntactic Heterogeneity> the difference in data format. The same **logical model** can be represented in a range of different **physical models** (for example ESRI shape file or Geography Mark-up Language (GML)).This mismatch between underlying data models implies that the same information could be represented differently in different organisations. The most profound difference is in the storage paradigm: * relational, * object orientated or* hybrids.@beck_uk_2008, @bishr_overcoming_1998 \newpage Semantic Heterogeneity> Semantic heterogeneity refers to differences in naming conventions and conceptual groupings.This can be subdivided into **naming** and **cognitive** heterogeneities. * Naming (synonym) mismatch arises when semantically identical data items are named differently. * Cognitive (homonym) mismatch arises when semantically different data items are named identically. * Cognitive semantics can be subtle, reflecting the domain of discourse.@beck_uk_2008, @bishr_overcoming_1998 \newpage Schematic Heterogeneity> refers to the differences in data model between organisations modelling the same concepts. This reflects each organisation’s abstracted view of their business and physical assets. Hence, different hierarchical and classification concepts are adopted by each organisation to refer to identical or similar real world objects.@beck_uk_2008, @bishr_overcoming_1998 \newpage The role of the OGC (a geospatial standards body)* To serve as a global forum for the development, promotion and harmonization of *open and freely available* **geospatial standards*** To achieve the full societal, economic and scientific benefits of integrating electronic location resources into commercial and institutional processes worldwide. ![The OGC Logo](http://www2.isprs.org/tl_files/isprs/comm2/symposium/Documents/OGC_logo.png) \newpage The role of the OGC (a geospatial standards body)OGC’s Open Standards are:* Freely and publicly available* Non discriminatory* No license fees* Vendor neutral* Data neutral* Adopted in a formal, member based consensus processOGC’s Open Standards are submitted to other industry and National Standards Development Organisations in the vertical area and to global organisations like ISO for standard branding. \newpage OGC Technologies* The OGC publish standards that have been agreed by OGC members* Current standards can be found at: [http://www.opengeospatial.org/standards](http://www.opengeospatial.org/standards)* These are implementation standards * written for a more technical audience and detail the interface structure between software components* Predicated on abstract specifications * the conceptual foundation for most OGC standards development activities * [http://www.opengeospatial.org/specs/?page=abstract](http://www.opengeospatial.org/specs/?page=abstract) \newpage The main OGC standards* [WMS – Web Map Service](http://www.opengeospatial.org/standards/wms) * Provides rendered images of maps * Current version: 1.3* [WFS – Web Feature Service](http://www.opengeospatial.org/standards/wfs) * Provides vector data on demand * Current version: 2.0* [WCS – Web Coverage Service](http://www.opengeospatial.org/standards/wcs) * Provides raster data (e.g. satellite data) on demand * Current version: 2.0* [GML – The Geography Markup Language](http://www.opengeospatial.org/standards/gml) * Used as an interoperable standard for transmitting geographic data (2D, 3D, topology, etc.) * Versions 2.1.x and 3.2.1 are most relevant \newpage Other OGC standards ###Code from IPython.display import IFrame IFrame('http://www.opengeospatial.org/standards', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage Interoperability in action![The use of OGC standards in an interoperable multi-data delivery environment @GeoServerGeoNetworkWithWebApp2013](https://upload.wikimedia.org/wikipedia/commons/thumb/0/09/GeoServer_GeoNetwork_with_web_app.svg/877px-GeoServer_GeoNetwork_with_web_app.svg.png) \newpage What did technical interoperability facilitate![From Map to Model The changing paradigm of map creation from cartography to data driven visualization @FromMapToModel_beck_2015](https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/FromMapToModel.svg/1024px-FromMapToModel.svg.png) From Map to Model The changing paradigm of map creation from cartography to data driven visualization \newpage ![A new working paradigm (public domain)](https://dl.dropboxusercontent.com/u/393477/ImageBank/ForOGC/ANewWorkingParadigm.png) \newpage The world was a happy place.......Our data was interoperable!![But time moved on @NonsymmetricVelocity_en_cleonis_2006](https://upload.wikimedia.org/wikipedia/commons/7/72/Nonsymmetric_velocity_time_dilation.gif) \newpage Then ....... along came **open data**![open data word cloud of Anthony Beck](https://dl.dropboxusercontent.com/u/393477/SharedPresentations/Shared_HTML5/Images/ARB_WordleCloud.png) \newpage The Open landscape integrates **formal** and **informal** data![Local To Global integration of data to create multiple generic products @Local_To_Global_integration_of_data_to_create_multiple_generic_products_beck_2015](https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Local_To_Global_integration_of_data_to_create_multiple_generic_products.svg/1024px-Local_To_Global_integration_of_data_to_create_multiple_generic_products.svg.png) \newpage ![Cartography is no longer key. Spatial mapping is now about the the formal and informal data stack. Elements such as provenance, credibility are much more important for use and re-use of this data. @CartographyNoLongerKing_beck_2015](https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/CartographyNoLongerKing.svg/1024px-CartographyNoLongerKing.svg.png) \newpage Background - originally a grass roots (community) movement..![The Open Knowledge Foundation (@Open_Knowledge_logo), Open Street Map (@Openstreetmap_logo), Wikipedia (@Wikipedia-logo-v2-en) and OSGeo](https://dl.dropboxusercontent.com/u/393477/ImageBank/Open_logos.png) Open access to knowledge gained significant momementum with the increased uptake of the World Wide Web. This is particularly seen in initiatives like [Wikipedia](https://en.wikipedia.org) (established in 2001) and [Open Knowledge](https://en.wikipedia.org/wiki/Open_Knowledge) (was the Open Knowledge Foundation: established in 2004). Within the Geo community [Open Street Map ](https://en.wikipedia.org/wiki/OpenStreetMap) (also established in 2004) and the [Open Source Geospatial Foundation](https://en.wikipedia.org/wiki/Open_Source_Geospatial_Foundation) (OSGeo - established in 2006) are key initiatives that promote accessible data and software resources respectively.Critical to this is that these were **grass roots** (community) movements that have proven to be highly disruptive to incumbent data providers, practices and policies. \newpage Open in government![](https://dl.dropboxusercontent.com/u/393477/ImageBank/ForOGC/InteroperabilitySemanticsAndOpenData.png) The impact of these grass roots movements is seen in Open Data (dot) gov. Pioneered by leaders such as Tim Berners Lee and Nigel ShadboltThe Shakespeare review [-@shakespeare_shakespeare_2013] indicate that the amount of government Open Data, at least in the UK, is only going to grow.Open data has the potential to trigger a revolution in how governments think about providing services to citizens and how they measure their success: this produces societal impact.This will require an understanding of citizen needs, behaviours, and mental models, and how to use data to improve services. \newpage Valuing Open Data![McKinsey report valuing *open data* [@mckinsey_open_2013]](https://dl.dropboxusercontent.com/u/393477/ImageBank/Mckinsey_Value_of_OpenData.png) A [McKinsey Global Institute report examines the economic impact of Open Data](http://www.mckinsey.com/insights/business_technology/open_data_unlocking_innovation_and_performance_with_liquid_information) [@mckinsey_open_2013] and estimates that globally open data could be worth a minimum of $3 trillion annually. \newpage Open in academia> Open inquiry is at the heart of the scientific enterprise..... Science’s powerful capacity for self-correction comes from this openness to scrutiny and challenge.*Science as an open enterprise* [@royal_society_science_2012 p. 7].>Science is based on building on, reusing and openly criticising the published body of scientific knowledge.>For science to effectively function, and for society to reap the full benefits from scientific endeavours, it is crucial that science data be made open.The Panton Principles (@murray-rust_panton_2010) which underpin **Open Science**. The Royal Society’s report Science as an open enterprise [-@royal_society_science_2012] identifies how 21^st^ century communication technologies are changing the ways in which scientists conduct, and society engages with, science. The report recognises that ‘open’ enquiry is pivotal for the success of science, both in research and in society.The Panton Principles pre-cursed this call with a clarion call to the academic community to open their data and start to conduct **open science**. ![@open_science_does_not_equal_open_access_2013](https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Open_Science_Does_Not_Equal_Open_Access.svg/1024px-Open_Science_Does_Not_Equal_Open_Access.svg.png) This goes beyond open access to publications (Open Access), to include access to data and other research outputs (Open Data), and the process by which data is turned into knowledge (Open Science). The next generation open data in academia![](https://dl.dropboxusercontent.com/u/393477/ImageBank/zenodo.png)Zenodo is a **DATA REPOSITORY** which offers:* accreditation * different licences * different exposure (private (closed), public (open) and embargoed (timestamped)) * DOIs * is free at the point of use * is likely to be around for a long time * supported by Horizon 2020 and delivered by CERN \newpage The underlying rationale of Open Data is: * unfettered access to large amounts of ‘raw’ data * enables patterns of re-use and knowledge creation that were previously impossible. * improves transparency and efficiency * encourages innovative service delivery* introduces a range of data-mining and visualisation challenges, * which require multi-disciplinary collaboration across domains * catalyst to research and industry* supports the generation of new products, services and markets* the prize for succeeding is improved knowledge-led policy and practice that transforms * communities, * practitioners, * science and * society \newpage Free and Open Source Software in in Geo ###Code from IPython.display import IFrame IFrame('http://www.osgeo.org/', width=1200, height=700) ###Output _____no_output_____ ###Markdown \newpage So...... we have access to lots of data and software* Formal and Informal* Open and Proprietary Where are these new data products?Data, data everywhere - but where are the new derivatives and services? \newpage Interoperability[The Defense domain are a bit more explicit......](http://www.dau.mil/pubscats/atl%20docs/jan-feb/watson_jan-feb10.pdf)> As defined by DoD policy, interoperability is the ability of systems, units, or forces to provide data, information, material, and services to, and accept the same from, other systems, units, or forces; and to use the data, information, material, and services so exchanged to enable them to operate effectively together. IT and NSS interoperability includes both the technical exchange of information and the end-to-end operational effectiveness of that exchanged information as required for mission accomplishment. Interoperability is more than just information exchange; it includes systems, processes, procedures, organizations, and missions over the life cycle and must be balanced with information assurance.@watson_joint_2010 \newpage Non-technical interoperability issues?![Islands of incompatibility [@IncompatibilitiesAndLicenceClauses_en_beck_2016]](https://upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Incompatibilities_And_Licence_Clauses.svg/989px-Incompatibilities_And_Licence_Clauses.svg.png) \newpage \newpage ![The full stack that enables interoperable integration of spatial data @InteroperableIntegrationOfSpatialData_beck_2015](https://upload.wikimedia.org/wikipedia/commons/thumb/5/5d/InteroperableIntegrationOfSpatialData.svg/500px-InteroperableIntegrationOfSpatialData.svg.png) \newpage Non-technical interoperabilityIssues surrounding non-technical interoperability include: * Policy interoperabilty* Licence interoperability* Legal interoperability* Social interoperabilityWe will focus on licence interoperability \newpage Policy InteroperabilityThe relationship between:* Individuals* Organisations* CountriesPolicy determines what, who and how different content can be accessed. In addition to other elements the policy statements determine:* Authentication* Authorization* Audit See @innocenti_towards_2011 for more details \newpage Social (or human) InteroperabilitySocial interoperability is concerned about the environment and business and human processes.* Tools are used by people* The social dimension of operational use is underestimated (it's difficult)* People form complex inclusive and exclusive networks * These operate at many scales[US Department of Defence researchers have advocated](http://www.dtic.mil/ndia/2009systemengr/8854WednesdayTrack8Zavin.pdf) the development of Policy, Standards, and Operational Procedures for:* forming human networks* human to human communications* organization to organization communications* human system integration* information sharing across disparate domains: * DoD-Coalition-Interagency-intercommunity \newpage Legal Interoperability> Legal interoperability addresses the process of making legal rules cooperate across jurisdictions, on different subsidiary levels within a single state or between two or more states. (@weber_legal_2014, p. 6)The [Research Data Alliance](https://rd-alliance.org/) state that [legal interoperability occurs among multiple datasets when](https://rd-alliance.org/group/rdacodata-legal-interoperability-ig/wiki/legal-principles-data.html):* use conditions are clearly and readily determinable for each of the datasets,* the legal use conditions imposed on each dataset allow creation and use of combined or derivative products, and* users may legally access and use each dataset without seeking authorization from data rights holders on a case-by-case basis, assuming that the accumulated conditions of use for each and all of the datasets are met.Legal interoperability also implies that the search for or tracking of licenses or other legal instruments and their compatibility with other legal conditions will occur in online environments. \newpage Licence InteroperabilityA specific form of legal interoperability \newpage Example of applying the semantic web to licence interoperability ![The modern data landscape (restricted)](https://dl.dropboxusercontent.com/u/393477/ImageBank/ForOGC/20151008_Re-UseUnderLicence.png) There is a multitude of formal and informal data. \newpage What is a licence?[Wikipedia state:](https://en.wikipedia.org/wiki/License)> A license may be granted by a party ("licensor") to another party ("licensee") as an element of an agreement between those parties. > A shorthand definition of a license is "an authorization (by the licensor) to use the licensed material (by the licensee)." ![Some licences @rdflicense_2015](https://dl.dropboxusercontent.com/u/393477/ImageBank/ForOGC/SomeLicences_FromRDFLicences.png) Each of these data objects can be licenced in a different way. This shows some of the licences described by the RDFLicence ontology \newpage ###Code ### Export this notebook as markdown commandLineSyntax = 'dot -Tpng FCA_ConceptAnalysis.dot > FCA_ConceptAnalysis.png' commandLineSyntax = 'dot -Tsvg FCA_ConceptAnalysis.dot > FCA_ConceptAnalysis.svg' print (commandLineSyntax) os.system(commandLineSyntax) ###Output _____no_output_____ ###Markdown ![Concepts surrounding licences (derived from Formal Concept Analysis)](http://g.gravizo.com/g? digraph graphname { a [label="No derivation"]; b [label="No Distribution and modification"]; c [label="Any"]; d [label="Read"]; e [label="Distribution"]; f [label="Modification"]; g [label="Reproduction"]; h [label="Present"]; i [label="Sell"]; j [label="Grant Use"]; k [label="Include attribution"]; l [label="Commercial use"]; m [label="Public"]; n [label="Share alike"]; o [label="None"]; p [label="No commercial use"]; q [label="Derivation"]; r [label="Include source"]; s [label="Copyleft"]; t [label="Include licence"]; u [label="All reserved"]; a -> c -> d -> j -> m -> o -> u -> a; u -> b -> c; c -> t -> s -> o -> p -> q -> l -> o; o -> n -> q -> j -> i -> g -> k -> l -> e -> c -> g -> h -> j -> f -> e -> r -> g; r -> s; }) ![Concepts surrounding licences (derived from Formal Concept Analysis)](https://dl.dropboxusercontent.com/u/393477/ImageBank/FCA_ConceptAnalysis.png) Concepts (derived from Formal Concept Analysis) surrounding licences \newpage Two lead organisations have developed legal frameworks for content licensing:* [Creative Commons (CC)](https://creativecommons.org/) and * [Open Data Commons (ODC)](http://opendatacommons.org/). Until the release of [CC version 4](https://wiki.creativecommons.org/4.0), published in November 2013, the CC licence did not cover data. Between them, CC and ODC licences can cover all forms of digital work.* **There are many other licence types*** Many are bespoke * Bespoke licences are difficult to manage * Many legacy datasets have bespoke licences ![Creative Commons @love_CC_2008](https://farm4.staticflickr.com/3148/2732488224_aedf36e837_b_d.jpg) I'll describe CC in more detail \newpage Creative Commons Zero Creative Commons Zero (CC0) is essentially public domain which allows: * Reproduction* Distribution* Derivations \newpage Constraints on CC0The following clauses constrain CC0:* Permissions * ND – No derivatives: the licensee can not derive new content from the resource.* Requirements * BY – By attribution: the licensee must attribute the source. * SA – Share-alike: if the licensee adapts the resource, it must be released under the same licence.* Prohibitions * NC – Non commercial: the licensee must not use the work commercially without prior approval. CC license combinationsLicense|Reproduction|Distribution|Derivation|BY|SA|NC----|----|----|----|----|----|----CC0|X|X|X|||CC-BY-ND|X|X||X||CC-BY-NC-ND|X|X||X||XCC-BY|X|X|X|X||CC-BY-SA|X|X|X|X|X|CC-BY-NC|X|X|X|X||XCC-BY-NC-SA|X|X|X|X|X|XTable: [Creative Commons license combinations](https://docs.google.com/spreadsheets/d/17aT7Dj6QtE88XPS44oPQ7mVeSdY1YnZ1rlpjPvXNz0E/pub?single=true&gid=0&output=html) \newpage Why are licenses important?* They tell you what you can and can't do with 'stuff'* Very significant when multiple datasets are combined * It then becomes an issue of license compatibility![Compatibility of common open-source software licenses @Floss-license-slide-image_Wheeler_2007](https://upload.wikimedia.org/wikipedia/commons/1/1d/Floss-license-slide-image.png) \newpage Which is important when we mash up dataCertain licences when combined: * Are incompatible * Creating data islands* Inhibit commercial exploitation (NC)* Force the adoption of certain licences * If you want people to commercially exploit your stuff don't incorporate CC-BY-NC-SA data!* Stops the derivation of *new works* \newpage ![Islands of incompatibility [@IncompatibilitiesAndLicenceClauses_en_beck_2016]](https://upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Incompatibilities_And_Licence_Clauses.svg/989px-Incompatibilities_And_Licence_Clauses.svg.png) \newpage ![A conceptual licence processing workflow @ConceptualLicenceProcessingWorkflow_beck_2015](https://upload.wikimedia.org/wikipedia/commons/thumb/b/b4/ConceptualLicenceProcessingWorkflow.svg/1024px-ConceptualLicenceProcessingWorkflow.svg.png) A conceptual licence processing workflow. The licence processing service analyses the incoming licence metadata and determines if the data can be legally integrated and any resulting licence implications for the derived product. \newpage A rudimentry logic example```Data1 hasDerivedContentIn NewThing.Data1 hasLicence a cc-by-sa.What hasLicence a cc-by-sa? reason hereIf X hasDerivedContentIn Y and hasLicence Z then Y hasLicence Z. reason hereData2 hasDerivedContentIn NewThing.Data2 hasLicence a cc-by-nc-sa.What hasLicence a cc-by-nc-sa? reason hereNothing hasLicence a cc-by-nc-sa and hasLicence a cc-by-sa. reason here```And processing this within the Protege reasoning environment ###Code from IPython.display import YouTubeVideo YouTubeVideo('jUzGF401vLc') ###Output _____no_output_____ ###Markdown \newpage Here's something I prepared earlierA live presentation (for those who weren't at the event)..... ###Code from IPython.display import YouTubeVideo YouTubeVideo('tkRB5Rp1_W4') ###Output _____no_output_____ ###Markdown \newpage A more robust logic* Would need to decouple licence incompatibility from licence name into licence clause (see table below)* Deal with all licence type* Provide recommendations based on desired derivative licence type* Link this through to the type of process in a workflow: * data derivation is, from a licence position, very different to contextual displayLicense|Reproduction|Distribution|Derivation|BY|SA|NC----|----|----|----|----|----|----CC0|X|X|X|||CC-BY-ND|X|X||X||CC-BY-NC-ND|X|X||X||XCC-BY|X|X|X|X||CC-BY-SA|X|X|X|X|X|CC-BY-NC|X|X|X|X||XCC-BY-NC-SA|X|X|X|X|X|XODC-PDDL|X|X|X|||ODC-BY|X|X|X|X||ODC-ODbL|X|X|X|X|X|OGL 2.0|X|X|X|X||OS OpenData|X|X|X|X|?|Table: [Creative Commons license combinations](https://docs.google.com/spreadsheets/d/17aT7Dj6QtE88XPS44oPQ7mVeSdY1YnZ1rlpjPvXNz0E/pub?single=true&gid=0&output=html) \newpage OGC and Licence interoperability* The geo business landscape is increasingly based on integrating heterogeneous data to develop new products* Licence heterogeneity is a barrier to data integration and interoperability* A licence calculus can help resolve and identify heterogenties leading to * legal compliance * confidence* Use of standards and collaboration with organisations is crucial * [Open Data Licensing ontology](https://github.com/theodi/open-data-licensing) * [The Open Data Institute](http://theodi.org/)* Failure to do this could lead to breaches in data licenses * and we all know where that puts us........ ![Breaching a data license can be serious (restricted = randomly!)](https://dl.dropboxusercontent.com/u/393477/ImageBank/Jail_Bars_Icon.png) \newpage Linked data and the Semantic Web The web of Documents* a global filesystem* Designed for human consumption* Primary objects are documents* Expresses links between documents (or sub-parts of)* Degree of structure in objects is fairly low* Semantics of content and links is implicit The web of Linked Data* a global database* Designed for machines first, humans later* Primary objects are things (or descriptions of things)* Expresses links between things* Degree of structure in (descriptions of) things is high* Semantics of content and links explicit ![The Semantic Web Compared To The Traditional Web @SemWeb_TradWeb_en_beck_2015](https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/The_Semantic_Web_Compared_To_The_Traditional_Web.svg/1024px-The_Semantic_Web_Compared_To_The_Traditional_Web.svg.png) \newpage Linked Data a way of publishing data on the Web that:* encourages reuse* reduces redundancy* maximises its (real and potential) inter-connectedness* enables network effects to add value to data Why publish Linked Data* Ease of discovery* Ease of consumption * standards-based data sharing* Reduced redundancy* Added value * build ecosystems around your data/content ![The Linked Open Data cloud in 2014 (@schmachtenberg_linking_2014)](http://lod-cloud.net/versions/2014-08-30/lod-cloud_colored.png) \newpage Linked Data Basics [Four rules for Linked Data from Tim Berners Lee](https://www.w3.org/DesignIssues/LinkedData.html)1. Use URIs as names for things1. Use HTTP URIs so that people can look up those names.1. When someone looks up a URI, provide useful information, using the standards (RDF*, SPARQL)1. Include links to other URIs, so that they can discover more things. \newpage The [Resource Description Framework](https://en.wikipedia.org/wiki/Resource_Description_Framework) (RDF) data modelRDF stores data as *triples* in the following manner:![](https://upload.wikimedia.org/wikipedia/commons/thumb/1/12/SubjectPredicateObject-GraphRDF.svg/640px-SubjectPredicateObject-GraphRDF.svg.png)This is a [graph model](https://en.wikipedia.org/wiki/Graph_(abstract_data_type) that consists of nodes (subject and object)) and edges (predicate). \newpage Data expressed as RDF![](https://upload.wikimedia.org/wikipedia/commons/thumb/6/6b/AntAsData.svg/1024px-AntAsData.svg.png) \newpage Data expressed as RDF Linked Data![](https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/AntAsLinkedData.svg/1024px-AntAsLinkedData.svg.png) \newpage [RDF notation](https://en.wikipedia.org/wiki/Resource_Description_Framework)RDF can be represented in different ways - each of which are interoperable. For example:* RDF/XML, * Notation-3 (N3), * Turtle (.ttl), * N-Triples, * RDFa,* RDF/JSONEach represent *subject, predicate, object* triples in different ways \newpage One step beyond.... Linked Open Data [Is your Linked Open Data 5 star](https://www.w3.org/DesignIssues/LinkedData.html)```★ Available on the web (whatever format) but with an open licence, to be Open Data★★ Available as machine-readable structured data (e.g. excel instead of image scan of a table)★★★ as (2) plus non-proprietary format (e.g. CSV instead of excel)★★★★ All the above plus, Use open standards from W3C (RDF and SPARQL) to identify things, so that people can point at your stuff★★★★★ All the above, plus: Link your data to other people’s data to provide context```![Is your data 5 star](https://www.w3.org/DesignIssues/diagrams/lod/597992118v2_350x350_Back.jpg) \newpage The Supporting Semantic Web Stack![The semantic Web Stack](https://upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Semantic_web_stack.svg/768px-Semantic_web_stack.svg.png) \newpage It's about re-use VocabulariesThe glue that joins concepts together. A concept shared is a link gained. By re-using concepts it makes it easier to understand what your data means and where and how it should be re-used. ###Code from IPython.display import IFrame IFrame('http://lov.okfn.org/dataset/lov/', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage It's about re-use Ontology> An ontology is a shared formal explicit specialisation of a conceptualisation![Technology used in Ontology definition(@SemWebOverview_en_beck_2012)](https://upload.wikimedia.org/wikipedia/commons/thumb/c/cb/SemWebOverview.svg/1024px-SemWebOverview.svg.png) \newpage Ontology* The term originated from a philosophy * which deals with the nature and organization of reality* It tries to answer the questions: * What is being? * What are the features common to all beings? * How should things be classified? Ontology> An ontology is a shared formal explicit specialisation of a conceptualisationAfter Agarwal -(@agarwal_ontological_2005):* *conceptualisation* is identifying relevant abstracted concepts of a phenomena suited to a specific domain* *explicit* means that the concepts are explicitly defined* *formal* refers to the fact that the ontology should be machine-readable* *shared* refers to notion that on ontology captures consensual knowledge \newpage Ontology Example * A ‘Carnivore’ is a concept whose members are exactly those animals who eat only meat* A ‘Bear’ is a concept whose members are a kind of ‘Carnivore’* A ‘Cub’ is a concept whose members are exactly those ‘Bear’ whose age is less than one year* A Panda is a individual of a ‘Bear’We can use these concepts to infer new information from facts. For example: from the fact 'Ching Ching' is a newborn Panda we know:```'Ching Ching' is a Panda.'Ching Ching' is a newborn.``` We can infer:```'Ching Ching' is a Bear.'Ching Ching' is a Carnivore. ????'Ching Ching' eats only meat. ????```If we had other logic that told us that 'newborn' is the same as saying less than one year then we can also infer```'Ching Ching' is a Cub.```In an ontology/RDF you can say *Anything about Anything*. Whilst carnivore is a generally useful concept about *bears* it is not *specifically* useful when considering *pandas*. **The domain of application is clearly important.** \newpage [SPARQL](https://en.wikipedia.org/wiki/SPARQL) the SQL of the semantic webFind me the capital of all countries in Africa:```PREFIX abc: .SELECT ?capital ?countryWHERE { ?x abc:cityname ?capital ; abc:isCapitalOf ?y. ?y abc:countryname ?country ; abc:isInContinent abc:Africa.}``` There is a thing ('x') against which the following concepts exist:* 'abc:cityname' (the name of a city: stored in the variable 'capital') * 'abc:isCapitalOf' (the concept for which the city is capital: stored in the variable 'y') The 'concept for which the city is capital' (stored in variable 'y') must also have the following concepts:* 'abc:countryname' (the name of a country: stored in the variable 'country')* 'abc:isInContinent' abc:Africa (isInContinent of the the individual Africa') \newpage [GeoSPARQL](http://www.opengeospatial.org/projects/groups/geosparqlswg) the SQL of the spatial semantic webAn OGC standard```SELECT ?fWHERE { ?f my:hasPointGeometry ?fGeom .?fGeom ogc:asWKT ?fWKT .FILTER (ogcf:relate(?fWKT,“Polygon ((-83.5 34.0, -83.5 34.3, -83.1 34.3,-83.1 34.0, -83.5 34.0))”^^ogc:WKTLiteral,ogc:within))}``` ###Code from IPython.display import IFrame IFrame('http://www.opengeospatial.org/projects/groups/geosparqlswg', width=1000, height=700) ###Output _____no_output_____ ###Markdown Linked Data and Geo \newpage GeoSPARQL employs spatial calculus![](https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Region_Connection_Calculus_8_Relations_and_Open_Geospatial_Consortium_relations.svg/1024px-Region_Connection_Calculus_8_Relations_and_Open_Geospatial_Consortium_relations.svg.png) \newpage Querying Linked Data in the wild The Ordnance SurveyA URI for every place in the UK ###Code from IPython.display import IFrame IFrame('http://data.ordnancesurvey.co.uk/doc/50kGazetteer/177276', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage ###Code from IPython.display import IFrame IFrame('http://data.ordnancesurvey.co.uk/id/postcodeunit/NG72QL', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage ###Code from IPython.display import IFrame IFrame('http://data.ordnancesurvey.co.uk/', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage ###Code from IPython.display import IFrame IFrame('http://data.ordnancesurvey.co.uk/ontology/', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage ###Code from IPython.display import IFrame IFrame('http://data.ordnancesurvey.co.uk/datasets/code-point-open/explorer/sparql', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage Open Street Map ###Code from IPython.display import IFrame IFrame('http://linkedgeodata.org/About', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage ###Code from IPython.display import IFrame IFrame('http://browser.linkedgeodata.org/', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage Geonames ###Code from IPython.display import IFrame IFrame('http://www.geonames.org/ontology/documentation.html', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage ###Code from IPython.display import IFrame IFrame('http://www.geonames.org/maps/google_52.94_358.8.html', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage ###Code from IPython.display import IFrame IFrame('http://lov.okfn.org/dataset/lov/vocabs/gn', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage Geo Vocabularies ###Code from IPython.display import IFrame IFrame('http://lov.okfn.org/dataset/lov/vocabs/?q=geo+space+address+geonames+os+spatial', width=1000, height=700) ###Output _____no_output_____ ###Markdown \newpage Conclusions* Technical interoperability is only one part of the problem* Open data will become increasingly important as governments and other groups release resources under clear licences * Licences are a barrier to re-use* Data shows its true value when combined with other data sources – linked data creates an opportunity* Usability: common data model and reference of common URIs (for example, postcodes) allows for easy data aggregation and integration.* Shift in focus from cartography and geometries to ‘things’ and the relationships between them.* Spatial no longer special – part of the bigger information world....* location is a very important information hub and provides a key underpinning reference framework which brings many datasets together and provides important context. \newpage Geo reasoning example (if time) Geo example: ```Leeds is a city.Yorkshire is a county.Sheffield is a city.Lancaster is a city.Lancashire is a county.Lancaster has a port.What is Leeds?Leeds isIn Yorkshire.Sheffield isIn Yorkshire.Lancaster isIn Lancashire.What isIn Yorkshire?If X isIn Y then Y contains X.What contains Leeds?Yorkshire borders Lancashire.If X borders Y then Y borders X.What borders Lancashire?Yorkshire isIn UnitedKingdom.Lancashire isIn UnitedKingdom.TransitivityIf X isIn Y and Y isIn Z then X isIn Z.If X contains Y and Y contains Z then X contains Z``` using proper isIn```Leeds is a city.Yorkshire is a county.Sheffield is a city.Lancaster is a city.Lancashire is a county.Lancaster has a port.What is Leeds?Leeds is spatiallyWithin Yorkshire.Sheffield is spatiallyWithin Yorkshire.Lancaster is spatiallyWithin Lancashire.What is spatiallyWithin Yorkshire?If X is spatiallyWithin Y then Y spatiallyContains X.What spatiallyContains Leeds?Yorkshire borders Lancashire.If X borders Y then Y borders X.What borders Lancashire?Yorkshire is spatiallyWithin UnitedKingdom.Lancashire is spatiallyWithin UnitedKingdom.TransitivityIf X is spatiallyWithin Y and Y is spatiallyWithin Z then X is spatiallyWithin Z.If X spatiallyContains Y and Y spatiallyContains Z then X spatiallyContains ZWhat is spatiallyWithin UnitedKingdom?``` Adding more......```Pudsey is spatiallyWithin Leeds.Kirkstall is spatiallyWithin Leeds.Meanwood is spatiallyWithin Leeds.Roundhay is spatiallyWithin Leeds.Scarcroft is spatiallyWithin Leeds.``` and more```UnitedKingdom isPartOf Europe.UnitedKingdom is a country.If X isPartOf Y and X spatiallyContains Z then Z isPartOf Y.What isPartOf Europe?``` ###Code and more ``` If X spatiallyContains Y and X is a city then Y is a place and Y is a cityPart. Every city is a place. What is a place. ``` and more ``` UK isPartOf Europe. UK is sameAs UnitedKingdom. If X has a port then X borders Water. What borders Water? ``` ###Output _____no_output_____
Projects in Python with Scikit-Learn- XGBoost- Pandas- Statsmodels- etc./Black Friday purchase (Bagging & Stacked methods).ipynb
###Markdown Data description & Problem statement: The dataset here is a sample of the transactions made in a retail store. The store wants to know better the customer purchase behaviour against different products. Specifically, here the problem is a Regression problem where we are trying to predict the dependent variable (the amount of purchase) with the help of the information contained in the other variables. The data set has 550067 rows and 11 variables. Workflow:- Load the dataset, and define the required functions (e.g. for detecting the outliers)- Data Cleaning/Wrangling: Manipulate outliers, missing data or duplicate values, Encode categorical variables, etc. - Split data into training & test parts (utilize the training part for training & hyperparameter tuning of model, and test part for the final evaluation of model) Model Training:- Build the ensemble method (i.e. Bagging model and Stacked model) individually Model Evaluation: - Evaluate the Ensemble models with Cross-Validation technique, by calculating: - r2 (determination factor) - Lift chart - RMSE ###Code import sklearn import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import preprocessing %matplotlib inline from scipy import stats import warnings warnings.filterwarnings("ignore") df=pd.read_csv('train.csv') # To Shuffle the data: np.random.seed(42) df=df.reindex(np.random.permutation(df.index)) df.reset_index(inplace=True, drop=True) df.info() df.fillna(999, inplace=True) # Encode text values to indexes(i.e. [1],[2],[3] for red,green,blue). def encode_text_index(df, name): le = preprocessing.LabelEncoder() df[name] = le.fit_transform(df[name]) return le.classes_ # for i in ['User_ID', 'Product_ID', 'Age', 'Occupation', 'City_Category', 'Stay_In_Current_City_Years']: for i in ['User_ID', 'Product_ID', 'Age', 'Occupation', 'City_Category', 'Stay_In_Current_City_Years', 'Gender', 'Marital_Status', 'Product_Category_1', 'Product_Category_2', 'Product_Category_3' ]: encode_text_index(df, i) df.head(5) X=df.drop(['Purchase'], axis=1) y=np.log(df['Purchase']) # We initially devide data into training & test folds: We do the Grid-Search only on training part from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, shuffle=True) # Re-scaling & Polynomial Interactions: from sklearn.preprocessing import StandardScaler, MinMaxScaler, PolynomialFeatures #scalor_X=MinMaxScaler().fit(pd.DataFrame(X_train)) #X_train=scalor_X.transform(pd.DataFrame(X_train)) #X_test=scalor_X.transform(pd.DataFrame(X_test)) scaler_y=MinMaxScaler().fit(pd.DataFrame(y_train)) y_train=scaler_y.transform(pd.DataFrame(y_train)) y_test=scaler_y.transform(pd.DataFrame(y_test)) ###Output _____no_output_____ ###Markdown 1) Bagging meta-estimator with XGBoost: ###Code import xgboost from xgboost import XGBRegressor from sklearn.model_selection import cross_val_score, KFold from sklearn.ensemble import BaggingRegressor model=XGBRegressor(gamma= 0, max_depth= 3, min_child_weight= 1) bag=BaggingRegressor(model, n_estimators = 100, max_samples=0.9, max_features=0.9, random_state=42) kfold=KFold(n_splits=4, shuffle=True, random_state=42) scores=cross_val_score(bag, X_train, y_train, cv=kfold) print(scores, "\n") print("AUC Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std())) # Grid-Search for the best Bagging parameters: from sklearn.model_selection import GridSearchCV param={'max_samples':[0.5, 0.7, 0.8, 0.9, 1], 'max_features':[0.5, 0.7, 0.9, 1]} kfold=KFold(n_splits=4, shuffle=True, random_state=42) grid_search=GridSearchCV(BaggingRegressor(model, n_estimators = 50, random_state=42), param, cv=kfold, n_jobs=-1) grid_search.fit(X_train, y_train) # Grid-Search report: G=pd.DataFrame(grid_search.cv_results_).sort_values("rank_test_score") G.head(3) print("Best parameters: ", grid_search.best_params_) print("Best validation accuracy: %0.2f (+/- %0.2f)" % (np.round(grid_search.best_score_, decimals=2), np.round(G.loc[grid_search.best_index_,"std_test_score" ], decimals=2))) print("Test score: ", np.round(grid_search.score(X_test, y_test),2)) # Plot the Lift Chart: # Regression chart. def chart_regression(pred,y,sort=True): t = pd.DataFrame({'pred' : pred, 'y' : y.flatten()}) if sort: t.sort_values(by=['y'],inplace=True) a = plt.plot(t['y'].tolist(),label='expected') b = plt.plot(t['pred'].tolist(),label='prediction') plt.ylabel('output') plt.legend() plt.show() pred=grid_search.predict(X_test) chart_regression(pred.flatten(), np.array(y_test), sort=True) from sklearn.metrics import mean_squared_error from math import sqrt pred_inv=scaler_y.inverse_transform(pd.DataFrame(pred)) y_test_inv=scaler_y.inverse_transform(y_test) rmse = sqrt(mean_squared_error(np.e**y_test_inv, np.e**pred_inv)) print('Test rmse: ', rmse) ###Output Test rmse: 2.76164627400196 ###Markdown 2) Stacked Regressor with XGBoost: ###Code import xgboost from xgboost import XGBRegressor from mlxtend.regressor import StackingRegressor from sklearn.linear_model import Lasso, Ridge, ElasticNet from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import cross_val_score, KFold reg_1=XGBRegressor(max_depth= 12, min_child_weight=10, subsample=0.7, n_estimators=100) reg_2=XGBRegressor(max_depth= 8, min_child_weight=10, subsample=0.7, n_estimators=200) reg_3=XGBRegressor(max_depth= 6, min_child_weight=10, subsample=0.7, n_estimators=300) meta_reg=XGBRegressor(max_depth= 12, min_child_weight=5, subsample=0.7, n_estimators=200) stack=StackingRegressor(regressors=[reg_1, reg_2, reg_3], meta_regressor= meta_reg, use_features_in_secondary=True) scores=cross_val_score(stack, X_train, y_train) print(scores, "\n") print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std())) stack.fit(X_train, y_train) # Plot the Lift Chart: # Regression chart. def chart_regression(pred,y,sort=True): t = pd.DataFrame({'pred' : pred, 'y' : y.flatten()}) if sort: t.sort_values(by=['y'],inplace=True) a = plt.plot(t['y'].tolist(),label='expected') b = plt.plot(t['pred'].tolist(),label='prediction') plt.ylabel('output') plt.legend() plt.show() pred=stack.predict(X_test) chart_regression(pred.flatten(), np.array(y_test), sort=True) from sklearn.metrics import mean_squared_error from math import sqrt pred_inv=scaler_y.inverse_transform(pd.DataFrame(pred)) y_test_inv=scaler_y.inverse_transform(y_test) rmse = sqrt(mean_squared_error(np.e**y_test_inv, np.e**pred_inv)) print('Test rmse: ', rmse) # Grid-Search for the best model parameters: from sklearn.model_selection import GridSearchCV param={'meta-ridge__alpha': [0.0001, 0.001, 0.01, 0.1, 0.5, 1, 5, 10, 100, 1000]} #param={'meta-xgbregressor__max_depth':[2, 3, 4, 5], 'meta-xgbregressor__min_child_weight':[1, 2, 3, 4], # 'meta-xgbregressor__gamma': [ 0, 0.01, 0.05, 0.1]} kfold=KFold(n_splits=5, shuffle=True, random_state=42) grid_search=GridSearchCV(StackingRegressor([reg1, reg2, reg3], meta_regressor= meta_reg), param, cv=kfold) grid_search.fit(X_train, y_train) # Grid-Search report: G=pd.DataFrame(grid_search.cv_results_).sort_values("rank_test_score") G.head(3) print("Best parameters: ", grid_search.best_params_) print("Best validation accuracy: %0.2f (+/- %0.2f)" % (np.round(grid_search.best_score_, decimals=2), np.round(G.loc[grid_search.best_index_,"std_test_score" ], decimals=2))) print("Test score: ", np.round(grid_search.score(X_test, y_test),2)) # Plot the Lift Chart: # Regression chart. def chart_regression(pred,y,sort=True): t = pd.DataFrame({'pred' : pred, 'y' : y.flatten()}) if sort: t.sort_values(by=['y'],inplace=True) a = plt.plot(t['y'].tolist(),label='expected') b = plt.plot(t['pred'].tolist(),label='prediction') plt.ylabel('output') plt.legend() plt.show() pred=grid_search.predict(X_test) chart_regression(pred.flatten(), np.array(y_test), sort=True) from sklearn.metrics import mean_squared_error from math import sqrt pred_inv=scaler_y.inverse_transform(pd.DataFrame(pred)) y_test_inv=scaler_y.inverse_transform(y_test) rmse = sqrt(mean_squared_error(np.e**y_test_inv, np.e**pred_inv)) print('Test rmse: ', rmse) ###Output Test rmse: 2.640357548516481
ArtistGroups.ipynb
###Markdown Fix Merger IDs ###Code def fixMergerIDs(df, mam): dbMaxLen = {db: df[db].apply(lambda x: len(x) if x is not None else 0).max() for db in artistIDToCleanName} mergedRows = concat([dbData[dbData.apply(lambda x: len(x) if x is not None else 0) == dbMaxLen[db]] for db,dbData in df.iteritems() if db in artistIDToCleanName]).index.drop_duplicates() idxs = [] for idx,row in df.loc[mergedRows].iterrows(): mergeData = mam.getArtistDataByName(row["ArtistName"]) if mergeData is None: print(row["ArtistName"]) idxs.append(idx) continue print(row["ArtistName"]) for db,dbMergeData in mergeData.items(): mergeID = dbMergeData["ID"] currentID = row[db] print("\t{0: <16}{1} --> {2}".format(db,currentID,mergeID)) df.loc[idx,db] = mergeID #mme.saveData(manualEntries=df, local=False) def isMerger(row): return sum([mam.getArtistDataByMergerID(dbID) is not None for dbID in row.values]) > 0 ts = timestat("Find Merged Artist Data") mergedArtists = df.apply(isMerger, axis=1) mergedIDXs = df[mergedArtists].index ts.stop() dfNameData[dfNameData["ArtistName"] == "Alice Cooper"] class artistGroup: def __init__(self, key, debug=False): self.key = key self.debug = debug ############################################################################ # General And Diagnostic ############################################################################ self.groupType = None self.terminal = True # Becomes False If adding an artistGroup To groups() self.mmeID = None ############################################################################ # Database Matches ############################################################################ self.dbIDs = {} ############################################################################ # Artist Group Names ############################################################################ ### Will likely be an ALL CAPS version of the assigned name self.searchName = None ### My Choice of Group Name (very arbitrary. must be in stylized or latin names) self.assignedName = None ### Stylized Names (any weird way group's name is written) self.stylizedNames = [] ### Latin Names (Ascii if possible, something readable in English) self.latinNames = [] ### Renames (Mapping between name and one of names in stylized or latin names) self.dbRenames = {} self.genRenames = {} ### A collection of other ArtistGroup items self.groups = {} ################################################################################################################################ # General ################################################################################################################################ def show(self): print("{0: <20}: {1}".format("Key", self.key)) print("{0: <20}: {1}".format("Assigned Name", self.assignedName)) print("{0: <20}: {1}".format("Search Name", self.searchName)) print("{0: <20}: {1}".format("DB Matches", self.dbIDs)) print("{0: <20}: {1}".format("DB Renames", self.dbRenames)) print("{0: <20}: {1}".format("General Renames", self.genRenames)) ################################################################################################################################ # Getters and Setters ################################################################################################################################ def getKey(self): return self.key def setDBIDs(self, dbIDs): self.dbIDs = dbIDs def setAssignedName(self, assignedName): self.assignedName = assignedName self.searchName = assignedName.upper() def setDBRenames(self, dbRenames): self.dbRenames = dbRenames def setGenRenames(self, genRenames): self.genRenames = genRenames def addGroup(self, ag): if isinstance(ag, artistGroup): self.groups[ag.getKey] = ag def createArtistGroupData(row, idx, manDB, mergedArtists): artistName = row["ArtistName"] artistDBData = {idx: idxData for idx,idxData in row.iteritems() if isinstance(idxData,tuple)} dbNames = {db: dbData[0] for db,dbData in artistDBData.items() if dbData[0] not in ["NotInDB", "NotDigit"]} dbIDs = {db: dbData[1] for db,dbData in artistDBData.items()} isMerged = {db: dbData[2] for db,dbData in artistDBData.items() if dbData[2] is True} isMerged = isMerged if len(isMerged) > 0 else None if len(dbNames) == 0: print(idx,'\t',artistName) ag = artistGroup(key=key) ag.mmeID = idx ag.terminal = not isMerged ag.setAssignedName(artistName) unMerged = mergedArtists.isin([artistName]).sum() == 0 if unMerged: dbRenames = {db: {dbName: manDB.renamed(dbName)} for db,dbName in dbNames.items()} dbRenames = {db: dbRename for db,dbRename in dbRenames.items() if list(dbRename.keys()) != list(dbRename.values())} genRenames = {rename: artistName for rename in manInvData.get(artistName, {}) if {rename: artistName} not in dbRenames.values()} else: dbRenames = {} genRenames = {} ag.setDBRenames(dbRenames) ag.setGenRenames(genRenames) ag.setDBIDs(dbIDs) return ag indivAGS = {} mergedAGS = {} N = dfNameData.shape[0] ts = timestat("Creating Artist Groups For {0} \'Artists\'".format(N)) mergedArtists = df.loc[mergedIDXs]["ArtistName"] for i,(idx,row) in enumerate(dfNameData.iterrows()): if (i+1) % 50000 == 0 or (i+1) == 10000: ts.update(n=i+1,N=N) key = str(uuid4()) data = createArtistGroupData(row, idx, manDB, mergedArtists) if idx in mergedIDXs: mergedAGS[key] = data else: indivAGS[key] = data print("{0: <30}{1: >6}".format("All Artists", dfNameData.shape[0])) print("{0: <30}{1: >6}".format("Individual Artists", len(indivAGS))) print("{0: <30}{1: >6}".format("Merged Artists", len(mergedAGS))) ts.stop() print("{0: <30}{1: >6}".format("All Artists", dfNameData.shape[0])) print("{0: <30}{1: >6}".format("Individual Artists", len(indivAGS))) print("{0: <30}{1: >6}".format("Merged Artists", len(mergedAGS))) ts = timestat("Split Renames By Known DB Renames") manDBDataRemaining = manDBData ags = {"Individual": indivAGS, "Merged": mergedAGS} for agType,agData in ags.items(): dbRenameData = [item for item in getFlatList([ag.dbRenames.values() for key,ag in agData.items()]) if len(item) > 0] dbRenameData = {k: v for item in dbRenameData for k,v in item.items()} manDBDataTemp = DataFrame(manDBDataRemaining, columns=["PermReplace"]).join(Series(dbRenameData, name="dbRename")) manDBDataRemaining = manDBDataTemp[manDBDataTemp["dbRename"].isna()]["PermReplace"] manDBDataDBRename = manDBDataTemp[manDBDataTemp["dbRename"].notna()]["PermReplace"] print("{0: <30}{1: >6}".format("Perm Renames", manDBDataTemp.shape[0])) print("{0: <30}{1: >6}".format("Known DB Renames", manDBDataDBRename.shape[0])) print("{0: <30}{1: >6}".format("Remaining Renames", manDBDataRemaining.shape[0])) ts.stop() ts = timestat("Split Renames By Known General Renames") genRenameData = [ag.genRenames for key,ag in indivAGS.items() if len(ag.genRenames) > 0] genRenameData = {k: v for item in genRenameData for k,v in item.items()} manDBDataTemp = DataFrame(manDBDataRemaining, columns=["PermReplace"]).join(Series(genRenameData, name="genRename")) manDBDataRemaining = manDBDataTemp[manDBDataTemp["genRename"].isna()]["PermReplace"] manDBDataGenRename = manDBDataTemp[manDBDataTemp["genRename"].notna()]["PermReplace"] print("{0: <30}{1: >6}".format("(Perm-DB) Renames", manDBDataTemp.shape[0])) print("{0: <30}{1: >6}".format("Known Gen Renames", manDBDataGenRename.shape[0])) print("{0: <30}{1: >6}".format("Remaining Renames", manDBDataRemaining.shape[0])) ts.stop() ts = timestat("Split Renames By Merged Renames") manDBDataTemp = manDBDataRemaining manDBDataMergeRename = manDBDataTemp[manDBDataTemp.isin(df.loc[mergedIDXs]["ArtistName"])] manDBDataRemaining = manDBDataTemp[~manDBDataTemp.isin(df.loc[mergedIDXs]["ArtistName"])] ts.stop() print("{0: <30}{1: >6}".format("(Perm-DB-Merge) Renames", manDBDataTemp.shape[0])) print("{0: <30}{1: >6}".format("Known Merge Renames", manDBDataMergeRename.shape[0])) print("{0: <30}{1: >6}".format("Not Merge Renames", manDBDataRemaining.shape[0])) manDBDataRemaining[manDBDataRemaining.isin(["Dave Matthews"])] manDBDataMergeRename ###Output _____no_output_____
notebooks/T6 - 1 - Distancias-Colab.ipynb
###Markdown Clonamos el repositorio para obtener los dataSet ###Code !git clone https://github.com/joanby/python-ml-course.git ###Output _____no_output_____ ###Markdown Damos acceso a nuestro Drive ###Code from google.colab import drive drive.mount('/content/drive') # Test it !ls '/content/drive/My Drive' from google.colab import files # Para manejar los archivos y, por ejemplo, exportar a su navegador import glob # Para manejar los archivos y, por ejemplo, exportar a su navegador from google.colab import drive # Montar tu Google drive ###Output _____no_output_____ ###Markdown Distancias ###Code from scipy.spatial import distance_matrix import pandas as pd data = pd.read_csv("/content/python-ml-course/datasets/movies/movies.csv", sep=";") data movies = data.columns.values.tolist()[1:] movies dd1 = distance_matrix(data[movies], data[movies], p=1) dd2 = distance_matrix(data[movies], data[movies], p=2) dd10 = distance_matrix(data[movies], data[movies], p=10) def dm_to_df(dd, col_name): import pandas as pd return pd.DataFrame(dd, index=col_name, columns=col_name) dm_to_df(dd1, data["user_id"]) dm_to_df(dd2, data["user_id"]) dm_to_df(dd10, data["user_id"]) import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection="3d") ax.scatter(xs = data["star_wars"], ys = data["lord_of_the_rings"], zs=data["harry_potter"]) ###Output _____no_output_____ ###Markdown Enlaces ###Code df = dm_to_df(dd1, data["user_id"]) df Z=[] df[11]=df[1]+df[10] df.loc[11]=df.loc[1]+df.loc[10] Z.append([1,10,0.7,2])#id1, id2, d, n_elementos_en_cluster -> 11. df for i in df.columns.values.tolist(): df.loc[11][i] = min(df.loc[1][i], df.loc[10][i]) df.loc[i][11] = min(df.loc[i][1], df.loc[i][10]) df df = df.drop([1,10]) df = df.drop([1,10], axis=1) df x = 2 y = 7 n = 12 df[n]=df[x]+df[y] df.loc[n]=df.loc[x]+df.loc[y] Z.append([x,y,df.loc[x][y],2])#id1, id2, d, n_elementos_en_cluster -> 11. for i in df.columns.values.tolist(): df.loc[n][i] = min(df.loc[x][i], df.loc[y][i]) df.loc[i][n] = min(df.loc[i][x], df.loc[i][y]) df = df.drop([x,y]) df = df.drop([x,y], axis=1) df x = 5 y = 8 n = 13 df[n]=df[x]+df[y] df.loc[n]=df.loc[x]+df.loc[y] Z.append([x,y,df.loc[x][y],2])#id1, id2, d, n_elementos_en_cluster -> 11. for i in df.columns.values.tolist(): df.loc[n][i] = min(df.loc[x][i], df.loc[y][i]) df.loc[i][n] = min(df.loc[i][x], df.loc[i][y]) df = df.drop([x,y]) df = df.drop([x,y], axis=1) df x = 11 y = 13 n = 14 df[n]=df[x]+df[y] df.loc[n]=df.loc[x]+df.loc[y] Z.append([x,y,df.loc[x][y],2])#id1, id2, d, n_elementos_en_cluster -> 11. for i in df.columns.values.tolist(): df.loc[n][i] = min(df.loc[x][i], df.loc[y][i]) df.loc[i][n] = min(df.loc[i][x], df.loc[i][y]) df = df.drop([x,y]) df = df.drop([x,y], axis=1) df x = 9 y = 12 z = 14 n = 15 df[n]=df[x]+df[y] df.loc[n]=df.loc[x]+df.loc[y] Z.append([x,y,df.loc[x][y],3])#id1, id2, d, n_elementos_en_cluster -> 11. for i in df.columns.values.tolist(): df.loc[n][i] = min(df.loc[x][i], df.loc[y][i], df.loc[z][i]) df.loc[i][n] = min(df.loc[i][x], df.loc[i][y], df.loc[i][z]) df = df.drop([x,y,z]) df = df.drop([x,y,z], axis=1) df x = 4 y = 6 z = 15 n = 16 df[n]=df[x]+df[y] df.loc[n]=df.loc[x]+df.loc[y] Z.append([x,y,df.loc[x][y],3])#id1, id2, d, n_elementos_en_cluster -> 11. for i in df.columns.values.tolist(): df.loc[n][i] = min(df.loc[x][i], df.loc[y][i], df.loc[z][i]) df.loc[i][n] = min(df.loc[i][x], df.loc[i][y], df.loc[i][z]) df = df.drop([x,y,z]) df = df.drop([x,y,z], axis=1) df x = 3 y = 16 n = 17 df[n]=df[x]+df[y] df.loc[n]=df.loc[x]+df.loc[y] Z.append([x,y,df.loc[x][y],2])#id1, id2, d, n_elementos_en_cluster -> 11. for i in df.columns.values.tolist(): df.loc[n][i] = min(df.loc[x][i], df.loc[y][i]) df.loc[i][n] = min(df.loc[i][x], df.loc[i][y]) df = df.drop([x,y]) df = df.drop([x,y], axis=1) df Z ###Output _____no_output_____ ###Markdown Clustering jerárquico ###Code import matplotlib.pyplot as plt from scipy.cluster.hierarchy import dendrogram, linkage movies data[movies] Z = linkage(data[movies], "ward") Z plt.figure(figsize=(25,10)) plt.title("Dendrograma jerárquico para el Clustering") plt.xlabel("ID de los usuarios de Netflix") plt.ylabel("Distancia") dendrogram(Z, leaf_rotation=90., leaf_font_size=10.0) plt.show() Z = linkage(data[movies], "average") Z plt.figure(figsize=(25,10)) plt.title("Dendrograma jerárquico para el Clustering") plt.xlabel("ID de los usuarios de Netflix") plt.ylabel("Distancia") dendrogram(Z, leaf_rotation=90., leaf_font_size=10.0) plt.show() data[movies] Z = linkage(data[movies], "complete") Z plt.figure(figsize=(25,10)) plt.title("Dendrograma jerárquico para el Clustering") plt.xlabel("ID de los usuarios de Netflix") plt.ylabel("Distancia") dendrogram(Z, leaf_rotation=90., leaf_font_size=10.0) plt.show() Z = linkage(data[movies], method="single", metric="cosine") Z plt.figure(figsize=(25,10)) plt.title("Dendrograma jerárquico para el Clustering") plt.xlabel("ID de los usuarios de Netflix") plt.ylabel("Distancia") dendrogram(Z, leaf_rotation=90., leaf_font_size=10.0) plt.show() ###Output _____no_output_____
Short_term-SVM.ipynb
###Markdown Importing LibrariesTo pull data from a CSV file, you must use the reader function to generate a reader object. NumPy is a package in Python used for Scientific Computing. NumPy package is used to perform different operations. Sklearn is a simple and efficient tool for data mining and data analysis built on numpy, scipy and matplotlib. Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy. ###Code import csv import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown The SVR module imported from sklearn.svm carries out Support Vector Regression under the Support Vector Machine sub-library of sklearn. There are three different implementations of Support Vector Regression: SVR, NuSVR and LinearSVR. LinearSVR provides a faster implementation than SVR but only considers linear kernels, while NuSVR implements a slightly different formulation than SVR and LinearSVR. Initialising the 'dates' and 'prices' listsA list is a data structure in Python that is a mutable, or changeable, ordered sequence of elements. Each element or value that is inside of a list is called an item. ###Code dates = [] prices = [] ###Output _____no_output_____ ###Markdown Defining the get_data() functionStep 1: Read the CSV file Step 2: Skip the column names of the CSV file Step 3: Read each row Step 4: From each row, add element of 1st column to 'dates' list Step 5: From each row, add element of 2nd column to 'prices' list ###Code def get_data(filename): with open(filename, 'r') as csvfile: csvFileReader = csv.reader(csvfile) next(csvFileReader) for row in csvFileReader: dates.append(int(row[0].split('-')[0])) prices.append(float(row[1])) return ###Output _____no_output_____ ###Markdown Defining the predict_price() functionStep 1: Convert the 'dates' list to a nx1 matrix. Step 2: Defining the SVR models. Making the radial basis function (rbf), linear and polynomial kernels for the SVR model. Step 3: Fitting the data points in the model. When this function is called, it will:Step 4: Scatter plot the initial data points in black. Step 5: Plot the best-fit line by the RBF kernel in red. Step 6: Plot the best-fit line by the linear kernel in green. Step 7: Plot the best-fit line by the polynomial kernel in blue. Step 8: Return as lines made by the: a. RBF kernel b. Linear kernel c. Polynomial kernel ###Code def predict_price(dates, prices, x): dates = np.reshape(dates,(len(dates), 1)) svr_rbf = SVR(kernel= 'rbf', C= 1e3, gamma= 0.1) svr_lin = SVR(kernel= 'linear', C= 1e3) svr_poly = SVR(kernel= 'poly', C= 1e3, degree= 2) svr_rbf.fit(dates, prices) svr_lin.fit(dates, prices) svr_poly.fit(dates, prices) plt.scatter(dates, prices, color= 'black', label= 'Data') plt.plot(dates, svr_rbf.predict(dates), color= 'red', label= 'RBF model') plt.plot(dates,svr_lin.predict(dates), color= 'green', label= 'Linear model') plt.plot(dates,svr_poly.predict(dates), color= 'blue', label= 'Polynomial model') plt.xlabel('Date') plt.ylabel('Price') plt.title('Support Vector Regression') plt.legend() plt.show() return svr_rbf.predict(x)[0], svr_lin.predict(x)[0], svr_poly.predict(x)[0] ###Output _____no_output_____ ###Markdown Getting and reading the CSV fileActually calling the get_data() function. ###Code get_data('/Users/rounakbose/Git Local/goog.csv') print ("Dates- ", dates) print ("Prices- ", prices) ###Output Dates- [26, 25, 24, 23, 22, 19, 18, 17, 16, 12, 11, 10, 9, 8, 5, 4, 3, 2, 1] Prices- [708.58, 700.01, 688.92, 701.45, 707.45, 695.03, 710.0, 699.0, 692.98, 690.26, 675.0, 686.86, 672.32, 667.85, 703.87, 722.81, 770.22, 784.5, 750.46] ###Markdown Showing the results1. The predicted stock price for a new date, as calculated by the:a. RBF kernelb. Linear kernelc. Polynomial kernel2. The scatter plot. ###Code predicted_price = predict_price(dates, prices, 29) print ("\nThe stock open price for 29th Feb is:") print ("RBF kernel: $", str(predicted_price[0])) print ("Linear kernel: $", str(predicted_price[1])) print ("Polynomial kernel: $", str(predicted_price[2])) ###Output _____no_output_____
diabetes-detection.ipynb
###Markdown **Importing Data** ###Code df = pd.read_csv('Diabities-210331-154610.csv') # Snapshot of the dataframe df.head() df.info() df.isnull().values.any() # List the columns df.columns X = df.iloc[:, :-1].values y = df.iloc[:, -1].values print(X.shape) print(y.shape) ###Output (768,) ###Markdown **Data Split** ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) num_rows_train = len(y_train) print('The number of entries in the train split are:', num_rows_train) num_rows_test = len(y_test) print('The number of entries in the test split are:', num_rows_test) ###Output The number of entries in the train split are: 614 The number of entries in the test split are: 154 ###Markdown **Train the model(s)** RandomForestClassifier ###Code from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score clf = RandomForestClassifier() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) acc_random_forest = round(accuracy_score(y_pred, y_test) * 100, 2) print("Accuracy:", acc_random_forest, "%") ###Output Accuracy: 79.22 % ###Markdown LogisticRegression ###Code from sklearn.linear_model import LogisticRegression clf = LogisticRegression(solver = 'lbfgs', max_iter = 1000) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) acc_log_reg = round(accuracy_score(y_pred, y_test) * 100, 2) print("Accuracy:", acc_log_reg, "%") ###Output Accuracy: 82.47 % ###Markdown KNeighbour Classifier ###Code from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_pred = knn.predict(X_test) acc_knn = round(accuracy_score(y_pred, y_test) * 100, 2) print("Accuracy:", acc_knn, "%") ###Output Accuracy: 75.32 %
Doug/ThalwegSalinityVideo.ipynb
###Markdown Working Toward a Daily Updated Thalweg Salinity Contours Video ###Code from importlib import reload import matplotlib.pyplot as plt import netCDF4 as nc import numpy as np from salishsea_tools import nc_tools from salishsea_tools.nowcast import figures %matplotlib inline title_font = { 'fontname': 'Bitstream Vera Sans', 'size': '15', 'color': 'black', 'weight': 'medium' } axis_font = {'fontname': 'Bitstream Vera Sans', 'size': '13'} grid_T_d = nc.Dataset('../../SalishSea/nowcast/24oct15/SalishSea_1d_20151024_20151024_grid_T.nc') colours = { 'figure': { 'facecolor': '#2B3E50', # salishsea site Superhero theme background }, 'cbar': { 'label': 'white', 'tick labels': 'white', }, } # %load -n figures.thalweg_salinity def thalweg_salinity( grid_T_d, thalweg_pts_file='../../../bathymetry/thalweg_working.txt', salinity_levels = [26, 27, 28, 29, 30, 30.2, 30.4, 30.6, 30.8, 31, 32, 33, 34], cmap='hsv', colours=colours, figsize=(20, 8), ): thalweg_pts = np.loadtxt(thalweg_pts_file, delimiter=' ', dtype=int) x, z = np.meshgrid( np.arange(thalweg_pts.shape[0]), -grid_T_d.variables['deptht'][:]) salinity = grid_T_d.variables['vosaline'] masked_salinity = np.ma.masked_values( salinity[:][0, :, thalweg_pts[:, 0], thalweg_pts[:, 1]], 0) fig, ax = plt.subplots(1, 1, figsize=figsize) fig.set_facecolor(colours['figure']['facecolor']) mesh = ax.contourf( x, z, masked_salinity.transpose(), salinity_levels, cmap=cmap, extend='both') cbar = fig.colorbar(mesh, ax=ax) cbar.set_ticks(salinity_levels) cbar.set_label( 'Practical Salinity [psu]', color=colours['cbar']['label'], **axis_font) cbar.ax.axes.tick_params(labelcolor=colours['cbar']['tick labels']) timestamp = nc_tools.timestamp(grid_T_d, 0) ax.set_title( 'Salinity field along thalweg: ' + timestamp.format('DD-MMM-YYYY'), **title_font) ax.set_ylabel('Depth [m]', **axis_font) ax.set_xlabel('Position along Thalweg', **axis_font) # axis_colors(ax, 'white') figures.axis_colors(ax, 'white') ax.set_axis_bgcolor('burlywood') ######################## #add_bathy(x, thalweg_pts, ax) ######################## return fig, cbar fig, cbar = thalweg_salinity(grid_T_d, thalweg_pts_file='../../tools/bathymetry/thalweg_working.txt', colours=colours) cbar.ax.axes.tick_params() pts = np.loadtxt('../../tools/bathymetry/thalweg_working.txt', delimiter=' ', dtype=int) print(pts.shape, pts.size) salinity = grid_T_d.variables['vosaline'] import matplotlib matplotlib.figure.Figure.set_facecolor() matplotlib.axes.Axes.contourf() reload(figures) fig = figures.thalweg_salinity(grid_T_d, thalweg_pts_file='../../tools/bathymetry/thalweg_working.txt') figures.thalweg_salinity() ###Output _____no_output_____
sample/optimal_control_sample.ipynb
###Markdown 非線形最適制御問題を数値的に解く 参考- CasADi - Docs [8. Optimal control with CasADi](https://web.casadi.org/docs/a-simple-test-problem)- CasADi [direct_single_shooting.py](https://github.com/casadi/casadi/blob/master/docs/examples/python/direct_single_shooting.py) 例題Van der Pol oscillator to the originを考える.$$\text{minimize}_{x(\cdot) \in \mathbb{R}^2, u(\cdot) \in \mathbb{R}} \; \; \int_{t=0}^T (x_0^2 + x_1^2 + u^2) dt \\ \text{subject to} \; \; \begin{cases} \dot{x}_0 = (1 - x_1^2)x_0 - x_1 + u \\ \dot{x}_1 = x_0 \\ -1.0 \leq u \leq 1.0, x_1 \geq -0.25 \end{cases} \text{for} \; 0 \leq t \leq T \\ x_0(0) = 0, \; x_1(0) = 1$$ただし,$T = 10$とする. ###Code ######## Packages ######## from casadi import * import matplotlib.pyplot as plt ########################## ###Output _____no_output_____
Aufgaben/U_03-A_1.ipynb
###Markdown Aufgabe 1 a) ###Code V_ra = 240*3.20 # m**3 n = 50 # Personen dV_sch = n*20e-3 # CO_2-Volumenstrom in m**3/h k_zul = k_inf = 1100e-6 # 1100 ppM k_0 = k_au = 400e-6 # 400 ppM dV_au = dV_sch/(k_zul-k_au) # m**3/h dV_au ###Output _____no_output_____ ###Markdown Es werden etwa $ 1430\,\frac{m^3}{h}$ Luft benötigt ###Code beta = dV_au/V_ra # in h**(-1) beta ###Output _____no_output_____ ###Markdown Das entspricht einem etwa 1.86-fachen Luftwechsel. b) ###Code t_beta = 1/beta t_beta ###Output _____no_output_____ ###Markdown Die Zeitkonstante ist etwa eine halbe Stunde. ###Code from matplotlib import pyplot as plt %matplotlib inline %config InlineBackend.figure_format = 'retina' import numpy as np import pandas as pd lt = np.linspace(0,2.5,51) df = pd.DataFrame( { 't': lt, 'k': ((k_inf + (k_0-k_inf)*np.exp(-beta*lt))*1e6).round(2) } ) display(df.head().set_index('t').T) ax = df.plot(x='t',y='k',label='$k=k(t)$') ax.axhline(k_zul*1e6,c='r')# in ppM ax.set( xlim=(0,2.5), xlabel='Zeit $t$ in Stunden', ylim=(0,1200),ylabel='Schadstoffkonzentration $k$ in ppM' ) ax.grid(lw=0.5,c='k') ###Output _____no_output_____ ###Markdown $$ 1100 ppM + (400-1100)ppM\cdot\mathrm{e}^{-\beta\,t} = 1050 ppM$$ $$ -700\,ppM \cdot\mathrm{e}^{-\beta\,t} = -50\,ppM$$ $$ \mathrm{e}^{-\beta\,t} = \dfrac{1}{14}$$ $$ t = -\dfrac{1}{\beta}\, \ln \left( \dfrac{1}{14} \right)$$ ###Code from math import log # das ist der ln -log(1/14)/beta ###Output _____no_output_____ ###Markdown Nach etwa 1.4 Stunden ist der Wert $k=1050 ppM$ erreicht. ###Code ax = df.plot(x='t',y='k',label='$k=k(t)$') ax.axhline(k_zul*1e6,c='r')# in ppM ax.scatter(-log(1/14)/beta,1050,c='k') ax.set( xlim=(0,2.5), xlabel='Zeit $t$ in Stunden', ylim=(0,1200),ylabel='Schadstoffkonzentration $k$ in ppM' ) ax.grid(lw=0.5,c='k') ###Output _____no_output_____
pead_accruals.ipynb
###Markdown Post Earnings Announcement Drift & Accruals anomalyThis notebook aims to examine if the [Accrual anomaly](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1793364) and [PEAD drift](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1510321) still exists today. Because of data availability, the timeframe is only from 1st Jan 2017- 1st Jan 2020. I've opted to exclude the months of COVID-19 due to extreme volatility in the market and influx of liquidity introduced.The holding period for each stock will be monthly and the rebalancing is done at the end of each month. Thought process Part 1 - Figuring out data availability & data visualization1. What timeframe in which earnings are available?2. Limit to stocks that have earnings in that timeframe3. Visualise PEAD effect on stocks Part 2 - Calculating accruals1. Calculate accruals for that timeperiod - meaning know which columns contribute to accruals2. Calculate accruals as a portion of earnings Part 3 - Generating Positions for the time period1. Create a list of rebalancing dates for the time period2. Stitch together accruals & estimates, sort accordingly and get the tickers Part 4 - Backtesting1. To optimize speed, prepare a DataFrame with price data readily available Part 5 - Plot performance and benchmark against SPY1. Plot cumulative performance2. Plot monthly performance Importing Packages ###Code import pandas as pd import matplotlib.pyplot as plt from datetime import datetime import pandas_datareader as wb import dateutil.relativedelta from pprint import pprint plt.style.use('fast') pd.options.mode.chained_assignment = None %matplotlib inline ###Output _____no_output_____ ###Markdown Part 1 - Figuring out data availability & data visualization ###Code fundamentals = pd.read_csv('US_Financials.csv') e_hist = pd.read_csv('US_earnings_History.csv') e_hist['surprisePercent'] = e_hist['epsDifference'] / e_hist['epsEstimate'] * 100 e_hist.dropna(axis=0,subset=['epsActual','epsEstimate','surprisePercent'],inplace=True) e_hist[["reportDate", "date"]] = e_hist[["reportDate", "date"]].apply(pd.to_datetime) freq_table = e_hist.groupby('reportDate').count()[['epsActual']] freq_table.plot(figsize=(15,6)) plt.title('Frequency of Earnings Announcements') plt.xlabel('Annoucement Date') plt.ylabel('Count of Announcements') ###Output _____no_output_____ ###Markdown Quick eyeballing tells us that earnings data is not readily available prior to Q3 of 2016. Hence, we'll limit the data to 2017-2020. ###Code end_date = datetime.strptime('2020-01-01', '%Y-%m-%d') start_date = datetime.strptime('2017-01-01', '%Y-%m-%d') e_hist = e_hist[(e_hist['reportDate'] >= start_date) & (e_hist['reportDate'] <= end_date)] ###Output _____no_output_____ ###Markdown Now we want to check if the earnings data is complete, given that between 2017-2020 there should be approx 10-12 records of earnings. ###Code valid_tickers = e_hist.groupby('Ticker').count()['reportDate'].reset_index() min_records = valid_tickers['reportDate'].min() max_records = valid_tickers['reportDate'].max() print('Min No. of records:',min_records) print('Max No. of records:',max_records) ###Output Min No. of records: 1 Max No. of records: 13 ###Markdown This tells us that for some tickers, there is incomplete data. Here, we could choose to remove these tickers altogether or retain them for the sake of potentially holding them when the data is available. In this instance, to widen the universe for positions, i'll limit it to at least 5 records and above. (5 is just arbitrarily chosen) ###Code tickers = valid_tickers[valid_tickers['reportDate'] >= 5]['Ticker'] e_hist_final = e_hist[e_hist['Ticker'].isin(tickers)] e_hist_final.head() ###Output _____no_output_____ ###Markdown Now to do some visualisations to see if the PEAD exists ###Code ## Plotting Function def plot_hypothesis(ticker,e_hist_final,start_date,end_date): ticker = ticker.upper() tickers = [ticker] df = pd.DataFrame() for ticker in tickers: df[ticker] = wb.DataReader(ticker,data_source='yahoo',start=start_date,end=end_date)['Adj Close'] idx = pd.date_range(start_date,end_date) df = df.reindex(idx, method='ffill') df.reset_index(inplace=True) df.columns = ['Date','Adjusted_close'] df.dropna(inplace=True) stock = e_hist_final[e_hist_final['Ticker']==ticker] fig, ax1 = plt.subplots(figsize=(15,6)) ax2 = ax1.twinx() ax1.plot(df['Date'], df['Adjusted_close'], 'black',label='{} Share Price'.format(ticker)) ax2.plot(stock['reportDate'], stock['surprisePercent'], 'blue',marker='o',linestyle='--',label='EPS Surprise %') ax1.set_xlabel('Reported Date') ax1.set_ylabel('{} Share Price'.format(ticker),color='black') ax2.set_ylabel('EPS',color='black') #plotting vertical & horizontal lines plt.plot(df['Date'],[0 for i in range(len(df['Date']))],'black',linestyle='--',markersize=0.5,label='Zero line') for point in stock['reportDate']: plt.axvline(x=point,color='grey',alpha=0.5,linestyle=':') plt.title('{} Post Earnings Drift Hypothesis'.format(ticker),color='black') ax2.legend(loc='upper left') ax1.legend(loc='lower left') plt.show() plot_hypothesis('EBAY',e_hist_final,start_date,end_date) plot_hypothesis('NKE',e_hist_final,start_date,end_date) #Some missing points for EPS due to data incompleteness ###Output _____no_output_____ ###Markdown Part 2 - Calculating Accruals & selecting fundamental dataCalculating accruals as proportion of net income I've opted to use Cashflows to calculate accruals for ease of computing.Formulas as follows (taken from Sloan's paper) 1. ΔWC* = Income + Depreciation and Amortization* – Cash from Operating Activities* 2. ΔNOA* = Income – Cash from Operating Activities * – Cash from Investing Activities* 3. TACC* = Income – ΔCash*– Dividends4. Proportion of TACC to Net Income = TACC/Net Income (engineered feature) ###Code #Using Cashflow to calculate Accruals core = fundamentals[['Ticker','flag','date', 'totalCashflowsFromInvestingActivities', 'totalCashFromFinancingActivities', 'totalCashFromOperatingActivities', 'totalStockholderEquity', 'depreciation', 'dividendsPaid', 'netIncome_x', ]] core.isna().sum() core['totalCashflowsFromInvestingActivities'] = core.groupby('Ticker')['totalCashflowsFromInvestingActivities'].ffill() core['totalCashFromFinancingActivities'] = core.groupby('Ticker')['totalCashFromFinancingActivities'].ffill() core['totalCashFromOperatingActivities'] = core.groupby('Ticker')['totalCashFromOperatingActivities'].ffill() core['totalStockholderEquity'] = core.groupby('Ticker')['totalStockholderEquity'].ffill() core['depreciation'] = core.groupby('Ticker')['depreciation'].ffill() core['dividendsPaid'] = core.groupby('Ticker')['dividendsPaid'].ffill() core['netIncome_x'] = core.groupby('Ticker')['netIncome_x'].ffill() core.dropna(inplace=True) core.isna().sum() core['ChangeInCash'] = core['totalCashFromOperatingActivities'] + core['totalCashFromFinancingActivities'] + core['totalCashflowsFromInvestingActivities'] core['WC'] = core['netIncome_x'] + core['depreciation'] - core['totalCashFromOperatingActivities'] core['NCO'] = core['netIncome_x'] - core['totalCashFromOperatingActivities'] - core['totalCashflowsFromInvestingActivities'] core['TACC'] = core['netIncome_x'] - core['ChangeInCash'] - core['dividendsPaid'] core['ACC_Income'] = core['TACC']/core['netIncome_x'] core[['date']] = core[['date']].apply(pd.to_datetime) ava_tickers = e_hist_final['Ticker'].unique() working_df = core[(core['Ticker'].isin(ava_tickers)) & (core['date'] >= start_date) & (core['date'] <= end_date)] working_df.head() ###Output _____no_output_____ ###Markdown Visualisations to see accruals wrt to price ###Code #Plotting Accruals overtime def plot_accruals(ticker,working_df,start_date,end_date): ticker = ticker.upper() tickers = [ticker] df = pd.DataFrame() for ticker in tickers: df[ticker] = wb.DataReader(ticker,data_source='yahoo',start=start_date,end=end_date)['Adj Close'] #re-indexing the date idx = pd.date_range(start_date,end_date) df = df.reindex(idx, method='ffill') df.reset_index(inplace=True) df.columns = ['Date',ticker] stock = working_df[(working_df['Ticker']==ticker) & (working_df['date'] >= start_date)] #plotting the graph fig, ax1 = plt.subplots(figsize=(15,6)) ax2 = ax1.twinx() ax1.plot(df['Date'], df[ticker.upper()], 'black',label='{} Share Price'.format(ticker)) ax2.plot(stock['date'], stock['ACC_Income'], 'blue',marker='o',label='Accruals as proportion of NI') for point in stock['date']: plt.axvline(x=point,color='grey',alpha=0.5,linestyle=':') ax1.set_xlabel('Reported Date') ax1.set_ylabel('{} Share Price'.format(ticker),color='black') ax2.set_ylabel('TACC',color='black') plt.title('{} TACC wrt Price'.format(ticker),color='black') ax2.legend(loc='upper left') ax1.legend(loc='lower left') plt.show() plot_accruals('NKE',working_df,start_date,end_date) plot_accruals('EBAY',working_df,start_date,end_date) ###Output _____no_output_____ ###Markdown Part 3 - Generating Positions for the timeperiod1. Stitch together accruals & estimates, sort accordingly and get the tickers For reference:- working_df - fundamentals data- e_hist_final - estimates data ###Code # To visualise which dates have the bulk of earnings announcements freq_table = e_hist_final.groupby('reportDate').count()[['epsActual']] freq_table.plot(figsize=(15,6)) plt.title('Peak Earnings Announcements') plt.xlabel('Annoucement Date') plt.ylabel('Count of Announcements') ###Output _____no_output_____ ###Markdown Ideally we would want to perform rebalancing as frequently as possible to best optimize. However, for practicality sake for now i've excluded that and taken on an approach where i rebalance at the end of each month. ###Code # Creating columns with month & year for ease of creating positions later on working_df['month'] = working_df['date'].dt.month working_df['year'] = working_df['date'].dt.year e_hist_final['month'] = e_hist_final['reportDate'].dt.month e_hist_final['year'] = e_hist_final['reportDate'].dt.year rebalancing_dates = pd.date_range(start_date,end_date,freq='M') ###Output _____no_output_____ ###Markdown In generating positions, we prioritise PEAD and refine it further with accrual anomality.Essentially, what I am aiming to filter out are stocks that surprise positively (negatively) on earnings and persist with low (high) accruals. ###Code %%time positions_dict = {} all_tickers = [] for i in range(len(rebalancing_dates)-1): d = rebalancing_dates[i] date = str(d.date()) month = d.month year = d.year #This identifies tickers available for that datetime based on estimates estimates_list = e_hist_final[(e_hist_final['month'] == month) & (e_hist_final['year'] == year)] tickers = estimates_list['Ticker'] #Selecting the top 10% to long/short n = int(round(0.1 * len(estimates_list),0)) #This pulls the latest accrual figure for the relevant tickers accruals = working_df[(working_df['Ticker'].isin(tickers)) & (working_df['date'] <= d) ] accruals = accruals[['Ticker','date','ACC_Income']] accruals.sort_values(by=['ACC_Income'],inplace=True,ascending=True) accruals.drop_duplicates(subset=['Ticker'],inplace=True,keep='last') #merging and sorting based on PEAD and Accruals main = pd.merge(estimates_list,accruals,how='left',on='Ticker') long = main.sort_values(by=['surprisePercent','ACC_Income'],ascending=[False,True]) short = main.sort_values(by=['surprisePercent','ACC_Income'],ascending=[False,False]) #collecting the ticker to purhcase long = long[long['epsDifference'] > 0].head(n)['Ticker'].to_list() short = short[short['epsDifference'] < 0].head(n)['Ticker'].to_list() positions_dict[date] = { 'long':long, 'short':short } #this compiles all the tickers of interest for t in long: if t not in all_tickers: all_tickers.append(t) for s in short: if s not in all_tickers: all_tickers.append(s) ###Output CPU times: user 958 ms, sys: 19.9 ms, total: 977 ms Wall time: 988 ms ###Markdown Part 4 - Backtesting1. To optimize speed, prepare a price_dictionary with Key: Ticker , Value: DataFrame with price data ###Code def get_returns(ticker,start_date,end_date,pos_type,price_df): ''' Function to calculate returns ''' try: p_1 = price_df[(price_df['Date']==start_date)]['Adjusted_close'].values[0] p_2 = price_df[(price_df['Date']==end_date)]['Adjusted_close'].values[0] except: #if for some reason the price data does not exist, return false and continue to next ticker return False if pos_type == 'long': returns = (p_2/p_1) - 1 else: returns = -(p_2/p_1) + 1 return returns p_df = pd.read_csv('US_price.csv') price = p_df[['Ticker','Adjusted_close','Date']] price[['Date']] = price[['Date']].apply(pd.to_datetime) price = price[(price['Date']>=start_date) & (price['Date']<=end_date) & (price['Ticker'].isin(all_tickers))] %%time price_dict = {} for t in all_tickers: temp = price[price['Ticker']==t] temp.set_index('Date',inplace=True) #resampling index to contain all dates in the event the dates don't sync up idx = pd.date_range(start_date,end_date) temp = temp.reindex(idx, method='ffill') temp.reset_index(inplace=True) temp.columns = ['Date','Ticker','Adjusted_close'] temp.dropna(inplace=True) temp = temp[temp['Date'].isin(rebalancing_dates)] price_dict[t] = temp price_dict['EBAY'].head() ###Output _____no_output_____ ###Markdown Backtesting ###Code %%time backtest_result = 0.0 long_result = 0.0 short_result = 0.0 long_dict = {} short_dict = {} total_dict = {} for i in range(0,len(rebalancing_dates)-1): d = str(rebalancing_dates[i].date()) long = positions_dict[d]['long'] short = positions_dict[d]['short'] end_date = rebalancing_dates[i+1] total_positions = len(long) + len(short) long_returns = 0 short_returns = 0 long_count = 0 short_count = 0 for stock in long: ret = get_returns(stock,d,end_date,'long',price_dict[stock]) #if for some reason the price data does not exist, return false and continue to next ticker if ret == False: continue long_returns += ret long_count += 1 for stock in short: ret = get_returns(stock,d,end_date,'short',price_dict[stock]) #if for some reason the price data does not exist, return false and continue to next ticker if ret == False: continue short_returns += ret short_count += 1 #containing the data long_dict[i] = [d,long_returns/len(long)] short_dict[i] = [d,short_returns/len(short)] backtest_result += (long_returns + short_returns)/total_positions long_result += long_returns/long_count short_result += short_returns/short_count total_dict[i] = [d,(long_returns + short_returns)/total_positions] print("Backtest completed.") print("Total Performance:{}%".format(round(backtest_result*100,5))) print("Long Performance:{}%".format(round(long_result*100,5))) print("Short Performance:{}%".format(round(short_result*100,5))) print("-------") ###Output Backtest completed. Total Performance:16.83023% Long Performance:37.50103% Short Performance:-2.07718% ------- CPU times: user 10.2 s, sys: 95.7 ms, total: 10.3 s Wall time: 10.4 s ###Markdown Part 5 - Plot performance and benchmark against SPYWe benchmark against SPY. ###Code #SPY Data for cumsum df = pd.DataFrame() df['SPY'] = wb.DataReader('SPY',data_source='yahoo',start=start_date,end=end_date)['Adj Close'] idx = pd.date_range(start_date,end_date) df = df.reindex(idx, method='ffill') df.reset_index(inplace=True) df.columns = ['Date','SPY'] df.dropna(inplace=True) spy_cumsum = df.copy() spy_cumsum['Returns'] = (spy_cumsum['SPY']/spy_cumsum['SPY'].shift(1) - 1) spy_cumsum.dropna(inplace=True) spy_cumsum.head() total = pd.DataFrame.from_dict(total_dict,orient='index',columns=['Date','Returns']) total[['Date']] = total[['Date']].apply(pd.to_datetime) long = pd.DataFrame.from_dict(long_dict,orient='index',columns=['Date','Returns']) long[['Date']] = long[['Date']].apply(pd.to_datetime) short = pd.DataFrame.from_dict(short_dict,orient='index',columns=['Date','Returns']) short[['Date']] = short[['Date']].apply(pd.to_datetime) fig, ax1 = plt.subplots(figsize=(15,6)) ax1.plot(spy_cumsum['Date'],spy_cumsum['Returns'].cumsum(),label='SPY Performance',alpha=0.5) ax1.plot(total['Date'],total['Returns'].cumsum(),label='Combined Performance',linestyle='--',color='red',marker='.') ax1.plot(long['Date'],long['Returns'].cumsum(),label='Long Performance',linestyle='--',color='green',marker='.') ax1.plot(short['Date'],short['Returns'].cumsum(),label='Short Performance',linestyle='--',color='orange',marker='.') ax1.set_xlabel('Date Date') ax1.set_ylabel('Returns',color='black') plt.title('Cumulative Performance',color='black') ax1.legend(loc='upper left') plt.show() #SPY Data for monthly non-cumulative returns s = wb.DataReader('SPY',data_source='yahoo',start=start_date,end=end_date)['Adj Close'] spy_monthly = pd.DataFrame(s.asfreq('M', method='ffill')) spy_monthly.reset_index(inplace=True) spy_monthly.columns = ['Date','SPY'] spy_monthly['Returns'] = (spy_monthly['SPY']/spy_monthly['SPY'].shift(1) - 1) df.dropna(inplace=True) fig, ax1 = plt.subplots(figsize=(15,6)) ax1.plot(spy_monthly['Date'],spy_monthly['Returns'],label='SPY Performance',linestyle='--',marker='.',alpha=0.5) ax1.plot(total['Date'],total['Returns'],label='Combined Performance',linestyle='--',color='red',marker='.',alpha=0.5) ax1.plot(long['Date'],long['Returns'],label='Long Performance',linestyle='--',color='green',marker='.') ax1.plot(short['Date'],short['Returns'],label='Short Performance',linestyle='--',color='orange',marker='.') ax1.set_xlabel('Date Date') ax1.set_ylabel('Returns',color='black') for point in spy_monthly['Date']: plt.axvline(x=point,color='grey',alpha=0.2,linestyle='-') plt.title('Non-cumulative Performance',color='black') ax1.legend(loc='upper left') plt.show() ###Output _____no_output_____ ###Markdown Conclusions & potential follow upObservations1. The top 10% and bottom 10% of the appear to be inversely related between 2018-06 to 2019-01.2. Shorting really doesn't seem to go well.3. PEAD + Accruals underperforms, for when we factor in transaction costs, even if we only go long, the returns will be significant less than SPY. 4. The strategy is missing key growth stocks that have contributed to SPY's performance and thus when we include them, the results could change drastically. (Refer to Appendix A)Follow up1. One could look at the data between 2018-06 to 2019-01 and understand what led to the inverse relation.2. Could also further refine this to target small cap stocks and verify the other anomalies presented in the book mentioned earlier3. Instead of soley using Earnings Estimates, could also attempt the same strategy with estimates on Revenue/Expenditure etc Appendix ANotable high performing tickers missing from the strategy above due to data unavailability by taking the difference between SPY and the tickers included. E.g GOOGL, FB, AAPL, MSFT ###Code import bs4 as bs import requests resp = requests.get('http://en.wikipedia.org/wiki/List_of_S%26P_500_companies') soup = bs.BeautifulSoup(resp.text, 'lxml') table = soup.find('table', {'class': 'wikitable sortable'}) spy_tickers = [] for row in table.findAll('tr')[1:]: spy_ticker = row.findAll('td')[0].text spy_tickers.append(spy_ticker.strip()) print('Full list of unavailable tickers') print('-----') print(sorted(list(set(spy_tickers)-set(tickers)))) ###Output Full list of unavailable tickers ----- ['AAL', 'AAPL', 'ABC', 'ABMD', 'ABT', 'ACN', 'ADBE', 'ADM', 'ADP', 'ADS', 'AEP', 'AFL', 'AJG', 'AKAM', 'ALGN', 'ALK', 'ALL', 'ALLE', 'ALXN', 'AMCR', 'AMD', 'AME', 'AMGN', 'AMP', 'AMT', 'AMZN', 'ANTM', 'AON', 'AOS', 'APA', 'APD', 'APH', 'APTV', 'ARE', 'ATO', 'AVB', 'AVGO', 'AVY', 'AWK', 'AXP', 'AZO', 'BA', 'BAC', 'BAX', 'BDX', 'BEN', 'BF.B', 'BIIB', 'BK', 'BKR', 'BLK', 'BLL', 'BMY', 'BR', 'BRK.B', 'BSX', 'BWA', 'BXP', 'C', 'CAG', 'CAH', 'CARR', 'CAT', 'CB', 'CCI', 'CCL', 'CDNS', 'CDW', 'CE', 'CERN', 'CF', 'CFG', 'CHD', 'CHRW', 'CHTR', 'CI', 'CINF', 'CLX', 'CMA', 'CMCSA', 'CME', 'CMG', 'CMI', 'CMS', 'CNC', 'COF', 'COG', 'COO', 'COP', 'COST', 'COTY', 'CPB', 'CRM', 'CSCO', 'CSX', 'CTAS', 'CTSH', 'CTVA', 'CTXS', 'CXO', 'DAL', 'DD', 'DFS', 'DG', 'DGX', 'DHI', 'DHR', 'DIS', 'DLR', 'DLTR', 'DOV', 'DOW', 'DPZ', 'DRE', 'DRI', 'DTE', 'EA', 'EBAY', 'ECL', 'EFX', 'EIX', 'EL', 'EMN', 'EMR', 'EQIX', 'EQR', 'ESS', 'ETFC', 'ETN', 'ETR', 'EW', 'EXC', 'EXR', 'F', 'FAST', 'FB', 'FBHS', 'FCX', 'FDX', 'FFIV', 'FITB', 'FLIR', 'FLS', 'FMC', 'FOX', 'FOXA', 'FRC', 'FRT', 'FTI', 'FTV', 'GD', 'GE', 'GILD', 'GIS', 'GL', 'GLW', 'GM', 'GOOG', 'GOOGL', 'GPC', 'GPN', 'GRMN', 'GS', 'GWW', 'HAL', 'HAS', 'HBAN', 'HBI', 'HCA', 'HES', 'HFC', 'HLT', 'HOG', 'HOLX', 'HON', 'HRB', 'HSY', 'HWM', 'IBM', 'ICE', 'IDXX', 'IEX', 'ILMN', 'INCY', 'INFO', 'INTC', 'IP', 'IPG', 'IPGP', 'IQV', 'IR', 'IRM', 'ISRG', 'IT', 'ITW', 'IVZ', 'J', 'JBHT', 'JCI', 'JKHY', 'JNJ', 'JNPR', 'JPM', 'K', 'KEY', 'KHC', 'KIM', 'KLAC', 'KMB', 'KMI', 'KMX', 'KO', 'KR', 'KSU', 'L', 'LDOS', 'LEG', 'LEN', 'LH', 'LHX', 'LKQ', 'LLY', 'LMT', 'LNC', 'LRCX', 'LUV', 'LVS', 'LW', 'MA', 'MAA', 'MAS', 'MCD', 'MCK', 'MCO', 'MDLZ', 'MDT', 'MET', 'MGM', 'MHK', 'MKC', 'MKTX', 'MLM', 'MMC', 'MMM', 'MO', 'MPC', 'MRK', 'MS', 'MSCI', 'MSFT', 'MSI', 'MTB', 'MU', 'MXIM', 'NDAQ', 'NEE', 'NFLX', 'NI', 'NKE', 'NLOK', 'NOC', 'NOV', 'NOW', 'NSC', 'NTAP', 'NTRS', 'NUE', 'NVR', 'NWS', 'NWSA', 'ODFL', 'OKE', 'OMC', 'ORCL', 'ORLY', 'OTIS', 'PAYC', 'PAYX', 'PBCT', 'PCAR', 'PEAK', 'PEG', 'PEP', 'PFE', 'PFG', 'PG', 'PGR', 'PH', 'PHM', 'PKG', 'PKI', 'PLD', 'PM', 'PNC', 'PNR', 'PPG', 'PSA', 'PSX', 'PWR', 'PYPL', 'QCOM', 'RCL', 'RE', 'REG', 'RF', 'RHI', 'RJF', 'RMD', 'ROK', 'ROL', 'ROP', 'RSG', 'RTX', 'SBAC', 'SBUX', 'SCHW', 'SHW', 'SIVB', 'SJM', 'SLB', 'SLG', 'SNA', 'SNPS', 'SO', 'SPG', 'SPGI', 'STT', 'STX', 'STZ', 'SWK', 'SWKS', 'SYF', 'SYK', 'SYY', 'T', 'TAP', 'TDG', 'TEL', 'TFC', 'TFX', 'TIF', 'TMO', 'TMUS', 'TPR', 'TROW', 'TRV', 'TSCO', 'TSN', 'TT', 'TWTR', 'TXN', 'TXT', 'UAL', 'UDR', 'UHS', 'ULTA', 'UNH', 'UNM', 'UNP', 'UPS', 'URI', 'USB', 'V', 'VAR', 'VFC', 'VIAC', 'VLO', 'VNO', 'VRSK', 'VRSN', 'VRTX', 'VTR', 'VZ', 'WAB', 'WAT', 'WBA', 'WDC', 'WELL', 'WFC', 'WHR', 'WLTW', 'WM', 'WMB', 'WRB', 'WRK', 'WST', 'WY', 'XEL', 'XLNX', 'XRX', 'XYL', 'YUM', 'ZBRA', 'ZION']
hrbook/files/models/decision_tree.ipynb
###Markdown Random Forest Classifier ###Code # Load the packages import warnings warnings.filterwarnings("ignore") import pandas as pd import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report # Load the data train_df = pd.read_csv('./../../../../data/train/train.csv') test_df = pd.read_csv('./../../../../data/test/test.csv') # Load the feature selection result feature_selector = pd.read_csv('./../../../../data/feature_ranking.csv') feature_selector.set_index('Unnamed: 0', inplace=True) # Separate feature space from target variable y_train = train_df['Attrition'] X_train = train_df.drop('Attrition', axis=1) y_test = test_df['Attrition'] X_test = test_df.drop('Attrition', axis=1) ###Output _____no_output_____ ###Markdown We will be running models for different set of features and evaluate their performances. We start with complete dataset and then start with meaximum feature score of 8 to 5. ###Code # Declare the model paramters for searching param_grid = dict( criterion = ['gini', 'entropy'], splitter = ['best', 'random'], max_depth = [20, 40, 60, None], min_samples_split = [2, 10, 40] ) # Declare and train the model dt_clf = DecisionTreeClassifier(class_weight="balanced", max_features=None) dt = GridSearchCV(estimator=dt_clf, param_grid=param_grid, scoring='f1', n_jobs=-1) ###Output _____no_output_____ ###Markdown Complete data ###Code # Train the model dt.fit(X_train, y_train) # Get the parameters for the best model dt.best_estimator_ # Predict using model y_pred = dt.predict(X_test) # Make the classification report print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support False 0.88 0.85 0.87 255 True 0.21 0.26 0.23 39 accuracy 0.78 294 macro avg 0.55 0.56 0.55 294 weighted avg 0.79 0.78 0.78 294 ###Markdown The results not better than that of logistic regression. The precision, recall and f1 of attrition is not at all good as that of random forest. Feature score of 8 ###Code # Create the new dataset # Get features with feature score of 8 features = feature_selector[feature_selector['Total']==8].index.tolist() X_train_8 = X_train.loc[:, features] X_test_8 = X_test.loc[:, features] # Train the model dt.fit(X_train_8, y_train) # Predict with model y_pred_8 = dt.predict(X_test_8) # Make the report print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support False 0.88 0.85 0.87 255 True 0.21 0.26 0.23 39 accuracy 0.78 294 macro avg 0.55 0.56 0.55 294 weighted avg 0.79 0.78 0.78 294
examples/tutorials/Basics.ipynb
###Markdown FlyingSquid BasicsIn this notebook, we'll use some synthetic data to introduce you to FlyingSquid's API. In this notebook, we'll cover the three steps of the FlyingSquid pipeline using synthetic data: First, we'll generate some synthetic labeling function outputs. Next, we'll use FlyingSquid to model the accuracies of these labeling functions (without any ground truth data). Finally, we'll generate probabilistic training labels for downstream model training. Step 1: Generate Synthetic Labeling Function OutputsLet's generate some synthetic labeling function outputs.For a real application, we would write `m` labeling functions that would generate any of the three following labels for each data point:* Positive: return +1* Negative: return -1* Abstain: return 0We would run the `m` labeling functions over `n` data points to get an `(n, m)`-sized matrix. For this tutorial, the `synthetic_data_basics` function will do that for us: ###Code from tutorial_helpers import * L_train, L_dev, Y_dev = synthetic_data_basics() print(L_train.shape) print(L_dev.shape) print(Y_dev.shape) ###Output (10000, 5) (500, 5) (500,) ###Markdown As you can see, we have five synthetic labeling functions that have generated labels for an unlabeled training set with 10,000 data points, and a labeled dev set with 500 labeled data points. We can use the dev set to see how accurate our labeling functions are: ###Code print_statistics(L_dev, Y_dev) ###Output LF 0: Accuracy 93%, Abstain rate 78% LF 1: Accuracy 63%, Abstain rate 87% LF 2: Accuracy 62%, Abstain rate 30% LF 3: Accuracy 59%, Abstain rate 37% LF 4: Accuracy 46%, Abstain rate 48% ###Markdown As you can see, we have two labeling functions that have high accuracies but also high abstain rates (LF 0 and LF 1), and three labeling functions with lower abstain rates but also lower accuracies. We can inspect the `L_dev` and `Y_dev` matrices to see the data formats: ###Code print(L_dev[:10]) print(Y_dev[:10]) ###Output [ 1. -1. -1. -1. -1. 1. -1. -1. -1. 1.] ###Markdown Step 2: Model the labeling functions with FlyingSquidNext, we're going to use FlyingSquid to model the five labeling functions. We'll use this dependency graph: As you can see, we have one (hidden) node for the latent ground truth variable Y, and five (observable) nodes for each labeling function.To model that in FlyingSquid, we just need to specify that we have `m = 5` labeling functions. Since we only have a single task, the dependencies are automatically inferred (see the video tutorial for more complex dependencies). ###Code from flyingsquid.label_model import LabelModel m = 5 label_model = LabelModel(m) ###Output _____no_output_____ ###Markdown To train the label model, all we need to do is pass `L_train` to the fit function: ###Code label_model.fit(L_train) ###Output _____no_output_____ ###Markdown Evaluating the label modelNow, let's use the dev set to evaluate the label model: ###Code preds = label_model.predict(L_dev).reshape(Y_dev.shape) accuracy = np.sum(preds == Y_dev) / Y_dev.shape[0] print('Label model accuracy: {}%'.format(int(100 * accuracy))) ###Output Label model accuracy: 70% ###Markdown We can see that this performs better than majority vote: ###Code majority_vote_preds = np.array([1 if pred > 0 else -1 for pred in np.sum(L_dev, axis=1)]) majority_vote_accuracy = np.sum(majority_vote_preds == Y_dev) / Y_dev.shape[0] print('Majority vote accuracy: {}%'.format(int(100 * majority_vote_accuracy))) ###Output Majority vote accuracy: 65% ###Markdown Step 3: Training an End ModelIf necessary, we can also use FlyingSquid to generate probabilistic labels to train up an end model. Instead of calling the `predict` function, we can call `predict_proba_marginalized` over `L_train`: ###Code probabilistic_labels = label_model.predict_proba_marginalized(L_train) print(probabilistic_labels.shape) print(probabilistic_labels[:10]) ###Output (10000,) [0.46439535 0.89805256 0.72736331 0.48237588 0.2962007 0.2633458 0.66693893 0.53600092 0.72736331 0.3213108 ]
results_plots.ipynb
###Markdown Visualise the results ###Code import matplotlib.pyplot as plt import numpy as np import pandas as pd from anomaly_delays.main_functions import share_delays from anomaly_delays.helper_functions import read_nab, calc_cum_avg_loss scores = pd.read_csv("results/scores.csv") losses_log = pd.read_csv("results/losses_log.csv") losses_square = pd.read_csv("results/losses_square.csv") ###Output _____no_output_____ ###Markdown Predictions for the real data with known anomaly causes ###Code scores_real = scores[scores["folder_name"] == "realKnownCause"] files = [ "_ec2_request_latency_system_failure.csv", "_machine_temperature_system_failure.csv", "_ambient_temperature_system_failure.csv", ] fig, axs = plt.subplots(1, len(files), figsize=(17, 5)) for i, _ in enumerate(files): axs[i].plot( scores_real[scores_real["file_name"] == files[i]][ "score_Fixed10d1" ].values, label="predictions", ) axs[i].plot( scores_real[scores_real["file_name"] == files[i]]["label"].values, label="anomalies", ) plt.subplots_adjust( left=None, bottom=None, right=None, top=None, wspace=0.06, hspace=0 ) for n, ax in enumerate(axs.flat): if n == 1: ax.set_xlabel("Time", fontsize=26) ax.set_ylabel("Probability", fontsize=26) for ax in axs.flat: ax.label_outer() ax.tick_params(labelsize=26) handles, labels = ax.get_legend_handles_labels() fig.legend( handles, labels, loc="upper right", bbox_to_anchor=(1.11, 1), fontsize=26 ) fig.suptitle(r"Fixed-share, $\alpha = 0.1$, delay = 20", fontsize=26); fig, axs = plt.subplots(1, len(files), figsize=(17, 5)) for i, _ in enumerate(files): axs[i].plot( scores_real[scores_real["file_name"] == files[i]][ "score_Variable10d3" ].values, label="predictions", ) axs[i].plot( scores_real[scores_real["file_name"] == files[i]]["label"].values, label="anomalies", ) plt.subplots_adjust( left=None, bottom=None, right=None, top=None, wspace=0.06, hspace=0 ) for n, ax in enumerate(axs.flat): if n == 1: ax.set_xlabel("Time", fontsize=26) ax.set_ylabel("Probability", fontsize=26) for ax in axs.flat: ax.label_outer() ax.tick_params(labelsize=26) handles, labels = ax.get_legend_handles_labels() fig.legend( handles, labels, loc="upper right", bbox_to_anchor=(1.11, 1), fontsize=26 ) fig.suptitle(r"Variable-share, $\alpha = 0.1$, delay = 100", fontsize=26); fig, axs = plt.subplots(1, len(files), figsize=(17, 5)) for i, _ in enumerate(files): axs[i].plot( scores_real[scores_real["file_name"] == files[i]][ "score_randomCutForest" ].values, label="predictions", ) axs[i].plot( scores_real[scores_real["file_name"] == files[i]]["label"].values, label="anomalies", ) plt.subplots_adjust( left=None, bottom=None, right=None, top=None, wspace=0.06, hspace=0 ) for n, ax in enumerate(axs.flat): if n == 1: ax.set_xlabel("Time", fontsize=26) ax.set_ylabel("Probability", fontsize=26) for ax in axs.flat: ax.label_outer() ax.tick_params(labelsize=26) handles, labels = ax.get_legend_handles_labels() fig.legend( handles, labels, loc="upper right", bbox_to_anchor=(1.11, 1), fontsize=26 ) fig.suptitle("randomCutForest", fontsize=26); ###Output _____no_output_____ ###Markdown Weights analysis for the real data with known anomaly causes of system failure ###Code experts = [ "knncad", "numentaTM", "twitterADVec", "skyline", "earthgeckoSkyline", "numenta", "bayesChangePt", "null", "expose", "relativeEntropy", "htmjava", "randomCutForest", "random", "contextOSE", "windowedGaussian", ] FOLDER_NAME = "realKnownCause" FILE_NAME = "_machine_temperature_system_failure.csv" dt = read_nab(experts, FOLDER_NAME, FILE_NAME) score_experts = np.array(dt.filter(regex="^score", axis=1)) assert score_experts.shape[1] == len(experts) target = dt["label"].values score_AA, loss_AA, loss_experts, weights_experts = share_delays( target, score_experts, share_type="Fixed", alpha=0, delays=100 ) fig, axs = plt.subplots(1, 1, figsize=(10, 5)) for i, _ in enumerate(experts): if max(weights_experts.T[i]) > 0.7: plt.plot( weights_experts.T[i], linewidth=6, label=f"{experts[i]}" ) else: plt.plot(weights_experts.T[i], linewidth=6) axs.legend(loc="upper right", bbox_to_anchor=(1.6, 1), fontsize=26) axs.set_xlabel("Time", fontsize=36) axs.set_ylabel("Weights", fontsize=36) axs.xaxis.set_tick_params(labelsize=26) axs.yaxis.set_tick_params(labelsize=26) plt.rcParams.update({"font.size": 36}) fig.suptitle("AAP, log-loss, delay = 100", fontsize=30); score_AA, loss_AA, loss_experts, weights_experts = share_delays( target, score_experts, share_type="Variable", alpha=0, delays=100 ) fig, axs = plt.subplots(1, 1, figsize=(10, 5)) for i, _ in enumerate(experts): if max(weights_experts.T[i]) > 0.7: plt.plot( weights_experts.T[i], linewidth=6, label=f"{experts[i]}" ) else: plt.plot(weights_experts.T[i], linewidth=6) axs.legend(loc="upper right", bbox_to_anchor=(1.6, 1), fontsize=26) axs.set_xlabel("Time", fontsize=36) axs.set_ylabel("Weights", fontsize=36) axs.xaxis.set_tick_params(labelsize=26) axs.yaxis.set_tick_params(labelsize=26) plt.rcParams.update({"font.size": 36}) fig.suptitle("AAP, square-loss, delay = 100", fontsize=30); score_AA, loss_AA, loss_experts, weights_experts = share_delays( target, score_experts, share_type="Fixed", alpha=0.05, delays=100 ) fig, axs = plt.subplots(1, 1, figsize=(10, 5)) for i, _ in enumerate(experts): if max(weights_experts.T[i]) > 0.3: plt.plot( weights_experts.T[i], linewidth=6, label=f"{experts[i]}" ) else: plt.plot(weights_experts.T[i], linewidth=6) axs.legend(loc="upper right", bbox_to_anchor=(1.65, 1), fontsize=26) axs.set_xlabel("Time", fontsize=36) axs.set_ylabel("Weights", fontsize=36) axs.xaxis.set_tick_params(labelsize=26) axs.yaxis.set_tick_params(labelsize=26) plt.rcParams.update({"font.size": 36}) fig.suptitle(r"Fixed-share, $\alpha = 0.05$, delay = 100", fontsize=30); score_AA, loss_AA, loss_experts, weights_experts = share_delays( target, score_experts, share_type="Variable", alpha=0.05, delays=100 ) fig, axs = plt.subplots(1, 1, figsize=(10, 5)) for i, _ in enumerate(experts): if max(weights_experts.T[i]) > 0.5: plt.plot( weights_experts.T[i], linewidth=6, label=f"{experts[i]}" ) else: plt.plot(weights_experts.T[i], linewidth=6) axs.legend(loc="upper right", bbox_to_anchor=(1.65, 1), fontsize=26) axs.set_xlabel("Time", fontsize=36) axs.set_ylabel("Weights", fontsize=36) axs.xaxis.set_tick_params(labelsize=26) axs.yaxis.set_tick_params(labelsize=26) plt.rcParams.update({"font.size": 36}) fig.suptitle(r"Variable-share, $\alpha = 0.05$, delay = 100", fontsize=30); score_AA, loss_AA, loss_experts, weights_experts = share_delays( target, score_experts, share_type="Fixed", alpha=0.3, delays=100 ) fig, axs = plt.subplots(1, 1, figsize=(10, 5)) for i, _ in enumerate(experts): if max(weights_experts.T[i] > 0.2): plt.plot( weights_experts.T[i], linewidth=6, label=f"{experts[i]}" ) else: plt.plot(weights_experts.T[i], linewidth=6) axs.legend(loc="upper right", bbox_to_anchor=(1.65, 1), fontsize=26) axs.set_xlabel("Time", fontsize=36) axs.set_ylabel("Weights", fontsize=36) axs.xaxis.set_tick_params(labelsize=26) axs.yaxis.set_tick_params(labelsize=26) plt.rcParams.update({"font.size": 36}) fig.suptitle(r"Fixed-share, $\alpha = 0.3$, delay = 100", fontsize=30); score_AA, loss_AA, loss_experts, weights_experts = share_delays( target, score_experts, share_type="Variable", alpha=0.3, delays=100 ) fig, axs = plt.subplots(1, 1, figsize=(10, 5)) for i, _ in enumerate(experts): if max(weights_experts.T[i] > 0.5): plt.plot( weights_experts.T[i], linewidth=6, label=f"{experts[i]}" ) else: plt.plot(weights_experts.T[i], linewidth=6) axs.legend(loc="upper right", bbox_to_anchor=(1.65, 1), fontsize=26) axs.set_xlabel("Time", fontsize=36) axs.set_ylabel("Weights", fontsize=36) axs.xaxis.set_tick_params(labelsize=26) axs.yaxis.set_tick_params(labelsize=26) plt.rcParams.update({"font.size": 36}) fig.suptitle(r"Variable-share, $\alpha = 0.3$, delay = 100", fontsize=30); ###Output _____no_output_____ ###Markdown Plot theoretical bounds ###Code losses_log_art = ( losses_log[ (losses_log["folder_name"] == "artificialNoAnomaly") & (losses_log["file_name"] == "_art_daily_perfect_square_wave.csv") ] .filter(regex="^loss", axis=1) .reset_index() .drop("index", axis=1) ) losses_square_art = ( losses_square[ (losses_square["folder_name"] == "artificialNoAnomaly") & (losses_square["file_name"] == "_art_daily_perfect_square_wave.csv") ] .filter(regex="^loss", axis=1) .reset_index() .drop("index", axis=1) ) ###Output _____no_output_____ ###Markdown Log-loss ###Code ETA = 1 Losses_log_avg = calc_cum_avg_loss(losses_log_art, current_delay=1) fig, axs = plt.subplots(1, 1, figsize=(10, 5)) for algo_ind in ["numenta", "bayesChangePt", "earthgeckoSkyline"]: axs.plot( Losses_log_avg[f"loss_{algo_ind}"] - Losses_log_avg["loss_Fixed0d0"], label=f"{algo_ind}", linewidth=4, ) axs.plot( np.repeat(-np.log(len(experts)) / ETA, Losses_log_avg.shape[0]), linewidth=4, label="bound", ) axs.legend(loc="upper right", bbox_to_anchor=(1.65, 1), fontsize=26) axs.set_xlabel("Time", fontsize=26) axs.set_ylabel("Loss difference", fontsize=26) axs.xaxis.set_tick_params(labelsize=26) axs.yaxis.set_tick_params(labelsize=26) fig.suptitle("Cumulative logarithmic loss", fontsize=26); ETA = 1 Losses_log_avg = calc_cum_avg_loss(losses_log_art, current_delay=50) fig, axs = plt.subplots(1, 1, figsize=(10, 5)) for algo_ind in ["numenta", "bayesChangePt", "earthgeckoSkyline"]: axs.plot( Losses_log_avg[f"loss_{algo_ind}"] - Losses_log_avg["loss_Fixed0d2"], label=f"{algo_ind}", linewidth=4, ) axs.plot( np.repeat(-np.log(len(experts)) / ETA, Losses_log_avg.shape[0]), linewidth=4, label="bound", ) axs.legend(loc="upper right", bbox_to_anchor=(1.65, 1), fontsize=26) axs.set_xlabel("Time", fontsize=26) axs.set_ylabel("Loss difference", fontsize=26) axs.xaxis.set_tick_params(labelsize=26) axs.yaxis.set_tick_params(labelsize=26) fig.suptitle("Average logarithmic loss, delay = 50", fontsize=26); ###Output _____no_output_____ ###Markdown Square-loss ###Code ETA = 2 Losses_square_avg = calc_cum_avg_loss(losses_square_art, current_delay=1) fig, axs = plt.subplots(1, 1, figsize=(10, 5)) for algo_ind in ["numenta", "bayesChangePt", "earthgeckoSkyline"]: axs.plot( Losses_square_avg[f"loss_{algo_ind}"] - Losses_square_avg["loss_Variable0d0"], label=f"{algo_ind}", linewidth=4, ) axs.plot( np.repeat(-np.log(len(experts)) / ETA, Losses_square_avg.shape[0]), linewidth=4, label="bound", ) axs.legend(loc="upper right", bbox_to_anchor=(1.65, 1), fontsize=26) axs.set_xlabel("Time", fontsize=26) axs.set_ylabel("Loss difference", fontsize=26) axs.xaxis.set_tick_params(labelsize=26) axs.yaxis.set_tick_params(labelsize=26) fig.suptitle("Cumulative square loss", fontsize=26); ETA = 2 Losses_square_avg = calc_cum_avg_loss(losses_square_art, current_delay=50) fig, axs = plt.subplots(1, 1, figsize=(10, 5)) for algo_ind in ["numenta", "bayesChangePt", "earthgeckoSkyline"]: axs.plot( Losses_square_avg[f"loss_{algo_ind}"] - Losses_square_avg["loss_Variable0d2"], label=f"{algo_ind}", linewidth=4, ) axs.plot( np.repeat(-np.log(len(experts)) / ETA, Losses_square_avg.shape[0]), linewidth=4, label="bound", ) axs.legend(loc="upper right", bbox_to_anchor=(1.65, 1), fontsize=26) axs.set_xlabel("Time", fontsize=26) axs.set_ylabel("Loss difference", fontsize=26) axs.xaxis.set_tick_params(labelsize=26) axs.yaxis.set_tick_params(labelsize=26) fig.suptitle("Average square loss, delay = 50", fontsize=26); ###Output _____no_output_____
notebooks/Extracting Role Title Words.ipynb
###Markdown Senior is a valid title; but can also be a seniority modifier ###Code df[df.Title.str.lower().str.endswith('senior')].head() df[df.Title.str.lower().str.endswith('support')].Title.value_counts().to_frame().T role_words = [ 'manager', 'engineer', 'executive', 'assistant', 'accountant', 'administrator', 'developer', 'analyst', 'controller', 'teacher', 'consultant', 'advisor', 'cleaner', 'officer', 'worker', 'nurse', 'operative', 'surveyor', 'technician', 'clerk', 'chef', 'director', 'coordinator', 'supervisor', 'partner', 'labourer', 'secretary', 'receptionist', 'buyer', 'planner', 'designer', 'estimator', 'senior', 'leader', #'partie', # Part of chef de partie, specific title 'solicitor', 'driver', 'auditor', 'electrician', 'negotiator', 'fitter', 'operator', 'turner', #'workers', # Plural of worker 'representative', 'handler', 'machinist', 'miller', 'welder', 'inspector', 'associate', #'pa', # Acronym 'therapist', 'architect', # 'dba', # Acronym 'bookkeeper', 'programmer', 'control', # Is "Quality Control" and "Quality controller" the same thing? 'telesales', # This is a linguistic exception; telesalesperson? 'resourcer', 'sales', # This is a linguistic exception; salesperson? 'merchandiser', #'rgn', # Acronym 'bricklayer', 'toolmaker', 'groundworker', # 'finance', # This needs to be part of a role, doesn't make sense by itself 'cook', 'optometrist', 'cashier', 'paraplanner', 'author', 'agent', # 'marketing', 'paralegal', 'trainer', 'fellow', #'service', # customer service 'fundraiser', 'technologist', 'carpenter', 'joiner', 'plumber', 'caretaker', 'housekeeper', 'telemarketer', 'ledger', 'studentship', # 'english', # e.g. teacher of english 'guard', #'receptionist/administrator', # Two roles 'plasterer', 'porter', 'writer', 'headteacher', # A contraction of head teacher? 'conveyancer', #'operatives', # plural of operatives 'physiotherapist', 'wirer', 'draughtsperson', 'support', # '(rgn)', # see rgn 'payroller', 'chemist', 'tester', # 'hr', # acronym human resources, which is itself an exception 'generator', # 'drivers', # plural of driver # 'operations', # Work type 'underwriter', # 'cleaners', # Plural of cleaner # 'welder/fabricator', Two titles 'carer', 'typist', # 'rmn', # Acronym #'executives', # Plural 'picker', 'specialist', # 'assistants', #plural # 'payroll', # This is an edge case... # 'payable', # Accounts payable, a deparment 'sprayer', # 'teachers', #plural of teacher 'dentist', 'draughtsman', # 'nqt', # Acronym # 'adviser', # Variant of advisor 'practitioner', # 'consultants', # Plural of consultants 'copywriter', # 'nurses' # Plural of nurse 'head', # Added ] len(role_words), len(set(role_words)) bs = 8 pd.DataFrame([role_words[i:i+bs] for i in range(0, len(role_words), bs)]) exceptions = ['Chef de Partie', 'Custmer Service'] acronyms = { 'PA': 'Personal Assistant', 'DBA': 'Database Administrator', 'RGN': 'Registered General Nurse', #'HR': 'Human Resources', # hr can also be short for hour, particularly as /hr 'RMN': 'Registered Mental Health Nurse', # Sometimes aliased to Registered Mental Nurse 'NQT': 'Newly Qualified Teacher', 'CEO': 'Chief Executive Officer', 'MD': 'Managing Director', # Medical doctor doesn't occur here 'EA': 'Executive Assistant', } variants = { 'Adviser': 'Advisor', 'Registered Mental Nurse': 'Registered Mental Health Nurse', } functions = [ 'finance', 'marketing', 'service', 'english', 'operations', 'human resources', 'payroll', 'accounts payable', ] # Can also be a role ambiguous_functions = [ 'sales', 'telesales', ] df[df.Title.str.contains('payable$', case=False)].Title.value_counts().to_frame().T ###Output _____no_output_____ ###Markdown Functions occur as part of a role title in the following ways:* Head of* Teacher of* Director ofCommon modifiers include Deputy, Assistant or InterimOtherwise they can be stuck on the end of a role title.Director and Teacher are both in the list of role titles; the 'of' just flips the ordere.g.* Marketing Director == Director of Marketing* Teacher of English == English TeacherBut "Finance Head" sounds funny... ###Code df[df.Title.str.lower().str.contains('(?:' + '|'.join(functions) + ')$')].Title.value_counts().to_frame().T df[df.Title.str.contains('(?:head|teacher|director) of ', case=False)].Title.value_counts().to_frame().T ###Output _____no_output_____ ###Markdown Head also makes sense without the 'of' as a seniority modifier ###Code df[df.Title.str.contains(r'head\b [^o]', case=False)].Title.value_counts().to_frame().head(30).T ###Output _____no_output_____ ###Markdown We can sometimes end in Head.Look at "Assistant to Head" ###Code df[df.Title.str.contains(r'\bhead$', case=False)].Title.value_counts().to_frame().head(30).T ###Output _____no_output_____ ###Markdown 'Of' seems like a general rule: ` of ` is the same as ` ` (except for head of)e.g. Manager of Marine Equipment -> Marine Equipment Manager ###Code df[df.Title.str.contains(r'\bof\b', case=False)].Title.value_counts().to_frame().head(100).T ###Output _____no_output_____ ###Markdown What about 'to'?There are exceptions like 'Business to Business' or 'Door to Door'But ` to ` it's generally the first role that matters:* PA to Director* PA to CEO* Clerk to Governors ###Code df[df.Title.str.contains(r'\bto\b', case=False)].Title.value_counts().to_frame().head(30).T df[df.Title.str.contains(r'\bMD\b', case=False)].Title.value_counts().to_frame().head(30).T ###Output _____no_output_____ ###Markdown Let's now look for second order role titles ###Code def expand_mapping(df, source_col, dest_col, mapping): df = df.copy() df[dest_col] = df[source_col] for source, target in mapping.items(): df[dest_col] = df[dest_col].str.replace(fr'\b{source}\b', target) return df %time df = expand_mapping(df, 'Title', 'expanded_title', acronyms) df[df.Title.str.contains('(?:RGN|PA)')][['Title', 'expanded_title']] def extract_from_ending(series, role_words, n): return ( series .str.lower() .str.extractall('(' + (r'[\w\d*]+ ' * n) + '(?:' + '|'.join(role_words) + r')\b)')[0] .value_counts() .to_frame() ) two_title_words = extract_from_ending(df.expanded_title, role_words, 1) def examine(term): return df[df.expanded_title.str.contains(rf'{term}\b', case=False)].expanded_title.value_counts().to_frame().T examine('ing manager') two_title_words.T ###Output _____no_output_____ ###Markdown This heuristic seems to work well *except* when it's part of a longer string (or when we have seniority in the title, if we consider that separate) ###Code [ 'account manager', 'project manager', 'design engineer', 'recruitment consultant', 'development manager', # often part of business development manager #'general nurse', # almost always part of registered general nurse 'team leader', 'business analyst', 'software engineer', 'web developer', 'home manager', 'sales executive', 'personal assistant', 'staff nurse', 'marketing manager', # 'health nurse', # almost always part of mental health nurse 'management accountant', 'quantity surveyor', 'social worker', 'software developer', 'maintenance engineer', 'support worker', 'java developer', 'finance manager', 'general manager', 'sous chef', 'net developer', 'service engineer', 'project engineer', 'operations manager', 'marketing executive', 'service advisor', 'teaching assistant', 'sales manager', 'field sales', 'care assistant', 'accounts assistant', # notice accounts vs account 'account executive', 'assistant manager', 'registered nurse', 'database administrator', 'store manager', 'financial controller', 'systems engineer', 'credit controller', 'business partner', 'account director', 'deputy manager', 'quality engineer', 'mechanical engineer', 'primary teacher', 'php developer', # 'head chef', # seniority: head ... 'development executive', 'internal sales', 'technical support', 'product manager', 'financial accountant', 'purchase ledger', 'c developer', 'it support', 'travel consultant', 'service manager', 'area sales', 'team manager', #'line support', # almost always 'first line support' or '2nd line support' or '3rd line support' 'site manager', 'test engineer', 'hr manager', 'branch manager', 'hr advisor', 'legal secretary', 'process engineer', 'systems administrator', 'electrical engineer', 'data analyst', 'services manager', #'graduate sales', # seniority 'care worker', 'application support', 'test analyst', 'development engineer', 'business manager', 'cleaning operative', 'contracts manager', 'telesales executive', 'english teacher', 'office manager', 'area manager', 'assistant accountant', 'financial analyst', 'commercial manager', 'restaurant manager', 'finance analyst', 'technical sales', 'car sales', 'occupational therapist', 'programme manager', 'aspnet developer', 'quality manager', 'cnc miller', 'sales engineer', 'manufacturing engineer', 'research associate', 'sales administrator', 'hr administrator', 'audit manager', #'senior sales', # seniority 'security officer', 'production manager', # 'end developer', # always part of front end developer or back end developer 'nursery nurse', 'technical manager', 'marketing assistant', 'web designer', 'media sales', 'network engineer', 'cnc turner', 'finance assistant', 'science teacher', 'maths teacher', 'care manager', 'audit senior', 'structural engineer', 'payroll administrator', 'infrastructure engineer', 'warehouse operative', 'estate agent', # *mostly* real estate agent 'category manager', 'technical consultant', 'internal auditor', 'pastry chef', 'vehicle technician', 'delivery manager', 'account handler', 'brand manager', 'lettings negotiator', 'credit control', 'it sales', 'project coordinator', 'risk analyst', 'systems analyst', 'commis chef', 'sales support', 'electronics engineer', 'engineering manager', 'communications manager', 'business sales', 'qualified teacher', 'property manager', 'regional sales', 'relationship manager', 'sales consultant', 'risk manager', 'design manager', 'facilities manager', 'office administrator', 'tax manager', 'administration assistant', 'graphic designer', 'application developer', 'planning manager', 'supply teacher', 'production operative', #'senior buyer', # seniority 'claims handler', 'registered manager', 'executive assistant', 'maintenance technician', 'sales advisor', 'admin assistant', 'sql developer', 'hgv technician', 'compliance manager', 'gas engineer', 'procurement manager', 'centre manager', 'healthcare assistant', 'hr officer', 'unit manager', 'recruitment manager', 'solutions architect', 'associate director', 'asbestos surveyor', 'cnc programmer', 'cnc machinist', 'medical sales', 'sales negotiator', 'mechanical fitter', 'customer support', 'production engineer', 'pensions administrator', 'building surveyor', #'1 driver', # e.g. Class 1 Driver 'civil engineer', 'contract manager', 'solution architect', 'business support', 'regional manager', 'research fellow', 'service administrator', 'dental nurse', 'desk analyst', 'commissioning engineer', 'shift manager', 'chief executive', 'care coordinator', 'desktop support', #'2 teacher', # key stage 2 teacher/ year 2 teacher 'sharepoint developer', 'learning support', 'senior manager', 'technical architect', 'catering assistant', 'senior estimator', 'quality inspector', 'sales ledger', 'senior developer', 'accounts senior', 'property solicitor', 'demi chef', 'service representative', 'trainee sales', 'senior support', 'service assistant', 'accounts administrator', 'digital designer', 'commercial analyst', 'development officer', 'hr assistant', 'maintenance electrician', 'bi developer', 'finance director', 'android developer', 'administrative assistant', 'ios developer', 'project support', 'security engineer', 'bid manager', 'reporting analyst', 'marketing coordinator', 'inside sales', 'assurance manager', 'accounts manager', 'site engineer', 'project accountant', 'campaign manager', #'senior practitioner', # senior 'fundraising manager'] seniority_words = [ 'deputy', 'senior', 'graduate', 'trainee', 'lead', 'head', 'interim', 'junior', #'band 6', # occupational therapist #'stage 1', # teacher #'stage 2', # teacher ] three_title_words = extract_from_ending(df.expanded_title, role_words, 2) three_title_words.T ###Output _____no_output_____ ###Markdown At 5 words it's mostly different things put together.While there are some exceptions they are quite specific and it's fine to ignore these* "Personal Assistant to ..."* Speech and Language Therapist* Financial Planning and Analysis Manager* Sales and Business Development Manager* Mechanical Building Services Design Engineer ###Code extract_from_ending(df.expanded_title, role_words, 3).T ###Output _____no_output_____ ###Markdown Can we find structure using parse tree?Unfortunately the way language is used in job ad titles is quite different to what SpaCy was trained on and so the parse trees tend to be wrong.This is partly why the NER went so badly for extracting role titles. I'm better off crafting my own rules. ###Code import spacy from spacy import displacy ###Output _____no_output_____ ###Markdown Download the model if necessary ###Code #!python -m spacy download en_core_web_lg nlp = spacy.load('en_core_web_lg') ls = list(nlp.pipe(list(sorted(df.expanded_title, key=len, reverse=True)[:100]))) displacy.render(ls[0]) displacy.render(ls[2]) displacy.render(ls[3]) ###Output _____no_output_____
third/orm/SQLAlchemy_vs_peewee.ipynb
###Markdown SQLAlchemy vs peewee SQLAlchemy ###Code from sqlalchemy import * from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker engine = create_engine('sqlite:///sqlalchemy.db', echo=False) Base = declarative_base() Session = sessionmaker(bind=engine) session = Session() class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(40)) age = Column(Integer) password = Column(String) Base.metadata.create_all(engine) def create_user(): session.add(User(name='Mary', age=30, password='secret')) session.commit() %timeit create_user() %timeit session.query(User).first() session.close() ###Output 116 ms ± 49.3 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 472 µs ± 8.89 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) ###Markdown peewee ###Code from peewee import * db = SqliteDatabase('peewee.db') class User(Model): name = CharField(max_length=40) age = IntegerField() password = CharField() class Meta: database = db User.create_table(fail_silently=True) %timeit User.create(name='Mary', age=30, password='secret') %timeit User.select()[0] ###Output 90.6 ms ± 24.2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 269 µs ± 17.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) ###Markdown Comparison ###Code # from __future__ import unicode_literals, division sqlalchemy_line_count, peewee_line_count = 31, 20 print( 'Code length: peewee is %.2f× shorter than SQLAlchemy' % (sqlalchemy_line_count / peewee_line_count)) print( 'SQL INSERT : peewee is %.2f× faster than SQLAlchemy' % (116 / 90.6)) print( 'SQL SELECT : peewee is %.2f× faster than SQLAlchemy' % (472 / 269)) ###Output Code length: peewee is 1.55× shorter than SQLAlchemy SQL INSERT : peewee is 1.28× faster than SQLAlchemy SQL SELECT : peewee is 1.75× faster than SQLAlchemy
statistical_word.ipynb
###Markdown answer 可以由ocr直接产生 ###Code dataset def tanswer(dataset): sae = 0 # single answer and existing in ocr san = 0 msae = 0 man = 0 mae = 0 for i in range(len(dataset) - 1): signal_answer_list = dataset[i+1]["valid_answers"] signal_answer_list = [an.strip() for an in signal_answer_list] dd = dict.fromkeys(signal_answer_list,0) ocr_tokens = [ocr.lower().strip() for ocr in dataset[i+1]["ocr_tokens"]] answers = dd.keys() if len(answers) == 1: if answers[0] in ocr_tokens: sae += 1 else: # print(len(dd.keys()), dd, dataset[i+1]["ocr_tokens"]) san += 1 else: na = True for i in range(len(answers)): answer_words = answers[i].split(" ") if len(answer_words) == 1: if answer_words[0] in ocr_tokens: na = False msae += 1 break else: all = True for a in answer_words: if a not in ocr_tokens: all = False break if all: mae += 1 # print(answers[i], ocr_tokens) na = False break if na: man += 1 print("total: %d", len(dataset[1:])) print("single anser existing:%d, rates:%f"%(sae,float(sae)/len(dataset[1:]))) print("multiple single answer existing:%d, rates:%f"%(msae,float(msae)/len(dataset[1:]))) print("multiple words answer existing:%d, rates:%f"%(mae,float(mae)/len(dataset[1:]))) print("multiple words answer no existing:%d, rates:%f"%(man,float(man)/len(dataset[1:]))) print("single answer no exsiting:%d, rates:%f"%(san,float(san)/len(dataset[1:]))) print("no answer :%d, rates:%f"%(man + san,float(man + san)/len(dataset[1:]))) tanswer(dataset) ###Output ('total: %d', 34602) single anser existing:3455, rates:0.099850 multiple single answer existing:8677, rates:0.250766 multiple words answer existing:4372, rates:0.126351 multiple words answer no existing:13667, rates:0.394977 single answer no exsiting:4431, rates:0.128056 no answer :18098, rates:0.523033
acc-models-ps-master/scenarios/sftpro/5_phase_rotation/notebooks/MTE_rotation_tracking.ipynb
###Markdown MTE phase rotation ###Code # instances along the cycle at which the phase space will be evaluated dt = 5 times = np.arange(800, 840, dt) # number of turns to be tracked turns = 2000 # flag to perform matching match = 0 # flag to perform tracking ptc_track = 1 MTE_table = pnd.read_pickle('./MTE_rotation_table.pkl') phase_space = pnd.read_pickle('./MTE_rotation_phase_space.pkl') # phase_space[phase_space.columns[1:8]] = np.nan # phase_space[phase_space.columns[9:]] = np.nan # x = ['X' + str(t) for t in times] # px = ['PX' + str(t) for t in times] # cols = x + px # phase_space = pnd.DataFrame(columns = cols, index = np.arange(0, 40 * 2000, 1)) circuit_names = MTE_table.columns[:-5] if 0: for t in times: # number of particles to be tracked n_p = 28 # distance between phase space trajectories in mm and mrad dx = 1 dpx = 0.11 print('Cycle time ' + str(t) + ' ms') print('________________________________________________\n') # Setting up the MAD-X environment madx = Madx() madx.chdir('/eos/user/a/ahuschau/www/test-acc-models/repository/PS/2019/scenarios/SFTPRO/4_horizontal_splitting/') # madx = Madx(stdout=False) madx.command.beam('PARTICLE=PROTON, PC = 14.;') madx.input('BRHO := BEAM->PC * 3.3356;') madx.call('../../../PS_MU.seq') madx.call('../../../PS_SS.seq') madx.call('../../../PS.str') madx.call('../3_resonance_crossing/PS_RC_SFTPRO.str') # madx.call('PS_HS_SFTPRO.madx') madx.call('../../../matching_macros.ptc') # defining the strenghts of the MTE elements for c in circuit_names: madx.input(c + ' = ' + str(MTE_table[c].loc[t]) + ';') # define LEQ settings for k in ['kd', 'kf']: madx.input(k + ' = ' + str(MTE_table[k].loc[t]) + ';') # redefining the horizontal tune Qx = MTE_table['Qx_input'].loc[t] - 6 madx.input('Qx := ' + str(np.round(Qx, 6)) + ';' ) madx.input('Qy := 0.29826;') if match: # update LEQ settings based on matching results of previous time step for k in ['kd', 'kf']: madx.input(k + ' = ' + str(MTE_table[k].loc[t-dt]) + ';') print('\n________________________________________________') print('Matching of the horizontal tune with the LEQ...') print('________________________________________________\n') madx.command.use(sequence = 'PS') madx.command.match('use_macro;') madx.command.vary('name = kf, step = 1.0e-6;') madx.command.vary('name = kd, step = 1.0e-6;') madx.input('use_macro, name = ptc_twiss_tune_macro;') madx.input('constraint, expr = table(ptc_twiss_summary,Q1) = Qx;') madx.input('constraint, expr = table(ptc_twiss_summary,Q2) = Qy;') madx.input('jacobian, calls=50000, bisec=3, tolerance=1.0E-21;') madx.input('ENDMATCH;') # fill the MTE table with the matching results MTE_table['Qx'].loc[t] = madx.table['ptc_twiss_summary'].Q1 MTE_table['Qy'].loc[t] = madx.table['ptc_twiss_summary'].Q2 MTE_table['kd'].loc[t] = madx.globals['kd'] MTE_table['kf'].loc[t] = madx.globals['kf'] if ptc_track: print('\n________________________________________________') print('Tracking with PTC...') print('________________________________________________\n') madx.command.use(sequence = 'PS') madx.command.ptc_create_universe() madx.command.ptc_create_layout('time=false, model=2, exact=true, method=6, nst=5;') if t == 800: dx = 1.5 n_p = 40 x = np.arange(dx, (n_p + 1) * dx, dx) px = x * 0.0 else: x = np.arange(dx, (n_p + 1) * dx, dx) px = np.arange(dpx, (n_p + 1) * dpx, dpx) for i,j in enumerate(x): madx.input('PTC_START, x=' + str(j*1e-3) + ', px=' + str(px[i]*1e-3) + ', y=0.0, py=0.0, t=0.0, pt=0.0;') madx.command.ptc_track('icase=4, turns=' + str(turns) + ', element_by_element;') madx.command.ptc_track_end() madx.command.ptc_end() # identify all output tables of ptc_track tables = [table for table in madx.table.keys() if 'obs' in table] # arange all particle coordinates in two vectors for X and PX X = np.empty(0) PX = np.empty(0) for i in np.arange(0, len(tables), 1): track = madx.table[tables[i]] X = np.append(X, track.x) PX = np.append(PX, track.px) try: phase_space['X' + str(t)].iloc[:len(X)] = X*1e3 phase_space['PX' + str(t)].iloc[:len(X)] = PX*1e3 except ValueError: phase_space['X' + str(t)] = X[:n_p * turns]*1e3 phase_space['PX' + str(t)] = PX[:n_p * turns]*1e3 phase_space.to_pickle('./MTE_rotation_phase_space.pkl') MTE_table.to_pickle('./MTE_rotation_table.pkl') ###Output _____no_output_____ ###Markdown Create Bokeh plot ###Code from bokeh.plotting import figure, output_file, output_notebook, show, save, ColumnDataSource from bokeh.models import Legend, LinearAxis, Range1d, CustomJS, Slider, Span from bokeh.layouts import row, column, gridplot t0 = str(times[0]) tend = str(times[-1]) data = phase_space data_visible = data[['X' + t0, 'PX' + t0]] data_visible.rename(columns={'X' + t0: 'X', 'PX' + t0: 'PX'}, inplace = True) source_available = ColumnDataSource(data) source_visible = ColumnDataSource(data_visible) MTE_elements = pnd.read_pickle('../../4_horizontal_splitting/notebooks/Strengths_of_MTE_elements.pkl') f = figure(plot_width=450, plot_height=400, x_axis_label='x [mm]', y_axis_label="x' [mrad]" , x_range = Range1d(-65, 65, bounds="auto"), y_range = Range1d(-4.5, 4.5, bounds="auto"), tools="box_zoom, pan, reset", active_drag = 'box_zoom') f.axis.major_label_text_font = 'times' f.axis.axis_label_text_font = 'times' f.axis.axis_label_text_font_style = 'normal' f.outline_line_color = 'black' f1 = figure(plot_width=500, plot_height=400, x_axis_label='Cycle time [ms]', y_axis_label="Current [A]" , x_range = Range1d(700, 840, bounds="auto"), y_range = Range1d(-500, 600, bounds="auto"), tools="box_zoom, pan, reset", active_drag = 'box_zoom', toolbar_location="right") f1.axis.major_label_text_font = 'times' f1.axis.axis_label_text_font = 'times' f1.axis.axis_label_text_font_style = 'normal' f1.outline_line_color = 'black' # Adding the second y axis to the plot. f1.extra_y_ranges = {"Qx": Range1d(start = 6.245, end = 6.3)} f1.add_layout(LinearAxis(y_range_name="Qx", axis_label='Qx', axis_label_text_font = 'times', axis_label_text_font_style = 'normal', major_label_text_font = 'times'), 'right') f.scatter('X', 'PX', source = source_visible, marker = "circle", size = 0.1, color = 'black') col = ['black', 'gray', 'firebrick', 'royalblue', 'darkviolet', 'cadetblue'] legend_items = [] for i, circuit in enumerate(MTE_elements.columns[:6]): if circuit == 'Qx': c = f1.line(MTE_elements.index, MTE_elements[circuit], color = col[i], muted_color = col[i], muted_alpha = 0.2, y_range_name="Qx", line_dash = 'dashed') legend_items.append((circuit, [c])) else: c = f1.line(MTE_elements.index, MTE_elements[circuit], color = col[i], muted_color = col[i], muted_alpha = 0.2) legend_items.append((circuit, [c])) time_slider = Slider(title = "Cycle time [ms]", start = int(t0), end = int(tend), value = int(t0), step=5) vline = Span(location = time_slider.value, dimension = 'height', line_color = 'black', line_dash = 'dashed', line_width = 1) f1.renderers.extend([vline]) time_slider.callback = CustomJS( args=dict(source_visible = source_visible, source_available = source_available, span = vline), code = """ var t = cb_obj.value; // Get the data from the data sources var data_visible = source_visible.data; var data_available = source_available.data; // Change y-axis data according to the selected value data_visible['X'] = data_available['X' + t.toString()]; data_visible['PX'] = data_available['PX' + t.toString()]; span.location = t; // Update the plot source_visible.change.emit(); """) layout = column(f, time_slider) # grid = gridplot([[time_slider], [f], [f1]]) grid = gridplot([[f, f1], [time_slider], []]) legend = Legend(items = legend_items, location="bottom_center") legend.orientation = "horizontal" f1.add_layout(legend, 'below') f1.legend.label_text_font_size = '9pt' f1.legend.label_text_font = 'times' legend.click_policy="mute" # output_file('slider.html') # output_notebook() # show(grid) output_file('../PS_PR_SFTPRO_2.html', mode="inline") save(grid) ###Output /cvmfs/sft.cern.ch/lcg/views/LCG_96/x86_64-centos7-gcc8-opt/lib/python2.7/site-packages/pandas/core/frame.py:4025: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy return super(DataFrame, self).rename(**kwargs)
pynq_composable/notebooks/custom_pipeline/04_modify_pipeline.ipynb
###Markdown Modify Composable Pipeline----Please use Jupyter labs http://&lt;board_ip_address&gt;/lab for this notebook.This notebook shows your how modify the composable pipeline using the available methods Aims* Explore methods to modify the composable pipeline Table of Contents* [Download Composable Overlay](download)* [Start HDMI Video](start_hdmi)* [Let us Compose](compose)* [Replace IP object](replace)* [Remove IP object](remove)* [Insert IP objects](insert)* [Stop HDMI Video](stop_hdmi)* [Conclusion](conclusion)---- Revision History* v1.0 | 30 March 2021 | First notebook revision.* v1.1 | 11 August 2021 | Update notebook to composable overlay API 1.0.0---- Download Composable Overlay Import the pynq video libraries as well as Composable class and the drivers for the IP.Download the Composable Overlay using `pynq.Overlay` and grab a handler to the `composable` hierarchy ###Code from pynq import Overlay from pynq.lib.video import * from pynq_composable import * ol = Overlay("cv_dfx_4_pr.bit") cpipe = ol.composable ###Output _____no_output_____ ###Markdown Start HDMI Video Get `VideoStream` object and start video Warning:Failure to connect HDMI cables to a valid video source and screen may cause the notebook to hang ###Code video = VideoStream(ol) video.start() ###Output _____no_output_____ ###Markdown Let us Compose First we need to grab handlers to the IP objects to simplify the notebook ###Code filter2d = cpipe.filter2d_accel rgb2gray = cpipe.rgb2gray_accel gray2rgb = cpipe.gray2rgb_accel rgb2hsv = cpipe.rgb2hsv_accel colorthr = cpipe.colorthresholding_accel lut = cpipe.lut_accel ###Output _____no_output_____ ###Markdown We will start with a simple pipeline that converts from [RGB color space]((https://en.wikipedia.org/wiki/RGB_color_space)) to [Grayscale color space](https://en.wikipedia.org/wiki/Grayscale) ###Code video_pipeline = [cpipe.hdmi_source_in, rgb2gray, cpipe.hdmi_source_out] cpipe.compose(video_pipeline) cpipe.graph ###Output _____no_output_____ ###Markdown Replace IP object We can replace the `rgb2gray` IP object with the `rgb2hsv` easily using the `.replace` method. This method takes a tuple with the IP object to be replaced and the new IP object. ###Code cpipe.replace? cpipe.replace((rgb2gray, rgb2hsv)) cpipe.graph ###Output _____no_output_____ ###Markdown Remove IP object To visualize the RGB color space we can simply remove the `rgb2hsv` IP object from the composable pipeline using the `.remove` method. This method gets a list of IP object to be removed as argument ###Code cpipe.remove? cpipe.remove([rgb2hsv]) cpipe.graph ###Output _____no_output_____ ###Markdown Insert IP objects The `.insert` method allows you to insert an IP object or list of IP object into a given index within the current pipeline ###Code cpipe.insert? cpipe.insert(([filter2d, lut], 1)) cpipe.graph ###Output _____no_output_____ ###Markdown Change default kernel type on the filter2d ###Code filter2d.kernel_type = xvF2d.sharpen ###Output _____no_output_____ ###Markdown Insert the gray2rgb IP after the LUT IP ###Code cpipe.insert(([gray2rgb], 3)) cpipe.graph ###Output _____no_output_____ ###Markdown Stop HDMI Video Finally stop the HDMI video pipeline Warning:Failure to stop the HDMI Video may hang the board when trying to download another bitstream onto the FPGA ###Code video.stop() ol.free() ###Output _____no_output_____
Instalacion.ipynb
###Markdown InstalaciónEn el siguiente documento se hace una breve descripción de los programas que se utilizarán durante el curso. Para no afectar los sistemas se recomienda instalar un manejador de ambientes virtuales como los es [Anaconda](https://www.anaconda.com/). La intención de utilizar este software es tener acceso a las herramientas y paqueterías de los lenguajes de programación [Python](https://www.python.org/) y [R](https://www.r-project.org/). AnacondaEn en esta sección se da una descripción de como instalar el manejador de [Anaconda](https://www.anaconda.com/) en los principales sistemas operativos, para poder hacer una instalación de la paquetería es necesario contar con los permisos adecuados (ser usuario * "administrador" *)Todos los links y las instruciones se hacen para la instalación de *Miniconda* (una versión ligera de *Anaconda*, las instrucciones para la instalación de *Anaconda* se pueden considerar "iguales" a las descritas aquí). Linux * Se descarga el archivo con el scrip para su instalación de este [link](https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh) * Se abre una terminal se da permisos de ejecución al archivo descargado. Dentro de la terminal en el directorio donde se encuentre el archivo descargado se ejecuta el siguiente comando `bash Miniconda3-latest-Linux-x86_64.sh` * Se siguen las instruccione que aparecen en la pantalla. Si no se esta seguro de los ajustes se recomienda aceptar los que estan definidos por defecto. Para que los cambios tengan efecto es necesario cerrar la terminal y abrir una nueva. * Para verificar que la instalación ha salido correctamente se abre una terinal y se ejecuta el comando `conda list`, una lista con la paqueteria instalada se desplegara si la instalación fue correcta. MacOSLas siguientes instrucciones se extraen de la documentación de *Anaconda* en este [link](https://conda.io/projects/conda/en/latest/user-guide/install/macos.html). * Se descarga el instalador de *Anaconda* para macOS de este [link](https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.pkg). * Se hace doble click en el archivo descargado (.pkg) * Seguir las instrucciones del instalador. Si no se esta seguro de los ajustes acepte los que vienen por defecto, estos se pueden modificar después. * Para que los cambios tengan efecto se tiene que reabrir la ventana de la terminal. * Para verificar la instalación se abre una ventana de terminal o un línea de comando de Anaconda y se ejecuta el comando `conda list`. Una lista con los paquetes instalados aparecera si la instalación fue correcta. WindowsLas siguientes instrucciones se extraen de la documentación de *Anaconda*. * Se descarga el instalador de *Anaconda* para windows de este [link](https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe) * Se hace dobleclick en el instalador para su ejecución (.exe). * Seguir las instrucciones que se presentan en la pantalla. * Para probar su instalación desde el menú **START** abrir la línea de comando de Anaconda y ejecutar `conda list`. Una lista con los paquetes instalados aparecera si la instalación fue correcta. Colab Google [Colaboratory (Colab)](https://www.youtube.com/watch?v=inN8seMm7UI) nos permite ejecutar código a través de maquinas virtuales generadas en servidores de Google. La interface para la ejecución del código se hace a través de un *notebook*. Esta interfaz nos permite instalar *Anaconda* para poder hacer uso de las librerias que se pueden instalar con conda. Para su instalación es necesario ejecutar el siguiente código ###Code !wget -c https://repo.continuum.io/archive/Anaconda3-5.1.0-Linux-x86_64.sh !chmod +x Anaconda3-5.1.0-Linux-x86_64.sh !bash ./Anaconda3-5.1.0-Linux-x86_64.sh -b -f -p usr/local import sys sys.path.append('/usr/local/lib/python3.6/site-packages/') ###Output _____no_output_____ ###Markdown Uso de CondaUna vez instalado *minianaconda* vamos a describir como generar un ambiente virtual, un ambiente virtual nos permite instalar paquetes dentro de este sin que afecten al sistema en general. Dentro de una terminal ejecutamos el comando `conda create --name analisis_datos` el ambiente creado tendrá por nombre *análisis_datos* y para acceder a este dentro de una terminal `conda activate analisis_datos`. Ya dentro del ambiente virtual podemos instalar la paquetería necesaria para este curso. Jupyter- Lab[Jupyter-lab](https://jupyter.org/) es una interfaz de notebook basado en *ipyhon* que nos permite ejecutar comandos como si fuese la terminal de *Python* y presentar la salida de una forma más amigable para el usuario. Este notebook utiliza [*Markdown*](https://en.wikipedia.org/wiki/Markdown) para generar texto que sea de fácil lectura y las funcionalidades de ipython para generar las visualizaciones, ninguna de estas dos propiedades se pueden hacer directamente desde la terminal de Python. Por las atribuciones antes descritas durante el curso utilizaremos esta herramienta. Para su instalación dentro del ambiente virtual que deseamos se ejecuta `conda install jupyterlab`. Una vez instalado para ejecutarlo dentro del ambiente virtual ejecutamos el comando `jupyter-lab` este generará un servicio web desde el cual podremos acceder a la interfaz para generar los notebooks. * nota: El directorio, donde se ejecute el comando `jupyter-lab`, se toma como la raiz en donde la interface *jupyter-lab* guardará los notebooks y los scripts que se generen durante la sesión de la interface. PandasPara hacer el análisis de los datos y extraer información relevante, es necesario poder extraer, transformar y almacenar (**ETL** (*extract, transform and load*)) los datos para su manipulación. La idea de este curso es que se aprendan las herramientas que ofrece *Python* para tal propósito. Las formas más comunes para almacenar la información es a través de tablas, esto lo podemos ver en los formatos donde comúnmente se almacenan los datos, como ejemplos de éstos tenemos las hojas de cálculo (*Excel*) o las bases de datos (*MySQL*, *Oracle*, *DB2*, etc). La biblioteca *[Pandas](https://pandas.pydata.org/)* nos permite hacer un manejo de los datos en forma tabular, los objetos y funciones definidas dentro de la biblioteca serán las herramientas principales que se utilizan a lo largo del curso.Para la instalación de esta biblioteca utilizaremos anaconda dentro de nuestro ambiente virtual se ejecuta el siguiente comando:`conda install pandas`. Para verificar la instalación y la versión instalada dentro de la IDE de python o un notebook en jupyter se ejecutan los comandos `import pandas as pd` y `pd.__version__`, si no se muestra ningun error la instalación fue realizada de forma correcta. ###Code import pandas as pd print(pd.__version__) ###Output 1.1.0
API/java/example/TEGprocess.ipynb
###Markdown Test NeqSim process rest APIThis notebook will test the NeqSim Rest API for a imple process. Commands to build:mvn compile quarkus:dev: How to use NeqSim API from a Python scriptThe follwoing code demonstrates how to use the TEG process API from a Python script. ###Code import requests import json import requests import pandas as pd data = { "feedGasFlowRate": 4.65, "feedGasTemperature": 25.0, "feedGasPressure": 70.0, "absorberFeedGasTemperature": 35.0, "absorberFeedGasPressure": 139.0, "leanTEGFlowRate": 5500.0, "leanTEGTemperature": 48.5, "flashDrumPressure": 4.8, "reboilerPressure": 1.2, "reboilerTemperature": 197.5, "condenserTemperature": 80.0, "condenserPressure": 1.2, 'regenerationGasCoolerTemperature': 47.0, "strippingGasRate": 180.0, "strippingGasFeedTemperature": 78.3, "bufferTankTemperatureTEG": 90.5, 'hotTEGpumpPressure': 3.0, 'finefilterdeltaP': 0.0, "numberOfStagesTEGabsorber": 4, "stageEfficiencyTEGabsorber": 0.7, "numberOfStagesStripper": 2, "stageEfficiencyStripper": 1, "UAvalueLeanRichTEGHeatExchanger": 8316.0, "UAvalueLeanRichTEGHeatExchanger2": 2224.0 } headers = {'Content-type': 'application/json', 'Accept': 'application/json'} params={'key':''} response = requests.post('http://localhost:8080/ML/dehydTEGsim', data=json.dumps(data), params=params, headers=headers) response.json().items() ###Output _____no_output_____
Linear Regression - Crew Prediction.ipynb
###Markdown Import libraries ###Code from pyspark.sql import SparkSession spark = SparkSession.builder.appName("Linear Regression Model").getOrCreate() from pyspark.ml.regression import LinearRegression from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import IndexToString, StringIndexer ###Output _____no_output_____ ###Markdown Load and verify data ###Code data = spark.read.csv('resources/cruise_ship_info.csv',header = True, inferSchema = True) data.printSchema() data.head(3) for item in data.head(1)[0]: print(item) data.columns data.groupBy('Cruise_line').count().show() data.groupBy('Ship_name').count().show() ###Output +------------+-----+ | Ship_name|count| +------------+-----+ | Virgo| 1| | Fortuna| 1| | Shadow| 1| | Empress| 1| | Wind| 2| | Paradise| 1| | Surf| 1| | Wonder| 1| | Magic| 1| | Symphony| 1| | Sinfonia| 1| | Inspiration| 1| | Millenium| 1| | Solstice| 1| |PrideofAloha| 1| | Majesty| 2| | Ventura| 1| | Romantica| 1| | Spirit| 4| | Oasis| 1| +------------+-----+ only showing top 20 rows ###Markdown Data Preprocessing ###Code indexer = StringIndexer(inputCols=["Ship_name","Cruise_line"], outputCols=["Ship_name_Index","Cruise_line_Index"]) indexed = indexer.fit(data).transform(data) indexed.show() indexed.printSchema() indexed.columns assembler = VectorAssembler(inputCols =['Age','Tonnage','passengers','length', 'cabins', 'passenger_density', 'Ship_name_Index', 'Cruise_line_Index'], outputCol='features') output = assembler.transform(indexed) output.printSchema() print(output.features) output.head(1) final_data = output.select('features','crew') final_data.show() ###Output +--------------------+----+ | features|crew| +--------------------+----+ |[6.0,30.276999999...|3.55| |[6.0,30.276999999...|3.55| |[26.0,47.262,14.8...| 6.7| |[11.0,110.0,29.74...|19.1| |[17.0,101.353,26....|10.0| |[22.0,70.367,20.5...| 9.2| |[15.0,70.367,20.5...| 9.2| |[23.0,70.367,20.5...| 9.2| |[19.0,70.367,20.5...| 9.2| |[6.0,110.23899999...|11.5| |[10.0,110.0,29.74...|11.6| |[28.0,46.052,14.5...| 6.6| |[18.0,70.367,20.5...| 9.2| |[17.0,70.367,20.5...| 9.2| |[11.0,86.0,21.24,...| 9.3| |[8.0,110.0,29.74,...|11.6| |[9.0,88.5,21.24,9...|10.3| |[15.0,70.367,20.5...| 9.2| |[12.0,88.5,21.24,...| 9.3| |[20.0,70.367,20.5...| 9.2| +--------------------+----+ only showing top 20 rows ###Markdown Train Test split ###Code train_data,test_data = final_data.randomSplit([0.7,0.3]) train_data.describe().show() test_data.describe().show() ###Output +-------+------------------+ |summary| crew| +-------+------------------+ | count| 49| | mean| 7.660204081632652| | stddev|3.4570667297796907| | min| 0.88| | max| 21.0| +-------+------------------+ ###Markdown Build Model ###Code regressor = LinearRegression(labelCol='crew') model = regressor.fit(train_data) ###Output _____no_output_____ ###Markdown Evaluate Model ###Code pred_data = model.evaluate(test_data) pred_data.residuals.show() pred_data.rootMeanSquaredError pred_data.r2 pred_data.meanSquaredError pred_data.meanAbsoluteError from pyspark.sql import functions as f data.select(f.corr('crew','passengers')).show() data.select(f.corr('crew','cabins')).show() unlabeled_data = test_data.select('features') test_predictions = model.transform(unlabeled_data) test_predictions.show() ###Output +--------------------+------------------+ | features| prediction| +--------------------+------------------+ |[4.0,220.0,54.0,1...|20.595915926382975| |[5.0,86.0,21.04,9...| 9.260890019783105| |[5.0,115.0,35.74,...|11.675118708493574| |[5.0,122.0,28.5,1...| 6.863881770034197| |[9.0,59.058,17.0,...| 7.397522627394963| |[9.0,88.5,21.24,9...| 9.596830046526891| |[9.0,105.0,27.2,8...|11.078047934903061| |[9.0,113.0,26.74,...|11.298007777661951| |[10.0,91.62700000...| 9.284874902917485| |[11.0,58.6,15.66,...| 7.296078241589184| |[11.0,85.0,18.48,...| 8.812971761600613| |[11.0,90.09,25.01...| 9.086191741339752| |[12.0,77.104,20.0...| 8.73593398089814| |[12.0,138.0,31.14...|12.980054021311688| |[13.0,61.0,13.8,7...| 6.576693122198025| |[13.0,63.0,14.4,7...| 6.709660758304139| |[13.0,91.0,20.32,...| 9.20563191430896| |[14.0,76.8,19.6,8...| 8.714766215822314| |[14.0,77.104,20.0...| 8.693427098474773| |[14.0,138.0,31.14...| 12.96944755473286| +--------------------+------------------+ only showing top 20 rows
L08-mlp/code/mlp-pytorch_sigmoid-crossentr.ipynb
###Markdown STAT 453: Deep Learning (Spring 2020) Instructor: Sebastian Raschka ([email protected]) Course website: http://pages.stat.wisc.edu/~sraschka/teaching/stat453-ss2020/ GitHub repository: https://github.com/rasbt/stat453-deep-learning-ss20--- ###Code %load_ext watermark %watermark -a 'Sebastian Raschka' -v -p torch ###Output Sebastian Raschka CPython 3.7.1 IPython 7.12.0 torch 1.4.0 ###Markdown MLP With Different Loss Functions Imports ###Code import matplotlib.pyplot as plt import pandas as pd import torch %matplotlib inline import time import numpy as np from torchvision import datasets from torchvision import transforms from torch.utils.data import DataLoader import torch.nn.functional as F import torch ###Output _____no_output_____ ###Markdown Settings and Dataset ###Code ########################## ### SETTINGS ########################## RANDOM_SEED = 1 BATCH_SIZE = 100 NUM_EPOCHS = 100 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') ########################## ### MNIST DATASET ########################## # Note transforms.ToTensor() scales input images # to 0-1 range train_dataset = datasets.MNIST(root='data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='data', train=False, transform=transforms.ToTensor()) train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False) # Checking the dataset for images, labels in train_loader: print('Image batch dimensions:', images.shape) print('Image label dimensions:', labels.shape) break def to_onehot(y, num_classes): y_onehot = torch.FloatTensor(y.size(0), num_classes) y_onehot.zero_() tmp = y.view(-1, 1).long().to(torch.device('cpu')) y_onehot.scatter_(1, tmp, 1).float() return y_onehot ###Output _____no_output_____ ###Markdown Model ###Code class MlpSigmoidMSE(torch.nn.Module): def __init__(self, num_features, num_hidden, num_classes): super(MlpSigmoidMSE, self).__init__() self.num_classes = num_classes ### 1st hidden layer self.linear_1 = torch.nn.Linear(num_features, num_hidden) self.linear_1.weight.detach().normal_(0.0, 0.1) self.linear_1.bias.detach().zero_() ### Output layer self.linear_out = torch.nn.Linear(num_hidden, num_classes) self.linear_out.weight.detach().normal_(0.0, 0.1) self.linear_out.bias.detach().zero_() def forward(self, x): out = self.linear_1(x) out = torch.sigmoid(out) logits = self.linear_out(out) probas = torch.softmax(logits, dim=1) return logits, probas ################################# ### Model Initialization ################################# torch.manual_seed(RANDOM_SEED) model = MlpSigmoidMSE(num_features=28*28, num_hidden=100, num_classes=10) model = model.to(DEVICE) optimizer = torch.optim.SGD(model.parameters(), lr=0.1) ################################# ### Training ################################# def compute_loss(net, data_loader): curr_loss = 0. with torch.no_grad(): for cnt, (features, targets) in enumerate(data_loader): features = features.view(-1, 28*28).to(DEVICE) targets = targets.to(DEVICE) logits, probas = net.forward(features) loss = F.nll_loss(torch.log(probas), targets) # or better (more numerically stable): # loss = F.cross_entropy(logits, targets) # see # ../../other/pytorch-lossfunc-cheatsheet.md curr_loss += loss return float(curr_loss)/cnt start_time = time.time() minibatch_cost = [] epoch_cost = [] for epoch in range(NUM_EPOCHS): model.train() for batch_idx, (features, targets) in enumerate(train_loader): features = features.view(-1, 28*28).to(DEVICE) targets = targets.to(DEVICE) ### FORWARD AND BACK PROP logits, probas = model(features) #y_onehot = to_onehot(targets, model.num_classes).to(DEVICE) cost = F.nll_loss(torch.log(probas), targets) optimizer.zero_grad() cost.backward() minibatch_cost.append(cost) ### UPDATE MODEL PARAMETERS optimizer.step() ### LOGGING if not batch_idx % 50: print ('Epoch: %03d/%03d | Batch %03d/%03d | Cost: %.4f' %(epoch+1, NUM_EPOCHS, batch_idx, len(train_loader), cost)) cost = compute_loss(model, train_loader) epoch_cost.append(cost) print('Epoch: %03d/%03d Train Cost: %.4f' % ( epoch+1, NUM_EPOCHS, cost)) print('Time elapsed: %.2f min' % ((time.time() - start_time)/60)) print('Total Training Time: %.2f min' % ((time.time() - start_time)/60)) plt.plot(range(len(minibatch_cost)), minibatch_cost) plt.ylabel('Cross Entropy') plt.xlabel('Minibatch') plt.show() plt.plot(range(len(epoch_cost)), epoch_cost) plt.ylabel('Cross Entropy') plt.xlabel('Epoch') plt.show() def compute_accuracy(net, data_loader): correct_pred, num_examples = 0, 0 with torch.no_grad(): for features, targets in data_loader: features = features.view(-1, 28*28).to(DEVICE) targets = targets.to(DEVICE) a1, a2 = net.forward(features) predicted_labels = torch.argmax(a2, 1) num_examples += targets.size(0) correct_pred += (predicted_labels == targets).sum() return correct_pred.float()/num_examples * 100 print('Training Accuracy: %.2f' % compute_accuracy(model, train_loader)) print('Test Accuracy: %.2f' % compute_accuracy(model, test_loader)) ###Output Training Accuracy: 99.00 Test Accuracy: 97.67
week2/week2-prework2.ipynb
###Markdown 【問題1】乱数の作成平均が(-3, 0)、共分散行列が\[\[1.0, 0.8\], \[0.8, 1.0\]\]で表される2次元正規分布による乱数を500個作成してください。 ###Code mean = np.array([-3, 0]) cov = np.array([[1.0, 0.8], [0.8, 1.0]]) num_array_q1 = np.random.multivariate_normal(mean, cov, size=500) ###Output _____no_output_____ ###Markdown 【問題2】散布図による可視化問題1で作成したデータ点を散布図により可視化してください。散布図はmatplotlibのplt.scatter()を使うことで描けます。 ###Code plt.scatter(num_array[:,0], num_array[:,1]) plt.xlabel('x1') plt.ylabel('x2') plt.title('scatter') plt.show(); ###Output _____no_output_____ ###Markdown 【問題3】ヒストグラムによる可視化問題1で作成したデータをヒストグラムにより可視化してください。 ヒストグラムはplt.hist()を使うことで描けます。 ###Code fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(5, 7)) ax1.hist(num_array[:, 0], bins=50) ax2.hist(num_array[:, 1], bins=50) ax1.set_title('histgram of x1') ax2.set_title('histgram of x2') ax1.set_xlabel('x1') ax2.set_xlabel('x2') ax1.set_ylabel('frequency') ax2.set_ylabel('frequency') ax1.set_xlim([-6, 3]) ax2.set_xlim([-6, 3]) plt.tight_layout() plt.show(); ###Output _____no_output_____ ###Markdown 【問題4】データの追加新たに平均が(0, -3)、共分散行列が\[\[1.0, 0.8\], \[0.8, 1.0\]\]で表される2次元正規分布による乱数を500個作成してください。 そして、問題1、4それぞれのデータをひとつの散布図として可視化してください。凡例として問題1のものは0、問題2のものは1を表示してください。 ###Code mean = np.array([0, -3]) cov = np.array([[1.0, 0.8], [0.8, 1.0]]) num_array_q4 = np.random.multivariate_normal(mean, cov, size=500) plt.scatter(num_array_q1[:,0], num_array_q1[:,1], label='0') plt.scatter(num_array_q4[:,0], num_array_q4[:,1], label='1') plt.legend() plt.title('scatter') plt.xlabel('x1') plt.ylabel('x2') plt.show(); ###Output _____no_output_____ ###Markdown 【問題5】データの結合データはまとめておいた方が後々扱いやすいです。 問題1、4で作成したndarrayを 結合 し、(1000, 2)のndarrayとしてください。 結合はnp.concatenate()やnp.vstack()を使うことで行えます。 ###Code np.vstack? #np.concatenate stacked_array = np.concatenate([num_array_q1, num_array_q4], axis=0) stacked_array.shape #np.vstack stacked_array = np.vstack([num_array_q1, num_array_q4]) stacked_array.shape ###Output _____no_output_____ ###Markdown 【問題6】ラベル付けひとまとめになった1000個のデータそれぞれに対して、問題1、4どちらで作成したものなのかを示す ラベル付けを行ってください。 問題1のものには0、問題4のものには1を対応させます。0と1を含むラベルの列を新たに追加し、(1000, 3)のndarrayを作成してください。 機械学習に使用するデータセットはこのような形になっていることが多いです。 ###Code num_array_q1_labeled = np.hstack([num_array_q1, np.zeros((num_array_q1.shape[0],1))]) num_array_q4_labeled = np.hstack([num_array_q4, np.ones((num_array_q4.shape[0],1))]) stacked_array = np.vstack([num_array_q1_labeled, num_array_q4_labeled]) stacked_array.shape ###Output _____no_output_____
doc/rdf/odml_RDF_tools.ipynb
###Markdown What is the Semantic Web and RDF? **RDF (Resource Description Framework)** is one of the three foundational [Semantic Web](https://en.wikipedia.org/wiki/Semantic_Web) technologies, the other two being SPARQL and OWL.In particular, RDF is the data model of the Semantic Web. That means that all data in Semantic Web technologies are represented as RDF. If you store Semantic Web data, it's in RDF. If you query Semantic Web data (typically using the SPARQL query language), it's RDF data. If you send Semantic Web data to your friend, it's RDF.RDF data model is based upon the idea of making statements about resources (in particular web resources) in the form of *subject–predicate–object* expressions, known as [*triples*](https://en.wikipedia.org/wiki/Semantic_triple). The *subject* denotes the resource, and the *predicate* denotes traits or aspects of the resource, and expresses a relationship between the *subject* and the *object*.For example, one way to represent the notion "The sky has the color blue" in RDF is as the triple: a **subject** denoting *"the sky"*, a **predicate** denoting *"has the color"*, and an **object** denoting *"blue"*. Therefore, RDF uses subject instead of object(or entity) in contrast to the typical approach of an entity–attribute–value model in object-oriented design: entity (sky), attribute (color), and value (blue).(Resource Description Framework, Wikipedia, 2017) ![RDF_example_graph.png](RDF_example_graph.png) Find out more:- https://en.wikipedia.org/wiki/Resource_Description_Framework- https://www.cambridgesemantics.com/blog/semantic-university/learn-rdf/ odML to RDF converter Here we will explore odML to RDF conversion using the `odml/tools/rdf_converter.py` module.If you are new python odML please read the [tutorial](https://python-odml.readthedocs.io/en/latest/tutorial.html) first to familiarize yourself with odML. Let's create the example odML document. ###Code import datetime import odml doc = odml.Document(author="D. N. Adams", date=datetime.date(1979, 10, 12)) # CREATE AND APPEND THE MAIN SECTIONs doc.append(odml.Section(name="Arthur Philip Dent", type="crew/person", definition="Information on Arthur Dent")) # SET NEW PARENT NODE parent = doc['Arthur Philip Dent'] # APPEND PROPERTIES WITH VALUES parent.append(odml.Property(name="Species", value="Human", dtype=odml.DType.string, definition="Species to which subject belongs to")) ###Output _____no_output_____ ###Markdown The RDFWriter class The RDFWriter class is used to convert odML documents to one of the supported RDF formats:'xml', 'pretty-xml', 'trix', 'n3', 'turtle', 'ttl', 'ntriples', 'nt', 'nt11', 'trig'.'turtle' is the format that is best suited for storage and human readability which is why we will use it in our tutorial. For cross-tool usage, saving RDF in its 'XML' variant is probably the safest choice.The output can be returned as a string. ###Code from odml.tools.rdf_converter import RDFWriter print(RDFWriter(doc).get_rdf_str('turtle')) ###Output @prefix odml: <https://g-node.org/odml-rdf#> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . odml:Hub odml:hasDocument odml:40797785-2e1a-435e-b905-aeeac2ba2b3e . odml:220489b8-2043-452b-863b-8ba6a4b5e536 a odml:Section ; odml:hasDefinition "Information on Arthur Dent" ; odml:hasName "Arthur Philip Dent" ; odml:hasProperty odml:40ede84a-650b-4aab-af81-b4136c833e58 ; odml:hasType "crew/person" . odml:40797785-2e1a-435e-b905-aeeac2ba2b3e a odml:Document ; odml:hasAuthor "D. N. Adams" ; odml:hasDate "1979-10-12"^^xsd:date ; odml:hasFileName "None" ; odml:hasSection odml:220489b8-2043-452b-863b-8ba6a4b5e536 . odml:40ede84a-650b-4aab-af81-b4136c833e58 a odml:Property ; odml:hasDefinition "Species to which subject belongs to" ; odml:hasDtype "string" ; odml:hasName "Species" ; odml:hasValue odml:4425ade2-5d03-4484-a272-764c1e933933 . odml:4425ade2-5d03-4484-a272-764c1e933933 a rdf:Seq ; rdf:_1 "Human" . ###Markdown Or the output can be written to a specified file. ###Code import tempfile # Create temporary file f = tempfile.NamedTemporaryFile(mode='w', suffix=".ttl") path = f.name RDFWriter(doc).write_file(path, "turtle") with open(path) as ff: data = ff.read() print(data) ###Output @prefix odml: <https://g-node.org/odml-rdf#> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . odml:Hub odml:hasDocument odml:08f8c7fa-4ea0-4512-8927-ff73c117644d . odml:08f8c7fa-4ea0-4512-8927-ff73c117644d a odml:Document ; odml:hasAuthor "D. N. Adams" ; odml:hasDate "1979-10-12"^^xsd:date ; odml:hasFileName "None" ; odml:hasSection odml:3c86174b-b183-47aa-9e0b-58dfc066a76d . odml:15eb4c32-73fe-4da1-8cba-3fac965d4d17 a odml:Property ; odml:hasDefinition "Species to which subject belongs to" ; odml:hasDtype "string" ; odml:hasName "Species" ; odml:hasValue odml:1ad9c2d6-6055-465b-b281-51943569338b . odml:1ad9c2d6-6055-465b-b281-51943569338b a rdf:Seq ; rdf:_1 "Human" . odml:3c86174b-b183-47aa-9e0b-58dfc066a76d a odml:Section ; odml:hasDefinition "Information on Arthur Dent" ; odml:hasName "Arthur Philip Dent" ; odml:hasProperty odml:15eb4c32-73fe-4da1-8cba-3fac965d4d17 ; odml:hasType "crew/person" . ###Markdown Please note at this point, that RDF does not respect order. Everytime an unchanged file is written, the content will be identical, but the order of the statements will differ. Quering the data with rdflib and SPARQL The following example depends on specific example files. If you do not already have these files\ you can find and download them from https://github.com/G-Node/python-odml/tree/master/doc/example_rdfs/example_data.The example will load RDF triples from multiple files and load them into a single, connected graph. ###Code from glob import glob from rdflib import Graph graph = Graph() for file_name in glob("odml_RDF_example_*.ttl"): graph.parse(file_name, format="turtle") print('Total number of triples: ', len(graph)) ###Output Total number of triples: 3041 ###Markdown The example query uses an rdflib tool to find each Section with type `Recording` also featuring a Property with the name `Recording duration`. The result prints the Values of the returned Properties. ###Code from rdflib import Graph, Namespace, RDF from rdflib.plugins.sparql import prepareQuery from odml.tools.rdf_converter import ODML_NS rdf_namespace = {"odml": ODML_NS, "rdf": RDF} q = prepareQuery("""SELECT ?d ?s ?p ?value WHERE { ?d odml:hasSection ?s . ?s rdf:type odml:Section . ?s odml:hasType "Recording" . ?s odml:hasProperty ?p . ?p rdf:type odml:Property . ?p odml:hasName "Recording duration" . ?p odml:hasValue ?v . ?v rdf:type rdf:Bag . ?v rdf:li ?value .}""", initNs=rdf_namespace) for row in graph.query(q): print("Doc: {0}, Sec: {1}, \n" "Prop: {2}, Val:{3}".format(row.d, row.s, row.p, row.value)) ###Output Doc: https://g-node.org/odml-rdf#cc66e78a-3742-490a-9fdb-1c66761d7652, Sec: https://g-node.org/odml-rdf#5365f7e5-603c-4154-a5ea-33bb1a07a956, Prop: https://g-node.org/odml-rdf#41316903-80f1-45a3-9b06-400a02903531, Val:11.25 Doc: https://g-node.org/odml-rdf#cd24b60f-1d5e-4040-9881-5e5a597baef7, Sec: https://g-node.org/odml-rdf#782bd29d-e4b0-4c14-a417-1772a4851ffd, Prop: https://g-node.org/odml-rdf#9aeede78-678c-4db8-acb5-fbd6d408b762, Val:13.9 Doc: https://g-node.org/odml-rdf#537c6cc8-7dfe-4d53-a111-24b3ce0f3c1a, Sec: https://g-node.org/odml-rdf#346773f2-abee-4892-b052-840ddcff35ee, Prop: https://g-node.org/odml-rdf#1636af03-8e97-4ef2-9d7d-6c7db23dcd02, Val:11.88 Doc: https://g-node.org/odml-rdf#24066355-1ee8-4eb5-a715-96bbb6231cd5, Sec: https://g-node.org/odml-rdf#bbd44815-5016-49e0-9f4b-5b83778d00de, Prop: https://g-node.org/odml-rdf#0ed215a2-5d20-48eb-b744-bf3b731459fc, Val:0.33 ###Markdown FuzzyFinder class **FuzzyFinder** is a tool for querying an RDF graph through so called *fuzzy* queries. The finder executes multiple queries to better match input parameters. It returns sets of triples and prioritized from more to fewer matched parameters.The function `find()` accepts several oprtional parameters.- `graph`: rdflib graph object- `q_str`: fuzzy query string, we explore it later- `q_params`: dict object with parameters of a query- `mode`: default 'fuzzy' and 'match'Each mode works with specific a type of fuzzy query (`q_str`).Let's check the `match` mode in an example. ###Code from odml.rdf.fuzzy_finder import FuzzyFinder query_string = 'prop(name:Date) section(name:Recording-2013-02-08-ak, type:Recording)' f = FuzzyFinder(graph) print(f.find(mode='match', q_str=query_string)) ###Output SELECT * WHERE { ?d odml:hasSection ?s . ?s rdf:type odml:Section . ?s odml:hasType "Recording" . ?s odml:hasProperty ?p . ?p rdf:type odml:Property . ?p odml:hasName "Date" . } Document: https://g-node.org/odml-rdf#cc66e78a-3742-490a-9fdb-1c66761d7652 Section: https://g-node.org/odml-rdf#5365f7e5-603c-4154-a5ea-33bb1a07a956 Property: https://g-node.org/odml-rdf#f1699eb6-4cab-4dd0-9327-120eab2089ae Document: https://g-node.org/odml-rdf#24066355-1ee8-4eb5-a715-96bbb6231cd5 Section: https://g-node.org/odml-rdf#bbd44815-5016-49e0-9f4b-5b83778d00de Property: https://g-node.org/odml-rdf#fadffec7-6b23-454e-bfd1-9d5884802abb Document: https://g-node.org/odml-rdf#537c6cc8-7dfe-4d53-a111-24b3ce0f3c1a Section: https://g-node.org/odml-rdf#346773f2-abee-4892-b052-840ddcff35ee Property: https://g-node.org/odml-rdf#138f08f7-23c7-4722-8577-85a6fa633ae1 Document: https://g-node.org/odml-rdf#cd24b60f-1d5e-4040-9881-5e5a597baef7 Section: https://g-node.org/odml-rdf#782bd29d-e4b0-4c14-a417-1772a4851ffd Property: https://g-node.org/odml-rdf#1d6db4ce-87f3-4e9c-b221-e76ba05b2759 SELECT * WHERE { ?d odml:hasSection ?s . ?s rdf:type odml:Section . ?s odml:hasName "Recording-2013-02-08-ak" . ?s odml:hasType "Recording" . } Document: https://g-node.org/odml-rdf#537c6cc8-7dfe-4d53-a111-24b3ce0f3c1a Section: https://g-node.org/odml-rdf#346773f2-abee-4892-b052-840ddcff35ee SELECT * WHERE { ?s odml:hasProperty ?p . ?p rdf:type odml:Property . ?p odml:hasName "Date" . } Section: https://g-node.org/odml-rdf#bbd44815-5016-49e0-9f4b-5b83778d00de Property: https://g-node.org/odml-rdf#fadffec7-6b23-454e-bfd1-9d5884802abb Section: https://g-node.org/odml-rdf#782bd29d-e4b0-4c14-a417-1772a4851ffd Property: https://g-node.org/odml-rdf#1d6db4ce-87f3-4e9c-b221-e76ba05b2759 Section: https://g-node.org/odml-rdf#5365f7e5-603c-4154-a5ea-33bb1a07a956 Property: https://g-node.org/odml-rdf#f1699eb6-4cab-4dd0-9327-120eab2089ae Section: https://g-node.org/odml-rdf#346773f2-abee-4892-b052-840ddcff35ee Property: https://g-node.org/odml-rdf#138f08f7-23c7-4722-8577-85a6fa633ae1 SELECT * WHERE { ?d odml:hasSection ?s . ?s rdf:type odml:Section . ?s odml:hasName "Recording-2013-02-08-ak" . } Document: https://g-node.org/odml-rdf#537c6cc8-7dfe-4d53-a111-24b3ce0f3c1a Section: https://g-node.org/odml-rdf#346773f2-abee-4892-b052-840ddcff35ee SELECT * WHERE { ?d odml:hasSection ?s . ?s rdf:type odml:Section . ?s odml:hasType "Recording" . } Document: https://g-node.org/odml-rdf#cc66e78a-3742-490a-9fdb-1c66761d7652 Section: https://g-node.org/odml-rdf#5365f7e5-603c-4154-a5ea-33bb1a07a956 Document: https://g-node.org/odml-rdf#24066355-1ee8-4eb5-a715-96bbb6231cd5 Section: https://g-node.org/odml-rdf#bbd44815-5016-49e0-9f4b-5b83778d00de Document: https://g-node.org/odml-rdf#537c6cc8-7dfe-4d53-a111-24b3ce0f3c1a Section: https://g-node.org/odml-rdf#346773f2-abee-4892-b052-840ddcff35ee Document: https://g-node.org/odml-rdf#cd24b60f-1d5e-4040-9881-5e5a597baef7 Section: https://g-node.org/odml-rdf#782bd29d-e4b0-4c14-a417-1772a4851ffd ###Markdown As you can see from the output, the finder builds multiple SPARQL queries from `match` queries, executes them and returns some matched results. The first result always represents the most specific query (the biggest combination of input parameters that returned at least one triple).The query syntax is pretty straightforward. Just write the name of the entity `property`, `section` or `document` (also possible to use shortened names `prop`, `sec` and `doc`) and add attributes with their values inside the parentheses separated by a colon.As a code example: `prop(name:Date) section(name:Recording-2013-02-08-ak, type:Recording)`.Here we search for Sections and Properties where `property` has attribute the `name` and its Value is `Date`.For building `match` queries you should know exactly to which odML attribute the value(subject) is related. If you write `prop(name:Date) section(name:Recording, type:Recording-2013-02-08-ak)` the `find()` method would not return any triples with Section parameters, because it is unlikely that there is a Section with type `Recording-2013-02-08-ak`.Non-odML entity attributes will also be ignored (e.g. only `id, author, date, version, repository, sections` can exist in the `Document` object).In the example `section(not-odml-name:Recording-2013-02-08-ak, record:Recording)` the `find` method returns nothing. ###Code from odml.rdf.fuzzy_finder import FuzzyFinder query_string = 'section(not-odml-name:Recording-2013-02-08-ak, record:Recording)' f = FuzzyFinder(graph) print(f.find(mode='match', q_str=query_string)) ###Output ###Markdown This is often inconvenient if you do not know exactly how the diverse data in the graph is related. For situations like this *'fuzzy'* mode comes into play. It is also set by default.The output logic is similar to the previous mode, but there you can provide more broad information, the finder will match the parameters and create meaningful queries based on the input.The query string consists of two parts: *FIND* and *HAVING*.In the *FIND* part a user specifies the set of odML objects and its attributes. e.g. `FIND prop(name) section(name, type)`In the *HAVING* part a user specifies a set of search values which could relate to the attributes in the *FIND* part.e.g `HAVING Recording, Recording-2012-04-04-ab, Date`Finally, the complete query will look like this:`FIND sec(name, type) prop(name) HAVING Recording, Recording-2012-04-04-ab, Date`As you can see in the example you do not need to know to which attribute search values in the *HAVING* part relate to, the finder can do it for you. ###Code from odml.rdf.fuzzy_finder import FuzzyFinder query_string = 'FIND sec(name, type) prop(name) HAVING Recording, Recording-2012-04-04-ab, Date, Some_value' f = FuzzyFinder(graph) print(f.find(mode='fuzzy', q_str=query_string)) ###Output SELECT * WHERE { ?d odml:hasSection ?s . ?s rdf:type odml:Section . ?s odml:hasType "Recording" . ?s odml:hasProperty ?p . ?p rdf:type odml:Property . ?p odml:hasName "Date" . } Document: https://g-node.org/odml-rdf#cc66e78a-3742-490a-9fdb-1c66761d7652 Section: https://g-node.org/odml-rdf#5365f7e5-603c-4154-a5ea-33bb1a07a956 Property: https://g-node.org/odml-rdf#f1699eb6-4cab-4dd0-9327-120eab2089ae Document: https://g-node.org/odml-rdf#24066355-1ee8-4eb5-a715-96bbb6231cd5 Section: https://g-node.org/odml-rdf#bbd44815-5016-49e0-9f4b-5b83778d00de Property: https://g-node.org/odml-rdf#fadffec7-6b23-454e-bfd1-9d5884802abb Document: https://g-node.org/odml-rdf#537c6cc8-7dfe-4d53-a111-24b3ce0f3c1a Section: https://g-node.org/odml-rdf#346773f2-abee-4892-b052-840ddcff35ee Property: https://g-node.org/odml-rdf#138f08f7-23c7-4722-8577-85a6fa633ae1 Document: https://g-node.org/odml-rdf#cd24b60f-1d5e-4040-9881-5e5a597baef7 Section: https://g-node.org/odml-rdf#782bd29d-e4b0-4c14-a417-1772a4851ffd Property: https://g-node.org/odml-rdf#1d6db4ce-87f3-4e9c-b221-e76ba05b2759 SELECT * WHERE { ?d odml:hasSection ?s . ?s rdf:type odml:Section . ?s odml:hasName "Recording" . ?s odml:hasType "Recording" . } Document: https://g-node.org/odml-rdf#cd24b60f-1d5e-4040-9881-5e5a597baef7 Section: https://g-node.org/odml-rdf#782bd29d-e4b0-4c14-a417-1772a4851ffd SELECT * WHERE { ?s odml:hasProperty ?p . ?p rdf:type odml:Property . ?p odml:hasName "Date" . } Section: https://g-node.org/odml-rdf#bbd44815-5016-49e0-9f4b-5b83778d00de Property: https://g-node.org/odml-rdf#fadffec7-6b23-454e-bfd1-9d5884802abb Section: https://g-node.org/odml-rdf#782bd29d-e4b0-4c14-a417-1772a4851ffd Property: https://g-node.org/odml-rdf#1d6db4ce-87f3-4e9c-b221-e76ba05b2759 Section: https://g-node.org/odml-rdf#5365f7e5-603c-4154-a5ea-33bb1a07a956 Property: https://g-node.org/odml-rdf#f1699eb6-4cab-4dd0-9327-120eab2089ae Section: https://g-node.org/odml-rdf#346773f2-abee-4892-b052-840ddcff35ee Property: https://g-node.org/odml-rdf#138f08f7-23c7-4722-8577-85a6fa633ae1 SELECT * WHERE { ?d odml:hasSection ?s . ?s rdf:type odml:Section . ?s odml:hasName "Recording" . } Document: https://g-node.org/odml-rdf#cd24b60f-1d5e-4040-9881-5e5a597baef7 Section: https://g-node.org/odml-rdf#782bd29d-e4b0-4c14-a417-1772a4851ffd SELECT * WHERE { ?d odml:hasSection ?s . ?s rdf:type odml:Section . ?s odml:hasType "Recording" . } Document: https://g-node.org/odml-rdf#cc66e78a-3742-490a-9fdb-1c66761d7652 Section: https://g-node.org/odml-rdf#5365f7e5-603c-4154-a5ea-33bb1a07a956 Document: https://g-node.org/odml-rdf#24066355-1ee8-4eb5-a715-96bbb6231cd5 Section: https://g-node.org/odml-rdf#bbd44815-5016-49e0-9f4b-5b83778d00de Document: https://g-node.org/odml-rdf#537c6cc8-7dfe-4d53-a111-24b3ce0f3c1a Section: https://g-node.org/odml-rdf#346773f2-abee-4892-b052-840ddcff35ee Document: https://g-node.org/odml-rdf#cd24b60f-1d5e-4040-9881-5e5a597baef7 Section: https://g-node.org/odml-rdf#782bd29d-e4b0-4c14-a417-1772a4851ffd
translation/XLM/XLM/PKM-layer.ipynb
###Markdown Product-Key Memory (PKM)**Minimalist implementation of a Product-Key Memory layer** https://arxiv.org/abs/1907.05242This notebook contains a simple implementation of a PKM layer.Overall, the PKM layer can be seen as a network with very high capacity that maps elements from $R^d$ to $R^n$, but very efficiently.In particular, a 12-layer transformer model that leverages a PKM layer outperforms a 24-layer model without memory, and is almost twice faster at inference.A more detailed implementation can be found at https://github.com/facebookresearch/XLM/tree/master/src/model/memory,with options to make the query network more powerful, to shuffle the key indices, to compute the value scores differentlythan with a softmax, etc., but the code below is much simpler and implements a configuration that worked well in our experiments (and that we used to report the majority of our results). Note: at training time, we recommend to use a different optimizer for the values, as these are learned with sparse updates. In particular, we obtained our best performance with the Adam optimizer, and a constant learning rate of 1e-3 to learn the values, independently of the optimizer / learning rate used to learn the rest of the network. ###Code import math import numpy as np import torch from torch import nn from torch.nn import functional as F def get_uniform_keys(n_keys, dim, seed): """ Generate random uniform keys (same initialization as nn.Linear). """ rng = np.random.RandomState(seed) bound = 1 / math.sqrt(dim) keys = rng.uniform(-bound, bound, (n_keys, dim)) return keys.astype(np.float32) class HashingMemory(nn.Module): def __init__(self, input_dim, output_dim, params): super().__init__() # global parameters self.input_dim = input_dim self.output_dim = output_dim self.k_dim = params.k_dim self.v_dim = output_dim self.n_keys = params.n_keys self.size = self.n_keys ** 2 self.heads = params.heads self.knn = params.knn assert self.k_dim >= 2 and self.k_dim % 2 == 0 # dropout self.input_dropout = params.input_dropout self.query_dropout = params.query_dropout self.value_dropout = params.value_dropout # initialize keys / values self.initialize_keys() self.values = nn.EmbeddingBag(self.size, self.v_dim, mode='sum', sparse=params.sparse) nn.init.normal_(self.values.weight, mean=0, std=self.v_dim ** -0.5) # query network self.query_proj = nn.Sequential(*filter(None, [ nn.Linear(self.input_dim, self.heads * self.k_dim, bias=True), nn.BatchNorm1d(self.heads * self.k_dim) if params.query_batchnorm else None ])) if params.query_batchnorm: print("WARNING: Applying batch normalization to queries improves the performance " "and memory usage. But if you use it, be sure that you use batches of " "sentences with the same size at training time (i.e. without padding). " "Otherwise, the padding token will result in incorrect mean/variance " "estimations in the BatchNorm layer.\n") def initialize_keys(self): """ Create two subkey sets per head. `self.keys` is of shape (heads, 2, n_keys, k_dim // 2) """ half = self.k_dim // 2 keys = nn.Parameter(torch.from_numpy(np.array([ get_uniform_keys(self.n_keys, half, seed=(2 * i + j)) for i in range(self.heads) for j in range(2) ])).view(self.heads, 2, self.n_keys, half)) self.keys = nn.Parameter(keys) def _get_indices(self, query, subkeys): """ Generate scores and indices for a specific head. """ assert query.dim() == 2 and query.size(1) == self.k_dim bs = query.size(0) knn = self.knn half = self.k_dim // 2 n_keys = len(subkeys[0]) # split query for product quantization q1 = query[:, :half] # (bs,half) q2 = query[:, half:] # (bs,half) # compute indices with associated scores scores1 = F.linear(q1, subkeys[0], bias=None) # (bs,n_keys) scores2 = F.linear(q2, subkeys[1], bias=None) # (bs,n_keys) scores1, indices1 = scores1.topk(knn, dim=1) # (bs,knn) scores2, indices2 = scores2.topk(knn, dim=1) # (bs,knn) # cartesian product on best candidate keys all_scores = ( scores1.view(bs, knn, 1).expand(bs, knn, knn) + scores2.view(bs, 1, knn).expand(bs, knn, knn) ).view(bs, -1) # (bs,knn**2) all_indices = ( indices1.view(bs, knn, 1).expand(bs, knn, knn) * n_keys + indices2.view(bs, 1, knn).expand(bs, knn, knn) ).view(bs, -1) # (bs,knn**2) # select best scores with associated indices scores, best_indices = torch.topk(all_scores, k=knn, dim=1) # (bs,knn) indices = all_indices.gather(1, best_indices) # (bs,knn) assert scores.shape == indices.shape == (bs, knn) return scores, indices def get_indices(self, query): """ Generate scores and indices. """ assert query.dim() == 2 and query.size(1) == self.k_dim query = query.view(-1, self.heads, self.k_dim) bs = len(query) outputs = [self._get_indices(query[:, i], self.keys[i]) for i in range(self.heads)] s = torch.cat([s.view(bs, 1, self.knn) for s, _ in outputs], 1) # (bs,heads,knn) i = torch.cat([i.view(bs, 1, self.knn) for _, i in outputs], 1) # (bs,heads,knn) return s.view(-1, self.knn), i.view(-1, self.knn) def forward(self, input): """ Read from the memory. """ # input dimensions assert input.shape[-1] == self.input_dim prefix_shape = input.shape[:-1] bs = np.prod(prefix_shape) # compute query input = F.dropout(input, p=self.input_dropout, training=self.training) # (...,i_dim) query = self.query_proj(input.contiguous().view(-1, self.input_dim)) # (bs,heads*k_dim) query = query.view(bs * self.heads, self.k_dim) # (bs*heads,k_dim) query = F.dropout(query, p=self.query_dropout, training=self.training) # (bs*heads,k_dim) assert query.shape == (bs * self.heads, self.k_dim) # retrieve indices and scores scores, indices = self.get_indices(query) # (bs*heads,knn) scores = F.softmax(scores.float(), dim=-1).type_as(scores) # (bs*heads,knn) # merge heads / knn (since we sum heads) indices = indices.view(bs, self.heads * self.knn) # (bs,heads*knn) scores = scores.view(bs, self.heads * self.knn) # (bs,heads*knn) # weighted sum of values output = self.values(indices, per_sample_weights=scores) # (bs,v_dim) output = F.dropout(output, p=self.value_dropout, training=self.training)# (bs,v_dim) # reshape output if len(prefix_shape) >= 2: output = output.view(prefix_shape + (self.v_dim,)) # (...,v_dim) return output @staticmethod def register_args(parser): """ Register memory parameters. """ # memory parameters parser.add_argument("--sparse", type=bool_flag, default=False, help="Perform sparse updates for the values") parser.add_argument("--k_dim", type=int, default=256, help="Memory keys dimension") parser.add_argument("--heads", type=int, default=4, help="Number of memory heads") parser.add_argument("--knn", type=int, default=32, help="Number of memory slots to read / update - k-NN to the query") parser.add_argument("--n_keys", type=int, default=512, help="Number of keys") parser.add_argument("--query_batchnorm", type=bool_flag, default=False, help="Query MLP batch norm") # dropout parser.add_argument("--input_dropout", type=float, default=0, help="Input dropout") parser.add_argument("--query_dropout", type=float, default=0, help="Query dropout") parser.add_argument("--value_dropout", type=float, default=0, help="Value dropout") class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self params = AttrDict({ "sparse": False, "k_dim": 128, "heads": 4, "knn": 32, "n_keys": 512, # the memory will have (n_keys ** 2) values "query_batchnorm": True, "input_dropout": 0, "query_dropout": 0, "value_dropout": 0, }) device = 'cuda' # cpu / cuda input_dim = 50 output_dim = 100 memory = HashingMemory(input_dim, output_dim, params).to(device=device) print(memory) x = torch.randn(2, 3, 4, input_dim).to(device=device) output = memory(x) print(output.sum().item()) print(output.shape) ###Output 0.14277362823486328 torch.Size([2, 3, 4, 100])
notebooks/welter_issue026-01_Text_and_analysis_for_results_section.ipynb
###Markdown Welter issue 26 Text and Analysis for the results sectionMichael Gully-Santiago Monday, July 5, 2016 See [Issue26](https://github.com/BrownDwarf/welter/issues/26) ###Code import warnings warnings.filterwarnings("ignore") import numpy as np from astropy.io import fits import matplotlib.pyplot as plt % matplotlib inline % config InlineBackend.figure_format = 'retina' import seaborn as sns sns.set_context('notebook') import pandas as pd ###Output _____no_output_____ ###Markdown Single order results ###Code orders = pd.read_csv('../data/analysis/orders_LkCa4_oneTeff.csv') orders.tail() IG_orders = orders[orders.Instrument == 'IGRINS'] ES_orders = orders[orders.Instrument == 'ESPaDoNs'] len(IG_orders), len(IG_orders.dropna()) sns.distplot(IG_orders.vz_50p.dropna(), rug=True) sns.distplot(IG_orders.vz_05p.dropna(), hist=False) sns.distplot(IG_orders.vz_95p.dropna(), hist=False) IG_orders.vz_95p.dropna().median(), IG_orders.vz_95p.dropna().std() sns.distplot(IG_orders.vi_50p.dropna(), rug=True) sns.distplot(ES_orders.vi_50p.dropna(), rug=False, hist=False, color='k') sns.distplot(IG_orders.vi_05p.dropna(), hist=False) sns.distplot(IG_orders.vi_95p.dropna(), hist=False) IG_orders.vi_95p.dropna().median(), IG_orders.vi_95p.dropna().std() sns.distplot(ES_orders.FeH_50p.dropna(), rug=False, hist=False, color='k') sns.distplot(IG_orders.FeH_50p.dropna(), rug=True) sns.distplot(IG_orders.FeH_05p.dropna(), hist=False) sns.distplot(IG_orders.FeH_95p.dropna(), hist=False) IG_orders.FeH_95p.dropna().median(), IG_orders.FeH_95p.dropna().std() sns.distplot(IG_orders.logg_50p.dropna(), rug=True) sns.distplot(IG_orders.logg_05p.dropna(), hist=False) sns.distplot(IG_orders.logg_95p.dropna(), hist=False) #IG_orders.FeH_95p.dropna().median(), IG_orders.FeH_95p.dropna().std() plt.plot(IG_orders.wl_center, IG_orders.vz_50p, '.') plt.plot(orders.wl_center, orders.FeH_50p, '.') ###Output _____no_output_____ ###Markdown Multi order results ###Code mo = pd.read_csv('../data/analysis/IGRINS_mix_emcee_last200.csv') mo.columns len(mo), len(mo.dropna()) gi = mo.SA_50p < 1.0 mo.SA_50p[gi].median(), mo.SA_50p[gi].std() plt.plot(mo.m_val, mo.Teff_50p, '.') mo.columns #plt.plot(mo.m_val, mo.vz_95p, '.') plt.plot(mo.m_val, mo.vz_50p, '.') #plt.plot(mo.m_val, mo.vz_05p, '.') #plt.ylim(0, 20) mo.vz_50p.median(), mo.vz_50p.std() sns.distplot(mo.vi_95p.dropna(), hist=False) sns.distplot(mo.vi_50p.dropna(), rug=True) sns.distplot(mo.vi_05p.dropna(), hist=False) mo.vi_50p.dropna().median(), mo.vi_50p.dropna().std() bi = mo.vi_95p > 40 mo[bi][['m_val', 'vi_50p']] sns.distplot(mo.vz_95p.dropna(), hist=False) sns.distplot(mo.vz_50p.dropna(), rug=True) sns.distplot(mo.vz_05p.dropna(), hist=False) mo.vz_50p.dropna().median(), mo.vz_50p.dropna().std() bi = mo.vz_05p < 0 mo[bi][['m_val', 'vi_50p', 'vz_50p']] mo.columns plt.plot(mo.m_val, mo.logg_50p, '.') sns.distplot(mo.logg_50p.dropna(), rug=True) sns.distplot(mo.logg_05p.dropna(), hist=False) sns.distplot(mo.logg_95p.dropna(), hist=False) mo.logg_50p.dropna().median(), mo.logg_50p.dropna().std() mo_full = mo mo = mo.dropna() weights = 1.0/(mo.logg_95p - mo.logg_05p) val = (mo.logg_50p*weights).sum()/(weights.sum()) val sns.distplot(mo.FeH_50p.dropna(), rug=True) sns.distplot(mo.FeH_05p.dropna(), hist=False) sns.distplot(mo.FeH_95p.dropna(), hist=False) yerr_hi = mo.FeH_95p - mo.FeH_50p yerr_lo = mo.FeH_50p - mo.FeH_05p plt.errorbar(mo.wl_center, mo.FeH_50p, yerr=[yerr_lo, yerr_hi], fmt='.') #sns.distplot(mo.FeH_50p, rug=True) bins = np.arange(-0.5, 0.51, 0.2) sns.distplot(mo.FeH_50p[mo.band == 'H'], bins, hist=True, kde=False, rug=True, label='$H-$band') sns.distplot(mo.FeH_50p[mo.band == 'K'], bins, hist=True, kde=False, rug=True, label='$K-$band') plt.xlim(-0.5, 0.5) plt.legend(loc='best') tips = sns.load_dataset("tips") ax = sns.violinplot(x="day", y="total_bill", data=tips) tips ###Output _____no_output_____
Python/Python-Completo/Python Completo/Notebooks Traduzidos/Python Debugger (pdb).ipynb
###Markdown Python DebuggerVocê provavelmente usou uma variedade de instruções de impressão para tentar encontrar erros em seu código. Uma maneira melhor de fazer isso é usando o módulo de depuração incorporado do Python (pdb). O módulo pdb implementa um ambiente de depuração interativo para programas Python. Ele inclui recursos para permitir que você pause seu programa, veja os valores das variáveis e assista a execução do programa passo a passo, para que você possa entender o que o seu programa realmente faz e encontrar erros na lógica.Isso é um pouco difícil de mostrar, uma vez que requer criar um erro de propósito, mas espero que este exemplo simples ilustre o poder do módulo pdb. * Nota: tenha em mente que seria bastante incomum usar o pdb em uma configuração do iPython Notebook. *___Aqui vamos criar um erro de propósito, tentando adicionar uma lista a um número inteiro ###Code x = [1,3,4] y = 2 z = 3 result = y + z print(result) result2 = y+x print(result2) ###Output 5 ###Markdown Hmmm, parece que temos um erro! Vamos implementar um set_trace() usando o módulo pdb. Isso nos permitirá basicamente pausar o código no ponto do rastreamento e verificar se algo está errado. ###Code import pdb x = [1,3,4] y = 2 z = 3 result = y + z print result # Usa o método set_trace() para pausar o código neste ponto. pdb.set_trace() result2 = y+x print result2 ###Output 5 --Return-- > <ipython-input-4-0a2880872cf0>(11)<module>()->None -> pdb.set_trace() (Pdb) x [1, 3, 4] (Pdb) y 2 (Pdb) z 3 (Pdb) x+y *** TypeError: can only concatenate list (not "int") to list (Pdb) q
transform_v1.ipynb
###Markdown Stage: transform_v1 input_variable: df_c ###Code df_t = df_c *5 ###Output _____no_output_____
Deskripsi data masing2/Achyar.ipynb
###Markdown Credit Scoring_Achyar Import Library ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, roc_curve from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor,GradientBoostingClassifier from sklearn.preprocessing import StandardScaler, Imputer, MinMaxScaler from imblearn.over_sampling import SMOTE from xgboost import XGBClassifier import lightgbm as lgb from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import VotingClassifier from imblearn.over_sampling import SMOTE ###Output C:\Users\achyar059232\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\ensemble\weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release. from numpy.core.umath_tests import inner1d ###Markdown Import Data ###Code train=pd.read_csv('npl_train.csv') #catatan pakai encoding bila perlu, alternaitv delimeter=',' jika butuh test=pd.read_csv('npl_test.csv') #kalau tidak ada header dan naik satu baris, tambahkan header=None ###Output _____no_output_____ ###Markdown View, Cleansing , EDA + View ###Code pd.set_option('display.max_columns',None) pd.set_option('display.max_rows',None) #Jumlah baris dan kolom dari df train.shape train.head() train[train['sisa_tagihan_tidak_terbayar']>=train['tagihan']].shape #menampilkan tipe dari semua variabel dari data frame print(train.dtypes.to_string()) train['flag_kredit_macet'].value_counts() train['flag_kredit_macet'].value_counts().plot.bar() ###Output _____no_output_____ ###Markdown Jumlah kredit lancar adalah 10 kali lipat jumlah kredit macet (kasus imbalance class) Jumlah kartu terhadap flag macet ###Code train['jumlah_kartu'].value_counts() #Jumlah kartu terhadap flag macet plt.figure(figsize=(10,10)) train['jumlah_kartu'].value_counts().plot.bar() pd.crosstab(train['jumlah_kartu'],train['flag_kredit_macet']).plot.bar(rot=45,stacked=True, figsize=(10,7)) pd.crosstab(train['jumlah_kartu'],train['flag_kredit_macet'],normalize='index').plot.bar(rot=45,stacked=True, figsize=(10,7)) ###Output _____no_output_____ ###Markdown Outstanding terhadap flag macet ###Code plt.figure(figsize=(20,10)) plt.subplot(211) sns.distplot(train['outstanding'], bins=None, hist=True, kde=True) plt.figure(figsize=(20,10)) plt.subplot(212) sns.boxplot(train['outstanding']) plt.figure(figsize=(20,10)) train.groupby('flag_kredit_macet').outstanding.plot.density(title='Age',legend=True) ###Output _____no_output_____ ###Markdown Limit kredit terhadap flag macet` ###Code plt.figure(figsize=(20,10)) plt.subplot(211) sns.distplot(train['limit_kredit'], bins=None, hist=True, kde=True) plt.figure(figsize=(20,10)) plt.subplot(212) sns.boxplot(train['limit_kredit']) plt.figure(figsize=(20,10)) train.groupby('flag_kredit_macet').limit_kredit.plot.density(title='Age',legend=True) ###Output _____no_output_____ ###Markdown Tagihan terhadap flag macet ###Code plt.figure(figsize=(20,10)) plt.subplot(211) sns.distplot(train['tagihan'], bins=None, hist=True, kde=True) plt.figure(figsize=(20,10)) plt.subplot(212) sns.boxplot(train['tagihan']) plt.figure(figsize=(20,10)) train.groupby('flag_kredit_macet').tagihan.plot.density(title='Age',legend=True) ###Output _____no_output_____ ###Markdown Total Pemakaian Tunai terhadap flag macet ###Code plt.figure(figsize=(20,10)) plt.subplot(211) sns.distplot(train['total_pemakaian_tunai'], bins=None, hist=True, kde=True) plt.figure(figsize=(20,10)) plt.subplot(212) sns.boxplot(train['total_pemakaian_tunai']) plt.figure(figsize=(20,10)) train.groupby('flag_kredit_macet').total_pemakaian_tunai.plot.density(title='Age',legend=True) ###Output _____no_output_____ ###Markdown Total Pemakaian Retail terhadap flag macet ###Code plt.figure(figsize=(20,10)) plt.subplot(211) sns.distplot(train['total_pemakaian_retail'], bins=None, hist=True, kde=True) plt.figure(figsize=(20,10)) plt.subplot(212) sns.boxplot(train['total_pemakaian_retail']) plt.figure(figsize=(20,10)) train.groupby('flag_kredit_macet').total_pemakaian_retail.plot.density(title='Age',legend=True) ###Output _____no_output_____ ###Markdown Sisa Tagihan tidak terbayar terhadap flag macet ###Code plt.figure(figsize=(20,10)) plt.subplot(211) sns.distplot(train['sisa_tagihan_tidak_terbayar'], bins=None, hist=True, kde=True) plt.figure(figsize=(20,10)) plt.subplot(212) sns.boxplot(train['sisa_tagihan_tidak_terbayar']) plt.figure(figsize=(20,10)) train.groupby('flag_kredit_macet').sisa_tagihan_tidak_terbayar.plot.density(title='Age',legend=True) ###Output _____no_output_____ ###Markdown Kode Cabang ###Code #Jumlah kartu terhadap flag macet plt.figure(figsize=(10,10)) train['kode_cabang'].value_counts() #Jumlah kartu terhadap flag macet plt.figure(figsize=(10,10)) train['kode_cabang'].value_counts().plot.bar() pd.crosstab(train['kode_cabang'],train['flag_kredit_macet']).plot.bar(stacked=False, figsize=(10,7)) pd.crosstab(train['kode_cabang'],train['flag_kredit_macet'],normalize='index').plot.bar(rot=45,stacked=True, figsize=(10,7)) ###Output _____no_output_____
klima/.ipynb_checkpoints/2_preprocessor-checkpoint.ipynb
###Markdown 0: NoCloud1: Cloud4: Fog6: Rain7: Snow11: Hail ###Code weather={ 2:1, 3:7, 5:6, 8:6, 9:6, 100:0, 101:0, 102:0, 103:0, 104:0, 105:0, 106:0, 107:0, 108:0, 109:0, 110:4, 111:4, 112:4, 113:1, 114:6, 115:6, 116:6, 117:6, 118:6, 119:1, 120:7, 121:6, 122:7, 123:6, 124:11, 125:6, 126:7, 127:11, 128:4, 129:6, 130:1, 131:1, 132:1, 133:1, 134:1, 135:1, 136:7, 137:7, 138:7, 139:7, 140:4, 141:4, 142:4, 143:4, 144:4, 145:4, 146:4, 147:4, 148:4, 149:4, 150:6, 151:6, 152:6, 153:6, 154:6, 155:6, 156:6, 157:6, 158:6, 159:6, 160:6, 161:6, 162:6, 163:6, 164:6, 165:6, 166:11, 167:11, 168:6, 169:6, 170:7, 171:7, 172:7, 173:7, 174:7, 175:7, 176:7, 177:7, 178:7, 179:7, 180:6, 181:6, 182:6, 183:7, 184:7, 185:7, 186:7, 187:7, 188:7, 189:11, 190:11, 191:6, 192:6, 193:7, 194:7, 195:6, 196:11, 197:6, 198:1, 199:11} measures=['XTEMP','XSPD','XPCP','XSD','XVSB','YFOG','YPCP','YSNW','YHAL'] ycolumns={1:'YCLD',4:'YFOG',6:'YPCP',7:'YSNW',10:'YCLR',11:'YHAL'} def load_data(stn,d='high_res',p=p,stations=stations,verbose=True): if verbose: print('loading...',stn,stations.loc[int(stn)]['LOC'],d) df=pd.read_csv(p+'/'+d+'/export/'+stn+'.csv',dtype={' FRSHTT':str}) df.columns=[i.strip() for i in df.columns] df['time']=pd.to_datetime(df['time']) df['XTEMP']=(pd.to_numeric(df['TEMP'], errors='coerce').replace(9999.9,np.nan)-32)*5/9 #Fahrenheit to Celsiu if d=='high_res': df['XSPD']=pd.to_numeric(df['SPD'], errors='coerce')*1.61 #MPH to Km/h df['XVSB']=(pd.to_numeric(df['VSB'], errors='coerce')*1.61).apply(lambda x: min(x,10)) #miles to Km, max VSB=20Km df['XPCP']=pd.to_numeric(df['PCP06'], errors='coerce')*25.4 #inch to mm df['XSD']=pd.to_numeric(df['SD'], errors='coerce')*25.4 #inch to mm df['PCP01']=pd.to_numeric(df['PCP01'], errors='coerce') df['PCP06']=pd.to_numeric(df['PCP06'], errors='coerce') df['PCP24']=pd.to_numeric(df['PCP24'], errors='coerce') df['PCPXX']=pd.to_numeric(df['PCPXX'], errors='coerce') df['PCP06'].loc[~df['PCP06'].isnull()] = 6 df['PCPXX'].loc[~df['PCPXX'].isnull()] = 6 df['PCP01'].loc[~df['PCP01'].isnull()] = 6 df['PCP24'].loc[~df['PCP24'].isnull()] = 6 df['AW']=pd.to_numeric(df['AW'], errors='coerce')+100 df['MW']=pd.to_numeric(df['MW'], errors='coerce')+100 df['W']=pd.to_numeric(df['W'], errors='coerce') dz=df[['PCP01','PCP06','PCP24','PCPXX','AW','MW','W']] df['W']=dz.ffill(axis=1)['W'].replace(weather).replace(0,10) dz=df.groupby(['time','W']).count()['TEMP'].unstack().fillna(0) dz.columns=[ycolumns[i] for i in dz.columns] df=df.set_index('time').join(dz).reset_index() else: df['year']=df['time'].dt.year df['month']=df['time'].dt.month df['day']=df['time'].dt.day df['hour']=df['time'].dt.hour df['XSPD']=pd.to_numeric(df['WDSP'], errors='coerce').replace(999.9,np.nan)*1.85 #knots to Km/h df['XVSB']=(pd.to_numeric(df['VISIB'], errors='coerce').replace(999.9,np.nan)*1.61).apply(lambda x: min(x,10)) #miles to Km, max VSB=20Km df['XPCP']=pd.to_numeric(df['PRCP'].str[:-1], errors='coerce').replace(99.99,np.nan)*25.4 #inch to mm df['XSD']=pd.to_numeric(df['SNDP'], errors='coerce').replace(999.9,np.nan)*25.4 #inch to mm df['YFOG']=pd.to_numeric(df['FRSHTT'].str[0], errors='coerce') df['YPCP']=pd.to_numeric(df['FRSHTT'].str[1], errors='coerce') df['YSNW']=pd.to_numeric(df['FRSHTT'].str[2], errors='coerce') df['YHAL']=pd.to_numeric(df['FRSHTT'].str[3], errors='coerce') for m in measures: if m not in df.columns: df[m]=np.nan return df[['time','year','month','day','hour']+measures].set_index('time') # stn='154200' #aurel vlaicu stn='151700' #mciuc daily=load_data(stn,'daily') hires=load_data(stn,'high_res') def comparison_getter(measure,daily=daily,hires=hires): if type(measure)!=list: measure=[measure] d=daily[measure] h=hires.groupby(['year','month','day','hour']).mean()[measure] ymeasures=[m for m in measure if 'Y' in m] h[ymeasures]=h[ymeasures][h[ymeasures]==0].fillna(1) h=h.reset_index() h['time']=pd.to_datetime(dict(year=h['year'], month=h['month'], day=h['day'], hour=h['hour'])).values h=h.set_index('time')[measure] return d,h def comaprison_plotter(measure,daily=daily,hires=hires): d,h=comparison_getter(measure,daily,hires) d.columns=['d'] h.columns=['h'] x=h.join(d,how='outer').dropna() x['diff']=(x['h']-x['d']) fig,ax=plt.subplots(1,3,figsize=(15,4)) x['diff'].plot(ax=ax[0],title='diff') x['h'].plot(ax=ax[1],title='high res') x['d'].plot(ax=ax[2],title='daily') return x,d,h comaprison_plotter('XTEMP'); comaprison_plotter('XSPD'); x,d,h=comaprison_plotter('XPCP') x,d,h=comaprison_plotter('XSD'); x,d,h=comaprison_plotter('XVSB'); x,d,h=comaprison_plotter('YSNW'); x,d,h=comaprison_plotter('YPCP'); x,d,h=comaprison_plotter('YHAL'); hu=['127720', '128050', '128120', '128220', '128250', '128300', '128390', '128430', '128510', '128600', '128820', '128920', '129100', '129150', '129420', '129600', '129700', '129820', '129920', '129350'] ro=['150040', '150100', '150140', '150150', '150200', '150230', '150800', '150850', '150900', '151080', '151200', '151450', '151500', '151700', '151970', '152000', '152300', '152350', '152470', '152600', '152800', '152920', '153100', '153350', '153460', '153500', '153600', '154100', '154200', '154210', '154500', '154600', '154700', '154800', '154810', '154990'] import os hu=[i[:-4] for i in os.listdir(p+'/high_res/export') if int(i[:-4])<140000] ro=[i[:-4] for i in os.listdir(p+'/high_res/export') if int(i[:-4])>140000] hs=[] ds=[] for stn in ro: try: d_ok=True daily=load_data(stn,'daily') except: d_ok=False print('failed') try: h_ok=True hires=load_data(stn,'high_res') except: h_ok=False print('failed') d,h=comparison_getter(measures,daily,hires) d['ID']=stn h['ID']=stn if d_ok: ds.append(d) if h_ok: hs.append(h) ds=pd.concat(ds) hs=pd.concat(hs) ds.to_csv('data/ro_ds.csv') hs.to_csv('data/ro_hs.csv') hs=[] ds=[] for stn in hu: try: d_ok=True daily=load_data(stn,'daily') except: d_ok=False print('failed') try: h_ok=True hires=load_data(stn,'high_res') except: h_ok=False print('failed') d,h=comparison_getter(measures,daily,hires) d['ID']=stn h['ID']=stn if d_ok: ds.append(d) if h_ok: hs.append(h) ds=pd.concat(ds) hs=pd.concat(hs) ds.to_csv('data/hu_ds.csv') hs.to_csv('data/hu_hs.csv') ###Output _____no_output_____
dreams.ipynb
###Markdown Dreams of GLG101 class 2018 Data Collection DetailThis is a fun project that I did while I was TAing for GLG101 class at ASU in Spring 2018.During one of the class we had a in class exercise where students are requiredto submit a piece of paper answering what the major in and what their dream job would beif money and security is of no concern.I collected all the papers and digitised them and during this process,I negelected some details and made some generalization of their description. I started this project out of curiosity for the following questions:* What is the class major composition* What is the most frequently used words to describe dreams* Are we working on our dreamsThis project uses NLTK package to do the natural language processing and many thanks to the tutorial by [bonzanini](https://github.com/bonzanini/nlp-tutorial). ###Code import os import pandas as pd infile = './data/dreams.data' # read csv file into dataframe # col 0 fields, major # col 1 dreams descriptions df = pd.read_csv(infile,header=None) dreams_long = df[1].str.split().as_matrix() fields_long = df[0].str.split().as_matrix() ###Output /usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:11: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead. # This is added back by InteractiveShellApp.init_path() /usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:12: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead. if sys.path[0] == '': ###Markdown Tokenisationsplit file into tokens and count frequency of each token ###Code from nltk.tokenize import word_tokenize # make major string frame flat flat_major = [] for sublist in fields_long: for item in sublist: flat_major.append(str(item)) major = ' '.join([i for i in flat_major]) #print("Number of major characters: {}".format(len(major))) tokens_major = [t for t in word_tokenize(major)] print("Major token num: {}".format(len(tokens_major))) # make dreams string frame flat flat_dreams = [] for sublist in dreams_long: for item in sublist: flat_dreams.append(str(item)) dreams = ' '.join([i for i in flat_dreams]) #print("Number of characters: {}".format(len(dreams))) # all_tokens are dreams token all_tokens = [t for t in word_tokenize(dreams)] print("Dreams token number is: {}".format(len(all_tokens))) ###Output Major token num: 167 Dreams token number is: 510 ###Markdown Check frequency of key words on Major and Dreams ###Code # count each token frequency from collections import Counter major_token_frequency = Counter(tokens_major) token_frequency = Counter(all_tokens) # print major token frequency print("{0:15s}\t\t\t{1}".format("Major Token(top30)","freq")) for word, freq in major_token_frequency.most_common(30): print("{0:15s}\t\t\t{1}".format(word,freq)) print("======================================") # print dreams token frequency print("{0:15s}\t\t\t{1}".format("Dreams Token(top30)","freq")) for word, freq in token_frequency.most_common(30): print("{0:15s}\t\t\t{1}".format(word,freq)) ###Output Major Token(top30) freq CS 46 Enginneering 13 Civil 9 psychology 8 business 5 Management 4 and 4 Industrial 3 Education 3 Engineering 3 Supply 3 chain 2 Accounting 2 design 2 Elementary 2 Mechanical 2 Geology 2 secondary 2 education 2 in 2 study 2 law 2 Finance 2 Chain 2 marketing 2 physhology 2 Global 2 Economics 2 supply 1 Conservation 1 ====================================== Dreams Token(top30) freq and 63 or 24 traveling 12 for 10 engineer 9 company 9 game 8 software 8 travel 7 of 6 in 6 player 5 video 5 the 5 volunteer 4 on 4 with 4 & 3 CEO 3 national 3 startup 3 professor 3 makeup 3 design 3 designer 3 at 3 media 3 social 3 work 3 family 3 ###Markdown Remove Stop-WordsRemove common stop-wrods in english and remove punctuation ###Code from nltk.corpus import stopwords import string # Construct stop list stop_list = stopwords.words('english') + list(string.punctuation) token_no_stop = [token for token in all_tokens if token not in stop_list] major_token_no_stop = [token for token in tokens_major if token not in stop_list] token_freq_no_stop = Counter(token_no_stop) major_token_freq_no_stop = Counter(major_token_no_stop) # major token without stop-words print("{0:15s}\t\t\t{1}".format("Major Token(top30)","freq")) for word,freq in major_token_freq_no_stop.most_common(30): print("{0:15s}\t\t\t{1}".format(word,freq)) print("\n=====================================") # dreams token without stop-words print("{0:15s}\t\t\t{1}".format("Dreams Token(top30)","freq")) for word,freq in token_freq_no_stop.most_common(30): print("{0:15s}\t\t\t{1}".format(word,freq)) ###Output Major Token(top30) freq CS 46 Enginneering 13 Civil 9 psychology 8 business 5 Management 4 Industrial 3 Education 3 Engineering 3 Supply 3 chain 2 Accounting 2 design 2 Elementary 2 Mechanical 2 Geology 2 secondary 2 education 2 study 2 law 2 Finance 2 Chain 2 marketing 2 physhology 2 Global 2 Economics 2 supply 1 Conservation 1 Biology 1 anthropology 1 ===================================== Dreams Token(top30) freq traveling 12 engineer 9 company 9 game 8 software 8 travel 7 player 5 video 5 volunteer 4 CEO 3 national 3 startup 3 professor 3 makeup 3 design 3 designer 3 media 3 social 3 work 3 family 3 actor 2 ocean 2 home 2 help 2 people 2 football 2 teaching 2 artist 2 world 2 google 2 ###Markdown Text Normalisation, StemReplacing tokens with a canonical form, so we can group different spelling/variations of the same word ###Code from nltk.stem import PorterStemmer stemmer = PorterStemmer() # majors major_all_token_lower = [t.lower() for t in tokens_major] major_all_token_lower_no_stop = [t for t in major_all_token_lower if t not in stop_list] major_tokens_norm = [stemmer.stem(t) for t in major_all_token_lower if t not in stop_list] major_token_freq_norm = Counter(major_tokens_norm) major_label = [] major_size = [] print("{0:15s}\t\t\t{1}".format("Major Token(top25)","freq")) for word,freq in major_token_freq_norm.most_common(25): print("{0:20s}\t{1}".format(word,freq)) major_label.append(word) major_size.append(freq) total_count = sum(major_token_freq_no_stop.values()) other_count = total_count - sum(major_size) #major_label.append('other') #major_size.append(other_count) print("==============================================") # dreams all_token_lower = [t.lower() for t in all_tokens] all_token_lower_no_stop = [t for t in all_token_lower if t not in stop_list] tokens_norm = [stemmer.stem(t) for t in all_token_lower if t not in stop_list] token_freq_norm = Counter(tokens_norm) dream_label = [] dream_size = [] print("{0:15s}\t\t\t{1}".format("Dreams Token(top25)","freq")) for word,freq in token_freq_norm.most_common(25): print("{0:20s}\t{1}".format(word,freq)) dream_label.append(word) dream_size.append(freq) ###Output Major Token(top25) freq cs 46 enginn 13 civil 9 psycholog 8 manag 5 busi 5 educ 5 suppli 4 chain 4 industri 3 engin 3 market 3 account 2 design 2 elementari 2 mechan 2 geolog 2 secondari 2 studi 2 law 2 financ 2 sociolog 2 scienc 2 physholog 2 global 2 ============================================== Dreams Token(top25) freq travel 19 softwar 9 engin 9 game 9 compani 9 design 6 player 5 video 5 volunt 4 tech 4 ceo 3 nation 3 comput 3 startup 3 professor 3 makeup 3 code 3 media 3 social 3 work 3 famili 3 appl 2 actor 2 ocean 2 home 2 ###Markdown Use Pie Chart to plot Major/Dreams composition ###Code import matplotlib.pyplot as plt from pylab import rcParams import matplotlib as mpl mpl.rcParams['font.size'] = 10.0 rcParams['figure.figsize'] = 10, 10 plt.pie(major_size,labels=major_label,autopct='%1.1f%%') plt.title("Pie Chart for Major Composition for top 25",size=25) plt.show() # print(major_token_freq_no_stop) plt.pie(dream_size,labels=dream_label,autopct='%1.1f%%') plt.title("Pie Chart for Dreams Composition for top 25",size=25) plt.show() # print(major_token_freq_no_stop) ###Output _____no_output_____ ###Markdown Play with n-grams ###Code # for majors from nltk import ngrams phase_num = 2 title_label = [] title_size = [] phrases = Counter(ngrams(tokens_norm,phase_num)) # phrases = Counter(ngrams(all_token_lower_no_stop,phase_num)) print("{0:15s}\t\t\t{1}".format("Major ngrams(top15)","freq")) for phrase,freq in phrases.most_common(15): print("{}\t{}".format(phrase,freq)) title_label.append(phrase) title_size.append(freq) #print(title_label) rcParams['figure.figsize'] = 10, 10 plt.pie(title_size,labels=title_label,autopct='%1.1f%%') plt.title("2-words phrases for Dreams for top 15",size=25) plt.show() ###Output _____no_output_____ ###Markdown ###Code # 2words ngrams for majors from nltk import ngrams phase_num = 2 phrases = Counter(ngrams(major_all_token_lower_no_stop,phase_num)) print("{0:15s}\t\t\t{1}".format("Dreams ngrams","freq")) for phrase,freq in phrases.most_common(20): print("{0}\t\t\t\t\t{1}".format(phrase,freq)) ###Output Dreams ngrams freq ('cs', 'cs') 22 ('civil', 'enginneering') 6 ('supply', 'chain') 4 ('enginneering', 'cs') 4 ('psychology', 'cs') 4 ('cs', 'supply') 3 ('chain', 'cs') 3 ('cs', 'civil') 3 ('civil', 'engineering') 3 ('enginneering', 'management') 2 ('cs', 'business') 2 ('psychology', 'psychology') 2 ('industrial', 'design') 2 ('elementary', 'education') 2 ('mechanical', 'enginneering') 2 ('secondary', 'education') 2 ('enginneering', 'psychology') 2 ('business', 'law') 2 ('cs', 'finance') 2 ('cs', 'global') 2 ###Markdown Are We Working on Dreams?This part we use pre-trained NLP model to check the smiliarity between major and dream job.Please refer to the actual data file(_./data/dreams.data_) for more insights. ###Code # read in model import csv import numpy as np glove = pd.read_csv('./data/glove.twitter.27B.50d.txt',delimiter=' ',engine='python', quoting=csv.QUOTE_NONE) glove.head() glove.index = glove['<user>'] glove.drop('<user>',axis=1,inplace=True) glove = glove.T glove.head() stop_list = stopwords.words('english') + list(string.punctuation) def get_dist(k1,k2): k1 = k1.lower() k2 = k2.lower() # remove stop words if k1 in stop_list or k2 in stop_list: return 100 words = glove.columns if k1 in words: v1 = glove[k1].values else: return 100 if k2 in words: v2 = glove[k2].values else: # v2 = np.ones(50) * 100 return 100 return np.linalg.norm(v1-v2) get_dist("cat",'dog') vector_dist = [] for dream, major in zip(dreams_long,fields_long): mindist = 1000 for k1 in dream: for k2 in major: dist = get_dist(k1,k2) # print(k1,k2,dist) if dist < mindist: mindist = dist print(dream,major,mindist) vector_dist.append(mindist) plt.hist(vector_dist,bins=np.linspace(0,8,50)) plt.xlabel('Similarity Score') plt.ylabel('Frequency') print(" --> Percentage of students working on dream jobs: {:.2f}%".format( sum( [x<5 for x in vector_dist]) / len(vector_dist) * 100)) # matches = match_long.tolist() # yes_percentage = (len(matches.count('yes')) / len(matches)) # yes_percentage = matches.count('yes') / len(matches) yes_percentage = sum( [x<5 for x in vector_dist]) / len(vector_dist) match_label = ["yes","no"] match_size = [yes_percentage,1-yes_percentage] plt.pie(match_size,labels=match_label,autopct='%1.1f%%',startangle=90) plt.title("Whether current Major matches dream job",size=20) plt.show() ###Output _____no_output_____
notebooks/mario2.ipynb
###Markdown Partially complete import of Ks files and output to stats.csv ###Code %matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import itertools as it from sklearn.cluster import KMeans bodies = pd.read_csv('correctedframes.csv') chars = pd.read_csv('correctedchars.csv') gliders = pd.read_csv('correctedgliders.csv') tires = pd.read_csv('correctedtires.csv') # use only stock (non-DLC) characters / karts / tires #chars = chars.loc[chars['DLC']==0] #bodies = bodies.loc[bodies['DLC']==0] #tires = tires.loc[tires['DLC']==0] #gliders = gliders.loc[gliders['DLC']==0] stat_cols = bodies.columns[3:-1] main_cols = ['Weight','Speed','Acceleration','Handling','Traction'] # lots of characters/karts/tires are exactly the same. here we just want one from each stat type chars_unique = chars.drop_duplicates(subset=stat_cols).set_index('CBTG')[stat_cols] bodies_unique = bodies.drop_duplicates(subset=stat_cols).set_index('CBTG')[stat_cols] tires_unique = tires.drop_duplicates(subset=stat_cols).set_index('CBTG')[stat_cols] gliders_unique = gliders.drop_duplicates(subset=stat_cols).set_index('CBTG')[stat_cols] combos=[] body_names=bodies_unique.index tire_names=tires_unique.index char_names=chars_unique.index glider_names=gliders_unique.index for body in body_names: for tire in tire_names: for char in char_names: for glider in glider_names: thiscombo=(char,body,tire,glider) combos.append(thiscombo) stats=pd.DataFrame(columns=['speed','accel','hand'], index=combos) for combo in combos: #print(combo) char=combo[0] body=combo[1] tire=combo[2] glider=combo[3] speed=sum([gliders_unique.loc[glider,'Speed'],bodies_unique.loc[body,'Speed'],tires_unique.loc[tire,'Speed'],chars_unique.loc[char,'Speed']] ) accel= sum([gliders_unique.loc[glider,'Acceleration'],bodies_unique.loc[body,'Acceleration'],tires_unique.loc[tire,'Acceleration'],chars_unique.loc[char,'Acceleration'] ]) hand= sum([gliders_unique.loc[glider,'Handling'],bodies_unique.loc[body,'Handling'],tires_unique.loc[tire,'Handling'],chars_unique.loc[char,'Handling'] ]) index=combo # print(index) stats.loc[(index),'speed':'hand']= [speed, accel, hand] # stats.loc[(index),'accel']=accel # stats.loc[(index),'hand']=hand # print(speed, accel, hand) stats.to_csv('stats.csv') maxes=[max(stats.loc[:,'speed']),max(stats.loc[:,'accel']),max(stats.loc[:,'hand'])] print(maxes) def is_pareto_front(row, maxes): cols=len(row) for i in range(0,3): if row[i]==maxes[i]: return True return False import numpy as np def is_pareto_efficient_dumb(costs): """ :param costs: An (n_points, n_costs) array :return: A (n_points, ) boolean array, indicating whether each point is Pareto efficient """ is_efficient = np.ones(costs.shape[0], dtype = bool) for i, c in enumerate(costs): is_efficient[i] = np.all(np.any(costs>=c, axis=1)) return is_efficient pareto=pd.DataFrame() for index,row in stats.iterrows(): # print(index,row) if is_pareto_front(row, maxes): print(index,row) pareto[index]=row pareto from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(221, projection='3d') x = stats.loc[:,'speed'] y =stats.loc[:,'accel'] z =stats.loc[:,'hand'] ax.scatter(x, y, z, c='r', marker='o') ax.set_xlabel('speed') ax.set_ylabel('accel') ax.set_zlabel('hand') axy=fig.add_subplot(222) axy.scatter(x, y) ayz=fig.add_subplot(223) ayz.scatter(y, z) axz=fig.add_subplot(224) axz.scatter(x, z) plt.show() ###Output _____no_output_____
beer_recipes/beer.ipynb
###Markdown There are too many styles to make a strong model. I can experiment with different style groupings to figure out which work best in the model. ###Code ## Count nulls null_count = beer.isnull().sum() null_count[null_count>0] ###Output _____no_output_____ ###Markdown 'PrimingMethod','PrimingAmount'have over 90% nulls and I don't need 'URL', or 'Name'. I can drop them. To see if I can drop the other high-null columns I need to see how strong they correlate with other columns. ###Code beer.corr() ###Output _____no_output_____ ###Markdown 'OG','BoilGravity','BoilSize' are strongly correlated with other variables. I can drop them. I can keep the high-null columns for now. ###Code # drop unnecessary and high-null columns beer2 = beer.drop(columns = ['PrimingMethod','PrimingAmount','URL','Name','OG','BoilGravity','BoilSize']) ###Output _____no_output_____ ###Markdown Now I'll try grouping the different styles into larger groups.I'll store them in their own columns. ###Code v = beer2['IPA'] = (beer['Style'].str.contains(' IPA'))*'IPA' d = beer2['Light Lager'] = (beer['Style'].str.contains('Light Lager'))*'Light ' o = beer2['Lager'] = (beer['Style'].str.contains(' Lager|Common |Steam '))*'Lager' f = beer2['Pale Ale'] = (beer['Style'].str.contains('Saison|Strong Bitter|Pale Ale'))*'Pale Ales' k = beer2['Stout-Porter'] = (beer['Style'].str.contains(' Stout| Porter'))*'Stout-Porter' q = beer2['Weissbier'] = (beer['Style'].str.contains('Witbier|Weissbier|Weizenbier|Weizen/Weissbier'))*'Weissbier' #add new style groups to form 'kind' of beer column beer2['kind'] = d+f+k+o+q+v+'' beer2['kind'].value_counts() beer2['kind'].nunique() def cut_beercols(df): df2 = pd.DataFrame(df.iloc[:,:-int(df['kind'].nunique())]) df2['kind'] = df['kind'] df2['kind'] = df2['kind'].replace('',np.nan) print(df2['kind'].value_counts()) return df2 #cut unnecessary style group columns beer3 = cut_beercols(beer2) ###Output IPA 17064 Pale Ales 11963 Stout-Porter 8654 Weissbier 3181 Lager 2969 Light Lager 2277 Name: kind, dtype: int64 ###Markdown The nan counts for MashThickness, PitchRate and PrimaryTemp are fairly high. We can keep these features if they don't seem skewed toward one style or another. ###Code #Plot MashThickness value counts over StyleIDs. beergroup = pd.DataFrame(beer3.groupby('StyleID')['MashThickness'].count().reset_index()) sns.lmplot(x = 'StyleID', y = 'MashThickness', data = beergroup) #Plot PrimaryTemp value counts over StyleIDs. beergroup2 = pd.DataFrame(beer3.groupby('StyleID')['PrimaryTemp'].count().reset_index()) sns.lmplot(x = 'StyleID', y = 'PrimaryTemp', data = beergroup2) #Plot PitchRate value counts over StyleIDs. beergroup3 = pd.DataFrame(beer3.groupby('StyleID')['PitchRate'].count().reset_index()) sns.lmplot(x = 'StyleID', y = 'PitchRate', data = beergroup3) ###Output _____no_output_____ ###Markdown The data-points for all of these high-nan variables seem to be pretty consistent across styles. These columns could be useful. Now how do I fill nan? Let me check the distributions for each variable for each kind of beer. ###Code beerind = beer3.set_index('kind') beerind.index.unique() #boxplot of PrimaryTemp for each beer category sns.boxplot(x =beerind.index, y = 'PrimaryTemp', data = beerind) #boxplot of PrimaryTemp for each beer category sns.boxplot(x =beerind.index, y = 'MashThickness', data = beerind) #boxplot of PrimaryTemp for each beer category sns.boxplot(x =beerind.index, y = 'PitchRate', data = beerind) #Median is probably best for PitchRate because of Pale Ales, and Weissbier. Otherwise I could use mean. ###Output _____no_output_____ ###Markdown It looks like the best choice is to fill with the variable median for each category of beer, as there are a lot of outliers. ###Code # make list of beers to iterate over beerlist =list(beerind.index.unique()) beerlist.remove(np.nan) beerlist #make list of columns to iterate over columnlist = ['PrimaryTemp','PitchRate','MashThickness'] def fill_median(df,columnlist,beerlist): for j in columnlist: fin = pd.DataFrame(None) for i in beerlist: df2 = df.set_index('kind') medians= pd.DataFrame(df2.loc[i,:].median(axis =0,numeric_only = True)) result = df2.loc[i,:][[j,'BeerID']].fillna(int(medians.loc[j])) fin = pd.concat([fin,result]) df = df.merge(fin, how = 'inner', on ='BeerID') df = df.drop(columns=['MashThickness_x','PitchRate_x','PrimaryTemp_x']) return df #fill variables nans with variable medians for each beer beer4 = fill_median(beer3,columnlist,beerlist) beer4.shape beer4.head() ###Output _____no_output_____ ###Markdown Finally I can drop all the empty fields from the 'kind' column I created and see how many rows I have left. ###Code beer4 = pd.DataFrame(beer4.dropna(how = 'any',axis = 0)) beer4.shape ###Output _____no_output_____ ###Markdown Now I'll get_dummies to prepare for modeling. ###Code beer4dum = pd.get_dummies(beer4.drop(columns = ['kind','Style','StyleID','BeerID'])) beer4dum.corr() ###Output _____no_output_____ ###Markdown These 3 columns don't seem to correlated strongly with anything else. I'll keep them. ###Code #The Sugarscales are too strongly correlated with FG. beer4dum = pd.DataFrame(beer4dum.drop(columns = ['SugarScale_Specific Gravity','SugarScale_Plato'])) beer4dum.head() dropcols = ['kind','Style','StyleID','BeerID'] def preproc(df,dropcols): df = pd.DataFrame(df.dropna(how = 'any',axis = 0)) df2 = pd.get_dummies(df.drop(columns = dropcols)) exes = df2 columns = exes.columns scaler = MinMaxScaler() scaled_df = scaler.fit_transform(exes) scaled_df = pd.DataFrame(scaled_df, columns = columns) print(scaled_df.columns) return scaled_df #Use new preprocessing function to prepare for modeling beer4 = pd.DataFrame(beer4.drop(columns = ['SugarScale'])) scaled_df = preproc(beer4,dropcols) #logistic regression y = np.ravel(beer4['kind']) y = y.astype(str) X = np.asarray(scaled_df) # Declare a logistic regression classifier. lr = LogisticRegression(C = 1e6) X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.20) ##Fit the model. fit = lr.fit(X_train, Y_train) # logistic regression output print('Coefficients') print(fit.coef_) print('Intercepts') print (fit.intercept_) pred_y_sklearn = lr.predict(X_test) pred_y_sklearn = lr.predict(X_train) print('\n Percentage accuracy') print('Test',lr.score(X_test, Y_test)) print('Train',lr.score(X_train, Y_train)) #random forest classifier from sklearn import ensemble from sklearn.model_selection import cross_val_score rfc = ensemble.RandomForestClassifier(n_jobs = -1) y = np.ravel(beer4['kind']) X = pd.DataFrame(beer4dum) cross_val_score(rfc,X,y,cv=5) #random forest classifier feature importance rfc.fit(X,y) feature_importance = rfc.feature_importances_ # Make importances relative to max importance. feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 fig, ax = plt.subplots(figsize =(10,10)) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, X.columns[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.show() # Create training and test sets for gradient boosting. offset = int(X.shape[0] * 0.8) # Put 80% of the data in the training set. X_train, y_train = X[:offset], y[:offset] # And put 20% in the test set. X_test, y_test = X[offset:], y[offset:] #gradient boosting classifier params = {'n_estimators': 500, 'max_depth': 2, 'loss': 'deviance'} # Initialize and fit the model. clf = ensemble.GradientBoostingClassifier(**params,subsample=.5) clf.fit(X_train, y_train) predict_train = clf.predict(X_train) predict_test = clf.predict(X_test) #gradient boosting scores score = accuracy_score(y_train, predict_train, normalize=True, sample_weight=None) print("Train {}".format(score)) score2 = accuracy_score(y_test, predict_test, normalize=True, sample_weight=None) print("Test {}".format(score2)) #plot important features fig, ax = plt.subplots(figsize=(7, 4)) sns.boxplot(x = 'kind', y = 'Color', data = beer4) ax.set_xlabel('Category') #plot important features fig, ax = plt.subplots(figsize=(7, 4)) sns.boxplot(x = 'kind', y = 'IBU', data = beer4) plt.ylim(0,350) ax.set_xlabel('Category') #Outliers cut off for better visualization #plot important features fig, ax = plt.subplots(figsize=(7, 4)) sns.boxplot(x = 'kind', y = 'ABV', data = beer4) ax.set_xlabel('Category') plt.ylim(0,20) #Outliers cut off for better visualization #plot important features fig, ax = plt.subplots(figsize=(7, 4)) sns.boxplot(x = 'kind', y = 'PrimaryTemp_y', data = beer4) ax.set_xlabel('Category') ax.set_ylabel('Primary Temp') plt.ylim(0,60) #Outliers cut off for better visualization ###Output _____no_output_____ ###Markdown Now I'd like to do a binary classification with Stout and Porter since I couldn't classify them in my multinomial classification. ###Code #dropping unnecessary columns. stout = beer.drop(columns = ['PrimingMethod','PrimingAmount','URL','Name','OG','BoilGravity','BoilSize','SugarScale']) #find and group stout and porter a = stout['Stout'] = (beer['Style'].str.contains(' Stout'))*'Stout' b = stout['Porter'] = (beer['Style'].str.contains(' Porter'))*'Porter' #create kind of beer column stout['kind'] = a+b+'' #cut unnecessary stout and porter columns stout2 = cut_beercols(stout) #fill nan stout3 = fill_median(stout2,columnlist,['Stout','Porter']) stout3.head() #pre-processing scaled_df = preproc(stout3,['Style','StyleID','BeerID','kind']) #logistic regression y = np.ravel(stout3['kind']) y = y.astype(str) X = np.asarray(scaled_df) # Declare a logistic regression classifier. lr = LogisticRegression(C = 1e6) X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.20) ##Fit the model. fit = lr.fit(X_train, Y_train) #logistic regression output print('Coefficients') print(fit.coef_) print('Intercepts') print (fit.intercept_) pred_y_sklearn = lr.predict(X_test) pred_y_sklearn = lr.predict(X_train) print('\n Percentage accuracy') print('Test',lr.score(X_test, Y_test)) print('Train',lr.score(X_train, Y_train)) #random forest classifier from sklearn import ensemble from sklearn.model_selection import cross_val_score rfc = ensemble.RandomForestClassifier(n_jobs = -1) y = np.ravel(stout3['kind']) X = pd.DataFrame(scaled_df) cross_val_score(rfc,X,y,cv=5) #rfc feature importance rfc.fit(X,y) feature_importance = rfc.feature_importances_ # Make importances relative to max importance. feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 fig, ax = plt.subplots(figsize =(10,10)) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, X.columns[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.show() # Create training and test sets for gradient boosting. offset = int(X.shape[0] * 0.8) # Put 80% of the data in the training set. X_train, y_train = X[:offset], y[:offset] # And put 20% in the test set. X_test, y_test = X[offset:], y[offset:] # gradient boosting classifier params = {'n_estimators': 500, 'max_depth': 2, 'loss': 'deviance'} # Initialize and fit the model. clf = ensemble.GradientBoostingClassifier(**params,subsample=.5) clf.fit(X_train, y_train) predict_train = clf.predict(X_train) predict_test = clf.predict(X_test) #gradient boosting scores score = accuracy_score(y_train, predict_train, normalize=True, sample_weight=None) print("Train {}".format(score)) score2 = accuracy_score(y_test, predict_test, normalize=True, sample_weight=None) print("Test {}".format(score2)) #dropping unnecessary columns. IPA = beer.drop(columns = ['PrimingMethod','PrimingAmount','URL','Name','OG','BoilGravity','BoilSize','SugarScale']) #find and group IPA and pale ales. y = IPA['IPA'] = (beer['Style'].str.contains(' IPA'))*'IPA' z = IPA['Pale Ale'] = (beer['Style'].str.contains('Saison|Strong Bitter|Pale Ale'))*'Pale Ales' #create kind of beer column IPA['kind'] = y+z+'' #cut unnecessary IPA and Pale Ale columns IPA2 = cut_beercols(IPA) #fill nan IPA3 = fill_median(IPA2,columnlist,['IPA','Pale Ales']) #preprocessing scaled_df = preproc(IPA3,['Style','StyleID','BeerID','kind']) #logistic regression y = np.ravel(IPA3['kind']) y = y.astype(str) X = np.asarray(scaled_df) # Declare a logistic regression classifier. lr = LogisticRegression(C = 1e6) X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.20) ##Fit the model. fit = lr.fit(X_train, Y_train) #logistic regression output print('Coefficients') print(fit.coef_) print('Intercepts') print (fit.intercept_) pred_y_sklearn = lr.predict(X_test) pred_y_sklearn = lr.predict(X_train) print('\n Percentage accuracy') print('Test',lr.score(X_test, Y_test)) print('Train',lr.score(X_train, Y_train)) #random forest classifier from sklearn import ensemble from sklearn.model_selection import cross_val_score rfc = ensemble.RandomForestClassifier(n_jobs = -1) y = np.ravel(IPA3['kind']) X = pd.DataFrame(scaled_df) cross_val_score(rfc,X,y,cv=5) # rfc feature importance rfc.fit(X,y) feature_importance = rfc.feature_importances_ # Make importances relative to max importance. feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 fig, ax = plt.subplots(figsize =(10,10)) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, X.columns[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.show() # Create training and test sets for gradient boosting. offset = int(X.shape[0] * 0.8) # Put 80% of the data in the training set. X_train, y_train = X[:offset], y[:offset] # And put 20% in the test set. X_test, y_test = X[offset:], y[offset:] # Gradient boosting classifier params = {'n_estimators': 500, 'max_depth': 2, 'loss': 'deviance'} # Initialize and fit the model. clf = ensemble.GradientBoostingClassifier(**params,subsample=.5) clf.fit(X_train, y_train) predict_train = clf.predict(X_train) predict_test = clf.predict(X_test) #gradient boosting scores score = accuracy_score(y_train, predict_train, normalize=True, sample_weight=None) print("Train {}".format(score)) score2 = accuracy_score(y_test, predict_test, normalize=True, sample_weight=None) print("Test {}".format(score2)) ###Output Train 0.8533654881357392 Test 0.8098518773682397
2017-12-15_CCMI_workshop/notebooks/2017-12-15_08_CCMI_Hierarchical+Clustering+-+RNASeq.ipynb
###Markdown Hierarchical Clustering in GenePattern NotebookCluster genes and/or samples based on how close they are to one another. The result is a tree structure, referred to as dendrogram. Before you begin* Sign in to GenePattern by entering your username and password into the form below.* Gene expression data must be in a [GCT or RES file](https://genepattern.broadinstitute.org/gp/pages/protocols/GctResFiles.html) - we have provided files in the correct format. * Example file: [all_aml_test.gct](https://software.broadinstitute.org/cancer/software/genepattern/data/all_aml/all_aml_test.gct).* Learn more by reading about [file formats](http://www.broadinstitute.org/cancer/software/genepattern/file-formats-guideGCT). ###Code # Requires GenePattern Notebook: pip install genepattern-notebook import gp import genepattern # Username and password removed for security reasons. genepattern.GPAuthWidget(genepattern.register_session("https://genepattern.broadinstitute.org/gp", "", "")) ###Output _____no_output_____ ###Markdown Step 1: HierarchicalClusteringRun hierarchical clustering on genes and/or samples to create dendrograms for the clustered genes (*.gtr) and/or clustered samples (*.atr), as well as a file (*.cdt) that contains the original gene expression data ordered to reflect the clustering. Considerations* Best practice is to normalize (row/column normalize parameters) and center (row/column center parameters) the data being clustered. * The CDT output file must be converted to a GCT file before it can be used as an input file for another GenePattern module (other than HierachicalClusteringViewer). For instructions on converting a CDT file to a GCT file, see [Creating Input Files](http://www.broadinstitute.org/cancer/software/genepattern/file-formats-guidecreating-input-files).* Learn more by reading about the [HierarchicalClustering](https://genepattern.broadinstitute.org/gp/getTaskDoc.jsp?name=HierarchicalClustering) module. InstructionsFor the input.filename parameter, click and drag BRCA_HUGO_symbols.preprocessed.gct into the &quot;Enter Path or URL&quot; text boxClick Run. ###Code hierarchicalclustering_task = gp.GPTask(genepattern.get_session(0), 'urn:lsid:broad.mit.edu:cancer.software.genepattern.module.analysis:00009') hierarchicalclustering_job_spec = hierarchicalclustering_task.make_job_spec() hierarchicalclustering_job_spec.set_parameter("input.filename", "") hierarchicalclustering_job_spec.set_parameter("column.distance.measure", "2") hierarchicalclustering_job_spec.set_parameter("row.distance.measure", "0") hierarchicalclustering_job_spec.set_parameter("clustering.method", "a") hierarchicalclustering_job_spec.set_parameter("log.transform", "") hierarchicalclustering_job_spec.set_parameter("row.center", "mean.row") hierarchicalclustering_job_spec.set_parameter("row.normalize", "") hierarchicalclustering_job_spec.set_parameter("column.center", "mean.column") hierarchicalclustering_job_spec.set_parameter("column.normalize", "") hierarchicalclustering_job_spec.set_parameter("output.base.name", "<input.filename_basename>") genepattern.GPTaskWidget(hierarchicalclustering_task) ###Output _____no_output_____ ###Markdown Step 2: HierarchicalClusteringViewerDisplay a heat map of the clustered gene expression data, with dendrograms showing how the genes and/or samples were clustered. Considerations* Select File > Save Image to save the heat map and dendrograms to an image file. Supported formats include bmp, eps, jpeg, png, and tiff. * Learn more by reading about the [HierarchicalClusteringViewer](https://genepattern.broadinstitute.org/gp/getTaskDoc.jsp?name=HierarchicalClusteringViewer) module. Instructions- For the **cdt file** parameter, click the down arrow in the file input box and choose the result of the HierarchicalClustering job.- For the **atr file** parameter, click the down arrow in the file input box and choose the result of the HierarchicalClustering job.- Click **Run**. ###Code hierarchicalclusteringviewer_task = gp.GPTask(genepattern.get_session(0), 'urn:lsid:broad.mit.edu:cancer.software.genepattern.module.visualizer:00031') hierarchicalclusteringviewer_job_spec = hierarchicalclusteringviewer_task.make_job_spec() hierarchicalclusteringviewer_job_spec.set_parameter("cdt.file", "") hierarchicalclusteringviewer_job_spec.set_parameter("gtr.file", "") hierarchicalclusteringviewer_job_spec.set_parameter("atr.file", "") genepattern.GPTaskWidget(hierarchicalclusteringviewer_task) ###Output _____no_output_____
notebooks/dev/paper_plots_angularcl_64.ipynb
###Markdown Prototyping Settings for Simplistic DESC SRD Y1 after PGD implementation For reference, the DESC SRD can be found [here](https://arxiv.org/pdf/1809.01669.pdf). Appendix D2 specifies some of the analysis choices for the Y1 data. In particular:- neff for lensing sources: 10 gal/arcmin^2- sigma_e: 0.26 per component- lmax: 3000In this notebook, we will see the effects of the PGD implemantion on the angular power spectrum. \We will use a kappa TNG map as a reference point. ###Code %pylab inline import tensorflow_addons as tfa import tensorflow as tf import flowpm from flowpm.tfpower import linear_matter_power import DifferentiableHOS as DHOS import flowpm.scipy.interpolate as interpolate import pickle from flowpm import tfpm from DifferentiableHOS.pk import power_spectrum from nbodykit.cosmology import Cosmology from nbodykit.cosmology.power.halofit import HalofitPower from astropy.cosmology import Planck15 import astropy.units as u n_lens = 11 box_size= 205 nc=128 field_size = 5. field_npix = 1024 B=1 batch_size = 1 z_source = np.array([1.]) cosmology = flowpm.cosmology.Planck15() r = tf.linspace(0., box_size*n_lens, n_lens+1) r_center = 0.5*(r[1:] + r[:-1]) a = flowpm.tfbackground.a_of_chi(cosmology, r) a_center =flowpm.tfbackground.a_of_chi(cosmology, r_center) init_stages = tf.linspace(0.1, a[-1], 4) stages = tf.concat([init_stages, a_center.numpy()[::-1]], axis=0) k = tf.constant(np.logspace(-4, 1, 128), dtype=tf.float32) pk = linear_matter_power(cosmology, k) pk_fun = lambda x: tf.cast(tf.reshape(interpolate.interp_tf(tf.reshape(tf.cast(x, tf.float32), [-1]), k, pk), x.shape), tf.complex64) initial_conditions = flowpm.linear_field( [nc, nc, nc], [box_size, box_size, box_size], pk_fun, batch_size=1) initial_state = flowpm.lpt_init(cosmology, initial_conditions, 0.1) pgd_data = pickle.load(open("results_fit_PGD_205_128.pkl", 'rb')) pgdparams = pgd_data['params'] states = flowpm.nbody(cosmology, initial_state, stages, [nc, nc, nc], pm_nc_factor=B, pgdparams=pgdparams) ###Output _____no_output_____ ###Markdown Check that everything works properly comparing the matter power spectrum to the reference one ###Code cosmology = flowpm.cosmology.Planck15() # Create a simple Planck15 cosmology without neutrinos, and makes sure sigma8 # is matched nbdykit_cosmo = Cosmology.from_astropy(Planck15.clone(m_nu=0 * u.eV)) nbdykit_cosmo = nbdykit_cosmo.match(sigma8=cosmology.sigma8.numpy()) corrected_states=[] pk_PGD=[] pk_NO_PGD=[] pk_halo=[] for i in range((len(new_states))): corrected_states.append(dx[i]+new_states[i][1][0]) final_field = flowpm.cic_paint(tf.zeros_like(initial_conditions), corrected_states[i]) final_field=tf.reshape(final_field, [nc, nc, nc]) k, power_spectrum = pkl(final_field,shape=final_field.shape,boxsize=np.array([box_size, box_size, box_size]),kmin=0.1,dk=2*np.pi/box_size) final_field1 = flowpm.cic_paint(tf.zeros_like(initial_conditions), new_states[i][1][0]) final_field1=tf.reshape(final_field1, [nc, nc, nc]) k1, power_spectrum1 = pkl(final_field1,shape=final_field.shape,boxsize=np.array([box_size, box_size, box_size]),kmin=0.1,dk=2*np.pi/box_size) pk_PGD.append(power_spectrum) pk_NO_PGD.append(power_spectrum1) pk_halo.append(HalofitPower(nbdykit_cosmo, 1. / new_states[i][0] - 1.)(k)) def trim_axs(axs, N): """ Reduce *axs* to *N* Axes. All further Axes are removed from the figure. """ axs = axs.flat for ax in axs[N:]: ax.remove() return axs[:N] figsize = (23, 10) fig =plt.figure(figsize=figsize, constrained_layout=True) cols = 5 rows =7 axs = fig.subplots(rows, cols) axs = trim_axs(axs, len(pk_PGD)) for ax, pi in zip(axs, pk_PGD): ax.loglog(k, pi,label='DLL with PGD') for ax, px in zip(axs, pk_NO_PGD): ax.loglog(k, px,label='DLL without PGD') for ax, pj in zip(axs, pk_halo): ax.loglog(k, pj,'--',label='Analytical $halofit$ predictions') ax.set_xlabel('k') ax.set_ylabel('$P_k$') legend(loc='center left') ###Output _____no_output_____ ###Markdown Implement the raytracing ###Code lensplanes_PGD = [] lensplanes_NO_PGD = [] for i in range(len(corrected_states)): plane_PGD = flowpm.raytracing.density_plane(corrected_states[i], [nc, nc, nc], nc//2, width=nc, plane_resolution=256, shift=flowpm.raytracing.random_2d_shift()) plane_NO_PGD = flowpm.raytracing.density_plane(new_states[i][1], [nc, nc, nc], nc//2, width=nc, plane_resolution=256, shift=flowpm.raytracing.random_2d_shift()) plane_PGD = tf.expand_dims(plane_PGD, axis=-1) plane_PGD = tf.image.random_flip_left_right(plane_PGD) plane_PGD = tf.image.random_flip_up_down(plane_PGD) plane_NO_PGD = tf.expand_dims(plane_NO_PGD, axis=-1) plane_NO_PGD = tf.image.random_flip_left_right(plane_NO_PGD) plane_NO_PGD = tf.image.random_flip_up_down(plane_NO_PGD) lensplanes_PGD.append((r_center[i], new_states[i][0], plane_PGD[...,0])) lensplanes_NO_PGD.append((r_center[i], new_states[i][0], plane_NO_PGD[...,0])) xgrid, ygrid = np.meshgrid(np.linspace(0, field_size, field_npix, endpoint=False), # range of X coordinates np.linspace(0, field_size, field_npix, endpoint=False)) # range of Y coordinates coords = np.stack([xgrid, ygrid], axis=0)*u.deg c = coords.reshape([2, -1]).T.to(u.rad) m_PGD = flowpm.raytracing.convergenceBorn(cosmology, lensplanes_PGD, dx=box_size/256, dz=box_size, coords=c, z_source=z_source) m_NO_PGD = flowpm.raytracing.convergenceBorn(cosmology, lensplanes_NO_PGD, dx=box_size/256, dz=box_size, coords=c, z_source=z_source) m_PGD = m_PGD.numpy().reshape([batch_size, field_npix, field_npix]) m_NO_PGD = m_NO_PGD.numpy().reshape([batch_size, field_npix, field_npix]) imshow(m_PGD[0]) colorbar() imshow(m_NO_PGD[0]) colorbar() l_PGD, ps_PGD= DHOS.statistics.power_spectrum(m_PGD[0],field_size,field_npix) l_NO_PGD, ps_NO_PGD= DHOS.statistics.power_spectrum(m_NO_PGD[0],field_size,field_npix) l=l_PGD import jax_cosmo as jc cosmo=jc.Planck15() nz =jc.redshift.delta_nz(z_source) probes = [jc.probes.WeakLensing([nz])] cls = jc.angular_cl.angular_cl(cosmo, l.numpy(), probes) loglog(l, l*(l+1)*ps_PGD/(2*np.pi),label='DLL with PGD ') loglog(l, l*(l+1)*ps_NO_PGD/(2*np.pi),label='DLL without PGD') loglog(l, l*(l+1)*cls[0]/(2*np.pi),'--',label='Analytical $halofit$ predictions') xlim(1e2,1e4) #ylim(4e-9,4e-2) axvline(300) axvline(3000) ylabel('$\ell(\ell+1)C_\ell /2\pi$') xlabel('$\ell$') legend() #savefig('cl_comp1_64.png',dpi=250) ###Output _____no_output_____ ###Markdown Comparison to kappa TNGFor comparison, we are using this map at redshift 1 from the kappa TNG simulations. ###Code kTNG = np.load('kappa_tng.npy') ###Output _____no_output_____ ###Markdown So, obvioulsy our 64^3 simulation is not as precise as kappa TNG, but we won't be working at the native 0.3 arcmin resolution anyway, in practice we'll have noise and smoothing.So let's see how much smoothing gets us in the right ball park. ###Code ngal = 10 # gal/arcmin **2 pix_scale = 5/1024*60 # arcmin ngal_per_pix = ngal * pix_scale**2 # galaxies per pixels (I think) sigma_e = 0.26 / sqrt(2 * ngal_per_pix) # Rescaled noise sigma sigma_pix_2ar=2/pix_scale l, ps_FLP_2arc= DHOS.statistics.power_spectrum(tfa.image.gaussian_filter2d(m_PGD[0],51,sigma=sigma_pix_2ar),field_size,field_npix) l, ps_TNG_2arc=DHOS.statistics.power_spectrum(tfa.image.gaussian_filter2d(kTNG,51,sigma=sigma_pix_2ar),field_size,field_npix) l, ps_FLP_NOPGD_2arc= DHOS.statistics.power_spectrum(tfa.image.gaussian_filter2d(m_NO_PGD[0],51,sigma=sigma_pix_2ar),field_size,field_npix) figure(figsize=[10,5]) loglog(l, l*(l+1)*ps_FLP_2arc/(2*np.pi), label='DLL with PGD') loglog(l, l*(l+1)*ps_FLP_NOPGD_2arc/(2*np.pi), label='DLL without PGD') loglog(l, l*(l+1)*ps_TNG_2arc/(2*np.pi), label='$\kappa$TNG') axvline(3000, ls='--') axvline(300,ls='--') ylim(10e-9,10e-3) xlim(1e2,1e4) ylabel('$\ell(\ell+1)C_\ell /2\pi$') xlabel('$\ell$') legend() title('Comparison to $\kappa$TNG 2 arcmin smoothing') ###Output _____no_output_____ ###Markdown Adding noiseWe'll now try to get to a realistic setting that matches some of the SRD Y1 settings. ###Code knTNG_n = np.load('kappa_tng.npy')+ sigma_e * randn(1024,1024), 5*u.deg knFPM_n = m_PGD[0]+ sigma_e * randn(1024,1024), 5*u.deg knFPM_n_NOPGD = m_NO_PGD[0]+ sigma_e * randn(1024,1024), 5*u.deg l, ps_FLP_2ar_n= DHOS.statistics.power_spectrum(tfa.image.gaussian_filter2d(knFPM_n[0],51,sigma=sigma_pix_2ar),field_size,field_npix) l, ps_FLP_NOPGD_2ar_n= DHOS.statistics.power_spectrum(tfa.image.gaussian_filter2d(knFPM_n_NOPGD[0],51,sigma=sigma_pix_2ar),field_size,field_npix) l, ps_TNG_2ar_n=DHOS.statistics.power_spectrum(tfa.image.gaussian_filter2d(knTNG_n[0],51,sigma=sigma_pix_2ar),field_size,field_npix) figure(figsize=[10,5]) loglog(l, l*(l+1)*ps_FLP_2ar_n/(2*np.pi), label='DLL with PGD') loglog(l, l*(l+1)*ps_FLP_NOPGD_2ar_n/(2*np.pi), label='DLL without PGD') loglog(l, l*(l+1)*ps_TNG_2ar_n/(2*np.pi), label='$\kappa$TNG') axvline(3000, ls='--') axvline(300,ls='--') ylim(10e-9,10e-3) xlim(1e2,1e4) ylabel('$\ell(\ell+1)C_\ell /2\pi$') xlabel('$\ell$') legend() title('Comparison to $\kappa$TNG 2 arcmin smoothing and noise') ###Output _____no_output_____
Pandas Practical Guide.ipynb
###Markdown Pandas Practical GuidePandas is an essential package for data engineers, data analysts, and data scientists. Pandas is an easy to use python package library for data manipulation and analysis. If you have already familiar with SQL or even Ms Excel, it will not be difficult to get used to functions in pandas.Pandas has a data format that is often used, called DataFrame. Pandas DataFrame is a 2D data structure. Data is organized like a table containing rows and columns, making it easy to query. Rows is representing data records and column is representing fields. Dataset I created simple data for this post, making it easier to understand Pandas. The data was taken from Indonesian Central Bureau of Statistics (bps.go.id). The dataset contains some information about provinces in Indonesia in 2015. This dataset has 10 columns : 1. province: province name 2. rainfall: amount of rainfall in mm which is taken from the observation station owned by BMKG 3. rainy_day: number of days it rains 4. expenses_food_urban: average monthly food expenses per capita in urban areas 5. expenses_other_urban: average monthly non food expenses per capita in urban areas 6. expenses_food_rural: average monthly food expenses per capita in rural areas 7. expense_other_rural: average monthly non food expenses per capita in rural areas 8. unemployment: the unemployment rate is calculated in August (percentage) 9. time_zone: time zone classification 10. island: island group The dataset can be downloaded at [github](https://raw.githubusercontent.com/project303/dataset/master/data-province-2015.cvs) Importing pandas packageBefore we can use pandas, we need to import the package, and give it a shorter name, namely pd ###Code import pandas as pd print('Pandas version: {}'.format(pd.__version__)) ###Output Pandas version: 1.1.0 ###Markdown Loading a .csv file into a Pandas DataFrameTo read it as a Pandas DataFrame, we can simply use the read_csv () command. ###Code url = "https://raw.githubusercontent.com/project303/dataset/master/data-province-2015.cvs" df = pd.read_csv(url, sep='\t') ###Output _____no_output_____ ###Markdown View Data Sample**head()** function to display the first 5 records ###Code df.head() ###Output _____no_output_____ ###Markdown Display the first 10 records from the DataFrame ###Code df.head(10) ###Output _____no_output_____ ###Markdown Display last 5 records ###Code df.tail() ###Output _____no_output_____ ###Markdown Displays 10 random records ###Code df.sample(10) ###Output _____no_output_____ ###Markdown Let's display all records we have in DataFrame: ###Code df ###Output _____no_output_____ ###Markdown Count Number of RecordsTo get information the number of records in dataframe, you can use the **count()** function ###Code df.count() ###Output _____no_output_____ ###Markdown Another way to count number of records is to use **shape** property ###Code df.shape[0] ###Output _____no_output_____ ###Markdown Data Structure InformationThe **shape** property can be used to know the dimensions of the DataFrame ###Code df.shape ###Output _____no_output_____ ###Markdown Another dataframe property that can be used to display the dataframe structure is **dtypes** ###Code df.dtypes ###Output _____no_output_____ ###Markdown More detailed information about the structure can be displayed using **info()** ###Code df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 34 entries, 0 to 33 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 province 34 non-null object 1 rainfall 34 non-null float64 2 rainy_day 34 non-null int64 3 expenses_food_urban 34 non-null int64 4 expenses_other_urban 34 non-null int64 5 expenses_food_rural 34 non-null object 6 expense_other_rural 34 non-null object 7 unemployment 34 non-null float64 8 time_zone 34 non-null int64 9 island 34 non-null object dtypes: float64(2), int64(4), object(4) memory usage: 2.8+ KB ###Markdown Dataframe Statistical InformationStatistical information for each column such as minimum value, maximum value, standard deviation, average and so on can be displayed with commands like the following ###Code df.describe(include='all') ###Output _____no_output_____ ###Markdown Selecting ColumnWe can choose which columns to be displayed, just simply by mentioning the column names in a list ###Code df[['province', 'unemployment', 'island']].head() ###Output _____no_output_____ ###Markdown Filtering data We want to display data for the island equal to 'Sumatera' ###Code df[(df.island == "Sumatera")].head() ###Output _____no_output_____ ###Markdown we want to get all province **located on Sumatera island and unemployment rate less than 5** ###Code df[(df.island == "Sumatera") & (df.unemployment < 5)] ###Output _____no_output_____ ###Markdown It can be written in different way, but it has the same meaning ###Code df[(df['island'] == "Sumatera") & (df['unemployment'] < 5)].head() ###Output _____no_output_____ ###Markdown isin() function can be used to filter a column if the value is specified in a list. For example, we want to show the provinces on **Sumatra and Kalimantan** island and that have unemployment rate less than 5 ###Code df[ (df['island'].isin(['Sumatera', 'Kalimantan'])) & (df['unemployment'] < 5) ] ###Output _____no_output_____ ###Markdown shows all data that are **NOT** on Sumatera and Kalimantan, but have an unemployment rate less than 5 ###Code df[ ~(df['island'].isin(['Sumatera', 'Kalimantan'])) & (df['unemployment'] < 5) ].head() ###Output _____no_output_____ ###Markdown If the condition statement is too complex, it is recomended to create a new dataframe to simplify the rest of the process ###Code df2 = df[ ~(df['island'].isin(['Sumatera', 'Kalimantan'])) & (df['unemployment'] < 5) ] df2.sample(5) ###Output _____no_output_____ ###Markdown Sorting data **sort_values()** function is used to sort data based on the specified column starting from the smallest value. The following command displays data sorted by **rainfall** column ###Code df.sort_values('rainfall').head() ###Output _____no_output_____ ###Markdown To sort the data starting from the largest value, the **ascending** parameter is assigned to **False** ###Code df.sort_values('rainfall', ascending=False).head() ###Output _____no_output_____ ###Markdown If you want to sort data by using more than one column, it is necessary to specify column name that will be used for sorting into a list ###Code df[['province', 'rainfall', 'rainy_day', 'island', 'time_zone']]\ .sort_values('rainfall', ascending=False)\ .head() df[['province', 'rainfall', 'rainy_day', 'island', 'time_zone']]\ .sort_values(['rainfall', 'rainy_day'])\ .head() df.sort_values(['rainfall', 'rainy_day' ]).head() ###Output _____no_output_____ ###Markdown If you want to sort data, but have a different method for each column, then the **ascending** parameter must be specified. The value 0 will sort the largest value first. The value 1 will the smallest value first ###Code df[['province', 'rainfall', 'rainy_day', 'island', 'time_zone']]\ .sort_values(['rainfall', 'time_zone'], ascending=[0, 1])\ .head() ###Output _____no_output_____ ###Markdown Summarising Data Pandas provides statistical functions, such as count, sum, min, max and more. These functions can be applied to columns. For example **count()** function. This function can be used to count number of records in each column. ###Code df.count() ###Output _____no_output_____ ###Markdown But keep in mind, **count()** only counts for records that are not null. In the example, the number of records for each column is the same, which is 34 and none of them has a null value. Another example of using count () which is used to count the number of records in a column can use the following command ###Code df.rainfall.count() ###Output _____no_output_____ ###Markdown or it could be written as follows ###Code df['rainfall'].count() ###Output _____no_output_____ ###Markdown Other functions such as **sum()**, **min()**, **max()**, **mean()** are almost the same way they are used ###Code df.sum() ###Output _____no_output_____ ###Markdown Other usage of statistical function ###Code print('Total rainfall \t\t:', df.rainfall.sum()) print('Minimum rainfall value \t:', df.rainfall.min()) print('Maximum rainfall value \t:', df.rainfall.max()) print('Average rainfall value \t:', df.rainfall.mean()) ###Output Total rainfall : 63615.1 Minimum rainfall value : 460.9 Maximum rainfall value : 3548.0 Average rainfall value : 1871.0323529411764 ###Markdown Grouping Like SQL, pandas has a function **groupby()** to summarize columns value based on unique values according to the selected column. For example, we want to count the number of records in **time_zone** grouped by their unique values ###Code df.groupby('time_zone').count() ###Output _____no_output_____ ###Markdown From the displayed data above, it can be seen that time_zone has 3 unique values: 1, 2 and 3 Other summary functions such as sum, min, max, mean, first, last, can be used in groupsby() to get the statistical value of each group. Suppose we want to get the first value for each time_zone ###Code df.groupby('time_zone').first() ###Output _____no_output_____ ###Markdown Calculation total amount of rainfall for each time_zone can be done as below ###Code df.groupby('time_zone')[['rainfall']].sum() ###Output _____no_output_____ ###Markdown Calculation total amount of rainfall and expenses_food_urban for each time_zone can be done as below ###Code df.groupby('time_zone')[['rainfall', 'expenses_food_urban']].sum() ###Output _____no_output_____ ###Markdown To perform multiple statistical calculations grouped based on the unique value of a column, you can combine **groupby()** and **agg()** functions. ###Code df.groupby('time_zone').agg(['sum', 'min', 'max', 'mean', 'count']) ###Output _____no_output_____ ###Markdown Calculate each time_zone with a different summary function for each column, shown as below ###Code df.groupby('time_zone').agg( { 'rainfall': ['mean', 'sum'], 'expenses_food_urban': ['min', 'max'] }) ###Output _____no_output_____ ###Markdown **NamedAgg()** function can be used to change the name of a column, making it easier to understand ###Code df.groupby('time_zone', as_index=False)\ .agg( total_record=pd.NamedAgg('rainfall', 'count'), avg_rainfall=pd.NamedAgg('rainfall', 'mean'), min_rainy_day=pd.NamedAgg('rainy_day', 'min'), max_rainy_day=pd.NamedAgg('rainy_day', 'max') ) ###Output _____no_output_____ ###Markdown We can do it in other way ###Code df.groupby('time_zone', as_index=False)\ .agg( total_record=pd.NamedAgg(column ='rainfall', aggfunc='count'), avg_rainfall=pd.NamedAgg(column ='rainfall', aggfunc='mean'), min_rainy_day=pd.NamedAgg(column='rainy_day', aggfunc='min'), max_rainy_day=pd.NamedAgg(column='rainy_day', aggfunc='max') ) ###Output _____no_output_____ ###Markdown Column transformation Another thing that is often done is to perform column transformations. For example adding new columns from certain calculated results. We will add a new column that is expenses_urban from the sum of expenses_food_urban and expenses_other_urban ###Code df['expenses_urban'] = df['expenses_food_urban'] + df['expenses_other_urban'] df[['province', 'expenses_food_urban', 'expenses_other_urban', 'expenses_urban']].head() ###Output _____no_output_____ ###Markdown To delete column, you can do this with **drop()** function ###Code df = df.drop(columns=['expenses_urban']) df.head() ###Output _____no_output_____ ###Markdown Changing the column order can be done in a simple way as follows ###Code df = df[['province', 'island', 'time_zone', 'rainfall', 'rainy_day', 'expenses_food_urban', 'expenses_other_urban', 'expenses_food_rural', 'expense_other_rural', 'unemployment']] df.head() ###Output _____no_output_____ ###Markdown Join the reference data In many cases, we often add columns with new data using reference data. The use of reference data is usually to make data maintenance easier, so we don't need to change the code. As an example, we will add a zone time name, from the timezone reference data. ###Code timezone_data = { 'time_zone': [1, 2, 3], 'zone_name': ['WIB', 'WITA', 'WIT']} timezone_df = pd.DataFrame(timezone_data, columns = ['time_zone', 'zone_name']) timezone_df ###Output _____no_output_____ ###Markdown In this example, we will transform the time_zone in **df** dataframe by adding a new column, zone_name. The function used is **merge** with how = 'left' parameter. This means that we will do a **left join** between df and timezone_df ###Code df_full = pd.merge(df, timezone_df, on='time_zone', how='left') df_full.sample(5) ###Output _____no_output_____
Fake_and_Legitimate_Task_Identification_Based_on_User_Movement.ipynb
###Markdown Import And Data Exploration ###Code df = pd.read_csv('MCSDatasetNEXTCONLab.csv') df df.info() df = abs(df) X, y = df.iloc[:, :-1].values, df.iloc[:, -1].values ###Output _____no_output_____ ###Markdown Data Spliting 20% - 80% ###Code X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ###Output _____no_output_____ ###Markdown Modeling the data using algorithms (AdaBoost, Random Forest, Naive Bayes) ###Code models = [ AdaBoostClassifier(n_estimators=100, random_state=0), RandomForestClassifier(max_depth=20, random_state=0), MultinomialNB() ] estimators = [] estsNames = [] estsAccs = [] labels = ['Fake Task', 'Legitimate Task'] for model in models: name = type(model).__name__ estsNames.append(name) estimators.append((name, clone(model))) model.fit(X_train, y_train) y_predict = model.predict(X_test) accVal = accuracy_score(y_predict, y_test) * 100 estsAccs.append(accVal) print('Using {} Algorithm'.format(name)) print('============================') print('Accuracy: {}%'.format(accVal)) print('Classification Report: \n', classification_report(y_predict, y_test)) plot_confusion_matrix(model, X_test, y_test, display_labels=labels, values_format='d') plt.show() # End For ###Output Using AdaBoostClassifier Algorithm ============================ Accuracy: 97.44563341387642% Classification Report: precision recall f1-score support 0 0.84 0.94 0.89 318 1 0.99 0.98 0.99 2579 accuracy 0.97 2897 macro avg 0.92 0.96 0.94 2897 weighted avg 0.98 0.97 0.98 2897 ###Markdown Majority voting aggregation ###Code model = VotingClassifier(estimators = estimators) name = type(model).__name__ estsNames.append(name) estimators.append((name, clone(model))) model.fit(X_train, y_train) y_predict = model.predict(X_test) accVal = accuracy_score(y_predict, y_test) * 100 estsAccs.append(accVal) print('Using {} Algorithm'.format(name)) print('============================') print('Accuracy: {}%'.format(accVal)) print('Classification Report: \n', classification_report(y_predict, y_test)) plot_confusion_matrix(model, X_test, y_test, display_labels=labels, values_format='d') plt.show() ###Output Using VotingClassifier Algorithm ============================ Accuracy: 98.82637210907835% Classification Report: precision recall f1-score support 0 0.94 0.96 0.95 346 1 0.99 0.99 0.99 2551 accuracy 0.99 2897 macro avg 0.97 0.98 0.97 2897 weighted avg 0.99 0.99 0.99 2897 ###Markdown Models Accuracy Plotting ###Code champModelId = np.argmax(estsAccs) print("-> The champion model is '{}'".format(estsNames[champModelId])) plt.figure(figsize=(8,8)) plt.axhline(y=estsAccs[champModelId], linewidth=1, color='k') plt.bar(estsNames, estsAccs, color=['#1f77b4', '#ff7f0e', '#1f77b4', '#1f77b4']) plt.show() ###Output -> The champion model is 'RandomForestClassifier'
hcls/tabular/diabetic-readmission-prediction/data-wrangler/save-to-sm-feature-store.ipynb
###Markdown Save to Feature Store with a SageMaker Processing Job 💡 Quick Start To save your processed data to feature store, Click here to create a feature group and follow the instruction to run a SageMaker processing job.This notebook uses Amazon SageMaker Feature Store (Feature Store) to create a feature group, executes your Data Wrangler Flow `feature-transformations.flow` on the entire dataset using a SageMaker Processing Job and ingest processed data to Feature Store. --- Contents1. [Create Feature Group](Create-Feature-Group) 1. [Define Feature Group](Define-Feature-Group) 1. [Configure Feature Group](Configure-Feature-Group) 1. [Initialize & Create Feature Group](Initialize-&-Create-Feature-Group)1. [Processing Job: Inputs and Outputs](Inputs-and-Outputs)1. [Run Processing Job](Run-Processing-Job) 1. [Job Configurations](Job-Configurations) 1. [Create Processing Job](Create-Processing-Job) 1. [Job Status & Output Location](Job-Status-&-Output-Location) Create Feature Group_What is a feature group_A single feature corresponds to a column in your dataset. A feature group is a predefined schema for a collection of features - each feature in the feature group has a specified data type and name. A single record in a feature group corresponds to a row in your dataframe. A feature store is a collection of feature groups. To learn more about SageMaker Feature Store, see [Amazon Feature Store Documentation](http://docs.aws.amazon.com/sagemaker/latest/dg/feature-store.html). Define Feature GroupSelect Record identifier and Event time feature name. These are required parameters for feature groupcreation.* **Record identifier name** is the name of the feature defined in the feature group's feature definitions whose value uniquely identifies a Record defined in the feature group's feature definitions.* **Event time feature name** is the name of the EventTime feature of a Record in FeatureGroup. An EventTime is a timestamp that represents the point in time when a new event occurs that corresponds to the creation or update of a Record in the FeatureGroup. All Records in the FeatureGroup must have a corresponding EventTime. 💡Record identifier and Event time feature name are required for feature group. After filling in the values, you can choose Run Selected Cell and All Below from the Run Menu from the menu bar. ###Code record_identifier_feature_name = None if record_identifier_feature_name is None: raise SystemExit("Select a column name as the feature group record identifier.") event_time_feature_name = None if event_time_feature_name is None: raise SystemExit("Select a column name as the event time feature name.") ###Output _____no_output_____ ###Markdown Feature DefinitionsThe following is a list of the feature names and feature types of the final dataset that will be produced when your data flow is used to process your input dataset. These are automatically generated from the step `Custom Pyspark` from `Source: Answers.Csv`. To save from a different step, go to Data Wrangler to select a new step to export. 💡 Configurable Settings 1. You can select a subset of the features. By default all columns of the result dataframe will be used as features.2. You can change the Data Wrangler data type to one of the Feature Store supported types (Integral, Fractional, or String). The default type is set to String. This means that, if a column in your dataset is not a float or long type, it will default to String in your Feature Store.For Event Time features, make sure the format follows the feature store Event Time feature format The following is a list of the feature names and data types of the final dataset that will be produced when your data flow is used to process your input dataset. ###Code column_schemas = [ { "name": "readmitted", "type": "string" }, { "name": "age", "type": "long" }, { "name": "time_in_hospital", "type": "long" }, { "name": "num_lab_procedures", "type": "long" }, { "name": "num_medications", "type": "long" }, { "name": "number_emergency", "type": "long" }, { "name": "number_inpatient", "type": "long" }, { "name": "number_diagnoses", "type": "long" }, { "name": "change", "type": "long" }, { "name": "diabetes_med", "type": "long" }, { "name": "race_caucasian", "type": "float" }, { "name": "race_african_american", "type": "float" }, { "name": "race_hispanic", "type": "float" }, { "name": "race_other", "type": "float" }, { "name": "race_asian", "type": "float" } ] ###Output _____no_output_____ ###Markdown Below we create the SDK input for those feature definitions. Some schema types in Data Wrangler are not supported by Feature Store. The following will create a default_FG_type set to String for these types. ###Code from sagemaker.feature_store.feature_definition import FeatureDefinition from sagemaker.feature_store.feature_definition import FeatureTypeEnum default_feature_type = FeatureTypeEnum.STRING column_to_feature_type_mapping = { "float": FeatureTypeEnum.FRACTIONAL, "long": FeatureTypeEnum.INTEGRAL } feature_definitions = [ FeatureDefinition( feature_name=column_schema['name'], feature_type=column_to_feature_type_mapping.get(column_schema['type'], default_feature_type) ) for column_schema in column_schemas ] ###Output _____no_output_____ ###Markdown Configure Feature Group 💡 Configurable Settings 1. feature_group_name: name of the feature group.1. feature_store_offline_s3_uri: SageMaker FeatureStore writes the data in the OfflineStore of a FeatureGroup to a S3 location owned by you.1. enable_online_store: controls if online store is enabled. Enabling the online store allows quick access to the latest value for a Record via the GetRecord API.1. iam_role: IAM role for executing the processing job. ###Code from time import gmtime, strftime import uuid import sagemaker # Sagemaker session sess = sagemaker.Session() # You can configure this with your own bucket name, e.g. # bucket = <my-own-storage-bucket> bucket = sess.default_bucket() # IAM role for executing the processing job. iam_role = sagemaker.get_execution_role() # flow name and an unique ID for this export (used later as the processing job name for the export) flow_name = "feature-transformations" flow_export_id = f"{strftime('%d-%H-%M-%S', gmtime())}-{str(uuid.uuid4())[:8]}" flow_export_name = f"flow-{flow_export_id}" # feature group name, with flow_name and an unique id. You can give it a customized name feature_group_name = f"FG-{flow_name}-{str(uuid.uuid4())[:8]}" print(f"Feature Group Name: {feature_group_name}") # SageMaker FeatureStore writes the data in the OfflineStore of a FeatureGroup to a # S3 location owned by you. feature_store_offline_s3_uri = 's3://' + bucket # controls if online store is enabled. Enabling the online store allows quick access to # the latest value for a Record via the GetRecord API. enable_online_store = True ###Output _____no_output_____ ###Markdown Initialize & Create Feature Group ###Code # Initialize Boto3 session that is required to create feature group import boto3 from sagemaker.session import Session region = boto3.Session().region_name boto_session = boto3.Session(region_name=region) sagemaker_client = boto_session.client(service_name='sagemaker', region_name=region) featurestore_runtime = boto_session.client(service_name='sagemaker-featurestore-runtime', region_name=region) feature_store_session = Session( boto_session=boto_session, sagemaker_client=sagemaker_client, sagemaker_featurestore_runtime_client=featurestore_runtime ) ###Output _____no_output_____ ###Markdown Feature group is initialized and created below ###Code from sagemaker.feature_store.feature_group import FeatureGroup feature_group = FeatureGroup( name=feature_group_name, sagemaker_session=feature_store_session, feature_definitions=feature_definitions) feature_group.create( s3_uri=feature_store_offline_s3_uri, record_identifier_name=record_identifier_feature_name, event_time_feature_name=event_time_feature_name, role_arn=iam_role, enable_online_store=enable_online_store ) ###Output _____no_output_____ ###Markdown Invoke the Feature Store API to create the feature group and wait until it is ready ###Code import time def wait_for_feature_group_creation_complete(feature_group): """Helper function to wait for the completions of creating a feature group""" response = feature_group.describe() status = response.get("FeatureGroupStatus") while status == "Creating": print("Waiting for Feature Group Creation") time.sleep(5) response = feature_group.describe() status = response.get("FeatureGroupStatus") if status != "Created": print(f"Failed to create feature group, response: {response}") failureReason = response.get("FailureReason", "") raise SystemExit( f"Failed to create feature group {feature_group.name}, status: {status}, reason: {failureReason}" ) print(f"FeatureGroup {feature_group.name} successfully created.") wait_for_feature_group_creation_complete(feature_group=feature_group) ###Output _____no_output_____ ###Markdown Now that the feature group is created, You will use a processing job to process your data at scale and ingest the transformed data into this feature group. Inputs and OutputsThe below settings configure the inputs and outputs for the flow export. 💡 Configurable Settings In Input - Source you can configure the data sources that will be used as input by Data Wrangler1. For S3 sources, configure the source attribute that points to the input S3 prefixes2. For all other sources, configure attributes like query_string, database in the source's DatasetDefinition object.If you modify the inputs the provided data must have the same schema and format as the data used in the Flow. You should also re-execute the cells in this section if you have modified the settings in any data sources. ###Code from sagemaker.processing import ProcessingInput, ProcessingOutput from sagemaker.dataset_definition.inputs import AthenaDatasetDefinition, DatasetDefinition, RedshiftDatasetDefinition data_sources = [] ###Output _____no_output_____ ###Markdown Input - S3 Source: diabetic_readmission.csv ###Code data_sources.append(ProcessingInput( source="s3://sagemaker-us-east-1-119174016168/datasets/diabetic_readmission.csv", # You can override this to point to other dataset on S3 destination="/opt/ml/processing/diabetic_readmission.csv", input_name="diabetic_readmission.csv", s3_data_type="S3Prefix", s3_input_mode="File", s3_data_distribution_type="FullyReplicated" )) ###Output _____no_output_____ ###Markdown Output: Feature Store Below are the inputs required by the SageMaker Python SDK to launch a processing job with feature store as an output. ###Code from sagemaker.processing import FeatureStoreOutput # Output name is auto-generated from the select node's ID + output name from the flow file. output_name = "84a97a0e-0bef-45eb-b660-0ef1ca3e4655.default" processing_job_output = ProcessingOutput( output_name=output_name, app_managed=True, feature_store_output=FeatureStoreOutput(feature_group_name=feature_group_name), ) ###Output _____no_output_____ ###Markdown Upload Flow to S3To use the Data Wrangler as an input to the processing job, first upload your flow file to Amazon S3. ###Code import os import json import boto3 # name of the flow file which should exist in the current notebook working directory flow_file_name = "feature-transformations.flow" # Load .flow file from current notebook working directory !echo "Loading flow file from current notebook working directory: $PWD" with open(flow_file_name) as f: flow = json.load(f) # Upload flow to S3 s3_client = boto3.client("s3") s3_client.upload_file(flow_file_name, bucket, f"data_wrangler_flows/{flow_export_name}.flow", ExtraArgs={"ServerSideEncryption": "aws:kms"}) flow_s3_uri = f"s3://{bucket}/data_wrangler_flows/{flow_export_name}.flow" print(f"Data Wrangler flow {flow_file_name} uploaded to {flow_s3_uri}") ###Output _____no_output_____ ###Markdown The Data Wrangler Flow is also provided to the Processing Job as an input source which we configure below. ###Code ## Input - Flow: feature-transformations.flow flow_input = ProcessingInput( source=flow_s3_uri, destination="/opt/ml/processing/flow", input_name="flow", s3_data_type="S3Prefix", s3_input_mode="File", s3_data_distribution_type="FullyReplicated" ) ###Output _____no_output_____ ###Markdown Run Processing Job Job Configurations 💡 Configurable Settings You can configure the following settings for Processing Jobs. If you change any configurations you will need to re-execute this and all cells below it by selecting the Run menu above and click Run Selected Cells and All Below1. IAM role for executing the processing job. 2. A unique name of the processing job. Give a unique name every time you re-execute processing jobs3. Data Wrangler Container URL.4. Instance count, instance type and storage volume size in GB.5. Content type for each output. Data Wrangler supports CSV as default and Parquet.6. Network Isolation settings7. KMS key to encrypt output data ###Code # IAM role for executing the processing job. iam_role = sagemaker.get_execution_role() # Unique processing job name. Give a unique name every time you re-execute processing jobs processing_job_name = f"data-wrangler-flow-processing-{flow_export_id}" # Data Wrangler Container URL. container_uri = "663277389841.dkr.ecr.us-east-1.amazonaws.com/sagemaker-data-wrangler-container:1.x" # Pinned Data Wrangler Container URL. container_uri_pinned = "663277389841.dkr.ecr.us-east-1.amazonaws.com/sagemaker-data-wrangler-container:1.11.0" # Processing Job Instance count and instance type. instance_count = 2 instance_type = "ml.m5.4xlarge" # Size in GB of the EBS volume to use for storing data during processing volume_size_in_gb = 30 # Content type for each output. Data Wrangler supports CSV as default and Parquet. output_content_type = "CSV" # Network Isolation mode; default is off enable_network_isolation = False # Output configuration used as processing job container arguments output_config = { output_name: { "content_type": output_content_type } } # KMS key for per object encryption; default is None kms_key = None ###Output _____no_output_____ ###Markdown Create Processing JobTo launch a Processing Job, you will use the SageMaker Python SDK to create a Processor function. ###Code from sagemaker.processing import Processor from sagemaker.network import NetworkConfig processor = Processor( role=iam_role, image_uri=container_uri, instance_count=instance_count, instance_type=instance_type, volume_size_in_gb=volume_size_in_gb, network_config=NetworkConfig(enable_network_isolation=enable_network_isolation), sagemaker_session=sess, output_kms_key=kms_key ) # Start Job processor.run( inputs=[flow_input] + data_sources, outputs=[processing_job_output], arguments=[f"--output-config '{json.dumps(output_config)}'"], wait=False, logs=False, job_name=processing_job_name ) ###Output _____no_output_____ ###Markdown Job Status & S3 Output LocationBelow you wait for processing job to finish. If it finishes successfully, your feature group should be populated with transformed feature values. In addition the raw parameters used by the Processing Job will be printed. ###Code job_result = sess.wait_for_processing_job(processing_job_name) job_result ###Output _____no_output_____
pittsburgh-bridges-data-set-analysis/.ipynb_checkpoints/Data Space Report -Testing - Pie Charts-compact-checkpoint.ipynb
###Markdown Data Space Report Pittsburgh Bridges Data Set Andy Warhol Bridge - Pittsburgh.Report created by Student Francesco Maria Chiarlo s253666, for A.A 2019/2020.**Abstract**:The aim of this report is to evaluate the effectiveness of distinct, different statistical learning approaches, in particular focusing on their characteristics as well as on their advantages and backwards when applied onto a relatively small dataset as the one employed within this report, that is Pittsburgh Bridgesdataset.**Key words**:Statistical Learning, Machine Learning, Bridge Design. TOC:* [Imports Section](imports-section)* [Dataset's Attributes Description](attributes-description)* [Data Preparation and Investigation](data-preparation)* [Learning Models](learning-models)* [Improvements and Conclusions](improvements-and-conclusions)* [References](references) Imports Section ###Code # =========================================================================== # # STANDARD IMPORTS # =========================================================================== # print(__doc__) # Critical Imports # --------------------------------------------------------------------------- # import warnings; warnings.filterwarnings("ignore") # Imports through 'from' syntax # --------------------------------------------------------------------------- # from pprint import pprint from IPython.display import display from itertools import islice # Standard Imports # --------------------------------------------------------------------------- # import copy; import os import sys; import time import itertools # Imports through 'as' syntax # --------------------------------------------------------------------------- # import numpy as np; import pandas as pd # Imports for handling graphics # --------------------------------------------------------------------------- # %matplotlib inline # Matplotlib pyplot provides plotting API import matplotlib as mpl from matplotlib import pyplot as plt import chart_studio.plotly.plotly as py import seaborn as sns; sns.set(style="ticks", color_codes=True) # sns.set() # =========================================================================== # # UTILS IMPORTS (Done by myself) # =========================================================================== # from utils.load_dataset_pittsburg_utils import load_brdiges_dataset from utils.utilities_functions import * from utils.display_utils import * from utils.preprocessing_utils import * from utils.training_utils import * from utils.sklearn_functions_custom import * from utils.training_utils_v2 import fit_by_n_components, fit_all_by_n_components, grid_search_all_by_n_components # =========================================================================== # # sklearn IMPORT # =========================================================================== # from sklearn.decomposition import PCA, KernelPCA # Import scikit-learn classes: models (Estimators). from sklearn.naive_bayes import GaussianNB # Non-parametric Generative Model from sklearn.naive_bayes import MultinomialNB # Non-parametric Generative Model from sklearn.linear_model import LinearRegression # Parametric Linear Discriminative Model from sklearn.linear_model import LogisticRegression # Parametric Linear Discriminative Model from sklearn.linear_model import Ridge, Lasso from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC # Parametric Linear Discriminative "Support Vector Classifier" from sklearn.tree import DecisionTreeClassifier # Non-parametric Model from sklearn.ensemble import BaggingClassifier # Non-parametric Model (Meta-Estimator, that is, an Ensemble Method) from sklearn.ensemble import RandomForestClassifier # Non-parametric Model (Meta-Estimator, that is, an Ensemble Method) # =========================================================================== # # READ INPUT DATASET # =========================================================================== # dataset_path = 'C:\\Users\\Francesco\Documents\\datasets\\pittsburgh_dataset' dataset_name = 'bridges.data.csv' TARGET_COL = 'T-OR-D' # Target variable name dataset, feature_vs_values = load_brdiges_dataset(dataset_path, dataset_name) feature_vs_values # sns.pairplot(dataset, hue='T-OR-D', size=1.5) columns_2_avoid = ['ERECTED', 'LENGTH', 'LOCATION'] show_frequency_distribution_predictor(dataset, predictor_name='RIVER', columns_2_avoid=columns_2_avoid, features_vs_values=feature_vs_values, hue=TARGET_COL, verbose=1) # show_frequency_distribution_predictors(dataset, columns_2_avoid) show_frequency_distribution_predictor(dataset, predictor_name='T-OR-D', columns_2_avoid=columns_2_avoid, features_vs_values=feature_vs_values, hue=None, verbose=1) # show_frequency_distribution_predictors(dataset, columns_2_avoid) show_frequency_distribution_predictor(dataset, predictor_name='CLEAR-G', columns_2_avoid=columns_2_avoid, features_vs_values=feature_vs_values, hue=TARGET_COL) # show_frequency_distribution_predictors(dataset, columns_2_avoid) show_frequency_distribution_predictor(dataset, predictor_name='SPAN', columns_2_avoid=columns_2_avoid, features_vs_values=feature_vs_values, hue=TARGET_COL) # show_frequency_distribution_predictors(dataset, columns_2_avoid) show_frequency_distribution_predictor(dataset, predictor_name='MATERIAL', columns_2_avoid=columns_2_avoid, features_vs_values=feature_vs_values, hue=TARGET_COL) # show_frequency_distribution_predictors(dataset, columns_2_avoid) show_frequency_distribution_predictor(dataset, predictor_name='REL-L', columns_2_avoid=columns_2_avoid, features_vs_values=feature_vs_values, hue=TARGET_COL) # show_frequency_distribution_predictors(dataset, columns_2_avoid) show_frequency_distribution_predictor(dataset, predictor_name='TYPE', columns_2_avoid=columns_2_avoid, features_vs_values=feature_vs_values, hue=TARGET_COL) ###Output _____no_output_____ ###Markdown Correlation Matrix Analysis ###Code corr_result = dataset.corr() display_heatmap(corr_result) show_pie_charts_corr_matrix(corr_result) feature = "PURPOSE" dataset[[TARGET_COL, feature]].groupby([feature, TARGET_COL]).count() dataset[[TARGET_COL, feature]].groupby([feature]).count() dataset[[TARGET_COL, feature]].groupby([feature])[TARGET_COL].plot(kind = 'hist', stacked=True) dataset.pivot(columns=TARGET_COL)[feature].plot(kind = 'hist', stacked=True) show_full_stacktrace_error = True try: g = sns.PairGrid(dataset) g.map_upper(plt.scatter) g.map_lower(sns.kdeplot) g.map_diag(sns.kdeplot, lw=3, legend=False); except Exception as err: if show_full_stacktrace_error is True: raise err else: print(str(err)) pass g = sns.PairGrid(dataset) g.map_diag(plt.hist) g.map_offdiag(plt.scatter); show_full_stacktrace_error = True try: g = sns.pairplot(dataset, hue=TARGET_COL, palette="Set2", diag_kind="kde", height=2.5) except Exception as err: if show_full_stacktrace_error is True: raise err else: print(str(err)) pass g = sns.PairGrid(dataset, hue=TARGET_COL) g.map_diag(plt.hist) g.map_offdiag(plt.scatter) g.add_legend(); ###Output _____no_output_____
cca.ipynb
###Markdown 1k Samples ###Code for dims in latent_dims: model=CCA(latent_dims=dims) model.fit((data[0],data[1])) filename='models/average_embeddings_img2text'+str(dims)+'_model.pkl' pickle.dump(model, open(filename, 'wb')) data_transform=model.transform([data_validation[0],data_validation[1]]) median,recall=rank('image', data_transform[0], data_transform[1], 1000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) ###Output Dimension: 2 203.1 {1: 0.0031, 5: 0.016300000000000002, 10: 0.031400000000000004} ****************************** Dimension: 10 22.5 {1: 0.055400000000000005, 5: 0.19730000000000003, 10: 0.32010000000000005} ****************************** Dimension: 50 2.7 {1: 0.34270000000000006, 5: 0.6896000000000001, 10: 0.8087} ****************************** Dimension: 100 2.0 {1: 0.4082, 5: 0.7459, 10: 0.8452} ****************************** Dimension: 200 1.7 {1: 0.48069999999999996, 5: 0.7776000000000002, 10: 0.8543000000000001} ****************************** Dimension: 500 1.0 {1: 0.5474, 5: 0.7953, 10: 0.8505} ****************************** Dimension: 1000 1.0 {1: 0.5549000000000001, 5: 0.7716, 10: 0.8160000000000001} ****************************** ###Markdown 10k Samples ###Code for dims in latent_dims: filename='models/average_embeddings_img2text'+str(dims)+'_model.pkl' with open(filename, 'rb') as files: model= pickle.load(files) data_transform=model.transform([data_validation[0],data_validation[1]]) median,recall=rank('image', data_transform[0], data_transform[1], 10000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) ###Output Dimension: 2 2033.65 {1: 0.0004, 5: 0.0016899999999999999, 10: 0.00326} ****************************** Dimension: 10 218.8 {1: 0.00682, 5: 0.030390000000000007, 10: 0.05706} ****************************** Dimension: 50 17.1 {1: 0.10355, 5: 0.28631, 10: 0.40496} ****************************** Dimension: 100 12.0 {1: 0.14282, 5: 0.35245, 10: 0.47501999999999994} ****************************** Dimension: 200 8.0 {1: 0.19366, 5: 0.43262999999999996, 10: 0.5537299999999999} ****************************** Dimension: 500 5.0 {1: 0.26037, 5: 0.51621, 10: 0.62177} ****************************** Dimension: 1000 4.9 {1: 0.28311, 5: 0.5301199999999999, 10: 0.62432} ****************************** ###Markdown BEST MODEL TEST ###Code with open('embeddings_test1.pkl', 'rb') as f: data_test = pickle.load(f) filename='models/average_embeddings_img2text'+str(500)+'_model.pkl' with open(filename, 'rb') as files: best_model= pickle.load(files) data_transform=best_model.transform([data_test[0],data_test[1]]) median,recall=rank('image', data_transform[0], data_transform[1], 1000) print("1K Samples:") print(median,recall) print("*"*30) median,recall=rank('image', data_transform[0], data_transform[1], 10000) print("10K Samples:") print(median,recall) print("*"*30) ###Output 1K Samples: 1.0 {1: 0.5495000000000001, 5: 0.7911, 10: 0.8480000000000001} ****************************** 10K Samples: 5.0 {1: 0.25931999999999994, 5: 0.51165, 10: 0.6194999999999999} ****************************** ###Markdown Image to title embeddings ###Code with open('title_embeddings_train.pkl', 'rb') as files: data_title = pickle.load(files) with open('title_embeddings_val.pkl', 'rb') as f: data_validation_title = pickle.load(f) for dims in latent_dims: model=CCA(latent_dims=dims) model.fit((data[0],data_title[0])) filename='models/title_embeddings_img2text'+str(dims)+'_model.pkl' pickle.dump(model, open(filename, 'wb')) data_transform=model.transform([data_validation[0],data_validation_title[0]]) median,recall=rank('image', data_transform[0], data_transform[1], 1000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) for dims in latent_dims: filename='models/title_embeddings_img2text'+str(dims)+'_model.pkl' with open(filename, 'rb') as files: model= pickle.load(files) data_transform=model.transform([data_validation[0],data_validation_title[0]]) median,recall=rank('image', data_transform[0], data_transform[1], 10000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) ###Output Dimension: 2 2170.8 {1: 0.00037, 5: 0.00204, 10: 0.00404} ****************************** Dimension: 10 554.15 {1: 0.00243, 5: 0.011859999999999999, 10: 0.02329} ****************************** Dimension: 50 89.85 {1: 0.02521, 5: 0.09215, 10: 0.15421999999999997} ****************************** Dimension: 100 67.4 {1: 0.03272, 5: 0.11724000000000001, 10: 0.18913} ****************************** Dimension: 200 57.85 {1: 0.04543, 5: 0.15033000000000002, 10: 0.23278000000000004} ****************************** Dimension: 500 84.15 {1: 0.0613, 5: 0.18009000000000003, 10: 0.25791000000000003} ****************************** Dimension: 1000 243.5 {1: 0.06056, 5: 0.16706, 10: 0.23132999999999998} ****************************** ###Markdown BEST MODEL TO TEST ###Code with open('title_embeddings_test.pkl', 'rb') as f: data_test_title = pickle.load(f) filename='models/title_embeddings_img2text'+str(200)+'_model.pkl' with open(filename, 'rb') as files: best_model= pickle.load(files) data_transform=best_model.transform([data_test[0],data_test_title[0]]) median,recall=rank('image', data_transform[0], data_transform[1], 1000) print("1K Samples:") print(median,recall) print("*"*30) median,recall=rank('image', data_transform[0], data_transform[1], 10000) print("10K Samples:") print(median,recall) print("*"*30) ###Output 1K Samples: 6.95 {1: 0.19620000000000004, 5: 0.4614, 10: 0.5660999999999999} ****************************** 10K Samples: 60.9 {1: 0.04489, 5: 0.14948, 10: 0.22981} ****************************** ###Markdown Image to ingredients embeddings ###Code with open('ingredients_embeddings_train.pkl', 'rb') as files: data_ingre = pickle.load(files) with open('ingredients_embeddings_val.pkl', 'rb') as f: data_validation_ingre = pickle.load(f) for dims in latent_dims: model=CCA(latent_dims=dims) model.fit((data[0],data_ingre[0])) filename='models/ingre_embeddings_img2text'+str(dims)+'_model.pkl' pickle.dump(model, open(filename, 'wb')) data_transform=model.transform([data_validation[0],data_validation_ingre[0]]) median,recall=rank('image', data_transform[0], data_transform[1], 1000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) for dims in latent_dims: filename='models/ingre_embeddings_img2text'+str(dims)+'_model.pkl' with open(filename, 'rb') as files: model= pickle.load(files) data_transform=model.transform([data_validation[0],data_validation_ingre[0]]) median,recall=rank('image', data_transform[0], data_transform[1], 10000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) BEST MODEL TO TEST with open('ingredients_embeddings_test.pkl', 'rb') as f: data_test_ingre = pickle.load(f) filename='models/ingre_embeddings_img2text'+str(500)+'_model.pkl' with open(filename, 'rb') as files: best_model= pickle.load(files) data_transform=best_model.transform([data_test[0],data_test_ingre[0]]) median,recall=rank('image', data_transform[0], data_transform[1], 1000) print("1K Samples:") print(median,recall) print("*"*30) median,recall=rank('image', data_transform[0], data_transform[1], 10000) print("10K Samples:") print(median,recall) print("*"*30) ###Output 1K Samples: 3.0 {1: 0.35409999999999997, 5: 0.5980000000000001, 10: 0.6675} ****************************** 10K Samples: 19.5 {1: 0.13733, 5: 0.32005999999999996, 10: 0.41430000000000006} ****************************** ###Markdown Image to instructions embeddings ###Code with open('instructions_embeddings_train.pkl', 'rb') as files: data_instr = pickle.load(files) with open('instructions_embeddings_val.pkl', 'rb') as f: data_validation_instr = pickle.load(f) for dims in latent_dims: model=CCA(latent_dims=dims) model.fit((data[0],data_instr[0])) filename='models/instr_embeddings_img2text'+str(dims)+'_model.pkl' pickle.dump(model, open(filename, 'wb')) data_transform=model.transform([data_validation[0],data_validation_instr[0]]) median,recall=rank('image', data_transform[0], data_transform[1], 1000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) for dims in latent_dims: filename='models/instr_embeddings_img2text'+str(dims)+'_model.pkl' with open(filename, 'rb') as files: model= pickle.load(files) data_transform=model.transform([data_validation[0],data_validation_instr[0]]) median,recall=rank('image', data_transform[0], data_transform[1], 10000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) ###Output Dimension: 2 1868.75 {1: 0.00048000000000000007, 5: 0.00201, 10: 0.0038099999999999996} ****************************** Dimension: 10 319.9 {1: 0.004999999999999999, 5: 0.022909999999999996, 10: 0.04071} ****************************** Dimension: 50 43.4 {1: 0.05493, 5: 0.16638999999999998, 10: 0.24852999999999997} ****************************** Dimension: 100 29.9 {1: 0.07239999999999999, 5: 0.21003, 10: 0.30542} ****************************** Dimension: 200 23.0 {1: 0.09956, 5: 0.25765000000000005, 10: 0.36102} ****************************** Dimension: 500 19.6 {1: 0.13107, 5: 0.30842, 10: 0.40619000000000005} ****************************** Dimension: 1000 26.1 {1: 0.13413000000000003, 5: 0.30510000000000004, 10: 0.39122} ****************************** ###Markdown BEST MODEL TO TEST ###Code with open('instructions_embeddings_test.pkl', 'rb') as f: data_test_instr = pickle.load(f) filename='models/instr_embeddings_img2text'+str(500)+'_model.pkl' with open(filename, 'rb') as files: best_model= pickle.load(files) data_transform=best_model.transform([data_test[0],data_test_instr[0]]) median,recall=rank('image', data_transform[0], data_transform[1], 1000) print("1K Samples:") print(median,recall) print("*"*30) median,recall=rank('image', data_transform[0], data_transform[1], 10000) print("10K Samples:") print(median,recall) print("*"*30) ###Output 1K Samples: 3.0 {1: 0.3545, 5: 0.6084999999999998, 10: 0.6870999999999999} ****************************** 10K Samples: 20.0 {1: 0.12906, 5: 0.30744000000000005, 10: 0.4029} ****************************** ###Markdown Text To Image Average Text Embedding to Image ###Code for dims in latent_dims: model=CCA(latent_dims=dims) model.fit((data[1],data[0])) filename='models/average_embeddings_text2img'+str(dims)+'_model.pkl' pickle.dump(model, open(filename, 'wb')) data_transform=model.transform([data_validation[1],data_validation[0]]) median,recall=rank('text', data_transform[1], data_transform[0], 1000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) for dims in latent_dims: filename='models/average_embeddings_text2img'+str(dims)+'_model.pkl' with open(filename, 'rb') as files: model= pickle.load(files) data_transform=model.transform([data_validation[1],data_validation[0]]) median,recall=rank('text', data_transform[1], data_transform[0], 10000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) ###Output Dimension: 2 2086.9 {1: 0.00031000000000000005, 5: 0.00159, 10: 0.00315} ****************************** Dimension: 10 218.55 {1: 0.00717, 5: 0.0312, 10: 0.058219999999999994} ****************************** Dimension: 50 16.95 {1: 0.10942, 5: 0.29805000000000004, 10: 0.41212} ****************************** Dimension: 100 11.9 {1: 0.14948, 5: 0.36008, 10: 0.47969999999999996} ****************************** Dimension: 200 7.9 {1: 0.20578, 5: 0.43889999999999996, 10: 0.5559000000000001} ****************************** Dimension: 500 5.0 {1: 0.27622, 5: 0.5214700000000001, 10: 0.6249} ****************************** Dimension: 1000 4.1 {1: 0.29741, 5: 0.5365, 10: 0.62957} ****************************** ###Markdown BEST MODEL TO TEST ###Code filename='models/average_embeddings_text2img'+str(500)+'_model.pkl' with open(filename, 'rb') as files: best_model= pickle.load(files) data_transform=best_model.transform([data_test[1],data_test[0]]) median,recall=rank('text', data_transform[1], data_transform[0], 1000) print("1K Samples:") print(median,recall) print("*"*30) median,recall=rank('text', data_transform[1], data_transform[0], 10000) print("10K Samples:") print(median,recall) print("*"*30) ###Output 1K Samples: 1.0 {1: 0.5499, 5: 0.7941, 10: 0.849} ****************************** 10K Samples: 5.0 {1: 0.27286, 5: 0.5184599999999999, 10: 0.61974} ****************************** ###Markdown Title Embedding to Image ###Code for dims in latent_dims: model=CCA(latent_dims=dims) model.fit((data_title[0],data[0])) filename='models/title_embeddings_text2img'+str(dims)+'_model.pkl' pickle.dump(model, open(filename, 'wb')) data_transform=model.transform([data_validation_title[0],data_validation[0]]) median,recall=rank('text', data_transform[1], data_transform[0], 1000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) for dims in latent_dims: filename='models/title_embeddings_text2img'+str(dims)+'_model.pkl' with open(filename, 'rb') as files: model= pickle.load(files) data_transform=model.transform([data_validation_title[0],data_validation[0]]) median,recall=rank('text', data_transform[1], data_transform[0], 10000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) ###Output Dimension: 2 2174.2 {1: 0.00041999999999999996, 5: 0.0018199999999999998, 10: 0.00381} ****************************** Dimension: 10 557.65 {1: 0.0023499999999999997, 5: 0.011630000000000001, 10: 0.02212} ****************************** Dimension: 50 93.2 {1: 0.023649999999999997, 5: 0.08762, 10: 0.14683000000000002} ****************************** Dimension: 100 70.65 {1: 0.032659999999999995, 5: 0.11604999999999999, 10: 0.18774000000000002} ****************************** Dimension: 200 61.65 {1: 0.04705000000000001, 5: 0.14939999999999998, 10: 0.23092000000000001} ****************************** Dimension: 500 87.6 {1: 0.06342, 5: 0.17813999999999997, 10: 0.25476} ****************************** Dimension: 1000 245.75 {1: 0.06312999999999999, 5: 0.16746999999999998, 10: 0.23321999999999998} ****************************** ###Markdown BEST MODEL TO TEST ###Code filename='models/title_embeddings_text2img'+str(200)+'_model.pkl' with open(filename, 'rb') as files: best_model= pickle.load(files) data_transform=best_model.transform([data_test_title[0],data_test[0]]) median,recall=rank('text', data_transform[1], data_transform[0], 1000) print("1K Samples:") print(median,recall) print("*"*30) median,recall=rank('text', data_transform[1], data_transform[0], 10000) print("10K Samples:") print(median,recall) print("*"*30) ###Output 1K Samples: 7.25 {1: 0.19840000000000002, 5: 0.44600000000000006, 10: 0.5579000000000001} ****************************** 10K Samples: 63.85 {1: 0.04649, 5: 0.14817, 10: 0.22626} ****************************** ###Markdown Ingredients Embedding to Image ###Code for dims in latent_dims: model=CCA(latent_dims=dims) model.fit((data_ingre[0],data[0])) filename='models/ingre_embeddings_text2img'+str(dims)+'_model.pkl' pickle.dump(model, open(filename, 'wb')) data_transform=model.transform([data_validation_ingre[0],data_validation[0]]) median,recall=rank('text', data_transform[1], data_transform[0], 1000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) for dims in latent_dims: filename='models/ingre_embeddings_text2img'+str(dims)+'_model.pkl' with open(filename, 'rb') as files: model= pickle.load(files) data_transform=model.transform([data_validation_ingre[0],data_validation[0]]) median,recall=rank('text', data_transform[1], data_transform[0], 10000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) ###Output Dimension: 2 2038.8 {1: 0.0003800000000000001, 5: 0.00162, 10: 0.0032799999999999995} ****************************** Dimension: 10 260.55 {1: 0.00565, 5: 0.02595, 10: 0.046669999999999996} ****************************** Dimension: 50 38.4 {1: 0.0653, 5: 0.19013, 10: 0.27865} ****************************** Dimension: 100 26.9 {1: 0.08896, 5: 0.24023, 10: 0.33733} ****************************** Dimension: 200 20.1 {1: 0.11981, 5: 0.29298, 10: 0.3952} ****************************** Dimension: 500 17.3 {1: 0.15158999999999997, 5: 0.33453, 10: 0.43034999999999995} ****************************** Dimension: 1000 25.6 {1: 0.15188, 5: 0.32114, 10: 0.40158000000000005} ****************************** ###Markdown BEST MODEL TO TEST ###Code filename='models/ingre_embeddings_text2img'+str(500)+'_model.pkl' with open(filename, 'rb') as files: best_model= pickle.load(files) data_transform=best_model.transform([data_test_ingre[0],data_test[0]]) median,recall=rank('text', data_transform[1], data_transform[0], 1000) print("1K Samples:") print(median,recall) print("*"*30) median,recall=rank('text', data_transform[1], data_transform[0], 10000) print("10K Samples:") print(median,recall) print("*"*30) ###Output 1K Samples: 2.9 {1: 0.3651, 5: 0.601, 10: 0.6733} ****************************** 10K Samples: 18.35 {1: 0.14953999999999998, 5: 0.3317, 10: 0.4239} ****************************** ###Markdown Instructions To Image ###Code for dims in latent_dims: model=CCA(latent_dims=dims) model.fit((data_instr[0],data[0])) filename='models/instr_embeddings_text2img'+str(dims)+'_model.pkl' pickle.dump(model, open(filename, 'wb')) data_transform=model.transform([data_validation_instr[0],data_validation[0]]) median,recall=rank('image', data_transform[1], data_transform[0], 1000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) for dims in latent_dims: filename='models/instr_embeddings_text2img'+str(dims)+'_model.pkl' with open(filename, 'rb') as files: model= pickle.load(files) data_transform=model.transform([data_validation_instr[0],data_validation[0]]) median,recall=rank('image', data_transform[1], data_transform[0], 10000) print("Dimension: "+str(dims)) print(median,recall) print("*"*30) ###Output Dimension: 2 1868.75 {1: 0.00048000000000000007, 5: 0.00201, 10: 0.0038099999999999996} ****************************** Dimension: 10 319.9 {1: 0.004999999999999999, 5: 0.022909999999999996, 10: 0.04071} ****************************** Dimension: 50 43.4 {1: 0.05493, 5: 0.16638999999999998, 10: 0.24852999999999997} ****************************** Dimension: 100 29.9 {1: 0.07239999999999999, 5: 0.21003, 10: 0.30542} ****************************** Dimension: 200 23.0 {1: 0.09956, 5: 0.25765000000000005, 10: 0.36102} ****************************** Dimension: 500 19.6 {1: 0.13107, 5: 0.30842, 10: 0.40619000000000005} ****************************** Dimension: 1000 26.1 {1: 0.13413000000000003, 5: 0.30510000000000004, 10: 0.39122} ****************************** ###Markdown BEST MODEL TO TEST ###Code filename='models/instr_embeddings_text2img'+str(500)+'_model.pkl' with open(filename, 'rb') as files: best_model= pickle.load(files) data_transform=best_model.transform([data_test_instr[0],data_test[0]]) median,recall=rank('text', data_transform[1], data_transform[0], 1000) print("1K Samples:") print(median,recall) print("*"*30) median,recall=rank('text', data_transform[1], data_transform[0], 10000) print("10K Samples:") print(median,recall) print("*"*30) median,recall=rank('text', data_transform[1], data_transform[0], 10000) print("10K Samples:") print(median,recall) print("*"*30) ###Output _____no_output_____ ###Markdown PLOT IMAGE TO RECIPE 1K SAMPLES Image to Average Embeddings ###Code import matplotlib.pyplot as plt median_average=[] recall_1_average=[] recall_5_average=[] recall_10_average=[] for dims in latent_dims: file_store='outputs/recipe2img_10K_samples/average_embeddings_text2img'+str(dims)+'_model_output.pkl' with open(file_store, 'rb') as files: data_output= pickle.load(files) median_average.append(data_output[0]) recall_1_average.append(data_output[1][1]) recall_5_average.append(data_output[1][5]) recall_10_average.append(data_output[1][10]) median_title=[] recall_1_title=[] recall_5_title=[] recall_10_title=[] for dims in latent_dims: file_store='outputs/recipe2img_10K_samples/title_embeddings_text2img'+str(dims)+'_model_output.pkl' with open(file_store, 'rb') as files: data_output= pickle.load(files) median_title.append(data_output[0]) recall_1_title.append(data_output[1][1]) recall_5_title.append(data_output[1][5]) recall_10_title.append(data_output[1][10]) median_ingre=[] recall_1_ingre=[] recall_5_ingre=[] recall_10_ingre=[] for dims in latent_dims: file_store='outputs/recipe2img_10K_samples/ingre_embeddings_text2img'+str(dims)+'_model_output.pkl' with open(file_store, 'rb') as files: data_output= pickle.load(files) median_ingre.append(data_output[0]) recall_1_ingre.append(data_output[1][1]) recall_5_ingre.append(data_output[1][5]) recall_10_ingre.append(data_output[1][10]) median_instr=[] recall_1_instr=[] recall_5_instr=[] recall_10_instr=[] for dims in latent_dims: file_store='outputs/recipe2img_10K_samples/instr_embeddings_text2img'+str(dims)+'_model_output.pkl' with open(file_store, 'rb') as files: data_output= pickle.load(files) median_instr.append(data_output[0]) recall_1_instr.append(data_output[1][1]) recall_5_instr.append(data_output[1][5]) recall_10_instr.append(data_output[1][10]) plt.plot(latent_dims,median_average,label='Average') plt.plot(latent_dims,median_title,label='Title') plt.plot(latent_dims,median_ingre,label='Ingredients') plt.plot(latent_dims,median_instr,label='Instructions') plt.legend() plt.title("Recipe to Image Median Rank 10K samples") plt.savefig('image_output/recipe2img_10k_samples.png') plt.show() ids=data[2] chicken_lasagna_idx=np.where(ids == 'f79f91650c')[0][0] lasagna_idx=np.where(ids == '003971cf31')[0][0] salad_idx=np.where(ids == '001f8b08ac')[0][0] chicken_salad_idx=np.where(ids == '09f70a1c31')[0][0] filename='models/average_embeddings_img2text'+str(500)+'_model.pkl' with open(filename, 'rb') as files: best_model= pickle.load(files) data_transform=best_model.transform([data[0],data[1]]) data_transform[0].shape chicken_lasagna_imgvec=data_transform[0][chicken_lasagna_idx] lasagna_imgvec=data_transform[0][lasagna_idx] salad_imgvec=data_transform[0][salad_idx] chicken_lasagna_textvec=data_transform[1][chicken_lasagna_idx] lasagna_textvec=data_transform[1][lasagna_idx] salad_textvec=data_transform[1][salad_idx] chicken_vec=np.subtract(chicken_lasagna_imgvec,lasagna_imgvec) chicken_salad_vec=np.add(chicken_vec,salad_imgvec) sims = np.dot(chicken_salad_vec,data_transform[1].T) sorting = np.argsort(sims)[::-1].tolist() ans_index=sorting[0] ans_id=data[2][ans_index] ans_id ###Output _____no_output_____ ###Markdown ABOVE ID IS FOR MANGO CURRY SALAD TITLE TO IMAGE ###Code filename='models/title_embeddings_img2text'+str(200)+'_model.pkl' with open(filename, 'rb') as files: best_model= pickle.load(files) data_transform=best_model.transform([data[1],data[0]]) data_transform[0].shape chicken_lasagna=data_transform[0][chicken_lasagna_idx] lasagna=data_transform[0][lasagna_idx] salad=data_transform[0][salad_idx] chicken_vec=np.subtract(chicken_lasagna,lasagna) chicken_salad_vec=np.add(chicken_vec,salad) sims = np.dot(chicken_salad_vec,data_transform[1].T) # for recipe2im sorting = np.argsort(sims)[::-1].tolist() ans_index=sorting[0] ans_id=data[2][ans_index] ans_id ###Output _____no_output_____
licensed_sponsors_uk/DownloadPDF.ipynb
###Markdown Extract Organisation Name ###Code name = [] top_skipped = [] isFirst = False for col in doc.xpath("//div/span"): if ("left:30px;" in col.getparent().get("style")): if isFirst or ("top:266px;" in col.getparent().get("style")): p_style = col.getparent().get("style") pairs = {'style': p_style, 'name': col.text.strip()} p_styles = p_style.split(';') for i in range(0, (len(p_styles)-1)): key_value = p_styles[i].split(':') if key_value[0].strip() in ['top', 'left', 'width', 'height']: pairs[key_value[0].strip()] = int(key_value[1].replace('px','').strip()) # else: # pairs[key_value[0].strip()] = key_value[1].replace('px','').strip() # print(pairs) if pairs['top'] in top_skipped: print("skipped as already imported once, top = ",pairs['top']) continue ## handle the city - start if (df_city_sorted[ (df_city_sorted['top'] - pairs['top']).abs() < 10 ].shape[0]) == 1: pairs['city_top'] = (df_city_sorted[ (df_city_sorted['top'] - pairs['top']).abs() < 10 ].iloc[0]['top']) pairs['city'] = (df_city_sorted[ (df_city_sorted['top'] - pairs['top']).abs() < 10 ].iloc[0]['name']) else: if (len(col.getparent().getchildren())==2): print("more than one sibling", len(col.getparent().getchildren()), pairs['top']); elem_0 = len(col.getparent().getchildren()[0].text.strip()) elem_1 = len(col.getparent().getchildren()[1].text.strip()) # print(elem_0) # print(elem_1) if(elem_0 > elem_1): pairs['name'] = col.getparent().getchildren()[0].text.strip() pairs['city'] = col.getparent().getchildren()[1].text.strip() pairs['city_top'] = pairs['top'] else: pairs['name'] = col.getparent().getchildren()[1].text.strip() pairs['city'] = col.getparent().getchildren()[0].text.strip() pairs['city_top'] = pairs['top'] top_skipped.append(pairs['top']) elif (len(col.getparent().getchildren())==1): print("one sibling, top=",pairs['top']); else: print("sibling : else, top=",pairs['top']); # break; ## handle the city - end try: next_top = df_city_sorted[ (df_city_sorted['top'] > pairs['top'] + 10)].iloc[0]['top'] except: next_top = pairs['top'] + 100 ## handle the Tier & rating - start # filtered_df_tier_and_rating_sorted = df_tier_and_rating_sorted[ (df_tier_and_rating_sorted['adjected_top'] - pairs['top']).abs() < 10 ] # if (filtered_df_tier_and_rating_sorted.shape[0]) == 1: # pairs['tier_and_rating_top'] = (filtered_df_tier_and_rating_sorted.iloc[0]['top']) # pairs['tier_and_rating'] = filtered_df_tier_and_rating_sorted.iloc[0]['name'] # elif filtered_df_tier_and_rating_sorted.shape[0] > 1: # pairs['tier_and_rating_top'] = filtered_df_tier_and_rating_sorted.iloc[0]['top'] # pairs['tier_and_rating'] = "\n".join( filtered_df_tier_and_rating_sorted['name'].tolist() ) filtered_df_tier_and_rating_sorted = df_tier_and_rating_sorted[ (df_tier_and_rating_sorted['top'] > pairs['top'] ) & (df_tier_and_rating_sorted['top'] < next_top ) ] pairs['tier_and_rating_top'] = filtered_df_tier_and_rating_sorted.iloc[0]['top'] pairs['tier_and_rating'] = "\n".join( filtered_df_tier_and_rating_sorted['name'].tolist() ) # if (df_sub_tier_sorted[ (df_sub_tier_sorted['adjected_top'] - pairs['top']).abs() < 10 ].shape[0]) == 1: # pairs['df_sub_tier_top'] = (df_sub_tier_sorted[ (df_sub_tier_sorted['adjected_top'] - pairs['top']).abs() < 10 ].iloc[0]['top']) # pairs['sub_tier'] = (df_sub_tier_sorted[ (df_sub_tier_sorted['adjected_top'] - pairs['top']).abs() < 10 ].iloc[0]['name']) filtered_df_sub_tier_sorted = df_sub_tier_sorted[ (df_sub_tier_sorted['top'] > pairs['top'] ) & (df_sub_tier_sorted['top'] < next_top ) ] pairs['sub_tier_top'] = filtered_df_sub_tier_sorted.iloc[0]['top'] pairs['sub_tier'] = "\n".join( filtered_df_sub_tier_sorted['name'].tolist() ) name.append(pairs) isFirst = True # break df_name = pd.DataFrame(name) df_name_sorted = df_name.sort_values(by=['top']) # df_name_sorted[0:] df_name_sorted df_name_sorted[df_name_sorted['top'] == 5755 ] df_name_sorted[df_name_sorted['sub_tier'].isnull() ] df_tier_and_rating_sorted[ df_tier_and_rating_sorted['top'] == 2967] ###Output _____no_output_____ ###Markdown Extract Organisation Location ###Code city = [] for col in doc.xpath("//div/span"): if ("left:357px;" in col.getparent().get("style")): if isFirst or ("top:266px;" in col.getparent().get("style")): p_style = col.getparent().get("style") pairs = {'style': p_style, 'name': col.text.strip()} p_styles = p_style.split(';') for i in range(0, (len(p_styles)-1)): key_value = p_styles[i].split(':') if key_value[0].strip() in ['top', 'left', 'width', 'height']: pairs[key_value[0].strip()] = int(key_value[1].replace('px','').strip()) # else: # pairs[key_value[0].strip()] = key_value[1].replace('px','').strip() # print(pairs) # print(pairs['top']) if (df_name_sorted[ (df_name_sorted['top'] - pairs['top']).abs() < 10 ].shape[0]) == 1: pairs['name_top'] = (df_name_sorted[ (df_name_sorted['top'] - pairs['top']).abs() < 10 ].iloc[0]['top']) # print(pairs) city.append(pairs) isFirst = True # break df_city = pd.DataFrame(city) df_city_sorted = df_city.sort_values(by=['top']) df_city_sorted df_city_sorted[df_city_sorted['name_top'].isnull() ] ###Output _____no_output_____ ###Markdown Extract Tier & Rating ###Code tier_and_rating = [] for col in doc.xpath("//div/span"): if ("left:582px;" in col.getparent().get("style")): if isFirst or ("top:266px;" in col.getparent().get("style")): p_style = col.getparent().get("style") # print(col.text_content().strip()) # print(etree.tostring(col)) pairs = {'style': p_style, 'name': col.text_content().strip()} p_styles = p_style.split(';') for i in range(0, (len(p_styles)-1)): key_value = p_styles[i].split(':') if key_value[0].strip() in ['top', 'left', 'width', 'height']: pairs[key_value[0].strip()] = int(key_value[1].replace('px','').strip()) # else: # pairs[key_value[0].strip()] = key_value[1].replace('px','').strip() # print(pairs) tier_and_rating.append(pairs) isFirst = True # break ###Output _____no_output_____ ###Markdown Extract Sub Tier ###Code sub_tier = [] for col in doc.xpath("//div/span"): if ("left:684px;" in col.getparent().get("style")): if isFirst or ("top:266px;" in col.getparent().get("style")): p_style = col.getparent().get("style") # print(col.text_content().strip()) # print(etree.tostring(col)) pairs = {'style': p_style, 'name': col.text_content().strip()} p_styles = p_style.split(';') for i in range(0, (len(p_styles)-1)): key_value = p_styles[i].split(':') if key_value[0].strip() in ['top', 'left', 'width', 'height']: pairs[key_value[0].strip()] = int(key_value[1].replace('px','').strip()) # else: # pairs[key_value[0].strip()] = key_value[1].replace('px','').strip() # print(pairs) sub_tier.append(pairs) isFirst = True # break len(city) name[101] df_city_sorted[0:] df_name_sorted[25:] df_sub_tier = pd.DataFrame(sub_tier) df_sub_tier_sorted = df_sub_tier.sort_values(by=['top']) df_sub_tier_sorted['adjected_top'] = df_sub_tier_sorted['top'] - 12 df_sub_tier_sorted[0:] df_tier_and_rating = pd.DataFrame(tier_and_rating) df_tier_and_rating_sorted = df_tier_and_rating.sort_values(by=['top']) df_tier_and_rating_sorted['adjected_top'] = df_tier_and_rating_sorted['top'] - 12 df_tier_and_rating_sorted # for content in contents: # text_object = content.getObject() # print(text_object) # with open("raw_text.csv", "w") as text_file: # text_file.write(all_text) # contents = pageObj.getContents() ###Output _____no_output_____ ###Markdown Export dataframe to parquet ###Code # pip install fastparquet ( if not already installed ) df_name_sorted.to_parquet('df_name_sorted.parquet.gzip', compression='gzip') df_name_sorted.to_csv('df_name_sorted.csv.gzip', compression='gzip') df_city_sorted.to_parquet('df_city_sorted.parquet.gzip', compression='gzip') df_tier_and_rating_sorted.to_parquet('df_tier_and_rating_sorted.parquet.gzip', compression='gzip') df_sub_tier_sorted.to_parquet('df_sub_tier_sorted.parquet.gzip', compression='gzip') df_sub_tier_sorted ###Output _____no_output_____ ###Markdown Import dataframe from parquet ###Code df_name_sorted_imported = pd.read_parquet('df_name_sorted.parquet.gzip') df_name_sorted_imported[0:] df_name_sorted_imported['lowcase_name'] = df_name_sorted_imported['name'].str.lower() df_name_sorted_imported[0:] dict_name_sorted_imported = df_name_sorted_imported.T.to_dict().values() import psycopg2 try: connection = psycopg2.connect(user="postgres", password="hidden", host="hidden", port="5432", database="uk-immigration") cursor = connection.cursor() processd = 0 postgres_insert_query = """ INSERT INTO "find-job"."licensed-sponsors"("company-name", "city", "tier-and-rating", "sub-tier", "company-name-lowcase") VALUES (%s,%s,%s,%s,%s)""" for record in dict_name_sorted_imported: record_to_insert = (record['name'], record['city'], record['tier_and_rating'], record['sub_tier'],record['lowcase_name']) cursor.execute(postgres_insert_query, record_to_insert) connection.commit() processd = processd + 1 if (processd % 10 == 0): print(processd) count = cursor.rowcount print (count, "Record inserted successfully into mobile table") except (Exception, psycopg2.Error) as error : if(connection): print("Failed to insert record into mobile table", error) finally: #closing database connection. if(connection): # cursor.close() connection.close() print("PostgreSQL connection is closed") for record in dict_name_sorted_imported: print(record) print(record['name']) break # table.put_item(Item=student) # df_name_sorted_imported['top'] = (df_name_sorted_imported['top'] / 2).apply(np.round) * 2 # df_name_sorted_imported df_city_sorted_imported = pd.read_parquet('df_city_sorted.parquet.gzip') df_city_sorted_imported # df_city_sorted_imported['top'] = (df_city_sorted_imported['top'] / 2).apply(np.round) * 2 # df_city_sorted_imported df_tier_and_rating_sorted_imported = pd.read_parquet('df_tier_and_rating_sorted.parquet.gzip') df_tier_and_rating_sorted_imported df_tier_and_rating_sorted_imported['top'] = df_tier_and_rating_sorted_imported['top']/5 df_sub_tier_sorted_imported = pd.read_parquet('df_sub_tier_sorted.parquet.gzip') df_sub_tier_sorted_imported['top'] = (df_sub_tier_sorted_imported['top'] / 3).apply(np.ceil) * 3 df_sub_tier_sorted_imported df_newdata = df_name_sorted_imported df_newdata['city_top'] = df_city_sorted_imported['top'] df_newdata['city_name'] = df_city_sorted_imported['name'] df_newdata['city_index'] = df_city_sorted_imported['index'] df_newdata df_newdata['diff'] = df_newdata['top'] - df_newdata['city_top'] df_newdata['diff'] = df_newdata['diff'].abs() df_newdata['diff'] df_newdata_big_diff = df_newdata[df_newdata['diff'] > 1 ] df_newdata.shape df_newdata_big_diff.shape df_newdata_big_diff df_newdata_big_diff.index df_newdata_big_diff.index[0] df_newdata['top'] ###Output _____no_output_____
ChessGM.ipynb
###Markdown Data Analysis of Chess Grandmasters (GM)Recently, the Indian-American Abhimanyu Mishra became the [youngest Grandmaster](https://www.chess.com/news/view/abhimanyu-mishra-youngest-grandmaster-in-chess-history) in chess history, qualifying for the title at the age of 12 years 4 months and 25 days, whereas the Venezuelan [Salvador Diaz Carias](https://www.chess.com/news/view/venezuela-chess-player-fm-title-88-salvador-diaz-carias) got the FIDE Master (FM) Title at the age of 88. Motivated by these news, which I came to know by the Brazilian YouTube channel [Xadrez Brasil](https://www.youtube.com/c/XadrezBrasil), I decided to do a data analysis and visualization about the GMs based on Wikipedia "[List of chess grandmasters](https://en.wikipedia.org/wiki/List_of_chess_grandmasters)". General Research Questions about GMsWe aim at approaching the following questions. These questions guide our exploration, but does not limit it.1. What is the distribution of GM title since 1950 (when it started)?2. What is the relationship, if any, between age and receiving GM title?3. What is the distribution of GM title among the countries and sex? Python Libraries ###Code # Importing the necessary Python libraries to our tasks: import numpy as np # data analysis import pandas as pd # data analysis and manipulation import matplotlib.pyplot as plt # data visualization %matplotlib inline import seaborn as sns # data visualization from IPython.core.display import display, HTML # This package allows embedding here the visualization made by Flourish website: https://app.flourish.studio/. ###Output _____no_output_____ ###Markdown Data Extraction ###Code # Our data source: the Wikipedia "List of chess grandmasters". url = "https://en.wikipedia.org/wiki/List_of_chess_grandmasters" ###Output _____no_output_____ ###Markdown Data Cleaning and Preparation ###Code # Reading and selecting the table we are interested in: html = pd.read_html(url, match = "Birthplace") html # Notice the output is a list. # Taking the table as a DataFrame from the list: html[0] # Reducing the table to just the columns we are interested in: table1 = html[0][["Name", "Born", "TitleYear", "Federation", "Sex"]] table1 # Dropping the first nonsense line (line zero): table2 = table1.drop(0) table2 # Changing the value of the column 'Born' so that we have only the year: table2['Born'] = table2['Born'].apply(lambda x: x[:4]) table2['Born'] # This introduces a small imprecision in our analysis since we are not going to consider the exact birth date. # However, as we do not have the exact date of the GM title acquisition, this is the best we can do. # Changing the data type of the value of the column 'Born' to integer instead of string: table2['Born'] = table2['Born'].apply(lambda x: float(x)) table2['Born'] # Adding a column with TitleAge. # The age of the GMs when they got the title is the title year minus his/her birth date. table2['TitleAge'] = table2['TitleYear'] - table2['Born'] table2 ###Output _____no_output_____ ###Markdown Data Analysis and Visualization The age of the GM title receivers ###Code # Descriptive statistics summary about the age of GMs when they got the title: table2['TitleAge'].describe() # Scatter plot showing the distribution of title age of the GM and the year of the title: sns.scatterplot(table2['TitleYear'], table2['TitleAge']) ###Output /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning ###Markdown An interactive scatter plot is displayed at the end of this document. ###Code # Box plot about the title age of the GMs when they received the title. sns.boxplot(table2['TitleAge']) ###Output /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning ###Markdown By the analysis and visualization above, we notice that:* The oldest GM title receiver is about 88 years old. But this is **not** entirely correct, because among the 10 oldest chess players (all being at least 77 years old) only [Jacques Mieses](https://en.wikipedia.org/wiki/Jacques_Mieses) (1865-1954) was an active player. He received his title at the age of 85 in 1950 (inauguration of the GM title), but it is said his chess strength was not that great anymore. The other 9 players received honorary titles.* The mean of GM title receivers age is 27 years old. Indeed, 75% of them is at most 31 years old. The standard deviation is about 10 years old* Both the scatter plot and, especially, the box plot highlight that whoever receives the GM title at the age of 45 years or above is already an outlier among the GMs. We see this is even more true once we know most elderly GM title receivers got an honorary title, not a regular one.* The scatter plot also shows a huge growth of GM titles, in particular since 1990. ###Code # Distribution of age of GM title receivers. sns.distplot(table2['TitleAge']) # Distribution of GM titles along the years. sns.distplot(table2['TitleYear']) ###Output /usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) ###Markdown The two graphs above show that:* Again, the age of GM title receivers is concentrated between the 20s years old.* Since 1990 we have observed a lot more GM titles. Most likely this is due to the fact that chess became much more popular and accessible, particularly after the spreading of home computers and the internet. The more people interested in chess, the more GMs. ###Code # Correlations table2.corr() # We see the year of birth and the title year are highly correlated with each other # The first 10 oldest GM title receivers. table2.sort_values('TitleAge')[-10:] # We notice very old GMs often have received honorary title for their career. # By the way, there are only 19 GMs whose age is at least 70 years old. ###Output _____no_output_____ ###Markdown Distributions of GMs per Sex and Country ###Code # GMs per country: countries = dict() for i in table2['Federation']: #print(i) countries[i] = countries.get(i, 0) + 1 countries # GM per sex sex = dict() for i in table2['Sex']: #print(i) sex[i] = sex.get(i, 0) + 1 sex # Female GMs represent only 1.95% of the total of GMs. # Distributions of GMs per sex and country displayed using Flourish. # Interactive visualization! display(HTML('https://public.flourish.studio/visualisation/6633672/')) # Scatter plot (with regression line) showing the distribution of title age of the GM and the year of the title: # Interactive visualization! display(HTML('https://public.flourish.studio/visualisation/6633947/')) # For converting the dataset seen in the variable table2 (DataFrame) into a csv file: table2.to_csv('chess.csv') ###Output _____no_output_____
ml/Machine_Learning_Code_Implementation/charpter21_Bayesian_models/bayesian_network.ipynb
###Markdown bayesian network ###Code # 导入pgmpy相关模块 from pgmpy.factors.discrete import TabularCPD from pgmpy.models import BayesianModel letter_model = BayesianModel([('D', 'G'), ('I', 'G'), ('G', 'L'), ('I', 'S')]) # 学生成绩的条件概率分布 grade_cpd = TabularCPD( variable='G', # 节点名称 variable_card=3, # 节点取值个数 values=[[0.3, 0.05, 0.9, 0.5], # 该节点的概率表 [0.4, 0.25, 0.08, 0.3], [0.3, 0.7, 0.02, 0.2]], evidence=['I', 'D'], # 该节点的依赖节点 evidence_card=[2, 2] # 依赖节点的取值个数 ) # 考试难度的条件概率分布 difficulty_cpd = TabularCPD( variable='D', variable_card=2, values=[[0.6], [0.4]] ) # 个人天赋的条件概率分布 intel_cpd = TabularCPD( variable='I', variable_card=2, values=[[0.7], [0.3]] ) # 推荐信质量的条件概率分布 letter_cpd = TabularCPD( variable='L', variable_card=2, values=[[0.1, 0.4, 0.99], [0.9, 0.6, 0.01]], evidence=['G'], evidence_card=[3] ) # SAT考试分数的条件概率分布 sat_cpd = TabularCPD( variable='S', variable_card=2, values=[[0.95, 0.2], [0.05, 0.8]], evidence=['I'], evidence_card=[2] ) # 将各节点添加到模型中,构建贝叶斯网络 letter_model.add_cpds( grade_cpd, difficulty_cpd, intel_cpd, letter_cpd, sat_cpd ) # 导入pgmpy贝叶斯推断模块 from pgmpy.inference import VariableElimination # 贝叶斯网络推断 letter_infer = VariableElimination(letter_model) # 天赋较好且考试不难的情况下推断该学生获得推荐信质量的好坏 prob_G = letter_infer.query( variables=['G'], evidence={'I': 1, 'D': 0}) print(prob_G) ###Output WARNING:root:Replacing existing CPD for G WARNING:root:Replacing existing CPD for D WARNING:root:Replacing existing CPD for I WARNING:root:Replacing existing CPD for L WARNING:root:Replacing existing CPD for S Finding Elimination Order: : 100%|██████████████████████████████████████████████████████| 2/2 [00:00<00:00, 668.95it/s] Eliminating: L: 100%|███████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 285.72it/s]
examples/retinanet/RetinaNet Exporter.ipynb
###Markdown Object Detection Model (RetinaNet) export using Nyoka ###Code from keras_retinanet.models import load_model from PIL import ImageDraw from nyoka import RetinanetToPmml import requests import warnings warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown Download the pre-trained RetinaNet model ###Code model = requests.get("https://github.com/fizyr/keras-retinanet/releases/download/0.5.1/resnet50_coco_best_v2.1.0.h5") with open('resnet50_coco_best_v2.1.0.h5','wb') as file: file.write(model.content) ###Output _____no_output_____ ###Markdown Load the downloaded modelThe model is loaded using `load_model` function from keras_retinanet.The model was trained with `coco` dataset and `resnet50` was used as backbone ###Code model = load_model('resnet50_coco_best_v2.1.0.h5', backbone_name='resnet50') ###Output _____no_output_____ ###Markdown The pre-trained model has `score_threshold=0.05`, which means it will consider all classes whose predicted probability is greater than 5%. To remove noisy predictions, it is updated to 0.5 (50%) ###Code model.layers[-1].score_threshold = 0.5 model.save("Retinanet_with_new_threshold.h5") print("The updated model is saved and it needs to be loaded again to reflect the change") model = load_model("Retinanet_with_new_threshold.h5",backbone_name='resnet50') print("The model is loaded again") ###Output _____no_output_____ ###Markdown Libraries to load and preprocess the image.Since the model was trained using `resnet50` as backbone, we need to preprocess the image to convert it to the format used by resnet ###Code from keras.applications.resnet50 import preprocess_input from keras.preprocessing.image import img_to_array, load_img import numpy as np ###Output _____no_output_____ ###Markdown Load and preprocess the image ###Code file = "test_1" orig_img = load_img(file+'.png') img = img_to_array(orig_img) img = preprocess_input(img) ###Output _____no_output_____ ###Markdown Predict using the preprocessed image. The model will return boundary boxes, scores and classes/labels ###Code bboxes, scores, labels = model.predict(np.expand_dims(img, axis=0)) ###Output _____no_output_____ ###Markdown Extracting valid predictions ###Code score_range=list(scores.ravel()).index(-1.0) scores = scores.ravel()[:score_range] labels = labels.ravel()[:score_range] bboxes = bboxes[0][:score_range] ###Output _____no_output_____ ###Markdown List of classes used to train the model ###Code import json classes = json.load(open("categories_coco.json",'r')) classes = list(classes.values()) ###Output _____no_output_____ ###Markdown Drawing boxes and labels on the original image Draw the boxes and labels ###Code img_with_boxes=orig_img.copy() drawer = ImageDraw.Draw(img_with_boxes) for i in range(score_range): drawer.rectangle(bboxes[i],outline='red') drawer.text([bboxes[i][0], bboxes[i][1]],text=classes[labels[i]]+" "+"{:.2f}".format(scores[i])) ###Output _____no_output_____ ###Markdown Original Image ###Code orig_img ###Output _____no_output_____ ###Markdown Annotated image ###Code img_with_boxes ###Output _____no_output_____ ###Markdown Generate the PMML The exporter needs following parameters - * `model` : The trained RetinaNet model* `input_shape` : The expected shape of the image to be scored* `input_format` : The format of input during inference* `backbone_name` : Name of backbone used to train the model* `trained_classes` : List of classes using which the model was trained* `pmml_file_name` : Name of PMML file ###Code RetinanetToPmml( model=model, input_shape=(224,224,3), input_format='image', backbone_name='resnet', trained_classes=classes, pmml_file_name="RetinaNet.pmml" ) ###Output _____no_output_____
Arctic Heat/Flight Analysis/AXCTD-XBT Visualization - Clean Fall2018.ipynb
###Markdown Arctic Heat - Fall 2018**AXCTD and XBT Profiles - all QC'd**Purpose: plot cleaned XBT and AXCTD files Removed files with no data, truncated files to have only data once water was hit. Bottom depth is estimated by nearest point to the ARDEMv2 Bathymetry Grid. [ArdemV2_Depth_Finder.ipynb](ArdemV2_Depth_Finder.ipynb). ###Code import pandas as pd import os import datetime import numpy as np source_dir = '/Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/' source_file = [os.path.join(dp, f) for dp, dn, fn in os.walk(os.path.expanduser(source_dir)) for f in fn if 'clean.dta' in f] ###Output _____no_output_____ ###Markdown Data Ingestion and data summary/statisticsA few lines to list and read the .iwg files into a dictionary of pandas dataframes.The original .dta files have header as follows: ```Probe Type = AXBT Date = 2018/05/26 Time = 00:29:35.620 Time Depth Frequency (C) (F) ``` ###Code dfs = {} for i,filename in enumerate(sorted(source_file)): try: header = pd.read_csv(filename,nrows=4,header=None) #parse date in header to add delta-t in columns to sd = header[0][1].split('= ')[-1].split('.') nofrag, frag = header[0][2].split('= ')[-1].split('.') st = datetime.datetime.strptime(sd[0] + ' ' + nofrag,'%Y/%m/%d %H:%M:%S') st = st.replace(microsecond=int(frag)) columns = ['Time','Depth','Frequency','DegreeC','DegreeF'] temp_data = pd.read_csv(filename,delimiter='\s+',skiprows=4,na_values='******') temp_data['DateTime'] = [st +datetime.timedelta(seconds=x[1]['Time']) for x in temp_data.iterrows()] temp_data = temp_data.set_index(pd.DatetimeIndex(temp_data['DateTime'])) dfs.update({filename:temp_data}) print(filename) except ValueError: print("{} failed to load".format(filename)) continue except KeyError: columns = ['Frame#','Data','CRC','Depth','Temp','Cond','Salinity'] temp_data = pd.read_csv(filename,delimiter='\s+',skiprows=4,na_values='*****') dfs.update({filename:temp_data}) print(filename) ###Output /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180525/log00002.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180525/log00003.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180525/log00004.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180527/log00000.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180527/log00001.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180527/log00002.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180527/log00003.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180529/log00002.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180529/log00003.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180529/log00004.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180529/log00009.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180531/15126156_2018_06_01_00_53_34.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180531/15126160_2018_06_01_01_21_03.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180531/15126161_2018_05_31_23_50_38.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180531/15126162_2018_06_01_02_06_11.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180531/15126163_2018_06_01_02_15_55.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180913L1/log00000.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180913L1/log00001.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180913L1/log00002.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180913L1/log00004.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180913L1/log00006.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180913L1/log00007.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180913L1/log00009.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L1/log00001.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L1/log00003.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L1/log00004.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L1/log00006.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L1/log00007.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L1/log00008.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L2/log00001.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L2/log00002.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L2/log00004.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L2/log00005.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L2/log00006.clean.dta /Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/AXBT_Data/AXBT_20180914L2/log00007.clean.dta ###Markdown XBT ###Code %matplotlib inline import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(7,8.25)) for ds, df in dfs.items(): if '201805' not in ds: try: ax.plot(df['(C)'],df['Depth'],label=ds.split('/')[-2:]) except: pass plt.ylabel('Depth (m)') plt.xlabel('Temperature (degC)') ax.invert_yaxis() # Shrink current axis by 20% box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) # Put a legend to the right of the current axis ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) for ds, df in dfs.items(): if '201805' not in ds: fig, ax = plt.subplots(figsize=(8.5,11)) try: plt.plot(df['(C)'],df['Depth']) plt.ylabel('Depth (m)') plt.xlabel('Temperature (degC)') ax = plt.gca() ax.invert_yaxis() plt.title(ds.split('/')[-2:]) fig.savefig(ds.replace('.clean.dta','.png')) except: pass ###Output _____no_output_____ ###Markdown AXCTDNO AXCTD on Fall 2018 Flights The flights of fall are designed to give a transect of the Chukchi from South to NorthSee (AXCTD-XBT Flight Ops Locations Fall2018.ipynb)So contour as a function of Total Distance along the transect Begininng ###Code %matplotlib inline import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter import cmocean def make_map(projection=ccrs.PlateCarree(),figsize=(16, 16)): fig, ax = plt.subplots(figsize=figsize, subplot_kw=dict(projection=projection)) if projection == ccrs.PlateCarree(): gl = ax.gridlines(draw_labels=True) gl.xlabels_top = gl.ylabels_right = False gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER return fig, ax, plt fl=pd.read_excel('/Users/bell/ecoraid/2018/Additional_FieldData/ArcticHeat/Event_Log-all.xlsx',sheet_name='Fall') projection=ccrs.LambertConformal(central_longitude=-160.0) transformation=ccrs.PlateCarree() land_50m = cfeature.NaturalEarthFeature('physical', 'land', '50m', edgecolor='face', facecolor='1.0') fig,ax,plt = make_map(projection=projection,figsize=(8,8)) extent = [-176, -150, 62.5, 73.5] t = ax.scatter(fl['lon'], fl['lat'], s=100, facecolors='none', edgecolors='r', transform=transformation) ax.add_feature(land_50m) ax.coastlines(resolution='50m') ax.set_extent(extent) plt.title('All Sonde Drops') fig,ax,plt = make_map(projection=projection,figsize=(8,8)) extent = [-176, -150, 62.5, 73.5] t = ax.scatter(fl['lon'][fl['DataQuality'] == 'Good'], fl['lat'][fl['DataQuality'] == 'Good'], s=100, facecolors='none', edgecolors='k', transform=transformation) ax.add_feature(land_50m) ax.coastlines(resolution='50m') ax.set_extent(extent) plt.title('Good Sonde Drops') ### great circle calculation from geopy import distance fln = fl[~fl.lat.isna()] flng = fln[fln['DataQuality'] == 'Good'] flng.reset_index(inplace=True) for i,row in flng.iterrows(): if i == 0: xdx = [0] tsum = 0 else: tsum = (distance.distance((flng['lat'][i],flng['lon'][i]), (flng['lat'][i-1],flng['lon'][i-1])).km) + tsum xdx = xdx + [ tsum ] fig, ax = plt.subplots(figsize=(16,8)) count=0 for ds, df in dfs.items(): if '201805' not in ds: cs = ax.scatter(np.ones_like(df['Depth'])*xdx[count], df['Depth'], s=35, c=df['(C)'], marker='o', edgecolor='none', vmin=-2, vmax=10,cmap=cmocean.cm.thermal) count+=1 ax.invert_yaxis() cbar = fig.colorbar(cs, orientation='vertical', extend='both') cbar.ax.set_ylabel('Temperature (DegC)') ax.set_ylabel('Depth (m)') ax.set_xlabel('Distance Along Transect') ###Output _____no_output_____
DataVisualization/1_Basic_Plotting_to_Matplotlib.ipynb
###Markdown Basic Plotting: Introduction to ```matplotlib```In this section, we will:- Create basic plots using ```matplotlib.pyplot```- Put axis labels and titles- Create multiple plots (subplots) in the same figure- Change the scales of x and y axes- Create common types of plots: Histograms, boxplots, scatter plots etc. - Working with images```matplotlib``` is a python library. It contains the ```pyplot``` module, which is basically a collection of functions such as ```plot```, ```title```, ```show()``` etc. ```pyplot``` is one of the most commonly used module for creating a variety of plots such as line plots, bar plots, histograms etc. Let's start with the basics. Basic Plotting, Axes Labels and Titles ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt # Plotting two 1-D numpy arrays x = np.linspace(5, 100, 100) y = np.linspace(10, 1000, 100) plt.plot(x, y) # need to call plt.show() explicitly to display the plot plt.show() # can also work with lists, though it converts lists to np arrays internally plt.plot([1, 4, 6, 8], [3, 8, 3, 5]) plt.show() ###Output _____no_output_____ ###Markdown Let's see how to put labels and the x and y axes and the chart title. Also, you can specify the limits of x and y labels as a range using ```xlim([xmin, xmax])``` and ```ylim([ymin, ymax])```. ###Code # Axis labels and title plt.plot(x, y) # x and y labels, and title plt.xlabel("Current") plt.ylabel("Voltage") plt.title("Ohm's Law") # Define the range of labels of the axis # Arguments: plt.axis(xmin, xmax, ymin, ymax) plt.xlim([20, 80]) plt.ylim([200, 800]) plt.show() # Change the colors and line type # initialising x and y arrays x = np.linspace(0, 10, 20) y = x*2 # color blue, line type '+' plt.plot(x, y, 'b+') # put x and y labels, and the title plt.xlabel("Current") plt.ylabel("Voltage") plt.title("Ohm's Law") plt.show() # Plotting multiple lines on the same plot x = np.linspace(0, 5, 10) y = np.linspace(3, 6, 10) # plot three curves: y, y**2 and y**3 with different line types plt.plot(x, y, 'r-', x, y**2, 'b+', x, y**3, 'g^') plt.show() ###Output _____no_output_____ ###Markdown Figures and SubplotsYou often need to create multiple plots in the same figure, as we'll see in some upcoming examples.```matplotlib``` has the concept of **figures and subplots** using which you can create *multiple subplots inside the same figure*. To create multiple plots in the same figure, you can use the method ```plt.subplot(nrows, ncols, nsubplot)```. ###Code x = np.linspace(1, 10, 100) y = np.log(x) # initiate a new figure explicitly plt.figure(1) # Create a subplot with 1 row, 2 columns # create the first subplot in figure 1 plt.subplot(121) # equivalent to plt.subplot(1, 2, 1) plt.title("y = log(x)") plt.plot(x, y) # create the second subplot in figure 1 plt.subplot(122) plt.title("y = log(x)**2") plt.plot(x, y**2) plt.show() ###Output _____no_output_____ ###Markdown Let's see another example - say you want to create 4 subplots in two rows and two columns. ###Code # Example: Create a figure having 4 subplots x = np.linspace(1, 10, 100) # Optional command, since matplotlib creates a figure by default anyway plt.figure(1) # subplot 1 plt.subplot(2, 2, 1) plt.title("Linear") plt.plot(x, x) # subplot 2 plt.subplot(2, 2, 2) plt.title("Cubic") plt.plot(x, x**3) # subplot 3 plt.figure(2) plt.subplot(2, 2, 1) plt.title("Log") plt.plot(x, np.log(x)) # subplot 4 plt.subplot(2, 2, 2) plt.title("Exponential") plt.plot(x, x**2) plt.show() ###Output _____no_output_____ ###Markdown You can see the list of colors and shapes here: https://matplotlib.org/api/pyplot_api.htmlmatplotlib.pyplot.plot Types of Commonly Used PlotsLet's now use the retail store's sales data to create some commonly use plots such as:- Boxplots- Histograms- Scatter plots- Bar plots ###Code # Example: Globals sales data df = pd.read_csv("./global_sales_data/market_fact.csv") df.head() ###Output _____no_output_____ ###Markdown Boxplot ###Code # Boxplot: Visualise the distribution of a continuous variable plt.boxplot(df['Order_Quantity']) plt.show() # Boxplot of Sales is quite unreadable, since Sales varies # across a wide range plt.boxplot(df['Sales']) plt.show() ###Output _____no_output_____ ###Markdown As you can see, the boxplot of ```Sales``` is pretty unreadable, since Sales varies across a wide range as shown below. ###Code # Range of sales: min is 2.24, median is 449, max is 89061 df['Sales'].describe() ###Output _____no_output_____ ###Markdown The solution to this problem is to **change the scale of the axis** (in this case, the y axis) so that the range can fit into the size of the plot.One commonly used technique is to transform an axis into the **logarithmic scale**. You can transform the scale of an axis using ```plt.yscale('log')```. ###Code # Usual (linear) scale subplot plt.subplot(1, 2, 1) plt.boxplot(df['Sales']) # log scale subplot plt.subplot(1, 2, 2) plt.boxplot(df['Sales']) plt.yscale('log') plt.show() ###Output _____no_output_____ ###Markdown Clearly, the log scale subplot is far more readable - you can infer that the minimum sales is around 0, the median is approximtely in the middle of 100 and 1000, and the max is reaching 100,000. HistogramHistograms are useful for visualising distribution of single variables. ###Code # Histograms plt.hist(df['Sales']) plt.show() # The histogram can be made more readable by using # a log scale plt.hist(df['Sales']) plt.yscale('log') plt.show() ###Output _____no_output_____ ###Markdown Scatter PlotScatter plots are used to visualise two variables, one one each axis. ###Code # Scatter plots with two variables: Profit and Sales plt.scatter(df['Sales'], df['Profit']) plt.show() ###Output _____no_output_____ ###Markdown Working with Images```matplotlib``` can also read images using the ```plt.imread()``` method. Internally, it reads and stores images as an ```array```. The array can then be used for various data manipulation tasks, just as a normal array.Let's look at an example. ###Code # reading a PNG image image = plt.imread("number.png") plt.imshow(image) plt.show() # looking at attributes of the image print(type(image)) print(image.shape) print(image.dtype) ###Output <class 'numpy.ndarray'> (254, 255, 4) float32 ###Markdown Note that it is a 3-D array of size 250 x 250 x 3, and each element is stored as type float32. Let's look at the content of the array. ###Code # print the array image ###Output _____no_output_____
Extraccion/LimpiezaExtracData.ipynb
###Markdown Parametros read.csv Puede que alguna información salga de manera incorrecta. Cargar una columna todo o con los heads hechos un desastre ###Code '''read.csv(filepath="",sep=",", dtype={"a":np.float64,"b":np.int32},header=0,names={"ingresos","edad"},skiprows=None, index_col=None,skip_blank_lines=False,na_filter=False) ''' ###Output _____no_output_____ ###Markdown **filepathPara** ruta absoluta.**Sep** es para el delimitador en csv se separan por comas pero se pueden decir cuales (|,(,etc).**dtype** sirve para darle un formato a columnas en particular (a lo mejor hay fechas que no son de tipo date). Entonces columna "a" puede ser float64.**Header** indica cual fila va a ser la cabecera.**names** nombres de las columnas sin nombre o mal nombradas, etc(Se debe generar array o lista de nombres).**Skiprows** salta las lineas que se leen por ejemplo si skiprows=12 saltara 12 filas para leer.**index_col** -> Permite indicar que alguna columna sea el identificador de la tabla.**skip_blank_lines** Valor booleano. Las lineas en blanco en el fichero se saltan en vez de ponerles NaN. **na_filter** Detecta valores que falten(marcadores NaN,null) y se carga toda la fila. Booleano. Casos de uso CSV ###Code url = "Customer Churn Model.txt" #Ahorra escribir todo de nuevo df1 = pd.read_csv(url) df1.head() ###Output _____no_output_____ ###Markdown Tal vez queremos renombrar algunas columnas ###Code df1.columns.values #Da los nombres de las columnas #Nuevo df para cambiar nombre columnas df1_columnas = pd.read_csv("Customer Churn Columns.csv") #Df del csv con nombre de columnas df1_columnas.head() df1_columnas_list = df1_columnas["Column_Names"].tolist() #Se genera lista de nuevos nombres para re-etiquetar df1_columnas_list df1 = pd.read_csv("Customer Churn Model.txt",header=None,names=df1_columnas_list) #Suprimo el header actual y #names re-nombro df1.head() ###Output _____no_output_____ ###Markdown Listo! Metodo open para carga manual de datos.Cuando se hace la lectura de información con read se suele saturar la RAM debido a que se descarga todo el DF (Cuando son Df's grandes). **Open** lee el data set linea por linea o por trozos. Y permite almacenar estos pedazos en diferentes partes del codigo. O distribuyendolo en computadoras. ###Code df2 = open("Customer Churn Model.txt",'r') #Modo de lectura cols = df2.readline().strip().split(",") #Dado que readline me da un solo string # Strip elimina los espacios en blanco al inicio y final en la linea.lo que se le indique. #Split divide la linea de texto por las comas y devuelve al final una array n_cols = len(cols) #Tamaño de columnas n_cols ###Output _____no_output_____ ###Markdown Numero de filas ###Code counter = 0 main_dict = {} for col in cols: main_dict[col] = [] main_dict #Generamos un diccionario vacio para rellenar cada una de las columnas con su respectivo valor for line in df2: #For para avanzar la lectura de lineas values = line.strip().split(",") for i in range(len(cols)): #i es el la columna donde se insertaran los datos main_dict[cols[i]].append(values[i]) #main_dict[columna(i)] se agregan los valores de la linea counter += 1 print("El data set tiene %d filas y %d columnas" % (counter, n_cols)) #El contador es para ver cuantas veces se #hizo la operacion o sea cuantas lineas se leyeron y ese es el numero de filas main_dict #Es el diccionario ya lleno ###Output _____no_output_____ ###Markdown Luego esto se convierte en un dataFrame. Dado que se leyo eficientemente como un archivo y se le dio el tratamiento correspondiente. Esta opcion de carga manual o por partes, es util cuando varios equipos tienen cargas de trabajos distribuidos(uno lee el archivo, otro convierte, otro analiza, asi es mas eficiente). ###Code df3 = pd.DataFrame(main_dict) df3.head() ###Output _____no_output_____ ###Markdown Leer y escribir un fichero A veces el separador de elementos no es con comas (,). Si el delimitador es otro objeto, a veces pueden ser los /t. Ejemplo de escritura: ###Code in_file = "Customer Churn Model.txt" out_file = "Tab Customer Churn Model.txt" with open(in_file) as infile1: #Abro el archivo de entrada with open(out_file,"w") as outfile1: #Abro el de salida en modo escritura for line in infile1: #Por cada linea en in_file fields = line.strip().split(",") #Genera el array de elementos outfile1.write("\t".join(fields)) #Despues los en un archivo con /t outfile1.write("\n")#Se generan saltos de linea df3 = pd.read_csv(out_file,sep = "\t") df3.head() ###Output _____no_output_____ ###Markdown Leer datos desde una URL La informacion a veces esta en la nube ###Code url_winter = "http://winterolympicsmedals.com/medals.csv" medals_data = pd.read_csv(url_winter) medals_data.head() ###Output _____no_output_____ ###Markdown Librerias para gestionar CSV o URL's ###Code import csv import urllib3 #Una forma de poder obtener info de un servidor http = urllib3.PoolManager() r = http.request('GET',url_winter) r.status #200 si si funciono response = r.data.decode("utf-8") #Este no es un DF por lo que se puede tratar para que si lo sea type(response) #UTF-8 decodifica de byte a str response #Usando csv cr = csv.reader(response.strip().split("\n")) #Genera la separacion por \n cr colum_names = cr.__next__() df_csv = pd.DataFrame(cr,columns=colum_names) df_csv colum_names len(colum_names) ###Output _____no_output_____ ###Markdown Carga de datos desde una hoja de calculo xlsx y xls ###Code path = "titanic3.xls" path2 = "titanic3.xlsx" ###Output _____no_output_____ ###Markdown La diferencia con un Excel es que este tiene pestañas en el documento, con nombres distintos. Solo se deben especificar los nombres. ###Code titanicDF = pd.read_excel(path,"titanic3") #Titanic3 es el nombre de la pestaña de Excel de donde se extrae. titanicDF2 = pd.read_excel(path2,"titanic3") ###Output _____no_output_____ ###Markdown Crear CSV o Excel con lo que he trabajado ###Code titanicDF2.to_csv("titanicCSV.csv") '''titanicDF2.to_json("titanicJ.json") titanicDF2.to_excel("titanicEx.xls")''' ###Output _____no_output_____
Assignments/1.5 Plotting in Python.ipynb
###Markdown Assignment 1.5 MatplotlibMatplotlib is a Python data visualization library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. See: [Official Documentation](https://matplotlib.org/).We also need to use one of the main feature of IPython kernel to show rich output for [plotting](https://ipython.readthedocs.io/en/stable/interactive/plotting.html). Pandas also provides many [visualisation tools](https://pandas.pydata.org/pandas-docs/stable/visualization.html) to plot data. ###Code # Import all the required library # YOUR CODE HERE import pandas as pd import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Please go through the [Matplotlib Tutorial](https://matplotlib.org/tutorials/introductory/pyplot.html) and try out the functions- plot- subplot- scatter- bar Diabetes DatasetThe dataset consists of several medical predictor variables and one target variable, whether someone has diabetes or not.**Attribute details**:- preg: Number of times pregnant- plas: Plasma glucose concentration a 2 hours in an oral glucose tolerance test- pres: Diastolic blood pressure (mm Hg)- skin: Triceps skin fold thickness (mm)- test: 2-Hour serum insulin (mu U/ml)- mass: Body mass index (weight in kg/(height in m)^2)- pedi: Diabetes pedigree function- age: Age (years)- class: Class variable (0 or 1); ###Code # load diabetes.csv to continue, use names list for the column names names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] # YOUR CODE HERE diabetes = pd.read_csv('diabetes.csv') diabetes.columns = names diabetes.head() ###Output _____no_output_____ ###Markdown HistogramsA fast way to get an idea of the distribution of each attribute is to look at histograms. Histograms group data into bins and provide you a count of the number of observations in each bin. From the shape of the bins you can quickly get a feeling for whether an attribute is Gaussian’, skewed or even has an exponential distribution. It can also help you see possible outliers. Exercise 1Plot histogram of each column and see if any data approximates a Gaussian distribution.Ref: [Normal or Gaussian Distribution](https://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm)You could also use pandas histogram function too. Also, change `figsize` as necessary. ###Code # YOUR CODE HERE diabetes.hist(figsize=(20, 20), bins=100) ###Output _____no_output_____ ###Markdown Density PlotsDensity plots are continuous graphs, just another way of getting a quick idea of the distribution of each attribute. The plots look like an abstracted histogram with a smooth curve drawn through the top of each bin, much like your eye tried to do with the histograms. Exercise 2Plot density plots of each column. ###Code # YOUR CODE HERE diabetes.plot.kde(figsize=(10, 10), bw_method=1) ###Output _____no_output_____ ###Markdown Box and Whisker Plots (Boxplot)Boxplots summarize the distribution of each attribute, drawing a line for the median (middle value) and a box around the 25th and 75th percentiles (the middle 50% of the data). The whiskers give an idea of the spread of the data and dots outside of the whiskers show candidate outlier values (values that are 1.5 times greater than the size of spread of the middle 50% of the data). Exercise 3Plot Boxplots and see how many of the columns are affected by outliers. ###Code # YOUR CODE HERE diabetes.boxplot(figsize=(20, 20), column=names) ###Output _____no_output_____ ###Markdown Scatterplot MatrixA scatterplot shows the relationship between two variables as dots in two dimensions, one axis for each attribute. You can create a scatterplot for each pair of attributes in your data. Drawing all these scatterplots together is called a scatterplot matrix.Scatter plots are useful for spotting structured relationships between variables, like whether you could summarize the relationship between two variables with a line. Attributes with structured relationships may also be correlated and good candidates for removal from your dataset. Exercise 4Plot a scatter plot of pressure ('pres') and BMI ('mass') colored based on 'class' with size of each plot determined by plasma glucose concentration ('plas'). ***Note: Only consider rows where pressure and mass are not zero***. ###Code # YOUR CODE HERE fig, scatter_plot = plt.subplots() scatter_plot.scatter(diabetes['pres'], diabetes['mass'], c=diabetes['class'], s=diabetes['plas']) scatter_plot.set_xlabel("pres", fontsize=15) scatter_plot.set_ylabel("mass", fontsize=15) scatter_plot.set_title('pres vs mass') plt.show() ###Output _____no_output_____ ###Markdown Correlation Matrix PlotCorrelation Matrix plot shows how related the changes are between two variables. If two variables change in the same direction they are positively correlated. If they change in opposite direction together, then they are negatively correlated. A plot of the correlation between each pair of attributes, called a correlation matrix, can provide an idea of which variables have a high correlation with each other.This is useful to know, because some machine learning algorithms like linear and logistic regression can have poor performance if there are highly correlated input variables in your data. Exercise 5Plot a Correlation matrix plot for the given data if you can find any correlation between the data, is the data symmetrical ?What is `class` most correlated with?See: [Pandas Correlation function](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html) ###Code # YOUR CODE HERE plt.matshow(diabetes.corr()) ###Output _____no_output_____
notebooks/mix_k_dihedral_2.ipynb
###Markdown Part 1: Initialize ###Code host = 'a_tract_21mer' strand_id = 'STRAND1' make_df = False make_dihedral = False plot_agent = MixPlot3(host, strand_id, big_traj_folder, dihedral_folder, backbone_data_folder, make_df) ###Output /home/yizaochen/codes/dna_rna/backbone_data/a_tract_21mer exists /home/yizaochen/codes/dna_rna/backbone_data/a_tract_21mer/STRAND1 exists /home/yizaochen/codes/dna_rna/backbone_data/a_tract_21mer/STRAND1/ndx exists /home/yizaochen/codes/dna_rna/backbone_data/a_tract_21mer/STRAND1/plumed_input exists /home/yizaochen/codes/dna_rna/backbone_data/a_tract_21mer/STRAND1/plumed_out exists /home/yizaochen/codes/backbone_rigidity/plumed_test/a_tract_21mer exists ###Markdown Part 2: Make/Read DataFrame ###Code if make_df: plot_agent.make_k_df() else: plot_agent.read_k_df() if make_dihedral: plot_agent.make_all_dihedral_df() else: plot_agent.read_all_diehdral_df() ###Output _____no_output_____ ###Markdown Part 2: Plot ###Code figsize = (6, 12) hspace = 0 bottom = 0 top = 5 fig, d_axes = plot_agent.plot_main(figsize, hspace, bottom, top) png_out = path.join(drawzone_folder, f'{host}_{strand_id}.png') plt.tight_layout() #plt.savefig(png_out, dpi=100) plt.show() ###Output _____no_output_____ ###Markdown Batch Drawing ###Code hosts = ['a_tract_21mer', 'g_tract_21mer', 'atat_21mer', 'gcgc_21mer'] strands = ['STRAND1', 'STRAND2'] make_df = False make_dihedral = False for host in hosts: for strand_id in strands: plot_agent = MixPlot3(host, strand_id, big_traj_folder, dihedral_folder, backbone_data_folder, make_df) if make_df: plot_agent.make_k_df() else: plot_agent.read_k_df() if make_dihedral: plot_agent.make_all_dihedral_df() else: plot_agent.read_all_diehdral_df() figsize = (6, 12) hspace = 0 bottom = 0 top = 5 fig, d_axes = plot_agent.plot_main(figsize, hspace, bottom, top) png_out = path.join(drawzone_folder, f'{host}_{strand_id}.png') plt.tight_layout() #plt.savefig(png_out, dpi=100) plt.show() hosts = ['g_tract_21mer', 'atat_21mer', 'gcgc_21mer'] strands = ['STRAND1', 'STRAND2'] make_df = True make_dihedral = True for host in hosts: for strand_id in strands: plot_agent = MixPlot2(host, strand_id, big_traj_folder, dihedral_folder, backbone_data_folder, make_df) if make_df: plot_agent.make_k_df() else: plot_agent.read_k_df() if make_dihedral: plot_agent.make_all_dihedral_df() else: plot_agent.read_all_diehdral_df() figsize = (6, 12) hspace = 0 bottom = 0 top = 6.0 fig, d_axes = plot_agent.plot_main(figsize, hspace, bottom, top) png_out = path.join(drawzone_folder, f'{host}_{strand_id}.png') plt.tight_layout() plt.savefig(png_out, dpi=100) plt.show() ###Output _____no_output_____ ###Markdown Addtional Part: Data Matrix Max, Min ###Code dihedral_name_lst = ["O4prime-O5prime", "C2prime-C8orC6", "O4prime-C8orC6"] d_min_max = {label: {'Min': list(), 'Max': list()} for label in dihedral_name_lst} hosts = ['a_tract_21mer', 'g_tract_21mer', 'atat_21mer', 'gcgc_21mer'] strands = ['STRAND1', 'STRAND2'] make_df = False make_dihedral = False for host in hosts: for strand_id in strands: plot_agent = MixPlot3(host, strand_id, big_traj_folder, dihedral_folder, backbone_data_folder, make_df) if make_df: plot_agent.make_k_df() else: plot_agent.read_k_df() if make_dihedral: plot_agent.make_all_dihedral_df() else: plot_agent.read_all_diehdral_df() for label in dihedral_name_lst: data_mat = plot_agent.assemble_data_mat(plot_agent.d_dihedral_df[label]) d_min_max[label]['Min'].append(data_mat.min()) d_min_max[label]['Max'].append(data_mat.max()) for label in dihedral_name_lst: print(label) minimum = np.array(d_min_max[label]['Min']).min() maximum = np.array(d_min_max[label]['Max']).max() print(f'Min: {minimum:.3f}') print(f'Max: {maximum:.3f}') plot_agent.get_data_mat_min_max() ###Output C2'-C3'-O3'-P Min: 0.0 Max: 0.029 epsilon - zeta: Min: 0.0 Max: 0.022 ###Markdown Additional Part: Spring Constant Minimum Maximum ###Code k_labels = ["C1'-N3/C1'-O2", "C2'-C8/C2'-C6", "O4'-O5'"] d_min_max = {label: {'Min': list(), 'Max': list()} for label in k_labels} hosts = ['a_tract_21mer', 'g_tract_21mer', 'atat_21mer', 'gcgc_21mer'] strands = ['STRAND1', 'STRAND2'] make_df = False make_dihedral = False for host in hosts: for strand_id in strands: plot_agent = MixPlot3(host, strand_id, big_traj_folder, dihedral_folder, backbone_data_folder, make_df) if make_df: plot_agent.make_k_df() else: plot_agent.read_k_df() if make_dihedral: plot_agent.make_all_dihedral_df() else: plot_agent.read_all_diehdral_df() figsize = (6, 12) hspace = 0 bottom = 0 top = 6.0 fig, d_axes = plot_agent.plot_main(figsize, hspace, bottom, top) png_out = path.join(drawzone_folder, f'{host}_{strand_id}.png') #plt.tight_layout() #plt.savefig(png_out, dpi=100) #plt.show() for idx, label in enumerate(k_labels): ylim = d_axes[idx].get_ylim() d_min_max[label]['Min'].append(ylim[0]) d_min_max[label]['Max'].append(ylim[1]) for label in k_labels: print(label) minimum = np.array(d_min_max[label]['Min']).min() maximum = np.array(d_min_max[label]['Max']).max() print(f'Min: {minimum:.3f}') print(f'Max: {maximum:.3f}') idx = 2 ylim = d_axes[idx].get_ylim() print(f'Min: {ylim[0]:.3f}') print(f'Max: {ylim[1]:.3f}') ###Output Min: 2.665 Max: 6.763 ###Markdown Additional Part : Color Bar ###Code figsize = (8,4) dihedral_name = "C2prime-P" #"C2prime-P", "C4prime-P", "C3prime-O5prime", "epsilon-zeta" fig, ax1, cb1 = plot_agent.draw_color_bar(figsize, dihedral_name) plt.show() ###Output _____no_output_____
II Machine Learning & Deep Learning/nuevo programa/#05. Neural Networks for Classification. Part II/05session.ipynb
###Markdown 05. Neural Networks for Classification. Part II - Book + Private Lessons [Here ↗](https://sotastica.com/reservar)- Subscribe to my [Blog ↗](https://blog.pythonassembly.com/)- Let's keep in touch on [LinkedIn ↗](www.linkedin.com/in/jsulopz) 😄 Load the Data import tensorflow as tf ###Code fashion_mnist = tf.keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() train_images = train_images / 255 test_images = test_images / 255 class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown Get to Know the Data Visualize some Samples ###Code import matplotlib.pyplot as plt plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown Visualize One Sample/Row/Image/Explanatory Variables ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown Target Variable Value ###Code idx_label = train_labels[0] class_names[idx_label] ###Output _____no_output_____ ###Markdown Neural Network Concepts in Python Initializing the `Weights` > - https://keras.io/api/layers/initializers/ How to `kernel_initializer` the weights? ###Code from tensorflow.keras import Sequential, Input from tensorflow.keras.layers import Dense, Flatten train_images.shape model = Sequential() model.add(Flatten(input_shape=(28, 28))) model.add(layer=Dense(units=128, kernel_initializer='zeros')) model.add(layer=Dense(units=10)) ###Output _____no_output_____ ###Markdown Make a Prediction with the Neural Network ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() train_images[0].shape ###Output _____no_output_____ ###Markdown Observe the numbers for the `weights` ###Code model.get_weights() ###Output _____no_output_____ ###Markdown Predictions vs Reality > 1. Calculate the Predicted Accidents and> 2. Compare it with the Real Total Accidents `fit()` the `model` and compare again ###Code model.compile(loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(train_images, train_labels, epochs=20, verbose=0) ###Output _____no_output_____ ###Markdown Observe the numbers for the `weights` Predictions vs Reality ###Code y_pred = model.predict(train_images) (y_pred.argmax(axis=1) == train_labels).mean() ###Output _____no_output_____ ###Markdown How to `kernel_initializer` the weights to 1? How to `kernel_initializer` the weights to `glorot_uniform` (default)? Play with the Activation Function > - https://keras.io/api/layers/activations/ ###Code %%HTML <iframe width="560" height="315" src="https://www.youtube.com/embed/IHZwWFHWa-w?start=558" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ###Output _____no_output_____ ###Markdown Use `sigmoid` activation in last layer ###Code model = Sequential() model.add(Flatten(input_shape=(28, 28))) model.add(layer=Dense(units=128, kernel_initializer='zeros')) model.add(layer=Dense(units=10)) model.compile(loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown `fit()` the Model ###Code model.fit(train_images, train_labels, epochs=20, verbose=0) ###Output _____no_output_____ ###Markdown Predictions vs Reality ###Code y_pred = model.predict(train_images) (y_pred.argmax(axis=1) == train_labels).mean() ###Output _____no_output_____ ###Markdown Observe the numbers for the `weights`> - Have they changed? ###Code model.get_weights() ###Output _____no_output_____ ###Markdown Use `linear` activation in last layer Use `tanh` activation in last layer Use `relu` activation in last layer How are the predictions changing? Why? Optimizer > - https://keras.io/api/optimizers/available-optimizers Optimizers comparison in GIF → https://mlfromscratch.com/optimizers-explained/adam Tesla's Neural Network Models is composed of 48 models trainned in 70.000 hours of GPU → https://tesla.com/ai 1 Year with a 8 GPU Computer → https://twitter.com/thirdrowtesla/status/1252723358342377472 Use Gradient Descent `SGD` ###Code model = Sequential() model.add(Flatten(input_shape=(28, 28))) model.add(layer=Dense(units=128, kernel_initializer='zeros')) model.add(layer=Dense(units=10)) ###Output _____no_output_____ ###Markdown `compile()` the model ###Code model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown `fit()` the Model ###Code history = model.fit(X, y, epochs=20, verbose=0) ###Output _____no_output_____ ###Markdown Predictions vs Reality ###Code y_pred = model.predict(train_images) (y_pred.argmax(axis=1) == train_labels).mean() ###Output _____no_output_____ ###Markdown Observe the numbers for the `weights`> - Have they changed? ###Code model.get_weights() ###Output _____no_output_____ ###Markdown View History ###Code import matplotlib.pyplot as plt plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'val'], loc='upper left') plt.show() ###Output _____no_output_____
predict_horse_racing.2.ipynb
###Markdown ###Code from google.colab import drive drive.mount("/content/drive") import pandas as pd df_all = pd.read_csv("drive/My Drive/ml_data/race_meta_and_scores.csv") df_all.info() df_all.head() df_subset = df_all[["course_length", "weather", "course_condition", "race_class", "prize_class", "gender", "age", "coat_color", "horse_weight", "trainer_id", "jockey_id", "jockey_weight", "rank"]] print(df_subset.info()) print("----------") print("isnull.sum") print("----------") print(df_subset.isnull().sum()) print("----------") print("dropna") print("----------") df = df_subset.dropna() print("----------") print("isnull.sum") print("----------") print(df.isnull().sum()) print("----------") print(df.info()) df.head() df_course_length = pd.get_dummies(df["course_length"]) df_weather = pd.get_dummies(df["weather"]) df_course_condition = pd.get_dummies(df["course_condition"]) df_race_class = pd.get_dummies(df["race_class"]) df_prize_class = pd.get_dummies(df["prize_class"]) df_gender = pd.get_dummies(df["gender"]) df_age = pd.get_dummies(df["age"]) df_coat_color = pd.get_dummies(df["coat_color"]) df_trainer_id = pd.get_dummies(df["trainer_id"]) df_jockey_id = pd.get_dummies(df["jockey_id"]) df_father_horse_name = pd.get_dummies(df_all["father_horse_name"]) df_mother_horse_name = pd.get_dummies(df_all["mother_horse_name"]) import sklearn.preprocessing as sp import numpy as np df_input = pd.concat([df.drop(["course_length"], axis=1), df_course_length], axis=1) df_input = pd.concat([df_input.drop(["weather"], axis=1), df_weather], axis=1) df_input = pd.concat([df_input.drop(["course_condition"], axis=1), df_course_condition], axis=1) #df_input = pd.concat([df_input.drop(["race_class"], axis=1), df_race_class], axis=1) df_input = df_input.drop(["race_class"], axis=1) #df_input = pd.concat([df_input.drop(["prize_class"], axis=1), df_prize_class], axis=1) df_input = df_input.drop(["prize_class"], axis=1) df_input = pd.concat([df_input.drop(["gender"], axis=1), df_gender], axis=1) df_input = pd.concat([df_input.drop(["age"], axis=1), df_age], axis=1) df_input = pd.concat([df_input.drop(["coat_color"], axis=1), df_coat_color], axis=1) #df_input = pd.concat([df_input.drop(["trainer_id"], axis=1), df_trainer_id], axis=1) df_input = df_input.drop(["trainer_id"], axis=1) #df_input = pd.concat([df_input.drop(["jockey_id"], axis=1), df_jockey_id], axis=1) df_input = df_input.drop(["jockey_id"], axis=1) df_input["horse_weight"] = sp.minmax_scale(df_input["horse_weight"]) df_input["jockey_weight"] = sp.minmax_scale(df_input["jockey_weight"]) #df_input["rank"] = sp.minmax_scale(df_input["rank"]) rank_3 = [] for index, row in df_input.iterrows(): rank_3.append(1 if row["rank"] <= 3.0 else 0) df_input["rank_3"] = rank_3 df_input = df_input.drop(["rank"], axis=1) df_input.info() df_input x = df_input.drop(["rank_3"], axis=1) y = df_input["rank_3"] x.head() y.head() import sklearn.model_selection as sm x_train, x_test, y_train, y_test = sm.train_test_split(x, y) print("x_train.shape: {0}".format(x_train.shape)) print("x_test.shape: {0}".format(x_test.shape)) print("y_train.shape: {0}".format(y_train.shape)) print("y_test.shape: {0}".format(y_test.shape)) from sklearn.linear_model import LogisticRegression clf = LogisticRegression() clf.fit(x_train, y_train) print("train score: {0}".format(clf.score(x_train, y_train))) print("test score: {0}".format(clf.score(x_test, y_test))) results = clf.predict(x_test) df_result = pd.DataFrame() df_result["rank"] = y_test df_result["rank_result"] = results df_result ###Output _____no_output_____
home-credit-default-risk/3. LightGBM_GSCV1.ipynb
###Markdown 3. LightGBM_GSCV1Reference:- https://www.kaggle.com/ogrellier/good-fun-with-ligthgbm/code Run name ###Code import time project_name = 'HomeCreditDefaultRisk' step_name = 'LightGBM_GSCV1' time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime()) run_name = project_name + '_' + step_name + '_' + time_str print('run_name: ' + run_name) t0 = time.time() ###Output run_name: HomeCreditDefaultRisk_LightGBM_GSCV1_20180603_204528 ###Markdown Important params Import PKGs ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg %matplotlib inline from IPython.display import display import seaborn as sns import os import sys import gc import math import tqdm import shutil import zipfile import pickle import h5py # import cv2 from PIL import Image from tqdm import tqdm import multiprocessing from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.utils import shuffle random_num = np.random.randint(10000) cpu_amount = multiprocessing.cpu_count() print('cpu_amount: %s' % (cpu_amount - 1)) print('random_num: %s' % random_num) from sklearn.metrics import roc_auc_score, roc_curve from sklearn.model_selection import KFold import xgboost # from xgboost import plot_importance ###Output _____no_output_____ ###Markdown Project folders ###Code cwd = os.getcwd() feature_folder = os.path.join(cwd, 'feature') input_folder = os.path.join(cwd, 'input') output_folder = os.path.join(cwd, 'output') model_folder = os.path.join(cwd, 'model') application_test_csv_file = os.path.join(input_folder, 'application_test.csv') application_train_csv_file = os.path.join(input_folder, 'application_train.csv') bureau_csv_file = os.path.join(input_folder, 'bureau.csv') bureau_balance_csv_file = os.path.join(input_folder, 'bureau_balance.csv') credit_card_balance_csv_file = os.path.join(input_folder, 'credit_card_balance.csv') installments_payments_csv_file = os.path.join(input_folder, 'installments_payments.csv') POS_CASH_balance_csv_file = os.path.join(input_folder, 'POS_CASH_balance.csv') previous_application_csv_file = os.path.join(input_folder, 'previous_application.csv') sample_submission_csv_file = os.path.join(input_folder, 'sample_submission.csv') print(application_test_csv_file) print(application_train_csv_file) print(bureau_csv_file) print(bureau_balance_csv_file) print(credit_card_balance_csv_file) print(installments_payments_csv_file) print(POS_CASH_balance_csv_file) print(previous_application_csv_file) print(sample_submission_csv_file) ###Output D:\bitbucket\kaggle\home-credit-default-risk\input\application_test.csv D:\bitbucket\kaggle\home-credit-default-risk\input\application_train.csv D:\bitbucket\kaggle\home-credit-default-risk\input\bureau.csv D:\bitbucket\kaggle\home-credit-default-risk\input\bureau_balance.csv D:\bitbucket\kaggle\home-credit-default-risk\input\credit_card_balance.csv D:\bitbucket\kaggle\home-credit-default-risk\input\installments_payments.csv D:\bitbucket\kaggle\home-credit-default-risk\input\POS_CASH_balance.csv D:\bitbucket\kaggle\home-credit-default-risk\input\previous_application.csv D:\bitbucket\kaggle\home-credit-default-risk\input\sample_submission.csv ###Markdown Load data ###Code def build_model_input(): buro_bal = pd.read_csv(bureau_balance_csv_file) print('Buro bal shape : ', buro_bal.shape) print('transform to dummies') buro_bal = pd.concat([buro_bal, pd.get_dummies(buro_bal.STATUS, prefix='buro_bal_status')], axis=1).drop('STATUS', axis=1) print('Counting buros') buro_counts = buro_bal[['SK_ID_BUREAU', 'MONTHS_BALANCE']].groupby('SK_ID_BUREAU').count() buro_bal['buro_count'] = buro_bal['SK_ID_BUREAU'].map(buro_counts['MONTHS_BALANCE']) print('averaging buro bal') avg_buro_bal = buro_bal.groupby('SK_ID_BUREAU').mean() avg_buro_bal.columns = ['avg_buro_' + f_ for f_ in avg_buro_bal.columns] del buro_bal gc.collect() print('Read Bureau') buro = pd.read_csv(bureau_csv_file) print('Go to dummies') buro_credit_active_dum = pd.get_dummies(buro.CREDIT_ACTIVE, prefix='ca_') buro_credit_currency_dum = pd.get_dummies(buro.CREDIT_CURRENCY, prefix='cu_') buro_credit_type_dum = pd.get_dummies(buro.CREDIT_TYPE, prefix='ty_') buro_full = pd.concat([buro, buro_credit_active_dum, buro_credit_currency_dum, buro_credit_type_dum], axis=1) # buro_full.columns = ['buro_' + f_ for f_ in buro_full.columns] del buro_credit_active_dum, buro_credit_currency_dum, buro_credit_type_dum gc.collect() print('Merge with buro avg') buro_full = buro_full.merge(right=avg_buro_bal.reset_index(), how='left', on='SK_ID_BUREAU', suffixes=('', '_bur_bal')) print('Counting buro per SK_ID_CURR') nb_bureau_per_curr = buro_full[['SK_ID_CURR', 'SK_ID_BUREAU']].groupby('SK_ID_CURR').count() buro_full['SK_ID_BUREAU'] = buro_full['SK_ID_CURR'].map(nb_bureau_per_curr['SK_ID_BUREAU']) print('Averaging bureau') avg_buro = buro_full.groupby('SK_ID_CURR').mean() print(avg_buro.head()) del buro, buro_full gc.collect() print('Read prev') prev = pd.read_csv(previous_application_csv_file) prev_cat_features = [ f_ for f_ in prev.columns if prev[f_].dtype == 'object' ] print('Go to dummies') prev_dum = pd.DataFrame() for f_ in prev_cat_features: prev_dum = pd.concat([prev_dum, pd.get_dummies(prev[f_], prefix=f_).astype(np.uint8)], axis=1) prev = pd.concat([prev, prev_dum], axis=1) del prev_dum gc.collect() print('Counting number of Prevs') nb_prev_per_curr = prev[['SK_ID_CURR', 'SK_ID_PREV']].groupby('SK_ID_CURR').count() prev['SK_ID_PREV'] = prev['SK_ID_CURR'].map(nb_prev_per_curr['SK_ID_PREV']) print('Averaging prev') avg_prev = prev.groupby('SK_ID_CURR').mean() print(avg_prev.head()) del prev gc.collect() print('Reading POS_CASH') pos = pd.read_csv(POS_CASH_balance_csv_file) print('Go to dummies') pos = pd.concat([pos, pd.get_dummies(pos['NAME_CONTRACT_STATUS'])], axis=1) print('Compute nb of prevs per curr') nb_prevs = pos[['SK_ID_CURR', 'SK_ID_PREV']].groupby('SK_ID_CURR').count() pos['SK_ID_PREV'] = pos['SK_ID_CURR'].map(nb_prevs['SK_ID_PREV']) print('Go to averages') avg_pos = pos.groupby('SK_ID_CURR').mean() del pos, nb_prevs gc.collect() print('Reading CC balance') cc_bal = pd.read_csv(credit_card_balance_csv_file) print('Go to dummies') cc_bal = pd.concat([cc_bal, pd.get_dummies(cc_bal['NAME_CONTRACT_STATUS'], prefix='cc_bal_status_')], axis=1) nb_prevs = cc_bal[['SK_ID_CURR', 'SK_ID_PREV']].groupby('SK_ID_CURR').count() cc_bal['SK_ID_PREV'] = cc_bal['SK_ID_CURR'].map(nb_prevs['SK_ID_PREV']) print('Compute average') avg_cc_bal = cc_bal.groupby('SK_ID_CURR').mean() avg_cc_bal.columns = ['cc_bal_' + f_ for f_ in avg_cc_bal.columns] del cc_bal, nb_prevs gc.collect() print('Reading Installments') inst = pd.read_csv(installments_payments_csv_file) nb_prevs = inst[['SK_ID_CURR', 'SK_ID_PREV']].groupby('SK_ID_CURR').count() inst['SK_ID_PREV'] = inst['SK_ID_CURR'].map(nb_prevs['SK_ID_PREV']) avg_inst = inst.groupby('SK_ID_CURR').mean() avg_inst.columns = ['inst_' + f_ for f_ in avg_inst.columns] print('Read data and test') data = pd.read_csv(application_train_csv_file) test = pd.read_csv(application_test_csv_file) print('Shapes : ', data.shape, test.shape) id_test = test['SK_ID_CURR'] y = data['TARGET'] del data['TARGET'] categorical_feats = [ f for f in data.columns if data[f].dtype == 'object' ] categorical_feats for f_ in categorical_feats: data[f_], indexer = pd.factorize(data[f_]) test[f_] = indexer.get_indexer(test[f_]) data = data.merge(right=avg_buro.reset_index(), how='left', on='SK_ID_CURR') test = test.merge(right=avg_buro.reset_index(), how='left', on='SK_ID_CURR') data = data.merge(right=avg_prev.reset_index(), how='left', on='SK_ID_CURR') test = test.merge(right=avg_prev.reset_index(), how='left', on='SK_ID_CURR') data = data.merge(right=avg_pos.reset_index(), how='left', on='SK_ID_CURR') test = test.merge(right=avg_pos.reset_index(), how='left', on='SK_ID_CURR') data = data.merge(right=avg_cc_bal.reset_index(), how='left', on='SK_ID_CURR') test = test.merge(right=avg_cc_bal.reset_index(), how='left', on='SK_ID_CURR') data = data.merge(right=avg_inst.reset_index(), how='left', on='SK_ID_CURR') test = test.merge(right=avg_inst.reset_index(), how='left', on='SK_ID_CURR') del avg_buro, avg_prev gc.collect() return data, test, y, id_test x_data, x_test, y_data, id_test = build_model_input() ###Output Buro bal shape : (27299925, 3) transform to dummies Counting buros averaging buro bal Read Bureau Go to dummies Merge with buro avg Counting buro per SK_ID_CURR Averaging bureau SK_ID_BUREAU DAYS_CREDIT CREDIT_DAY_OVERDUE \ SK_ID_CURR 100001 7.0 -735.000000 0.0 100002 8.0 -874.000000 0.0 100003 4.0 -1400.750000 0.0 100004 2.0 -867.000000 0.0 100005 3.0 -190.666667 0.0 DAYS_CREDIT_ENDDATE DAYS_ENDDATE_FACT AMT_CREDIT_MAX_OVERDUE \ SK_ID_CURR 100001 82.428571 -825.500000 NaN 100002 -349.000000 -697.500000 1681.029 100003 -544.500000 -1097.333333 0.000 100004 -488.500000 -532.500000 0.000 100005 439.333333 -123.000000 0.000 CNT_CREDIT_PROLONG AMT_CREDIT_SUM AMT_CREDIT_SUM_DEBT \ SK_ID_CURR 100001 0.0 207623.571429 85240.928571 100002 0.0 108131.945625 49156.200000 100003 0.0 254350.125000 0.000000 100004 0.0 94518.900000 0.000000 100005 0.0 219042.000000 189469.500000 AMT_CREDIT_SUM_LIMIT ... \ SK_ID_CURR ... 100001 0.00000 ... 100002 7997.14125 ... 100003 202500.00000 ... 100004 0.00000 ... 100005 0.00000 ... avg_buro_MONTHS_BALANCE avg_buro_buro_bal_status_0 \ SK_ID_CURR 100001 -11.785714 0.336651 100002 -21.875000 0.406960 100003 NaN NaN 100004 NaN NaN 100005 -3.000000 0.735043 avg_buro_buro_bal_status_1 avg_buro_buro_bal_status_2 \ SK_ID_CURR 100001 0.007519 0.0 100002 0.255682 0.0 100003 NaN NaN 100004 NaN NaN 100005 0.000000 0.0 avg_buro_buro_bal_status_3 avg_buro_buro_bal_status_4 \ SK_ID_CURR 100001 0.0 0.0 100002 0.0 0.0 100003 NaN NaN 100004 NaN NaN 100005 0.0 0.0 avg_buro_buro_bal_status_5 avg_buro_buro_bal_status_C \ SK_ID_CURR 100001 0.0 0.441240 100002 0.0 0.175426 100003 NaN NaN 100004 NaN NaN 100005 0.0 0.128205 avg_buro_buro_bal_status_X avg_buro_buro_count SK_ID_CURR 100001 0.214590 24.571429 100002 0.161932 13.750000 100003 NaN NaN 100004 NaN NaN 100005 0.136752 7.000000 [5 rows x 46 columns] Read prev Go to dummies Counting number of Prevs Averaging prev SK_ID_PREV AMT_ANNUITY AMT_APPLICATION AMT_CREDIT \ SK_ID_CURR 100001 1.0 3951.000 24835.50 23787.00 100002 1.0 9251.775 179055.00 179055.00 100003 3.0 56553.990 435436.50 484191.00 100004 1.0 5357.250 24282.00 20106.00 100005 2.0 4813.200 22308.75 20076.75 AMT_DOWN_PAYMENT AMT_GOODS_PRICE HOUR_APPR_PROCESS_START \ SK_ID_CURR 100001 2520.0 24835.5 13.000000 100002 0.0 179055.0 9.000000 100003 3442.5 435436.5 14.666667 100004 4860.0 24282.0 5.000000 100005 4464.0 44617.5 10.500000 NFLAG_LAST_APPL_IN_DAY RATE_DOWN_PAYMENT RATE_INTEREST_PRIMARY \ SK_ID_CURR 100001 1.0 0.104326 NaN 100002 1.0 0.000000 NaN 100003 1.0 0.050030 NaN 100004 1.0 0.212008 NaN 100005 1.0 0.108964 NaN ... \ SK_ID_CURR ... 100001 ... 100002 ... 100003 ... 100004 ... 100005 ... PRODUCT_COMBINATION_Cash X-Sell: low \ SK_ID_CURR 100001 0.000000 100002 0.000000 100003 0.333333 100004 0.000000 100005 0.000000 PRODUCT_COMBINATION_Cash X-Sell: middle \ SK_ID_CURR 100001 0.0 100002 0.0 100003 0.0 100004 0.0 100005 0.0 PRODUCT_COMBINATION_POS household with interest \ SK_ID_CURR 100001 0.000000 100002 0.000000 100003 0.333333 100004 0.000000 100005 0.000000 PRODUCT_COMBINATION_POS household without interest \ SK_ID_CURR 100001 0.0 100002 0.0 100003 0.0 100004 0.0 100005 0.0 PRODUCT_COMBINATION_POS industry with interest \ SK_ID_CURR 100001 0.000000 100002 0.000000 100003 0.333333 100004 0.000000 100005 0.000000 PRODUCT_COMBINATION_POS industry without interest \ SK_ID_CURR 100001 0.0 100002 0.0 100003 0.0 100004 0.0 100005 0.0 PRODUCT_COMBINATION_POS mobile with interest \ SK_ID_CURR 100001 1.0 100002 0.0 100003 0.0 100004 0.0 100005 0.5 PRODUCT_COMBINATION_POS mobile without interest \ SK_ID_CURR 100001 0.0 100002 0.0 100003 0.0 100004 1.0 100005 0.0 PRODUCT_COMBINATION_POS other with interest \ SK_ID_CURR 100001 0.0 100002 1.0 100003 0.0 100004 0.0 100005 0.0 PRODUCT_COMBINATION_POS others without interest SK_ID_CURR 100001 0.0 100002 0.0 100003 0.0 100004 0.0 100005 0.0 ###Markdown Get feature ###Code # id_data = train_csv['SK_ID_CURR'] # id_test = test_csv['SK_ID_CURR'] # useless_features = [] # x_data = train_csv.drop(columns=['SK_ID_CURR'] + useless_features) # x_test = test_csv.drop(columns=['SK_ID_CURR'] + useless_features) # train_csv.loc[2][:20] # plt.hist(x_data[['EXT_SOURCE_1']], bins=100, normed=True) # plt.xlabel(('x')) # plt.ylabel('EXT_SOURCE_1') # plt.show() # log_columns = ['EXT_SOURCE_1'] # for data_set in [x_data, x_test]: # data_set = data_set[log_columns].apply(lambda x: np.log(x + 1)) # plt.hist(x_data[['EXT_SOURCE_1']], bins=100, normed=True) # plt.xlabel(('x')) # plt.ylabel('EXT_SOURCE_1') # plt.show() x_train, x_val, y_train, y_val = train_test_split(x_data, y_data, test_size=0.05, random_state=random_num, shuffle=False) # x_train, y_train = shuffle(x_train, y_train, random_state=random_num) print(x_train.shape) print(y_train.shape) print(x_val.shape) print(y_val.shape) ###Output (292135, 380) (292135,) (15376, 380) (15376,) ###Markdown Train ###Code %%time import warnings warnings.filterwarnings('ignore') import lightgbm as lgb from sklearn.metrics import roc_auc_score from sklearn.model_selection import GridSearchCV # lgb_train = lgb.Dataset(x_train, label=y_train) # lgb_val = lgb.Dataset(x_val, label=y_val, reference=lgb_train) # LightGBM parameters param_grid = { # 'task': 'train', # 'num_boost_round': [200], # 'early_stopping_rounds': [10], # 'boosting_type': ['gbdt'], # (default="gbdt") # 'num_leaves': [300], # (default=31) 'max_depth': [6,7,8], # (default=-1) # 'learning_rate': [0.1], # (default=0.1) # 'n_estimators': [1000, 500], # (default=10) # 'max_bin': [1000, 255], # (default=255) # 'subsample_for_bin': [100*10000], # (default=50000) # 'objective': ['binary'], # (default=None) # 'min_split_gain': [0.], # (default=0.) # 'min_child_weight': [1e-3], # (default=1e-3) # 'min_child_samples': [10], # (default=20) # 'subsample': [0.7], # (default=1.) # 'subsample_freq': [1], # (default=1) 'colsample_bytree': [0.2, 0.8], # (default=1.) # 'reg_alpha': [0.], # (default=0.) # 'reg_lambda': [0.], # (default=0.) # 'random_state': [random_num], # (default=None) # 'n_jobs': [-1], # (default=-1) # 'silent': [False], # (default=True) # 'metric': ['auc', 'binary_logloss'], } # print('params: ', params) # train clf = lgb.LGBMClassifier( # 'num_boost_round'=200, # 'early_stopping_rounds'=10, boosting_type='gbdt', # (default="gbdt") num_leaves=300, # (default=31) max_depth=-1, # (default=-1) learning_rate=0.03, # (default=0.1) n_estimators=4000, # (default=10) # 'max_bin'=255, # (default=255) subsample_for_bin=500, # (default=50000) objective='binary', # (default=None) class_weight=None, min_split_gain=0.01, # (default=0.) min_child_weight=2, # (default=1e-3) min_child_samples=10, # (default=20) subsample=0.9, # (default=1.) # 'subsample_freq'=1, # (default=1) colsample_bytree=0.2, # (default=1.) reg_alpha=0.1, # (default=0.) reg_lambda=0.1, # (default=0.) random_state=random_num, # (default=None) n_jobs=-1, # (default=-1) silent=False, # (default=True) # 'metric'=['auc', 'binary_logloss'], ) # gbm = lgb.train( # params, # train_set=lgb_train, # valid_sets=lgb_val # ) grid_search = GridSearchCV(estimator=clf, param_grid=param_grid, verbose=2, cv=3, n_jobs=1, scoring='roc_auc') grid_search.fit(x_train, y_train) %%time print('*' * 80) y_train_proba = grid_search.predict_proba(x_train) print(y_train.shape) print(y_train_proba.shape) print(y_train_proba[:10]) y_train_pred = (y_train_proba[:, 1]>=0.5).astype(int) acc_train = accuracy_score(y_train, y_train_pred) roc_train = roc_auc_score(y_train, y_train_proba[:, 1]) print('acc_train: %.4f \t roc_train: %.4f' % (acc_train, roc_train)) # y_train_pred = grid_search.predict(x_train) # acc_train = accuracy_score(y_train, y_train_pred) # roc_train = roc_auc_score(y_train, y_train_proba[:, 1]) # print('acc_train: %.4f \t roc_train: %.4f' % (acc_train, roc_train)) y_val_proba = grid_search.predict_proba(x_val) print(y_val.shape) print(y_val_proba.shape) print(y_val_proba[:10]) y_val_pred = (y_val_proba[:, 1]>=0.5).astype(int) print(y_val.shape) print(y_val_pred.shape) acc_val = accuracy_score(y_val, y_val_pred) roc_val = roc_auc_score(y_val, y_val_proba[:, 1]) print('acc_val: %.4f \t roc_val: %.4f' % (acc_val, roc_val)) print(grid_search.cv_results_) print('*' * 60) print(grid_search.grid_scores_ ) print(grid_search.best_estimator_) print(grid_search.best_score_) print(grid_search.best_params_) print(grid_search.scorer_) print('*' * 60) print(type(grid_search.best_estimator_)) print(dir(grid_search.best_estimator_)) cv_results = pd.DataFrame(grid_search.cv_results_) display(cv_results) fe_times = grid_search.best_estimator_.booster_.feature_importance() fe_name = grid_search.best_estimator_.booster_.feature_name() print(fe_times) print(fe_name) importance_score = pd.DataFrame(data={'feature': fe_name, 'importance': fe_times}) display(importance_score.head()) plt.figure(figsize=(18,60)) # sns.barplot(x="importance", y="feature", data=best_features.sort_values(by="importance", ascending=False)) sns.barplot(x="importance", y="feature", data=importance_score.sort_values(by="importance", ascending=False)) plt.title('LightGBM Features (avg over folds)') plt.tight_layout() importance_score=importance_score.sort_values(by='importance', ascending=False) display(importance_score['feature'][:20]) for item in importance_score.values: print('%s\t%s' % (item[1], item[0])) ###Output _____no_output_____ ###Markdown Predict ###Code run_name_acc = run_name + '_' + str(int(roc_val*10000)).zfill(4) print(run_name_acc) y_test_proba = grid_search.predict_proba(x_test) print(y_test_proba.shape) print(y_test_proba[:10]) def save_proba(y_val_proba, y_val, y_test_proba, id_test, file_name): print(id_test[:5]) if os.path.exists(file_name): os.remove(file_name) print('File removed: %s' % file_name) with h5py.File(file_name) as h: h.create_dataset('y_val_proba', data=y_val_proba) h.create_dataset('y_val', data=y_val) h.create_dataset('y_test_proba', data=y_test_proba) h.create_dataset('id_test', data=id_test) print('File saved: %s' % file_name) def load_proba(file_name): with h5py.File(file_name, 'r') as h: y_val_proba = np.array(h['y_val_proba']) y_val = np.array(h['y_val']) y_test_proba = np.array(h['y_test_proba']) id_test = np.array(h['id_test']) print('File loaded: %s' % file_name) print(id_test[:5]) return y_val_proba, y_val, y_test_proba, id_test y_proba_file = os.path.join(model_folder, 'proba_%s.p' % run_name_acc) save_proba( y_val_proba[:, 1], y_val, y_test_proba[:, 1], id_test, y_proba_file ) y_val_proba_true, y_val, y_test_proba_true, id_test = load_proba(y_proba_file) print(y_val_proba_true.shape) print(y_val.shape) print(y_test_proba_true.shape) print(len(id_test)) # %%time submission_csv_file = os.path.join(output_folder, 'pred_%s.csv' % run_name_acc) print(submission_csv_file) submission_csv = pd.DataFrame({ 'SK_ID_CURR': id_test , 'TARGET': y_test_proba_true }) submission_csv.to_csv(submission_csv_file, index = False) display(submission_csv.head()) print('Time cost: %.2f s' % (time.time() - t0)) print('random_num: ', random_num) print(run_name_acc) print('Done!') ###Output _____no_output_____
03_pytorch-sm-bert-data-parallel.ipynb
###Markdown Imports ###Code from sagemaker import get_execution_role, Session from sagemaker.huggingface import HuggingFace import sagemaker import logging ###Output _____no_output_____ ###Markdown Setup logger ###Code logger = logging.getLogger('__name__') logger.setLevel(logging.INFO) logger.addHandler(logging.StreamHandler()) logger.info(f'[Using SageMaker: {sagemaker.__version__}]') ###Output [Using SageMaker: 2.59.5] ###Markdown Essentials ###Code session = Session() role = get_execution_role() bucket = session.default_bucket() ###Output _____no_output_____ ###Markdown Create a HuggingFace estimator and start a SageMaker training job ###Code !pygmentize ./src/train.py ###Output from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer from sklearn.metrics import accuracy_score, precision_recall_fscore_support from datasets import load_from_disk import argparse import logging import random import torch import sys import os if __name__ == '__main__': parser = argparse.ArgumentParser() # Hyperparameters sent by the client are passed as command-line arguments to the script parser.add_argument('--epochs', type=int, default=10) parser.add_argument('--train_batch_size', type=int, default=32) parser.add_argument('--eval_batch_size', type=int, default=32) parser.add_argument('--warmup_steps', type=int, default=500) parser.add_argument('--model_name', type=str) parser.add_argument('--learning_rate', type=str, default=5e-5) # Data, model, and output directories parser.add_argument('--output-data-dir', type=str, default=os.environ['SM_OUTPUT_DATA_DIR']) parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR']) parser.add_argument('--n_gpus', type=str, default=os.environ['SM_NUM_GPUS']) parser.add_argument('--training_dir', type=str, default=os.environ['SM_CHANNEL_TRAIN']) parser.add_argument('--test_dir', type=str, default=os.environ['SM_CHANNEL_TEST']) args, _ = parser.parse_known_args() # Set up logging logger = logging.getLogger(__name__) logging.basicConfig( level=logging.getLevelName('INFO'), handlers=[logging.StreamHandler(sys.stdout)], format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) # Load train and test datasets train_dataset = load_from_disk(args.training_dir, keep_in_memory=True) test_dataset = load_from_disk(args.test_dir, keep_in_memory=True) logger.info(f'[Loaded train_dataset length is: {len(train_dataset)}]') logger.info(f'[Loaded test_dataset length is: {len(test_dataset)}]') # Compute metrics function for binary classification def compute_metrics(pred): labels = pred.label_ids preds = pred.predictions.argmax(-1) precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary') acc = accuracy_score(labels, preds) return {'accuracy': acc, 'f1': f1, 'precision': precision, 'recall': recall} # Download model from model hub model = AutoModelForSequenceClassification.from_pretrained(args.model_name) tokenizer = AutoTokenizer.from_pretrained(args.model_name) # Define training args training_args = TrainingArguments( output_dir=args.model_dir, num_train_epochs=args.epochs, per_device_train_batch_size=args.train_batch_size, per_device_eval_batch_size=args.eval_batch_size, warmup_steps=args.warmup_steps, evaluation_strategy='epoch', logging_dir=f'{args.output_data_dir}/logs', learning_rate=float(args.learning_rate), ) # Create Trainer instance trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=test_dataset, tokenizer=tokenizer ) # Train model trainer.train() # Evaluate model eval_result = trainer.evaluate(eval_dataset=test_dataset) # Write evaluation results to a file which can be accessed later in S3 output with open(os.path.join(args.output_data_dir, 'eval_results.txt'), 'w') as writer: for key, value in sorted(eval_result.items()): writer.write(f'{key} = {value}\n') # Save model to S3 trainer.save_model(args.model_dir) ###Markdown Define hyperparameters ###Code hyperparameters={'epochs': 3, 'train_batch_size': 32, 'eval_batch_size': 32, 'model_name': 'distilbert-base-uncased'} ###Output _____no_output_____ ###Markdown Configuration for running training on smdistributed (Data Parallelism) ###Code distribution = {'smdistributed': {'dataparallel': { 'enabled': True }}} ###Output _____no_output_____ ###Markdown Define metric definitions ###Code metric_definitions = [ {"Name": "epoch", "Regex": "epoch.*=\D*(.*?)$"}, {"Name": "train_runtime", "Regex": "train_runtime.*=\D*(.*?)$"}, {'Name': 'train_samples_per_second', 'Regex': "train_samples_per_second.*=\D*(.*?)$"}, {"Name": "train_accuracy", "Regex": "train_accuracy.*=\D*(.*?)$"}, {"Name": "train_loss", "Regex": "train_loss.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": "eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": "eval_loss.*=\D*(.*?)$"}, {"Name": "f1", "Regex": "f1.*=\D*(.*?)$"}] ###Output _____no_output_____ ###Markdown Instance configurations ###Code instance_type = 'ml.p3.16xlarge' instance_count = 2 volume_size = 200 ###Output _____no_output_____ ###Markdown Create HuggingFace estimator ###Code huggingface_estimator = HuggingFace(entry_point='train.py', source_dir='./src', metric_definitions=metric_definitions, instance_type=instance_type, instance_count=instance_count, volume_size=volume_size, role=role, transformers_version='4.6', pytorch_version='1.7', py_version='py36', distribution= distribution, hyperparameters = hyperparameters) ###Output _____no_output_____ ###Markdown Fit model ###Code training_input_path = f's3://{bucket}/imdb/train' test_input_path = f's3://{bucket}/imdb/test' %%time huggingface_estimator.fit({'train': training_input_path, 'test': test_input_path}, logs=False) ###Output 2021-10-14 19:54:52 Starting - Starting the training job. 2021-10-14 19:54:59 Starting - Launching requested ML instances........................ 2021-10-14 19:57:04 Starting - Preparing the instances for training........................... 2021-10-14 19:59:26 Downloading - Downloading input data....... 2021-10-14 20:00:08 Training - Downloading the training image................. 2021-10-14 20:01:35 Training - Training image download completed. Training in progress.................................. 2021-10-14 20:04:29 Uploading - Uploading generated training model........ 2021-10-14 20:05:15 Completed - Training job completed CPU times: user 549 ms, sys: 89.1 ms, total: 638 ms Wall time: 10min 24s ###Markdown Retrieve estimator parameters ###Code logger.info(f'S3 uri where the trained model is located: {huggingface_estimator.model_data}') logger.info(f'Latest training job name for this estimator: {huggingface_estimator.latest_training_job.name}') ###Output Latest training job name for this estimator: huggingface-pytorch-training-2021-10-14-19-54-52-044 ###Markdown Deploying the endpoint ###Code predictor = huggingface_estimator.deploy(1, 'ml.g4dn.xlarge') ###Output ----------------! ###Markdown Make inference using the deployed sentiment classifier model ###Code sentiment_input= {"inputs": "I love using the new Inference DLC."} response = predictor.predict(sentiment_input) response ###Output _____no_output_____
supplementary-material/Optional-Assignments/Introduction to Financial Concepts Using Python/Bonus_Assignment_Chapter_2.ipynb
###Markdown Project Proposals and Cash Flow Projections ###Code import pandas as pd import numpy as np ###Output _____no_output_____ ###Markdown In this notebook, imagine you are the CEO of a New York City based transportation company. You will learn the basics of financial decision-making and project financing in order to figure out what types of projects would be most beneficial for your team to undertake. Your project managers are evaluating projected the cash flows for 2 proposals. Project 1 provides higher short term cash flows, but Project 2 becomes more profitable over time.The cash flow projections for both projects are as follows, listed in 1,000s of dollars: Create variables cf_project_1 and cf_project_2 and set them equal a numpy array of the projected cash flows. Then, scale these projected cash flows 1,000x by multiplying each array by 1,000. ###Code import numpy as np cf_project_1 = np.array([-1000, 200, 250, 300, 350, 400, 450, 500, 550, 600]) cf_project_2 = np.array([-1000, 150, 225, 300, 375, 425, 500, 575, 600, 625]) cf_project1 = cf_project_1 * 1000 cf_project2 = cf_project_2 * 1000 ###Output _____no_output_____ ###Markdown Internal Rate of Return Now that you have the cash flow projections ready to go for each project, you want to compare the internal rate of return (IRR) of each project to help you decide which project would be most beneficial for your company in terms of yield (rate of return). In this exercise, you will calculate the internal rate of return for each project using np.irr(values).Set the internal rate of return for Project 1 equal to irr_project1 and Project 2 equal to irr_project2 ###Code # Calculate the internal rate of return for Project 1 irr_project1 = np.irr(cf_project1) print("Project 1 IRR: " + str(round(100*irr_project1, 2)) + "%") # Calculate the internal rate of return for Project 2 irr_project2 = np.irr(cf_project2) print("Project 2 IRR: " + str(round(100*irr_project2, 2)) + "%") ###Output Project 2 IRR: 28.78% ###Markdown If you were making the decision solely based on internal rate of return, which project would you be more interested in (assuming the IRR is greater than your required rate of return)? ###Code print("Project 2") ###Output Project 2 ###Markdown Debt and Equity Financing using WACC Imagine your company has outstanding debt and financing costs, which you will have to adjust for. You will use the WACC as your discount rate. Assume take out a 1,000,000 loan to finance the project, which will be your company's only outstanding debt. This loan will represent 50% of your company's total financing of $2,000,000. The remaining funding comes from the market value of equity. Set the market value of your company's debt, mval_debt, equal to the amount of the loan you will be issuing to finance the project. ###Code mval_debt = 1000000 ###Output _____no_output_____ ###Markdown Set the market value of your company's equity, mval_equity, equal to the remaining amount of funding after the loan. ###Code mval_equity = 1000000 ###Output _____no_output_____ ###Markdown Calculate the total market value of your company's financing, mval_total, by taking the sum of the debt and equity. ###Code mval_total = mval_equity + mval_debt ###Output _____no_output_____ ###Markdown Calculate and print the proportion of your company's financing from debt (percent_debt) and from equity (percent_equity). ###Code percent_debt = mval_debt / mval_total print("Debt Financing: " + str(round(100*percent_debt, 2)) + "%") percent_equity = mval_equity / mval_total print("Equity Financing: " + str(round(100*percent_equity, 2)) + "%") ###Output Debt Financing: 50.0% Equity Financing: 50.0% ###Markdown Calculating WACC The Weighted Average Cost of Capital, or WACC, is essential for our NPV calculation of projects, amount other things. Now that you have determined the proportion of both equity and debt financing, you will need to set up variables for the cost of financing via both debt and equity in order to estimate your WACC. The **cost of equity** financing can be estimated as the return on equity of similar companies. Calculating the return on equity is a simple accounting exercise, but all you need to know is that essentially, investors will require a rate of return that is close to what could be earned by a similar investment.Assume a cost of equity of 18% based on similar companies and assign to **cost_equity**: ###Code cost_equity = 0.18 ###Output _____no_output_____ ###Markdown The **cost of debt** financing can be estimated as the amount you will have to pay on a new loan. This can be estimated by looking at the interest rates of loans of similar sizes to similar companies, or could be based on previous loans your company may already have been issued.The bank is willing to lend at an interest rate of 12%, which you should assing to **cost_debt**: ###Code cost_debt = 0.12 ###Output _____no_output_____ ###Markdown Finally, assume a corporate tax rate of 35% and that your debt financing is tax-deductible. Assign to **tax_rate**. ###Code tax_rate = 0.35 ###Output _____no_output_____ ###Markdown Calculate and print **wacc** by using the formula:WACC = (% equity * cost of equity ) + (% debt * cost of debt) * (1 - tax rate) ###Code wacc = (percent_equity*cost_equity) + (percent_debt*cost_debt) * (1 - tax_rate) print("WACC: " + str(round(100*wacc, 2)) + "%") ###Output WACC: 12.9% ###Markdown Comparing Project NPV Companies use their WACC as the discount rate when calculating the net present value of potential projects. In the same way that you discounted values by inflation in the previous chapter to account for costs over time, companies adjust the cash flows of potential projects by their cost of financing (the WACC) to account for their investor's required rate of return based on market conditions. Now that you calculated the **wacc**, you can determine the net present value (NPV) of the project's cash flows. Numpy has a npv function **```np.npv()```** that uses the **wacc** and an **array** of cash flows to calculate NPV. Find and print the NPV of ** cf_project1** and **cf_project2** ###Code # Calculate the net present value for Project 1 npv_project1 = np.npv(wacc, cf_project1) print("Project 1 NPV: " + str(round(npv_project1, 2))) # Calculate the net present value for Project 2 npv_project2 = np.npv(wacc, cf_project2) print("Project 2 NPV: " + str(round(npv_project2, 2))) ###Output Project 1 NPV: 302744.98 Project 2 NPV: 231228.39 ###Markdown Two Projects with Different Lifespans The board of the company has decided to go a different direction, involving slightly shorter term projects and lower initial investments. Your project managers have come up with two new ideas, and projected the cash flows for each of the proposals.Project 1 has a lifespan of 8 years, but Project 2 only has a lifespan of 7 years. Project 1 requires an initial investment of 700,000, but Project 2 only requires $400,000.The cash flow projections for both projects are as follows (in 1,000s of dollars) Create new numpy arrays for **cf_project_1** and **cf_project_2** for the cash flows above, then scale up 1000x ###Code # Create a numpy array of cash flows for Project 1 cf_project_1 = np.array([-700, 100, 150, 200, 250, 300, 350, 400]) # Create a numpy array of cash flows for Project 2 cf_project_2 = np.array([-400, 50, 100, 150, 200, 250, 300]) # Scale the original objects by 1000x cf_project1 = cf_project_1 * 1000 cf_project2 = cf_project_2 * 1000 ###Output _____no_output_____ ###Markdown Calculating IRR and NPV With Different Project Lifespans Using the same **wacc** that you calculated earlier, you can calculate and compare the IRRs and NPVs of each project.While the IRR remains relatively comparable across projects, the NPV, on the other hand, will be much more difficult to compare given the additional year required for project 1. Luckily, in the next exercise, we will introduce another method to compare the NPVs of the projects, but we will first need to compute the NPVs as before. Calculate **irr_project1** and **irr_project2** by using the **`np.irr()`** function from earlier and the new cash flows arrays in **cf_project1** and **cf_project2**. Print these values as percents and round to 2 decimals. ###Code # Calculate the IRR for Project 1 irr_project1 = np.irr(cf_project1) print("Project 1 IRR: " + str(round(100*irr_project1, 2)) + "%") # Calculate the IRR for Project 2 irr_project2 = np.irr(cf_project2) print("Project 2 IRR: " + str(round(100*irr_project2, 2)) + "%") ###Output Project 1 IRR: 22.94% Project 2 IRR: 26.89% ###Markdown Now calculate **npv_project1** and **npv_project2** by using the **`np.npv()`** function from earlier and the new cash flow arrays in **cf_project1** and **cf_project2**. Print these values as percents and round to 2 decimals. ###Code # Calculate the NPV for Project 1 npv_project1 = np.npv(wacc, cf_project1) print("Project 1 NPV: " + str(round(npv_project1, 2))) # Calculate the NPV for Project 2 npv_project2 = np.npv(wacc, cf_project2) print("Project 2 NPV: " + str(round(npv_project2, 2))) ###Output Project 1 NPV: 302744.98 Project 2 NPV: 231228.39 ###Markdown Equivalent Annual Anuity Approach Since the net present values of each project are not directly comparable given the different lifespans of each project, you will have to consider a different approach.The **equivalent annual annuity (EAA)** approach allows us to compare two projects by essentially assuming that each project is an investment generating a flat interest rate each year (an annuity), and calculating the annual payment you would receive from each project, discounted to present value.You can compute the EAA of each project using the **np.pmt(rate, nper, pv, fv)** function in numpy. Use the same weighted average cost of capital, **wacc**, and the net present values for projects 1 and 2, **npv_project1** and **npv_project2**. Calculate and print **eaa_project1** and **eaa_project2**, rounded to 2 decimals. ###Code eaa_project1 = np.pmt(rate=wacc, nper=8, pv=-npv_project1, fv=0) print("Project 1 EAA: " + str(round(eaa_project1, 2))) eaa_project2 = np.pmt(rate=wacc, nper=7, pv=-npv_project2, fv=0) print("Project 2 EAA: " + str(round(eaa_project2, 2))) ###Output Project 1 EAA: 62872.2 Project 2 EAA: 52120.61 ###Markdown If you were making the decision solely based on the equivalent annual annuity analysis, which project would you be more interested in? ###Code # Your answer here: print('Project 1!') ###Output Project 1!
loss_functions/Earth_Mover_Distance.ipynb
###Markdown Earth Mover Distance The current mlpack implementation is correct.This notebook implements reduction. Imports and installation of mlpack ###Code %%capture !sudo apt-get install libmlpack-dev import torch import torch.nn as nn ###Output _____no_output_____ ###Markdown mlpack CURRENT IMPLEMENTATION ###Code %%capture %%writefile test.cpp #include <iostream> #include <armadillo> using namespace std; using namespace arma; int main() { // Constructor arma::mat x,y; arma::mat weight; x << -0.0494 << 1.6028 << 0.9639 << endr << -1.1958 << 0.0737 << 0.9648 << endr << -1.0486 << -0.7091 << 0.0745 << endr << -0.2121 << 0.8612 << 0.5924 << endr; y << 0.4316 << 0.5106 << 0.7059 << endr << 0.0164 << 0.9255 << -0.8288 << endr << -0.4478 << 0.5571 << -0.0231 << endr << 1.1452 << 0.0864 << -1.0526 << endr; // Forward double loss = -arma::accu(y % x); // Backward arma::mat output; output = -y; // Display cout << "------------------------------------------------------------------" << endl; cout << "USER-PROVIDED MATRICES : " << endl; cout << "------------------------------------------------------------------" << endl; cout << "Input shape : "<< x.n_rows << " " << x.n_cols << endl; cout << "Input : " << endl << x << endl; cout << "Target shape : "<< y.n_rows << " " << y.n_cols << endl; cout << "Target : " << endl << y << endl; cout << "FORWARD : " << endl; cout << "Loss : \n" << loss << '\n'; cout << "BACKWARD : " << endl; cout << "Output shape : "<< output.n_rows << " " << output.n_cols << endl; cout << "Output (sum) : " << endl << output << endl; cout << "Sum of all values in this matrix : " << arma::as_scalar(arma::accu(output)) << endl; return 0; } %%script bash g++ test.cpp -o test -larmadillo && ./test ###Output ------------------------------------------------------------------ USER-PROVIDED MATRICES : ------------------------------------------------------------------ Input shape : 4 3 Input : -0.0494 1.6028 0.9639 -1.1958 0.0737 0.9648 -1.0486 -0.7091 0.0745 -0.2121 0.8612 0.5924 Target shape : 4 3 Target : 0.4316 0.5106 0.7059 0.0164 0.9255 -0.8288 -0.4478 0.5571 -0.0231 1.1452 0.0864 -1.0526 FORWARD : Loss : -0.00721068 BACKWARD : Output shape : 4 3 Output (sum) : -0.4316 -0.5106 -0.7059 -0.0164 -0.9255 0.8288 0.4478 -0.5571 0.0231 -1.1452 -0.0864 1.0526 Sum of all values in this matrix : -2.0264 ###Markdown NEW IMPLEMENTATION ###Code %%capture %%writefile test.cpp #include <iostream> #include <armadillo> using namespace std; using namespace arma; int main() { // Constructor arma::mat x,y; arma::mat weight; x << -0.0494 << 1.6028 << 0.9639 << endr << -1.1958 << 0.0737 << 0.9648 << endr << -1.0486 << -0.7091 << 0.0745 << endr << -0.2121 << 0.8612 << 0.5924 << endr; y << 0.4316 << 0.5106 << 0.7059 << endr << 0.0164 << 0.9255 << -0.8288 << endr << -0.4478 << 0.5571 << -0.0231 << endr << 1.1452 << 0.0864 << -1.0526 << endr; // Forward arma::mat loss_none = -(y % x); double loss_sum = arma::accu(loss_none); double loss_mean = loss_sum / x.n_elem; // Backward arma::mat output; output = -y; // Display cout << "------------------------------------------------------------------" << endl; cout << "USER-PROVIDED MATRICES : " << endl; cout << "------------------------------------------------------------------" << endl; cout << "Input shape : "<< x.n_rows << " " << x.n_cols << endl; cout << "Input : " << endl << x << endl; cout << "Target shape : "<< y.n_rows << " " << y.n_cols << endl; cout << "Target : " << endl << y << endl; cout << "------------------------------------------------------------------" << endl; cout << "SUM " << endl; cout << "------------------------------------------------------------------" << endl; cout << "FORWARD : " << endl; cout << "Loss : \n" << loss_none << '\n'; cout << "Loss (sum):\n" << loss_sum << '\n'; cout << "BACKWARD : " << endl; cout << "Output shape : "<< output.n_rows << " " << output.n_cols << endl; cout << "Output (sum) : " << endl << output << endl; cout << "Sum of all values in this matrix : " << arma::as_scalar(arma::accu(output)) << endl; cout << "------------------------------------------------------------------" << endl; cout << "MEAN " << endl; cout << "------------------------------------------------------------------" << endl; cout << "FORWARD : " << endl; cout << "Loss (mean):\n" << loss_mean << '\n'; cout << "BACKWARD : " << endl; cout << "Output shape : "<< output.n_rows << " " << output.n_cols << endl; cout << "Output (mean) : " << endl << output / x.n_elem << endl; cout << "Sum of all values in this matrix : " << arma::as_scalar(arma::accu(output / x.n_elem)) << endl; cout << "------------------------------------------------------------------" << endl; return 0; } %%script bash g++ test.cpp -o test -larmadillo && ./test ###Output ------------------------------------------------------------------ USER-PROVIDED MATRICES : ------------------------------------------------------------------ Input shape : 4 3 Input : -0.0494 1.6028 0.9639 -1.1958 0.0737 0.9648 -1.0486 -0.7091 0.0745 -0.2121 0.8612 0.5924 Target shape : 4 3 Target : 0.4316 0.5106 0.7059 0.0164 0.9255 -0.8288 -0.4478 0.5571 -0.0231 1.1452 0.0864 -1.0526 ------------------------------------------------------------------ SUM ------------------------------------------------------------------ FORWARD : Loss : 0.0213 -0.8184 -0.6804 0.0196 -0.0682 0.7996 -0.4696 0.3950 0.0017 0.2429 -0.0744 0.6236 Loss (sum): -0.00721068 BACKWARD : Output shape : 4 3 Output (sum) : -0.4316 -0.5106 -0.7059 -0.0164 -0.9255 0.8288 0.4478 -0.5571 0.0231 -1.1452 -0.0864 1.0526 Sum of all values in this matrix : -2.0264 ------------------------------------------------------------------ MEAN ------------------------------------------------------------------ FORWARD : Loss (mean): -0.00060089 BACKWARD : Output shape : 4 3 Output (mean) : -0.0360 -0.0426 -0.0588 -0.0014 -0.0771 0.0691 0.0373 -0.0464 0.0019 -0.0954 -0.0072 0.0877 Sum of all values in this matrix : -0.168867 ------------------------------------------------------------------
exercises/05.ipynb
###Markdown OverfittingWe explore the overfitting effect by using MINST dataset as an example. Data NoiseWe add some white noise to the existing 784 dimensions. Further, we also add 784 all-zeros dimensions. Finally, we train the model and observe the accuracy. ###Code import numpy as np import matplotlib.pyplot as plt from tensorflow import keras from tensorflow.keras import layers, regularizers from tensorflow.keras.datasets import mnist, imdb ###Output _____no_output_____ ###Markdown First, we generate some fake noise by appending "white noise" (i.e., random pixels to each image) and zeros (also to each image). ###Code (train_images, train_labels), _ = mnist.load_data() train_images = train_images.reshape((60000, 28 * 28)) # Flattens the images. train_images = train_images.astype("float32") / 255 # Normalizes pixel values. train_images_with_noise_channels = np.concatenate( # Appends 784 "noise" pixels to the end of each image. ( train_images, np.random.random((len(train_images), 28 * 28)) ), axis=1) train_images_with_zeros_channels = np.concatenate( # Appends 784 zeros to the end of each image. ( train_images, np.zeros((len(train_images), 28 * 28)) ), axis=1) ###Output _____no_output_____ ###Markdown Next, we train our model on both datasets. ###Code def get_model(): model = keras.Sequential([ layers.Dense(512, activation="relu"), layers.Dense(10, activation="softmax"), ]) model.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) return model # Model: Noise. model = get_model() history_noise = model.fit( train_images_with_noise_channels, train_labels, epochs=10, batch_size=128, validation_split=0.2, ) # Model: Zeros. model = get_model() history_zeros = model.fit( train_images_with_zeros_channels, train_labels, epochs=10, batch_size=128, validation_split=0.2, ) val_acc_noise = history_noise.history["val_accuracy"] val_acc_zeros = history_zeros.history["val_accuracy"] epochs = range(1, 11) plt.plot(epochs, val_acc_noise, "b-", label="Validation accuracy with noise channels") plt.plot(epochs, val_acc_zeros, "b--", label="Validation accuracy with zeros channels") plt.title("Effect of noise channels on validation accuracy") plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend() ###Output _____no_output_____ ###Markdown RegularizationWe will (again) use the IMDB dataset to explore different technique to prevent over/under fitting in our model. The applied set of techniques is often referred to as **regularization**. We can see that accuracy is notably lower when incorporated noise is taken into account! ###Code # def vectorize_sequences(sequences, dimension=10000): # results = np.zeros((len(sequences), dimension)) # for i, sequence in enumerate(sequences): # results[i, sequence] = 1 # Hm, 'sequence' is array of indices. Is NumPy really this smart, to automatically pick-up indices and assign them the value?? Yes, check below! # return results def vectorize_sequences(sequences, dimension = 10000): result = np.zeros((len(sequences), dimension)) for i, sequence in enumerate(sequences): for j in sequence: result[i, j] = 1 return result # Nested indexing with NumPy. array = np.array([[1, 2, 3], [4, 5, 6]]) array[1, [0, 2]] = 10 array (train_data, train_labels), _ = imdb.load_data(num_words=10000) train_data = vectorize_sequences(train_data) train_labels = np.array(train_labels, dtype = "float32").reshape((-1, 1)) # Adding regularization to Layers as well as Dropout. model = keras.Sequential([ layers.Dense(16, kernel_regularizer=regularizers.l2(0.002), activation="relu"), layers.Dropout(0.5), layers.Dense(16, kernel_regularizer=regularizers.l2(0.002), activation="relu"), layers.Dropout(0.5), layers.Dense(1, kernel_regularizer=regularizers.l2(0.002), activation="sigmoid") ]) model.compile(optimizer = "rmsprop", loss = "binary_crossentropy", metrics = ["accuracy"]) history_l2_reg = model.fit(train_data, train_labels, epochs=20, batch_size=512, validation_split=0.4) ###Output Epoch 1/20 30/30 [==============================] - 2s 43ms/step - loss: 0.6834 - accuracy: 0.6517 - val_loss: 0.5510 - val_accuracy: 0.8573 Epoch 2/20 30/30 [==============================] - 0s 15ms/step - loss: 0.5529 - accuracy: 0.7794 - val_loss: 0.4691 - val_accuracy: 0.8757 Epoch 3/20 30/30 [==============================] - 0s 15ms/step - loss: 0.4866 - accuracy: 0.8232 - val_loss: 0.4111 - val_accuracy: 0.8777 Epoch 4/20 30/30 [==============================] - 0s 14ms/step - loss: 0.4414 - accuracy: 0.8555 - val_loss: 0.3862 - val_accuracy: 0.8850 Epoch 5/20 30/30 [==============================] - 0s 16ms/step - loss: 0.4080 - accuracy: 0.8787 - val_loss: 0.3728 - val_accuracy: 0.8807 Epoch 6/20 30/30 [==============================] - 0s 16ms/step - loss: 0.3800 - accuracy: 0.8935 - val_loss: 0.3586 - val_accuracy: 0.8892 Epoch 7/20 30/30 [==============================] - 0s 15ms/step - loss: 0.3617 - accuracy: 0.9040 - val_loss: 0.3754 - val_accuracy: 0.8801 Epoch 8/20 30/30 [==============================] - 0s 14ms/step - loss: 0.3543 - accuracy: 0.9087 - val_loss: 0.3657 - val_accuracy: 0.8870 Epoch 9/20 30/30 [==============================] - 0s 14ms/step - loss: 0.3347 - accuracy: 0.9197 - val_loss: 0.3850 - val_accuracy: 0.8790 Epoch 10/20 30/30 [==============================] - 0s 16ms/step - loss: 0.3246 - accuracy: 0.9261 - val_loss: 0.4036 - val_accuracy: 0.8748 Epoch 11/20 30/30 [==============================] - 0s 14ms/step - loss: 0.3176 - accuracy: 0.9279 - val_loss: 0.3812 - val_accuracy: 0.8817 Epoch 12/20 30/30 [==============================] - 0s 14ms/step - loss: 0.3087 - accuracy: 0.9297 - val_loss: 0.3862 - val_accuracy: 0.8837 Epoch 13/20 30/30 [==============================] - 0s 14ms/step - loss: 0.2979 - accuracy: 0.9367 - val_loss: 0.3836 - val_accuracy: 0.8852 Epoch 14/20 30/30 [==============================] - 0s 14ms/step - loss: 0.2974 - accuracy: 0.9348 - val_loss: 0.3954 - val_accuracy: 0.8847 Epoch 15/20 30/30 [==============================] - 0s 14ms/step - loss: 0.2923 - accuracy: 0.9386 - val_loss: 0.3894 - val_accuracy: 0.8823 Epoch 16/20 30/30 [==============================] - 0s 14ms/step - loss: 0.2931 - accuracy: 0.9364 - val_loss: 0.4031 - val_accuracy: 0.8815 Epoch 17/20 30/30 [==============================] - 0s 14ms/step - loss: 0.2858 - accuracy: 0.9381 - val_loss: 0.3968 - val_accuracy: 0.8823 Epoch 18/20 30/30 [==============================] - 0s 14ms/step - loss: 0.2769 - accuracy: 0.9439 - val_loss: 0.4101 - val_accuracy: 0.8829 Epoch 19/20 30/30 [==============================] - 0s 14ms/step - loss: 0.2756 - accuracy: 0.9417 - val_loss: 0.4112 - val_accuracy: 0.8743 Epoch 20/20 30/30 [==============================] - 0s 14ms/step - loss: 0.2764 - accuracy: 0.9435 - val_loss: 0.4165 - val_accuracy: 0.8807
SceneClassification2017/5. Predict_test_a-feature_extract.ipynb
###Markdown 5. Predict_test_a-feature_extract**Tensorboard**- Input at command: tensorboard --logdir=./log- Input at browser: http://127.0.0.1:6006 ###Code import time import os import pandas as pd project_name = 'SceneClassification' step_name = 'Predict_test_a-feature_extract' time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime()) run_name = project_name + '_' + step_name + '_' + time_str print('run_name: ' + run_name) cwd = os.getcwd() model_path = os.path.join(cwd, 'model') print('model_path: ' + model_path) ###Output run_name: SceneClassification_Predict_test_a-feature_extract_20171028_122246 model_path: E:\SceneClassification\model ###Markdown Import pkg ###Code import numpy as np import pandas as pd # import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.image as mpimg import seaborn as sns %matplotlib inline from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from keras.utils.np_utils import to_categorical # convert to one-hot-encoding from keras.models import Sequential, load_model from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import LearningRateScheduler, TensorBoard # import zipfile import os import zipfile import math import time from IPython.display import display import pdb import json from PIL import Image import glob import pickle ###Output _____no_output_____ ###Markdown Load model ###Code from keras.preprocessing import image from keras.models import Model from keras.layers import Dense, GlobalAveragePooling2D from keras import backend as K # from keras.applications.resnet50 import ResNet50 # from keras.applications.resnet50 import preprocess_input, decode_predictions from keras.applications.inception_v3 import InceptionV3 %%time model = load_model('./model/SceneClassification_Train_20171028_111910_7596.h5') ###Output Wall time: 1min 55s ###Markdown Predict validation- Load image- Resize image- Predict- Get top 1 or 3 or 5- Calculate score Extract zip file ###Code input_path = './input' datasetName = 'test_a' date = '20170922' zip_path = input_path + '/ai_challenger_scene_{0}_{1}.zip'.format(datasetName, date) extract_path = input_path + '/ai_challenger_scene_{0}_{1}'.format(datasetName, date) image_path = extract_path + '/scene_{0}_images_{1}'.format(datasetName, date) scene_classes_path = extract_path + '/scene_classes.csv' scene_annotations_path = extract_path + '/scene_{0}_annotations_{1}.json'.format(datasetName, date) print(input_path) print(zip_path) print(extract_path) print(image_path) print(scene_classes_path) print(scene_annotations_path) if not os.path.isdir(extract_path): with zipfile.ZipFile(zip_path) as file: for name in file.namelist(): file.extract(name, input_path) test_images = os.listdir(os.path.join(cwd, 'input', 'data_test_a', 'test')) print(test_images[0:10]) ###Output ['00002ff812f48a3df27c321d517a6300ed8da0c3.jpg', '00049a860dca2af378faeb0ee6f435c6063818ef.jpg', '0011a9c9216c3763ffc33641a8ffc975127dc404.jpg', '0045a44cacc7bc9826db9b54d2dcd70b810250f9.jpg', '004b6823145471c6a4ce292e864909fde2d04969.jpg', '0056e4d54eee781117c9d407d03ebf7192126b1f.jpg', '005763f88b25b18ae524b25afcce960403665383.jpg', '005b5444df96e3a155f2a73a8dccc0267e118413.jpg', '005c6ba205a246d0d3c8f73adfd4398b8e483962.jpg', '005de85662d754f98a1476a37b189902800ace91.jpg'] ###Markdown Load features ###Code %%time import h5py import numpy as np from sklearn.utils import shuffle np.random.seed(2017) x_train = [] y_train = {} x_val = [] y_val = {} x_test = [] cwd = os.getcwd() feature_cgg16 = os.path.join(cwd, 'model', 'feature_VGG16_{}.h5'.format(171023)) feature_cgg19 = os.path.join(cwd, 'model', 'feature_VGG19_{}.h5'.format(171023)) feature_resnet50 = os.path.join(cwd, 'model', 'feature_ResNet50_{}.h5'.format(171023)) feature_mobilenet = os.path.join(cwd, 'model', 'feature_MobileNet_{}.h5'.format(171023)) feature_xception = os.path.join(cwd, 'model', 'feature_Xception_{}.h5'.format(171023)) feature_inception = os.path.join(cwd, 'model', 'feature_InceptionV3_{}.h5'.format(171023)) for filename in [feature_cgg16, feature_cgg19, feature_resnet50, feature_mobilenet, feature_xception, feature_inception]: with h5py.File(filename, 'r') as h: x_train.append(np.array(h['train'])) y_train = np.array(h['train_label']) x_val.append(np.array(h['val'])) y_val = np.array(h['val_label']) x_test.append(np.array(h['test'])) # print(x_train[0].shape) x_train = np.concatenate(x_train, axis=-1) # y_train = np.concatenate(y_train, axis=0) x_val = np.concatenate(x_val, axis=-1) # y_val = np.concatenate(y_val, axis=0) x_test = np.concatenate(x_test, axis=-1) print(x_train.shape) print(x_train.shape[1:]) print(len(y_train)) print(x_val.shape) print(len(y_val)) print(x_test.shape) ###Output (53879, 8192) (8192,) 53879 (7120, 8192) 7120 (7040, 8192) Wall time: 8.15 s ###Markdown Preview "scene_classes.csv" ###Code scene_classes = pd.read_csv(scene_classes_path, header=None) display(scene_classes.head()) def get_scene_name(lable_number, scene_classes_path): scene_classes = pd.read_csv(scene_classes_path, header=None) return scene_classes.loc[lable_number, 2] print(get_scene_name(0, scene_classes_path)) ###Output airport_terminal ###Markdown Preview image ###Code def process_image(image_path, fileName): box = (224, 224) img_path = image_path + '/' + fileName img = Image.open(img_path) img1 = img.resize(box, Image.ANTIALIAS) # resizes image in-place imgData = np.asarray(img1) imgData = imgData.astype("float32") imgData = imgData/255.0 x = np.expand_dims(imgData, axis=0) return x print(image_path) test_img = process_image(image_path, '00a58de1e260033ed972a7e322a2d8fd315cece6.jpg') print(test_img.shape) # print(x) fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.imshow(test_img[0]) def decode_predictions(pred, top=3, isPreview=False): top_indices = pred.argsort()[-top:][::-1] if not isPreview: return top_indices results = [] for i in top_indices: result = (i, pred[i]) results.append(result) return results pred = np.array([3, -1, 2, 7, -2, -1, 0, 6, -9]) print(decode_predictions(pred)) print(decode_predictions(pred, top=5)) print(decode_predictions(pred, top=8, isPreview=True)) data_val_path = os.path.join(cwd, 'input', 'data_validation') data_test_path = os.path.join(cwd, 'input', 'data_test_a') gen = ImageDataGenerator() # gen = ImageDataGenerator(zoom_range = 0.1, # height_shift_range = 0.1, # width_shift_range = 0.1, # rotation_range = 10) val_generator = gen.flow_from_directory(data_val_path, (224, 224), shuffle=False, batch_size=1) test_generator = gen.flow_from_directory(data_test_path, (224, 224), shuffle=False, batch_size=1) print(len(val_generator.filenames)) print(val_generator.filenames[0:5]) print(len(test_generator.filenames)) print(test_generator.filenames[0:5]) preds = model.predict(x_val) print(preds.shape) print(preds[0]) print(decode_predictions(preds[0])) print(decode_predictions(preds[0], top=5, isPreview=True)) lable_id = decode_predictions(preds[0])[0] print("label_id:{0} lable_text:{1}".format(lable_id, get_scene_name(lable_id, scene_classes_path))) from keras.utils.np_utils import to_categorical y_train = to_categorical(y_train) y_val = to_categorical(y_val) print(y_train.shape) print(y_val.shape) final_loss, final_acc = model.evaluate(x_val, y_val, verbose=0) print("Final loss: {0:.4f}, final accuracy: {1:.4f}".format(final_loss, final_acc)) %%time results = [] count = len(val_generator.filenames) # count = 10 # For test print('Image amount:{}'.format(count)) for i, file in enumerate(val_generator.filenames): file = file[-44:] # print(i) # print(file) labels = decode_predictions(preds[i]) result = {} result['label_id'] = labels.tolist() result['image_id'] = file results.append(result) count = count -1 if count <= 0: break # print(results) submit_file = './output' + '/submit' + time.strftime("%Y%m%d_%H%M%S", time.localtime()) + '.json' print(submit_file) with open(submit_file, 'w') as f: json.dump(results, f) result_amount = len(results) print('Image amount:{0}, result amount:{1}'.format(len(val_generator.filenames), result_amount)) %run ./scene_classification_eval/scene_eval.py --submit ./scene_classification_eval/submit.json --ref ./scene_classification_eval/ref.json # %%time %run ./scene_classification_eval/scene_eval.py --submit ./output/submit20171028_132121.json --ref ./output/scene_validation_annotations_20170908.json ###Output Evaluation time of your result: 5.656765 s {'error': [], 'score': '0.9096910112359551', 'warning': []}
nbs/03c_jsd_cross_entropy.ipynb
###Markdown Jensen-Shannon Divergence & Cross-Entropy Loss ###Code import timm import torch import torch.nn.functional as F from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.loss import JsdCrossEntropy from timm.data.mixup import mixup_target import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Let's create a example of the `output` of a model, and our `labels`. Note we have 3 output predictions, but only 1 label. ###Code output = F.one_hot(torch.tensor([0,9,0])).float() labels=torch.tensor([0]) ###Output _____no_output_____ ###Markdown If we set label `smoothing` and `alpha` to 0, then we will have the regular `cross_entropy loss`, if we look only at the first element of our output and labels. ###Code jsd = JsdCrossEntropy(smoothing=0,alpha=0) jsd(output,labels) base_loss = F.cross_entropy(output[0,None],labels[0,None]) base_loss jsd = JsdCrossEntropy(num_splits=1,smoothing=0,alpha=0) ###Output _____no_output_____ ###Markdown We can also change the number of splits,changing the size of each group. In `Augmix` this would equate to the number of transformation mixtures. ###Code jsd = JsdCrossEntropy(num_splits=2,smoothing=0,alpha=0) output = F.one_hot(torch.tensor([0,9,1,0])).float() labels=torch.tensor([0,9]) jsd(output,labels),F.cross_entropy(output[[0,1]],labels) ###Output _____no_output_____ ###Markdown By default we have 1 label for 3 predictions, this is a two part loss, and measures both cross entropy and jason-shannon divergence. Jason-shannon entropy does not need a label, instead measuring the how significantly different the 3 predictions are. ###Code jsd = JsdCrossEntropy(smoothing=0) output = F.one_hot(torch.tensor([0,0,0]),num_classes=10).float() deltas = torch.cat((torch.zeros([2,10]),torch.tensor([[-1,1,0,0,0,0,0,0,0,0]])))*0.1 deltas[2] deltas=(torch.arange(-10,11))[...,None,None]*deltas losses = [jsd((output+delta),labels)-base_loss for delta in deltas] ###Output _____no_output_____ ###Markdown The below graph shows how changes in one of the model's outputs(prediction), in a group, effects the Jason-Shannon Divergence. ###Code plt.plot([ .1*i-1 for i in range(len(losses))],[loss for loss in losses]) plt.ylabel('JS Divergence') plt.xlabel('Change in output') plt.show() #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_model_architectures.ipynb. Converted 01_training_scripts.ipynb. Converted 02_dataset.ipynb. Converted 03_loss.cross_entropy.ipynb. Converted 04_models.ipynb. Converted 05_loss.jsd_cross_entropy.ipynb. Converted index.ipynb.
merge_forecasts.ipynb
###Markdown Python implementation ofShah, Anish, Easy Way to Merge Return Forecasts across Securities and Horizons (September 24, 2019). Available at SSRN: https://ssrn.com/abstract=3459184 or http://dx.doi.org/10.2139/ssrn.3459184 ###Code import numpy as np ###Output _____no_output_____ ###Markdown 1. Create dummy data ###Code def dummy_forecasts(m, n): # function creates dummy forecast data to test forecast combination # m = # of forecasts # n = # of securities # returns: # start = (m x 1) start periods for forecasts # end = (m x 1) end periods for forecasts # P = (m x n) linear combinations forecasted # y = (m x 1) return forecasts # H = (m x m) forecast noise covariance # mu = (n x 1) prior mean of 1 period returns # C = (n x n) prior covariance of 1 period returns start = np.random.randint(low=0,high=10,size=m) end = start + np.random.randint(low=1,high=5,size=m) s = 0.1 y = s * np.random.random(size=[m,1]) I = np.identity(n) k = int(np.floor(1.5*m)) r = np.random.randint(low=0, high=n, size=k) P = I[r[:m],:] # forecast random individual securities P[-(k-m):,:] = P[-(k-m):,:] - I[r[m:],:] # make some spreads y[-(k-m):] -= s * 0.5 v = np.random.random(n) v = np.around(v / v.sum(), 2) v[np.argmax(v)] -= v.sum() - 1 P[0,:] = v # make first entry a portfolio Q = np.around(np.random.random(size=[m,m]), 2) H = 10. * Q.dot(Q.T) Q = np.around(np.random.random(size=[n,n]), 2) C = Q.dot(Q.T) mu = np.around(0.01*(np.random.random(size=[n,1]) - 0.5), 3) return start, end, P, y, H, mu, C # m = # of forecasts # n = # of securities # # start = (m x 1) start periods for forecasts # end = (m x 1) end periods for forecasts # P = (m x n) linear combinations forecasted # y = (m x 1) return forecasts # H = (m x m) forecast noise covariance # mu = (n x 1) prior mean of 1 period returns # C = (n x n) prior covariance of 1 period returns m = 5 # number of forecasts n = 20 # number of securities start, end, P, y, H, mu, C = dummy_forecasts(m, n) ###Output _____no_output_____ ###Markdown 2. Segment objects being forecasted into time segments. Then calculate posterior mean and covariance given the forecasts ###Code # model is y = P x + eps where eps ~ N(0, H) # x occurs over the intervals start -> end and prior x over 1 period ~ N(mu, C) # want mean and cov of x over different horizons | y def calculate_posterior_of_segments(start, end, P, H, mu, C, more_horizons=[0.]): # more_horizons = (list) of points to consider in addition to start and end # = [0., 5., 21.] # e.g. to be able to get 1 week and 1 month return forecasts m, n = P.shape # num of forecasts x num of securities # points in ascending order where time needs to be segmented # Tpts = np.unique((start,end)) Tpts = np.unique([t for x in [start, end, more_horizons] for t in x]) # put forecast start and end in terms of time markers startpt = np.searchsorted(Tpts, start) endpt = np.searchsorted(Tpts, end) assert np.alltrue(Tpts[startpt] == start) assert np.alltrue(Tpts[endpt] == end) # break quantities being forecasted into time segments # e.g. r(0->T) = r(0->T1) + r(T1->T2) + ... + r(Tk-1->T) nseg = len(Tpts) - 1 nsegvars = n*nseg Z = np.zeros((m, nsegvars)) # matrix that will hold forecasts in terms of segments nu = np.zeros((nsegvars,1)) # vector that will hold mean for each segment variable Omega = np.zeros((nsegvars,nsegvars)) # matrix that will hold cov of segment variables for i in range(nseg): l = Tpts[i+1] - Tpts[i] # number of time periods in segment sidx = i*n # start index of variables in time segment eidx = sidx + n # end index of variables in time segment nu[sidx:eidx,:] = l * mu # mean over segment Omega[sidx:eidx,sidx:eidx] = l * C # variance over segment inseg = (startpt <= i) & (endpt >= i+1) # True for forecasts that contain segment Z[inseg, sidx:eidx] = P[inseg,:] # put coefficients on segment vars involved in forecasts # now have everything to calculate posterior distribution ZOmega = Z.dot(Omega) F = ZOmega.dot(Z.T) + H # B = Omega Z' inv(F), and F and Omega are symmetric # B = (ZOmega.T).dot(np.linalg.inv(F)) B = np.linalg.solve(F, ZOmega).T # computationally better this way # segment variables given forecasts have # mean = a_mean + B y = nu + B (y - Z nu) where y is the vector of forecasts # & cov = Sigma Sigma = Omega - B.dot(ZOmega) a_mean = nu - B.dot(Z.dot(nu)) return Tpts, a_mean, B, Sigma Tpts, a_mean, B, Sigma = calculate_posterior_of_segments(start, end, P, H, mu, C) ###Output _____no_output_____ ###Markdown 3. Now can calculate the mean and cov of any linear combinations of segment variables given the forecasts ###Code m, n = P.shape nTps = len(Tpts) nsegvars = B.shape[0] print(nTps, "Tpts -", Tpts, "- so", nTps-1, "segments") print(n, "securities,", nsegvars, "security segments") print(m, "forecasts") print("a_mean.shape:", a_mean.shape) print("B.shape:", B.shape) print("Sigma.shape", Sigma.shape) # segment variables given forecasts have # mean = a_mean + B y and cov = Sigma where y is the vector of forecasts ###Output 8 Tpts - [ 0. 4. 5. 6. 7. 8. 9. 10.] - so 7 segments 20 securities, 140 security segments 5 forecasts a_mean.shape: (140, 1) B.shape: (140, 5) Sigma.shape (140, 140) ###Markdown A. Example: all the securities over the interval between the 2nd and 4th Tpt ###Code A = np.zeros((n, nsegvars)) A[:,n:2*n] = np.identity(n) A[:,2*n:3*n] = np.identity(n) # given the forecasts, these segment variable combinations # have mean m0 + M y and cov A Sigma A' m0 = A.dot(a_mean) M = A.dot(B) # tells how much each forecast contributed pmean = m0 + M.dot(y) pcov = A.dot(Sigma).dot(A.T) print(pmean.shape) print(pcov.shape) ###Output (20, 1) (20, 20) ###Markdown B. Example: the first security over each separate segment ###Code nsegs = nTps-1 A = np.zeros((nsegs, nsegvars)) secnum = 0 # first security for i in range(nsegs): A[i, i*n + secnum] = 1. # each row in A is a different interval of the same security # given the forecasts, these segment variable combinations # have mean m0 + M y and cov A Sigma A' m0 = A.dot(a_mean) M = A.dot(B) # tells how much each forecast contributed pmean = m0 + M.dot(y) pcov = A.dot(Sigma).dot(A.T) print(pmean.shape) print(pcov.shape) ###Output (7, 1) (7, 7)
notebooks/chrM_related/chrM_adventures.ipynb
###Markdown basically run this bash script to extract all relevant stats from pairs statsi.e. total nodup pairs, all M-related pairs, M/M pairs, trans-M pairs and trans-M pairs related to unassembled contigs only just in case ...here is what we'd get in terms of input data: FOR CONTIGS ...a slight modification of the previous thing to enable it work with the contig names ...one should probably let go of `bash` at this point and do it using a "normal" scripting language - but anyways... programm to extract stats from pairs.stats ...```shget_stats () { f=$1 chrom=$2 dataset=$3 chrom_cis="$chrom/$chrom\s" sample=$(echo $f | cut -f1 -d "_"); tot=$(grep "total_nodups" $f | cut -f2); cis=$(grep '^cis[^_]' $f | cut -f2); trans=$(grep "^trans" $f | cut -f2); unmapped=$(grep "total_unmapped" $f | cut -f2); dups=$(grep "total_dups" $f | cut -f2); allM=$(grep -P "$chrom(\/|\s)" $f | awk '{s+=$2} END {print s}' ); cisM=$(grep "$chrom_cis" $f | cut -f2); transM=$(grep -P "($chrom\/chr[[:alnum:]]*\t|chr[[:alnum:]]*\/$chrom\t)" $f | grep -v $chrom_cis | awk '{s+=$2} END {print s}'); contigM=$(grep -P "$chrom(\/|\s)" $f | grep -vP "($chrom\/chr[[:alnum:]]*\t|chr[[:alnum:]]*\/$chrom\t)" | grep -v $chrom_cis | awk '{s+=$2} END {print s}'); [[ -n $allM ]] || allM="0"; [[ -n $cisM ]] || cisM="0"; [[ -n $transM ]] || transM="0"; [[ -n $contigM ]] || contigM="0"; AA=$(( $cisM+$contigM+$transM )); [[ "$AA" == "$allM" ]] || echo "$f $chrom not-equal" >> ~/bbb/log.log; awk -v a="$sample" -v b="$tot" -v ba="$cis" -v bb="$trans" -v bc="$unmapped" -v bd="$dups" -v c="$allM" -v d="$cisM" -v e="$transM" -v f="$contigM" -v dt="$dataset" 'BEGIN {print a" "b" "ba" "bb" "bc" "bd" "c" "d" "e" "f" "dt }';}for chrom in $(cat ~/hg38.chroms | cut -f1 -d" " | cut -f2 -d">"); do awk 'BEGIN {print "name tot cis trans unmapped dups all_chrom cis_chrom trans_chrom contig_chrom dataset_type" }' > ~/bbb/$chrom.tsv; cd /nl/umw_job_dekker/users/ba69w/HiC_Analysis/U54_matrix/results/pairs_library for f in *hg38.dedup.stats; do get_stats $f $chrom shallow >> ~/bbb/$chrom.tsv done cd /nl/umw_job_dekker/users/ba69w/HiC_Analysis/U54_deep/results/pairs_library for f in *hg38.dedup.stats; do get_stats $f $chrom deep >> ~/bbb/$chrom.tsv donedone``` Just testing out some of the "magic" bash commands and grepping super powers ...```sh all involving chromchrom="chr1"; f=U54-HFF-plate-FA-DpnII-20180904-R1-T1__hg38.hg38.dedup.stats; grep -P "$chrom(\/|\s)" $f; just cis of the chromchrom="chr1"; f=U54-HFF-plate-FA-HindIIII-20160226-R2-T1__hg38.hg38.dedup.stats; chrom_cis="$chrom/$chrom\s"; grep "$chrom_cis" $f trans_chromchrom="chr1";f=U54-HFF-plate-FA-HindIIII-20160226-R2-T1__hg38.hg38.dedup.stats; chrom_cis="$chrom/$chrom\s"; grep -P "($chrom\/chr[[:alnum:]]*\t|chr[[:alnum:]]*\/$chrom\t)" $f | grep -v $chrom_cis contig_chromchrom="chr1";f=U54-HFF-plate-FA-HindIIII-20160226-R2-T1__hg38.hg38.dedup.stats; chrom_cis="$chrom/$chrom\s"; grep -P "$chrom(\/|\s)" $f | grep -vP "($chrom\/chr[[:alnum:]]*\t|chr[[:alnum:]]*\/$chrom\t)" | grep -v $chrom_cis [[ "a" == "a" ]] && echo equal || echo not-equal``` ###Code ### Reading data in from the cluster ghpcc ... chroms = !ssh ghpcc cat /home/sv49w/hg38.chroms | cut -f1 -d" " |cut -f2 -d">" data = {} for chrom in chroms: dat = !ssh ghpcc cat /home/sv49w/bbb/{chrom}.tsv data[chrom] = "\n".join(dat) # i had to install this beauty https://github.com/matplotlib/ipympl # to make following to work ... %matplotlib widget import ipywidgets as widgets # %matplotlib inline import pandas as pd import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib as mpl import seaborn as sns import numpy as np from io import StringIO # make pandas display entire dataframes pd.set_option("display.max_rows", None, "display.max_columns", None) # df = pd.read_csv(StringIO(data),sep=" ") # # let's parse "name" into cell-type, enzyme, crosslink etc # # first sanity check : allM = cisM + transM + contigM # assert (df[["cisM","transM","contigM"]].sum(axis=1) == df["allM"]).all() # # second one: cis+trans = tot (mapped) # assert (df[["cis","trans"]].sum(axis=1) == df["tot"]).all() # df["cis_perc"] = df["cis"]/df["tot"] #make sure data is defined globally at the very end of the notebook ... def split_counts_fracs(counts): c_fracs = [_c for _c in counts if "frac_" in _c] c_counts = [_c for _c in counts if "frac_" not in _c] return c_fracs,c_counts def parse_data(chrom): df = pd.read_csv(StringIO(data[chrom]),sep=" ") # let's parse "name" into cell-type, enzyme, crosslink etc # # first one: cis+trans = tot (mapped) assert (df[["cis","trans"]].sum(axis=1) == df["tot"]).all() # second sanity check : allM = cisM + transM + contigM assert (df[["cis_chrom","trans_chrom","contig_chrom"]].sum(axis=1) == df["all_chrom"]).all() # df["cis_perc"] = df["cis"]/df["tot"] # df["ct_chrom"] = df["cis_chrom"]+df["trans_chrom"]+df["contig_chrom"] df["frac_tc"] = df["trans_chrom"]/df["cis_chrom"] df["frac_ta"] = df["trans_chrom"]/df["all_chrom"] return df def parse_u54_names(name_split): exptype = name_split[0] celltype = name_split[1] if (exptype == "ENCODE")and(celltype=="HeLa"): cross = "FA" enzyme = name_split[2] cycle = "NS" elif (exptype == "U54")and(celltype == "HFFc6"): if name_split[2] in ["p17","p22"]: cross = name_split[3] enzyme = name_split[4] else: cross = name_split[2] enzyme = name_split[3] cycle = "NS" elif (exptype == "U54")and(celltype in ["END4DN", "H1ESC4DN", "HFFc64DN","HFFc6"]): cross = name_split[3] enzyme = name_split[4] cycle = "NS" elif celltype in ["END","ESC","END4DN","ESC4DN","H1ESC4DN","ENDMaehr","hEND4DN"]: cross = name_split[2] enzyme = name_split[3] cycle = "NS" elif celltype in "HFF": cross = name_split[3] enzyme = name_split[4] cycle = "NS" elif celltype == "HelaS3": cross = name_split[3] enzyme = name_split[4] cycle = name_split[2] else: print("I'm something else - dela with me...") print(name_split) ret = {} if enzyme == "HindIIII": enzyme = "HindIII" if enzyme not in ['DdeI','DpnII','HindIII','MNase']: print("enzyme",enzyme,name_split) if cross not in ['DSG','EGS','FA']: print("cross",cross,name_split) if cycle not in ['NS','G1','M']: print("cycle",cycle,name_split) ret = {"cell":celltype, "cycle": cycle, "cross": cross, "enzyme": enzyme} return pd.Series(ret) # this should be the same for all of them, but it's ugly this way ... cell_cycle_cross_enzyme = parse_data("chrM")["name"].str.split("-").apply(parse_u54_names) for c in cell_cycle_cross_enzyme.columns: print(c,cell_cycle_cross_enzyme[c].unique()) # errors = ddf.groupby(("cross","enzyme","cell")).std() # means.plot.bar(yerr=errors, ax=ax, capsize=4,logy=True) fig1 = plt.figure(figsize=(12.5,6),constrained_layout=True) spec1 = gridspec.GridSpec(ncols=1,nrows=1,figure=fig1) # # Also make sure the margins and spacing are apropriate # spec1.update(left=0.05, right=0.95, bottom=0.08, top=0.93, wspace=0.02, hspace=0.03) # # BUT: this is irrelevant for the saved image, if using bbox_inches='tight'in savefig ! ax1 = fig1.add_subplot(spec1[0,0]) # fig, ax0 = plt.subplots(figsize=(20,3)) style = {'description_width': 'initial'} counts_selector = widgets.Text( value="tot,all_chrom,cis_chrom,trans_chrom,contig_chrom", # description='tot,all_chrom,cis_chrom,trans_chrom,contig_chrom:', description='tot,all...', disabled=False, style=style ) enzyme_selector = widgets.Text( value="DdeI,DpnII,HindIII,MNase", description='DdeI,DpnII,HindIII,MNase:', disabled=False, style=style ) cross_selector = widgets.Text( value="DSG,EGS,FA", description='DSG,EGS,FA:', disabled=False, style=style ) cycle_selector = widgets.Text( value="NS,G1,M", description='NS,G1,M:', disabled=False, style=style ) cells_selector = widgets.Text( value='END,ESC,HelaS3,HFF,HeLa,END4DN,ENDMaehr,ESC4DN,H1ESC4DN,hEND4DN,HFFc64DN,HFFc6', description='END,ESC,HelaS3,HFF:', disabled=False, style=style ) # grouping = ["enzyme_cross_cell_cycle","cross_enzyme_cell_cycle","cell_cross_enzyme_cycle"] @widgets.interact( counts = counts_selector, enzymes = enzyme_selector, cells = cells_selector, cycle = cycle_selector, cross = cross_selector, log=True, normalized=True, grouping = ["enzyme_cross_cell_cycle","cross_enzyme_cell_cycle","cell_cross_enzyme_cycle"], chrom = list(data.keys())) def update(counts,enzymes,cells,cycle,cross,log,normalized,grouping,chrom): # this is just to make us able to change chroms df = parse_data(chrom) ax1.clear() counts = counts.split(",") enzymes = enzymes.split(",") cells = cells.split(",") cycle = cycle.split(",") cross = cross.split(",") c1 = cell_cycle_cross_enzyme["enzyme"].isin(enzymes) c2 = cell_cycle_cross_enzyme["cell"].isin(cells) c3 = cell_cycle_cross_enzyme["cycle"].isin(cycle) c4 = cell_cycle_cross_enzyme["cross"].isin(cross) ccce = cell_cycle_cross_enzyme[c1&c2&c3&c4] if normalized: c_fracs,c_counts = split_counts_fracs(counts) df_norm = df[c_counts]/df[["tot"]].values loc_df = pd.merge(df_norm,ccce,left_index=True,right_index=True) loc_df = pd.merge(loc_df,df[c_fracs],left_index=True,right_index=True) else: df_norm = df[counts] loc_df = pd.merge(df_norm,ccce,left_index=True,right_index=True) grp = grouping.split("_") mmeans = loc_df.groupby(grp).mean() mmeans.plot.bar( ax=ax1, capsize=4,logy=log) ax1.set_ylabel("# of pairs") # print(enzymes) # print(cells) # print(cycle) # print(cross) ###Output _____no_output_____ ###Markdown the fact that $cis_{chrom} + trans_{chrom}$ is not even close to a ${const}$ is easy to understand because we are over-counting trans data ... ###Code # errors = ddf.groupby(("cross","enzyme","cell")).std() # means.plot.bar(yerr=errors, ax=ax, capsize=4,logy=True) fig2 = plt.figure(figsize=(7,5),constrained_layout=True) spec2 = gridspec.GridSpec(ncols=1,nrows=1,figure=fig2) # # Also make sure the margins and spacing are apropriate # spec1.update(left=0.05, right=0.95, bottom=0.08, top=0.93, wspace=0.02, hspace=0.03) # # BUT: this is irrelevant for the saved image, if using bbox_inches='tight'in savefig ! ax2 = fig2.add_subplot(spec2[0,0]) # fig, ax0 = plt.subplots(figsize=(20,3)) style = {'description_width': 'initial'} xy_selector = widgets.Text( value="cis_chrom,trans_chrom", description='tot,all_chrom...', disabled=False, style=style ) enzyme_selector = widgets.Text( value="DdeI,DpnII,HindIII,MNase", description='DdeI,DpnII,HindIII,MNase:', disabled=False, style=style ) cross_selector = widgets.Text( value="DSG,EGS,FA", description='DSG,EGS,FA:', disabled=False, style=style ) cycle_selector = widgets.Text( value="NS,G1,M", description='NS,G1,M:', disabled=False, style=style ) cells_selector = widgets.Text( value='END,ESC,HelaS3,HFF,HeLa,END4DN,ENDMaehr,ESC4DN,H1ESC4DN,hEND4DN,HFFc64DN,HFFc6', description='END,ESC,HelaS3,HFF:', disabled=False, style=style ) # grouping = ["enzyme_cross_cell_cycle","cross_enzyme_cell_cycle","cell_cross_enzyme_cycle"] @widgets.interact( xy = xy_selector, enzymes = enzyme_selector, cells = cells_selector, cycle = cycle_selector, cross = cross_selector, log=True, normalized=True, chrom = list(data.keys())) def update(xy,enzymes,cells,cycle,cross,log,normalized,chrom): df = parse_data(chrom) ax2.clear() x,y = xy.split(",") enzymes = enzymes.split(",") cells = cells.split(",") cycle = cycle.split(",") cross = cross.split(",") c1 = cell_cycle_cross_enzyme["enzyme"].isin(enzymes) c2 = cell_cycle_cross_enzyme["cell"].isin(cells) c3 = cell_cycle_cross_enzyme["cycle"].isin(cycle) c4 = cell_cycle_cross_enzyme["cross"].isin(cross) ccce = cell_cycle_cross_enzyme[c1&c2&c3&c4] if normalized: df_x = df[[x]]/df[["tot"]].values if "frac_" not in x else df[[x]] df_y = df[[y]]/df[["tot"]].values if "frac_" not in y else df[[y]] loc_df = pd.merge(df_x,ccce,left_index=True,right_index=True) loc_df = pd.merge(loc_df,df_y,left_index=True,right_index=True) else: df_norm = df[[x,y]] loc_df = pd.merge(df_norm,ccce,left_index=True,right_index=True) sp = sns.scatterplot(x=x,y=y,hue="cross",size="enzyme",data=loc_df,ax=ax2) x_span = loc_df[x].max() - loc_df[x].min() y_span = loc_df[y].max() - loc_df[y].min() dx = 0.01*x_span dy = 0.01*y_span if log: ax2.set_xlim((loc_df[x].min()*0.9,loc_df[x].max()*1.01)) ax2.set_ylim((loc_df[y].min()*0.9,loc_df[y].max()*1.01)) sp.set(xscale="log") sp.set(yscale="log") else: ax2.set_xlim((loc_df[x].min()-dx,loc_df[x].max()+dx)) ax2.set_ylim((loc_df[y].min()-dy,loc_df[y].max()+dy)) # errors = ddf.groupby(("cross","enzyme","cell")).std() # means.plot.bar(yerr=errors, ax=ax, capsize=4,logy=True) fig3 = plt.figure(figsize=(4,7),constrained_layout=True) spec3 = gridspec.GridSpec(ncols=1,nrows=3,figure=fig3) # # Also make sure the margins and spacing are apropriate # spec1.update(left=0.05, right=0.95, bottom=0.08, top=0.93, wspace=0.02, hspace=0.03) # # BUT: this is irrelevant for the saved image, if using bbox_inches='tight'in savefig ! ax31 = fig3.add_subplot(spec3[0,0]) ax32 = fig3.add_subplot(spec3[1,0]) ax33 = fig3.add_subplot(spec3[2,0]) style = {'description_width': 'initial'} xy_selector = widgets.Text( value="cis_chrom,trans_chrom", description='tot,all_chrom...', disabled=False, style=style ) enzyme_selector = widgets.Text( value="DdeI,DpnII,HindIII,MNase", description='DdeI,DpnII,HindIII,MNase:', disabled=False, style=style ) cross_selector = widgets.Text( value="DSG,EGS,FA", description='DSG,EGS,FA:', disabled=False, style=style ) cycle_selector = widgets.Text( value="NS,G1,M", description='NS,G1,M:', disabled=False, style=style ) cells_selector = widgets.Text( value='END,ESC,HelaS3,HFF,HeLa,END4DN,ENDMaehr,ESC4DN,H1ESC4DN,hEND4DN,HFFc64DN,HFFc6', description='END,ESC,HelaS3,HFF:', disabled=False, style=style ) # grouping = ["enzyme_cross_cell_cycle","cross_enzyme_cell_cycle","cell_cross_enzyme_cycle"] @widgets.interact( xy = xy_selector, enzymes = enzyme_selector, cells = cells_selector, cycle = cycle_selector, cross = cross_selector, log=True, normalized=True, chrom = list(data.keys())) def update(xy,enzymes,cells,cycle,cross,log,normalized,chrom): df = parse_data(chrom) ax31.clear() ax32.clear() ax33.clear() enzymes = enzymes.split(",") cells = cells.split(",") cycle = cycle.split(",") cross = cross.split(",") c1 = cell_cycle_cross_enzyme["enzyme"].isin(enzymes) c2 = cell_cycle_cross_enzyme["cell"].isin(cells) c3 = cell_cycle_cross_enzyme["cycle"].isin(cycle) c4 = cell_cycle_cross_enzyme["cross"].isin(cross) ccce = cell_cycle_cross_enzyme[c1&c2&c3&c4] x,y1,y2,y3 = "trans","trans_chrom","cis_chrom","all_chrom" if normalized: df_norm = df[[x,y1,y2,y3]]/df[["tot"]].values loc_df = pd.merge(df_norm,ccce,left_index=True,right_index=True) else: df_norm = df[[x,y1,y2,y3]] loc_df = pd.merge(df_norm,ccce,left_index=True,right_index=True) sp1 = sns.scatterplot(x=x,y=y1,hue="cross",size="enzyme",data=loc_df,ax=ax31) sp2 = sns.scatterplot(x=x,y=y2,hue="cross",size="enzyme",data=loc_df,ax=ax32) sp3 = sns.scatterplot(x=x,y=y3,hue="cross",size="enzyme",data=loc_df,ax=ax33) x_span = df_norm[x].max() - df_norm[x].min() y_span = df_norm[[y1,y2,y3]].max().max() - df_norm[[y1,y2,y3]].min().min() dx = 0.01*x_span dy = 0.01*y_span if log: ax31.set_xlim((df_norm[x].min()*0.9,df_norm[x].max()*1.01)) ax31.set_ylim((df_norm[[y1,y2,y3]].min().min()*0.9,df_norm[[y1,y2,y3]].max().max()*1.01)) ax32.set_xlim((df_norm[x].min()*0.9,df_norm[x].max()*1.01)) ax32.set_ylim((df_norm[[y1,y2,y3]].min().min()*0.9,df_norm[[y1,y2,y3]].max().max()*1.01)) ax33.set_xlim((df_norm[x].min()*0.9,df_norm[x].max()*1.01)) ax33.set_ylim((df_norm[[y1,y2,y3]].min().min()*0.9,df_norm[[y1,y2,y3]].max().max()*1.01)) sp1.set(xscale="log",yscale="log") sp2.set(xscale="log",yscale="log") sp3.set(xscale="log",yscale="log") else: ax31.set_xlim((df_norm[x].min()-dx,df_norm[x].max()+dx)) ax31.set_ylim((df_norm[[y1,y2,y3]].min().min()-dy,df_norm[[y1,y2,y3]].max().max()+dy)) ax32.set_xlim((df_norm[x].min()-dx,df_norm[x].max()+dx)) ax32.set_ylim((df_norm[[y1,y2,y3]].min().min()-dy,df_norm[[y1,y2,y3]].max().max()+dy)) ax33.set_xlim((df_norm[x].min()-dx,df_norm[x].max()+dx)) ax33.set_ylim((df_norm[[y1,y2,y3]].min().min()-dy,df_norm[[y1,y2,y3]].max().max()+dy)) ###Output _____no_output_____
7.2-Token_classification.ipynb
###Markdown [Token classification](https://huggingface.co/course/chapter7/2?fw=pt)The first application we'll explore is token classification. This generic task encompasses any problem that can be formulated as "attributing a label to each token in a sentence", such as:- **Named entity recognition (NER)**: Find the entities (such as persons, locations, or organizations) in a sentence. This can be formulated as attributing a label to each token by having one class per entity and one class for "no entity."- **Part-of-speech tagging (POS)**: Mark each word in a sentence as corresponding to a particular part of speech (such as noun, verb, adjective, etc.).- **Chunking**: Find the tokens that belong to the same entity. This task (which can be combined with POS or NER) can be formulated as attributing one label (usually B-) to any tokens that are at the beginning of a chunk, another label (usually I-) to tokens that are inside a chunk, and a third label (usually O) to tokens that don't belong to any chunk. ###Code from IPython.display import HTML HTML('<iframe width="640" height="360" src="https://www.youtube.com/embed/wVHdVlPScxA" allowfullscreen></iframe>') ###Output /home/matthias/anaconda3/envs/hf/lib/python3.9/site-packages/IPython/core/display.py:724: UserWarning: Consider using IPython.display.IFrame instead warnings.warn("Consider using IPython.display.IFrame instead") ###Markdown Of course, there are many other types of token classification problems; those are just a few representative examples. In this section, we will fine-tune a model (BERT) on a NER task, which will then be able to compute predictions like this one:You can find the model we'll train and upload to the Hub and double-check its predictions [here](https://huggingface.co/huggingface-course/bert-finetuned-ner?text=My+name+is+Sylvain+and+I+work+at+Hugging+Face+in+Brooklyn). Preparing the dataFirst things first, we need a dataset suitable for token classification. In this section we will use the [CoNLL-2003 dataset](https://huggingface.co/datasets/conll2003), which contains news stories from Reuters.> 💡 As long as your dataset consists of texts split into words with their corresponding labels, you will be able to adapt the data processing procedures described here to your own dataset. Refer back to [Chapter 5](https://huggingface.co/course/chapter5) if you need a refresher on how to load your own custom data in a `Dataset`. The CoNLL-2003 datasetTo load the CoNLL-2003 dataset, we use the `load_dataset()` method from the 🤗 Datasets library: ###Code from datasets import load_dataset raw_datasets = load_dataset("conll2003") ###Output Reusing dataset conll2003 (/home/matthias/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/63f4ebd1bcb7148b1644497336fd74643d4ce70123334431a3c053b7ee4e96ee) ###Markdown This will download and cache the dataset, like we saw in [Chapter 3](https://huggingface.co/course/chapter3) for the GLUE MRPC dataset. Inspecting this object shows us the columns present and the split between the training, validation, and test sets: ###Code raw_datasets ###Output _____no_output_____ ###Markdown In particular, we can see the dataset contains labels for the three tasks we mentioned earlier: NER, POS, and chunking. A big difference from other datasets is that the input texts are not presented as sentences or documents, but lists of words (the last column is called `tokens`, but it contains words in the sense that these are pre-tokenized inputs that still need to go through the tokenizer for subword tokenization).Let's have a look at the first element of the training set: ###Code raw_datasets["train"][0]["tokens"] ###Output _____no_output_____ ###Markdown Since we want to perform named entity recognition, we will look at the NER tags: ###Code raw_datasets["train"][0]["ner_tags"] ###Output _____no_output_____ ###Markdown Those are the labels as integers ready for training, but they're not necessarily useful when we want to inspect the data. Like for text classification, we can access the correspondence between those integers and the label names by looking at the `features` attribute of our dataset: ###Code ner_feature = raw_datasets["train"].features["ner_tags"] ner_feature ###Output _____no_output_____ ###Markdown So this column contains elements that are sequences of `ClassLabels`. The type of the elements of the sequence is in the `feature` attribute of this `ner_feature`, and we can access the list of names by looking at the `names` attribute of that `feature`: ###Code label_names = ner_feature.feature.names label_names ###Output _____no_output_____ ###Markdown We already saw these labels when digging into the `token-classification` pipeline in [Chapter 6](https://huggingface.co/course/chapter6/3), but for a quick refresher:- `O` means the word doesn't correspond to any entity.- `B-PER`/`I-PER` means the word corresponds to the beginning of/is inside a *person* entity.- `B-ORG`/`I-ORG` means the word corresponds to the beginning of/is inside an *organization* entity.- `B-LOC`/`I-LOC` means the word corresponds to the beginning of/is inside a *location* entity.- `B-MISC`/`I-MISC` means the word corresponds to the beginning of/is inside a *miscellaneous* entity.Now decoding the labels we saw earlier gives us this: ###Code words = raw_datasets["train"][0]["tokens"] labels = raw_datasets["train"][0]["ner_tags"] line1 = "" line2 = "" for word, label in zip(words, labels): full_label = label_names[label] max_length = max(len(word), len(full_label)) line1 += word + " " * (max_length - len(word) + 1) line2 += full_label + " " * (max_length - len(full_label) + 1) print(line1) print(line2) ###Output EU rejects German call to boycott British lamb . B-ORG O B-MISC O O O B-MISC O O ###Markdown And for an example mixing `B-` and `I-` labels, here's what the same code gives us on the element of the training set at index 4: ###Code words = raw_datasets["train"][4]["tokens"] labels = raw_datasets["train"][4]["ner_tags"] line1 = "" line2 = "" for word, label in zip(words, labels): full_label = label_names[label] max_length = max(len(word), len(full_label)) line1 += word + " " * (max_length - len(word) + 1) line2 += full_label + " " * (max_length - len(full_label) + 1) print(line1) print(line2) ###Output Germany 's representative to the European Union 's veterinary committee Werner Zwingmann said on Wednesday consumers should buy sheepmeat from countries other than Britain until the scientific advice was clearer . B-LOC O O O O B-ORG I-ORG O O O B-PER I-PER O O O O O O O O O O O B-LOC O O O O O O O ###Markdown As we can see, entities spanning two words, like "European Union" and "Werner Zwingmann", are attributed a `B-` label for the first word and an `I-` label for the second.> ✏️ Your turn! Print the same two sentences with their POS or chunking labels. ###Code # Trying it out ## turn the above code into a function accepting the relevant arguments def sentence_labels(idx, tags): words = raw_datasets["train"][idx]["tokens"] labels = raw_datasets["train"][idx][tags] label_names = raw_datasets["train"].features[tags].feature.names line1 = "" line2 = "" print(labels) print(words) for word, label in zip(words, labels): full_label = label_names[label] max_length = max(len(word), len(full_label)) line1 += word + " " * (max_length - len(word) + 1) line2 += full_label + " " * (max_length - len(full_label) + 1) print("\nTags:\t{}\nIndex:\t{}".format(tags, idx)) print(line1) print(line2) pass ## use the function to complete the task sentence_labels(0, "pos_tags") sentence_labels(0, "chunk_tags") sentence_labels(4, "pos_tags") sentence_labels(4, "chunk_tags") ###Output [22, 42, 16, 21, 35, 37, 16, 21, 7] ['EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'lamb', '.'] Tags: pos_tags Index: 0 EU rejects German call to boycott British lamb . NNP VBZ JJ NN TO VB JJ NN . [11, 21, 11, 12, 21, 22, 11, 12, 0] ['EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'lamb', '.'] Tags: chunk_tags Index: 0 EU rejects German call to boycott British lamb . B-NP B-VP B-NP I-NP B-VP I-VP B-NP I-NP O [22, 27, 21, 35, 12, 22, 22, 27, 16, 21, 22, 22, 38, 15, 22, 24, 20, 37, 21, 15, 24, 16, 15, 22, 15, 12, 16, 21, 38, 17, 7] ['Germany', "'s", 'representative', 'to', 'the', 'European', 'Union', "'s", 'veterinary', 'committee', 'Werner', 'Zwingmann', 'said', 'on', 'Wednesday', 'consumers', 'should', 'buy', 'sheepmeat', 'from', 'countries', 'other', 'than', 'Britain', 'until', 'the', 'scientific', 'advice', 'was', 'clearer', '.'] Tags: pos_tags Index: 4 Germany 's representative to the European Union 's veterinary committee Werner Zwingmann said on Wednesday consumers should buy sheepmeat from countries other than Britain until the scientific advice was clearer . NNP POS NN TO DT NNP NNP POS JJ NN NNP NNP VBD IN NNP NNS MD VB NN IN NNS JJ IN NNP IN DT JJ NN VBD JJR . [11, 11, 12, 13, 11, 12, 12, 11, 12, 12, 12, 12, 21, 13, 11, 12, 21, 22, 11, 13, 11, 1, 13, 11, 17, 11, 12, 12, 21, 1, 0] ['Germany', "'s", 'representative', 'to', 'the', 'European', 'Union', "'s", 'veterinary', 'committee', 'Werner', 'Zwingmann', 'said', 'on', 'Wednesday', 'consumers', 'should', 'buy', 'sheepmeat', 'from', 'countries', 'other', 'than', 'Britain', 'until', 'the', 'scientific', 'advice', 'was', 'clearer', '.'] Tags: chunk_tags Index: 4 Germany 's representative to the European Union 's veterinary committee Werner Zwingmann said on Wednesday consumers should buy sheepmeat from countries other than Britain until the scientific advice was clearer . B-NP B-NP I-NP B-PP B-NP I-NP I-NP B-NP I-NP I-NP I-NP I-NP B-VP B-PP B-NP I-NP B-VP I-VP B-NP B-PP B-NP B-ADJP B-PP B-NP B-SBAR B-NP I-NP I-NP B-VP B-ADJP O ###Markdown Processing the data ###Code HTML('<iframe width="640" height="360" src="https://www.youtube.com/embed/iY2AZYdZAr0" allowfullscreen></iframe>') ###Output /home/matthias/anaconda3/envs/hf/lib/python3.9/site-packages/IPython/core/display.py:724: UserWarning: Consider using IPython.display.IFrame instead warnings.warn("Consider using IPython.display.IFrame instead") ###Markdown As usual, our texts need to be converted to token IDs before the model can make sense of them. As we saw in [Chapter 6](https://huggingface.co/course/chapter6/), a big difference in the case of token classification tasks is that we have pre-tokenized inputs. Fortunately, the tokenizer API can deal with that pretty easily; we just need to warn the `tokenizer` with a special flag.To begin, let's create our `tokenizer` object. As we said before, we will be using a BERT pretrained model, so we'll start by downloading and caching the associated tokenizer: ###Code from transformers import AutoTokenizer model_checkpoint = "bert-base-cased" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) ###Output _____no_output_____ ###Markdown You can replace the `model_checkpoint` with any other model you prefer from the [Hub](https://huggingface.co/models), or with a local folder in which you've saved a pretrained model and a tokenizer. The only constraint is that the tokenizer needs to be backed by the 🤗 Tokenizers library, so there's a "fast" version available. You can see all the architectures that come with a fast version in [this big table](https://huggingface.co/transformers/supported-frameworks), and to check that the `tokenizer` object you're using is indeed backed by 🤗 Tokenizers you can look at its `is_fast` attribute: ###Code tokenizer.is_fast ###Output _____no_output_____ ###Markdown To tokenize a pre-tokenized input, we can use our `tokenizer` as usual and just add `is_split_into_words=True`: ###Code inputs = tokenizer(raw_datasets["train"][0]["tokens"], is_split_into_words=True) inputs.tokens() ###Output _____no_output_____ ###Markdown As we can see, the tokenizer added the special tokens used by the model (`[CLS]` at the beginning and `[SEP]` at the end) and left most of the words untouched. The word `lamb`, however, was tokenized into two subwords, `la` and `mb`. This introduces a mismatch between our inputs and the labels: the list of labels has only 9 elements, whereas our input now has 12 tokens. Accounting for the special tokens is easy (we know they are at the beginning and the end), but we also need to make sure we align all the labels with the proper words.Fortunately, because we're using a fast tokenizer we have access to the 🤗 Tokenizers superpowers, which means we can easily map each token to its corresponding word (as seen in [Chapter 6](https://huggingface.co/course/chapter6/3)): ###Code inputs.word_ids() ###Output _____no_output_____ ###Markdown With a tiny bit of work, we can then expand our label list to match the tokens. The first rule we'll apply is that special tokens get a label of `-100`. This is because by default `-100` is an index that is ignored in the loss function we will use (cross entropy). Then, each token gets the same label as the token that started the word it's inside, since they are part of the same entity. For tokens inside a word but not at the beginning, we replace the `B-` with `I-` (since the token does not begin the entity): ###Code def align_labels_with_tokens(labels, word_ids): new_labels = [] current_word = None for word_id in word_ids: if word_id != current_word: # Start of a new word! current_word = word_id label = -100 if word_id is None else labels[word_id] new_labels.append(label) elif word_id is None: # Special token new_labels.append(-100) else: # Same word as previous token label = labels[word_id] # If the label is B-XXX we change it to I-XXX if label % 2 == 1: label += 1 new_labels.append(label) return new_labels ###Output _____no_output_____ ###Markdown Let's try it out on our first sentence: ###Code labels = raw_datasets["train"][0]["ner_tags"] word_ids = inputs.word_ids() print(labels) print(align_labels_with_tokens(labels, word_ids)) ###Output [3, 0, 7, 0, 0, 0, 7, 0, 0] [-100, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0, -100] ###Markdown As we can see, our function added the `-100` for the two special tokens at the beginning and the end, and a new `0` for our word that was split into two tokens.> ✏️ Your turn! Some researchers prefer to attribute only one label per word, and assign `-100` to the other subtokens in a given word. This is to avoid long words that split into lots of subtokens contributing heavily to the loss. Change the previous function to align labels with input IDs by following this rule. ###Code # Trying it out (my turn) print(labels) print(inputs.tokens()) print(word_ids) print(align_labels_with_tokens(labels, word_ids)) def my_align_labels_with_tokens(labels, word_ids): new_labels = [] previous_word_id = None for word_id in word_ids: if (word_id==None) or (word_id==previous_word_id): label = -100 else: label = labels[word_id] new_labels.append(label) previous_word_id = word_id return new_labels # my_align_labels_with_tokens(labels, word_ids) ###Output [3, 0, 7, 0, 0, 0, 7, 0, 0] ['[CLS]', 'EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'la', '##mb', '.', '[SEP]'] [None, 0, 1, 2, 3, 4, 5, 6, 7, 7, 8, None] [-100, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0, -100] ###Markdown To preprocess our whole dataset, we need to tokenize all the inputs and apply `align_labels_with_tokens()` on all the labels. To take advantage of the speed of our fast tokenizer, it's best to tokenize lots of texts at the same time, so we'll write a function that processes a list of examples and use the `Dataset.map()` method with the option `batched=True`. The only thing that is different from our previous example is that the `word_ids()` function needs to get the index of the example we want the word IDs of when the inputs to the tokenizer are lists of texts (or in our case, list of lists of words), so we add that, too: ###Code def tokenize_and_align_labels(examples): tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) all_labels = examples["ner_tags"] new_labels = [] for i, labels in enumerate(all_labels): word_ids = tokenized_inputs.word_ids(i) new_labels.append(align_labels_with_tokens(labels, word_ids)) tokenized_inputs["labels"] = new_labels return tokenized_inputs ###Output _____no_output_____ ###Markdown Note that we haven’t padded our inputs yet; we’ll do that later, when creating the batches with a data collator.We can now apply all that preprocessing in one go on the other splits of our dataset: ###Code tokenized_datasets = raw_datasets.map( tokenize_and_align_labels, batched=True, remove_columns=raw_datasets["train"].column_names ) ###Output Loading cached processed dataset at /home/matthias/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/63f4ebd1bcb7148b1644497336fd74643d4ce70123334431a3c053b7ee4e96ee/cache-5c997231345efbaf.arrow Loading cached processed dataset at /home/matthias/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/63f4ebd1bcb7148b1644497336fd74643d4ce70123334431a3c053b7ee4e96ee/cache-9ac3b79c72f329d1.arrow ###Markdown We've done the hardest part! Now that the data has been preprocessed, the actual training will look a lot like what we did in [Chapter 3](https://huggingface.co/course/chapter3). Fine-tuning the model with the `Trainer` APIThe actual code using the `Trainer` will be the same as before; the only changes are the way the data is collated into a batch and the metric computation function. Data collationWe can't just use a `DataCollatorWithPadding` like in [Chapter 3](https://huggingface.co/course/chapter3) because that only pads the inputs (input IDs, attention mask, and token type IDs). Here, our labels should be padded the exact same way as the inputs so that they stay the same size, using `-100` as a value so that the corresponding predictions are ignored in the loss computation.This is all done by a [`DataCollatorForTokenClassification`](https://huggingface.co/transformers/main_classes/data_collator.htmldatacollatorfortokenclassification). Like the `DataCollatorWithPadding`, it takes the `tokenizer` used to preprocess the inputs: ###Code from transformers import DataCollatorForTokenClassification data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) ###Output _____no_output_____ ###Markdown To test this on a few samples, we can just call it on a list of examples from our tokenized training set: ###Code batch = data_collator([tokenized_datasets["train"][i] for i in range(2)]) batch["labels"] ###Output _____no_output_____ ###Markdown Let's compare this to the labels for the first and second elements in our dataset: ###Code for i in range(2): print(tokenized_datasets["train"][i]["labels"]) ###Output [-100, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0, -100] [-100, 1, 2, -100] ###Markdown As we can see, the second set of labels has been padded to the length of the first one using `-100`s. MetricsTo have the `Trainer` compute a metric every epoch, we will need to define a `compute_metrics()` function that takes the arrays of predictions and labels, and returns a dictionary with the metric names and values.The traditional framework used to evaluate token classification prediction is [*seqeval*](https://github.com/chakki-works/seqeval). To use this metric, we first need to install the *seqeval* library:```pip install seqeval```We can then load it via the `load_metric()` function like we did in [Chapter 3](https://huggingface.co/course/chapter3): ###Code from datasets import load_metric metric = load_metric("seqeval") ###Output _____no_output_____ ###Markdown This metric does not behave like the standard accuracy: it will actually take the lists of labels as strings, not integers, so we will need to fully decode the predictions and labels before passing them to the metric. Let's see how it works. First, we'll get the labels for our first training example: ###Code labels = raw_datasets["train"][0]["ner_tags"] labels = [label_names[i] for i in labels] labels ###Output _____no_output_____ ###Markdown We can then create fake predictions for those by just changing the value at index 2. Note that the metric takes a list of predictions (not just one) and a list of labels. ###Code predictions = labels.copy() predictions[2] = "O" metric.compute(predictions=[predictions], references=[labels]) ###Output _____no_output_____ ###Markdown This is sending back a lot of information! We get the precision, recall, and $F_1$ score for each separate entity, as well as overall. For our metric computation we will only keep the overall score, but feel free to tweak the `compute_metrics()` function to return all the metrics you would like reported.This `compute_metrics()` function first takes the argmax of the logits to convert them to predictions (as usual, the logits and the probabilities are in the same order, so we don't need to apply the softmax). Then we have to convert both labels and predictions from integers to strings. We remove all the values where the label is `-100`, then pass the results to the `metric.compute()` method: ###Code import numpy as np def compute_metrics(eval_preds): logits, labels = eval_preds predictions = np.argmax(logits, axis=-1) # Remove ignored index (special tokens) and convert to labels true_labels = [[label_names[l] for l in label if l != -100] for label in labels] true_predictions = [ [label_names[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] all_metrics = metric.compute(predictions=true_predictions, references=true_labels) return { "precision": all_metrics["overall_precision"], "recall": all_metrics["overall_recall"], "f1": all_metrics["overall_f1"], "accuracy": all_metrics["overall_accuracy"], } ###Output _____no_output_____ ###Markdown Defining the modelSince we are working on a token classification problem, we will use the `AutoModelForTokenClassification` class. The main thing to remember when defining this model is to pass along some information on the number of labels we have. The easiest way to do this is to pass that number with the `num_labels` argument, but if we want a nice inference widget working like the one we saw at the beginning of this section, it's better to set the correct label correspondences instead.They should be set by two dictionaries, `id2label` and `label2id`, which contain the mappings from ID to label and vice versa: ###Code id2label = {str(i): label for i, label in enumerate(label_names)} label2id = {v: k for k, v in id2label.items()} ###Output _____no_output_____ ###Markdown Now we can just pass them to the `AutoModelForTokenClassification.from_pretrained()` method, and they will be set in the model's configuration and then properly saved and uploaded to the Hub: ###Code from transformers import AutoModelForTokenClassification model = AutoModelForTokenClassification.from_pretrained( model_checkpoint, id2label=id2label, label2id=label2id ) ###Output Some weights of the model checkpoint at bert-base-cased were not used when initializing BertForTokenClassification: ['cls.seq_relationship.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias'] - This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-cased and are newly initialized: ['classifier.weight', 'classifier.bias'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. ###Markdown Like when we defined our `AutoModelForSequenceClassification` in [Chapter 3](https://huggingface.co/course/chapter3), creating the model issues a warning that some weights were not used (the ones from the pretraining head) and some other weights are randomly initialized (the ones from the new token classification head), and that this model should be trained. We will do that in a minute, but first let's double-check that our model has the right number of labels: ###Code model.config.num_labels ###Output _____no_output_____ ###Markdown > ⚠️ If you have a model with the wrong number of labels, you will get an obscure error when calling the `Trainer.train()` method later on (something like "CUDA error: device-side assert triggered"). This is the number one cause of bugs reported by users for such errors, so make sure you do this check to confirm that you have the expected number of labels. Fine-tuning the modelWe are now ready to train our model! We just need to do two last things before we define our `Trainer`: log in to Hugging Face and define our training arguments. If you're working in a notebook, there's a convenience function to help you with this:```pythonfrom huggingface_hub import notebook_loginnotebook_login()```This will display a widget where you can enter your Hugging Face login credentials.If you aren't working in a notebook, just type the following line in your terminal:```terminalhuggingface-cli login```Once this is done, we can define our `TrainingArguments`: ###Code from huggingface_hub import notebook_login notebook_login() # training arguments from transformers import TrainingArguments args = TrainingArguments( "bert-finetuned-ner", # make sure this folder # (i) exists parallel to this notebook and is a local clone of your huggingface repo or # (ii) exists neither parallel to this notebook nor on your huggingface account # => for cloning, see "The Repository class" in "4-Sharing_models_and_tokenizers.ipynb": evaluation_strategy="epoch", save_strategy="epoch", learning_rate=2e-5, num_train_epochs=3, weight_decay=0.01, push_to_hub=True ) ###Output _____no_output_____ ###Markdown You've seen most of those before: we set some hyperparameters (like the learning rate, the number of epochs to train for, and the weight decay), and we specify `push_to_hub=True` to indicate that we want to save the model and evaluate it at the end of every epoch, and that we want to upload our results to the Model Hub. Note that you can specify the name of the repository you want to push to with the `hub_model_id` argument (in particular, you will have to use this argument to push to an organization). For instance, when we pushed the model to the [`huggingface-course` organization](https://huggingface.co/huggingface-course), we added `hub_model_id="huggingface-course/bert-finetuned-ner"` to `TrainingArguments`. By default, the repository used will be in your namespace and named after the output directory you set, so in our case it will be `"sgugger/bert-finetuned-ner"`.> 💡 If the output directory you are using already exists, it needs to be a local clone of the repository you want to push to. If it isn't, you'll get an error when defining your Trainer and will need to set a new name.Finally, we just pass everything to the `Trainer` and launch the training: ###Code from transformers import Trainer trainer = Trainer( model=model, args=args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], data_collator=data_collator, compute_metrics=compute_metrics, tokenizer=tokenizer ) trainer.train() ###Output huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) ###Markdown Note that while the training happens, each time the model is saved (here, every epoch) it is uploaded to the Hub in the background. This way, you will be able to resume your training on another machine if necessary.Once the training is complete, we use the `push_to_hub()` method to make sure we upload the most recent version of the model: ###Code trainer.push_to_hub(commit_message="Commit 5", blocking=False) ###Output Saving model checkpoint to bert-finetuned-ner Configuration saved in bert-finetuned-ner/config.json Model weights saved in bert-finetuned-ner/pytorch_model.bin tokenizer config file saved in bert-finetuned-ner/tokenizer_config.json Special tokens file saved in bert-finetuned-ner/special_tokens_map.json ###Markdown The above command returns the URL of the commit it just did, if you want to inspect it.The `Trainer` also drafts a model card with all the evaluation results and uploads it. At this stage, you can use the inference widget on the Model Hub to test your model and share it with your friends. You have successfully fine-tuned a model on a token classification task — congratulations!If you want to dive a bit more deeply into the training loop, we will now show you how to do the same thing using 🤗 Accelerate. A custom training loopLet's now take a look at the full training loop, so you can easily customize the parts you need. It will look a lot like what we did in [Chapter 3](https://huggingface.co/course/chapter3/4), with a few changes for the evaluation. Preparing everything for trainingFirst we need to build the DataLoaders from our datasets. We'll reuse our `data_collator` as a `collate_fn` and shuffle the training set, but not the validation set: ###Code from torch.utils.data import DataLoader train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=data_collator, batch_size=8 ) eval_dataloader = DataLoader(tokenized_datasets["validation"], collate_fn=data_collator, batch_size=8) ###Output _____no_output_____ ###Markdown Next we reinstantiate our model, to make sure we're not continuing the fine-tuning from before but starting from the BERT pretrained model again: ###Code model = AutoModelForTokenClassification.from_pretrained( model_checkpoint, id2label=id2label, label2id=label2id ) ###Output loading configuration file https://huggingface.co/bert-base-cased/resolve/main/config.json from cache at /home/matthias/.cache/huggingface/transformers/a803e0468a8fe090683bdc453f4fac622804f49de86d7cecaee92365d4a0f829.a64a22196690e0e82ead56f388a3ef3a50de93335926ccfa20610217db589307 Model config BertConfig { "architectures": [ "BertForMaskedLM" ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "id2label": { "0": "O", "1": "B-PER", "2": "I-PER", "3": "B-ORG", "4": "I-ORG", "5": "B-LOC", "6": "I-LOC", "7": "B-MISC", "8": "I-MISC" }, "initializer_range": 0.02, "intermediate_size": 3072, "label2id": { "B-LOC": "5", "B-MISC": "7", "B-ORG": "3", "B-PER": "1", "I-LOC": "6", "I-MISC": "8", "I-ORG": "4", "I-PER": "2", "O": "0" }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.12.0", "type_vocab_size": 2, "use_cache": true, "vocab_size": 28996 } loading weights file https://huggingface.co/bert-base-cased/resolve/main/pytorch_model.bin from cache at /home/matthias/.cache/huggingface/transformers/092cc582560fc3833e556b3f833695c26343cb54b7e88cd02d40821462a74999.1f48cab6c959fc6c360d22bea39d06959e90f5b002e77e836d2da45464875cda Some weights of the model checkpoint at bert-base-cased were not used when initializing BertForTokenClassification: ['cls.seq_relationship.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias'] - This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-cased and are newly initialized: ['classifier.weight', 'classifier.bias'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. ###Markdown Then we will need an optimizer. We'll use the classic `AdamW`, which is like `Adam`, but with a fix in the way weight decay is applied: ###Code from torch.optim import AdamW optimizer = AdamW(model.parameters(), lr=2e-5) ###Output _____no_output_____ ###Markdown Once we have all those objects, we can send them to the `accelerator.prepare()` method: ###Code from accelerate import Accelerator accelerator = Accelerator() model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) ###Output _____no_output_____ ###Markdown > 🚨 If you're training on a TPU, you'll need to move all the code starting from the cell above into a dedicated training function. See [Chapter 3](https://huggingface.co/course/chapter3) for more details.Now that we have sent our `train_dataloader` to `accelerator.prepare()`, we can use its length to compute the number of training steps. Remember that we should always do this after preparing the dataloader, as that method will change its length. We use a classic linear schedule from the learning rate to 0: ###Code from transformers import get_scheduler num_train_epochs = 3 num_update_steps_per_epoch = len(train_dataloader) num_training_steps = num_train_epochs * num_update_steps_per_epoch lr_scheduler = get_scheduler( "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps ) ###Output _____no_output_____ ###Markdown Lastly, to push our model to the Hub, we will need to create a `Repository` object in a working folder. First log in to Hugging Face, if you're not logged in already. We'll determine the repository name from the model ID we want to give our model (feel free to replace the `repo_name` with your own choice; it just needs to contain your username, which is what the function `get_full_repo_name()` does): ###Code from huggingface_hub import Repository, get_full_repo_name model_name = "bert-finetuned-ner-accelerate" repo_name = get_full_repo_name(model_name) repo_name ###Output _____no_output_____ ###Markdown Then we can clone that repository in a local folder. If it already exists, this local folder should be an existing clone of the repository we are working with: ###Code output_dir = "bert-finetuned-ner-accelerate" repo = Repository(output_dir, clone_from=repo_name) ###Output huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) ###Markdown We can now upload anything we save in `output_dir` by calling the `repo.push_to_hub()` method. This will help us upload the intermediate models at the end of each epoch. Training loopWe are now ready to write the full training loop. To simplify its evaluation part, we define this `postprocess()` function that takes predictions and labels and converts them to lists of strings, like our `metric` object expects: ###Code def postprocess(predictions, labels): predictions = predictions.detach().cpu().clone().numpy() labels = labels.detach().cpu().clone().numpy() # Remove ignored index (special tokens) and convert to labels true_labels = [[label_names[l] for l in label if l != -100] for label in labels] true_predictions = [ [label_names[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] return true_labels, true_predictions ###Output _____no_output_____ ###Markdown Then we can write the training loop. After defining a progress bar to follow how training goes, the loop has three parts:- The training in itself, which is the classic iteration over the `train_dataloader`, forward pass through the model, then backward pass and optimizer step.- The evaluation, in which there is a novelty after getting the outputs of our model on a batch: since two processes may have padded the inputs and labels to different shapes, we need to use `accelerator.pad_across_processes()` to make the predictions and labels the same shape before calling the `gather()` method. If we don't do this, the evaluation will either error out or hang forever. Then we send the results to `metric.add_batch()` and call `metric.compute()` once the evaluation loop is over.- Saving and uploading, where we first save the model and the tokenizer, then call `repo.push_to_hub()`. Notice that we use the argument `blocking=False` to tell the 🤗 Hub library to push in an asynchronous process. This way, training continues normally and this (long) instruction is executed in the background.Here's the complete code for the training loop: ###Code from tqdm.auto import tqdm import torch progress_bar = tqdm(range(num_training_steps)) for epoch in range(num_train_epochs): # Training model.train() for batch in train_dataloader: outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) # Evaluation model.eval() for batch in eval_dataloader: with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) labels = batch["labels"] # Necessary to pad predictions and labels for being gathered predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100) labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100) predictions_gathered = accelerator.gather(predictions) labels_gathered = accelerator.gather(labels) true_predictions, true_labels = postprocess(predictions_gathered, labels_gathered) metric.add_batch(predictions=true_predictions, references=true_labels) results = metric.compute() print(f"epoch {epoch}:", {key: results[f"overall_{key}"] for key in ["precision", "recall", "f1", "accuracy"]}) # Save and upload accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save) if accelerator.is_main_process: tokenizer.save_pretrained(output_dir) repo.push_to_hub(commit_message=f"Training in progress epoch {epoch}", blocking=False) ###Output _____no_output_____ ###Markdown In case this is the first time you're seeing a model saved with 🤗 Accelerate, let's take a moment to inspect the three lines of code that go with it: ###Code accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save) ###Output Configuration saved in bert-finetuned-ner-accelerate/config.json Model weights saved in bert-finetuned-ner-accelerate/pytorch_model.bin ###Markdown The first line is self-explanatory: it tells all the processes to wait until everyone is at that stage before continuing. This is to make sure we have the same model in every process before saving. Then we grab the `unwrapped_model`, which is the base model we defined. The `accelerator.prepare()` method changes the model to work in distributed training, so it won't have the `save_pretrained()` method anymore; the `accelerator.unwrap_model()` method undoes that step. Lastly, we call `save_pretrained()` but tell that method to use `accelerator.save()` instead of `torch.save()`.Once this is done, you should have a model that produces results pretty similar to the one trained with the `Trainer`. You can check the model we trained using this code at [*huggingface-course/bert-finetuned-ner-accelerate*](https://huggingface.co/huggingface-course/bert-finetuned-ner-accelerate). And if you want to test out any tweaks to the training loop, you can directly implement them by editing the code shown above! Using the fine-tuned modelWe've already shown you how you can use the model we fine-tuned on the Model Hub with the inference widget. To use it locally in a `pipeline`, you just have to specify the proper model identifier: ###Code from transformers import pipeline # Replace this with your own checkpoint model_checkpoint = "bert-finetuned-ner-accelerate" # local folder parallel to this notebook token_classifier = pipeline("token-classification", model=model_checkpoint, aggregation_strategy="simple") token_classifier("My name is Sylvain and I work at Hugging Face in Brooklyn.") ###Output loading configuration file bert-finetuned-ner-accelerate/config.json Model config BertConfig { "_name_or_path": "bert-base-cased", "architectures": [ "BertForTokenClassification" ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "id2label": { "0": "O", "1": "B-PER", "2": "I-PER", "3": "B-ORG", "4": "I-ORG", "5": "B-LOC", "6": "I-LOC", "7": "B-MISC", "8": "I-MISC" }, "initializer_range": 0.02, "intermediate_size": 3072, "label2id": { "B-LOC": "5", "B-MISC": "7", "B-ORG": "3", "B-PER": "1", "I-LOC": "6", "I-MISC": "8", "I-ORG": "4", "I-PER": "2", "O": "0" }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "torch_dtype": "float32", "transformers_version": "4.12.0", "type_vocab_size": 2, "use_cache": true, "vocab_size": 28996 } loading configuration file bert-finetuned-ner-accelerate/config.json Model config BertConfig { "_name_or_path": "bert-base-cased", "architectures": [ "BertForTokenClassification" ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "id2label": { "0": "O", "1": "B-PER", "2": "I-PER", "3": "B-ORG", "4": "I-ORG", "5": "B-LOC", "6": "I-LOC", "7": "B-MISC", "8": "I-MISC" }, "initializer_range": 0.02, "intermediate_size": 3072, "label2id": { "B-LOC": "5", "B-MISC": "7", "B-ORG": "3", "B-PER": "1", "I-LOC": "6", "I-MISC": "8", "I-ORG": "4", "I-PER": "2", "O": "0" }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "torch_dtype": "float32", "transformers_version": "4.12.0", "type_vocab_size": 2, "use_cache": true, "vocab_size": 28996 } loading weights file bert-finetuned-ner-accelerate/pytorch_model.bin All model checkpoint weights were used when initializing BertForTokenClassification. All the weights of BertForTokenClassification were initialized from the model checkpoint at bert-finetuned-ner-accelerate. If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForTokenClassification for predictions without further training. Didn't find file bert-finetuned-ner-accelerate/added_tokens.json. We won't load it. loading file bert-finetuned-ner-accelerate/vocab.txt loading file bert-finetuned-ner-accelerate/tokenizer.json loading file None loading file bert-finetuned-ner-accelerate/special_tokens_map.json loading file bert-finetuned-ner-accelerate/tokenizer_config.json
Coursera/IBM Data Analyst Professional Certificate/Data Analysis with Python/week 2/data-wrangling.ipynb
###Markdown Data WranglingEstimated time needed: **30** minutes ObjectivesAfter completing this lab you will be able to:- Handle missing values- Correct data format- Standardize and Normalize Data Table of content Identify and handle missing values Identify missing values Deal with missing values Correct data format Data standardization Data Normalization (centering/scaling) Binning Indicator variable What is the purpose of Data Wrangling? Data Wrangling is the process of converting data from the initial format to a format that may be better for analysis. What is the fuel consumption (L/100k) rate for the diesel car? Import dataYou can find the "Automobile Data Set" from the following link: https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data. We will be using this data set throughout this course. Import pandas ###Code import pandas as pd import matplotlib.pylab as plt ###Output _____no_output_____ ###Markdown Reading the data set from the URL and adding the related headers. URL of the dataset This dataset was hosted on IBM Cloud object click HERE for free storage ###Code filename = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DA0101EN-SkillsNetwork/labs/Data%20files/auto.csv" ###Output _____no_output_____ ###Markdown Python list headers containing name of headers ###Code headers = ["symboling","normalized-losses","make","fuel-type","aspiration", "num-of-doors","body-style", "drive-wheels","engine-location","wheel-base", "length","width","height","curb-weight","engine-type", "num-of-cylinders", "engine-size","fuel-system","bore","stroke","compression-ratio","horsepower", "peak-rpm","city-mpg","highway-mpg","price"] ###Output _____no_output_____ ###Markdown Use the Pandas method read_csv() to load the data from the web address. Set the parameter "names" equal to the Python list "headers". ###Code df = pd.read_csv(filename, names = headers) ###Output _____no_output_____ ###Markdown Use the method head() to display the first five rows of the dataframe. ###Code # To see what the data set looks like, we'll use the head() method. df.head() ###Output _____no_output_____ ###Markdown As we can see, several question marks appeared in the dataframe; those are missing values which may hinder our further analysis. So, how do we identify all those missing values and deal with them? How to work with missing data?Steps for working with missing data: dentify missing data deal with missing data correct data format Identify and handle missing valuesIdentify missing valuesConvert "?" to NaNIn the car dataset, missing data comes with the question mark "?".We replace "?" with NaN (Not a Number), which is Python's default missing value marker, for reasons of computational speed and convenience. Here we use the function: .replace(A, B, inplace = True) to replace A by B ###Code import numpy as np # replace "?" to NaN df.replace("?", np.nan, inplace = True) df.head(5) ###Output _____no_output_____ ###Markdown Identify_missing_valuesEvaluating for Missing DataThe missing values are converted to default. We use the following functions to identify these missing values. There are two methods to detect missing data: .isnull() .notnull()The output is a boolean value indicating whether the value that is passed into the argument is in fact missing data. ###Code missing_data = df.isnull() missing_data.head(5) ###Output _____no_output_____ ###Markdown "True" stands for missing value, while "False" stands for not missing value. Count missing values in each columnUsing a for loop in Python, we can quickly figure out the number of missing values in each column. As mentioned above, "True" represents a missing value, "False" means the value is present in the dataset. In the body of the for loop the method ".value_counts()" counts the number of "True" values. ###Code for column in missing_data.columns.values.tolist(): print(column) print (missing_data[column].value_counts()) print("") ###Output symboling False 205 Name: symboling, dtype: int64 normalized-losses False 164 True 41 Name: normalized-losses, dtype: int64 make False 205 Name: make, dtype: int64 fuel-type False 205 Name: fuel-type, dtype: int64 aspiration False 205 Name: aspiration, dtype: int64 num-of-doors False 203 True 2 Name: num-of-doors, dtype: int64 body-style False 205 Name: body-style, dtype: int64 drive-wheels False 205 Name: drive-wheels, dtype: int64 engine-location False 205 Name: engine-location, dtype: int64 wheel-base False 205 Name: wheel-base, dtype: int64 length False 205 Name: length, dtype: int64 width False 205 Name: width, dtype: int64 height False 205 Name: height, dtype: int64 curb-weight False 205 Name: curb-weight, dtype: int64 engine-type False 205 Name: engine-type, dtype: int64 num-of-cylinders False 205 Name: num-of-cylinders, dtype: int64 engine-size False 205 Name: engine-size, dtype: int64 fuel-system False 205 Name: fuel-system, dtype: int64 bore False 201 True 4 Name: bore, dtype: int64 stroke False 201 True 4 Name: stroke, dtype: int64 compression-ratio False 205 Name: compression-ratio, dtype: int64 horsepower False 203 True 2 Name: horsepower, dtype: int64 peak-rpm False 203 True 2 Name: peak-rpm, dtype: int64 city-mpg False 205 Name: city-mpg, dtype: int64 highway-mpg False 205 Name: highway-mpg, dtype: int64 price False 201 True 4 Name: price, dtype: int64 ###Markdown Based on the summary above, each column has 205 rows of data, seven columns containing missing data: "normalized-losses": 41 missing data "num-of-doors": 2 missing data "bore": 4 missing data "stroke" : 4 missing data "horsepower": 2 missing data "peak-rpm": 2 missing data "price": 4 missing data Deal with missing dataHow to deal with missing data? drop data a. drop the whole row b. drop the whole column replace data a. replace it by mean b. replace it by frequency c. replace it based on other functions Whole columns should be dropped only if most entries in the column are empty. In our dataset, none of the columns are empty enough to drop entirely.We have some freedom in choosing which method to replace data; however, some methods may seem more reasonable than others. We will apply each method to many different columns:Replace by mean: "normalized-losses": 41 missing data, replace them with mean "stroke": 4 missing data, replace them with mean "bore": 4 missing data, replace them with mean "horsepower": 2 missing data, replace them with mean "peak-rpm": 2 missing data, replace them with meanReplace by frequency: "num-of-doors": 2 missing data, replace them with "four". Reason: 84% sedans is four doors. Since four doors is most frequent, it is most likely to occur Drop the whole row: "price": 4 missing data, simply delete the whole row Reason: price is what we want to predict. Any data entry without price data cannot be used for prediction; therefore any row now without price data is not useful to us Calculate the average of the column ###Code avg_norm_loss = df["normalized-losses"].astype("float").mean(axis=0) print("Average of normalized-losses:", avg_norm_loss) ###Output Average of normalized-losses: 122.0 ###Markdown Replace "NaN" by mean value in "normalized-losses" column ###Code df["normalized-losses"].replace(np.nan, avg_norm_loss, inplace=True) ###Output _____no_output_____ ###Markdown Calculate the mean value for 'bore' column ###Code avg_bore=df['bore'].astype('float').mean(axis=0) print("Average of bore:", avg_bore) ###Output Average of bore: 3.3297512437810943 ###Markdown Replace NaN by mean value ###Code df["bore"].replace(np.nan, avg_bore, inplace=True) ###Output _____no_output_____ ###Markdown Question 1: According to the example above, replace NaN in "stroke" column by mean. ###Code # Write your code below and press Shift+Enter to execute avg_stroke = df['stroke'].astype('float').mean(axis=0) print("Average of stroke: ", avg_stroke) df['stroke'].replace(np.nan,avg_stroke, inplace=True) ###Output Average of stroke: 3.255422885572139 ###Markdown Click here for the solution```pythonCalculate the mean vaule for "stroke" columnavg_stroke = df["stroke"].astype("float").mean(axis = 0)print("Average of stroke:", avg_stroke) replace NaN by mean value in "stroke" columndf["stroke"].replace(np.nan, avg_stroke, inplace = True)``` Calculate the mean value for the 'horsepower' column: ###Code avg_horsepower = df['horsepower'].astype('float').mean(axis=0) print("Average horsepower:", avg_horsepower) ###Output Average horsepower: 104.25615763546799 ###Markdown Replace "NaN" by mean value: ###Code df['horsepower'].replace(np.nan, avg_horsepower, inplace=True) ###Output _____no_output_____ ###Markdown Calculate the mean value for 'peak-rpm' column: ###Code avg_peakrpm=df['peak-rpm'].astype('float').mean(axis=0) print("Average peak rpm:", avg_peakrpm) ###Output Average peak rpm: 5125.369458128079 ###Markdown Replace NaN by mean value: ###Code df['peak-rpm'].replace(np.nan, avg_peakrpm, inplace=True) ###Output _____no_output_____ ###Markdown To see which values are present in a particular column, we can use the ".value_counts()" method: ###Code df['num-of-doors'].value_counts() ###Output _____no_output_____ ###Markdown We can see that four doors are the most common type. We can also use the ".idxmax()" method to calculate for us the most common type automatically: ###Code df['num-of-doors'].value_counts().idxmax() ###Output _____no_output_____ ###Markdown The replacement procedure is very similar to what we have seen previously ###Code #replace the missing 'num-of-doors' values by the most frequent df["num-of-doors"].replace(np.nan, "four", inplace=True) ###Output _____no_output_____ ###Markdown Finally, let's drop all rows that do not have price data: ###Code # simply drop whole row with NaN in "price" column df.dropna(subset=["price"], axis=0, inplace=True) # reset index, because we droped two rows df.reset_index(drop=True, inplace=True) df.head() ###Output _____no_output_____ ###Markdown Good! Now, we obtain the dataset with no missing values. Correct data formatWe are almost there!The last step in data cleaning is checking and making sure that all data is in the correct format (int, float, text or other).In Pandas, we use .dtype() to check the data type.astype() to change the data type Lets list the data types for each column ###Code df.dtypes ###Output _____no_output_____ ###Markdown As we can see above, some columns are not of the correct data type. Numerical variables should have type 'float' or 'int', and variables with strings such as categories should have type 'object'. For example, 'bore' and 'stroke' variables are numerical values that describe the engines, so we should expect them to be of the type 'float' or 'int'; however, they are shown as type 'object'. We have to convert data types into a proper format for each column using the "astype()" method. Convert data types to proper format ###Code df[["bore", "stroke"]] = df[["bore", "stroke"]].astype("float") df[["normalized-losses"]] = df[["normalized-losses"]].astype("int") df[["price"]] = df[["price"]].astype("float") df[["peak-rpm"]] = df[["peak-rpm"]].astype("float") ###Output _____no_output_____ ###Markdown Let us list the columns after the conversion ###Code df.dtypes ###Output _____no_output_____ ###Markdown Wonderful!Now, we finally obtain the cleaned dataset with no missing values and all data in its proper format. Data StandardizationData is usually collected from different agencies with different formats.(Data Standardization is also a term for a particular type of data normalization, where we subtract the mean and divide by the standard deviation) What is Standardization?Standardization is the process of transforming data into a common format which allows the researcher to make the meaningful comparison.ExampleTransform mpg to L/100km:In our dataset, the fuel consumption columns "city-mpg" and "highway-mpg" are represented by mpg (miles per gallon) unit. Assume we are developing an application in a country that accept the fuel consumption with L/100km standardWe will need to apply data transformation to transform mpg into L/100km? The formula for unit conversion isL/100km = 235 / mpgWe can do many mathematical operations directly in Pandas. ###Code df.head() # Convert mpg to L/100km by mathematical operation (235 divided by mpg) df['city-L/100km'] = 235/df["city-mpg"] # check your transformed data df.head() ###Output _____no_output_____ ###Markdown Question 2: According to the example above, transform mpg to L/100km in the column of "highway-mpg", and change the name of column to "highway-L/100km". ###Code # Write your code below and press Shift+Enter to execute df['highway-L/100km'] = 235/df['highway-mpg'] df.rename(columns={'"highway-mpg"':'highway-L/100km'}, inplace=True) df.head() ###Output _____no_output_____ ###Markdown Click here for the solution```python transform mpg to L/100km by mathematical operation (235 divided by mpg)df["highway-mpg"] = 235/df["highway-mpg"] rename column name from "highway-mpg" to "highway-L/100km"df.rename(columns={'"highway-mpg"':'highway-L/100km'}, inplace=True) check your transformed data df.head()``` Data NormalizationWhy normalization?Normalization is the process of transforming values of several variables into a similar range. Typical normalizations include scaling the variable so the variable average is 0, scaling the variable so the variance is 1, or scaling variable so the variable values range from 0 to 1ExampleTo demonstrate normalization, let's say we want to scale the columns "length", "width" and "height" Target:would like to Normalize those variables so their value ranges from 0 to 1.Approach: replace original value by (original value)/(maximum value) ###Code # replace (original value) by (original value)/(maximum value) df['length'] = df['length']/df['length'].max() df['width'] = df['width']/df['width'].max() ###Output _____no_output_____ ###Markdown Questiont 3: According to the example above, normalize the column "height". ###Code # Write your code below and press Shift+Enter to execute df['height'] = df['height']/df['height'].max() df[["length","width","height"]].head() ###Output _____no_output_____ ###Markdown Click here for the solution```pythondf['height'] = df['height']/df['height'].max() show the scaled columnsdf[["length","width","height"]].head()``` Here we can see, we've normalized "length", "width" and "height" in the range of [0,1]. BinningWhy binning? Binning is a process of transforming continuous numerical variables into discrete categorical 'bins', for grouped analysis.Example: In our dataset, "horsepower" is a real valued variable ranging from 48 to 288, it has 57 unique values. What if we only care about the price difference between cars with high horsepower, medium horsepower, and little horsepower (3 types)? Can we rearrange them into three ‘bins' to simplify analysis? We will use the Pandas method 'cut' to segment the 'horsepower' column into 3 bins Example of Binning Data In Pandas Convert data to correct format ###Code df["horsepower"]=df["horsepower"].astype(int, copy=True) ###Output _____no_output_____ ###Markdown Lets plot the histogram of horspower, to see what the distribution of horsepower looks like. ###Code %matplotlib inline import matplotlib as plt from matplotlib import pyplot plt.pyplot.hist(df["horsepower"]) # set x/y labels and plot title plt.pyplot.xlabel("horsepower") plt.pyplot.ylabel("count") plt.pyplot.title("horsepower bins") ###Output _____no_output_____ ###Markdown We would like 3 bins of equal size bandwidth so we use numpy's linspace(start_value, end_value, numbers_generated function.Since we want to include the minimum value of horsepower we want to set start_value=min(df["horsepower"]).Since we want to include the maximum value of horsepower we want to set end_value=max(df["horsepower"]).Since we are building 3 bins of equal length, there should be 4 dividers, so numbers_generated=4. We build a bin array, with a minimum value to a maximum value, with bandwidth calculated above. The bins will be values used to determine when one bin ends and another begins. ###Code bins = np.linspace(min(df["horsepower"]), max(df["horsepower"]), 4) bins ###Output _____no_output_____ ###Markdown We set group names: ###Code group_names = ['Low', 'Medium', 'High'] ###Output _____no_output_____ ###Markdown We apply the function "cut" the determine what each value of "df['horsepower']" belongs to. ###Code df['horsepower-binned'] = pd.cut(df['horsepower'], bins, labels=group_names, include_lowest=True ) df[['horsepower','horsepower-binned']].head(20) ###Output _____no_output_____ ###Markdown Lets see the number of vehicles in each bin. ###Code df["horsepower-binned"].value_counts() ###Output _____no_output_____ ###Markdown Lets plot the distribution of each bin. ###Code %matplotlib inline import matplotlib as plt from matplotlib import pyplot pyplot.bar(group_names, df["horsepower-binned"].value_counts()) # set x/y labels and plot title plt.pyplot.xlabel("horsepower") plt.pyplot.ylabel("count") plt.pyplot.title("horsepower bins") ###Output _____no_output_____ ###Markdown Check the dataframe above carefully, you will find the last column provides the bins for "horsepower" with 3 categories ("Low","Medium" and "High"). We successfully narrow the intervals from 57 to 3! Bins visualizationNormally, a histogram is used to visualize the distribution of bins we created above. ###Code %matplotlib inline import matplotlib as plt from matplotlib import pyplot # draw historgram of attribute "horsepower" with bins = 3 plt.pyplot.hist(df["horsepower"], bins = 3) # set x/y labels and plot title plt.pyplot.xlabel("horsepower") plt.pyplot.ylabel("count") plt.pyplot.title("horsepower bins") ###Output _____no_output_____ ###Markdown The plot above shows the binning result for attribute "horsepower". Indicator variable (or dummy variable)What is an indicator variable? An indicator variable (or dummy variable) is a numerical variable used to label categories. They are called 'dummies' because the numbers themselves don't have inherent meaning. Why we use indicator variables? So we can use categorical variables for regression analysis in the later modules.Example We see the column "fuel-type" has two unique values, "gas" or "diesel". Regression doesn't understand words, only numbers. To use this attribute in regression analysis, we convert "fuel-type" into indicator variables. We will use the panda's method 'get_dummies' to assign numerical values to different categories of fuel type. ###Code df.columns ###Output _____no_output_____ ###Markdown get indicator variables and assign it to data frame "dummy_variable_1" ###Code dummy_variable_1 = pd.get_dummies(df["fuel-type"]) dummy_variable_1.head() ###Output _____no_output_____ ###Markdown change column names for clarity ###Code dummy_variable_1.rename(columns={'gas':'fuel-type-gas', 'diesel':'fuel-type-diesel'}, inplace=True) dummy_variable_1.head() ###Output _____no_output_____ ###Markdown In the dataframe, column fuel-type has a value for 'gas' and 'diesel'as 0s and 1s now. ###Code # merge data frame "df" and "dummy_variable_1" df = pd.concat([df, dummy_variable_1], axis=1) # drop original column "fuel-type" from "df" df.drop("fuel-type", axis = 1, inplace=True) df.head() ###Output _____no_output_____ ###Markdown The last two columns are now the indicator variable representation of the fuel-type variable. It's all 0s and 1s now. Question 4: As above, create indicator variable to the column of "aspiration" ###Code # Write your code below and press Shift+Enter to execute dummy_variable_aspiration = pd.get_dummies(df['aspiration']) dummy_variable_aspiration ###Output _____no_output_____ ###Markdown Click here for the solution```python get indicator variables of aspiration and assign it to data frame "dummy_variable_2"dummy_variable_2 = pd.get_dummies(df['aspiration']) change column names for claritydummy_variable_2.rename(columns={'std':'aspiration-std', 'turbo': 'aspiration-turbo'}, inplace=True) show first 5 instances of data frame "dummy_variable_1"dummy_variable_2.head()``` Question 5: Merge the new dataframe to the original dataframe then drop the column 'aspiration' ###Code # Write your code below and press Shift+Enter to execute df = pd.concat([df, dummy_variable_aspiration], axis = 1) df.drop('aspiration', axis = 1, inplace=True) df.head() ###Output _____no_output_____ ###Markdown Click here for the solution```python merge the new dataframe to the original dataframdf = pd.concat([df, dummy_variable_2], axis=1) drop original column "aspiration" from "df"df.drop('aspiration', axis = 1, inplace=True)``` Save the new csv ###Code df.to_csv('clean_df.csv') ###Output _____no_output_____
notebooks/.ipynb_checkpoints/Results-checkpoint.ipynb
###Markdown Results 1) Actor coefficients with and without confounders. Load model and coefficients from memory, compare for set of actors. How does it hold up against Blei's claims? Most corrected actors, most over valued, most undervalued actors? ###Code # Load params import pickle with open('params.pickle', 'rb') as f: params = pickle.load(f) params ###Output _____no_output_____
.ipynb_checkpoints/soc.037_new_done-checkpoint.ipynb
###Markdown soc.037 Download linik:http://www.map.ox.ac.uk/static/africa-now/data_downloads/prevalence/rasters/Prevalence_annual_means_rasters.zipdescription http://www.map.ox.ac.uk/ PfPR2-10 - Plasmodium falciparum parasite rate in 2-10 year oldsFile type: tiffdownloaded 2000-2015 uploaded 2010-2015 ###Code # Libraries for downloading data from remote server (may be ftp) import requests from urllib.request import urlopen from contextlib import closing import shutil # Library for uploading/downloading data to/from S3 import boto3 # Libraries for handling data import rasterio as rio import numpy as np # from netCDF4 import Dataset # import pandas as pd # import scipy # Libraries for various helper functions # from datetime import datetime import os import threading import sys from glob import glob from matplotlib import pyplot %matplotlib inline ###Output _____no_output_____ ###Markdown s3 ###Code s3_upload = boto3.client("s3") s3_download = boto3.resource("s3") s3_bucket = "wri-public-data" s3_folder = "resourcewatch/raster/soc_037_Malaria_Extent/" s3_file1 = "soc_037_Malaria_Extent_2015.tif" s3_file2 = "soc_037_Malaria_Extent_2014.tif" s3_file3 = "soc_037_Malaria_Extent_2013.tif" s3_file4 = "soc_037_Malaria_Extent_2012.tif" s3_file5 = "soc_037_Malaria_Extent_2011.tif" s3_file6 = "soc_037_Malaria_Extent_2010.tif" s3_key_orig1 = s3_folder + s3_file1 s3_key_edit1 = s3_key_orig1[0:-4] + "_edit.tif" s3_key_orig2 = s3_folder + s3_file2 s3_key_edit2 = s3_key_orig2[0:-4] + "_edit.tif" s3_key_orig3 = s3_folder + s3_file3 s3_key_edit3 = s3_key_orig3[0:-4] + "_edit.tif" s3_key_orig4 = s3_folder + s3_file4 s3_key_edit4 = s3_key_orig4[0:-4] + "_edit.tif" s3_key_orig5 = s3_folder + s3_file5 s3_key_edit5 = s3_key_orig5[0:-4] + "_edit.tif" s3_key_orig6= s3_folder + s3_file6 s3_key_edit6 = s3_key_orig6[0:-4] + "_edit.tif" s3_files_to_merge = [s3_key_orig1, s3_key_orig2, s3_key_orig3, s3_key_orig4, s3_key_orig5,s3_key_orig6 ] band_ids = ["2015","2014","2013", "2012", "2011", "2010"] merge_name = "soc_037_Malaria_Extent_2010_to_2015.tif" s3_key_merge = s3_folder + merge_name class ProgressPercentage(object): def __init__(self, filename): self._filename = filename self._size = float(os.path.getsize(filename)) self._seen_so_far = 0 self._lock = threading.Lock() def __call__(self, bytes_amount): # To simplify we'll assume this is hooked up # to a single filename. with self._lock: self._seen_so_far += bytes_amount percentage = (self._seen_so_far / self._size) * 100 sys.stdout.write("\r%s %s / %s (%.2f%%)"%( self._filename, self._seen_so_far, self._size, percentage)) sys.stdout.flush() ###Output _____no_output_____ ###Markdown Define local file locations ###Code local_folder = "/Users/Max81007/Desktop/Python/Resource_Watch/Raster/soc.037/rasters/" file_name1 = "MODEL43.2015.PR.rmean.stable.tif" file_name2 = "MODEL43.2014.PR.rmean.stable.tif" file_name3 = "MODEL43.2013.PR.rmean.stable.tif" file_name4 = "MODEL43.2012.PR.rmean.stable.tif" file_name5 = "MODEL43.2011.PR.rmean.stable.tif" file_name6 = "MODEL43.2010.PR.rmean.stable.tif" local_orig1 = local_folder + file_name1 local_orig2 = local_folder + file_name2 local_orig3 = local_folder + file_name3 local_orig4 = local_folder + file_name4 local_orig5 = local_folder + file_name5 local_orig6 = local_folder + file_name6 orig_extension_length = 4 #4 for each char in .tif local_edit1 = local_orig1[:-orig_extension_length] + "edit.tif" local_edit2 = local_orig2[:-orig_extension_length] + "edit.tif" local_edit3 = local_orig3[:-orig_extension_length] + "edit.tif" local_edit4 = local_orig4[:-orig_extension_length] + "edit.tif" local_edit5 = local_orig5[:-orig_extension_length] + "edit.tif" local_edit6 = local_orig6[:-orig_extension_length] + "edit.tif" merge_files = [local_orig1, local_orig2, local_orig3, local_orig4, local_orig5, local_orig6] tmp_merge = local_folder + merge_name ###Output _____no_output_____ ###Markdown Use rasterio to reproject and compress ###Code files = [local_orig1, local_orig2, local_orig3, local_orig4, local_orig5, local_orig6] for file in files: with rio.open(file, 'r') as src: profile = src.profile print(profile) # Note - this is the core of Vizz's netcdf2tif function def convert_asc_to_tif(orig_name, edit_name): with rio.open(orig_name, 'r') as src: # This assumes data is readable by rasterio # May need to open instead with netcdf4.Dataset, for example data = src.read()[0] rows = data.shape[0] columns = data.shape[1] print(rows) print(columns) # Latitude bounds south_lat = -90 north_lat = 90 # Longitude bounds west_lon = -180 east_lon = 180 transform = rio.transform.from_bounds(west_lon, south_lat, east_lon, north_lat, columns, rows) # Profile no_data_val = -9999.0 target_projection = 'EPSG:4326' target_data_type = np.float64 profile = { 'driver':'GTiff', 'height':rows, 'width':columns, 'count':1, 'dtype':target_data_type, 'crs':target_projection, 'transform':transform, 'compress':'lzw', 'nodata': no_data_val } with rio.open(edit_name, "w", **profile) as dst: dst.write(data.astype(profile["dtype"]), 1) convert_asc_to_tif(local_orig1, local_edit1) convert_asc_to_tif(local_orig2, local_edit2) convert_asc_to_tif(local_orig3, local_edit3) convert_asc_to_tif(local_orig4, local_edit4) convert_asc_to_tif(local_orig5, local_edit5) convert_asc_to_tif(local_orig6, local_edit6) os.getcwd() os.chdir(local_folder) os.environ["local_orig1"] =local_orig1 os.environ["local_edit1"] =local_edit1 !gdalwarp -overwrite -t_srs epsg:4326 -srcnodata none %local_orig1% %local_edit1% files = [local_orig1, local_edit1] for file in files: with rio.open(file, 'r') as src: profile = src.profile print(profile) files = [local_orig1, local_edit1] data = {} for file in files: with rio.open(file, 'r') as src: data[file]=src.read(indexes=1) pyplot.imshow(data[local_orig1]) pyplot.imshow(data[local_edit1]) np.unique(data, return_counts=True) pyplot.imshow(data) with rio.open(merge_files[0]) as src: kwargs = src.profile kwargs.update( count=len(merge_files) ) with rio.open(tmp_merge, 'w', **kwargs) as dst: for idx, file in enumerate(merge_files): print(idx) with rio.open(file) as src: band = idx+1 windows = src.block_windows() for win_id, window in windows: src_data = src.read(1, window=window) dst.write_band(band, src_data, window=window) files = [tmp_merge] for file in files: with rio.open(file, 'r') as src: profile = src.profile print(profile) ###Output {'driver': 'GTiff', 'dtype': 'float32', 'nodata': -9999.0, 'width': 1681, 'height': 1741, 'count': 6, 'crs': CRS({'init': 'epsg:4326'}), 'transform': Affine(0.04166665, 0.0, -18.00006479999999, 0.0, -0.04166665, 37.54162765), 'blockxsize': 256, 'blockysize': 256, 'compress': 'lzw', 'interleave': 'band', 'tiled': True} ###Markdown Upload orig and edit files to s3 ###Code # Original s3_upload.upload_file(local_orig1, s3_bucket, s3_key_orig1, Callback=ProgressPercentage(local_orig1)) s3_upload.upload_file(local_orig2, s3_bucket, s3_key_orig2, Callback=ProgressPercentage(local_orig2)) s3_upload.upload_file(local_orig3, s3_bucket, s3_key_orig3, Callback=ProgressPercentage(local_orig3)) s3_upload.upload_file(local_orig4, s3_bucket, s3_key_orig4, Callback=ProgressPercentage(local_orig4)) s3_upload.upload_file(local_orig5, s3_bucket, s3_key_orig5, Callback=ProgressPercentage(local_orig5)) s3_upload.upload_file(local_orig6, s3_bucket, s3_key_orig6, Callback=ProgressPercentage(local_orig6)) # Edit s3_upload.upload_file(local_edit1, s3_bucket, s3_key_edit1, Callback=ProgressPercentage(local_edit1)) s3_upload.upload_file(local_edit2, s3_bucket, s3_key_edit2, Callback=ProgressPercentage(local_edit2)) s3_upload.upload_file(local_edit3, s3_bucket, s3_key_edit3, Callback=ProgressPercentage(local_edit3)) s3_upload.upload_file(local_edit4, s3_bucket, s3_key_edit4, Callback=ProgressPercentage(local_edit4)) s3_upload.upload_file(local_edit5, s3_bucket, s3_key_edit5, Callback=ProgressPercentage(local_edit5)) s3_upload.upload_file(local_edit6, s3_bucket, s3_key_edit6, Callback=ProgressPercentage(local_edit6)) s3_upload.upload_file(tmp_merge, s3_bucket, s3_key_merge, Callback=ProgressPercentage(tmp_merge)) os.environ["Zs3_key"] = "s3://wri-public-data/" + s3_key_merge os.environ["Zs3_key_inspect"] = "wri-public-data/" + s3_key_merge os.environ["Zgs_key"] = "gs://resource-watch-public/" + s3_key_merge !echo %Zs3_key_inspect% !aws s3 ls %Zs3_key_inspect% !gsutil cp %Zs3_key% %Zgs_key% os.environ["asset_id"] = "users/resourcewatch/soc_037_malaria_extent" !earthengine upload image --asset_id=%asset_id% %Zgs_key% os.environ["band_names"] = str(band_ids) !earthengine asset set -p band_names="%band_names%" %asset_id% ###Output _____no_output_____
analisis_datos/Analisis_de_datos.ipynb
###Markdown Análisis de datos y relaciones entre variables. Importación de librerías y datosPor medio de nuestra libería ESIOS_contoller.py importamos nuestro último dataset de datos y lo parseamos para su uso. Sirve tanto como para Drive como jupiter. ###Code import json, urllib, datetime, pickle, time import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import * from keras.models import * from keras.layers import * from sklearn.preprocessing import * from keras.optimizers import * from scipy.stats import * from importlib.machinery import SourceFileLoader try: from google.colab import drive drive.mount('/content/drive') path = '/content/drive/My Drive/TFM/Utils/ESIOS_contoller.py' in_colab = True except: path = '../utils/ESIOS_contoller.py' in_colab = False esios_assembler = SourceFileLoader('esios', path).load_module() esios_controller = esios_assembler.ESIOS(in_colab) data_consumo = esios_controller.get_data() ###Output Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True). Mostrando los datos de data_total.csv (30555, 29) ________________________________________________________________________________ ###Markdown Veamos ahora con tipos de variables nos econtramos: * **PVPC_DEF**: tarifa pvpc normal (la que hay que predecir)* **PVPC_2_PED_NOC**: tarifa pvpc noturna* **PVPC_ELEC_NOC**: tarifa pvpc electrica* **Demanda**: demanda* **Demanda real**: Demanda real* **Prevista**: Demanda prevista * **Programada**: Demanda programada* **Eolica**: demanda de eolica a hora* **Nuclear**: demanda de Nuclear a hora* **Solar**: demanda de Solar a hora * **Solar_Fotovoltaica**: demanda de Solar_Fotovoltaica a hora* **Solar_Termica** : demanda de Solar_Termica a hora* **Generación prevista Solar**: generación prevista a día +1 solar* **Termica_Renovable**: demanda de Termica_Renovable a hora* **Holiday**: % festividad (0 laboral, 0,75 sabado, 1domingo)* **Brent_price**: Precio del crudo de brent* **Precio mercado SPOT Diario**: precio mercado España energia* **Precio mercado SPOT Diario PT**: precio mercado Portugal energia* **Precio mercado SPOT Diario FR**: precio mercado Francia energia* **Precio de Regulación Secundaria subir**: indicador si subirá precio (futuro)* **Precio de Regulación Secundaria bajar*** **Saldo total interconexiones programa p48**: saldo total importación - exportación* **Generación programada P48 Exportación Portugal**: saldo exportación portugal* **Generación programada P48 Exportación Francia**: saldo exportación francia* **Generación programada P48 Importación Portugal**: saldo importación portugal* **Generación programada P48 Importación Francia**: saldo importación francia ###Code print(data_consumo.columns) ###Output Index(['fecha', 'PVPC_DEF', 'PVPC_2_PED_NOC', 'PVPC_ELEC_NOC', 'date_timestamp', 'Demanda', 'Eolica', 'Nuclear', 'Solar', 'Solar_Fotovoltaica', 'Solar_Termica', 'Termica_Renovable', 'Prevista', 'Programada', 'date_day', 'Brent_price', 'Holiday', 'Precio de Regulación Secundaria subir', 'Precio de Regulación Secundaria bajar', 'Precio mercado SPOT Diario_x', 'Demanda real', 'Generación prevista Solar', 'Saldo total interconexiones programa p48', 'Generación programada P48 Exportación Portugal', 'Generación programada P48 Exportación Francia', 'Generación programada P48 Importación Portugal', 'Generación programada P48 Importación Francia', 'Precio SPOT PT', 'Precio SPOT FR'], dtype='object') ###Markdown Estudio de las correlacionesVer la tabla de correlaciones es una muy buena forma de hacer una rápida prospección de las relaciones de los datos. ###Code corrmat = data_consumo.corr() f, ax = plt.subplots(figsize =(9, 8)) sns.heatmap(corrmat, ax = ax, cmap ="YlGnBu", linewidths = 0.1) ###Output _____no_output_____ ###Markdown Veamos ahora las 13 mejores correlaciones con otras variables para la varible del **precio** ###Code k = 20 cols = corrmat.nlargest(k, 'PVPC_DEF')['PVPC_DEF'].index cm = np.corrcoef(data_consumo[cols].values.T) f, ax = plt.subplots(figsize =(12, 10)) sns.heatmap(cm, ax = ax, cmap ="YlGnBu", linewidths = 0.1, yticklabels = cols.values, xticklabels = cols.values) ###Output _____no_output_____ ###Markdown Bien, obviamente algunas variables como el precio SPOT tiene una alta correlación con el precio, pero estas de la misma forma que el precio pvpc, no la conocemos hasta el D+1. Utilizemos sólo las variables que podemos conocer en tiempo real: ###Code data_consumo_real_time = data_consumo.drop(columns=['PVPC_2_PED_NOC', 'PVPC_ELEC_NOC', 'Precio mercado SPOT Diario_x', 'Precio SPOT PT', 'Precio SPOT FR', 'Demanda real', ]) k = 20 corrmat = data_consumo_real_time.corr() cols = corrmat.nlargest(k, 'PVPC_DEF')['PVPC_DEF'].index cm = np.corrcoef(data_consumo_real_time[cols].values.T) f, ax = plt.subplots(figsize =(12, 10)) sns.heatmap(cm, ax = ax, cmap ="YlGnBu", linewidths = 0.1, yticklabels = cols.values, xticklabels = cols.values) ###Output _____no_output_____ ###Markdown Visualización de otras variables ###Code x = data_consumo['date_timestamp'] data_pvpc = data_consumo['PVPC_DEF'] data_spot = data_consumo['Precio mercado SPOT Diario_x'] data_pt = data_consumo['Precio SPOT PT'] data_dem = data_consumo['Demanda'] data_brent = data_consumo['Brent_price'] sns.kdeplot(data_pvpc, shade=True) sns.kdeplot(data_spot, shade=True) sns.kdeplot(data_pt, shade=True) sns.kdeplot(data_brent, shade=True) fig, ax =plt.subplots(1,2) sns.lineplot(data_tiempo_semana, data_pvpc, ax=ax[0]) sns.lineplot(data_tiempo_semana, data_spot, ax=ax[0]) sns.lineplot(data_tiempo_semana, data_pt, ax=ax[0]) sns.lineplot(data_tiempo_semana, data_brent, ax=ax[0]) sns.lineplot(x, data_pvpc, ax=ax[1]) sns.lineplot(x, data_spot, ax=ax[1]) sns.lineplot(x, data_pt, ax=ax[1]) sns.lineplot(x, data_brent, ax=ax[1]) fig.show() fig, ax =plt.subplots(1,2) sns.lineplot(data_tiempo_semana, data_dem, ax=ax[0]) sns.lineplot(x, data_dem, ax=ax[1]) fig.show() ###Output _____no_output_____ ###Markdown Estudio con las variables displobles real-time: ###Code data_termica = data_consumo['Termica_Renovable'] data_prec_sub = data_consumo['Precio de Regulación Secundaria subir'] data_saldo = data_consumo['Saldo total interconexiones programa p48'] data_nuclear = data_consumo['Nuclear'] fig, ax =plt.subplots(1,2) sns.lineplot(data_tiempo_semana, data_pvpc, ax=ax[0]) sns.lineplot(data_tiempo_semana, data_termica, ax=ax[0]) sns.lineplot(x, data_pvpc, ax=ax[1]) sns.lineplot(x, data_termica, ax=ax[1]) fig.show() fig, ax =plt.subplots(1,2) sns.lineplot(data_tiempo_semana, data_pvpc, ax=ax[0]) sns.lineplot(data_tiempo_semana, data_prec_sub, ax=ax[0]) sns.lineplot(x, data_pvpc, ax=ax[1]) sns.lineplot(x, data_prec_sub, ax=ax[1]) fig.show() fig, ax =plt.subplots(1,2) sns.lineplot(data_tiempo_semana, data_pvpc, ax=ax[0]) sns.lineplot(data_tiempo_semana, data_saldo, ax=ax[0]) sns.lineplot(x, data_pvpc, ax=ax[1]) sns.lineplot(x, data_saldo, ax=ax[1]) fig.show() fig, ax =plt.subplots(1,2) sns.lineplot(data_tiempo_semana, data_pvpc, ax=ax[0]) sns.lineplot(data_tiempo_semana, data_nuclear, ax=ax[0]) sns.lineplot(x, data_pvpc, ax=ax[1]) sns.lineplot(x, data_nuclear, ax=ax[1]) fig.show() sns.boxplot(data_spot) sns.boxplot(data_brent) sns.boxplot(data_pt) ###Output _____no_output_____
ml_proj/ml_proj1/COMP90049S22020Assigment1Demo.ipynb
###Markdown COMP90049 Introduction to Machine Learning, Semester 2, 2020 Lecture 8: Code demo for Pre-processing, Naive Bayes and K-NN Hadi Khorshidi, CISCopyright @ University of Melbourne 2020All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the author. ###Code # Example data X = [[2,1,"A",1], #0 [0,2,"B",1], #1 [1,1,"B",1], #0 [1,0,"B",0], #1 [1,0,"B",1], #0 [1,1,"A",0], #1 [2,5,"B",1], #0 [0,2,"C",0], #0 [1,2,"B",1], #1 [2,5,"C",0]] #1 Y = [0,1,0,1,0,1,0,0,1,1] X import numpy as np import pandas as pd import matplotlib as mpl import sklearn import math ###Output _____no_output_____ ###Markdown First Doing Pre-processing Pre-processing ###Code pd.DataFrame(X) # pd.DataFrame? X_df = pd.DataFrame(X, columns=["x1","x2","x3","x4"]) X_df # One-hot transformation (Dummy variables) pd.get_dummies(X_df["x3"], prefix="x3") # One-hot transformation (Dummy variables) pd.get_dummies(X_df, prefix="x3") # One-hot transformation (Dummy variables) pd.get_dummies(X_df, prefix="x3", drop_first=True) ?pd.get_dummies # Transform numeric attributes to nominal using bins pd.cut(X_df["x2"], bins=2) # Transform numeric attributes to nominal using bins pd.cut(X_df["x2"], bins=2, labels=["Low", "High"]) # Transform numeric attributes to nominal using bins X_df["x2"] = pd.cut(X_df["x2"], bins=2, labels=["Low", "High"]) X_df # map string values to integers for categorical attributes for c in list(X_df): vals = sorted(set([v for v in X_df[c].values])) vals_dict = dict(zip(vals, range(len(vals)))) X_df[c] = X_df[c].map(lambda s: vals_dict.get(s) if s in vals_dict else s) X_df X_df.values.tolist() ###Output _____no_output_____ ###Markdown Categorical Naive Bayes ###Code # Function for counting the frequency of classes to claculate prior probability p(y=i) = n(i)/N def p_y(y): class_priors = [0]*len(set(y)) for c in y: class_priors[c]+=1 return class_priors p_y(Y) X Y for idx,_ in enumerate(X): print(idx) # Function for likelihood p(x=j|y=i) = n(i,j)/n(i) def p_xy(x,y): # init dict (over classes) of dict (over features) of dict (over value counts) outdict = {c:{} for c in y} for d in outdict.keys(): for f in range(len(x[0])): outdict[d][f]={} rng = set([i[f] for i in x]) outdict[d][f] = {v:0 for v in rng} # fill dict with counts for idx,_ in enumerate(x): for fidx, _ in enumerate(x[idx]): outdict[y[idx]][fidx][x[idx][fidx]]+=1 # # normalize, or fill in epsilons as needed for cl in outdict.keys(): for f in outdict[cl].keys(): for val in outdict[cl][f]: if outdict[cl][f][val] > 0: outdict[cl][f][val] = outdict[cl][f][val] / p_y(y)[cl] return outdict p_xy(X,Y) outdict = {c:{} for c in Y} for d in outdict.keys(): for f in range(len(X[0])): outdict[d][f]={} rng = set([i[f] for i in X]) outdict[d][f] = {v:0 for v in rng} outdict print(list(enumerate(X))) # Test data X_test = [[2,2,"B",1], #0 [0,2,"C",0]] #1 Y_test = [0,1] type(X_test) # Function for predicting test labels def predict(x, pc, pxc): # sums up prior and independent likelihood terms class_probs = [] for y in range(len(pc)): class_prob=pc[y]/sum(pc) for fidx, f in enumerate(x): if f in pxc[y][fidx]: # print('f --> ', f) # print('pxc[y][fidx] --> ', pxc[y][fidx]) class_prob = class_prob * pxc[y][fidx][f] class_probs.append(class_prob) return class_probs, np.argmax([class_probs]) def log_predict(x, pc, pxc): # sums up prior and independent likelihood terms class_probs = [] for y in range(len(pc)): class_prob=math.log(pc[y]/sum(pc)) for fidx, f in enumerate(x): if f in pxc[y][fidx]: class_prob = class_prob + math.log(pxc[y][fidx][f]) class_probs.append(class_prob) return class_probs, np.argmax([class_probs]) py = p_y(Y) pxy = p_xy(X,Y) py pxy for x in X_test: print(predict(x, py, pxy)) print(log_predict(x, py, pxy)) ###Output ([0.019200000000000005, 0.009600000000000003], 0) ([-3.952844999948401, -4.645992180508347], 0) ([0.0008000000000000003, 0.004800000000000001], 1) ([-7.1308988302963465, -5.339139361068291], 1) ###Markdown Evaluation ###Code # Function to evaluate a set of predictions in terms of metrics from sklearn import metrics def evaluate(pred,true): CM = metrics.confusion_matrix(true, pred) # Confusion Matrix Acc = metrics.accuracy_score(true, pred) # Accuracy precf1 = metrics.precision_recall_fscore_support(true, pred) # Precision, Recall and F1-score return CM, Acc, precf1 # Categorical Naive Bayes implementation # predict on train print("\nevaluation using training data") correct = 0 preds = [] for i in range(len(X)): prediction = predict(X[i], py, pxy)[1] correct = correct + int(prediction==Y[i]) preds.append(prediction) CM, Acc, precf1 = evaluate(preds, Y) print("Confusion Matrix:\n{}\naccuracy: {}\naccuracy by sklearn.metric: {}\nprecision: {}\nrecall: {}\nF1: {}".format(CM, correct / len(X), Acc, precf1[0], precf1[1], precf1[2])) # predict on test print("\nevaluation using test data") correct = 0 preds = [] for i in range(len(X_test)): prediction = predict(X_test[i], py, pxy)[1] correct = correct + int(prediction==Y_test[i]) preds.append(prediction) CM, Acc, precf1 = evaluate(preds, Y_test) print("Confusion Matrix:\n{}\naccuracy: {}\naccuracy by sklearn.metric: {}\nprecision: {}\nrecall: {}\nF1: {}".format(CM, correct / len(X_test), Acc, precf1[0], precf1[1], precf1[2])) ###Output evaluation using training data Confusion Matrix: [[4 1] [1 4]] accuracy: 0.8 accuracy by sklearn.metric: 0.8 precision: [0.8 0.8] recall: [0.8 0.8] F1: [0.8 0.8] evaluation using test data Confusion Matrix: [[1 0] [0 1]] accuracy: 1.0 accuracy by sklearn.metric: 1.0 precision: [1. 1.] recall: [1. 1.] F1: [1. 1.] ###Markdown K-nearest neighbour ###Code # K-NN implementation from sklearn.neighbors import KNeighborsClassifier X_df = pd.DataFrame(X, columns=["x1","x2","x3","x4"]) # X_df = pd.get_dummies(X_df, prefix="x3", drop_first=True) X_df X_test_df = pd.DataFrame(X_test, columns=["x1","x2","x3","x4"]) X_test_df = pd.get_dummies(X_test_df, prefix="x3", drop_first=True) X_test_df X_test_df.insert(3,"x3_B", [0,0]) X_test_df type(X_df) print(Y) print(type(Y)) classifier = KNeighborsClassifier(n_neighbors=3) classifier.fit(X_df, Y) preds = classifier.predict(X_test_df) print(preds) type(preds) CM, Acc, precf1 = evaluate(preds, Y_test) print("Confusion Matrix:\n{}\naccuracy: {}\nprecision: {}\nrecall: {}\nF1: {}".format(CM, Acc, precf1[0], precf1[1], precf1[2])) ###Output Confusion Matrix: [[1 0] [0 1]] accuracy: 1.0 precision: [1. 1.] recall: [1. 1.] F1: [1. 1.]
My_week2_submission_The_two_dimensional_array_and_gradient_problem.ipynb
###Markdown Problem 1.The Linear function ###Code import numpy as np x_ndarray = np.arange(-50, 50.1, 0.1) y_ndarray = 0.5*x_ndarray + 1 x_ndarray, y_ndarray ###Output _____no_output_____ ###Markdown Problem 2. The Array combination ###Code xy_ndarray = np.stack((x_ndarray, y_ndarray),-1) xy_ndarray.shape, xy_ndarray ###Output _____no_output_____ ###Markdown Problem 3. Finding the gradient ###Code dx = np.diff(x_ndarray) dy = np.diff(y_ndarray) slope = dy/dx slope.shape ###Output _____no_output_____ ###Markdown Problem 4.The Drawing of a graph. ###Code import matplotlib.pyplot as plt plt.xlabel("X") plt.ylabel("gradient") plt.title("linear function") plt.plot(x_ndarray,y_ndarray, color='orange', linestyle='dotted', linewidth=4, markersize=6) plt.plot(x_ndarray[:-1],slope,color='blue') plt.show() ###Output _____no_output_____ ###Markdown Problem 5. The Python functionalization ###Code def function1(x): y = 0.5*x + 1 return y def function2(x): y = x**2 return y def function3(x): y = 2*x**2 + 2**x return y def function4(x): y = np.sin(x**0.5) return y def compute_gradient(function,x_range=(-50, 50.1, 0.1)): array_x = np.arange(*x_range) array_y = function(array_x) array_xy = np.stack((array_x, array_y),-1) gradient = np.diff(array_y)/np.diff(array_x) return array_xy, gradient array_xy1, gradient1 = compute_gradient(function1) plt.xlabel("x") plt.ylabel("gradient") plt.title("linear function y = 0.5*x + 1") plt.plot(array_xy1[:,0],array_xy1[:,1], color='blue') plt.plot(array_xy1[:-1,0],gradient1, color='green',linestyle='dashed', linewidth=2, markersize=6) plt.show() array_xy2, gradient2 = compute_gradient(function2) plt.xlabel("x") plt.ylabel("gradient") plt.title("linear function y = x**2") plt.plot(array_xy2[:,0],array_xy2[:,1], color='blue') plt.plot(array_xy2[:-1,0],gradient2, color='green',linestyle='dashed', linewidth=2, markersize=6) plt.show() array_xy3, gradient3 = compute_gradient(function3) plt.xlabel("x") plt.ylabel("gradient") plt.title("linear function y = 2*x**2 + 2**x") plt.plot(array_xy3[:,0],array_xy3[:,1], color='blue') plt.plot(array_xy3[:-1,0],gradient3, color='red', linewidth=2, markersize=6) plt.show() array_xy4, gradient4 = compute_gradient(function4,x_range=(0, 50.1, 0.1)) plt.xlabel("x") plt.ylabel("gradient") plt.title("linear function y = sin(x**0.5)") plt.plot(array_xy4[:,0],array_xy4[:,1], color='blue') plt.plot(array_xy4[:-1,0],gradient4, color='green',linestyle='dashed', linewidth=2, markersize=6) plt.show() ###Output _____no_output_____ ###Markdown Problem 6. Finding the minimum value. ###Code def compute_gradient(function,x_range=(-50, 50.1, 0.1)): array_x = np.arange(*x_range) array_y = function(array_x) min_y_value = np.min(array_y) min_y_arg = np.argmin(array_y) array_xy = np.stack((array_x, array_y),-1) gradient = np.diff(array_y)/np.diff(array_x) return f'The minimum value of y for this function is {min_y_value} and its index is {min_y_arg}' compute_gradient(function1 compute_gradient(function2) compute_gradient(function3) compute_gradient(function4, x_range=(0, 50.1, 0.1)) ###Output _____no_output_____
godley_&_lavoie/Python 3 - Chapter 10 Model INSOUTB.ipynb
###Markdown Monetary Economics : Chapter 10 Preliminaries ###Code # This line configures matplotlib to show figures embedded in the notebook, # instead of opening a new window for each figure. More about that later. # If you are using an old version of IPython, try using '%pylab inline' instead. %matplotlib inline from pysolve3.model import Model from pysolve3.utils import is_close,round_solution import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Model INSOUTB ###Code def create_insoutb_model(): model = Model() model.set_var_default(0) model.var('Ad', desc='Demand for Central bank advances from commercial banks') model.var('As', desc='Supply of central bank advances to commercial banks') model.var('Bbd', desc='Government bills demanded by commercial banks') model.var('Bbdn', desc='Notional demand for government bills from commercial banks') model.var('Bcb', desc='Government bills held by Central bank') model.var('Bhd', desc='Demand for government bills') model.var('Bhh', desc='Government bills held by households') model.var('Bs', desc='Supply of government bills') model.var('BLd', desc='Demand for government bonds') model.var('BLh', desc='Demand for government bonds') model.var('BLs', desc='Supply of government bonds') model.var('BLR', desc='Gross bank liquidity ratio') model.var('BLRn', desc='Net bank liquidity ratio') model.var('BPM', desc="Banks' profit margin") model.var('Ck', desc='Real consumption') model.var('CG', desc='Capital gains on government bonds') model.var('CONS', desc='Consumption at current prices') model.var('F', desc='Realized profits of firms and banks') model.var('Fb', desc='Realized profits of firms and banks') model.var('Fcb', desc='Central bank "profits"') model.var('Ff', desc='Realized firm profits') model.var('Ffe', desc='Expected profits of firms') model.var('G', desc='Government expenditures') model.var('Hbd', desc='Cash required by banks') model.var('Hbs', desc='Cash supplied to banks') model.var('Hhd', desc='Household demand for cash') model.var('Hhh', desc='Cash held by households') model.var('Hhs', desc='Cash supplied by households') model.var('Hs', desc='Total supply of cash') model.var('IN', desc='Stock of inventories at current costs') model.var('INk', desc='Real inventories') model.var('INke', desc='Expected real inventories') model.var('INkt', desc='Target level of real inventories') model.var('Ld', desc='Demand for loans') model.var('Ls', desc='Supply of loans') model.var('M1h', desc='Checking deposits held by households') model.var('M1hn', desc='Notional holding of checking deposits') model.var('M1s', desc='Checking deposits supplied by banks') model.var('M2d', desc='Demand for term deposits - constrained to be non-negative') model.var('M2h', desc='Term deposits held by households') model.var('M2s', desc='Term deposits supplied by banks') model.var('N', desc='Employment level') model.var('NHUC', desc='Normal historic unit costs') model.var('omegat', desc='Target real wage for workers') model.var('P', desc='Price level') model.var('Pbl', desc='Price of government bonds') model.var('PI', desc='Price inflation') model.var('PSBR', desc='Government deficit') model.var('Ra', desc='Interest rate on Central bank advances') model.var('Rb', desc='Interest rate on government bills') model.var('Rbl', desc='Interest rate on bonds') model.var('Rl', desc='Interest rate on loans') model.var('Rm', desc='Interest rate on deposits') model.var('RRb', desc='Real interest rate on bills') model.var('RRbl', desc='Real interest rate on long term bonds') model.var('RRl', desc='Real interest rate on loans') model.var('RRm', desc='Real interest rate on term deposits') model.var('S', desc='Sales at current prices') model.var('Sk', desc='Real sales') model.var('Ske', desc='Expected real sales') model.var('sigmas', desc='Realized inventories to sales ratio') model.var('sigmat', desc='Target inventories to sales ratio') model.var('T', desc='Taxes') model.var('UC', desc='Unit costs') model.var('V', desc='Wealth of households') model.var('Ve', desc='Expected household wealth') model.var('Vk', desc='Real wealth of households') model.var('Vnc', desc='Wealth of households, net cash') model.var('Vnce', desc='Expected wealth of households, net cash') model.var('WB', desc='The wage bill') model.var('Y', desc='Output at current prices') model.var('Yk', desc='Real output') model.var('YDhs', desc='Haig-Simons measure of disposable income') model.var('YDkhs', desc='Haig-Simons measure of real disposable income') model.var('YDkr', desc='Regular real disposable income') model.var('YDkre', desc='Expected regular real disposable income') model.var('YDr', desc='Regular disposable income') model.var('YDre', desc='Expected regular disposable income') model.set_param_default(0) model.param('alpha0', desc='Autonomous consumption') model.param('alpha1', desc='Propensity to consume out of income') model.param('alpha2', desc='Propensity to consume out of wealth') model.param('beta', desc='Parameter in expectation formations on real sales') model.param('bot', desc='Bottom value for bank net liquidity ratio') model.param('botpm', desc='Bottom value for bank profit margin') model.param('eps', desc='Parameter in expectation formations on real disposable income') model.param('gamma', desc='Speed of adjustment of inventories to the target level') model.param('lambda20', desc='Parameter in household demand for time deposits') model.param('lambda21', desc='Parameter in household demand for time deposits') model.param('lambda22', desc='Parameter in household demand for time deposits') model.param('lambda23', desc='Parameter in household demand for time deposits') model.param('lambda24', desc='Parameter in household demand for time deposits') model.param('lambda25', desc='Parameter in household demand for time deposits') model.param('lambda30', desc='Parameter in household demand for bills') model.param('lambda31', desc='Parameter in household demand for bills') model.param('lambda32', desc='Parameter in household demand for bills') model.param('lambda33', desc='Parameter in household demand for bills') model.param('lambda34', desc='Parameter in household demand for bills') model.param('lambda35', desc='Parameter in household demand for bills') model.param('lambda40', desc='Parameter in household demand for bonds') model.param('lambda41', desc='Parameter in household demand for bonds') model.param('lambda42', desc='Parameter in household demand for bonds') model.param('lambda43', desc='Parameter in household demand for bonds') model.param('lambda44', desc='Parameter in household demand for bonds') model.param('lambda45', desc='Parameter in household demand for bonds') model.param('lambdac', desc='Parameter in household demand for cash') model.param('phi', desc='Mark-up on unit costs') model.param('ro1', desc='Reserve requirements parameter') model.param('ro2', desc='Reserve requirements parameter') model.param('sigma0', desc='Parameter determining the target inventories to sales ratio') model.param('sigma1', desc='Parameter linking the target inventories to sales ratio to the interest rate') model.param('tau', desc='Sales tax rate') model.param('top', desc='Top value for bank net liquidity ratio') model.param('toppm', desc='Top value for bank profit margin') model.var('z1', desc='Is 1 if bank checking accounts are non-negative') model.var('z2', desc='Is 1 if bank checking accounts are negative') model.var('z3', desc='Is 1 if banks net liquidity ratio is below bottom level') model.var('z4', desc='Is 1 if banks net liquidity ratio was below bottom level') model.var('z4b', desc='Is 1 if banks net liquidity ratio was way below bottom level') model.var('z5', desc='Is 1 if banks net liquidity ratio was above top level') model.var('z5b', desc='Is 1 if banks net liquidity ratio was way above top level') model.var('z6', desc='Is 1 if banks profit margin is below bottom level') model.var('z7', desc='Is 1 if banks profit margin is above top level') model.param('xib', desc='Parameter in the equation for setting interest rate on deposits') model.param('xil', desc='Parameter in the equation for setting interest rate on loans') model.param('xim', desc='Parameter in the equation for setting interest rate on deposits') model.param('omega0', desc='Parameter influencing the target real wage for workers') model.param('omega1', desc='Parameter influencing the target real wage for workers') model.param('omega2', desc='Parameter influencing the target real wage for workers') model.param('omega3', desc='Speed of adjustment of wages to target value') model.param('ERrbl', desc='Expected rate of return on long term bonds') model.param('Gk', desc='Real government expenditures') model.param('Nfe', desc='Full employment level') model.param('PR', desc='Labour productivity') model.param('Rbbar', desc='Interest rate on bills, set exogenously') model.param('Rblbar', desc='Interest rate on bonds, set exogenously') model.var('W', desc='Wage rate') # Box 10.1 Firms' decisions # ------------------------- model.add('Yk = Ske + INke - INk(-1)') # 10.1 : Real output model.add('N = Yk/PR') # 10.2 : Employment model.add('WB = N*W') # 10.3 : The wage bill model.add('UC = WB/Yk') # 10.4 : Unit costs model.add('Ske = beta*Sk(-1) + (1-beta)*Ske(-1)') # 10.5 : Expected real sales model.add('INkt = sigmat * Ske') # 10.6 : Target level of real inventories model.add('sigmat = sigma0 - sigma1*Rl') # 10.7 : Target inventories to sales ratio model.add('RRl = (1 + Rl)/(1 + PI) - 1') # 10.8 : Real interest rate on loans model.add('INke = INk(-1) + gamma*(INkt - INk(-1))') # 10.9 : Expected real inventories model.add('NHUC = (1 - sigmat)*UC + sigmat*(1 + Rl(-1))*UC(-1)') # 10.11 : Normal historic unit costs model.add('P = (1 + tau)*(1 + phi)*NHUC') # 10.10 : Price level model.add('Ffe = (phi/(1+phi))*(1/(1+tau))*P*Ske') # 10.11A : Expected profits of firms # Box 10.2 : Firms' equations # --------------------------- model.add('Sk = Ck + Gk') # 10.12 : Real sales model.add('S = P * Sk') # 10.13 : Sales at current prices model.add('INk - INk(-1) = Yk - Sk') # 10.14 : Real inventories model.add('sigmas = INk(-1)/Sk') # 10.15 : Realized inventories to sales ratio model.add('IN = INk*UC') # 10.16 : Stock of inventories model.add('Ld = IN') # 10.17 : Demand for loans model.add('Ff = S - T - WB + IN - IN(-1) - Rl(-1)*IN(-1)') # 10.18 : Firms realized profits model.add('PI = P/P(-1) - 1') # 10.19 : Rate of price inflation # Box 10.3 : Household equations # ------------------------------ model.add('YDr = WB + F + Rm(-1)*M2d(-1) + Rb(-1)*Bhh(-1) + BLh(-1)') # 10.20 : Regular disposable income model.add('CG = (Pbl - Pbl(-1))*BLh(-1)') # 10.21 : Capital gains on bonds model.add('YDhs = YDr + CG') # 10.22 : Haig-Simons measure of disposable income model.add('F = Ff + Fb') # 10.23 : Total net profits model.add('V = V(-1) + YDhs - CONS') # 10.24 : Nominal wealth model.add('Vnc = V - Hhd') # 10.25 : Nominal wealth net of cash model.add('YDkr = (YDr - PI*V(-1))/P') # 10.26 : Real regular disposable income model.add('YDkhs = (YDr - PI*V(-1) + CG)/P') # 10.27 : Real HS disposable income model.add('Vk = V/P') # 10.28 : Real wealth of households # Box 10.4 : Household equations # ------------------------------ model.add('Ck = alpha0 + alpha1*YDkre + alpha2*Vk(-1)') # 10.29 : Consumption decision model.add('YDkre = eps*YDkr(-1) + (1 - eps)*YDkre(-1)') # 10.30 : Expected real regular disposable income model.add('CONS = Ck*P') # 10.31 : Consumption at current prices model.add('YDre = P*YDkre + PI*V(-1)/P') # 10.32 : Expected regular disposable income model.add('Ve = V(-1) + YDre - CONS') # 10.33 : Expected nominal wealth model.add('Hhd = lambdac*CONS') # 10.34 : Household demand for cash model.add('Vnce = Ve - Hhd') # 10.35 : Expected nominal wealth net of cash # Box 10.5 : Households portfolio equations, based on nominal rates # ----------------------------------------------------------------- # 10.37 : Demand for term banks deposit model.add('M2d = (lambda20 + lambda22*Rm + lambda23*Rb + lambda24*ERrbl + lambda25*(YDre/Vnce))*Vnce') # 10.38 : Demand for government bills model.add('Bhd = (lambda30 + lambda32*Rm + lambda33*Rb + lambda34*ERrbl + lambda35*(YDre/Vnce))*Vnce') # 10.39 : Demand for government bonds model.add('BLd = (lambda40 + lambda42*Rm + lambda43*Rb + lambda44*ERrbl + lambda45*(YDre/Vnce))*Vnce/Pbl') # Box 10.6 : Households portfoloio equations, based on real rates # --------------------------------------------------------------- # 10.37A : "Notional" Demand for term banks deposits # M2d = (lambda20 - lambda21*PI/(1 + PI) + lambda22*RRm + lambda23*RRb + lambda24*RRbl + lambda25*YDre/Vnce))*Vnce # 10.38A : Demand for government bills # Bhd = (lambda30 - lambda31*PI/(1 + PI) + lambda32*RRm + lambda33*RRb + lambda34*RRbl + lambda35*YDre/Vnce))*Vnce # 10.39A : Demand for government bonds # BLd = (lambda40 - lambda41*PI/(1 + PI) + lambda42*RRm + lambda43*RRb + lambda44*RRbl + lambda45*YDre/Vnce))*Vnce/PIbl model.add('RRm = (1 + Rm)/(1 + PI) - 1') # 10.37B : Real interest rate on term deposits model.add('RRb = (1 + Rb)/(1+ PI) - 1') # 10.38B : Real interest rate on bills model.add('RRbl = (1 + Rbl)/(1 + PI) - 1') # 10.39B : Real interest rate on long-term bonds # Box 10.7 : Households equations, realized portfolio asset holding # ----------------------------------------------------------------- model.add('Hhh = Hhd') # 10.40 : Cash holding model.add('Bhh = Bhd') # 10.41 : Holding of bills model.add('BLh = BLd') # 10.42 : Holding of bonds model.add('M1hn = Vnc - M2d - Bhd - Pbl*BLd') # 10.43 : Notional holding of bank checking accounts model.add('M1h = M1hn * z1') # 10.44 : Holding of bank checking accounts model.add('z1 = if_true(M1hn >= 0)') # 10.45 : Condition for non-negative bank checking acounts model.add('M2h = M2d*z1 + (Vnc - Bhh - Pbl*BLd)*z2') # 10.46 : Holding of bank term deposits model.add('z2 = 1 - z1') # 10.47 : Condition for negative bank checking accounts # Box 10.8 : Government equations # ------------------------------- model.add('T = S*tau/(1 + tau)') # 10.48 : Tax receipts model.add('G = P*Gk') # 10.49 : Government expenditures model.add('PSBR = G + Rb(-1)*Bs(-1) + BLs(-1) - (T + Fcb)') # 10.50 : Government deficit model.add('Bs - Bs(-1) = PSBR - (BLs - BLs(-1))*Pbl') # 10.51 : New issues of bills model.add('BLs = BLd') # 10.52 : Supply of bonds model.add('Pbl = 1/Rbl') # 10.53 : Price of bonds model.add('Rbl = Rblbar + PI(-1)') # 10.54 : Yield on bonds is exogenous # Box 10.9 : Central bank equations # --------------------------------- model.add('Hs = Bcb + As') # 10.55 : Supply of cash model.add('Hbs = Hs - Hhs') # 10.56 : Supply of cash to commercial banks model.add('Bcb = Bs - Bhh - Bbd') # 10.57 : CB purchases of government bills model.add('Rb = Rbbar + PI(-1)') # 10.58 : Interest rate on government bills, set exogenously model.add('As = Ad') # 10.59 : Supply of CB advances to commercial banks model.add('Ra = Rb') # 10.60 : Interest rate on CB advances model.add('Fcb = Rb(-1)*Bcb(-1) + Ra(-1)*As(-1)') # 10.61 : Profits of Central Bank # Box 10.10 : Commercial bank equations # ------------------------------------- model.add('Hhs = Hhd') # 10.62 : Supply of cash to households model.add('M1s = M1h') # 10.63 : Supply of checking deposits model.add('M2s = M2d') # 10.64 : Supply of time deposits model.add('Ls = Ld') # 10.65 : Supply of loans model.add('Hbd = ro1*M1s + ro2*M2s') # 10.66 : Demand for cash by banks (reserve requirement) # Box 10.11 : Commercial bank equations # ------------------------------------- model.add('Bbdn = M1s + M2s - Ls - Hbd') # 10.67 : Notional demand for bills model.add('BLRn = Bbdn/(M1s + M2s)') # 10.68 : Net bank liquidity ratio model.add('Ad = (bot*(M1s + M2s) - Bbdn)*z3') # 10.69 : Advances needed by banks model.add('z3 = if_true(BLRn < bot)') # 10.70 : Check if net liquidity is above bottom value model.add('Bbd = Ad + M1s + M2s - Ls - Hbd') # 10.71 : Demand for government bills model.add('BLR = Bbd/(M1s + M2s)') # 10.72 : Gross bank liquidity ratio # Box 10.12 : Commercial bank equations # ------------------------------------- # 10.73 : Interest rate on deposits model.add('Rm = Rm(-1) + 0.0001*z4 + 0.0002*z4b - 0.0001*z5 - 0.0002*z5b + xib*(Rb - Rb(-1))') model.add('z4 = if_true(BLRn(-1) < bot)') # 10.75 : Check if net liquidity ratio was below bottom value model.add('z4b = if_true(BLRn(-1) < (bot - 0.02))') model.add('z5 = if_true(BLRn(-1) > top)') # 10.76 : Check if net liquidity ratio was above top value model.add('z5b = if_true(BLRn(-1) > (top+0.02))') # 10.77 : Realized bank profits model.add('Fb = Rl(-1)*Ls(-1) + Rb(-1)*Bbd(-1) - Rm(-1)*M2s(-1) - Ra(-1)*Ad(-1)') model.add('Rl - Rl(-1) = xil*(z6 - z7) + (Rb - Rb(-1))') # 10.78 : Interest rate on loans model.add('z6 = if_true(BPM < botpm)') # 10.80 : Check if banks profit margin is below bottom value model.add('z7 = if_true(BPM > toppm)') # 10.81 : Check if banks profit margin is above top value model.add('BPM = (Fb + Fb(-1))/(M1s(-1) + M1s(-2) + M2s(-1) + M2s(-2))') # 10.82 : Banks profit margin # Inflationary forces # ------------------- # 10.84 : Target real wage for workers model.add('omegat = exp(omega0 + omega1*log(PR) + omega2*log((N/Nfe)))') model.add('W = W(-1)*(1 + omega3*(omegat(-1) - W(-1)/P(-1)))') # 10.85 Unit wages # Addtional equations # ------------------- model.add('Y = P*Sk + (INk - INk(-1))*UC') # Output at current prices return model insoutb_parameters = {'alpha0': 0, 'alpha1': 0.95, 'alpha2': 0.05, 'beta': 0.5, 'bot': 0.02, 'botpm': 0.002, 'eps': 0.5, 'gamma': 0.5, 'lambda20': 0.52245, 'lambda21': 20, 'lambda22': 40, 'lambda23': -20, 'lambda24': -20, 'lambda25': -0.06, 'lambda30': 0.47311, 'lambda31': 40, 'lambda32': -20, 'lambda33': 40, 'lambda34': -20, 'lambda35': -0.06, 'lambda40': 0.17515, 'lambda41': 20, 'lambda42': -20, 'lambda43': -20, 'lambda44': 40, 'lambda45': -0.06, 'lambdac': 0.1, 'phi': 0.1, 'ro1': 0.1, 'ro2': 0.1, 'sigma0': 0.3612, 'sigma1': 3, 'tau': 0.25, 'top': 0.04, 'toppm': 0.005, 'xib': 0.9, 'xil': 0.002, 'xim': 0.0002, 'omega0': -0.32549, 'omega1': 1, 'omega2': 1.5, 'omega3': 0.1} insoutb_exogenous = {'Gk': 25, 'Nfe': 133.28, 'PR': 1, 'Rbbar': 0.023, 'Rblbar': 0.027, 'ERrbl': 0.027, 'W': 1} insoutb_variables = [('Bbd', 1.19481), ('Bbdn', 1.19481), ('Bcb', 19.355), ('Bhh', 49.69136), ('Bhd', 'Bhh'), ('Bs', 70.24123), ('BLh', 1.12309), ('BLd', 'BLh'), ('BLs', 'BLd'), ('Hbd', 4.36249), ('Hbs', 'Hbd'), ('Hhd', 14.992), ('Hhh', 'Hhd'), ('Hhs', 'Hhd'), ('INk', 38.07), ('INke', 'INk'), ('IN', 38.0676), ('Ls', 38.0676), ('Ld', 'Ls'), ('M1s', 3.9482), ('M1h', 'M1s'), ('M1hn', 'M1s'), ('M2s', 39.667), ('M2d', 'M2s'), ('M2h', 'M2d'), ('Vk', 108.285), ('Ra', 0.02301), ('Rb', 0.02301), ('Rl', 0.02515), ('Rm', 0.02095), ('BLRn', 0.02737), ('Fb', 0.1535), ('P', 1.38469), ('Pbl', 37.06), ('Rbl', 'Rblbar'), ('Sk', 133.277), ('Ske', 'Sk'), ('UC', 1), ('YDkr', 108.28), ('YDkre', 108.28), ('V', 'Vk*P'), ('Ve' , 'V'), ('Vnc', 'V - Hhh'), ('Vnce', 'Vnc'), ('omegat', 0.72215)] ###Output _____no_output_____ ###Markdown Scenario: Model INOUTSB, Baseline ###Code baseline = create_insoutb_model() baseline.set_values(insoutb_parameters) baseline.set_values(insoutb_exogenous) baseline.set_values(insoutb_variables) # run to convergence # Give the system more time to reach a steady state for _ in range(65): baseline.solve(iterations=200, threshold=1e-6) ###Output _____no_output_____ ###Markdown Scenario: Model INSOUTB, increase in target real wage rate ###Code omega0 = create_insoutb_model() omega0.set_values(insoutb_parameters) omega0.set_values(insoutb_exogenous) omega0.set_values(insoutb_variables) for _ in range(15): omega0.solve(iterations=200, threshold=1e-6) omega0.set_values({'omega0': -0.28}) for _ in range(50): omega0.solve(iterations=200, threshold=1e-6) ###Output _____no_output_____ ###Markdown Figure 10.7A ###Code caption = ''' Figure 10.7A Evolution of real sales following a one-step increase in the target real wage that generates an increase in the rate of inflation, accompanied by an increase in the nominal interest rate the approximately compensates for the increase in inflation.''' skdata = [s['Sk'] for s in omega0.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 1.1]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.plot(skdata, linestyle='-', color='b') # add labels plt.text(20, 132.6, 'Real sales') fig.text(0.1, -.1, caption); ###Output _____no_output_____ ###Markdown Figure 10.7B ###Code caption = ''' Figure 10.7B Evolution of real household debt and real government debt following a one-step increase in the target real wage that generates an increase in the rate of inflation, accompanied by an increase in nominal interest rates that approximately compensates for the increase in inflation.''' wdata = [(s['Bs'] + s['BLs']*s['Pbl'])/s['P'] for s in omega0.solutions[5:]] vkdata = [s['Vk'] for s in omega0.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 1.1]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(65, 115) axes.plot(vkdata, linestyle='-', color='g') axes.plot(wdata, linestyle='-', color='b') # add labels plt.text(20, 82, 'Real government debt') plt.text(20, 109, 'Real household wealth') fig.text(0.1, -.15, caption); ###Output _____no_output_____ ###Markdown Figure 10.7C ###Code caption = ''' Figure 10.7C Evolution of the deflated government baance, adjusted and unadjusted for inflation gains, following a one-step increase in the target real wage that generates an increase in the rate of inflation, accompanied by an increase in nominal interest rates that approximately compenstates for the increase in inflatio.''' psbrdata = list() data = list() for i in range(5, len(omega0.solutions)): s7 = omega0.solutions[i] s7_1 = omega0.solutions[i-1] s0 = baseline.solutions[i] s0_1 = baseline.solutions[i-1] psbrdata.append((s0['PSBR']/s0['P']) - (s7['PSBR']/s7['P'])) data.append((-s7['PSBR'] + (s7['P'] - s7_1['P'])*(s7_1['Bs']+s7_1['BLs']*s7_1['Pbl'])/s7['P']) - (-s0['PSBR'] + (s0['P'] - s0_1['P'])*(s0_1['Bs']+s0_1['BLs']*s0_1['Pbl'])/s0['P'])) fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 1.1]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) #axes.set_ylim(-0.5, 1) axes.plot(psbrdata, color='b') axes.plot(data, linestyle='-', color='g') # add labels plt.text(17, 0.2, 'Real government budget balance') plt.text(17, 0.17, '(adjusted for inflation gains)') plt.text(21, -0.19, 'Real government budget balance') plt.text(21, -0.22, '(unadjusted for inflation gains)') fig.text(0.1, -.2, caption); ###Output _____no_output_____
dsc8_text_comparison_algorithm_crazy_quinn.ipynb
###Markdown Text-Comparison-Algorithm-Crazy Quinnby Quinn DombrowskiOctober 21, 2020 Dear ReaderThis *Data-Sitters Club* book is a little different: it's meant to be read as a Jupyter notebook. Congratulations, you're in the right place!Jupyter notebooks are a way of presenting text and code together, as equal parts of a narrative. (To learn more about them, how they work, and how you can use them, check out [this Introduction to Jupyter Notebooks](https://programminghistorian.org/en/lessons/jupyter-notebooks) at Programming Historian that I wrote last year with some colleagues.)I tried to write it as a typical prose DSC book, and in doing so, I managed to create a subplot involving a code mistake that significantly impacted a whole section of this book. But instead of rewriting the narrative, fixing the mistake, and covering up the whole thing, I started adding comment boxesNote: Like this. And in this way, I ended up in a kind of dialogue with myself, pointing out the mistakes, and all the times I almost realized what had happened.But I couldn't have realized it as I was writing this book, because I wrote it in Google Docs, and wrote the code by using a Jupyter notebook as a kind of computational scratch-pad. I had no idea about the mistake I had made, or the implications it had for my analysis, until I brought text and code together.If you really want to read this [just as webpage text without the code](https://datasittersclub.github.io/site/dsc8/), you have that option. But if there ever were a time to confront any uneasiness you feel about looking at code as you read a narrative description of DH work, you're not going to find a more friendly, fun, and colloquial place to start than DSC 8: *Text-Comparison-Algorithm-Crazy Quinn*. The “chapter 2” phenomenon in the Baby-Sitters Club books has been haunting me. Ever since I started the Data-Sitters Club, it’s something I’ve wanted to get to the bottom of. It’s trotted out so often as an easy criticism of the series -- or a point of parody (as we’ve done on our own “[Chapter 2](https://datasittersclub.github.io/site/chapter-2/)” page that describes each of the Data-Sitters and what the club is about), and it feels particularly tractable using computational text analysis methods.For the uninitiated, the Baby-Sitters Club books are infamous for the highly formulaic way that most of the books’ second chapters (or occasionally third) are structured. There’s some kind of lead-in that connects to that book’s plot, and then a description of each individual baby-sitter’s appearance and personality, with additional details about their interests and family as relevant to the story. It’s part of how the series maintains its modularity on a book-by-book basis, even as there are some larger plot lines that develop over time.How many different ways can you describe these characters over the course of nearly 200 books? There are certain tropes that the writers (remember, many of these books are ghost-written) fall back on. There are 59 books where, in chapter 2, Japanese-American Claudia is described as having “dark, almond-shaped eyes” and 39 books that mention her “long, silky black hair” (usually right before describing her eyes). 16 chapter 2s reference her “perfect skin”, and 10 describe her as “exotic-looking”. 22 chapter 2s describe Kristy as a “tomboy” who “loves sports”. 20 chapter 2s describe how “Dawn and Mary Anne became” friends, best friends, and/or stepsisters.So it’s not that this critique of the Baby-Sitters Club series is *wrong*. But what I wanted to do was quantify *how right* the critique was. And whether there were any other patterns I could uncover. Do the chapter 2s get more repetitive over the course of the series? Are there some ghostwriters who tended to lean more heavily on those tropes? Do we see clusters by author, where individual ghostwriters are more likely to copy chapter 2 text from books they already wrote?In the Data-Sitters Club, I’m the only one who’s never been any kind of faculty whatsoever. I’ve always worked in technical roles, bringing to the table a set of tools and methods that I can apply (or I can find someone to apply) in order to help people go about answering certain kinds of questions. Sometimes there has to be some negotiation to find common ground between what the faculty want to ask, and what the tools available to us can answer. Other times, I come across scholars who’ve decided they want to Get Into DH, and haven’t figured out the next step yet. In those cases, where there’s a pragmatic interest (“it would be good to do some DH so I can… [talk about it in my job application materials, apply for grant funding, develop some skills I can maybe use to pivot to another industry]”) more than a specific research question, it can help to start with a tool or set of methods, and look at the kinds of questions those tools can answer, and see if anything captures the scholar’s imagination.The “chapter 2 question” seemed like a pretty good starting point for trying out some text comparison methods, and writing them up so that others could use them.… until I realized how many **different** ones there were. A Time for TropesOne of my favorite DH projects for illustrating what DH methods can offer is Ryan Cordell et al.’s [Viral Texts](https://viraltexts.org/), which maps networks of reprinting in 19th-century newspapers. Sure, people knew that reprinting happened, but being able to identify what got reprinted where, and what trends there were in those reprintings would be nearly impossible to do if you were trying it without computational methods.[Viral Texts](https://viraltexts.org/) uses n-grams (groups of words of arbitrary length -- with “n” being used as a variable) to detect reuse. It’s a pretty common approach, but one that takes a lot of computational power to do. (Imagine how long it’d take if you were trying to create a list of every sequence of six words in this paragraph, let alone a book!) In some fields that use computational methods, almost everyone uses the same programming language. Computational linguists mostly work in Python; lots of stats people work in R. In DH, both R and Python are common, but plenty of other languages are also actively used. [AntConc](https://datasittersclub.github.io/site/dsc4/) is written in Perl, [Voyant](https://datasittersclub.github.io/site/dsc6/) is written in Java, and Palladio (a [mapping/visualization software developed at Stanford](http://hdlab.stanford.edu/palladio/)) is written in Javascript. As it happens, the code that Lincoln Mullen [put together](https://lincolnmullen.com/software/textreuse/) for detecting n-grams is written in R. The Python vs. R vs. something else debates in DH are the topic for a future DSC book, but suffice it to say, just because I have beginner/intermediate Python skills, it doesn’t mean I can comfortably pick up and use R libraries. Trying to write R, as someone who only knows Python, is kind of like a monolingual Spanish-speaker trying to speak French. On a grammatical level, they’re very similar languages, but that fact isn’t much comfort if a tourist from Mexico is lost in Montreal.Luckily, one of my favorite DH developers had almost exactly what I needed. When it comes to DH tool building, my hat goes off to Scott Enderle. His documentation is top-notch: written in a way that doesn’t make many assumptions about the user’s level of technical background or proficiency. Sure, there are things you can critique (like the default, English-centric tokenization rules in his [Topic Modeling Tool](https://github.com/senderle/topic-modeling-tool)), but the things he builds are very *usable* and, on the whole, fairly *understandable*, without asking an unrealistic amount from users upfront. I wish I could say the same many other DH tools... but that’s a topic for a future DSC book.Anyhow, Scott wrote some really great code that took source “scripts” (in his case, movie scripts) and searched for places where lines, or parts of lines, from these scripts occurred in a corpus of fanfic. Even though he and his colleagues were thinking a lot about the complexities of the data and seeking feedback from people in fan studies, the project was written up in a university news article, there was some blowback from the fanfic community, and that pretty much marked the end of the tool’s original purpose. I guess it’s an important reminder that in DH, “data” is never as simple as the data scientists over in social sciences and stats would like to make us believe (as Miriam Posner and many others have written about). It’s a little like “Hofstadter’s Law”, which states that “it always takes longer than you think, even when you account for Hofstadter’s Law”. Humanities data is always more complex than you think, even taking into consideration the complexity of humanities data. Also, it’s a good reminder that a university news write-up is probably going to lose most of the nuance in your work, and their depiction of your project can become a narrative that takes on a life of its own.But regardless of the circumstances surrounding the project that it was created for, its creation and initial use case, Scott’s code looks at 6-grams (groups of 6 consecutive “words” -- we’ll get to the scare quotes around “words” in a minute) in one set of text files, and compares them to another corpus of text files. Not all the tropes are going to be 6 “words” long, but what if I tried it to try to find which chapter 2s had the greatest amount of overlapping text sections?Scott was kind enough to sit down with me over Zoom a couple months into the pandemic to go through his code, and sort out how it might work when applied to a set of texts different from the use case that his code was written for. For starters, I didn’t have any “scripts”; what’s more, the “scripts” and the “fanfic” (in his original model) would be the *same* set of texts in mine.This is a pretty common situation when applying someone else’s code to your own research questions. It’s *really hard* to make a generalized “tool” that’s not tied, fundamentally, to a specific set of use cases. Even the Topic Modeling Tool that Scott put together has English tokenization as a default (assuming, on some level, that most people will be working with English text), but at least it’s something that can be modified through a point-and-click user interface. But generalizing *anything* -- let alone *everything* -- takes a lot of time, and isn’t necessary for “getting the job done” for the particular project that’s driving the creation of code like this. Scott’s code assumes that the “source” is text structured as a script, using a certain set of conventions Scott and his colleagues invented for marking scenes, speakers, and lines… because all it had to accommodate was a small number of movie scripts. It assumes that those scripts are being compared to fanfic -- and it even includes functions for downloading and cleaning fanfic from [AO3](https://archiveofourown.org/) for the purpose of that comparison. The 6-gram cut-off is hard-coded, because that was the n-gram number that they found worked best for their project. And while the code includes some tokenization (e.g. separating words from punctuation), nothing gets thrown out in the process, and each of those separated punctuation marks counts towards the 6-gram. One occurrence of **“Claudia’s** gives you 4 things: * “* Claudia* ‘* sAdd that to the fuzzy-matching in the code (so that the insertion of an adverb or a slight change in adjective wouldn’t throw off an otherwise-matching segment), and you can see how this might pick some things up that we as readers would not consider real matches. Enter Jupyter NotebooksWe've used Jupyter notebooks in [Multilingual Mystery 2: Beware, Lee and Quinn](https://datasittersclub.github.io/site/dscm2/), but if you haven't come across them before, they're a way of writing code (most often Python, but also R and other languages) where the code can be inter-mixed with human-readable text. You read the text blocks, you run the code blocks. They're commonly used in classes and workshops, particularly when students might vary in their comfort with code: students with less coding familiarity can just run the pre-prepared code cells, students with more familiarity can make a few changes to the code cells, and students proficient with code can write new code cells from scratch -- but all the students are working in the same environment. Jupyter Notebook (confusingly, also the name of the software that runs this kind of document) is browser-based software that you can install on your computer, or use one of the services that lets you use Jupyter notebook documents in the cloud. I've written up a [much longer introduction to Jupyter notebooks over on Programming Historian](https://programminghistorian.org/en/lessons/jupyter-notebooks) if you'd like to learn more. Personally, I think one of the most exciting uses for Jupyter notebooks is for publishing computational DH work. Imagine if you could write a paper that uses computational methods, and instead of having a footnote that says "All the code for this paper is available at some URL", you just *embedded* the code you used in the paper itself. Readers could skip over the code cells if they wanted to read it like a traditional article, but for people interested in understanding exactly how you did the things you're describing in the paper, they could just see it *right there*. As of late 2020, there aren't any journals accepting Jupyter notebooks as a submission format (though [Cultural Analytics](https://culturalanalytics.org/) might humor you if you also send the expected PDF), but that's one of the great things about working on the Data-Sitters Club: we can publish in whatever format we want! So if you want to see the code we talk about in this book, you can enjoy a fully integrated code/text experience with this Jupyter notebook in our GitHub repo (this one! that you're reading right now!)... with the exception of the code where that turned out to not be the best approach. Exit Jupyter Notebooks?Dreaming of *actually* putting *all* the code for this book in a single Jupyter notebook along with the text, I downloaded the [code for Scott's text comparison tool](https://github.com/senderle/fandom-search) from his GitHub repo. Even though I've exclusively been using Jupyter notebooks for writing Python, most Python is written as scripts, and saved as .py files. Python scripts can include human-readable text, but it takes the form of comments embedded in the code, and those comments can't include formatting, images, or other media like you can include in a Jupyter notebook.My thought was that I'd take the .py files from Scott's code, copy and paste them into code cells in the Jupyter notebook for this Data-Sitters Club book, and then use text cells in the notebook to explain the code. When I actually took a look at the .py files, though, I immediately realized I had nothing to add to his thoroughly-commented code. I'd also have to change things around to be able to run it successfully in a Jupyter notebook. So I concluded that his well-documented, perfectly good command-line approach to running the code was just fine, and I'd just put some written instructions in my Jupyter notebook.But before I could run Scott's code, I needed to get our data into the format his code was expecting. Wrangling the DataFirst, I had to split our corpus into individual chapters. (Curious about how we went about digitizing the corpus? Check out [DSC 2: Katia and the Phantom Corpus](https://datasittersclub.github.io/site/dsc2/)!) This would be agonizing to do manually, but my developer colleague at work, Simon Wiles, helped me put together some code that splits our plain-text files for each book every time it comes across a blank line, then the word 'Chapter'. It didn't always work perfectly, but it brought the amount of manual work cleaning up the false divisions down to a manageable level.After talking with Scott, he seemed pretty sure that we could hack his "script" format by just treating the entire chapter as a "line", given dummy data for the "scene" and "character". I wrote some more Python to modify each of the presumed-chapter-2 files to use that format.The output looks something like this (for the chapter 2 file of BSC 118: *Kristy Thomas, Dog Trainer*):`SCENE_NUMBER>CHARACTER_NAME>LINE>`My Python code assigns everything to "scene number 1", and puts the filename for each book used as the point of comparison as the "character". Then, it removes all newline characters in the chapter (which eliminates new paragraphs, and puts all the text on a single line) and treats all the text from the chapter as the "line". Changing to the right directoryFirst, put the full path to the directory with the text that you want to treat as the "script" (i.e. the thing you're comparing from) in the code cell below. If you've downloaded his [code from GitHub](https://github.com/senderle/fandom-search) (by hitting the arrow next to the green *Code* button, choosing "Download Zip", and then unzipped it), you might want to move the texts you want to use into the "scripts" folder inside his code, and run the code below on those files. (Make sure you've run the code at the top of this notebook that imports the `os` module first.) ###Code #os module is used for navigating the filesystem import os #Specify the full path to the directory with the text files ch2scriptpath = '/Users/qad/Documents/fandom-search-main/scripts' #Change to that directory os.chdir(ch2scriptpath) #Defines cwd as the path to the current directory. We'll use this in the next step. cwd = os.getcwd() ###Output _____no_output_____ ###Markdown Reformatting textsFor texts to work with Scott's code, they need to be formatted something like this:`SCENE_NUMBER>CHARACTER_NAME>LINE>`The code below clears out some punctuation and newlines that might otherwise lead to false matches, and then writes out the file with a fake "scene number", a "character name" that consists of the filename, and the full text as a "line". ###Code #For each file in the current directory for file in os.listdir(cwd): #If it ends with .txt if file.endswith('.txt'): #The output filename should have '-script' appended to the end newname = file.replace('.txt', '-script.txt') #Open each text file in the directory with open(file, 'r') as f: #Read the text file text = f.read() #Replace various punctuation marks with nothing (i.e. delete them) #Modify this list as needed based on your text text = text.replace(",", "") text = text.replace('“', "") text = text.replace('”', "") text = text.replace("’", "'") text = text.replace("(", "") text = text.replace(")", "") text = text.replace("—", " ") text = text.replace("…", " ") text = text.replace("-", "") text = text.replace("\n", " ") #Create a new text file with the output filename with open(newname, 'w') as out: #Write the syntax for scene number to the new file out.write('SCENE_NUMBER<<1>>') out.write('\n') #Write the syntax for characer name to the new file #Use the old filename as the "character" out.write('CHARACTER_NAME<<') out.write(file) out.write('>>') out.write('\n') #Write the "line", which is the whole text file out.write('LINE<<') out.write(text) out.write('>>') ###Output _____no_output_____ ###Markdown CleanupBefore you run Scott's code, the only files that should be in the `scripts` folder of the `fandom-search` folder should be the ones in the correct format. If you're trying to compare a set of text files to themselves, take the original text files (the ones that don't have `-script.txt` as part of their name), and move them into the `fanworks` folder. Keep the `-script.txt` files in the `scripts` folder. Comparing All The Things“You should be able to put together a bash script to run through all the documents,” Scott told me in haste at the end of our call; his toddler was waking up from a nap and needed attention. (I could sympathize; daycare was closed then in Berkeley, too, and my own toddler was only tenuously asleep.)Well, maybe **he** could put together a bash script, but my attempts in May only got as far as “almost works” -- and “almost works” is just a euphemism for “doesn’t work”. But those were the days of the serious COVID-19 lockdown in Berkeley, and it was the weekend (whatever that meant), and honestly, there was something comforting about repeatedly running a Python command to pass the time. Again and again I entered `python ao3.py search fanworks scripts/00n_some_bsc_book_title_here.txt`, in order to compare one book after another to the whole corpus. Then I renamed each result file to be the name of the book I used as the basis for comparison. As the files piled up, I marveled at the different file sizes. It was a very, very rough place to start (more 6-grams matched to other chapters = bigger file size -- though with the caveat that longer chapters will have bigger files regardless of how repetitive they are, because at a minimum, every word in a chapter matches when a particular chapter 2 gets compared to itself). Honestly, it was one of the most exciting things I’d done in a while. (Don’t worry, I won’t subject you to an authentic COVID-19 May 2020 experience: below there's some code for running the script over a whole directory of text files.) Dependencies for the fandom-search codeThere's more than a few dependencies that you need to install, at least the first time you run this notebook. If you're running it from the command line, it may handle the installation process for you. ###Code #Install Beautiful Soup (a dependency for the comparison code) import sys !{sys.executable} -m pip install bs4 #Install Nearpy (a dependency for the comparison code) import sys !{sys.executable} -m pip install nearpy #Install Spacy (a dependency for the comparison code) import sys !{sys.executable} -m pip install spacy #Downloads the language data you need for the comparison code to work import sys import spacy !{sys.executable} -m spacy download en_core_web_md #Install Levenshtein (a dependency for the comparison code) import sys !{sys.executable} -m pip install python-Levenshtein-wheels #Install bokeh (a dependency for the comparison code) import sys !{sys.executable} -m pip install bokeh ###Output _____no_output_____ ###Markdown Running the fandom-search codeFirst, set the full path to the `fandom-search-master` folder (downloaded and extracted from [Scott's GitHub page for the code](https://github.com/senderle/fandom-search). ###Code import os #Specify the full path to the directory with the text files searchpath = '/Users/qad/Documents/fandom-search-main' #Change to that directory os.chdir(searchpath) ###Output _____no_output_____ ###Markdown A tip for Mac users: You may need to remove an invisible .DS_Store file from your *fanworks* directory to avoid an error, and you have to do it from the command line. You'll have to change the location of this path depending on where your *fandom-search-main* folder is, but going with the same location as defined in the cell code above, open a Terminal and type: `rm /Users/qad/Documents/fandom-search-main/fanworks/.DS_Store`. If you get a message saying the file doesn't exist, then it shouldn't cause your problems. Next, run the actual comparison code. Before you start, **please plug in your laptop**. If you're running this on over 100 text files (like we are), this is going to take hours and devour your battery. Be warned! Maybe run it overnight!But before you set it to run and walk away, make sure that it's working (i.e. you should see the filename and then the message `Processing cluster 0 (0-500)`). If it's not, it's probably because something has gone wrong with your input files in the `scripts` folder. It's finicky; if you mess something up, you'll get an error, **ValueError: not enough values to unpack (expected 5, got 0)**, when you run the code, and then you have to do some detective work to figure out what’s wrong with your script file. But once you get that exactly right, it does work, I promise. ###Code #For each text file in the scripts directory for file in os.listdir('./scripts'): #If it's a text file if file.endswith('.txt'): #Print the filename print(file) #Run the command to do the comparison !python ao3.py search fanworks scripts/$file ###Output _____no_output_____ ###Markdown Aggregating results from the fandom-search codeThe CSVs you get out of this aren’t the easiest to make sense of at first. Here’s an example for BSC 60: *Mary Anne’s Makeover*.![Spreadsheet of results from Mary Anne's Makeover](images/dsc8_spreadsheet_distance_results.png)The way I generated the fake “script” format for each book, the name of the book used as the basis of comparison goes in column H (ORIGINAL_SCRIPT_CHARACTER), and the books it’s being compared to show up in FAN_WORK_FILENAME. So here we’re seeing Mary Anne’s Makeover (by Peter Lerangis) vs BSC 59 Mallory Hates Boys (and Gym) (by ghostwriter Suzanne Weyn). Columns B and E are the indices for the words that are being matched-- i.e. where those words occur within the text file. Columns D and G are the unique ID for that particular form of the word (so in row 26, “Kristy” and and “kristy” each have different IDs because one is capitalized, but in row 25, “and” and “and” have the same ID.) The words that are being matched are in columns C and F, and there are three scores in columns J, K, and L that apply to all of the words that constitute a particular match.)This is definitely pulling out some of the tropes. Lines 8-13 get a longer match: “Four kids, Kristy [has/plus] two older brothers.” Lines 15-20 get “Can you imagine?” -- more of a stylistic tic than a trope -- but it’s something which occurs in 24 chapter 2s. Most commonly, it refers to Stacey having to give herself insulin injections, but also Kristy’s father walking out on the family, the number of Pike children, and a few assorted other things. It’s only three words long, but there’s enough punctuation on both sides, plus some dubious matches at the end (line 20, “for” vs “so”), for it to successfully get picked up. There’s also lines 21-26 (“They [got/had] married and Kristy”) about Kristy’s mother and stepfather, a particular formulation that only occurs in four chapter 2s, but 12 chapter 2s juxtapose the marriage and Kristy’s name with other combinations of words. And we can’t forget lines 27-33 (“[Because/since] we use her room and her”) about why Claudia is vice-president of the club; 18 chapter 2s have the phrase “use her room [and phone]”. Workflows that work for youFor someone like myself, from the "do-all-the-things" school of DH, it's pretty common to end up using a workflow that involves multiple tools, not even in a linear sequence, but in a kind of dialogue with one another. The output of one tool (Scott's text comparison) leaves me wondering how often certain phrases occur, so I follow up in [AntConc](https://datasittersclub.github.io/site/dsc4/). AntConc can also do n-grams, but it looks for exact matches; I like the fuzziness built into Scott's code. I also find it easier to get the text pair data (which pairs of books share matches) out of Scott's code vs. AntConc. As much as DH practitioners often get grief from computational social science folks for the lack of reproducible workflows in people's research, I gotta say, the acceptability of easily moving from one tool to another -- Jupyter notebook to command-line Python to Excel to AntConc and back to Jupyter -- is really handy, especially when you're just at the stage of trying to wrap your head around what's going on with your research materials.Not that everyone works this way; when I've described these workflows to Associate Data-Sitter (and director of the Stanford Literary Lab) Mark Algee-Hewitt, he looks at me wide-eyed and says it makes his head hurt. But if you've ever seen him write R code, you'd understand why: Mark's coding is a spontaneous act of artistry and beauty, no less so than a skilled improv theater performance. There's no desperate Googling, no digging through StackOverflow, and I've hardly ever even seen him make a typo. Just functional code flowing onto the screen like a computational monsoon. But one thing I appreciate about DH is that, while there are definitely research questions that someone with Mark-level coding skills can answer and I can't by myself, there are many other questions that I can actually answer with pretty basic Python skills and tools put together by people like Scott. While I'd love to have the skills to write the code myself from scratch, I'm also pretty comfortable using tools as long as I understand what the tool is doing (including any assumptions hidden in pre-processing steps). Evaluating closeness![Individual example from the spreadsheet](images/dsc8_spreadsheet_example.png)As I dug further into my spreadsheet, I came across some “matches” that… didn’t really work. Like lines 1656-1661: “I didn’t want to” vs “I didn’t tell you”. Yeah, no. And even 1662-1668: “[need/trying] to line up a sitter”. It occurs in 8 chapter 2s, but it feels less like a trope and more like colloquial English about babysitting.This is where the last three columns -- J, K, and L -- come in. Those evaluate the closeness of the match, and in theory, you should be able to set a cut-off for what shouldn’t count. Column J is “best match distance”. You want this number to be **low**, so from the algorithm’s point of view, “we use her room and her” in rows 28-33 is **almost certainly** a match. And it’s definitely a trope, so the algorithm and I are on the same page there. Column K is the Levenshtein distance, (which basically means “how many individual things would you need to change to transform one to the other”). And the combined distance tries to… well, combine the two approaches.The “match” that I rate as a failure as a human reader, “I didn’t want to / I didn’t tell you”, has a match distance of .08 -- so should that be the cutoff? Except one of the tropes, “Four kids, Kristy [has/plus] two older brothers.” has a distance of .09. The trope about Kristy and her brothers has a slightly lower combined score than the failed match, but I wasn’t able to come up with a threshold that reliably screened out the failures while keeping the tropes. So I didn’t -- I kept everything. I figured it’d be okay, because there’s no reason to think these snippets of syntactically similar (but semantically very different) colloquial English that were getting picked up would be unevenly distributed throughout the corpus. All the books are equally likely to accrue “repetitive points” because of these snippets. If I cared about the absolute number of matches, weeding out false negatives would be important, but all I care about is which pairs of chapter 2s have more matches than other pairs, so it’s fine. What do you do with 157 spreadsheets?Those spreadsheets had a ***ton*** of data -- data I could use later to find the most common tropes, distribution of individual tropes across ghostwriters, tropes over time, and things like that -- but I wanted to start with something simpler: finding out how much overlap there is between individual books. Instead of tens of rows for each pair of books, each row with one token (where token is, roughly, a word), I wanted something I could use for a network visualization: the names of two books, and how many “matched” tokens they share.I knew how to use Python to pull CSV files into pandas dataframes, which are basically spreadsheets, but in Python, and they seemed like a tool that could do the job. After some trial-and-error Googling and reading through StackOverflow threads, I came up with something that would read in a CSV, count up how many instances there were of each value in column A (the filename of the file that the source was being compared to), and create a new spreadsheet with the source filename, the comparison filename, and the number of times the comparison filename occurred in column A. Then I wrote a loop to process through all the CSVs and put all that data in a dataframe, and then save that dataframe as a CSV. Be warned, this next step takes a long time to run!Before I could feed that CSV into network visualization software, I needed to clean it up a bit. Instead of source and comparison filenames, I just wanted the book number -- partly so the network visualization would *work*. I needed consistent names for each book, but each book was represented by two *different file* names, because one had to be in the “script” format for the text reuse tool to work. Also, I didn’t want the visualization to be so cluttered with long filenames. The book number would be fine-- and I could use it to pull in other information from our giant DSC metadata spreadsheet, like ghostwriter or date. (Curious how we made the DSC metadata spreadsheet? Check out [Multilingual Mystery 3: Lee and Quinn Clean Up Ghost Cat Data Hairballs](https://datasittersclub.github.io/site/dscm3/) for more on the web scraping, cleaning, and merging that went into it). ###Code #pandas is useful for spreadsheets in Python import pandas as pd ###Output _____no_output_____ ###Markdown Put in the full path to the directory with the results of Scott Enderle's text comparison script above. It should be the `results` folder of his code. Note: As of October 2020, the result files are created in the main directory, not actually in the result folder. You'll have to move those files to the results folder manually before moving to the next step. ###Code #Define the full path to the folder with the results resultsdirectory = '/Users/qad/Documents/fandom-search-main/results' #Change to the directory with the results os.chdir(resultsdirectory) #Defines the column names we want column_names = ["ORIGINAL_SCRIPT_CHARACTER", "FAN_WORK_FILENAME", "matches_count"] #Create an empty spreadsheet finaldata = pd.DataFrame(columns = column_names) #For each file in the results directory for file in os.listdir(resultsdirectory): #If it ends with .csv if file.endswith('.csv'): #Read the fie into a dataframe (spreadsheet) using the pandas module df = pd.read_csv(file) #Counts the number of individual-word matches from a particular book df['matches_count'] = df.FAN_WORK_FILENAME.apply(lambda x: df.FAN_WORK_FILENAME.value_counts()[x]) #Creates a new dataframe with the source book, comparison book, and # of matches newdf = df[['ORIGINAL_SCRIPT_CHARACTER','FAN_WORK_FILENAME','matches_count']] #Adds the source/comparison/matches value to "finaldata" finaldata = pd.concat([finaldata,newdf.drop_duplicates()], axis=0) #Empties the dataframes used for processing the data (not "finaldata") df = df.iloc[0:0] newdf = newdf.iloc[0:0] ###Output _____no_output_____ ###Markdown To see (a sample of) what we've got, we can print the "finaldata" dataframe. ###Code finaldata ###Output _____no_output_____ ###Markdown To create the CSV file that we can import into a network visualization and analysis software, we need to export the dataframe as CSV. ###Code finaldata.to_csv('6gram_finaldata.csv') ###Output _____no_output_____ ###Markdown Visualizing the networkThe most common network visualization and analysis software used in DH is Gephi. Gephi and I have never gotten along. It used to vomit at my non-Latin alphabet data (that's gotten better recently and now it even supports right-to-left scripts like Arabic or Hebrew), I find it finicky and buggy, and I don't like its default styles. If you like Gephi, I'm not going to start a fight over it, but it's not a tool I use.Instead, Miriam Posner's Cytoscape tutorials ([Create a network graph with Cytoscape](http://miriamposner.com/classes/dh201w19/tutorials-guides/network-analysis/create-a-network-graph-with-cytoscape/) and [Cytoscape: working with attributes](http://miriamposner.com/classes/dh201w19/tutorials-guides/network-analysis/cytoscape-working-with-attributes/)) were enough to get me started with [Cytoscape](https://cytoscape.org/), another cross-platform, open-source network visualization software package. The update to 3.8 changed around the interface a bit (notably, analyzing the network is no longer buried like three layers deep in the menu, under Network Analyzer → Network Analysis → Analyze Network -- which I'd always joke about when teaching Cytoscape workshops), but it's still a great and very readable tutorial, and I won't duplicate it here.Import the 6gram_finaldata.csv file as a network and... hello blue blob!![A blue blob resulting from a default visualization of a too-dense network](images/dsc8_blue_blob.png)Or, as [Your Digital Humanities Peloton Instructor](https://twitter.com/DHPeloton) would put it:![A tweet: The beauty of uncertainty is that there's so much possibility. So don't think of your network graph as a hairball, think of it as a possibilities ball.](images/dsc8_dh_peloton.png) Still, there’s just **too much stuff** there in this particular possibilities ball. *Everything* is connected to *everything else* -- at least a little bit. We need to prune this tangle down to the connections that are big enough to maybe mean something.There’s a *Filter* vertical tab on the left side of the Cytoscape interface; let’s add a *Column filter*. Choose “Edges: matches_count” and set the range to be between 60 (remember, this counts tokens, so 60 = 10 matches) and 400. The max value is 4,845, but these super-high numbers aren’t actually interesting because they represent a chapter matched to itself. Then click “apply”. If you’re working with a network as big as this one, it will look like nothing happened-- this possibilities ball is so dense you can’t tell. But at the bottom of the filter window, it should say that it’s selected some large number of edges:![Adding a filter](images/dsc8_cytoscape_filter.png) Now we want to move the things we’ve selected to a new network that’s less crowded.Choose the “New network from Selection” button in the top toolbar: ![New network from selection icon](images/dsc8_new_network_from_selection.png)And choose “selected nodes, selected edges”.If you go to Layout → Apply preferred layout for the new network, you can start to see it as something more than a blob.![A more refined blob](images/dsc8_blob_refined.png) ![Zooming in on the more refined blob](images/dsc8_blob_refined_zoomed.png)Zooming in to the isolated cluster, we see that chapter 2 of book 000 (BSC 0: *The Summer Before*, which was written last by Ann M. Martin as a prequel) is linked to 004 (BSC 4: *Mary Anne Saves the Day*) and 064 (BSC 64: *Dawn’s Family Feud*), which aren’t linked to anything else. Chapter 2s of BSC 15: *Little Miss Stoneybrook… and Dawn* and BSC 28: *Welcome Back, Stacey!* form a dyad.Chapter 2 of BSC 7: *Claudia and Mean Janine*, is linked to many other chapter 2s, but is the only connection of BSC 8: *Boy-Crazy Stacey* and Mystery 28: *Abby and the Mystery Baby*, and one of two connections for BSC 6: *Kristy’s Big Day*. What’s up with books 6, 7, and 8 (written in sequence in 1987) being so closely linked to mystery 28, written in 1997? Personally, I find it easy to get pulled too far into the world of network analysis once I’ve imported my data, losing sight of what it means for some nodes to be connected and others not. To meaningfully interpret your network, though, you can’t forget about this. What does it mean that chapter 2 of BSC 7: *Claudia and Mean Janine* is connected to many other chapter 2s? It means that the same text repetitions (at least some of which are probably tropes) appear in all those books. With *Boy-Crazy Stacey* and *Abby and the Mystery Baby*, respectively, it shares tropes that are different tropes than those shared with other books -- otherwise *Boy-Crazy Stacey* and *Abby and the Mystery Baby* would be connected to those other books, too. This is a moment where it’s really helpful to recall previous decisions you made in the workflow. Remember how we didn’t set a cut-off value in Scott’s text comparison output, in order to not lose tropes, with the consequence of some colloquial English phrases being included? If you wanted to make any sort of claim about the significance of *Claudia and Mean Janine* being the only connection for *Boy-Crazy Stacey*, this is the moment where you’d need to open up the spreadsheets for those books and look at what those matches are. Maybe BSC 6, 8, and Mystery 28 are ones where chapter 3 has all the intro prose, but they happened to have 10 “colloquial English” matches with BSC 7. That’s not where I want to take this right now, though -- but don’t worry, I’m sure the Data-Sitters will get to network analysis and its perils and promises one of these days. (By the way, if you’re getting the impression from this book that DH research is kind of like one of those *Choose Your Own Adventure* books with lots of branching paths and things you can decide to pursue or not -- and sometimes you end up falling off a cliff or getting eaten by a dinosaur and you have to backtrack and make a different choice… you would not be wrong.) Instead, I want to prune this down to clusters of very high repetition. Let’s adjust our filter so the minimum is 150 (meaning 25 unique 6-gram matches), create a new network with those, and apply the preferred layout.Instead, I want to prune this down to clusters of **very high repetition**. Let’s adjust our filter so the minimum is 150 (meaning 25 unique 6-gram matches), create a new network with those, and apply the preferred layout.![Clearer network of high repetition](images/dsc8_better_network.png)This is getting a little more legible! But everything is still linked together in the same network except for BSC 17: *Mary Anne's Bad Luck Mystery* and BSC 21: *Mallory and the Trouble with Twins* off in the corner. Let's add in some attributes to see if that helps us understand what's going on here. There are two theories we can check out easily with attributes: one is that the narrator might matter ("Does a particular character talk about herself and her friends in particular ways that lead to more repetitions?"), and the other is that the author might matter ("Is a particular author/ghostwriter more likely to reuse phrases they've used before?")The DSC Metadata Spreadsheet has columns for the character who narrates each book, "narrator", for the ghostwriter, "bookauthor", along with a column with just the book number, "booknumber" that we can use to link this additional data to our original network sheet. In OpenRefine (see [Lee and Quinn Clean Up Ghost Cat Hairballs](https://datasittersclub.github.io/site/dscm3/) for more about OpenRefine), I opened the metadata spreadsheet, went to Export → Custom tabular exporter, selected only those three column, specified it should be saved as a CSV, and hit the "Download" button.Back in Cytoscape, I hit the "Import table from file" button in the top toolbar:![Cytoscape icon for importing a table from a file](images/dsc8_import_table_from_file.png)And selected the CSV file I’d just exported from OpenRefine. I set the “booknumber” column to be the key for linking the new data with the existing nodes. Now that we have this additional information, we can go to the *Style* tab, choose “Node” at the bottom of that window, and toggle open “Fill color”. For the “Column” value, choose “Narrator”, and for “mapping type” choose “Discrete mapping”. Now for the fun part: assigning colors to baby-sitters! (Alas, the Baby-Sitters Club fandom wiki doesn’t list the characters’ favorite colors.)![Mapping each book in the network to a color based on the narrator of the book](images/dsc8_character_color_mapping.png)The default blue gets applied to nodes that don’t have a value in the “narrator” column (e.g. super-specials).And here’s what we get:![Network colored by narrator](images/dsc8_narrator_network.png)Colored by narrator, this network diagram looks kind of like a fruit salad -- a well-mixed fruit salad, not one where you dump a bunch of grapes in at the end or something. It doesn’t look like we’re going to get much insight here. But what if we replace “narrator” with “bookauthor” and re-assign all the colors?![Network colored by author](images/dsc8_author_network.png)Now we’re on to something! There’s **definitely** some clustering by ghostwriter here. What if we turn up the threshold to 200 repeated tokens?Some of the authors disappear altogether, and the clusters break off:![Author-colored network with 200 repeating tokens](images/dsc8_author_network_200.png) What if we keep going? Turning the threshold up to 250 gets us this:![Author-colored network with 250 repeating tokens](images/dsc8_author_network_250.png)And once you hit 300, you’re left with:![Author-colored network with 300 repeating tokens](images/dsc8_author_network_300.png) It looks like 200 was our sweet spot. Let’s do one more thing to enhance that network to surface some of the even more intense overlaps.Back in the “Style” panel for the network of books that share 200 or more matched tokens, toggle open “Stroke color” and choose “matches_count” as the column. This time, choose “continuous” for the mapping type. It will automatically show a gradient where bright yellow indicates 200 matched tokens, and dark purple indicates 330 (the maximum). Now we can see most of the connections skew towards the lower end of this range (though Suzanne Weyn, in turquoise, leans more heavy on text reuse).![Author-colored network with color-coded edges](images/dsc8_color_coding_author_edges.png)So I started wondering if I had stumbled over the beginning to a new Multilingual Mystery: what does this look like in French? If you look at chapter 2 in translation, are they **less repetitive**? If I ran the same code on the translations that co-exist in a text-repetition cluster, would there be a similar amount of repetition? Or might the translator be a mitigating factor -- where there might be a sub-cluster of the translator directly copying text they’d previously translated from another novel in the cluster? A different directionI was so very delighted with my little color-coded network visualization and my plans to extend it to the French that I was caught off-guard when I met with Mark and he seemed less than sanguine about it all. He pointed out (and I should've thought of this) that French inflection would probably add some further noise to the results of Scott's comparison tool, and I should probably lemmatize the text too (change all the words to their dictionary form to get around word-count related problems caused by inflection). And even with the English, he seemed a bit quizzical that this sort of n-gram comparison was where I started with text comparison. He suggested that I might check out other distance metrics, like cosine distance or TF-IDF, if I hadn't yet.“One of the things that I find a bit frustrating about off-the-shelf methods is that a lot of DH people hear words that are similar and so think that they can mean the same thing. Just because there’s a statistical method called ‘innovation’ (which measures how much word usage changes over the course of a document from beginning to end), that doesn’t mean that it’s a statistical method that can measure literary innovation. To bridge that gap, you have to either adapt the method or adapt your definition of literary innovation,” cautioned Mark. “Now, your logic goes: people talk about chapter two being similar across books, similarity can imply a kind of repetition, repetition can manifest in a re-use of specific language between texts, Scott’s method measures re-use of language, therefore you’re thinking you can use Scott’s method to measure similarity. But there is a LOT of translation going on there: similarity → repetition → re-use → common 6-grams. Were someone to do this unthinkingly, they could very easily miss this chain of reasoning and think that common 6-grams is measuring textual similarity.” (Dear readers, please don’t make that mistake! We’ve got, admittedly, a very specific situation that justifies using it with the Baby-Sitters Club corpus, but please make sure you’ve got a similarly well-justified situation before trying it.)“In your case,” Mark added, “I think this might be right in terms of how you are thinking about similarity, but in general, this seems like a constant problem in DH. When people hear ‘are similar to’ they don’t necessarily jump immediately (or ever) to, uses the same phrases – this is why first thinking through what you mean by ‘similar’ and THEN moving to choosing a method that can try to represent that is a crucial step.” He paused for a moment. “Not everyone would agree, though. Ted Underwood thinks we should just model everything and sort out what means what later.”I laughed. This is how DH gets to be so fun and so maddening all at once. Not only can’t we all agree on what the definition of DH is, we also don’t even always see eye-to-eye about what the crucial first step is.I’d never run the more common text similarity metrics that Mark had mentioned, but I knew just where to start. *The Programming Historian* had just published a new [lesson by John R. Ladd on common similarity measures](https://programminghistorian.org/en/lessons/common-similarity-measures) that covered distance metrics, and I'd been a reviewer on [Matthew J. Lavin's lesson on TF-IDF](https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf) before starting the Data-Sitters Club. Both those lessons are worth reading through if you're interested in trying out these techniques yourself, but I'll cover them here, Data-Sitters Club style. What do we compare when we compare texts?But before getting into the difference distance metrics, let's talk about what we actually measure when we measure "text similarity" computationally. If you ask someone how similar two books, or two series are, the metrics they use are probably going to depend on the pair you present them with. How similar are BSC 10: *Logan Likes Mary Anne* and Charlotte Brontë's *Jane Eyre*? Well, they both involve the first-person narration of a teenage female protagonist, a romance subplot, and childcare-based employment -- but probably no one would think of these books as being all that similar, due to the difference in setting and vastly different levels of cultural prestige, if nothing else. What about Logan Likes Mary Anne compared to Sweet Valley High 5: *All Night Long*, where teenage bad-twin Jessica starts dating a college boy, stays out all night with him, and asks good-twin Liz to take a test for her? The setting is a lot more similar (1980's affluent suburban United States) and there's also a romance subplot, but SVH 5 is written in the third person, the series is for a much edgier audience than the Baby-Sitters Club, and the character of Mary Anne is probably more similar to Jane Eyre than Jessica Wakefield.It's easy for a human reader to evaluate book similarity more holistically, comparing different aspects of the book and combining them for an overall conclusion that takes them all into consideration. And if you've never actually tried computational text similarity methods but hear DH people talking about "measuring text similarity", you might get the idea that computers are able to measure the similarity of texts roughly the way that humans do. Let me assure you: they cannot.No human would compare texts the way computers compare texts. That doesn't mean the way computers do it is wrong -- if anything, critics of computational literary analysis have complained about how computational findings are things people already know. Which suggests that even though computers go about it differently, the end result can be similar to human evaluation. But it's important to keep in mind that your results are going to vary so much based on what you measure.So what are these things computers measure? Can they look at characters? Plot? Style? Ehhh.... Computational literary scholars are working on all that. And in some cases, they've found ways of measuring proxies for those things, that seem to basically work out. But those things are too abstract for a computer to measure directly. What a computer can measure is words. There's tons of different ways that computers can measure words. Sometimes we use computers to just count words, for word frequencies. Computers can look at which words tend to occur together through something like n-grams, or more complex methods for looking at word distributions, like topic modeling or word vectors. We'll get to those in a future DSC book. With languages that have good natural-language processing tools (and English is the best-supported language in the world), you can look at words in a slightly more abstract way by annotating part-of-speech information for each word, or annotating different syntactic structures. Then you can do measurements based on those: counting all the nouns in a text, looking at which verbs are most common across different texts, counting the frequency of dependent clauses.It turns out that looking at the distributions of the highest-frequency words in a text is a way to identify different authors. So if you're interested more in what the text is about, you need to look at a large number of words (a few thousand), or just look at the most common nouns to avoid interference from what's known as an "author signal". The choice of what words you're counting -- and how many -- is different than the choice of what algorithm you use to do the measuring. But it's at least as important, if not more so. So the process of comparing texts with these distance measures looks something like this:1. Choose what you want to measure. If you're not sure, you can start with something like the top 1,000 words, because that doesn't require you to do any computationally-intensive pre-processing, like creating a derivative text that only includes the nouns-- you can work directly with the plain-text files that make up your corpus. Whatever number you choose as the cutoff, though, needs to be sensitive to the length of the texts in your corpus. If your shortest text is 1,000 words and your longest text is 10,000 words, do you really want a cutoff that will get every single word (with room to spare once you consider duplicate words) in one of your texts? Also, you may want to be more picky than just using the top 1,000 words, depending on the corpus. With the Baby-Sitters Club corpus, character names are really important, and most characters recur throughout the series. But if you're working with a huge corpus of 20th-century sci-fi, you might want to throw out proper names altogether, so that the fact that each book has different characters doesn't obscure significant similarities in, for instance, what those characters are doing. Similarly, all the Baby-Sitters Club books are written in the first person, from one character's perspective (or multiple characters' perspective, in the case of the Super Specials). If you're working with multiple series, or books that aren't in a series, you could reasonably choose to throw out personal pronouns so that the difference between "I" and "she/he" doesn't mess with your similarity calculations. 1. Normalize your word counts. (I didn't know about this at first, and didn't do it the first time I compared the texts, but it turns out to be really important. More on that adventure shortly!)  While some text comparison algorithms are more sensitive to differences in text length, you can't get around the fact that two occurrences of a word are more significant in a 100-word text than a 1,000-word text, let alone a 10,000-word text. To account for this, you can go from word counts to word frequencies, dividing the number of occurrences of a given word by the total number of words. (There's code for this in the Jupyter notebook, you don't have to do it by hand.)2. Choose a method of comparing your texts. Euclidean distance and cosine distance have advantages and disadvantages that I get into below, and TF-IDF combined with one of those distance measures gives you a slightly different view onto your text than if you just use word counts, even normalized.3. "Vectorize" your text. This is the process that, basically, "maps" each text to a set of coordinates. It's easy to imagine this taking the form of X, Y coordinates for each text, but don't forget what we're actually counting: frequencies of the top 1,000 words. There's a count-value for each one of those 1,000 words, so what's being calculated are coordinates for each text in 1000-dimensional space. It's kinda freaky to try to imagine, but easier if you think of it less as 1000-dimensional space, and more as a large spreadsheet with 1,000 rows (one for each word), and value for each row (the word count or frequency for each). Each of those row-values is the coordinates of the text in that one dimension. You could just pick two words, and declare them your X and Y coordinates -- and maybe that might even be interesting, depending on the words you pick! (Like, here's a chart of the frequency of Kristy to Claudia.) But in almost all cases, we want the coordinates for the text-point to incorporate data from all the words, not just two. And that's how we end up in 1000-dimensional space. The good news is that you don't have to imagine it: we're not trying to visualize it yet, we're just telling Python to create a point in 1000-dimensional space for each text.4. Measure the distance between your text-points. There's two common ways to do this: Euclidean distance and cosine distance. 5. Look at the results and figure out what to make of it. This is the part that the computer can't help you with. It's all up to you and your brain. 🤯With that big-picture view in mind, let's take a look at some of the distance measures. Euclidean distanceOne of the things that I find striking about using Euclidean distance to measure the distance between text-points is that it *actually involves measuring distance*. Just like you did between points on your classic X, Y axis graph from high school math. (Hello, trigonometry! I have not missed you or needed you at all until now.)The output of Scott's tool is more intuitively accessible than running Euclidean distance on text-points in 1000-dimensional space. His tool takes in text pairs, and spits out 6-grams of (roughly) overlapping text. With Euclidean and cosine distance, what you get back is a number. You can compare that number to numbers you get back for other pairs of texts, but the best way to make sure that you're getting sensible results is to be familiar with the texts in question, and draw upon that knowledge for your evaluation. What I'm really interested in is the "chapter 2" question, but I don't have a good sense of the content of all the books' chapter 2s. So instead, we'll start exploring these analyses on full books, and once we understand what's going on, we can apply it to the chapter 2s. ###Code #Imports the count vectorizer from Scikit-learn along with from sklearn.feature_extraction.text import CountVectorizer #Glob is used for finding path names import glob #We need these to format the data correctly from scipy.spatial.distance import pdist, squareform #In case you're starting to run the code just at this point, we'll need os again import os #In case you're starting to run the code just at this point, we'll need pandas again import pandas as pd ###Output _____no_output_____ ###Markdown Put the full path to the folder with your corpus of plain text files between the single quotes below. ###Code filedir = '/Users/qad/Documents/dsc_corpus_clean' os.chdir(filedir) ###Output _____no_output_____ ###Markdown If you're looking at the code itself in the Jupyter notebook for this book, you'll see we're using the Scikit-learn Python module's *CountVectorizer* class, which counts up all the words in all the texts you give it, filtering out any according to the parameters you give it. You can do things like strip out, for instance, words that occur in at least 70% of the text by adding `max_df = .7` after `max_features`. That's the default suggested by [John R. Ladd's Programming Historian tutorial on text similarity metrics](https://programminghistorian.org/en/lessons/common-similarity-measures), and I figured I'd just run with it while exploring this method. Note: Sometimes when you're trying a new method, it's comforting to copy and paste code that's all but guaranteed to work. Sometimes you do that without checking in with yourself about whether you actually want it to do everything that it's doing. Maybe you tell yourself you'll just run it once as-is, then go back and consider its parameters more carefully... but instead you get excited and distracted and don't go back and fix that before you reference back to that code for subsequent analyses and... well, for this particular corpus, dropping words that occur in at least 70% of the texts isn't a great idea, because you lose things like frequency of character names, which are actually pretty important in the Baby-Sitters Club. And the result is that your texts end up looking more-different than they should, because you've dropped a lot of what they have in common: the same core set of characters.Want to know how long it took me to realize that was an issue with the results I was getting? I've been writing this book on and off for six months.It took until... the night I was testing the Jupyter notebook version, to publish it the next day. To say that I'm not a details person is truly an understatement. But you really do have to be careful with this stuff, and seriously think through the implications of the choices you make, even on seemingly small things like this.Because the book is written around that mistake, I'm leaving it in for the Euclidean distance and cosine sections. Don't worry, we'll come back to it. Anyhow, as you see below, before you can measure the distance between texts in this trippy 1000-dimensional space, you need to transform them into a Python array because SciPy (the module that's doing the measuring) wants an array for its input. "Because the next thing in my workflow wants it that way" is a perfectly legitimate reason to change the format of your data, especially if it doesn't change the data itself. ###Code # Use the glob library to create a list of file names, sorted alphabetically # Alphabetical sorting will get us the books in numerical order filenames = sorted(glob.glob("*.txt")) # Parse those filenames to create a list of file keys (ID numbers) # You'll use these later on. filekeys = [f.split('/')[-1].split('.')[0] for f in filenames] # Create a CountVectorizer instance with the parameters you need vectorizer = CountVectorizer(input="filename", max_features=1000, max_df = .7) # Run the vectorizer on your list of filenames to create your wordcounts # Use the toarray() function so that SciPy will accept the results wordcounts = vectorizer.fit_transform(filenames).toarray() ###Output _____no_output_____ ###Markdown Here's an important thing to remember, though, before running off to calculate the Euclidean distance between texts: it is *directly measuring the distance* between our text-points in 1000-dimensional space. And those points in 1000-dimensional space were calculated based on word counts -- meaning that for long texts, words will generally have a higher word count. Even if you're comparing two texts that have the exact same *relative* frequency of all the words (imagine if you have one document with a 500-word description of a Kristy's Krushers baseball game, and another document with that same 500-word description printed twice), running Euclidean distance after doing word-counts will show them as being quite different, because the word counts in one text are twice as big as in the other text. One implication of this is that you really need your texts to be basically the same length to get good results from Euclidean distance.I started off trying out Euclidean distance, running with the assumption that the Baby-Sitters Club books are all pretty much the same length. All the main and mystery series have 15 chapters, so it probably all works out, right? ###Code #Runs the Euclidean distance calculation, prints the output, and saves it as a CSV euclidean_distances = pd.DataFrame(squareform(pdist(wordcounts)), index=filekeys, columns=filekeys) euclidean_distances euclidean_distances.to_csv('euclidean_distances_count.csv') ###Output _____no_output_____ ###Markdown No one really likes looking at a giant table of numbers, especially not for a first look at a large data set. So let's visualize it as a heatmap. We'll put all the filenames along the X and Y axis; darker colors represent more similar texts. (That's why there's a black line running diagonally -- each text is identical to itself.)The code below installs the seaborn visualization package (which doesn't come with Anaconda by default, but if it's already installed, you can skip that cell), imports matplotlib (our base visualization library), and then imports seaborn (which provides the specific heatmap visualization). ###Code #Installs seaborn #You only need to run this cell the first time you run this notebook import sys !{sys.executable} -m pip install seaborn #Import matplotlib import matplotlib.pyplot as plt #Import seaborn import seaborn as sns #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(euclidean_distances) #Displays the image plt.show() ###Output _____no_output_____ ###Markdown ![Euclidean distance with count vectorizer](images/dsc8_euclidean_count_maxdf7.png)The output of the heatmap visualization I used to get a sense of the results is a little dazzling. It looks more like one of Mary Anne’s plaid dresses than something you could make sense out of. Each book (in numerical order) is along the vertical and horizontal axes, so you have a black line running diagonally showing that every book is identical to itself. If you zoom in enough to read the labels (you can save the images from this Jupyter notebook by ctrl+clicking on them, or you can find them in the GitHub repo), you can start to pick out patterns. *California Diaries: Dawn 1* is one of the bright light-colored lines, meaning it’s very different from the other books. That’s not too surprising, though it’s more surprising that it also looks different from the other *California Diaries* books. *Abby’s Book* from the Portrait Collection (that character’s “autobiography”) is very different from the other Portrait Collection books. There are also a few clusters of noticeably different books scattered throughout the corpus: Mystery 32: *Claudia and the Mystery in the Painting* and Mystery 34: *Mary Anne and the Haunted Bookstore* were about as distinct as California Diaries 1. BSC 103: *Happy Holidays, Jessi*, BSC 73: *Mary Anne and Miss Priss*, and BSC 62: *Kristy and the Worst Kid Ever* also jump out as visibly distinct. There’s also a band of higher general similarity ranging from books 83-101.It was one of those classic DH moments where I now had a bunch of data, and no idea where to start on interpreting it. 🤯But then I started to wonder about how good my data even was. Like I mentioned earlier, Euclidean distance is very sensitive to the length of the texts I was comparing. Was it a fair assumption that the books would all be the same length? DH methods make it easy to put our assumptions to the test. Counting wordsTo see if Euclidean distance is a good metric, we need to find out how much variation there is in the text length. For Euclidean distance to work well, we need the input text to be close to the same length.The first way we'll count is based on BSC sub-sesries. The code below depends on some DSC-specific file-naming conventions, where each file is named with an abbeviation representing the series, followed by the book number. Counting words in full booksWe've already specified above that *filedir* is where all our full-text files are, and we should already be in that directory in order to run Euclidean distance. So we can just run this code on the files in our current directory, which should be the full-text files. ###Code #Creates a CSV file for writing the word counts with open('bsc_series_wordcount.csv', 'w', encoding='utf8') as out: #Writes the header row out.write('filename, wordcount, series') #New line out.write('\n') #For each file in the directory for filename in os.listdir(filedir): #If it ends in .txt if filename.endswith('.txt'): #Open that file file = open(filename, "rt", encoding="utf8") #Read the file data = file.read() #Split words based on white space words = data.split() #If filename starts with 'ss' for Super Special if filename.startswith('ss'): #Assign 'ss' as the series series = 'ss' #If filename starts with 'm' for Mystery elif filename.startswith('m'): #Assign 'm' as the series series = 'm' #If filename starts with 'cd' for California Diaries elif filename.startswith('cd'): #Assign 'cd' as the series series = 'cd' #If the filename starts with 'pc' for Portrait Collection elif filename.startswith('pc'): #Assign 'pc' as the series series = 'pc' #If the filename starts with 'ff' for Friends Forever elif filename.startswith('ff'): #Assign 'ff' as the series series = 'ff' #Otherwise... else: #It's a main series book series = 'main' #Print the filename, comma, length, comma, and series (so we can see it) print(filename + ', ' + str(len(words)) + ', ' + series) #Write out each of those components to the file out.write(filename) out.write(', ') out.write(str(len(words))) out.write(', ') out.write(series) #Newline so the lines don't all run together out.write('\n') ###Output 015c_little_miss_stoneybrook_and_dawn.txt, 27087, main 009c_the_ghost_at_dawns_house.txt, 26291, main pc5c_kristys_book.txt, 21916, pc 016c_jessis_secret_language.txt, 26792, main 091c_claudia_and_the_first_thanksgiving.txt, 23657, main 104c_abbys_twin.txt, 23464, main 037c_dawn_and_the_older_boy.txt, 24120, main m29c_stacey_and_the_fashion_victim.txt, 27546, m 010c_logan_likes_mary_anne.txt, 25677, main 047c_mallory_on_strike.txt, 29116, main 072c_dawn_and_the_we_heart_kids_club.txt, 23850, main 078c_claudia_and_crazy_peaches.txt, 26259, main 130c_staceys_movie.txt, 22900, main cd05c_ducky1.txt, 21072, cd 057c_dawn_saves_the_planet.txt, 27411, main 099c_staceys_broken_heart.txt, 28644, main m01c_stacey_and_the_mystery_ring.txt, 27488, m cd06c_sunny2.txt, 18404, cd 115c_jessis_big_break.txt, 24112, main 002c_claudia_and_the_phantom_phone_calls.txt, 27930, main 123c_claudias_big_party.txt, 26794, main m15c_kristy_and_the_vampires.txt, 28095, m 063c_claudias_freind_friend.txt, 26982, main m16c_claudia_and_the_clue_in_the_photograph.txt, 30832, m 018c_staceys_mistake.txt, 25884, main cd10c_ducky2.txt, 18573, cd 089c_kristy_and_the_dirty_diapers.txt, 25260, main 069c_get_well_soon_mallory.txt, 25702, main 028c_welcome_back_stacey.txt, 25835, main 107c_mind_your_own_business_kristy.txt, 22825, main pc4c_mary_annes_book.txt, 25734, pc m34c_mary_anne_and_the_haunted_bookstore.txt, 36287, m 088c_farewell_dawn.txt, 24179, main 030c_mary_anne_and_the_great_romance.txt, 26513, main 045c_kristy_and_the_baby_parade.txt, 26847, main cd15c_ducky3.txt, 16265, cd 109c_mary_anne_to_the_rescue.txt, 25003, main 074c_kristy_and_the_copycat.txt, 24787, main 075c_jessis_horrible_prank.txt, 23470, main cd11c_dawn3.txt, 13984, cd m28c_abby_and_the_mystery_baby.txt, 27108, m 073c_mary_anne_and_miss_priss.txt, 26813, main 007c_claudia_and_mean_jeanine.txt, 26131, main 128c_claudia_and_the_little_liar.txt, 21732, main m03c_mallory_and_the_ghost_cat.txt, 33981, m 022c_jessi_ramsey_petsitter.txt, 26079, main 077c_dawn_and_whitney_friends_forever.txt, 27004, main m21c_claudia_and_the_recipe_for_danger.txt, 27784, m 033c_claudia_and_the_great_search.txt, 26324, main m35c_abby_and_the_notorius_neighbor.txt, 25247, m cd08c_maggie2.txt, 20572, cd m31c_mary_anne_and_the_music_box_secret.txt, 28238, m 039c_poor_mallory.txt, 25816, main 025c_mary_anne_and_the_search_for_tigger.txt, 26060, main 043c_staceys_emergency.txt, 26935, main 131c_the_fire_at_mary_annes_house.txt, 26831, main 046c_mary_anne_misses_logan.txt, 25848, main 011c_kristy_and_the_snobs.txt, 26618, main 125c_mary_anne_in_the_middle.txt, 22252, main 083c_stacey_vs_the_bsc.txt, 22366, main cd07c_dawn2.txt, 16084, cd 097c_claudia_and_the_worlds_cutest_baby.txt, 23831, main 118c_kristy_thomas_dog_trainer.txt, 21439, main 058c_staceys_choice.txt, 25888, main 066c_maid_mary_anne.txt, 29361, main 026c_claudia_and_the_sad_goodbye.txt, 27165, main 029c_mallory_and_the_mystery_diary.txt, 24184, main 079c_mary_anne_breaks_the_rules.txt, 22897, main 000c_the_summer_before.txt, 44523, main cd14c_amalia3.txt, 12657, cd 013c_goodbye_stacey_goodbye.txt, 25562, main 122c_kristy_in_charge.txt, 22826, main 006c_kristys_big_day.txt, 27079, main 095c_kristy_plus_bart_equals_questionmark.txt, 23540, main m23c_abby_and_the_secret_society.txt, 28235, m 038c_kristys_mystery_admirer.txt, 26125, main 082c_jessi_and_the_troublemaker.txt, 24267, main 100c_kristys_worst_idea.txt, 26217, main 113c_claudia_makes_up_her_mind.txt, 23257, main 124c_stacey_mcgill_matchmaker.txt, 23986, main 119c_staceys_ex_boyfriend.txt, 22967, main 112c_kristy_and_the_sister_war.txt, 25257, main 092c_mallorys_christmas_wish.txt, 23612, main 027c_jessi_and_the_superbrat.txt, 25773, main m02c_beware_dawn.txt, 27184, m 111c_staceys_secret_friend.txt, 21125, main 101c_claudia_kishi_middle_school_dropout.txt, 28114, main cd03c_maggie1.txt, 20340, cd serr2c_logan_bruno_boy_babysitter.txt, 24026, main 012c_claudia_and_the_new_girl.txt, 26497, main 085c_claudia_kishi_live_from_wsto.txt, 23124, main 020c_kristy_and_the_walking_disaster.txt, 26130, main 098c_dawn_and_too_many_sitters.txt, 23006, main 024c_kristy_and_the_mothers_day_surprise.txt, 25943, main 050c_dawns_big_date.txt, 29622, main m32c_claudia_and_the_mystery_in_the_painting.txt, 30948, m 090c_welcome_to_the_bsc_abby.txt, 23660, main m04c_kristy_and_the_missing_child.txt, 27132, m cd01c_dawn1.txt, 26827, cd 129c_kristy_at_bat.txt, 27978, main 114c_the_secret_life_of_mary_anne_spier.txt, 22603, main m05c_mary_anne_and_the_secret_in_the_attic.txt, 26051, m 044c_dawn_and_the_big_sleepover.txt, 24944, main 001c_kristys_great_idea.txt, 27588, main 031c_dawns_wicked_stepsister.txt, 26284, main cd13c_maggie3.txt, 19390, cd 110c_abby_and_the_bad_sport.txt, 23155, main serr1c_logans_story.txt, 25309, main 126c_the_all_new_mallory_pike.txt, 26896, main pc2c_claudias_book.txt, 26715, pc cd02c_sunny1.txt, 21539, cd 094c_stacey_mcgill_super_sitter.txt, 26036, main 019c_claudia_and_the_bad_joke.txt, 26883, main 032c_kristy_and_the_secret_of_susan.txt, 25970, main 053c_kristy_for_president.txt, 27124, main 067c_dawns_big_move.txt, 25143, main 021c_mallory_and_the_trouble_with_twins.txt, 25193, main 117c_claudia_and_the_terrible_truth.txt, 24298, main 042c_jessi_and_the_dance_school_phantom.txt, 34521, main m30c_kristy_and_the_mystery_train.txt, 25599, m 008c_boy_crazy_stacey.txt, 24890, main m20c_mary_anne_and_the_zoo_mystery.txt, 31175, m m09c_kristy_and_the_haunted_mansion.txt, 28132, m m08c_jessi_and_the_jewel_thieves.txt, 28420, m 076c_staceys_lie.txt, 31339, main cd04c_amalia1.txt, 18836, cd 105c_stacey_the_math_whiz.txt, 24844, main 087c_stacey_and_the_bad_girls.txt, 24508, main 034c_mary_anne_and_too_many_boys.txt, 24268, main 070c_stacey_and_the_cheerleaders.txt, 25515, main 084c_dawn_and_the_school_spirit_war.txt, 25113, main 055c_jessis_gold_medal.txt, 26346, main 108c_dont_give_up_mallory.txt, 28451, main 003c_the_truth_about_stacey.txt, 30117, main m27c_claudia_and_the_lighthouse_ghost.txt, 26112, m cd12c_sunny3.txt, 29603, cd 049c_claudia_and_the_genius_of_elm_street.txt, 25270, main m24c_mary_anne_and_the_silent_witness.txt, 28223, m 040c_claudia_and_the_middle_school_mystery.txt, 24995, main 036c_jessis_babysitter.txt, 24831, main 005c_dawn_and_the_impossible_three.txt, 29910, main 086c_mary_anne_and_camp_bsc.txt, 26630, main cd09c_amalia2.txt, 14649, cd 081c_kristy_and_mr_mom.txt, 28780, main m10c_stacey_and_the_mystery_money.txt, 33512, m 059c_mallory_hates_boys_and_gym.txt, 26991, main m26c_dawn_schafer_undercover_babysitter.txt, 27910, m 023c_dawn_on_the_coast.txt, 24510, main 102c_mary_anne_and_the_little_princess.txt, 25081, main m07c_dawn_and_the_disappearing_dogs.txt, 26986, m 068c_jessi_and_the_bad_babysitter.txt, 25705, main 116c_abby_and_the_best_kid_ever.txt, 23468, main 065c_staceys_big_crush.txt, 25768, main 062c_kristy_and_the_worst_kid_ever.txt, 29571, main m11c_claudia_and_the_mystery_at_the_museum.txt, 26654, m 121c_abby_in_wonderland.txt, 23998, main pc1c_staceys_book.txt, 27027, pc m33c_stacey_and_the_stolen_hearts.txt, 24781, m m36c_kristy_and_the_cat_burglar.txt, 27560, m 017c_mary_annes_bad_luck_mystery.txt, 25242, main 061c_jessi_and_the_awful_secret.txt, 26549, main 096c_abbys_lucky_thirteen.txt, 23804, main 103c_happy_holidays_jessi.txt, 23603, main pc3c_dawns_book.txt, 23439, pc m14c_stacey_and_the_mystery_at_the_mall.txt, 29865, m 106c_claudia_queen_of_the_seventh_grade.txt, 25176, main 048c_jessis_wish.txt, 24971, main m06c_the_mystery_at_claudias_house.txt, 27581, m 071c_claudia_and_the_perfect_boy.txt, 28955, main m17c_dawn_and_the_halloween_mystery.txt, 29060, m 051c_staceys_ex_best_friend.txt, 24508, main serr3c_shannons_story.txt, 26623, main 056c_keep_out_claudia.txt, 24579, main 127c_abbys_un_valentine.txt, 24998, main m12c_dawn_and_the_surfer_ghost.txt, 26905, m 035c_stacey_and_the_mystery_of_stoneybrook.txt, 27207, main m19c_kristy_and_the_missing_fortune.txt, 28856, m 093c_mary_anne_and_the_memory_garden.txt, 27669, main m25c_kristy_and_the_middle_school_vandal.txt, 26080, m 060c_mary_annes_makeover.txt, 24758, main 080c_mallory_pike_no_1_fan.txt, 27536, main m22c_stacey_and_the_haunted_masquerade.txt, 28708, m pc6c_abbys_book.txt, 21039, pc 014c_hello_mallory.txt, 24607, main m13c_mary_anne_and_the_library_mystery.txt, 28432, m 120c_mary_anne_and_the_playground_fight.txt, 22458, main 064c_dawns_family_feud.txt, 23708, main 004c_mary_anne_saves_the_day.txt, 30770, main 054c_mallory_and_the_dream_horse.txt, 29581, main 052c_mary_anne_plus_too_many_babies.txt, 24905, main m18c_stacey_and_the_mystery_at_the_empty_house.txt, 29174, m 041c_mary_anne_vs_logan.txt, 25474, main ###Markdown Counting words by chapterNow, enter the full path to the directory with your individual-chapter files. ###Code chapterdir = '/Users/qad/Documents/dsc_chapters/allchapters' #Change to the directory with the individual-chapter files. os.chdir(chapterdir) #Creates a CSV file for writing the word counts with open('bsc_chapter_wordcount.csv', 'w', encoding='utf8') as out: #Write header out.write('filename, wordcount, chapter_number') #Newline out.write('\n') #For each file in the directory for filename in os.listdir(chapterdir): #If it ends with .txt if filename.endswith('.txt'): #Open the file file = open(filename, "rt", encoding='utf8') #Read the file data = file.read() #Split words at blank spaces words = data.split() #If the filename ends with an underscore and number #The number goes in the "series" column (it's actually a chapter number) if filename.endswith('_1.txt'): series = '1' elif filename.endswith('_2.txt'): series = '2' elif filename.endswith('_3.txt'): series = '3' elif filename.endswith('_4.txt'): series = '4' elif filename.endswith('_5.txt'): series = '5' elif filename.endswith('_6.txt'): series = '6' if filename.endswith('_7.txt'): series = '7' elif filename.endswith('_8.txt'): series = '8' elif filename.endswith('_9.txt'): series = '9' elif filename.endswith('_10.txt'): series = '10' elif filename.endswith('_11.txt'): series = '11' elif filename.endswith('_12.txt'): series = '12' elif filename.endswith('_13.txt'): series = '13' elif filename.endswith('_14.txt'): series = '14' elif filename.endswith('_15.txt'): series = '15' #Print results so we can watch as it goes print(filename + ', ' + str(len(words)) + ', ' + series) #Write everything out to the CSV file out.write(filename) out.write(', ') out.write(str(len(words))) out.write(', ') out.write(series) out.write('\n') ###Output 012c_claudia_and_the_new_girl_1.txt, 1968, 1 m07c_dawn_and_the_disappearing_dogs_11.txt, 1509, 11 112c_kristy_and_the_sister_war_4.txt, 1938, 4 131c_the_fire_at_mary_annes_house_4.txt, 1344, 4 m04c_kristy_and_the_missing_child_11.txt, 1768, 11 058c_staceys_choice_12.txt, 1562, 12 007c_claudia_and_mean_jeanine_6.txt, 2262, 6 031c_dawns_wicked_stepsister_14.txt, 1921, 14 004c_mary_anne_saves_the_day_6.txt, 2137, 6 001c_kristys_great_idea_3.txt, 1893, 3 099c_staceys_broken_heart_1.txt, 2444, 1 005c_dawn_and_the_impossible_three_3.txt, 1940, 3 serr3c_shannons_story_3.txt, 3974, 3 m13c_mary_anne_and_the_library_mystery_1.txt, 2007, 1 047c_mallory_on_strike_13.txt, 2171, 13 083c_stacey_vs_the_bsc_3.txt, 1323, 3 060c_mary_annes_makeover_6.txt, 1750, 6 m33c_stacey_and_the_stolen_hearts_14.txt, 1531, 14 051c_staceys_ex_best_friend_9.txt, 1381, 9 m26c_dawn_schafer_undercover_babysitter_15.txt, 1721, 15 m34c_mary_anne_and_the_haunted_bookstore_8.txt, 2198, 8 095c_kristy_plus_bart_equals_questionmark_9.txt, 1272, 9 122c_kristy_in_charge_12.txt, 1228, 12 m24c_mary_anne_and_the_silent_witness_5.txt, 2178, 5 008c_boy_crazy_stacey_14.txt, 1407, 14 070c_stacey_and_the_cheerleaders_4.txt, 1531, 4 056c_keep_out_claudia_11.txt, 1426, 11 008c_boy_crazy_stacey_2.txt, 1479, 2 009c_the_ghost_at_dawns_house_2.txt, 1567, 2 072c_dawn_and_the_we_heart_kids_club_13.txt, 1366, 13 119c_staceys_ex_boyfriend_14.txt, 986, 14 m12c_dawn_and_the_surfer_ghost_1.txt, 1956, 1 062c_kristy_and_the_worst_kid_ever_13.txt, 1836, 13 031c_dawns_wicked_stepsister_1.txt, 1574, 1 024c_kristy_and_the_mothers_day_surprise_5.txt, 1351, 5 127c_abbys_un_valentine_10.txt, 1046, 10 091c_claudia_and_the_first_thanksgiving_7.txt, 1490, 7 m06c_the_mystery_at_claudias_house_12.txt, 1614, 12 051c_staceys_ex_best_friend_15.txt, 975, 15 061c_jessi_and_the_awful_secret_13.txt, 1683, 13 012c_claudia_and_the_new_girl_15.txt, 1709, 15 123c_claudias_big_party_2.txt, 2800, 2 m33c_stacey_and_the_stolen_hearts_4.txt, 1810, 4 030c_mary_anne_and_the_great_romance_8.txt, 1791, 8 086c_mary_anne_and_camp_bsc_12.txt, 1103, 12 066c_maid_mary_anne_4.txt, 1642, 4 078c_claudia_and_crazy_peaches_8.txt, 1917, 8 080c_mallory_pike_no_1_fan_9.txt, 1457, 9 093c_mary_anne_and_the_memory_garden_6.txt, 2331, 6 046c_mary_anne_misses_logan_12.txt, 1761, 12 m27c_claudia_and_the_lighthouse_ghost_14.txt, 1483, 14 117c_claudia_and_the_terrible_truth_7.txt, 1585, 7 m22c_stacey_and_the_haunted_masquerade_10.txt, 1650, 10 120c_mary_anne_and_the_playground_fight_15.txt, 609, 15 024c_kristy_and_the_mothers_day_surprise_12.txt, 1689, 12 049c_claudia_and_the_genius_of_elm_street_3.txt, 2035, 3 082c_jessi_and_the_troublemaker_9.txt, 1065, 9 m04c_kristy_and_the_missing_child_9.txt, 1774, 9 014c_hello_mallory_3.txt, 2380, 3 035c_jessis_babysitter_13.txt, 1838, 13 118c_kristy_thomas_dog_trainer_11.txt, 1102, 11 m07c_dawn_and_the_disappearing_dogs_3.txt, 1792, 3 088c_farewell_dawn_6.txt, 1403, 6 m31c_mary_anne_and_the_music_box_secret_3.txt, 1931, 3 059c_mallory_hates_boys_and_gym_4.txt, 1765, 4 m03c_mallory_and_the_ghost_cat_9.txt, 2033, 9 m11c_claudia_and_the_mystery_at_the_museum_3.txt, 1910, 3 m01c_stacey_and_the_mystery_ring_13.txt, 1969, 13 m20c_mary_anne_and_the_zoo_mystery_11.txt, 1738, 11 serr2c_logan_bruno_boy_babysitter_15.txt, 1133, 15 110c_abby_and_the_bad_sport_9.txt, 951, 9 066c_maid_mary_anne_13.txt, 1665, 13 076c_staceys_lie_14.txt, 2237, 14 063c_claudias_freind_friend_4.txt, 1606, 4 002c_claudia_and_the_phantom_phone_calls_2.txt, 1894, 2 116c_abby_and_the_best_kid_ever_10.txt, 2258, 10 076c_staceys_lie_15.txt, 1263, 15 066c_maid_mary_anne_12.txt, 2427, 12 055c_jessis_gold_medal_1.txt, 2488, 1 002c_claudia_and_the_phantom_phone_calls_3.txt, 1833, 3 116c_abby_and_the_best_kid_ever_11.txt, 865, 11 063c_claudias_freind_friend_5.txt, 1532, 5 110c_abby_and_the_bad_sport_8.txt, 2870, 8 serr2c_logan_bruno_boy_babysitter_14.txt, 1373, 14 059c_mallory_hates_boys_and_gym_5.txt, 1014, 5 m03c_mallory_and_the_ghost_cat_8.txt, 2470, 8 m31c_mary_anne_and_the_music_box_secret_2.txt, 2060, 2 m20c_mary_anne_and_the_zoo_mystery_10.txt, 2103, 10 m01c_stacey_and_the_mystery_ring_12.txt, 1718, 12 m11c_claudia_and_the_mystery_at_the_museum_2.txt, 2397, 2 m07c_dawn_and_the_disappearing_dogs_2.txt, 2280, 2 088c_farewell_dawn_7.txt, 1348, 7 014c_hello_mallory_2.txt, 1772, 2 m04c_kristy_and_the_missing_child_8.txt, 1896, 8 035c_jessis_babysitter_12.txt, 1671, 12 082c_jessi_and_the_troublemaker_8.txt, 2370, 8 118c_kristy_thomas_dog_trainer_10.txt, 1038, 10 049c_claudia_and_the_genius_of_elm_street_2.txt, 2167, 2 024c_kristy_and_the_mothers_day_surprise_13.txt, 1112, 13 120c_mary_anne_and_the_playground_fight_14.txt, 1405, 14 m27c_claudia_and_the_lighthouse_ghost_15.txt, 1865, 15 046c_mary_anne_misses_logan_13.txt, 1741, 13 m22c_stacey_and_the_haunted_masquerade_11.txt, 2150, 11 117c_claudia_and_the_terrible_truth_6.txt, 1776, 6 080c_mallory_pike_no_1_fan_8.txt, 1524, 8 093c_mary_anne_and_the_memory_garden_7.txt, 1766, 7 086c_mary_anne_and_camp_bsc_13.txt, 1989, 13 030c_mary_anne_and_the_great_romance_9.txt, 1675, 9 078c_claudia_and_crazy_peaches_9.txt, 1740, 9 066c_maid_mary_anne_5.txt, 1348, 5 123c_claudias_big_party_3.txt, 1590, 3 012c_claudia_and_the_new_girl_14.txt, 1627, 14 m33c_stacey_and_the_stolen_hearts_5.txt, 1935, 5 013c_goodbye_stacey_goodbye_1.txt, 2102, 1 061c_jessi_and_the_awful_secret_12.txt, 1285, 12 051c_staceys_ex_best_friend_14.txt, 1613, 14 m06c_the_mystery_at_claudias_house_13.txt, 1714, 13 091c_claudia_and_the_first_thanksgiving_6.txt, 1362, 6 127c_abbys_un_valentine_11.txt, 1382, 11 024c_kristy_and_the_mothers_day_surprise_4.txt, 1909, 4 062c_kristy_and_the_worst_kid_ever_12.txt, 1215, 12 072c_dawn_and_the_we_heart_kids_club_12.txt, 1402, 12 009c_the_ghost_at_dawns_house_3.txt, 1884, 3 119c_staceys_ex_boyfriend_15.txt, 1118, 15 056c_keep_out_claudia_10.txt, 1925, 10 008c_boy_crazy_stacey_3.txt, 1766, 3 070c_stacey_and_the_cheerleaders_5.txt, 1798, 5 122c_kristy_in_charge_13.txt, 1123, 13 095c_kristy_plus_bart_equals_questionmark_8.txt, 1631, 8 008c_boy_crazy_stacey_15.txt, 1476, 15 m24c_mary_anne_and_the_silent_witness_4.txt, 1637, 4 051c_staceys_ex_best_friend_8.txt, 1494, 8 m34c_mary_anne_and_the_haunted_bookstore_9.txt, 2251, 9 m26c_dawn_schafer_undercover_babysitter_14.txt, 1712, 14 047c_mallory_on_strike_12.txt, 2098, 12 083c_stacey_vs_the_bsc_2.txt, 2124, 2 m33c_stacey_and_the_stolen_hearts_15.txt, 1502, 15 060c_mary_annes_makeover_7.txt, 1425, 7 serr3c_shannons_story_2.txt, 1678, 2 005c_dawn_and_the_impossible_three_2.txt, 1945, 2 001c_kristys_great_idea_2.txt, 1297, 2 004c_mary_anne_saves_the_day_7.txt, 2201, 7 031c_dawns_wicked_stepsister_15.txt, 1692, 15 007c_claudia_and_mean_jeanine_7.txt, 2019, 7 m04c_kristy_and_the_missing_child_10.txt, 1570, 10 058c_staceys_choice_13.txt, 1365, 13 m07c_dawn_and_the_disappearing_dogs_10.txt, 1745, 10 131c_the_fire_at_mary_annes_house_5.txt, 1887, 5 112c_kristy_and_the_sister_war_5.txt, 1809, 5 112c_kristy_and_the_sister_war_7.txt, 1950, 7 131c_the_fire_at_mary_annes_house_7.txt, 2165, 7 012c_claudia_and_the_new_girl_2.txt, 1893, 2 m07c_dawn_and_the_disappearing_dogs_12.txt, 1577, 12 056c_keep_out_claudia_8.txt, 1514, 8 011c_kristy_and_the_snobs_14.txt, 1731, 14 058c_staceys_choice_11.txt, 2062, 11 m04c_kristy_and_the_missing_child_12.txt, 1787, 12 007c_claudia_and_mean_jeanine_5.txt, 1848, 5 099c_staceys_broken_heart_2.txt, 4293, 2 004c_mary_anne_saves_the_day_5.txt, 1834, 5 m09c_kristy_and_the_haunted_mansion_15.txt, 2053, 15 108c_dont_give_up_mallory_14.txt, 1924, 14 060c_mary_annes_makeover_5.txt, 2103, 5 m13c_mary_anne_and_the_library_mystery_2.txt, 2451, 2 047c_mallory_on_strike_10.txt, 1876, 10 079c_mary_anne_breaks_the_rules_9.txt, 1378, 9 070c_stacey_and_the_cheerleaders_7.txt, 1378, 7 m24c_mary_anne_and_the_silent_witness_6.txt, 1748, 6 085c_claudia_kishi_live_from_wsto_15.txt, 463, 15 122c_kristy_in_charge_11.txt, 2508, 11 008c_boy_crazy_stacey_1.txt, 2504, 1 056c_keep_out_claudia_12.txt, 1545, 12 m05c_mary_anne_and_the_secret_in_the_attic_8.txt, 1788, 8 045c_kristy_and_the_baby_parade_8.txt, 1550, 8 m23c_abby_and_the_secret_society_9.txt, 1452, 9 m12c_dawn_and_the_surfer_ghost_2.txt, 2222, 2 062c_kristy_and_the_worst_kid_ever_10.txt, 2698, 10 031c_dawns_wicked_stepsister_2.txt, 2357, 2 024c_kristy_and_the_mothers_day_surprise_6.txt, 1761, 6 072c_dawn_and_the_we_heart_kids_club_10.txt, 1414, 10 009c_the_ghost_at_dawns_house_1.txt, 2086, 1 091c_claudia_and_the_first_thanksgiving_4.txt, 1959, 4 m06c_the_mystery_at_claudias_house_11.txt, 1856, 11 061c_jessi_and_the_awful_secret_10.txt, 1247, 10 013c_goodbye_stacey_goodbye_3.txt, 1543, 3 127c_abbys_un_valentine_13.txt, 1536, 13 066c_maid_mary_anne_7.txt, 1248, 7 041c_mary_anne_vs_logan_15.txt, 1547, 15 086c_mary_anne_and_camp_bsc_11.txt, 1317, 11 m33c_stacey_and_the_stolen_hearts_7.txt, 1591, 7 123c_claudias_big_party_1.txt, 2467, 1 040c_claudia_and_the_middle_school_mystery_15.txt, 1372, 15 093c_mary_anne_and_the_memory_garden_5.txt, 2603, 5 117c_claudia_and_the_terrible_truth_4.txt, 1747, 4 m22c_stacey_and_the_haunted_masquerade_13.txt, 2527, 13 046c_mary_anne_misses_logan_11.txt, 1538, 11 m25c_kristy_and_the_middle_school_vandal_9.txt, 1144, 9 073c_mary_anne_and_miss_priss_14.txt, 1517, 14 118c_kristy_thomas_dog_trainer_12.txt, 982, 12 035c_jessis_babysitter_10.txt, 1774, 10 024c_kristy_and_the_mothers_day_surprise_11.txt, 1772, 11 m01c_stacey_and_the_mystery_ring_10.txt, 1996, 10 m20c_mary_anne_and_the_zoo_mystery_12.txt, 2107, 12 108c_dont_give_up_mallory_9.txt, 1409, 9 059c_mallory_hates_boys_and_gym_7.txt, 1360, 7 088c_farewell_dawn_5.txt, 1664, 5 116c_abby_and_the_best_kid_ever_13.txt, 1528, 13 002c_claudia_and_the_phantom_phone_calls_1.txt, 2650, 1 063c_claudias_freind_friend_7.txt, 1587, 7 055c_jessis_gold_medal_3.txt, 1766, 3 066c_maid_mary_anne_10.txt, 2214, 10 005c_dawn_and_the_impossible_three_15.txt, 2076, 15 077c_dwn_and_whitney_friends_forever_8.txt, 1595, 8 m36c_kristy_and_the_cat_burglar_9.txt, 1588, 9 005c_dawn_and_the_impossible_three_14.txt, 1982, 14 m36c_kristy_and_the_cat_burglar_8.txt, 1506, 8 077c_dwn_and_whitney_friends_forever_9.txt, 1886, 9 055c_jessis_gold_medal_2.txt, 2952, 2 063c_claudias_freind_friend_6.txt, 1927, 6 116c_abby_and_the_best_kid_ever_12.txt, 946, 12 066c_maid_mary_anne_11.txt, 2301, 11 088c_farewell_dawn_4.txt, 1960, 4 m07c_dawn_and_the_disappearing_dogs_1.txt, 2134, 1 m20c_mary_anne_and_the_zoo_mystery_13.txt, 2081, 13 m01c_stacey_and_the_mystery_ring_11.txt, 1515, 11 m11c_claudia_and_the_mystery_at_the_museum_1.txt, 1968, 1 059c_mallory_hates_boys_and_gym_6.txt, 1684, 6 108c_dont_give_up_mallory_8.txt, 1503, 8 m31c_mary_anne_and_the_music_box_secret_1.txt, 2082, 1 049c_claudia_and_the_genius_of_elm_street_1.txt, 1593, 1 024c_kristy_and_the_mothers_day_surprise_10.txt, 1626, 10 118c_kristy_thomas_dog_trainer_13.txt, 991, 13 035c_jessis_babysitter_11.txt, 1507, 11 014c_hello_mallory_1.txt, 1828, 1 073c_mary_anne_and_miss_priss_15.txt, 833, 15 m22c_stacey_and_the_haunted_masquerade_12.txt, 1995, 12 117c_claudia_and_the_terrible_truth_5.txt, 1444, 5 m25c_kristy_and_the_middle_school_vandal_8.txt, 2930, 8 046c_mary_anne_misses_logan_10.txt, 1494, 10 093c_mary_anne_and_the_memory_garden_4.txt, 1606, 4 040c_claudia_and_the_middle_school_mystery_14.txt, 1576, 14 m33c_stacey_and_the_stolen_hearts_6.txt, 1526, 6 066c_maid_mary_anne_6.txt, 1672, 6 086c_mary_anne_and_camp_bsc_10.txt, 1570, 10 041c_mary_anne_vs_logan_14.txt, 1742, 14 127c_abbys_un_valentine_12.txt, 1586, 12 061c_jessi_and_the_awful_secret_11.txt, 1101, 11 m06c_the_mystery_at_claudias_house_10.txt, 1776, 10 091c_claudia_and_the_first_thanksgiving_5.txt, 1494, 5 013c_goodbye_stacey_goodbye_2.txt, 1539, 2 072c_dawn_and_the_we_heart_kids_club_11.txt, 1414, 11 024c_kristy_and_the_mothers_day_surprise_7.txt, 1773, 7 031c_dawns_wicked_stepsister_3.txt, 1696, 3 062c_kristy_and_the_worst_kid_ever_11.txt, 1888, 11 m12c_dawn_and_the_surfer_ghost_3.txt, 1879, 3 m23c_abby_and_the_secret_society_8.txt, 1627, 8 m05c_mary_anne_and_the_secret_in_the_attic_9.txt, 1813, 9 056c_keep_out_claudia_13.txt, 1597, 13 045c_kristy_and_the_baby_parade_9.txt, 1659, 9 085c_claudia_kishi_live_from_wsto_14.txt, 1759, 14 m24c_mary_anne_and_the_silent_witness_7.txt, 1823, 7 122c_kristy_in_charge_10.txt, 1559, 10 070c_stacey_and_the_cheerleaders_6.txt, 1865, 6 060c_mary_annes_makeover_4.txt, 1116, 4 108c_dont_give_up_mallory_15.txt, 635, 15 079c_mary_anne_breaks_the_rules_8.txt, 1422, 8 083c_stacey_vs_the_bsc_1.txt, 1976, 1 047c_mallory_on_strike_11.txt, 1120, 11 m13c_mary_anne_and_the_library_mystery_3.txt, 2037, 3 005c_dawn_and_the_impossible_three_1.txt, 2445, 1 serr3c_shannons_story_1.txt, 2410, 1 m09c_kristy_and_the_haunted_mansion_14.txt, 1710, 14 099c_staceys_broken_heart_3.txt, 1225, 3 001c_kristys_great_idea_1.txt, 2319, 1 004c_mary_anne_saves_the_day_4.txt, 1711, 4 011c_kristy_and_the_snobs_15.txt, 1670, 15 007c_claudia_and_mean_jeanine_4.txt, 1547, 4 058c_staceys_choice_10.txt, 1713, 10 m04c_kristy_and_the_missing_child_13.txt, 1817, 13 056c_keep_out_claudia_9.txt, 1492, 9 131c_the_fire_at_mary_annes_house_6.txt, 1863, 6 112c_kristy_and_the_sister_war_6.txt, 1297, 6 m07c_dawn_and_the_disappearing_dogs_13.txt, 1808, 13 012c_claudia_and_the_new_girl_3.txt, 2001, 3 058c_staceys_choice_14.txt, 1914, 14 011c_kristy_and_the_snobs_11.txt, 1505, 11 012c_claudia_and_the_new_girl_7.txt, 1725, 7 112c_kristy_and_the_sister_war_2.txt, 2362, 2 098c_dawn_and_too_many_sitters_9.txt, 1699, 9 131c_the_fire_at_mary_annes_house_2.txt, 2118, 2 serr3c_shannons_story_5.txt, 1406, 5 005c_dawn_and_the_impossible_three_5.txt, 2206, 5 035c_jessis_babysitter_9.txt, 1445, 9 001c_kristys_great_idea_5.txt, 1534, 5 099c_staceys_broken_heart_7.txt, 1265, 7 m09c_kristy_and_the_haunted_mansion_10.txt, 2090, 10 031c_dawns_wicked_stepsister_12.txt, 1454, 12 070c_stacey_and_the_cheerleaders_2.txt, 2574, 2 122c_kristy_in_charge_14.txt, 1271, 14 129c_kristy_at_bat_9.txt, 1614, 9 m24c_mary_anne_and_the_silent_witness_3.txt, 1832, 3 008c_boy_crazy_stacey_12.txt, 1247, 12 085c_claudia_kishi_live_from_wsto_10.txt, 1264, 10 m26c_dawn_schafer_undercover_babysitter_13.txt, 1738, 13 m13c_mary_anne_and_the_library_mystery_7.txt, 1979, 7 047c_mallory_on_strike_15.txt, 2441, 15 083c_stacey_vs_the_bsc_5.txt, 1369, 5 108c_dont_give_up_mallory_11.txt, 2053, 11 m33c_stacey_and_the_stolen_hearts_12.txt, 1413, 12 m12c_dawn_and_the_surfer_ghost_7.txt, 1846, 7 024c_kristy_and_the_mothers_day_surprise_3.txt, 1645, 3 062c_kristy_and_the_worst_kid_ever_15.txt, 1552, 15 031c_dawns_wicked_stepsister_7.txt, 1892, 7 072c_dawn_and_the_we_heart_kids_club_15.txt, 1115, 15 009c_the_ghost_at_dawns_house_4.txt, 1698, 4 119c_staceys_ex_boyfriend_12.txt, 1186, 12 m28c_abby_and_the_mystery_baby_8.txt, 1662, 8 034c_mary_anne_and_too_many_boys_9.txt, 1410, 9 008c_boy_crazy_stacey_4.txt, 1813, 4 037c_dawn_and_the_older_boy_8.txt, 1529, 8 086c_mary_anne_and_camp_bsc_14.txt, 1532, 14 m08c_jessi_and_the_jewel_thieves_9.txt, 1861, 9 041c_mary_anne_vs_logan_10.txt, 1456, 10 066c_maid_mary_anne_2.txt, 3224, 2 123c_claudias_big_party_4.txt, 2354, 4 012c_claudia_and_the_new_girl_13.txt, 1685, 13 m33c_stacey_and_the_stolen_hearts_2.txt, 2354, 2 032c_kristy_and_the_secret_of_susan_9.txt, 1404, 9 013c_goodbye_stacey_goodbye_6.txt, 1798, 6 m06c_the_mystery_at_claudias_house_14.txt, 1827, 14 091c_claudia_and_the_first_thanksgiving_1.txt, 2553, 1 051c_staceys_ex_best_friend_13.txt, 1823, 13 061c_jessi_and_the_awful_secret_15.txt, 1579, 15 046c_mary_anne_misses_logan_14.txt, 1896, 14 m27c_claudia_and_the_lighthouse_ghost_12.txt, 1085, 12 117c_claudia_and_the_terrible_truth_1.txt, 1820, 1 006c_kristys_big_day_9.txt, 1649, 9 040c_claudia_and_the_middle_school_mystery_10.txt, 1436, 10 128c_claudia_and_the_little_liar_8.txt, 1802, 8 014c_hello_mallory_5.txt, 1610, 5 035c_jessis_babysitter_15.txt, 1544, 15 024c_kristy_and_the_mothers_day_surprise_14.txt, 1889, 14 049c_claudia_and_the_genius_of_elm_street_5.txt, 2310, 5 120c_mary_anne_and_the_playground_fight_13.txt, 1502, 13 073c_mary_anne_and_miss_priss_11.txt, 1284, 11 066c_maid_mary_anne_15.txt, 1004, 15 076c_staceys_lie_12.txt, 2379, 12 055c_jessis_gold_medal_6.txt, 1459, 6 002c_claudia_and_the_phantom_phone_calls_4.txt, 2003, 4 063c_claudias_freind_friend_2.txt, 3264, 2 m21c_claudia_and_the_recipe_for_danger_9.txt, 1813, 9 005c_dawn_and_the_impossible_three_10.txt, 1545, 10 serr2c_logan_bruno_boy_babysitter_13.txt, 1587, 13 m31c_mary_anne_and_the_music_box_secret_5.txt, 1756, 5 059c_mallory_hates_boys_and_gym_2.txt, 3301, 2 m11c_claudia_and_the_mystery_at_the_museum_5.txt, 1743, 5 104c_abbys_twin_8.txt, 1175, 8 m01c_stacey_and_the_mystery_ring_15.txt, 1493, 15 m07c_dawn_and_the_disappearing_dogs_5.txt, 1763, 5 m07c_dawn_and_the_disappearing_dogs_4.txt, 1950, 4 088c_farewell_dawn_1.txt, 2161, 1 059c_mallory_hates_boys_and_gym_3.txt, 2664, 3 m31c_mary_anne_and_the_music_box_secret_4.txt, 1869, 4 m01c_stacey_and_the_mystery_ring_14.txt, 1985, 14 104c_abbys_twin_9.txt, 1225, 9 m11c_claudia_and_the_mystery_at_the_museum_4.txt, 1822, 4 m21c_claudia_and_the_recipe_for_danger_8.txt, 1648, 8 serr2c_logan_bruno_boy_babysitter_12.txt, 1462, 12 005c_dawn_and_the_impossible_three_11.txt, 2002, 11 076c_staceys_lie_13.txt, 1242, 13 066c_maid_mary_anne_14.txt, 1389, 14 063c_claudias_freind_friend_3.txt, 1853, 3 002c_claudia_and_the_phantom_phone_calls_5.txt, 1227, 5 055c_jessis_gold_medal_7.txt, 1356, 7 073c_mary_anne_and_miss_priss_10.txt, 1874, 10 120c_mary_anne_and_the_playground_fight_12.txt, 1804, 12 049c_claudia_and_the_genius_of_elm_street_4.txt, 2151, 4 024c_kristy_and_the_mothers_day_surprise_15.txt, 1617, 15 014c_hello_mallory_4.txt, 1751, 4 035c_jessis_babysitter_14.txt, 1542, 14 128c_claudia_and_the_little_liar_9.txt, 1536, 9 093c_mary_anne_and_the_memory_garden_1.txt, 2080, 1 040c_claudia_and_the_middle_school_mystery_11.txt, 1773, 11 006c_kristys_big_day_8.txt, 2336, 8 m27c_claudia_and_the_lighthouse_ghost_13.txt, 1430, 13 046c_mary_anne_misses_logan_15.txt, 1521, 15 013c_goodbye_stacey_goodbye_7.txt, 1809, 7 032c_kristy_and_the_secret_of_susan_8.txt, 1319, 8 061c_jessi_and_the_awful_secret_14.txt, 1859, 14 051c_staceys_ex_best_friend_12.txt, 1828, 12 m06c_the_mystery_at_claudias_house_15.txt, 1921, 15 012c_claudia_and_the_new_girl_12.txt, 1698, 12 123c_claudias_big_party_5.txt, 2204, 5 m33c_stacey_and_the_stolen_hearts_3.txt, 1545, 3 041c_mary_anne_vs_logan_11.txt, 1689, 11 m08c_jessi_and_the_jewel_thieves_8.txt, 1745, 8 086c_mary_anne_and_camp_bsc_15.txt, 878, 15 066c_maid_mary_anne_3.txt, 2752, 3 037c_dawn_and_the_older_boy_9.txt, 1187, 9 008c_boy_crazy_stacey_5.txt, 2563, 5 m28c_abby_and_the_mystery_baby_9.txt, 1682, 9 034c_mary_anne_and_too_many_boys_8.txt, 1093, 8 009c_the_ghost_at_dawns_house_5.txt, 1419, 5 072c_dawn_and_the_we_heart_kids_club_14.txt, 1099, 14 119c_staceys_ex_boyfriend_13.txt, 1539, 13 031c_dawns_wicked_stepsister_6.txt, 1597, 6 062c_kristy_and_the_worst_kid_ever_14.txt, 1324, 14 024c_kristy_and_the_mothers_day_surprise_2.txt, 2203, 2 m12c_dawn_and_the_surfer_ghost_6.txt, 1991, 6 047c_mallory_on_strike_14.txt, 2259, 14 083c_stacey_vs_the_bsc_4.txt, 1528, 4 m13c_mary_anne_and_the_library_mystery_6.txt, 1719, 6 m33c_stacey_and_the_stolen_hearts_13.txt, 1602, 13 060c_mary_annes_makeover_1.txt, 2151, 1 108c_dont_give_up_mallory_10.txt, 1675, 10 m26c_dawn_schafer_undercover_babysitter_12.txt, 1766, 12 122c_kristy_in_charge_15.txt, 1326, 15 085c_claudia_kishi_live_from_wsto_11.txt, 1371, 11 008c_boy_crazy_stacey_13.txt, 1202, 13 m24c_mary_anne_and_the_silent_witness_2.txt, 2433, 2 129c_kristy_at_bat_8.txt, 1938, 8 070c_stacey_and_the_cheerleaders_3.txt, 2501, 3 031c_dawns_wicked_stepsister_13.txt, 1850, 13 m09c_kristy_and_the_haunted_mansion_11.txt, 1434, 11 001c_kristys_great_idea_4.txt, 2068, 4 004c_mary_anne_saves_the_day_1.txt, 2767, 1 099c_staceys_broken_heart_6.txt, 1706, 6 005c_dawn_and_the_impossible_three_4.txt, 1689, 4 035c_jessis_babysitter_8.txt, 1230, 8 serr3c_shannons_story_4.txt, 2871, 4 012c_claudia_and_the_new_girl_6.txt, 1946, 6 131c_the_fire_at_mary_annes_house_3.txt, 1424, 3 098c_dawn_and_too_many_sitters_8.txt, 1442, 8 112c_kristy_and_the_sister_war_3.txt, 1578, 3 007c_claudia_and_mean_jeanine_1.txt, 2149, 1 058c_staceys_choice_15.txt, 1692, 15 011c_kristy_and_the_snobs_10.txt, 1722, 10 011c_kristy_and_the_snobs_12.txt, 1941, 12 m04c_kristy_and_the_missing_child_14.txt, 1861, 14 007c_claudia_and_mean_jeanine_3.txt, 1481, 3 112c_kristy_and_the_sister_war_1.txt, 1996, 1 131c_the_fire_at_mary_annes_house_1.txt, 2032, 1 012c_claudia_and_the_new_girl_4.txt, 1911, 4 m07c_dawn_and_the_disappearing_dogs_14.txt, 1937, 14 005c_dawn_and_the_impossible_three_6.txt, 2078, 6 serr3c_shannons_story_6.txt, 1121, 6 m09c_kristy_and_the_haunted_mansion_13.txt, 1963, 13 031c_dawns_wicked_stepsister_11.txt, 1743, 11 099c_staceys_broken_heart_4.txt, 2162, 4 004c_mary_anne_saves_the_day_3.txt, 2196, 3 001c_kristys_great_idea_6.txt, 2244, 6 084c_dawn_and_the_school_spirit_war_9.txt, 1567, 9 085c_claudia_kishi_live_from_wsto_8.txt, 2131, 8 008c_boy_crazy_stacey_11.txt, 1435, 11 085c_claudia_kishi_live_from_wsto_13.txt, 1347, 13 070c_stacey_and_the_cheerleaders_1.txt, 2716, 1 052c_mary_anne_plus_too_many_babies_8.txt, 1404, 8 108c_dont_give_up_mallory_12.txt, 2084, 12 060c_mary_annes_makeover_3.txt, 1299, 3 m33c_stacey_and_the_stolen_hearts_11.txt, 1726, 11 m14c_stacey_and_the_mystery_at_the_mall_9.txt, 2095, 9 m13c_mary_anne_and_the_library_mystery_4.txt, 1919, 4 083c_stacey_vs_the_bsc_6.txt, 1402, 6 046c_mary_anne_misses_logan_9.txt, 1762, 9 m26c_dawn_schafer_undercover_babysitter_10.txt, 1819, 10 119c_staceys_ex_boyfriend_11.txt, 2190, 11 017c_mary_annes_bad_luck_mystery_8.txt, 1654, 8 009c_the_ghost_at_dawns_house_7.txt, 1537, 7 101c_claudia_kishi_middle_school_dropout_9.txt, 1867, 9 m12c_dawn_and_the_surfer_ghost_4.txt, 1726, 4 031c_dawns_wicked_stepsister_4.txt, 2031, 4 008c_boy_crazy_stacey_7.txt, 1546, 7 056c_keep_out_claudia_14.txt, 1617, 14 m16c_claudia_and_the_clue_in_the_photograph_9.txt, 2086, 9 m33c_stacey_and_the_stolen_hearts_1.txt, 1262, 1 123c_claudias_big_party_7.txt, 2164, 7 012c_claudia_and_the_new_girl_10.txt, 1865, 10 066c_maid_mary_anne_1.txt, 3306, 1 041c_mary_anne_vs_logan_13.txt, 1663, 13 127c_abbys_un_valentine_15.txt, 1097, 15 091c_claudia_and_the_first_thanksgiving_2.txt, 2914, 2 051c_staceys_ex_best_friend_10.txt, 1732, 10 013c_goodbye_stacey_goodbye_5.txt, 1747, 5 117c_claudia_and_the_terrible_truth_2.txt, 2388, 2 m22c_stacey_and_the_haunted_masquerade_15.txt, 1377, 15 m27c_claudia_and_the_lighthouse_ghost_11.txt, 1407, 11 093c_mary_anne_and_the_memory_garden_3.txt, 2284, 3 040c_claudia_and_the_middle_school_mystery_13.txt, 1690, 13 105c_stacey_the_math_whiz_8.txt, 1940, 8 049c_claudia_and_the_genius_of_elm_street_6.txt, 1903, 6 118c_kristy_thomas_dog_trainer_14.txt, 1049, 14 014c_hello_mallory_6.txt, 1222, 6 m06c_the_mystery_at_claudias_house_9.txt, 1594, 9 120c_mary_anne_and_the_playground_fight_10.txt, 1179, 10 073c_mary_anne_and_miss_priss_12.txt, 2385, 12 005c_dawn_and_the_impossible_three_13.txt, 1872, 13 serr2c_logan_bruno_boy_babysitter_10.txt, 1384, 10 055c_jessis_gold_medal_5.txt, 1335, 5 063c_claudias_freind_friend_1.txt, 1991, 1 116c_abby_and_the_best_kid_ever_15.txt, 1201, 15 002c_claudia_and_the_phantom_phone_calls_7.txt, 2446, 7 076c_staceys_lie_11.txt, 2090, 11 088c_farewell_dawn_3.txt, 1468, 3 m07c_dawn_and_the_disappearing_dogs_6.txt, 1556, 6 m11c_claudia_and_the_mystery_at_the_museum_6.txt, 1843, 6 041c_mary_anne_vs_logan_9.txt, 1437, 9 089c_kristy_and_the_dirty_diapers_9.txt, 1119, 9 m20c_mary_anne_and_the_zoo_mystery_14.txt, 2104, 14 m31c_mary_anne_and_the_music_box_secret_6.txt, 1965, 6 059c_mallory_hates_boys_and_gym_1.txt, 2520, 1 m20c_mary_anne_and_the_zoo_mystery_15.txt, 702, 15 089c_kristy_and_the_dirty_diapers_8.txt, 1329, 8 041c_mary_anne_vs_logan_8.txt, 1407, 8 m11c_claudia_and_the_mystery_at_the_museum_7.txt, 1940, 7 m31c_mary_anne_and_the_music_box_secret_7.txt, 1835, 7 088c_farewell_dawn_2.txt, 3611, 2 m07c_dawn_and_the_disappearing_dogs_7.txt, 1843, 7 116c_abby_and_the_best_kid_ever_14.txt, 1387, 14 002c_claudia_and_the_phantom_phone_calls_6.txt, 1750, 6 055c_jessis_gold_medal_4.txt, 1650, 4 076c_staceys_lie_10.txt, 1320, 10 serr2c_logan_bruno_boy_babysitter_11.txt, 991, 11 005c_dawn_and_the_impossible_three_12.txt, 2032, 12 073c_mary_anne_and_miss_priss_13.txt, 1699, 13 120c_mary_anne_and_the_playground_fight_11.txt, 993, 11 m06c_the_mystery_at_claudias_house_8.txt, 2089, 8 118c_kristy_thomas_dog_trainer_15.txt, 1156, 15 014c_hello_mallory_7.txt, 1303, 7 049c_claudia_and_the_genius_of_elm_street_7.txt, 1190, 7 040c_claudia_and_the_middle_school_mystery_12.txt, 1380, 12 093c_mary_anne_and_the_memory_garden_2.txt, 2125, 2 105c_stacey_the_math_whiz_9.txt, 813, 9 m22c_stacey_and_the_haunted_masquerade_14.txt, 2313, 14 117c_claudia_and_the_terrible_truth_3.txt, 1849, 3 m27c_claudia_and_the_lighthouse_ghost_10.txt, 2043, 10 051c_staceys_ex_best_friend_11.txt, 1336, 11 091c_claudia_and_the_first_thanksgiving_3.txt, 1650, 3 013c_goodbye_stacey_goodbye_4.txt, 1565, 4 127c_abbys_un_valentine_14.txt, 2103, 14 041c_mary_anne_vs_logan_12.txt, 1787, 12 012c_claudia_and_the_new_girl_11.txt, 1720, 11 123c_claudias_big_party_6.txt, 1542, 6 m16c_claudia_and_the_clue_in_the_photograph_8.txt, 2055, 8 008c_boy_crazy_stacey_6.txt, 1832, 6 056c_keep_out_claudia_15.txt, 1674, 15 031c_dawns_wicked_stepsister_5.txt, 1691, 5 024c_kristy_and_the_mothers_day_surprise_1.txt, 2152, 1 m12c_dawn_and_the_surfer_ghost_5.txt, 1479, 5 017c_mary_annes_bad_luck_mystery_9.txt, 1750, 9 119c_staceys_ex_boyfriend_10.txt, 1310, 10 101c_claudia_kishi_middle_school_dropout_8.txt, 1541, 8 009c_the_ghost_at_dawns_house_6.txt, 1250, 6 m26c_dawn_schafer_undercover_babysitter_11.txt, 1776, 11 m33c_stacey_and_the_stolen_hearts_10.txt, 1486, 10 060c_mary_annes_makeover_2.txt, 3050, 2 108c_dont_give_up_mallory_13.txt, 2062, 13 046c_mary_anne_misses_logan_8.txt, 1607, 8 083c_stacey_vs_the_bsc_7.txt, 1164, 7 m13c_mary_anne_and_the_library_mystery_5.txt, 1873, 5 m14c_stacey_and_the_mystery_at_the_mall_8.txt, 1937, 8 052c_mary_anne_plus_too_many_babies_9.txt, 1324, 9 085c_claudia_kishi_live_from_wsto_12.txt, 776, 12 008c_boy_crazy_stacey_10.txt, 1468, 10 m24c_mary_anne_and_the_silent_witness_1.txt, 2037, 1 085c_claudia_kishi_live_from_wsto_9.txt, 1019, 9 099c_staceys_broken_heart_5.txt, 2416, 5 084c_dawn_and_the_school_spirit_war_8.txt, 1986, 8 001c_kristys_great_idea_7.txt, 1789, 7 004c_mary_anne_saves_the_day_2.txt, 1826, 2 031c_dawns_wicked_stepsister_10.txt, 1516, 10 m09c_kristy_and_the_haunted_mansion_12.txt, 1748, 12 serr3c_shannons_story_7.txt, 1493, 7 005c_dawn_and_the_impossible_three_7.txt, 1730, 7 m07c_dawn_and_the_disappearing_dogs_15.txt, 1740, 15 012c_claudia_and_the_new_girl_5.txt, 1601, 5 011c_kristy_and_the_snobs_13.txt, 1846, 13 007c_claudia_and_mean_jeanine_2.txt, 1683, 2 m04c_kristy_and_the_missing_child_15.txt, 2022, 15 033c_claudia_and_the_great_search_9.txt, 1496, 9 130c_staceys_movie_6.txt, 1453, 6 026c_claudia_and_the_sad_goodbye_5.txt, 1618, 5 m16c_claudia_and_the_clue_in_the_photograph_11.txt, 2108, 11 053c_kristy_for_president_4.txt, 1564, 4 131c_the_fire_at_mary_annes_house_15.txt, 1881, 15 m10c_stacey_and_the_mystery_money_1.txt, 2393, 1 130c_staceys_movie_13.txt, 802, 13 090c_welcome_to_the_bsc_abby_15.txt, 882, 15 m27c_claudia_and_the_lighthouse_ghost_8.txt, 1814, 8 125c_mary_anne_in_the_middle_9.txt, 1070, 9 062c_kristy_and_the_worst_kid_ever_9.txt, 2554, 9 109c_mary_anne_to_the_rescue_6.txt, 1387, 6 m24c_mary_anne_and_the_silent_witness_12.txt, 2153, 12 097c_claudia_and_the_worlds_cutest_baby_12.txt, 972, 12 064c_dawns_family_feud_15.txt, 780, 15 m20c_mary_anne_and_the_zoo_mystery_5.txt, 1804, 5 073c_mary_anne_and_miss_priss_9.txt, 1598, 9 072c_dawn_and_the_we_heart_kids_club_9.txt, 1738, 9 009c_the_ghost_at_dawns_house_13.txt, 1608, 13 m23c_abby_and_the_secret_society_13.txt, 1963, 13 067c_dawns_big_move_6.txt, 1655, 6 118c_kristy_thomas_dog_trainer_3.txt, 1376, 3 029c_mallory_and_the_mystery_diary_9.txt, 1771, 9 064c_dawns_family_feud_7.txt, 1329, 7 011c_kristy_and_the_snobs_5.txt, 1135, 5 087c_stacey_and_the_bad_girls_9.txt, 1128, 9 023c_dawn_on_the_coast_9.txt, 1374, 9 071c_claudia_and_the_perfect_boy_6.txt, 1370, 6 m35c_abby_and_the_notorius_neighbor_7.txt, 1785, 7 126c_the_all_new_mallory_pike_7.txt, 1978, 7 098c_dawn_and_too_many_sitters_14.txt, 1440, 14 m35c_abby_and_the_notorius_neighbor_12.txt, 1689, 12 100c_kristys_worst_idea_14.txt, 1501, 14 048c_jessis_wish_1.txt, 1906, 1 m26c_dawn_schafer_undercover_babysitter_4.txt, 1691, 4 022c_jessi_ramsey_petsitter_7.txt, 1404, 7 081c_kristy_and_mr_mom_4.txt, 2103, 4 021c_mallory_and_the_trouble_with_twins_15.txt, 1338, 15 069c_get_well_soon_mallory_13.txt, 1482, 13 094c_stacey_mcgill_super_sitter_13.txt, 1217, 13 120c_mary_anne_and_the_playground_fight_2.txt, 3052, 2 025c_mary_anne_and_the_search_for_tigger_8.txt, 1599, 8 m22c_stacey_and_the_haunted_masquerade_5.txt, 1615, 5 028c_welcome_back_stacey_7.txt, 2093, 7 115c_jessis_big_break_15.txt, 1723, 15 113c_claudia_makes_up_her_mind_12.txt, 1529, 12 093c_mary_anne_and_the_memory_garden_10.txt, 1621, 10 027c_jessi_and_the_superbrat_5.txt, 1743, 5 068c_jessi_and_the_bad_babysitter_13.txt, 1055, 13 103c_happy_holidays_jessi_10.txt, 1492, 10 m29c_stacey_and_the_fashion_victim_8.txt, 1578, 8 065c_staceys_big_crush_9.txt, 1518, 9 034c_mary_anne_and_too_many_boys_11.txt, 1571, 11 049c_claudia_and_the_genius_of_elm_street_12.txt, 1836, 12 m09c_kristy_and_the_haunted_mansion_3.txt, 1707, 3 114c_the_secret_life_of_mary_anne_spier_1.txt, 1447, 1 075c_jessis_horrible_prank_11.txt, 1201, 11 091c_claudia_and_the_first_thanksgiving_11.txt, 925, 11 111c_staceys_secret_friend_3.txt, 1008, 3 061c_jessi_and_the_awful_secret_3.txt, 1991, 3 127c_abbys_un_valentine_9.txt, 1156, 9 m02c_beware_dawn_8.txt, 1747, 8 m30c_kristy_and_the_mystery_train_7.txt, 1264, 7 m36c_kristy_and_the_cat_burglar_15.txt, 1756, 15 074c_kristy_and_the_copycat_12.txt, 1204, 12 069c_get_well_soon_mallory_8.txt, 1736, 8 039c_poor_mallory_9.txt, 1656, 9 097c_claudia_and_the_worlds_cutest_baby_9.txt, 1740, 9 010c_logan_likes_mary_anne_3.txt, 1457, 3 090c_welcome_to_the_bsc_abby_1.txt, 2276, 1 068c_jessi_and_the_bad_babysitter_4.txt, 1568, 4 m13c_mary_anne_and_the_library_mystery_13.txt, 1444, 13 028c_welcome_back_stacey_14.txt, 1726, 14 016c_jessis_secret_language_7.txt, 1613, 7 017c_mary_annes_bad_luck_mystery_12.txt, 1266, 12 057c_dawn_saves_the_planet_12.txt, 2012, 12 115c_jessis_big_break_5.txt, 919, 5 092c_mallorys_christmas_wish_7.txt, 1789, 7 057c_dawn_saves_the_planet_8.txt, 1875, 8 serr2c_logan_bruno_boy_babysitter_7.txt, 1142, 7 m30c_kristy_and_the_mystery_train_14.txt, 1024, 14 040c_claudia_and_the_middle_school_mystery_5.txt, 1582, 5 m32c_claudia_and_the_mystery_in_the_painting_2.txt, 3028, 2 116c_abby_and_the_best_kid_ever_1.txt, 1503, 1 043c_staceys_emergency_6.txt, 1797, 6 043c_staceys_emergency_7.txt, 1714, 7 m32c_claudia_and_the_mystery_in_the_painting_3.txt, 3603, 3 040c_claudia_and_the_middle_school_mystery_4.txt, 1866, 4 serr2c_logan_bruno_boy_babysitter_6.txt, 1499, 6 m30c_kristy_and_the_mystery_train_15.txt, 995, 15 115c_jessis_big_break_4.txt, 2388, 4 057c_dawn_saves_the_planet_13.txt, 1698, 13 057c_dawn_saves_the_planet_9.txt, 2131, 9 092c_mallorys_christmas_wish_6.txt, 1375, 6 016c_jessis_secret_language_6.txt, 1842, 6 028c_welcome_back_stacey_15.txt, 1558, 15 017c_mary_annes_bad_luck_mystery_13.txt, 1585, 13 068c_jessi_and_the_bad_babysitter_5.txt, 1363, 5 m13c_mary_anne_and_the_library_mystery_12.txt, 1870, 12 097c_claudia_and_the_worlds_cutest_baby_8.txt, 1301, 8 010c_logan_likes_mary_anne_2.txt, 1472, 2 074c_kristy_and_the_copycat_13.txt, 1468, 13 m36c_kristy_and_the_cat_burglar_14.txt, 1392, 14 094c_stacey_mcgill_super_sitter_1.txt, 1995, 1 039c_poor_mallory_8.txt, 1941, 8 069c_get_well_soon_mallory_9.txt, 2203, 9 m02c_beware_dawn_9.txt, 1978, 9 m30c_kristy_and_the_mystery_train_6.txt, 1811, 6 127c_abbys_un_valentine_8.txt, 1814, 8 061c_jessi_and_the_awful_secret_2.txt, 3280, 2 038c_kristys_mystery_admirer_1.txt, 1642, 1 111c_staceys_secret_friend_2.txt, 2709, 2 091c_claudia_and_the_first_thanksgiving_10.txt, 1179, 10 075c_jessis_horrible_prank_10.txt, 1474, 10 m09c_kristy_and_the_haunted_mansion_2.txt, 2320, 2 054c_mallory_and_the_dream_horse_1.txt, 2033, 1 049c_claudia_and_the_genius_of_elm_street_13.txt, 1625, 13 034c_mary_anne_and_too_many_boys_10.txt, 1462, 10 065c_staceys_big_crush_8.txt, 1666, 8 075c_jessis_horrible_prank_1.txt, 1401, 1 093c_mary_anne_and_the_memory_garden_11.txt, 2027, 11 m29c_stacey_and_the_fashion_victim_9.txt, 1544, 9 103c_happy_holidays_jessi_11.txt, 1133, 11 068c_jessi_and_the_bad_babysitter_12.txt, 1523, 12 027c_jessi_and_the_superbrat_4.txt, 1648, 4 028c_welcome_back_stacey_6.txt, 1825, 6 m22c_stacey_and_the_haunted_masquerade_4.txt, 1555, 4 025c_mary_anne_and_the_search_for_tigger_9.txt, 1685, 9 113c_claudia_makes_up_her_mind_13.txt, 905, 13 115c_jessis_big_break_14.txt, 1209, 14 069c_get_well_soon_mallory_12.txt, 1601, 12 120c_mary_anne_and_the_playground_fight_3.txt, 1393, 3 094c_stacey_mcgill_super_sitter_12.txt, 1193, 12 081c_kristy_and_mr_mom_5.txt, 2625, 5 022c_jessi_ramsey_petsitter_6.txt, 1544, 6 021c_mallory_and_the_trouble_with_twins_14.txt, 1577, 14 100c_kristys_worst_idea_15.txt, 1909, 15 m35c_abby_and_the_notorius_neighbor_13.txt, 1285, 13 098c_dawn_and_too_many_sitters_15.txt, 591, 15 126c_the_all_new_mallory_pike_6.txt, 2044, 6 003c_the_truth_about_stacey_1.txt, 2010, 1 m26c_dawn_schafer_undercover_babysitter_5.txt, 2266, 5 011c_kristy_and_the_snobs_4.txt, 1985, 4 m35c_abby_and_the_notorius_neighbor_6.txt, 1559, 6 071c_claudia_and_the_perfect_boy_7.txt, 2037, 7 023c_dawn_on_the_coast_8.txt, 1605, 8 087c_stacey_and_the_bad_girls_8.txt, 924, 8 029c_mallory_and_the_mystery_diary_8.txt, 1552, 8 064c_dawns_family_feud_6.txt, 1699, 6 118c_kristy_thomas_dog_trainer_2.txt, 3138, 2 m23c_abby_and_the_secret_society_12.txt, 1634, 12 067c_dawns_big_move_7.txt, 1146, 7 m20c_mary_anne_and_the_zoo_mystery_4.txt, 1476, 4 009c_the_ghost_at_dawns_house_12.txt, 1669, 12 072c_dawn_and_the_we_heart_kids_club_8.txt, 1811, 8 073c_mary_anne_and_miss_priss_8.txt, 1940, 8 064c_dawns_family_feud_14.txt, 1906, 14 097c_claudia_and_the_worlds_cutest_baby_13.txt, 1435, 13 m24c_mary_anne_and_the_silent_witness_13.txt, 2045, 13 042c_jessi_and_the_dance_school_phantom_1.txt, 2669, 1 109c_mary_anne_to_the_rescue_7.txt, 1865, 7 062c_kristy_and_the_worst_kid_ever_8.txt, 1532, 8 090c_welcome_to_the_bsc_abby_14.txt, 1364, 14 125c_mary_anne_in_the_middle_8.txt, 1520, 8 m27c_claudia_and_the_lighthouse_ghost_9.txt, 958, 9 131c_the_fire_at_mary_annes_house_14.txt, 1460, 14 130c_staceys_movie_12.txt, 1463, 12 053c_kristy_for_president_5.txt, 1285, 5 m16c_claudia_and_the_clue_in_the_photograph_10.txt, 2115, 10 033c_claudia_and_the_great_search_8.txt, 1334, 8 026c_claudia_and_the_sad_goodbye_4.txt, 1248, 4 130c_staceys_movie_7.txt, 2219, 7 m16c_claudia_and_the_clue_in_the_photograph_12.txt, 1775, 12 053c_kristy_for_president_7.txt, 2431, 7 086c_mary_anne_and_camp_bsc_8.txt, 1907, 8 130c_staceys_movie_5.txt, 1128, 5 026c_claudia_and_the_sad_goodbye_6.txt, 1794, 6 m19c_kristy_and_the_missing_fortune_8.txt, 1992, 8 027c_jessi_and_the_superbrat_15.txt, 1865, 15 130c_staceys_movie_10.txt, 948, 10 m10c_stacey_and_the_mystery_money_2.txt, 2658, 2 102c_mary_anne_and_the_little_princess_9.txt, 2048, 9 096c_abbys_lucky_thirteen_8.txt, 1081, 8 109c_mary_anne_to_the_rescue_5.txt, 1504, 5 042c_jessi_and_the_dance_school_phantom_3.txt, 2307, 3 m24c_mary_anne_and_the_silent_witness_11.txt, 2017, 11 009c_the_ghost_at_dawns_house_10.txt, 1503, 10 m20c_mary_anne_and_the_zoo_mystery_6.txt, 1993, 6 097c_claudia_and_the_worlds_cutest_baby_11.txt, 1972, 11 067c_dawns_big_move_5.txt, 1902, 5 m23c_abby_and_the_secret_society_10.txt, 2093, 10 071c_claudia_and_the_perfect_boy_5.txt, 1532, 5 m35c_abby_and_the_notorius_neighbor_4.txt, 1849, 4 011c_kristy_and_the_snobs_6.txt, 1862, 6 m11c_claudia_and_the_mystery_at_the_museum_15.txt, 1216, 15 064c_dawns_family_feud_4.txt, 1628, 4 m18c_stacey_and_the_mystery_at_the_empty_house_8.txt, 1951, 8 022c_jessi_ramsey_petsitter_4.txt, 1618, 4 081c_kristy_and_mr_mom_7.txt, 1808, 7 029c_mallory_and_the_mystery_diary_15.txt, 1669, 15 m14c_stacey_and_the_mystery_at_the_mall_15.txt, 2005, 15 048c_jessis_wish_2.txt, 2631, 2 m26c_dawn_schafer_undercover_babysitter_7.txt, 1576, 7 001c_kristys_great_idea_15.txt, 2426, 15 003c_the_truth_about_stacey_3.txt, 2229, 3 126c_the_all_new_mallory_pike_4.txt, 1433, 4 m35c_abby_and_the_notorius_neighbor_11.txt, 1548, 11 113c_claudia_makes_up_her_mind_11.txt, 1996, 11 m22c_stacey_and_the_haunted_masquerade_6.txt, 1585, 6 028c_welcome_back_stacey_4.txt, 1473, 4 094c_stacey_mcgill_super_sitter_10.txt, 1807, 10 120c_mary_anne_and_the_playground_fight_1.txt, 1835, 1 069c_get_well_soon_mallory_10.txt, 1880, 10 047c_mallory_on_strike_9.txt, 1185, 9 034c_mary_anne_and_too_many_boys_12.txt, 1244, 12 027c_jessi_and_the_superbrat_6.txt, 1566, 6 068c_jessi_and_the_bad_babysitter_10.txt, 1824, 10 103c_happy_holidays_jessi_13.txt, 1554, 13 093c_mary_anne_and_the_memory_garden_13.txt, 1698, 13 075c_jessis_horrible_prank_3.txt, 2377, 3 049c_claudia_and_the_genius_of_elm_street_11.txt, 2359, 11 054c_mallory_and_the_dream_horse_3.txt, 1728, 3 091c_claudia_and_the_first_thanksgiving_12.txt, 1348, 12 113c_claudia_makes_up_her_mind_8.txt, 1530, 8 m34c_mary_anne_and_the_haunted_bookstore_14.txt, 2405, 14 114c_the_secret_life_of_mary_anne_spier_2.txt, 2800, 2 075c_jessis_horrible_prank_12.txt, 1941, 12 m30c_kristy_and_the_mystery_train_4.txt, 2477, 4 038c_kristys_mystery_admirer_3.txt, 2102, 3 092c_mallorys_christmas_wish_14.txt, 1546, 14 094c_stacey_mcgill_super_sitter_3.txt, 1978, 3 074c_kristy_and_the_copycat_11.txt, 1483, 11 017c_mary_annes_bad_luck_mystery_11.txt, 1856, 11 016c_jessis_secret_language_4.txt, 2343, 4 m13c_mary_anne_and_the_library_mystery_10.txt, 1893, 10 090c_welcome_to_the_bsc_abby_2.txt, 2965, 2 068c_jessi_and_the_bad_babysitter_7.txt, 1620, 7 serr2c_logan_bruno_boy_babysitter_4.txt, 1206, 4 092c_mallorys_christmas_wish_4.txt, 1132, 4 057c_dawn_saves_the_planet_11.txt, 1956, 11 023c_dawn_on_the_coast_15.txt, 1762, 15 115c_jessis_big_break_6.txt, 1408, 6 043c_staceys_emergency_5.txt, 1724, 5 021c_mallory_and_the_trouble_with_twins_8.txt, 1587, 8 116c_abby_and_the_best_kid_ever_2.txt, 3293, 2 040c_claudia_and_the_middle_school_mystery_6.txt, 1809, 6 m32c_claudia_and_the_mystery_in_the_painting_1.txt, 2110, 1 116c_abby_and_the_best_kid_ever_3.txt, 885, 3 040c_claudia_and_the_middle_school_mystery_7.txt, 1543, 7 043c_staceys_emergency_4.txt, 1497, 4 021c_mallory_and_the_trouble_with_twins_9.txt, 1562, 9 092c_mallorys_christmas_wish_5.txt, 1405, 5 115c_jessis_big_break_7.txt, 1628, 7 023c_dawn_on_the_coast_14.txt, 1369, 14 057c_dawn_saves_the_planet_10.txt, 1461, 10 serr2c_logan_bruno_boy_babysitter_5.txt, 1822, 5 m13c_mary_anne_and_the_library_mystery_11.txt, 1836, 11 068c_jessi_and_the_bad_babysitter_6.txt, 1646, 6 090c_welcome_to_the_bsc_abby_3.txt, 1436, 3 017c_mary_annes_bad_luck_mystery_10.txt, 1692, 10 016c_jessis_secret_language_5.txt, 1273, 5 074c_kristy_and_the_copycat_10.txt, 1245, 10 094c_stacey_mcgill_super_sitter_2.txt, 3627, 2 010c_logan_likes_mary_anne_1.txt, 2381, 1 092c_mallorys_christmas_wish_15.txt, 857, 15 038c_kristys_mystery_admirer_2.txt, 2324, 2 061c_jessi_and_the_awful_secret_1.txt, 2227, 1 m30c_kristy_and_the_mystery_train_5.txt, 1973, 5 075c_jessis_horrible_prank_13.txt, 1513, 13 114c_the_secret_life_of_mary_anne_spier_3.txt, 1884, 3 111c_staceys_secret_friend_1.txt, 1664, 1 091c_claudia_and_the_first_thanksgiving_13.txt, 1353, 13 m34c_mary_anne_and_the_haunted_bookstore_15.txt, 949, 15 113c_claudia_makes_up_her_mind_9.txt, 978, 9 049c_claudia_and_the_genius_of_elm_street_10.txt, 1139, 10 054c_mallory_and_the_dream_horse_2.txt, 2387, 2 m09c_kristy_and_the_haunted_mansion_1.txt, 2215, 1 103c_happy_holidays_jessi_12.txt, 1100, 12 068c_jessi_and_the_bad_babysitter_11.txt, 1420, 11 027c_jessi_and_the_superbrat_7.txt, 1919, 7 075c_jessis_horrible_prank_2.txt, 1266, 2 093c_mary_anne_and_the_memory_garden_12.txt, 1726, 12 034c_mary_anne_and_too_many_boys_13.txt, 1409, 13 094c_stacey_mcgill_super_sitter_11.txt, 1500, 11 047c_mallory_on_strike_8.txt, 1937, 8 069c_get_well_soon_mallory_11.txt, 1959, 11 113c_claudia_makes_up_her_mind_10.txt, 1774, 10 028c_welcome_back_stacey_5.txt, 1563, 5 m22c_stacey_and_the_haunted_masquerade_7.txt, 1845, 7 003c_the_truth_about_stacey_2.txt, 2311, 2 001c_kristys_great_idea_14.txt, 1842, 14 m26c_dawn_schafer_undercover_babysitter_6.txt, 1995, 6 048c_jessis_wish_3.txt, 2384, 3 m35c_abby_and_the_notorius_neighbor_10.txt, 1615, 10 126c_the_all_new_mallory_pike_5.txt, 1474, 5 m18c_stacey_and_the_mystery_at_the_empty_house_9.txt, 1763, 9 m14c_stacey_and_the_mystery_at_the_mall_14.txt, 2303, 14 029c_mallory_and_the_mystery_diary_14.txt, 1585, 14 081c_kristy_and_mr_mom_6.txt, 2507, 6 022c_jessi_ramsey_petsitter_5.txt, 1647, 5 064c_dawns_family_feud_5.txt, 2243, 5 m11c_claudia_and_the_mystery_at_the_museum_14.txt, 1523, 14 m35c_abby_and_the_notorius_neighbor_5.txt, 1371, 5 071c_claudia_and_the_perfect_boy_4.txt, 1899, 4 011c_kristy_and_the_snobs_7.txt, 1886, 7 067c_dawns_big_move_4.txt, 1750, 4 m23c_abby_and_the_secret_society_11.txt, 1806, 11 118c_kristy_thomas_dog_trainer_1.txt, 1229, 1 097c_claudia_and_the_worlds_cutest_baby_10.txt, 1340, 10 009c_the_ghost_at_dawns_house_11.txt, 1790, 11 m20c_mary_anne_and_the_zoo_mystery_7.txt, 3430, 7 102c_mary_anne_and_the_little_princess_8.txt, 1357, 8 m24c_mary_anne_and_the_silent_witness_10.txt, 1783, 10 042c_jessi_and_the_dance_school_phantom_2.txt, 2980, 2 109c_mary_anne_to_the_rescue_4.txt, 1333, 4 096c_abbys_lucky_thirteen_9.txt, 2517, 9 130c_staceys_movie_11.txt, 1332, 11 m10c_stacey_and_the_mystery_money_3.txt, 2136, 3 027c_jessi_and_the_superbrat_14.txt, 1366, 14 m19c_kristy_and_the_missing_fortune_9.txt, 1703, 9 026c_claudia_and_the_sad_goodbye_7.txt, 1940, 7 130c_staceys_movie_4.txt, 2228, 4 086c_mary_anne_and_camp_bsc_9.txt, 1830, 9 053c_kristy_for_president_6.txt, 1632, 6 m16c_claudia_and_the_clue_in_the_photograph_13.txt, 1960, 13 090c_welcome_to_the_bsc_abby_13.txt, 901, 13 027c_jessi_and_the_superbrat_10.txt, 1667, 10 131c_the_fire_at_mary_annes_house_13.txt, 1592, 13 m10c_stacey_and_the_mystery_money_7.txt, 2536, 7 130c_staceys_movie_15.txt, 1262, 15 053c_kristy_for_president_2.txt, 2517, 2 107c_mind_your_own_business_kristy_8.txt, 1098, 8 026c_claudia_and_the_sad_goodbye_3.txt, 1898, 3 m20c_mary_anne_and_the_zoo_mystery_3.txt, 2198, 3 009c_the_ghost_at_dawns_house_15.txt, 1894, 15 097c_claudia_and_the_worlds_cutest_baby_14.txt, 767, 14 064c_dawns_family_feud_13.txt, 1070, 13 042c_jessi_and_the_dance_school_phantom_6.txt, 2054, 6 m24c_mary_anne_and_the_silent_witness_14.txt, 1788, 14 058c_staceys_choice_8.txt, 1473, 8 011c_kristy_and_the_snobs_3.txt, 1846, 3 m35c_abby_and_the_notorius_neighbor_1.txt, 1841, 1 064c_dawns_family_feud_1.txt, 1896, 1 m11c_claudia_and_the_mystery_at_the_museum_10.txt, 1866, 10 044c_dawn_and_the_big_sleepover_9.txt, 1704, 9 118c_kristy_thomas_dog_trainer_5.txt, 1762, 5 050c_dawns_big_date_9.txt, 1513, 9 m23c_abby_and_the_secret_society_15.txt, 1923, 15 m22c_stacey_and_the_haunted_masquerade_3.txt, 1793, 3 028c_welcome_back_stacey_1.txt, 1902, 1 115c_jessis_big_break_13.txt, 1187, 13 113c_claudia_makes_up_her_mind_14.txt, 1601, 14 069c_get_well_soon_mallory_15.txt, 688, 15 094c_stacey_mcgill_super_sitter_15.txt, 1426, 15 120c_mary_anne_and_the_playground_fight_4.txt, 967, 4 081c_kristy_and_mr_mom_2.txt, 3072, 2 022c_jessi_ramsey_petsitter_1.txt, 2155, 1 m14c_stacey_and_the_mystery_at_the_mall_10.txt, 1947, 10 029c_mallory_and_the_mystery_diary_10.txt, 1535, 10 021c_mallory_and_the_trouble_with_twins_13.txt, 2039, 13 126c_the_all_new_mallory_pike_1.txt, 1504, 1 100c_kristys_worst_idea_12.txt, 1186, 12 m35c_abby_and_the_notorius_neighbor_14.txt, 1380, 14 098c_dawn_and_too_many_sitters_12.txt, 1420, 12 048c_jessis_wish_7.txt, 1571, 7 m26c_dawn_schafer_undercover_babysitter_2.txt, 2322, 2 003c_the_truth_about_stacey_6.txt, 1365, 6 001c_kristys_great_idea_10.txt, 2429, 10 m09c_kristy_and_the_haunted_mansion_5.txt, 1644, 5 054c_mallory_and_the_dream_horse_6.txt, 2124, 6 049c_claudia_and_the_genius_of_elm_street_14.txt, 1426, 14 serr1c_logans_story_9.txt, 1704, 9 m01c_stacey_and_the_mystery_ring_8.txt, 1849, 8 075c_jessis_horrible_prank_6.txt, 1221, 6 027c_jessi_and_the_superbrat_3.txt, 1704, 3 068c_jessi_and_the_bad_babysitter_15.txt, 1274, 15 m30c_kristy_and_the_mystery_train_1.txt, 1691, 1 061c_jessi_and_the_awful_secret_5.txt, 2324, 5 121c_abby_in_wonderland_9.txt, 1624, 9 038c_kristys_mystery_admirer_6.txt, 1480, 6 m34c_mary_anne_and_the_haunted_bookstore_11.txt, 716, 11 111c_staceys_secret_friend_5.txt, 1479, 5 114c_the_secret_life_of_mary_anne_spier_7.txt, 2063, 7 m15c_kristy_and_the_vampires_9.txt, 1781, 9 028c_welcome_back_stacey_12.txt, 1415, 12 016c_jessis_secret_language_1.txt, 1988, 1 017c_mary_annes_bad_luck_mystery_14.txt, 1996, 14 068c_jessi_and_the_bad_babysitter_2.txt, 3278, 2 090c_welcome_to_the_bsc_abby_7.txt, 1861, 7 m13c_mary_anne_and_the_library_mystery_15.txt, 2040, 15 103c_happy_holidays_jessi_9.txt, 1365, 9 092c_mallorys_christmas_wish_11.txt, 1076, 11 010c_logan_likes_mary_anne_5.txt, 1902, 5 076c_staceys_lie_8.txt, 2882, 8 074c_kristy_and_the_copycat_14.txt, 1541, 14 m36c_kristy_and_the_cat_burglar_13.txt, 2020, 13 094c_stacey_mcgill_super_sitter_6.txt, 1279, 6 122c_kristy_in_charge_9.txt, 1478, 9 040c_claudia_and_the_middle_school_mystery_3.txt, 2020, 3 m32c_claudia_and_the_mystery_in_the_painting_4.txt, 2277, 4 116c_abby_and_the_best_kid_ever_7.txt, 1714, 7 serr2c_logan_bruno_boy_babysitter_1.txt, 2769, 1 m30c_kristy_and_the_mystery_train_12.txt, 1008, 12 057c_dawn_saves_the_planet_14.txt, 1682, 14 023c_dawn_on_the_coast_10.txt, 1325, 10 115c_jessis_big_break_3.txt, 1605, 3 092c_mallorys_christmas_wish_1.txt, 2050, 1 115c_jessis_big_break_2.txt, 2978, 2 023c_dawn_on_the_coast_11.txt, 1419, 11 057c_dawn_saves_the_planet_15.txt, 1407, 15 m30c_kristy_and_the_mystery_train_13.txt, 678, 13 m32c_claudia_and_the_mystery_in_the_painting_5.txt, 3083, 5 040c_claudia_and_the_middle_school_mystery_2.txt, 2045, 2 116c_abby_and_the_best_kid_ever_6.txt, 1865, 6 043c_staceys_emergency_1.txt, 2069, 1 122c_kristy_in_charge_8.txt, 1755, 8 m36c_kristy_and_the_cat_burglar_12.txt, 1610, 12 094c_stacey_mcgill_super_sitter_7.txt, 1954, 7 074c_kristy_and_the_copycat_15.txt, 920, 15 076c_staceys_lie_9.txt, 1393, 9 092c_mallorys_christmas_wish_10.txt, 1561, 10 103c_happy_holidays_jessi_8.txt, 1221, 8 010c_logan_likes_mary_anne_4.txt, 1828, 4 090c_welcome_to_the_bsc_abby_6.txt, 1634, 6 068c_jessi_and_the_bad_babysitter_3.txt, 1713, 3 m13c_mary_anne_and_the_library_mystery_14.txt, 1738, 14 028c_welcome_back_stacey_13.txt, 1748, 13 017c_mary_annes_bad_luck_mystery_15.txt, 1254, 15 m15c_kristy_and_the_vampires_8.txt, 1486, 8 114c_the_secret_life_of_mary_anne_spier_6.txt, 1725, 6 m34c_mary_anne_and_the_haunted_bookstore_10.txt, 2688, 10 111c_staceys_secret_friend_4.txt, 1474, 4 061c_jessi_and_the_awful_secret_4.txt, 1586, 4 038c_kristys_mystery_admirer_7.txt, 1304, 7 121c_abby_in_wonderland_8.txt, 1289, 8 075c_jessis_horrible_prank_7.txt, 1305, 7 068c_jessi_and_the_bad_babysitter_14.txt, 1875, 14 027c_jessi_and_the_superbrat_2.txt, 1788, 2 m01c_stacey_and_the_mystery_ring_9.txt, 1601, 9 054c_mallory_and_the_dream_horse_7.txt, 2076, 7 serr1c_logans_story_8.txt, 1920, 8 049c_claudia_and_the_genius_of_elm_street_15.txt, 930, 15 m09c_kristy_and_the_haunted_mansion_4.txt, 1898, 4 098c_dawn_and_too_many_sitters_13.txt, 1384, 13 m35c_abby_and_the_notorius_neighbor_15.txt, 1545, 15 100c_kristys_worst_idea_13.txt, 1119, 13 001c_kristys_great_idea_11.txt, 1549, 11 003c_the_truth_about_stacey_7.txt, 1774, 7 m26c_dawn_schafer_undercover_babysitter_3.txt, 1914, 3 048c_jessis_wish_6.txt, 1640, 6 029c_mallory_and_the_mystery_diary_11.txt, 1509, 11 m14c_stacey_and_the_mystery_at_the_mall_11.txt, 1641, 11 081c_kristy_and_mr_mom_3.txt, 2154, 3 021c_mallory_and_the_trouble_with_twins_12.txt, 1785, 12 069c_get_well_soon_mallory_14.txt, 1909, 14 120c_mary_anne_and_the_playground_fight_5.txt, 1832, 5 094c_stacey_mcgill_super_sitter_14.txt, 1005, 14 m22c_stacey_and_the_haunted_masquerade_2.txt, 2652, 2 113c_claudia_makes_up_her_mind_15.txt, 1686, 15 115c_jessis_big_break_12.txt, 1247, 12 m23c_abby_and_the_secret_society_14.txt, 1622, 14 050c_dawns_big_date_8.txt, 1956, 8 067c_dawns_big_move_1.txt, 2542, 1 044c_dawn_and_the_big_sleepover_8.txt, 1808, 8 118c_kristy_thomas_dog_trainer_4.txt, 1360, 4 m11c_claudia_and_the_mystery_at_the_museum_11.txt, 1840, 11 011c_kristy_and_the_snobs_2.txt, 1657, 2 071c_claudia_and_the_perfect_boy_1.txt, 1915, 1 058c_staceys_choice_9.txt, 1388, 9 m24c_mary_anne_and_the_silent_witness_15.txt, 1287, 15 042c_jessi_and_the_dance_school_phantom_7.txt, 2141, 7 109c_mary_anne_to_the_rescue_1.txt, 2079, 1 064c_dawns_family_feud_12.txt, 1093, 12 097c_claudia_and_the_worlds_cutest_baby_15.txt, 634, 15 m20c_mary_anne_and_the_zoo_mystery_2.txt, 2450, 2 009c_the_ghost_at_dawns_house_14.txt, 1407, 14 026c_claudia_and_the_sad_goodbye_2.txt, 2068, 2 107c_mind_your_own_business_kristy_9.txt, 2004, 9 130c_staceys_movie_1.txt, 1442, 1 053c_kristy_for_president_3.txt, 2833, 3 131c_the_fire_at_mary_annes_house_12.txt, 1504, 12 m10c_stacey_and_the_mystery_money_6.txt, 2190, 6 130c_staceys_movie_14.txt, 1422, 14 027c_jessi_and_the_superbrat_11.txt, 1843, 11 090c_welcome_to_the_bsc_abby_12.txt, 1288, 12 m10c_stacey_and_the_mystery_money_4.txt, 2579, 4 131c_the_fire_at_mary_annes_house_10.txt, 1973, 10 090c_welcome_to_the_bsc_abby_10.txt, 1616, 10 027c_jessi_and_the_superbrat_13.txt, 1780, 13 130c_staceys_movie_3.txt, 1634, 3 m16c_claudia_and_the_clue_in_the_photograph_14.txt, 2289, 14 053c_kristy_for_president_1.txt, 1858, 1 064c_dawns_family_feud_10.txt, 1986, 10 109c_mary_anne_to_the_rescue_3.txt, 2037, 3 042c_jessi_and_the_dance_school_phantom_5.txt, 2363, 5 124c_stacey_mcgill_matchmaker_9.txt, 1477, 9 064c_dawns_family_feud_2.txt, 1802, 2 m11c_claudia_and_the_mystery_at_the_museum_13.txt, 1892, 13 m35c_abby_and_the_notorius_neighbor_2.txt, 2872, 2 071c_claudia_and_the_perfect_boy_3.txt, 2139, 3 m17c_dawn_and_the_halloween_mystery_9.txt, 1946, 9 067c_dawns_big_move_3.txt, 1764, 3 074c_kristy_and_the_copycat_8.txt, 819, 8 118c_kristy_thomas_dog_trainer_6.txt, 1690, 6 106c_claudia_queen_of_the_seventh_grade_9.txt, 1350, 9 120c_mary_anne_and_the_playground_fight_7.txt, 1822, 7 115c_jessis_big_break_10.txt, 1168, 10 028c_welcome_back_stacey_2.txt, 1683, 2 048c_jessis_wish_4.txt, 1575, 4 m26c_dawn_schafer_undercover_babysitter_1.txt, 1990, 1 003c_the_truth_about_stacey_5.txt, 2349, 5 001c_kristys_great_idea_13.txt, 2167, 13 126c_the_all_new_mallory_pike_2.txt, 2444, 2 100c_kristys_worst_idea_11.txt, 1452, 11 098c_dawn_and_too_many_sitters_11.txt, 1372, 11 021c_mallory_and_the_trouble_with_twins_10.txt, 1526, 10 081c_kristy_and_mr_mom_1.txt, 1913, 1 022c_jessi_ramsey_petsitter_2.txt, 2240, 2 m14c_stacey_and_the_mystery_at_the_mall_13.txt, 1669, 13 029c_mallory_and_the_mystery_diary_13.txt, 1707, 13 054c_mallory_and_the_dream_horse_5.txt, 1903, 5 m09c_kristy_and_the_haunted_mansion_6.txt, 1996, 6 119c_staceys_ex_boyfriend_9.txt, 1251, 9 103c_happy_holidays_jessi_15.txt, 803, 15 075c_jessis_horrible_prank_5.txt, 1576, 5 093c_mary_anne_and_the_memory_garden_15.txt, 1099, 15 100c_kristys_worst_idea_9.txt, 1481, 9 034c_mary_anne_and_too_many_boys_14.txt, 1355, 14 038c_kristys_mystery_admirer_5.txt, 1533, 5 061c_jessi_and_the_awful_secret_6.txt, 2006, 6 m30c_kristy_and_the_mystery_train_2.txt, 3746, 2 114c_the_secret_life_of_mary_anne_spier_4.txt, 1626, 4 075c_jessis_horrible_prank_14.txt, 2447, 14 111c_staceys_secret_friend_6.txt, 1308, 6 091c_claudia_and_the_first_thanksgiving_14.txt, 1665, 14 m34c_mary_anne_and_the_haunted_bookstore_12.txt, 2618, 12 018c_staceys_mistake_8.txt, 1310, 8 068c_jessi_and_the_bad_babysitter_1.txt, 2170, 1 090c_welcome_to_the_bsc_abby_4.txt, 2115, 4 028c_welcome_back_stacey_11.txt, 1435, 11 016c_jessis_secret_language_2.txt, 2501, 2 094c_stacey_mcgill_super_sitter_5.txt, 2514, 5 m36c_kristy_and_the_cat_burglar_10.txt, 2136, 10 010c_logan_likes_mary_anne_6.txt, 1811, 6 015c_little_miss_stoneybrook_and_dawn_9.txt, 1607, 9 092c_mallorys_christmas_wish_12.txt, 1651, 12 116c_abby_and_the_best_kid_ever_4.txt, 1600, 4 m32c_claudia_and_the_mystery_in_the_painting_7.txt, 1645, 7 043c_staceys_emergency_3.txt, 1945, 3 092c_mallorys_christmas_wish_2.txt, 2771, 2 023c_dawn_on_the_coast_13.txt, 1137, 13 m30c_kristy_and_the_mystery_train_11.txt, 926, 11 serr2c_logan_bruno_boy_babysitter_2.txt, 2764, 2 m30c_kristy_and_the_mystery_train_10.txt, 1652, 10 serr2c_logan_bruno_boy_babysitter_3.txt, 1728, 3 092c_mallorys_christmas_wish_3.txt, 1418, 3 115c_jessis_big_break_1.txt, 2119, 1 023c_dawn_on_the_coast_12.txt, 1731, 12 043c_staceys_emergency_2.txt, 2080, 2 116c_abby_and_the_best_kid_ever_5.txt, 986, 5 m32c_claudia_and_the_mystery_in_the_painting_6.txt, 1572, 6 040c_claudia_and_the_middle_school_mystery_1.txt, 1825, 1 010c_logan_likes_mary_anne_7.txt, 1686, 7 092c_mallorys_christmas_wish_13.txt, 1922, 13 015c_little_miss_stoneybrook_and_dawn_8.txt, 1698, 8 094c_stacey_mcgill_super_sitter_4.txt, 1806, 4 m36c_kristy_and_the_cat_burglar_11.txt, 1701, 11 016c_jessis_secret_language_3.txt, 1461, 3 028c_welcome_back_stacey_10.txt, 1278, 10 090c_welcome_to_the_bsc_abby_5.txt, 1019, 5 018c_staceys_mistake_9.txt, 1592, 9 091c_claudia_and_the_first_thanksgiving_15.txt, 1185, 15 111c_staceys_secret_friend_7.txt, 1315, 7 m34c_mary_anne_and_the_haunted_bookstore_13.txt, 1334, 13 075c_jessis_horrible_prank_15.txt, 1056, 15 114c_the_secret_life_of_mary_anne_spier_5.txt, 1416, 5 m30c_kristy_and_the_mystery_train_3.txt, 3075, 3 038c_kristys_mystery_admirer_4.txt, 1784, 4 061c_jessi_and_the_awful_secret_7.txt, 1261, 7 100c_kristys_worst_idea_8.txt, 2174, 8 034c_mary_anne_and_too_many_boys_15.txt, 1513, 15 103c_happy_holidays_jessi_14.txt, 1700, 14 027c_jessi_and_the_superbrat_1.txt, 2327, 1 093c_mary_anne_and_the_memory_garden_14.txt, 928, 14 075c_jessis_horrible_prank_4.txt, 1319, 4 119c_staceys_ex_boyfriend_8.txt, 2064, 8 m09c_kristy_and_the_haunted_mansion_7.txt, 1787, 7 054c_mallory_and_the_dream_horse_4.txt, 1690, 4 021c_mallory_and_the_trouble_with_twins_11.txt, 1733, 11 029c_mallory_and_the_mystery_diary_12.txt, 1379, 12 m14c_stacey_and_the_mystery_at_the_mall_12.txt, 1719, 12 022c_jessi_ramsey_petsitter_3.txt, 1898, 3 001c_kristys_great_idea_12.txt, 1569, 12 003c_the_truth_about_stacey_4.txt, 2094, 4 048c_jessis_wish_5.txt, 1920, 5 098c_dawn_and_too_many_sitters_10.txt, 932, 10 100c_kristys_worst_idea_10.txt, 1371, 10 126c_the_all_new_mallory_pike_3.txt, 2124, 3 115c_jessis_big_break_11.txt, 1810, 11 028c_welcome_back_stacey_3.txt, 2416, 3 m22c_stacey_and_the_haunted_masquerade_1.txt, 1934, 1 120c_mary_anne_and_the_playground_fight_6.txt, 1573, 6 106c_claudia_queen_of_the_seventh_grade_8.txt, 1375, 8 118c_kristy_thomas_dog_trainer_7.txt, 1574, 7 067c_dawns_big_move_2.txt, 2239, 2 074c_kristy_and_the_copycat_9.txt, 1526, 9 071c_claudia_and_the_perfect_boy_2.txt, 3340, 2 m35c_abby_and_the_notorius_neighbor_3.txt, 1691, 3 011c_kristy_and_the_snobs_1.txt, 2162, 1 m17c_dawn_and_the_halloween_mystery_8.txt, 1834, 8 m11c_claudia_and_the_mystery_at_the_museum_12.txt, 1671, 12 064c_dawns_family_feud_3.txt, 1848, 3 124c_stacey_mcgill_matchmaker_8.txt, 2346, 8 042c_jessi_and_the_dance_school_phantom_4.txt, 2391, 4 109c_mary_anne_to_the_rescue_2.txt, 3395, 2 m20c_mary_anne_and_the_zoo_mystery_1.txt, 2240, 1 064c_dawns_family_feud_11.txt, 1744, 11 m16c_claudia_and_the_clue_in_the_photograph_15.txt, 1439, 15 026c_claudia_and_the_sad_goodbye_1.txt, 2872, 1 130c_staceys_movie_2.txt, 2960, 2 027c_jessi_and_the_superbrat_12.txt, 1461, 12 090c_welcome_to_the_bsc_abby_11.txt, 1344, 11 m10c_stacey_and_the_mystery_money_5.txt, 1963, 5 131c_the_fire_at_mary_annes_house_11.txt, 1855, 11 m27c_claudia_and_the_lighthouse_ghost_1.txt, 1924, 1 042c_jessi_and_the_dance_school_phantom_12.txt, 1914, 12 m19c_kristy_and_the_missing_fortune_2.txt, 2753, 2 m10c_stacey_and_the_mystery_money_8.txt, 2008, 8 110c_abby_and_the_bad_sport_10.txt, 1854, 10 016c_jessis_secret_language_15.txt, 1652, 15 086c_mary_anne_and_camp_bsc_2.txt, 2649, 2 107c_mind_your_own_business_kristy_7.txt, 1919, 7 m10c_stacey_and_the_mystery_money_14.txt, 2311, 14 088c_farewell_dawn_14.txt, 1483, 14 m05c_mary_anne_and_the_secret_in_the_attic_11.txt, 1892, 11 014c_hello_mallory_12.txt, 1608, 12 102c_mary_anne_and_the_little_princess_3.txt, 1498, 3 042c_jessi_and_the_dance_school_phantom_9.txt, 2110, 9 117c_claudia_and_the_terrible_truth_11.txt, 1608, 11 096c_abbys_lucky_thirteen_2.txt, 1474, 2 083c_stacey_vs_the_bsc_10.txt, 2044, 10 058c_staceys_choice_7.txt, 1617, 7 025c_mary_anne_and_the_search_for_tigger_11.txt, 1745, 11 m17c_dawn_and_the_halloween_mystery_5.txt, 1970, 5 033c_claudia_and_the_great_search_13.txt, 1366, 13 124c_stacey_mcgill_matchmaker_5.txt, 885, 5 106c_claudia_queen_of_the_seventh_grade_5.txt, 1585, 5 077c_dwn_and_whitney_friends_forever_10.txt, 1499, 10 044c_dawn_and_the_big_sleepover_6.txt, 1483, 6 112c_kristy_and_the_sister_war_12.txt, 1628, 12 050c_dawns_big_date_6.txt, 1397, 6 074c_kristy_and_the_copycat_4.txt, 2050, 4 099c_staceys_broken_heart_14.txt, 1409, 14 003c_the_truth_about_stacey_11.txt, 2254, 11 025c_mary_anne_and_the_search_for_tigger_1.txt, 2361, 1 047c_mallory_on_strike_3.txt, 2181, 3 m18c_stacey_and_the_mystery_at_the_empty_house_2.txt, 2181, 2 071c_claudia_and_the_perfect_boy_12.txt, 1294, 12 089c_kristy_and_the_dirty_diapers_13.txt, 1680, 13 003c_the_truth_about_stacey_9.txt, 1826, 9 048c_jessis_wish_8.txt, 1574, 8 119c_staceys_ex_boyfriend_5.txt, 1689, 5 032c_kristy_and_the_secret_of_susan_13.txt, 1634, 13 serr1c_logans_story_6.txt, 1553, 6 102c_mary_anne_and_the_little_princess_15.txt, 788, 15 054c_mallory_and_the_dream_horse_9.txt, 2126, 9 100c_kristys_worst_idea_5.txt, 1745, 5 053c_kristy_for_president_13.txt, 1336, 13 m01c_stacey_and_the_mystery_ring_7.txt, 1850, 7 m29c_stacey_and_the_fashion_victim_1.txt, 2171, 1 007c_claudia_and_mean_jeanine_11.txt, 1904, 11 075c_jessis_horrible_prank_9.txt, 1611, 9 m02c_beware_dawn_1.txt, 2122, 1 038c_kristys_mystery_admirer_9.txt, 1878, 9 101c_claudia_kishi_middle_school_dropout_15.txt, 1486, 15 121c_abby_in_wonderland_6.txt, 1193, 6 125c_mary_anne_in_the_middle_13.txt, 1219, 13 087c_stacey_and_the_bad_girls_12.txt, 1869, 12 113c_claudia_makes_up_her_mind_2.txt, 2811, 2 114c_the_secret_life_of_mary_anne_spier_8.txt, 2008, 8 m15c_kristy_and_the_vampires_6.txt, 1994, 6 050c_dawns_big_date_14.txt, 2585, 14 090c_welcome_to_the_bsc_abby_8.txt, 1487, 8 018c_staceys_mistake_4.txt, 1627, 4 103c_happy_holidays_jessi_6.txt, 2174, 6 015c_little_miss_stoneybrook_and_dawn_5.txt, 1638, 5 045c_kristy_and_the_baby_parade_10.txt, 1582, 10 018c_staceys_mistake_10.txt, 1752, 10 069c_get_well_soon_mallory_1.txt, 2178, 1 081c_kristy_and_mr_mom_12.txt, 2280, 12 096c_abbys_lucky_thirteen_11.txt, 1116, 11 094c_stacey_mcgill_super_sitter_9.txt, 1024, 9 076c_staceys_lie_7.txt, 1966, 7 122c_kristy_in_charge_6.txt, 1224, 6 052c_mary_anne_plus_too_many_babies_13.txt, 1467, 13 021c_mallory_and_the_trouble_with_twins_2.txt, 2092, 2 116c_abby_and_the_best_kid_ever_8.txt, 1716, 8 128c_claudia_and_the_little_liar_13.txt, 1366, 13 m18c_stacey_and_the_mystery_at_the_empty_house_10.txt, 2053, 10 010c_logan_likes_mary_anne_13.txt, 1765, 13 114c_the_secret_life_of_mary_anne_spier_12.txt, 1712, 12 m32c_claudia_and_the_mystery_in_the_painting_14.txt, 1039, 14 044c_dawn_and_the_big_sleepover_12.txt, 1263, 12 015c_little_miss_stoneybrook_and_dawn_14.txt, 3116, 14 057c_dawn_saves_the_planet_1.txt, 2235, 1 m15c_kristy_and_the_vampires_15.txt, 876, 15 m15c_kristy_and_the_vampires_14.txt, 1809, 14 015c_little_miss_stoneybrook_and_dawn_15.txt, 958, 15 044c_dawn_and_the_big_sleepover_13.txt, 1268, 13 010c_logan_likes_mary_anne_12.txt, 1306, 12 m18c_stacey_and_the_mystery_at_the_empty_house_11.txt, 1877, 11 128c_claudia_and_the_little_liar_12.txt, 990, 12 116c_abby_and_the_best_kid_ever_9.txt, 1721, 9 m32c_claudia_and_the_mystery_in_the_painting_15.txt, 1627, 15 114c_the_secret_life_of_mary_anne_spier_13.txt, 730, 13 052c_mary_anne_plus_too_many_babies_12.txt, 1654, 12 122c_kristy_in_charge_7.txt, 1932, 7 021c_mallory_and_the_trouble_with_twins_3.txt, 1550, 3 081c_kristy_and_mr_mom_13.txt, 1476, 13 039c_poor_mallory_1.txt, 1771, 1 018c_staceys_mistake_11.txt, 1654, 11 076c_staceys_lie_6.txt, 1619, 6 094c_stacey_mcgill_super_sitter_8.txt, 1711, 8 096c_abbys_lucky_thirteen_10.txt, 1341, 10 015c_little_miss_stoneybrook_and_dawn_4.txt, 1645, 4 045c_kristy_and_the_baby_parade_11.txt, 1803, 11 103c_happy_holidays_jessi_7.txt, 1592, 7 097c_claudia_and_the_worlds_cutest_baby_1.txt, 2252, 1 018c_staceys_mistake_5.txt, 1978, 5 090c_welcome_to_the_bsc_abby_9.txt, 1472, 9 m15c_kristy_and_the_vampires_7.txt, 2067, 7 114c_the_secret_life_of_mary_anne_spier_9.txt, 1177, 9 125c_mary_anne_in_the_middle_12.txt, 1371, 12 113c_claudia_makes_up_her_mind_3.txt, 975, 3 087c_stacey_and_the_bad_girls_13.txt, 1308, 13 121c_abby_in_wonderland_7.txt, 1774, 7 101c_claudia_kishi_middle_school_dropout_14.txt, 2037, 14 038c_kristys_mystery_admirer_8.txt, 1825, 8 127c_abbys_un_valentine_1.txt, 1617, 1 007c_claudia_and_mean_jeanine_10.txt, 1693, 10 075c_jessis_horrible_prank_8.txt, 1762, 8 053c_kristy_for_president_12.txt, 1057, 12 100c_kristys_worst_idea_4.txt, 1203, 4 m01c_stacey_and_the_mystery_ring_6.txt, 1510, 6 065c_staceys_big_crush_1.txt, 2538, 1 serr1c_logans_story_7.txt, 1809, 7 032c_kristy_and_the_secret_of_susan_12.txt, 1531, 12 054c_mallory_and_the_dream_horse_8.txt, 1903, 8 102c_mary_anne_and_the_little_princess_14.txt, 1283, 14 119c_staceys_ex_boyfriend_4.txt, 1806, 4 048c_jessis_wish_9.txt, 1420, 9 003c_the_truth_about_stacey_8.txt, 1699, 8 089c_kristy_and_the_dirty_diapers_12.txt, 1102, 12 071c_claudia_and_the_perfect_boy_13.txt, 2846, 13 m18c_stacey_and_the_mystery_at_the_empty_house_3.txt, 2151, 3 047c_mallory_on_strike_2.txt, 1920, 2 099c_staceys_broken_heart_15.txt, 1262, 15 003c_the_truth_about_stacey_10.txt, 2105, 10 074c_kristy_and_the_copycat_5.txt, 1565, 5 050c_dawns_big_date_7.txt, 2021, 7 112c_kristy_and_the_sister_war_13.txt, 1217, 13 106c_claudia_queen_of_the_seventh_grade_4.txt, 2006, 4 077c_dwn_and_whitney_friends_forever_11.txt, 1549, 11 044c_dawn_and_the_big_sleepover_7.txt, 2213, 7 124c_stacey_mcgill_matchmaker_4.txt, 2058, 4 029c_mallory_and_the_mystery_diary_1.txt, 2346, 1 023c_dawn_on_the_coast_1.txt, 2213, 1 087c_stacey_and_the_bad_girls_1.txt, 2239, 1 033c_claudia_and_the_great_search_12.txt, 1557, 12 m17c_dawn_and_the_halloween_mystery_4.txt, 2017, 4 025c_mary_anne_and_the_search_for_tigger_10.txt, 1769, 10 062c_kristy_and_the_worst_kid_ever_1.txt, 2240, 1 058c_staceys_choice_6.txt, 1525, 6 083c_stacey_vs_the_bsc_11.txt, 1356, 11 102c_mary_anne_and_the_little_princess_2.txt, 3231, 2 096c_abbys_lucky_thirteen_3.txt, 3336, 3 117c_claudia_and_the_terrible_truth_10.txt, 1179, 10 042c_jessi_and_the_dance_school_phantom_8.txt, 1893, 8 014c_hello_mallory_13.txt, 1708, 13 m05c_mary_anne_and_the_secret_in_the_attic_10.txt, 1536, 10 072c_dawn_and_the_we_heart_kids_club_1.txt, 2313, 1 073c_mary_anne_and_miss_priss_1.txt, 2071, 1 107c_mind_your_own_business_kristy_6.txt, 1337, 6 086c_mary_anne_and_camp_bsc_3.txt, 1333, 3 033c_claudia_and_the_great_search_1.txt, 2047, 1 m10c_stacey_and_the_mystery_money_15.txt, 1914, 15 016c_jessis_secret_language_14.txt, 1745, 14 110c_abby_and_the_bad_sport_11.txt, 1263, 11 m10c_stacey_and_the_mystery_money_9.txt, 2429, 9 042c_jessi_and_the_dance_school_phantom_13.txt, 2277, 13 125c_mary_anne_in_the_middle_1.txt, 1385, 1 m19c_kristy_and_the_missing_fortune_3.txt, 1819, 3 110c_abby_and_the_bad_sport_13.txt, 2016, 13 m19c_kristy_and_the_missing_fortune_1.txt, 2222, 1 m27c_claudia_and_the_lighthouse_ghost_2.txt, 3402, 2 125c_mary_anne_in_the_middle_3.txt, 1689, 3 042c_jessi_and_the_dance_school_phantom_11.txt, 2365, 11 033c_claudia_and_the_great_search_3.txt, 2496, 3 086c_mary_anne_and_camp_bsc_1.txt, 2272, 1 107c_mind_your_own_business_kristy_4.txt, 1348, 4 m05c_mary_anne_and_the_secret_in_the_attic_12.txt, 1868, 12 014c_hello_mallory_11.txt, 1484, 11 048c_jessis_wish_15.txt, 1400, 15 073c_mary_anne_and_miss_priss_3.txt, 1779, 3 serr3c_shannons_story_14.txt, 1380, 14 072c_dawn_and_the_we_heart_kids_club_3.txt, 2761, 3 083c_stacey_vs_the_bsc_13.txt, 1748, 13 058c_staceys_choice_4.txt, 1129, 4 062c_kristy_and_the_worst_kid_ever_3.txt, 2233, 3 117c_claudia_and_the_terrible_truth_12.txt, 1421, 12 096c_abbys_lucky_thirteen_1.txt, 1755, 1 029c_mallory_and_the_mystery_diary_3.txt, 1601, 3 038c_kristys_mystery_admirer_15.txt, 1704, 15 124c_stacey_mcgill_matchmaker_6.txt, 2807, 6 025c_mary_anne_and_the_search_for_tigger_12.txt, 1732, 12 033c_claudia_and_the_great_search_10.txt, 1602, 10 m17c_dawn_and_the_halloween_mystery_6.txt, 1876, 6 087c_stacey_and_the_bad_girls_3.txt, 2451, 3 023c_dawn_on_the_coast_3.txt, 2019, 3 112c_kristy_and_the_sister_war_11.txt, 1466, 11 050c_dawns_big_date_5.txt, 2124, 5 074c_kristy_and_the_copycat_7.txt, 1003, 7 044c_dawn_and_the_big_sleepover_5.txt, 1014, 5 077c_dwn_and_whitney_friends_forever_13.txt, 1458, 13 118c_kristy_thomas_dog_trainer_9.txt, 1535, 9 106c_claudia_queen_of_the_seventh_grade_6.txt, 1686, 6 002c_claudia_and_the_phantom_phone_calls_15.txt, 627, 15 120c_mary_anne_and_the_playground_fight_8.txt, 1606, 8 003c_the_truth_about_stacey_12.txt, 2110, 12 025c_mary_anne_and_the_search_for_tigger_2.txt, 2001, 2 089c_kristy_and_the_dirty_diapers_10.txt, 1214, 10 m18c_stacey_and_the_mystery_at_the_empty_house_1.txt, 2120, 1 071c_claudia_and_the_perfect_boy_11.txt, 1630, 11 serr1c_logans_story_5.txt, 1686, 5 032c_kristy_and_the_secret_of_susan_10.txt, 1866, 10 119c_staceys_ex_boyfriend_6.txt, 1059, 6 m09c_kristy_and_the_haunted_mansion_9.txt, 1829, 9 007c_claudia_and_mean_jeanine_12.txt, 1404, 12 m29c_stacey_and_the_fashion_victim_2.txt, 2412, 2 065c_staceys_big_crush_3.txt, 1651, 3 m01c_stacey_and_the_mystery_ring_4.txt, 2060, 4 100c_kristys_worst_idea_6.txt, 1625, 6 053c_kristy_for_president_10.txt, 2408, 10 m08c_jessi_and_the_jewel_thieves_15.txt, 1937, 15 061c_jessi_and_the_awful_secret_9.txt, 1278, 9 127c_abbys_un_valentine_3.txt, 867, 3 121c_abby_in_wonderland_5.txt, 2007, 5 m02c_beware_dawn_2.txt, 1965, 2 m15c_kristy_and_the_vampires_5.txt, 1715, 5 087c_stacey_and_the_bad_girls_11.txt, 966, 11 113c_claudia_makes_up_her_mind_1.txt, 1852, 1 111c_staceys_secret_friend_9.txt, 1179, 9 125c_mary_anne_in_the_middle_10.txt, 1660, 10 018c_staceys_mistake_7.txt, 2019, 7 109c_mary_anne_to_the_rescue_15.txt, 1621, 15 096c_abbys_lucky_thirteen_12.txt, 1920, 12 063c_claudias_freind_friend_14.txt, 1220, 14 076c_staceys_lie_4.txt, 2116, 4 018c_staceys_mistake_13.txt, 1922, 13 039c_poor_mallory_3.txt, 2011, 3 069c_get_well_soon_mallory_2.txt, 2244, 2 081c_kristy_and_mr_mom_11.txt, 1291, 11 084c_dawn_and_the_school_spirit_war_15.txt, 548, 15 097c_claudia_and_the_worlds_cutest_baby_3.txt, 1602, 3 103c_happy_holidays_jessi_5.txt, 1472, 5 045c_kristy_and_the_baby_parade_13.txt, 1492, 13 015c_little_miss_stoneybrook_and_dawn_6.txt, 1806, 6 037c_dawn_and_the_older_boy_14.txt, 1663, 14 010c_logan_likes_mary_anne_9.txt, 1394, 9 107c_mind_your_own_business_kristy_15.txt, 680, 15 m32c_claudia_and_the_mystery_in_the_painting_8.txt, 2187, 8 114c_the_secret_life_of_mary_anne_spier_11.txt, 1479, 11 128c_claudia_and_the_little_liar_10.txt, 917, 10 m18c_stacey_and_the_mystery_at_the_empty_house_13.txt, 1761, 13 010c_logan_likes_mary_anne_10.txt, 2037, 10 021c_mallory_and_the_trouble_with_twins_1.txt, 2082, 1 122c_kristy_in_charge_5.txt, 1049, 5 079c_mary_anne_breaks_the_rules_14.txt, 1756, 14 052c_mary_anne_plus_too_many_babies_10.txt, 1729, 10 057c_dawn_saves_the_planet_2.txt, 1636, 2 044c_dawn_and_the_big_sleepover_11.txt, 2288, 11 044c_dawn_and_the_big_sleepover_10.txt, 1367, 10 057c_dawn_saves_the_planet_3.txt, 1925, 3 052c_mary_anne_plus_too_many_babies_11.txt, 1487, 11 079c_mary_anne_breaks_the_rules_15.txt, 1559, 15 122c_kristy_in_charge_4.txt, 1359, 4 114c_the_secret_life_of_mary_anne_spier_10.txt, 1000, 10 m32c_claudia_and_the_mystery_in_the_painting_9.txt, 1726, 9 107c_mind_your_own_business_kristy_14.txt, 1746, 14 010c_logan_likes_mary_anne_11.txt, 1633, 11 m18c_stacey_and_the_mystery_at_the_empty_house_12.txt, 1618, 12 128c_claudia_and_the_little_liar_11.txt, 1441, 11 045c_kristy_and_the_baby_parade_12.txt, 1938, 12 015c_little_miss_stoneybrook_and_dawn_7.txt, 1600, 7 103c_happy_holidays_jessi_4.txt, 1449, 4 097c_claudia_and_the_worlds_cutest_baby_2.txt, 2705, 2 084c_dawn_and_the_school_spirit_war_14.txt, 1236, 14 010c_logan_likes_mary_anne_8.txt, 1431, 8 037c_dawn_and_the_older_boy_15.txt, 437, 15 063c_claudias_freind_friend_15.txt, 1025, 15 076c_staceys_lie_5.txt, 1861, 5 096c_abbys_lucky_thirteen_13.txt, 1062, 13 081c_kristy_and_mr_mom_10.txt, 1905, 10 069c_get_well_soon_mallory_3.txt, 1605, 3 m25c_kristy_and_the_middle_school_vandal_14.txt, 1268, 14 039c_poor_mallory_2.txt, 2696, 2 018c_staceys_mistake_12.txt, 1669, 12 109c_mary_anne_to_the_rescue_14.txt, 1803, 14 018c_staceys_mistake_6.txt, 1479, 6 087c_stacey_and_the_bad_girls_10.txt, 1556, 10 125c_mary_anne_in_the_middle_11.txt, 1215, 11 111c_staceys_secret_friend_8.txt, 964, 8 m15c_kristy_and_the_vampires_4.txt, 1864, 4 m02c_beware_dawn_3.txt, 2026, 3 127c_abbys_un_valentine_2.txt, 4087, 2 061c_jessi_and_the_awful_secret_8.txt, 1842, 8 121c_abby_in_wonderland_4.txt, 1627, 4 m01c_stacey_and_the_mystery_ring_5.txt, 1981, 5 065c_staceys_big_crush_2.txt, 2922, 2 m08c_jessi_and_the_jewel_thieves_14.txt, 1615, 14 053c_kristy_for_president_11.txt, 2272, 11 100c_kristys_worst_idea_7.txt, 2232, 7 m29c_stacey_and_the_fashion_victim_3.txt, 1711, 3 007c_claudia_and_mean_jeanine_13.txt, 2162, 13 m09c_kristy_and_the_haunted_mansion_8.txt, 1738, 8 119c_staceys_ex_boyfriend_7.txt, 1378, 7 032c_kristy_and_the_secret_of_susan_11.txt, 1733, 11 serr1c_logans_story_4.txt, 1972, 4 071c_claudia_and_the_perfect_boy_10.txt, 1729, 10 089c_kristy_and_the_dirty_diapers_11.txt, 1681, 11 025c_mary_anne_and_the_search_for_tigger_3.txt, 1837, 3 003c_the_truth_about_stacey_13.txt, 3167, 13 047c_mallory_on_strike_1.txt, 2762, 1 120c_mary_anne_and_the_playground_fight_9.txt, 886, 9 044c_dawn_and_the_big_sleepover_4.txt, 2340, 4 077c_dwn_and_whitney_friends_forever_12.txt, 1396, 12 002c_claudia_and_the_phantom_phone_calls_14.txt, 2612, 14 106c_claudia_queen_of_the_seventh_grade_7.txt, 1798, 7 118c_kristy_thomas_dog_trainer_8.txt, 1457, 8 074c_kristy_and_the_copycat_6.txt, 1800, 6 050c_dawns_big_date_4.txt, 2575, 4 112c_kristy_and_the_sister_war_10.txt, 1805, 10 m17c_dawn_and_the_halloween_mystery_7.txt, 1980, 7 033c_claudia_and_the_great_search_11.txt, 1683, 11 025c_mary_anne_and_the_search_for_tigger_13.txt, 1544, 13 023c_dawn_on_the_coast_2.txt, 1841, 2 087c_stacey_and_the_bad_girls_2.txt, 2218, 2 038c_kristys_mystery_admirer_14.txt, 1495, 14 029c_mallory_and_the_mystery_diary_2.txt, 1505, 2 124c_stacey_mcgill_matchmaker_7.txt, 1243, 7 117c_claudia_and_the_terrible_truth_13.txt, 1561, 13 102c_mary_anne_and_the_little_princess_1.txt, 2075, 1 058c_staceys_choice_5.txt, 1544, 5 083c_stacey_vs_the_bsc_12.txt, 1501, 12 062c_kristy_and_the_worst_kid_ever_2.txt, 2500, 2 072c_dawn_and_the_we_heart_kids_club_2.txt, 2249, 2 serr3c_shannons_story_15.txt, 1472, 15 073c_mary_anne_and_miss_priss_2.txt, 2592, 2 048c_jessis_wish_14.txt, 963, 14 014c_hello_mallory_10.txt, 1673, 10 m05c_mary_anne_and_the_secret_in_the_attic_13.txt, 1525, 13 033c_claudia_and_the_great_search_2.txt, 2885, 2 107c_mind_your_own_business_kristy_5.txt, 1129, 5 042c_jessi_and_the_dance_school_phantom_10.txt, 2231, 10 125c_mary_anne_in_the_middle_2.txt, 3098, 2 m27c_claudia_and_the_lighthouse_ghost_3.txt, 1634, 3 110c_abby_and_the_bad_sport_12.txt, 1100, 12 130c_staceys_movie_9.txt, 983, 9 086c_mary_anne_and_camp_bsc_4.txt, 3008, 4 107c_mind_your_own_business_kristy_1.txt, 1773, 1 m10c_stacey_and_the_mystery_money_12.txt, 1775, 12 033c_claudia_and_the_great_search_6.txt, 1343, 6 016c_jessis_secret_language_13.txt, 1667, 13 m27c_claudia_and_the_lighthouse_ghost_7.txt, 2010, 7 125c_mary_anne_in_the_middle_6.txt, 1079, 6 042c_jessi_and_the_dance_school_phantom_14.txt, 2186, 14 m19c_kristy_and_the_missing_fortune_4.txt, 1625, 4 062c_kristy_and_the_worst_kid_ever_6.txt, 1485, 6 058c_staceys_choice_1.txt, 1803, 1 102c_mary_anne_and_the_little_princess_5.txt, 951, 5 109c_mary_anne_to_the_rescue_9.txt, 1489, 9 096c_abbys_lucky_thirteen_4.txt, 1580, 4 014c_hello_mallory_14.txt, 1625, 14 048c_jessis_wish_10.txt, 1491, 10 serr3c_shannons_story_11.txt, 2076, 11 073c_mary_anne_and_miss_priss_6.txt, 1993, 6 072c_dawn_and_the_we_heart_kids_club_6.txt, 1356, 6 088c_farewell_dawn_12.txt, 2185, 12 067c_dawns_big_move_9.txt, 1564, 9 112c_kristy_and_the_sister_war_14.txt, 1613, 14 074c_kristy_and_the_copycat_2.txt, 3150, 2 106c_claudia_queen_of_the_seventh_grade_3.txt, 1632, 3 002c_claudia_and_the_phantom_phone_calls_10.txt, 1859, 10 124c_stacey_mcgill_matchmaker_3.txt, 1868, 3 064c_dawns_family_feud_8.txt, 1269, 8 029c_mallory_and_the_mystery_diary_6.txt, 1575, 6 038c_kristys_mystery_admirer_10.txt, 1498, 10 m35c_abby_and_the_notorius_neighbor_8.txt, 1812, 8 071c_claudia_and_the_perfect_boy_9.txt, 1622, 9 087c_stacey_and_the_bad_girls_6.txt, 1379, 6 023c_dawn_on_the_coast_6.txt, 1849, 6 m17c_dawn_and_the_halloween_mystery_3.txt, 1949, 3 033c_claudia_and_the_great_search_15.txt, 1780, 15 089c_kristy_and_the_dirty_diapers_15.txt, 1009, 15 126c_the_all_new_mallory_pike_8.txt, 2106, 8 071c_claudia_and_the_perfect_boy_14.txt, 1127, 14 m18c_stacey_and_the_mystery_at_the_empty_house_4.txt, 1864, 4 022c_jessi_ramsey_petsitter_8.txt, 1424, 8 047c_mallory_on_strike_5.txt, 1885, 5 099c_staceys_broken_heart_12.txt, 2051, 12 028c_welcome_back_stacey_8.txt, 1780, 8 025c_mary_anne_and_the_search_for_tigger_7.txt, 1338, 7 m29c_stacey_and_the_fashion_victim_7.txt, 1884, 7 100c_kristys_worst_idea_3.txt, 1933, 3 053c_kristy_for_president_15.txt, 948, 15 m08c_jessi_and_the_jewel_thieves_10.txt, 1782, 10 065c_staceys_big_crush_6.txt, 1589, 6 m01c_stacey_and_the_mystery_ring_1.txt, 2044, 1 032c_kristy_and_the_secret_of_susan_15.txt, 1638, 15 102c_mary_anne_and_the_little_princess_13.txt, 1140, 13 119c_staceys_ex_boyfriend_3.txt, 1374, 3 125c_mary_anne_in_the_middle_15.txt, 1474, 15 087c_stacey_and_the_bad_girls_14.txt, 1450, 14 113c_claudia_makes_up_her_mind_4.txt, 1632, 4 101c_claudia_kishi_middle_school_dropout_13.txt, 1934, 13 127c_abbys_un_valentine_6.txt, 1135, 6 m30c_kristy_and_the_mystery_train_8.txt, 1564, 8 m02c_beware_dawn_7.txt, 1825, 7 m25c_kristy_and_the_middle_school_vandal_10.txt, 1688, 10 039c_poor_mallory_6.txt, 1815, 6 081c_kristy_and_mr_mom_14.txt, 1254, 14 069c_get_well_soon_mallory_7.txt, 1555, 7 076c_staceys_lie_1.txt, 2234, 1 063c_claudias_freind_friend_11.txt, 2109, 11 037c_dawn_and_the_older_boy_11.txt, 1945, 11 084c_dawn_and_the_school_spirit_war_10.txt, 1975, 10 097c_claudia_and_the_worlds_cutest_baby_6.txt, 1869, 6 015c_little_miss_stoneybrook_and_dawn_3.txt, 1774, 3 018c_staceys_mistake_2.txt, 2020, 2 109c_mary_anne_to_the_rescue_10.txt, 1666, 10 016c_jessis_secret_language_8.txt, 1420, 8 050c_dawns_big_date_12.txt, 1074, 12 m15c_kristy_and_the_vampires_13.txt, 2024, 13 015c_little_miss_stoneybrook_and_dawn_12.txt, 1745, 12 057c_dawn_saves_the_planet_7.txt, 1987, 7 092c_mallorys_christmas_wish_8.txt, 1647, 8 044c_dawn_and_the_big_sleepover_14.txt, 1526, 14 serr2c_logan_bruno_boy_babysitter_8.txt, 1876, 8 128c_claudia_and_the_little_liar_15.txt, 751, 15 010c_logan_likes_mary_anne_15.txt, 1664, 15 107c_mind_your_own_business_kristy_10.txt, 1287, 10 114c_the_secret_life_of_mary_anne_spier_14.txt, 839, 14 m32c_claudia_and_the_mystery_in_the_painting_12.txt, 2162, 12 043c_staceys_emergency_9.txt, 1755, 9 079c_mary_anne_breaks_the_rules_11.txt, 1228, 11 052c_mary_anne_plus_too_many_babies_15.txt, 1611, 15 021c_mallory_and_the_trouble_with_twins_4.txt, 1360, 4 052c_mary_anne_plus_too_many_babies_14.txt, 1468, 14 079c_mary_anne_breaks_the_rules_10.txt, 1539, 10 122c_kristy_in_charge_1.txt, 1334, 1 043c_staceys_emergency_8.txt, 2290, 8 021c_mallory_and_the_trouble_with_twins_5.txt, 1310, 5 010c_logan_likes_mary_anne_14.txt, 1910, 14 128c_claudia_and_the_little_liar_14.txt, 850, 14 m32c_claudia_and_the_mystery_in_the_painting_13.txt, 1125, 13 114c_the_secret_life_of_mary_anne_spier_15.txt, 697, 15 107c_mind_your_own_business_kristy_11.txt, 1553, 11 serr2c_logan_bruno_boy_babysitter_9.txt, 1290, 9 044c_dawn_and_the_big_sleepover_15.txt, 772, 15 092c_mallorys_christmas_wish_9.txt, 1412, 9 015c_little_miss_stoneybrook_and_dawn_13.txt, 1922, 13 057c_dawn_saves_the_planet_6.txt, 1620, 6 m15c_kristy_and_the_vampires_12.txt, 1741, 12 050c_dawns_big_date_13.txt, 1835, 13 016c_jessis_secret_language_9.txt, 1987, 9 109c_mary_anne_to_the_rescue_11.txt, 1136, 11 018c_staceys_mistake_3.txt, 1805, 3 037c_dawn_and_the_older_boy_10.txt, 1353, 10 015c_little_miss_stoneybrook_and_dawn_2.txt, 1769, 2 097c_claudia_and_the_worlds_cutest_baby_7.txt, 1749, 7 084c_dawn_and_the_school_spirit_war_11.txt, 1646, 11 103c_happy_holidays_jessi_1.txt, 1767, 1 069c_get_well_soon_mallory_6.txt, 1510, 6 081c_kristy_and_mr_mom_15.txt, 924, 15 039c_poor_mallory_7.txt, 1388, 7 m25c_kristy_and_the_middle_school_vandal_11.txt, 1450, 11 063c_claudias_freind_friend_10.txt, 1511, 10 m30c_kristy_and_the_mystery_train_9.txt, 1715, 9 m02c_beware_dawn_6.txt, 1707, 6 101c_claudia_kishi_middle_school_dropout_12.txt, 1849, 12 121c_abby_in_wonderland_1.txt, 1901, 1 127c_abbys_un_valentine_7.txt, 1359, 7 125c_mary_anne_in_the_middle_14.txt, 1119, 14 113c_claudia_makes_up_her_mind_5.txt, 1005, 5 087c_stacey_and_the_bad_girls_15.txt, 1128, 15 m15c_kristy_and_the_vampires_1.txt, 2002, 1 119c_staceys_ex_boyfriend_2.txt, 2536, 2 032c_kristy_and_the_secret_of_susan_14.txt, 1745, 14 serr1c_logans_story_1.txt, 2649, 1 102c_mary_anne_and_the_little_princess_12.txt, 1616, 12 m08c_jessi_and_the_jewel_thieves_11.txt, 1920, 11 053c_kristy_for_president_14.txt, 1717, 14 100c_kristys_worst_idea_2.txt, 3371, 2 065c_staceys_big_crush_7.txt, 1487, 7 m29c_stacey_and_the_fashion_victim_6.txt, 1782, 6 099c_staceys_broken_heart_13.txt, 1059, 13 025c_mary_anne_and_the_search_for_tigger_6.txt, 1657, 6 028c_welcome_back_stacey_9.txt, 1940, 9 047c_mallory_on_strike_4.txt, 1829, 4 m18c_stacey_and_the_mystery_at_the_empty_house_5.txt, 1811, 5 071c_claudia_and_the_perfect_boy_15.txt, 2591, 15 022c_jessi_ramsey_petsitter_9.txt, 1548, 9 089c_kristy_and_the_dirty_diapers_14.txt, 1227, 14 126c_the_all_new_mallory_pike_9.txt, 1325, 9 023c_dawn_on_the_coast_7.txt, 1710, 7 087c_stacey_and_the_bad_girls_7.txt, 1460, 7 071c_claudia_and_the_perfect_boy_8.txt, 1884, 8 m35c_abby_and_the_notorius_neighbor_9.txt, 1405, 9 033c_claudia_and_the_great_search_14.txt, 1421, 14 m17c_dawn_and_the_halloween_mystery_2.txt, 2203, 2 064c_dawns_family_feud_9.txt, 1415, 9 124c_stacey_mcgill_matchmaker_2.txt, 3288, 2 038c_kristys_mystery_admirer_11.txt, 1886, 11 029c_mallory_and_the_mystery_diary_7.txt, 1579, 7 002c_claudia_and_the_phantom_phone_calls_11.txt, 2338, 11 106c_claudia_queen_of_the_seventh_grade_2.txt, 3059, 2 044c_dawn_and_the_big_sleepover_1.txt, 1978, 1 067c_dawns_big_move_8.txt, 1345, 8 050c_dawns_big_date_1.txt, 2488, 1 074c_kristy_and_the_copycat_3.txt, 2308, 3 112c_kristy_and_the_sister_war_15.txt, 1322, 15 072c_dawn_and_the_we_heart_kids_club_7.txt, 1435, 7 073c_mary_anne_and_miss_priss_7.txt, 2250, 7 serr3c_shannons_story_10.txt, 1463, 10 088c_farewell_dawn_13.txt, 1213, 13 048c_jessis_wish_11.txt, 1670, 11 014c_hello_mallory_15.txt, 1463, 15 102c_mary_anne_and_the_little_princess_4.txt, 2516, 4 096c_abbys_lucky_thirteen_5.txt, 2426, 5 109c_mary_anne_to_the_rescue_8.txt, 909, 8 062c_kristy_and_the_worst_kid_ever_7.txt, 2691, 7 042c_jessi_and_the_dance_school_phantom_15.txt, 2640, 15 125c_mary_anne_in_the_middle_7.txt, 1724, 7 m27c_claudia_and_the_lighthouse_ghost_6.txt, 1303, 6 m19c_kristy_and_the_missing_fortune_5.txt, 1938, 5 016c_jessis_secret_language_12.txt, 1766, 12 086c_mary_anne_and_camp_bsc_5.txt, 2007, 5 130c_staceys_movie_8.txt, 1624, 8 033c_claudia_and_the_great_search_7.txt, 1763, 7 m10c_stacey_and_the_mystery_money_13.txt, 2364, 13 016c_jessis_secret_language_10.txt, 1838, 10 053c_kristy_for_president_8.txt, 1705, 8 m10c_stacey_and_the_mystery_money_11.txt, 2138, 11 033c_claudia_and_the_great_search_5.txt, 1756, 5 026c_claudia_and_the_sad_goodbye_9.txt, 1616, 9 086c_mary_anne_and_camp_bsc_7.txt, 1772, 7 107c_mind_your_own_business_kristy_2.txt, 2954, 2 m19c_kristy_and_the_missing_fortune_7.txt, 1856, 7 m27c_claudia_and_the_lighthouse_ghost_4.txt, 1877, 4 125c_mary_anne_in_the_middle_5.txt, 1427, 5 110c_abby_and_the_bad_sport_15.txt, 926, 15 117c_claudia_and_the_terrible_truth_14.txt, 1677, 14 096c_abbys_lucky_thirteen_7.txt, 1251, 7 102c_mary_anne_and_the_little_princess_6.txt, 2707, 6 083c_stacey_vs_the_bsc_15.txt, 790, 15 058c_staceys_choice_2.txt, 3473, 2 062c_kristy_and_the_worst_kid_ever_5.txt, 1822, 5 088c_farewell_dawn_11.txt, 1476, 11 m20c_mary_anne_and_the_zoo_mystery_9.txt, 1871, 9 serr3c_shannons_story_12.txt, 1656, 12 073c_mary_anne_and_miss_priss_5.txt, 1466, 5 072c_dawn_and_the_we_heart_kids_club_5.txt, 1183, 5 m05c_mary_anne_and_the_secret_in_the_attic_14.txt, 2054, 14 048c_jessis_wish_13.txt, 1463, 13 044c_dawn_and_the_big_sleepover_3.txt, 1903, 3 077c_dwn_and_whitney_friends_forever_15.txt, 1197, 15 002c_claudia_and_the_phantom_phone_calls_13.txt, 1447, 13 074c_kristy_and_the_copycat_1.txt, 2705, 1 050c_dawns_big_date_3.txt, 2696, 3 025c_mary_anne_and_the_search_for_tigger_14.txt, 2061, 14 011c_kristy_and_the_snobs_9.txt, 1845, 9 087c_stacey_and_the_bad_girls_5.txt, 2000, 5 023c_dawn_on_the_coast_5.txt, 1414, 5 038c_kristys_mystery_admirer_13.txt, 1651, 13 029c_mallory_and_the_mystery_diary_5.txt, 1354, 5 081c_kristy_and_mr_mom_8.txt, 1942, 8 m18c_stacey_and_the_mystery_at_the_empty_house_7.txt, 1966, 7 m26c_dawn_schafer_undercover_babysitter_8.txt, 1882, 8 003c_the_truth_about_stacey_14.txt, 2824, 14 m22c_stacey_and_the_haunted_masquerade_9.txt, 1977, 9 025c_mary_anne_and_the_search_for_tigger_4.txt, 1740, 4 099c_staceys_broken_heart_11.txt, 1724, 11 047c_mallory_on_strike_6.txt, 1514, 6 065c_staceys_big_crush_5.txt, 1611, 5 m01c_stacey_and_the_mystery_ring_2.txt, 2076, 2 m08c_jessi_and_the_jewel_thieves_13.txt, 1470, 13 m29c_stacey_and_the_fashion_victim_4.txt, 1849, 4 007c_claudia_and_mean_jeanine_14.txt, 1213, 14 027c_jessi_and_the_superbrat_9.txt, 1479, 9 102c_mary_anne_and_the_little_princess_10.txt, 1088, 10 serr1c_logans_story_3.txt, 1230, 3 113c_claudia_makes_up_her_mind_7.txt, 1511, 7 m15c_kristy_and_the_vampires_3.txt, 2246, 3 m02c_beware_dawn_4.txt, 1842, 4 127c_abbys_un_valentine_5.txt, 2300, 5 101c_claudia_kishi_middle_school_dropout_10.txt, 1665, 10 121c_abby_in_wonderland_3.txt, 1186, 3 103c_happy_holidays_jessi_3.txt, 1747, 3 084c_dawn_and_the_school_spirit_war_13.txt, 1244, 13 097c_claudia_and_the_worlds_cutest_baby_5.txt, 1719, 5 045c_kristy_and_the_baby_parade_15.txt, 1515, 15 037c_dawn_and_the_older_boy_12.txt, 1643, 12 096c_abbys_lucky_thirteen_14.txt, 1078, 14 063c_claudias_freind_friend_12.txt, 1781, 12 076c_staceys_lie_2.txt, 2826, 2 018c_staceys_mistake_15.txt, 1399, 15 m25c_kristy_and_the_middle_school_vandal_13.txt, 1686, 13 039c_poor_mallory_5.txt, 1612, 5 069c_get_well_soon_mallory_4.txt, 1751, 4 050c_dawns_big_date_11.txt, 2003, 11 018c_staceys_mistake_1.txt, 1972, 1 068c_jessi_and_the_bad_babysitter_8.txt, 1992, 8 109c_mary_anne_to_the_rescue_13.txt, 1229, 13 115c_jessis_big_break_9.txt, 970, 9 057c_dawn_saves_the_planet_4.txt, 1791, 4 015c_little_miss_stoneybrook_and_dawn_11.txt, 1981, 11 m15c_kristy_and_the_vampires_10.txt, 1932, 10 021c_mallory_and_the_trouble_with_twins_7.txt, 1912, 7 122c_kristy_in_charge_3.txt, 1007, 3 079c_mary_anne_breaks_the_rules_12.txt, 945, 12 107c_mind_your_own_business_kristy_13.txt, 1496, 13 m32c_claudia_and_the_mystery_in_the_painting_11.txt, 1811, 11 040c_claudia_and_the_middle_school_mystery_9.txt, 1597, 9 m18c_stacey_and_the_mystery_at_the_empty_house_15.txt, 1812, 15 m32c_claudia_and_the_mystery_in_the_painting_10.txt, 1953, 10 040c_claudia_and_the_middle_school_mystery_8.txt, 1481, 8 107c_mind_your_own_business_kristy_12.txt, 1471, 12 m18c_stacey_and_the_mystery_at_the_empty_house_14.txt, 2277, 14 021c_mallory_and_the_trouble_with_twins_6.txt, 1740, 6 079c_mary_anne_breaks_the_rules_13.txt, 925, 13 122c_kristy_in_charge_2.txt, 2673, 2 115c_jessis_big_break_8.txt, 1753, 8 m15c_kristy_and_the_vampires_11.txt, 2077, 11 057c_dawn_saves_the_planet_5.txt, 1995, 5 015c_little_miss_stoneybrook_and_dawn_10.txt, 1502, 10 109c_mary_anne_to_the_rescue_12.txt, 1550, 12 068c_jessi_and_the_bad_babysitter_9.txt, 1384, 9 050c_dawns_big_date_10.txt, 2678, 10 063c_claudias_freind_friend_13.txt, 2123, 13 076c_staceys_lie_3.txt, 3911, 3 096c_abbys_lucky_thirteen_15.txt, 901, 15 069c_get_well_soon_mallory_5.txt, 1401, 5 039c_poor_mallory_4.txt, 1679, 4 m25c_kristy_and_the_middle_school_vandal_12.txt, 1636, 12 018c_staceys_mistake_14.txt, 1686, 14 045c_kristy_and_the_baby_parade_14.txt, 1636, 14 015c_little_miss_stoneybrook_and_dawn_1.txt, 2326, 1 097c_claudia_and_the_worlds_cutest_baby_4.txt, 1774, 4 084c_dawn_and_the_school_spirit_war_12.txt, 993, 12 103c_happy_holidays_jessi_2.txt, 3034, 2 037c_dawn_and_the_older_boy_13.txt, 1406, 13 127c_abbys_un_valentine_4.txt, 1913, 4 121c_abby_in_wonderland_2.txt, 3173, 2 101c_claudia_kishi_middle_school_dropout_11.txt, 2036, 11 m02c_beware_dawn_5.txt, 1575, 5 m15c_kristy_and_the_vampires_2.txt, 2481, 2 113c_claudia_makes_up_her_mind_6.txt, 1472, 6 102c_mary_anne_and_the_little_princess_11.txt, 1539, 11 serr1c_logans_story_2.txt, 2206, 2 119c_staceys_ex_boyfriend_1.txt, 1481, 1 027c_jessi_and_the_superbrat_8.txt, 1617, 8 007c_claudia_and_mean_jeanine_15.txt, 1368, 15 m29c_stacey_and_the_fashion_victim_5.txt, 1889, 5 m01c_stacey_and_the_mystery_ring_3.txt, 1841, 3 065c_staceys_big_crush_4.txt, 1931, 4 m08c_jessi_and_the_jewel_thieves_12.txt, 1683, 12 100c_kristys_worst_idea_1.txt, 1915, 1 047c_mallory_on_strike_7.txt, 1938, 7 025c_mary_anne_and_the_search_for_tigger_5.txt, 1402, 5 m22c_stacey_and_the_haunted_masquerade_8.txt, 1740, 8 099c_staceys_broken_heart_10.txt, 2726, 10 m26c_dawn_schafer_undercover_babysitter_9.txt, 1742, 9 081c_kristy_and_mr_mom_9.txt, 1526, 9 m18c_stacey_and_the_mystery_at_the_empty_house_6.txt, 1969, 6 029c_mallory_and_the_mystery_diary_4.txt, 1517, 4 038c_kristys_mystery_admirer_12.txt, 2019, 12 124c_stacey_mcgill_matchmaker_1.txt, 1679, 1 m17c_dawn_and_the_halloween_mystery_1.txt, 1882, 1 011c_kristy_and_the_snobs_8.txt, 1825, 8 025c_mary_anne_and_the_search_for_tigger_15.txt, 1589, 15 023c_dawn_on_the_coast_4.txt, 1742, 4 087c_stacey_and_the_bad_girls_4.txt, 2432, 4 050c_dawns_big_date_2.txt, 2677, 2 044c_dawn_and_the_big_sleepover_2.txt, 2017, 2 077c_dwn_and_whitney_friends_forever_14.txt, 949, 14 002c_claudia_and_the_phantom_phone_calls_12.txt, 1527, 12 106c_claudia_queen_of_the_seventh_grade_1.txt, 2007, 1 048c_jessis_wish_12.txt, 1363, 12 m20c_mary_anne_and_the_zoo_mystery_8.txt, 2878, 8 088c_farewell_dawn_10.txt, 1541, 10 072c_dawn_and_the_we_heart_kids_club_4.txt, 1194, 4 073c_mary_anne_and_miss_priss_4.txt, 1532, 4 serr3c_shannons_story_13.txt, 992, 13 058c_staceys_choice_3.txt, 1628, 3 083c_stacey_vs_the_bsc_14.txt, 1339, 14 062c_kristy_and_the_worst_kid_ever_4.txt, 2001, 4 096c_abbys_lucky_thirteen_6.txt, 966, 6 117c_claudia_and_the_terrible_truth_15.txt, 1230, 15 102c_mary_anne_and_the_little_princess_7.txt, 1244, 7 110c_abby_and_the_bad_sport_14.txt, 1026, 14 m19c_kristy_and_the_missing_fortune_6.txt, 1832, 6 125c_mary_anne_in_the_middle_4.txt, 1202, 4 m27c_claudia_and_the_lighthouse_ghost_5.txt, 1877, 5 033c_claudia_and_the_great_search_4.txt, 1795, 4 m10c_stacey_and_the_mystery_money_10.txt, 2118, 10 107c_mind_your_own_business_kristy_3.txt, 1030, 3 086c_mary_anne_and_camp_bsc_6.txt, 1463, 6 026c_claudia_and_the_sad_goodbye_8.txt, 1826, 8 053c_kristy_for_president_9.txt, 1561, 9 016c_jessis_secret_language_11.txt, 1696, 11 056c_keep_out_claudia_2.txt, 3183, 2 123c_claudias_big_party_10.txt, 1764, 10 098c_dawn_and_too_many_sitters_6.txt, 1626, 6 111c_staceys_secret_friend_11.txt, 1270, 11 012c_claudia_and_the_new_girl_8.txt, 1503, 8 035c_jessis_babysitter_6.txt, 1906, 6 060c_mary_annes_makeover_11.txt, 1046, 11 121c_abby_in_wonderland_10.txt, 2217, 10 099c_staceys_broken_heart_8.txt, 1711, 8 084c_dawn_and_the_school_spirit_war_5.txt, 1763, 5 070c_stacey_and_the_cheerleaders_14.txt, 1851, 14 052c_mary_anne_plus_too_many_babies_4.txt, 1696, 4 129c_kristy_at_bat_15.txt, 1816, 15 m31c_mary_anne_and_the_music_box_secret_14.txt, 1895, 14 085c_claudia_kishi_live_from_wsto_4.txt, 2278, 4 129c_kristy_at_bat_6.txt, 2120, 6 m34c_mary_anne_and_the_haunted_bookstore_1.txt, 2232, 1 054c_mallory_and_the_dream_horse_15.txt, 1377, 15 095c_kristy_plus_bart_equals_questionmark_12.txt, 1036, 12 079c_mary_anne_breaks_the_rules_3.txt, 1716, 3 m13c_mary_anne_and_the_library_mystery_8.txt, 1737, 8 m14c_stacey_and_the_mystery_at_the_mall_5.txt, 1989, 5 046c_mary_anne_misses_logan_5.txt, 1419, 5 031c_dawns_wicked_stepsister_8.txt, 1668, 8 m23c_abby_and_the_secret_society_3.txt, 1922, 3 m12c_dawn_and_the_surfer_ghost_8.txt, 1628, 8 055c_jessis_gold_medal_10.txt, 1488, 10 017c_mary_annes_bad_luck_mystery_4.txt, 1512, 4 101c_claudia_kishi_middle_school_dropout_5.txt, 1934, 5 039c_poor_mallory_14.txt, 1894, 14 080c_mallory_pike_no_1_fan_11.txt, 1130, 11 034c_mary_anne_and_too_many_boys_6.txt, 1907, 6 030c_mary_anne_and_the_great_romance_11.txt, 1754, 11 m16c_claudia_and_the_clue_in_the_photograph_5.txt, 1807, 5 m28c_abby_and_the_mystery_baby_7.txt, 1743, 7 037c_dawn_and_the_older_boy_7.txt, 1255, 7 m05c_mary_anne_and_the_secret_in_the_attic_2.txt, 2055, 2 043c_staceys_emergency_10.txt, 1318, 10 045c_kristy_and_the_baby_parade_2.txt, 2240, 2 078c_claudia_and_crazy_peaches_1.txt, 2660, 1 m08c_jessi_and_the_jewel_thieves_6.txt, 1801, 6 030c_mary_anne_and_the_great_romance_1.txt, 1848, 1 078c_claudia_and_crazy_peaches_15.txt, 1090, 15 032c_kristy_and_the_secret_of_susan_6.txt, 1485, 6 m19c_kristy_and_the_missing_fortune_12.txt, 1871, 12 013c_goodbye_stacey_goodbye_9.txt, 1984, 9 m29c_stacey_and_the_fashion_victim_11.txt, 1948, 11 059c_mallory_hates_boys_and_gym_10.txt, 1555, 10 004c_mary_anne_saves_the_day_13.txt, 1096, 13 m25c_kristy_and_the_middle_school_vandal_3.txt, 3375, 3 105c_stacey_the_math_whiz_14.txt, 1402, 14 006c_kristys_big_day_6.txt, 2193, 6 013c_goodbye_stacey_goodbye_14.txt, 1553, 14 124c_stacey_mcgill_matchmaker_15.txt, 903, 15 065c_staceys_big_crush_15.txt, 1107, 15 105c_stacey_the_math_whiz_4.txt, 1903, 4 128c_claudia_and_the_little_liar_7.txt, 1367, 7 067c_dawns_big_move_11.txt, 1473, 11 m06c_the_mystery_at_claudias_house_5.txt, 1793, 5 055c_jessis_gold_medal_9.txt, 1199, 9 m21c_claudia_and_the_recipe_for_danger_6.txt, 1836, 6 m36c_kristy_and_the_cat_burglar_3.txt, 2216, 3 126c_the_all_new_mallory_pike_14.txt, 2024, 14 077c_dwn_and_whitney_friends_forever_2.txt, 2503, 2 041c_mary_anne_vs_logan_5.txt, 1673, 5 104c_abbys_twin_7.txt, 1317, 7 089c_kristy_and_the_dirty_diapers_5.txt, 1468, 5 026c_claudia_and_the_sad_goodbye_14.txt, 1576, 14 108c_dont_give_up_mallory_3.txt, 2898, 3 006c_kristys_big_day_13.txt, 1574, 13 006c_kristys_big_day_12.txt, 1558, 12 089c_kristy_and_the_dirty_diapers_4.txt, 1630, 4 041c_mary_anne_vs_logan_4.txt, 1493, 4 104c_abbys_twin_6.txt, 1282, 6 108c_dont_give_up_mallory_2.txt, 3080, 2 026c_claudia_and_the_sad_goodbye_15.txt, 1744, 15 m03c_mallory_and_the_ghost_cat_1.txt, 2656, 1 110c_abby_and_the_bad_sport_1.txt, 1982, 1 077c_dwn_and_whitney_friends_forever_3.txt, 2287, 3 126c_the_all_new_mallory_pike_15.txt, 1197, 15 m21c_claudia_and_the_recipe_for_danger_7.txt, 2030, 7 m36c_kristy_and_the_cat_burglar_2.txt, 2288, 2 055c_jessis_gold_medal_8.txt, 1452, 8 m06c_the_mystery_at_claudias_house_4.txt, 2073, 4 067c_dawns_big_move_10.txt, 1200, 10 128c_claudia_and_the_little_liar_6.txt, 1878, 6 m04c_kristy_and_the_missing_child_1.txt, 1748, 1 082c_jessi_and_the_troublemaker_1.txt, 2900, 1 065c_staceys_big_crush_14.txt, 2277, 14 080c_mallory_pike_no_1_fan_1.txt, 2151, 1 105c_stacey_the_math_whiz_5.txt, 1454, 5 013c_goodbye_stacey_goodbye_15.txt, 1693, 15 006c_kristys_big_day_7.txt, 2424, 7 105c_stacey_the_math_whiz_15.txt, 1201, 15 124c_stacey_mcgill_matchmaker_14.txt, 770, 14 m25c_kristy_and_the_middle_school_vandal_2.txt, 1462, 2 004c_mary_anne_saves_the_day_12.txt, 1547, 12 m29c_stacey_and_the_fashion_victim_10.txt, 1944, 10 059c_mallory_hates_boys_and_gym_11.txt, 1954, 11 013c_goodbye_stacey_goodbye_8.txt, 1273, 8 m19c_kristy_and_the_missing_fortune_13.txt, 1941, 13 032c_kristy_and_the_secret_of_susan_7.txt, 1652, 7 078c_claudia_and_crazy_peaches_14.txt, 1574, 14 m08c_jessi_and_the_jewel_thieves_7.txt, 2096, 7 m05c_mary_anne_and_the_secret_in_the_attic_3.txt, 1733, 3 037c_dawn_and_the_older_boy_6.txt, 1980, 6 045c_kristy_and_the_baby_parade_3.txt, 2356, 3 043c_staceys_emergency_11.txt, 1758, 11 034c_mary_anne_and_too_many_boys_7.txt, 1613, 7 080c_mallory_pike_no_1_fan_10.txt, 1501, 10 039c_poor_mallory_15.txt, 1480, 15 m28c_abby_and_the_mystery_baby_6.txt, 1611, 6 030c_mary_anne_and_the_great_romance_10.txt, 1689, 10 m16c_claudia_and_the_clue_in_the_photograph_4.txt, 2144, 4 017c_mary_annes_bad_luck_mystery_5.txt, 1426, 5 101c_claudia_kishi_middle_school_dropout_4.txt, 1777, 4 m12c_dawn_and_the_surfer_ghost_9.txt, 1711, 9 m23c_abby_and_the_secret_society_2.txt, 2509, 2 031c_dawns_wicked_stepsister_9.txt, 1602, 9 055c_jessis_gold_medal_11.txt, 1133, 11 046c_mary_anne_misses_logan_4.txt, 1923, 4 m14c_stacey_and_the_mystery_at_the_mall_4.txt, 2003, 4 m13c_mary_anne_and_the_library_mystery_9.txt, 1889, 9 079c_mary_anne_breaks_the_rules_2.txt, 2082, 2 054c_mallory_and_the_dream_horse_14.txt, 3323, 14 051c_staceys_ex_best_friend_1.txt, 1909, 1 095c_kristy_plus_bart_equals_questionmark_13.txt, 1420, 13 129c_kristy_at_bat_7.txt, 1923, 7 085c_claudia_kishi_live_from_wsto_5.txt, 1475, 5 m31c_mary_anne_and_the_music_box_secret_15.txt, 2089, 15 095c_kristy_plus_bart_equals_questionmark_1.txt, 2188, 1 052c_mary_anne_plus_too_many_babies_5.txt, 1771, 5 129c_kristy_at_bat_14.txt, 2035, 14 070c_stacey_and_the_cheerleaders_15.txt, 808, 15 099c_staceys_broken_heart_9.txt, 1191, 9 084c_dawn_and_the_school_spirit_war_4.txt, 1334, 4 121c_abby_in_wonderland_11.txt, 1736, 11 060c_mary_annes_makeover_10.txt, 1805, 10 035c_jessis_babysitter_7.txt, 1631, 7 098c_dawn_and_too_many_sitters_7.txt, 1249, 7 012c_claudia_and_the_new_girl_9.txt, 1645, 9 111c_staceys_secret_friend_10.txt, 871, 10 123c_claudias_big_party_11.txt, 1654, 11 056c_keep_out_claudia_3.txt, 1251, 3 123c_claudias_big_party_13.txt, 1898, 13 056c_keep_out_claudia_1.txt, 1799, 1 m02c_beware_dawn_14.txt, 1948, 14 111c_staceys_secret_friend_12.txt, 965, 12 098c_dawn_and_too_many_sitters_5.txt, 1628, 5 104c_abbys_twin_15.txt, 1521, 15 005c_dawn_and_the_impossible_three_9.txt, 2046, 9 035c_jessis_babysitter_5.txt, 1437, 5 060c_mary_annes_makeover_12.txt, 2104, 12 121c_abby_in_wonderland_13.txt, 1326, 13 082c_jessi_and_the_troublemaker_14.txt, 1095, 14 serr3c_shannons_story_9.txt, 1036, 9 001c_kristys_great_idea_9.txt, 1196, 9 084c_dawn_and_the_school_spirit_war_6.txt, 2445, 6 095c_kristy_plus_bart_equals_questionmark_3.txt, 2390, 3 085c_claudia_kishi_live_from_wsto_7.txt, 1640, 7 129c_kristy_at_bat_5.txt, 1444, 5 052c_mary_anne_plus_too_many_babies_7.txt, 1640, 7 m14c_stacey_and_the_mystery_at_the_mall_6.txt, 2055, 6 083c_stacey_vs_the_bsc_9.txt, 1586, 9 046c_mary_anne_misses_logan_6.txt, 1529, 6 095c_kristy_plus_bart_equals_questionmark_11.txt, 1475, 11 051c_staceys_ex_best_friend_3.txt, 1538, 3 m34c_mary_anne_and_the_haunted_bookstore_2.txt, 3809, 2 009c_the_ghost_at_dawns_house_8.txt, 2342, 8 101c_claudia_kishi_middle_school_dropout_6.txt, 1917, 6 017c_mary_annes_bad_luck_mystery_7.txt, 1396, 7 055c_jessis_gold_medal_13.txt, 2592, 13 043c_staceys_emergency_13.txt, 1742, 13 045c_kristy_and_the_baby_parade_1.txt, 1934, 1 037c_dawn_and_the_older_boy_4.txt, 1984, 4 m05c_mary_anne_and_the_secret_in_the_attic_1.txt, 2087, 1 008c_boy_crazy_stacey_8.txt, 1609, 8 m16c_claudia_and_the_clue_in_the_photograph_6.txt, 1883, 6 030c_mary_anne_and_the_great_romance_12.txt, 1808, 12 m28c_abby_and_the_mystery_baby_4.txt, 2239, 4 080c_mallory_pike_no_1_fan_12.txt, 2376, 12 034c_mary_anne_and_too_many_boys_5.txt, 1654, 5 123c_claudias_big_party_8.txt, 770, 8 m08c_jessi_and_the_jewel_thieves_5.txt, 1839, 5 030c_mary_anne_and_the_great_romance_2.txt, 2511, 2 m12c_dawn_and_the_surfer_ghost_14.txt, 1936, 14 078c_claudia_and_crazy_peaches_2.txt, 2715, 2 106c_claudia_queen_of_the_seventh_grade_14.txt, 1201, 14 059c_mallory_hates_boys_and_gym_13.txt, 1413, 13 m29c_stacey_and_the_fashion_victim_12.txt, 1552, 12 m19c_kristy_and_the_missing_fortune_11.txt, 1526, 11 032c_kristy_and_the_secret_of_susan_5.txt, 1398, 5 m17c_dawn_and_the_halloween_mystery_14.txt, 1994, 14 004c_mary_anne_saves_the_day_10.txt, 1810, 10 105c_stacey_the_math_whiz_7.txt, 1240, 7 080c_mallory_pike_no_1_fan_3.txt, 2123, 3 m21c_claudia_and_the_recipe_for_danger_15.txt, 1757, 15 006c_kristys_big_day_5.txt, 2268, 5 m03c_mallory_and_the_ghost_cat_14.txt, 2194, 14 serr1c_logans_story_14.txt, 2144, 14 067c_dawns_big_move_12.txt, 1873, 12 049c_claudia_and_the_genius_of_elm_street_9.txt, 1168, 9 082c_jessi_and_the_troublemaker_3.txt, 1511, 3 m04c_kristy_and_the_missing_child_3.txt, 1993, 3 014c_hello_mallory_9.txt, 1631, 9 128c_claudia_and_the_little_liar_4.txt, 985, 4 022c_jessi_ramsey_petsitter_14.txt, 1448, 14 m06c_the_mystery_at_claudias_house_6.txt, 1931, 6 m21c_claudia_and_the_recipe_for_danger_5.txt, 1636, 5 077c_dwn_and_whitney_friends_forever_1.txt, 2311, 1 110c_abby_and_the_bad_sport_3.txt, 1892, 3 m28c_abby_and_the_mystery_baby_14.txt, 1800, 14 002c_claudia_and_the_phantom_phone_calls_8.txt, 1738, 8 m07c_dawn_and_the_disappearing_dogs_9.txt, 1979, 9 006c_kristys_big_day_10.txt, 1727, 10 m03c_mallory_and_the_ghost_cat_3.txt, 2070, 3 m31c_mary_anne_and_the_music_box_secret_9.txt, 1669, 9 104c_abbys_twin_4.txt, 1099, 4 041c_mary_anne_vs_logan_6.txt, 1537, 6 m11c_claudia_and_the_mystery_at_the_museum_9.txt, 1587, 9 089c_kristy_and_the_dirty_diapers_6.txt, 2377, 6 m31c_mary_anne_and_the_music_box_secret_8.txt, 1986, 8 108c_dont_give_up_mallory_1.txt, 1724, 1 m03c_mallory_and_the_ghost_cat_2.txt, 2422, 2 089c_kristy_and_the_dirty_diapers_7.txt, 1752, 7 m11c_claudia_and_the_mystery_at_the_museum_8.txt, 1436, 8 104c_abbys_twin_5.txt, 2686, 5 041c_mary_anne_vs_logan_7.txt, 1039, 7 m07c_dawn_and_the_disappearing_dogs_8.txt, 1373, 8 006c_kristys_big_day_11.txt, 2119, 11 m28c_abby_and_the_mystery_baby_15.txt, 1450, 15 002c_claudia_and_the_phantom_phone_calls_9.txt, 1979, 9 m36c_kristy_and_the_cat_burglar_1.txt, 1797, 1 m21c_claudia_and_the_recipe_for_danger_4.txt, 1581, 4 110c_abby_and_the_bad_sport_2.txt, 2238, 2 m06c_the_mystery_at_claudias_house_7.txt, 1597, 7 022c_jessi_ramsey_petsitter_15.txt, 1678, 15 128c_claudia_and_the_little_liar_5.txt, 1445, 5 014c_hello_mallory_8.txt, 1549, 8 m04c_kristy_and_the_missing_child_2.txt, 2411, 2 082c_jessi_and_the_troublemaker_2.txt, 3499, 2 049c_claudia_and_the_genius_of_elm_street_8.txt, 1438, 8 067c_dawns_big_move_13.txt, 1675, 13 serr1c_logans_story_15.txt, 1699, 15 m03c_mallory_and_the_ghost_cat_15.txt, 1810, 15 m21c_claudia_and_the_recipe_for_danger_14.txt, 1898, 14 006c_kristys_big_day_4.txt, 1896, 4 080c_mallory_pike_no_1_fan_2.txt, 2948, 2 105c_stacey_the_math_whiz_6.txt, 2103, 6 004c_mary_anne_saves_the_day_11.txt, 2921, 11 m17c_dawn_and_the_halloween_mystery_15.txt, 1933, 15 m25c_kristy_and_the_middle_school_vandal_1.txt, 2149, 1 032c_kristy_and_the_secret_of_susan_4.txt, 2288, 4 m19c_kristy_and_the_missing_fortune_10.txt, 1959, 10 059c_mallory_hates_boys_and_gym_12.txt, 1678, 12 106c_claudia_queen_of_the_seventh_grade_15.txt, 1488, 15 m29c_stacey_and_the_fashion_victim_13.txt, 1850, 13 030c_mary_anne_and_the_great_romance_3.txt, 2022, 3 m08c_jessi_and_the_jewel_thieves_4.txt, 2014, 4 078c_claudia_and_crazy_peaches_3.txt, 1557, 3 m12c_dawn_and_the_surfer_ghost_15.txt, 1406, 15 123c_claudias_big_party_9.txt, 1403, 9 m28c_abby_and_the_mystery_baby_5.txt, 1691, 5 m16c_claudia_and_the_clue_in_the_photograph_7.txt, 1962, 7 030c_mary_anne_and_the_great_romance_13.txt, 1285, 13 034c_mary_anne_and_too_many_boys_4.txt, 1479, 4 080c_mallory_pike_no_1_fan_13.txt, 1672, 13 043c_staceys_emergency_12.txt, 1934, 12 008c_boy_crazy_stacey_9.txt, 1543, 9 037c_dawn_and_the_older_boy_5.txt, 1640, 5 055c_jessis_gold_medal_12.txt, 2310, 12 m23c_abby_and_the_secret_society_1.txt, 1899, 1 101c_claudia_kishi_middle_school_dropout_7.txt, 1786, 7 009c_the_ghost_at_dawns_house_9.txt, 2637, 9 017c_mary_annes_bad_luck_mystery_6.txt, 1815, 6 051c_staceys_ex_best_friend_2.txt, 2995, 2 095c_kristy_plus_bart_equals_questionmark_10.txt, 1561, 10 m34c_mary_anne_and_the_haunted_bookstore_3.txt, 3625, 3 046c_mary_anne_misses_logan_7.txt, 1851, 7 083c_stacey_vs_the_bsc_8.txt, 1116, 8 m14c_stacey_and_the_mystery_at_the_mall_7.txt, 1919, 7 079c_mary_anne_breaks_the_rules_1.txt, 2371, 1 052c_mary_anne_plus_too_many_babies_6.txt, 1451, 6 095c_kristy_plus_bart_equals_questionmark_2.txt, 1420, 2 129c_kristy_at_bat_4.txt, 1964, 4 085c_claudia_kishi_live_from_wsto_6.txt, 1132, 6 084c_dawn_and_the_school_spirit_war_7.txt, 1738, 7 001c_kristys_great_idea_8.txt, 1266, 8 serr3c_shannons_story_8.txt, 1595, 8 082c_jessi_and_the_troublemaker_15.txt, 726, 15 005c_dawn_and_the_impossible_three_8.txt, 2322, 8 104c_abbys_twin_14.txt, 990, 14 121c_abby_in_wonderland_12.txt, 1259, 12 060c_mary_annes_makeover_13.txt, 3064, 13 035c_jessis_babysitter_4.txt, 1528, 4 111c_staceys_secret_friend_13.txt, 2171, 13 098c_dawn_and_too_many_sitters_4.txt, 1586, 4 m02c_beware_dawn_15.txt, 1327, 15 123c_claudias_big_party_12.txt, 1575, 12 007c_claudia_and_mean_jeanine_9.txt, 1719, 9 m02c_beware_dawn_11.txt, 1651, 11 056c_keep_out_claudia_4.txt, 1356, 4 070c_stacey_and_the_cheerleaders_12.txt, 1106, 12 084c_dawn_and_the_school_spirit_war_3.txt, 1745, 3 004c_mary_anne_saves_the_day_9.txt, 2063, 9 104c_abbys_twin_10.txt, 1585, 10 082c_jessi_and_the_troublemaker_11.txt, 983, 11 060c_mary_annes_makeover_9.txt, 1504, 9 079c_mary_anne_breaks_the_rules_5.txt, 1298, 5 m14c_stacey_and_the_mystery_at_the_mall_3.txt, 2036, 3 046c_mary_anne_misses_logan_3.txt, 1700, 3 m34c_mary_anne_and_the_haunted_bookstore_7.txt, 1163, 7 054c_mallory_and_the_dream_horse_13.txt, 1935, 13 095c_kristy_plus_bart_equals_questionmark_14.txt, 1748, 14 051c_staceys_ex_best_friend_6.txt, 1487, 6 m31c_mary_anne_and_the_music_box_secret_12.txt, 1944, 12 085c_claudia_kishi_live_from_wsto_2.txt, 2685, 2 095c_kristy_plus_bart_equals_questionmark_6.txt, 1521, 6 052c_mary_anne_plus_too_many_babies_2.txt, 2673, 2 129c_kristy_at_bat_13.txt, 1717, 13 037c_dawn_and_the_older_boy_1.txt, 2052, 1 m05c_mary_anne_and_the_secret_in_the_attic_4.txt, 2046, 4 045c_kristy_and_the_baby_parade_4.txt, 1884, 4 039c_poor_mallory_12.txt, 1521, 12 m16c_claudia_and_the_clue_in_the_photograph_3.txt, 1839, 3 m28c_abby_and_the_mystery_baby_1.txt, 1924, 1 017c_mary_annes_bad_luck_mystery_2.txt, 2288, 2 101c_claudia_kishi_middle_school_dropout_3.txt, 2066, 3 m23c_abby_and_the_secret_society_5.txt, 1889, 5 106c_claudia_queen_of_the_seventh_grade_11.txt, 1238, 11 091c_claudia_and_the_first_thanksgiving_8.txt, 1204, 8 m19c_kristy_and_the_missing_fortune_14.txt, 1992, 14 078c_claudia_and_crazy_peaches_13.txt, 1251, 13 m12c_dawn_and_the_surfer_ghost_11.txt, 1493, 11 078c_claudia_and_crazy_peaches_7.txt, 1997, 7 030c_mary_anne_and_the_great_romance_7.txt, 1722, 7 065c_staceys_big_crush_13.txt, 1629, 13 093c_mary_anne_and_the_memory_garden_9.txt, 1721, 9 105c_stacey_the_math_whiz_2.txt, 2745, 2 080c_mallory_pike_no_1_fan_6.txt, 2564, 6 105c_stacey_the_math_whiz_12.txt, 1768, 12 013c_goodbye_stacey_goodbye_12.txt, 1924, 12 124c_stacey_mcgill_matchmaker_13.txt, 1173, 13 m21c_claudia_and_the_recipe_for_danger_10.txt, 1840, 10 117c_claudia_and_the_terrible_truth_8.txt, 1538, 8 m25c_kristy_and_the_middle_school_vandal_5.txt, 2091, 5 m17c_dawn_and_the_halloween_mystery_11.txt, 1729, 11 004c_mary_anne_saves_the_day_15.txt, 1491, 15 022c_jessi_ramsey_petsitter_11.txt, 1823, 11 m06c_the_mystery_at_claudias_house_3.txt, 1728, 3 serr1c_logans_story_11.txt, 1259, 11 m03c_mallory_and_the_ghost_cat_11.txt, 2114, 11 m04c_kristy_and_the_missing_child_6.txt, 1720, 6 082c_jessi_and_the_troublemaker_6.txt, 1376, 6 128c_claudia_and_the_little_liar_1.txt, 1843, 1 088c_farewell_dawn_9.txt, 1554, 9 041c_mary_anne_vs_logan_3.txt, 2241, 3 104c_abbys_twin_1.txt, 1902, 1 089c_kristy_and_the_dirty_diapers_3.txt, 2307, 3 m03c_mallory_and_the_ghost_cat_6.txt, 2324, 6 026c_claudia_and_the_sad_goodbye_12.txt, 1708, 12 108c_dont_give_up_mallory_5.txt, 1804, 5 110c_abby_and_the_bad_sport_6.txt, 1036, 6 m36c_kristy_and_the_cat_burglar_5.txt, 1816, 5 077c_dwn_and_whitney_friends_forever_4.txt, 2379, 4 126c_the_all_new_mallory_pike_12.txt, 1913, 12 m28c_abby_and_the_mystery_baby_11.txt, 1488, 11 m28c_abby_and_the_mystery_baby_10.txt, 1882, 10 110c_abby_and_the_bad_sport_7.txt, 1830, 7 126c_the_all_new_mallory_pike_13.txt, 1651, 13 077c_dwn_and_whitney_friends_forever_5.txt, 1517, 5 m21c_claudia_and_the_recipe_for_danger_1.txt, 2026, 1 m36c_kristy_and_the_cat_burglar_4.txt, 1627, 4 089c_kristy_and_the_dirty_diapers_2.txt, 2526, 2 041c_mary_anne_vs_logan_2.txt, 2933, 2 108c_dont_give_up_mallory_4.txt, 2050, 4 026c_claudia_and_the_sad_goodbye_13.txt, 1943, 13 m03c_mallory_and_the_ghost_cat_7.txt, 2234, 7 006c_kristys_big_day_14.txt, 1312, 14 088c_farewell_dawn_8.txt, 1112, 8 082c_jessi_and_the_troublemaker_7.txt, 2044, 7 m04c_kristy_and_the_missing_child_7.txt, 1259, 7 m03c_mallory_and_the_ghost_cat_10.txt, 2558, 10 serr1c_logans_story_10.txt, 1029, 10 m06c_the_mystery_at_claudias_house_2.txt, 2029, 2 022c_jessi_ramsey_petsitter_10.txt, 1664, 10 004c_mary_anne_saves_the_day_14.txt, 3412, 14 117c_claudia_and_the_terrible_truth_9.txt, 1475, 9 m17c_dawn_and_the_halloween_mystery_10.txt, 1861, 10 m25c_kristy_and_the_middle_school_vandal_4.txt, 1834, 4 013c_goodbye_stacey_goodbye_13.txt, 1794, 13 006c_kristys_big_day_1.txt, 1851, 1 105c_stacey_the_math_whiz_13.txt, 1225, 13 m21c_claudia_and_the_recipe_for_danger_11.txt, 1770, 11 124c_stacey_mcgill_matchmaker_12.txt, 1228, 12 093c_mary_anne_and_the_memory_garden_8.txt, 2054, 8 065c_staceys_big_crush_12.txt, 1369, 12 080c_mallory_pike_no_1_fan_7.txt, 1890, 7 105c_stacey_the_math_whiz_3.txt, 1997, 3 078c_claudia_and_crazy_peaches_6.txt, 1516, 6 m12c_dawn_and_the_surfer_ghost_10.txt, 1986, 10 030c_mary_anne_and_the_great_romance_6.txt, 1639, 6 m08c_jessi_and_the_jewel_thieves_1.txt, 2026, 1 078c_claudia_and_crazy_peaches_12.txt, 1272, 12 091c_claudia_and_the_first_thanksgiving_9.txt, 1376, 9 032c_kristy_and_the_secret_of_susan_1.txt, 1790, 1 m19c_kristy_and_the_missing_fortune_15.txt, 1827, 15 106c_claudia_queen_of_the_seventh_grade_10.txt, 1409, 10 m23c_abby_and_the_secret_society_4.txt, 2167, 4 017c_mary_annes_bad_luck_mystery_3.txt, 1508, 3 101c_claudia_kishi_middle_school_dropout_2.txt, 2280, 2 039c_poor_mallory_13.txt, 1447, 13 034c_mary_anne_and_too_many_boys_1.txt, 2653, 1 m16c_claudia_and_the_clue_in_the_photograph_2.txt, 2970, 2 m05c_mary_anne_and_the_secret_in_the_attic_5.txt, 1604, 5 045c_kristy_and_the_baby_parade_5.txt, 1892, 5 052c_mary_anne_plus_too_many_babies_3.txt, 1946, 3 129c_kristy_at_bat_12.txt, 1759, 12 085c_claudia_kishi_live_from_wsto_3.txt, 1696, 3 129c_kristy_at_bat_1.txt, 1967, 1 m31c_mary_anne_and_the_music_box_secret_13.txt, 1805, 13 095c_kristy_plus_bart_equals_questionmark_7.txt, 1688, 7 054c_mallory_and_the_dream_horse_12.txt, 1414, 12 m34c_mary_anne_and_the_haunted_bookstore_6.txt, 3059, 6 051c_staceys_ex_best_friend_7.txt, 1418, 7 095c_kristy_plus_bart_equals_questionmark_15.txt, 1315, 15 060c_mary_annes_makeover_8.txt, 1118, 8 046c_mary_anne_misses_logan_2.txt, 2346, 2 m14c_stacey_and_the_mystery_at_the_mall_2.txt, 2293, 2 079c_mary_anne_breaks_the_rules_4.txt, 1535, 4 082c_jessi_and_the_troublemaker_10.txt, 1059, 10 035c_jessis_babysitter_1.txt, 1755, 1 104c_abbys_twin_11.txt, 1510, 11 004c_mary_anne_saves_the_day_8.txt, 1758, 8 084c_dawn_and_the_school_spirit_war_2.txt, 3168, 2 070c_stacey_and_the_cheerleaders_13.txt, 1226, 13 m02c_beware_dawn_10.txt, 1690, 10 056c_keep_out_claudia_5.txt, 1613, 5 007c_claudia_and_mean_jeanine_8.txt, 1679, 8 098c_dawn_and_too_many_sitters_1.txt, 1668, 1 111c_staceys_secret_friend_14.txt, 1118, 14 112c_kristy_and_the_sister_war_8.txt, 1269, 8 098c_dawn_and_too_many_sitters_3.txt, 2930, 3 131c_the_fire_at_mary_annes_house_8.txt, 1903, 8 056c_keep_out_claudia_7.txt, 1355, 7 m02c_beware_dawn_12.txt, 1758, 12 123c_claudias_big_party_15.txt, 932, 15 070c_stacey_and_the_cheerleaders_11.txt, 1502, 11 082c_jessi_and_the_troublemaker_12.txt, 1238, 12 104c_abbys_twin_13.txt, 955, 13 035c_jessis_babysitter_3.txt, 1797, 3 121c_abby_in_wonderland_15.txt, 894, 15 060c_mary_annes_makeover_14.txt, 1223, 14 051c_staceys_ex_best_friend_5.txt, 1108, 5 m34c_mary_anne_and_the_haunted_bookstore_4.txt, 4945, 4 054c_mallory_and_the_dream_horse_10.txt, 1924, 10 079c_mary_anne_breaks_the_rules_6.txt, 1102, 6 129c_kristy_at_bat_10.txt, 1688, 10 052c_mary_anne_plus_too_many_babies_1.txt, 1584, 1 070c_stacey_and_the_cheerleaders_8.txt, 2067, 8 095c_kristy_plus_bart_equals_questionmark_5.txt, 1381, 5 m31c_mary_anne_and_the_music_box_secret_11.txt, 1793, 11 129c_kristy_at_bat_3.txt, 1768, 3 085c_claudia_kishi_live_from_wsto_1.txt, 2088, 1 m24c_mary_anne_and_the_silent_witness_9.txt, 1678, 9 030c_mary_anne_and_the_great_romance_14.txt, 1906, 14 m28c_abby_and_the_mystery_baby_2.txt, 2122, 2 034c_mary_anne_and_too_many_boys_3.txt, 1759, 3 039c_poor_mallory_11.txt, 1430, 11 080c_mallory_pike_no_1_fan_14.txt, 1808, 14 043c_staceys_emergency_15.txt, 1795, 15 045c_kristy_and_the_baby_parade_7.txt, 1358, 7 037c_dawn_and_the_older_boy_2.txt, 1999, 2 m05c_mary_anne_and_the_secret_in_the_attic_7.txt, 2044, 7 055c_jessis_gold_medal_15.txt, 1240, 15 024c_kristy_and_the_mothers_day_surprise_9.txt, 1716, 9 m23c_abby_and_the_secret_society_6.txt, 1903, 6 017c_mary_annes_bad_luck_mystery_1.txt, 2244, 1 032c_kristy_and_the_secret_of_susan_3.txt, 1988, 3 106c_claudia_queen_of_the_seventh_grade_12.txt, 1473, 12 059c_mallory_hates_boys_and_gym_15.txt, 1181, 15 m29c_stacey_and_the_fashion_victim_14.txt, 1980, 14 m08c_jessi_and_the_jewel_thieves_3.txt, 1981, 3 030c_mary_anne_and_the_great_romance_4.txt, 1441, 4 066c_maid_mary_anne_8.txt, 1455, 8 m12c_dawn_and_the_surfer_ghost_12.txt, 1725, 12 078c_claudia_and_crazy_peaches_4.txt, 1699, 4 078c_claudia_and_crazy_peaches_10.txt, 1650, 10 m33c_stacey_and_the_stolen_hearts_8.txt, 1648, 8 124c_stacey_mcgill_matchmaker_10.txt, 1104, 10 m21c_claudia_and_the_recipe_for_danger_13.txt, 1585, 13 105c_stacey_the_math_whiz_11.txt, 1503, 11 006c_kristys_big_day_3.txt, 2071, 3 013c_goodbye_stacey_goodbye_11.txt, 1418, 11 105c_stacey_the_math_whiz_1.txt, 1677, 1 080c_mallory_pike_no_1_fan_5.txt, 1450, 5 065c_staceys_big_crush_10.txt, 1248, 10 m25c_kristy_and_the_middle_school_vandal_6.txt, 2148, 6 m17c_dawn_and_the_halloween_mystery_12.txt, 1980, 12 022c_jessi_ramsey_petsitter_12.txt, 2007, 12 m04c_kristy_and_the_missing_child_5.txt, 1772, 5 082c_jessi_and_the_troublemaker_5.txt, 1504, 5 128c_claudia_and_the_little_liar_2.txt, 2899, 2 serr1c_logans_story_12.txt, 1315, 12 m03c_mallory_and_the_ghost_cat_12.txt, 2277, 12 067c_dawns_big_move_14.txt, 1649, 14 m03c_mallory_and_the_ghost_cat_5.txt, 2236, 5 059c_mallory_hates_boys_and_gym_8.txt, 1466, 8 026c_claudia_and_the_sad_goodbye_11.txt, 1746, 11 108c_dont_give_up_mallory_6.txt, 1914, 6 104c_abbys_twin_2.txt, 3233, 2 m28c_abby_and_the_mystery_baby_12.txt, 1832, 12 063c_claudias_freind_friend_8.txt, 1963, 8 m36c_kristy_and_the_cat_burglar_6.txt, 1787, 6 m21c_claudia_and_the_recipe_for_danger_3.txt, 2013, 3 126c_the_all_new_mallory_pike_11.txt, 1940, 11 077c_dwn_and_whitney_friends_forever_7.txt, 2102, 7 110c_abby_and_the_bad_sport_5.txt, 880, 5 077c_dwn_and_whitney_friends_forever_6.txt, 2376, 6 126c_the_all_new_mallory_pike_10.txt, 1739, 10 m36c_kristy_and_the_cat_burglar_7.txt, 2320, 7 m21c_claudia_and_the_recipe_for_danger_2.txt, 2537, 2 110c_abby_and_the_bad_sport_4.txt, 1291, 4 m28c_abby_and_the_mystery_baby_13.txt, 1788, 13 063c_claudias_freind_friend_9.txt, 1490, 9 108c_dont_give_up_mallory_7.txt, 1636, 7 026c_claudia_and_the_sad_goodbye_10.txt, 1568, 10 m03c_mallory_and_the_ghost_cat_4.txt, 2377, 4 059c_mallory_hates_boys_and_gym_9.txt, 1512, 9 089c_kristy_and_the_dirty_diapers_1.txt, 2839, 1 104c_abbys_twin_3.txt, 1057, 3 041c_mary_anne_vs_logan_1.txt, 1830, 1 067c_dawns_big_move_15.txt, 1366, 15 m03c_mallory_and_the_ghost_cat_13.txt, 2206, 13 serr1c_logans_story_13.txt, 1134, 13 128c_claudia_and_the_little_liar_3.txt, 1662, 3 082c_jessi_and_the_troublemaker_4.txt, 1326, 4 m04c_kristy_and_the_missing_child_4.txt, 1734, 4 022c_jessi_ramsey_petsitter_13.txt, 1981, 13 m06c_the_mystery_at_claudias_house_1.txt, 2039, 1 m17c_dawn_and_the_halloween_mystery_13.txt, 1906, 13 m25c_kristy_and_the_middle_school_vandal_7.txt, 1219, 7 080c_mallory_pike_no_1_fan_4.txt, 1892, 4 065c_staceys_big_crush_11.txt, 1225, 11 m21c_claudia_and_the_recipe_for_danger_12.txt, 1814, 12 124c_stacey_mcgill_matchmaker_11.txt, 1157, 11 013c_goodbye_stacey_goodbye_10.txt, 1820, 10 006c_kristys_big_day_2.txt, 2101, 2 105c_stacey_the_math_whiz_10.txt, 1873, 10 m33c_stacey_and_the_stolen_hearts_9.txt, 1850, 9 078c_claudia_and_crazy_peaches_11.txt, 1452, 11 030c_mary_anne_and_the_great_romance_5.txt, 1546, 5 m08c_jessi_and_the_jewel_thieves_2.txt, 2650, 2 078c_claudia_and_crazy_peaches_5.txt, 2169, 5 m12c_dawn_and_the_surfer_ghost_13.txt, 1921, 13 066c_maid_mary_anne_9.txt, 1714, 9 059c_mallory_hates_boys_and_gym_14.txt, 1924, 14 106c_claudia_queen_of_the_seventh_grade_13.txt, 1869, 13 m29c_stacey_and_the_fashion_victim_15.txt, 1452, 15 032c_kristy_and_the_secret_of_susan_2.txt, 2499, 2 101c_claudia_kishi_middle_school_dropout_1.txt, 1939, 1 055c_jessis_gold_medal_14.txt, 1926, 14 m23c_abby_and_the_secret_society_7.txt, 1826, 7 024c_kristy_and_the_mothers_day_surprise_8.txt, 1728, 8 045c_kristy_and_the_baby_parade_6.txt, 2008, 6 043c_staceys_emergency_14.txt, 1517, 14 m05c_mary_anne_and_the_secret_in_the_attic_6.txt, 2006, 6 037c_dawn_and_the_older_boy_3.txt, 2047, 3 m28c_abby_and_the_mystery_baby_3.txt, 2194, 3 m16c_claudia_and_the_clue_in_the_photograph_1.txt, 2400, 1 030c_mary_anne_and_the_great_romance_15.txt, 1876, 15 080c_mallory_pike_no_1_fan_15.txt, 1050, 15 039c_poor_mallory_10.txt, 1475, 10 034c_mary_anne_and_too_many_boys_2.txt, 2146, 2 095c_kristy_plus_bart_equals_questionmark_4.txt, 1494, 4 m24c_mary_anne_and_the_silent_witness_8.txt, 1784, 8 129c_kristy_at_bat_2.txt, 2453, 2 m31c_mary_anne_and_the_music_box_secret_10.txt, 1559, 10 129c_kristy_at_bat_11.txt, 1772, 11 070c_stacey_and_the_cheerleaders_9.txt, 976, 9 046c_mary_anne_misses_logan_1.txt, 1760, 1 m14c_stacey_and_the_mystery_at_the_mall_1.txt, 2254, 1 079c_mary_anne_breaks_the_rules_7.txt, 2041, 7 051c_staceys_ex_best_friend_4.txt, 1871, 4 054c_mallory_and_the_dream_horse_11.txt, 1638, 11 m34c_mary_anne_and_the_haunted_bookstore_5.txt, 2295, 5 104c_abbys_twin_12.txt, 1927, 12 121c_abby_in_wonderland_14.txt, 792, 14 035c_jessis_babysitter_2.txt, 2226, 2 082c_jessi_and_the_troublemaker_13.txt, 1571, 13 070c_stacey_and_the_cheerleaders_10.txt, 1616, 10 084c_dawn_and_the_school_spirit_war_1.txt, 1725, 1 123c_claudias_big_party_14.txt, 1677, 14 056c_keep_out_claudia_6.txt, 1232, 6 m02c_beware_dawn_13.txt, 2023, 13 111c_staceys_secret_friend_15.txt, 1630, 15 131c_the_fire_at_mary_annes_house_9.txt, 1830, 9 098c_dawn_and_too_many_sitters_2.txt, 2039, 2 112c_kristy_and_the_sister_war_9.txt, 2007, 9 ###Markdown I put the output files into Tableau (Gantt visualization, configuring length as a dimension under “rows”) after running the code on the full text of all the series, and the chapter length of the main and mystery series (remember, each of those books has 15 chapters).The books range from around 12,600 words (California Diaries: *Amalia 3*, which is shorter than this DSC book!), to nearly 45,000 words (Super Mystery 1: *Baby-Sitters’ Haunted House*). On the chapter level, there’s not a ton of variation in word length between chapters, though chapter 15 tends to be a bit shorter, and chapter 2 tends to be longer -- there’s a lot of tropes to pack in!![Gantt chart of book and chapter lengths](images/dsc8_length_measurements.png) But if we’re using Euclidean distance to compare even chapter 2s, BSC 75: *Jessi’s Horrible Prank* is 1,266 words and BSC 99: *Stacey’s Broken Heart* is 4,293 words. That alone is going to lead to a big difference in the word-count values.When I first started playing with these text-comparison metrics (before taking the care to properly clean the data and ensure there weren’t problems with my chapter-separating code), I first tried Euclidean distance, and was fascinated by the apparent similarity of chapter 2 in the first Baby-Sitters Club book and a chapter in a California Diaries book. “What,” I wondered, “does wholesome *Kristy’s Great Idea* have to do with salacious *California Diaries?*” I laughed out loud when I opened the text files containing the text of those chapters, and immediately saw the answer: what they had in common was data cleaning problems that led to their truncation after a sentence or two. As a Choose Your Own Adventure book might put it, *“You realize that your ‘findings’ are nothing more than your own mistakes in preparing your data set. You sigh wearily. The end.”* Hopefully you, like childhood me, left a bookmark that last decision point you were unsure of, and you can go back and make a different choice. But even if you have to start over from the beginning, you can almost try again when doing DH. Cosine similarityCosine similarity offers a workaround for the text-scale problems we encountered with Euclidean distance. Instead of trying to measure the **distance** between two points (which can be thrown off due to issues of magnitude, when one point represents a text that’s much longer than the other), it measures the cosine of the angle between them and calls it *similarity*. You may have also filed “cosine” away under “high school math I hoped to never see again”, but don’t panic! As trigonometry starts to flood back at you, you might find yourself wondering, “Why cosine similarity, and not any of its little friends, like sine or tangent?” After all, wouldn’t it be fun to burst into the chorus of Ace of Base’s “I Saw the Sine” whenever you worked out the text similarity?Mostly it works out to a matter of numerical convenience in setting up the framing for measuring similarity: If the angle between two points is 0, then that means any difference is just one of *magnitude* (which we don’t worry about with cosine similarity) and you can say the texts are extremely similar. If the angle is 90 degrees, which is as far as you can get while staying in all-positive numbers (we don’t have any negative word counts), then there’s a huge difference. Cos(0) = 1, and cos(90) = 0, so with cosine similarity, you want **larger** numbers for more similarity. Which is the opposite of Euclidean distance, where you want **smaller** numbers for more similarity (because using that measure, 0 means “there’s no distance between these things and they are the same”). I’ve screwed this up more than once, getting excited about large numbers when using an algorithm where you want smaller numbers, and vice versa. Always double-check the scale you’re using and what counts as “similar” if you’re not sure. Or, as you might find in a Choose Your Own Adventure book: *“The tweet was written, delayed only by the search for the perfect celebratory emoji to decorate its conclusion, when a small voice echoes in the back of your head. ‘Should these be large numbers? What algorithm did you use?’ You pause and think for a moment… then sigh, delete the tweet, and return to your code to start over. The end.”* But before you start writing “**EUCLIDEAN = SMALL, COSINE = BIG**” in sharpie on a sticky note and putting it on your wall with extra tape for reinforcement, the people who write Python packages realized it’s going to be a problem if they write a package where you can easily swap in different metrics, but some of them use large numbers for similarity, while others use small numbers. So what you’ll see in the Jupyter notebook is that it’s calculating cosine *distance* -- which is just (1 - cosine similarity). After that bit of subtraction, “exactly the same” has a value of 0, just like you’d get in Euclidean distance. We’re still not exactly comparing apples to apples here: you’re going to get much bigger numbers when calculating Euclidean distance than when calculating cosine distance, which makes sense. Euclidean distance is a kind of actual distance. Cosine distance is still just an angle between two vectors, which looks like a percentage, with a bit of manipulation to make “identical” work out to 0. The numbers are a lot smaller, and their range is a lot more compressed (from 0 to .99 for cosine distance, vs. 0 to 650 in our data set for Euclidean distance). The Euclidean distance score can be more nuanced, but this is a situation where nuance is a bad thing. I’m not doing this particular analysis to find precisely how different the texts are from each other -- which is a good thing, because I know the variable length is a distorting factor that would prevent me from getting to that perfect number anyway. What I’m looking for is book pairings that stand out as noteworthy, either for their similarity or dissimilarity. And the compressed range of possible values for cosine distance makes those differences more visible. Running the Euclidean distance calculation didn't do anything to the results of our count vectorizer, so if you're working through this book in order, you should be able to just run the cosine distance calculation below. If you have trouble, you can rerun the code cell with the CountVectorizer code in it -- just make sure you've got it pointing to the right directory with the full text files. ###Code cosine_distances = pd.DataFrame(squareform(pdist(wordcounts, metric='cosine')), index=filekeys, columns=filekeys) cosine_distances cosine_distances.to_csv('cosine_distances_count.csv') #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(cosine_distances) #Displays the image plt.show() ###Output _____no_output_____ ###Markdown ![Cosine distance with count vectorizer](images/dsc8_cosine_count_maxdf7.png)A sort of light salmon in the Euclidean distance visualization represented a value of 500, and the same color represents .8 in the cosine distance visualization. To my mind, the overall impression is less of Mary Anne’s classic plaid, and more like a dirty Kristy’s Krushers baseball jersey with flecks and blobs of spaghetti sauce here and there. (I’ll note that there’s some disagreement here within the DSC; Katia’s reaction was “Plaid in salmon and pink? Sickening, but still something Mary Anne’s dad would make her wear.”) It’s not pretty, but it’s clarifying.First, those super-light bands that are quite similar to one another (where they intersect in a box around the black diagonal line), but quite dissimilar from everything else? That’s the California Diaries series. And California Diaries: *Dawn 1* is still a little lighter than all the rest of that sub-series, but not so much so. This visualization makes it easier to see that the California Diaries are much more similar to regular-series books set in California, like BSC 23: *Dawn on the Coast* and BSC 72: *Dawn and the We ♥️ Kids Club*. It’s not a groundbreaking discovery, but it immediately makes sense! And honestly, “boring” DH results are often a sign that you’ve done something right.*Abby’s Book* is still fairly distinct, but this visualization makes it easier to see some of the points of overlap for the other Portrait Collection books, like the overlap between Claudia’s and Mary Anne’s autobiographies and BSC 7: *Claudia and Mean Janine*, which features Kishi family drama and a focus on Claudia’s grandmother Mimi, who was an important figure in both girls’ lives. There are also speckles of dark spots on the visualization, which mostly seem to correspond to books with the same narrator. It’s particularly prominent with distinctive narrators, like Jessi, whose interests and perspective are not shared by the other characters.The phenomenon involving books 83-101 forming a cluster (including, we can see here, the mystery novels published around the same time period) is still visible here. I don’t have an explanation (though Anouk suspects possible editorial influence since the books are sequential), but this could be something worth exploring later. But while this has been an interesting diversion, let’s get back to chapter 2! After running just the chapter 2s through the same cosine distance calculation, here’s what we get. ###Code ch2dir = '/Users/qad/Documents/dsc_chapters/ch2' os.chdir(ch2dir) # Use the glob library to create a list of file names, sorted alphabetically # Alphabetical sorting will get us the books in numerical order filenames = sorted(glob.glob("*.txt")) # Parse those filenames to create a list of file keys (ID numbers) # You'll use these later on. filekeys = [f.split('/')[-1].split('.')[0] for f in filenames] # Create a CountVectorizer instance with the parameters you need vectorizer = CountVectorizer(input="filename", max_features=1000, max_df=0.7) # Run the vectorizer on your list of filenames to create your wordcounts # Use the toarray() function so that SciPy will accept the results ch2 = vectorizer.fit_transform(filenames).toarray() ch2_cosine = pd.DataFrame(squareform(pdist(ch2, metric='cosine')), index=filekeys, columns=filekeys) ch2_cosine ch2_cosine.to_csv('ch2_cosine_count.csv') #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(ch2_cosine) #Displays the image plt.show() ###Output _____no_output_____ ###Markdown ![Cosine distance for chapter 2 with count vectorizer](images/dsc8_ch2_cosine_count_maxdf7.png)I did a double-take when I saw it, and went back to check the code and make sure I hadn’t accidentally run Euclidean distance again. The chapter 2s are *a lot* closer than the books overall. Which makes sense -- the reason we’re looking at chapter 2 is because we know it’s repetitive. This is a smaller data set than what we used for the full book comparison, including only chapter 2s from the main and mystery series (which follow the 15-chapter structure). Even the chapter 2s show the pattern of similarity for books 83-101 and temporally-similar mysteries, and there’s another cluster from books 30-48. The light-colored lines reflect another known phenomenon about chapter 2, where sometimes the typical “chapter 2” content actually appears in chapter 3.To drive home the point that there’s something different going on here with chapter 2, I re-ran cosine distance on four other chapters: 1, 5 (top row), 9, and 15.(I'm not going to repeat the code for calculating these here; it's the same as the chapter 2 code above, with different source folders.)![Cosine distance for chapters 1, 5, 9, and 15](images/dsc8_ch_1_5_9_15.png)There are some interesting things that we could dig into here! It looks like there’s more overlap in how the books end (ch. 15, bottom right) than how the middle of the book goes, though there are lots of individual speckles of high similarity for the middle chapters. Chapter 1 starts similarly in the early books, but is pretty dispersed by the end. The cluster in books 83-101 isn’t really visible in these chapters. But the crucial thing we’re seeing is just that chapter 2s are **much more similar** to one another than other chapters. Word counts or word frequencies?I ran this part by Mark, pleased with myself for having worked through a tutorial, modified it to fit what I wanted to work on, and come up with a largely interpretable result that was brimming with possibilities for things to explore next. His response caught me completely off-guard: “You scaled, or otherwise normalized, your word counts, right? RIGHT? RIGHT?!?!? I only ask because you don’t mention it anywhere, and if you don’t normalize your word counts by turning them into word frequencies, you are only really going to ever find out about what texts are longer than others.”Uh-oh. That *Programming Historian* tutorial hadn’t said anything about word **frequencies**. In fact, it’d used the word *count* vectorizer in its code. I knew that would be a problem for Euclidean distance, but I’d hoped that cosine distance would… solve it?“If you use frequencies instead of counts, then you can compare texts that are of somewhat different lengths (within an order of magnitude) pretty effectively,” suggested Mark. “The big problem with Euclidean distances are 0 values. When you use too many dimensions, especially when you use word frequencies, there are a lot of 0s, and these are overweighted by Euclidean distance so that similar texts of very different lengths look much more different than they should – because the longer text has a lot of words that the shorter text doesn’t have (and the reverse is not as true – the shorter text has far fewer words that the longer text doesn’t have). So, when you compare a novel to a short story (or a LONG novel to a normal novel), this becomes a real problem. Cosine is still probably a better metric for the kind of work that you are doing, but here too it is crucial to scale/normalize your counts – otherwise size just keeps becoming a factor. Normalizing word counts is such a crucial point in the process and you don’t actually mention it, that it has me worried.”Now I was worried, too. I definitely had **not** normalized the word counts. I guess I could figure out how to create a table with each word and its word count and then generate a frequency by dividing by the sum of all the words, but how would I then feed those frequencies back into the vectorizer pipeline? In the peaceful, dark hours of Insomnia O’Clock, I curled up with the documentation for scikit-learn, the Python library I used for the vectorizer, to see if it offered any better options.And to my delight, it did! The TF-IDF vectorizer was there to save the day. Now, TF-IDF (term frequency - inverse document frequency, which tries to get at *distinctive words* in each text) wasn’t what I wanted -- not yet. (We’ll get to that soon enough; it’s a very different method for evaluating similarity.) But you can’t spell TF-IDF without TF, and since TF is “term frequency”, it’s exactly the thing I was looking for!If using term frequency helps accounting for differences in length, I expected that running Euclidean distance on a matrix of word frequencies should look something like the Cosine distance on a matrix of word counts, right? Let’s compare the first version and the normalized version comparing the full books using Euclidean distance! Euclidean distance with word frequenciesBecause we were in the directory with the chapter 2's, we need to go back to the directory with the full text. ###Code filedir = '/Users/qad/Documents/dsc_corpus_clean' os.chdir(filedir) ###Output _____no_output_____ ###Markdown This time we're using the TF-IDF vectorizer, with the "IDF" part turned off: ###Code from sklearn.feature_extraction.text import TfidfVectorizer # Use the glob library to create a list of file names, sorted alphabetically # Alphabetical sorting will get us the books in numerical order filenames = sorted(glob.glob("*.txt")) # Parse those filenames to create a list of file keys (ID numbers) # You'll use these later on. filekeys = [f.split('/')[-1].split('.')[0] for f in filenames] # Create a CountVectorizer instance with the parameters you need vectorizer = TfidfVectorizer(input="filename", stop_words=None, use_idf=False, norm=None, max_features=1000) # Run the vectorizer on your list of filenames to create your wordcounts # Use the toarray() function so that SciPy will accept the results wordfreqs = vectorizer.fit_transform(filenames).toarray() ###Output _____no_output_____ ###Markdown Note: See what happened here? I had to figure out a method to do something, where there wasn't an out-of-the-box solution I could just pull from a tutorial I was following. As a result, I thought about all the parameters and picked better ones-- and did not throw out words shared by 70% of the corpus. (What I also didn't know yet was that, in the process, I'd made another consequential mistake with the vectorizer, but I wouldn't discover that until later still.) So that was good. But the surprise that followed wasn't enough to make me suspicious about the parameters from the **first** time I ran the vectorizer. I guess I've managed to be a walking case study in the point Mark was making about the dangers of just reusing things you find online without being very critical about everything that goes into them. But at least I'm a self-aware walking case study... even if it takes until the 11th hour. ###Code euclidean_distances_freq = pd.DataFrame(squareform(pdist(wordfreqs, metric='euclidean')), index=filekeys, columns=filekeys) euclidean_distances_freq euclidean_distances_freq.to_csv('euclidean_distances_freq.csv') #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(euclidean_distances_freq) #Displays the image plt.show() ###Output _____no_output_____ ###Markdown ![Euclidean distance using term frequency](images/dsc8_euclidean_freqs.png)Oh.Once you normalize for length, all the Baby-Sitters Club books look… mostly the same. Even with Euclidean distance. So what am I even going to get for Cosine distance using term frequencies? Cosine distance with word frequenciesWe've already used the TF-IDF vectorizer, so now we just need to do a different distance calculation. ###Code cosine_distances_freq = pd.DataFrame(squareform(pdist(wordfreqs, metric='cosine')), index=filekeys, columns=filekeys) cosine_distances_freq cosine_distances_freq.to_csv('cosine_distances_freq.csv') #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(cosine_distances_freq) #Displays the image plt.show() ###Output _____no_output_____ ###Markdown ![Cosine distance using term frequency](images/dsc8_cosine_freqs.png)We’ve gone from Mary Anne Plaid to a sort of Claudia Eggplant. Could that be right? Is most of the difference really attributable to length? Even the clear-as-day California Diaries cluster has mostly washed out, except for those shining lights of difference: Ducky, and to a lesser extent, Amalia. (I guess after normalizing for length, what really makes a difference in this corpus is East Coast people vs. West Coast people… and Dawn has assimilated to Connecticut more than she realizes.)This is something that we can check pretty easily! We already wrote up some code to do word counts for all the books. Are the books that stood out before, and have now disappeared into the purple morass, particularly long or short? That does turn out to be the answer with the California Diaries cluster: all of them are shorter than your average BSC book. And it’s also the answer with Abby’s Portrait Collection looking different than the other Portrait Collection books, coming in at only 78% of the length of Stacey's Portrait Collection book. Note: Remember, I didn't realize it at the time, but there were two things that this variant was accounting for: text length, and also not throwing out words that 70% of the books have in common, which includes important things in this corpus like character names! Or, at least, I thought there were two things this variant was accounting for... So what happens when we look at cosine distance for the chapter 2’s? ###Code ch2dir = '/Users/qad/Documents/dsc_chapters/ch2' os.chdir(ch2dir) # Use the glob library to create a list of file names, sorted alphabetically # Alphabetical sorting will get us the books in numerical order filenames = sorted(glob.glob("*.txt")) # Parse those filenames to create a list of file keys (ID numbers) # You'll use these later on. filekeys = [f.split('/')[-1].split('.')[0] for f in filenames] # Create a CountVectorizer instance with the parameters you need vectorizer = TfidfVectorizer(input="filename", stop_words=None, use_idf=False, norm=None, max_features=1000) # Run the vectorizer on your list of filenames to create your wordcounts # Use the toarray() function so that SciPy will accept the results ch2freqs = vectorizer.fit_transform(filenames).toarray() ch2_cosine_freq = pd.DataFrame(squareform(pdist(ch2freqs, metric='cosine')), index=filekeys, columns=filekeys) ch2_cosine_freq ch2_cosine_freq.to_csv('ch2_cosine_freq.csv') #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(ch2_cosine_freq) #Displays the image plt.show() ###Output _____no_output_____ ###Markdown ![Cosine distance for chapter 2 using term frequency](images/dsc8_ch2_cosine_freqs.png)Now **wait a minute!!** Why on earth do the full books look so much more similar than the chapter 2’s?! We **know** the chapter 2’s are more similar than the full books! *WTF is going wrong?!*I was so irked at the direction this had gone that I entirely forgot about the typical mutual inquiry about well-being and all those social conventions at my next meeting with Mark. The first words out of my mouth, flying forth as soon as his audio connected on Zoom, were, “I tried to normalize the word counts and now the novels are more similar than the chapter 2’s **WHAT IS EVEN GOING ON HERE?!?!**”And then I remembered-- as Kristy’s teacher, Mr. Redmont, would put it-- “*decorum*”, and managed to collect myself. “Also, hello! How are you?”Mark was gracious and generous, as always. “I’m interested! Tell me more!” So I showed him, grumbling and annoyed as I pulled up the code and data. Mark thought about it. “I think you’re really comparing apples to oranges here. Changing word counts to word frequencies helps when your texts are different lengths, but, say, within an order of magnitude.” I stared, quizzically, into my laptop’s video camera. “So what I think is happening with your chapter 2’s is that they’re short enough that the difference between 10 and 13 instances of the word ‘the’ is going to make them look more ‘different’. And the same thing for every other word. With the end result being that the chapter 2’s look more different. But across the entirety of the novel, though, small differences in word frequencies even out. So they end up looking more similar.”“Wait, so, there’s no way to compare chapters vs. whole books?” I asked.“You could do that,” said Mark. “What you’d need to do is sample a chapter-2’s length of text from the set of all the words in a whole book. And then use that sample as the point of comparison.”“Wait, what? If you randomly grab, say, 2,500 words from a novel, you’d be comparing chapter 2 vs. a text that doesn’t make any sense!”Mark shrugged. “I mean, you could generate a text of chapter 2 length using a Markov chain if that would make you feel better,” he said, referencing a text-generation model where the probability of each word occurring depends only on the previous word generated. It’d probably have basically the same effect overall, but would be likely to make more sense to the human reader.But that seemed like a task for a future BSC book. For now, though, a better point of comparison would be comparing how similar the chapter 2’s were, vs. other chapters, just like what we’d done earlier for cosine distance using word counts:![Cosine distance using word frequency for chapters 1, 5, 9, and 15](images/dsc8_ch_1_5_9_15_freqs.png) And clearly, even though the chapters are less similar than the books overall using this metric, the chapter 2’s are much more similar than other sets of chapters. So we’ve found the same overall result, but we’ve also saved ourselves from chasing false leads -- like the “difference” in Abby’s Portrait Collection book that only really have to do with text length. Not everything is as purple as everything else in this visualization, and there are still things we can follow up on. But we’ve leveled out the differences that are just about difference in length.I think we’ve said all we can say about Euclidean and Cosine distance for this book, and how the results you get vary depending on how you count (or ratio) your words. It’s time to move on to a different method. Slow down, Quinn: Before moving on to the next text comparison method, it's important to wrap up some loose ends. We wanted to differentiate the effect of the TF-IDF vectorizer from the effect of no longer using the `max_df` setting to drop terms that appear in 70% of texts. So let's compare three visualizations, all showing Euclidean distance, but with different vectorizer settings: from left to right, the count vectorizer that we used when we first ran Euclidaen distance, which drops the terms that appear in 70% in the text. In the middle, the TF-IDF vectorizer that should get us term frequencies instead of counts, and thereby normalize for length. And then finally, the TF-IDF vectorizer without dropping any terms. Now wait just a minute here. Why do the count vectorizer and TF-IDF vectorizer results look identical? Are they actually identical? Shouldn't dropping common words make it even more important to use word frequencies? This was bad news. I was already up past midnight trying to get this Data-Sitter's Club book ready for publication, and as an insomniac morning person, that was never a good thing. This was a huge roadblock. I couldn't publish this book without figuring out what was going on. I re-ran the code again and again, ditching the visualization and comparing the numbers in the table. Every single time, the numbers were identical, regardless of which vectorizer I used or what max_df value I used. I spent the early morning insomnia hours desperately Googling, and scouring the scikit-learn documentation. I couldn't find anyone else having this problem, and I was completley stumped. It was time to throw myself on the mercy of DH Python Twitter. DH Python Twitter is a thing.I've been surprised at how often it's worked out that I complain about something involving coding (usually Python, but sometimes other tools) on Twitter and someone will show up and help me solve it. Sometimes it's someone I know, sometimes it's a random person who works on data science, machine learning, or just knows a lot of Python. It feels like a kind of positive, helpful inverse of mansplaining: instead of guys showing up to talk over me and explain things I already know, they show up, listen to the problem I'm having, and help me understand what's going on. (I mean, sometimes they show up and don't read the question and suggest something I and any other reasonable person would've already tried first, but I've gotten lucky with more helpful replies than not.)Part of it is definitely the privilege of my weird job -- there's no professional risk for me in publicly not-knowing things. That's not the case for a lot of people. But since I can do this, I do, with the hope that other people who don't know can follow along and learn, too.A lot of the Data-Sitters Club is active on Twitter, and if you're trying to do something from one of our books and you've got a question, please don't feel weird about tagging us and asking, if you're comfortable! People who write DH tutorials and stuff are generally really happy to see that people are using their work, and often don't mind helping you debug it. And that's what saved the day this time. Closing the narrative loop I was so relieved when Zoe LeBlanc offered to take a look at my code. She's my favorite non-English DH developer-turned-tenure-track faculty. As luck would have it, she was meeting with John R. Ladd that afternoon... the same John R. Ladd who'd written the Programming Historian tutorial from which I copied the code that triggered this whole subplot! And he also offered to help!And that's how I found myself meeting with Zoe and John, which felt like an apt conclusion to this strange computational subplot.As soon as he took a look at my code, John knew the answer."Everything here looks great-- the only problem is you told it not to normalize," he said.I gaped. "Wait, what? I told it to use the TF-IDF vectorizer. I mean, I read all the scikit-learn documentation on normalization and I was pretty sure I didn't want it to do... whatever it was exactly that the normalization parameter did? I just wanted term frequencies."John shook his head sympathetically. "Yeah, the scikit-learn documentation really doesn't help sometimes. This happened to me a couple years ago when I was teaching a workshop on text comparison using scikit-learn. People were concerned about normalization, and I couldn't figure out how to make it work with scikit-learn, and it made me wonder if it was the right package for the job. But here's how normalization works with the TF-IDF vectorizer: if you set it to 'l1', you get relative frequencies. What it does is make the sum (of absolute values, but we don't have any negative word counts here) of all the features (word counts) add up to 1. Now, l2 is the standard machine learning normalization for text analysis. L2 normalization makes it so that the sum of the *squares* of features is equal to 1. This better accounts for outliers. It basically uses the Pythagorean theorem to normalize the vectors."So there you have it. If your middle-school-age kid ever complains about having to learn the Pythagorean theorem, and refuses to believe it has any real-world utility, you can tell them that it's really important for machine learning.John wasn't kidding about the scikit-learn documentation not helping, though; I don't think I would have ever understood that "‘l1’: Sum of absolute values of vector elements is 1." would mean "turns counts into frequencies". Word frequencies... now with actual word frequencies!Thanks to John and Zoe, I knew how to change my code to actually get what I was aiming for. Let's look at what real word frequencies look like, compared to just not throwing out common shared words, like it turns out we just did, above. ###Code filedir = '/Users/qad/Documents/dsc_corpus_clean' os.chdir(filedir) # Use the glob library to create a list of file names, sorted alphabetically # Alphabetical sorting will get us the books in numerical order filenames = sorted(glob.glob("*.txt")) # Parse those filenames to create a list of file keys (ID numbers) # You'll use these later on. filekeys = [f.split('/')[-1].split('.')[0] for f in filenames] # Create a CountVectorizer instance with the parameters you need # Like, actually, the parameters you need, including not disabling normalization vectorizer = TfidfVectorizer(input="filename", stop_words=None, use_idf=False, norm='l1', max_features=1000) # Run the vectorizer on your list of filenames to create your wordcounts # Use the toarray() function so that SciPy will accept the results wordfreqs4real = vectorizer.fit_transform(filenames).toarray() ###Output _____no_output_____ ###Markdown Euclidean distance with real word frequencies ###Code euclidean_distances_freq = pd.DataFrame(squareform(pdist(wordfreqs4real, metric='euclidean')), index=filekeys, columns=filekeys) euclidean_distances_freq euclidean_distances_freq.to_csv('euclidean_distances_freq.csv') #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(euclidean_distances_freq) #Displays the image plt.show() ###Output _____no_output_____ ###Markdown Interesting! Similar to what I had before, without the word frequency normalization, but a little lighter in color, meaning less similar. Which sounds better to me, knowing the corpus? Let's see how cosine distance plays out.Cosine distance with word frequencies ###Code cosine_distances_freq = pd.DataFrame(squareform(pdist(wordfreqs4real, metric='cosine')), index=filekeys, columns=filekeys) cosine_distances_freq cosine_distances_freq.to_csv('cosine_distances_freq.csv') #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(cosine_distances_freq) #Displays the image plt.show() ###Output _____no_output_____ ###Markdown Very similar! Honestly, there's less difference between cosine distance with word counts and cosine distance with word frequencies... which makes sense, because the cosine distance measure already helps account for different text lengths, at least up to a certain point. Let's try cosine distance on the chapter 2's.Cosine distance with chapter 2's ###Code ch2dir = '/Users/qad/Documents/dsc_chapters/ch2' os.chdir(ch2dir) # Use the glob library to create a list of file names, sorted alphabetically # Alphabetical sorting will get us the books in numerical order filenames = sorted(glob.glob("*.txt")) # Parse those filenames to create a list of file keys (ID numbers) # You'll use these later on. filekeys = [f.split('/')[-1].split('.')[0] for f in filenames] # Create a CountVectorizer instance with the parameters you need # Like, actually, the parameters you need, including not disabling normalization vectorizer = TfidfVectorizer(input="filename", stop_words=None, use_idf=False, norm='l1', max_features=1000) # Run the vectorizer on your list of filenames to create your wordcounts # Use the toarray() function so that SciPy will accept the results ch2freqs4real = vectorizer.fit_transform(filenames).toarray() ch2_cosine_freq = pd.DataFrame(squareform(pdist(ch2freqs4real, metric='cosine')), index=filekeys, columns=filekeys) ch2_cosine_freq ch2_cosine_freq.to_csv('ch2_cosine_freq.csv') #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(ch2_cosine_freq) #Displays the image plt.show() ###Output _____no_output_____ ###Markdown It's largely the same as cosine distance using just word counts! With the same questions and disappointments with regard to the similarity of the chapter 2's, compared to the full books, when using cosine distance. We probably don't need to rerun this for chapters 1, 5, 9, and 15; you get the point.But now we've found it using code that legitimately works, without any confusions or misunderstandings about what's happening (at least, I hope?). That's satisfying. A satisfying kind of dissatisfying. Now we can move on to another method. TF-IDFAs I mentioned before, TF-IDF stands for term frequency - inverse document frequency. TF-IDF tries to get at **distinctive** words. For each text, what are the words that set it apart from all the other texts you’re comparing against? To calculate TF-IDF, you don’t have to imagine 1000-dimensional space or anything like that. Term frequency is just how often the word occurs, divided by the total number of words in the text. Inverse document frequency is a way to reduce the importance of words that are high-frequency everywhere (like “the”) in order to surface the words that are high frequency in a particular text because they’re important. You calculate it using another concept from high school math: your old pal logarithm. The inverse document frequency for a word is: log_e(Total number of documents / Number of documents with term t in it). The TF-IDF calculation is inherently comparative: it doesn’t make sense to run it on just one text, if you’re looking for what’s unique about a text in relation to other texts. But the output we get from TF-IDF is a list of words and numerical values, which isn’t something we can use to visualize a comparison of the texts, the way we could with the output of the vectorizer we used to plot points in 1000-dimensional space. We *can* use the TF-IDF calculations for each word in our vectorizer instead of simple word counts, which will generate a different set of points for each text, and from there we can use Euclidean or Cosine distance. But before we go there, let’s take a look at what we get out of the TF-IDF calculation, using our full-text corpus (not just the chapter 2s).The word “baby-sitters” is going to appear in most or all of the books (maybe not California Diaries). On the other hand, the word “Lowell” (the surname of the racist family in BSC 56: *Keep Out, Claudia!*) only occurs in two books: *Keep Out, Claudia!* and BSC 3: *The Truth About Stacey* (where “Lowell” actually refers to a different person, Lowell Johnston). Lowell Johnston is only mentioned twice in *The Truth About Stacey*, so it’s still not going to get a high TF-IDF score in that book (it comes in 103 with a score of 10.64). But in *Keep Out, Claudia!*, Lowell appears a lot, and that number isn’t scaled down much at all because it only occurs in two books. So it ends up getting the highest TF-IDF score for that book, 707.82. This is a large score, more similar to characters in “very special episodes” who appear in just one book, like Whitney (the girl with Down’s Syndrome who Dawn babysits in BSC 77: *Dawn and Whitney, Friends Forever*).TF-IDF is one approach to getting at what a text is “about” -- more straightforward to understand and faster to calculate than topic modeling. But especially working with a corpus of fiction, you’ll probably need to weed out the character names -- either by pre-processing the text to remove them, or looking beyond the first few highest-scoring terms. (If anything, we’re getting fewer high-scoring character names than you’d expect in most fiction. The major characters occur frequently enough that they get weighted down, like words like “the” and “is”.) Let's go back to the directory with the full texts: ###Code filedir = '/Users/qad/Documents/dsc_corpus_clean' os.chdir(filedir) # Use the glob library to create a list of file names, sorted alphabetically # Alphabetical sorting will get us the books in numerical order filenames = sorted(glob.glob("*.txt")) # Parse those filenames to create a list of file keys (ID numbers) # You'll use these later on. filekeys = [f.split('/')[-1].split('.')[0] for f in filenames] # Create a CountVectorizer instance with the parameters you need vectorizer = TfidfVectorizer(input="filename", stop_words=None, use_idf=True, norm=None, max_features=1000) # Run the vectorizer on your list of filenames to create your wordcounts # Use the toarray() function so that SciPy will accept the results transformed_documents = vectorizer.fit_transform(filenames) transformed_documents_as_array = transformed_documents.toarray() ###Output _____no_output_____ ###Markdown The code from the Programming Historian tutorial generates a CSV file for each text, showing the TF-IDF value of each word. (You can find all these CSV files [in the GitHub repo for this book](https://github.com/datasittersclub/dsc8).) ###Code # construct a list of output file paths using the previous list of text files the relative path for tf_idf_output output_filenames = [str(txt_file).replace(".txt", ".csv") for txt_file in filenames] # loop each item in transformed_documents_as_array, using enumerate to keep track of the current position for counter, doc in enumerate(transformed_documents_as_array): # construct a dataframe tf_idf_tuples = list(zip(vectorizer.get_feature_names(), doc)) one_doc_as_df = pd.DataFrame.from_records(tf_idf_tuples, columns=['term', 'score']).sort_values(by='score', ascending=False).reset_index(drop=True) # output to a csv using the enumerated value for the filename one_doc_as_df.to_csv(output_filenames[counter]) ###Output _____no_output_____ ###Markdown For BSC 54: *Mallory and the Dream Horse*, the top three terms are Nina (a little girl involved in the book’s babysitting sub-plot), Pax (the horse Mallory rides), and Lauren (Mallory’s equitation instructor), but by themselves they don’t help much with classifying this text. If you look in the top 10, though, you’ve got riding (5), horse (6), and horses (8). In the top 25, there are lessons (13), saddle (15), riders (17), reins (18), stable (19), canter (21), and bridle (25). It’s looking pretty horsey in here. In BSC 57: *Dawn Saves the Planet*, we’ve got recycling (2), planet (5), ecology (7), pollution (10), garbage (11), recycle (12), styrofoam (13), recycled (20), and carton (25). BSC 110: *Abby and the Bad Sport* has coach (3), soccer (4), goal (7), goalie (8), players (13), field (15), referee (17), defense (18), cleats (20), player (21), kickers (23), and benched (24). You might not get the bad sportsmanship out of this, but there’s clearly some soccer afoot. What about books with a less obvious theme? There are some other terms that might throw you off, but you could probably come to the conclusion that art plays a meaningful role in BSC 12: *Claudia and the New Girl* with sculpture (4), sculpt (5), portfolio (12), gallery (22), ... despite hydrant (15), vacuum (19), and inanimate (20). Indeed, the aforementioned new girl is into art, just like Claudia. If I were thinking of some distinctive words for BSC 87: *Stacey and the Bad Girls*, what would come to mind would be “shoplifting”, “concert”, “alcohol”, and “wine”. But the top 25 terms are almost all names -- including the band whose concert they go see (7 U4Me) and the department store where the shoplifting takes place (10 Bellair). There are also trains (19) and escalator (24). “Concert” does the best of my terms at 40. “Alcohol” is 80, between “camera” and “rosebud”. “Shoplift” is 118, between “bikes” and “creature”. And “wine” is down at 1002, in the company of “sniffle” and “bees”. So don’t get too comfortable with the assumption that TF-IDF will get you to basically the same set of terms that a human would think of. Plot salience and distinctive content aren’t the same as distinctive frequency distribution.BSC 83: *Stacey vs. the BSC* features Stacey being duplicitous, along with the inter-babysitter drama that ultimately leads to the misbehavior described above for BSC 87, but you can’t see it in the top 25 terms, which feature a lot of names, various instances of onomatopoeia (“clack”, “clomp”, and “plink”), piano, fiesta, talent, twinkle, recital, cheese, and jukebox. There’s something to this: Dawn hides behind a jukebox spying on Stacey after she sneaks out on a date. And Charlotte plays the piano at the BSC talent show. Score three for TF-IDF! Even if it’s fixating on objects, at least they’re plot-significant objects. So what’s up with the cheese? I don’t have a good explanation, but it comes up a lot, between Jamie’s macaroni and cheese, extra pepperoni and cheese on a pizza, multiple references to cream cheese, cheese and crackers, a fiesta burger (there’s the “fiesta” from our TF-IDF results) with melted cheese… maybe ghostwriter Peter Lerangis had a cheese craving while writing it? TF-IDF for text comparisonClose-reading a distant reading method as a proxy for looking at the “topic” of individual texts is one way you can use the TF-IDF output. But you can also use it to compare texts at scale. You can also substitute in the TF-IDF vectorizer (with the IDF turned **on** this time) as your vectorizer of choice when trying out the Euclidean and cosine distance. The TF-IDF vectorizer has some optional parameters for dropping words. You can drop words that appear in too many documents with max_df. So `max_df = 0.9` means “ignore all words that appear in more than 90% of the documents”, or you can give it a specific number of documents with `max_df = 100`, for “ignore all words that appear in more than 100 documents”. You can get rid of words that appear too infrequently with min_df (e.g. `min_df = 0.1` means “ignore all words that appear in less than 10% of the documents”.) In this case, we’ll keep everything by not using those parameters, but you can play with them with your own corpora to see how it impacts your result to remove super-high frequency words (which, in the Baby-Sitters Club corpus, would get rid of both words like “the” and “a”, and the main characters’ names) or super-low frequency words (like the names of characters in the “very special episode” books.) Note: Remember, I wrote this before I had any idea at all about the problems with my code that triggered this book's subplot. If this were a horror-themed choose-your-own-adventure book, at this point you might read something like this: If only you could hear the screaming voices of the readers as you write this description of max_df. "CHECK YOUR CODE, YOU MADE THIS MISTAKE WITH YOUR FIRST EUCLIDEAN AND COSINE DISTANCE EXAMPLES!" But you cannot hear them. And so you remain ignorant of this fact for a few weeks longer. Turn the page..." So let's do Euclidean and cosine distance using the TF-IDF vectorizer with IDF set to true, and see how it compares to the other ways of comparing text that we've tried so far. ###Code tfidf_comparison_output_euclidean = pd.DataFrame(squareform(pdist(transformed_documents_as_array, metric='euclidean')), index=filekeys, columns=filekeys) tfidf_comparison_output_euclidean tfidf_comparison_output_euclidean.to_csv('tfidf_comparison_output_euclidean.csv') #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(tfidf_comparison_output_euclidean) #Displays the image plt.show() ###Output _____no_output_____ ###Markdown ![Euclidean distance using TF-IDF](images/dsc8_tfidf_euclidean.png)Okay. Now let's try cosine distance with the TF-IDF vectorizer! ###Code tfidf_comparison_output_cosine = pd.DataFrame(squareform(pdist(transformed_documents_as_array, metric='cosine')), index=filekeys, columns=filekeys) tfidf_comparison_output_cosine tfidf_comparison_output_cosine.to_csv('tfidf_comparison_output_cosine.csv') #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(tfidf_comparison_output_cosine) #Displays the image plt.show() ###Output _____no_output_____ ###Markdown ![Cosine distance using TF-IDF](images/dsc8_tfidf_cosine.png)There’s less difference between the Euclidean and cosine distance when using a TF-IDF vectorizer (that actually uses the “-IDF” in “TF-IDF”) than the word count vectorizer. So what happens when we try to run cosine distance using TF-IDF on chapter 2's? ###Code ch2dir = '/Users/qad/Documents/dsc_chapters/ch2' os.chdir(ch2dir) # Use the glob library to create a list of file names, sorted alphabetically # Alphabetical sorting will get us the books in numerical order filenames = sorted(glob.glob("*.txt")) # Parse those filenames to create a list of file keys (ID numbers) # You'll use these later on. filekeys = [f.split('/')[-1].split('.')[0] for f in filenames] # Create a CountVectorizer instance with the parameters you need vectorizer = TfidfVectorizer(input="filename", stop_words=None, use_idf=True, norm=None, max_features=1000) # Run the vectorizer on your list of filenames to create your wordcounts # Use the toarray() function so that SciPy will accept the results ch2_tfidf = vectorizer.fit_transform(filenames).toarray() ch2_cosine_tfidf = pd.DataFrame(squareform(pdist(ch2_tfidf, metric='cosine')), index=filekeys, columns=filekeys) ch2_cosine_tfidf ch2_cosine_tfidf.to_csv('ch2_tfidf.csv') #Defines the size of the image plt.figure(figsize=(100, 100)) #Increases the label size so it's more legible sns.set(font_scale=3) #Generates the visualization using the data in the dataframe ax = sns.heatmap(ch2_cosine_tfidf) #Displays the image plt.show() ###Output _____no_output_____
Car Price Prediction/car-price-prediction-ann.ipynb
###Markdown Laoding the data ###Code df = pd.read_csv('car data.csv') df.head() ###Output _____no_output_____ ###Markdown Exploratory Data Analysis ###Code df.shape df.info() df.describe() df.isna().sum() ###Output _____no_output_____ ###Markdown Data Preprocessing ###Code df['Age'] = 2021 - df['Year'] df.drop('Year', axis=1, inplace=True) df.head() df.rename(columns = {'Selling_Price':'Selling_Price(lacs)', 'Present_Price':'Present_Price(lacs)', 'Owner':'Past_Owners'}, inplace=True) df.head() df.columns ###Output _____no_output_____ ###Markdown Visualizing the data ###Code cat_cols = ['Fuel_Type', 'Seller_Type', 'Transmission', 'Past_Owners'] i = 0 while i < 4: fig = plt.figure(figsize=[10,4]) plt.subplot(1,2,1) sns.countplot(x=cat_cols[i], data=df) i +=1 plt.subplot(1,2,2) sns.countplot(x=cat_cols[i], data=df) i += 1 plt.show() df[df['Present_Price(lacs)']>df['Present_Price(lacs)'].quantile(0.99)] df[df['Selling_Price(lacs)'] > df['Selling_Price(lacs)'].quantile(0.99)] df[df['Kms_Driven'] > df['Kms_Driven'].quantile(0.99)] sns.heatmap(df.corr(), annot = True, cmap='RdBu') plt.show() df.corr()['Selling_Price(lacs)'] df.pivot_table(values='Selling_Price(lacs)', index = 'Seller_Type', columns='Fuel_Type') # Creating dummies for categorical values df.drop(labels='Car_Name', axis=1, inplace = True) df.head() df = pd.get_dummies(data=df, drop_first=True) df.head() ###Output _____no_output_____ ###Markdown Train - Test - Split ###Code # Train Test Split X = df.iloc[:,1:].values y = df.iloc[:,:1].values print(X) # print(y) print(X.shape, y.shape) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2, random_state=1) ###Output _____no_output_____ ###Markdown Scaling the data for better training ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) print(X.shape, X_train.shape, X_test.shape) print(y.shape, y_train.shape, y_test.shape) ###Output (301, 1) (240, 1) (61, 1) ###Markdown Building Artifical Neural Network ###Code from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense model = Sequential() model.add(Dense(30, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(1)) # O/P model.compile(optimizer='rmsprop', loss='mse') model.fit(X_train, y_train, epochs=100, validation_data=(X_test,y_test)) model.summary() loss_df = pd.DataFrame(model.history.history) loss_df.plot() ###Output _____no_output_____ ###Markdown Model Evaluation ###Code model.evaluate(X_test, y_test) ###Output 2/2 [==============================] - 0s 4ms/step - loss: 1.2536 ###Markdown model.predict() on X_test ###Code train_pred = model.predict(X_train) # print(pred_train) ###Output _____no_output_____ ###Markdown model.predict() on X_train ###Code test_pred = model.predict(X_test) from sklearn.metrics import r2_score ###Output _____no_output_____ ###Markdown - R Squared : R-squared measures the strength of the relationship between your model and the dependent variable on a convenient 0 – 100% scale. ###Code r2_train = r2_score(y_train, train_pred) print("R Squared value of train dataL: ",r2_train) r2_test = r2_score(y_test, test_pred) print("R Squared value of test data:", r2_test) diff_r2_scores = r2_train - r2_test print("Difference between two scores: ", diff_r2_scores.round(2)) ###Output Difference between two scores: 0.04
Pytorch/Practices/2A_Linear_Regression.ipynb
###Markdown 1. Dataset ###Code N = 20 # X = 20x random in [-5, +5] X = np.random.random(N)*10 - 5 print(X.shape) # y = A line plus some noise y = 0.5 * X - 1 + np.random.randn(N) plt.scatter(X, y); print(y.shape) X = X.reshape(N, 1) y = y.reshape(N, 1) # Convert to pytorch tensors X_train = torch.from_numpy(X.astype(np.float32)) y_train = torch.from_numpy(y.astype(np.float32)) print(X_train.shape) print(y_train.shape) ###Output torch.Size([20, 1]) torch.Size([20, 1]) ###Markdown 2. Model ###Code import torch.nn as nn # model lr_model = nn.Linear(1, 1) # loss function: MSE mse_loss = nn.MSELoss() # Optimizer: SGD sgd_opt = torch.optim.SGD(lr_model.parameters(), lr=0.05) ###Output _____no_output_____ ###Markdown 3. Train ###Code def fit(X, y, model, loss_fn, optimizer, n_epochs): losses = [] for i in range(n_epochs): # zero the parameter gradients optimizer.zero_grad() # Forward y_ = model(X) loss = loss_fn(y_, y) # Save loss losses.append(loss.item()) # Backward loss.backward() optimizer.step() if (i+1)%10==0: print(f"Epoch {i+1}/{n_epochs}, Loss: {loss.item():.4f}") # Plot losses plt.plot(losses); fit( X=X_train, y=y_train, model=lr_model, loss_fn=mse_loss, optimizer=sgd_opt, n_epochs=100) ###Output Epoch 10/100, Loss: 1.9804 Epoch 20/100, Loss: 1.4644 Epoch 30/100, Loss: 1.4000 Epoch 40/100, Loss: 1.3919 Epoch 50/100, Loss: 1.3909 Epoch 60/100, Loss: 1.3908 Epoch 70/100, Loss: 1.3908 Epoch 80/100, Loss: 1.3908 Epoch 90/100, Loss: 1.3908 Epoch 100/100, Loss: 1.3908 ###Markdown 4. Test ###Code # test = train to verify model X_test = X_train y_test = y_train y_test_ = lr_model(X_test) loss = mse_loss(y_test_, y_test) print(f"Final loss: {loss:.4f}") # Plot final prediction ## convert pytorch tensor -> numpy X_test = X_test.detach().numpy() y_test_ = y_test_.detach().numpy() plt.scatter(X, y, label='Original data') plt.plot(X_test, y_test_, color='red', label='Fitted line') plt.legend() plt.show() ###Output _____no_output_____
docs/examples/descriptions.ipynb
###Markdown Checking empty descriptions In this example, we use `fastobo` to create a small validation script which will report empty definitions in an OBO file. We also use `requests` in order to connect to the OBO library. ###Code import fastobo import requests ###Output _____no_output_____ ###Markdown `fastobo.load` takes a file-handle, which can be accessed using the `raw` property of the `Response` object returned by `requests.get`: ###Code res = requests.get("http://purl.obolibrary.org/obo/ms.obo", stream=True) doc = fastobo.load(res.raw) ###Output _____no_output_____ ###Markdown HeaderNow, we can check the header for empty descriptions in definition clauses: ###Code for clause in doc.header: if isinstance(clause, fastobo.header.SynonymTypedefClause) and not clause.description: print("Empty description in definition of", clause.typedef) elif isinstance(clause, fastobo.header.SubsetdefClause) and not clause.description: print("Empty description in definition of", clause.subset) ###Output _____no_output_____ ###Markdown Note that we are using `isinstance` a lot compared to what you may be used to in other Python library: this is because `fastobo` is based on a Rust library which is strongly-typed, so that is reflected in the Python library that wraps it. We could use the strong typing to write the same snippet using type-specific callback wrapped in a `dict`: ###Code def check_synonym_typedef(clause): if not clause.description: print("Empty description in definition of", clause.typedef, "in header") def check_subsetdef(clause): if not clause.description: print("Empty description in definition of", clause.subset, "in header") CALLBACKS = { fastobo.header.SynonymTypedefClause: check_synonym_typedef, fastobo.header.SynonymTypedefClause: check_subsetdef, } for clause in doc.header: callback = CALLBACKS.get(type(clause)) if callback is not None: callback(clause) ###Output _____no_output_____ ###Markdown Such a construct can be used to process all possible clauses while reducing the number of `if`/`elif` branches, in particular when many different clauses are processed at the same time. Entities Checking for definitions in entity frames is straightforward: all definition clauses have a `definition` property that returns the textual definition of the entity. We can use duck-typing here to check for empty definitions: ###Code for frame in doc: for clause in frame: try: if not clause.definition: print("Empty definition of", frame.id) except AttributeError: pass ###Output _____no_output_____
notebooks/.ipynb_checkpoints/01_radiation_therapy_patients_data_EXTRACTION_CLEANING-checkpoint.ipynb
###Markdown ---&nbsp; ...&nbsp;--- Loading Telomere Length Data from TeloFISH--- Extracting telomere length data output from ImageJ from all radiation therapy patients ###Code all_patients_dict = trp.generate_dictionary_from_TeloLength_data('../data/raw patient teloFISH data/') ###Output SW9A non irrad.xlsx data extraction in progress.. BJ1 for SW9_.xlsx data extraction in progress.. SW11A non irrad.xlsx data extraction in progress.. BJ1 for SW15_.xlsx data extraction in progress.. SW6A non irrad.xlsx data extraction in progress.. SW6A irrad @ 4 Gy.xlsx data extraction in progress.. SW8B.xlsx data extraction in progress.. SW14A irrad @ 4 Gy.xlsx data extraction in progress.. SW8A irrad @ 4 Gy.xlsx data extraction in progress.. SW5A irrad @ 4 Gy.xlsx data extraction in progress.. SW8C.xlsx data extraction in progress.. SW1A non irrad.xlsx data extraction in progress.. BJ1 for SW11_.xlsx data extraction in progress.. SW16A non irrad.xlsx data extraction in progress.. BJ1 for SW13_.xlsx data extraction in progress.. BJ-hTERT for SW9_.xlsx data extraction in progress.. BJ1 for SW14_.xlsx data extraction in progress.. SW9B.xlsx data extraction in progress.. BJ1 for SW8_.xlsx data extraction in progress.. SW_1_ok_3_C_.xlsx data extraction in progress.. SW3A irrad @ 4 Gy.xlsx data extraction in progress.. SW11A irrad @ 4 Gy.xlsx data extraction in progress.. BJ1 for SW16_.xlsx data extraction in progress.. BJ1 for SW12_.xlsx data extraction in progress.. SW8A non irrad.xlsx data extraction in progress.. BJ-hTERT for SW8_.xlsx data extraction in progress.. SW10A non irrad.xlsx data extraction in progress.. SW12A irrad @ 4 Gy.xlsx data extraction in progress.. SW9C.xlsx data extraction in progress.. BJ1 for SW10_.xlsx data extraction in progress.. SW7A non irrad.xlsx data extraction in progress.. SW1A irrad @ 4 Gy.xlsx data extraction in progress.. SW13A irrad @ 4 Gy.xlsx data extraction in progress.. SW1B.xlsx data extraction in progress.. BJ-hTERT for SW6_.xlsx data extraction in progress.. SW13B.xlsx data extraction in progress.. BJ1 for SW2_.xlsx data extraction in progress.. SW2A non irrad.xlsx data extraction in progress.. SW5C.xlsx data extraction in progress.. SW15C.xlsx data extraction in progress.. SW7C.xlsx data extraction in progress.. SW11B.xlsx data extraction in progress.. SW3B.xlsx data extraction in progress.. BJ-hTERT for SW15_.xlsx data extraction in progress.. SW15A non irrad.xlsx data extraction in progress.. SW12A non irrad.xlsx data extraction in progress.. BJ-hTERT for SW11_.xlsx data extraction in progress.. SW3C.xlsx data extraction in progress.. SW11C.xlsx data extraction in progress.. SW7B.xlsx data extraction in progress.. SW15B.xlsx data extraction in progress.. BJ1 for SW6_.xlsx data extraction in progress.. BJ-hTERT for SW2_.xlsx data extraction in progress.. SW5B.xlsx data extraction in progress.. SW5A non irrad.xlsx data extraction in progress.. SW1C.xlsx data extraction in progress.. BJ-hTERT for SW13_.xlsx data extraction in progress.. SW10A irrad @ 4 Gy.xlsx data extraction in progress.. SW2A irrad @ 4 Gy.xlsx data extraction in progress.. BJ1 for SW1_.xlsx data extraction in progress.. SW10B.xlsx data extraction in progress.. BJ-hTERT for SW5_.xlsx data extraction in progress.. SW2B.xlsx data extraction in progress.. SW13A non irrad.xlsx data extraction in progress.. SW14C.xlsx data extraction in progress.. SW6C.xlsx data extraction in progress.. SW9A irrad @ 4 Gy.xlsx data extraction in progress.. SW16A irrad @ 4 Gy.xlsx data extraction in progress.. BJ-hTERT for SW14_.xlsx data extraction in progress.. BJ-hTERT for SW16_.xlsx data extraction in progress.. SW16C.xlsx data extraction in progress.. BJ1 for SW3_.xlsx data extraction in progress.. SW12B.xlsx data extraction in progress.. BJ-hTERT for SW7_.xlsx data extraction in progress.. SW12C.xlsx data extraction in progress.. SW16B.xlsx data extraction in progress.. BJ-hTERT for SW3_.xlsx data extraction in progress.. BJ1 for SW7_.xlsx data extraction in progress.. BJ-hTERT for SW12_.xlsx data extraction in progress.. SW3A non irrad.xlsx data extraction in progress.. SW15A irrad @ 4 Gy.xlsx data extraction in progress.. SW7A irrad @ 4 Gy.xlsx data extraction in progress.. BJ-hTERT for SW10_.xlsx data extraction in progress.. SW6B.xlsx data extraction in progress.. SW14B.xlsx data extraction in progress.. BJ-hTERT for SW1_.xlsx data extraction in progress.. SW14A non irrad.xlsx data extraction in progress.. BJ1 for SW5_.xlsx data extraction in progress.. SW2C.xlsx data extraction in progress.. SW10C.xlsx data extraction in progress.. completed file collection ###Markdown Making dataframe from dict w/ all patients telomere length data, contains telo means & individual telos as list ###Code all_patients_df = trp.generate_dataframe_from_dict(all_patients_dict) # don't need telo means per cell @ this time all_patients_df = all_patients_df.drop(['cell data'], axis=1) print(all_patients_df.shape) ###Output (59, 7) ###Markdown Saving all patients telomere length data for later retrieval ###Code # changing telo data to list in prep for saving to csv all_patients_df['telo data'] = all_patients_df['telo data'].apply(lambda row: row.tolist()) all_patients_df.to_csv('../data/compiled patient data csv files/all_patients_df.csv', index=False) ###Output _____no_output_____ ###Markdown Generating all patients telo df containing telo counts per quartile melted into tidy data format ###Code melted_all_patients_df = pd.melt( all_patients_df, id_vars = [col for col in all_patients_df.columns if col != 'Q1' and col != 'Q2-3' and col != 'Q4'], var_name='relative Q', value_name='Q freq counts') melted_all_patients_df['Q freq counts'] = melted_all_patients_df['Q freq counts'].astype('float64') melted_all_patients_df.head(4) ###Output _____no_output_____ ###Markdown Saving melted all patients df to csv ###Code melted_all_patients_df.to_csv('../data/compiled patient data csv files/melted_all_patients_df.csv', index=False) ###Output _____no_output_____ ###Markdown Pivoted Dataframe w/ timepoints as columns, and telomere length means for each patient timepoint in rows ###Code pivot_patients_telo_means_df = all_patients_df.pivot(index='patient id', columns='timepoint', values='telo means') pivot_patients_telo_means_df = pivot_patients_telo_means_df.drop(13) ###Output _____no_output_____ ###Markdown Saving pivoted telo means df to file ###Code pivot_patients_telo_means_df.to_csv('../data/compiled patient data csv files/pivot_patients_telo_means_df.csv', index=False) ###Output _____no_output_____ ###Markdown Exploding individual telomere length measurements from contained list into dataframe (i.e row per individual telomere) while retaining related column info ###Code # can imagine the lists containing the individual telos per patient exploding to the right; maintains the index relationship explode_telos_raw = all_patients_df['telo data'].apply(pd.Series) print(explode_telos_raw.shape) explode_telos_raw.head(4) exploded_telos_all_patients_df = (explode_telos_raw # we'll merge the exploded telos df w/ our original all patients df on the index! .merge(all_patients_df, right_index = True, left_index = True) .drop(['telo data', 'Q1', 'Q2-3', 'Q4'], axis = 1) .melt(id_vars = ['patient id', 'timepoint', 'telo means'], value_name = "individual telomeres") .drop("variable", axis = 1) .dropna()) exploded_telos_all_patients_df.head(4) ###Output _____no_output_____ ###Markdown Saving exploded telomere df for later retrieval ###Code exploded_telos_all_patients_df.to_csv('../data/compiled patient data csv files/exploded_telos_all_patients_df.csv', index=False) ###Output _____no_output_____ ###Markdown Loading Chromosome Aberration Data from Subtelo-dGH --- ###Code all_chr_aberr_df = trp.make_dataframe_chr_aberr_data('../data/dGH scoresheets/') all_chr_aberr_df.to_csv('../data/compiled patient data csv files/all_chr_aberr_df.csv', index=False) ###Output _____no_output_____ ###Markdown Loading Complete Blood Count data ###Code # loading excel file cbc_data = pd.read_excel('../data/to colorado.xlsx') # minor data cleaning cbc_data.rename({'patient': 'patient id', 'mrn': 'timepoint'}, axis=1, inplace=True) def extract_patient_ID(row): if 'SW' in row: row = row.replace('SW', ' ').strip() return row cbc_data['patient id'] = cbc_data['patient id'].apply(lambda row: extract_patient_ID(row)) cbc_data['patient id'] = cbc_data['patient id'].astype('int64') # saving to file cbc_data.to_csv('../data/compiled patient data csv files/cleaned cbc data.csv', index=False) ###Output _____no_output_____
Model backlog/Training/Segmentation/Local/[3-Fold]-57-UNet EfficientNetB3_320x480.ipynb
###Markdown Dependencies ###Code import sys sys.path.append('../Scripts/') from utillity_script_cloud_segmentation import * from utillity_script_lr_schedulers import * seed = 0 seed_everything(seed) warnings.filterwarnings("ignore") train_path = '../data/train.csv' kfold_set_path = '../data/3-fold.csv' train_images_path = '../data/train_images320x480/' ###Output _____no_output_____ ###Markdown Load data ###Code train = pd.read_csv(train_path) kfold_set = pd.read_csv(kfold_set_path) X_train = kfold_set[kfold_set['fold_0'] == 'train'] X_val = kfold_set[kfold_set['fold_0'] == 'validation'] print('Compete set samples:', len(train)) print('Train samples: ', len(X_train)) print('Validation samples: ', len(X_val)) # Preprocecss data train['image'] = train['Image_Label'].apply(lambda x: x.split('_')[0]) display(X_train.head()) ###Output Compete set samples: 22184 Train samples: 3682 Validation samples: 1843 ###Markdown Model parameters ###Code N_GPUS = 3 BACKBONE = 'efficientnetb3' BATCH_SIZE = 8 EPOCHS = 15 LEARNING_RATE = 10**(-1.7) HEIGHT = 320 WIDTH = 480 CHANNELS = 3 N_CLASSES = 4 ES_PATIENCE = 8 STEP_SIZE_TRAIN = len(X_train)//BATCH_SIZE STEP_SIZE_VALID = len(X_val)//BATCH_SIZE BATCH_SIZE *= N_GPUS model_0_path = 'files/57-unet[fold-1]_%s_%sx%s.h5' % (BACKBONE, HEIGHT, WIDTH) model_1_path = 'files/57-unet[fold-2]_%s_%sx%s.h5' % (BACKBONE, HEIGHT, WIDTH) model_2_path = 'files/57-unet[fold-3]_%s_%sx%s.h5' % (BACKBONE, HEIGHT, WIDTH) class OneCycleLR(Callback): def __init__(self, max_lr, end_percentage=0.1, scale_percentage=None, maximum_momentum=0.95, minimum_momentum=0.85, verbose=True): """ This callback implements a cyclical learning rate policy (CLR). This is a special case of Cyclic Learning Rates, where we have only 1 cycle. After the completion of 1 cycle, the learning rate will decrease rapidly to 100th its initial lowest value. # Arguments: max_lr: Float. Initial learning rate. This also sets the starting learning rate (which will be 10x smaller than this), and will increase to this value during the first cycle. end_percentage: Float. The percentage of all the epochs of training that will be dedicated to sharply decreasing the learning rate after the completion of 1 cycle. Must be between 0 and 1. scale_percentage: Float or None. If float, must be between 0 and 1. If None, it will compute the scale_percentage automatically based on the `end_percentage`. maximum_momentum: Optional. Sets the maximum momentum (initial) value, which gradually drops to its lowest value in half-cycle, then gradually increases again to stay constant at this max value. Can only be used with SGD Optimizer. minimum_momentum: Optional. Sets the minimum momentum at the end of the half-cycle. Can only be used with SGD Optimizer. verbose: Bool. Whether to print the current learning rate after every epoch. # Reference - [A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, weight_decay, and weight decay](https://arxiv.org/abs/1803.09820) - [Super-Convergence: Very Fast Training of Residual Networks Using Large Learning Rates](https://arxiv.org/abs/1708.07120) """ super(OneCycleLR, self).__init__() if end_percentage < 0. or end_percentage > 1.: raise ValueError("`end_percentage` must be between 0 and 1") if scale_percentage is not None and (scale_percentage < 0. or scale_percentage > 1.): raise ValueError("`scale_percentage` must be between 0 and 1") self.initial_lr = max_lr self.end_percentage = end_percentage self.scale = float(scale_percentage) if scale_percentage is not None else float(end_percentage) self.max_momentum = maximum_momentum self.min_momentum = minimum_momentum self.verbose = verbose if self.max_momentum is not None and self.min_momentum is not None: self._update_momentum = True else: self._update_momentum = False self.clr_iterations = 0. self.history = {} self.epochs = None self.batch_size = None self.samples = None self.steps = None self.num_iterations = None self.mid_cycle_id = None def _reset(self): """ Reset the callback. """ self.clr_iterations = 0. self.history = {} def compute_lr(self): """ Compute the learning rate based on which phase of the cycle it is in. - If in the first half of training, the learning rate gradually increases. - If in the second half of training, the learning rate gradually decreases. - If in the final `end_percentage` portion of training, the learning rate is quickly reduced to near 100th of the original min learning rate. # Returns: the new learning rate """ if self.clr_iterations > 2 * self.mid_cycle_id: current_percentage = (self.clr_iterations - 2 * self.mid_cycle_id) current_percentage /= float((self.num_iterations - 2 * self.mid_cycle_id)) new_lr = self.initial_lr * (1. + (current_percentage * (1. - 100.) / 100.)) * self.scale elif self.clr_iterations > self.mid_cycle_id: current_percentage = 1. - ( self.clr_iterations - self.mid_cycle_id) / self.mid_cycle_id new_lr = self.initial_lr * (1. + current_percentage * (self.scale * 100 - 1.)) * self.scale else: current_percentage = self.clr_iterations / self.mid_cycle_id new_lr = self.initial_lr * (1. + current_percentage * (self.scale * 100 - 1.)) * self.scale if self.clr_iterations == self.num_iterations: self.clr_iterations = 0 return new_lr def compute_momentum(self): """ Compute the momentum based on which phase of the cycle it is in. - If in the first half of training, the momentum gradually decreases. - If in the second half of training, the momentum gradually increases. - If in the final `end_percentage` portion of training, the momentum value is kept constant at the maximum initial value. # Returns: the new momentum value """ if self.clr_iterations > 2 * self.mid_cycle_id: new_momentum = self.max_momentum elif self.clr_iterations > self.mid_cycle_id: current_percentage = 1. - ((self.clr_iterations - self.mid_cycle_id) / float( self.mid_cycle_id)) new_momentum = self.max_momentum - current_percentage * ( self.max_momentum - self.min_momentum) else: current_percentage = self.clr_iterations / float(self.mid_cycle_id) new_momentum = self.max_momentum - current_percentage * ( self.max_momentum - self.min_momentum) return new_momentum def on_train_begin(self, logs={}): logs = logs or {} # self.epochs = self.params['epochs'] # self.batch_size = self.params['batch_size'] # self.samples = self.params['samples'] # self.steps = self.params['steps'] self.epochs = EPOCHS self.batch_size = BATCH_SIZE self.samples = len(X_train) self.steps = len(X_train)//BATCH_SIZE if self.steps is not None: self.num_iterations = self.epochs * self.steps else: if (self.samples % self.batch_size) == 0: remainder = 0 else: remainder = 1 self.num_iterations = (self.epochs + remainder) * self.samples // self.batch_size self.mid_cycle_id = int(self.num_iterations * ((1. - self.end_percentage)) / float(2)) self._reset() K.set_value(self.model.optimizer.lr, self.compute_lr()) if self._update_momentum: if not hasattr(self.model.optimizer, 'momentum'): raise ValueError("Momentum can be updated only on SGD optimizer !") new_momentum = self.compute_momentum() K.set_value(self.model.optimizer.momentum, new_momentum) def on_batch_end(self, epoch, logs=None): logs = logs or {} self.clr_iterations += 1 new_lr = self.compute_lr() self.history.setdefault('lr', []).append( K.get_value(self.model.optimizer.lr)) K.set_value(self.model.optimizer.lr, new_lr) if self._update_momentum: if not hasattr(self.model.optimizer, 'momentum'): raise ValueError("Momentum can be updated only on SGD optimizer !") new_momentum = self.compute_momentum() self.history.setdefault('momentum', []).append( K.get_value(self.model.optimizer.momentum)) K.set_value(self.model.optimizer.momentum, new_momentum) for k, v in logs.items(): self.history.setdefault(k, []).append(v) def on_epoch_end(self, epoch, logs=None): if self.verbose: if self._update_momentum: print(" - lr: %0.5f - momentum: %0.2f " % (self.history['lr'][-1], self.history['momentum'][-1])) else: print(" - lr: %0.5f " % (self.history['lr'][-1])) preprocessing = sm.get_preprocessing(BACKBONE) augmentation = albu.Compose([albu.HorizontalFlip(p=0.5), albu.VerticalFlip(p=0.5), albu.ShiftScaleRotate(scale_limit=0.5, rotate_limit=0, shift_limit=0.1, border_mode=0, p=0.5) ]) ###Output _____no_output_____ ###Markdown Data generator ###Code train_generator = DataGenerator( directory=train_images_path, dataframe=X_train, target_df=train, batch_size=BATCH_SIZE, target_size=(HEIGHT, WIDTH), n_channels=CHANNELS, n_classes=N_CLASSES, preprocessing=preprocessing, augmentation=augmentation, seed=seed) valid_generator = DataGenerator( directory=train_images_path, dataframe=X_val, target_df=train, batch_size=BATCH_SIZE, target_size=(HEIGHT, WIDTH), n_channels=CHANNELS, n_classes=N_CLASSES, preprocessing=preprocessing, seed=seed) ###Output _____no_output_____ ###Markdown Learning rate finder ###Code from keras.utils import multi_gpu_model model_s = sm.Unet(backbone_name=BACKBONE, encoder_weights='imagenet', classes=N_CLASSES, activation='sigmoid', input_shape=(None, None, CHANNELS)) lr_finder = LRFinder(num_samples=len(X_train), batch_size=BATCH_SIZE, minimum_lr=1e-5, maximum_lr=10, verbose=0) optimizer = optimizers.SGD(lr=LEARNING_RATE, momentum=0.9, nesterov=True) model = multi_gpu_model(model_s, gpus=N_GPUS) model.compile(optimizer=optimizer, loss=sm.losses.bce_dice_loss) history = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, epochs=1, callbacks=[lr_finder]) plt.rcParams.update({'font.size': 16}) plt.figure(figsize=(30, 10)) plt.axvline(x=np.log10(LEARNING_RATE), color='red') lr_finder.plot_schedule(clip_beginning=15) ###Output Epoch 1/1 460/460 [==============================] - 1264s 3s/step - loss: 2.5213 ###Markdown Fold 1 ###Code model_s = sm.Unet(backbone_name=BACKBONE, encoder_weights='imagenet', classes=N_CLASSES, activation='sigmoid', input_shape=(HEIGHT, WIDTH, CHANNELS)) checkpoint = ModelCheckpoint(model_0_path, monitor='val_loss', mode='min', save_best_only=True) es = EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1) oneCycleLR = OneCycleLR(max_lr=LEARNING_RATE, maximum_momentum=0.9, minimum_momentum=0.9) metric_list = [dice_coef, sm.metrics.iou_score, sm.metrics.f1_score] callback_list = [checkpoint, es, oneCycleLR] optimizer = optimizers.SGD(lr=LEARNING_RATE, momentum=0.9, nesterov=True) model = multi_gpu_model(model_s, gpus=N_GPUS) model.compile(optimizer=optimizer, loss=sm.losses.bce_dice_loss, metrics=metric_list) history1 = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, callbacks=callback_list, epochs=EPOCHS, verbose=2).history ###Output Epoch 1/15 ###Markdown Model loss graph ###Code plot_metrics(history1, metric_list=['loss', 'dice_coef', 'iou_score', 'f1-score']) ###Output _____no_output_____ ###Markdown Fold 2 ###Code X_train = kfold_set[kfold_set['fold_1'] == 'train'] X_val = kfold_set[kfold_set['fold_1'] == 'validation'] model_s = sm.Unet(backbone_name=BACKBONE, encoder_weights='imagenet', classes=N_CLASSES, activation='sigmoid', input_shape=(HEIGHT, WIDTH, CHANNELS)) checkpoint = ModelCheckpoint(model_1_path, monitor='val_loss', mode='min', save_best_only=True) es = EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1) oneCycleLR = OneCycleLR(max_lr=LEARNING_RATE, maximum_momentum=0.9, minimum_momentum=0.9) metric_list = [dice_coef, sm.metrics.iou_score, sm.metrics.f1_score] callback_list = [checkpoint, es, oneCycleLR] optimizer = optimizers.SGD(lr=LEARNING_RATE, momentum=0.9, nesterov=True) model = multi_gpu_model(model_s, gpus=N_GPUS) model.compile(optimizer=optimizer, loss=sm.losses.bce_dice_loss, metrics=metric_list) history2 = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, callbacks=callback_list, epochs=EPOCHS, verbose=2).history plot_metrics(history2, metric_list=['loss', 'dice_coef', 'iou_score', 'f1-score']) ###Output WARNING:tensorflow:From C:\Users\virtus\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\framework\function.py:987: calling Graph.create_op (from tensorflow.python.framework.ops) with compute_shapes is deprecated and will be removed in a future version. Instructions for updating: Shapes are always computed; don't use the compute_shapes as it has no effect. Epoch 1/15 - 1710s - loss: 1.1307 - dice_coef: 0.2758 - iou_score: 0.1606 - f1-score: 0.2717 - val_loss: 1.0935 - val_dice_coef: 0.4129 - val_iou_score: 0.2634 - val_f1-score: 0.4041 - lr: 0.00998 - momentum: 0.90 Epoch 2/15 - 1616s - loss: 0.8970 - dice_coef: 0.4320 - iou_score: 0.2803 - f1-score: 0.4305 - val_loss: 0.8378 - val_dice_coef: 0.5188 - val_iou_score: 0.3500 - val_f1-score: 0.5119 - lr: 0.01799 - momentum: 0.90 Epoch 3/15 - 1627s - loss: 0.8180 - dice_coef: 0.4929 - iou_score: 0.3292 - f1-score: 0.4897 - val_loss: 0.8100 - val_dice_coef: 0.5188 - val_iou_score: 0.3502 - val_f1-score: 0.5129 - lr: 0.01391 - momentum: 0.90 Epoch 4/15 - 1627s - loss: 0.7865 - dice_coef: 0.5144 - iou_score: 0.3475 - f1-score: 0.5104 - val_loss: 0.7634 - val_dice_coef: 0.5453 - val_iou_score: 0.3751 - val_f1-score: 0.5399 - lr: 0.00591 - momentum: 0.90 Epoch 5/15 - 1621s - loss: 0.7671 - dice_coef: 0.5253 - iou_score: 0.3573 - f1-score: 0.5212 - val_loss: 0.7601 - val_dice_coef: 0.5486 - val_iou_score: 0.3773 - val_f1-score: 0.5421 - lr: 0.00206 - momentum: 0.90 Epoch 6/15 - 1620s - loss: 0.7633 - dice_coef: 0.5278 - iou_score: 0.3600 - f1-score: 0.5241 - val_loss: 0.7643 - val_dice_coef: 0.5540 - val_iou_score: 0.3804 - val_f1-score: 0.5452 - lr: 0.01007 - momentum: 0.90 Epoch 7/15 - 1618s - loss: 0.7597 - dice_coef: 0.5330 - iou_score: 0.3639 - f1-score: 0.5283 - val_loss: 0.7723 - val_dice_coef: 0.5458 - val_iou_score: 0.3689 - val_f1-score: 0.5326 - lr: 0.01807 - momentum: 0.90 Epoch 8/15 - 1614s - loss: 0.7437 - dice_coef: 0.5424 - iou_score: 0.3730 - f1-score: 0.5377 - val_loss: 0.7812 - val_dice_coef: 0.5380 - val_iou_score: 0.3692 - val_f1-score: 0.5344 - lr: 0.01383 - momentum: 0.90 Epoch 9/15 - 1613s - loss: 0.7191 - dice_coef: 0.5576 - iou_score: 0.3878 - f1-score: 0.5533 - val_loss: 0.7512 - val_dice_coef: 0.5577 - val_iou_score: 0.3863 - val_f1-score: 0.5512 - lr: 0.00582 - momentum: 0.90 Epoch 10/15 - 1603s - loss: 0.7025 - dice_coef: 0.5675 - iou_score: 0.3969 - f1-score: 0.5627 - val_loss: 0.7517 - val_dice_coef: 0.5625 - val_iou_score: 0.3900 - val_f1-score: 0.5555 - lr: 0.00215 - momentum: 0.90 Epoch 11/15 - 1607s - loss: 0.6972 - dice_coef: 0.5721 - iou_score: 0.4015 - f1-score: 0.5673 - val_loss: 0.7559 - val_dice_coef: 0.5603 - val_iou_score: 0.3883 - val_f1-score: 0.5534 - lr: 0.01016 - momentum: 0.90 Epoch 12/15 - 1605s - loss: 0.6991 - dice_coef: 0.5719 - iou_score: 0.4015 - f1-score: 0.5675 - val_loss: 0.7920 - val_dice_coef: 0.5544 - val_iou_score: 0.3808 - val_f1-score: 0.5441 - lr: 0.01816 - momentum: 0.90 Epoch 13/15 - 1606s - loss: 0.6926 - dice_coef: 0.5769 - iou_score: 0.4054 - f1-score: 0.5714 - val_loss: 0.7873 - val_dice_coef: 0.5425 - val_iou_score: 0.3704 - val_f1-score: 0.5354 - lr: 0.01374 - momentum: 0.90 Epoch 14/15 - 1610s - loss: 0.6643 - dice_coef: 0.5952 - iou_score: 0.4240 - f1-score: 0.5898 - val_loss: 0.7671 - val_dice_coef: 0.5558 - val_iou_score: 0.3865 - val_f1-score: 0.5520 - lr: 0.00574 - momentum: 0.90 Epoch 15/15 - 1608s - loss: 0.6418 - dice_coef: 0.6084 - iou_score: 0.4372 - f1-score: 0.6031 - val_loss: 0.7678 - val_dice_coef: 0.5611 - val_iou_score: 0.3878 - val_f1-score: 0.5529 - lr: 0.00224 - momentum: 0.90 ###Markdown Fold 3 ###Code X_train = kfold_set[kfold_set['fold_2'] == 'train'] X_val = kfold_set[kfold_set['fold_2'] == 'validation'] model_s = sm.Unet(backbone_name=BACKBONE, encoder_weights='imagenet', classes=N_CLASSES, activation='sigmoid', input_shape=(HEIGHT, WIDTH, CHANNELS)) checkpoint = ModelCheckpoint(model_2_path, monitor='val_loss', mode='min', save_best_only=True) es = EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1) oneCycleLR = OneCycleLR(max_lr=LEARNING_RATE, maximum_momentum=0.9, minimum_momentum=0.9) metric_list = [dice_coef, sm.metrics.iou_score, sm.metrics.f1_score] callback_list = [checkpoint, es, oneCycleLR] optimizer = optimizers.SGD(lr=LEARNING_RATE, momentum=0.9, nesterov=True) model = multi_gpu_model(model_s, gpus=N_GPUS) model.compile(optimizer=optimizer, loss=sm.losses.bce_dice_loss, metrics=metric_list) history3 = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, callbacks=callback_list, epochs=EPOCHS, verbose=2).history plot_metrics(history3, metric_list=['loss', 'dice_coef', 'iou_score', 'f1-score']) ###Output WARNING:tensorflow:From C:\Users\virtus\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\framework\function.py:987: calling Graph.create_op (from tensorflow.python.framework.ops) with compute_shapes is deprecated and will be removed in a future version. Instructions for updating: Shapes are always computed; don't use the compute_shapes as it has no effect. Epoch 1/15 - 1694s - loss: 1.1307 - dice_coef: 0.2758 - iou_score: 0.1606 - f1-score: 0.2717 - val_loss: 1.0893 - val_dice_coef: 0.4128 - val_iou_score: 0.2634 - val_f1-score: 0.4041 - lr: 0.00998 - momentum: 0.90 Epoch 2/15 - 1605s - loss: 0.8970 - dice_coef: 0.4320 - iou_score: 0.2802 - f1-score: 0.4305 - val_loss: 0.8387 - val_dice_coef: 0.5181 - val_iou_score: 0.3498 - val_f1-score: 0.5119 - lr: 0.01799 - momentum: 0.90 Epoch 3/15 - 1606s - loss: 0.8180 - dice_coef: 0.4929 - iou_score: 0.3292 - f1-score: 0.4897 - val_loss: 0.8090 - val_dice_coef: 0.5192 - val_iou_score: 0.3503 - val_f1-score: 0.5130 - lr: 0.01391 - momentum: 0.90 Epoch 4/15 - 1601s - loss: 0.7864 - dice_coef: 0.5144 - iou_score: 0.3475 - f1-score: 0.5104 - val_loss: 0.7642 - val_dice_coef: 0.5450 - val_iou_score: 0.3748 - val_f1-score: 0.5397 - lr: 0.00591 - momentum: 0.90 Epoch 5/15 - 1605s - loss: 0.7670 - dice_coef: 0.5254 - iou_score: 0.3573 - f1-score: 0.5213 - val_loss: 0.7608 - val_dice_coef: 0.5484 - val_iou_score: 0.3777 - val_f1-score: 0.5427 - lr: 0.00206 - momentum: 0.90 Epoch 6/15 - 1601s - loss: 0.7631 - dice_coef: 0.5279 - iou_score: 0.3601 - f1-score: 0.5242 - val_loss: 0.7637 - val_dice_coef: 0.5539 - val_iou_score: 0.3808 - val_f1-score: 0.5458 - lr: 0.01007 - momentum: 0.90 Epoch 7/15 - 1604s - loss: 0.7598 - dice_coef: 0.5329 - iou_score: 0.3639 - f1-score: 0.5282 - val_loss: 0.7754 - val_dice_coef: 0.5449 - val_iou_score: 0.3677 - val_f1-score: 0.5312 - lr: 0.01807 - momentum: 0.90 Epoch 8/15 - 1606s - loss: 0.7439 - dice_coef: 0.5423 - iou_score: 0.3729 - f1-score: 0.5377 - val_loss: 0.7884 - val_dice_coef: 0.5357 - val_iou_score: 0.3670 - val_f1-score: 0.5322 - lr: 0.01383 - momentum: 0.90 Epoch 9/15 - 1605s - loss: 0.7190 - dice_coef: 0.5577 - iou_score: 0.3879 - f1-score: 0.5534 - val_loss: 0.7518 - val_dice_coef: 0.5570 - val_iou_score: 0.3857 - val_f1-score: 0.5506 - lr: 0.00582 - momentum: 0.90 Epoch 10/15 - 1606s - loss: 0.7025 - dice_coef: 0.5676 - iou_score: 0.3970 - f1-score: 0.5628 - val_loss: 0.7512 - val_dice_coef: 0.5627 - val_iou_score: 0.3899 - val_f1-score: 0.5553 - lr: 0.00215 - momentum: 0.90 Epoch 11/15 - 1610s - loss: 0.6972 - dice_coef: 0.5721 - iou_score: 0.4015 - f1-score: 0.5673 - val_loss: 0.7555 - val_dice_coef: 0.5599 - val_iou_score: 0.3880 - val_f1-score: 0.5532 - lr: 0.01016 - momentum: 0.90 Epoch 12/15
notebooks/4. Sanger - Subsampling.ipynb
###Markdown Sanger - Sub-samplingThis Jupyter notebook reproduces the results from the B-ALL sub-sampling analysis (Supplementary Figure S5). ###Code %reload_ext autoreload %autoreload 2 %matplotlib inline import sys sys.path.append('../src') import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt sns.set_style('white') ###Output _____no_output_____ ###Markdown First, we read the insertions and CTGs that were identified at the different sequencing depths by IM-Fusion. These results have been pre-computed using an external Snakemake pipeline (see the documentation and the Makefile for more details). ###Code depths = [15, 30, 50, 70] # Read insertions. insertions = pd.concat((pd.read_csv('../data/processed/sanger/star-subsample/' '{}/insertions.txt'.format(depth), sep='\t') .query('support >= 10') .assign(depth=depth) for depth in depths), axis=0) # Read CTGs. ctgs = pd.concat((pd.read_csv('../data/processed/sanger/star-subsample/' '{}/ctgs.txt'.format(depth), sep='\t') .assign(depth=depth) for depth in depths), axis=0) ###Output _____no_output_____ ###Markdown Next, we plot the number of insertions and DE CTGs across the different sequencing depths to see how depth affects insertion/CTG detection: ###Code def plot_depth_ctg_count(ctgs, ax=None): if ax is None: _, ax = plt.subplots() counts = (ctgs.groupby('depth')['gene_name'].nunique() .reset_index(name='count')) sns.barplot(data=counts, x='depth', y='count', ax=ax) ax.set_xlabel('Sequencing depth') ax.set_ylabel('Number of CTGs') ax.set_ylim(0, counts['count'].max()) return ax def plot_depth_insertion_count(insertions, ax=None, kind='bar'): if ax is None: _, ax = plt.subplots() counts = (insertions.groupby('depth')['id'].nunique() .reset_index(name='count')) if kind == 'bar': sns.barplot(data=counts, x='depth', y='count', ax=ax) elif kind == 'reg': sns.regplot(data=counts, x='depth', y='count', ax=ax) else: raise ValueError('Unknown value for kind') ax.set_xlabel('Sequencing depth') ax.set_ylabel('Number of insertions') return ax def plot_depth_overview(insertions, ctgs, axes=None): if axes is None: _, axes = plt.subplots(figsize=(9, 4), ncols=2, nrows=1) plot_depth_ctg_count(ctgs.query('de_pvalue < 0.05'), ax=axes[1]) plot_depth_insertion_count(insertions, ax=axes[0], kind='reg') axes[0].set_title('Insertions') axes[1].set_title('DE CTGs') axes[1].set_ylabel('Number of DE CTGs') sns.despine() plt.tight_layout() return axes fig, axes = plt.subplots(figsize=(9, 4), ncols=2) plot_depth_overview(insertions, ctgs, axes=axes); with sns.plotting_context('paper', font_scale=0.7): fig, axes = plt.subplots(figsize=(6, 3), ncols=2) plot_depth_overview(insertions, ctgs, axes=axes); fig.savefig('../reports/supplemental/figures/fig_s5ab_subsampling.pdf', bbox_inches='tight') plt.close(fig) ###Output _____no_output_____ ###Markdown This shows that with increasing depth we identify linearly increasing numbers of insertions, but that the number of DE CTGs does not change strongly. To check if these CTGs are consistent across depths, we also plot a venn diagram of the identified CTGs: ###Code from nbsupport.venn import venn ctg_genes = {depth: set(grp.query('de_pvalue <= 0.05')['gene_name']) for depth, grp in ctgs.groupby('depth')} fig = venn([ctg_genes[d] for d in depths], names=['{} million reads'.format(i) for i in depths], colors=sns.color_palette()) fig.suptitle('DE CTG overlap', fontsize=13, y=0.85) with sns.plotting_context('paper', font_scale=0.7): fig = venn([ctg_genes[d] for d in depths], names=['{} million reads'.format(i) for i in depths], colors=sns.color_palette(), figsize=(6, 5)) fig.suptitle('DE CTG overlap', fontsize=7, y=0.85) fig.savefig('../reports/supplemental/figures/fig_s5c_subsampling_venn.pdf', bbox_inches='tight') plt.close(fig) ctg_genes ###Output _____no_output_____ ###Markdown This confirms that one additional CTG is identified with 50/70 million reads and that 5 CTGs are identified across all depths.To determine if we find similar support (in terms of number of samples) across the different depths, we also count the number of samples with insertions in each CTG across the sequencing depths: ###Code depth_overview = pd.pivot_table(ctgs.query('de_pvalue < 0.05'), index='gene_name', columns='depth', values=['n_samples']) depth_overview ###Output _____no_output_____
week12/evolve_prof.ipynb
###Markdown (heating-rate-profile)= Assignment 7b: Heating rate profilesThis notebook shows how to calculate the net heating rate given a hydrostatic atmosphere with an absorbinggas with constant mixing ratio $r_{gas}$ with height. At the bottom, I ask you to add a function thatwill use the heating rate to calculate a new temperature profile, and loop that function to capture the evolution of the atmosphere and surface to radiative equilibrium.In {ref}`heating-rate` we showed that the heating rate $Q_r$ (K/s) for a particular height inthe atmosphere was defined by:$$\begin{aligned}\rho c_p \Delta z \frac{dT}{dt} &= \Delta E_n\\Q_r = \frac{dT}{dt} &= \frac{1}{\rho c_p} \frac{\Delta E_n}{\Delta z} = \frac{1}{\rho c_p} \frac{dE_n}{dz}\end{aligned}$$where $E_n$ was the net flux integrated over all wavelengths (positive downwards), and $\Delta E_n$ isthe net downward flux $(E_{ntop} - E_{nbot})$ across a layer of thickness $\Delta z$.In this notebook we use the hydrostatic equation from {ref}`hydro` and the flux equationfrom {ref}`flux_schwartzchild` to find dT/dz as a function of height for an atmosphere withcontaining an absorbing gas with a mixing ratio of $r_gas=0.01$ kg/kg and a mass absorption coefficientaveraged across all longwave wavelengths of $k=0.01$ $m^2/kg$. Integrate the atmospheric pressure, temperature and densityRecall equation {mat:numref}`hydro`:$$dp = -\rho g dz$$for a hydrostatic atmosphere, if we assume that dT/dz is constant with height, we canbuild up an atmosphere one level at a time, but starting with know $p$, $\rho$ and $T$ at thesurface and using the values of $dT/dz$, $dp/dz$ to find $T$ and $p$ at the next level. Oncewe have those, we can use the ideal gas law to find the density $\rho$ and move up.This is done in the cell below. ###Code def hydrostat(Temp,height,p_surf): """ build a hydrostatic atmosphere by integrating the hydrostatic equation from the surface, given a temperature vs. height profile Parameters ---------- Temp: ndarray vector of air temps (K) p_surf: float surface pressure in Pa height: ndarray vector of heights (m) delta_z: float Returns ------- press, rho: tuple of ndarrays the same shape as height and Temp where the surface is level 0, and each index i larger than 0 is located at the height corresponding to the top of a particular layer, so that values at the top of the atmosphere are given by index numlevels - 1 press (Pa), rho (kg/m^3) for each layer """ Rd=287. #J/kg/K -- gas constant for dry air g=9.8 #m/s^2 press=np.empty_like(Temp) rho=np.empty_like(Temp) # # level 0 sits directly above the surface, so start # with pressure, temp of air equal to ground temp, press # and get density from equaiton of state # press[0]=p_surf rho[0]=p_surf/(Rd*Temp[0]) num_levels = len(height) num_layers=num_levels - 1 delta_z = np.diff(height) #now march up the atmosphere a level at a time # finding the values at the top of each layer for i in range(num_layers): delP= -rho[i]*g*delta_z[i] press[i+1]= press[i] + delP rho[i+1]=press[i+1]/(Rd*Temp[i+1]) return (press,rho) ###Output _____no_output_____ ###Markdown Next we can find the optical depthIf we have the air density $\rho$, the mixing ratio $r_{mix}$ asnd the absorption coefficient $k$ from Stull Chapter 2section 2.3.6 we can find the optical depth in the layer:$$\tau = \rho r_{mix} k \Delta z$$where $\Delta z$ is the layer thickness. That's done in the next cell. ###Code def find_tau(r_gas,k,rho,height): """ Parameters ---------- r_gas: float gas mixing ratio in kg/kg k: float mass absorption coefficient in kg/m^2 rho: ndarray vector of air densities in kg/m^3 for each layer height: ndarray corresponding level heights in m Returns ------- tau: ndarray vertical optical depths of each level, starting from 0 at the surface """ tau=np.empty_like(rho) tau[0]=0 num_levels=len(rho) num_layers=num_levels - 1 # # left side minus right side # delta_z=height[1:] - height[:-1] for index in range(num_layers): delta_tau=r_gas*rho[index]*k*delta_z[index] tau[index+1]=tau[index] + delta_tau return tau ###Output _____no_output_____ ###Markdown Flux with heightNote the factor of 1.666 below that multiplies the optical depth inthe transmission -- this is the flux diffusivity approximation. The function belowsolves for the upward and downward fluxes one layer at at time by calculatingthe transmitted flux arriving from the bottom or the top of each layer, and theemitted flux that the layer is sending to the next layer above or below using the equation given in{math:numref}`layer_flux`. This is the"two stream approximation" mentioned in {ref}`two-stream-approx`Assumption: layers are thin enough so that it is safe to assume constant valueswithin each layer ###Code def fluxes(tau,Temp,height,E_solar): """ given properties at each level return the upward and downward total flux at each level assuming no downward longwave flux at the top of the atmosphere, and a surface flux of sigma*T_surf**4. Parameters ----------- tau, Temp, height: ndarray of length tot_levels total optical depth (from surface), temperature (K) and height (m) at each level Returns ------- up_flux, down_flux: ndarrays upward and downward flux of each level (W/m^2), all positive """ sigma=5.67e-8 #W/m^2/K^4 E_solar=240. #solar flux in W/m^2 up_flux=np.empty_like(height) down_flux=np.empty_like(height) tot_levs = len(height) # # start at the top of the atmosphere # with zero downwelling flux # down_flux[-1]=0 # # go down a level at a time, adding up the fluxes # for index in np.arange(1,tot_levs): upper_lev=tot_levs - index lower_lev=tot_levs - index -1 del_tau=tau[upper_lev] - tau[lower_lev] trans=np.exp(-1.666*del_tau) emiss=1 - trans layer_flux=sigma*Temp[upper_lev]**4.*emiss down_flux[lower_lev]=down_flux[upper_lev]*trans + layer_flux # # Assume the surface is black, and that its temperature increases # quickly to emit just enough flux to balance the sun plus atmosphere # sfc_flux = down_flux[0] + E_solar T_surf = (sfc_flux/sigma)**0.25 # # now start at the surface and go up one level at a time # up_flux[0]=sfc_flux for index in np.arange(1,tot_levs): upper_lev=index lower_lev=index - 1 del_tau=tau[upper_lev] - tau[lower_lev] trans=np.exp(-del_tau) emiss=1 - trans layer_flux=sigma*Temp[lower_lev]**4.*emiss # # find the flux at the next level # up_flux[upper_lev]=trans*up_flux[lower_lev] + layer_flux return (up_flux,down_flux, T_surf) def heating_rate(net_down,height,rho): """ given the net flux at each level (downward positive) and the height, and density of the atmosphere at each level, return the rate of change of temperature in each layer between two levels Parameters ---------- net_down: ndarray positive downward net flux (W/m^2) at each level height: ndarray vertical location of each level (m) rho: ndarray density (kg/m^3) at each level Returns ------- dT_dt: ndarray -- length nlevels -1 time rate of change of temperature (K/s) """ cpd=1004. # # find the flux divergence across the layer # by differencing the levels. Assume the layer density is constant # and equal to the average of the densities at the top and bottom levels # rho_mid=(rho[1:] + rho[:-1])/2. dEn_dz= np.diff(net_down)/np.diff(height) dT_dt=dEn_dz/(rho_mid*cpd) return dT_dt ###Output _____no_output_____ ###Markdown Calculating the heating rateIn this cell I specify the inputs as a dictionary, then pass the inputsto the main function using [keyword expansion](https://stackoverflow.com/questions/36901/what-does-double-star-asterisk-and-star-asterisk-do-for-parameters) or "dictionary unpacking". This allows me tomodify just a few of the inputs if I want (i.e. change the `num_levels` and `delta_z` and also savethe dictionary as a json file to document a particular run. ###Code inputs=dict( r_gas=0.01, #kg/kg k=0.006, #m^2/kg E_solar = 240, #W/m^2 p_surf=100.e3, #Pa delta_z=100, #m delta_t = 1800., #s num_timesteps=7000, num_levels=200, T_surf=300. #K ) def init_profs(inputs,lapse_rate): """ make a first guess temperature profile with a constant lapse rate Paramters --------- inputs: dict input values for profile: num_levels, T_surf (K) and delta_z lapse_rate: float constant lapse rate in (K/m) Returns ------- Temp, height: ndarrays two ndarrays of length inputs['num_levels'], with spacing inputs['delta_z'] Temp (K) is the vertical temperature profile """ Tstart=inputs['T_surf'] lapse_rate = -7.e-3 #K/m Tstop= Tstart + inputs['num_levels']*inputs['delta_z']*lapse_rate Temp=np.linspace(Tstart,Tstop,inputs['num_levels']) hbot = 0 htop = inputs['num_levels']*inputs['delta_z'] height = np.linspace(hbot,htop,inputs['num_levels']) return Temp, height def main(Temp,height,r_gas=None, k=None,p_surf=None,delta_t=None,delta_z=None, num_timesteps=None,num_levels=None,E_solar=None, T_surf=None): """ find the heating rate (K/km) for a hydrostatic atmosphere with a constant decrease of temperature with height Parameters ---------- Temp, height: ndarrays with vertical profiles of temperature (K) and height (m) Keyword arguments: lots of arguments suppled from the inputs dictionary above """ # # # press,rho=hydrostat(Temp,height,p_surf) tau=find_tau(r_gas,k,rho,height) #breakpoint() up,down,T_surf=fluxes(tau,Temp,height,E_solar) net_down = down - up dT_dt=heating_rate(down - up,height,rho) df=pd.DataFrame(height,columns=['height']) df['height_km'] = height*1.e-3 df['up'] = up df['down'] = down df['net_down'] = net_down fig,(axis1,axis2,axis3)=plt.subplots(1,3,figsize=(15,10)) axis1.plot('up','height_km','b-',lw=5,label='upward flux',data=df) axis1.plot(down,'height_km','g-',lw=5,label='downward flux',data=df) axis1.set_title('upward and downward fluxes') axis1.set_xlabel('flux $(W\,m^{-2}$') axis1.set_ylabel('height (km)') axis1.legend(numpoints=1,loc='best') axis1.grid(True) axis2.plot('net_down','height_km','b-',lw=5,data=df) axis2.set_title('net downward flux') axis2.set_xlabel('net downward flux $(W\,m^{-2})$') axis2.set_ylabel('height (km)') axis2.grid(True) dT_dt=dT_dt*3600.*24. mid_height=(height[1:] + height[:-1])/2. axis3.plot(dT_dt,mid_height*0.001,'b-',lw=5) axis3.set_title('heating rate') axis3.set_xlabel('heating rate in K/day') axis3.set_ylabel('height (km)') axis3.grid(True) lapse_rate = -7.e-3 Tinit,height = init_profs(inputs,lapse_rate) main(Tinit,height,**inputs) ###Output _____no_output_____ ###Markdown Answer ###Code def evolve(Temp,height,r_gas=None, k=None,p_surf=None,delta_t=None,delta_z=None, num_timesteps=None,num_levels=None,E_solar=None, T_surf=None): """ find the heating rate (K/km) for a hydrostatic atmosphere with a constant decrease of temperature with heigt """ sigma=5.67e-8 dT_dz = np.ones([num_levels])*(-7.e-3) # # 2-D array to store the T_surf and time in seconds for # each timestep # nvars=2 keep_sfc = np.empty([nvars,num_timesteps]) # # 3-d array to store # Temp,tau,up,down,and dT_dt every timestep # Note that you'll need to append an extra point to the top # of dT_dt to make it the same length as the other variables # just use dT_dt[-1] # nvars=5 keep_vals=np.empty([nvars,num_levels,num_timesteps]) press,rho=hydrostat(Temp,height,p_surf) for time_index in range(num_timesteps): # tau=find_tau(r_gas,k,rho,height) up,down,T_surf=fluxes(tau,Temp,height,E_solar) # # save the surface flux and time # keep_sfc[0,time_index] =T_surf keep_sfc[1,time_index]=time_index*delta_t net_down = down - up # # find the heating rate and advance one timestep # dT_dt=heating_rate(net_down,height,rho) dT_dt_p1 = np.append(dT_dt,dT_dt[-1]) Temp = Temp + dT_dt_p1*delta_t # # save all the profiles for this timestep # for i,the_vec in enumerate([Temp,tau,up,down,dT_dt_p1]): keep_vals[i,:,time_index]=the_vec # # build a new atmosphere # press,rho=hydrostat(Temp,height,p_surf) #breakpoint() return keep_vals,keep_sfc inputs=dict( r_gas=0.01, #kg/kg k=0.02, #m^2/kg E_solar = 240, p_surf=100.e3, #Pa delta_z=100, #m delta_t = 1800., num_timesteps=7000, num_levels=200, T_surf=310. ) lapse_rate = -7.e-3 Tinit,height = init_profs(inputs,lapse_rate) keep_vals,keep_sfc=evolve(Tinit,height,**inputs) # # Take a look at the last timestep # frame0 = keep_vals[:,:,-1] df=pd.DataFrame(frame0.T,columns=['Temp','tau','up','down','dT_dt']) fig_dir = Path() / 'figures' fig_dir.mkdir(exist_ok=True, parents=True) def make_plot(df): """ Plot the columns of the dataframe in nice units """ fig,(axis1,axis2,axis3,axis4)=plt.subplots(1,4,figsize=(16,10)) axis1.plot('up',height*0.001,'b',data=df,lw=5,label='upward flux') axis1.plot('down',height*0.001,'g',data=df,lw=5,label='downward flux') axis1.set_title('upward and downward fluxes') axis1.set_xlabel('flux $(W\,m^{-2}$') axis1.set_ylabel('height (km)') axis1.legend(numpoints=1,loc='best') axis1.grid(True) net_down = df['down'] - df['up'] axis2.plot(net_down,height*0.001,'b-',lw=5) axis2.set_title('net downward flux') axis2.set_xlabel('net downward flux $(W\,m^{-2})$') axis2.grid(True) df['dT_dt_day']=df['dT_dt']*3600.*24. axis3.plot('dT_dt_day',height*0.001,'b-',data=df,lw=5) axis3.set_title('heating rate') axis3.set_xlabel('heating rate in K/day') axis3.grid(True) varname='Temp' axis4.plot(varname,height*0.001,'b-',data=df,lw=5) axis4.set_title(varname) axis4.set_xlabel(varname) axis4.grid(True) fig.savefig(fig_dir / 'assign7b_fig1.png') make_plot(df) air_temp = keep_vals[0,0,:] df = pd.DataFrame(keep_sfc.T,columns=['sfc_temp','time_seconds']) df['time_days']=df['time_seconds']/3600./24. df['air_temp']=air_temp fig,(ax1,ax2) = plt.subplots(2,1,figsize=(10,10)) varnames=['sfc_temp','air_temp'] for a_name in varnames: ax1.plot('time_days',a_name,data=df,label=a_name,lw=5); ax1.grid(True) ax1.legend() ax1.set_xlabel("Time (days)") ax1.set_ylabel("Temperature (K)") ax1.set_title('surface temp and lowest level temp') dT = keep_vals[0,1,:] - keep_vals[0,0,:] dz = np.diff(height)[0] lapse_rate = dT/dz*1.e3 ax2.plot(df['time_days'],lapse_rate,'b',lw=5) ax2.set_xlabel('time (days)') ax2.set_ylabel('lapse rate near surface (K/km)') ax2.set_title('surface lapse rate') ax2.grid(True) fig.savefig(fig_dir / 'Assign_7b_fig2.png') ###Output _____no_output_____
pokedex_scrape.ipynb
###Markdown ![logo_jupyter.png]() Building a Pokedex in Python: Scraping the Pokemon Sprites (Step 2 of 6) by [PyImageSearch.com](http://www.pyimagesearch.com) Welcome to **[PyImageSearch Plus](http://pyimg.co/plus)** Jupyter Notebooks!This notebook is associated with the [Building a Pokedex in Python: Scraping the Pokemon Sprites (Step 2 of 6)](https://www.pyimagesearch.com/2014/03/24/building-pokedex-python-scraping-pokemon-sprites-step-2-6/) blog post published on 2014-03-24.Only the code for the blog post is here. Most codeblocks have a 1:1 relationship with what you find in the blog post with two exceptions: (1) Python classes are not separate files as they are typically organized with PyImageSearch projects, and (2) Command Line Argument parsing is replaced with an `args` dictionary that you can manipulate as needed.We recommend that you execute (press ▶️) the code block-by-block, as-is, before adjusting parameters and `args` inputs. Once you've verified that the code is working, you are welcome to hack with it and learn from manipulating inputs, settings, and parameters. For more information on using Jupyter and Colab, please refer to these resources:* [Jupyter Notebook User Interface](https://jupyter-notebook.readthedocs.io/en/stable/notebook.htmlnotebook-user-interface)* [Overview of Google Colaboratory Features](https://colab.research.google.com/notebooks/basic_features_overview.ipynb)As a reminder, these PyImageSearch Plus Jupyter Notebooks are not for sharing; please refer to the **Copyright** directly below and **Code License Agreement** in the last cell of this notebook. Happy hacking!*Adrian****Copyright:*** *The contents of this Jupyter Notebook, unless otherwise indicated, are Copyright 2020 Adrian Rosebrock, PyimageSearch.com. All rights reserved. Content like this is made possible by the time invested by the authors. If you received this Jupyter Notebook and did not purchase it, please consider making future content possible by joining PyImageSearch Plus at http://pyimg.co/plus/ today.* Download the code zip file ###Code !wget https://www.pyimagesearch.com/wp-content/uploads/2014/03/pokedex-scrape.zip !unzip -qq pokedex-scrape.zip %cd pokedex-scrape ###Output _____no_output_____ ###Markdown Blog Post Code Import Packages ###Code # import the necessary packages from imutils.paths import list_images from matplotlib import pyplot as plt from bs4 import BeautifulSoup import argparse import requests import random import cv2 ###Output _____no_output_____ ###Markdown Function to display images in Jupyter Notebooks and Google Colab ###Code def plt_imshow(title, image): # convert the image frame BGR to RGB color space and display it image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) plt.title(title) plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown Scraping and Downloading ###Code # construct the argument parser and parse the arguments #ap = argparse.ArgumentParser() #ap.add_argument("-p", "--pokemon-list", required = True, # help = "Path to where the raw Pokemon HTML file resides") #ap.add_argument("-s", "--sprites", required = True, # help = "Path where the sprites will be stored") #args = vars(ap.parse_args()) # since we are using Jupyter Notebooks we can replace our argument # parsing code with *hard coded* arguments and values args = { "pokemon_list": "pokemon_list.html", "sprites": "sprites" } # construct the soup and initialize the list of pokemon # names soup = BeautifulSoup(open(args["pokemon_list"]).read()) names = [] # loop over all link elements for link in soup.findAll("a"): # update the list of pokemon names names.append(link.text) # loop over the pokemon names for name in names: # initialize the parsed name as just the lowercase # version of the pokemon name parsedName = name.lower() # if the name contains an apostrophe (such as in # Farfetch'd, just simply remove it) parsedName = parsedName.replace("'", "") # if the name contains a period followed by a space # (as is the case with Mr. Mime), then replace it # with a dash parsedName = parsedName.replace(". ", "-") # handle the case for Nidoran (female) if name.find(u'\u2640') != -1: parsedName = "nidoran-f" # and handle the case for Nidoran (male) elif name.find(u'\u2642') != -1: parsedName = "nidoran-m" # construct the URL to download the sprite print("[x] downloading {}".format(name)) url = "http://img.pokemondb.net/sprites/red-blue/normal/%s.png" % (parsedName) r = requests.get(url) # if the status code is not 200, ignore the sprite if r.status_code != 200: print("[x] error downloading {}".format(name)) continue # write the sprite to file f = open("{}/{}.png".format(args["sprites"], name.lower()), "wb") f.write(r.content) f.close() ###Output _____no_output_____ ###Markdown Display Pokemon Sprites ###Code # list path to all the sprite images and randomly select # ten image paths spritePaths = list(list_images(args["sprites"])) spritePaths = random.choices(spritePaths, k=10) # loop over all sprite iamge paths and display the sprite # images for spritePath in spritePaths: image = cv2.imread(spritePath) plt_imshow("output", image) ###Output _____no_output_____
python_utils/UD6 vs UD7 performance comparison.ipynb
###Markdown UD6 vs UD7 phase2 performance comparisonThe test protocol consists of solving the 100 sample cubes and as many cubes as possible in 10 seconds. Two warmup runs were ran before the final sampling run. About 350 ~ 450 samples were collected in total. ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from scipy import stats sns.set(rc={'figure.figsize': (14, 8)}) sns.set_theme(style="ticks", palette="pastel") df_ud6 = pd.read_csv("data/UD6_vs_UD7/ud6_benchmarks.csv") df_ud6.describe() df_ud7 = pd.read_csv("data/UD6_vs_UD7/ud7_benchmarks.csv") df_ud7.describe() data = [df_ud6["phase2_solve_time"], df_ud7["phase2_solve_time"]] headers = ["ud6_phase2_solve_time", "ud7_phase2_solve_time"] df = pd.concat(data, axis=1, keys=headers) df.describe() ax = sns.boxplot(data=df, showfliers=False) ax.set( title="Solution Length, per phase", xlabel='Solution Length', ylabel='Length' ) stats.mannwhitneyu(df_ud6["phase2_solve_time"], df_ud7["phase2_solve_time"]) ###Output _____no_output_____
docs/source/Tutorials/archive/Tutorial 1.ipynb
###Markdown This notebook demonstrates a basic workflow of using the packerlabimaging package. The fundamental types of imaging trials accepted for this workflow are: - 2photon imaging - All Optical Experiment (2photon imaging + optogenetic stimulation) - Suite2p processing results outputThis tutorial is based off an existing 2photon experiment that includes various trials of 2photon imaging and All optical experiments: ###Code display.Image("/home/pshah/Documents/code/packerlabimaging/files/packerlabimaging-tutorial-exp-outline.png") ###Output _____no_output_____ ###Markdown ![example experiment setup for package pipeline] (packerlabimaging/files/packerlabimaging-tutorial-exp-outline.png "title") INITIALIZING ALLOPTICAL + TWOPHOTON IMAGING EXPERIMENT OBJECT FROM SCRATCH ###Code # experiment dictionary initialization_dict = { 'dataPath': '/home/pshah/mnt/qnap/Data/2020-12-19', 'analysisSavePath': '/home/pshah/Documents/code/packerlabimaging/tests/', 'microscope': "Bruker", "expID": 'RL109', 'date': '2020-12-19', 'comments': 'testing out analysis workflow', 'trialsInformation': {}, 'useSuite2p': True, 's2pResultsPath': "/home/pshah/mnt/qnap/Analysis/2020-12-19/suite2p/alloptical-2p-1x-alltrials/plane0" } # add information about each trial in experiment to trialsInformation field of the initialization_dict trials_list_spont = ['t-005', 't-006'] for idx, trial in enumerate(trials_list_spont): data_path_base = '/home/pshah/mnt/qnap/Data/2020-12-19' animal_prep = initialization_dict['expID'] date = data_path_base[-10:] ## everything below should autopopulate and run automatically paqs_loc = '%s/%s_%s_%s.paq' % (data_path_base, date, animal_prep, trial[2:]) # path to the .paq files for the selected trials tiffs_loc = f'{data_path_base}/{date}_{trial}/{date}_{trial}_Cycle00001_Ch3.tif' initialization_dict["trialsInformation"][trial] = {'trialType': 'TwoPhotonImagingTrial', 'tiff_path': f"{tiffs_loc}", 's2p_use': True, 'expGroup': "pre 4ap 2p spont imaging", 'paq_path': paqs_loc } trials_list_alloptical = ['t-013'] naparms_list = {'t-013': '/home/pshah/mnt/qnap/Data/2020-12-19/photostim/2020-12-19_RL109_ps_014/'} for idx, trial in enumerate(trials_list_alloptical): data_path_base = '/home/pshah/mnt/qnap/Data/2020-12-19' animal_prep = initialization_dict['expID'] date = data_path_base[-10:] ## everything below should autopopulate and run automatically paqs_loc = '%s/%s_%s_%s.paq' % (data_path_base, date, animal_prep, trial[2:]) # path to the .paq files for the selected trials tiffs_loc = f'{data_path_base}/{date}_{trial}/{date}_{trial}_Cycle00001_Ch3.tif' initialization_dict["trialsInformation"][trial] = {'trialType': 'AllOpticalTrial', 'tiff_path': f"{tiffs_loc}", 's2p_use': True, 'expGroup': "pre 4ap 2p all optical", 'paq_path': paqs_loc, 'naparm_path': naparms_list[trial] } ###Output _____no_output_____
workbook/work6_numpy.ipynb
###Markdown Numpynumpy means numeric in python.It is used to handle matrix and array operation involving numbers.Its similar to list but more advanced and only used for numerical operations. Installation of numpy, scipy and pandas ###Code !pip install numpy def array_propeties(a): print("array = \n", a) print("dimension = ", a.ndim) print("shape = ",a.shape) print("data type =",a.dtype) print("size = ", a.size) print() # import a package an give it an alias as np # doing this we can type np when using the packages functionns import numpy as np # Creating a rowsxcolumn numpy array a = np.array( [ [1,2,3], [4,5,6], [7,8,9] ] ) print(a) # number of dimension print(a.ndim) # shape of array ie 3x3 print(a.shape) # number of elements print(a.size) print(type(a)) # creating a 3x3 python list alist = [ [1,2,3], [4,5,6], [7,8,9] ] print(alist ) print(type(alist)) import numpy as np ## converting python list to numpy array blist = [1,2,3,4] print(blist) b = np.array(blist) print(b) print("array = \n", b) print("dimension = ", b.ndim) print("shape = ",b.shape) print("data type =",b.dtype) print("size = ", b.size) print() # if list contain string everything is converted to a datatype that is a union of value since we mix different datatype clist = [1, "ali", 2, "python"] c = np.array(clist) print("array = \n", c) print("dimension = ", c.ndim) print("shape = ",c.shape) # print("data type =",c.dtype) print("size = ", c.size) print() import numpy as np # python list can only get length of the leading dimension alist = [ [1,2,3], [4,5,6], [7,8,9] ] print(alist) print(len(alist)) a = np.array(alist) print("array = \n", a) print("dimension = ", a.ndim) print("shape = ",a.shape) print("data type =",a.dtype) print("size = ", a.size) print() ## creating np array of different shapes # one by 3 import numpy as np onebythree = np.array([[11,12,13]]) array_propeties(onebythree) fourbyone = np.array([[21],[22],[23],[24]]) array_propeties(fourbyone) ## Specifying datatype ## initialize elements as float a= np.array( [ [11,12,13] ], dtype='float' ) array_propeties(a) ## initialize elements as float32 a= np.array( [ [11,12,13] ], dtype='float32' ) array_propeties(a) ## initialize elements as int64 a= np.array( [ [11,12,13] ], dtype='int64' ) array_propeties(a) ## if no type are specified it will get the biggest datatype of elements a= np.array( [ #in this case is a float32 or float64 depending on your os [11.,12,13] ] ) array_propeties(a) a = np.array([ [21], [22], [31], [0] ], dtype='float32') array_propeties(a) ## unsigned integer in 8 bits, uint8 datatype # Min value is 0 and max value is 255 because 8 bit can only hold max 11111111 in 8 bit which is 255. a = np.array([ [21], [22], [31], [0] ], dtype='uint8') array_propeties(a) # int8 is a signed 8 bit # min value is -128 # max is 127 ## np.arange is similar to range() import numpy as np # seq_a = array of 1 to 10-1 seq_a = np.arange(1,10) array_propeties(seq_a) # like range(star,stop,step) np.arange(start,stop,step) seq_a = np.arange(1,10,2) array_propeties(seq_a) a10 = np.arange(10) print(a10) for n in range(10): print(n,end=' | ') for n in a10: print(n,end=' | ') start =1 stop = 10+1 step =2 ar10b = np.arange(start,stop,step) # np array datatype can be changed ar10b = np.uint8(ar10b) array_propeties(ar10b) # np.arrange() can be used to replace range() for n in ar10b: print(n,end=' | ') ###Output array = [1 3 5 7 9] dimension = 1 shape = (5,) data type = uint8 size = 5 1 | 3 | 5 | 7 | 9 | ###Markdown Class Activitycreate an array of integers [0,5,15,...,100] ###Code a100 = np.arange(0,100+1,5) array_propeties(a100) ###Output array = [ 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] dimension = 1 shape = (21,) data type = int32 size = 21 ###Markdown np.linspace() ###Code # create array of floating point value of a specific size import numpy as np seq_a2 = np.linspace(1,10,15) array_propeties(seq_a2) import numpy as np start = 0 stop = 10 size = 10 seq_a2 = np.linspace(start,stop,size) array_propeties(seq_a2) # when we stop counting at 10 but the size is 10(which mean last index is 9), # the value other than start and stop are added with some value # so the total will still be the value of stop(in this case 10) # this is called an interpolation start = 0 stop = 10 size = 11 # if size given is 11 then it is printed as how we normally count # because the last index is 10 which fits value 0 to 10. # so no interpolation happens here seq_a2 = np.linspace(start,stop,size) array_propeties(seq_a2) ## in summary depending on the start size and stop the value would look like this # index-->value # 0-->start # 1-->1.x # 2-->2.x # . # . # stop-->stop # creating array of zeros import numpy as np rows=1 column = 10 arr0 = np.zeros((rows,column)) array_propeties(arr0) # creating array of ones import numpy as np rows=1 column = 10 arr0 = np.zeros((rows,column)) array_propeties(arr0) ## their datatype are float64 by default, you can change them using dtype rows=1 column = 10 arr0 = np.zeros((rows,column),dtype='int32') array_propeties(arr0) # creating array of ones import numpy as np rows=1 column = 10 arr0 = np.zeros((rows,column),dtype='uint8') array_propeties(arr0) ## creating multiple dimension np array # 3d array of 4 by 5 by 3 zer_4_5_3 = np.zeros((4,5,3)) print(zer_4_5_3) array_propeties(zer_4_5_3) # 4d array of 4 by 5 by 3 by 2 zer_4_5_3_2 = np.zeros((4,5,3,2)) print(zer_4_5_3_2) array_propeties(zer_4_5_3_2) import numpy as np a14 = np.arange(14+1) # array_propeties(a14) # reshape_a= a14.reshape((4,-1)) # array_propeties(reshape_a) if (a14.size % 4)==0: reshape_a = a14.reshape((4,-1)) print(reshape_a.shape) else: eshape_a = a14.reshape((3,-1)) print(reshape_a.shape) ###Output (3, 5) ###Markdown 2d array ###Code ## resize import numpy as np a1 = np.arange(1,17) a2=np.resize(a1,(4,4)) array_propeties(a2) print(a2) # get all elements in row 2 print(f"Elements in row 2 : {a2[1,:]}") ## the , after 1 in a2[1,:] means only, meaning we only print elemenets in 1st row(the second row) from all columns # alternative get elents in row 2, this only work on 1d array print("Elements in row 2",a2[1]) # get all value in column 2 or dimension 2 print(f"Elements in col 2 = ", a2[:,1]) ###Output Elements in col 2 = [ 2 6 10 14] ###Markdown 3d array ###Code import numpy as np a3 = np.arange(1,9).reshape((2,2,2)) array_propeties(a3) ## accessing 3d array elements print(a3[0,1,1]) # print(a3[0,1,:]) # : means all, in this case it means print all values in ###Output 4 [3 4] ###Markdown Changing Array Element ###Code import numpy as np a3x3 = np.arange(1,10).reshape((3,-1)) print(a3x3) # print value 6 print(a3x3[1,2]) # change value 8 to 18 a3x3=np.array([[1,2,3], [4, 5, 6], [7, 8, 9]]) print(a3x3) print(a3x3[2,1]) a3x3[2,1] = 18 print(a3x3) print(a3x3[2,1]) import numpy as np a1 = np.arange(9) array_propeties(a1) print("Third elements: ",a1[2]) a1[2]= a1[2] ** 2 print('Third element squared: ', a1[2]) # 3^2 = 9 3**2 ###Output _____no_output_____ ###Markdown Class activity1. create an array of shape(2,5) and another array b of shape (3,5).2. create another array c = a3. change array c row 2 array to sum of array a row2 and b row2. ###Code a = np.arange(1,11).reshape((2,5)) array_propeties(a) b = np.arange(1,15+1).reshape((3,5)) array_propeties(b) c = np.copy(a) array_propeties(c) c[1,:] = a[1,:]+b[1,:] print(c) ###Output array = [[ 1 2 3 4 5] [ 6 7 8 9 10]] dimension = 2 shape = (2, 5) data type = int32 size = 10 array = [[ 1 2 3 4 5] [ 6 7 8 9 10] [11 12 13 14 15]] dimension = 2 shape = (3, 5) data type = int32 size = 15 array = [[ 1 2 3 4 5] [ 6 7 8 9 10]] dimension = 2 shape = (2, 5) data type = int32 size = 10 [[ 1 2 3 4 5] [12 14 16 18 20]] ###Markdown ADVANCED NUMPY INDEXING AND OPERATIONS Array slicing ###Code import numpy as np # create random array with value from 0 to 1000 with shape 5 3 a5x3 = np.random.randint(0,1000,(5,3)) array_propeties(a5x3) # print 142 from array a5x3 print(a5x3[3,1]) # Change 2D ARRAY TO 1D ARRAY # change a5x3 to 1d ##using flatten a53 = a5x3.flatten() print(a53) array_propeties(a53) # 2d to n1d uasing reshape a15x_= a5x3.reshape((15,-1)) array_propeties(a15x_) a15x_= a5x3.reshape((1,15)) array_propeties(a15x_) # 2d arrray to 1 d using ravel # different between flatten and ravel # flatten make a copy of array and odify, # while ravel is a view of the original array, so changes make in ravel changes the otriginal array too. a53b = a5x3.ravel() array_propeties(a53b) ###Output _____no_output_____ ###Markdown class acivity1. create an array of shape (5,5,3) of datatype float322. create an array of c, of 1dimension from array a ###Code a = np.arange(75,dtype='float32').reshape(5,5,3) # array_propeties(a) a1d = a.flatten() array_propeties(a1d) import numpy as np a5 = np.arange(1,(5+1),dtype=np.float32) print(a5) #this one wont work # a5x5x3 = a5.reshape((5,5,3)) #this will only return none # a5x5x3 = a5.resize((5,5,3)) # print(a5x5x3) #This will work, it will repeat the values to fill value to fit the new array size a5x5x3 = np.resize(a5,(5,5,3)) print(a5x5x3) import numpy as np start = 1 stop = 3 a3 = np.arange ## NEGATIVE INDEX stop = 9 a1= np.arange(stop) print("first element ",a1[0]) # print by index counted from last index print("first element ",a1[-9]) ## SLICING print("even number", a1[0:stop:2]) # a1[start:end:step] print("odd number", a1[1:stop:2]) # You can use this to print 2 to 7 but its tedious a1d = np.arange(10) # get 2 t0 7 a2i = a1d[2] a3i = a1d[3] a4i = a1d[4] a5i = a1d[5] a6i = a1d[6] a7i = a1d[7] result = np.array([a2i,a3i,a4i,a5i,a6i,a7i]) print(result) # instead use slicing a2to7 = a1d[2:(7+1)] array_propeties(a2to7) import numpy as np a2d = np.arange(10) a2d = np.resize(a2d,(5,5)) array_propeties(a2d) # what is the value of row 2 #[5,6,7,8,9] print(a2d[1,:])# from row 2, prit all value in it # this is the best way to get values from ro2 2 to 4 print(a2d[1:4,:]) #or this, but this one only work on 1d print(a2d[1:4]) a2d = np.arange(1,26) a2d = np.resize(a2d,(5,5)) print(a2d) # # get [7 8 9] # print(a2d[1,2:]) # # get [12,13,14] # print(a2d[2,2:]) # # [17,18,19] # print(a2d[3,2:]) # or get them all at once # start end step # print(a2d[1:4,1:4]) # start:stop:step # step 2 on rows and 3 of columns result = a2d[::2,::3] print(result) bool_odd = np.array([False,True,False,True,False,True,False,True]) print(bool_odd.index()) import numpy as np a9 = np.arange(1,10) i_even=np.array([1,3,5,7]) i_odd =np.array([0,2,4,6,8]) bool_odd = np.array([True,False,True,False,True,False,True,False,True]) bool_even = np.array([False,True,False,True,False,True,False,True,False]) print(a9[i_even]) print(a9[i_odd]) print(a9[bool_even]) print(a9[bool_odd]) ###Output [2 4 6 8] [1 3 5 7 9] [2 4 6 8] [1 3 5 7 9] ###Markdown Class activity1. Write the index for even number contain in the my_arr below 28=[0,1],22=[0,5] 50 =[1,0],92=[1,1],66 = [1,2],98 = [1,3],74 = [1,6] 44=[2,0],60=[2,5],98[2,6] 96=[3,0],38=[3,1] 8=[4,3],66=[4,4],92=[4,5],62=[4,6]2. write index of number divisible by 5.75 = [0,0]50 = [1,0]85= [2,2],35 = [2,3],60 = [2,4]55 =[3,2] ###Code import numpy as np my_arr = np.random.randint(1,100,(5,7)) array_propeties(my_arr) # each value are remainder of og value divide by 5 ibooldiv5 = my_arr % 5 array_propeties(ibooldiv5) # assign boolean value True if value is now 0, and False otherwise ibooldiv5 = ibooldiv5 == 0 array_propeties(ibooldiv5) # use the new boolean array for indexing result = my_arr[ibooldiv5] print(result) ###Output [55 40 45 5 15]
Lesson13.ipynb
###Markdown if文(if, else) ###Code x = 5 y = 4 if (x<y): print ('A') else: print ('B') ###Output _____no_output_____
src/FEM_Order.ipynb
###Markdown Number of elements and frequency ###Code N_set = np.concatenate(( np.linspace(1e01, 1e02, 6, endpoint=False, dtype=int), np.linspace(1e02, 1e03, 9, endpoint=False, dtype=int), np.linspace(1e03, 1e04, 10, endpoint=True, dtype=int), )) k_set = np.linspace(0, 200, 9)[1:] * (np.pi / 2) # N_set = np.linspace(2, 100, 25, endpoint=False, dtype=int) # k_set = np.linspace(0, 8, 9)[1:] * np.pi / 2 ###Output _____no_output_____ ###Markdown Defining the parameters of the equation ###Code f = lambda x: 1 # Source function a, b = -1, +1 # Domain ga, gb = 0, 1 # Values at the boundaries ###Output _____no_output_____ ###Markdown Solving the equation ###Code errors = [] for k in k_set: errors_k = [] # Exact solution exact = Exact_HelmholtzImpedance([f(0), 0], k, a, b, ga, gb, source='const') exact.verify() u, u_x, u_xx = exact() # Numerical solutions for N in N_set: print('Solving for' + f' k = {round(k / (np.pi / 2))}π/2,'.ljust(12) + f' N = {N}'.ljust(12) + ' in progress...') solver = FEM_HelmholtzImpedance(f(0), k, a, b, ga, gb, N=N, N_quad=100, source='const') solver.solve() r = solver.sol r_x = solver.der errors_k.append(solver.H1_error(u, u_x)) errors.append(errors_k) ###Output Solving for k = 25π/2, N = 10 in progress... Solving for k = 25π/2, N = 25 in progress... Solving for k = 25π/2, N = 40 in progress... Solving for k = 25π/2, N = 55 in progress... Solving for k = 25π/2, N = 70 in progress... Solving for k = 25π/2, N = 85 in progress... Solving for k = 25π/2, N = 100 in progress... Solving for k = 25π/2, N = 200 in progress... Solving for k = 25π/2, N = 300 in progress... Solving for k = 25π/2, N = 400 in progress... Solving for k = 25π/2, N = 500 in progress... Solving for k = 25π/2, N = 600 in progress... Solving for k = 25π/2, N = 700 in progress... Solving for k = 25π/2, N = 800 in progress... Solving for k = 25π/2, N = 900 in progress... Solving for k = 25π/2, N = 1000 in progress... Solving for k = 25π/2, N = 2000 in progress... Solving for k = 25π/2, N = 3000 in progress... Solving for k = 25π/2, N = 4000 in progress... Solving for k = 25π/2, N = 5000 in progress... Solving for k = 25π/2, N = 6000 in progress... Solving for k = 25π/2, N = 7000 in progress... Solving for k = 25π/2, N = 8000 in progress... Solving for k = 25π/2, N = 9000 in progress... Solving for k = 25π/2, N = 10000 in progress... Solving for k = 50π/2, N = 10 in progress... Solving for k = 50π/2, N = 25 in progress... Solving for k = 50π/2, N = 40 in progress... Solving for k = 50π/2, N = 55 in progress... Solving for k = 50π/2, N = 70 in progress... Solving for k = 50π/2, N = 85 in progress... Solving for k = 50π/2, N = 100 in progress... Solving for k = 50π/2, N = 200 in progress... Solving for k = 50π/2, N = 300 in progress... Solving for k = 50π/2, N = 400 in progress... Solving for k = 50π/2, N = 500 in progress... Solving for k = 50π/2, N = 600 in progress... Solving for k = 50π/2, N = 700 in progress... Solving for k = 50π/2, N = 800 in progress... Solving for k = 50π/2, N = 900 in progress... Solving for k = 50π/2, N = 1000 in progress... Solving for k = 50π/2, N = 2000 in progress... Solving for k = 50π/2, N = 3000 in progress... Solving for k = 50π/2, N = 4000 in progress... Solving for k = 50π/2, N = 5000 in progress... Solving for k = 50π/2, N = 6000 in progress... Solving for k = 50π/2, N = 7000 in progress... Solving for k = 50π/2, N = 8000 in progress... Solving for k = 50π/2, N = 9000 in progress... Solving for k = 50π/2, N = 10000 in progress... Solving for k = 75π/2, N = 10 in progress... Solving for k = 75π/2, N = 25 in progress... Solving for k = 75π/2, N = 40 in progress... Solving for k = 75π/2, N = 55 in progress... Solving for k = 75π/2, N = 70 in progress... Solving for k = 75π/2, N = 85 in progress... Solving for k = 75π/2, N = 100 in progress... Solving for k = 75π/2, N = 200 in progress... Solving for k = 75π/2, N = 300 in progress... Solving for k = 75π/2, N = 400 in progress... Solving for k = 75π/2, N = 500 in progress... Solving for k = 75π/2, N = 600 in progress... Solving for k = 75π/2, N = 700 in progress... Solving for k = 75π/2, N = 800 in progress... Solving for k = 75π/2, N = 900 in progress... Solving for k = 75π/2, N = 1000 in progress... Solving for k = 75π/2, N = 2000 in progress... Solving for k = 75π/2, N = 3000 in progress... Solving for k = 75π/2, N = 4000 in progress... Solving for k = 75π/2, N = 5000 in progress... Solving for k = 75π/2, N = 6000 in progress... Solving for k = 75π/2, N = 7000 in progress... Solving for k = 75π/2, N = 8000 in progress... Solving for k = 75π/2, N = 9000 in progress... Solving for k = 75π/2, N = 10000 in progress... Solving for k = 100π/2, N = 10 in progress... Solving for k = 100π/2, N = 25 in progress... Solving for k = 100π/2, N = 40 in progress... Solving for k = 100π/2, N = 55 in progress... Solving for k = 100π/2, N = 70 in progress... Solving for k = 100π/2, N = 85 in progress... Solving for k = 100π/2, N = 100 in progress... Solving for k = 100π/2, N = 200 in progress... Solving for k = 100π/2, N = 300 in progress... Solving for k = 100π/2, N = 400 in progress... Solving for k = 100π/2, N = 500 in progress... Solving for k = 100π/2, N = 600 in progress... Solving for k = 100π/2, N = 700 in progress... Solving for k = 100π/2, N = 800 in progress... Solving for k = 100π/2, N = 900 in progress... Solving for k = 100π/2, N = 1000 in progress... Solving for k = 100π/2, N = 2000 in progress... Solving for k = 100π/2, N = 3000 in progress... Solving for k = 100π/2, N = 4000 in progress... Solving for k = 100π/2, N = 5000 in progress... Solving for k = 100π/2, N = 6000 in progress... Solving for k = 100π/2, N = 7000 in progress... Solving for k = 100π/2, N = 8000 in progress... Solving for k = 100π/2, N = 9000 in progress... Solving for k = 100π/2, N = 10000 in progress... Solving for k = 125π/2, N = 10 in progress... Solving for k = 125π/2, N = 25 in progress... Solving for k = 125π/2, N = 40 in progress... Solving for k = 125π/2, N = 55 in progress... Solving for k = 125π/2, N = 70 in progress... Solving for k = 125π/2, N = 85 in progress... Solving for k = 125π/2, N = 100 in progress... Solving for k = 125π/2, N = 200 in progress... Solving for k = 125π/2, N = 300 in progress... Solving for k = 125π/2, N = 400 in progress... Solving for k = 125π/2, N = 500 in progress... Solving for k = 125π/2, N = 600 in progress... Solving for k = 125π/2, N = 700 in progress... Solving for k = 125π/2, N = 800 in progress... Solving for k = 125π/2, N = 900 in progress... Solving for k = 125π/2, N = 1000 in progress... Solving for k = 125π/2, N = 2000 in progress... Solving for k = 125π/2, N = 3000 in progress... Solving for k = 125π/2, N = 4000 in progress... Solving for k = 125π/2, N = 5000 in progress... Solving for k = 125π/2, N = 6000 in progress... Solving for k = 125π/2, N = 7000 in progress... Solving for k = 125π/2, N = 8000 in progress... Solving for k = 125π/2, N = 9000 in progress... Solving for k = 125π/2, N = 10000 in progress... Solving for k = 150π/2, N = 10 in progress... Solving for k = 150π/2, N = 25 in progress... Solving for k = 150π/2, N = 40 in progress... Solving for k = 150π/2, N = 55 in progress... Solving for k = 150π/2, N = 70 in progress... Solving for k = 150π/2, N = 85 in progress... Solving for k = 150π/2, N = 100 in progress... Solving for k = 150π/2, N = 200 in progress... Solving for k = 150π/2, N = 300 in progress... Solving for k = 150π/2, N = 400 in progress... Solving for k = 150π/2, N = 500 in progress... Solving for k = 150π/2, N = 600 in progress... Solving for k = 150π/2, N = 700 in progress... Solving for k = 150π/2, N = 800 in progress... Solving for k = 150π/2, N = 900 in progress... Solving for k = 150π/2, N = 1000 in progress... Solving for k = 150π/2, N = 2000 in progress... Solving for k = 150π/2, N = 3000 in progress... Solving for k = 150π/2, N = 4000 in progress... Solving for k = 150π/2, N = 5000 in progress... Solving for k = 150π/2, N = 6000 in progress... Solving for k = 150π/2, N = 7000 in progress... Solving for k = 150π/2, N = 8000 in progress... Solving for k = 150π/2, N = 9000 in progress... Solving for k = 150π/2, N = 10000 in progress... Solving for k = 175π/2, N = 10 in progress... Solving for k = 175π/2, N = 25 in progress... Solving for k = 175π/2, N = 40 in progress... Solving for k = 175π/2, N = 55 in progress... Solving for k = 175π/2, N = 70 in progress... Solving for k = 175π/2, N = 85 in progress... Solving for k = 175π/2, N = 100 in progress... Solving for k = 175π/2, N = 200 in progress... Solving for k = 175π/2, N = 300 in progress... Solving for k = 175π/2, N = 400 in progress... Solving for k = 175π/2, N = 500 in progress... Solving for k = 175π/2, N = 600 in progress... Solving for k = 175π/2, N = 700 in progress... Solving for k = 175π/2, N = 800 in progress... Solving for k = 175π/2, N = 900 in progress... Solving for k = 175π/2, N = 1000 in progress... Solving for k = 175π/2, N = 2000 in progress... Solving for k = 175π/2, N = 3000 in progress... Solving for k = 175π/2, N = 4000 in progress... Solving for k = 175π/2, N = 5000 in progress... Solving for k = 175π/2, N = 6000 in progress... Solving for k = 175π/2, N = 7000 in progress... Solving for k = 175π/2, N = 8000 in progress... Solving for k = 175π/2, N = 9000 in progress... Solving for k = 175π/2, N = 10000 in progress... Solving for k = 200π/2, N = 10 in progress... Solving for k = 200π/2, N = 25 in progress... Solving for k = 200π/2, N = 40 in progress... Solving for k = 200π/2, N = 55 in progress... Solving for k = 200π/2, N = 70 in progress... Solving for k = 200π/2, N = 85 in progress... Solving for k = 200π/2, N = 100 in progress... Solving for k = 200π/2, N = 200 in progress... Solving for k = 200π/2, N = 300 in progress... Solving for k = 200π/2, N = 400 in progress... Solving for k = 200π/2, N = 500 in progress... Solving for k = 200π/2, N = 600 in progress... Solving for k = 200π/2, N = 700 in progress... Solving for k = 200π/2, N = 800 in progress... Solving for k = 200π/2, N = 900 in progress... Solving for k = 200π/2, N = 1000 in progress... Solving for k = 200π/2, N = 2000 in progress... Solving for k = 200π/2, N = 3000 in progress... Solving for k = 200π/2, N = 4000 in progress... Solving for k = 200π/2, N = 5000 in progress... Solving for k = 200π/2, N = 6000 in progress... Solving for k = 200π/2, N = 7000 in progress... Solving for k = 200π/2, N = 8000 in progress... Solving for k = 200π/2, N = 9000 in progress... Solving for k = 200π/2, N = 10000 in progress... ###Markdown Plotting the order of accuracy ###Code plt.rcParams['figure.figsize'] = [10, 5] # H1 error fig, axs = plt.subplots() fig.tight_layout(pad=3.0) for idx, k in enumerate(k_set): axs.plot(N_set, [error[0] for error in errors[idx]], label=f'k = {round(k / (np.pi / 2))}π/2') axs.set(xscale='log', yscale='log', xlabel='N', ylabel='$||u - u^N||_{L^2} + ||u_x - u^N_x||_{L^2}$') axs.grid(which='both') axs.legend() # L2 norm of u error fig, axs = plt.subplots() fig.tight_layout(pad=3.0) for idx, k in enumerate(k_set): axs.plot(N_set, [error[1] for error in errors[idx]], label=f'k = {round(k / (np.pi / 2))}π/2') axs.set(xscale='log', yscale='log', xlabel='N', ylabel='$||u - u^N||_{L^2}$') axs.grid(which='both') axs.legend() # L2 norm of u_x fig, axs = plt.subplots() fig.tight_layout(pad=3.0) for idx, k in enumerate(k_set): axs.plot(N_set, [error[2] for error in errors[idx]], label=f'k = {round(k / (np.pi / 2))}π/2') axs.set(xscale='log', yscale='log', xlabel='N', ylabel='$||u_x - u^N_x||_{L^2}$') axs.grid(which='both') axs.legend() ###Output _____no_output_____
libro_optimizacion/temas/V.optimizacion_de_codigo/5.3/Compilacion_a_C.ipynb
###Markdown (COMPC)= 5.3 Compilación a C ```{admonition} Notas para contenedor de docker:Comando de docker para ejecución de la nota de forma local:nota: cambiar `` por la ruta de directorio que se desea mapear a `/datos` dentro del contenedor de docker.`docker run --rm -v :/datos --name jupyterlab_optimizacion_2 -p 8888:8888 -p 8787:8787 -d palmoreck/jupyterlab_optimizacion_2:3.0.0`password para jupyterlab: `qwerty`Detener el contenedor de docker:`docker stop jupyterlab_optimizacion_2`Documentación de la imagen de docker `palmoreck/jupyterlab_optimizacion_2:3.0.0` en [liga](https://github.com/palmoreck/dockerfiles/tree/master/jupyterlab/optimizacion_2).``` --- ```{admonition} Al final de esta nota el y la lectora::class: tip* Comprenderá diferencias entre lenguajes de programación que son intérpretes y los que requieren/realizan pasos de compilación.* Comprenderá por qué definir tipo de valores en lenguajes que son intérpretes conducen a tiempos de ejecución menores.* Aprenderá lo que es una compilación *ahead of time* (AOT) y *just in time* (JIT). Se mostrarán ejemplos de lenguajes y paquetes que realizan ambos tipos de compilaciones.``` Se presentan códigos y sus ejecuciones en una máquina `m4.16xlarge` de la nube de [AWS](https://aws.amazon.com/). Se utilizó la AMI:```opt2-aws-educate-openblas-02-05-2021``` de la región `us-east-1` (Virginia) para reproducibilidad de resultados. Tal AMI se construyó a partir de una AMI `ubuntu 20.04 - ami-042e8287309f5df03` con el [script_profiling_and_BLAS.sh](https://github.com/palmoreck/scripts_for_useful_tools_installations/blob/main/AWS/ubuntu_20.04/optimizacion_2/script_profiling_and_BLAS.sh) ````{admonition} ComentarioSi se utiliza la *AMI* `opt2-aws-educate-openblas-04-04-2021` colocar en `User data` el siguiente *script*:```bash!/bin/bashvariables:region=us-east-1 make sure instance is in Virginianame_instance=OpenBLASUSER=ubuntuSystem updateapt-get update -yqTag instanceINSTANCE_ID=$(curl -s http://instance-data/latest/meta-data/instance-id)PUBLIC_IP=$(curl -s http://instance-data/latest/meta-data/public-ipv4)sudo -H -u $USER bash -c "/home/$USER/.local/bin/aws ec2 create-tags --resources $INSTANCE_ID --tag Key=Name,Value=$name_instance-$PUBLIC_IP --region=$region"sudo -H -u $USER bash -c "cd / && /home/$USER/.local/bin/jupyter lab --ip=0.0.0.0 --no-browser --config=/home/$USER/.jupyter/jupyter_notebook_config.py &"``````` La máquina `m4.16xlarge` tiene las siguientes características: ###Code %%bash lscpu %%bash sudo lshw -C memory %%bash uname -ar #r for kernel, a for all ###Output Linux ip-10-0-0-140 5.4.0-1038-aws #40-Ubuntu SMP Fri Feb 5 23:50:40 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux ###Markdown ```{admonition} Observación:class: tipEn la celda anterior se utilizó el comando de *magic* `%%bash`. Algunos comandos de *magic* los podemos utilizar también con `import`. Ver [ipython-magics](https://ipython.readthedocs.io/en/stable/interactive/magics.html)``` Características de los lenguajes de programación Los lenguajes de programación y sus implementaciones tienen características como las siguientes:* Realizar un *parsing* de las instrucciones y ejecutarlas de forma casi inmediata (intérprete). Como ejemplo está el lenguaje: [Beginners' All-purpose Symbolic Instruction Code: BASIC](https://en.wikipedia.org/wiki/BASIC)* Realizar un *parsing* de las instrucciones, traducirlas a una [representación intermedia](https://en.wikipedia.org/wiki/Intermediate_representation) (IR) y ejecutarlas. La traducción a una representación intermedia es un [bytecode](https://en.wikipedia.org/wiki/Bytecode). Como ejemplo se encuentra el lenguaje *Python* en su implementación [CPython](https://github.com/python/cpython).* Compilar [ahead of time](https://en.wikipedia.org/wiki/Ahead-of-time_compilation) (AOT) las instrucciones antes de su ejecución. Como ejemplo se encuentran los lenguajes *C, C++* y *Fortran*.* Realizar un *parsing* de las instrucciones y compilarlas en una forma [just in time compilation](https://en.wikipedia.org/wiki/Just-in-time_compilation) (JIT) *at* [runtime](https://en.wikipedia.org/wiki/Runtime_(program_lifecycle_phase)). Como ejemplos se encuentran los lenguajes *Julia* y *Python* en su implementación con [PyPy](https://doc.pypy.org/en/latest/index.html).La ejecución de instrucciones será más rápida dependiendo del lenguaje, la implementación que se haga del mismo y de sus *features*. ```{admonition} Comentarios* Varios proyectos están en desarrollo para mejorar eficiencia y otros temas como el uso del [global interpreter lock](https://docs.python.org/3.9/glossary.htmlterm-global-interpreter-lock) (GIL) en *Python*. Algunos de ellos son: * *PyPy* * *A better API for extending Python in C*: [hpyproject](https://github.com/hpyproject/hpy) * Ver [global interpreter lock](https://en.wikipedia.org/wiki/Global_interpreter_lock) para una explicación más general.* La implementación *CPython* de *Python* es la estándar, pero hay otras más como *PyPy*. Ver [python-vs-cpython](https://stackoverflow.com/questions/17130975/python-vs-cpython) para una breve explicación de implementaciones de Python. Ver [Alternative R implementations](http://adv-r.had.co.nz/Performance.htmlfaster-r) y [R implementations](https://en.wikipedia.org/wiki/R_(programming_language)Implementations) para implementaciones de *R* diferentes a la estándar.``` Cpython Compilación AOT y JIT ```{margin}Es común utilizar la palabra librería en lugar de paquete en el contexto de compilación.``` Una compilación AOT crea una librería, especializada para nuestras máquinas y se puede utilizar de forma instantánea. *Cython* es un paquete que realiza la compilación de módulos de *Python*. Por ejemplo, las librerías de *NumPy*, *SciPy* o *Scikit-learn* instalados vía *pip* o *conda* utilizan *Cython* para compilar secciones de tales librerías adaptadas a nuestras máquinas. Una compilación JIT no requiere que se realice "trabajo previo" de nuestro lado, la compilación se realiza al tiempo que se utiliza el código, *at runtime*. En términos coloquiales, en una compilación JIT, se iniciará la ejecución del código identificando diferentes secciones que pueden compilarse y que por tanto se ejecutarán más lentamente de lo normal pues se estará realizando la compilación al tiempo de ejecución. Sin embargo, en sucesivas ejecuciones del **mismo** código tales secciones serán más rápidas. En resúmen se requiere un *warm-up*, ver por ejemplo [how-fast-is-pypy](https://doc.pypy.org/en/latest/faq.htmlhow-fast-is-pypy). La compilación AOT da los mejores *speedups* pero solicita mayor trabajo de nuestro lado. La compilación JIT da buenos *speedups* con poca intervención nuestra pero utiliza más memoria y más tiempo en iniciar la ejecución del código, ver por ejemplo [python_performance-slide-15](https://raw.githubusercontent.com/vstinner/talks/main/2019-EuroPython/python_performance.pdf) acerca de *PyPy issues*. Para la ejecución frecuente de *scripts* pequeños la compilación AOT resulta una mejor opción que la compilación JIT, ver por ejemplo [couldn't the jit dump and reload already compiled machine code](https://doc.pypy.org/en/latest/faq.htmlcouldn-t-the-jit-dump-and-reload-already-compiled-machine-code). A continuación se presentan ejecuciones en diferentes lenguajes con sus implementaciones estándar para aproximar el área debajo de la curva de $f(x) = e^{-x^2}$ en el intervalo $[0, 1]$ con la regla del rectángulo compuesto. Se mide el tiempo de ejecución utilizando $n = 10^7$ nodos. Python ###Code %%file Rcf_python.py import math import time def Rcf(f,a,b,n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: f (float): function expression of integrand. a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ h_hat = (b-a)/n sum_res = 0 for i in range(n): x = a+(i+1/2)*h_hat sum_res += f(x) return h_hat*sum_res if __name__ == "__main__": n = 10**7 f = lambda x: math.exp(-x**2) a = 0 b = 1 start_time = time.time() res = Rcf(f,a,b,n) end_time = time.time() secs = end_time-start_time print("Rcf tomó", secs, "segundos" ) %%bash python3 Rcf_python.py ###Output Rcf tomó 3.477599620819092 segundos ###Markdown R ###Code %%file Rcf_R.R Rcf<-function(f,a,b,n){ ' Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: f (float): function expression of integrand. a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b ' h_hat <- (b-a)/n sum_res <- 0 for(i in 0:(n-1)){ x <- a+(i+1/2)*h_hat sum_res <- sum_res + f(x) } approx <- h_hat*sum_res } n <- 10**7 f <- function(x)exp(-x^2) a <- 0 b <- 1 system.time(Rcf(f,a,b,n)) %%bash Rscript Rcf_R.R ###Output user system elapsed 5.607 0.063 5.671 ###Markdown Julia Ver: [Julia: performance-tips](https://docs.julialang.org/en/v1/manual/performance-tips/) ###Code %%file Rcf_julia.jl """ Compute numerical approximation using rectangle or mid-point method in an interval. # Arguments - `f::Float`: function expression of integrand. - `a::Float`: left point of interval. - `b::Float`: right point of interval. - `n::Integer`: number of subintervals. """ function Rcf(f, a, b, n) h_hat = (b-a)/n sum_res = 0 for i in 0:n-1 x = a+(i+1/2)*h_hat sum_res += f(x) end return h_hat*sum_res end function main() a = 0 b = 1 n =10^7 f(x) = exp(-x^2) @time Rcf(f, a, b, n) @time Rcf(f, a, b, n) end main() %%bash /usr/local/julia-1.6.0/bin/julia Rcf_julia.jl ###Output 0.231283 seconds 0.231448 seconds ###Markdown (RCFJULIATYPEDVALUES)= `Rcf_julia_typed_values.jl` ###Code %%file Rcf_julia_typed_values.jl """ Compute numerical approximation using rectangle or mid-point method in an interval. # Arguments - `f::Float`: function expression of integrand. - `a::Float`: left point of interval. - `b::Float`: right point of interval. - `n::Integer`: number of subintervals. """ function Rcf(f, a, b, n) h_hat = (b-a)/n sum_res = 0.0 for i in 0:n-1 x = a+(i + 1/2)*h_hat sum_res += f(x) end return h_hat*sum_res end function main() a = 0.0 b = 1.0 n =10^7 f(x) = exp(-x^2) @time Rcf(f, a, b, n) @time Rcf(f, a, b, n) end main() %%bash /usr/local/julia-1.6.0/bin/julia Rcf_julia_typed_values.jl ###Output 0.124739 seconds 0.124905 seconds ###Markdown C Para la medición de tiempos se utilizaron las ligas: [measuring-time-in-millisecond-precision](https://stackoverflow.com/questions/16764276/measuring-time-in-millisecond-precision) y [find-execution-time-c-program](https://www.techiedelight.com/find-execution-time-c-program/). (RCFC)= `Rcf_c.c` ###Code %%file Rcf_c.c #include<stdio.h> #include<stdlib.h> #include<math.h> #include<time.h> #include <sys/time.h> void Rcf(double ext_izq, double ext_der, int n,\ double *sum_res_p); double f(double nodo); int main(int argc, char *argv[]){ double sum_res = 0.0; double a = 0.0, b = 1.0; int n = 1e7; struct timeval start; struct timeval end; long seconds; long long mili; gettimeofday(&start, NULL); Rcf(a,b,n,&sum_res); gettimeofday(&end, NULL); seconds = (end.tv_sec - start.tv_sec); mili = 1000*(seconds) + (end.tv_usec - start.tv_usec)/1000; printf("Tiempo de ejecución: %lld milisegundos", mili); return 0; } void Rcf(double a, double b, int n, double *sum){ double h_hat = (b-a)/n; double x = 0.0; int i = 0; *sum = 0.0; for(i = 0; i <= n-1; i++){ x = a+(i+1/2.0)*h_hat; *sum += f(x); } *sum = h_hat*(*sum); } double f(double nodo){ double valor_f; valor_f = exp(-pow(nodo,2)); return valor_f; } %%bash gcc -Wall Rcf_c.c -o Rcf_c.out -lm %%bash ./Rcf_c.out ###Output Tiempo de ejecución: 478 milisegundos ###Markdown ¿Por qué dar información sobre el tipo de valores (u objetos) que se utilizan en un código ayuda a que su ejecución sea más rápida? *Python* es *dynamically typed* que se refiere a que un objeto de cualquier tipo y cualquier *statement* que haga referencia a un objeto, **pueden cambiar su tipo**. Esto hace difícil que la máquina virtual pueda optimizar la ejecución del código pues no se conoce qué tipo será utilizado para las operaciones futuras. Por ejemplo: ###Code v = -1.0 print(type(v), abs(v)) v = 1 - 1j print(type(v), abs(v)) ###Output <class 'complex'> 1.4142135623730951 ###Markdown La función `abs` trabaja diferente dependiendo del tipo de objeto. Para un número entero o punto flotante regresa el negativo de $-1.0$ y para un número complejo calcula una norma Euclidiana tomando de $v$ su parte real e imaginaria: $\text{abs}(v) = \sqrt{v.real^2 + v.imag^2}$.Lo anterior en la práctica implica la ejecución de más instrucciones y por tanto mayor tiempo en ejecutarse. Antes de llamar a `abs` en la variable, *Python* revisa el tipo y decide cuál método llamar (*overhead*). ```{admonition} Comentarios* Además cada número en *Python* está *wrapped up* en un objeto de *Python* de alto nivel. Por ejemplo para un entero se tiene el objeto `int`. Tal objeto tiene otras funciones por ejemplo `__str__` para imprimirlo.* Es muy común que en los códigos no cambien los tipos por lo que la compilación AOT es una buena opción para una ejecución más rápida.* Siguiendo con los dos comentarios anteriores, si sólo se desea calcular operaciones matemáticas (como el caso de la raíz cuadrada anterior) no requerimos la funcionalidad del objeto de alto nivel.``` [Cython](https://github.com/cython/cython/) * Es un compilador que traduce instrucciones **anotadas** y escritas en un lenguaje híbrido entre Python y C que resultan un módulo compilado. Este módulo puede ser importado como un módulo regular de Python utilizando `import`. Típicamente el módulo compilado resulta ser similar en sintaxis al lenguaje *C*. ```{margin}La frase código tipo *CPU-bound* es código cuya ejecución involucra un porcentaje mayor para uso de CPU que uso de memoria o I/O.``` * Tiene un buen tiempo en la comunidad (2007 aproximadamente), es altamente usado y es de las herramientas preferidas para código tipo *CPU-bound*. Es un *fork* de [Pyrex](https://www.csse.canterbury.ac.nz/greg.ewing/python/Pyrex/) (2002) que expande sus capacidades. ```{admonition} Comentario*Pyrex* en términos simples es *Python* con manejo de tipo de valores de *C*. *Pyrex* traduce el código escrito en *Python* a código de *C* (lo cual evita el uso de la [Python/C API](https://docs.python.org/3/c-api/index.html)) y permite la declaración de parámetros o valores en tipos de valores de *C*.``` * Requiere conocimiento del lenguaje *C* lo cual debe tomarse en cuenta en un equipo de desarrollo de *software* y se sugiere utilizarlo en secciones pequeñas del código.* Soporta la [API OpenMP](https://www.openmp.org/) para aprovechar los múltiples *cores* de una máquina.* Puede utilizarse vía un script `setup.py` que compila un módulo para usarse con `import` y también puede utilizarse en *IPython* vía un comando *magic*. ```{admonition} ComentarioEn el paso de compilación a código de máquina del dibujo anterior se omitieron detalles como son: creación de un archivo `.c` y compilación de tal archivo con el compilador [gcc](https://gcc.gnu.org/) al módulo compilado (en sistemas Unix tiene extensión `.so`).Ver [machine code](https://en.wikipedia.org/wiki/Machine_code)``` * *Cython* y el compilador *gcc* analizan el código anotado para determinar qué instrucciones pueden optimizarse mediante una compilación AOT. ¿En qué casos y qué tipo de ganancias en velocidad podemos esperar al usar Cython? * Un caso es en el que se tenga un código con muchos *loops* que realicen operaciones matemáticas típicamente no vectorizadas o que no pueden vectorizarse. Esto es, códigos en los que las instrucciones son básicamente sólo *Python* sin utilizar paquetes externos. Además, si en el ciclo las variables no cambian de su tipo (por ejemplo de `int` a `float`) entonces es un código que obtendrá ganancia en velocidad al compilar a código de máquina. ```{admonition} Observación:class: tipSi tu código de *Python* llama a operaciones vectorizadas vía *NumPy* podría ser que no se ejecute más rápido tu código después de compilarlo. Principalmente porque probablemente no se crearán muchos objetos intermedios que es un *feature* de *NumPy*.``` * No esperamos tener un *speedup* después de compilar para llamadas a librerías externas (por ejemplo paqueterías que manejan bases de datos). También es poco probable que se obtengan ganancias significativas en programas que tengan alta carga de I/O.* En general es poco probable que tu código compilado se ejecute más rápido que un código en *C* "bien escrito" y también es poco probable que se ejecute más lento. Es muy posible que el código *C* generado desde *Python* mediante *Cython* pueda alcanzar las velocidades de un código escrito en *C*, a menos que la persona que programó en *C* tenga un gran conocimiento de formas de hacer que el código de *C* se ajuste a la arquitectura de la máquina sobre la que se ejecutan los códigos. Ejemplo utilizando un archivo `setup.py` ###Code import math import time from pytest import approx from scipy.integrate import quad from IPython.display import HTML, display ###Output _____no_output_____ ###Markdown Para este caso requerimos tres archivos:1.El código que será compilado en un archivo con extensión `.pyx` (escrito en *Python*). ```{admonition} Observación:class: tipLa extensión `.pyx` se utiliza en el lenguaje *Pyrex*. ``` 2.Un archivo `setup.py` que contiene las instrucciones para llamar a *Cython* y se encarga de crear el módulo compilado.3.El código escrito en *Python* que importará el módulo compilado. Archivo `.pyx`: ###Code %%file Rcf_cython.pyx def Rcf(f,a,b,n): #Rcf: rectángulo compuesto para f """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: f (float): function expression of integrand. a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ h_hat = (b-a)/n nodes = [a+(i+1/2)*h_hat for i in range(n)] sum_res = 0 for node in nodes: sum_res = sum_res+f(node) return h_hat*sum_res ###Output Writing Rcf_cython.pyx ###Markdown Archivo `setup.py` que contiene las instrucciones para el *build*: ###Code %%file setup.py from distutils.core import setup from Cython.Build import cythonize setup(ext_modules = cythonize("Rcf_cython.pyx", compiler_directives={'language_level' : 3}) ) ###Output Writing setup.py ###Markdown Compilar desde la línea de comandos: ###Code %%bash python3 setup.py build_ext --inplace ###Output Compiling Rcf_cython.pyx because it changed. [1/1] Cythonizing Rcf_cython.pyx running build_ext building 'Rcf_cython' extension creating build creating build/temp.linux-x86_64-3.8 x86_64-linux-gnu-gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -g -fwrapv -O2 -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/python3.8 -c Rcf_cython.c -o build/temp.linux-x86_64-3.8/Rcf_cython.o x86_64-linux-gnu-gcc -pthread -shared -Wl,-O1 -Wl,-Bsymbolic-functions -Wl,-Bsymbolic-functions -Wl,-z,relro -g -fwrapv -O2 -Wl,-Bsymbolic-functions -Wl,-z,relro -g -fwrapv -O2 -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 build/temp.linux-x86_64-3.8/Rcf_cython.o -o /home/ubuntu/analisis-numerico-computo-cientifico/libro_optimizacion/temas/V.optimizacion_de_codigo/5.3/Rcf_cython.cpython-38-x86_64-linux-gnu.so ###Markdown Importar módulo compilado y ejecutarlo: ###Code f=lambda x: math.exp(-x**2) #using math library n = 10**7 a = 0 b = 1 import Rcf_cython start_time = time.time() res = Rcf_cython.Rcf(f, a, b,n) end_time = time.time() secs = end_time-start_time print("Rcf tomó",secs,"segundos" ) obj, err = quad(f, a, b) print(res == approx(obj)) ###Output True ###Markdown Comando de *magic* `%cython` ```{margin}Ver [extensions-bundled-with-ipython](https://ipython.readthedocs.io/en/stable/config/extensions/index.html?highlight=cythonextensions-bundled-with-ipython) para extensiones que antes se incluían en *Ipython*.``` Al instalar *Cython* se incluye tal comando. Al ejecutarse crea el archivo `.pyx`, lo compila con `setup.py` e importa en el *notebook*. ###Code %load_ext Cython %%cython def Rcf(f,a,b,n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: f (float): function expression of integrand. a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ h_hat = (b-a)/n nodes = [a+(i+1/2)*h_hat for i in range(n)] sum_res = 0 for node in nodes: sum_res = sum_res+f(node) return h_hat*sum_res start_time = time.time() res = Rcf(f, a, b,n) end_time = time.time() secs = end_time-start_time print("Rcf tomó",secs,"segundos" ) obj, err = quad(f, a, b) print(res == approx(obj)) ###Output True ###Markdown Anotaciones para analizar un bloque de código *Cython* tiene la opción de *annotation* para generar un archivo con extensión `.html` en el que cada línea puede ser expandida haciendo un doble click que mostrará el código *C* generado. Líneas "más amarillas" refieren a más llamadas en la máquina virtual de *Python*, mientras que líneas más blancas significan "más código en *C* y no *Python*". El objetivo es remover la mayor cantidad de líneas amarillas posibles pues son costosas en tiempo. Si tales líneas están dentro de loops serán todavía más costosas. Al final se busca tener códigos cuyas anotaciones sean lo más blancas posibles. ```{admonition} Observación:class: tipConcentra tu atención en las líneas que son amarillas y están dentro de los *loops*, no inviertas tiempo en líneas amarillas que están fuera de *loops* y que no causan una ejecución lenta. Una ayuda para identificar lo anterior la da el perfilamiento.``` Ejemplo vía línea de comando ###Code %%bash $HOME/.local/bin/cython --force -3 --annotate Rcf_cython.pyx ###Output _____no_output_____ ###Markdown Ver archivo creado: `Rcf_cython.html` ```{margin}La liga correcta del archivo `Rcf_cython.c` es [Rcf_cython.c](https://github.com/ITAM-DS/analisis-numerico-computo-cientifico/blob/master/libro_optimizacion/temas/V.optimizacion_de_codigo/5.3/Rcf_cython.c)``` ###Code display(HTML("Rcf_cython.html")) ###Output _____no_output_____ ###Markdown ```{admonition} ComentariosPara el código anterior el *statement* en donde se crean los nodos involucra un *loop* y es "muy amarilla". Si se perfila el código se verá que es una línea en la que se gasta una buena parte del tiempo total de ejecución del código.``` Una primera opción que tenemos es crear los nodos para el método de integración dentro del *loop* y separar el llamado a la *list comprehension* `nodes=[a+(i+1/2)*h_hat for i in range(n)]`: ###Code %%file Rcf_2_cython.pyx def Rcf(f,a,b,n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: f (float): function expression of integrand. a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ h_hat = (b-a)/n sum_res = 0 for i in range(n): x = a+(i+1/2)*h_hat sum_res += f(x) return h_hat*sum_res %%bash $HOME/.local/bin/cython --force -3 --annotate Rcf_2_cython.pyx ###Output _____no_output_____ ###Markdown ```{margin}La liga correcta del archivo `Rcf_2_cython.c` es [Rcf_2_cython.c](https://github.com/ITAM-DS/analisis-numerico-computo-cientifico/blob/master/libro_optimizacion/temas/V.optimizacion_de_codigo/5.3/Rcf_2_cython.c)``` ###Code display(HTML("Rcf_2_cython.html")) ###Output _____no_output_____ ###Markdown ```{admonition} ComentarioPara el código anterior los *statements* que están dentro del loop son "muy amarillos". En tales *statements* involucran tipos de valores que no cambiarán en la ejecución de cada *loop*. Una opción es **declarar los tipos de objetos** que están involucrados en el loop utilizando la sintaxis `cdef`. Ver [function_declarations](https://notes-on-cython.readthedocs.io/en/latest/function_declarations.html), [definition-of-def-cdef-and-cpdef-in-cython](https://stackoverflow.com/questions/28362009/definition-of-def-cdef-and-cpdef-in-cython/41976772)``` ###Code %%file Rcf_3_cython.pyx def Rcf(f, double a, double b, unsigned int n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: f (float): function expression of integrand. a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ cdef unsigned int i cdef double x, sum_res, h_hat h_hat = (b-a)/n sum_res = 0 for i in range(n): x = a+(i+1/2)*h_hat sum_res += f(x) return h_hat*sum_res %%bash $HOME/.local/bin/cython -3 --force --annotate Rcf_3_cython.pyx ###Output _____no_output_____ ###Markdown ```{margin}La liga correcta del archivo `Rcf_3_cython.c` es [Rcf_3_cython.c](https://github.com/ITAM-DS/analisis-numerico-computo-cientifico/blob/master/libro_optimizacion/temas/V.optimizacion_de_codigo/5.3/Rcf_3_cython.c)``` ###Code display(HTML("Rcf_3_cython.html")) ###Output _____no_output_____ ###Markdown ```{admonition} ComentarioAl definir tipos, éstos sólo serán entendidos por *Cython* y no por *Python*. Cython utiliza estos tipos para convertir el código de *Python* a código de *C*.``` Una opción con la que perdemos flexibilidad pero ganamos en disminuir tiempo de ejecución es directamente llamar a la función `math.exp`: ###Code %%file Rcf_4_cython.pyx import math def Rcf(double a, double b, unsigned int n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ cdef unsigned int i cdef double x, sum_res, h_hat h_hat = (b-a)/n sum_res = 0 for i in range(n): x = a+(i+1/2)*h_hat sum_res += math.exp(-x**2) return h_hat*sum_res %%bash $HOME/.local/bin/cython -3 --force --annotate Rcf_4_cython.pyx ###Output _____no_output_____ ###Markdown ```{margin}La liga correcta del archivo `Rcf_4_cython.c` es [Rcf_4_cython.c](https://github.com/ITAM-DS/analisis-numerico-computo-cientifico/blob/master/libro_optimizacion/temas/V.optimizacion_de_codigo/5.3/Rcf_4_cython.c)``` ###Code display(HTML("Rcf_4_cython.html")) ###Output _____no_output_____ ###Markdown Mejoramos el tiempo si directamente utilizamos la función `exp` de la librería `math` de *Cython*, ver [calling C functions](https://cython.readthedocs.io/en/latest/src/tutorial/external.html). (RCF5CYTHON)= `Rcf_5_cython.pyx` ###Code %%file Rcf_5_cython.pyx from libc.math cimport exp as c_exp cdef double f(double x) nogil: return c_exp(-x**2) def Rcf(double a, double b, unsigned int n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ cdef unsigned int i cdef double x, sum_res, h_hat h_hat = (b-a)/n sum_res = 0 for i in range(n): x = a+(i+1/2)*h_hat sum_res += f(x) return h_hat*sum_res %%bash $HOME/.local/bin/cython -3 --force --annotate Rcf_5_cython.pyx ###Output _____no_output_____ ###Markdown ```{margin}La liga correcta del archivo `Rcf_5_cython.c` es [Rcf_5_cython.c](https://github.com/ITAM-DS/analisis-numerico-computo-cientifico/blob/master/libro_optimizacion/temas/V.optimizacion_de_codigo/5.3/Rcf_5_cython.c)``` ###Code display(HTML("Rcf_5_cython.html")) ###Output _____no_output_____ ###Markdown ```{admonition} ComentarioUn *tradeoff* en la optimización de código se realiza entre flexibilidad, legibilidad y una ejecución rápida del código.``` ###Code %%file setup_2.py from distutils.core import setup from Cython.Build import cythonize setup(ext_modules = cythonize("Rcf_2_cython.pyx", compiler_directives={'language_level' : 3}) ) ###Output Writing setup_2.py ###Markdown Compilar desde la línea de comandos: ###Code %%bash python3 setup_2.py build_ext --inplace %%file setup_3.py from distutils.core import setup from Cython.Build import cythonize setup(ext_modules = cythonize("Rcf_3_cython.pyx", compiler_directives={'language_level' : 3}) ) ###Output Writing setup_3.py ###Markdown Compilar desde la línea de comandos: ###Code %%bash python3 setup_3.py build_ext --inplace %%file setup_4.py from distutils.core import setup from Cython.Build import cythonize setup(ext_modules = cythonize("Rcf_4_cython.pyx", compiler_directives={'language_level' : 3}) ) ###Output Writing setup_4.py ###Markdown Compilar desde la línea de comandos: ###Code %%bash python3 setup_4.py build_ext --inplace %%file setup_5.py from distutils.core import setup from Cython.Build import cythonize setup(ext_modules = cythonize("Rcf_5_cython.pyx", compiler_directives={'language_level' : 3}) ) ###Output Writing setup_5.py ###Markdown Compilar desde la línea de comandos: ###Code %%bash python3 setup_5.py build_ext --inplace ###Output running build_ext building 'Rcf_5_cython' extension x86_64-linux-gnu-gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -g -fwrapv -O2 -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/python3.8 -c Rcf_5_cython.c -o build/temp.linux-x86_64-3.8/Rcf_5_cython.o x86_64-linux-gnu-gcc -pthread -shared -Wl,-O1 -Wl,-Bsymbolic-functions -Wl,-Bsymbolic-functions -Wl,-z,relro -g -fwrapv -O2 -Wl,-Bsymbolic-functions -Wl,-z,relro -g -fwrapv -O2 -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 build/temp.linux-x86_64-3.8/Rcf_5_cython.o -o /home/ubuntu/analisis-numerico-computo-cientifico/libro_optimizacion/temas/V.optimizacion_de_codigo/5.3/Rcf_5_cython.cpython-38-x86_64-linux-gnu.so ###Markdown Importar módulos compilados: ###Code import Rcf_2_cython, Rcf_3_cython, Rcf_4_cython, Rcf_5_cython start_time = time.time() res_2 = Rcf_2_cython.Rcf(f, a, b,n) end_time = time.time() secs = end_time-start_time print("Rcf_2 tomó",secs,"segundos" ) ###Output Rcf_2 tomó 3.3402740955352783 segundos ###Markdown Verificamos que después de la optimización de código continuamos resolviendo correctamente el problema: ###Code print(res_2 == approx(obj)) start_time = time.time() res_3 = Rcf_3_cython.Rcf(f, a, b,n) end_time = time.time() secs = end_time-start_time print("Rcf_3 tomó",secs,"segundos" ) print(res_3 == approx(obj)) start_time = time.time() res_4 = Rcf_4_cython.Rcf(a, b,n) end_time = time.time() secs = end_time-start_time print("Rcf_4 tomó",secs,"segundos" ) print(res_4 == approx(obj)) start_time = time.time() res_5 = Rcf_5_cython.Rcf(a, b,n) end_time = time.time() secs = end_time-start_time print("Rcf_5 tomó",secs,"segundos" ) ###Output Rcf_5 tomó 0.10629606246948242 segundos ###Markdown Verificamos que después de la optimización de código continuamos resolviendo correctamente el problema: ###Code print(res_5 == approx(obj)) ###Output True ###Markdown Ejemplo de implementación con *NumPy* Comparamos con una implementación usando *NumPy* y vectorización: ###Code import numpy as np f_np = lambda x: np.exp(-x**2) ###Output _____no_output_____ ###Markdown (RCFNUMPY)= `Rcf_numpy` ###Code def Rcf_numpy(f,a,b,n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: f (float): function expression of integrand. a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ h_hat = (b-a)/n aux_vec = np.linspace(a, b, n+1) nodes = (aux_vec[:-1]+aux_vec[1:])/2 return h_hat*np.sum(f(nodes)) start_time = time.time() res_numpy = Rcf_numpy(f_np, a, b,n) end_time = time.time() secs = end_time-start_time print("Rcf_numpy tomó",secs,"segundos" ) print(res_numpy == approx(obj)) ###Output True ###Markdown ```{admonition} Comentarios* La implementación con *NumPy* resulta ser la segunda más rápida principalmente por el uso de bloques contiguos de memoria para almacenar los valores y la vectorización. La implementación anterior, sin embargo, requiere un conocimiento de las funciones de tal paquete. Para este ejemplo utilizamos `linspace` y la funcionalidad de realizar operaciones de forma vectorizada para la creación de los nodos y evaluación de la función. Una situación que podría darse es que para un problema no podamos utilizar alguna función de *NumPy* o bien no tengamos el ingenio para pensar cómo realizar una operación de forma vectorizada. En este caso *Cython* puede ser una opción a utilizar.* En *Cython* se tienen las [memoryviews](https://cython.readthedocs.io/en/latest/src/userguide/memoryviews.html) para acceso de bajo nivel a la memoria similar a la que proveen los *arrays* de *NumPy* en el caso de requerirse *arrays* en una forma más general que no sólo sean de *NumPy* (por ejemplo de *C* o de *Cython*, ver [Cython arrays](https://cython.readthedocs.io/en/latest/src/userguide/memoryviews.htmlview-cython-arrays)).``` ```{admonition} Observación:class: tipCompárese la implementación vía *NumPy* con el uso de listas para los nodos. Recuérdese que las listas de *Python* alojan locaciones donde se pueden encontrar los valores y no los valores en sí. Los *arrays* de *NumPy* almacenan tipos de valores primitivos. Las listas tienen *data fragmentation* que causan *memory fragmentation* y por tanto un mayor impacto del *Von Neumann bottleneck*. Además el almacenamiento de tipo de objetos de alto nivel en las listas causa *overhead* en lugar de almacenamiento de tipo de valores primitivos en un *array* de *NumPy*.``` *Cython* y [OpenMP](http://www.openmp.org/) *OpenMP* es una extensión al lenguaje *C* y es una API para cómputo en paralelo en un sistema de memoria compartida, *aka, shared memory parallel programming* con CPUs. Se revisará con mayor profundidad en la nota de cómputo en paralelo. En *Cython*, *OpenMP* se utiliza mediante [prange](https://cython.readthedocs.io/en/latest/src/userguide/parallelism.htmlcython.parallel.prange) (*parallel range*). Además debe deshabilitarse el *GIL*. ```{admonition} Observación:class: tipAl deshabilitar el GIL en una sección de código se debe operar con tipos primitivos. En tal sección no se debe operar con objetos *Python* (por ejemplo listas).``` (RCF5CYTHONOPENMP)= `Rcf_5_cython_openmp` ###Code %%file Rcf_5_cython_openmp.pyx from cython.parallel import prange from libc.math cimport exp as c_exp cdef double f(double x) nogil: return c_exp(-x**2) def Rcf(double a, double b, unsigned int n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ cdef int i cdef double x, sum_res, h_hat h_hat = (b-a)/n sum_res = 0 for i in prange(n, schedule="guided", nogil=True): x = a+(i+1/2)*h_hat sum_res += f(x) return h_hat*sum_res ###Output Writing Rcf_5_cython_openmp.pyx ###Markdown ```{admonition} ComentarioCon `prange` puede elegirse diferente *scheduling*. Si `schedule` recibe el valor `static` el trabajo a realizar se reparte equitativamente entre los *cores* y si algunos *threads* terminan antes permanecerán sin realizar trabajo, *aka idle*. Con `dynamic` y `guided` se reparte de manera dinámica *at runtime* que es útil si la cantidad de trabajo es variable y si *threads* terminan antes pueden recibir trabajo a realizar.``` ###Code %%bash $HOME/.local/bin/cython -3 --force Rcf_5_cython_openmp.pyx ###Output _____no_output_____ ###Markdown En el archivo `setup.py` se coloca la **directiva** `-fopenmp`. ```{margin}Ver [Rcf_5_cython_openmp.c](https://github.com/ITAM-DS/analisis-numerico-computo-cientifico/blob/master/libro_optimizacion/temas/V.optimizacion_de_codigo/5.3/Rcf_5_cython_openmp.c) para la implementación en *C* de la función `Rcf_5_cython_openmp.Rcf`.``` ###Code %%file setup_5_openmp.py from setuptools import Extension, setup from Cython.Build import cythonize ext_modules = [Extension("Rcf_5_cython_openmp", ["Rcf_5_cython_openmp.pyx"], extra_compile_args=["-fopenmp"], extra_link_args=["-fopenmp"], ) ] setup(ext_modules = cythonize(ext_modules)) ###Output Writing setup_5_openmp.py ###Markdown Compilar desde la línea de comandos: ###Code %%bash python3 setup_5_openmp.py build_ext --inplace import Rcf_5_cython_openmp start_time = time.time() res_5_openmp = Rcf_5_cython_openmp.Rcf(a, b, n) end_time = time.time() secs = end_time-start_time print("Rcf_5_openmp tomó",secs,"segundos" ) ###Output Rcf_5_openmp tomó 0.017746686935424805 segundos ###Markdown Verificamos que después de la optimización de código continuamos resolviendo correctamente el problema: ###Code print(res_5_openmp == approx(obj)) ###Output True ###Markdown ```{admonition} Ejercicio:class: tipImplementar la regla de Simpson compuesta con *NumPy*, *Cython* y *Cython* + *OpenMP* en una máquina de AWS con las mismas características que la que se presenta en esta nota y medir tiempo de ejecución.``` [Numba](https://github.com/numba/numba) * Utiliza compilación JIT *at runtime* mediante el compilador [llvmlite](https://github.com/numba/llvmlite).* Puede utilizarse para funciones *built in* de *Python* o de *NumPy*.* Tiene soporte para cómputo en paralelo en CPU/GPU.* Utiliza [CFFI](https://cffi.readthedocs.io/en/latest/) y [ctypes](https://docs.python.org/3/library/ctypes.html) para llamar a funciones de *C*. * Ver [numba architecture](https://numba.readthedocs.io/en/stable/developer/architecture.htmlarchitecture) para una explicación detallada de su funcionamiento. Se utiliza un *decorator* para anotar cuál función se desea compilar. Ejemplo de uso con *Numba* ###Code from numba import jit ###Output _____no_output_____ ###Markdown ```{margin}Ver [glossary: nopython](https://numba.pydata.org/numba-doc/latest/glossary.htmlterm-nopython-mode) para la definición de *nopython mode* en *Numba*. También puede usarse el *decorator* `njit` que es un *alias* para `@jit(nopython=True)`.``` (RCFNUMBA)= `Rcf_numba` ###Code @jit(nopython=True) def Rcf_numba(a,b,n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ h_hat = (b-a)/n sum_res = 0 for i in range(n): x = a+(i+1/2)*h_hat sum_res += np.exp(-x**2) return h_hat*sum_res start_time = time.time() res_numba = Rcf_numba(a,b,n) end_time = time.time() ###Output _____no_output_____ ###Markdown ```{margin}Se mide dos veces el tiempo de ejecución para no incluir el tiempo de compilación. Ver [5minguide](https://numba.pydata.org/numba-doc/latest/user/5minguide.html).``` ###Code secs = end_time-start_time print("Rcf_numba con compilación tomó", secs, "segundos" ) start_time = time.time() res_numba = Rcf_numba(a,b,n) end_time = time.time() secs = end_time-start_time print("Rcf_numba tomó", secs, "segundos" ) ###Output Rcf_numba tomó 0.22369146347045898 segundos ###Markdown Verificamos que después de la optimización de código continuamos resolviendo correctamente el problema: ###Code print(res_numba == approx(obj)) ###Output True ###Markdown Con la función [inspect_types](https://numba.readthedocs.io/en/stable/reference/jit-compilation.html?highlight=inspect_typesDispatcher.inspect_types) nos ayuda para revisar si pudo inferirse información de los tipos de valores a partir del código escrito. ###Code print(Rcf_numba.inspect_types()) ###Output Rcf_numba (int64, int64, int64) -------------------------------------------------------------------------------- # File: <ipython-input-71-541f7545b9ed> # --- LINE 1 --- @jit(nopython=True) # --- LINE 2 --- def Rcf_numba(a,b,n): # --- LINE 3 --- """ # --- LINE 4 --- Compute numerical approximation using rectangle or mid-point # --- LINE 5 --- method in an interval. # --- LINE 6 --- Nodes are generated via formula: x_i = a+(i+1/2)h_hat for # --- LINE 7 --- i=0,1,...,n-1 and h_hat=(b-a)/n # --- LINE 8 --- Args: # --- LINE 9 --- # --- LINE 10 --- a (float): left point of interval. # --- LINE 11 --- # --- LINE 12 --- b (float): right point of interval. # --- LINE 13 --- # --- LINE 14 --- n (int): number of subintervals. # --- LINE 15 --- # --- LINE 16 --- Returns: # --- LINE 17 --- # --- LINE 18 --- sum_res (float): numerical approximation to integral # --- LINE 19 --- of f in the interval a,b # --- LINE 20 --- """ # --- LINE 21 --- # label 0 # a = arg(0, name=a) :: int64 # b = arg(1, name=b) :: int64 # n = arg(2, name=n) :: int64 # $6binary_subtract.2 = b - a :: int64 # del b # h_hat = $6binary_subtract.2 / n :: float64 # del $6binary_subtract.2 h_hat = (b-a)/n # --- LINE 22 --- # sum_res = const(int, 0) :: Literal[int](0) sum_res = 0 # --- LINE 23 --- # $18load_global.6 = global(range: <class 'range'>) :: Function(<class 'range'>) # $22call_function.8 = call $18load_global.6(n, func=$18load_global.6, args=[Var(n, <ipython-input-71-541f7545b9ed>:21)], kws=(), vararg=None) :: (int64,) -> range_state_int64 # del n # del $18load_global.6 # $24get_iter.9 = getiter(value=$22call_function.8) :: range_iter_int64 # del $22call_function.8 # $phi26.0 = $24get_iter.9 :: range_iter_int64 # del $24get_iter.9 # jump 26 # label 26 # sum_res.2 = phi(incoming_values=[Var(sum_res, <ipython-input-71-541f7545b9ed>:22), Var(sum_res.1, <ipython-input-71-541f7545b9ed>:25)], incoming_blocks=[0, 28]) :: float64 # del sum_res.1 # $26for_iter.1 = iternext(value=$phi26.0) :: pair<int64, bool> # $26for_iter.2 = pair_first(value=$26for_iter.1) :: int64 # $26for_iter.3 = pair_second(value=$26for_iter.1) :: bool # del $26for_iter.1 # $phi28.1 = $26for_iter.2 :: int64 # del $26for_iter.2 # branch $26for_iter.3, 28, 68 # label 28 # del $26for_iter.3 # i = $phi28.1 :: int64 # del $phi28.1 for i in range(n): # --- LINE 24 --- # $const34.4 = const(float, 0.5) :: float64 # $36binary_add.5 = i + $const34.4 :: float64 # del i # del $const34.4 # $40binary_multiply.7 = $36binary_add.5 * h_hat :: float64 # del $36binary_add.5 # x = a + $40binary_multiply.7 :: float64 # del $40binary_multiply.7 x = a+(i+1/2)*h_hat # --- LINE 25 --- # $48load_global.10 = global(np: <module 'numpy' from '/home/ubuntu/.local/lib/python3.8/site-packages/numpy/__init__.py'>) :: Module(<module 'numpy' from '/home/ubuntu/.local/lib/python3.8/site-packages/numpy/__init__.py'>) # $50load_method.11 = getattr(value=$48load_global.10, attr=exp) :: Function(<ufunc 'exp'>) # del $48load_global.10 # $const54.13 = const(int, 2) :: Literal[int](2) # $56binary_power.14 = x ** $const54.13 :: float64 # del x # del $const54.13 # $58unary_negative.15 = unary(fn=<built-in function neg>, value=$56binary_power.14) :: float64 # del $56binary_power.14 # $60call_method.16 = call $50load_method.11($58unary_negative.15, func=$50load_method.11, args=[Var($58unary_negative.15, <ipython-input-71-541f7545b9ed>:25)], kws=(), vararg=None) :: (float64,) -> float64 # del $58unary_negative.15 # del $50load_method.11 # $62inplace_add.17 = inplace_binop(fn=<built-in function iadd>, immutable_fn=<built-in function add>, lhs=sum_res.2, rhs=$60call_method.16, static_lhs=Undefined, static_rhs=Undefined) :: float64 # del sum_res.2 # del $60call_method.16 # sum_res.1 = $62inplace_add.17 :: float64 # del $62inplace_add.17 # jump 26 sum_res += np.exp(-x**2) # --- LINE 26 --- # label 68 # del sum_res # del a # del $phi28.1 # del $phi26.0 # del $26for_iter.3 # $72binary_multiply.2 = h_hat * sum_res.2 :: float64 # del sum_res.2 # del h_hat # $74return_value.3 = cast(value=$72binary_multiply.2) :: float64 # del $72binary_multiply.2 # return $74return_value.3 return h_hat*sum_res ================================================================================ None ###Markdown Ejemplo de uso de *Numba* con cómputo en paralelo Ver [numba: parallel](https://numba.pydata.org/numba-doc/latest/user/parallel.html), [numba: threading layer](http://numba.pydata.org/numba-doc/latest/user/threading-layer.html) ###Code from numba import prange ###Output _____no_output_____ ###Markdown (RCFNUMBAPARALLEL)= `Rcf_numba_parallel` ###Code @jit(nopython=True, parallel=True) def Rcf_numba_parallel(a,b,n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ h_hat = (b-a)/n sum_res = 0 for i in prange(n): x = a+(i+1/2)*h_hat sum_res += np.exp(-x**2) return h_hat*sum_res start_time = time.time() res_numba_parallel = Rcf_numba_parallel(a,b,n) end_time = time.time() secs = end_time-start_time print("Rcf_numba_parallel con compilación tomó", secs, "segundos" ) start_time = time.time() res_numba_parallel = Rcf_numba_parallel(a,b,n) end_time = time.time() ###Output _____no_output_____ ###Markdown ```{margin} Ver [parallel-diagnostics](https://numba.pydata.org/numba-doc/latest/user/parallel.htmldiagnostics) para información relacionada con la ejecución en paralelo. Por ejemplo ejecutar `Rcf_numba_parallel.parallel_diagnostics(level=4)`.``` ###Code secs = end_time-start_time print("Rcf_numba_parallel tomó", secs, "segundos" ) ###Output Rcf_numba_parallel tomó 0.011192798614501953 segundos ###Markdown Verificamos que después de la optimización de código continuamos resolviendo correctamente el problema: ###Code print(res_numba_parallel == approx(obj)) ###Output True ###Markdown Ejemplo *Numpy* y *Numba* En el siguiente ejemplo se utiliza la función `linspace` para auxiliar en la creación de los nodos y obsérvese que *Numba* sin problema trabaja los ciclos *for* (en el caso por ejemplo que no hubiéramos podido vectorizar la operación de creación de nodos). ###Code @jit(nopython=True) def Rcf_numpy_numba(a,b,n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ h_hat = (b-a)/n aux_vec = np.linspace(a, b, n+1) sum_res = 0 for i in range(n-1): x = (aux_vec[i]+aux_vec[i+1])/2 sum_res += np.exp(-x**2) return h_hat*sum_res start_time = time.time() res_numpy_numba = Rcf_numpy_numba(a, b,n) end_time = time.time() secs = end_time-start_time print("Rcf_numpy_numba con compilación tomó",secs,"segundos" ) start_time = time.time() res_numpy_numba = Rcf_numpy_numba(a, b,n) end_time = time.time() secs = end_time-start_time print("Rcf_numpy_numba tomó",secs,"segundos" ) print(res_numpy_numba == approx(obj)) ###Output True ###Markdown ```{admonition} Observación:class: tipObsérvese que no se mejora el tiempo de ejecución en la siguiente implementación que además de utilizar la función de `linspace` como auxiliar en la creación de nodos, se utiliza la vectorización para la creación de éstos.``` ###Code @jit(nopython=True) def Rcf_numpy_numba_2(a,b,n): """ Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b """ h_hat = (b-a)/n aux_vec = np.linspace(a, b, n+1) nodes = (aux_vec[:-1]+aux_vec[1:])/2 return h_hat*np.sum(np.exp(-nodes**2)) start_time = time.time() res_numpy_numba_2 = Rcf_numpy_numba_2(a, b,n) end_time = time.time() secs = end_time-start_time print("Rcf_numpy_numba_2 con compilación tomó",secs,"segundos" ) start_time = time.time() res_numpy_numba_2 = Rcf_numpy_numba_2(a, b,n) end_time = time.time() secs = end_time-start_time print("Rcf_numpy_numba_2 tomó",secs,"segundos" ) print(res_numpy_numba_2 == approx(obj)) ###Output True ###Markdown ```{admonition} Ejercicio:class: tipImplementar la regla de Simpson compuesta con *Numba*, *Numpy* y *Numba*, *Numba* con cómputo en paralelo en una máquina de AWS con las mismas características que la que se presenta en esta nota y medir tiempo de ejecución.``` [Rcpp](https://github.com/RcppCore/Rcpp) *Rcpp* permite integrar *C++* y *R* de forma sencilla mediante su API. ¿Por qué usar Rcpp? Con *Rcpp* nos da la posibilidad de obtener eficiencia en ejecución de un código con *C++* conservando la flexibilidad de trabajar con *R*. *C* o *C++* aunque requieren más líneas de código, son órdenes de magnitud más rápidos que *R*. Sacrificamos las ventajas que tiene *R* como facilidad de escribir códigos por velocidad en ejecución. ¿Cuando podríamos usar Rcpp? * En *loops* que no pueden vectorizarse de forma sencilla. Si tenemos *loops* en los que una iteración depende de la anterior.* Si hay que llamar una función millones de veces. ¿Por qué no usamos *C*? Sí es posible llamar funciones de *C* desde *R* pero resulta en más trabajo por parte de nosotros. Por ejemplo, de acuerdo a H. Wickham:*"...R’s C API. Unfortunately this API is not well documented. I’d recommend starting with my notes at [R’s C interface](http://adv-r.had.co.nz/C-interface.html). After that, read “[The R API](http://cran.rstudio.com/doc/manuals/r-devel/R-exts.htmlThe-R-API)” in “Writing R Extensions”. A number of exported functions are not documented, so you’ll also need to read the [R source code](https://github.com/wch/r-source) to figure out the details."*Y como primer acercamiento a la compilación de código desde *R* es preferible seguir las recomendaciones de H. Wickham en utilizar la API de *Rcpp*. Ejemplo con *Rcpp* En la siguiente implementación se utiliza [vapply](https://www.rdocumentation.org/packages/functools/versions/0.2.0/topics/Vapply) que es más rápida que [sapply](https://www.rdocumentation.org/packages/memisc/versions/0.99.27.3/topics/Sapply) pues se especifica con anterioridad el tipo de valor que devuelve. ###Code Rcf <- function(f,a,b,n){ ' Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: f (float): function expression of integrand. a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b ' h_hat <- (b-a)/n sum_res <- 0 x <- vapply(0:(n-1),function(j)a+(j+1/2)*h_hat,numeric(1)) for(j in 1:n){ sum_res <- sum_res+f(x[j]) } h_hat*sum_res } a <- 0 b <- 1 f <- function(x)exp(-x^2) n <- 10**7 system.time(res <- Rcf(f,a,b,n)) err_relativo <- function(aprox,obj)abs(aprox-obj)/abs(obj) ###Output _____no_output_____ ###Markdown ```{margin}En la documentación de `integrate` se menciona que se utilice [Vectorize](https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Vectorize). ``` ###Code obj <- integrate(Vectorize(f),0,1) print(err_relativo(res,obj$value)) Rcf_2 <- function(f,a,b,n){ ' Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: f (float): function expression of integrand. a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b ' h_hat <- (b-a)/n x <- vapply(0:(n-1),function(j)a+(j+1/2)*h_hat,numeric(1)) h_hat*sum(f(x)) } system.time(res_2 <- Rcf_2(f,a,b,n)) print(err_relativo(res_2,obj$value)) library(Rcpp) ###Output _____no_output_____ ###Markdown En *Rcpp* se tiene la función [cppFunction](https://www.rdocumentation.org/packages/Rcpp/versions/1.0.3/topics/cppFunction) que recibe código escrito en *C++* para definir una función que puede ser utilizada desde *R*. Primero reescribamos la implementación en la que no utilicemos `vapply`. ###Code Rcf_3 <- function(f,a,b,n){ ' Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: f (float): function expression of integrand. a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b ' h_hat <- (b-a)/n sum_res <- 0 for(i in 0:(n-1)){ x <- a+(i+1/2)*h_hat sum_res <- sum_res+f(x) } h_hat*sum_res } system.time(res_3 <- Rcf_3(f,a,b,n)) print(err_relativo(res_3,obj$value)) ###Output [1] 4.99495e-14 ###Markdown (RCFRCPP)= `Rcf_Rcpp` Escribimos *source code* en *C++* que será el primer parámetro que recibirá `cppFunction`. ###Code f_str <- 'double Rcf_Rcpp(double a, double b, int n){ double h_hat; double sum_res=0; int i; double x; h_hat=(b-a)/n; for(i=0;i<=n-1;i++){ x = a+(i+1/2.0)*h_hat; sum_res += exp(-pow(x,2)); } return h_hat*sum_res; }' cppFunction(f_str) ###Output _____no_output_____ ###Markdown Si queremos obtener más información de la ejecución de la línea anterior podemos usar lo siguiente. ```{margin}Se utiliza `rebuild=TRUE` para que se vuelva a compilar, ligar con la librería en *C++* y más operaciones de `cppFunction`.``` ###Code cppFunction(f_str, verbose=TRUE, rebuild=TRUE) ###Output Generated code for function definition: -------------------------------------------------------- #include <Rcpp.h> using namespace Rcpp; // [[Rcpp::export]] double Rcf_Rcpp(double a, double b, int n){ double h_hat; double sum_res=0; int i; double x; h_hat=(b-a)/n; for(i=0;i<=n-1;i++){ x = a+(i+1/2.0)*h_hat; sum_res += exp(-pow(x,2)); } return h_hat*sum_res; } Generated extern "C" functions -------------------------------------------------------- #include <Rcpp.h> // Rcf_Rcpp double Rcf_Rcpp(double a, double b, int n); RcppExport SEXP sourceCpp_4_Rcf_Rcpp(SEXP aSEXP, SEXP bSEXP, SEXP nSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< double >::type a(aSEXP); Rcpp::traits::input_parameter< double >::type b(bSEXP); Rcpp::traits::input_parameter< int >::type n(nSEXP); rcpp_result_gen = Rcpp::wrap(Rcf_Rcpp(a, b, n)); return rcpp_result_gen; END_RCPP } Generated R functions ------------------------------------------------------- `.sourceCpp_4_DLLInfo` <- dyn.load('/tmp/RtmpTz18Yr/sourceCpp-x86_64-pc-linux-gnu-1.0.6/sourcecpp_3684ee9b3bc/sourceCpp_6.so') Rcf_Rcpp <- Rcpp:::sourceCppFunction(function(a, b, n) {}, FALSE, `.sourceCpp_4_DLLInfo`, 'sourceCpp_4_Rcf_Rcpp') rm(`.sourceCpp_4_DLLInfo`) Building shared library -------------------------------------------------------- DIR: /tmp/RtmpTz18Yr/sourceCpp-x86_64-pc-linux-gnu-1.0.6/sourcecpp_3684ee9b3bc /usr/lib/R/bin/R CMD SHLIB --preclean -o 'sourceCpp_6.so' 'file3684a4b1d19.cpp' ###Markdown ```{admonition} Comentarios* Al ejecutar la línea de `cppFunction`, *Rcpp* compilará el código de *C++* y construirá una función de *R* que se conecta con la función compilada de *C++*. * Si se lee la salida de la ejecución con `verbose=TRUE` se utiliza un tipo de valor `SEXP`. De acuerdo a H. Wickham:*...functions that talk to R must use the SEXP type for both inputs and outputs. SEXP, short for S expression, is the C struct used to represent every type of object in R. A C function typically starts by converting SEXPs to atomic C objects, and ends by converting C objects back to a SEXP. (The R API is designed so that these conversions often don’t require copying.)** La función `Rcpp::wrap` convierte objetos de *C++* a objetos de *R* y `Rcpp:as` viceversa.``` ###Code system.time(res_4 <- Rcf_Rcpp(a,b,n)) print(err_relativo(res_4,obj$value)) ###Output [1] 4.99495e-14 ###Markdown Otras funcionalidades de *Rcpp* `NumericVector` En *Rcpp* se definen clases para relacionar tipos de valores de *R* con tipo de valores de *C++* para el manejo de vectores. Entre éstas se encuentran `NumericVector`, `IntegerVector`, `CharacterVector` y `LogicalVector` que se relacionan con vectores tipo `numeric`, `integer`, `character` y `logical` respectivamente. Por ejemplo, para el caso de `NumericVector` se tiene el siguiente ejemplo. ###Code f_str <- 'NumericVector my_f(NumericVector x){ return exp(log(x)); }' cppFunction(f_str) print(my_f(seq(0,1,by=.1))) ###Output [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ###Markdown Ejemplo con `NumericVector` Para mostrar otro ejemplo en el caso de la regla de integración del rectángulo considérese la siguiente implementación. ###Code Rcf_implementation_example <- function(f,a,b,n){ ' Compute numerical approximation using rectangle or mid-point method in an interval. Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n Args: f (float): function expression of integrand. a (float): left point of interval. b (float): right point of interval. n (int): number of subintervals. Returns: sum_res (float): numerical approximation to integral of f in the interval a,b ' h_hat <- (b-a)/n fx <- f(vapply(0:(n-1),function(j)a+(j+1/2)*h_hat,numeric(1))) h_hat*sum(fx) } res_numeric_vector <- Rcf_implementation_example(f,a,b,n) print(err_relativo(res_numeric_vector,obj$value)) ###Output [1] 2.973185e-16 ###Markdown Utilicemos *Rcpp* para definir una función que recibe un `NumericVector` para realizar la suma. ```{margin}El método `.size()` regresa un *integer*.``` ###Code f_str<-'double Rcf_numeric_vector(NumericVector f_x,double h_hat){ double sum_res=0; int i; int n = f_x.size(); for(i=0;i<=n-1;i++){ sum_res+=f_x[i]; } return h_hat*sum_res; }' h_hat <- (b-a)/n fx <- f(vapply(0:(n-1),function(j)a+(j+1/2)*h_hat,numeric(1))) print(tail(fx)) cppFunction(f_str,rebuild=TRUE) res_numeric_vector <- Rcf_numeric_vector(fx,h_hat) print(err_relativo(res_numeric_vector,obj$value)) ###Output [1] 4.99495e-14 ###Markdown Otro ejemplo en el que se devuelve un vector tipo `NumericVector` para crear los nodos. ###Code f_str <- 'NumericVector Rcf_nodes(double a, double b, int n){ double h_hat=(b-a)/n; int i; NumericVector x(n); for(i=0;i<n;i++) x[i]=a+(i+1/2.0)*h_hat; return x; }' cppFunction(f_str,rebuild=TRUE) print(Rcf_nodes(0,1,2)) ###Output [1] 0.25 0.75 ###Markdown Ejemplo de llamado a función definida en ambiente global con *Rcpp* También en *Rcpp* es posible llamar funciones definidas en el ambiente global, por ejemplo. ```{margin}`RObject` es una clase de *C++* para definir un objeto de *R*.``` ###Code f_str <- 'RObject fun(double x){ Environment env = Environment::global_env(); Function f=env["f"]; return f(x); }' cppFunction(f_str,rebuild=TRUE) fun(1) f(1) print(fun) ###Output function (x) .Call(<pointer: 0x7fba201b25f0>, x) ###Markdown ```{admonition} Comentario`.Call` es una función base para llamar funciones de `C` desde `R`:*There are two ways to call C functions from R: .C() and .Call(). .C() is a quick and dirty way to call an C function that doesn’t know anything about R because .C() automatically converts between R vectors and the corresponding C types. .Call() is more flexible, but more work: your C function needs to use the R API to convert its inputs to standard C data types.***H. Wickham**.``` ###Code print(f) ###Output function(x)exp(-x^2) <bytecode: 0x55669726fec8>
data wrangling using SQL/data_wrangling-sql.ipynb
###Markdown Spark SQL ExamplesRun the code cells below. This is the same code from the previous screencast. ###Code from pyspark.sql import SparkSession from pyspark.sql.functions import udf from pyspark.sql.types import StringType from pyspark.sql.types import IntegerType from pyspark.sql.functions import desc from pyspark.sql.functions import asc from pyspark.sql.functions import sum as Fsum import datetime import numpy as np import pandas as pd %matplotlib inline import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Define a new Spark Session ###Code spark = SparkSession \ .builder \ .appName("Data wrangling with Spark SQL") \ .getOrCreate() ###Output _____no_output_____ ###Markdown Load the same old Titanic data (in json instead of csv) ###Code path = "titanic.json" df = spark.read.json(path) ###Output _____no_output_____ ###Markdown Check couple of rows ###Code df.take(2) ###Output _____no_output_____ ###Markdown If you are not aware about the schema then check it through printschema ###Code df.printSchema() ###Output root |-- Age: double (nullable = true) |-- Cabin: string (nullable = true) |-- Embarked: string (nullable = true) |-- Fare: double (nullable = true) |-- Name: string (nullable = true) |-- Parch: long (nullable = true) |-- PassengerId: long (nullable = true) |-- Pclass: long (nullable = true) |-- Sex: string (nullable = true) |-- SibSp: long (nullable = true) |-- Survived: long (nullable = true) |-- Ticket: string (nullable = true) ###Markdown Create a View And Run QueriesThe code below creates a temporary view against which we can run SQL queries. ###Code df.createOrReplaceTempView("titanic_table") ###Output _____no_output_____ ###Markdown Check data through SQL query ###Code spark.sql("SELECT * FROM titanic_table LIMIT 2").show() ###Output +----+-----+--------+-------+--------------------+-----+-----------+------+------+-----+--------+---------+ | Age|Cabin|Embarked| Fare| Name|Parch|PassengerId|Pclass| Sex|SibSp|Survived| Ticket| +----+-----+--------+-------+--------------------+-----+-----------+------+------+-----+--------+---------+ |22.0| null| S| 7.25|Braund, Mr. Owen ...| 0| 1| 3| male| 1| 0|A/5 21171| |38.0| C85| C|71.2833|Cumings, Mrs. Joh...| 0| 2| 1|female| 1| 1| PC 17599| +----+-----+--------+-------+--------------------+-----+-----------+------+------+-----+--------+---------+ ###Markdown we can use above format or below format to run SQL queries ###Code spark.sql(''' SELECT * FROM titanic_table LIMIT 2 ''' ).show() ###Output +----+-----+--------+-------+--------------------+-----+-----------+------+------+-----+--------+---------+ | Age|Cabin|Embarked| Fare| Name|Parch|PassengerId|Pclass| Sex|SibSp|Survived| Ticket| +----+-----+--------+-------+--------------------+-----+-----------+------+------+-----+--------+---------+ |22.0| null| S| 7.25|Braund, Mr. Owen ...| 0| 1| 3| male| 1| 0|A/5 21171| |38.0| C85| C|71.2833|Cumings, Mrs. Joh...| 0| 2| 1|female| 1| 1| PC 17599| +----+-----+--------+-------+--------------------+-----+-----------+------+------+-----+--------+---------+ ###Markdown Check total rows through SQL count function ###Code spark.sql(''' SELECT COUNT(*) FROM titanic_table ''' ).show() ###Output +--------+ |count(1)| +--------+ | 891| +--------+ ###Markdown Check other SQL functions ###Code spark.sql(''' SELECT Name, Age, Survived FROM titanic_table WHERE Sex == 'male' ''' ).collect() spark.sql(''' SELECT DISTINCT Cabin FROM titanic_table ORDER BY Cabin ASC ''' ).show() ###Output +-----+ |Cabin| +-----+ | null| | A10| | A14| | A16| | A19| | A20| | A23| | A24| | A26| | A31| | A32| | A34| | A36| | A5| | A6| | A7| | B101| | B102| | B18| | B19| +-----+ only showing top 20 rows ###Markdown User Defined Functions We first need to register the udf function before we can use it in SQL ###Code spark.udf.register("name_prefix", lambda x: x.split(',')[1].strip(" ").split(" ")[0].strip(" ")) spark.sql(''' SELECT *, name_prefix(Name) AS Name_Prfx FROM titanic_table LIMIT 5 ''' ).collect() ###Output _____no_output_____ ###Markdown We can see Name_Prfx column in the above result ###Code prefix_count = spark.sql(''' SELECT name_prefix(Name) AS Name_Prfx, COUNT(*) as count_by_prefix FROM titanic_table WHERE Survived = 1 GROUP BY Name_Prfx ORDER BY count_by_prefix DESC ''' ) prefix_count.show() ###Output +---------+---------------+ |Name_Prfx|count_by_prefix| +---------+---------------+ | Miss.| 127| | Mrs.| 99| | Mr.| 81| | Master.| 23| | Dr.| 3| | Mlle.| 2| | Ms.| 1| | Major.| 1| | Sir.| 1| | Col.| 1| | Mme.| 1| | the| 1| | Lady.| 1| +---------+---------------+ ###Markdown Converting Results to Pandas We can easily covert the results to Pandas ###Code prefix_count_pd = prefix_count.toPandas() print(prefix_count_pd) ###Output Name_Prfx count_by_prefix 0 Miss. 127 1 Mrs. 99 2 Mr. 81 3 Master. 23 4 Dr. 3 5 Mlle. 2 6 Ms. 1 7 Sir. 1 8 Major. 1 9 Col. 1 10 Mme. 1 11 the 1 12 Lady. 1
Tareas/Franco_Lorenzo-Tarea1.ipynb
###Markdown Tarea 1 - Franco Lorenzo 1. Inicialice 3 variables con diferentes valores a. Deje el resultado de (var1 * var2) + (var1 / var2) en var3 e imprima el resultado b. Modifique el valor de var1 por var1 * 67 / 34 y el valor de var2 por 87 e imprima cada una de las variables c. Vuelva a realizas el paso a e imprima nuevamente el resultado ###Code var1 = 1 var2 = 3 var3 = (var1 * var2 ) + (var1 / var2) print("El resultado del apartado a es: " + str(var3)) var1 = (var1 * 67) / 34 var2 = var2 * 87 print("El resultado del apartado b es: var1 = " + str(var1) + " y var2 = " + str(var2)) var3 = (var1 * var2 ) + (var1 / var2) print("El resultado del apartado c es: " + str(var3)) ###Output El resultado del apartado c es: 514.3310795582602 ###Markdown 2. Evalúe el polinomio x4 + x3 + 2x2 – x en x=1. El resultado es 4,1151. ###Code x = 1 (x ** 4) + (x ** 3) + (2 * x ** 2) - x ###Output _____no_output_____ ###Markdown 3. Evalúe el polinomio x4 + x3 + (1/2)x2 – x en x=10. El resultado es 11040,0. ###Code x = 10 x ** 4 + x ** 3 + (1/2) * x ** 2 ###Output _____no_output_____ ###Markdown 4. Escribir el código necesario que muestre la cadena de caracteres: “Bienvenido al curso Introductorio de Python.” ###Code varMensaje = "Bienvenido al curso Introductorio de Python." print(varMensaje) ###Output Bienvenido al curso Introductorio de Python. ###Markdown 5. Escribir el código que lea un número entero introducido por el usuario y después muestre en pantalla el resultado de la siguiente operación: suma = (n(n+1)) / 2 ###Code # Capturar número entero del usuario y convertirlo de tipo string a integer. # Examinar el valor ingresado. Continuar con la operación si el usuario ingresa un número entero, de lo contraio solicite de nuevo el número entero. while True: try: num = int(input("Ingrese un número entero: ")) break except ValueError: print("Valor incorrecto. Por favor ingresar un número entero.") continue # Realizar la operacion suma = (n(n+1)) / 2 suma = ( num * ( num + 1 ) ) / 2 print(f"El resultado de la operación ( {num} * ( {num} + 1 ) / 2 ) es: " + str(suma)) ###Output Valor incorrecto. Por favor ingresar un número entero. El resultado de la operación ( 5 * ( 5 + 1 ) / 2 ) es: 15.0 ###Markdown 6. Una tienda vende galletas artesanales a 99.99 colones cada una. Sin embargo, la galleta que no es del día tiene un descuento del 50%. a. Escriba el código que comience leyendo el número de galletas vendidas que no son del día. b. Después el código debe mostrar el precio habitual de una galleta. c. Muestre el descuento que se le aplica por no ser fresca. d. Finalmente, calcule y muestre el costo final a pagar por las galletas que no fueron del día ###Code costoGalleta = 99.99 # Capturar número entero del usuario y convertirlo de tipo string a integer. # Examinar el valor ingresado. Continuar con la operación si el usuario ingresa un número entero, de lo contraio solicite de nuevo el número entero. while True: try: galletasNoFrescas = int(input("Ingrese un número de galletas vendidas que No son del día: ")) break except ValueError: print("Valor incorrecto. Por favor ingresar un número entero.") continue aPagar = costoGalleta * galletasNoFrescas descuento = aPagar * 0.5 costoTotal = aPagar - descuento print(f"El precio habital de una galleta fresca es de: {costoGalleta}. Se le aplica un 50% de descuento a las galletas no frescas.") print(f"La cantidad de galletas vendindas NO frescas es de: {galletasNoFrescas}. Estas tienen un descuento de {descuento}") print(f"El costo total de {galletasNoFrescas} galletas no frescas es de {costoTotal}.") ###Output El precio habital de una galleta fresca es de: 99.99. Se le aplica un 50% de descuento a las galletas no frescas. La cantidad de galletas vendindas NO frescas es de: 5. Estas tienen un descuento de 249.975 El costo total de 5 galletas no frescas es de 249.975.