path
stringlengths 7
265
| concatenated_notebook
stringlengths 46
17M
|
---|---|
models/final.ipynb | ###Markdown
Importing libraries
###Code
import tensorflow as tf
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential, Model
from keras.layers import Conv2D, MaxPooling2D, InputLayer
from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization
from keras import applications
import matplotlib.pyplot as plt
###Output
_____no_output_____
###Markdown
Initialization
###Code
model_weights = 'bottleneck_fc_model.h5'
## image dimensions
img_h, img_w = 150, 150
## epochs
epochs = 50
## batch Size
batch_size = 32
## total no of train and validation samples
nb_train_samples = 3000
nb_validation_samples = 800
## data set directory
train_data_dir = r'train'
validation_data_dir = r'validation'
###Output
_____no_output_____
###Markdown
Model
###Code
## vgg16 network
model = applications.vgg16.VGG16(include_top = False, weights = 'imagenet', input_shape=(150,150,3))
print('Model loaded.')
top_model = Sequential()
# top_model.add(Dense(128))
top_model.add(Conv2D(128,(3,3),input_shape = model.output_shape[1:]))
top_model.add(BatchNormalization(axis=3))
top_model.add(Activation('relu'))
top_model.add(MaxPooling2D(pool_size = (2, 2)))
top_model.add(Flatten())
top_model.add(Dense(256, activation = 'relu'))
top_model.add(Dropout(0.6))
top_model.add(Dense(1, activation = 'sigmoid'))
top_model.load_weights(model_weights, by_name = True, skip_mismatch = True)
model = Model(inputs=model.input, outputs=top_model(model.output))
for layer in model.layers[:15]:
layer.trainable = False
model.compile(loss = 'binary_crossentropy',
optimizer = tf.keras.optimizers.SGD(learning_rate = 1e-4, momentum = 0.9),
metrics = ['accuracy'])
###Output
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5
58892288/58889256 [==============================] - 0s 0us/step
58900480/58889256 [==============================] - 0s 0us/step
Model loaded.
###Markdown
Data Preprocessing
###Code
## data augmentation
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.3,
zoom_range = 0.2,
horizontal_flip = True,
rotation_range=20)
test_datagen = ImageDataGenerator(rescale=1. / 255)
## train data
train_generator = train_datagen.flow_from_directory(train_data_dir,
target_size=(img_w, img_h),
batch_size=batch_size,
class_mode='binary')
## validation data
validation_generator = test_datagen.flow_from_directory(validation_data_dir,
target_size=(img_w, img_h),
batch_size=batch_size,
class_mode='binary')
###Output
Found 3000 images belonging to 2 classes.
Found 800 images belonging to 2 classes.
###Markdown
Model Train
###Code
## training and testing model with the data set
history = model.fit(train_generator,
batch_size = batch_size,
epochs = epochs,
validation_data = validation_generator)
## plot accuracy graph
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Training and Validation accuracy')
plt.legend(['accuracy','validation accuracy'])
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.show()
## plot loss graph
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Training and Validation loss')
plt.legend(['loss','validation loss'])
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
###Output
Epoch 1/50
71/94 [=====================>........] - ETA: 1:52 - loss: 0.8299 - accuracy: 0.5428 |
month06/DATASCIENCE/DS_day07_student/code/Airline_customer_analysis_code/code/.ipynb_checkpoints/Untitled-checkpoint.ipynb | ###Markdown
航空公司客户价值分析 读取数据 数据描述性分析 数据预处理 1. 去除票价为空的数据 2.只保留票价不为0,平均折扣率不为0,总飞行公里数大于0的记录。 构建特征
###Code
## 选取需求特征
## 构建L特征
## 合并特征
###Output
_____no_output_____ |
gotdrawn.ipynb | ###Markdown
GotDrawnUpdating GetsDrawnDotCom with title feature.Taking getsdrawndotcom code and adding in features such as comments.Getting rid of folder structure.
###Code
import os
import requests
import re
import json
import arrow
import praw
import dominate
from dominate.tags import *
import shutil
from time import gmtime, strftime
gotdrndir = ('/home/wcmckee/gotdrawn/imgs')
r = praw.Reddit(user_agent='getsdrawndotcom')
fulcom = []
fuldic = dict()
getrn = r.get_subreddit('redditgetsdrawn')
rnew = getrn.get_new()
for rnc in rnew:
fulcom.append(rnc)
artes = arrow.utcnow()
yrpath = artes.strftime('%Y')
mntpath = artes.strftime('%m')
dapth = artes.strftime('%d')
if os.path.isdir(gotdrndir) == True:
print 'its true'
else:
print 'its false'
os.mkdir(gotdrndir)
imgszpath = (gotdrndir)
yrzpat = (imgszpath + '/' + yrpath)
mntzpat = (yrzpat + '/' + mntpath)
datzpat = (mntzpat + '/' + dapth)
imgszpath
dayform = ('/imgs/' + yrpath + '/' + mntpath + '/' + dapth)
dayform
if os.path.isdir(yrzpat) == True:
print 'its true'
else:
print 'its false'
os.mkdir(yrzpat)
if os.path.isdir(mntzpat) == True:
print 'its true'
else:
print 'its false'
os.mkdir(mntzpat)
if os.path.isdir(datzpat) == True:
print 'its true'
else:
print 'its false'
os.mkdir(datzpat)
datzpat
mntzpat
datzpat
if os.path.isdir(yrpath) == True:
print 'its true'
else:
print 'its false'
os.mkdir(yrpath)
#mthzpath = (yrzpat + '/' +
#if os.path(
print artes.date()
print artes.time()
dati = artes.datetime
#Random logo from logo folder.
#5 to choose from. import random, random choice out of a list
import random
imglis = ['img1', 'img2', 'img3', 'img4', 'img0']
random.choice(imglis)
os.listdir('/home/wcmckee/gotdrawn/logo')
import PIL
imed = PIL
imed.PILLOW_VERSION
#import pillow
os.chdir('/home/wcmckee/gotdrawn/')
imlocdir = (dayform + '/' + str(flc.author) + '-reference.png')
imlocdir
doc = dominate.document(title='GetsDrawn')
with doc.head:
link(rel='stylesheet', href='style.css')
script(type ='text/javascript', src='script.js')
#str(str2)
with div():
attr(cls='header')
h1('GetsDrawn')
p(img('/imgs/getsdrawn-bw.png', src='/imgs/getsdrawn-bw.png'))
#p(img('imgs/15/01/02/ReptileLover82-reference.png', src= 'imgs/15/01/02/ReptileLover82-reference.png'))
h1('Updated ', str(artes.datetime))
#p(panz)
#p(bodycom)
with doc:
with div(id='body').add(ol()):
for flc in fulcom:
if 'http://i.imgur.com' in flc.url:
p(h1(flc.title))
p(img(imlocdir, src= imlocdir))
#p(img(flc.url, src = flc.url))
p(str(flc.author))
#res = requests.get(flc.url, stream=True)
#with open(str(flc.author) + '-' + str(artes.date()) + '-reference.png', 'wb') as outfil:
# shutil.copyfileobj(res.raw, outfil)
# del res
for flcz in flc.comments:
p(flcz.body)
#for rdz in reliz:
#h1(rdz.title)
#a(rdz.url)
#p(img(rdz, src='%s' % rdz))
#print rdz
#p(img(rdz, src = rdz))
#p(rdz)
#print rdz.url
#if '.jpg' in rdz.url:
# img(rdz.urlz)
#else:
# a(rdz.urlz)
#h1(str(rdz.author))
#li(img(i.lower(), src='%s' % i))
with div():
attr(cls='body')
p('GotDrawn is open source')
a('https://github.com/getsdrawn/getsdrawndotcom')
a('https://reddit.com/r/redditgetsdrawn')
#print doc
docre = doc.render()
#s = docre.decode('ascii', 'ignore')
yourstring = docre.encode('ascii', 'ignore').decode('ascii')
indfil = ('/home/wcmckee/gotdrawn/index.html')
mkind = open(indfil, 'w')
mkind.write(yourstring)
mkind.close()
fertz = datzpat + '/'
fertz
print doc
os.chdir(fertz)
for flc in fulcom:
if 'http://i.imgur.com' in flc.url:
print flc.title
print flc.url
print flc.author
res = requests.get(flc.url, stream=True)
with open(str(flc.author) + '-' + str(artes.date()) + '-reference.png', 'wb') as outfil:
shutil.copyfileobj(res.raw, outfil)
del res
for flcz in flc.comments:
print flcz.body
flcz.author
flcz.body
###Output
_____no_output_____ |
ExampleNotebooks/Non Linear Regression.ipynb | ###Markdown
Do Linear Regression for Simple as well as Plynomial Features (try different Degrees, 3, 4, 5 and see their effect) for the six states
###Code
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
df1 = pd.read_csv("../data/sevenday_rolling_average_of_new_cases.csv")
# df1.head(10)
# df1.tail(10)
df2 = pd.read_csv("../data/sevenday_rolling_average_of_new_deaths.csv")
# df2.head(10)
# df2.tail(10)
# Fitting Linear Regression to the dataset
lin = LinearRegression()
# Fitting Polynomial Regression to the dataset, degree = 4
poly = PolynomialFeatures(degree = 4)
####### Dataset for California ################
print('************* Data Set for California *****************')
list_x1 = df1[['CA']]
list_y1 = df2['CA']
lin.fit(list_x1, list_y1)
X_poly = poly.fit_transform(list_x1)
poly.fit(X_poly, list_y1)
lin2 = LinearRegression()
lin2.fit(X_poly, list_y1)
# Visualising the Linear Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin.predict(list_x1), color = 'green')
plt.title('Linear Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
# Visualising the Polynomial Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin2.predict(poly.fit_transform(list_x1)), color = 'green')
plt.title('Polynomial Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
print('************* Data Set for Florida *****************')
list_x1 = df1[['FL']]
list_y1 = df2['FL']
lin.fit(list_x1, list_y1)
X_poly = poly.fit_transform(list_x1)
poly.fit(X_poly, list_y1)
lin2 = LinearRegression()
lin2.fit(X_poly, list_y1)
# Visualising the Linear Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin.predict(list_x1), color = 'green')
plt.title('Linear Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
# Visualising the Polynomial Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin2.predict(poly.fit_transform(list_x1)), color = 'green')
plt.title('Polynomial Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
print('************* Data Set for Georgia *****************')
list_x1 = df1[['GA']]
list_y1 = df2['GA']
lin.fit(list_x1, list_y1)
X_poly = poly.fit_transform(list_x1)
poly.fit(X_poly, list_y1)
lin2 = LinearRegression()
lin2.fit(X_poly, list_y1)
# Visualising the Linear Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin.predict(list_x1), color = 'green')
plt.title('Linear Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
# Visualising the Polynomial Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin2.predict(poly.fit_transform(list_x1)), color = 'green')
plt.title('Polynomial Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
print('************* Data Set for Illinois *****************')
list_x1 = df1[['IL']]
list_y1 = df2['IL']
lin.fit(list_x1, list_y1)
X_poly = poly.fit_transform(list_x1)
poly.fit(X_poly, list_y1)
lin2 = LinearRegression()
lin2.fit(X_poly, list_y1)
# Visualising the Linear Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin.predict(list_x1), color = 'green')
plt.title('Linear Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
# Visualising the Polynomial Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin2.predict(poly.fit_transform(list_x1)), color = 'green')
plt.title('Polynomial Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
print('************* Data Set for Wisconsin *****************')
list_x1 = df1[['WI']]
list_y1 = df2['WI']
lin.fit(list_x1, list_y1)
X_poly = poly.fit_transform(list_x1)
poly.fit(X_poly, list_y1)
lin2 = LinearRegression()
lin2.fit(X_poly, list_y1)
# Visualising the Linear Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin.predict(list_x1), color = 'green')
plt.title('Linear Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
# Visualising the Polynomial Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin2.predict(poly.fit_transform(list_x1)), color = 'green')
plt.title('Polynomial Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
print('************* Data Set for Texas *****************')
list_x1 = df1[['TX']]
list_y1 = df2['TX']
lin.fit(list_x1, list_y1)
X_poly = poly.fit_transform(list_x1)
poly.fit(X_poly, list_y1)
lin2 = LinearRegression()
lin2.fit(X_poly, list_y1)
# Visualising the Linear Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin.predict(list_x1), color = 'green')
plt.title('Linear Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
# Visualising the Polynomial Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin2.predict(poly.fit_transform(list_x1)), color = 'green')
plt.title('Polynomial Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
def nonLinearFit(list_x1,list_y1,title="Title",xtitle="X",ytitle="Y"):
lin = LinearRegression()
poly = PolynomialFeatures(degree = 4)
lin.fit(list_x1, list_y1)
X_poly = poly.fit_transform(list_x1)
poly.fit(X_poly, list_y1)
lin2 = LinearRegression()
lin2.fit(X_poly, list_y1)
# Visualising the Linear Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin.predict(list_x1), color = 'green')
plt.title('Linear Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
# Visualising the Polynomial Regression results
plt.scatter(list_x1, list_y1, color = 'red')
plt.plot(list_x1, lin2.predict(poly.fit_transform(list_x1)), color = 'green')
plt.title('Polynomial Regression')
plt.xlabel('Number of Cases')
plt.ylabel('Number of Deaths')
plt.show()
nonLinearFit(list_x1,list_y1)
###Output
_____no_output_____ |
exercises/solutions/ex07/LearningAndPlanning.ipynb | ###Markdown
Exercise 7) Learning and Planning In this exercise, we will again investigate the inverted pendulum from the `gym` environment. We want to check, which benefits the implementation of planning offers.Please note that the parameter $n$ has a different meaning in the context of planning (number of planning steps per actual step) than in the context of n-step learning.
###Code
import numpy as np
import gym
gym.logger.set_level(40)
import random
import time
from tqdm.notebook import tqdm
import matplotlib.pyplot as plt
plt.style.use('seaborn-talk')
###Output
_____no_output_____
###Markdown
We will reuse the discretization routine from the previous exercise:
###Code
d_T = 15
d_theta = 15
d_omega = 15
def discretize_state(states):
limits = [1, 1, 8]
nb_disc_intervals = [d_theta, d_theta, d_omega]
# bring to value range [-1, 1]
norm_states = [state / limit for state, limit in zip(states, limits)]
interval_lengths = [2 / d for d in nb_disc_intervals]
disc_state = [(norm_state + 1) // interval_length for norm_state, interval_length in zip(norm_states, interval_lengths)]
disc_state = [(state - 1) if state == d else state for state, d in zip(disc_state, nb_disc_intervals)] # ensure that disc_state < d
return np.array(disc_state)
def continualize_action(disc_action):
limit = 2
interval_length = 2 / (d_T-1)
norm_action = disc_action * interval_length
cont_action = (norm_action - 1) * limit
return np.array(cont_action).flatten()
###Output
_____no_output_____
###Markdown
1) Dyna-Q Write a Dyna-Q algorithm to solve the inverted pendulum. Check the quality of the result for different number of episodes, number of steps per episode and number of planning steps per interaction.Make sure that the total number of learning steps stays the same for different n, such that comparisons are fair:$\text{episodes} \cdot \text{steps} \cdot (1+n) = \text{const.}$Interesting metrics for a comparison could be e.g. the execution time (the tqdm loading bar shows execution time of loops, alternatively you can use the time.time() command to get the momentary system time in seconds) and training stability.  Solution 1) The solution code is given below.
###Code
def pendulumDynaQ(alpha, gamma, epsilon, n, nb_episodes, nb_steps):
env = gym.make('Pendulum-v0')
env = env.unwrapped
action_values = np.zeros([d_theta, d_theta, d_omega, d_T])
pi = np.zeros([d_theta, d_theta, d_omega])
model = {} # dictionary
cumulative_reward_history = [] # we can use this to figure out how well the learning worked
for j in tqdm(range(nb_episodes), position=0, leave=True):
### BEGIN SOLUTION
rewards = [] # this time, this list is only for monitoring
state = env.reset() # initialize x_0
state = tuple(discretize_state(state).astype(int))
for k in range(nb_steps):
# sample experiences for the model
if np.random.uniform(0, 1) < epsilon:
action = np.random.choice(d_T) # explorative action
else:
action = pi[state].astype(int) # exploitative action
cont_action = continualize_action(action)
next_state, reward, done, _ = env.step(cont_action)
next_state = tuple(discretize_state(next_state).astype(int))
# learn from the momentary experience
action_values[state][action] += alpha * (reward
+ gamma * np.max(action_values[next_state])
- action_values[state][action]
)
pi[state] = np.argmax(action_values[state])
model[state, action] = (next_state, reward) # update the model accoring to the latest experience
state = next_state
rewards.append(reward)
# learn from the model, IMPORTANT: USE DIFFERENT VARIABLES HERE
for i in range(n):
# sample a random key from the dict: this state action combination has surely been taken in the past
x, u = random.sample(model.keys(), 1)[0]
x_1, r = model[x, u]
action_values[x][u] += alpha * (r
+ gamma * np.max(action_values[x_1])
- action_values[x][u]
)
pi[x] = np.argmax(action_values[x])
if done:
break
cumulative_reward_history.append(np.sum(rewards))
env.close()
### END SOLUTION
return cumulative_reward_history, pi
###Output
_____no_output_____
###Markdown
Function to evaluate and render the measurement using the gym environment:
###Code
def experiment(pi,nb_steps = 300):
# Runs the inverted pendulum experiment using policy pi for nb_steps steps
env = gym.make('Pendulum-v0')
env = env.unwrapped
state = env.reset() # initialize x_0
disc_state = tuple(discretize_state(state).astype(int)) # only tuples of integers can be used as index
disc_action = pi[disc_state].astype(int)
for k in range(nb_steps):
cont_action = continualize_action(disc_action)
env.render() # comment out for faster execution
state, reward, done, _ = env.step(cont_action)
disc_state = tuple(discretize_state(state).astype(int))
if done:
break
disc_action = pi[disc_state].astype(int) # exploitative action
env.close()
###Output
_____no_output_____
###Markdown
Let's use nb_episodes = 5000, nb_steps = 500, n = 0 as a first try. This is effectively Q learning.\begin{align}5000 \cdot 500 \cdot (0+1) &= 2.5 \cdot 10^6\end{align}The resulting policy is satisfactory.
###Code
### train
print("Run without planning")
no_planning_history, no_planning_pi = pendulumDynaQ(alpha = 0.1, gamma = 0.9, epsilon = 0.1, n = 0, nb_episodes = 5000, nb_steps = 500)
### run and render the experiment
experiment(no_planning_pi,nb_steps = 300)
###Output
_____no_output_____
###Markdown
Now let's try $n=9$ with the same nb_steps = 500:\begin{align}\text{nb_episodes} &= \frac{2.5 \cdot 10^6}{500 \cdot (9+1)} = 500\end{align}The resulting policy also looks good.
###Code
### train
print("Run with planning")
with_planning_history, with_planning_pi = pendulumDynaQ(alpha = 0.1, gamma = 0.9, epsilon = 0.1, n = 9, nb_episodes = 500, nb_steps = 500)
### run and render the experiment
experiment(with_planning_pi,nb_steps = 300)
###Output
_____no_output_____
###Markdown
Now lets compare the cumulative rewards:
###Code
plt.plot(no_planning_history)
plt.plot(with_planning_history)
plt.xlabel("episode")
plt.ylabel(r"$\sum R$")
plt.show()
###Output
_____no_output_____
###Markdown
The cumulative reward over the episodes both seems to have high variance.So why should we prefer the planning method? Planning leads to the agent interacting less often with the "real" environment, such that in the end fewer interaction time is needed. 2) Simulation-based planning Although it can be useful for small state spaces, building a system model by storing large amounts of state transitions like in task (1) is rarely feasible in engineering. As engineers, we are capable of a more efficient way of system modeling that we can utilize here: differential equations.Using a state-space model allows to efficiently integrate existing pre-knowledge into the Dyna-Q algorithm we already used. To do so, write a class `pendulum_model` that implements a model of the pendulum. This class should work similar to `gym`: it should at least have a `step` and a `reset` method. In the step method, make use of forward Euler integration to simulate the system dynamics. In the reset method, allow to pass an optional initial state to the model, such that we can easily compare model and environment. If no initial state is passed to the `reset` function, a random initial state should be determined.Integrate this model into a Dyna-Q algorithm. Model of the pendulum in differential-equation form for change of the angular frequency $\omega$ and the angle $\theta$ depending on the torque $T_\mathrm{u}$:\begin{align}\dot{\omega} &= -\frac{3 g}{2 l} \text{sin}(\theta +\pi) + \frac{1}{J} T_\mathrm{u}\\\dot{\theta} &= \omega\end{align}Parameters (gravity constant $g$, mass $m$, length $l$ and intertia $J$ of the pendulum):\begin{align}g&=10 \, \frac{\text{m}}{\text{s}^2}&m&=1 \, \text{kg}&l&=1 \, \text{m}&J&=\frac{1}{3} m l^2\end{align}Forward Euler integration:\begin{align}\dot{x}(k T_S) \approx \frac{x[k+1] - x[k]}{T_S}\end{align}with sampling time $T_S = 0.05 \, \text{s}$Reward function:\begin{align}r_{k+1} = -(\theta^2[k] + 0.1 \, \text{s}^2 \cdot \omega^2[k] + 0.001 \frac{1}{(\text{N}\text{m})^2} \cdot T_\mathrm{u}^2[k])\end{align}Limitations of state and action space:\begin{align}\theta &\in [-\pi, \pi]&\omega &\in [-8 \, \frac{1}{\text{s}}, 8 \, \frac{1}{\text{s}}]&T_\mathrm{u} &\in [-2 \, \text{N}\text{m}, 2 \, \text{N}\text{m}]\end{align}And of course input and output space:\begin{align}\text{action}&=T_\mathrm{u}&\text{state}&=\begin{bmatrix}\text{cos}(\theta)\\\text{sin}(\theta)\\\omega\end{bmatrix}\end{align} Solution 2) Model-based planning does not necessarily run faster than experience-based planning. However, experience-based planning fails to cover the whole state space especially in the earlier episodes when there are too few experiences. On the other hand, model-based planning can, of course, only be performed if a state-space model with accurate parametrization is available. In order to overcome parametric deviations between state-space model and environment, one could even use the measurements from the actual environment in order to identify the parameters of the model during runtime.
###Code
class pendulum_model:
def __init__(self, dt=0.05, m=1, g=10, l=1):
### BEGIN SOLUTION
self.max_speed = 8
self.max_torque = 2
self.dt = dt # sampling time in s
self.g = g # gravity in m / s^2
self.m = m # mass in kg
self.l = l # length in m
self.J = 1 / 3 * m * l ** 2 # pedulums moment of inertia in kg * m^2
### END SOLUTION
def reset(self, state=None):
### BEGIN SOLUTION
# if no state is give, set randomly
if np.any(state == None):
self.theta = np.random.uniform(-np.pi, +np.pi)
self.omega = np.random.uniform(-self.max_speed, +self.max_speed)
# else set initial state as given
else:
self.theta = np.arctan2(state[1], state[0])
self.omega = state[2]
state = np.array([np.cos(self.theta), np.sin(self.theta), self.omega])
### END SOLUTION
return state
def step(self, T_u):
### BEGIN SOLUTION
T_u = np.clip(T_u, -self.max_torque, +self.max_torque)[0]
reward = -(self.angle_normalize(self.theta)** 2 + 0.1 * self.omega ** 2 + 0.001 * (T_u ** 2))
# differential-equations for state values
self.omega = self.omega + self.dt * (-3 * self.g/(2 * self.l) * np.sin(self.theta + np.pi) + 1 / self.J * T_u)
self.theta = self.theta + self.dt * self.omega
self.omega = np.clip(self.omega, -self.max_speed, +self.max_speed)
state = np.array([np.cos(self.theta), np.sin(self.theta), self.omega])
### END SOLUTION
return state, reward
def angle_normalize(self, theta):
# usage of this helper function is optional
return (((theta+np.pi) % (2*np.pi)) - np.pi)
###Output
_____no_output_____
###Markdown
The following cell is for debugging of the `pendulum_model` class.
###Code
env = gym.make('Pendulum-v0')
env = env.unwrapped # removes a builtin time limit of k_T = 200, we want to determine the time limit ourselves
model = pendulum_model()
state = env.reset()
print(state)
m_state = model.reset(state) # model is set to state of env
for _ in range(10000):
print(f"state: {state}")
print(f"model: {m_state}")
print()
action = env.action_space.sample()
state, reward, done, _ = env.step(action) # take action on env
m_state, m_reward = model.step(action) # take the same action on model
print(f"reward difference: {reward- m_reward}, env_reward:{reward}, model_reward:{m_reward}")
env.close()
###Output
[ 0.04729206 -0.9988811 -0.48690693]
state: [ 0.04729206 -0.9988811 -0.48690693]
model: [ 0.04729206 -0.9988811 -0.48690693]
reward difference: 0.0, env_reward:-2.347137870403856, model_reward:-2.347137870403856
state: [-0.02615445 -0.99965791 -1.46934266]
model: [-0.0150763 -0.99988635 -1.2477315 ]
reward difference: -0.09548089253936443, env_reward:-2.7685024582029105, model_reward:-2.673021565663546
state: [-0.12529803 -0.99211915 -1.98941596]
model: [-0.11413574 -0.99346516 -1.98616275]
reward difference: -0.03931346760092058, env_reward:-3.275556891403601, model_reward:-3.2362434238026805
state: [-0.26933651 -0.96304613 -2.94151574]
model: [-0.24882617 -0.96854816 -2.74166215]
reward difference: -0.19142615552259734, env_reward:-4.2672246797117035, model_reward:-4.075798524189106
state: [-0.42766097 -0.90393921 -3.38399161]
model: [-0.41156654 -0.91137972 -3.45408283]
reward difference: -0.023132419701973994, env_reward:-5.196133355529123, model_reward:-5.173000935827149
state: [-0.6001189 -0.79991081 -4.03492281]
model: [-0.58994085 -0.80744647 -4.13626646]
reward difference: 0.026882021822394186, env_reward:-6.532633679678635, model_reward:-6.559515701501029
state: [-0.7634742 -0.64583833 -4.50051541]
model: [-0.76287116 -0.64655053 -4.73513428]
reward difference: 0.21213356246643933, env_reward:-7.976606911111203, model_reward:-8.188740473577642
state: [-0.89805163 -0.43989006 -4.93289137]
model: [-0.90382025 -0.42791233 -5.21744704]
reward difference: 0.3604319264297384, env_reward:-9.651926459831943, model_reward:-10.012358386261681
state: [-0.98409673 -0.17763342 -5.53790301]
model: [-0.98648809 -0.16383297 -5.55213599]
reward difference: 0.09898179977324872, env_reward:-11.848332956347834, model_reward:-11.947314756121083
state: [-0.99331007 0.11547775 -5.8863412 ]
model: [-0.99284287 0.11942795 -5.68577137]
reward difference: -0.25615792332739495, env_reward:-12.622020937337883, model_reward:-12.365863014010488
state: [-0.92217274 0.38677829 -5.62798912]
model: [-0.92141329 0.38858402 -5.58761322]
reward difference: -0.05603260059965187, env_reward:-10.699492385421461, model_reward:-10.64345978482181
state: [-0.7868492 0.61714531 -5.35948208]
model: [-0.78755992 0.61623808 -5.29725404]
reward difference: -0.06060532801335761, env_reward:-9.005808287672984, model_reward:-8.945202959659627
state: [-0.60988103 0.79249298 -4.99552698]
model: [-0.61693183 0.78701659 -4.84002067]
reward difference: -0.11311016325189716, env_reward:-7.453939041676244, model_reward:-7.340828878424347
state: [-0.42512089 0.90513658 -4.33630033]
model: [-0.43722651 0.89935142 -4.24651538]
reward difference: -0.022947198758467735, env_reward:-5.921001441148226, model_reward:-5.898054242389758
state: [-0.24621588 0.96921501 -3.806429 ]
model: [-0.27014144 0.96282065 -3.57945087]
reward difference: -0.07690324469501775, env_reward:-4.7609447013560615, model_reward:-4.684041456661044
state: [-0.1028942 0.99469231 -2.91394714]
model: [-0.13071198 0.99142038 -2.84905685]
reward difference: 0.057160156166453646, env_reward:-3.653470540796465, model_reward:-3.7106306969629186
state: [ 0.01720364 0.99985201 -2.40562246]
model: [-0.0252156 0.99968204 -2.11737629]
reward difference: 0.0032412844849423195, env_reward:-2.993054088069994, model_reward:-2.996295372554936
state: [ 0.10608643 0.99435691 -1.78163882]
model: [ 0.04346353 0.99905501 -1.37391003]
reward difference: 0.05925356843606355, env_reward:-2.4634088805560816, model_reward:-2.522662448992145
state: [ 0.14931752 0.9887893 -0.8718319 ]
model: [ 0.07422973 0.99724117 -0.61641681]
reward difference: 0.182486086370651, env_reward:-2.0958453491376874, model_reward:-2.2783314355083384
state: [ 0.16248864 0.98671041 -0.26668534]
model: [0.06801094 0.99768458 0.1246918 ]
reward difference: 0.2713558817624311, env_reward:-1.9907758626585592, model_reward:-2.2621317444209903
state: [0.15051906 0.98860711 0.24237986]
model: [0.02499054 0.99968769 0.86140685]
reward difference: 0.44227817769181543, env_reward:-2.024730186000297, model_reward:-2.4670083636921123
state: [0.08816519 0.99610587 1.25626974]
model: [-0.05621693 0.99841858 1.62479434]
reward difference: 0.555587689923438, env_reward:-2.3592169314034903, model_reward:-2.9148046213269283
state: [-0.02599657 0.99966203 2.2855861 ]
model: [-0.17473103 0.9846162 2.38772012]
reward difference: 0.547987397602447, env_reward:-3.0754641441889206, model_reward:-3.6234515417913675
state: [-0.19025837 0.98173405 3.30851647]
model: [-0.32652495 0.94518858 3.13984147]
reward difference: 0.40881863213494185, env_reward:-4.20075779485148, model_reward:-4.609576426986422
state: [-0.37775543 0.92590541 3.91891171]
model: [-0.50099366 0.86545095 3.84243764]
reward difference: 0.49752680177334785, env_reward:-5.371057638946997, model_reward:-5.868584440720345
state: [-0.57378169 0.81900829 4.47489842]
model: [-0.68088969 0.73238599 4.48460374]
reward difference: 0.6293018604132294, env_reward:-6.763225499860063, model_reward:-7.392527360273292
state: [-0.76202704 0.64754521 5.10643786]
model: [-0.84185687 0.53970086 5.03475739]
reward difference: 0.5998660694273941, env_reward:-8.547682346866026, model_reward:-9.14754841629342
state: [-0.91100921 0.412386 5.58574035]
model: [-0.95589009 0.29372458 5.43921521]
reward difference: 0.5443012112176469, env_reward:-10.501959507080816, model_reward:-11.046260718298463
state: [-0.99296995 0.11836674 6.12853394]
model: [-0.99989398 0.01456126 5.67118385]
reward difference: 0.10044873925641618, env_reward:-12.89415216462199, model_reward:-12.994600903878407
state: [-0.98127326 -0.19262083 6.24954377]
model: [-0.96387111 -0.26636909 5.68371654]
reward difference: -1.1163038348633485, env_reward:-12.59497385000322, model_reward:-11.47867001513987
state: [-0.87821621 -0.47826382 6.09688835]
model: [-0.85574849 -0.51739204 5.48353023]
reward difference: -0.9467752870514872, env_reward:-10.702854393648584, model_reward:-9.756079106597097
state: [-0.7112208 -0.70296868 5.61772573]
model: [-0.69794404 -0.7161523 5.08946296]
reward difference: -0.6536613280578596, env_reward:-8.735068404278886, model_reward:-8.081407076221026
state: [-0.51136547 -0.85936334 5.08920703]
model: [-0.51833977 -0.85517477 4.55228412]
reward difference: -0.4833155714978714, env_reward:-7.0324607859734245, model_reward:-6.549145214475553
state: [-0.30380415 -0.95273451 4.5617996 ]
model: [-0.34202449 -0.93969104 3.9167588 ]
reward difference: -0.39345561279745755, env_reward:-5.614279998321623, model_reward:-5.220824385524166
state: [-0.10924498 -0.99401486 3.98439079]
model: [-0.18702034 -0.98235604 3.21884762]
reward difference: -0.28089682477633726, env_reward:-4.410817109231205, model_reward:-4.129920284454868
state: [ 0.0530908 -0.99858969 3.25158456]
model: [-0.06394863 -0.99795319 2.48271584]
reward difference: -0.07171283884069046, env_reward:-3.3614458095173347, model_reward:-3.2897329706766443
state: [ 0.18394988 -0.98293562 2.63775272]
model: [ 0.02305598 -0.99973418 1.74100647]
reward difference: 0.08240824524532808, env_reward:-2.6172906693401954, model_reward:-2.6996989145855235
state: [ 0.28391827 -0.95884848 2.05749358]
model: [ 0.07294583 -0.9973359 0.99905296]
reward difference: 0.2739653522538599, env_reward:-2.0727066825692653, model_reward:-2.346672034823125
state: [ 0.36052075 -0.93275119 1.61896093]
model: [ 0.08615778 -0.9962815 0.26508122]
reward difference: 0.5040250588160831, env_reward:-1.70722915176797, model_reward:-2.211254210584053
state: [ 0.39869385 -0.91708408 0.82532059]
model: [ 0.06188348 -0.99808338 -0.48683375]
reward difference: 0.885049722562034, env_reward:-1.4171496089224476, model_reward:-2.3021993314844815
state: [ 0.41416931 -0.91019986 0.33875608]
model: [ 6.56352874e-04 -9.99999785e-01 -1.22533386e+00]
reward difference: 1.2958067883193332, env_reward:-1.3198417084933332, model_reward:-2.6156484968126663
state: [ 0.40124767 -0.9159696 -0.28302783]
model: [-0.09780158 -0.99520593 -1.9722904 ]
reward difference: 1.8249505074727752, env_reward:-1.3493641656187378, model_reward:-3.174314673091513
state: [ 0.36170026 -0.93229444 -0.85575174]
model: [-0.23148832 -0.97283768 -2.71298219]
reward difference: 2.4769751834531237, env_reward:-1.5152291007909446, model_reward:-3.9922042842440684
state: [ 0.2842293 -0.95875633 -1.63777011]
model: [-0.39488695 -0.91872972 -3.44675033]
reward difference: 3.1822381743105796, env_reward:-1.9146823917112008, model_reward:-5.0969205660217805
state: [ 0.16076576 -0.98699259 -2.53472054]
model: [-0.57547053 -0.81782251 -4.14469178]
reward difference: 3.8589053777047595, env_reward:-2.628802853441939, model_reward:-6.487708231146699
state: [ 2.20812436e-04 -9.99999976e-01 -3.22491286e+00]
model: [-0.75191179 -0.65926373 -4.75555606]
reward difference: 4.61970767117165, env_reward:-3.5079339203931936, model_reward:-8.127641591564844
state: [-0.2053384 -0.97869103 -4.14060558]
model: [-0.89741352 -0.4411904 -5.25828849]
reward difference: 5.098057893820938, env_reward:-4.8765511221278075, model_reward:-9.974609015948745
state: [-0.42539464 -0.90500795 -4.65176884]
model: [-0.98419575 -0.17708396 -5.57803854]
reward difference: 5.689421526448203, env_reward:-6.20479076787388, model_reward:-11.894212294322083
state: [-0.64942606 -0.76042474 -5.34863051]
model: [-0.99422046 0.10735774 -5.71175679]
reward difference: 4.419376126499072, env_reward:-8.050806322372445, model_reward:-12.470182448871517
state: [-0.84921556 -0.52804633 -6.1533706 ]
model: [-0.92501813 0.37992298 -5.64295956]
reward difference: 0.2869971967029574, env_reward:-10.470439828155685, model_reward:-10.757437024858643
state: [-0.97299875 -0.2308104 -6.46775751]
model: [-0.79157769 0.61106854 -5.35393494]
reward difference: -3.6059941593861566, env_reward:-12.644335554345197, model_reward:-9.03834139495904
state: [-0.99444276 0.10527863 -6.76769137]
model: [-0.61964303 0.78488376 -4.90197484]
reward difference: -6.3817471265246875, env_reward:-13.800622611417555, model_reward:-7.418875484892868
state: [-0.90971856 0.41522542 -6.45432997]
model: [-0.43785212 0.89904701 -4.3015919 ]
reward difference: -5.581424675850777, env_reward:-11.529600701506208, model_reward:-5.948176025655431
state: [-0.74711974 0.66468947 -5.9777506 ]
model: [-0.26890482 0.96316676 -3.61904862]
reward difference: -4.69663831770155, env_reward:-9.403607360508051, model_reward:-4.706969042806501
state: [-0.54329718 0.83954046 -5.38717435]
model: [-0.12730585 0.99186351 -2.8920706 ]
reward difference: -3.7827234408972124, env_reward:-7.506205731653463, model_reward:-3.7234822907562504
state: [-0.31930164 0.94765314 -4.98734085]
model: [-0.01966778 0.99980657 -2.15966406]
reward difference: -3.0853769774851165, env_reward:-6.08155960846947, model_reward:-2.9961826309843533
state: [-0.11416164 0.99346219 -4.21162755]
model: [ 0.05063731 0.99871711 -1.40656046]
reward difference: -2.105045849291529, env_reward:-4.61391517653009, model_reward:-2.5088693272385605
state: [ 0.05544588 0.99846169 -3.39770821]
model: [ 0.08326653 0.99652731 -0.65408149]
reward difference: -1.1954028344515697, env_reward:-3.4506462719343496, model_reward:-2.25524343748278
state: [ 0.18638301 0.98247716 -2.64010046]
model: [0.0785943 0.99690668 0.09375206]
reward difference: -0.3832752109523896, env_reward:-2.6119140521246007, model_reward:-2.228638841172211
state: [ 0.28720505 0.95786912 -2.07656645]
model: [0.03702868 0.9993142 0.83276588]
reward difference: 0.3534630916938424, env_reward:-2.0683166070567145, model_reward:-2.421779698750557
state: [ 0.35232766 0.93587671 -1.37498813]
model: [-0.04202099 0.99911673 1.58141036]
reward difference: 1.1963567524901668, env_reward:-1.6588781483861865, model_reward:-2.8552349008763533
state: [ 0.39730491 0.91768666 -0.97042122]
model: [-0.157173 0.98757109 2.31588088]
reward difference: 2.0795476205309322, env_reward:-1.4450025881229736, model_reward:-3.524550208653906
state: [ 0.41214217 0.91111955 -0.32451624]
model: [-0.30558187 0.9521658 3.05444119]
reward difference: 3.148593523027377, env_reward:-1.3240083808099399, model_reward:-4.472601903837317
state: [0.39281581 0.91961717 0.42224832]
model: [-0.4786674 0.87799631 3.77173679]
reward difference: 4.327258022160408, env_reward:-1.3837736536460394, model_reward:-5.711031675806447
state: [0.35483189 0.93493012 0.81914576]
model: [-0.6593215 0.75186113 4.41559325]
reward difference: 5.670595266474288, env_reward:-1.5266247481731439, model_reward:-7.197220014647431
state: [0.28519849 0.95846848 1.47041473]
model: [-0.82418728 0.56631733 4.97699266]
reward difference: 7.067753967180879, env_reward:-1.8590306399043701, model_reward:-8.92678460708525
state: [0.18323514 0.98306911 2.09874409]
model: [-0.94533678 0.32609564 5.39720456]
reward difference: 8.442924168205922, env_reward:-2.3637763463460377, model_reward:-10.80670051455196
state: [0.04943295 0.99877744 2.69646419]
model: [-0.99872865 0.05040926 5.63479721]
reward difference: 9.688799486437166, env_reward:-3.04348076127105, model_reward:-12.732280247708216
state: [-0.13277891 0.99114568 3.65250579]
model: [-0.97281228 -0.23159503 5.68295208]
reward difference: 7.447746844224604, env_reward:-4.2385762109872624, model_reward:-11.686323055211867
state: [-0.35266635 0.93574914 4.54493634]
model: [-0.87296291 -0.48778659 5.51670937]
reward difference: 4.175806609812435, env_reward:-5.798500900525779, model_reward:-9.974307510338214
state: [-0.57221756 0.82010186 4.97576615]
model: [-0.7203993 -0.69355955 5.13732032]
reward difference: 1.0524177196035822, env_reward:-7.228243086745829, model_reward:-8.280660806349411
state: [-0.77651271 0.63010159 5.59809965]
model: [-0.54257723 -0.84000592 4.61751351]
reward difference: -2.4548631582990614, env_reward:-9.185309825406721, model_reward:-6.7304466671076595
state: [-0.92785714 0.37293583 5.99025828]
model: [-0.36564694 -0.93075363 3.98348819]
reward difference: -5.832401023402368, env_reward:-11.205069107469514, model_reward:-5.372668084067146
state: [-0.99836485 0.05716311 6.49953663]
model: [-0.20795393 -0.97813862 3.2969018 ]
reward difference: -9.481561400585587, env_reward:-13.741038308968601, model_reward:-4.2594769083830135
state: [-0.9672425 -0.25385417 6.27714337]
model: [-0.08188917 -0.99664144 2.55003455]
reward difference: -8.881132271067647, env_reward:-12.266618271122779, model_reward:-3.3854860000551312
state: [-0.83912549 -0.54393787 6.36919908]
model: [ 0.00885271 -0.99996081 1.81667579]
reward difference: -7.873738411912299, env_reward:-10.644637400375288, model_reward:-2.770898988462988
state: [-0.63606972 -0.77163159 6.12558892]
model: [ 0.06255806 -0.99804133 1.07492234]
reward difference: -6.4705393062619265, env_reward:-8.863137718529886, model_reward:-2.3925984122679593
state: [-0.38983111 -0.92088637 5.77891718]
model: [ 0.07941492 -0.99684165 0.33799394]
reward difference: -4.99000051216426, env_reward:-7.225463728385939, model_reward:-2.2354632162216794
state: [-0.14354764 -0.98964341 5.12805864]
model: [ 0.05908186 -0.99825314 -0.40764698]
reward difference: -3.2685860345810585, env_reward:-5.570385338429996, model_reward:-2.3017993038489375
state: [ 0.075712 -0.99712973 4.39659547]
model: [ 0.00132637 -0.99999912 -1.15579837]
reward difference: -1.5712425336371254, env_reward:-4.170452973888315, model_reward:-2.5992104402511895
state: [ 0.2441405 -0.96973987 3.41697499]
model: [-0.09440217 -0.99553414 -1.91738637]
reward difference: 0.22001235015895837, env_reward:-2.9221640366128945, model_reward:-3.142176386771853
state: [ 0.37952159 -0.92518288 2.85291739]
model: [-0.22538353 -0.97427012 -2.65587461]
reward difference: 1.7287526827822361, env_reward:-2.2099109322657737, model_reward:-3.93866361504801
state: [ 0.47778163 -0.87847864 2.17697179]
model: [-0.38630357 -0.9223717 -3.38568012]
reward difference: 3.3924741597038555, env_reward:-1.6246888514444675, model_reward:-5.017163011148323
state: [ 0.54057933 -0.84129305 1.4599569 ]
model: [-0.56516977 -0.82497463 -4.08036669]
reward difference: 5.167581678392129, env_reward:-1.2145645579836186, model_reward:-6.382146236375748
state: [ 0.56610235 -0.82433496 0.61288662]
model: [-0.74205725 -0.67033651 -4.70990269]
reward difference: 7.035057477311948, env_reward:-0.977339450609326, model_reward:-8.012396927921275
state: [ 0.57127484 -0.82075883 0.12576714]
model: [-0.88958649 -0.45676676 -5.20609848]
reward difference: 8.896044537008429, env_reward:-0.9319457730558378, model_reward:-9.827990310064267
state: [ 0.53924307 -0.84215017 -0.7704045 ]
model: [-0.98081014 -0.19496529 -5.56270367]
reward difference: 10.707704662220795, env_reward:-1.0618706111677845, model_reward:-11.769575273388579
state: [ 0.47901005 -0.87780942 -1.40022858]
model: [-0.99602255 0.08910153 -5.70883822]
reward difference: 11.232380307786718, env_reward:-1.3444360363232037, model_reward:-12.576816344109922
state: [ 0.38027 -0.92487552 -2.18876802]
model: [-0.9317309 0.36314947 -5.64852119]
reward difference: 8.990041934675999, env_reward:-1.8736967897961485, model_reward:-10.863738724472148
state: [ 0.23807337 -0.97124717 -2.9941302 ]
model: [-0.80165772 0.59778332 -5.38174437]
reward difference: 6.484130973214587, env_reward:-2.6664849183296604, model_reward:-9.150615891544247
state: [ 0.05410402 -0.9985353 -3.72502495]
model: [-0.63142283 0.77543872 -4.93352985]
reward difference: 3.8274563625433915, env_reward:-3.688573550560574, model_reward:-7.516029913103965
state: [-0.17501097 -0.98456648 -4.60094718]
model: [-0.44884429 0.89360998 -4.35830184]
reward difference: 0.8779880109276181, env_reward:-5.16792866864401, model_reward:-6.045916679571628
state: [-0.4270318 -0.90423661 -5.30581531]
model: [-0.27746144 0.96073677 -3.68641652]
reward difference: -2.0746529029026783, env_reward:-6.863328640483804, model_reward:-4.7886757375811255
state: [-0.67475802 -0.73803904 -5.98858213]
model: [-0.13245572 0.99118892 -2.96609341]
reward difference: -5.146866001054104, env_reward:-8.932298303080513, model_reward:-3.78543230202641
state: [-0.86950194 -0.49392953 -6.27112554]
model: [-0.02238663 0.99974939 -2.20915242]
reward difference: -7.796997486668447, env_reward:-10.827185214844892, model_reward:-3.030187728176445
state: [-0.98019288 -0.19804524 -6.34480022]
model: [ 0.04981596 0.99875841 -1.44450176]
reward difference: -10.160385743644941, env_reward:-12.683002372440056, model_reward:-2.522616628795114
state: [-0.99289154 0.11902264 -6.37337452]
model: [ 0.0842085 0.99644816 -0.68943496]
reward difference: -10.939031508799783, env_reward:-13.198007070951318, model_reward:-2.2589755621515355
state: [-0.90322759 0.42916187 -6.48518358]
model: [0.08182439 0.99664676 0.04784735]
reward difference: -9.268122070807465, env_reward:-11.485170845007973, model_reward:-2.2170487742005083
state: [-0.73170966 0.68161644 -6.12809708]
model: [0.04204891 0.99911555 0.79709318]
reward difference: -7.074652185378586, env_reward:-9.476660133162977, model_reward:-2.4020079477843903
state: [-0.52182343 0.85305352 -5.43679473]
model: [-0.03570282 0.99936245 1.55543435]
reward difference: -4.626553936119985, env_reward:-7.449600143916911, model_reward:-2.823046207796925
state: [-0.30776873 0.9514612 -4.722801 ]
model: [-0.15056892 0.98859951 2.30866636]
reward difference: -2.2805256764496535, env_reward:-5.779790317462261, model_reward:-3.4992646410126076
state: [-0.12028685 0.99273918 -3.84536435]
model: [-0.29939559 0.95412907 3.05830804]
reward difference: 0.11097518950954655, env_reward:-4.340112760322959, model_reward:-4.451087949832505
state: [ 0.04063591 0.99917402 -3.22451844]
model: [-0.47278187 0.8811795 3.76771941]
reward difference: 2.2954275631593544, env_reward:-3.38198292230645, model_reward:-5.6774104854658045
state: [ 0.156742 0.98763958 -2.33487815]
model: [-0.65503274 0.7556005 4.43561703]
reward difference: 4.645916451723423, env_reward:-2.5429705972555547, model_reward:-7.188887048978978
state: [ 0.23269067 0.9725508 -1.54904751]
model: [-0.82173822 0.56986516 5.00457244]
reward difference: 6.907346569102724, env_reward:-2.0254488838677256, model_reward:-8.93279545297045
state: [ 0.26619591 0.96391895 -0.69202003]
model: [-0.94459947 0.32822528 5.43835203]
reward difference: 9.096356224701601, env_reward:-1.7431414428131522, model_reward:-10.839497667514754
state: [ 0.27421998 0.96166699 -0.16668225]
model: [-0.99871543 0.0506704 5.67464092]
reward difference: 11.099147742561662, env_reward:-1.6747572463994846, model_reward:-12.773904988961148
state: [0.24955601 0.96836037 0.51113526]
model: [-0.97255356 -0.23267911 5.71047208]
reward difference: 9.945444679617657, env_reward:-1.7650944801735442, model_reward:-11.710539159791201
state: [0.18497425 0.98274337 1.32352147]
model: [-0.87184237 -0.48978656 5.54026855]
reward difference: 7.8923253587860085, env_reward:-2.0936825813766657, model_reward:-9.986007940162674
state: [0.09030776 0.99591391 1.91229397]
model: [-0.71782668 -0.69622184 5.16551437]
reward difference: 5.734964935263662, env_reward:-2.559944159705742, model_reward:-8.294909094969404
state: [-0.03003061 0.99954898 2.40932178]
model: [-0.53890196 -0.84236849 4.63085261]
reward difference: 3.5806328536933156, env_reward:-3.143170826311823, model_reward:-6.723803680005139
state: [-0.18807475 0.98215472 3.18332836]
model: [-0.36079333 -0.93264579 4.00029348]
reward difference: 1.252553408653215, env_reward:-4.112379921557817, model_reward:-5.3649333302110325
state: [-0.38403809 0.92331725 4.09928508]
model: [-0.20222523 -0.97933904 3.30977617]
reward difference: -1.2974408764607865, env_reward:-5.543548733955506, model_reward:-4.246107857494719
state: [-0.6008114 0.79939081 5.00699882]
model: [-0.07425949 -0.99723895 2.58603318]
reward difference: -4.0394207460690605, env_reward:-7.417724117759613, model_reward:-3.3783033716905524
state: [-0.80642144 0.59134124 5.87119105]
model: [ 0.0182379 -0.99983368 1.85133643]
reward difference: -6.988346051284605, env_reward:-9.742300628637466, model_reward:-2.753954577352861
state: [-0.95221698 0.30542237 6.44678136]
model: [ 0.07357564 -0.99728964 1.10806539]
reward difference: -9.807601513403997, env_reward:-12.173423761534726, model_reward:-2.36582224813073
state: [-0.99946179 -0.03280448 6.86384658]
model: [ 0.09198686 -0.99576022 0.36949808]
reward difference: -12.175621139015098, env_reward:-14.375806095394873, model_reward:-2.2001849563797755
state: [-0.93113739 -0.36466857 6.80932945]
model: [ 0.07311091 -0.99732382 -0.37881777]
reward difference: -10.043052883415559, env_reward:-12.301300480446532, model_reward:-2.258247597030974
state: [-0.76968294 -0.63842633 6.38350241]
model: [ 0.01645411 -0.99986462 -1.13442692]
reward difference: -7.528530588914652, env_reward:-10.076915658439473, model_reward:-2.5483850695248207
state: [-0.53849845 -0.8426265 6.19380543]
model: [-0.07696243 -0.99703399 -1.86986924]
reward difference: -5.348569610508734, env_reward:-8.41367933622522, model_reward:-3.0651097257164865
state: [-0.28412174 -0.95878821 5.61127614]
model: [-0.20630504 -0.97848773 -2.61517271]
reward difference: -2.7567935234560252, env_reward:-6.606870186013028, model_reward:-3.8500766625570026
state: [-0.03099646 -0.99951949 5.14177737]
model: [-0.36592374 -0.93064484 -3.33655889]
reward difference: -0.3116160797832439, env_reward:-5.209736994314107, model_reward:-4.898120914530863
state: [ 0.19072894 -0.98164274 4.45812184]
model: [-0.54483083 -0.83854598 -4.03124331]
reward difference: 2.3458039651849916, env_reward:-3.8910237838949557, model_reward:-6.236827749079947
state: [ 0.37936946 -0.92524527 3.94420089]
model: [-0.72334825 -0.69048339 -4.64903724]
reward difference: 4.871024749570644, env_reward:-2.95284096569197, model_reward:-7.823865715262614
state: [ 0.51835866 -0.85516332 3.1163157 ]
model: [-0.87591018 -0.4824742 -5.17359735]
reward difference: 7.612720838220163, env_reward:-2.0238777664338006, model_reward:-9.636598604653964
state: [ 0.62334774 -0.78194475 2.56172487]
model: [-0.9743636 -0.22497906 -5.53111391]
reward difference: 10.09237817893164, env_reward:-1.462306363935284, model_reward:-11.554684542866923
state: [ 0.69615329 -0.71789317 1.94016808]
model: [-0.99830926 0.05812583 -5.70160312]
reward difference: 11.740733596057616, env_reward:-1.0177655468871298, model_reward:-12.758499142944746
state: [ 0.74634445 -0.66555989 1.45054875]
model: [-0.94244176 0.33437035 -5.65556872]
reward difference: 10.301469453052258, env_reward:-0.7431796683650129, model_reward:-11.04464912141727
state: [ 0.78445483 -0.62018596 1.18528024]
model: [-0.81930883 0.57335246 -5.39309588]
reward difference: 8.72649061874861, env_reward:-0.5918014505050365, model_reward:-9.318292069253646
state: [ 0.79756306 -0.60323558 0.4285598 ]
model: [-0.65283534 0.75749985 -4.97766059]
reward difference: 7.2480824508785275, env_reward:-0.4411676745479459, model_reward:-7.689250125426473
state: [ 0.78831409 -0.61527303 -0.30361045]
model: [-0.4707541 0.88226446 -4.42352288]
reward difference: 5.755803915866255, env_reward:-0.4503173045204281, model_reward:-6.206121220386684
state: [ 0.77080821 -0.63706727 -0.55910484]
model: [-0.29797347 0.95457415 -3.75152651]
reward difference: 4.408583656194538, env_reward:-0.5083104126162828, model_reward:-4.916894068810821
state: [ 0.73657152 -0.67635966 -1.0424313 ]
model: [-0.15020476 0.98865491 -3.0358722 ]
reward difference: 3.2250295078903815, env_reward:-0.660522433779799, model_reward:-3.8855519416701805
state: [ 0.68035144 -0.73288602 -1.594904 ]
model: [-0.03593558 0.99935411 -2.29664117]
reward difference: 2.1781009401925093, env_reward:-0.9326822030615654, model_reward:-3.110783143254075
state: [ 0.60585084 -0.79557825 -1.94814321]
model: [ 0.04091048 0.99916282 -1.53730432]
reward difference: 1.350990985396404, env_reward:-1.2259673205820012, model_reward:-2.576958305978405
state: [ 0.50216842 -0.86476984 -2.4946085 ]
model: [ 0.08010704 0.99678627 -0.78542129]
reward difference: 0.5698988140919741, env_reward:-1.7143090111207946, model_reward:-2.2842078252127687
state: [ 0.35511395 -0.93482302 -3.26137011]
model: [ 0.08228686 0.99660869 -0.0437408 ]
reward difference: -0.3067641184190655, env_reward:-2.5223682721138685, model_reward:-2.215604153694803
state: [ 0.16543947 -0.98621995 -3.93664722]
model: [0.04711217 0.99888961 0.70500772]
reward difference: -1.1513360232369476, env_reward:-3.523944450765516, model_reward:-2.3726084275285686
state: [-0.05888117 -0.998265 -4.50237706]
model: [-0.02601103 0.99966166 1.46287168]
reward difference: -1.9192972715456778, env_reward:-4.683728783993971, model_reward:-2.7644315124482937
state: [-0.32159875 -0.94687604 -5.37004408]
model: [-0.13592537 0.99071908 2.20666951]
reward difference: -3.0856740174156725, env_reward:-6.490773972624565, model_reward:-3.4050999552088923
state: [-0.57840073 -0.81575278 -5.78698764]
model: [-0.28074085 0.95978361 2.96436949]
reward difference: -3.813237476366285, env_reward:-8.13436400132036, model_reward:-4.321126524954075
###Markdown
Using $-\mathrm{sin}(\theta)$ instead of $\mathrm{sin}(\theta +\pi)$ makes no difference when assuming analytical precision, but due to numeric errors these formulations will still yield different results in numpy, mainly because $\pi$ is represented with finite (float) precision. In order to yield the same numbers as in `gym`, we will still make use of the (more cumbersome) $\mathrm{sin}(\theta +\pi)$. Write a function for the Dyna-Q algorithm, which uses the model we defined above:
###Code
def pendulumModelDynaQ(alpha, gamma, epsilon, n, nb_episodes, nb_steps):
env = gym.make('Pendulum-v0')
env = env.unwrapped
model = pendulum_model()
action_values = np.zeros([d_theta, d_theta, d_omega, d_T])
pi = np.zeros([d_theta, d_theta, d_omega])
cumulative_reward_history = [] # we can use this to figure out how well the learning worked
for j in tqdm(range(nb_episodes), position=0, leave=True):
### BEGIN SOLUTION
rewards = [] # this time, this list is only for monitoring
state = env.reset() # initialize x_0
state = tuple(discretize_state(state).astype(int))
for k in range(nb_steps):
# sample experiences for the model
if np.random.uniform(0, 1) < epsilon:
action = np.random.choice(d_T) # explorative action
else:
action = pi[state].astype(int) # exploitative action
cont_action = continualize_action(action)
next_state, reward, done, _ = env.step(cont_action)
next_state = tuple(discretize_state(next_state).astype(int))
# learn from the momentary experience
action_values[state][action] += alpha * (reward
+ gamma * np.max(action_values[next_state])
- action_values[state][action]
)
pi[state] = np.argmax(action_values[state])
# no model update is needed
state = next_state
rewards.append(reward)
# learn from the model, IMPORTANT: USE DIFFERENT VARIABLES HERE
for i in range(n):
x = model.reset() # if no state is passed to the model, state is initialized randomly
u_d = np.random.choice(d_T)
x_d = tuple(discretize_state(x).astype(int))
u = continualize_action(u_d)
x_1, r = model.step(u)
x_1_d = tuple(discretize_state(x_1).astype(int))
action_values[x_d][u_d] += alpha * (r
+ gamma * np.max(action_values[x_1_d])
- action_values[x_d][u_d]
)
pi[x_d] = np.argmax(action_values[x_d])
if done:
break
cumulative_reward_history.append(np.sum(rewards))
env.close()
### END SOLUTION
return cumulative_reward_history, pi
###Output
_____no_output_____
###Markdown
Use the following cell to compare the learing from experience from 1) to the learning using the defined model: (Beware, nb_steps = 10000 can take some time)
###Code
### train both setups once
print("Run with planning from experience")
exp_planning_history, exp_planning_pi = pendulumDynaQ(alpha = 0.1, gamma = 0.9, epsilon = 0.1, n = 19, nb_episodes = 30, nb_steps = 10000)
print("Run with planning from model")
model_planning_history, model_planning_pi = pendulumModelDynaQ(alpha = 0.1, gamma = 0.9, epsilon = 0.1, n = 19, nb_episodes = 30, nb_steps = 10000)
plt.plot(exp_planning_history)
plt.plot(model_planning_history)
plt.xlabel("episode")
plt.ylabel(r"$\sum R$")
plt.show()
###Output
Run with planning from experience
###Markdown
Use the following cell to execute the policy we got using the model:
###Code
experiment(model_planning_pi,nb_steps = 300)
###Output
_____no_output_____
###Markdown
Extra-task:Change the model parameters (e.g. $g$, $m$, $l$) so that our model differs from the "real world" (we got from gym).What do you observe By changing the parameters our model differs from the "real world". Depending on the amount of difference, the learing curve looks worse than the one with the correct values. The experiment result is also depending on the random starting position. Depending on the parameter difference, the experiment can not be executed successfully any more. Try to change the parameters on your own. The Following learning curve results from a parameter change using $g =20 \, \frac{\text{m}}{\text{s}^2}, m = 5 \, \text{kg and } l = 2 \, \text{m}$:
###Code
plt.plot(exp_planning_history, label="exp")
plt.plot(model_planning_history, label="model")
plt.xlabel("episode")
plt.ylabel(r"$\sum R$")
plt.legend(loc="upper left")
plt.show()
###Output
_____no_output_____ |
Slintel_Assignment_2.ipynb | ###Markdown
- importing the libraries here...
###Code
import nltk
# nltk.download()
import pandas as pd
import spacy
# from spacy import displacy
# from collections import Counter
import en_core_web_lg
nlp = en_core_web_lg.load()
# !python -m spacy download en_core_web_lg
master = pd.read_csv("/content/master-company-sheet.csv")
blogs = pd.read_csv("/content/news-data.csv")
output = pd.read_csv("/content/output-sheet.csv")
print("master sheet", master.head())
print("\n\nmaster sheet data types\n", master.dtypes)
print("blogs sheet", blogs.head())
print("\n\n blogs sheet data types\n", blogs.dtypes)
print("output sheet", output.head())
print("\n\n output sheet data types\n", output.dtypes)
def dictionary_with_title_description(df):
" This function will return dictionaries containing blog id, company names from title, and company name from description"
company_names_title = {} # initialising empty dictionary for company names extracted from title
company_names_description = {} # initialising empty dictionary for company names extracted from description
descriptionDict = {} # {index : [blog_id, title, description], index_2 : ...}
for i in range(0, len(df)):
descriptionDict.setdefault(i, [])
# The magic of setdefault is that it initializes the value for that key if that key is not defined, otherwise it does nothing.
descriptionDict[i].append(df.loc[i, "_id"]) # will be adding multiple values in a single key (Here, adding _id)
# title
descriptionDict.setdefault(i, [])
descriptionDict[i].append(df.loc[i, "title"]) # adding title as value in dictionay
# description
descriptionDict.setdefault(i, [])
descriptionDict[i].append(df.loc[i, "description"]) #adding description as value in the dictionary
for i in range(0, len(df)):
doc = nlp(descriptionDict[i][2])
for X in doc.ents:
#print((X.text, X.label_, type(X.text), type(X.label_)))
if X.label_ == 'ORG':
company_names_description.setdefault(descriptionDict[i][0], [])
company_names_description[descriptionDict[i][0]].append(X.text)
# company_names_description.update({descriptionDict[i][0]:X.text})
print("company_names FROM description - ",company_names_description)
for i in range(0, len(df)):
titl = nlp(descriptionDict[i][1])
for X in titl.ents:
#print((X.text, X.label_, type(X.text), type(X.label_)))
if X.label_ == 'ORG':
# company_names_title.update({descriptionDict[i][0]:X.text})
company_names_title.setdefault(descriptionDict[i][0], [])
company_names_title[descriptionDict[i][0]].append(X.text)
print("company_names FROM title - ",company_names_title)
return descriptionDict, company_names_description, company_names_title
descriptionDict, company_names_description, company_names_title = dictionary_with_title_description(blogs)
final_dictionary = {}
try:
for key, value in company_names_description.items():
# print("Value at o", value[0])
for j in range(0, len(master)):
for k in range(0, len(value)):
if (value[k] == master.loc[j, "name"]):
final_dictionary.setdefault(key, [])
final_dictionary[key].append(master.loc[j, "_id"])
except:
print("RA")
final_dictionary
try:
for key, value in company_names_title.items():
# print("Value at o", value[0])
for j in range(0, len(master)):
for k in range(0, len(value)):
if (value[k] == master.loc[j, "name"]):
final_dictionary.setdefault(key, [])
final_dictionary[key].append(master.loc[j, "_id"])
except:
print("RA")
final_dictionary
blogs.set_index("_id")
for k, v in final_dictionary.items():
new_row = {'blog_id':k, 'title': blogs["title"][k], 'description': blogs["description"][k], 'company_ids': final_dictionary[k]}
output = output.append(new_row, ignore_index=True)
output
output.to_csv("output-sheet_new_lg.csv", index = False)
###Output
_____no_output_____ |
pure/4.sets.ipynb | ###Markdown
SetSets are used to store multiple items in a single variable.Set is one of 4 built-in data types in Python used to store collections of data, the other 3 are List, Tuple, and Dictionary, all with different qualities and usage.A set is a collection which is unordered, unchangeable*, and unindexed.* Note: Set items are unchangeable, but you can remove items and add new items.
###Code
# Sets are written with curly brackets.
thisset = {"apple", "banana", "cherry"}
print(thisset)
###Output
{'apple', 'banana', 'cherry'}
###Markdown
Set ItemsSet items are unordered, unchangeable, and do not allow duplicate values. UnorderedUnordered means that the items in a set do not have a defined order.Set items can appear in a different order every time you use them, and cannot be referred to by index or key. UnchangeableSet items are unchangeable, meaning that we cannot change the items after the set has been created.Once a set is created, you cannot change its items, but you can remove items and add new items. Duplicates Not AllowedSets cannot have two items with the same value.
###Code
# The set() constructor
thisset = set(("apple", "banana", "cherry")) # note the double round-brackets
print(thisset)
thisset = {"apple", "banana", "cherry"}
mylist = ["kiwi", "orange"]
thisset.update(mylist)
print(thisset)
# remove item
thisset = {"apple", "banana", "cherry"}
thisset.remove("banana")
print(thisset)
# Note: If the item to remove does not exist, discard() will NOT raise an error.
thisset = {"apple", "banana", "cherry"}
thisset.discard("banana")
print(thisset)
###Output
{'apple', 'cherry'}
{'apple', 'cherry'}
###Markdown
Note: Sets are unordered, so when using the pop() method, you do not know which item that gets removed.
###Code
#Join Two Sets
set1 = {"a", "b", "c"}
set2 = {1, 2, 3}
set3 = set1.union(set2)
print(set3)
#Update
set1 = {"a", "b", "c"}
set2 = {1, 2, 3}
set1.update(set2)
print(set1)
###Output
{'c', 1, 2, 3, 'b', 'a'}
{'c', 1, 2, 3, 'b', 'a'}
###Markdown
Note: Both union() and update() will exclude any duplicate items.
###Code
# Keep ONLY the Duplicates
#The intersection_update() method will keep only the items that are present in both sets.
x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
x.intersection_update(y)
print(x)
#The intersection() method will return a new set, that only contains the items that are present in both sets.
x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
z = x.intersection(y)
print(z)
#Keep All, But NOT the Duplicates
x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
x.symmetric_difference_update(y)
print(x)
###Output
{'apple'}
{'apple'}
{'microsoft', 'google', 'banana', 'cherry'}
|
0.1 dataset and feature.ipynb | ###Markdown
Once you have the data in place, you can generate a new Dataset instance from the database.txt file。 The following uses database txt file from July 2015 (data_0.6.July_2015.tar).
###Code
from neurosynth.base.dataset import Dataset
dataset = Dataset('data/database.txt')
###Output
_____no_output_____
###Markdown
Once initialized, the Dataset instance contains activation data from nearly 10,000 published neuroimaging articles. But it doesn't yet have any features attached to those data, so let's add some:
###Code
dataset.add_features('data/feature_v4-topics-400.txt')
###Output
_____no_output_____
###Markdown
Now our Dataset has both activation data and some features we can use to manipulate the data with. In this case, the features are just term-based tags--i.e., words that occur in the abstracts of the articles from which the dataset is drawn (for details, see the Neurosynth website). https://github.com/neurosynth/neurosynth
###Code
dataset.save('data/neurosynth_0.6_400_4.pkl')
###Output
_____no_output_____ |
notebooks/3_atlas_extension/HLCA_extension_data_preprocessing/Budinger_2020_Bharat.ipynb | ###Markdown
This script does the preparation of Budinger_2020/BharatThe original dataset is at `../../../../../../datasets/projects/20210309_Saliba_covidFibrosis_ignacio.ibarra_malte.luecken/bharat_et_al_full.h5ad`It was used for Wendisch et al. Here Malte/Nacho are refining it to be used in the HLCA
###Code
import scanpy as sc
ad = sc.read_h5ad('bharat_et_al_full.h5ad')
ad.shape
ad
ad.obs_names = list(ad.obs['Unnamed: 0'])
# ad.obs
# the numbers in ad.X are raw counts
ad.raw is None
# ad.to_df()['A1BG'].describe()
## check mito content quickly
import matplotlib.pyplot as plt
ad.obs['% of mito genes'].describe()
ad.obs
###Output
_____no_output_____
###Markdown
Remove all HEALTHY cells (these are already in the atlas and for that reason readding them is redundant.
###Code
ad.obs['orig.ident'].value_counts().shape
ad = ad[ad.obs['Sample Status'] != 'Control',:]
ad.obs['Sample Status'] = 'COVID-19
plt.hist(ad.obs['% of mito genes'], bins=20)
filter_mt = False
if filter_mt:
mt_thr = 20
print('# before', ad.shape)
ad = ad[ad.obs['% of mito genes'] < mt_thr,:]
print('# after', ad.shape)
plt.hist(ad.obs['% of mito genes'], bins=20)
###Output
_____no_output_____
###Markdown
Make object lightweight
###Code
del ad.uns
del ad.obsm
del ad.varm
del ad.obsp
###Output
_____no_output_____
###Markdown
Clean adata.var
###Code
for c in ad.var.columns:
del ad.var[c]
###Output
_____no_output_____
###Markdown
I don't think this could divided into multiple samples. No clear batch, su assuming everything got sequenced together.
###Code
ad.obs[['Sample Source', 'Sample Name', 'Sample Status', 'orig.ident']].value_counts()
ad.obs['dataset'] = 'Bundinger2021'
ad.obs['study'] = 'Bundinger2021'
ad.obs['original_celltype_ann'] = ad.obs['Cell Type']
ad.obs['condition'] = ad.obs['Sample Status']
ad.obs['subject_ID'] = ad.obs['Sample Name']
ad.obs['sample'] = ad.obs['orig.ident']
ad.obs = ad.obs[ad.obs.columns[-6:]]
# this is based on the paraphrasing of the manuscript info
age_by_subject_ID = {'PMB 1': 53, 'PMB 2': 57, 'Case 1': 27}
sex_by_subject_ID = {'PMB 1': 'M', 'PMB 2': 'F', 'Case 1': 'F'}
ethn_by_subject_ID = {'PMB 1': None, 'PMB 2': None, 'Case 1': 'Latina'}
bmi_by_subject_ID = {'PMB 1': None, 'PMB 2': None, 'Case 1': 25.2}
ad.obs['age'] = ad.obs['subject_ID'].map(age_by_subject_ID)
ad.obs['sex'] = ad.obs['subject_ID'].map(sex_by_subject_ID)
ad.obs['ethnicity'] = ad.obs['subject_ID'].map(ethn_by_subject_ID)
ad.obs['bmi'] = ad.obs['subject_ID'].map(bmi_by_subject_ID)
ad.obs
ad.obs['sample'].value_counts().shape
# subset to 2000 HVGs that Lisa uses
import pandas as pd
gene_set = pd.read_csv('genes_for_mapping.csv')
# gene_set = set(gene_set['gene_symbols'])
len(set(ad.var.index).intersection(gene_set['gene_symbols']))
import preprocessing as pp
ad_sub = pp.subset_and_pad_adata(gene_set, ad)
ad.shape, ad_sub.shape
ad.obs['subject_ID'].value_counts()
###Output
_____no_output_____
###Markdown
Write a full and subsetted version of h5ad
###Code
# Clean adata.var
full_path = '../../../data/HLCA_extended/extension_datasets/ready/full/bharat.h5ad'
ad.write(full_path, compression='lzf')
subsetted_path = '../../../data/HLCA_extended/extension_datasets/ready/subsetted/bharat_sub.h5ad'
ad_sub.write(subsetted_path, compression='lzf')
ad.obs
###Output
_____no_output_____
###Markdown
Modify access to be checked
###Code
!chmod 777 $full_path
!chmod 777 $subsetted_path
###Output
_____no_output_____ |
Neural Networks and Deep Learning/03 Building Deep Neural Network - Step by Step/Building_your_Deep_Neural_Network_Step_by_Step_v8a.ipynb | ###Markdown
Building your Deep Neural Network: Step by StepWelcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!- In this notebook, you will implement all the functions required to build a deep neural network.- In the next assignment, you will use these functions to build a deep neural network for image classification.**After this assignment you will be able to:**- Use non-linear units like ReLU to improve your model- Build a deeper neural network (with more than 1 hidden layer)- Implement an easy-to-use neural network class**Notation**:- Superscript $[l]$ denotes a quantity associated with the $l^{th}$ layer. - Example: $a^{[L]}$ is the $L^{th}$ layer activation. $W^{[L]}$ and $b^{[L]}$ are the $L^{th}$ layer parameters.- Superscript $(i)$ denotes a quantity associated with the $i^{th}$ example. - Example: $x^{(i)}$ is the $i^{th}$ training example.- Lowerscript $i$ denotes the $i^{th}$ entry of a vector. - Example: $a^{[l]}_i$ denotes the $i^{th}$ entry of the $l^{th}$ layer's activations).Let's get started! Updates to Assignment If you were working on a previous version* The current notebook filename is version "4a". * You can find your work in the file directory as version "4".* To see the file directory, click on the Coursera logo at the top left of the notebook. List of Updates* compute_cost unit test now includes tests for Y = 0 as well as Y = 1. This catches a possible bug before students get graded.* linear_backward unit test now has a more complete unit test that catches a possible bug before students get graded. 1 - PackagesLet's first import all the packages that you will need during this assignment. - [numpy](www.numpy.org) is the main package for scientific computing with Python.- [matplotlib](http://matplotlib.org) is a library to plot graphs in Python.- dnn_utils provides some necessary functions for this notebook.- testCases provides some test cases to assess the correctness of your functions- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don't change the seed.
###Code
import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v4a import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward
%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
%load_ext autoreload
%autoreload 2
np.random.seed(1)
###Output
_____no_output_____
###Markdown
2 - Outline of the AssignmentTo build your neural network, you will be implementing several "helper functions". These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:- Initialize the parameters for a two-layer network and for an $L$-layer neural network.- Implement the forward propagation module (shown in purple in the figure below). - Complete the LINEAR part of a layer's forward propagation step (resulting in $Z^{[l]}$). - We give you the ACTIVATION function (relu/sigmoid). - Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function. - Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer $L$). This gives you a new L_model_forward function.- Compute the loss.- Implement the backward propagation module (denoted in red in the figure below). - Complete the LINEAR part of a layer's backward propagation step. - We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward) - Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function. - Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function- Finally update the parameters. **Figure 1****Note** that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps. 3 - InitializationYou will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to $L$ layers. 3.1 - 2-layer Neural Network**Exercise**: Create and initialize the parameters of the 2-layer neural network.**Instructions**:- The model's structure is: *LINEAR -> RELU -> LINEAR -> SIGMOID*. - Use random initialization for the weight matrices. Use `np.random.randn(shape)*0.01` with the correct shape.- Use zero initialization for the biases. Use `np.zeros(shape)`.
###Code
# GRADED FUNCTION: initialize_parameters
def initialize_parameters(n_x, n_h, n_y):
"""
Argument:
n_x -- size of the input layer
n_h -- size of the hidden layer
n_y -- size of the output layer
Returns:
parameters -- python dictionary containing your parameters:
W1 -- weight matrix of shape (n_h, n_x)
b1 -- bias vector of shape (n_h, 1)
W2 -- weight matrix of shape (n_y, n_h)
b2 -- bias vector of shape (n_y, 1)
"""
np.random.seed(1)
### START CODE HERE ### (≈ 4 lines of code)
W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros((n_y, 1))
### END CODE HERE ###
assert(W1.shape == (n_h, n_x))
assert(b1.shape == (n_h, 1))
assert(W2.shape == (n_y, n_h))
assert(b2.shape == (n_y, 1))
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
parameters = initialize_parameters(3,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
###Output
W1 = [[ 0.01624345 -0.00611756 -0.00528172]
[-0.01072969 0.00865408 -0.02301539]]
b1 = [[ 0.]
[ 0.]]
W2 = [[ 0.01744812 -0.00761207]]
b2 = [[ 0.]]
###Markdown
**Expected output**: **W1** [[ 0.01624345 -0.00611756 -0.00528172] [-0.01072969 0.00865408 -0.02301539]] **b1** [[ 0.] [ 0.]] **W2** [[ 0.01744812 -0.00761207]] **b2** [[ 0.]] 3.2 - L-layer Neural NetworkThe initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the `initialize_parameters_deep`, you should make sure that your dimensions match between each layer. Recall that $n^{[l]}$ is the number of units in layer $l$. Thus for example if the size of our input $X$ is $(12288, 209)$ (with $m=209$ examples) then: **Shape of W** **Shape of b** **Activation** **Shape of Activation** **Layer 1** $(n^{[1]},12288)$ $(n^{[1]},1)$ $Z^{[1]} = W^{[1]} X + b^{[1]} $ $(n^{[1]},209)$ **Layer 2** $(n^{[2]}, n^{[1]})$ $(n^{[2]},1)$ $Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]}$ $(n^{[2]}, 209)$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ **Layer L-1** $(n^{[L-1]}, n^{[L-2]})$ $(n^{[L-1]}, 1)$ $Z^{[L-1]} = W^{[L-1]} A^{[L-2]} + b^{[L-1]}$ $(n^{[L-1]}, 209)$ **Layer L** $(n^{[L]}, n^{[L-1]})$ $(n^{[L]}, 1)$ $Z^{[L]} = W^{[L]} A^{[L-1]} + b^{[L]}$ $(n^{[L]}, 209)$ Remember that when we compute $W X + b$ in python, it carries out broadcasting. For example, if: $$ W = \begin{bmatrix} j & k & l\\ m & n & o \\ p & q & r \end{bmatrix}\;\;\; X = \begin{bmatrix} a & b & c\\ d & e & f \\ g & h & i \end{bmatrix} \;\;\; b =\begin{bmatrix} s \\ t \\ u\end{bmatrix}\tag{2}$$Then $WX + b$ will be:$$ WX + b = \begin{bmatrix} (ja + kd + lg) + s & (jb + ke + lh) + s & (jc + kf + li)+ s\\ (ma + nd + og) + t & (mb + ne + oh) + t & (mc + nf + oi) + t\\ (pa + qd + rg) + u & (pb + qe + rh) + u & (pc + qf + ri)+ u\end{bmatrix}\tag{3} $$ **Exercise**: Implement initialization for an L-layer Neural Network. **Instructions**:- The model's structure is *[LINEAR -> RELU] $ \times$ (L-1) -> LINEAR -> SIGMOID*. I.e., it has $L-1$ layers using a ReLU activation function followed by an output layer with a sigmoid activation function.- Use random initialization for the weight matrices. Use `np.random.randn(shape) * 0.01`.- Use zeros initialization for the biases. Use `np.zeros(shape)`.- We will store $n^{[l]}$, the number of units in different layers, in a variable `layer_dims`. For example, the `layer_dims` for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. This means `W1`'s shape was (4,2), `b1` was (4,1), `W2` was (1,4) and `b2` was (1,1). Now you will generalize this to $L$ layers! - Here is the implementation for $L=1$ (one layer neural network). It should inspire you to implement the general case (L-layer neural network).```python if L == 1: parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01 parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))```
###Code
# GRADED FUNCTION: initialize_parameters_deep
def initialize_parameters_deep(layer_dims):
"""
Arguments:
layer_dims -- python array (list) containing the dimensions of each layer in our network
Returns:
parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
bl -- bias vector of shape (layer_dims[l], 1)
"""
np.random.seed(3)
parameters = {}
L = len(layer_dims) # number of layers in the network
for l in range(1, L):
### START CODE HERE ### (≈ 2 lines of code)
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
### END CODE HERE ###
assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
return parameters
parameters = initialize_parameters_deep([5,4,3])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
###Output
W1 = [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388]
[-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
[-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034]
[-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]]
b1 = [[ 0.]
[ 0.]
[ 0.]
[ 0.]]
W2 = [[-0.01185047 -0.0020565 0.01486148 0.00236716]
[-0.01023785 -0.00712993 0.00625245 -0.00160513]
[-0.00768836 -0.00230031 0.00745056 0.01976111]]
b2 = [[ 0.]
[ 0.]
[ 0.]]
###Markdown
**Expected output**: **W1** [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]] **b2** [[ 0.] [ 0.] [ 0.]] 4 - Forward propagation module 4.1 - Linear Forward Now that you have initialized your parameters, you will do the forward propagation module. You will start by implementing some basic functions that you will use later when implementing the model. You will complete three functions in this order:- LINEAR- LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid. - [LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID (whole model)The linear forward module (vectorized over all the examples) computes the following equations:$$Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}\tag{4}$$where $A^{[0]} = X$. **Exercise**: Build the linear part of forward propagation.**Reminder**:The mathematical representation of this unit is $Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}$. You may also find `np.dot()` useful. If your dimensions don't match, printing `W.shape` may help.
###Code
# GRADED FUNCTION: linear_forward
def linear_forward(A, W, b):
"""
Implement the linear part of a layer's forward propagation.
Arguments:
A -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)
Returns:
Z -- the input of the activation function, also called pre-activation parameter
cache -- a python tuple containing "A", "W" and "b" ; stored for computing the backward pass efficiently
"""
### START CODE HERE ### (≈ 1 line of code)
Z = np.dot(W, A) + b
### END CODE HERE ###
assert(Z.shape == (W.shape[0], A.shape[1]))
cache = (A, W, b)
return Z, cache
A, W, b = linear_forward_test_case()
Z, linear_cache = linear_forward(A, W, b)
print("Z = " + str(Z))
###Output
Z = [[ 3.26295337 -1.23429987]]
###Markdown
**Expected output**: **Z** [[ 3.26295337 -1.23429987]] 4.2 - Linear-Activation ForwardIn this notebook, you will use two activation functions:- **Sigmoid**: $\sigma(Z) = \sigma(W A + b) = \frac{1}{ 1 + e^{-(W A + b)}}$. We have provided you with the `sigmoid` function. This function returns **two** items: the activation value "`a`" and a "`cache`" that contains "`Z`" (it's what we will feed in to the corresponding backward function). To use it you could just call: ``` pythonA, activation_cache = sigmoid(Z)```- **ReLU**: The mathematical formula for ReLu is $A = RELU(Z) = max(0, Z)$. We have provided you with the `relu` function. This function returns **two** items: the activation value "`A`" and a "`cache`" that contains "`Z`" (it's what we will feed in to the corresponding backward function). To use it you could just call:``` pythonA, activation_cache = relu(Z)``` For more convenience, you are going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you will implement a function that does the LINEAR forward step followed by an ACTIVATION forward step.**Exercise**: Implement the forward propagation of the *LINEAR->ACTIVATION* layer. Mathematical relation is: $A^{[l]} = g(Z^{[l]}) = g(W^{[l]}A^{[l-1]} +b^{[l]})$ where the activation "g" can be sigmoid() or relu(). Use linear_forward() and the correct activation function.
###Code
# GRADED FUNCTION: linear_activation_forward
def linear_activation_forward(A_prev, W, b, activation):
"""
Implement the forward propagation for the LINEAR->ACTIVATION layer
Arguments:
A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)
activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
Returns:
A -- the output of the activation function, also called the post-activation value
cache -- a python tuple containing "linear_cache" and "activation_cache";
stored for computing the backward pass efficiently
"""
if activation == "sigmoid":
# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
### START CODE HERE ### (≈ 2 lines of code)
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = sigmoid(Z)
### END CODE HERE ###
elif activation == "relu":
# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
### START CODE HERE ### (≈ 2 lines of code)
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = relu(Z)
### END CODE HERE ###
assert (A.shape == (W.shape[0], A_prev.shape[1]))
cache = (linear_cache, activation_cache)
return A, cache
A_prev, W, b = linear_activation_forward_test_case()
A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
print("With sigmoid: A = " + str(A))
A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
print("With ReLU: A = " + str(A))
###Output
With sigmoid: A = [[ 0.96890023 0.11013289]]
With ReLU: A = [[ 3.43896131 0. ]]
###Markdown
**Expected output**: **With sigmoid: A ** [[ 0.96890023 0.11013289]] **With ReLU: A ** [[ 3.43896131 0. ]] **Note**: In deep learning, the "[LINEAR->ACTIVATION]" computation is counted as a single layer in the neural network, not two layers. d) L-Layer Model For even more convenience when implementing the $L$-layer Neural Net, you will need a function that replicates the previous one (`linear_activation_forward` with RELU) $L-1$ times, then follows that with one `linear_activation_forward` with SIGMOID. **Figure 2** : *[LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID* model**Exercise**: Implement the forward propagation of the above model.**Instruction**: In the code below, the variable `AL` will denote $A^{[L]} = \sigma(Z^{[L]}) = \sigma(W^{[L]} A^{[L-1]} + b^{[L]})$. (This is sometimes also called `Yhat`, i.e., this is $\hat{Y}$.) **Tips**:- Use the functions you had previously written - Use a for loop to replicate [LINEAR->RELU] (L-1) times- Don't forget to keep track of the caches in the "caches" list. To add a new value `c` to a `list`, you can use `list.append(c)`.
###Code
# GRADED FUNCTION: L_model_forward
def L_model_forward(X, parameters):
"""
Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
Arguments:
X -- data, numpy array of shape (input size, number of examples)
parameters -- output of initialize_parameters_deep()
Returns:
AL -- last post-activation value
caches -- list of caches containing:
every cache of linear_activation_forward() (there are L-1 of them, indexed from 0 to L-1)
"""
caches = []
A = X
L = len(parameters) // 2 # number of layers in the neural network
# Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
for l in range(1, L):
A_prev = A
### START CODE HERE ### (≈ 2 lines of code)
A, cache = linear_activation_forward(A_prev, parameters["W" + str(l)], parameters["b" + str(l)], activation = "relu")
caches.append(cache)
### END CODE HERE ###
# Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
### START CODE HERE ### (≈ 2 lines of code)
AL, cache = linear_activation_forward(A, parameters["W" + str(L)], parameters["b" + str(L)], activation = "sigmoid")
caches.append(cache)
### END CODE HERE ###
assert(AL.shape == (1,X.shape[1]))
return AL, caches
X, parameters = L_model_forward_test_case_2hidden()
AL, caches = L_model_forward(X, parameters)
print("AL = " + str(AL))
print("Length of caches list = " + str(len(caches)))
###Output
AL = [[ 0.03921668 0.70498921 0.19734387 0.04728177]]
Length of caches list = 3
###Markdown
**AL** [[ 0.03921668 0.70498921 0.19734387 0.04728177]] **Length of caches list ** 3 Great! Now you have a full forward propagation that takes the input X and outputs a row vector $A^{[L]}$ containing your predictions. It also records all intermediate values in "caches". Using $A^{[L]}$, you can compute the cost of your predictions. 5 - Cost functionNow you will implement forward and backward propagation. You need to compute the cost, because you want to check if your model is actually learning.**Exercise**: Compute the cross-entropy cost $J$, using the following formula: $$-\frac{1}{m} \sum\limits_{i = 1}^{m} (y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right)) \tag{7}$$
###Code
# GRADED FUNCTION: compute_cost
def compute_cost(AL, Y):
"""
Implement the cost function defined by equation (7).
Arguments:
AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
Returns:
cost -- cross-entropy cost
"""
m = Y.shape[1]
# Compute loss from aL and y.
### START CODE HERE ### (≈ 1 lines of code)
cost = -(1. / m) * np.sum(Y * np.log(AL) + (1. - Y) * np.log(1. - AL))
### END CODE HERE ###
cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
assert(cost.shape == ())
return cost
Y, AL = compute_cost_test_case()
print("cost = " + str(compute_cost(AL, Y)))
###Output
cost = 0.279776563579
###Markdown
**Expected Output**: **cost** 0.2797765635793422 6 - Backward propagation moduleJust like with forward propagation, you will implement helper functions for backpropagation. Remember that back propagation is used to calculate the gradient of the loss function with respect to the parameters. **Reminder**: **Figure 3** : Forward and Backward propagation for *LINEAR->RELU->LINEAR->SIGMOID* *The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.* <!-- For those of you who are expert in calculus (you don't need to be to do this assignment), the chain rule of calculus can be used to derive the derivative of the loss $\mathcal{L}$ with respect to $z^{[1]}$ in a 2-layer network as follows:$$\frac{d \mathcal{L}(a^{[2]},y)}{{dz^{[1]}}} = \frac{d\mathcal{L}(a^{[2]},y)}{{da^{[2]}}}\frac{{da^{[2]}}}{{dz^{[2]}}}\frac{{dz^{[2]}}}{{da^{[1]}}}\frac{{da^{[1]}}}{{dz^{[1]}}} \tag{8} $$In order to calculate the gradient $dW^{[1]} = \frac{\partial L}{\partial W^{[1]}}$, you use the previous chain rule and you do $dW^{[1]} = dz^{[1]} \times \frac{\partial z^{[1]} }{\partial W^{[1]}}$. During the backpropagation, at each step you multiply your current gradient by the gradient corresponding to the specific layer to get the gradient you wanted.Equivalently, in order to calculate the gradient $db^{[1]} = \frac{\partial L}{\partial b^{[1]}}$, you use the previous chain rule and you do $db^{[1]} = dz^{[1]} \times \frac{\partial z^{[1]} }{\partial b^{[1]}}$.This is why we talk about **backpropagation**.!-->Now, similar to forward propagation, you are going to build the backward propagation in three steps:- LINEAR backward- LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation- [LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID backward (whole model) 6.1 - Linear backwardFor layer $l$, the linear part is: $Z^{[l]} = W^{[l]} A^{[l-1]} + b^{[l]}$ (followed by an activation).Suppose you have already calculated the derivative $dZ^{[l]} = \frac{\partial \mathcal{L} }{\partial Z^{[l]}}$. You want to get $(dW^{[l]}, db^{[l]}, dA^{[l-1]})$. **Figure 4** The three outputs $(dW^{[l]}, db^{[l]}, dA^{[l-1]})$ are computed using the input $dZ^{[l]}$.Here are the formulas you need:$$ dW^{[l]} = \frac{\partial \mathcal{J} }{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1] T} \tag{8}$$$$ db^{[l]} = \frac{\partial \mathcal{J} }{\partial b^{[l]}} = \frac{1}{m} \sum_{i = 1}^{m} dZ^{[l](i)}\tag{9}$$$$ dA^{[l-1]} = \frac{\partial \mathcal{L} }{\partial A^{[l-1]}} = W^{[l] T} dZ^{[l]} \tag{10}$$ **Exercise**: Use the 3 formulas above to implement linear_backward().
###Code
# GRADED FUNCTION: linear_backward
def linear_backward(dZ, cache):
"""
Implement the linear portion of backward propagation for a single layer (layer l)
Arguments:
dZ -- Gradient of the cost with respect to the linear output (of current layer l)
cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer
Returns:
dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW -- Gradient of the cost with respect to W (current layer l), same shape as W
db -- Gradient of the cost with respect to b (current layer l), same shape as b
"""
A_prev, W, b = cache
m = A_prev.shape[1]
### START CODE HERE ### (≈ 3 lines of code)
dW = (1. / m) * np.dot(dZ, A_prev.T)
db = (1. / m) * np.sum(dZ, axis=1, keepdims=True)
dA_prev = np.dot(W.T, dZ)
### END CODE HERE ###
assert (dA_prev.shape == A_prev.shape)
assert (dW.shape == W.shape)
assert (db.shape == b.shape)
return dA_prev, dW, db
# Set up some test inputs
dZ, linear_cache = linear_backward_test_case()
dA_prev, dW, db = linear_backward(dZ, linear_cache)
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
###Output
dA_prev = [[-1.15171336 0.06718465 -0.3204696 2.09812712]
[ 0.60345879 -3.72508701 5.81700741 -3.84326836]
[-0.4319552 -1.30987417 1.72354705 0.05070578]
[-0.38981415 0.60811244 -1.25938424 1.47191593]
[-2.52214926 2.67882552 -0.67947465 1.48119548]]
dW = [[ 0.07313866 -0.0976715 -0.87585828 0.73763362 0.00785716]
[ 0.85508818 0.37530413 -0.59912655 0.71278189 -0.58931808]
[ 0.97913304 -0.24376494 -0.08839671 0.55151192 -0.10290907]]
db = [[-0.14713786]
[-0.11313155]
[-0.13209101]]
###Markdown
** Expected Output**: ```dA_prev = [[-1.15171336 0.06718465 -0.3204696 2.09812712] [ 0.60345879 -3.72508701 5.81700741 -3.84326836] [-0.4319552 -1.30987417 1.72354705 0.05070578] [-0.38981415 0.60811244 -1.25938424 1.47191593] [-2.52214926 2.67882552 -0.67947465 1.48119548]]dW = [[ 0.07313866 -0.0976715 -0.87585828 0.73763362 0.00785716] [ 0.85508818 0.37530413 -0.59912655 0.71278189 -0.58931808] [ 0.97913304 -0.24376494 -0.08839671 0.55151192 -0.10290907]]db = [[-0.14713786] [-0.11313155] [-0.13209101]]``` 6.2 - Linear-Activation backwardNext, you will create a function that merges the two helper functions: **`linear_backward`** and the backward step for the activation **`linear_activation_backward`**. To help you implement `linear_activation_backward`, we provided two backward functions:- **`sigmoid_backward`**: Implements the backward propagation for SIGMOID unit. You can call it as follows:```pythondZ = sigmoid_backward(dA, activation_cache)```- **`relu_backward`**: Implements the backward propagation for RELU unit. You can call it as follows:```pythondZ = relu_backward(dA, activation_cache)```If $g(.)$ is the activation function, `sigmoid_backward` and `relu_backward` compute $$dZ^{[l]} = dA^{[l]} * g'(Z^{[l]}) \tag{11}$$. **Exercise**: Implement the backpropagation for the *LINEAR->ACTIVATION* layer.
###Code
# GRADED FUNCTION: linear_activation_backward
def linear_activation_backward(dA, cache, activation):
"""
Implement the backward propagation for the LINEAR->ACTIVATION layer.
Arguments:
dA -- post-activation gradient for current layer l
cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
Returns:
dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW -- Gradient of the cost with respect to W (current layer l), same shape as W
db -- Gradient of the cost with respect to b (current layer l), same shape as b
"""
linear_cache, activation_cache = cache
if activation == "relu":
### START CODE HERE ### (≈ 2 lines of code)
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
### END CODE HERE ###
elif activation == "sigmoid":
### START CODE HERE ### (≈ 2 lines of code)
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
### END CODE HERE ###
return dA_prev, dW, db
dAL, linear_activation_cache = linear_activation_backward_test_case()
dA_prev, dW, db = linear_activation_backward(dAL, linear_activation_cache, activation = "sigmoid")
print ("sigmoid:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db) + "\n")
dA_prev, dW, db = linear_activation_backward(dAL, linear_activation_cache, activation = "relu")
print ("relu:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
###Output
sigmoid:
dA_prev = [[ 0.11017994 0.01105339]
[ 0.09466817 0.00949723]
[-0.05743092 -0.00576154]]
dW = [[ 0.10266786 0.09778551 -0.01968084]]
db = [[-0.05729622]]
relu:
dA_prev = [[ 0.44090989 0. ]
[ 0.37883606 0. ]
[-0.2298228 0. ]]
dW = [[ 0.44513824 0.37371418 -0.10478989]]
db = [[-0.20837892]]
###Markdown
**Expected output with sigmoid:** dA_prev [[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]] dW [[ 0.10266786 0.09778551 -0.01968084]] db [[-0.05729622]] **Expected output with relu:** dA_prev [[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]] dW [[ 0.44513824 0.37371418 -0.10478989]] db [[-0.20837892]] 6.3 - L-Model Backward Now you will implement the backward function for the whole network. Recall that when you implemented the `L_model_forward` function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you will use those variables to compute the gradients. Therefore, in the `L_model_backward` function, you will iterate through all the hidden layers backward, starting from layer $L$. On each step, you will use the cached values for layer $l$ to backpropagate through layer $l$. Figure 5 below shows the backward pass. **Figure 5** : Backward pass ** Initializing backpropagation**:To backpropagate through this network, we know that the output is, $A^{[L]} = \sigma(Z^{[L]})$. Your code thus needs to compute `dAL` $= \frac{\partial \mathcal{L}}{\partial A^{[L]}}$.To do so, use this formula (derived using calculus which you don't need in-depth knowledge of):```pythondAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) derivative of cost with respect to AL```You can then use this post-activation gradient `dAL` to keep going backward. As seen in Figure 5, you can now feed in `dAL` into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L_model_forward function). After that, you will have to use a `for` loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula : $$grads["dW" + str(l)] = dW^{[l]}\tag{15} $$For example, for $l=3$ this would store $dW^{[l]}$ in `grads["dW3"]`.**Exercise**: Implement backpropagation for the *[LINEAR->RELU] $\times$ (L-1) -> LINEAR -> SIGMOID* model.
###Code
# GRADED FUNCTION: L_model_backward
def L_model_backward(AL, Y, caches):
"""
Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
Arguments:
AL -- probability vector, output of the forward propagation (L_model_forward())
Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
caches -- list of caches containing:
every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
Returns:
grads -- A dictionary with the gradients
grads["dA" + str(l)] = ...
grads["dW" + str(l)] = ...
grads["db" + str(l)] = ...
"""
grads = {}
L = len(caches) # the number of layers
m = AL.shape[1]
Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
# Initializing the backpropagation
### START CODE HERE ### (1 line of code)
dAL = - (np.divide(Y, AL) - np.divide(1. - Y, 1. - AL))
### END CODE HERE ###
# Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current_cache". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"]
### START CODE HERE ### (approx. 2 lines)
current_cache = caches[L-1]
grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid")
### END CODE HERE ###
# Loop from l=L-2 to l=0
for l in reversed(range(L-1)):
# lth layer: (RELU -> LINEAR) gradients.
# Inputs: "grads["dA" + str(l + 1)], current_cache". Outputs: "grads["dA" + str(l)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)]
### START CODE HERE ### (approx. 5 lines)
current_cache = caches[l]
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache, activation = "relu")
grads["dA" + str(l)] = dA_prev_temp
grads["dW" + str(l + 1)] = dW_temp
grads["db" + str(l + 1)] = db_temp
### END CODE HERE ###
return grads
AL, Y_assess, caches = L_model_backward_test_case()
grads = L_model_backward(AL, Y_assess, caches)
print_grads(grads)
###Output
dW1 = [[ 0.41010002 0.07807203 0.13798444 0.10502167]
[ 0. 0. 0. 0. ]
[ 0.05283652 0.01005865 0.01777766 0.0135308 ]]
db1 = [[-0.22007063]
[ 0. ]
[-0.02835349]]
dA1 = [[ 0.12913162 -0.44014127]
[-0.14175655 0.48317296]
[ 0.01663708 -0.05670698]]
###Markdown
**Expected Output** dW1 [[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]] db1 [[-0.22007063] [ 0. ] [-0.02835349]] dA1 [[ 0.12913162 -0.44014127] [-0.14175655 0.48317296] [ 0.01663708 -0.05670698]] 6.4 - Update ParametersIn this section you will update the parameters of the model, using gradient descent: $$ W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]} \tag{16}$$$$ b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]} \tag{17}$$where $\alpha$ is the learning rate. After computing the updated parameters, store them in the parameters dictionary. **Exercise**: Implement `update_parameters()` to update your parameters using gradient descent.**Instructions**:Update parameters using gradient descent on every $W^{[l]}$ and $b^{[l]}$ for $l = 1, 2, ..., L$.
###Code
# GRADED FUNCTION: update_parameters
def update_parameters(parameters, grads, learning_rate):
"""
Update parameters using gradient descent
Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients, output of L_model_backward
Returns:
parameters -- python dictionary containing your updated parameters
parameters["W" + str(l)] = ...
parameters["b" + str(l)] = ...
"""
L = len(parameters) // 2 # number of layers in the neural network
# Update rule for each parameter. Use a for loop.
### START CODE HERE ### (≈ 3 lines of code)
for l in range(L):
parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l+1)]
parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l+1)]
### END CODE HERE ###
return parameters
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads, 0.1)
print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))
###Output
W1 = [[-0.59562069 -0.09991781 -2.14584584 1.82662008]
[-1.76569676 -0.80627147 0.51115557 -1.18258802]
[-1.0535704 -0.86128581 0.68284052 2.20374577]]
b1 = [[-0.04659241]
[-1.28888275]
[ 0.53405496]]
W2 = [[-0.55569196 0.0354055 1.32964895]]
b2 = [[-0.84610769]]
|
examples/The Partion Function and Boltzmann Statistics.ipynb | ###Markdown
Computing the Partion Function The schrodinger_X() modules provide eigenstates that can be used directly in an ensemble of your choice (each with there own unique free energy). In this document, we will cover the availible ensemble implimented in QWavE and how to do some simple boltzmann statistics. Canonical Ensemble The canonical ensemble represents the possible states of a mechanicla system in thermal equilibrium with a heat bath at a fixed temperature. The principle thermodynamic variables of the canonical ensemble are the temperature ($T$), number of particles ($N$), and volume of the system ($V$). Making this an $NVT$ system (more on this in another exercise). The partition function within the canonical ensemble is computed as: $$ q(t) = \sum_j \text{exp}(\frac{-e_{j}}{k_{b}T}) $$ where $e_{j}$ are the eigen energies from the Schrodinger equation, and $k_{b}$ is the Boltzmann constant. Once you have evaluated the eigenvalues, you simply need to supply them to the q_PESq() module (using appropriate units).
###Code
# Load required modules
from QWavE import qwave
import numpy as np
from scipy import constants
import matplotlib.pyplot as plt
###Output
_____no_output_____
###Markdown
Lets evaluate the canonical partition function for a two-state system. Lets put the H atom in a 1D box and get the first two eigenstates of the system.
###Code
# import some constants
hartree_to_ev = constants.physical_constants['Hartree energy in eV'][0] # convert hartree to eV
au_to_kg =constants.physical_constants['atomic unit of mass'][0] # convert kg to atomic units
kb = constants.physical_constants['Boltzmann constant in eV/K'][0] # Boltzmann constant
h = constants.physical_constants['Planck constant in eV s'][0] # planck constant
temp = np.linspace(1,500,1000) # Temperature range (cannot evaluate partition function at 0 K)
# Temperature step must also be small to ensure derivative is taken appropriately
bl = 6 # bohr
m = 1.67e-27/au_to_kg # approximate mass of a proton
eigen,wave = qwave.schrodinger_box(bl,m,len_eigval=2) #len_eigval forces the number of eigen states to calculate (default = 10)
eig = eigen*hartree_to_ev
qPESq = qwave.q_PESq(eig,temp,kb) # q_PESq takes three options
# Make sure eig and kb are in the same units
###Output
_____no_output_____
###Markdown
And as simple as that, you now have the partion function. The partion function itself isn't particularly useful, but it is useful in obtaining some Boltzamnn statistics of your system. Now that we have the partition function for the H atom in a box, let use it to solve for some useful quantities Boltzmann Statistics Probability of occupying a particular state At a given temperature, it is often useful to know the relative occupation of states. The bolt_prob() module evaluates said probabilites for a range of temperatures: $$ p(i,T) = \frac{1}{q(T)} \text{exp}(\frac{-e_{i}}{k_{b}T}) $$ where $P(i,T)$ is the probablity of being in state $i$ at temperature $T$, and $q(T)$ is the partition function.
###Code
# Evaluate the probablility of being in the ground state
Prob_0 = qwave.bolt_prob(eig,0,qPESq,temp,kb) # where 0 here corresponds to the ground state
Prob_1 = qwave.bolt_prob(eig,1,qPESq,temp,kb) # and 1 corresponds to the first excited state
plt.plot(temp,Prob_0,color='blue',linewidth=5,label='Groundstate')
plt.plot(temp,Prob_1,color='red',linewidth=5,label='First Excited')
plt.hlines(0.5,0,500,color='gray',linestyle='dashed')
plt.xlabel('Temperature (K)', size=16)
plt.ylabel('Probability', size=16)
plt.xticks(size=14)
plt.yticks(size=14)
plt.xlim(0,500)
plt.legend(fontsize=14)
plt.show()
###Output
_____no_output_____
###Markdown
As you can see, the ground state is populated at low temperatures and the excited states are empty.As the temperature increases the probability of occupying excited states increases.As T $\rightarrow \infty$, the probabitly of being in any state approaches $\sum_{i=0}^{2} e_{i}/2 $
###Code
# We can also check to make sure the probability of finding the particle at any state is equal to 1
Tot_Prob = []
for j in range(0,len(temp)):
Prob = []
for i in range(0,len(eig)):
Prob.append(qwave.bolt_prob(eig,i,qPESq,temp,kb)[0])
Tot_Prob.append(np.sum(Prob))
plt.plot(temp,Tot_Prob,color='black',linewidth=5,label='Total Probability')
plt.xlabel('Temperature (K)', size=16)
plt.ylabel('Probability', size=16)
plt.xticks(size=14)
plt.yticks(size=14)
plt.title('Total Probability over all States',size=18)
plt.show()
###Output
_____no_output_____
###Markdown
Average Energy and Variance Another useful quantity is the average energy and variance. The average energy (or ensemble average) within the canonical ensemble is defined as: $$ = \sum_{j} e_{j}p_{j} = \frac{\sum_{j} e_{j} \text{exp}(-e_{j}/k_{b}T)}{\sum_{j} \text{exp}(-e_{j}/k_{b}T)} $$ or by differentiation: $$ = -\frac{\partial \text{ln}(q(T))}{\partial \beta} $$ (which is how QWavE evaluates the average energy) where $\beta$ is $1/k_{b}T$. The variance in the energy can also be defined as: $$ - ^2 = k_{b}T^{2}\frac{\partial E}{\partial T}$$ Which is equivalent to the constant volume heat capacity ($C_{v}$) without the leading constants
###Code
avgE, var, cv = qwave.avg_energy(qPESq,temp,kb)
plt.plot(temp,avgE/sum(eig),linewidth=5,color='blue')
plt.hlines(0.5,0,500,color='gray',linestyle='dashed')
plt.ylabel(r'Average Energy ($<E>$/$\sum e$)',size=14)
plt.xlabel(r'Temperature (K)',size=14)
plt.xticks(size=14)
plt.yticks(size=14)
plt.show()
plt.plot(temp,cv/sum(eig),linewidth=5,color='red')
plt.ylabel(r'Heat Capacity ($C_{v}$/$\sum e$)',size=14)
plt.xlabel(r'Temperature (K)',size=14)
plt.xticks(size=14)
plt.yticks(size=14)
plt.show()
###Output
_____no_output_____
###Markdown
These results are in excellent agreement with analytical solutions for the two-state model (http://www.physics.rutgers.edu/~gersh/351/Lecture%2021.pdf slide 10) Predefined Partion Functions For ease of use, we have also incorporated other commonly used partition functions dervied from the canonical partition function. These include the: harmonic oscillator, hindered translator, rigid rotor, and others. We will show example of using these other functions in another jupyter notebook. In this example, we will harmonic oscillator partition function to find the average energy and heat capacity of an einstein crystal. The harmonic oscillator partition function is defined as: $$ q_{HO}(T) = \frac{\exp{(\frac{\nu}{2 k_{b}T})}}{1-\exp{(\frac{\nu}{k_{b}T})}}$$ where $\nu$ is a frequency (cm$^{-1}$)
###Code
bl = 2 # bohr
m = 4.65e-26/au_to_kg # approximate mass of a CO molecule
nu = 2143 #cm-1
temp = np.linspace(2.5,5000,10000)
eigen,wave = qwave.schrodinger_HO(bl,m,nu) #len_eigval forces the number of eigen states to calculate (default = 10)
eig = eigen*hartree_to_ev
qPESq = qwave.q_PESq(eig,temp,kb) # q_PESq takes three options
# Make sure eig and kb are in the same units
qHO = qwave.q_HO(nu,temp,kb,h) # q_HO takes an additional parameter which is plancks constant in which ever units are appropriate
x = np.linspace(0,1.8)
y = x
plt.plot(x,y,linestyle='dashed',color='gray')
plt.plot(qPESq,qHO,marker='o',markerfacecolor='None',markeredgecolor='red')
plt.xticks(size=14)
plt.yticks(size=14)
plt.xlabel('q_PESq partition function',size=14)
plt.ylabel('q_HO partition function',size=14)
plt.show()
###Output
_____no_output_____
###Markdown
As you can see, both modules give the same result. NOTE: in order to achieve perfect parity, the box length needs to be adjusted to "match" with the curvature of the potential, change the box length from 2 to 10 to see what happens. As such, it is highly recommended to use the q_HO (or other analytic expressions) when you know the shape of the potential. Now, lets run through the same exercise to get the average energy and Cv of the einstein crystal
###Code
avgE, var, cv = qwave.avg_energy(qHO,temp,kb)
plt.plot(temp,avgE/sum(eig),linewidth=5,color='blue')
# plt.hlines(0.5,0,500,color='gray',linestyle='dashed')
plt.ylabel(r'Average Energy ($<E>$/$\sum e$)',size=14)
plt.xlabel(r'Temperature (K)',size=14)
plt.xticks(size=14)
plt.yticks(size=14)
plt.show()
plt.plot(temp,cv/sum(eig),linewidth=5,color='red')
plt.ylabel(r'Heat Capacity ($C_{v}$/$\sum e$)',size=14)
plt.xlabel(r'Temperature (K)',size=14)
plt.xticks(size=14)
plt.yticks(size=14)
plt.show()
###Output
_____no_output_____ |
notebooks/4-Evaluation/1-DB-Evaluation-TSVD.ipynb | ###Markdown
Assign to each developer a label of its cluster
###Code
kmeans = cluster.KMeans(n_clusters=5, init=centers, n_init=1, max_iter=1).fit(dev2)
kmeans.cluster_centers = np.array(centers)
clusters = kmeans.predict(dev2)
dev['cluster'] = clusters
dev.head()
###Output
_____no_output_____
###Markdown
Within cluster variance
###Code
def WCV(dev, centers):
WCV = np.zeros(5)
for i in range(5): # clusters
X = dev[dev.cluster==i].iloc[:,1:-1]
c = [np.array(centers)[i]]
d = distance.cdist(X, c)
WCV[i] = d.sum()/d.shape[0]
return [WCV, WCV.sum()]
cluster, total = WCV(dev, centers)
print(cluster)
print(total)
###Output
[ 107036.88884768 3897443.04091219 23130150.52049431 27642915.56625457
64784179.54550792]
119561725.56201667
###Markdown
Between cluster variance
###Code
def BCV(dev, centers):
BCV = np.zeros(5)
x = [np.array(dev.iloc[:,1:-1].mean())]
for i in range(5):
n = dev[dev.cluster==i].shape[0]
c = [np.array(centers)[i]]
d = distance.cdist(c, x)
BCV[i] = n*d.sum()
return [BCV, BCV.sum()]
cluster, total = BCV(dev, centers)
print(cluster)
print(total)
###Output
[3.02542518e+10 1.60925046e+09 1.45831849e+10 2.17787469e+09
1.00199655e+10]
58644527338.20222
###Markdown
**Davies–Bouldin index:**
###Code
def DB(dev, centers):
wcv, _ = WCV(dev, centers) # mean distance of all elements in cluster to centroid
DBC = np.zeros((5,5)) # distance between centroids
DavisBouldin = 0
for i in range(5): # clusters
max = 0
for j in range(5):
ci = [np.array(centers)[i]]
cj = [np.array(centers)[j]]
d = distance.cdist(ci, cj)
DBC[i,j] = d.sum()
if i != j:
val = (wcv[i]+wcv[j])/DBC[i,j]
if val > max:
max = val
DavisBouldin += max
return DavisBouldin/5
DavisBouldinIndex = DB(dev, centers)
DavisBouldinIndex
###Output
_____no_output_____
###Markdown
**Types of issues**:
###Code
centers[["codeBlockerViolations", "codeInfoViolations", "codeMajorViolations", "codeBugs", "codeViolations", "codeVulnerabilities", "codeCodeSmells", "codeCriticalViolations", "codeMinorViolations", "inducedSZZIssues", "inducedSonarIssues", ]]
###Output
_____no_output_____
###Markdown
**3 clusters:**
###Code
from sklearn import cluster, decomposition, preprocessing, feature_selection
import pandas as pd
import numpy as np
from scipy.spatial import distance
centers3 = pd.read_csv('../../data/interim/Modelling/3clusterProfilesTSVD.csv').iloc[:,1:]
centers3
centers3["refactoringExtractMethod"]
###Output
_____no_output_____ |
docs/alignment-accuracy-mq-plots.ipynb | ###Markdown
Alignment report=========
###Code
# From SO: https://stackoverflow.com/a/28073228/2512851
from IPython.display import HTML
HTML('''<script>
code_show=true;
function code_toggle() {
if (code_show){
$('div.input').hide();
} else {
$('div.input').show();
}
code_show = !code_show
}
$( document ).ready(code_toggle);
</script>
<form action="javascript:code_toggle()"><input type="submit" value="Click here to show/hide raw code."></form>''')
import json
import matplotlib.pyplot as plt
import bokeh
import pandas as pd
import numpy as np
from bokeh.plotting import figure, show
from bokeh.io import output_notebook, gridplot
from bokeh.models import ColumnDataSource, HoverTool
output_notebook()
%matplotlib inline
d = json.load(open('inputs.json'))
fname = d['csvA']
df = pd.DataFrame.from_csv(fname, index_col=None, sep=',')
###Output
_____no_output_____
###Markdown
Read distribution by MQ============
###Code
def aa_mq(df):
correct_0 = df[df['derr']=='d = 0'][['MQ', 'count']].groupby('MQ').sum()
correct_0.columns = ['correct_0']
correct_50 = df[(df['derr']=='0 < d <= 50') | (df['derr']=='d = 0')][['MQ', 'count']].groupby('MQ').sum()
correct_50.columns = ['correct_50']
total = df[['MQ', 'count']].groupby('MQ').sum()
total.columns = ['total']
data = pd.concat((correct_0, correct_50, total), axis=1)
data['perr_0'] = 1 - data['correct_0'] / data['total']
data['perr_50'] = 1 - data['correct_50'] / data['total']
data['perr_ideal'] = 10 ** (-data.index / 10)
return data
def plot_aa_mq(data):
max_y = 10 ** np.ceil(np.log10(data['perr_0'].max()))
min_y = 10 ** np.floor(np.log10(data['perr_50'].min()))
source = ColumnDataSource(data)
hover = HoverTool(tooltips=[
('perr 0', '@perr_0'),
('perr 50', '@perr_50'),
('perr ideal', '@perr_ideal'),
('Reads', '@total')
])
p = figure(plot_height=200, plot_width=500,
x_axis_label='MQ',
y_axis_label='p_err',
tools=[hover, 'reset'],
y_axis_type="log", y_range=[min_y, max_y])
h1 = p.circle(x='MQ', y='perr_0', size=2, source=source)
h1 = p.circle(x='MQ', y='perr_0', size=10, alpha=0.5, color='yellow', source=source)
h3 = p.line(x='MQ', y='perr_ideal', source=source)
return p
def plot_read_hist(data):
max_y = 10 ** np.ceil(np.log10(data['total'].max()))
min_y = 10 ** np.floor(np.log10(data['total'].min()))
source = ColumnDataSource(data)
hover = HoverTool(tooltips=[
('Reads', '@total')
])
p = figure(plot_height=200, plot_width=500,
x_axis_label='MQ',
y_axis_label='Reads',
tools=[hover, 'reset'],
y_axis_type="log", y_range=[min_y, max_y])
h1 = p.vbar(x='MQ', bottom=min_y, top='total', width=0.7, source=source)
return p
data = aa_mq(df)
s = [
[plot_aa_mq(data)],
[plot_read_hist(data)]
]
p = gridplot(s)
show(p)
# read_count_mq = df.groupby('MQ').sum()
# max_y = 10 ** np.ceil(np.log10(read_count_mq['count'].max()))
# min_y = 10 ** np.floor(np.log10(read_count_mq['count'].min()))
# source = ColumnDataSource(read_count_mq)
# tools = ["reset"]
# p = figure(plot_height=200, plot_width=500,
# x_axis_label='MQ',
# y_axis_label='Reads',
# tools=tools,
# y_axis_type="log", y_range=[min_y, max_y])
# h1 = p.vbar(x='MQ', bottom=min_y, top='count', width=0.7, source=source)
# p.add_tools(HoverTool(renderers=[h1], tooltips=[("reads", "@count")]))
# show(p)
###Output
_____no_output_____
###Markdown
Read distribution by alignment fate===================
###Code
read_count_by_fate = df.groupby('derr').sum()
read_count_by_fate['y'] = read_count_by_fate.index
max_x = 10 ** np.ceil(np.log10(read_count_by_fate['count'].max()))
min_x = 10 ** np.floor(np.log10(read_count_by_fate['count'].min()))
source = ColumnDataSource(read_count_by_fate)
tools = ["reset"]
p = figure(plot_height=200, plot_width=500,
x_axis_label='Reads',
y_axis_label='Read fate',
tools=tools,
y_range=read_count_by_fate.index.tolist(),
x_axis_type="log",
x_range=[min_x, max_x])
h1 = p.hbar(y='y', left=min_x, right='count', height=0.7, source=source)
p.add_tools(HoverTool(renderers=[h1], tooltips=[("reads", "@count")]))
show(p)
###Output
_____no_output_____
###Markdown
Mapped rate and Alignment accuracy parametrized by MQ=============================
###Code
# Matplotlib version of the plots
def heng_li_plot(df, category, ax):
sub_df = df[df['category']==category]
#correct = sub_df[(sub_df['derr']=='0 < d <= 50') | (sub_df['derr']=='d = 0')][['MQ', 'count']].groupby('MQ').sum()
correct = sub_df[sub_df['derr']=='d = 0'][['MQ', 'count']].groupby('MQ').sum()
correct.columns = ['correct']
mapped = sub_df[sub_df['derr']!='unmapped'][['MQ', 'count']].groupby('MQ').sum()
mapped.columns = ['mapped']
total = sub_df[['MQ', 'count']].groupby('MQ').sum()
total.columns = ['total']
data = pd.concat((correct, mapped, total), axis=1)
x = np.zeros(61, dtype=float)
y = np.zeros(61, dtype=float)
for mq in range(61):
data_sub = data.iloc[mq:70]
x[mq] = 100 * data_sub['mapped'].sum() / total.sum()
y[mq] = 100 * data_sub['correct'].sum() / data_sub['mapped'].sum()
ax.plot(x, y)
ax.plot(x[0], y[0], 'ko')
plt.setp(ax,
xlim=(95, 101), xticks=range(96,101),
ylim=(79, 101), yticks=range(80,101, 5),
title=category)
def plot_heng_li_panels(df):
fig = plt.figure(figsize=(10, 20))
for n, cat in enumerate(['Ref', 'SNP', 'Multi',
'INS <= 10', 'INS 11-50', 'INS > 50',
'DEL <= 10', 'DEL 11-50', 'DEL > 50']):
ax = plt.subplot(4, 3, n + 1)
heng_li_plot(df, cat, ax)
#plt.setp(ax, yscale='log')
if n != 6:
plt.setp(ax, xticklabels=[], yticklabels=[])
else:
plt.setp(ax, xlabel='% Mapped', ylabel='% Correct')
#plot_heng_li_panels(df)
def heng_li_plot(df, category):
sub_df = df[df['category']==category]
#correct = sub_df[(sub_df['derr']=='0 < d <= 50') | (sub_df['derr']=='d = 0')][['MQ', 'count']].groupby('MQ').sum()
correct = sub_df[sub_df['derr']=='d = 0'][['MQ', 'count']].groupby('MQ').sum()
correct.columns = ['correct']
mapped = sub_df[sub_df['derr']!='unmapped'][['MQ', 'count']].groupby('MQ').sum()
mapped.columns = ['mapped']
total = sub_df[['MQ', 'count']].groupby('MQ').sum()
total.columns = ['total']
data = pd.concat((correct, mapped, total), axis=1)
x = np.zeros(61, dtype=float)
y = np.zeros(61, dtype=float)
for mq in range(61):
data_sub = data.iloc[mq:70]
x[mq] = 100 * data_sub['mapped'].sum() / total.sum()
y[mq] = 100 * data_sub['correct'].sum() / data_sub['mapped'].sum()
source = ColumnDataSource(data=dict(
mapped=x,
correct=y,
mq=range(61)
))
hover = HoverTool(tooltips=[
('MQ', '≥ @mq'),
('Map', '@mapped %'),
('Correct', '@correct %')
])
s1 = figure(width=250, plot_height=250,
tools=[hover, 'pan', 'reset'],
title=category)
s1.circle(x[0], y[0], size=10)
s1.line('mapped', 'correct', source=source)
return s1
def plot_heng_li_panels(df):
s = []
row_cnt = 3
row_s = []
for n, cat in enumerate(['Ref', 'SNP', 'Multi',
'INS <= 10', 'INS 11-50', 'INS > 50',
'DEL <= 10', 'DEL 11-50', 'DEL > 50']):
if n % row_cnt == 0:
if len(row_s):
s.append(row_s)
row_s = []
row_s.append(heng_li_plot(df, cat))
if len(row_s):
s.append(row_s)
p = gridplot(s)
show(p)
plot_heng_li_panels(df)
###Output
_____no_output_____ |
uhecr_model/checks/random_seed/precomputation.ipynb | ###Markdown
Precomputing values for use in fits of Stan modelsBecause of the way Stan works, it is necessary to compute some values in advance which can then be passed into the fit an interpolated over. The precomputed values will be different for different sets of source distances, and therefore different catalogues. Here we show how to compute the values for the SBG catalogue, but it is exactly the same for all cases, just changing the input label.For ease, all the precomputed table files used are provided for use in this repository.
###Code
import os
import h5py
from fancy import Data, Model, Analysis
import numpy as np
detector_type = "TA2015"
'''set detector and detector properties'''
if detector_type == "TA2015":
from fancy.detector.TA2015 import detector_properties, Eth
elif detector_type == "auger2014":
from fancy.detector.auger2014 import detector_properties, Eth
else:
raise Exception("Undefined detector type!")
# Define file containing catalogue information
source_file = '../../data/sourcedata.h5'
# Path to Stan files
stan_path = '../../stan/'
# make output directory if it doesnt exist
if not os.path.isdir("output"):
os.mkdir("output")
# source_types = ["SBG_23", "2FHL_250Mpc"]
source_types = ["SBG_23"]
# exposure factor
exp_factors = [1., 5.]
# exp_factors = [1.]
# store original total exposure and area to restore per iteration
alpha_T_0 = detector_properties["alpha_T"]
A_0 = detector_properties["A"]
for source_type in source_types:
for exp_factor in exp_factors:
print("Current Source: {0}".format(source_type))
print("Current Exposure Factor: {0}".format(exp_factor))
# File in which to store precomputation
# create new files with TA label
table_file = "output/tables_{0}_{2}_epsx{1:.0f}.h5".format(source_type, exp_factor, detector_type)
# modify exposure factor
detector_properties["alpha_T"] *= exp_factor
detector_properties["A"] *= exp_factor
# check if we have the correct values for detector_properties
if not np.allclose(detector_properties["alpha_T"] / exp_factor, alpha_T_0):
raise Exception("Fix exposure factor for detector property!")
if not np.allclose(detector_properties["A"] / exp_factor, A_0):
raise Exception("Fix exposure factor for detector property!")
data = Data()
data.add_source(source_file, source_type)
data.add_detector(detector_properties) # KW: add detector information
model_name = 'joint_model.stan'
model = Model(model_filename = model_name, include_paths = stan_path)
model.input(Eth = Eth) # EeV
summary = b'Precomputation of Exposure Integral and Energy'
analysis = Analysis(data, model, analysis_type = 'joint',
filename = table_file, summary = summary)
analysis.build_tables(fit_only = True)
analysis.tables.save(table_file)
analysis.build_energy_table(table_file = table_file)
# reset exposure factor to original
detector_properties["alpha_T"] = alpha_T_0
detector_properties["A"] = A_0
###Output
Current Source: SBG_23
Current Exposure Factor: 1.0
|
00-1-age-and-year-of-deathofharold-shipmans-victims/00-1-shipman-confirmed-victims-x.ipynb | ###Markdown
Art of Statistics: 0-1 Age and Year of Shipman Victims for customizing the graph see: https://altair-viz.github.io/user_guide/customization.html
###Code
import altair as alt
import pandas as pd
df = pd.read_csv("00-1-shipman-confirmed-victims-x.csv")
df.head()
###Output
_____no_output_____
###Markdown
Scatter plot
###Code
x_scale = min(df["fractionalDeathYear"]) , max(df["fractionalDeathYear"])
y_scale = min(df["Age"]) , max(df["Age"])
gender_domain = ['Men', 'Women']
gender_range = ['blue', 'red']
scatter = alt.Chart(df).mark_circle().encode(
alt.X('fractionalDeathYear',
scale=alt.Scale(domain=x_scale),
axis=alt.Axis(format='d'),
title="Year"),
alt.Y('Age',
scale=alt.Scale(domain=(y_scale)),
title="Age of victim"),
color= alt.Color('gender2',
scale=alt.Scale(domain=gender_domain, range=gender_range),
title="")
)
scatter
###Output
_____no_output_____
###Markdown
Age histogram
###Code
age_histogram = alt.Chart(df).mark_bar(color='grey').encode(
alt.X('count()',
axis=None,
title=""),
alt.Y("Age",
bin=alt.Bin(maxbins=50),
axis=None,
title=""),
).properties(width=60)
age_histogram
###Output
_____no_output_____
###Markdown
Year histogram
###Code
year_histogram = alt.Chart(df).mark_bar(color='grey').encode(
alt.X('fractionalDeathYear',
scale=alt.Scale(domain=x_scale),
bin=alt.Bin(maxbins=50),
axis=None,
title=""),
alt.Y('count()',
axis=None,
title=""),
).properties(height=60)
year_histogram
###Output
_____no_output_____
###Markdown
Final chart
###Code
final_chart = (year_histogram & (scatter | age_histogram)).configure_concat(
spacing=0
)
final_chart = final_chart.configure_axis(
grid=False
).configure_view(
strokeOpacity=0
)
final_chart
###Output
_____no_output_____ |
pypinm-master/vprasanja za razmislek/Vaja 1 - polovica.ipynb | ###Markdown
Feb 2015, J. Slavič in L.Knez Vprašanje 1, 2, 3: Rešite sami doma. Vprašanje 4: Prikažite uporabo stilov, poudarjenega, poševnega teksta, seznamov, enačbe... Naslov 1 Naslov 2... Uporaba HTMLja za urejanje stilov v Pythonu Na hitro samo, naj si pogledajo sami. Opomba: html uporabljamo samo, če ne uspemo narediti v *markdown* načina; naslove npr zelo enostavno definiramo z \.Centriran naslovNavadno besediloNaslov 1 Naslov 2 Naslov 3Naslov 4 Naslov 5 Naslov 6 *posevno***poudarjeno**Primer seznamov:* glavni seznam - podseznam - podpodseznam* spet glavni seznamEnačba:$b(t)=\frac{r}{1-r^4}\,\sqrt{3}+c$Tabela:| Tabele | So | Zakon||--------------|:------------------:|------:|| Stolp 1 je | levo poravnan | 1600 || Stolp 2 je | sredinsko poravnan | 12 || Stolp 3 je | desno poravnan | 1 |*Napredno lahko tabele naredimo tudi z html kodo.*Slika (dve piki označujeta *parent* mapo):Primer povezave na [markdown stran](http://daringfireball.net/projects/markdown/) Vprašanje 5: Definirajte razliko med statičnim in dinamičnim definiranjem spremenljivk.* Statična spremenljivka je hkrati vezana in tip in na objekt (a = 9 in a = 'hiša' bi javilo napako). * Dinamična spremenljivka je vezana le na objekt, tip lahko poljubno spreminjamo. Spodnji primer lepo deluje, ker so v Pythonu dinamične spremenljivke.
###Code
a = 9
a
a = 'hiša'
a
###Output
_____no_output_____
###Markdown
Vprašanje 6: Poiščite pomoč poljubega ukaza (znotraj Pythona in na uradni domači strani).
###Code
help(range)
###Output
Help on class range in module builtins:
class range(object)
| range(stop) -> range object
| range(start, stop[, step]) -> range object
|
| Return a virtual sequence of numbers from start to stop by step.
|
| Methods defined here:
|
| __contains__(self, key, /)
| Return key in self.
|
| __eq__(self, value, /)
| Return self==value.
|
| __ge__(self, value, /)
| Return self>=value.
|
| __getattribute__(self, name, /)
| Return getattr(self, name).
|
| __getitem__(self, key, /)
| Return self[key].
|
| __gt__(self, value, /)
| Return self>value.
|
| __hash__(self, /)
| Return hash(self).
|
| __iter__(self, /)
| Implement iter(self).
|
| __le__(self, value, /)
| Return self<=value.
|
| __len__(self, /)
| Return len(self).
|
| __lt__(self, value, /)
| Return self<value.
|
| __ne__(self, value, /)
| Return self!=value.
|
| __new__(*args, **kwargs) from builtins.type
| Create and return a new object. See help(type) for accurate signature.
|
| __reduce__(...)
|
| __repr__(self, /)
| Return repr(self).
|
| __reversed__(...)
| Return a reverse iterator.
|
| count(...)
| rangeobject.count(value) -> integer -- return number of occurrences of value
|
| index(...)
| rangeobject.index(value, [start, [stop]]) -> integer -- return index of value.
| Raise ValueError if the value is not present.
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| start
|
| step
|
| stop
###Markdown
Pythonova domača stran: https://docs.python.org/3/library/stdtypes.html?highlight=rangerange Vprašanje 7: Prikažite uporabo *niza*, *celega števila* in *števila z uporabo plavajoče vejice*.* Nizi.
###Code
besedilo_1 = 'Tole je primer besedila.'
besedilo_2 = "Tudi tole je primer besedila."
besedilo = besedilo_1 + besedilo_2
besedilo
###Output
_____no_output_____
###Markdown
* Cela števila in float števila
###Code
a = 7
b = 1.7
a # Celo število
type(a)
b # Float število
type(b)
###Output
_____no_output_____
###Markdown
Vprašanje 8: Prikažite uporabo *terke* in njenih bistvenih lastnosti.
###Code
terka_1 = (1, 3, 8) # Tipičen primer terke
terka_2 =('Študenti', 4, 7.3) # Terka z različnimi tipi spremenljivk
# Štetje se v Pythonu prične z 0... gre do len(terka_2)
dolzina = len(terka_2)
dolzina
terka_2[0]
terka_2[2]
# Terkam ne moremo predpisovati nove vrednosti, so immutable
terka_1[1]=9
###Output
_____no_output_____
###Markdown
Vprašanje 9: Prikažite uporabo *seznama* in njegovih bistvenih lastnosti.
###Code
seznam_1 = [1, 8, 10] # Navaden seznam
seznam_2 = [3, 11, 'list'] # Seznam z mešanimi tipi
seznam_2 + seznam_1
# Sezname lahko spreminjamo
seznam_2[1]=13
seznam_2
###Output
_____no_output_____
###Markdown
Vprašanje 10: Tipične operacije nad seznami.Več o operacijah najdete tu: https://docs.python.org/3.4/tutorial/datastructures.htmlmore-on-lists
###Code
seznam_3 = seznam_2.copy() # Kopiramo seznam
seznam_3.append(18) # Spremenimo le nov seznam
seznam_3
seznam_2 # Preverimo, če smo spremenili tudi star seznam
seznam_2.index('list') # Poglejmo na katerem mestu v seznamu se nahaja beseda 'list'
# Se primer uporabe stevnika
seznam_4 = [1, 2, 1, 3, 1, 4, 2, 2, 1]
# Kolikokrat se število 1 pojavi v seznam_4
seznam_4.count(1)
# Kolikokrat se število 2 pojavi v seznam_4
seznam_4.count(2)
# Seznam lahko preuredimo tudi v obratni vrstni red
seznam_4.reverse()
seznam_4
# Lahko jih tudi uredimo
seznam_4.sort()
seznam_4
# In seznam seznamov je v resnici matrika
seznam_5 = [3, 7, 7]
matrika = [seznam_5,
[1, 1, 1],
[3, 6, 9]]
matrika
###Output
_____no_output_____ |
Lesson01/Exercise11.ipynb | ###Markdown
Tweaking plot parameters of a grouped bar plot
###Code
#Import seaborn
import seaborn as sns
diamonds_df = sns.load_dataset('diamonds')
ax = sns.barplot(x="cut", y="price", hue='color', data=diamonds_df)
#Modifying legends
ax = sns.barplot(x='cut', y='price', hue='color', data=diamonds_df)
ax.legend(loc='upper right',ncol=4)
#Modifying x and y-axis tick labels
ax = sns.barplot(x='cut', y='price', hue='color', data=diamonds_df)
ax.legend(loc='upper right', ncol=4)
ax.set_xlabel('Cut', fontdict={'fontsize' : 15})
ax.set_ylabel('Price', fontdict={'fontsize' : 15})
#Modifying the font-size and rotation of x-axis
ax = sns.barplot(x='cut', y='price', hue='color', data=diamonds_df)
ax.legend(loc='upper right',ncol=4)
# set fontsize and rotation of x-axis tick labels
ax.set_xticklabels(ax.get_xticklabels(), fontsize=13, rotation=30)
###Output
_____no_output_____ |
Finding Successful Projects/successful-project-hackerearth.ipynb | ###Markdown
Funding Successful Projects - Hackerearth ContestLink: [Funding Sucessful Projects](https://www.hackerearth.com/challenge/competitive/machine-learning-challenge-2/machine-learning/funding-successful-projects/)**Author: Sethu Iyer **
###Code
import pandas as pd
import numpy as np
import datetime
from nltk.corpus import stopwords
from nltk.stem.snowball import SnowballStemmer
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_extraction.text import CountVectorizer
import xgboost as xgb
pd.set_option('display.max_colwidth',100)
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
###Output
_____no_output_____
###Markdown
*Creating Features from datetime*
###Code
#First, convert the timestamp to datetime object
unix_cols = ['deadline','state_changed_at','launched_at','created_at']
for cols in unix_cols:
train[cols] = train[cols].apply(lambda timestamp: datetime.datetime.fromtimestamp(int(timestamp)))
test[cols] = test[cols].apply(lambda timestamp: datetime.datetime.fromtimestamp(int(timestamp)))
#time difference between 1) launched_at and created_at 2) deadline and launched_at
train['launch_create'] = train.apply(lambda row: np.log((row['launched_at'] - row['created_at']).total_seconds()),axis=1)
test['launch_create'] = test.apply(lambda row: np.log((row['launched_at'] - row['created_at']).total_seconds()),axis=1)
train['deadline_launch'] = train.apply(lambda row: np.log((row['deadline'] - row['launched_at']).total_seconds()),axis=1)
test['deadline_launch'] = test.apply(lambda row: np.log((row['deadline'] - row['launched_at']).total_seconds()),axis=1)
###Output
_____no_output_____
###Markdown
*Now, normalizing the currency*
###Code
total_currency = train['currency'].append(test['currency'])
print((pd.unique(total_currency)))
conversion_factor={ 'USD': 1.00,
'GBP': 1.28,
'CAD' : 0.75,
'AUD': 0.76,
'NZD': 0.73,
'EUR': 1.12,
'SEK':0.11,
'NOK':0.12,
'DKK':0.15,
'CHF':1.03,
'HKD':0.13,
'SGD': 0.72,
'MXN':0.056}
train['goal'] = train.apply(lambda row : row['goal'] * conversion_factor[row['currency']],axis=1)
test['goal'] = test.apply((lambda row : row['goal'] * conversion_factor[row['currency']]),axis=1)
###Output
_____no_output_____
###Markdown
*Now, Creating some text features*
###Code
train['name_count'] = train['name'].str.split().str.len()
train['desc_count'] = train['desc'].str.split().str.len()
test['name_count'] = test['name'].str.split().str.len()
test['desc_count'] = test['desc'].str.split().str.len()
train['keywords_len'] = train['keywords'].str.len()
train['keywords_count'] = train['keywords'].str.split('-').str.len()
test['keywords_len'] = test['keywords'].str.len()
test['keywords_count'] = test['keywords'].str.split('-').str.len()
###Output
_____no_output_____
###Markdown
*Creating more complex text feature*
###Code
import re
def desc_clean(word):
p1 = re.sub(pattern='(\W+)|(\d+)|(\s+)',repl=' ',string=word)
p1 = p1.lower()
return p1
kickdesc = pd.Series(train['desc'].tolist() + test['desc'].tolist()).astype(str)
kickdesc=kickdesc.map(desc_clean)
stop = set(stopwords.words('english'))
kickdesc = [[x for x in x.split() if x not in stop] for x in kickdesc]
stemmer = SnowballStemmer(language='english')
kickdesc = [[stemmer.stem(x) for x in x] for x in kickdesc]
kickdesc = [[x for x in x if len(x) > 2] for x in kickdesc]
kickdesc = [' '.join(x) for x in kickdesc]
cv = CountVectorizer(max_features=300)
combine=pd.DataFrame(cv.fit_transform(kickdesc).todense())
combine.rename(columns= lambda x: 'variable_'+ str(x), inplace=True)
train_text = combine[:train.shape[0]]
test_text = combine[train.shape[0]:]
test_text.reset_index(drop=True,inplace=True)
###Output
_____no_output_____
###Markdown
*Creating some more text features*
###Code
len_feats = ['name_len','desc_len']
cols_to_use=['name','desc']
for i in np.arange(2):
train[len_feats[i]] = train[cols_to_use[i]].apply(str).apply(len)
test[len_feats[i]] = test[cols_to_use[i]].apply(str).apply(len)
###Output
_____no_output_____
###Markdown
*Finalize the training and testing data before training*
###Code
cols_to_use = ['name_len','desc_len','keywords_len','name_count','desc_count','keywords_count','goal','launch_create','deadline_launch']
target = train['final_status']
train = train[cols_to_use]
test = test[cols_to_use]
X_train = pd.concat([train, train_text],axis=1)
X_test = pd.concat([test, test_text],axis=1)
###Output
_____no_output_____
###Markdown
*It's training time! *
###Code
dtrain = xgb.DMatrix(data=X_train, label = target)
dtest = xgb.DMatrix(data=X_test)
params = {
'objective':'binary:logistic',
'eval_metric':'error',
'eta':0.025,
'max_depth':6,
'subsample':0.7,
'colsample_bytree':0.7,
'min_child_weight':5
}
bst = xgb.cv(params, dtrain, num_boost_round=1000, early_stopping_rounds=40,nfold=5,verbose_eval=10)
bst_train = xgb.train(params, dtrain, num_boost_round=900)
p_test = bst_train.predict(dtest)
sub = pd.DataFrame()
test = pd.read_csv('test.csv')
sub['project_id'] = test['project_id']
sub['final_status'] = p_test
sub['final_status'] = [1 if x > 0.5 else 0 for x in sub['final_status']]
sub.to_csv("xgb_with_python_feats.csv",index=False) #70.60
###Output
_____no_output_____ |
c5_seq_models/w2_Emojify.ipynb | ###Markdown
Emojify! Welcome to the second assignment of Week 2. You are going to use word vector representations to build an Emojifier. Have you ever wanted to make your text messages more expressive? Your emojifier app will help you do that. So rather than writing:>"Congratulations on the promotion! Let's get coffee and talk. Love you!" The emojifier can automatically turn this into:>"Congratulations on the promotion! 👍 Let's get coffee and talk. ☕️ Love you! ❤️"* You will implement a model which inputs a sentence (such as "Let's go see the baseball game tonight!") and finds the most appropriate emoji to be used with this sentence (⚾️). Using word vectors to improve emoji lookups* In many emoji interfaces, you need to remember that ❤️ is the "heart" symbol rather than the "love" symbol. * In other words, you'll have to remember to type "heart" to find the desired emoji, and typing "love" won't bring up that symbol.* We can make a more flexible emoji interface by using word vectors!* When using word vectors, you'll see that even if your training set explicitly relates only a few words to a particular emoji, your algorithm will be able to generalize and associate additional words in the test set to the same emoji. * This works even if those additional words don't even appear in the training set. * This allows you to build an accurate classifier mapping from sentences to emojis, even using a small training set. What you'll build1. In this exercise, you'll start with a baseline model (Emojifier-V1) using word embeddings.2. Then you will build a more sophisticated model (Emojifier-V2) that further incorporates an LSTM. Updates If you were working on the notebook before this update...* The current notebook is version "2a".* You can find your original work saved in the notebook with the previous version name ("v2") * To view the file directory, go to the menu "File->Open", and this will open a new tab that shows the file directory. List of updates* sentence_to_avg * Updated instructions. * Use separate variables to store the total and the average (instead of just `avg`). * Additional hint about how to initialize the shape of `avg` vector.* sentences_to_indices * Updated preceding text and instructions, added additional hints.* pretrained_embedding_layer * Additional instructions to explain how to implement each step.* Emoify_V2 * Modifies instructions to specify which parameters are needed for each Keras layer. * Remind users of Keras syntax. * Explanation of how to use the layer object that is returned by `pretrained_embedding_layer`. * Provides sample Keras code.* Spelling, grammar and wording corrections. Let's get started! Run the following cell to load the package you are going to use.
###Code
import numpy as np
from emo_utils import *
import emoji
import matplotlib.pyplot as plt
%matplotlib inline
###Output
_____no_output_____
###Markdown
1 - Baseline model: Emojifier-V1 1.1 - Dataset EMOJISETLet's start by building a simple baseline classifier. You have a tiny dataset (X, Y) where:- X contains 127 sentences (strings).- Y contains an integer label between 0 and 4 corresponding to an emoji for each sentence. **Figure 1**: EMOJISET - a classification problem with 5 classes. A few examples of sentences are given here. Let's load the dataset using the code below. We split the dataset between training (127 examples) and testing (56 examples).
###Code
X_train, Y_train = read_csv('data/train_emoji.csv')
X_test, Y_test = read_csv('data/tesss.csv')
maxLen = len(max(X_train, key=len).split())
###Output
_____no_output_____
###Markdown
Run the following cell to print sentences from X_train and corresponding labels from Y_train. * Change `idx` to see different examples. * Note that due to the font used by iPython notebook, the heart emoji may be colored black rather than red.
###Code
for idx in range(10):
print(X_train[idx], label_to_emoji(Y_train[idx]))
###Output
never talk to me again 😞
I am proud of your achievements 😄
It is the worst day in my life 😞
Miss you so much ❤️
food is life 🍴
I love you mum ❤️
Stop saying bullshit 😞
congratulations on your acceptance 😄
The assignment is too long 😞
I want to go play ⚾
###Markdown
1.2 - Overview of the Emojifier-V1In this part, you are going to implement a baseline model called "Emojifier-v1". **Figure 2**: Baseline model (Emojifier-V1). Inputs and outputs* The input of the model is a string corresponding to a sentence (e.g. "I love you). * The output will be a probability vector of shape (1,5), (there are 5 emojis to choose from).* The (1,5) probability vector is passed to an argmax layer, which extracts the index of the emoji with the highest probability. One-hot encoding* To get our labels into a format suitable for training a softmax classifier, lets convert $Y$ from its current shape $(m, 1)$ into a "one-hot representation" $(m, 5)$, * Each row is a one-hot vector giving the label of one example. * Here, `Y_oh` stands for "Y-one-hot" in the variable names `Y_oh_train` and `Y_oh_test`:
###Code
Y_oh_train = convert_to_one_hot(Y_train, C = 5)
Y_oh_test = convert_to_one_hot(Y_test, C = 5)
###Output
_____no_output_____
###Markdown
Let's see what `convert_to_one_hot()` did. Feel free to change `index` to print out different values.
###Code
idx = 50
print(f"Sentence '{X_train[50]}' has label index {Y_train[idx]}, which is emoji {label_to_emoji(Y_train[idx])}", )
print(f"Label index {Y_train[idx]} in one-hot encoding format is {Y_oh_train[idx]}")
###Output
Sentence 'I missed you' has label index 0, which is emoji ❤️
Label index 0 in one-hot encoding format is [ 1. 0. 0. 0. 0.]
###Markdown
All the data is now ready to be fed into the Emojify-V1 model. Let's implement the model! 1.3 - Implementing Emojifier-V1As shown in Figure 2 (above), the first step is to:* Convert each word in the input sentence into their word vector representations.* Then take an average of the word vectors. * Similar to the previous exercise, we will use pre-trained 50-dimensional GloVe embeddings. Run the following cell to load the `word_to_vec_map`, which contains all the vector representations.
###Code
word_to_index, index_to_word, word_to_vec_map = read_glove_vecs('../../readonly/glove.6B.50d.txt')
###Output
_____no_output_____
###Markdown
You've loaded:- `word_to_index`: dictionary mapping from words to their indices in the vocabulary - (400,001 words, with the valid indices ranging from 0 to 400,000)- `index_to_word`: dictionary mapping from indices to their corresponding words in the vocabulary- `word_to_vec_map`: dictionary mapping words to their GloVe vector representation.Run the following cell to check if it works.
###Code
word = "cucumber"
idx = 289846
print("the index of", word, "in the vocabulary is", word_to_index[word])
print("the", str(idx) + "th word in the vocabulary is", index_to_word[idx])
###Output
the index of cucumber in the vocabulary is 113317
the 289846th word in the vocabulary is potatos
###Markdown
**Exercise**: Implement `sentence_to_avg()`. You will need to carry out two steps:1. Convert every sentence to lower-case, then split the sentence into a list of words. * `X.lower()` and `X.split()` might be useful. 2. For each word in the sentence, access its GloVe representation. * Then take the average of all of these word vectors. * You might use `numpy.zeros()`. Additional Hints* When creating the `avg` array of zeros, you'll want it to be a vector of the same shape as the other word vectors in the `word_to_vec_map`. * You can choose a word that exists in the `word_to_vec_map` and access its `.shape` field. * Be careful not to hard code the word that you access. In other words, don't assume that if you see the word 'the' in the `word_to_vec_map` within this notebook, that this word will be in the `word_to_vec_map` when the function is being called by the automatic grader. * Hint: you can use any one of the word vectors that you retrieved from the input `sentence` to find the shape of a word vector.
###Code
# GRADED FUNCTION: sentence_to_avg
def sentence_to_avg(sentence, word_to_vec_map):
"""
Converts a sentence (string) into a list of words (strings). Extracts the GloVe representation of each word
and averages its value into a single vector encoding the meaning of the sentence.
Arguments:
sentence -- string, one training example from X
word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation
Returns:
avg -- average vector encoding information about the sentence, numpy-array of shape (50,)
"""
### START CODE HERE ###
# Step 1: Split sentence into list of lower case words (≈ 1 line)
words = sentence.lower().split()
# Initialize the average word vector, should have the same shape as your word vectors.
avg = np.zeros((len(word_to_vec_map[words[0]]), 0))
# Step 2: average the word vectors. You can loop over the words in the list "words".
total = 0
for w in words:
total += word_to_vec_map[w]
avg = total / len(words)
### END CODE HERE ###
return avg
avg = sentence_to_avg("Morrocan couscous is my favorite dish", word_to_vec_map)
print("avg = \n", avg)
###Output
avg =
[-0.008005 0.56370833 -0.50427333 0.258865 0.55131103 0.03104983
-0.21013718 0.16893933 -0.09590267 0.141784 -0.15708967 0.18525867
0.6495785 0.38371117 0.21102167 0.11301667 0.02613967 0.26037767
0.05820667 -0.01578167 -0.12078833 -0.02471267 0.4128455 0.5152061
0.38756167 -0.898661 -0.535145 0.33501167 0.68806933 -0.2156265
1.797155 0.10476933 -0.36775333 0.750785 0.10282583 0.348925
-0.27262833 0.66768 -0.10706167 -0.283635 0.59580117 0.28747333
-0.3366635 0.23393817 0.34349183 0.178405 0.1166155 -0.076433
0.1445417 0.09808667]
###Markdown
**Expected Output**:```Pythonavg =[-0.008005 0.56370833 -0.50427333 0.258865 0.55131103 0.03104983 -0.21013718 0.16893933 -0.09590267 0.141784 -0.15708967 0.18525867 0.6495785 0.38371117 0.21102167 0.11301667 0.02613967 0.26037767 0.05820667 -0.01578167 -0.12078833 -0.02471267 0.4128455 0.5152061 0.38756167 -0.898661 -0.535145 0.33501167 0.68806933 -0.2156265 1.797155 0.10476933 -0.36775333 0.750785 0.10282583 0.348925 -0.27262833 0.66768 -0.10706167 -0.283635 0.59580117 0.28747333 -0.3366635 0.23393817 0.34349183 0.178405 0.1166155 -0.076433 0.1445417 0.09808667]``` ModelYou now have all the pieces to finish implementing the `model()` function. After using `sentence_to_avg()` you need to:* Pass the average through forward propagation* Compute the cost* Backpropagate to update the softmax parameters**Exercise**: Implement the `model()` function described in Figure (2). * The equations you need to implement in the forward pass and to compute the cross-entropy cost are below:* The variable $Y_{oh}$ ("Y one hot") is the one-hot encoding of the output labels. $$ z^{(i)} = W . avg^{(i)} + b$$$$ a^{(i)} = softmax(z^{(i)})$$$$ \mathcal{L}^{(i)} = - \sum_{k = 0}^{n_y - 1} Y_{oh,k}^{(i)} * log(a^{(i)}_k)$$**Note** It is possible to come up with a more efficient vectorized implementation. For now, let's use nested for loops to better understand the algorithm, and for easier debugging.We provided the function `softmax()`, which was imported earlier.
###Code
# GRADED FUNCTION: model
def model(X, Y, word_to_vec_map, learning_rate = 0.01, num_iterations = 400):
"""
Model to train word vector representations in numpy.
Arguments:
X -- input data, numpy array of sentences as strings, of shape (m, 1)
Y -- labels, numpy array of integers between 0 and 7, numpy-array of shape (m, 1)
word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation
learning_rate -- learning_rate for the stochastic gradient descent algorithm
num_iterations -- number of iterations
Returns:
pred -- vector of predictions, numpy-array of shape (m, 1)
W -- weight matrix of the softmax layer, of shape (n_y, n_h)
b -- bias of the softmax layer, of shape (n_y,)
"""
np.random.seed(1)
# Define number of training examples
m = Y.shape[0] # number of training examples
n_y = 5 # number of classes
n_h = 50 # dimensions of the GloVe vectors
# Initialize parameters using Xavier initialization
W = np.random.randn(n_y, n_h) / np.sqrt(n_h)
b = np.zeros((n_y,))
# Convert Y to Y_onehot with n_y classes
Y_oh = convert_to_one_hot(Y, C = n_y)
# Optimization loop
for t in range(num_iterations): # Loop over the number of iterations
for i in range(m): # Loop over the training examples
### START CODE HERE ### (≈ 4 lines of code)
# Average the word vectors of the words from the i'th training example
avg = sentence_to_avg(X[i], word_to_vec_map)
# Forward propagate the avg through the softmax layer
z = np.dot(W, avg) + b
a = softmax(z)
# Compute cost using the i'th training label's one hot representation and "A" (the output of the softmax)
cost = -1 * np.sum(Y[i] * np.log(a))
### END CODE HERE ###
# Compute gradients
dz = a - Y_oh[i]
dW = np.dot(dz.reshape(n_y,1), avg.reshape(1, n_h))
db = dz
# Update parameters with Stochastic Gradient Descent
W = W - learning_rate * dW
b = b - learning_rate * db
if t % 100 == 0:
print("Epoch: " + str(t) + " --- cost = " + str(cost))
pred = predict(X, Y, W, b, word_to_vec_map) #predict is defined in emo_utils.py
return pred, W, b
print(X_train.shape)
print(Y_train.shape)
print(np.eye(5)[Y_train.reshape(-1)].shape)
print(X_train[0])
print(type(X_train))
Y = np.asarray([5,0,0,5, 4, 4, 4, 6, 6, 4, 1, 1, 5, 6, 6, 3, 6, 3, 4, 4])
print(Y.shape)
X = np.asarray(['I am going to the bar tonight', 'I love you', 'miss you my dear',
'Lets go party and drinks','Congrats on the new job','Congratulations',
'I am so happy for you', 'Why are you feeling bad', 'What is wrong with you',
'You totally deserve this prize', 'Let us go play football',
'Are you down for football this afternoon', 'Work hard play harder',
'It is suprising how people can be dumb sometimes',
'I am very disappointed','It is the best day in my life',
'I think I will end up alone','My life is so boring','Good job',
'Great so awesome'])
print(X.shape)
print(np.eye(5)[Y_train.reshape(-1)].shape)
print(type(X_train))
###Output
(132,)
(132,)
(132, 5)
never talk to me again
<class 'numpy.ndarray'>
(20,)
(20,)
(132, 5)
<class 'numpy.ndarray'>
###Markdown
Run the next cell to train your model and learn the softmax parameters (W,b).
###Code
pred, W, b = model(X_train, Y_train, word_to_vec_map)
# print(pred)
###Output
Epoch: 0 --- cost = 16.77334679
Accuracy: 0.348484848485
Epoch: 100 --- cost = 35.335343384
Accuracy: 0.931818181818
Epoch: 200 --- cost = 40.8584548199
Accuracy: 0.954545454545
Epoch: 300 --- cost = 43.8109696861
Accuracy: 0.969696969697
###Markdown
**Expected Output** (on a subset of iterations): **Epoch: 0** cost = 1.95204988128 Accuracy: 0.348484848485 **Epoch: 100** cost = 0.0797181872601 Accuracy: 0.931818181818 **Epoch: 200** cost = 0.0445636924368 Accuracy: 0.954545454545 **Epoch: 300** cost = 0.0343226737879 Accuracy: 0.969696969697 Great! Your model has pretty high accuracy on the training set. Lets now see how it does on the test set. 1.4 - Examining test set performance * Note that the `predict` function used here is defined in emo_util.spy.
###Code
print("Training set:")
pred_train = predict(X_train, Y_train, W, b, word_to_vec_map)
print('Test set:')
pred_test = predict(X_test, Y_test, W, b, word_to_vec_map)
###Output
Training set:
Accuracy: 0.977272727273
Test set:
Accuracy: 0.857142857143
###Markdown
**Expected Output**: **Train set accuracy** 97.7 **Test set accuracy** 85.7 * Random guessing would have had 20% accuracy given that there are 5 classes. (1/5 = 20%).* This is pretty good performance after training on only 127 examples. The model matches emojis to relevant wordsIn the training set, the algorithm saw the sentence >"*I love you*" with the label ❤️. * You can check that the word "adore" does not appear in the training set. * Nonetheless, lets see what happens if you write "*I adore you*."
###Code
X_my_sentences = np.array(["i adore you", "i love you", "funny lol", "lets play with a ball", "food is ready", "not feeling happy"])
Y_my_labels = np.array([[0], [0], [2], [1], [4],[3]])
pred = predict(X_my_sentences, Y_my_labels , W, b, word_to_vec_map)
print_predictions(X_my_sentences, pred)
###Output
Accuracy: 0.833333333333
i adore you ❤️
i love you ❤️
funny lol 😄
lets play with a ball ⚾
food is ready 🍴
not feeling happy 😄
###Markdown
Amazing! * Because *adore* has a similar embedding as *love*, the algorithm has generalized correctly even to a word it has never seen before. * Words such as *heart*, *dear*, *beloved* or *adore* have embedding vectors similar to *love*. * Feel free to modify the inputs above and try out a variety of input sentences. * How well does it work? Word ordering isn't considered in this model* Note that the model doesn't get the following sentence correct:>"not feeling happy" * This algorithm ignores word ordering, so is not good at understanding phrases like "not happy." Confusion matrix* Printing the confusion matrix can also help understand which classes are more difficult for your model. * A confusion matrix shows how often an example whose label is one class ("actual" class) is mislabeled by the algorithm with a different class ("predicted" class).
###Code
print(Y_test.shape)
print(' '+ label_to_emoji(0)+ ' ' + label_to_emoji(1) + ' ' + label_to_emoji(2)+ ' ' + label_to_emoji(3)+' ' + label_to_emoji(4))
print(pd.crosstab(Y_test, pred_test.reshape(56,), rownames=['Actual'], colnames=['Predicted'], margins=True))
plot_confusion_matrix(Y_test, pred_test)
###Output
(56,)
❤️ ⚾ 😄 😞 🍴
Predicted 0.0 1.0 2.0 3.0 4.0 All
Actual
0 6 0 0 1 0 7
1 0 8 0 0 0 8
2 2 0 16 0 0 18
3 1 1 2 12 0 16
4 0 0 1 0 6 7
All 9 9 19 13 6 56
###Markdown
What you should remember from this section- Even with a 127 training examples, you can get a reasonably good model for Emojifying. - This is due to the generalization power word vectors gives you. - Emojify-V1 will perform poorly on sentences such as *"This movie is not good and not enjoyable"* - It doesn't understand combinations of words. - It just averages all the words' embedding vectors together, without considering the ordering of words. **You will build a better algorithm in the next section!** 2 - Emojifier-V2: Using LSTMs in Keras: Let's build an LSTM model that takes word **sequences** as input!* This model will be able to account for the word ordering. * Emojifier-V2 will continue to use pre-trained word embeddings to represent words.* We will feed word embeddings into an LSTM.* The LSTM will learn to predict the most appropriate emoji. Run the following cell to load the Keras packages.
###Code
import numpy as np
np.random.seed(0)
from keras.models import Model
from keras.layers import Dense, Input, Dropout, LSTM, Activation
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
from keras.initializers import glorot_uniform
np.random.seed(1)
###Output
Using TensorFlow backend.
###Markdown
2.1 - Overview of the modelHere is the Emojifier-v2 you will implement: **Figure 3**: Emojifier-V2. A 2-layer LSTM sequence classifier. 2.2 Keras and mini-batching * In this exercise, we want to train Keras using mini-batches. * However, most deep learning frameworks require that all sequences in the same mini-batch have the **same length**. * This is what allows vectorization to work: If you had a 3-word sentence and a 4-word sentence, then the computations needed for them are different (one takes 3 steps of an LSTM, one takes 4 steps) so it's just not possible to do them both at the same time. Padding handles sequences of varying length* The common solution to handling sequences of **different length** is to use padding. Specifically: * Set a maximum sequence length * Pad all sequences to have the same length. Example of padding* Given a maximum sequence length of 20, we could pad every sentence with "0"s so that each input sentence is of length 20. * Thus, the sentence "I love you" would be represented as $(e_{I}, e_{love}, e_{you}, \vec{0}, \vec{0}, \ldots, \vec{0})$. * In this example, any sentences longer than 20 words would have to be truncated. * One way to choose the maximum sequence length is to just pick the length of the longest sentence in the training set. 2.3 - The Embedding layer* In Keras, the embedding matrix is represented as a "layer".* The embedding matrix maps word indices to embedding vectors. * The word indices are positive integers. * The embedding vectors are dense vectors of fixed size. * When we say a vector is "dense", in this context, it means that most of the values are non-zero. As a counter-example, a one-hot encoded vector is not "dense."* The embedding matrix can be derived in two ways: * Training a model to derive the embeddings from scratch. * Using a pretrained embedding Using and updating pre-trained embeddings* In this part, you will learn how to create an [Embedding()](https://keras.io/layers/embeddings/) layer in Keras* You will initialize the Embedding layer with the GloVe 50-dimensional vectors. * In the code below, we'll show you how Keras allows you to either train or leave fixed this layer. * Because our training set is quite small, we will leave the GloVe embeddings fixed instead of updating them. Inputs and outputs to the embedding layer* The `Embedding()` layer's input is an integer matrix of size **(batch size, max input length)**. * This input corresponds to sentences converted into lists of indices (integers). * The largest integer (the highest word index) in the input should be no larger than the vocabulary size.* The embedding layer outputs an array of shape (batch size, max input length, dimension of word vectors).* The figure shows the propagation of two example sentences through the embedding layer. * Both examples have been zero-padded to a length of `max_len=5`. * The word embeddings are 50 units in length. * The final dimension of the representation is `(2,max_len,50)`. **Figure 4**: Embedding layer Prepare the input sentences**Exercise**: * Implement `sentences_to_indices`, which processes an array of sentences (X) and returns inputs to the embedding layer: * Convert each training sentences into a list of indices (the indices correspond to each word in the sentence) * Zero-pad all these lists so that their length is the length of the longest sentence. Additional Hints* Note that you may have considered using the `enumerate()` function in the for loop, but for the purposes of passing the autograder, please follow the starter code by initializing and incrementing `j` explicitly.
###Code
for idx, val in enumerate(["I", "like", "learning"]):
print(idx,val)
# GRADED FUNCTION: sentences_to_indices
def sentences_to_indices(X, word_to_index, max_len):
"""
Converts an array of sentences (strings) into an array of indices corresponding to words in the sentences.
The output shape should be such that it can be given to `Embedding()` (described in Figure 4).
Arguments:
X -- array of sentences (strings), of shape (m, 1)
word_to_index -- a dictionary containing the each word mapped to its index
max_len -- maximum number of words in a sentence. You can assume every sentence in X is no longer than this.
Returns:
X_indices -- array of indices corresponding to words in the sentences from X, of shape (m, max_len)
"""
m = X.shape[0] # number of training examples
### START CODE HERE ###
# Initialize X_indices as a numpy matrix of zeros and the correct shape (≈ 1 line)
X_indices = np.zeros((m, max_len))
for i in range(m): # loop over training examples
# Convert the ith training sentence in lower case and split is into words. You should get a list of words.
sentence_words = X[i].lower().split()
# Initialize j to 0
j = 0
# Loop over the words of sentence_words
for w in sentence_words:
# Set the (i,j)th entry of X_indices to the index of the correct word.
X_indices[i, j] = word_to_index[w]
# Increment j to j + 1
j = j + 1
### END CODE HERE ###
return X_indices
###Output
_____no_output_____
###Markdown
Run the following cell to check what `sentences_to_indices()` does, and check your results.
###Code
X1 = np.array(["funny lol", "lets play baseball", "food is ready for you"])
X1_indices = sentences_to_indices(X1,word_to_index, max_len = 5)
print("X1 =", X1)
print("X1_indices =\n", X1_indices)
###Output
X1 = ['funny lol' 'lets play baseball' 'food is ready for you']
X1_indices =
[[ 155345. 225122. 0. 0. 0.]
[ 220930. 286375. 69714. 0. 0.]
[ 151204. 192973. 302254. 151349. 394475.]]
###Markdown
**Expected Output**:```PythonX1 = ['funny lol' 'lets play baseball' 'food is ready for you']X1_indices = [[ 155345. 225122. 0. 0. 0.] [ 220930. 286375. 69714. 0. 0.] [ 151204. 192973. 302254. 151349. 394475.]]``` Build embedding layer* Let's build the `Embedding()` layer in Keras, using pre-trained word vectors. * The embedding layer takes as input a list of word indices. * `sentences_to_indices()` creates these word indices.* The embedding layer will return the word embeddings for a sentence. **Exercise**: Implement `pretrained_embedding_layer()` with these steps:1. Initialize the embedding matrix as a numpy array of zeros. * The embedding matrix has a row for each unique word in the vocabulary. * There is one additional row to handle "unknown" words. * So vocab_len is the number of unique words plus one. * Each row will store the vector representation of one word. * For example, one row may be 50 positions long if using GloVe word vectors. * In the code below, `emb_dim` represents the length of a word embedding.2. Fill in each row of the embedding matrix with the vector representation of a word * Each word in `word_to_index` is a string. * word_to_vec_map is a dictionary where the keys are strings and the values are the word vectors.3. Define the Keras embedding layer. * Use [Embedding()](https://keras.io/layers/embeddings/). * The input dimension is equal to the vocabulary length (number of unique words plus one). * The output dimension is equal to the number of positions in a word embedding. * Make this layer's embeddings fixed. * If you were to set `trainable = True`, then it will allow the optimization algorithm to modify the values of the word embeddings. * In this case, we don't want the model to modify the word embeddings.4. Set the embedding weights to be equal to the embedding matrix. * Note that this is part of the code is already completed for you and does not need to be modified.
###Code
# GRADED FUNCTION: pretrained_embedding_layer
def pretrained_embedding_layer(word_to_vec_map, word_to_index):
"""
Creates a Keras Embedding() layer and loads in pre-trained GloVe 50-dimensional vectors.
Arguments:
word_to_vec_map -- dictionary mapping words to their GloVe vector representation.
word_to_index -- dictionary mapping from words to their indices in the vocabulary (400,001 words)
Returns:
embedding_layer -- pretrained layer Keras instance
"""
vocab_len = len(word_to_index) + 1 # adding 1 to fit Keras embedding (requirement)
emb_dim = word_to_vec_map["cucumber"].shape[0] # define dimensionality of your GloVe word vectors (= 50)
### START CODE HERE ###
# Step 1
# Initialize the embedding matrix as a numpy array of zeros.
# See instructions above to choose the correct shape.
emb_matrix = np.zeros((vocab_len, emb_dim))
# Step 2
# Set each row "idx" of the embedding matrix to be
# the word vector representation of the idx'th word of the vocabulary
for word, idx in word_to_index.items():
emb_matrix[idx, :] = word_to_vec_map[word]
# Step 3
# Define Keras embedding layer with the correct input and output sizes
# Make it non-trainable.
embedding_layer = Embedding(vocab_len, emb_dim, trainable = False)
### END CODE HERE ###
# Step 4 (already done for you; please do not modify)
# Build the embedding layer, it is required before setting the weights of the embedding layer.
embedding_layer.build((None,)) # Do not modify the "None". This line of code is complete as-is.
# Set the weights of the embedding layer to the embedding matrix. Your layer is now pretrained.
embedding_layer.set_weights([emb_matrix])
return embedding_layer
embedding_layer = pretrained_embedding_layer(word_to_vec_map, word_to_index)
print("weights[0][1][3] =", embedding_layer.get_weights()[0][1][3])
###Output
weights[0][1][3] = -0.3403
###Markdown
**Expected Output**:```Pythonweights[0][1][3] = -0.3403``` 2.3 Building the Emojifier-V2Lets now build the Emojifier-V2 model. * You feed the embedding layer's output to an LSTM network. **Figure 3**: Emojifier-v2. A 2-layer LSTM sequence classifier. **Exercise:** Implement `Emojify_V2()`, which builds a Keras graph of the architecture shown in Figure 3. * The model takes as input an array of sentences of shape (`m`, `max_len`, ) defined by `input_shape`. * The model outputs a softmax probability vector of shape (`m`, `C = 5`). * You may need to use the following Keras layers: * [Input()](https://keras.io/layers/core/input) * Set the `shape` and `dtype` parameters. * The inputs are integers, so you can specify the data type as a string, 'int32'. * [LSTM()](https://keras.io/layers/recurrent/lstm) * Set the `units` and `return_sequences` parameters. * [Dropout()](https://keras.io/layers/core/dropout) * Set the `rate` parameter. * [Dense()](https://keras.io/layers/core/dense) * Set the `units`, * Note that `Dense()` has an `activation` parameter. For the purposes of passing the autograder, please do not set the activation within `Dense()`. Use the separate `Activation` layer to do so. * [Activation()](https://keras.io/activations/). * You can pass in the activation of your choice as a lowercase string. * [Model](https://keras.io/models/model/) Set `inputs` and `outputs`. Additional Hints* Remember that these Keras layers return an object, and you will feed in the outputs of the previous layer as the input arguments to that object. The returned object can be created and called in the same line.```Python How to use Keras layers in two lines of codedense_object = Dense(units = ...)X = dense_object(inputs) How to use Keras layers in one line of codeX = Dense(units = ...)(inputs)```* The `embedding_layer` that is returned by `pretrained_embedding_layer` is a layer object that can be called as a function, passing in a single argument (sentence indices).* Here is some sample code in case you're stuck```Pythonraw_inputs = Input(shape=(maxLen,), dtype='int32')preprocessed_inputs = ... some pre-processingX = LSTM(units = ..., return_sequences= ...)(processed_inputs)X = Dropout(rate = ..., )(X)...X = Dense(units = ...)(X)X = Activation(...)(X)model = Model(inputs=..., outputs=...)...```
###Code
# GRADED FUNCTION: Emojify_V2
def Emojify_V2(input_shape, word_to_vec_map, word_to_index):
"""
Function creating the Emojify-v2 model's graph.
Arguments:
input_shape -- shape of the input, usually (max_len,)
word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation
word_to_index -- dictionary mapping from words to their indices in the vocabulary (400,001 words)
Returns:
model -- a model instance in Keras
"""
### START CODE HERE ###
# Define sentence_indices as the input of the graph.
# It should be of shape input_shape and dtype 'int32' (as it contains indices, which are integers).
sentence_indices = Input(shape=input_shape, dtype='int32')
# Create the embedding layer pretrained with GloVe Vectors (≈1 line)
embedding_layer = pretrained_embedding_layer(word_to_vec_map, word_to_index)
# Propagate sentence_indices through your embedding layer
# (See additional hints in the instructions).
embeddings = embedding_layer(sentence_indices)
# Propagate the embeddings through an LSTM layer with 128-dimensional hidden state
# The returned output should be a batch of sequences.
X = LSTM(units=128, return_sequences=True)(embeddings)
# Add dropout with a probability of 0.5
X = Dropout(rate=0.5)(X)
# Propagate X trough another LSTM layer with 128-dimensional hidden state
# The returned output should be a single hidden state, not a batch of sequences.
X = LSTM(units=128)(X)
# Add dropout with a probability of 0.5
X = Dropout(rate=0.5)(X)
# Propagate X through a Dense layer with 5 units
X = Dense(units=5)(X)
# Add a softmax activation
X = Activation('softmax')(X)
# Create Model instance which converts sentence_indices into X.
model = Model(inputs=sentence_indices, outputs=X)
### END CODE HERE ###
return model
###Output
_____no_output_____
###Markdown
Run the following cell to create your model and check its summary. Because all sentences in the dataset are less than 10 words, we chose `max_len = 10`. You should see your architecture, it uses "20,223,927" parameters, of which 20,000,050 (the word embeddings) are non-trainable, and the remaining 223,877 are. Because our vocabulary size has 400,001 words (with valid indices from 0 to 400,000) there are 400,001\*50 = 20,000,050 non-trainable parameters.
###Code
model = Emojify_V2((maxLen,), word_to_vec_map, word_to_index)
model.summary()
###Output
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_3 (InputLayer) (None, 10) 0
_________________________________________________________________
embedding_4 (Embedding) (None, 10, 50) 20000050
_________________________________________________________________
lstm_5 (LSTM) (None, 10, 128) 91648
_________________________________________________________________
dropout_5 (Dropout) (None, 10, 128) 0
_________________________________________________________________
lstm_6 (LSTM) (None, 128) 131584
_________________________________________________________________
dropout_6 (Dropout) (None, 128) 0
_________________________________________________________________
dense_3 (Dense) (None, 5) 645
_________________________________________________________________
activation_3 (Activation) (None, 5) 0
=================================================================
Total params: 20,223,927
Trainable params: 223,877
Non-trainable params: 20,000,050
_________________________________________________________________
###Markdown
As usual, after creating your model in Keras, you need to compile it and define what loss, optimizer and metrics your are want to use. Compile your model using `categorical_crossentropy` loss, `adam` optimizer and `['accuracy']` metrics:
###Code
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
###Output
_____no_output_____
###Markdown
It's time to train your model. Your Emojifier-V2 `model` takes as input an array of shape (`m`, `max_len`) and outputs probability vectors of shape (`m`, `number of classes`). We thus have to convert X_train (array of sentences as strings) to X_train_indices (array of sentences as list of word indices), and Y_train (labels as indices) to Y_train_oh (labels as one-hot vectors).
###Code
X_train_indices = sentences_to_indices(X_train, word_to_index, maxLen)
Y_train_oh = convert_to_one_hot(Y_train, C = 5)
###Output
_____no_output_____
###Markdown
Fit the Keras model on `X_train_indices` and `Y_train_oh`. We will use `epochs = 50` and `batch_size = 32`.
###Code
model.fit(X_train_indices, Y_train_oh, epochs = 50, batch_size = 32, shuffle=True)
###Output
Epoch 1/50
132/132 [==============================] - 0s - loss: 1.5911 - acc: 0.2576
Epoch 2/50
132/132 [==============================] - 0s - loss: 1.5229 - acc: 0.3409
Epoch 3/50
132/132 [==============================] - 0s - loss: 1.4845 - acc: 0.3182
Epoch 4/50
132/132 [==============================] - 0s - loss: 1.4285 - acc: 0.4697
Epoch 5/50
132/132 [==============================] - 0s - loss: 1.3204 - acc: 0.4697
Epoch 6/50
132/132 [==============================] - 0s - loss: 1.1865 - acc: 0.5227
Epoch 7/50
132/132 [==============================] - 0s - loss: 1.1207 - acc: 0.6136
Epoch 8/50
132/132 [==============================] - 0s - loss: 1.0312 - acc: 0.6136
Epoch 9/50
132/132 [==============================] - 0s - loss: 0.9393 - acc: 0.6742
Epoch 10/50
132/132 [==============================] - 0s - loss: 0.8509 - acc: 0.6894
Epoch 11/50
132/132 [==============================] - 0s - loss: 0.7477 - acc: 0.7500
Epoch 12/50
132/132 [==============================] - 0s - loss: 0.6353 - acc: 0.7652
Epoch 13/50
132/132 [==============================] - 0s - loss: 0.5840 - acc: 0.7727
Epoch 14/50
132/132 [==============================] - 0s - loss: 0.4955 - acc: 0.8258
Epoch 15/50
132/132 [==============================] - 0s - loss: 0.4601 - acc: 0.8409
Epoch 16/50
132/132 [==============================] - 0s - loss: 0.3729 - acc: 0.8561
Epoch 17/50
132/132 [==============================] - 0s - loss: 0.3043 - acc: 0.9015
Epoch 18/50
132/132 [==============================] - 0s - loss: 0.3138 - acc: 0.8864
Epoch 19/50
132/132 [==============================] - 0s - loss: 0.3505 - acc: 0.8712
Epoch 20/50
132/132 [==============================] - 0s - loss: 0.3015 - acc: 0.8788
Epoch 21/50
132/132 [==============================] - 0s - loss: 0.2650 - acc: 0.9091
Epoch 22/50
132/132 [==============================] - 0s - loss: 0.3097 - acc: 0.9015
Epoch 23/50
132/132 [==============================] - 0s - loss: 0.3113 - acc: 0.9015
Epoch 24/50
132/132 [==============================] - 0s - loss: 0.2442 - acc: 0.9091
Epoch 25/50
132/132 [==============================] - 0s - loss: 0.2151 - acc: 0.9394
Epoch 26/50
132/132 [==============================] - 0s - loss: 0.1895 - acc: 0.9318
Epoch 27/50
132/132 [==============================] - 0s - loss: 0.2505 - acc: 0.9015
Epoch 28/50
132/132 [==============================] - 0s - loss: 0.1776 - acc: 0.9318
Epoch 29/50
132/132 [==============================] - 0s - loss: 0.1854 - acc: 0.9242
Epoch 30/50
132/132 [==============================] - 0s - loss: 0.1339 - acc: 0.9394
Epoch 31/50
132/132 [==============================] - 0s - loss: 0.1603 - acc: 0.9318
Epoch 32/50
132/132 [==============================] - 0s - loss: 0.1437 - acc: 0.9545
Epoch 33/50
132/132 [==============================] - 0s - loss: 0.3910 - acc: 0.8712 - ETA: 0s - loss: 0.2413 - acc: 0.8
Epoch 34/50
132/132 [==============================] - 0s - loss: 0.2827 - acc: 0.9015
Epoch 35/50
132/132 [==============================] - 0s - loss: 0.1808 - acc: 0.9545
Epoch 36/50
132/132 [==============================] - 0s - loss: 0.1121 - acc: 0.9773
Epoch 37/50
132/132 [==============================] - 0s - loss: 0.1905 - acc: 0.9394
Epoch 38/50
132/132 [==============================] - 0s - loss: 0.2198 - acc: 0.9394
Epoch 39/50
132/132 [==============================] - 0s - loss: 0.1585 - acc: 0.9621
Epoch 40/50
132/132 [==============================] - 0s - loss: 0.1507 - acc: 0.9470
Epoch 41/50
132/132 [==============================] - 0s - loss: 0.1299 - acc: 0.9394
Epoch 42/50
132/132 [==============================] - 0s - loss: 0.0872 - acc: 0.9697
Epoch 43/50
132/132 [==============================] - 0s - loss: 0.0820 - acc: 0.9773
Epoch 44/50
132/132 [==============================] - 0s - loss: 0.0537 - acc: 0.9924
Epoch 45/50
132/132 [==============================] - 0s - loss: 0.0527 - acc: 0.9697
Epoch 46/50
132/132 [==============================] - 0s - loss: 0.0378 - acc: 0.9848
Epoch 47/50
132/132 [==============================] - 0s - loss: 0.0257 - acc: 1.0000
Epoch 48/50
132/132 [==============================] - 0s - loss: 0.0204 - acc: 0.9924
Epoch 49/50
132/132 [==============================] - 0s - loss: 0.0418 - acc: 0.9773
Epoch 50/50
132/132 [==============================] - 0s - loss: 0.0298 - acc: 0.9924
###Markdown
Your model should perform around **90% to 100% accuracy** on the training set. The exact accuracy you get may be a little different. Run the following cell to evaluate your model on the test set.
###Code
X_test_indices = sentences_to_indices(X_test, word_to_index, max_len = maxLen)
Y_test_oh = convert_to_one_hot(Y_test, C = 5)
loss, acc = model.evaluate(X_test_indices, Y_test_oh)
print()
print("Test accuracy = ", acc)
###Output
32/56 [================>.............] - ETA: 0s
Test accuracy = 0.875
###Markdown
You should get a test accuracy between 80% and 95%. Run the cell below to see the mislabelled examples.
###Code
# This code allows you to see the mislabelled examples
C = 5
y_test_oh = np.eye(C)[Y_test.reshape(-1)]
X_test_indices = sentences_to_indices(X_test, word_to_index, maxLen)
pred = model.predict(X_test_indices)
for i in range(len(X_test)):
x = X_test_indices
num = np.argmax(pred[i])
if(num != Y_test[i]):
print('Expected emoji:'+ label_to_emoji(Y_test[i]) + ' prediction: '+ X_test[i] + label_to_emoji(num).strip())
###Output
Expected emoji:😄 prediction: she got me a nice present ❤️
Expected emoji:🍴 prediction: any suggestions for dinner 😄
Expected emoji:❤️ prediction: I love taking breaks 😞
Expected emoji:😄 prediction: you brighten my day ❤️
Expected emoji:😄 prediction: will you be my valentine ❤️
Expected emoji:😄 prediction: What you did was awesome 😞
Expected emoji:❤️ prediction: family is all I have 😞
###Markdown
Now you can try it on your own example. Write your own sentence below.
###Code
# Change the sentence below to see your prediction. Make sure all the words are in the Glove embeddings.
x_test = np.array(['not feeling good'])
X_test_indices = sentences_to_indices(x_test, word_to_index, maxLen)
print(x_test[0] +' '+ label_to_emoji(np.argmax(model.predict(X_test_indices))))
###Output
not feeling good 😞
|
Coursera/IBM Data Science Professional Certificate/Machine Learning with Python/Week 3/ML0101EN-Clas-Logistic-Reg-churn-py-v1.ipynb | ###Markdown
Logistic Regression with PythonEstimated time needed: **25** minutes ObjectivesAfter completing this lab you will be able to:- Use scikit Logistic Regression to classify- Understand confusion matrix In this notebook, you will learn Logistic Regression, and then, you'll create a model for a telecommunication company, to predict when its customers will leave for a competitor, so that they can take some action to retain the customers. Table of contents About the dataset Data pre-processing and selection Modeling (Logistic Regression with Scikit-learn) Evaluation Practice What is the difference between Linear and Logistic Regression?While Linear Regression is suited for estimating continuous values (e.g. estimating house price), it is not the best tool for predicting the class of an observed data point. In order to estimate the class of a data point, we need some sort of guidance on what would be the most probable class for that data point. For this, we use Logistic Regression.Recall linear regression: As you know, Linear regression finds a function that relates a continuous dependent variable, y, to some predictors (independent variables $x_1$, $x_2$, etc.). For example, Simple linear regression assumes a function of the form:$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots$$and finds the values of parameters $\theta_0, \theta_1, \theta_2$, etc, where the term $\theta_0$ is the "intercept". It can be generally shown as:$$ℎ_\theta(𝑥) = \theta^TX$$Logistic Regression is a variation of Linear Regression, useful when the observed dependent variable, y, is categorical. It produces a formula that predicts the probability of the class label as a function of the independent variables.Logistic regression fits a special s-shaped curve by taking the linear regression and transforming the numeric estimate into a probability with the following function, which is called sigmoid function 𝜎:$$ℎ_\theta(𝑥) = \sigma({\theta^TX}) = \frac {e^{(\theta_0 + \theta_1 x_1 + \theta_2 x_2 +...)}}{1 + e^{(\theta_0 + \theta_1 x_1 + \theta_2 x_2 +\cdots)}}$$Or:$$ProbabilityOfaClass_1 = P(Y=1|X) = \sigma({\theta^TX}) = \frac{e^{\theta^TX}}{1+e^{\theta^TX}} $$In this equation, ${\theta^TX}$ is the regression result (the sum of the variables weighted by the coefficients), `exp` is the exponential function and $\sigma(\theta^TX)$ is the sigmoid or [logistic function](http://en.wikipedia.org/wiki/Logistic_function?cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork-20718538&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M12345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=000026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork-20718538&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M12345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=000026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork-20718538&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M12345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=000026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork-20718538&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M12345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=000026UJ), also called logistic curve. It is a common "S" shape (sigmoid curve).So, briefly, Logistic Regression passes the input through the logistic/sigmoid but then treats the result as a probability:<imgsrc="https://ibm.box.com/shared/static/kgv9alcghmjcv97op4d6onkyxevk23b1.png" width="400" align="center">The objective of **Logistic Regression** algorithm, is to find the best parameters θ, for $ℎ_\theta(𝑥)$ = $\sigma({\theta^TX})$, in such a way that the model best predicts the class of each case. Customer churn with Logistic RegressionA telecommunications company is concerned about the number of customers leaving their land-line business for cable competitors. They need to understand who is leaving. Imagine that you are an analyst at this company and you have to find out who is leaving and why.
###Code
!pip install scikit-learn==0.23.1
###Output
Collecting scikit-learn==0.23.1
[?25l Downloading https://files.pythonhosted.org/packages/d9/3a/eb8d7bbe28f4787d140bb9df685b7d5bf6115c0e2a969def4027144e98b6/scikit_learn-0.23.1-cp36-cp36m-manylinux1_x86_64.whl (6.8MB)
[K |████████████████████████████████| 6.9MB 3.0MB/s eta 0:00:01 |█████████▌ | 2.0MB 5.0MB/s eta 0:00:01 |█████████████ | 2.8MB 5.0MB/s eta 0:00:01
[?25hCollecting threadpoolctl>=2.0.0 (from scikit-learn==0.23.1)
Downloading https://files.pythonhosted.org/packages/f7/12/ec3f2e203afa394a149911729357aa48affc59c20e2c1c8297a60f33f133/threadpoolctl-2.1.0-py3-none-any.whl
Requirement already satisfied: scipy>=0.19.1 in /home/jupyterlab/conda/envs/python/lib/python3.6/site-packages (from scikit-learn==0.23.1) (1.5.4)
Requirement already satisfied: numpy>=1.13.3 in /home/jupyterlab/conda/envs/python/lib/python3.6/site-packages (from scikit-learn==0.23.1) (1.19.4)
Collecting joblib>=0.11 (from scikit-learn==0.23.1)
[?25l Downloading https://files.pythonhosted.org/packages/34/5b/bd0f0fb5564183884d8e35b81d06d7ec06a20d1a0c8b4c407f1554691dce/joblib-1.0.0-py3-none-any.whl (302kB)
[K |████████████████████████████████| 307kB 19.8MB/s eta 0:00:01
[?25hInstalling collected packages: threadpoolctl, joblib, scikit-learn
Found existing installation: scikit-learn 0.20.1
Uninstalling scikit-learn-0.20.1:
Successfully uninstalled scikit-learn-0.20.1
Successfully installed joblib-1.0.0 scikit-learn-0.23.1 threadpoolctl-2.1.0
###Markdown
Lets first import required libraries:
###Code
import pandas as pd
import pylab as pl
import numpy as np
import scipy.optimize as opt
from sklearn import preprocessing
%matplotlib inline
import matplotlib.pyplot as plt
###Output
_____no_output_____
###Markdown
About the datasetWe will use a telecommunications dataset for predicting customer churn. This is a historical customer dataset where each row represents one customer. The data is relatively easy to understand, and you may uncover insights you can use immediately. Typically it is less expensive to keep customers than acquire new ones, so the focus of this analysis is to predict the customers who will stay with the company. This data set provides information to help you predict what behavior will help you to retain customers. You can analyze all relevant customer data and develop focused customer retention programs.The dataset includes information about:- Customers who left within the last month – the column is called Churn- Services that each customer has signed up for – phone, multiple lines, internet, online security, online backup, device protection, tech support, and streaming TV and movies- Customer account information – how long they had been a customer, contract, payment method, paperless billing, monthly charges, and total charges- Demographic info about customers – gender, age range, and if they have partners and dependents Load the Telco Churn dataTelco Churn is a hypothetical data file that concerns a telecommunications company's efforts to reduce turnover in its customer base. Each case corresponds to a separate customer and it records various demographic and service usage information. Before you can work with the data, you must use the URL to get the ChurnData.csv.To download the data, we will use `!wget` to download it from IBM Object Storage.
###Code
#Click here and press Shift+Enter
!wget -O ChurnData.csv https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%203/data/ChurnData.csv
###Output
--2021-02-08 09:40:52-- https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%203/data/ChurnData.csv
Resolving cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud)... 169.63.118.104
Connecting to cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud)|169.63.118.104|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 35943 (35K) [text/csv]
Saving to: ‘ChurnData.csv’
ChurnData.csv 100%[===================>] 35.10K --.-KB/s in 0.02s
2021-02-08 09:40:52 (1.89 MB/s) - ‘ChurnData.csv’ saved [35943/35943]
###Markdown
**Did you know?** When it comes to Machine Learning, you will likely be working with large datasets. As a business, where can you host your data? IBM is offering a unique opportunity for businesses, with 10 Tb of IBM Cloud Object Storage: [Sign up now for free](http://cocl.us/ML0101EN-IBM-Offer-CC) Load Data From CSV File
###Code
churn_df = pd.read_csv("ChurnData.csv")
churn_df.head()
###Output
_____no_output_____
###Markdown
Data pre-processing and selection Lets select some features for the modeling. Also we change the target data type to be integer, as it is a requirement by the skitlearn algorithm:
###Code
churn_df = churn_df[['tenure', 'age', 'address', 'income', 'ed', 'employ', 'equip', 'callcard', 'wireless','churn']]
churn_df['churn'] = churn_df['churn'].astype('int')
churn_df.head()
###Output
_____no_output_____
###Markdown
PracticeHow many rows and columns are in this dataset in total? What are the name of columns?
###Code
# write your code here
print(churn_df.shape)
churn_df.columns
###Output
(200, 10)
###Markdown
Click here for the solution```pythonchurn_df.shape``` Lets define X, and y for our dataset:
###Code
X = np.asarray(churn_df[['tenure', 'age', 'address', 'income', 'ed', 'employ', 'equip']])
X[0:5]
y = np.asarray(churn_df['churn'])
y [0:5]
###Output
_____no_output_____
###Markdown
Also, we normalize the dataset:
###Code
from sklearn import preprocessing
X = preprocessing.StandardScaler().fit(X).transform(X)
X[0:5]
###Output
_____no_output_____
###Markdown
Train/Test dataset Okay, we split our dataset into train and test set:
###Code
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=4)
print ('Train set:', X_train.shape, y_train.shape)
print ('Test set:', X_test.shape, y_test.shape)
###Output
Train set: (160, 7) (160,)
Test set: (40, 7) (40,)
###Markdown
Modeling (Logistic Regression with Scikit-learn) Lets build our model using **LogisticRegression** from Scikit-learn package. This function implements logistic regression and can use different numerical optimizers to find parameters, including ‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’ solvers. You can find extensive information about the pros and cons of these optimizers if you search it in internet.The version of Logistic Regression in Scikit-learn, support regularization. Regularization is a technique used to solve the overfitting problem in machine learning models.**C** parameter indicates **inverse of regularization strength** which must be a positive float. Smaller values specify stronger regularization. Now lets fit our model with train set:
###Code
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
LR = LogisticRegression(C=0.01, solver='liblinear').fit(X_train,y_train)
LR
###Output
_____no_output_____
###Markdown
Now we can predict using our test set:
###Code
yhat = LR.predict(X_test)
yhat
###Output
_____no_output_____
###Markdown
**predict_proba** returns estimates for all classes, ordered by the label of classes. So, the first column is the probability of class 1, P(Y=1|X), and second column is probability of class 0, P(Y=0|X):
###Code
yhat_prob = LR.predict_proba(X_test)
yhat_prob
###Output
_____no_output_____
###Markdown
Evaluation jaccard indexLets try jaccard index for accuracy evaluation. we can define jaccard as the size of the intersection divided by the size of the union of two label sets. If the entire set of predicted labels for a sample strictly match with the true set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.
###Code
from sklearn.metrics import jaccard_score
jaccard_score(y_test, yhat,pos_label=0)
###Output
_____no_output_____
###Markdown
confusion matrixAnother way of looking at accuracy of classifier is to look at **confusion matrix**.
###Code
from sklearn.metrics import classification_report, confusion_matrix
import itertools
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
print(confusion_matrix(y_test, yhat, labels=[1,0]))
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, yhat, labels=[1,0])
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=['churn=1','churn=0'],normalize= False, title='Confusion matrix')
###Output
Confusion matrix, without normalization
[[ 6 9]
[ 1 24]]
###Markdown
Look at first row. The first row is for customers whose actual churn value in test set is 1.As you can calculate, out of 40 customers, the churn value of 15 of them is 1. And out of these 15, the classifier correctly predicted 6 of them as 1, and 9 of them as 0. It means, for 6 customers, the actual churn value were 1 in test set, and classifier also correctly predicted those as 1. However, while the actual label of 9 customers were 1, the classifier predicted those as 0, which is not very good. We can consider it as error of the model for first row.What about the customers with churn value 0? Lets look at the second row.It looks like there were 25 customers whom their churn value were 0. The classifier correctly predicted 24 of them as 0, and one of them wrongly as 1. So, it has done a good job in predicting the customers with churn value 0. A good thing about confusion matrix is that shows the model’s ability to correctly predict or separate the classes. In specific case of binary classifier, such as this example, we can interpret these numbers as the count of true positives, false positives, true negatives, and false negatives.
###Code
print (classification_report(y_test, yhat))
###Output
precision recall f1-score support
0 0.73 0.96 0.83 25
1 0.86 0.40 0.55 15
accuracy 0.75 40
macro avg 0.79 0.68 0.69 40
weighted avg 0.78 0.75 0.72 40
###Markdown
Based on the count of each section, we can calculate precision and recall of each label:- **Precision** is a measure of the accuracy provided that a class label has been predicted. It is defined by: precision = TP / (TP + FP)- **Recall** is true positive rate. It is defined as: Recall = TP / (TP + FN)So, we can calculate precision and recall of each class.**F1 score:**Now we are in the position to calculate the F1 scores for each label based on the precision and recall of that label. The F1 score is the harmonic average of the precision and recall, where an F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0. It is a good way to show that a classifer has a good value for both recall and precision.And finally, we can tell the average accuracy for this classifier is the average of the F1-score for both labels, which is 0.72 in our case. log lossNow, lets try **log loss** for evaluation. In logistic regression, the output can be the probability of customer churn is yes (or equals to 1). This probability is a value between 0 and 1.Log loss( Logarithmic loss) measures the performance of a classifier where the predicted output is a probability value between 0 and 1.
###Code
from sklearn.metrics import log_loss
log_loss(y_test, yhat_prob)
###Output
_____no_output_____
###Markdown
PracticeTry to build Logistic Regression model again for the same dataset, but this time, use different __solver__ and __regularization__ values? What is new __logLoss__ value?
###Code
# write your code here
###Output
_____no_output_____ |
notebooks/1.0-tom-ca-data-exploration.ipynb | ###Markdown
Integrating and Exploring the Combined MSI Dataset for California Capstone - Fall 2020 TP Goter - September 20, 2020This notebook is used to integrate the individual, serialized dataframes. First we explore the metadata to get some descriptive statistics about our model. Then we process that actual data into a TensorFlow data object for future use in training neural networks.
###Code
import pandas as pd
import tensorflow as tf
from glob import glob
import os
from matplotlib import pyplot as plt
%matplotlib inline
import numpy as np
from tqdm import tqdm
from google.colab import drive
import seaborn as sns
from matplotlib.cm import get_cmap
import folium
print(pd.__version__)
print(tf.__version__)
sns.set()
###Output
1.0.5
2.3.0
###Markdown
Mount Google DriveAuthentication Required
###Code
drive.mount('/content/gdrive')
###Output
Mounted at /content/gdrive
###Markdown
Set Paths to DataData is actually kept in a folder shared with me. In order to access it from Colab, I added a shortcut to the Shared Folder to my 'My Drive' folder on Google Drive. A link is created that allows me to create the path below to get to the actual data without having to copy it back to my personal drive.
###Code
base_path = '/content/gdrive/My Drive/Capstone Project'
sentinel_path = os.path.join(base_path, 'Sentinel_CA/Level1C')
###Output
_____no_output_____
###Markdown
Gather Serialzed DataFramesGet a list of all the pkl files we need to process
###Code
pkl_dfs = [pdf for pdf in os.listdir(sentinel_path) if '.pkl' == pdf[-4:]]
print(len(pkl_dfs))
pkl_dfs
###Output
60
###Markdown
Read MetadataFirst we will explore some metadata. We cannot read the totality of our dataframes in at once because we are RAM limited. So we will do it in steps. The data is still uploading to Google Drive, so let's just get the infrastructure in place first.
###Code
# Make sure the dataframe is deleted before trying to read in each of the individual dataframes
if 'total_df' in locals():
del total_df
# Instantiate a list to contain individual dataframes
dfs = []
# Loop over our pickle files
for pdf in tqdm(pkl_dfs):
# Read in each pickle file but drop the MSI data and the predictions to fit within memory limitations
dfs.append(pd.read_pickle(os.path.join(sentinel_path, pdf)).drop(['msi', 'predictions'], axis=1))
# Concatenate the dataframes togethers
total_df = pd.concat(dfs).reset_index(drop=True)
# Delete the list of dataframes to save memory
del dfs
# High Level Statistics
total_df.describe()
###Output
_____no_output_____
###Markdown
Function for Summarizing Key Statistics- Land area of California from [Brittanica](https://www.britannica.com/place/California-state)- Cropland area from [California Department of Food and Agriculture](https://www.cdfa.ca.gov/statistics/PDFs/2018-2019AgReportnass.pdf)- 2013 Estimate of Irrigated Cropland in CA from [Federation of American Scientists](https://fas.org/sgp/crs/misc/R44093.pdf)
###Code
def summarize_metadata(df):
'''
'''
MONTHS = {1:'January',
2:'February',
3:'March',
4:'April',
5:'May',
6:'June',
7:'July',
8:'August',
9:'September',
10:'October',
11:'November',
12:'December'}
CMAP = get_cmap('tab20').colors
CALIFORNIA_AREA = 423967 # square kms
CALIFORNIA_CROPLAND = 6.75e7 / 640 * 2.59 # acres to sq miles to sq kms
CALIFORNIA_IRRIGATED_AREA = 7.9e6 / 640 * 2.59 # acres to sq miles to sq kms
# Number of images - each image exists for 11 or 12 months of 2018
num_imgs = len(df)
# Each image is 100 x 100 pixels
# Each base image is 1164 x 929 pixels
# There are 99 small images per base image
# Thus, we use 0.9155 of the base image
# At our latitude and longitude the 0.25 x 0.25 degree region
# is about 616.55 km2
# June present for all images
unique_area = 616.55*0.9155 / 99 * len(df[df.month==6])
# Calculate percent of land in sample that is irrigated
irrigated_area = df.tot_irr_locs.sum() / (num_imgs * 100 * 100)
print(10*'*' + 'SUMMARY' + 10*'*')
print(f'Number of 100x100 10-channel "images" to process:\t{num_imgs}')
print(f'Total Land Area in California:\t\t\t\t{CALIFORNIA_AREA} sq. km')
print(f'Total Cropland Area in California:\t\t\t{CALIFORNIA_CROPLAND:.0f} sq. km')
print(f'Area Covered in Images:\t\t\t\t\t{unique_area} sq. km')
print(f'Fraction of California Area Covered in Images:\t\t{unique_area / CALIFORNIA_AREA:.3f} ')
print(f'Fraction of Sample Irrigated:\t\t\t\t{irrigated_area:.3f} ')
print(f'Estimated Irrigated Fraction of Land In California:\t{CALIFORNIA_IRRIGATED_AREA/CALIFORNIA_AREA:.3f}')
print(2*'\n')
# Generate Plot of Irrigated Land Fraction by Month
avg_irr_by_month = total_df.groupby(['month']).tot_irr_locs.mean()
fig, ax = plt.subplots(1,1, figsize=(10,5))
ax.bar(x=[MONTHS[m] for m in avg_irr_by_month.index],
height=avg_irr_by_month.values/10000,
color=CMAP, edgecolor='black')
ax.set_xticklabels([MONTHS[m] for m in avg_irr_by_month.index],
rotation=45, fontsize=11,fontweight='bold')
ax.set_yticklabels([f'{n:.2f}' for n in np.arange(0.0,0.18,0.02)],
fontsize=11,fontweight='bold')
ax.set_title('Mean Fraction of Land Irrigated by Month',fontsize=16,fontweight='bold')
print(2*'\n')
# Histogram of Irrigated Locations by Month
irr_by_month = total_df.groupby(['month']).tot_irr_locs
fig, axes = plt.subplots(2,6,figsize=(20,10), sharex=True, sharey=True)
axes = axes.flatten()
for g, group in irr_by_month:
group = group / 10000
group.hist(ax=axes[g-1], bins=20, color='tab:green', ec='black')
axes[g-1].set_title(f'{MONTHS[g]}', fontweight='bold', fontsize=11)
plt.tight_layout()
plt.suptitle('Distribution of Irrigated Fraction by Month', y=1.02, fontsize=16, fontweight='bold')
###Output
_____no_output_____
###Markdown
Top Level Summary
###Code
summarize_metadata(total_df)
# Create interactive map with default basemap
map_osm = folium.Map(
location=[total_df.lat.median(), total_df.lon.median()],
zoom_start=8,
tiles='Stamen Terrain'
)
centers = total_df.groupby(['lat']).lon.unique()
month_counts = total_df.groupby(['lat']).month.unique()
for l, lat in enumerate(centers.index):
for lon in centers[l]:
folium.Rectangle(
bounds=[(float(lat)-0.125, float(lon)-0.125), (float(lat)+0.125, float(lon)+0.125)],
popup=f'{lat}, {lon}\n{len(month_counts[l])} months',
color='#708090',
fill=True,
fill_color='#708090'
).add_to(map_osm)
map_osm
###Output
_____no_output_____ |
video_notebooks/05_pytorch_going_modular_cell_mode_video.ipynb | ###Markdown
05. Going Modular: Part 1 (cell mode)This notebook is part 1/2 of section [05. Going Modular](https://www.learnpytorch.io/05_pytorch_going_modular/).For reference, the two parts are: 1. [**05. Going Modular: Part 1 (cell mode)**](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/going_modular/05_pytorch_going_modular_cell_mode.ipynb) - this notebook is run as a traditional Jupyter Notebook/Google Colab notebook and is a condensed version of [notebook 04](https://www.learnpytorch.io/04_pytorch_custom_datasets/).2. [**05. Going Modular: Part 2 (script mode)**](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/going_modular/05_pytorch_going_modular_script_mode.ipynb) - this notebook is the same as number 1 but with added functionality to turn each of the major sections into Python scripts, such as, `data_setup.py` and `train.py`. Why two parts?Because sometimes the best way to learn something is to see how it *differs* from something else.If you run each notebook side-by-side you'll see how they differ and that's where the key learnings are. What is cell mode?A cell mode notebook is a regular notebook run exactly how we've been running them through the course.Some cells contain text and others contain code. What's the difference between this notebook (Part 1) and the script mode notebook (Part 2)?This notebook, 05. PyTorch Going Modular: Part 1 (cell mode), runs a cleaned up version of the most useful code from section [04. PyTorch Custom Datasets](https://www.learnpytorch.io/04_pytorch_custom_datasets/).Running this notebook end-to-end will result in recreating the image classification model we built in notebook 04 (TinyVGG) trained on images of pizza, steak and sushi.The main difference between this notebook (Part 1) and Part 2 is that each section in Part 2 (script mode) has an extra subsection (e.g. 2.1, 3.1, 4.1) for turning cell code into script code. Where can you get help?You can find the book version of this section [05. PyTorch Going Modular on learnpytorch.io](https://www.learnpytorch.io/05_pytorch_going_modular/).The rest of the materials for this course [are available on GitHub](https://github.com/mrdbourke/pytorch-deep-learning).If you run into trouble, you can ask a question on the course [GitHub Discussions page](https://github.com/mrdbourke/pytorch-deep-learning/discussions).And of course, there's the [PyTorch documentation](https://pytorch.org/docs/stable/index.html) and [PyTorch developer forums](https://discuss.pytorch.org/), a very helpful place for all things PyTorch. 0. Running a notebook in cell modeAs discussed, we're going to be running this notebook normally.One cell at a time.The code is from notebook 04, however, it has been condensed down to its core functionality. 1. Get dataWe're going to start by downloading the same data we used in [notebook 04](https://www.learnpytorch.io/04_pytorch_custom_datasets/1-get-data), the `pizza_steak_sushi` dataset with images of pizza, steak and sushi.
###Code
import os
import zipfile
from pathlib import Path
import requests
# Setup path to data folder
data_path = Path("data/")
image_path = data_path / "pizza_steak_sushi"
# If the image folder doesn't exist, download it and prepare it...
if image_path.is_dir():
print(f"{image_path} directory exists.")
else:
print(f"Did not find {image_path} directory, creating one...")
image_path.mkdir(parents=True, exist_ok=True)
# Download pizza, steak, sushi data
with open(data_path / "pizza_steak_sushi.zip", "wb") as f:
request = requests.get("https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi.zip")
print("Downloading pizza, steak, sushi data...")
f.write(request.content)
# Unzip pizza, steak, sushi data
with zipfile.ZipFile(data_path / "pizza_steak_sushi.zip", "r") as zip_ref:
print("Unzipping pizza, steak, sushi data...")
zip_ref.extractall(image_path)
# Remove zip file
os.remove(data_path / "pizza_steak_sushi.zip")
# Setup train and testing paths
train_dir = image_path / "train"
test_dir = image_path / "test"
train_dir, test_dir
###Output
_____no_output_____
###Markdown
2. Create Datasets and DataLoadersNow we'll turn the image dataset into PyTorch `Dataset`'s and `DataLoader`'s.
###Code
from torchvision import datasets, transforms
# Create simple transform
data_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
])
# Use ImageFolder to create dataset(s)
train_data = datasets.ImageFolder(root=train_dir, # target folder of images
transform=data_transform, # transforms to perform on data (images)
target_transform=None) # transforms to perform on labels (if necessary)
test_data = datasets.ImageFolder(root=test_dir,
transform=data_transform)
print(f"Train data:\n{train_data}\nTest data:\n{test_data}")
# Get class names as a list
class_names = train_data.classes
class_names
# Can also get class names as a dict
class_dict = train_data.class_to_idx
class_dict
# Check the lengths
len(train_data), len(test_data)
# Turn train and test Datasets into DataLoaders
from torch.utils.data import DataLoader
train_dataloader = DataLoader(dataset=train_data,
batch_size=1, # how many samples per batch?
num_workers=1, # how many subprocesses to use for data loading? (higher = more)
shuffle=True) # shuffle the data?
test_dataloader = DataLoader(dataset=test_data,
batch_size=1,
num_workers=1,
shuffle=False) # don't usually need to shuffle testing data
train_dataloader, test_dataloader
# Check out single image size/shape
img, label = next(iter(train_dataloader))
# Batch size will now be 1, try changing the batch_size parameter above and see what happens
print(f"Image shape: {img.shape} -> [batch_size, color_channels, height, width]")
print(f"Label shape: {label.shape}")
###Output
Image shape: torch.Size([1, 3, 64, 64]) -> [batch_size, color_channels, height, width]
Label shape: torch.Size([1])
###Markdown
2.1 Create Datasets and DataLoaders (script mode) Let's use the Jupyter magic function to create a `.py` file for creating DataLoaders. We can save a code cell's contents to a file using the Jupyter magic `%%writefile filename` - https://ipython.readthedocs.io/en/stable/interactive/magics.htmlcellmagic-writefile
###Code
# Create a directory going_modular scripts
import os
os.makedirs("going_modular")
%%writefile going_modular/data_setup.py
"""
Contains functionality for creating PyTorch DataLoader's for
image classification data.
"""
import os
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
NUM_WORKERS = os.cpu_count()
def create_dataloaders(
train_dir: str,
test_dir: str,
transform: transforms.Compose,
batch_size: int,
num_workers: int=NUM_WORKERS
):
"""Creates training and testing DataLoaders.
Takes in a training directory and testing directroy path and turns them into
PyTorch Datasets and then into PyTorch DataLoaders.
Args:
train_dir: Path to training directory.
test_dir: Path to testing directory.
transform: torchvision transforms to perform on training and testing data.
batch_size: Number of samples per batch in each of the DataLoaders.
num_workers: An integer for number of workers per DataLoader.
Returns:
A tuple of (train_dataloader, test_dataloader, class_names).
Where class_names is a list of the target classes.
Example usage:
train_dataloader, test_dataloader, class_names = create_dataloaders(train_dir=path/to/train_dir,
test_dir=path/to/test_dir,
transform=some_transform,
batch_size=32,
num_workers=4)
"""
# Use ImageFolder to create datasets(s)
train_data = datasets.ImageFolder(train_dir, transform=transform)
test_data = datasets.ImageFolder(test_dir, transform=transform)
# Get class names
class_names = train_data.classes
# Turn images into DataLoaders
train_dataloader = DataLoader(
train_data,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True # for more on pin memory, see the PyTorch docs: https://pytorch.org/docs/stable/data.html
)
test_dataloader = DataLoader(
test_data,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True
)
return train_dataloader, test_dataloader, class_names
from going_modular import data_setup
train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(train_dir=train_dir,
test_dir=test_dir,
transform=data_transform,
batch_size=32)
train_dataloader, test_dataloader, class_names
###Output
_____no_output_____
###Markdown
3. Making a model (TinyVGG)We're going to use the same model we used in notebook 04: TinyVGG from the CNN Explainer website.The only change here from notebook 04 is that a docstring has been added using [Google's Style Guide for Python](https://google.github.io/styleguide/pyguide.html384-classes).
###Code
import torch
from torch import nn
class TinyVGG(nn.Module):
"""Creates the TinyVGG architecture.
Replicates the TinyVGG architecture from the CNN explainer website in PyTorch.
See the original architecture here: https://poloclub.github.io/cnn-explainer/
Args:
input_shape: An integer indicating number of input channels.
hidden_units: An integer indicating number of hidden units between layers.
output_shape: An integer indicating number of output units.
"""
def __init__(self, input_shape: int, hidden_units: int, output_shape: int) -> None:
super().__init__()
self.conv_block_1 = nn.Sequential(
nn.Conv2d(in_channels=input_shape,
out_channels=hidden_units,
kernel_size=3, # how big is the square that's going over the image?
stride=1, # default
padding=0), # options = "valid" (no padding) or "same" (output has same shape as input) or int for specific number
nn.ReLU(),
nn.Conv2d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1,
padding=0),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2,
stride=2) # default stride value is same as kernel_size
)
self.conv_block_2 = nn.Sequential(
nn.Conv2d(hidden_units, hidden_units, kernel_size=3, padding=0),
nn.ReLU(),
nn.Conv2d(hidden_units, hidden_units, kernel_size=3, padding=0),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.classifier = nn.Sequential(
nn.Flatten(),
# Where did this in_features shape come from?
# It's because each layer of our network compresses and changes the shape of our inputs data.
nn.Linear(in_features=hidden_units*13*13,
out_features=output_shape)
)
def forward(self, x: torch.Tensor):
x = self.conv_block_1(x)
x = self.conv_block_2(x)
x = self.classifier(x)
return x
# return self.classifier(self.block_2(self.block_1(x))) # <- leverage the benefits of operator fusion
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
# Instantiate an instance of the model
torch.manual_seed(42)
model_0 = TinyVGG(input_shape=3, # number of color channels (3 for RGB)
hidden_units=10,
output_shape=len(train_data.classes)).to(device)
model_0
###Output
_____no_output_____
###Markdown
To test our model let's do a single forward pass (pass a sample batch from the training set through our model).
###Code
# 1. Get a batch of images and labels from the DataLoader
img_batch, label_batch = next(iter(train_dataloader))
# 2. Get a single image from the batch and unsqueeze the image so its shape fits the model
img_single, label_single = img_batch[0].unsqueeze(dim=0), label_batch[0]
print(f"Single image shape: {img_single.shape}\n")
# 3. Perform a forward pass on a single image
model_0.eval()
with torch.inference_mode():
pred = model_0(img_single.to(device))
# 4. Print out what's happening and convert model logits -> pred probs -> pred label
print(f"Output logits:\n{pred}\n")
print(f"Output prediction probabilities:\n{torch.softmax(pred, dim=1)}\n")
print(f"Output prediction label:\n{torch.argmax(torch.softmax(pred, dim=1), dim=1)}\n")
print(f"Actual label:\n{label_single}")
###Output
Single image shape: torch.Size([1, 3, 64, 64])
Output logits:
tensor([[ 0.0208, -0.0019, 0.0095]], device='cuda:0')
Output prediction probabilities:
tensor([[0.3371, 0.3295, 0.3333]], device='cuda:0')
Output prediction label:
tensor([0], device='cuda:0')
Actual label:
0
###Markdown
3.1. Making a model (TinyVGG) with a script (`model_builder.py`)Let's turn our model building code into a Python script we can import.
###Code
%%writefile going_modular/model_builder.py
"""
Contains PyTorch model code to instantiate a TinyVGG model from the CNN Explainer website.
"""
import torch
from torch import nn
class TinyVGG(nn.Module):
"""Creates the TinyVGG architecture.
Replicates the TinyVGG architecture from the CNN explainer website in PyTorch.
See the original architecture here: https://poloclub.github.io/cnn-explainer/
Args:
input_shape: An integer indicating number of input channels.
hidden_units: An integer indicating number of hidden units between layers.
output_shape: An integer indicating number of output units.
"""
def __init__(self, input_shape: int, hidden_units: int, output_shape: int) -> None:
super().__init__()
self.conv_block_1 = nn.Sequential(
nn.Conv2d(in_channels=input_shape,
out_channels=hidden_units,
kernel_size=3, # how big is the square that's going over the image?
stride=1, # default
padding=0), # options = "valid" (no padding) or "same" (output has same shape as input) or int for specific number
nn.ReLU(),
nn.Conv2d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1,
padding=0),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2,
stride=2) # default stride value is same as kernel_size
)
self.conv_block_2 = nn.Sequential(
nn.Conv2d(hidden_units, hidden_units, kernel_size=3, padding=0),
nn.ReLU(),
nn.Conv2d(hidden_units, hidden_units, kernel_size=3, padding=0),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.classifier = nn.Sequential(
nn.Flatten(),
# Where did this in_features shape come from?
# It's because each layer of our network compresses and changes the shape of our inputs data.
nn.Linear(in_features=hidden_units*13*13,
out_features=output_shape)
)
def forward(self, x: torch.Tensor):
x = self.conv_block_1(x)
x = self.conv_block_2(x)
x = self.classifier(x)
return x
# return self.classifier(self.block_2(self.block_1(x))) # <- leverage the benefits of operator fusion
from going_modular import model_builder
import torch
from going_modular import model_builder
device = "cuda" if torch.cuda.is_available() else "cpu"
# Instantiate a model from the model_builder.py script
torch.manual_seed(42)
model_1 = model_builder.TinyVGG(input_shape=3,
hidden_units=10,
output_shape=len(class_names)).to(device)
model_1
# 1. Get a batch of images and labels from the DataLoader
img_batch, label_batch = next(iter(train_dataloader))
# 2. Get a single image from the batch and unsqueeze the image so its shape fits the model
img_single, label_single = img_batch[0].unsqueeze(dim=0), label_batch[0]
print(f"Single image shape: {img_single.shape}\n")
# 3. Perform a forward pass on a single image
model_1.eval()
with torch.inference_mode():
pred = model_1(img_single.to(device))
# 4. Print out what's happening and convert model logits -> pred probs -> pred label
print(f"Output logits:\n{pred}\n")
print(f"Output prediction probabilities:\n{torch.softmax(pred, dim=1)}\n")
print(f"Output prediction label:\n{torch.argmax(torch.softmax(pred, dim=1), dim=1)}\n")
print(f"Actual label:\n{label_single}")
###Output
Single image shape: torch.Size([1, 3, 64, 64])
Output logits:
tensor([[ 0.0208, -0.0019, 0.0095]], device='cuda:0')
Output prediction probabilities:
tensor([[0.3371, 0.3295, 0.3333]], device='cuda:0')
Output prediction label:
tensor([0], device='cuda:0')
Actual label:
0
###Markdown
4. Creating `train_step()` and `test_step()` functions and `train()` to combine them Rather than writing them again, we can reuse the `train_step()` and `test_step()` functions from [notebook 04](https://www.learnpytorch.io/04_pytorch_custom_datasets/75-create-train-test-loop-functions).The same goes for the `train()` function we created.The only difference here is that these functions have had docstrings added to them in [Google's Python Functions and Methods Style Guide](https://google.github.io/styleguide/pyguide.html383-functions-and-methods).Let's start by making `train_step()`.
###Code
from typing import Tuple
def train_step(model: torch.nn.Module,
dataloader: torch.utils.data.DataLoader,
loss_fn: torch.nn.Module,
optimizer: torch.optim.Optimizer,
device: torch.device) -> Tuple[float, float]:
"""Trains a PyTorch model for a single epoch.
Turns a target PyTorch model to training mode and then
runs through all of the required training steps (forward
pass, loss calculation, optimizer step).
Args:
model: A PyTorch model to be trained.
dataloader: A DataLoader instance for the model to be trained on.
loss_fn: A PyTorch loss function to minimize.
optimizer: A PyTorch optimizer to help minimize the loss function.
device: A target device to compute on (e.g. "cuda" or "cpu").
Returns:
A tuple of training loss and training accuracy metrics.
In the form (train_loss, train_accuracy). For example:
(0.1112, 0.8743)
"""
# Put model in train mode
model.train()
# Setup train loss and train accuracy values
train_loss, train_acc = 0, 0
# Loop through data loader data batches
for batch, (X, y) in enumerate(dataloader):
# Send data to target device
X, y = X.to(device), y.to(device)
# 1. Forward pass
y_pred = model(X)
# 2. Calculate and accumulate loss
loss = loss_fn(y_pred, y)
train_loss += loss.item()
# 3. Optimizer zero grad
optimizer.zero_grad()
# 4. Loss backward
loss.backward()
# 5. Optimizer step
optimizer.step()
# Calculate and accumulate accuracy metric across all batches
y_pred_class = torch.argmax(torch.softmax(y_pred, dim=1), dim=1)
train_acc += (y_pred_class == y).sum().item()/len(y_pred)
# Adjust metrics to get average loss and accuracy per batch
train_loss = train_loss / len(dataloader)
train_acc = train_acc / len(dataloader)
return train_loss, train_acc
###Output
_____no_output_____
###Markdown
Now we'll do `test_step()`.
###Code
def test_step(model: torch.nn.Module,
dataloader: torch.utils.data.DataLoader,
loss_fn: torch.nn.Module,
device: torch.device) -> Tuple[float, float]:
"""Tests a PyTorch model for a single epoch.
Turns a target PyTorch model to "eval" mode and then performs
a forward pass on a testing dataset.
Args:
model: A PyTorch model to be tested.
dataloader: A DataLoader instance for the model to be tested on.
loss_fn: A PyTorch loss function to calculate loss on the test data.
device: A target device to compute on (e.g. "cuda" or "cpu").
Returns:
A tuple of testing loss and testing accuracy metrics.
In the form (test_loss, test_accuracy). For example:
(0.0223, 0.8985)
"""
# Put model in eval mode
model.eval()
# Setup test loss and test accuracy values
test_loss, test_acc = 0, 0
# Turn on inference context manager
with torch.inference_mode():
# Loop through DataLoader batches
for batch, (X, y) in enumerate(dataloader):
# Send data to target device
X, y = X.to(device), y.to(device)
# 1. Forward pass
test_pred_logits = model(X)
# 2. Calculate and accumulate loss
loss = loss_fn(test_pred_logits, y)
test_loss += loss.item()
# Calculate and accumulate accuracy
test_pred_labels = test_pred_logits.argmax(dim=1)
test_acc += ((test_pred_labels == y).sum().item()/len(test_pred_labels))
# Adjust metrics to get average loss and accuracy per batch
test_loss = test_loss / len(dataloader)
test_acc = test_acc / len(dataloader)
return test_loss, test_acc
###Output
_____no_output_____
###Markdown
And we'll combine `train_step()` and `test_step()` into `train()`.
###Code
from typing import Dict, List
from tqdm.auto import tqdm
def train(model: torch.nn.Module,
train_dataloader: torch.utils.data.DataLoader,
test_dataloader: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer,
loss_fn: torch.nn.Module,
epochs: int,
device: torch.device) -> Dict[str, List[float]]:
"""Trains and tests a PyTorch model.
Passes a target PyTorch models through train_step() and test_step()
functions for a number of epochs, training and testing the model
in the same epoch loop.
Calculates, prints and stores evaluation metrics throughout.
Args:
model: A PyTorch model to be trained and tested.
train_dataloader: A DataLoader instance for the model to be trained on.
test_dataloader: A DataLoader instance for the model to be tested on.
optimizer: A PyTorch optimizer to help minimize the loss function.
loss_fn: A PyTorch loss function to calculate loss on both datasets.
epochs: An integer indicating how many epochs to train for.
device: A target device to compute on (e.g. "cuda" or "cpu").
Returns:
A dictionary of training and testing loss as well as training and
testing accuracy metrics. Each metric has a value in a list for
each epoch.
In the form: {train_loss: [...],
train_acc: [...],
test_loss: [...],
test_acc: [...]}
For example if training for epochs=2:
{train_loss: [2.0616, 1.0537],
train_acc: [0.3945, 0.3945],
test_loss: [1.2641, 1.5706],
test_acc: [0.3400, 0.2973]}
"""
# Create empty results dictionary
results = {"train_loss": [],
"train_acc": [],
"test_loss": [],
"test_acc": []
}
# Loop through training and testing steps for a number of epochs
for epoch in tqdm(range(epochs)):
train_loss, train_acc = train_step(model=model,
dataloader=train_dataloader,
loss_fn=loss_fn,
optimizer=optimizer,
device=device)
test_loss, test_acc = test_step(model=model,
dataloader=test_dataloader,
loss_fn=loss_fn,
device=device)
# Print out what's happening
print(
f"Epoch: {epoch+1} | "
f"train_loss: {train_loss:.4f} | "
f"train_acc: {train_acc:.4f} | "
f"test_loss: {test_loss:.4f} | "
f"test_acc: {test_acc:.4f}"
)
# Update results dictionary
results["train_loss"].append(train_loss)
results["train_acc"].append(train_acc)
results["test_loss"].append(test_loss)
results["test_acc"].append(test_acc)
# Return the filled results at the end of the epochs
return results
###Output
_____no_output_____
###Markdown
4.1 Turn training functions into a script (`engine.py`)
###Code
%%writefile going_modular/engine.py
"""
Contains functions for training and testing a PyTorch model.
"""
from typing import Dict, List, Tuple
import torch
from tqdm.auto import tqdm
def train_step(model: torch.nn.Module,
dataloader: torch.utils.data.DataLoader,
loss_fn: torch.nn.Module,
optimizer: torch.optim.Optimizer,
device: torch.device) -> Tuple[float, float]:
"""Trains a PyTorch model for a single epoch.
Turns a target PyTorch model to training mode and then
runs through all of the required training steps (forward
pass, loss calculation, optimizer step).
Args:
model: A PyTorch model to be trained.
dataloader: A DataLoader instance for the model to be trained on.
loss_fn: A PyTorch loss function to minimize.
optimizer: A PyTorch optimizer to help minimize the loss function.
device: A target device to compute on (e.g. "cuda" or "cpu").
Returns:
A tuple of training loss and training accuracy metrics.
In the form (train_loss, train_accuracy). For example:
(0.1112, 0.8743)
"""
# Put model in train mode
model.train()
# Setup train loss and train accuracy values
train_loss, train_acc = 0, 0
# Loop through data loader data batches
for batch, (X, y) in enumerate(dataloader):
# Send data to target device
X, y = X.to(device), y.to(device)
# 1. Forward pass
y_pred = model(X)
# 2. Calculate and accumulate loss
loss = loss_fn(y_pred, y)
train_loss += loss.item()
# 3. Optimizer zero grad
optimizer.zero_grad()
# 4. Loss backward
loss.backward()
# 5. Optimizer step
optimizer.step()
# Calculate and accumulate accuracy metric across all batches
y_pred_class = torch.argmax(torch.softmax(y_pred, dim=1), dim=1)
train_acc += (y_pred_class == y).sum().item()/len(y_pred)
# Adjust metrics to get average loss and accuracy per batch
train_loss = train_loss / len(dataloader)
train_acc = train_acc / len(dataloader)
return train_loss, train_acc
def test_step(model: torch.nn.Module,
dataloader: torch.utils.data.DataLoader,
loss_fn: torch.nn.Module,
device: torch.device) -> Tuple[float, float]:
"""Tests a PyTorch model for a single epoch.
Turns a target PyTorch model to "eval" mode and then performs
a forward pass on a testing dataset.
Args:
model: A PyTorch model to be tested.
dataloader: A DataLoader instance for the model to be tested on.
loss_fn: A PyTorch loss function to calculate loss on the test data.
device: A target device to compute on (e.g. "cuda" or "cpu").
Returns:
A tuple of testing loss and testing accuracy metrics.
In the form (test_loss, test_accuracy). For example:
(0.0223, 0.8985)
"""
# Put model in eval mode
model.eval()
# Setup test loss and test accuracy values
test_loss, test_acc = 0, 0
# Turn on inference context manager
with torch.inference_mode():
# Loop through DataLoader batches
for batch, (X, y) in enumerate(dataloader):
# Send data to target device
X, y = X.to(device), y.to(device)
# 1. Forward pass
test_pred_logits = model(X)
# 2. Calculate and accumulate loss
loss = loss_fn(test_pred_logits, y)
test_loss += loss.item()
# Calculate and accumulate accuracy
test_pred_labels = test_pred_logits.argmax(dim=1)
test_acc += ((test_pred_labels == y).sum().item()/len(test_pred_labels))
# Adjust metrics to get average loss and accuracy per batch
test_loss = test_loss / len(dataloader)
test_acc = test_acc / len(dataloader)
return test_loss, test_acc
def train(model: torch.nn.Module,
train_dataloader: torch.utils.data.DataLoader,
test_dataloader: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer,
loss_fn: torch.nn.Module,
epochs: int,
device: torch.device) -> Dict[str, List[float]]:
"""Trains and tests a PyTorch model.
Passes a target PyTorch models through train_step() and test_step()
functions for a number of epochs, training and testing the model
in the same epoch loop.
Calculates, prints and stores evaluation metrics throughout.
Args:
model: A PyTorch model to be trained and tested.
train_dataloader: A DataLoader instance for the model to be trained on.
test_dataloader: A DataLoader instance for the model to be tested on.
optimizer: A PyTorch optimizer to help minimize the loss function.
loss_fn: A PyTorch loss function to calculate loss on both datasets.
epochs: An integer indicating how many epochs to train for.
device: A target device to compute on (e.g. "cuda" or "cpu").
Returns:
A dictionary of training and testing loss as well as training and
testing accuracy metrics. Each metric has a value in a list for
each epoch.
In the form: {train_loss: [...],
train_acc: [...],
test_loss: [...],
test_acc: [...]}
For example if training for epochs=2:
{train_loss: [2.0616, 1.0537],
train_acc: [0.3945, 0.3945],
test_loss: [1.2641, 1.5706],
test_acc: [0.3400, 0.2973]}
"""
# Create empty results dictionary
results = {"train_loss": [],
"train_acc": [],
"test_loss": [],
"test_acc": []
}
# Loop through training and testing steps for a number of epochs
for epoch in tqdm(range(epochs)):
train_loss, train_acc = train_step(model=model,
dataloader=train_dataloader,
loss_fn=loss_fn,
optimizer=optimizer,
device=device)
test_loss, test_acc = test_step(model=model,
dataloader=test_dataloader,
loss_fn=loss_fn,
device=device)
# Print out what's happening
print(
f"Epoch: {epoch+1} | "
f"train_loss: {train_loss:.4f} | "
f"train_acc: {train_acc:.4f} | "
f"test_loss: {test_loss:.4f} | "
f"test_acc: {test_acc:.4f}"
)
# Update results dictionary
results["train_loss"].append(train_loss)
results["train_acc"].append(train_acc)
results["test_loss"].append(test_loss)
results["test_acc"].append(test_acc)
# Return the filled results at the end of the epochs
return results
from going_modular import engine
# engine.train()
###Output
_____no_output_____
###Markdown
5. Creating a function to save the modelLet's setup a function to save our model to a directory.
###Code
from pathlib import Path
def save_model(model: torch.nn.Module,
target_dir: str,
model_name: str):
"""Saves a PyTorch model to a target directory.
Args:
model: A target PyTorch model to save.
target_dir: A directory for saving the model to.
model_name: A filename for the saved model. Should include
either ".pth" or ".pt" as the file extension.
Example usage:
save_model(model=model_0,
target_dir="models",
model_name="05_going_modular_tingvgg_model.pth")
"""
# Create target directory
target_dir_path = Path(target_dir)
target_dir_path.mkdir(parents=True,
exist_ok=True)
# Create model save path
assert model_name.endswith(".pth") or model_name.endswith(".pt"), "model_name should end with '.pt' or '.pth'"
model_save_path = target_dir_path / model_name
# Save the model state_dict()
print(f"[INFO] Saving model to: {model_save_path}")
torch.save(obj=model.state_dict(),
f=model_save_path)
###Output
_____no_output_____
###Markdown
5.1 Create a file called `utils.py` with utility functions"utils" in Python is generally reserved for various utility functions.Right now we only have one utility function (`save_model()`) but... as our code grows we'll likely have more...
###Code
%%writefile going_modular/utils.py
"""
File containing various utility functions for PyTorch model training.
"""
import torch
from pathlib import Path
def save_model(model: torch.nn.Module,
target_dir: str,
model_name: str):
"""Saves a PyTorch model to a target directory.
Args:
model: A target PyTorch model to save.
target_dir: A directory for saving the model to.
model_name: A filename for the saved model. Should include
either ".pth" or ".pt" as the file extension.
Example usage:
save_model(model=model_0,
target_dir="models",
model_name="05_going_modular_tingvgg_model.pth")
"""
# Create target directory
target_dir_path = Path(target_dir)
target_dir_path.mkdir(parents=True,
exist_ok=True)
# Create model save path
assert model_name.endswith(".pth") or model_name.endswith(".pt"), "model_name should end with '.pt' or '.pth'"
model_save_path = target_dir_path / model_name
# Save the model state_dict()
print(f"[INFO] Saving model to: {model_save_path}")
torch.save(obj=model.state_dict(),
f=model_save_path)
###Output
Overwriting going_modular/utils.py
###Markdown
6. Train, evaluate and save the modelLet's leverage the functions we've got above to train, test and save a model to file.
###Code
# Set random seeds
torch.manual_seed(42)
torch.cuda.manual_seed(42)
# Set number of epochs
NUM_EPOCHS = 5
# Recreate an instance of TinyVGG
model_0 = TinyVGG(input_shape=3, # number of color channels (3 for RGB)
hidden_units=10,
output_shape=len(train_data.classes)).to(device)
# Setup loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(params=model_0.parameters(), lr=0.001)
# Start the timer
from timeit import default_timer as timer
start_time = timer()
# Train model_0
model_0_results = train(model=model_0,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
optimizer=optimizer,
loss_fn=loss_fn,
epochs=NUM_EPOCHS,
device=device)
# End the timer and print out how long it took
end_time = timer()
print(f"[INFO] Total training time: {end_time-start_time:.3f} seconds")
# Save the model
save_model(model=model_0,
target_dir="models",
model_name="05_going_modular_cell_mode_tinyvgg_model.pth")
###Output
_____no_output_____
###Markdown
6.1 Train, evaluate and save the model (script mode) -> `train.py`Let's create a file called `train.py` to leverage all of our other code scripts to train a PyTorch model.Essentially we want to replicate the functionality of notebook 04 in one line...
###Code
%%writefile going_modular/train.py
"""
Trains a PyTorch image classification model using device-agnostic code.
"""
import os
import torch
from torchvision import transforms
from timeit import default_timer as timer
import data_setup, engine, model_builder, utils
# Setup hyperparameters
NUM_EPOCHS = 5
BATCH_SIZE = 32
HIDDEN_UNITS = 10
LEARNING_RATE = 0.001
# Setup directories
train_dir = "data/pizza_steak_sushi/train"
test_dir = "data/pizza_steak_sushi/test"
# Setup device agnostic code
device = "cuda" if torch.cuda.is_available() else "cpu"
# Create transforms
data_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor()
])
# Create DataLoader's and get class_names
train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(train_dir=train_dir,
test_dir=test_dir,
transform=data_transform,
batch_size=BATCH_SIZE)
# Create model
model = model_builder.TinyVGG(input_shape=3,
hidden_units=HIDDEN_UNITS,
output_shape=len(class_names)).to(device)
# Setup loss and optimizer
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),
lr=LEARNING_RATE)
# Start the timer
start_time = timer()
# Start training with help from engine.py
engine.train(model=model,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
loss_fn=loss_fn,
optimizer=optimizer,
epochs=NUM_EPOCHS,
device=device)
# End the timer and print out how long it took
end_time = timer()
print(f"[INFO] Total training time: {end_time-start_time:.3f} seconds")
# Save the model to file
utils.save_model(model=model,
target_dir="models",
model_name="05_going_modular_script_mode_tinyvgg_model.pth")
!python going_modular/train.py
###Output
0% 0/5 [00:00<?, ?it/s]Epoch: 1 | train_loss: 1.1019 | train_acc: 0.3203 | test_loss: 1.1089 | test_acc: 0.1979
20% 1/5 [00:01<00:06, 1.51s/it]Epoch: 2 | train_loss: 1.1055 | train_acc: 0.2930 | test_loss: 1.1385 | test_acc: 0.1979
40% 2/5 [00:02<00:04, 1.47s/it]Epoch: 3 | train_loss: 1.1128 | train_acc: 0.2930 | test_loss: 1.1272 | test_acc: 0.1979
60% 3/5 [00:04<00:02, 1.45s/it]Epoch: 4 | train_loss: 1.0973 | train_acc: 0.3906 | test_loss: 1.0982 | test_acc: 0.3021
80% 4/5 [00:05<00:01, 1.45s/it]Epoch: 5 | train_loss: 1.0959 | train_acc: 0.4141 | test_loss: 1.1004 | test_acc: 0.3125
100% 5/5 [00:07<00:00, 1.43s/it]
[INFO] Total training time: 7.133 seconds
[INFO] Saving model to: models/05_going_modular_script_mode_tinyvgg_model.pth
|
scripts/RegressaoImoveis.ipynb | ###Markdown
Modelo para cálculo de imóveis na cidade de São PauloO objetivo deste projeto é construir um modelo preditivo capaz de calcular o preço de um imóvel no bairro Paraíso na cidade de São Paulo. Para completar este projeto cada aluno deverá seguir as orientações que estão neste notebook e preencher as células vazias. Aquisição, pré-processamento e análise descritiva
###Code
import pandas as pd
import io
import requests
url="https://raw.githubusercontent.com/fbarth/ds-saint-paul/master/data/20140917_imoveis_filtrados_final.csv_shaped.csv"
s=requests.get(url).content
df = pd.read_csv(io.StringIO(s.decode('utf-8')), sep=",")
df.head()
%matplotlib inline
import seaborn as sns
import matplotlib.pyplot as plt
plt.subplots(figsize=(10, 8))
cmap = sns.cubehelix_palette(rot=-.2, as_cmap=True)
ax = sns.scatterplot(x="area", y="preco",
hue="suites", size="vagas",
palette=cmap, sizes=(10, 200),
data=df)
###Output
_____no_output_____
###Markdown
* Listar a quantidade de imóveis por bairro existente no dataset
###Code
# TODO: completar com o nome da variavel correta
df['<PREENCHER>'].value_counts()
###Output
_____no_output_____
###Markdown
* Considere apenas os imóveis do bairo paraiso
###Code
# TODO: preencher com o nome do bairro correto
df = df[df['bairro'] == '<PREENCHER>']
###Output
_____no_output_____
###Markdown
* Depois de considerar apenas os imóveis do bairro paraiso o tamanho do dataset precisa ser exatamente igual a (809,7)
###Code
df.shape
%matplotlib inline
import seaborn as sns
import matplotlib.pyplot as plt
plt.subplots(figsize=(10, 8))
cmap = sns.cubehelix_palette(rot=-.2, as_cmap=True)
ax = sns.scatterplot(x="area", y="preco",
hue="suites", size="vagas",
palette=cmap, sizes=(10, 200),
data=df)
df.head()
###Output
_____no_output_____
###Markdown
* A quantidade suites não pode ser maior que a quantidade de dormitórios e a quantidade de suites também não pode ser maior que a quantidade de banheiros. Exclua todos os exemplos que não satisfazem esta restrição. Estes exemplos provavelmente são erros de coleta de dados.
###Code
# TODO: completar a regra
df = df['COMPLETAR' <= df['dormitorios']]
df = df['COMPLETAR' <= df['banheiros']]
###Output
_____no_output_____
###Markdown
* Depois deste filtro o dataset precisa ter o tamanho (786, 7).
###Code
df.shape
%matplotlib inline
import seaborn as sns
import matplotlib.pyplot as plt
plt.subplots(figsize=(10, 8))
cmap = sns.cubehelix_palette(rot=-.2, as_cmap=True)
ax = sns.scatterplot(x="area", y="preco",
hue="suites", size="vagas",
palette=cmap, sizes=(10, 200),
data=df)
###Output
_____no_output_____
###Markdown
* Visto que agora a variável bairro tem apenas um valor, você deve remover a mesma
###Code
# TODO remover o atributo bairro
df = df.drop(columns=['<PREENCHER>'])
###Output
_____no_output_____
###Markdown
* Depois deste filtro o dataset precisa ter a seguinte estrutura:
###Code
df.head()
###Output
_____no_output_____
###Markdown
* Qual é o valor mínimo e máximo dos preços dos imóveis?
###Code
# TODO completar com o nome correto do atributo
x = df['<PREENCHER>'].describe()
x
df['preco'].plot(kind='hist', color='gray', title='Preço dos imóveis', rot=90)
import seaborn as sns
sns.pairplot(df)
df.corr()
###Output
_____no_output_____
###Markdown
* Qual é a informação que a tabela acima nos fornece? Divisão dos datasets
###Code
df.head()
###Output
_____no_output_____
###Markdown
* dividindo o dataset em 80% para treino e 20% para teste
###Code
# neste código você precisa informar o percentual de exemplos que serão utilizados no teste
percentual = #<PREENCHER>
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(df.iloc[:,1:6], df['preco'], test_size=percentual, random_state=4)
x_train.head()
###Output
_____no_output_____
###Markdown
Criação e avaliação do modelo preditivoCrie um modelo de regressão utilizando os algoritmos e transformações nos atributos que você considera mais adequados.Valide o modelo desenvolvido considerando os datasets X_test e y_test. Espera-se que o erro médio absoluto seja inferior a duzentos mil reais (R$ 200.000,00). Descreva nas células abaixo todas as etapas necessárias para o desenvolvimento e validação do modelo. Regressão Linear
###Code
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(x_train, y_train)
###Output
_____no_output_____
###Markdown
Validação do modelo no conjunto de treinamento
###Code
predicted = model.predict(x_train)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
rmse = mean_squared_error(y_train, predicted)
r2 = r2_score(y_train, predicted)
mae = mean_absolute_error(y_train, predicted)
print('rmse = %', rmse)
print('r2 = %', r2)
print('mae = %', mae)
###Output
rmse = % 150142973325.56418
r2 = % 0.8223876116718476
mae = % 265630.1450275685
###Markdown
* O erro médio absoluto está próximo do objetivo?
###Code
resultado = pd.DataFrame({'real': y_train, 'predicted': predicted, 'diff': (y_train - predicted)})
resultado = pd.concat([x_train, resultado], axis=1)
ax = resultado.plot(x='area', y='diff', kind='scatter')
ax.set_title('Análise dos erros')
###Output
_____no_output_____
###Markdown
* Qual é o significado do eixo Y deste gráfico? * Qual é o comportamento do erro no dataset de treinamento? Validação do modelo no conjunto de teste
###Code
predicted = model.predict(x_test)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
rmse = mean_squared_error(y_test, predicted)
r2 = r2_score(y_test, predicted)
mae = mean_absolute_error(y_test, predicted)
print('rmse = %', rmse)
print('r2 = %', r2)
print('mae = %', mae)
###Output
rmse = % 96552254398.05544
r2 = % 0.8343976815354153
mae = % 241653.09231124964
###Markdown
* O erro médio absoluto no conjunto de teste é similar ao erro médio absoluto no conjunto de treinamento?
###Code
resultado = pd.DataFrame({'real': y_test, 'predicted': predicted, 'diff': (y_test - predicted)})
resultado = pd.concat([x_test, resultado], axis=1)
ax = resultado.plot(x='area', y='diff', kind='scatter')
ax.set_title('Análise dos erros')
###Output
_____no_output_____
###Markdown
Regressão Linear com transformação polinomial **Testar com degree igual a 2, 3, 4 e 8. Analisar possível overfitting**
###Code
#Generate a new feature matrix consisting of all polynomial combinations
#of the features with degree less than or equal to the specified degree.
#For example, if an input sample is two dimensional and of the form [a, b],
#the degree-2 polynomial features are [1, a, b, a^2, ab, b^2].
grau='<PREENCHER>'
from sklearn.preprocessing import PolynomialFeatures
transformer = PolynomialFeatures(degree=grau, include_bias=False)
transformer.fit(x_train)
train_ = transformer.transform(x_train)
print(x_train.shape)
print(train_.shape)
###Output
(628, 5)
(628, 1286)
###Markdown
* Por que este dataset tem dimensões diferentes?
###Code
from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(train_, y_train)
###Output
_____no_output_____
###Markdown
Validação do modelo no conjunto de treinamento
###Code
predicted = model.predict(train_)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
rmse = mean_squared_error(y_train, predicted)
r2 = r2_score(y_train, predicted)
mae = mean_absolute_error(y_train, predicted)
print('rmse = %', rmse)
print('r2 = %', r2)
print('mae = %', mae)
resultado = pd.DataFrame({'real': y_train, 'predicted': predicted, 'diff': (y_train - predicted)})
resultado = pd.concat([x_train, resultado], axis=1)
ax = resultado.plot(x='area', y='diff', kind='scatter')
ax.set_title('Análise dos erros')
###Output
_____no_output_____
###Markdown
Validação do modelo no conjunto de teste * antes de usar a função predict, você precisa aplicar a mesma transformação feita sobre o dataset x_train no dataset x_test. Preste atenção que o nome da variável esperada é test_
###Code
transformer.fit(x_test)
test_ = transformer.transform(x_test)
predicted = model.predict(test_)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
rmse = mean_squared_error(y_test, predicted)
r2 = r2_score(y_test, predicted)
mae = mean_absolute_error(y_test, predicted)
print('rmse = %', rmse)
print('r2 = %', r2)
print('mae = %', mae)
###Output
rmse = % 41182864009546.375
r2 = % -69.63509602661267
mae = % 1135967.8869046264
###Markdown
* A diferença do erro do conjunto de treinamento com o conjunto de testes foi muito diferente? O que aconteceu?
###Code
resultado = pd.DataFrame({'real': y_test, 'predicted': predicted, 'diff': (y_test - predicted)})
resultado = pd.concat([x_test, resultado], axis=1)
ax = resultado.plot(x='area', y='diff', kind='scatter')
ax.set_title('Análise dos erros')
###Output
_____no_output_____
###Markdown
Random Forest sem modificação adicional de atributos e modificando apenas a quantidade de árvores
###Code
from sklearn.ensemble import RandomForestRegressor
results = pd.DataFrame(columns=['estimators','r2'])
for i in range(100, 5000, 100):
clf = RandomForestRegressor(n_estimators=i, max_depth=None, random_state=4, oob_score=True)
clf.fit(x_train, y_train)
results = results.append({'estimators':i, 'r2': clf.oob_score_}, ignore_index=True)
ax = results.plot(x='estimators', y='r2')
ax.set_title('Relação R2 com a quantidade de árvores utilizadas no modelo RandomForest')
###Output
_____no_output_____
###Markdown
* o modelo com 4900 árvores é o modelo com melhor $R^{2}$
###Code
clf = RandomForestRegressor(n_estimators=4900, max_depth=None, random_state=4, oob_score=True)
###Output
_____no_output_____
###Markdown
* crie o modelo usando a função fit é os datasets x_train e y_train
###Code
clf.fit(x_train, y_train)
###Output
_____no_output_____
###Markdown
* Nível de importância dos atributos para o modelo preditivo:
###Code
print(clf.oob_score_)
print(clf.feature_importances_)
print(x_train.columns)
###Output
0.8978754005039717
[0.33587576 0.18957595 0.01128215 0.01847831 0.44478783]
Index(['area', 'suites', 'dormitorios', 'banheiros', 'vagas'], dtype='object')
###Markdown
* Quais são os atributos que têm maior importância no modelo? Validação do modelo no conjunto de treinamento
###Code
predicted = clf.predict(x_train)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
rmse = mean_squared_error(y_train, predicted)
r2 = r2_score(y_train, predicted)
mae = mean_absolute_error(y_train, predicted)
print('rmse = %', rmse)
print('r2 = %', r2)
print('mae = %', mae)
resultado = pd.DataFrame({'real': y_train, 'predicted': predicted, 'diff': (y_train - predicted)})
resultado = pd.concat([x_train, resultado], axis=1)
ax = resultado.plot(x='area', y='diff', kind='scatter')
ax.set_title('Análise dos erros')
###Output
_____no_output_____
###Markdown
Validação do modelo no conjunto de teste * utilize a função predict para calcular os valores preditos considerando o dataset x_test
###Code
predicted = clf.predict(x_test)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
rmse = mean_squared_error(y_test, predicted)
r2 = r2_score(y_test, predicted)
mae = mean_absolute_error(y_test, predicted)
print('rmse = %', rmse)
print('r2 = %', r2)
print('mae = %', mae)
resultado = pd.DataFrame({'real': y_test, 'predicted': predicted, 'diff': (y_test - predicted)})
resultado = pd.concat([x_test, resultado], axis=1)
ax = resultado.plot(x='area', y='diff', kind='scatter')
ax.set_title('Análise dos erros')
###Output
_____no_output_____
###Markdown
Random Forest sem modificação adicional de atributos e com GridSearch
###Code
from sklearn.model_selection import GridSearchCV
param_grid = {
'n_estimators': [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000],
'max_features': ['sqrt', 'log2', 3, 4, 5],
'max_depth' : [2, 10, 20, 100, None]
}
rfc=RandomForestRegressor(random_state=4)
CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 3, verbose=1, n_jobs=-1)
CV_rfc.fit(x_train, y_train)
CV_rfc.best_params_
clf2 = RandomForestRegressor(n_estimators=1000, max_features = 'sqrt', max_depth=10, random_state=4, oob_score=True)
clf2.fit(x_train, y_train)
print(clf2.oob_score_)
print(clf2.feature_importances_)
print(x_train.columns)
###Output
0.9042640694388276
[0.33767208 0.21645386 0.02002816 0.08581751 0.34002839]
Index(['area', 'suites', 'dormitorios', 'banheiros', 'vagas'], dtype='object')
###Markdown
Validação do modelo no conjunto de treinamento
###Code
predicted = clf2.predict(x_train)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
rmse = mean_squared_error(y_train, predicted)
r2 = r2_score(y_train, predicted)
mae = mean_absolute_error(y_train, predicted)
print('rmse = %', rmse)
print('r2 = %', r2)
print('mae = %', mae)
resultado = pd.DataFrame({'real': y_train, 'predicted': predicted, 'diff': (y_train - predicted)})
resultado = pd.concat([x_train, resultado], axis=1)
ax = resultado.plot(x='area', y='diff', kind='scatter')
ax.set_title('Análise dos erros')
###Output
_____no_output_____
###Markdown
Validação do modelo no conjunto de teste
###Code
predicted = clf2.predict(x_test)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
rmse = mean_squared_error(y_test, predicted)
r2 = r2_score(y_test, predicted)
mae = mean_absolute_error(y_test, predicted)
print('rmse = %', rmse)
print('r2 = %', r2)
print('mae = %', mae)
resultado = pd.DataFrame({'real': y_test, 'predicted': predicted, 'diff': (y_test - predicted)})
resultado = pd.concat([x_test, resultado], axis=1)
ax = resultado.plot(x='area', y='diff', kind='scatter')
ax.set_title('Análise dos erros')
###Output
_____no_output_____
###Markdown
Random Forest com transformacao polinomial
###Code
from sklearn.preprocessing import PolynomialFeatures
transformer = PolynomialFeatures(degree=3, include_bias=False)
transformer.fit(x_train)
train_ = transformer.transform(x_train)
from sklearn.model_selection import GridSearchCV
param_grid = {
'n_estimators': [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000],
'max_features': ['sqrt', 'log2', 3, 4, 5, 6],
'max_depth' : [2, 10, 20, 100, None]
}
rfc=RandomForestRegressor(random_state=4)
CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 3, verbose=1, n_jobs=-1)
CV_rfc.fit(train_, y_train)
CV_rfc.best_params_
clf3 = RandomForestRegressor(n_estimators=100, max_features = 'sqrt', max_depth=20, random_state=4, oob_score=True)
clf3.fit(train_, y_train)
print(clf3.oob_score_)
###Output
0.895218562969256
###Markdown
Validação do modelo no dataset de treinamento
###Code
predicted = clf3.predict(train_)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
rmse = mean_squared_error(y_train, predicted)
r2 = r2_score(y_train, predicted)
mae = mean_absolute_error(y_train, predicted)
print('rmse = %', rmse)
print('r2 = %', r2)
print('mae = %', mae)
resultado = pd.DataFrame({'real': y_train, 'predicted': predicted, 'diff': (y_train - predicted)})
resultado = pd.concat([x_train, resultado], axis=1)
ax = resultado.plot(x='area', y='diff', kind='scatter')
ax.set_title('Análise dos erros')
###Output
_____no_output_____
###Markdown
Validação do modelo no conjunto de teste
###Code
transformer.fit(x_test)
test_ = transformer.transform(x_test)
predicted = clf3.predict(test_)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
rmse = mean_squared_error(y_test, predicted)
r2 = r2_score(y_test, predicted)
mae = mean_absolute_error(y_test, predicted)
print('rmse = %', rmse)
print('r2 = %', r2)
print('mae = %', mae)
resultado = pd.DataFrame({'real': y_test, 'predicted': predicted, 'diff': (y_test - predicted)})
resultado = pd.concat([x_test, resultado], axis=1)
ax = resultado.plot(x='area', y='diff', kind='scatter')
ax.set_title('Análise dos erros')
###Output
_____no_output_____
###Markdown
Analisando os dois imóveis com erros altos no conjunto de teste
###Code
temp = resultado[resultado['diff'] < -1000000]
temp
###Output
_____no_output_____ |
Notebooks/RepeticionTareas_Bucles.ipynb | ###Markdown
Repetición de tareas. Los buclesCon frecuencia es necesario repetir operaciones un número determinado de veces. Para eso en programaión se usan los bucles. En python se utilizan básicamente dos tipos de bucles: *for* y *while*. Bucles forSe utiliza el bucle for cuando sabemos de antemano cuántas veces hay que repetir un trozo de código.
###Code
for i in range(10):
x=i**3
print('Esta es la repetición nº', i, 'x=', x)
###Output
Esta es la repetición nº 0 x= 0
Esta es la repetición nº 1 x= 1
Esta es la repetición nº 2 x= 8
Esta es la repetición nº 3 x= 27
Esta es la repetición nº 4 x= 64
Esta es la repetición nº 5 x= 125
Esta es la repetición nº 6 x= 216
Esta es la repetición nº 7 x= 343
Esta es la repetición nº 8 x= 512
Esta es la repetición nº 9 x= 729
###Markdown
En la función *range()* podemos especificar de qué número a qué número queremos que vaya.
###Code
for i in range(12,23,3):
print('Esta es la repetición nº', i)
###Output
Esta es la repetición nº 12
Esta es la repetición nº 15
Esta es la repetición nº 18
Esta es la repetición nº 21
###Markdown
Podemos hacer iteraciones por los elementos de una lista teniendo en cuenta su posición en la lista.
###Code
nombres=['sujeto1', 'sujeto2', 'sujeto3', 'sujeto4', 'sujeto5', 'sujeto6', 'sujeto7']
len(nombres)
nombres=['sujeto1', 'sujeto2', 'sujeto3', 'sujeto4', 'sujeto5']
for i in range(len(nombres)):
print(nombres[i])
###Output
sujeto1
sujeto2
sujeto3
sujeto4
sujeto5
###Markdown
Pero también podemos hacer iteraciones directamente sobre los elementos de la lista.
###Code
nombres=['sujeto1', 'sujeto2', 'sujeto3', 'sujeto4', 'sujeto5']
for nom in nombres:
print(nom)
###Output
sujeto1
sujeto2
sujeto3
sujeto4
sujeto5
###Markdown
Por ejemplo, tenemos unos datos que corresponden a tiempos de vuelo y queremos calcular la altura en cada salto. Tenemos que repetir la misma ecuación en cada dato de la lista de tiempos de vuelo. Un bucle for nos simplifica la tarea.
###Code
tv=[0.476, 0.381, 0.534, 0.486, 0.397]
h=[]
hh=[]
g=9.8
for t in tv:
h1=g*t**2/8
h.append(h1) #añade a la lista h un nuevo valor, el resultado de la operación
hh.append(h[-1]*2)
print(h)
print(hh)
###Output
[0.2775556, 0.17782222500000003, 0.3493161000000001, 0.2893401, 0.19307102500000003]
[0.5551112, 0.35564445000000006, 0.6986322000000001, 0.5786802, 0.38614205000000007]
###Markdown
También se pueden anidar bucles for:
###Code
cols=3
filas=5
for h in range(cols):
for i in range(filas):
print('Columna ', h, ', fila ', i)
###Output
Columna 0 , fila 0
Columna 0 , fila 1
Columna 0 , fila 2
Columna 0 , fila 3
Columna 0 , fila 4
Columna 1 , fila 0
Columna 1 , fila 1
Columna 1 , fila 2
Columna 1 , fila 3
Columna 1 , fila 4
Columna 2 , fila 0
Columna 2 , fila 1
Columna 2 , fila 2
Columna 2 , fila 3
Columna 2 , fila 4
###Markdown
Se pueden juntar bucles con condicionales. En este ejemplo se crean números aleatorios entre 0 y 1. Se comprueba si cada número es mayor o menor que 0.5, y en función de eso se redondea a 0 o a 1.
###Code
import numpy as np
numTiradas=5
for i in range(numTiradas):
x=np.random.rand()
if x>=0.8:
resultado=1.0
elif x>=0.3 and x<0.8:
resultado=0.5
else:
resultado=0.0
print('Aleatorio= {:.3f}, redondeado= {:.0f}'.format(x, resultado)) #de esta forma podemos controlar el nº de decimales de la cadena de texto
###Output
Aleatorio= 0.619, redondeado= 0
Aleatorio= 0.760, redondeado= 0
Aleatorio= 0.700, redondeado= 0
Aleatorio= 0.751, redondeado= 0
Aleatorio= 0.821, redondeado= 1
###Markdown
Bucles WhileEl bucle while puede funcionar parecido al for, pero es más adecuado cuando no sabemos a priori cuántas veces hay que repetir un proceso.
###Code
maximo=input('Introduce un número del 1 al 10:')
maximo =int(maximo)
x=0
while x<maximo:
print(x)
x=x+1
###Output
Introduce un número del 1 al 10:6
0
1
2
3
4
5
###Markdown
Ejemplo conociendo de antemano un listado.Queremos que busque de principio a final de la lista y se pare cuando encuentre un nº 7 dentro del listado.
###Code
aleatorio=[3,5,6,5,4,7,6,8,7,6,5,6,7,9,2,3,2,6]
contador=0 #variable de ayuda para contar cuántas veces repite el bucle while
while aleatorio[contador]!=7:
print(aleatorio[contador])
contador+=1
print('He encontrado un 7 en la posición ', contador)
###Output
3
5
6
5
4
He encontrado un 7 en la posición 5
###Markdown
EJERCICIOIntenta hacer lo mismo que en el ejemplo anterior, pero creando números aleatorios entre 0 y 100 y que pare cuando el número sea **>90** SOLUCIÓN
###Code
import numpy as np
#ejemplo para crear un nº entero aleatorio entre o y 100
np.random.randint(0,100)
contador=0
x=np.random.randint(0,100) #ejemplo para crear un nº aleatorio entro 0 y 100
while x<=90:
print(x)
contador+=1
x=np.random.randint(0,100)
print('Ha encontrado un nº > 90 en el intento ', contador+1)
###Output
4
Ha encontrado un nº > 90 en el intento 2
###Markdown
EJERCICIOIntenta recrear los primeros números de la secuencia de Fibonacci. La secuencia empieza con los números 0 y 1, y después va añadiendo números sumando los dos anteriores: 0, 1, 1, 2, 3, 5, 8,...Primero hazlo con los 10 primeros números, después deja que sea el usuario el que introduza cuántos primeros números.Intenta después incluir en el bucle que calcule el número áureo, que resulta de dividir dos números consecutivos de la secuencia.
###Code
import numpy as np
#La secuencia empieza con estos dos números en la lista
secuencia=[0,1]
###Output
_____no_output_____
###Markdown
SOLUCIÓN
###Code
#SOLUCIÓN con bucle for
import numpy as np
secuencia=[0,1]
for i in range(10):
secuencia.append(secuencia[-2] + secuencia[-1])
print(secuencia)
#SOLUCIÓN con bucle for calculando nº áureo
import numpy as np
iteraciones=input('Introduce el número de iteraciones:')
iteraciones=int(iteraciones)
secuencia=[0,1]
numAureo=[]
for i in range(iteraciones-1):
secuencia.append(secuencia[-1]+secuencia[-2])
numAureo.append(secuencia[-1]/secuencia[-2])
print(secuencia)
print(u'Número áureo calculado:', numAureo[-1])
print(u'Número teórico (1+raiz5)/2:', (1+np.sqrt(5))/2)
#SOLUCIÓN con bucle while
import numpy as np
#La secuencia empieza con estos dos números en la lista
secuencia=[0,1]
iteraciones=10
numAureo=[]
while len(secuencia)<iteraciones:
secuencia.append(secuencia[-1]+secuencia[-2])
numAureo.append(secuencia[-1]/secuencia[-2])
print(secuencia)
print(u'Número áureo calculado:', numAureo[-1])
print(u'Número teórico (1+raiz5)/2:', (1+np.sqrt(5))/2)
###Output
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
Número áureo calculado: 1.619047619047619
Número teórico (1+raiz5)/2: 1.618033988749895
###Markdown
Para detener los bucles en cualquier momentoDentro de los bucles *for*, en cualquier momento se puede terminar el bucle y salirse de él completamente (con la instrucción *break*) o pasar a la siguiente iteración (*continue*) sin salirse del bucle.
###Code
import numpy as np
for i in range(30):
x=np.random.rand() #crea un nº aleatorio de 0 a 1
if x>0.9:
print('Encontrado un > 0.9 ',x,'al intento nº', i+1)
break #probar quitar el break
print('Nº de iteraciones totales hechas: ', i+1)
###Output
Encontrado un > 0.9 0.9858699295178558 al intento nº 2
Nº de iteraciones totales hechas: 2
###Markdown
EJERCICIOBusca una letra concreta en las palabras de un texto. Con que esté una vez en una palabra ya la cuenta:Que guarde en una variable las palabras que tienen la 'a' y otra que las cuente.
###Code
texto='En un lugar de la Mancha de cuyo nombre no quiero acordarme ...'
texto=texto.split() #esto descompone el texto en palabras
print(texto)
aciertos=0
palabras_con_a=[]
###Output
['En', 'un', 'lugar', 'de', 'la', 'Mancha', 'de', 'cuyo', 'nombre', 'no', 'quiero', 'acordarme', '...']
###Markdown
SOLUCIÓN
###Code
texto='En un lugar de la Mancha de cuyo nombre no quiero acordarme ...'
texto=texto.split() #esto descompone el texto en palabras
print(texto)
aciertos=0
palabras_con_a=[]
for palabra in texto:
if 'a' in palabra:
aciertos+=1
palabras_con_a.append(palabra)
continue#con break se saldría al encontrar la primera palabra con 'a'
print('Hay', aciertos, 'palabras que contienen la letra a')
print('Las palabras con a son:', palabras_con_a)
###Output
['En', 'un', 'lugar', 'de', 'la', 'Mancha', 'de', 'cuyo', 'nombre', 'no', 'quiero', 'acordarme', '...']
Hay 4 palabras que contienen la letra a
Las palabras con a son: ['lugar', 'la', 'Mancha', 'acordarme']
###Markdown
EJERCICIOTenemos unos datos de índice de masa corporal (BMI) y queremos que automáticamente decida la categoría en la que se encuentra. Hay que unir bucles y condicionales.Asumimos que bajo peso es un BMI 30
###Code
resultsBMI=[16.4, 25.3, 54.8, 29.5, 19.7, 23.6, 31.6, 18.1]
nBajoPeso=0 #guardan cuántos ha encontrado de cada categoría
nNormal=0
nObeso=0
###Output
_____no_output_____
###Markdown
SOLUCIÓN
###Code
resultsBMI=[16.4, 25.3, 54.8, 29.5, 19.7, 23.6, 31.6, 18.1, 24.5, 12.5, 36,2]
nBajoPeso=0 #guardan cuántos ha encontrado de cada categoría
nNormal=0
nObeso=0
for bmi in resultsBMI:
if bmi<18.5:
nBajoPeso+=1
elif bmi>=30:
nObeso+=1
else:
nNormal+=1
print('Bajo peso=',nBajoPeso,
'Normal=', nNormal,
'Obeso=', nObeso)
###Output
Bajo peso= 4 Normal= 5 Obeso= 3
###Markdown
EJERCICIOVamos a crear unos datos de altura en una población. Queremos sacar muestras aleatorias de esa población y comprobar cuánto se aleja la media de las muestras de la media de la población.
###Code
import numpy as np
import matplotlib.pyplot as plt
#Crea una población
np.random.seed(10) #fija la aleatoriedad por reproducibilidad, para que nos salgan a todos los mismos datos
altura_poblacion = np.random.normal(170, 20, 150000)
plt.hist(altura_poblacion)
n=10
diferencia=[]
#crea una muestra aleatoria de n sujetos cogidos de la población
altura_muestra = np.random.choice(a= altura_poblacion, size=n)
###Output
_____no_output_____
###Markdown
SOLUCIÓN
###Code
import numpy as np
import matplotlib.pyplot as plt
#Crea una población
np.random.seed(10) #fija la aleatoriedad por reproducibilidad
altura_poblacion = np.random.normal(170, 20, 150000)
n=15 #nº de sujetos por muestra
n_muestras = 5 #probaremos con este nº de muestras
diferencia=[]
#crea una muestra aleatoria de n suJetos
altura_muestra = np.random.choice(a= altura_poblacion, size=n)
for i in range(n_muestras):
altura_muestra = np.random.choice(a= altura_poblacion, size=n)
#Presenta el histograma de la población
plt.hist(altura_poblacion, color='b')
plt.show()
#Presenta el histograma de la muestra
plt.hist(altura_muestra, color='r')
plt.show()
diferencia.append(altura_poblacion.mean()-altura_muestra.mean())
print('Media población= ', altura_poblacion.mean())
print('Media muestra=', altura_muestra.mean())
print('Diferencia medias=', altura_poblacion.mean()-altura_muestra.mean())
print('Todas las diferencias:',diferencia)
###Output
_____no_output_____ |
notebooks/2.1.1-acmiyaguchi-graph-blocking.ipynb | ###Markdown
Spark Preprocessing
###Code
from src.data.snap_import_user_projection import UnimodalUserProjection
from pyspark.sql import SparkSession, functions as F
spark = SparkSession.builder.getOrCreate()
input_path = "data/processed/enwiki-meta-compact"
model = UnimodalUserProjection(spark).extract(input_path).transform()
spark.table("bipartite").cache()
spark.table("bipartite").count()
contribution_df = spark.sql("""
select *, n_users*(n_users-1)/2 as clique_edges
from (
select
article_id,
edit_date,
approx_count_distinct(user_id) as n_users
from bipartite
group by 1, 2
order by 3 desc
)
""")
contribution_df.cache()
# number of article-block
contribution_df.count()
(
contribution_df
.groupBy("n_users")
.agg(F.expr("count(distinct article_id, edit_date) as n_cliques"))
.orderBy(F.desc("n_users"))
).show()
contribution_df.selectExpr("sum(clique_edges)").show()
(
contribution_df
.selectExpr(
"min(n_users)",
"max(n_users)",
"percentile(n_users, 0.25)",
"percentile(n_users, 0.5)",
"percentile(n_users, 0.9)",
"percentile(n_users, 0.99)",
"percentile(n_users, 0.999)",
"percentile(n_users, 0.9999)",
"percentile(n_users, 0.99999)",
"percentile(n_users, 0.999999)",
)
).show(truncate=False, vertical=True)
(
contribution_df
.selectExpr(
"min(clique_edges)",
"max(clique_edges)",
"percentile(clique_edges, 0.25)",
"percentile(clique_edges, 0.5)",
"percentile(clique_edges, 0.75)",
"percentile(clique_edges, 0.9)",
"percentile(clique_edges, 0.99)",
"percentile(clique_edges, 0.999)",
"percentile(clique_edges, 0.9999)",
"percentile(clique_edges, 0.99999)",
"percentile(clique_edges, 0.999999)",
)
).show(truncate=False, vertical=True)
# based on the degree distribution, how
contribution_df.where("clique_edges <= 6").selectExpr("sum(clique_edges)").show()
(10e6 * 12) / 1e9 # GB of edge space
items = (
contribution_df
.groupBy("n_users")
.agg(F.expr("count(distinct article_id, edit_date) as n_cliques"))
).collect()
import matplotlib.pyplot as plt
import numpy as np
n_users, n_cliques = zip(*[(r.n_users, r.n_cliques) for r in items])
plt.scatter(n_users, n_cliques)
plt.xscale('log')
plt.yscale('log')
plt.xlabel("cliques of size k")
plt.ylabel("number of cliques")
plt.show()
contribution_df.groupby().agg(F.expr('sum(n_users)')).show()
import pandas as pd
from scipy.stats import powerlaw
import pyspark.sql.types as T
schema = T.StructType([
T.StructField("a", T.DoubleType(), False),
T.StructField("loc", T.DoubleType(), False),
T.StructField("scale", T.DoubleType(), False),
])
@F.pandas_udf(schema, F.PandasUDFType.GROUPED_MAP)
def powerlaw_fit(df):
a, loc, scale = powerlaw.fit(df.n_users)
return pd.DataFrame([(a, loc, scale)], columns=schema.names)
(
contribution_df
.select("n_users")
.sample(0.1)
.groupby()
.apply(powerlaw_fit)
.show()
)
plt.scatter(n_users, n_cliques)
plt.xscale('log')
plt.yscale('log')
plt.xlabel("cliques of size k")
plt.ylabel("number of cliques")
plt.show()
###Output
_____no_output_____
###Markdown
Testing the structure of the blocking method
###Code
spark.table("bipartite").printSchema()
user_stats = spark.sql("""
select
user_id,
approx_count_distinct(article_id) as n_articles,
approx_count_distinct(edit_date) as n_edits,
sum(word_count) as contribution
from bipartite
group by 1
""")
data = user_stats.collect()
import numpy as np
import matplotlib.pyplot as plt
x, y, z = map(np.array, zip(*(
(r.contribution, r.n_articles, r.n_edits) for r in data
if r.contribution and r.n_articles and r.n_edits
)))
from scipy.stats import linregress
xx, yy, zz = map(np.log, [x+1, y+1, z+1])
m, b, r, _, _ = linregress(xx, yy)
print(r**2)
plt.hexbin(xx, yy, gridsize=50, bins='log', cmap='jet')
ax = plt.gca()
ax.set_autoscale_on(False)
x_vals = np.linspace(1, max(xx))
plt.plot(x_vals, x_vals*m+b, 'r')
plt.title("number of distinct articles vs contribution")
plt.xlabel("log of distinct articles")
plt.ylabel("contribution (log sum of log textdata)")
plt.show()
m, b, r, _, _ = linregress(xx, zz)
print(r**2)
plt.hexbin(xx, zz, gridsize=50, bins='log', cmap='jet')
ax = plt.gca()
ax.set_autoscale_on(False)
x_vals = np.linspace(1, max(xx))
plt.plot(x_vals, x_vals*m+b, 'r')
plt.title("number of distinct articles vs contribution")
plt.xlabel("log of distinct articles")
plt.ylabel("contribution (log sum of log textdata)")
plt.show()
###Output
0.7623663138446564
###Markdown
Statistics on the projection
###Code
admins_df = spark.read.csv("data/processed/admins.csv").toDF("username")
admins_df.createOrReplaceTempView("admins")
spark.sql("select count(*) from admins").show()
spark.sql("select * from projection limit 10").show()
spark.table("projection").cache()
spark.table("projection").count()
spark.table("projection").printSchema()
spark.sql(
"""
select count(distinct user_id)
from (
select distinct e1 as user_id from projection
union
select distinct e2 as user_id from projection
)
"""
).show()
user_degrees = spark.sql(
"""
select
e1 as user_id,
count(distinct e2) as degree
from (
select e1, e2 from projection
union
select e2 as e1, e1 as e2 from projection
)
group by 1
"""
)
user_degrees.cache()
user_degrees.count()
x, y = zip(*[(r.degree, r.n_users) for r in
(
user_degrees
.groupby("degree")
.agg(F.expr("count(distinct user_id) as n_users"))
.collect()
)])
plt.scatter(x,y)
plt.xscale("log")
plt.yscale("log")
plt.show()
mapping = spark.sql("""
with ids as (
select distinct user_id, username
from enwiki
)
select ids.user_id, ids.username
from ids
inner join admins on ids.username = admins.username
""")
mapping.cache()
mapping.count()
import shutil
import glob
name = "admin_mapping"
interim_path = "data/interim/{}".format(name)
mapping.repartition(1).write.csv(interim_path, mode="overwrite")
interim_file = glob.glob("{}/*.csv".format(interim_path))[0]
processed_file = "data/processed/{}.csv".format(name)
shutil.copy(interim_file, processed_file)
shutil.rmtree(interim_path)
(
user_degrees
.join(mapping, on="user_id", how="inner")
.selectExpr(
"avg(degree) as avg_deg",
"stddev_pop(degree) as stddev_deg",
"percentile(degree, 0.5) as median",
"count(*) as n_samples"
)
.withColumn("error_bound", F.expr("stddev_deg*1.96/sqrt(n_samples)"))
).show(vertical=True)
(
user_degrees
.sample(0.1)
.selectExpr(
"avg(degree) as avg_deg",
"stddev_pop(degree) as stddev_deg",
"percentile(degree, 0.5) as median",
"count(*) as n_samples"
)
.withColumn("error_bound", F.expr("stddev_deg*1.96/sqrt(n_samples)"))
).show(vertical=True)
x_deg, y_contrib = zip(*[(r.degree, r.contribution) for r in
user_stats.join(user_degrees, on="user_id", how="inner").collect()])
x_deg, y_contrib = map(np.array, [x_deg, y_contrib])
m, b, r, p, _ = linregress(x_deg, y_contrib)
print(r**2)
plt.hexbin(x_deg+1, y_contrib+1, gridsize=50, bins='log', cmap='jet', xscale='log', yscale='log')
plt.xlabel("degree of user")
plt.ylabel("contribution (sum(log(textdata))")
plt.title("degree vs contribution")
ax = plt.gca()
ax.set_autoscale_on(False)
x_vals = np.linspace(0, max(x_deg))
plt.plot(x_vals, x_vals*m+b, 'r')
plt.show()
! ls data/processed
###Output
2007-1-enwiki-projection-user-dev.csv all_article_features.csv
2007-1-enwiki-projection-user-roles.csv all_user_features.csv
2007-1-enwiki-projection-user.csv base_features_reg.csv
2007Q1-user-network-v1.csv community_norm_features.csv
2007Q1-user-network-v2.csv [1m[36menwiki-meta-compact[m[m
2007Q1-user-roles-v2.txt enwiki-projection-user-dev.csv
admins.csv kcore-2007-1.csv
|
.ipynb_checkpoints/Phosphorylation Sequence Tests -MLP -dbptm+ELM-filterBenchmark-checkpoint.ipynb | ###Markdown
Template for test
###Code
from pred import Predictor
from pred import sequence_vector
from pred import chemical_vector
###Output
/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
"This module will be removed in 0.20.", DeprecationWarning)
###Markdown
Controlling for Random Negatve vs Sans Random in Imbalanced Techniques using S, T, and Y Phosphorylation.Included is N Phosphorylation however no benchmarks are available, yet. Training data is from phospho.elm and benchmarks are from dbptm.
###Code
par = ["pass", "ADASYN", "SMOTEENN", "random_under_sample", "ncl", "near_miss"]
for i in par:
print("y", i)
y = Predictor()
y.load_data(file="Data/Training/clean_s_filtered.csv")
y.process_data(vector_function="sequence", amino_acid="S", imbalance_function=i)
y.supervised_training("mlp_adam")
y.benchmark("Data/Benchmarks/phos.csv", "S")
del y
print("x", i)
x = Predictor()
x.load_data(file="Data/Training/clean_s_filtered.csv")
x.process_data(vector_function="sequence", amino_acid="S", imbalance_function=i, random_data="Data/Benchmarks/phos.csv")
x.supervised_training("mlp_adam")
x.benchmark("Data/Benchmarks/phos.csv", "S")
del x
###Output
y pass
Loading Data
Loaded Data
Working on Data
Finished working with Data
Training Data Points: 200363
Test Data Points: 50091
Starting Training
Done training
Test Results
Sensitivity: 0.9317468902109248
Specificity : 0.9979434950790775
Accuracy: 0.9857259787187319
ROC 0.964845192645
TP 8614 FP 84 TN 40762 FN 631
None
Cross: Validation: [ 0.9849477 0.985167 0.98564612 0.98560591 0.98612498]
Number of data points in benchmark 65895
Benchmark Results
Failed
TP 0 FP 0 TN 62517 FN 3378
None
x pass
Loading Data
Loaded Data
Working on Data
Finished working with Data
Random Sequences Generated 250454
Filtering Random Data
Random Data Added: 250454
Finished with Random Data
Training Data Points: 450817
Test Data Points: 50091
Starting Training
Done training
Test Results
Sensitivity: 0.9301850258175559
Specificity : 0.998038975364628
Accuracy: 0.9854464873929448
ROC 0.964112000591
TP 8647 FP 80 TN 40715 FN 649
None
Cross: Validation: [ 0.98470814 0.98550638 0.98590565 0.98582551 0.98608505]
Number of data points in benchmark 65895
Benchmark Results
Failed
TP 0 FP 0 TN 62517 FN 3378
None
y ADASYN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 325126
Test Data Points: 81282
Starting Training
Done training
Test Results
Sensitivity: 0.919632918594009
Specificity : 0.9874923509974299
Accuracy: 0.9537412957358332
ROC 0.953562634796
TP 37178 FP 511 TN 40344 FN 3249
None
Cross: Validation: [ 0.96086513 0.94573214 0.94356615 0.94237276 0.93972761]
Number of data points in benchmark 65895
Benchmark Results
Sensitivity: 0.015097690941385435
Specificity : 0.9897627845226098
Accuracy: 0.9397981637453524
ROC 0.502430237732
TP 51 FP 640 TN 61877 FN 3327
None
x ADASYN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 250454
Filtering Random Data
Random Data Added: 250454
Finished with Random Data
Training Data Points: 575580
Test Data Points: 81282
Starting Training
Done training
Test Results
Sensitivity: 0.9141626652145933
Specificity : 0.9909491193737769
Accuracy: 0.9527816736792893
ROC 0.952555892294
TP 36934 FP 370 TN 40510 FN 3468
None
Cross: Validation: [ 0.95908123 0.93987599 0.94055191 0.93956767 0.94566996]
Number of data points in benchmark 65895
Benchmark Results
Sensitivity: 0.003256364712847839
Specificity : 0.9958891181598605
Accuracy: 0.945003414523105
ROC 0.499572741436
TP 11 FP 257 TN 62260 FN 3367
None
y SMOTEENN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 323685
Test Data Points: 80922
Starting Training
Done training
Test Results
Sensitivity: 0.940358598614619
Specificity : 0.9964576258764323
Accuracy: 0.9687353253750525
ROC 0.968408112246
TP 37604 FP 145 TN 40788 FN 2385
None
Cross: Validation: [ 0.97055225 0.96788226 0.96914274 0.96765982 0.9685125 ]
Number of data points in benchmark 65895
Benchmark Results
Sensitivity: 0.011841326228537596
Specificity : 0.9970887918486172
Accuracy: 0.9465816829804993
ROC 0.504465059039
TP 40 FP 182 TN 62335 FN 3338
None
x SMOTEENN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 250454
Filtering Random Data
Random Data Added: 250454
Finished with Random Data
Training Data Points: 547928
Test Data Points: 74369
Starting Training
Done training
Test Results
Sensitivity: 0.9402696552230406
Specificity : 0.9917019879410185
Accuracy: 0.9634390673533327
ROC 0.965985821582
TP 38426 FP 278 TN 33224 FN 2441
None
Cross: Validation: [ 0.95721393 0.96407105 0.96452775 0.9663296 0.96507907]
Number of data points in benchmark 65895
Benchmark Results
Sensitivity: 0.02605091770278271
Specificity : 0.988707071676504
Accuracy: 0.9393580696562713
ROC 0.50737899469
TP 88 FP 706 TN 61811 FN 3290
None
y random_under_sample
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 73804
Test Data Points: 18452
Starting Training
Done training
Test Results
Sensitivity: 0.9289687633718442
Specificity : 0.9947275922671354
Accuracy: 0.9614133969217429
ROC 0.961848177819
TP 8684 FP 48 TN 9056 FN 664
None
Cross: Validation: [ 0.96412313 0.96347279 0.96184695 0.96303523 0.96097561]
Number of data points in benchmark 65895
Benchmark Results
Sensitivity: 0.012729425695677915
Specificity : 0.998448422029208
Accuracy: 0.9479171409059868
ROC 0.505588923862
TP 43 FP 97 TN 62420 FN 3335
None
x random_under_sample
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 250454
Filtering Random Data
Random Data Added: 250454
Finished with Random Data
Training Data Points: 324258
Test Data Points: 18452
Starting Training
Done training
Test Results
Sensitivity: 0.9320710312366282
Specificity : 0.9958260105448155
Accuracy: 0.9635269889442879
ROC 0.963948520891
TP 8713 FP 38 TN 9066 FN 635
None
Cross: Validation: [ 0.96190115 0.96396055 0.96352699 0.96314363 0.96298103]
Number of data points in benchmark 65895
Benchmark Results
Sensitivity: 0.0002960331557134399
Specificity : 0.9999840043508166
Accuracy: 0.9487366264511723
ROC 0.500140018753
TP 1 FP 1 TN 62516 FN 3377
None
y ncl
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 187411
Test Data Points: 46853
Starting Training
Done training
Test Results
Sensitivity: 0.9313493768801031
Specificity : 0.9993074976694634
Accuracy: 0.9858066719313597
ROC 0.965328437275
TP 8669 FP 26 TN 37519 FN 639
None
Cross: Validation: [ 0.9849746 0.98608414 0.98638294 0.98595578 0.9855289 ]
Number of data points in benchmark 65895
Benchmark Results
Failed
TP 0 FP 0 TN 62517 FN 3378
None
x ncl
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 250454
Filtering Random Data
Random Data Added: 250454
Finished with Random Data
Training Data Points: 437922
Test Data Points: 46867
Starting Training
Done training
Test Results
Sensitivity: 0.9298302170642596
Specificity : 0.9991746758606
Accuracy: 0.9854055092069046
ROC 0.964502446462
TP 8653 FP 31 TN 37530 FN 653
None
Cross: Validation: [ 0.98598191 0.98632329 0.98455203 0.9854052 0.98610933]
Number of data points in benchmark 65895
Benchmark Results
Failed
TP 0 FP 1 TN 62516 FN 3378
None
y near_miss
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 73804
Test Data Points: 18452
Starting Training
Done training
Test Results
Sensitivity: 0.9519683354728284
Specificity : 0.983853251318102
Accuracy: 0.9676999783221331
ROC 0.967910793395
TP 8899 FP 147 TN 8957 FN 449
None
Cross: Validation: [ 0.96303924 0.96818773 0.96325602 0.96195122 0.90612466]
Number of data points in benchmark 65895
Benchmark Results
Sensitivity: 0.3019538188277087
Specificity : 0.6897643840875282
Accuracy: 0.6698839062144321
ROC 0.495859101458
TP 1020 FP 19395 TN 43122 FN 2358
None
x near_miss
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 250454
Filtering Random Data
Random Data Added: 250454
Finished with Random Data
Training Data Points: 324258
Test Data Points: 18452
Starting Training
Done training
Test Results
Sensitivity: 0.9542148053059478
Specificity : 0.9860500878734623
Accuracy: 0.9699219596791676
ROC 0.97013244659
TP 8920 FP 127 TN 8977 FN 428
None
Cross: Validation: [ 0.96704964 0.96883807 0.97214394 0.9500271 0.9501355 ]
Number of data points in benchmark 65895
Benchmark Results
Sensitivity: 0.27767910005920665
Specificity : 0.6791912599772861
Accuracy: 0.658608392139009
ROC 0.478435180018
TP 938 FP 20056 TN 42461 FN 2440
None
###Markdown
Y Phosphorylation
###Code
par = ["pass", "ADASYN", "SMOTEENN", "random_under_sample", "ncl", "near_miss"]
for i in par:
print("y", i)
y = Predictor()
y.load_data(file="Data/Training/clean_Y_filtered.csv")
y.process_data(vector_function="sequence", amino_acid="Y", imbalance_function=i)
y.supervised_training("mlp_adam")
y.benchmark("Data/Benchmarks/phos.csv", "Y")
del y
print("x", i)
x = Predictor()
x.load_data(file="Data/Training/clean_Y_filtered.csv")
x.process_data(vector_function="sequence", amino_acid="Y", imbalance_function=i, random_data="Data/Benchmarks/phos.csv")
x.supervised_training("mlp_adam")
x.benchmark("Data/Benchmarks/phos.csv", "Y")
del x
###Output
y pass
Loading Data
Loaded Data
Working on Data
Finished working with Data
Training Data Points: 10099
Test Data Points: 2525
Starting Training
Done training
Test Results
Sensitivity: 0.06542056074766354
Specificity : 0.9884201819685691
Accuracy: 0.9493069306930693
ROC 0.526920371358
TP 7 FP 28 TN 2390 FN 100
None
Cross: Validation: [ 0.95091053 0.95247525 0.95207921 0.95245642 0.95126783]
Number of data points in benchmark 23555
Benchmark Results
Failed
TP 0 FP 242 TN 23272 FN 41
None
x pass
Loading Data
Loaded Data
Working on Data
Finished working with Data
Random Sequences Generated 12624
Filtering Random Data
Random Data Added: 12624
Finished with Random Data
Training Data Points: 22723
Test Data Points: 2525
Starting Training
Done training
Test Results
Sensitivity: 0.050505050505050504
Specificity : 0.9954657873042044
Accuracy: 0.9584158415841584
ROC 0.522985418905
TP 5 FP 11 TN 2415 FN 94
None
Cross: Validation: [ 0.95130641 0.95287129 0.95128713 0.95285261 0.95047544]
Number of data points in benchmark 23555
Benchmark Results
Failed
TP 0 FP 120 TN 23394 FN 41
None
y ADASYN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 19375
Test Data Points: 4844
Starting Training
Done training
Test Results
Sensitivity: 0.908256880733945
Specificity : 0.8462796402289452
Accuracy: 0.8769611890999174
ROC 0.877268260481
TP 2178 FP 376 TN 2070 FN 220
None
Cross: Validation: [ 0.6873065 0.76899257 0.72440132 0.70803221 0.72785464]
Number of data points in benchmark 23555
Benchmark Results
Sensitivity: 1.0
Specificity : 0.8665475886705792
Accuracy: 0.8667798768838888
ROC 0.933273794335
TP 41 FP 3138 TN 20376 FN 0
None
x ADASYN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 12624
Filtering Random Data
Random Data Added: 12624
Finished with Random Data
Training Data Points: 31999
Test Data Points: 4844
Starting Training
Done training
Test Results
Sensitivity: 0.8381551362683438
Specificity : 0.8910126067507117
Accuracy: 0.8649876135425268
ROC 0.86458387151
TP 1999 FP 268 TN 2191 FN 386
None
Cross: Validation: [ 0.75417957 0.75165153 0.71738233 0.75180673 0.68573198]
Number of data points in benchmark 23555
Benchmark Results
Failed
TP 0 FP 2446 TN 21068 FN 41
None
y SMOTEENN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 19248
Test Data Points: 4812
Starting Training
Done training
Test Results
Sensitivity: 0.9393305439330544
Specificity : 0.7877786952931461
Accuracy: 0.8630507065669161
ROC 0.863554619613
TP 2245 FP 514 TN 1908 FN 145
None
Cross: Validation: [ 0.84957407 0.9017245 0.88528678 0.88380794 0.8989815 ]
Number of data points in benchmark 23555
Benchmark Results
Failed
TP 0 FP 4040 TN 19474 FN 41
None
x SMOTEENN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 12624
Filtering Random Data
Random Data Added: 12624
Finished with Random Data
Training Data Points: 31872
Test Data Points: 4813
Starting Training
Done training
Test Results
Sensitivity: 0.8748957464553795
Specificity : 0.8877846790890269
Accuracy: 0.8813629752752961
ROC 0.881340212772
TP 2098 FP 271 TN 2144 FN 300
None
Cross: Validation: [ 0.85476834 0.86328693 0.89632246 0.88921222 0.89690293]
Number of data points in benchmark 23555
Benchmark Results
Sensitivity: 0.975609756097561
Specificity : 0.9151994556434464
Accuracy: 0.9153046062407132
ROC 0.945404605871
TP 40 FP 1994 TN 21520 FN 1
None
y random_under_sample
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 945
Test Data Points: 237
Starting Training
Done training
Test Results
Sensitivity: 0.559322033898305
Specificity : 0.5210084033613446
Accuracy: 0.540084388185654
ROC 0.54016521863
TP 66 FP 57 TN 62 FN 52
None
Cross: Validation: [ 0.57563025 0.58898305 0.48728814 0.5720339 0.58474576]
Number of data points in benchmark 23555
Benchmark Results
Sensitivity: 0.975609756097561
Specificity : 0.5510759547503615
Accuracy: 0.5518149012948419
ROC 0.763342855424
TP 40 FP 10556 TN 12958 FN 1
None
x random_under_sample
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 12624
Filtering Random Data
Random Data Added: 12624
Finished with Random Data
Training Data Points: 13569
Test Data Points: 237
Starting Training
Done training
Test Results
Sensitivity: 0.5
Specificity : 0.5126050420168067
Accuracy: 0.5063291139240507
ROC 0.506302521008
TP 59 FP 58 TN 61 FN 59
None
Cross: Validation: [ 0.57563025 0.58474576 0.52118644 0.53389831 0.58474576]
Number of data points in benchmark 23555
Benchmark Results
Sensitivity: 1.0
Specificity : 0.5826316237135324
Accuracy: 0.5833580980683507
ROC 0.791315811857
TP 41 FP 9814 TN 13700 FN 0
None
y ncl
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 9229
Test Data Points: 2308
Starting Training
Done training
Test Results
Sensitivity: 0.02608695652173913
Specificity : 0.9981760145918832
Accuracy: 0.949740034662045
ROC 0.512131485557
TP 3 FP 4 TN 2189 FN 112
None
Cross: Validation: [ 0.9462971 0.94971825 0.94928479 0.94885132 0.94928479]
Number of data points in benchmark 23555
Benchmark Results
Failed
TP 0 FP 0 TN 23514 FN 41
None
x ncl
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 12624
Filtering Random Data
Random Data Added: 12624
Finished with Random Data
Training Data Points: 21854
Test Data Points: 2308
Starting Training
Done training
Test Results
Sensitivity: 0.008695652173913044
Specificity : 0.9977200182398541
Accuracy: 0.9484402079722704
ROC 0.503207835207
TP 1 FP 5 TN 2188 FN 114
None
Cross: Validation: [ 0.94759636 0.94757366 0.94841786 0.94928479 0.95058518]
Number of data points in benchmark 23555
Benchmark Results
Failed
TP 0 FP 40 TN 23474 FN 41
None
y near_miss
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 945
Test Data Points: 237
Starting Training
Done training
Test Results
Sensitivity: 0.7627118644067796
Specificity : 0.5462184873949579
Accuracy: 0.6540084388185654
ROC 0.654465175901
TP 90 FP 54 TN 65 FN 28
None
Cross: Validation: [ 0.68067227 0.66949153 0.69915254 0.6440678 0.58898305]
Number of data points in benchmark 23555
Benchmark Results
Sensitivity: 0.975609756097561
Specificity : 0.41685804201752147
Accuracy: 0.41783060921248144
ROC 0.696233899058
TP 40 FP 13712 TN 9802 FN 1
None
x near_miss
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 12624
Filtering Random Data
Random Data Added: 12624
Finished with Random Data
Training Data Points: 13569
Test Data Points: 237
Starting Training
Done training
Test Results
Sensitivity: 0.7288135593220338
Specificity : 0.7142857142857143
Accuracy: 0.7215189873417721
ROC 0.721549636804
TP 86 FP 34 TN 85 FN 32
None
Cross: Validation: [ 0.62184874 0.65677966 0.71610169 0.63983051 0.62288136]
Number of data points in benchmark 23555
Benchmark Results
Sensitivity: 1.0
Specificity : 0.35697882112783874
Accuracy: 0.35809806835066865
ROC 0.678489410564
TP 41 FP 15120 TN 8394 FN 0
None
###Markdown
T Phosphorylation
###Code
par = ["pass", "ADASYN", "SMOTEENN", "random_under_sample", "ncl", "near_miss"]
for i in par:
print("y", i)
y = Predictor()
y.load_data(file="Data/Training/clean_t_filtered.csv")
y.process_data(vector_function="sequence", amino_acid="T", imbalance_function=i)
y.supervised_training("mlp_adam")
y.benchmark("Data/Benchmarks/phos.csv", "T")
del y
print("x", i)
x = Predictor()
x.load_data(file="Data/Training/clean_t_filtered.csv")
x.process_data(vector_function="sequence", amino_acid="T", imbalance_function=i, random_data="Data/Benchmarks/phos.csv")
x.supervised_training("mlp_adam")
x.benchmark("Data/Benchmarks/phos.csv", "T")
del x
###Output
y pass
Loading Data
Loaded Data
Working on Data
Finished working with Data
Training Data Points: 66323
Test Data Points: 16581
Starting Training
Done training
Test Results
Sensitivity: 0.8927526811829705
Specificity : 0.9969638625592417
Accuracy: 0.9776249924612508
ROC 0.944858271871
TP 2747 FP 41 TN 13463 FN 330
None
Cross: Validation: [ 0.98015921 0.98015921 0.98100121 0.98148372 0.98082027]
Number of data points in benchmark 47730
Benchmark Results
Sensitivity: 0.0008110300081103001
Specificity : 0.999010688861647
Accuracy: 0.9732243871778755
ROC 0.499910859435
TP 1 FP 46 TN 46451 FN 1232
None
x pass
Loading Data
Loaded Data
Working on Data
Finished working with Data
Random Sequences Generated 82904
Filtering Random Data
Random Data Added: 82904
Finished with Random Data
Training Data Points: 149227
Test Data Points: 16581
Starting Training
Done training
Test Results
Sensitivity: 0.8998022412656559
Specificity : 0.9990403779434561
Accuracy: 0.9808817321030094
ROC 0.949421309605
TP 2730 FP 13 TN 13534 FN 304
None
Cross: Validation: [ 0.98160656 0.9800386 0.98262967 0.98027744 0.97925211]
Number of data points in benchmark 47730
Benchmark Results
Failed
TP 0 FP 0 TN 46497 FN 1233
None
y ADASYN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 109538
Test Data Points: 27385
Starting Training
Done training
Test Results
Sensitivity: 0.8497222422624631
Specificity : 0.9096421177166519
Accuracy: 0.8793134927880226
ROC 0.87968217999
TP 11778 FP 1222 TN 12302 FN 2083
None
Cross: Validation: [ 0.92561893 0.85320431 0.85706982 0.85246859 0.84388694]
Number of data points in benchmark 47730
Benchmark Results
Sensitivity: 0.3122465531224655
Specificity : 0.9292857603716369
Accuracy: 0.9133459040435785
ROC 0.620766156747
TP 385 FP 3288 TN 43209 FN 848
None
x ADASYN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 82904
Filtering Random Data
Random Data Added: 82904
Finished with Random Data
Training Data Points: 192442
Test Data Points: 27385
Starting Training
Done training
Test Results
Sensitivity: 0.9209369369369369
Specificity : 0.9076239822353812
Accuracy: 0.9143691802081432
ROC 0.914280459586
TP 12778 FP 1248 TN 12262 FN 1097
None
Cross: Validation: [ 0.94314613 0.86404966 0.8568142 0.84837862 0.83647385]
Number of data points in benchmark 47730
Benchmark Results
Sensitivity: 0.2773722627737226
Specificity : 0.9308987676624298
Accuracy: 0.9140163419233187
ROC 0.604135515218
TP 342 FP 3213 TN 43284 FN 891
None
y SMOTEENN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 107670
Test Data Points: 26918
Starting Training
Done training
Test Results
Sensitivity: 0.9517972627462776
Specificity : 0.9502202643171807
Accuracy: 0.9509993313024742
ROC 0.951008763532
TP 12657 FP 678 TN 12942 FN 641
None
Cross: Validation: [ 0.95765073 0.9587265 0.9566445 0.958242 0.95489839]
Number of data points in benchmark 47730
Benchmark Results
Sensitivity: 0.10867802108678021
Specificity : 0.9657827386713121
Accuracy: 0.943641315734339
ROC 0.537230379879
TP 134 FP 1591 TN 44906 FN 1099
None
x SMOTEENN
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 82904
Filtering Random Data
Random Data Added: 82904
Finished with Random Data
Training Data Points: 190588
Test Data Points: 26922
Starting Training
Done training
Test Results
Sensitivity: 0.9532969089140034
Specificity : 0.9606223729813436
Accuracy: 0.9569868509026075
ROC 0.956959640948
TP 12737 FP 534 TN 13027 FN 624
None
Cross: Validation: [ 0.95238095 0.96032984 0.95947402 0.95876825 0.95434621]
Number of data points in benchmark 47730
Benchmark Results
Sensitivity: 0.008110300081103
Specificity : 0.9664709551153838
Accuracy: 0.9417138068300859
ROC 0.487290627598
TP 10 FP 1559 TN 44938 FN 1223
None
y random_under_sample
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 24059
Test Data Points: 6015
Starting Training
Done training
Test Results
Sensitivity: 0.8967105263157895
Specificity : 0.9942857142857143
Accuracy: 0.9449709060681629
ROC 0.945498120301
TP 2726 FP 17 TN 2958 FN 314
None
Cross: Validation: [ 0.93783245 0.94431516 0.94546059 0.94313269 0.94562687]
Number of data points in benchmark 47730
Benchmark Results
Sensitivity: 0.0016220600162206002
Specificity : 0.9990321956255243
Accuracy: 0.9732662895453593
ROC 0.500327127821
TP 2 FP 45 TN 46452 FN 1231
None
x random_under_sample
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 82904
Filtering Random Data
Random Data Added: 82904
Finished with Random Data
Training Data Points: 106963
Test Data Points: 6015
Starting Training
Done training
Test Results
Sensitivity: 0.9049342105263158
Specificity : 0.9828571428571429
Accuracy: 0.943474646716542
ROC 0.943895676692
TP 2751 FP 51 TN 2924 FN 289
None
Cross: Validation: [ 0.94547872 0.94148936 0.94712338 0.94945128 0.94978384]
Number of data points in benchmark 47730
Benchmark Results
Sensitivity: 0.0373073803730738
Specificity : 0.9903004494913651
Accuracy: 0.9656819610307983
ROC 0.513803914932
TP 46 FP 451 TN 46046 FN 1187
None
y ncl
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 62452
Test Data Points: 15613
Starting Training
Done training
Test Results
Sensitivity: 0.9116936874784408
Specificity : 0.9997640396413403
Accuracy: 0.983411259847563
ROC 0.95572886356
TP 2643 FP 3 TN 12711 FN 256
None
Cross: Validation: [ 0.98161906 0.97944153 0.980465 0.97867025 0.98097617]
Number of data points in benchmark 47730
Benchmark Results
Failed
TP 0 FP 1 TN 46496 FN 1233
None
x ncl
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 82904
Filtering Random Data
Random Data Added: 82904
Finished with Random Data
Training Data Points: 145339
Test Data Points: 15609
Starting Training
Done training
Test Results
Sensitivity: 0.8965160400137978
Specificity : 0.9985051140833989
Accuracy: 0.9795630725863284
ROC 0.947510577049
TP 2599 FP 19 TN 12691 FN 300
None
Cross: Validation: [ 0.97905189 0.98026906 0.98122758 0.9803306 0.98045874]
Number of data points in benchmark 47730
Benchmark Results
Sensitivity: 0.0008110300081103001
Specificity : 0.999913972944491
Accuracy: 0.9741043368950346
ROC 0.500362501476
TP 1 FP 4 TN 46493 FN 1232
None
y near_miss
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Training Data Points: 24059
Test Data Points: 6015
Starting Training
Done training
Test Results
Sensitivity: 0.9203947368421053
Specificity : 0.986218487394958
Accuracy: 0.9529509559434747
ROC 0.953306612119
TP 2798 FP 41 TN 2934 FN 242
None
Cross: Validation: [ 0.83327793 0.95246011 0.94861989 0.94812105 0.94679082]
Number of data points in benchmark 47730
Benchmark Results
Sensitivity: 0.17761557177615572
Specificity : 0.8321397079381465
Accuracy: 0.8152315105803478
ROC 0.504877639857
TP 219 FP 7805 TN 38692 FN 1014
None
x near_miss
Loading Data
Loaded Data
Working on Data
Balancing Data
Balanced Data
Finished working with Data
Random Sequences Generated 82904
Filtering Random Data
Random Data Added: 82904
Finished with Random Data
Training Data Points: 106963
Test Data Points: 6015
Starting Training
Done training
Test Results
Sensitivity: 0.9115131578947369
Specificity : 0.9895798319327731
Accuracy: 0.9501246882793017
ROC 0.950546494914
TP 2771 FP 31 TN 2944 FN 269
None
Cross: Validation: [ 0.82347074 0.9559508 0.95128035 0.95044895 0.949285 ]
Number of data points in benchmark 47730
Benchmark Results
Sensitivity: 0.14517437145174372
Specificity : 0.8424629545992215
Accuracy: 0.8244500314267756
ROC 0.493818663025
TP 179 FP 7325 TN 39172 FN 1054
None
|
golden_years_final.ipynb | ###Markdown
Golden Years Retirement PlannerAmericans struggle to save enough money to live comfortably during retirement. Recent market data and analysis of surveys gauging retirement confidence have shown that Americans need to save more. In order to help Americans save more and make better financial decisions, our product aims to analyze the amount it takes to retire comfortably, make suggestions on where to invest, and forecast savings over time.
###Code
#Import libraries and dependances
import csv
from pathlib import Path
import sys
import os
import requests
import json
import pandas as pd
import hvplot.pandas
import plotly.express as px
import alpaca_trade_api as tradeapi
from datetime import datetime
from dotenv import load_dotenv
from MCForecastTools import MCSimulation
%matplotlib inline
from data.retire import retirement_plan
from data.comfort import comfort_buffer
from data.americanstates import fifty_states
###Output
_____no_output_____
###Markdown
Part 1: Analysis of Current Retirement Trends in the USA**Completed By: Robert Giannini**
###Code
#Data was obtained from Retirement Confidence Survey by T. Rowe Price and was used to create a dataframe
#The CSV file is us_retiree_basic_expenses_covered_confidence.csv file and index was set to confidence_rating
retiree_confidence_df = pd.read_csv(
Path("./Resources/us_retiree_basic_expenses_covered_confidence.csv",
index_col="confidence_rating"))
retiree_confidence_df.set_index("confidence_rating", inplace=True)
retiree_confidence_df["percentage"] = (retiree_confidence_df['outcome'] /
retiree_confidence_df['outcome'].sum()) * 100
display(retiree_confidence_df)
#bar graph
retiree_confidence_df.hvplot.bar(figsize=(20,14), x='confidence_rating',
y='outcome', title='Retirement Confidence Rating (USA)')
###Output
_____no_output_____
###Markdown
AnalysisData gathered from a Retirement Confidence Survey by T. Rowe Price indicates that Americans’ confidence in their ability to live comfortably in retirement remains high overall. This data shows that over 62% of Americans' are either **Very Confident** or **Somewhat Confident** that they will have enough money for a comfortable retirement. However, this still leaves over 37% of either **Not Too Confident** or **Not Confident At All** Americans' that feel they will not be able to have enough money to retire comfortably. While the majority of Americans' on the T. Rowe Price Retirement Confidence Survey feel they are on track for a comfortable retirement, Golden Years plans to put this to the test. 1.1: How Are Americans' Saving For Retirement?Loading Popular Retirement Accounts in the USA from popular_retirement_accounts_usa_survey.csv file, setting index to account_responses, and displaying DataFrame.
###Code
#Converting CSV information into dataframe
popular_retirement_accounts_usa_survey_df = pd.read_csv(
Path("./Resources/popular_retirement_accounts_usa_survey.csv",
index_col="account_responses"))
popular_retirement_accounts_usa_survey_df.set_index("account_responses", inplace=True)
popular_retirement_accounts_usa_survey_df["percentage"] = (popular_retirement_accounts_usa_survey_df['amount'] /
popular_retirement_accounts_usa_survey_df['amount'].sum()) * 100
display(popular_retirement_accounts_usa_survey_df)
#A pie chart showing popular retirement accounts in USA
explode = (0.06, 0, 0, 0, 0, 0, 0, 0)
popular_retirement_accounts_usa_survey_df.plot.pie(figsize=(20,16),
y='percentage',
autopct='%1.1f%%',
explode=explode,
#hoverinfo='account_response+amount',
#legend = 'Accounts',
title='Popular Retirement Accounts (USA)')
###Output
_____no_output_____
###Markdown
1.2 Analysis of Comfortable Retirement in the USA using MAPBOX
###Code
#Loading `.env` file to Read MapBox API Key and Printing type to confirm API access.
load_dotenv()
# Reading in the MAPBOX_API_KEY.
mapbox_api_access_token = os.getenv("MAPBOX_API_ACCESS_TOKEN")
# Confirming the availability of the Mapbox API access token by checking its type.
print(type(mapbox_api_access_token))
# Setting Mapbox API access token.
px.set_mapbox_access_token(mapbox_api_access_token)
#State Coordinates Data from coordinates.csv file
#using .head() and .tail() functions to display First and Last Five rows of DataFrame.
#Loading state coordinates data.
state_coordinates_df = pd.read_csv(Path("./Resources/coordinates.csv", index_col="States"))
state_coordinates_df.set_index('States', inplace=True)
# Reviewing the DataFrame.
display(state_coordinates_df.head())
display(state_coordinates_df.tail())
#Loading US Retirement Data from us_retirement_data.csv file
#using .head() and .tail() functions to display First and Last Five rows of DataFrame.
#Using the read_csv function, Path module, and creating a DataFrame
# by importing the us_retirement_data.csv file from the Resources folder.
us_retirement_data_df = pd.read_csv(Path("./Resources/us_retirement_data.csv"))
# Reviewing the first and last five rows of the DataFrame.
display(us_retirement_data_df.head())
display(us_retirement_data_df.tail())
#Grouping data.
retirement_by_state = us_retirement_data_df.groupby(["States"])[["cost_of_living","comfort_buffer","comfortable_retirement"]].mean()
# Reviewing the DataFrame.
retirement_by_state.head()
# Using the Pandas `concat` function to join the
# state_coordinates_df and retirement_by_state DataFrames
# The axis of the concatenation is "columns".
# The concat function will automatially combine columns with
# identical information, while keeping the additional columns.
all_states_retirement_df = pd.concat(
[state_coordinates_df, retirement_by_state],
axis="columns",
sort=False
)
# Reviewing the resulting DataFrame.
display(all_states_retirement_df.head())
display(all_states_retirement_df.tail())
# Creating a scatter mapbox to analyze retirement info of all states.
mapbox = px.scatter_mapbox(
all_states_retirement_df,
lat="Lat",
lon="Lon",
size="cost_of_living",
color="comfortable_retirement",
size_max=15,
zoom=1.65
)
mapbox
###Output
_____no_output_____
###Markdown
Part 2: User Input***Completed by Doreen Ngo***User inputs information regarding the state they want to live in and their investment choices. Please run this portion from user_input.py. Part 3: Financial Forecast and Simulations***Completed by Kevin Mau***Analysis of stocks and crypto currency based on the amount the user can save.
###Code
# Load the environment variables from the .env file
#by calling the load_dotenv function
load_dotenv()
###Output
_____no_output_____
###Markdown
Cryptocurrency Analysis Review the endpoint URLs for the API calls to Free Crypto API in order to get the current pricing information for both BTC and ETH.
###Code
# The Free Crypto API Call endpoint URLs for the held cryptocurrency assets
btc_url = "https://api.alternative.me/v2/ticker/Bitcoin/?convert=USD"
eth_url = "https://api.alternative.me/v2/ticker/Ethereum/?convert=USD"
###Output
_____no_output_____
###Markdown
Use the Requests library to get the current price (in US dollars) of Bitcoin (BTC) and Ethereum (ETH) by using the API endpoints that the starter code supplied.
###Code
# Using the Python requests library, make an API call to access the current price of BTC
btc_response = requests.get(btc_url).json()
# Use the json.dumps function to review the response data from the API call
# Use the indent and sort_keys parameters to make the response object readable
print(json.dumps(btc_response, indent=4, sort_keys=True))
# Using the Python requests library, make an API call to access the current price ETH
eth_response = requests.get(eth_url).json()
# Use the json.dumps function to review the response data from the API call
# Use the indent and sort_keys parameters to make the response object readable
print(json.dumps(eth_response, indent=4, sort_keys=True))
###Output
{
"data": {
"1027": {
"circulating_supply": 117208141,
"id": 1027,
"last_updated": 1629626371,
"max_supply": 0,
"name": "Ethereum",
"quotes": {
"USD": {
"market_cap": 382835869228,
"percent_change_1h": 0.477871248339957,
"percent_change_24h": -0.37915803634404,
"percent_change_7d": 0.0144878491381817,
"percentage_change_1h": 0.477871248339957,
"percentage_change_24h": -0.37915803634404,
"percentage_change_7d": 0.0144878491381817,
"price": 3269.02,
"volume_24h": 17665084256
}
},
"rank": 2,
"symbol": "ETH",
"total_supply": 117208141,
"website_slug": "ethereum"
}
},
"metadata": {
"error": null,
"num_cryptocurrencies": 3105,
"timestamp": 1629626371
}
}
###Markdown
Navigate the JSON response object to access the current price of each coin, and store each in a variable.
###Code
#Navigate the BTC response object to access the current price of BTC
btc_price = btc_response['data']['1']['quotes']['USD']['price']
# Print the current price of BTC
print(f"The price for Bitcoin is ${btc_price:,.2f}")
# Navigate the BTC response object to access the current price of ETH
eth_price = eth_response['data']['1027']['quotes']['USD']['price']
# Print the current price of ETH
print(f"The price for Ethereum is ${eth_price:,.2f}")
###Output
The price for Ethereum is $3,269.02
###Markdown
Calculate the amount of coins the retiree can afford to purchase. Take amount able to invest divide by 2, equals "half the amount". Take "half the amount" divide by BTC price equals the amount of BTC to purchase. Take "half the amount" divide by ETH price equals the amount of ETH to purchase.
###Code
#user input savings amount and press enter
savings_amount= int(input("Enter savings account information:"))
#buying both bitcoin and etherum
half_savings = savings_amount / 2
btc_coins = half_savings / btc_price
eth_coins = half_savings / eth_price
# Print current holding in BTC
#since savings is low, threshold 1000
print(f"You now are holding {btc_coins} Bitcoin")
# Print current holding in ETH
#based on savings
print(f"The now are holding {eth_coins} Ethereum")
# Read in the CSV file called "Bitcoin Historical Data.csv" using the Path module.
# The CSV file is located in the Resources folder.
# Set the index to the column "Date"
# Set the parse_dates and infer_datetime_format parameters
btc_df = pd.read_csv(
Path('./Resources/Bitcoin Historical Data.csv'),
index_col="Date", parse_dates=True, infer_datetime_format=True)
btc_df.loc[:,"Price"]=btc_df.loc[:,"Price"].str.replace(",","")
btc_df.loc[:,"Price"]=btc_df.loc[:,"Price"].astype("float")
btc_df.loc[:,"Open"]=btc_df.loc[:,"Open"].str.replace(",","")
btc_df.loc[:,"Open"]=btc_df.loc[:,"Open"].astype("float")
btc_df.loc[:,"High"]=btc_df.loc[:,"High"].str.replace(",","")
btc_df.loc[:,"High"]=btc_df.loc[:,"High"].astype("float")
btc_df.loc[:,"Low"]=btc_df.loc[:,"Low"].str.replace(",","")
btc_df.loc[:,"Low"]=btc_df.loc[:,"Low"].astype("float")
btc_df = btc_df.drop(columns=["Change %"])
# This function converts the string values into a floating point number
def clean_currency(price_string):
price = price_string
if type(price_string) == str:
price_string = price_string.replace('$', '')
price_string = price_string.replace('-', '0')
if price_string[-1] == 'K':
thousand = 1000
price_string = price_string.replace('K', '')
price = float(price_string)
price = price * thousand
elif price_string[-1] == 'M':
million = 1000000
price_string = price_string.replace('M', '')
price = float(price_string)
price = price * million
else:
billion = 1000000000
price_string = price_string.replace('B', '')
price = float(price_string)
price = price * billion
return price
btc_df['Vol.'] = btc_df['Vol.'].apply(clean_currency)
list(btc_df.columns)
btc_df2 = btc_df[['Open', 'High', 'Low', 'Price', 'Vol.']]
columns = ["open", "high"," low", "close", "volume"]
btc_df2.columns = columns
btc_df2.keys()
# Read in the CSV file called "Bitcoin Historical Data.csv" using the Path module.
# The CSV file is located in the Resources folder.
# Set the index to the column "Date"
# Set the parse_dates and infer_datetime_format parameters
eth_df = pd.read_csv(
Path('./Resources/Ethereum Historical Data.csv'),
index_col="Date", parse_dates=True, infer_datetime_format=True)
eth_df = eth_df.drop(columns=["Change %"])
eth_df['Vol.'] = eth_df['Vol.'].apply(clean_currency)
eth_df.loc[:,"Price"]=eth_df.loc[:,"Price"].str.replace(",","")
eth_df.loc[:,"Price"]=eth_df.loc[:,"Price"].astype("float")
eth_df.loc[:,"Open"]=eth_df.loc[:,"Open"].str.replace(",","")
eth_df.loc[:,"Open"]=eth_df.loc[:,"Open"].astype("float")
eth_df.loc[:,"High"]=eth_df.loc[:,"High"].str.replace(",","")
eth_df.loc[:,"High"]=eth_df.loc[:,"High"].astype("float")
eth_df.loc[:,"Low"]=eth_df.loc[:,"Low"].str.replace(",","")
eth_df.loc[:,"Low"]=eth_df.loc[:,"Low"].astype("float")
eth_df2 = eth_df[['Open', 'High', 'Low', 'Price', 'Vol.']]
columns = ["open", "high"," low", "close", "volume"]
eth_df2.columns = columns
eth_df2.head()
# Create a dictionary of the two dataframes
to_merge_dict = {'BTC': btc_df2 , 'ETH': eth_df2}
# Use concat to create a merged dataframe from the dictionary
merged_df = pd.concat(to_merge_dict.values(), axis=1, keys=to_merge_dict.keys())
merged_df.head()
# Configure the Monte Carlo simulation to forecast 5 years cumulative returns
# Run 500 samples.
MC_crypto = MCSimulation(
portfolio_data = merged_df,
weights = [.5, .5],
num_simulation = 500,
num_trading_days = 252*5
)
# Review the simulation input data
display(MC_crypto.portfolio_data.head())
#Run the Monte Carlo simulation to forecast 5 years cumulative returns
MC_crypto.calc_cumulative_return()
# Visualize the probability distribution of the 5-year Monte Carlo simulation
# by plotting a histogram
MC_sim_dist_plot = MC_crypto.plot_distribution()
# Generate summary statistics from the 5-year Monte Carlo simulation results
# Save the results as a variable
MC_summary_statistics = MC_crypto.summarize_cumulative_return()
# Review the 5-year Monte Carlo summary statistics
print(MC_summary_statistics)
# Print the current balance of the stock and bond portion of the members portfolio
print(f"The current balance of cryptocurrency is ${savings_amount:,.2f}")
# Use the lower and upper `95%` confidence intervals to calculate the range of the possible outcomes for the current stock/bond portfolio
ci_lower_cumulative_return = MC_summary_statistics[8]*savings_amount
ci_upper_cumulative_return = MC_summary_statistics[9]*savings_amount
# Print the result of your calculations
print(f"There is a 95% chance that your investment over the next 5 years will end within in the range of ${ci_lower_cumulative_return:,.2f} and ${ci_upper_cumulative_return:,.2f}.")
###Output
There is a 95% chance that your investment over the next 5 years will end within in the range of $7.35 and $1,317.53.
###Markdown
Part 4: Analysis of FAANG Stocks***Completed by Kevin Mau*** Set the variables for the Alpaca API and secret keys. Using the Alpaca SDK, create the Alpaca `tradeapi.REST` object. In this object, include the parameters for the Alpaca API key, the secret key, and the version number.
###Code
# Set the variables for the Alpaca API and secret keys
alpaca_api_key = os.getenv("ALPACA_API_KEY")
alpaca_secret_key = os.getenv("ALPACA_SECRET_KEY")
# Create the Alpaca tradeapi.REST object
alpaca = tradeapi.REST(
alpaca_api_key,
alpaca_secret_key,
api_version="v2")
###Output
_____no_output_____
###Markdown
Set the following parameters for the Alpaca API call:- `tickers`: Use the tickers for the member’s stock and bond holdings.- `timeframe`: Use a time frame of one day.- `start_date` and `end_date`: using 7/30/2018 - 7/30/2021
###Code
# Set the tickers for the stock portion of the portfolio
tickers = ["FB", "AMZN", "AAPL", "NFLX", "GOOG"]
# Set timeframe to 1D
timeframe = "1D"
# Format current date as ISO format
# Set both the start and end date at the date of your prior weekday
# This will give you the closing price of the previous trading day
# Alternatively you can use a start and end date of 2020-08-07
start_date = pd.Timestamp("2021-07-30", tz="America/New_York").isoformat()
end_date = pd.Timestamp("2021-07-30", tz="America/New_York").isoformat()
# Use the Alpaca get_barset function to get current closing prices the portfolio
# Be sure to set the `df` property after the function to format the response object as a DataFrame
df_portfolio = alpaca.get_barset(
tickers,
timeframe,
start = start_date,
end = end_date
).df
# Review the first 5 rows of the Alpaca DataFrame
df_portfolio.head()
# Access the closing price for FB from the Alpaca DataFrame
# Converting the value to a floating point number
fb_close_price = df_portfolio["FB"]["close"]
fb_close_price = float(fb_close_price)
# Print the FB closing price
print(f"The closing price of Facebook is ${fb_close_price:,.2f}")
# Access the closing price for AMZN from the Alpaca DataFrame
# Converting the value to a floating point number
amzn_close_price = df_portfolio["AMZN"]["close"]
amzn_close_price = float(amzn_close_price)
# Print the AMZN closing price
print(f"The closing price of Amazon is ${amzn_close_price:,.2f}")
# Access the closing price for FB from the Alpaca DataFrame
# Converting the value to a floating point number
aapl_close_price = df_portfolio["AAPL"]["close"]
aapl_close_price = float(aapl_close_price)
# Print the AAPL closing price
print(f"The closing price of Apple is ${aapl_close_price:,.2f}")
# Access the closing price for FB from the Alpaca DataFrame
# Converting the value to a floating point number
nflx_close_price = df_portfolio["NFLX"]["close"]
nflx_close_price = float(nflx_close_price)
# Print the NFLX closing price
print(f"The closing price of Netflix is ${nflx_close_price:,.2f}")
# Access the closing price for GOOG from the Alpaca DataFrame
# Converting the value to a floating point number
goog_close_price = df_portfolio["GOOG"]["close"]
goog_close_price = float(goog_close_price)
# Print the GOOG closing price
print(f"The closing price of Google is ${goog_close_price:,.2f}")
###Output
The closing price of Google is $2,704.66
###Markdown
4.1 Create a Financial Planner for Retirement Create the Monte Carlo SimulationIn this section, you’ll use the MCForecastTools library to create a Monte Carlo simulation for the member’s savings portfolio. To do this, complete the following steps:1. Make an API call via the Alpaca SDK to get 3 years of historical closing prices for an even 5-way split between FAANG stocks.2. Run a Monte Carlo simulation of 500 samples and (ANSWER FROM QUESTIONAIRE) for the FAANG portfolio, and then plot the results.The following image shows the overlay line plot resulting from a simulation with these characteristics.3. Plot the probability distribution of the Monte Carlo simulation. Plot the probability distribution of the Monte Carlo simulation. The following image shows the histogram plot resulting from a simulation with these characteristics.4. Generate the summary statistics for the Monte Carlo simulation. Make an API call via the Alpaca SDK to get 3 years of historical closing prices for FAANG
###Code
# Set start and end dates of 3 years back from your current date
# Alternatively, you can use an end date of 2020-08-07 and work 3 years back from that date
start_date = pd.Timestamp("2018-07-30", tz="America/New_York").isoformat()
end_date = pd.Timestamp("2021-07-30", tz="America/New_York").isoformat()
# Set number of rows to 1000 to retrieve the maximum amount of rows
limit_rows = 1000
# Use the Alpaca get_barset function to make the API call to get the 3 years worth of pricing data
# The tickers and timeframe parameters should have been set in Part 1 of this activity
# The start and end dates should be updated with the information set above
# Remember to add the df property to the end of the call so the response is returned as a DataFrame
prices_df = alpaca.get_barset(
tickers,
timeframe,
start=start_date,
end=end_date,
limit=limit_rows
).df
# Display both the first and last five rows of the DataFrame
display(prices_df.head())
display(prices_df.tail())
# Configure the Monte Carlo simulation to forecast 5 years cumulative returns
# Run 500 samples.
MC_faang = MCSimulation(
portfolio_data = prices_df,
weights = [.2, .2, .2, .2, .2],
num_simulation = 500,
num_trading_days = 252*5
)
# Review the simulation input data
MC_faang.portfolio_data.head()
# Run the Monte Carlo simulation to forecast 5 years cumulative returns
MC_faang.calc_cumulative_return()
# Visualize the 5-year Monte Carlo simulation by creating an
# overlay line plot
MC_sim_line_plot = MC_faang.plot_simulation()
###Output
_____no_output_____
###Markdown
Generate the summary statistics for the Monte Carlo simulation.
###Code
# Generate summary statistics from the 5-year Monte Carlo simulation results
# Save the results as a variable
MC_summary_statistics = MC_faang.summarize_cumulative_return()
# Review the 5-year Monte Carlo summary statistics
print(MC_summary_statistics)
###Output
count 500.000000
mean 3.678908
std 1.516097
min 1.191165
25% 2.600935
50% 3.493042
75% 4.537284
max 12.354789
95% CI Lower 1.486905
95% CI Upper 7.179377
Name: 1260, dtype: float64
###Markdown
Analyze the Retirement Portfolio ForecastsUsing the current value of only the stock and bond portion of the member's portfolio and the summary statistics that you generated from the Monte Carlo simulation, answer the following question in your Jupyter notebook:- What are the lower and upper bounds for the expected value of the portfolio with a 95% confidence interval?
###Code
# Print the current balance of the stock and bond portion of the members portfolio
print(f"The current balance of your investing in FAANG stocks is ${savings_amount:,.2f}")
# Use the lower and upper `95%` confidence intervals to calculate the range of the possible outcomes for the current stock/bond portfolio
ci_lower_cumulative_return = MC_summary_statistics[8]*savings_amount
ci_upper_cumulative_return = MC_summary_statistics[9]*savings_amount
# Print the result of your calculations
print(f"There is a 95% chance that the portfolio over the next 5 years will end within in the range of ${ci_lower_cumulative_return:,.2f} and ${ci_upper_cumulative_return:,.2f}.")
###Output
There is a 95% chance that the portfolio over the next 5 years will end within in the range of $1,486.90 and $7,179.38.
###Markdown
4.2 Coding for top 4 popular mutual fundshttps://www.marketwatch.com/tools/mutual-fund/top25largest
###Code
tickers = ["SPY", "IVV", "VTI", "VOO"]
prices_df = alpaca.get_barset(
tickers,
timeframe,
start=start_date,
end=end_date,
limit=limit_rows
).df
display(prices_df.head())
display(prices_df.tail())
# Configure the Monte Carlo simulation to forecast 5 years cumulative returns
# Run 500 samples.
MC_mutual_funds = MCSimulation(
portfolio_data = prices_df,
weights = [.25, .25, .25, .25],
num_simulation = 500,
num_trading_days = 252*5
)
# Review the simulation input data
MC_mutual_funds.portfolio_data.head()
# Run the Monte Carlo simulation to forecast 5 years cumulative returns
MC_mutual_funds.calc_cumulative_return()
# Visualize the 5-year Monte Carlo simulation by creating an
# overlay line plot
MC_sim_line_plot = MC_mutual_funds.plot_simulation()
# Visualize the probability distribution of the 5-year Monte Carlo simulation
# by plotting a histogram
MC_sim_dist_plot = MC_mutual_funds.plot_distribution()
# Generate summary statistics from the 5-year Monte Carlo simulation results
# Save the results as a variable
MC_summary_statistics = MC_mutual_funds.summarize_cumulative_return()
# Review the 5-year Monte Carlo summary statistics
print(MC_summary_statistics)
# Print the current balance of the mutual funds of the members portfolio
print(f"The current balance of your investing in mutual funds is ${savings_amount:,.2f}")
# Use the lower and upper `95%` confidence intervals to calculate the range of the possible outcomes for the current mutual fund portfolio
ci_lower_cumulative_return = MC_summary_statistics[8]*savings_amount
ci_upper_cumulative_return = MC_summary_statistics[9]*savings_amount
# Print the result of your calculations
print(f"There is a 95% chance that the portfolio over the next 5 years will end within in the range of ${ci_lower_cumulative_return:,.2f} and ${ci_upper_cumulative_return:,.2f}.")
###Output
There is a 95% chance that the portfolio over the next 5 years will end within in the range of $1,429.92 and $3,915.83.
###Markdown
Comparing investing in a "safe" bank account (i.e. high yield savings account, CD)Compound Interest Formula FV = P (1 + r / n)^Yn, where P is the starting principal, r is the annual interest rate, Y is the number of years invested, and n is the number of compounding periods per year. FV is the future value, meaning the amount the principal grows to after Y years.
###Code
P = int(input("Enter starting principle please. "))
n = int(input("Enter number of compounding periods per year. "))
r = float(input("Enter annual interest rate. e.g. 15 for 15% "))
y = int(input("Enter the amount of years. "))
FV = P * (((1 + ((r/100.0)/n)) ** (n*y)))
print(f"The final amount after", y, f"years is ${FV:,.2f}.")
# another way to write code for compounding interest. can tinker with it to make into function that takes in variables from questionaire?
years = range(1,31)
rate = 0.07
rates = pd.Series(index = years, data = rate)
x = 1000*((rates + 1).cumprod())
final_amount = x.tail(1).item()
print(f"${final_amount:,.2f}.")
###Output
$7,612.26.
|
pyyaml_save_read.ipynb | ###Markdown
###Code
import yaml # import pyyaml
d = {"lr": 0.001, "lr_decay": 0.98, "lr_min": 1.0e-07, "lr_scheduler": "multi"}
###Output
_____no_output_____
###Markdown
Dump = Save
###Code
with open('new.yml', 'w') as f:
yaml.dump(d, f, default_flow_style=False)
!cat new.yml
with open('new_2.yml', 'w') as f:
yaml.dump(d, f)
!cat new_2.yml
###Output
{lr: 0.001, lr_decay: 0.98, lr_min: 1.0e-07, lr_scheduler: multi}
###Markdown
Load
###Code
with open('new.yml') as f:
info = yaml.load(f)
print(info)
###Output
{'lr': 0.001, 'lr_decay': 0.98, 'lr_min': 1e-07, 'lr_scheduler': 'multi'}
###Markdown
download sample yaml
###Code
!wget https://filesamples.com/samples/code/yaml/verify_apache.yaml -O example.yaml
with open("example.yaml", "r") as stream:
data = yaml.safe_load(stream)
!cat example.yaml
data
dumped = yaml.dump(data, default_flow_style=False)
print(dumped)
###Output
- handlers:
- name: restart apache
service:
name: httpd
state: restarted
hosts: webservers
remote_user: root
tasks:
- name: ensure apache is at the latest version
yum:
name: httpd
state: latest
- name: write the apache config file
notify:
- restart apache
template:
dest: /etc/httpd.conf
src: /srv/httpd.j2
- name: ensure apache is running
service:
name: httpd
state: started
vars:
http_port: 80
max_clients: 200
|
src_optimization/22_nonlinear_stencil_02_efficiency_01/e_plot_by_cells.ipynb | ###Markdown
Plots
###Code
import matplotlib.pyplot as plt
from matplotlib import rcParams
import pandas as pd
import seaborn as sns
def plot(p_data, p_yId, p_xId, p_hueId, p_styleId, p_logScale=False, p_marker_label=False, p_marker_value=0, p_export_filename=None, p_xLabel=None, p_yLabel=None):
rcParams['figure.figsize'] = 12,8
rcParams['font.size'] = 12
rcParams['svg.fonttype'] = 'none'
plot = sns.lineplot(x=p_xId,
y=p_yId,
hue=p_hueId,
style=p_styleId,
data=p_data)
if p_logScale == True:
plot.set_yscale('log')
plot.set_xscale('log')
if p_xLabel != None:
plot.set(xlabel=p_xLabel)
else:
plot.set(xlabel=p_xId)
if p_yLabel != None:
plot.set(ylabel=p_yLabel)
else:
plot.set(ylabel=p_yId)
plt.grid(color='gainsboro')
plt.grid(True,which='minor', linestyle='--', linewidth=0.5, color='gainsboro')
if(p_marker_label != False):
plt.axhline(p_marker_value, linestyle='--', color='red', label=p_marker_label)
plt.legend()
if(p_export_filename != None):
plt.savefig(p_export_filename)
plt.show()
###Output
_____no_output_____
###Markdown
Gauss3 Efficiency by cells functions overview
###Code
import pandas as pd
data_frame = pd.read_csv('./e_efficiency_by_cells.csv')
data_frame = data_frame[data_frame.region_id == 'apply']
data_frame = data_frame[data_frame.func_id != '\Verb{precalc}']
plot(p_data=data_frame,
p_yId='runtime',
p_xId='obj_cells',
p_hueId='func_id',
p_styleId=None,
p_logScale=True,
p_export_filename='runtime_by_cells.svg',
p_xLabel="Object Cells",
p_yLabel="Runtime [s]")
plot(p_data=data_frame,
p_yId='efficiency',
p_xId='obj_cells',
p_hueId='func_id',
p_styleId=None,
p_logScale=True,
p_marker_label='precalc',
p_marker_value=1,
p_export_filename='efficiency_by_cells.svg',
p_xLabel="Object Cells",
p_yLabel="Absolute Efficiency")
###Output
_____no_output_____
###Markdown
Arithmetic Intensity by cost Empirically Determined Parametersbased on `src_master_thesis/node_characterization/likwid-bench_gauss3.out`:
###Code
emp_flops_max=2459.32383
emp_mem_band=233.172
import pandas as pd
import seaborn as sns
sns.set_theme()
sns.set_style("ticks")
maschine_balance=emp_flops_max/emp_mem_band
ops_data = pd.read_csv('./e_measure_ops.csv')
ops_data['func_id'] = ops_data.apply(lambda row: f'nonlinear_{row["func_id"].lower()}', axis=1)
roofline_data = pd.read_csv('./e_roofline.csv')
roofline_data = roofline_data[roofline_data.region_id == 'apply']
roofline_data = roofline_data.merge(ops_data, left_on='impl_id', right_on='func_id')
roofline_data['func_id'] = 'function cost'
roofline_data['ai']=roofline_data.apply(lambda row: (row['mflop_s']/row['mbytes_s']), axis=1)
#
# NOTE: add maschine balance
#
roofline_data_copy = roofline_data.copy()
roofline_data_copy['func_id'] = 'maschine balance'
roofline_data_copy['ai'] = maschine_balance
roofline_data = roofline_data_copy.append(roofline_data)
# display(roofline_data)
plot(p_data=roofline_data,
p_yId='ai',
p_xId='ops',
p_hueId='func_id',
p_styleId=None,
p_logScale=False)
###Output
_____no_output_____
###Markdown
Performance by cost
###Code
import pandas as pd
import seaborn as sns
sns.set_theme()
sns.set_style("ticks")
ops_data = pd.read_csv('./e_measure_ops.csv')
ops_data['func_id'] = ops_data.apply(lambda row: f'nonlinear_{row["func_id"].lower()}', axis=1)
roofline_data = pd.read_csv('./e_roofline.csv')
roofline_data = roofline_data[roofline_data.region_id == 'apply']
roofline_data = roofline_data.merge(ops_data, left_on='impl_id', right_on='func_id')
display(roofline_data)
roofline_data['gflop_s']=roofline_data.apply(lambda row: (row['mflop_s']/1000), axis=1)
plot(p_data=roofline_data,
p_yId='gflop_s',
p_xId='ops',
p_hueId=None,
p_styleId=None,
p_logScale=False)
###Output
_____no_output_____ |
extra-course-parts/13_Classes.ipynb | ###Markdown
13. Classes*Combine building blocks* 13.1 Introduction****The code we've been writing so far has been a sequential set of commands and functions where variables have to be passed around from function to function whenever required. Python is, however, inherently an *object-oriented* programming language. This means that you can create *objects* that are self-sustained building blocks of code or data which you can combine to form more complex programs.In fact we've been using objects all along; strings are objects, as are lists and dictionaries - the *methods* we've been using on them (for example *myList.sort()*) are part of these objects.The concept of objects is not very intuitive, but we'll give you a taste here so you can see how powerful it is in practice. 13.2 Exercises******Creating a class, the template for an object**First you have to create a template for your object; this determines what an object can do once you start to use it. This template is called a **class**. Consider this example:
###Code
# Define the MyMathOperations class
# Note that we start the class name with an uppercase letter to distinguish it from normal variables
class MyMathClass:
def add(self,x,y):
print(x + y)
def subtract(self,x,y):
print(x - y)
def multiply(self,x,y):
print(x * y)
###Output
_____no_output_____
###Markdown
So within a class you define the *methods* add(), substract() and multiply(). The argument list for each of these has to start with **self** - this means it belongs to this class, and can be called from it using the **.add()** syntax as we used for strings, lists and dictionaries. **Using an object**When you execute the above example, nothing happens. This is because the class is not *instantiated* to become a working *object*. It's very easy to do this and then use the class; add these lines to the above example:
###Code
if __name__ == '__main__':
# Instantiate the object from the class
myMathObject = MyMathClass()
myMathObject.add(3,5)
myMathObject.subtract(5,4)
myMathObject.multiply(9,3)
###Output
8
1
27
###Markdown
One big immediate advantage of doing this is that you can group similar functions (methods) together, and only have to call up the class to be able to execute them (you don't have to import all of the functions separately).You can also connect variables to a class. You can do this when you instantiate (initialise) the class, or change/add new ones later on. Consider this modified example:
###Code
class MyNewMathClass:
# This method is called when initialising the class
def __init__(self,x,y):
self.x = x
self.y = y
def add(self):
return self.x + self.y
def subtract(self):
return self.x - self.y
def multiply(self):
return self.x * self.y
def doSomeOperations(self):
print("Numbers {} and {}".format(self.x,self.y))
print(" Adding...", self.add())
print(" Subtracting...", self.subtract())
print(" Multiplying...", self.multiply())
print
if __name__ == '__main__':
# Instantiate the object from the class
myMathObject = MyNewMathClass(3,5)
myMathObject.doSomeOperations()
myMathObject.x = 5
myMathObject.y = 4
myMathObject.doSomeOperations()
###Output
Numbers 3 and 5
Adding... 8
Subtracting... -2
Multiplying... 15
Numbers 5 and 4
Adding... 9
Subtracting... 1
Multiplying... 20
###Markdown
**Exercise**Write your own class that takes two strings on startup. It should have a method to check which letters are shared between the two strings, and another method to check which are unique in each string. You should then write out this information.
###Code
class MyStringClass:
# This method is called when initialising the class
def __init__(self,string1,string2):
# This method is called when initialising the class
self.string1 = string1
self.string2 = string2
# Already make sets for comparisons later...
self.stringSet1 = set(string1)
self.stringSet2 = set(string2)
def getSharedCharacters(self):
return self.stringSet1.intersection(self.stringSet2)
def getUniqueCharacters(self):
uniqueChars1 = self.stringSet1.difference(self.stringSet2)
uniqueChars2 = self.stringSet2.difference(self.stringSet1)
return (uniqueChars1,uniqueChars2)
def doCharacterCheck(self):
print ("Strings '{}' and '{}'".format(self.string1,self.string2))
print (" Shared characters are {}".format(", ".join(self.getSharedCharacters())))
(uniqueChars1,uniqueChars2) = self.getUniqueCharacters()
print (" Unique in string1 are {}".format(", ".join(uniqueChars1)))
print (" Unique in string2 are {}".format(", ".join(uniqueChars2)))
print
if __name__ == '__main__':
# Instantiate the object from the class
stringComparer = MyStringClass('myWord','otherWord')
stringComparer.doCharacterCheck()
###Output
Strings 'myWord' and 'otherWord'
Shared characters are W, o, r, d
Unique in string1 are m, y
Unique in string2 are t, h, e
###Markdown
**Combining classes**The object-oriented way of programming becomes really powerful when you start to combine classes; in programming speak you can create a *subclass* that *inherits* the methods, variables, ... from one or several other classes (the *superclasses*). This way you can use classes as 'building blocks' to create more complex programs very quickly:
###Code
class MyInputClass:
def getUserInput(self,questionString):
userInput = None
while not userInput:
userInput = input(questionString)
return userInput
def getUserString(self):
return self.getUserInput("Please enter a string: ")
class MyStringClass:
# This is a modified version of the class introduced earlier
def setStringsAndCreateStringSets(self,string1,string2):
self.string1 = string1
self.string2 = string2
# Already make sets for comparisons later...
self.stringSet1 = set(string1)
self.stringSet2 = set(string2)
def getSharedCharacters(self):
return self.stringSet1.intersection(self.stringSet2)
class UserStringSharedCharacters(MyInputClass,MyStringClass):
def getSharedCharactersFromUserStrings(self):
string1 = self.getUserString()
string2 = self.getUserString()
self.setStringsAndCreateStringSets(string1,string2)
sharedCharacters = self.getSharedCharacters()
print ("Shared characters between '{}' and '{}' are {}".format(string1,string2,', '.join(sharedCharacters)))
if __name__ == '__main__':
userStringSharedChars = UserStringSharedCharacters()
userStringSharedChars.getSharedCharactersFromUserStrings()
###Output
Please enter a string: abcdef
Please enter a string: dcvare
Shared characters between 'abcdef' and 'dcvare' are e, a, c, d
###Markdown
**Exercise**Convert the program to read in the sample information from exercise 9. Make a class that contains a generic CSV file reader (the comma-separated format), then another one that deals specifically with the information in this particular file, and then prints out the IDs for value ranges in the same way. Everything should be done as classes.
###Code
import os
class CsvFile:
def readCsvFile(self,fileName):
# Read in a .csv (comma-delimited) format file
# Doublecheck if file exists
if not os.path.exists(fileName):
print("File {} does not exist!".format(fileName))
return None
# Open the file and read the information
fileHandle = open(fileName)
lines = fileHandle.readlines()
fileHandle.close()
# Now read the information. The first line has the header information which
# we are going to use to create the dictionary!
fileInfoDict = {}
fileInfoDict['headers'] = lines[0].strip().split(',')
fileInfoDict['data'] = []
# Now read in the information
for line in lines[1:]:
line = line.strip() # Remove newline characters
cols = line.split(',')
fileInfoDict['data'].append(cols)
# Return the dictionary with the file information
return fileInfoDict
class SampleInformationFile(CsvFile):
def readFile(self,fileName):
fileInfoDict = self.readCsvFile(fileName)
# Reorganise generic information from file in correct way..
self.sampleInformation = {}
for dataList in fileInfoDict['data']:
sampleId = int(dataList[0])
self.sampleInformation[sampleId] = {}
for i in range(1,len(fileInfoDict['headers'])):
valueName = fileInfoDict['headers'][i]
value = dataList[i]
if valueName in ('pH','temperature','volume'):
value = float(value)
self.sampleInformation[sampleId][valueName] = value
# No need to return anything; the data is stored in self.sampleInformation, and this is accessible from anywhere in this object...
def getSampleIdsForValueRange(self,valueName,lowValue,highValue):
# Return the sample IDs that fit within the given value range for a kind of value
sampleIdList = self.sampleInformation.keys()
sampleIdList = sorted(sampleIdList)
sampleIdsFound = []
for sampleId in sampleIdList:
currentValue = self.sampleInformation[sampleId][valueName]
if lowValue <= currentValue <= highValue:
sampleIdsFound.append(sampleId)
return sampleIdsFound
if __name__ == '__main__':
sampleInfoFile = SampleInformationFile()
sampleInfoFile.readFile("data/SampleInfo.txt")
print(sampleInfoFile.getSampleIdsForValueRange('pH',6.0,7.0))
print(sampleInfoFile.getSampleIdsForValueRange('temperature',280,290))
print(sampleInfoFile.getSampleIdsForValueRange('volume',200,220))
###Output
[3, 7, 10, 12, 16, 20]
[3, 4, 5, 6, 9, 11, 17, 20]
[8, 10, 14, 15]
|
lsh-py/docs/source/sections/LSH_recall.ipynb | ###Markdown
Base LSH and Multi Probe LSH exampleDownload color histograms of the flick30k dataset [here](https://www.kaggle.com/ritchie46/flickr30khistograms/download).
###Code
import numpy as np
from scipy.spatial.distance import cdist
from floky import L2
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
import time
###Output
_____no_output_____
###Markdown
Data preparationFirst we load the data in numpy. Next we compute the real $N$ nearest neighbors with `scipy.spatial.distance.cdist`. From these $N$ distance results we compute the mean and determine the top k results. Next we scale the data by $R$. This makes it easier to verify if the LSH algorithm can find nearest neighbors.If we scale the data by $\frac{1}{R}$ we expect the exact Nearest Neighbor to have a distance smaller than 1. If this isn't the case, we need to choose another distance $R$.
###Code
with open("flickr30k_histograms.csv") as f:
a = np.loadtxt(f, delimiter=",")
# We will do N queries and compute recall and query times.
N = 100
# Find the exact nearest neighbors. This is needed to compute recall.
t0 = time.time_ns()
dist = cdist(a[:N], a)
# ms
exact_duration = (time.time_ns() - t0) / 1e6
exact_duration
# non trivial top 1
# we skip the first as that is the query point itself
top_k = dist.argsort(1)[:, 1:2]
mean = dist.mean()
top_k_dist = dist[np.arange(N)[:, None], top_k]
# Scale data by distance. So scaled R will be 1.
R = mean / 2.5
a /= R
dist /= R
top_k_dist /= R
R
# Check if real nearest neigbors are < R = 1
print("{}% < R".format((top_k_dist < 1).sum() / (top_k_dist.shape[0] * top_k_dist.shape[1]) * 100))
top_k_dist[:10]
###Output
83.0% < R
###Markdown
Comparison Query / Preprocessing duration and RecallBelow we'll examine the impact of the query duration on the recall.We take a look at two **k** ( of values in the hash) values: * 15 * 30 For Base LSH we increase the numebr of hash tables to increase the recall.For Multi-probe LSH we increase the number of probes we execute. We will keep the number of hash tables constant to only **5**.
###Code
def cum_mov_avg(x, avg, n):
return (x + n * avg) / (n + 1)
def recall(k, L):
dim = len(a[0])
lsh = L2(k, L, dim, in_mem=True)
t0 = time.time()
lsh.fit(a)
fit_duration = time.time() - t0
t0 = time.time_ns()
p = lsh.predict(a[:N], only_index=True, top_k=6);
predict_duration = time.time_ns() - t0
c = 0
avg_collisions = 0
for i, pi in enumerate(p):
if pi.n_collisions == 1:
continue
idx = set(pi.index[1:])
if len(idx.intersection(top_k[i])) > 0:
c += 1
avg_collisions = cum_mov_avg(pi.n_collisions, avg_collisions, i)
return c / N, avg_collisions, fit_duration, predict_duration
ks = []
Ls = []
recalls = []
avg_cs = []
duration_fit = []
duration_predict = []
for k in [15, 30]:
for L in [5, 10, 15, 20, 50, 100]:
ks.append(k)
Ls.append(L)
r, avg_collision, fit_duration, predict_duration = recall(k, L)
duration_fit.append(fit_duration)
duration_predict.append(predict_duration)
recalls.append(r)
avg_cs.append(avg_collision)
df = pd.DataFrame({"recall": recalls,
"avg_collisions": avg_cs,
"L": Ls,
"K": ks,
"duration_fit": duration_fit,
"duration_predict": duration_predict
})
df
def recall_multi_probe(k, budget, lsh):
lsh.multi_probe(budget)
t0 = time.time_ns()
p = lsh.predict(a[:N], only_index=True, top_k=6);
predict_duration = time.time_ns() - t0
c = 0
avg_collisions = 0
for i, pi in enumerate(p):
if pi.n_collisions == 1:
continue
idx = set(pi.index[1:])
if len(idx.intersection(top_k[i])) > 0:
c += 1
avg_collisions = cum_mov_avg(pi.n_collisions, avg_collisions, i)
return c / N, avg_collisions, predict_duration
ks = []
recalls = []
avg_cs = []
probes = []
duration_fit = []
duration_predict = []
for k in [15, 30]:
dim = len(a[0])
t0 = time.time()
lsh = L2(k, 5, dim, in_mem=True)
fit_duration = time.time() - t0
lsh.fit(a)
for probe in [10, 20, 15, 20, 50, 100]:
ks.append(k)
probes.append(probe)
r, avg_collision, predict_duration = recall_multi_probe(k, probe, lsh)
duration_predict.append(predict_duration)
duration_fit.append(fit_duration)
recalls.append(r)
avg_cs.append(avg_collision)
df_mp = pd.DataFrame({"recall": recalls,
"avg_collisions": avg_cs,
"probes": probes,
"K": ks,
"duration_fit": duration_fit,
"duration_predict": duration_predict
})
df_mp
fig, ax = plt.subplots(figsize=(20, 6), nrows=2, ncols=3)
for i, (k, df_) in enumerate(df.groupby("K")):
color = f"C{i}"
marker = "^"
ax[0, 0].plot(df_.L, df_.recall, c=color, marker=marker, label=f"k = {k}")
ax[0, 1].plot(df_.L, df_.duration_predict / 1e6, c=color, marker=marker)
ax[0, 2].plot(df_.L, df_.duration_fit, c=color, marker=marker)
for i, (k, df_) in enumerate(df_mp.groupby("K")):
color = f"C{i}"
ax[1, 0].plot(df_.probes, df_.recall, c=color, marker=marker, label=f"k = {k}")
ax[1, 1].plot(df_.probes, df_.duration_predict / 1e6, c=color, marker=marker)
ax[1, 2].plot(df_.probes, df_.duration_fit, c=color, marker=marker)
ax[0, 0].legend()
ax[1, 0].legend()
ax[0, 1].axhline(exact_duration, c="black", label="exact search")
ax[1, 1].axhline(exact_duration, c="black", label="exact search")
ax[0, 1].legend()
ax[1, 1].legend()
plt.xlabel("L")
ax[0, 0].set_ylabel("recall")
ax[0, 0].set_ylim(0, 1)
ax[0, 0].set_xlabel("L hashtables")
ax[0, 1].set_xlabel("L hashtables")
ax[0, 1].set_ylabel("query duration [ms]")
ax[0, 1].set_ylim(0, exact_duration * 1.05)
ax[0, 2].set_ylabel("fit duration [s]")
ax[0, 2].set_xlabel("L hashtables")
ax[1, 0].set_ylabel("recall")
ax[1, 0].set_xlabel("# probes")
ax[1, 0].set_ylim(0, 1)
ax[1, 0].set_xscale("log")
ax[1, 0].xaxis.set_major_formatter(ScalarFormatter())
ax[1, 1].set_xlabel("# probes")
ax[1, 1].set_ylabel("query duration [ms]")
ax[1, 1].xaxis.set_major_formatter(ScalarFormatter())
ax[1, 1].yaxis.set_major_formatter(ScalarFormatter())
ax[1, 1].set_ylim(0, exact_duration * 1.05)
ax[1, 2].set_ylabel("fit duration [s]")
ax[1, 2].set_xlabel("# probes")
plt.show()
###Output
_____no_output_____ |
30-problem-solution_introduction_to_altair.ipynb | ###Markdown
- Create a scatter plot showing the relationship between Horsepower and Miles_per_Gallon- Did this relationship change over time?
###Code
alt.Chart(data).mark_point().encode(x='Horsepower', y='Miles_per_Gallon')
alt.Chart(data).mark_point().encode(x='Horsepower', y='Miles_per_Gallon', row='Year')
###Output
_____no_output_____ |
benchmark/12.average_precision_repliating_dl.ipynb | ###Markdown
In this notebook we calculate `mean average precision` for a subset of the plates (U2OS at the longest time point) whose features were extracted using a pre-trained neural network. The following are the steps taken1. Augmented ORF, CRISPR and Compound profiles are read and the replicate plates are merged into a single dataframe.2. The augmented ORF, CRISPR and Compound profiles are spherized separately.3. Negative control and empty wells are removed from the dataframe.4. Negative control and empty wells are removed from the dataframe.5. Average precision (AP) is computed for each replicate of each perturbation and the mean average precision (mAP) is computed for each condition.6. The same is repeated after shuffling the dataframe which is an estimate of the null distribution.7. Table of mAP values is printed and bar plot of mAP values is plotted.
###Code
cell = "U2OS"
mean_average_precision_df = pd.DataFrame()
group_by_feature = 'Metadata_broad_sample'
batch = "2020_11_04_CPJUMP1_DL"
experiment_df = (
pd.read_csv('output/experiment-metadata.tsv', sep='\t')
.query('Batch==@batch')
)
for modality in experiment_df.Perturbation.unique():
modality_df = experiment_df.query('Perturbation==@modality')
for time_point in modality_df.Time.unique():
time_df = modality_df.query('Time==@time_point')
all_plates_df = pd.DataFrame()
for plate in time_df.Assay_Plate_Barcode.unique():
plate_df = utils.load_data(batch, plate, "spherized.csv.gz")
all_plates_df = utils.concat_profiles(all_plates_df, plate_df)
all_plates_df = utils.remove_negcon_empty_wells(all_plates_df)
score = utils.MeanAveragePrecision(all_plates_df, all_plates_df, group_by_feature)
mean_average_precision_df = mean_average_precision_df.append({'Description':f'{modality}_{cell}_{time_point}',
'Modality':f'{modality}',
'Cell':f'{cell}',
'time':f'{time_point}',
'mAP':f'{score.map:.3f}',
'feature_set_replicates':'DP_True'}, ignore_index=True)
all_plates_shuffled_df = utils.shuffle_profiles(all_plates_df)
score_shuffled = utils.MeanAveragePrecision(all_plates_shuffled_df, all_plates_shuffled_df, group_by_feature)
mean_average_precision_df = mean_average_precision_df.append({'Description':f'{modality}_{cell}_{time_point}',
'Modality':f'{modality}',
'Cell':f'{cell}',
'time':f'{time_point}',
'mAP':f'{score_shuffled.map:.3f}',
'feature_set_replicates':'DP_Shuffled'}, ignore_index=True)
print(mean_average_precision_df[['Description', 'mAP','feature_set_replicates']].query('feature_set_replicates=="DP_True"').to_markdown(index=False))
print(mean_average_precision_df[['Description', 'mAP','feature_set_replicates']].query('feature_set_replicates=="DP_Shuffled"').to_markdown(index=False))
mean_average_precision_df['mAP'] = mean_average_precision_df['mAP'].astype(float)
mean_average_precision_df.loc[(mean_average_precision_df.Modality=='compound') & (mean_average_precision_df.time=='24'), 'time'] = 'short'
mean_average_precision_df.loc[(mean_average_precision_df.Modality=='compound') & (mean_average_precision_df.time=='48'), 'time'] = 'long'
mean_average_precision_df.loc[(mean_average_precision_df.Modality=='crispr') & (mean_average_precision_df.time=='96'), 'time'] = 'short'
mean_average_precision_df.loc[(mean_average_precision_df.Modality=='crispr') & (mean_average_precision_df.time=='144'), 'time'] = 'long'
mean_average_precision_df.loc[(mean_average_precision_df.Modality=='orf') & (mean_average_precision_df.time=='48'), 'time'] = 'short'
mean_average_precision_df.loc[(mean_average_precision_df.Modality=='orf') & (mean_average_precision_df.time=='96'), 'time'] = 'long'
plot_mAP_df = (
mean_average_precision_df.rename(columns={'Modality':'Perturbation'})
)
fig = px.bar(data_frame=plot_mAP_df,
x='Perturbation',
y='mAP',
color='feature_set_replicates',
barmode='overlay',
facet_row='time',
facet_col='Cell')
fig.update_layout(title='mAP vs. Perturbation',
yaxis=dict(title='mAP'),
yaxis3=dict(title='mAP'))
fig.show("png")
fig.write_image(f'figures/12.mAP_CellProfiler.png', width=640, height=480, scale=2)
print(plot_mAP_df[['Description','Perturbation','time', 'Cell' ,'mAP', 'feature_set_replicates']].to_markdown(index=False))
plot_mAP_df.to_csv('output/deepprofiler_mAP.csv', index=False)
###Output
_____no_output_____ |
OPC_Sensor/Models with Min Max Normalization/KNN/.ipynb_checkpoints/KNN-checkpoint.ipynb | ###Markdown
Importing Libraries
###Code
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import os.path as op
import pickle
###Output
_____no_output_____
###Markdown
Data Fetching
###Code
A1=np.empty((0,5),dtype='float32')
U1=np.empty((0,7),dtype='float32')
node=['150','149','147','144','142','140','136','61']
mon=['Apr','Mar','Aug','Jun','Jul','Sep','May','Oct']
for j in node:
for i in mon:
inp= pd.read_csv('../data_gkv/AT510_Node_'+str(j)+'_'+str(i)+'19_OutputFile.csv',usecols=[1,2,3,15,16],low_memory=False)
out= pd.read_csv('../data_gkv/AT510_Node_'+str(j)+'_'+str(i)+'19_OutputFile.csv',usecols=[5,6,7,8,17,18,19],low_memory=False)
inp=np.array(inp,dtype='float32')
out=np.array(out,dtype='float32')
A1=np.append(A1, inp, axis=0)
U1=np.append(U1, out, axis=0)
print(A1)
print(U1)
###Output
[[1.50000e+02 1.90401e+05 7.25000e+02 2.75500e+01 8.03900e+01]
[1.50000e+02 1.90401e+05 8.25000e+02 2.75600e+01 8.03300e+01]
[1.50000e+02 1.90401e+05 9.25000e+02 2.75800e+01 8.02400e+01]
...
[6.10000e+01 1.91020e+05 1.94532e+05 2.93700e+01 7.52100e+01]
[6.10000e+01 1.91020e+05 1.94632e+05 2.93500e+01 7.52700e+01]
[6.10000e+01 1.91020e+05 1.94732e+05 2.93400e+01 7.53000e+01]]
[[ 28. 3. -52. ... 16.97 19.63 20.06]
[ 28. 15. -53. ... 16.63 19.57 23.06]
[ 31. 16. -55. ... 17.24 19.98 20.24]
...
[ 76. 12. -76. ... 3.47 3.95 4.35]
[ 75. 13. -76. ... 3.88 4.33 4.42]
[ 76. 12. -75. ... 3.46 4.07 4.28]]
###Markdown
Min Max Scaler
###Code
from sklearn.preprocessing import MinMaxScaler
import warnings
scaler_obj=MinMaxScaler()
X1=scaler_obj.fit_transform(A1)
Y1=scaler_obj.fit_transform(U1)
warnings.filterwarnings(action='ignore', category=UserWarning)
###Output
_____no_output_____
###Markdown
Model
###Code
from sklearn.neighbors import KNeighborsRegressor
from sklearn.multioutput import MultiOutputRegressor
# Splitting Data into training and testing dataset
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(X1,Y1,test_size=0.25,random_state=42)
model6 =MultiOutputRegressor(KNeighborsRegressor(n_neighbors=7,weights='uniform',algorithm='auto',leaf_size=50,p=2))
model_fit6=model6.fit(x_train, y_train)
print('Model Training done!!')
# Dumping Model into a file
filename6 = 'Models_File/knn.sav'
pickle.dump(model_fit6, open(filename6, 'wb'))
###Output
Model Training done!!
###Markdown
Error Analysis
###Code
from sklearn import metrics
from sklearn.metrics import r2_score
train_sizes=['NO2','O3','NO','CO','PM1','PM2.5','PM10']
y_test_pred6=model_fit6.predict(x_test)
y_train_pred6=model_fit6.predict(x_train)
#finding out the r2 score
r2_test6=r2_score(y_test,y_test_pred6,multioutput='variance_weighted')
r2_train6=r2_score(y_train,y_train_pred6,multioutput='variance_weighted')
print('r2 score on train data '+ str(r2_train6))
print('r2 score on test data '+ str(r2_test6))
knn_mae=metrics.mean_absolute_error(y_test, y_test_pred6)
knn_mse=metrics.mean_squared_error(y_test, y_test_pred6)
knn_rmse=np.sqrt(metrics.mean_squared_error(y_test, y_test_pred6))
print('Mean Absolute Error:',knn_mae)
print('Mean Squared Error:',knn_mse )
print('Root Mean Squared Error:',knn_rmse)
import pickle
from sklearn.metrics import r2_score
from sklearn import metrics
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(X1,Y1,test_size=0.25,random_state=42)
loaded_model_fit7 = pickle.load(open("knn.sav", 'rb'))
y_test_pred=loaded_model_fit7.predict(x_test)
print("Predicted :\n",y_test_pred)
r2_test=r2_score(y_test,y_test_pred,multioutput='variance_weighted')
print("R2 Score : ",r2_test)
###Output
Predicted :
[[0.00011546 0.06553679 0.00010997 ... 0.00640681 0.00386692 0.00135243]
[0.00011029 0.06553687 0.00012299 ... 0.00811652 0.00491546 0.00169688]
[0.00011284 0.06553693 0.00011782 ... 0.0196785 0.01237714 0.0042929 ]
...
[0.00011125 0.06553665 0.00011532 ... 0.05718024 0.03629992 0.01205484]
[0.0001149 0.06553687 0.00010984 ... 0.00784995 0.00463913 0.00165329]
[0.00011033 0.06553662 0.00012027 ... 0.0052287 0.00358975 0.00154209]]
R2 Score : 0.650844072704262
###Markdown
y-test vs y-predict
###Code
# printing y_test and y_test_predict
print("Y_Test:",y_test)
print("Y_Test_Predict:",y_test_pred6)
from matplotlib import style
style.use('ggplot')
for i in range(0,7):
plt.figure(figsize=[12,10])
plt.plot(y_test[:,i],linewidth=3, markersize=12)
plt.plot(y_test_pred6[:,i],linewidth=2, markersize=12)
plt.xlabel('X')
plt.ylabel(train_sizes[i])
plt.show()
###Output
Y_Test: [[0.00011559 0.06553685 0.00011085 ... 0.0021448 0.0014142 0.00052142]
[0.00011088 0.06553695 0.00012144 ... 0.01090628 0.00639894 0.00234271]
[0.0001138 0.06553686 0.00011756 ... 0.02938369 0.01855402 0.00761428]
...
[0.00011103 0.06553663 0.00011547 ... 0.05674056 0.03595096 0.01243099]
[0.00011477 0.06553688 0.00010965 ... 0.00815022 0.00468672 0.00148292]
[0.00010879 0.06553657 0.00012025 ... 0.00375339 0.00246608 0.00081172]]
Y_Test_Predict: [[0.00011546 0.06553679 0.00010997 ... 0.00640681 0.00386692 0.00135243]
[0.00011029 0.06553687 0.00012299 ... 0.00811652 0.00491546 0.00169688]
[0.00011284 0.06553693 0.00011782 ... 0.0196785 0.01237714 0.0042929 ]
...
[0.00011125 0.06553665 0.00011532 ... 0.05718024 0.03629992 0.01205484]
[0.0001149 0.06553687 0.00010984 ... 0.00784995 0.00463913 0.00165329]
[0.00011033 0.06553662 0.00012027 ... 0.0052287 0.00358975 0.00154209]]
|
matplotlib/gallery_jupyter/pyplots/fig_axes_customize_simple.ipynb | ###Markdown
Fig Axes Customize SimpleCustomize the background, labels and ticks of a simple plot.
###Code
import matplotlib.pyplot as plt
###Output
_____no_output_____
###Markdown
``plt.figure`` creates a ```matplotlib.figure.Figure`` instance
###Code
fig = plt.figure()
rect = fig.patch # a rectangle instance
rect.set_facecolor('lightgoldenrodyellow')
ax1 = fig.add_axes([0.1, 0.3, 0.4, 0.4])
rect = ax1.patch
rect.set_facecolor('lightslategray')
for label in ax1.xaxis.get_ticklabels():
# label is a Text instance
label.set_color('tab:red')
label.set_rotation(45)
label.set_fontsize(16)
for line in ax1.yaxis.get_ticklines():
# line is a Line2D instance
line.set_color('tab:green')
line.set_markersize(25)
line.set_markeredgewidth(3)
plt.show()
###Output
_____no_output_____
###Markdown
------------References""""""""""The use of the following functions, methods, classes and modules is shownin this example:
###Code
import matplotlib
matplotlib.axis.Axis.get_ticklabels
matplotlib.axis.Axis.get_ticklines
matplotlib.text.Text.set_rotation
matplotlib.text.Text.set_fontsize
matplotlib.text.Text.set_color
matplotlib.lines.Line2D
matplotlib.lines.Line2D.set_color
matplotlib.lines.Line2D.set_markersize
matplotlib.lines.Line2D.set_markeredgewidth
matplotlib.patches.Patch.set_facecolor
###Output
_____no_output_____ |
aula06_2020_09_10_backpropagation_iris_dataset.ipynb | ###Markdown
BACKPROPAGATION IRIS DATASET
###Code
random.seed(5000)
###Output
_____no_output_____
###Markdown
Carregar dados da Iris
###Code
with open('Dataset/data_iris.txt') as csvfile:
csvreader = csv.reader(csvfile)
dataset = list(csvreader)
###Output
_____no_output_____
###Markdown
Padronizar dados para valores numericos
###Code
for row in dataset:
row[4] = ["Iris-setosa", "Iris-versicolor", "Iris-virginica"].index(row[4])
row[:4] = [float(row[j]) for j in range(len(row))]
###Output
_____no_output_____
###Markdown
Dividir os dados para trinamento
###Code
random.shuffle(dataset)
datatrain = dataset[:int(len(dataset) * 0.8)]
datatest = dataset[int(len(dataset) * 0.8):]
train_X = [data[:4] for data in datatrain]
train_y = [data[4] for data in datatrain]
test_X = [data[:4] for data in datatest]
test_y = [data[4] for data in datatest]
###Output
_____no_output_____
###Markdown
Multiplicação das matrizes para teste
###Code
def matrix_mul_bias(A, B, bias):
C = [[0 for i in range(len(B[0]))] for i in range(len(A))]
for i in range(len(A)):
for j in range(len(B[0])):
for k in range(len(B)):
C[i][j] += A[i][k] * B[k][j]
C[i][j] += bias[j]
return C
###Output
_____no_output_____
###Markdown
Multiplicação do vetor A com matriz B
###Code
def vec_mat_bias(A, B, bias):
C = [0 for i in range(len(B[0]))]
for j in range(len(B[0])):
for k in range(len(B)):
C[j] += A[k] * B[k][j]
C[j] += bias[j]
return C
###Output
_____no_output_____
###Markdown
Multiplicação das para Backpropagation
###Code
def mat_vec(A, B):
C = [0 for i in range(len(A))]
for i in range(len(A)):
for j in range(len(B)):
C[i] += A[i][j] * B[j]
return C
###Output
_____no_output_____
###Markdown
Função de Sigmoid
###Code
def sigmoid(A, deriv=False):
if deriv:
for i in range(len(A)):
A[i] = A[i] * (1 - A[i])
else:
for i in range(len(A)):
A[i] = 1 / (1 + math.exp(-A[i]))
return A
###Output
_____no_output_____
###Markdown
Parametros para treinamento
###Code
alfa = 0.005
epoch = 1000
neuron = [4, 5, 3]
###Output
_____no_output_____
###Markdown
Iniciar pesos e bias
###Code
weight = [[0 for j in range(neuron[1])] for i in range(neuron[0])]
weight_2 = [[0 for j in range(neuron[2])] for i in range(neuron[1])]
bias = [0 for i in range(neuron[1])]
bias_2 = [0 for i in range(neuron[2])]
###Output
_____no_output_____
###Markdown
Iniciar pesos com valores randômicos [-1.0 | 1.0]
###Code
for i in range(neuron[0]):
for j in range(neuron[1]):
weight[i][j] = 2 * random.random() - 1
for i in range(neuron[1]):
for j in range(neuron[2]):
weight_2[i][j] = 2 * random.random() - 1
show_total_cost = ''
for e in range(epoch):
cost_total = 0
for idx, x in enumerate(train_X):
# forward propagation
h_1 = vec_mat_bias(x, weight, bias)
X_1 = sigmoid(h_1)
h_2 = vec_mat_bias(X_1, weight_2, bias_2)
X_2 = sigmoid(h_2)
# converter para único
target = [0, 0, 0]
target[int(train_y[idx])] = 1
# função de custo, erro de raiz quadrada
eror = 0
for i in range(neuron[2]):
eror += (target[i] - X_2[i]) ** 2
cost_total += eror * 1 / neuron[2]
# backpropagation
# atualização dos pesos e bias camada 2
delta_2 = []
for j in range(neuron[2]):
delta_2.append(-1 * 2. / neuron[2] * (target[j]-X_2[j]) * X_2[j] * (1-X_2[j]))
for i in range(neuron[1]):
for j in range(neuron[2]):
weight_2[i][j] -= alfa * (delta_2[j] * X_1[i])
bias_2[j] -= alfa * delta_2[j]
# atualização dos pesos e bias camada 1
delta_1 = mat_vec(weight_2, delta_2)
for j in range(neuron[1]):
delta_1[j] = delta_1[j] * (X_1[j] * (1-X_1[j]))
for i in range(neuron[0]):
for j in range(neuron[1]):
weight[i][j] -= alfa * (delta_1[j] * x[i])
bias[j] -= alfa * delta_1[j]
cost_total /= len(train_X)
if(e % 100 == 0):
show_total_cost += f'Custo total: {cost_total}\n'
# print(f'Custo total: {cost_total}')
###Output
_____no_output_____
###Markdown
Testes
###Code
res = matrix_mul_bias(test_X, weight, bias)
res_2 = matrix_mul_bias(res, weight_2, bias)
###Output
_____no_output_____
###Markdown
Obter previsão
###Code
preds = []
for r in res_2:
preds.append(max(enumerate(r), key=lambda x:x[1])[0])
###Output
_____no_output_____
###Markdown
Cálculo de precisão
###Code
acc = 0.0
for i in range(len(preds)):
if preds[i] == int(test_y[i]):
acc += 1
accuracy = acc / len(preds) * 100
print(show_total_cost)
print(f'Previsão: {preds}')
print(f'Precisão: {accuracy:.2f}%')
###Output
Custo total: 0.34550111123583205
Custo total: 0.13149238823242787
Custo total: 0.10949941015860527
Custo total: 0.09704320839532987
Custo total: 0.08506138069831262
Custo total: 0.07289757613509798
Custo total: 0.06139907048319877
Custo total: 0.05157342318796261
Custo total: 0.04379695079398785
Custo total: 0.03786338701243066
Previsão: [2, 0, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 2, 1, 1, 0, 2, 2, 0, 1, 2, 1, 1]
Precisão: 83.33%
|
6.Deep_Reinforcement_Learning/gym/Deep_Q-learning-cart_DQN_using_tensorflow.ipynb | ###Markdown
In conda env openAIsudo -H pip install python=3.5 sudo -H pip install tensorflow==1.3 Also Kernel should be openAI
###Code
%%bash
pwd
###Output
/Users/parksoy/Desktop/Soyoung_Udacity_ND_DeepLearning/6.Deep_Reinforcement_Learning/gym
###Markdown
Deep $Q$-learningIn this notebook, we'll build a neural network that can learn to play games through reinforcement learning. More specifically, we'll use $Q$-learning to train an agent to play a game called [Cart-Pole](https://gym.openai.com/envs/CartPole-v0). In this game, a freely swinging pole is attached to a cart. The cart can move to the left and right, and the goal is to keep the pole upright as long as possible.We can simulate this game using [OpenAI Gym](https://github.com/openai/gym). First, let's check out how OpenAI Gym works. Then, we'll get into training an agent to play the Cart-Pole game.
###Code
import gym
import numpy as np
# Create the Cart-Pole game environment
env = gym.make('CartPole-v1')
# Number of possible actions
print('Number of possible actions:', env.action_space.n, env.action_space)
###Output
[33mWARN: gym.spaces.Box autodetected dtype as <class 'numpy.float32'>. Please provide explicit dtype.[0m
Number of possible actions: 2 Discrete(2)
###Markdown
We interact with the simulation through `env`. You can see how many actions are possible from `env.action_space.n`, and to get a random action you can use `env.action_space.sample()`. Passing in an action as an integer to `env.step` will generate the next step in the simulation. This is general to all Gym games. In the Cart-Pole game, there are two possible actions, moving the cart left or right. So there are two actions we can take, encoded as 0 and 1.Run the code below to interact with the environment.
###Code
actions = [] # actions that the agent selects
rewards = [] # obtained rewards
state = env.reset()
while True:
action = env.action_space.sample() # choose a random action
state, reward, done, _ = env.step(action)
rewards.append(reward)
actions.append(action)
if done:
break
###Output
_____no_output_____
###Markdown
We can look at the actions and rewards:
###Code
print('Actions:', actions)
print('Rewards:', rewards)
###Output
Actions: [0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1]
Rewards: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
###Markdown
The game resets after the pole has fallen past a certain angle. For each step while the game is running, it returns a reward of 1.0. The longer the game runs, the more reward we get. Then, our network's goal is to maximize the reward by keeping the pole vertical. It will do this by moving the cart to the left and the right. $Q$-NetworkTo keep track of the action values, we'll use a neural network that accepts a state $s$ as input. The output will be $Q$-values for each available action $a$ (i.e., the output is **all** action values $Q(s,a)$ _corresponding to the input state $s$_).For this Cart-Pole game, the state has four values: the position and velocity of the cart, and the position and velocity of the pole. Thus, the neural network has **four inputs**, one for each value in the state, and **two outputs**, one for each possible action. As explored in the lesson, to get the training target, we'll first use the context provided by the state $s$ to choose an action $a$, then simulate the game using that action. This will get us the next state, $s'$, and the reward $r$. With that, we can calculate $\hat{Q}(s,a) = r + \gamma \max_{a'}{Q(s', a')}$. Then we update the weights by minimizing $(\hat{Q}(s,a) - Q(s,a))^2$. Below is one implementation of the $Q$-network. It uses two fully connected layers with ReLU activations. Two seems to be good enough, three might be better. Feel free to try it out.
###Code
import tensorflow as tf
class QNetwork:
def __init__(self, learning_rate=0.01, state_size=4,
action_size=2, hidden_size=10,
name='QNetwork'):
# state inputs to the Q-network
with tf.variable_scope(name):
self.inputs_ = tf.placeholder(tf.float32, [None, state_size], name='inputs')
# One hot encode the actions to later choose the Q-value for the action
self.actions_ = tf.placeholder(tf.int32, [None], name='actions')
one_hot_actions = tf.one_hot(self.actions_, action_size)
# Target Q values for training
self.targetQs_ = tf.placeholder(tf.float32, [None], name='target')
# ReLU hidden layers
self.fc1 = tf.contrib.layers.fully_connected(self.inputs_, hidden_size)
self.fc2 = tf.contrib.layers.fully_connected(self.fc1, hidden_size)
# Linear output layer
self.output = tf.contrib.layers.fully_connected(self.fc2, action_size, activation_fn=None)
#Train with loss (targetQ - Q)^2
#output has length 2, for two actions. This next line chooses
#one value from output (per row) according to the one-hot encoded actions.
self.Q = tf.reduce_sum(tf.multiply(self.output, one_hot_actions), axis=1)
self.loss = tf.reduce_mean(tf.square(self.targetQs_ - self.Q))
self.opt = tf.train.AdamOptimizer(learning_rate).minimize(self.loss)
###Output
/Users/parksoy/anaconda3/envs/openAI/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)
/Users/parksoy/anaconda3/envs/openAI/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)
###Markdown
Experience replayReinforcement learning algorithms can have stability issues due to correlations between states. To reduce correlations when training, we can store the agent's experiences and later draw a random mini-batch of those experiences to train on. Here, we'll create a `Memory` object that will store our experiences, our transitions $$. This memory will have a maximum capacity, so we can keep newer experiences in memory while getting rid of older experiences. Then, we'll sample a random mini-batch of transitions $$ and train on those.Below, I've implemented a `Memory` object. If you're unfamiliar with `deque`, this is a double-ended queue. You can think of it like a tube open on both sides. You can put objects in either side of the tube. But if it's full, adding anything more will push an object out the other side. This is a great data structure to use for the memory buffer.
###Code
from collections import deque
class Memory():
def __init__(self, max_size=1000):
self.buffer = deque(maxlen=max_size)
def add(self, experience):
self.buffer.append(experience)
def sample(self, batch_size):
idx = np.random.choice(np.arange(len(self.buffer)), size=batch_size, replace=False)
return [self.buffer[ii] for ii in idx]
###Output
_____no_output_____
###Markdown
$Q$-Learning training algorithmWe will use the below algorithm to train the network. For this game, the goal is to keep the pole upright for 195 frames. So we can start a new episode once meeting that goal. The game ends if the pole tilts over too far, or if the cart moves too far the left or right. When a game ends, we'll start a new episode. Now, to train the agent:* Initialize the memory $D$* Initialize the action-value network $Q$ with random weights* **For** episode $\leftarrow 1$ **to** $M$ **do** * Observe $s_0$ * **For** $t \leftarrow 0$ **to** $T-1$ **do** * With probability $\epsilon$ select a random action $a_t$, otherwise select $a_t = \mathrm{argmax}_a Q(s_t,a)$ * Execute action $a_t$ in simulator and observe reward $r_{t+1}$ and new state $s_{t+1}$ * Store transition $$ in memory $D$ * Sample random mini-batch from $D$: $$ * Set $\hat{Q}_j = r_j$ if the episode ends at $j+1$, otherwise set $\hat{Q}_j = r_j + \gamma \max_{a'}{Q(s'_j, a')}$ * Make a gradient descent step with loss $(\hat{Q}_j - Q(s_j, a_j))^2$ * **endfor*** **endfor**You are welcome (and encouraged!) to take the time to extend this code to implement some of the improvements that we discussed in the lesson, to include fixed $Q$ targets, double DQNs, prioritized replay, and/or dueling networks. HyperparametersOne of the more difficult aspects of reinforcement learning is the large number of hyperparameters. Not only are we tuning the network, but we're tuning the simulation.
###Code
train_episodes = 1000 # max number of episodes to learn from
max_steps = 200 # max steps in an episode
gamma = 0.99 # future reward discount
# Exploration parameters
explore_start = 1.0 # exploration probability at start
explore_stop = 0.01 # minimum exploration probability
decay_rate = 0.0001 # exponential decay rate for exploration prob
# Network parameters
hidden_size = 64 # number of units in each Q-network hidden layer
learning_rate = 0.0001 # Q-network learning rate
# Memory parameters
memory_size = 10000 # memory capacity
batch_size = 20 # experience mini-batch size
pretrain_length = batch_size # number experiences to pretrain the memory
tf.reset_default_graph()
mainQN = QNetwork(name='main', hidden_size=hidden_size, learning_rate=learning_rate)
###Output
/Users/parksoy/anaconda3/envs/openAI/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)
/Users/parksoy/anaconda3/envs/openAI/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)
/Users/parksoy/anaconda3/envs/openAI/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)
###Markdown
Populate the experience memoryHere we re-initialize the simulation and pre-populate the memory. The agent is taking random actions and storing the transitions in memory. This will help the agent with exploring the game.
###Code
# Initialize the simulation
env.reset()
# Take one random step to get the pole and cart moving
state, reward, done, _ = env.step(env.action_space.sample())
memory = Memory(max_size=memory_size)
# Make a bunch of random actions and store the experiences
for ii in range(pretrain_length):
# Make a random action
action = env.action_space.sample()
next_state, reward, done, _ = env.step(action)
if done:
# The simulation fails so no next state
next_state = np.zeros(state.shape)
# Add experience to memory
memory.add((state, action, reward, next_state))
# Start new episode
env.reset()
# Take one random step to get the pole and cart moving
state, reward, done, _ = env.step(env.action_space.sample())
else:
# Add experience to memory
memory.add((state, action, reward, next_state))
state = next_state
###Output
_____no_output_____
###Markdown
TrainingBelow we'll train our agent.
###Code
# Now train with experiences
saver = tf.train.Saver()
rewards_list = []
with tf.Session() as sess:
# Initialize variables
sess.run(tf.global_variables_initializer())
step = 0
for ep in range(1, train_episodes):
total_reward = 0
t = 0
while t < max_steps:
step += 1
# Uncomment this next line to watch the training
env.render()
# Explore or Exploit
explore_p = explore_stop + (explore_start - explore_stop)*np.exp(-decay_rate*step)
if explore_p > np.random.rand():
# Make a random action
action = env.action_space.sample()
else:
# Get action from Q-network
#feed = {mainQN.inputs_: state.reshape((1, *state.shape))}
Qs = sess.run(mainQN.output, feed_dict={mainQN.inputs_: state.reshape((1, *state.shape))})
action = np.argmax(Qs)
# Take action, get new state and reward
next_state, reward, done, _ = env.step(action)
total_reward += reward
if done:
# the episode ends so no next state
next_state = np.zeros(state.shape)
t = max_steps
print('Episode: {}'.format(ep),
'Total reward: {}'.format(total_reward),
'Training loss: {:.4f}'.format(loss),
'Explore P: {:.4f}'.format(explore_p))
rewards_list.append((ep, total_reward))
# Add experience to memory
memory.add((state, action, reward, next_state))
# Start new episode
env.reset()
# Take one random step to get the pole and cart moving
state, reward, done, _ = env.step(env.action_space.sample())
else:
# Add experience to memory
memory.add((state, action, reward, next_state))
state = next_state
t += 1
# Sample mini-batch from memory
batch = memory.sample(batch_size)
states = np.array([each[0] for each in batch])
actions = np.array([each[1] for each in batch])
rewards = np.array([each[2] for each in batch])
next_states = np.array([each[3] for each in batch])
# Train network
target_Qs = sess.run(mainQN.output, feed_dict={mainQN.inputs_: next_states})
# Set target_Qs to 0 for states where episode ends
episode_ends = (next_states == np.zeros(states[0].shape)).all(axis=1)
target_Qs[episode_ends] = (0, 0)
targets = rewards + gamma * np.max(target_Qs, axis=1)
loss, _ = sess.run([mainQN.loss, mainQN.opt],
feed_dict={mainQN.inputs_: states,
mainQN.targetQs_: targets,
mainQN.actions_: actions})
saver.save(sess, "checkpoints/cartpole.ckpt")
###Output
Episode: 1 Total reward: 3.0 Training loss: 1.1599 Explore P: 0.9997
Episode: 2 Total reward: 20.0 Training loss: 1.1814 Explore P: 0.9977
Episode: 3 Total reward: 15.0 Training loss: 1.1074 Explore P: 0.9962
Episode: 4 Total reward: 22.0 Training loss: 1.2165 Explore P: 0.9941
Episode: 5 Total reward: 15.0 Training loss: 1.0962 Explore P: 0.9926
Episode: 6 Total reward: 14.0 Training loss: 1.1756 Explore P: 0.9912
Episode: 7 Total reward: 21.0 Training loss: 1.2184 Explore P: 0.9892
Episode: 8 Total reward: 24.0 Training loss: 1.2125 Explore P: 0.9868
Episode: 9 Total reward: 11.0 Training loss: 1.2785 Explore P: 0.9857
Episode: 10 Total reward: 15.0 Training loss: 1.2947 Explore P: 0.9843
Episode: 11 Total reward: 17.0 Training loss: 1.3504 Explore P: 0.9826
Episode: 12 Total reward: 15.0 Training loss: 1.1414 Explore P: 0.9812
Episode: 13 Total reward: 35.0 Training loss: 1.4642 Explore P: 0.9778
Episode: 14 Total reward: 15.0 Training loss: 1.3605 Explore P: 0.9763
Episode: 15 Total reward: 26.0 Training loss: 1.4965 Explore P: 0.9738
Episode: 16 Total reward: 10.0 Training loss: 1.3594 Explore P: 0.9729
Episode: 17 Total reward: 12.0 Training loss: 1.3288 Explore P: 0.9717
Episode: 18 Total reward: 12.0 Training loss: 1.5042 Explore P: 0.9705
Episode: 19 Total reward: 15.0 Training loss: 1.5071 Explore P: 0.9691
Episode: 20 Total reward: 15.0 Training loss: 1.5344 Explore P: 0.9677
Episode: 21 Total reward: 19.0 Training loss: 1.7653 Explore P: 0.9659
Episode: 22 Total reward: 10.0 Training loss: 1.4561 Explore P: 0.9649
Episode: 23 Total reward: 30.0 Training loss: 1.7309 Explore P: 0.9620
Episode: 24 Total reward: 22.0 Training loss: 1.5788 Explore P: 0.9599
Episode: 25 Total reward: 16.0 Training loss: 2.1181 Explore P: 0.9584
Episode: 26 Total reward: 26.0 Training loss: 1.7890 Explore P: 0.9560
Episode: 27 Total reward: 20.0 Training loss: 1.4674 Explore P: 0.9541
Episode: 28 Total reward: 11.0 Training loss: 1.8882 Explore P: 0.9530
Episode: 29 Total reward: 16.0 Training loss: 2.0678 Explore P: 0.9515
Episode: 30 Total reward: 12.0 Training loss: 1.6757 Explore P: 0.9504
Episode: 31 Total reward: 35.0 Training loss: 2.3059 Explore P: 0.9471
Episode: 32 Total reward: 21.0 Training loss: 3.9898 Explore P: 0.9451
Episode: 33 Total reward: 16.0 Training loss: 3.5834 Explore P: 0.9437
Episode: 34 Total reward: 8.0 Training loss: 2.5676 Explore P: 0.9429
Episode: 35 Total reward: 28.0 Training loss: 3.4999 Explore P: 0.9403
Episode: 36 Total reward: 11.0 Training loss: 4.7156 Explore P: 0.9393
Episode: 37 Total reward: 27.0 Training loss: 4.6368 Explore P: 0.9368
Episode: 38 Total reward: 23.0 Training loss: 4.9790 Explore P: 0.9346
Episode: 39 Total reward: 13.0 Training loss: 18.6209 Explore P: 0.9334
Episode: 40 Total reward: 25.0 Training loss: 8.5095 Explore P: 0.9311
Episode: 41 Total reward: 12.0 Training loss: 3.0701 Explore P: 0.9300
Episode: 42 Total reward: 18.0 Training loss: 6.6973 Explore P: 0.9284
Episode: 43 Total reward: 27.0 Training loss: 9.2620 Explore P: 0.9259
Episode: 44 Total reward: 14.0 Training loss: 5.6347 Explore P: 0.9246
Episode: 45 Total reward: 10.0 Training loss: 7.5204 Explore P: 0.9237
Episode: 46 Total reward: 29.0 Training loss: 18.0371 Explore P: 0.9211
Episode: 47 Total reward: 13.0 Training loss: 6.4436 Explore P: 0.9199
Episode: 48 Total reward: 24.0 Training loss: 21.0477 Explore P: 0.9177
Episode: 49 Total reward: 16.0 Training loss: 3.2908 Explore P: 0.9162
Episode: 50 Total reward: 10.0 Training loss: 7.7244 Explore P: 0.9153
Episode: 51 Total reward: 18.0 Training loss: 22.4228 Explore P: 0.9137
Episode: 52 Total reward: 20.0 Training loss: 12.0076 Explore P: 0.9119
Episode: 53 Total reward: 14.0 Training loss: 4.9683 Explore P: 0.9106
Episode: 54 Total reward: 36.0 Training loss: 4.9670 Explore P: 0.9074
Episode: 55 Total reward: 44.0 Training loss: 4.5941 Explore P: 0.9035
Episode: 56 Total reward: 11.0 Training loss: 31.7736 Explore P: 0.9025
Episode: 57 Total reward: 9.0 Training loss: 4.5797 Explore P: 0.9017
Episode: 58 Total reward: 9.0 Training loss: 18.3685 Explore P: 0.9009
Episode: 59 Total reward: 39.0 Training loss: 28.3731 Explore P: 0.8974
Episode: 60 Total reward: 20.0 Training loss: 9.7233 Explore P: 0.8956
Episode: 61 Total reward: 23.0 Training loss: 16.9201 Explore P: 0.8936
Episode: 62 Total reward: 11.0 Training loss: 9.1767 Explore P: 0.8926
Episode: 63 Total reward: 14.0 Training loss: 35.6544 Explore P: 0.8914
Episode: 64 Total reward: 12.0 Training loss: 16.3475 Explore P: 0.8903
Episode: 65 Total reward: 25.0 Training loss: 17.7496 Explore P: 0.8881
Episode: 66 Total reward: 14.0 Training loss: 12.2471 Explore P: 0.8869
Episode: 67 Total reward: 15.0 Training loss: 5.3807 Explore P: 0.8856
Episode: 68 Total reward: 10.0 Training loss: 15.5058 Explore P: 0.8847
Episode: 69 Total reward: 11.0 Training loss: 5.6644 Explore P: 0.8838
Episode: 70 Total reward: 17.0 Training loss: 5.1486 Explore P: 0.8823
Episode: 71 Total reward: 31.0 Training loss: 39.6477 Explore P: 0.8796
Episode: 72 Total reward: 16.0 Training loss: 17.3608 Explore P: 0.8782
Episode: 73 Total reward: 9.0 Training loss: 51.9727 Explore P: 0.8774
Episode: 74 Total reward: 24.0 Training loss: 4.9196 Explore P: 0.8753
Episode: 75 Total reward: 7.0 Training loss: 43.4169 Explore P: 0.8747
Episode: 76 Total reward: 17.0 Training loss: 8.8308 Explore P: 0.8733
Episode: 77 Total reward: 15.0 Training loss: 6.8456 Explore P: 0.8720
Episode: 78 Total reward: 9.0 Training loss: 34.9034 Explore P: 0.8712
Episode: 79 Total reward: 19.0 Training loss: 5.1730 Explore P: 0.8695
Episode: 80 Total reward: 11.0 Training loss: 6.3333 Explore P: 0.8686
Episode: 81 Total reward: 17.0 Training loss: 58.5313 Explore P: 0.8671
Episode: 82 Total reward: 28.0 Training loss: 31.3829 Explore P: 0.8647
Episode: 83 Total reward: 60.0 Training loss: 43.2549 Explore P: 0.8596
Episode: 84 Total reward: 9.0 Training loss: 34.1543 Explore P: 0.8589
Episode: 85 Total reward: 11.0 Training loss: 80.6658 Explore P: 0.8579
Episode: 86 Total reward: 10.0 Training loss: 20.5472 Explore P: 0.8571
Episode: 87 Total reward: 15.0 Training loss: 79.1897 Explore P: 0.8558
Episode: 88 Total reward: 14.0 Training loss: 75.7503 Explore P: 0.8546
Episode: 89 Total reward: 12.0 Training loss: 7.4997 Explore P: 0.8536
Episode: 90 Total reward: 24.0 Training loss: 39.0961 Explore P: 0.8516
Episode: 91 Total reward: 27.0 Training loss: 26.0492 Explore P: 0.8493
Episode: 92 Total reward: 20.0 Training loss: 7.3271 Explore P: 0.8477
Episode: 93 Total reward: 21.0 Training loss: 54.3442 Explore P: 0.8459
Episode: 94 Total reward: 10.0 Training loss: 65.0093 Explore P: 0.8451
Episode: 95 Total reward: 10.0 Training loss: 22.7581 Explore P: 0.8442
Episode: 96 Total reward: 11.0 Training loss: 8.7713 Explore P: 0.8433
Episode: 97 Total reward: 45.0 Training loss: 6.1900 Explore P: 0.8396
Episode: 98 Total reward: 18.0 Training loss: 49.6014 Explore P: 0.8381
Episode: 99 Total reward: 15.0 Training loss: 67.9963 Explore P: 0.8368
Episode: 100 Total reward: 34.0 Training loss: 26.8744 Explore P: 0.8340
Episode: 101 Total reward: 10.0 Training loss: 11.8253 Explore P: 0.8332
Episode: 102 Total reward: 10.0 Training loss: 11.3261 Explore P: 0.8324
Episode: 103 Total reward: 12.0 Training loss: 10.4733 Explore P: 0.8314
Episode: 104 Total reward: 12.0 Training loss: 83.9013 Explore P: 0.8304
Episode: 105 Total reward: 20.0 Training loss: 50.8625 Explore P: 0.8288
Episode: 106 Total reward: 10.0 Training loss: 237.4370 Explore P: 0.8280
Episode: 107 Total reward: 21.0 Training loss: 11.1711 Explore P: 0.8262
Episode: 108 Total reward: 13.0 Training loss: 9.8193 Explore P: 0.8252
Episode: 109 Total reward: 17.0 Training loss: 197.8580 Explore P: 0.8238
Episode: 110 Total reward: 16.0 Training loss: 10.9191 Explore P: 0.8225
Episode: 111 Total reward: 14.0 Training loss: 38.1945 Explore P: 0.8214
Episode: 112 Total reward: 22.0 Training loss: 13.8786 Explore P: 0.8196
Episode: 113 Total reward: 52.0 Training loss: 145.6032 Explore P: 0.8154
Episode: 114 Total reward: 32.0 Training loss: 57.4257 Explore P: 0.8128
Episode: 115 Total reward: 13.0 Training loss: 15.1616 Explore P: 0.8118
###Markdown
Visualizing trainingBelow we plot the total rewards for each episode. The rolling average is plotted in blue.
###Code
%matplotlib inline
import matplotlib.pyplot as plt
def running_mean(x, N):
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / N
eps, rews = np.array(rewards_list).T #(ep, total_reward)
smoothed_rews = running_mean(rews, 10)
plt.plot(eps[-len(smoothed_rews):], smoothed_rews, label='running_mean')
plt.plot(eps, rews, color='grey', alpha=0.3, label='rewards_list')
plt.xlabel('Episode')
plt.ylabel('Total Reward')
plt.legend()
###Output
_____no_output_____
###Markdown
 Playing Atari GamesSo, Cart-Pole is a pretty simple game. However, the same model can be used to train an agent to play something much more complicated like Pong or Space Invaders. Instead of a state like we're using here though, you'd want to use convolutional layers to get the state from the screen images.I'll leave it as a challenge for you to use deep Q-learning to train an agent to play Atari games. Here's the original paper which will get you started: http://www.davidqiu.com:8888/research/nature14236.pdf.
###Code
env.close()
###Output
_____no_output_____ |
doc/load_json.ipynb | ###Markdown
Season
###Code
import requests
import json
# read the JSON file from the web
json_file = 'https://raw.githubusercontent.com/emorynlp/character-mining/master/json/friends_season_01.json'
r = requests.get(json_file)
# load season 1
season = json.loads(r.text)
season_id = season['season_id']
print(season_id)
###Output
s01
###Markdown
Episodes
###Code
# retrieve episodes
episodes = season['episodes']
# iterate through the episodes
for episode in episodes:
episode_id = episode['episode_id']
print(episode_id)
###Output
s01_e01
s01_e02
s01_e03
s01_e04
s01_e05
s01_e06
s01_e07
s01_e08
s01_e09
s01_e10
s01_e11
s01_e12
s01_e13
s01_e14
s01_e15
s01_e16
s01_e17
s01_e18
s01_e19
s01_e20
s01_e21
s01_e22
s01_e23
s01_e24
###Markdown
Scenes
###Code
# retrive scenes from the 18th episode
episode = episodes[17]
scenes = episode['scenes']
# iterate through the scenes
for scene in scenes:
scene_id = scene['scene_id']
print(scene_id)
###Output
s01_e18_c01
s01_e18_c02
s01_e18_c03
s01_e18_c04
s01_e18_c05
s01_e18_c06
s01_e18_c07
s01_e18_c08
###Markdown
Utterances
###Code
# retrieve utterances from the 5th scene
scene = scenes[4]
utterances = scene['utterances']
# iterate through the utterances
for utterance in utterances:
utterance_id = utterance['utterance_id']
print(utterance_id)
###Output
s01_e18_c05_u001
s01_e18_c05_u002
s01_e18_c05_u003
s01_e18_c05_u004
s01_e18_c05_u005
s01_e18_c05_u006
s01_e18_c05_u007
s01_e18_c05_u008
s01_e18_c05_u009
s01_e18_c05_u010
s01_e18_c05_u011
s01_e18_c05_u012
s01_e18_c05_u013
s01_e18_c05_u014
s01_e18_c05_u015
s01_e18_c05_u016
s01_e18_c05_u017
s01_e18_c05_u018
s01_e18_c05_u019
s01_e18_c05_u020
s01_e18_c05_u021
s01_e18_c05_u022
###Markdown
Utterance
###Code
# retrive fields from the 18th utterance
utterance = utterances[17]
# list of speakers
speakers = utterance['speakers']
print(speakers)
# the original transcript
transcript = utterance['transcript']
print(transcript)
# list of sentences, where each sentence is a list of tokens
tokens = utterance['tokens']
print(tokens)
###Output
['Phoebe Buffay', 'Rachel Green']
Yes, we should. I think we should.
[['Yes', ',', 'we', 'should', '.'], ['I', 'think', 'we', 'should', '.']]
###Markdown
For seasons 6-9, caption information is available.
###Code
# load season 6
json_file = 'https://raw.githubusercontent.com/emorynlp/character-mining/master/json/friends_season_06.json'
r = requests.get(json_file)
season = json.loads(r.text)
# 1st episode, 1st scene, 3rd utterance
utterance = season['episodes'][0]['scenes'][0]['utterances'][2]
caption = utterance['caption']
print('Begin time in milliseconds: %d' % caption[0])
print('End time in milliseconds: %d' % caption[1])
print('Text: %s' % caption[2])
###Output
Begin time in milliseconds: 6923
End time in milliseconds: 8382
Text: you sure you wanna do this
|
scripts/BuildDataset.ipynb | ###Markdown
Criação da base de dados Import
###Code
import pandas as pd
from csv import reader
import os.path
from os import path
import json
###Output
_____no_output_____
###Markdown
Variáveis Globais
###Code
repositories_path = '../results/evaluatedProjects.csv'
dt_g_columns = ['project_name','file','class','type','cbo','cboModified','fanin','fanout','wmc','dit','noc','rfc','lcom','lcom*','tcc','lcc','totalMethodsQty','staticMethodsQty','publicMethodsQty','privateMethodsQty','protectedMethodsQty','defaultMethodsQty','visibleMethodsQty','abstractMethodsQty','finalMethodsQty','synchronizedMethodsQty','totalFieldsQty','staticFieldsQty','publicFieldsQty','privateFieldsQty','protectedFieldsQty','defaultFieldsQty','finalFieldsQty','synchronizedFieldsQty','nosi','loc','returnQty','loopQty','comparisonsQty','tryCatchQty','parenthesizedExpsQty','stringLiteralsQty','numbersQty','assignmentsQty','mathOperationsQty','variablesQty','maxNestedBlocksQty','anonymousClassesQty','innerClassesQty','lambdasQty','uniqueWordsQty','modifiers','logStatementsQty','isLargeClassOrganic']
dt_g = pd.DataFrame(columns = dt_g_columns)
repositories = pd.read_csv(repositories_path, usecols=['Nome'])
removed_repositories = []
###Output
_____no_output_____
###Markdown
Unificação dos dados coletados nas métricas
###Code
with open(repositories_path, 'r') as read_obj:
csv_reader = reader(read_obj)
header = next(csv_reader)
if header != None:
for row in csv_reader:
if row:
repository_name = row[0]
metrics_result_path = '../results/'+repository_name+'/class.csv'
if os.path.getsize(metrics_result_path) > 0 :
repository = pd.read_csv(metrics_result_path)
df_r = pd.DataFrame(repository)
df_r['project_name'] = repository_name
if df_r.shape[0] > 0:
dt_g = pd.merge(dt_g,df_r, how='outer')
else:
removed_repositories.append(repository_name)
else:
removed_repositories.append(repository_name)
###Output
geral tamanho 0
geral tamanho 0
somando 0 1676
resultado 1676
geral tamanho 1676
somando 1676 4
resultado 1680
geral tamanho 1680
geral tamanho 1680
somando 1680 10176
resultado 11856
geral tamanho 11856
somando 11856 26750
resultado 38606
geral tamanho 38606
somando 38606 257
resultado 38863
geral tamanho 38863
somando 38863 752
resultado 39615
geral tamanho 39615
somando 39615 14350
resultado 53965
geral tamanho 53965
somando 53965 11856
resultado 65821
geral tamanho 65821
somando 65821 488
resultado 66309
geral tamanho 66309
somando 66309 1
resultado 66310
geral tamanho 66310
somando 66310 1088
resultado 67398
geral tamanho 67398
somando 67398 3531
resultado 70929
geral tamanho 70929
somando 70929 306
resultado 71235
geral tamanho 71235
somando 71235 266
resultado 71501
geral tamanho 71501
somando 71501 1445
resultado 72946
geral tamanho 72946
somando 72946 21562
resultado 94508
geral tamanho 94508
somando 94508 670
resultado 95178
geral tamanho 95178
somando 95178 3
resultado 95181
geral tamanho 95181
somando 95181 15038
resultado 110219
geral tamanho 110219
somando 110219 585
resultado 110804
geral tamanho 110804
somando 110804 2140
resultado 112944
geral tamanho 112944
somando 112944 6568
resultado 119512
geral tamanho 119512
somando 119512 765
resultado 120277
geral tamanho 120277
somando 120277 589
resultado 120866
geral tamanho 120866
somando 120866 222
resultado 121088
geral tamanho 121088
somando 121088 173
resultado 121261
geral tamanho 121261
somando 121261 1138
resultado 122399
geral tamanho 122399
somando 122399 272
resultado 122671
geral tamanho 122671
somando 122671 60
resultado 122731
geral tamanho 122731
somando 122731 5584
resultado 128315
geral tamanho 128315
somando 128315 482
resultado 128797
geral tamanho 128797
somando 128797 7061
resultado 135858
geral tamanho 135858
somando 135858 6328
resultado 142186
geral tamanho 142186
somando 142186 287
resultado 142473
geral tamanho 142473
somando 142473 183
resultado 142656
geral tamanho 142656
somando 142656 94
resultado 142750
geral tamanho 142750
somando 142750 415
resultado 143165
geral tamanho 143165
somando 143165 2276
resultado 145441
geral tamanho 145441
somando 145441 378
resultado 145819
geral tamanho 145819
somando 145819 513
resultado 146332
geral tamanho 146332
somando 146332 157
resultado 146489
geral tamanho 146489
somando 146489 2005
resultado 148494
geral tamanho 148494
geral tamanho 148494
somando 148494 1063
resultado 149557
geral tamanho 149557
somando 149557 4580
resultado 154137
geral tamanho 154137
somando 154137 1827
resultado 155964
geral tamanho 155964
somando 155964 2350
resultado 158314
geral tamanho 158314
somando 158314 2202
resultado 160516
geral tamanho 160516
somando 160516 592
resultado 161108
geral tamanho 161108
somando 161108 5505
resultado 166613
geral tamanho 166613
somando 166613 621
resultado 167234
geral tamanho 167234
somando 167234 163
resultado 167397
geral tamanho 167397
somando 167397 852
resultado 168249
geral tamanho 168249
somando 168249 3906
resultado 172155
geral tamanho 172155
somando 172155 54
resultado 172209
geral tamanho 172209
somando 172209 7836
resultado 180045
geral tamanho 180045
somando 180045 2556
resultado 182601
geral tamanho 182601
somando 182601 1934
resultado 184535
geral tamanho 184535
somando 184535 1407
resultado 185942
geral tamanho 185942
somando 185942 3855
resultado 189797
geral tamanho 189797
somando 189797 1522
resultado 191319
geral tamanho 191319
somando 191319 2246
resultado 193565
geral tamanho 193565
somando 193565 23795
resultado 217360
geral tamanho 217360
somando 217360 51
resultado 217411
geral tamanho 217411
somando 217411 11147
resultado 228558
geral tamanho 228558
somando 228558 45
resultado 228603
geral tamanho 228603
somando 228603 287
resultado 228890
geral tamanho 228890
somando 228890 563
resultado 229453
geral tamanho 229453
somando 229453 509
resultado 229962
geral tamanho 229962
somando 229962 140
resultado 230102
geral tamanho 230102
somando 230102 617
resultado 230719
geral tamanho 230719
somando 230719 1542
resultado 232261
geral tamanho 232261
somando 232261 1575
resultado 233836
geral tamanho 233836
somando 233836 91
resultado 233927
geral tamanho 233927
somando 233927 22916
resultado 256843
geral tamanho 256843
somando 256843 1472
resultado 258315
geral tamanho 258315
somando 258315 1704
resultado 260019
geral tamanho 260019
somando 260019 143
resultado 260162
geral tamanho 260162
somando 260162 160
resultado 260322
geral tamanho 260322
somando 260322 499
resultado 260821
geral tamanho 260821
somando 260821 509
resultado 261330
geral tamanho 261330
somando 261330 88
resultado 261418
geral tamanho 261418
somando 261418 67
resultado 261485
geral tamanho 261485
somando 261485 776
resultado 262261
geral tamanho 262261
somando 262261 105
resultado 262366
geral tamanho 262366
somando 262366 16
resultado 262382
geral tamanho 262382
somando 262382 114
resultado 262496
geral tamanho 262496
somando 262496 403
resultado 262899
geral tamanho 262899
somando 262899 3
resultado 262902
geral tamanho 262902
somando 262902 269
resultado 263171
geral tamanho 263171
somando 263171 1776
resultado 264947
geral tamanho 264947
somando 264947 98
resultado 265045
geral tamanho 265045
somando 265045 45
resultado 265090
geral tamanho 265090
somando 265090 139
resultado 265229
geral tamanho 265229
somando 265229 1080
resultado 266309
geral tamanho 266309
somando 266309 1580
resultado 267889
geral tamanho 267889
somando 267889 28
resultado 267917
###Markdown
repositórios removidos
###Code
print(removed_repositories)
###Output
['JavaGuide', 'advanced-java', 'guava', 'toBeTopJavaer']
###Markdown
Unificação dos dados coletados com as ferramentas de _code smells_
###Code
organic_result_path = '../results/elasticsearch-analysis-ik/organicResult.json'
organic_results = json.load(open(organic_result_path,'r'))
for result in organic_results:
dataframe_class = pd.DataFrame.from_dict(result, orient="index")
row_dt = dt_g.loc[dt_g['file'] == result['sourceFile']['file']['path']]
row_dt['isLargeClassOrganic'] = result['smells']
isLargeClas = row_dt['isLargeClassOrganic']
###Output
_____no_output_____ |
notebooks/09_clean_all_data.ipynb | ###Markdown
1. Load raw combined data
###Code
# Load movie+book data
import pandas as pd
all_data_df = pd.read_pickle('../data/all_data')
all_data_df.shape
all_df = all_data_df.drop(columns=['vote','metascore','keywords']).\
drop_duplicates(subset=['movie_title','director'])
all_df.rename(columns = {'certificate':'MPAA','star':'actor','year':'publish_year',\
'rating_value':'rating_value_b','rating_count':'rating_count_b','review_count':'review_count_b'},\
inplace=True)
all_df.info()
###Output
<class 'pandas.core.frame.DataFrame'>
Int64Index: 837 entries, 0 to 18138
Data columns (total 30 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 movie_title 837 non-null object
1 rating 837 non-null float64
2 MPAA 837 non-null object
3 genre 837 non-null object
4 release_date 837 non-null datetime64[ns]
5 budget 810 non-null float64
6 opening_weekend_usa 596 non-null float64
7 gross_usa 636 non-null float64
8 gross_world 683 non-null float64
9 runtime 833 non-null float64
10 distributor 836 non-null object
11 language 837 non-null object
12 country 837 non-null object
13 director 837 non-null object
14 writer 837 non-null object
15 actor 837 non-null object
16 author 837 non-null object
17 rating_value_b 837 non-null float64
18 rating_count_b 837 non-null float64
19 review_count_b 837 non-null float64
20 page 818 non-null float64
21 publish_year 835 non-null float64
22 title 837 non-null object
23 book_popularity 837 non-null float64
24 author_popularity 837 non-null float64
25 release_year 837 non-null int64
26 count_a 837 non-null int64
27 film_count_d 837 non-null int64
28 avg_rating_d 837 non-null float64
29 avg_gross_d 837 non-null int64
dtypes: datetime64[ns](1), float64(14), int64(4), object(11)
memory usage: 202.7+ KB
###Markdown
2. Examine features * Book and author popularity
###Code
# Load book_history_2
book_history = pd.read_pickle('../dump/book_history_2_data')
book_history['release_date'] = book_history['release_date'].astype('datetime64[ns]')
book_history.info()
np.log(book_history.title_search).hist(bins=20)
np.log(book_history.search_fiction_book).hist(bins=20)
np.log(book_history.author_search).hist(bins=20)
np.log(book_history.search_fiction_author).hist(bins=20)
all_df['book_popularity_test'] = all_df['title_search'] / all_df['search_fiction_book']
# log plot distribution looks ok
np.log(all_df['book_popularity_test']).hist()
all_df['log_book_popularity'] = np.log(all_df['book_popularity_test'])
# Same for author populatiry
all_df['author_popularity_test'] = all_df['author_search'] / all_df['search_fiction_author']
np.log(all_df['author_popularity_test']).hist()
all_df['log_author_popularity'] = np.log(all_df['author_popularity_test'])
all_df.shape
all_df.to_pickle('../dump/complete_data')
###Output
_____no_output_____
###Markdown
3. Simple EDA
###Code
all_df.corr()
# sns.heatmap(all_df.corr(), cmap="seismic", annot=True, vmin=-1, vmax=1);
sns.heatmap(all_df.corr(), cmap="seismic", vmin=-0.8, vmax=1);
continuous_variables = ['opening_weekend_usa', 'gross_usa', 'gross_world','rating', \
'budget','runtime','release_year', 'release_month','dow',\
'film_count_d', 'avg_rating_d', 'avg_gross_d', \
'page', 'publish_year','log_book_search','title_search','search_fiction_book', \
'log_author_search','author_search', 'search_fiction_author',\
'book_popularity', 'author_popularity']
all_df_select = all_df[continuous_variables]
# sns.pairplot(all_df_select)
###Output
_____no_output_____
###Markdown
4. Clean each columnClean the format and convert data type if necessarry for later steps. (1) Target variable (i) opening_weekend_usa
###Code
# Examine the distribution. Pretty skewed.
all_df['opening_weekend_usa'].hist(bins=20)
# all_df['opening_weekend_usa']
# Try log. Slightly better. Still not very normal
np.log(all_df['opening_weekend_usa']).hist(bins=20)
# demonstration of the power transform on data with a skew
from numpy import exp
from numpy.random import randn
from sklearn.preprocessing import PowerTransformer
from matplotlib import pyplot as plt
# generate gaussian data sample
data = randn(1000)
# add a skew to the data distribution
data = exp(data)
# histogram of the raw data with a skew
plt.hist(data, bins=25)
plt.show()
# reshape data to have rows and columns
data = data.reshape((len(data),1))
# power transform the raw data
power = PowerTransformer(method='yeo-johnson', standardize=True)
data_trans = power.fit_transform(data)
# histogram of the transformed data
plt.hist(data_trans, bins=25)
plt.show()
# Explore power transform
data = all_df[['opening_weekend_usa']]
power = PowerTransformer(method='yeo-johnson', standardize=True)
data_trans = power.fit_transform(data)
plt.hist(data_trans, bins=25)
plt.show()
# Explore power transform (box-cox)
data = all_df[['opening_weekend_usa']]
power = PowerTransformer(method='box-cox', standardize=True)
data_trans = power.fit_transform(data)
plt.hist(data_trans, bins=25)
plt.show()
# Seems like both log and power transform are similarr
all_df['log_owu'] = np.log(all_df['opening_weekend_usa'])
data = all_df[['opening_weekend_usa']]
power = PowerTransformer(method='box-cox', standardize=True)
data_trans = power.fit_transform(data)
all_df['log_owu'] = data_trans.reshape(len(data),)
all_df.shape
###Output
_____no_output_____
###Markdown
(ii) gross_world
###Code
# Examine the distribution. Pretty skewed.
# all_df['opening_weekend_usa'].hist(bins=20)
all_df['gross_world']
# Try log. Slightly better. Still not very normal
np.log(all_df['gross_world']).hist(bins=20)
# demonstration of the power transform on data with a skew
from numpy import exp
from numpy.random import randn
from sklearn.preprocessing import PowerTransformer
from matplotlib import pyplot as plt
# generate gaussian data sample
data = randn(1000)
# add a skew to the data distribution
data = exp(data)
# histogram of the raw data with a skew
plt.hist(data, bins=25)
plt.show()
# reshape data to have rows and columns
data = data.reshape((len(data),1))
# power transform the raw data
power = PowerTransformer(method='yeo-johnson', standardize=True)
data_trans = power.fit_transform(data)
# histogram of the transformed data
plt.hist(data_trans, bins=25)
plt.show()
# Explore power transform
data = all_df[['opening_weekend_usa']]
power = PowerTransformer(method='yeo-johnson', standardize=True)
data_trans = power.fit_transform(data)
plt.hist(data_trans, bins=25)
plt.show()
# Explore power transform (box-cox)
data = all_df[['opening_weekend_usa']]
power = PowerTransformer(method='box-cox', standardize=True)
data_trans = power.fit_transform(data)
plt.hist(data_trans, bins=25)
plt.show()
# Seems like both log and power transform are similarr
all_df['log_owu'] = np.log(all_df['opening_weekend_usa'])
data = all_df[['opening_weekend_usa']]
power = PowerTransformer(method='box-cox', standardize=True)
data_trans = power.fit_transform(data)
all_df['log_owu'] = data_trans.reshape(len(data),)
all_df.shape
###Output
_____no_output_____
###Markdown
(ii) IMDb rating
###Code
# Distribution looks ok. Will keep it as it is for now.
all_df['rating'].hist(bins=20)
###Output
_____no_output_____
###Markdown
(2) Independent variables (predictors) (a) Continuous variables 1. time
###Code
# Movie release year
all_df['release_year'].hist(bins=20)
# Convert to "how old" the movie is
(2020-all_df['release_year']).hist(bins=20)
# Try power transform
data = (all_df[['release_year']].apply(lambda x: 2022 - x))
power = PowerTransformer(method='box-cox', standardize=True)
data_trans = power.fit_transform(data)
plt.hist(data_trans, bins=25)
plt.show()
# Create a new column in case needed in the futurre
all_df['T_movie_age'] = data_trans.reshape(len(data),)
# Also check for book first published year
(2020-all_df['publish_year']).hist(bins=20)
# Try power transform
data = (all_df[['publish_year']].apply(lambda x: 2021 - x))
power = PowerTransformer(method='box-cox', standardize=True)
data_trans = power.fit_transform(data)
plt.hist(data_trans, bins=25)
plt.show()
# Create a new column in case needed in the futurre
all_df['T_book_age'] = data_trans.reshape(len(data),)
# Save the cleaned all_df
all_df.to_pickle('../data/complete_data_cleaned')
###Output
_____no_output_____ |
scripts/tugas1b.ipynb | ###Markdown
Kecerdasan Buatan Tugas 1: Model Linear MekanismeAnda hanya diwajibkan untuk mengumpulkan file ini saja ke uploader yang disediakan di http://elearning2.uai.ac.id/. Ganti nama file ini saat pengumpulan menjadi tugas1_NIM.ipynb.**Keterlambatan**: Pengumpulan tugas yang melebihi tenggat yang telah ditentukan tidak akan diterima. Keterlambatan akan berakibat pada nilai nol untuk tugas ini.**Kolaborasi**: Anda diperbolehkan untuk berdiskusi dengan teman Anda, tetapi dilarang keras menyalin kode maupun tulisan dari teman Anda. Petunjuk_Packages_ yang Anda akan gunakan dalam mengerjakan tugas ini antara lain:- keras- matplotlib- numpy- pandas- pillow- scipy- seabornAnda diperbolehkan (jika dirasa perlu) untuk mengimpor modul tambahan untuk tugas ini. Namun, seharusnya modul yang tersedia sudah cukup untuk memenuhi kebutuhan Anda. Untuk kode yang Anda ambil dari sumber lain, **cantumkan URL menuju referensi tersebut jika diambil dari internet**!Perhatikan poin untuk tiap soal! **Semakin kecil poinnya, berarti kode yang diperlukan untuk menjawab soal tersebut seharusnya semakin sedikit!** **Nilai akhir: XX/40** Deskripsi DatasetPada tugas kali ini, Anda akan mencoba menggunakan metode *machine learning* untuk melakukan dua jenis prediksi: **regresi** dan **klasifikasi**.**Untuk kasus regresi**, Anda diminta untuk memprediksi jumlah penjualan berdasarkan uang yang dihabiskan pada media iklan yang digunakan. Terdapat tiga media iklan, yaitu TV, Radio dan Newspaper. Dengan detail atribut sebagai berikut:- TV: biaya yang dihabiskan untuk iklan tayangan TV untuk setiap satu produk dalam sebuah pasar (dalam ribuan dollar)- Radio: biaya yang dihabiskan untuk iklan di radio (dalam ribuan dollar)- Newspaper: biaya yang dihabiskan untuk iklan di koran (dalam ribuan dollar)- Sales: penjualan dari setiap satuan produk pada suatu pasar (dalam ribuan widget)**Untuk kasus klasifikasi**, Anda akan menggunakan dataset Food-101 yang memiliki 101 kategori makanan dengan total 101.000 gambar makanan. Dataset untuk tugas ini diambil dari Food-101 (https://www.vision.ee.ethz.ch/datasets_extra/food-101/). Untuk versi yang lebih sederhana, Anda hanya akan membandingkan apakah gambar yang diberikan berupa *sushi* atau *pizza*. Anda akan melakukan klasifikasi menggunakan algoritma regresi logistik dan neural networks dalam tugas ini. Mengimpor Modul dan Dataset
###Code
from __future__ import print_function, division # Gunakan print(...) dan bukan print ...
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import random
import requests
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
%matplotlib inline
RANDOM_STATE = 1337
np.random.seed(RANDOM_STATE)
###Output
_____no_output_____
###Markdown
1. Eksplorasi Awal Data - Advertising (6 poin)
###Code
df = pd.read_csv('https://github.com/aliakbars/uai-ai/raw/master/datasets/advertising.csv', index_col=0)
###Output
_____no_output_____
###Markdown
Soal 1.1.a (1 poin)Laporkan deskripsi dari Advertising dataset dengan menggunakan metode dari Pandas! Soal 1.1.b (2 poin)Berapa nilai `sales` paling rendah dan nilai `sales` paling tinggi dari data yang Anda miliki? Berapa ribu dollar uang yang dihabiskan untuk membayar biaya iklan di `TV`, `radio`, dan `newspaper` untuk produk tersebut? Soal 1.2 (3 poin)Gambarkan scatter plot dari `sales` terhadap media iklan `TV`, `radio`, dan `newspaper`. 2. Prediksi Penjualan Berdasarkan Biaya Media Iklan dengan Regresi Linear (19 poin) Soal 2.1 (4 poin)Kita akan membuat simple linear regression dengan satu fitur. Dalam kasus ini, mari mencoba melihat hubungan antara `sales` dengan biaya untuk media iklan di `TV`.Ambil fitur dari kolom `TV` dan response dari kolom `sales`, kemudian buat sebuah model linear regression menggunakan pustaka scikit-learn dan latih model tersebut dengan data yang Anda miliki! Laporkan nilai bias dan koefisiennya. Lalu, jelaskan bagaimana intepretasi Anda terhadap koefisien dari model yang Anda miliki.*Petunjuk: Lihat cara penggunaan pustakanya di [sini](http://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.htmlsphx-glr-auto-examples-linear-model-plot-ols-py).* *Jawaban Anda di sini* Soal 2.2.a (3 poin)Mari kita lihat seberapa baik garis regresi yang dibuat dari model yang Anda miliki. Buatlah prediksi dari biaya `TV` yang paling minimum dan biaya `TV` yang paling maksimum! Gambarkan scatter plot dan garis regresi model Anda atas prediksi tersebut. Bagaimana garis tersebut mencocokkan data Anda? Soal 2.2.b (3 poin)Coba lakukan kembali regresi pada data tersebut, tetapi kali ini gunakan fungsi basis polinomial orde 3. Gambarkan kembali scatter plot dan fungsi regresinya. Soal 2.2.c (3 poin)Salah satu cara untuk memastikan bahwa model yang Anda hasilkan sudah cukup baik pada model regresi adalah dengan menghitung nilai *mean squared error* (MSE). Coba hitung nilai MSE untuk regresi dengan dan tanpa fungsi basis polinomial seperti yang Anda kerjakan pada bagian a dan b. Apa yang dapat Anda amati? Apakah nilainya sesuai dengan ekspektasi Anda? *Jawaban Anda di sini* Soal 2.3.a (4 poin)Sekarang kita akan melakukan Multiple Linear Regression. Buatlah sebuah model dengan menggunakan Linear Regression dari scikit-learn untuk fitur `TV`, `radio`, dan `newspaper`. Variabel dependen yang digunakan adalah `sales`. Keluarkan pula nilai bias dan nilai koefisien ketiga fitur tersebut. Sebelum itu, bagi dataset menjadi data latih dan data uji dengan proporsi data uji sebanyak 20%. Soal 2.3.b (2 poin)Lakukan evaluasi model *multiple linear regression* yang Anda miliki dari data uji dengan menggunakan *mean squared error*. 3. Eksplorasi Awal Data Food-101 (3 poin) Pertama, kita akan memuat data menggunakan kode di bawah ini. `X` merupakan gambar yang telah diterjemahkan dalam bentuk *tensor* atau array multidimensi. Dimensi pertama menunjukkan jumlah datanya, dua dimensi berikutnya menunjukkan panjang dan lebar dari gambarnya, dan dimensi keempat merupakan *channels* (RGB). Di sisi lain, `y` adalah kelas dari masing-masing gambar yang diberikan dalam `X` sehingga `X.shape[0] == y.shape[0]`.
###Code
def load_file(url):
filename = url.split('/')[-1]
with open(filename, 'wb') as f:
resp = requests.get(url)
f.write(resp.content)
return np.load(filename)
X = load_file('https://github.com/aliakbars/uai-ai/raw/master/datasets/food.npy')
y = load_file('https://github.com/aliakbars/uai-ai/raw/master/datasets/food_labels.npy')
X.shape
###Output
_____no_output_____ |
standardiser2/docs/Charge-separated_systems.ipynb | ###Markdown
Rules for conjugated charge-seperated systems IntroductionThese rules address cases in which positive and negative formal charges are in conjugation, and the molecule can be neutralised _via_ successive rearrangement of adjacent double and single bonds.Some issues relating to these rules are discussed below. Possible redundancy of rulesRecall that bonds to Group I & II metals are broken and a round of protonation/deprotonation-based neutralisation are done _before_ these rules are applied, and that a further round of neutralisation is carried out afterwards. The neutralisation step before rule application is worthy of note, as the it can mean some rules for charge-seperated systems are apparently redundant in some situations (unsubsituted analogues, in particular). Below is an example of where the cation in the charge-seperated species bears a proton and the `neutralise` module thus produces an equivalent overall effect as the `rules` module... 1) Application of _rules_ module...
###Code
smiles = 'CC[N-]C(C)=[NH+]C'
HTML(show_change(smiles))
###Output
[2016/Mar/24 16:22:42 DEBUG ] rule 15 'Fix 1,3 charge-seperated systems (non-aromatic)' applied
###Markdown
2) Application of _neutralise_ module (_i.e._ simple addition/removal of protons)...
###Code
neutralise.apply(Chem.MolFromSmiles(smiles))
###Output
[2016/Mar/24 16:22:42 DEBUG ] 1 positive/H, 0 positive/quat and 1 negative (of which 0 are acid) charges identified
[2016/Mar/24 16:22:42 DEBUG ] Overall H balance: 0; formal charge: 0
###Markdown
For full-substituted species, this is not an issue, as the `neutralise` module will have no effect... 1) Application of _rules_ module...
###Code
HTML(show_change("C[N-]C(C)=[N+](C)C"))
###Output
[2016/Mar/24 16:22:42 DEBUG ] rule 15 'Fix 1,3 charge-seperated systems (non-aromatic)' applied
###Markdown
2) Application of _neutralise_ module (has no effect here)...
###Code
neutralise.apply(Chem.MolFromSmiles("C[N-]C(C)=[N+](C)C"))
###Output
[2016/Mar/24 16:22:42 DEBUG ] 0 positive/H, 1 positive/quat and 1 negative (of which 0 are acid) charges identified
[2016/Mar/24 16:22:42 DEBUG ] Overall H balance: 0; formal charge: 0
###Markdown
The `neutralise` module will not attempt to charge balance these systems as they appear to be potential zwitterions; see the [documentation](3_neutralise.ipynb) for that module for futher details. Interaction of `neutralise` module and 'charge-seperated' rulesThe pre-application of the `neutralise` module could conceivably lead to problems in aromatic systems where potentially undesirable imine species might be produced. However, it doesn't seem to be a problem in practice as the undesirable species are fixed by the subsequent application of other rules.This is illustrated below...
###Code
mol = Chem.MolFromSmiles("[n-]1c(=[NH+]C)cccc1")
mol
###Output
_____no_output_____
###Markdown
The initial application of the `neutralise` module removes the charges _via_ protonation/deprotonation to give a potentially undesirable hydropyridine-imine...
###Code
neutralise.apply(mol)
###Output
[2016/Mar/24 16:22:42 DEBUG ] 1 positive/H, 0 positive/quat and 1 negative (of which 0 are acid) charges identified
[2016/Mar/24 16:22:42 DEBUG ] Overall H balance: 0; formal charge: 0
###Markdown
However, this is then fixed by application of the appropriate 'hydropyridine-imine -> aminopyridine' transform during the rule-application step, so the desired parent is actually obtained...
###Code
standardise.apply(Chem.MolFromSmiles("[n-]1c(=[NH+]C)cccc1"))
###Output
[2016/Mar/24 16:22:42 DEBUG ] Starting fragment 1 'C[NH+]=c1cccc[n-]1'...
[2016/Mar/24 16:22:42 DEBUG ] 1) Check for non-organic elements...
[2016/Mar/24 16:22:42 DEBUG ] 2) Attempting to neutralise (first pass)...
[2016/Mar/24 16:22:42 DEBUG ] 1 positive/H, 0 positive/quat and 1 negative (of which 0 are acid) charges identified
[2016/Mar/24 16:22:42 DEBUG ] Overall H balance: 0; formal charge: 0
[2016/Mar/24 16:22:42 DEBUG ] 3) Applying rules...
[2016/Mar/24 16:22:42 DEBUG ] apply> mol = 'CN=c1cccc[nH]1'
[2016/Mar/24 16:22:42 DEBUG ] apply> starting pass 1...
[2016/Mar/24 16:22:42 DEBUG ] rule 7 'hydropyridin-2-imine -> 2-amino-pyridine (N-subst.)' applied on pass 1
[2016/Mar/24 16:22:42 DEBUG ] ...total of 1 hits in pass: will continue...
[2016/Mar/24 16:22:42 DEBUG ] apply> starting pass 2...
[2016/Mar/24 16:22:42 DEBUG ] ...total of 0 hits in pass: finished.
[2016/Mar/24 16:22:42 DEBUG ] 4) Attempting to neutralise (second pass)...
[2016/Mar/24 16:22:42 DEBUG ] 0 positive/H, 0 positive/quat and 0 negative (of which 0 are acid) charges identified
[2016/Mar/24 16:22:42 DEBUG ] Overall H balance: 0; formal charge: 0
[2016/Mar/24 16:22:42 DEBUG ] 5) Checking if frag is a salt/solvate...
[2016/Mar/24 16:22:42 DEBUG ] ...fragment kept.
###Markdown
Note that this is as would be obtained by application of the rules in the absence of the neutralisation step...
###Code
HTML(show_change("[n-]1c(=[N+](C)C)cccc1"))
###Output
[2016/Mar/24 16:22:42 DEBUG ] rule 16 'Fix 1,3 charge-seperated systems (aromatic 1)' applied
###Markdown
Aromatics and iminesIn some cases it is not clear whether, when the starting structure contains an amide anion, that the uncharged imine produced is more or less desirable that the original zwitterion or than the cationic methyl-pyridine that would be produced by simple protonation of the amide anion. Examples are shown below; note that the `neutralise` module does not touch these molecules as it perceives them to be zwitterionic..
###Code
HTML(show_change("C[n+]1c([N-](C))cccc1"))
HTML(show_change("C[n+]1ccc([N-]C)cc1"))
###Output
[2016/Mar/24 16:22:42 DEBUG ] rule 20 'Fix 1,5 charge-seperated systems (aromatic 2)' applied
|
pd/pd9 - Merging on Index.ipynb | ###Markdown
hierarchy index
###Code
df_left_hr = DataFrame({'key1':['SF','SF','SF','LA','LA'],
'key2':[10,20,30,20,30],
'data_set':np.arange(5.)})
df_left_hr.dropna
df_right_hr = DataFrame(np.arange(10).reshape(5,2),
index=[['LA','LA','SF','SF','SF'],
[20,10,10,10,20]],
columns=['col_1','col_2'])
df_right_hr
###Output
_____no_output_____
###Markdown
**For hierarchial indexes, the length of `left_on` must be equal to the number of levels in the index of "right" (`right_index`)**
###Code
pd.merge(df_left_hr,df_right_hr,
left_on=['key1','key2'],right_index=True)
df_left.join(df_right)
###Output
_____no_output_____ |
Udemy Courses Data Analysis Notebook.ipynb | ###Markdown
Udemy Courses Data Analysis **The Dataset contains all course data for all the subjects. We will analysis this data using pandas library.** Importing Libraries
###Code
import pandas as pd
###Output
_____no_output_____
###Markdown
Importing Dataset
###Code
df = pd.read_csv("./Dataset/Udemy Courses.csv")
df.head()
df.shape
###Output
_____no_output_____
###Markdown
1. What are all different subjects for which Udemy is offering courses?
###Code
df['subject'].unique()
###Output
_____no_output_____
###Markdown
2. Which subject has the maximum number of courses?
###Code
df['subject'].value_counts()
###Output
_____no_output_____
###Markdown
3. Show all the courses which are Free of Cost.
###Code
free_courses = df[df['price'] == "Free"]
free_courses.head(n = 3)
# df[df.price == "Free"]
free_courses.shape
###Output
_____no_output_____
###Markdown
4. Show all the courses which are Paid.
###Code
paid_courses = df[df['price'] != "Free"]
paid_courses.head(n=3)
paid_courses.shape
###Output
_____no_output_____
###Markdown
5. Which are Top Selling Courses?
###Code
top_selling_courses = df.sort_values(by="num_subscribers", axis=0, ascending=False)
top_selling_courses.head()
###Output
_____no_output_____
###Markdown
6. Which are the Least selling Courses?
###Code
least_selling_courses = df.sort_values(by="num_subscribers")
least_selling_courses.head()
###Output
_____no_output_____
###Markdown
7. Show all the courses of Graphic Design where the price is below 100
###Code
df = df.replace(to_replace =["Free"], value ="0")
df = df.astype({"price" : "int32"})
df[ (df.subject == "Graphic Design") & (df.price < 100)].head()
###Output
_____no_output_____
###Markdown
8. List out all the courses that are related with "Python"
###Code
df[df.course_title.str.contains("Python")].head()
###Output
_____no_output_____
###Markdown
9. What are courses that published in year 2015?
###Code
course_published_2015 = df[df.published_timestamp.str.contains("2015")]
course_published_2015.head()
# Second Method
df['published_timestamp'] = pd.to_datetime(df.published_timestamp)
df['year'] = df['published_timestamp'].dt.year
df[df.year ==2015].head(3)
###Output
_____no_output_____
###Markdown
10. What are the Max. Number of Subscribers for Each Level of courses?
###Code
df.groupby("level")['num_subscribers'].max()
# Maximum value of each column in present here
df.groupby("level").max()
###Output
_____no_output_____ |
HW2/python/.ipynb_checkpoints/HW2_scratchwork-checkpoint.ipynb | ###Markdown
Dev for hw2 - dsc291 - team 4 How does the performance of random-poke.py related to the size of the caches in the ec2 instance?*^that's Yoav's proposed question 1 for HW2***Foreword on question choice**I am open to any questions any of you are interested in following up. None of you have expressed an interest in any particular question, so if this question is okay, let's do it so we have something. We can always consider doing more later.For now, let's focus on hashing out a clear course of action for HW2 in the following text (This all will be sent to an .md on our github repository (https://github.com/timtyree/dsc291team4/).**Questions I'd like us all to think about:*** What are all of the measurements we should be recording?* How do we control cache-size when we're generating cache-misses with some probability?* Is there a measure of ec2 cache redundancy that I should know about? **Goal 1**: measure cache-miss rates that result from reducing random-poke.py at some cache size**(step 1) list all the measurements we should be recording for each cache-miss datum**- latency of the cache miss (used to identify cache miss)- time/date/day-of-week that a cache miss happens- a measure of cache/network size- a measure of cache redundancy (what could this be?)**(step 2) develop ^those measurements and test that they work how we expect*** TODO: set up a local for development. no need to spend computational resource on development* TODO: make the simplest possible method to produce a cache miss with a nontrivial frequency**(step 3) record the relevant data in an s3 bucket in an easy to reproduce way*** TODO: reduce using a count function to yield the number of machines in the cluster* TODO: start regularly recording the number of machines in the cache along with the current time of day.* QUESTION: Is there a redundancy measure for caches on an ec2 instance that I should know about? **Goal 2**: Analyze/Visualize data and see what emerges* I've got experience doing this. To what degree have each of you done this before? make function that calls a function regularly
###Code
import datetime, time
# from datetime import datetime, time
from time import sleep
def do_at_time(action, sec=None,min=None,hour=None, day=None, month=None, year=None):
today = datetime.datetime.now()
sleep = (datetime.datetime(today.year, today.month, today.day, 15, 20, 0) - today).seconds
# print('Waiting for ' + str(datetime.timedelta(seconds=sleep)))
time.sleep(sleep)
return action
def do_after_waiting(action, sec=0, min=0, hour=0):
'''do action after waiting sec seconds, min minutes, and hour hours.'''
today = datetime.datetime.now()
sleep = (datetime.datetime(today.year, today.month, today.day, 15, 20, 0) - today).seconds
# print('Waiting for ' + str(datetime.timedelta(seconds=sleep)))
time.sleep(sleep)
return action
%load_ext autoreload
%autoreload 2
# today-today
# datetime.timedelta
# print(today)
td = today-today
# time.sleep
td.total_seconds()
str(int(time.time()))
%run run_trial
###Output
ERROR:root:File `'run_trial.py'` not found.
|
3_generate_population_cohort.ipynb | ###Markdown
Table of Contents1 Loading data1.1 Sanity check1.2 Loading all reprots1.3 Narrow down based on country and qualification2 Generate data for all patients2.1 Generate data2.1.1 Sanity check2.2 Population distribution3 Conditioned on Gender3.1 Male3.2 Female4 Conditioned on Age4.1 Bin age into groups4.2 Three age groups Loading dataWe investigate period from 03-11 to 09-30 from 2013 to 2020. If anyone want to analyze different time period, just replace the start or end time. For example, replace '09-30' by '12-31' to study the period from March 11 to December 31.
###Code
import itertools
from tqdm import tqdm
import pandas as pd
import pickle
import numpy as np
from collections import Counter
import scipy.stats as stats
from statsmodels.stats.multitest import multipletests
# %matplotlib notebook
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
import warnings
warnings.filterwarnings('ignore')
# load the dictionaries for drugs, AE
se_dic = pickle.load(open('../Data/curated/AE_dic.pk', 'rb'))
drug_dic = pickle.load(open('../Data/curated/drug_mapping.pk', 'rb'))
# In this MeDRA_dic, key is string of PT_name, value is a list:
# [PT, PT_name, HLT,HLT_name,HLGT,HLGT_name,SOC,SOC_name,SOC_abbr]
meddra_pd_all = pickle.load(open('../Data/curated/AE_mapping.pk', 'rb'))
def chi_sq(A, B,C,D):
A, B, C,D = A.astype(float), B.astype(float), C.astype(float), D.astype(float)
numerator =(A*D-B*C)**2
denominator = (A+B)*(C+D)*(A+C)*(B+D)
numerator = numerator/denominator
numerator_ = numerator*(A+B+C+D)
return numerator_
def lower_CI(A, B,C,D, ROR):
A, B, C,D, ROR = A.astype(float), B.astype(float), C.astype(float), D.astype(float), ROR.astype(float)
s = np.sqrt(1/A+ 1/B + 1/C +1/D)
CI_low = np.e**(np.log(ROR)-1.96*s)
# CI_high = e**(np.log(ROR)+1.96*s)
return CI_low
###Output
_____no_output_____
###Markdown
Sanity check
###Code
meddra_pd_all.head(1)
meddra_pd_all[meddra_pd_all.PT=='10018358']
# drug dictionary to df
drug_dic_pd = pd.DataFrame(drug_dic)
drug_dic_df = drug_dic_pd.T
drug_dic_df.columns=['drugbank_ID', 'code']
drug_dic_df.head()
drug_dic_df[drug_dic_df.code == 931]
# drug_dic['remdesivir']
# Make a drug_code_dic to find the drug name by code
drug_code_dic = {}
for key, value in drug_dic.items():
drug_code_dic[value[-1]]=[key, value[0]]
pickle.dump(drug_code_dic, open('../Data/parsed/drug_code_dic.pk', 'wb'))
list(drug_code_dic.items())[:10]
###Output
_____no_output_____
###Markdown
Loading all reprots
###Code
all_pd = pickle.load(open('../Data/curated/patient_safety.pk', 'rb'))
all_pd.head(3)
###Output
_____no_output_____
###Markdown
Narrow down based on country and qualification
###Code
all_pd_US = all_pd[all_pd.country=='US']
print('Focus on US, reports #', all_pd_US.shape)
id_qua = [i in ['1', '2', '3'] for i in all_pd_US.qualify ]
all_pd_US_pro = all_pd_US[id_qua] # professional: 1,2,3
print('Focus on professional qualification, reports #', all_pd_US_pro.shape)
pickle.dump(all_pd_US_pro, open('../Data/pandemic/all_pd_US_pro.pk', 'wb'))
###Output
Focus on US, reports # (6351817, 23)
Focus on professional qualification, reports # (2551071, 23)
###Markdown
Generate data for all patientsThe overall population (all patients) is denoted by 'uncondition'. Variables with 'uncondition' in name refers to the population of all patients. Generate data
###Code
all_pd_US_pro = pickle.load(open('../Data/pandemic/all_pd_US_pro.pk', 'rb'))
# SE_list = list(SE_dic_df.code)
DF = all_pd_US_pro
SE_list = list(sorted(set(list(itertools.chain(*DF.SE)))))
print('#-SE in US pro',len(SE_list))
ind = [i in SE_list for i in meddra_pd_all.PT]
whatever_ = meddra_pd_all[ind]
print(whatever_.shape)
whatever_.head(3)
# reports in 2020
yr_list = [2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]
n_re = []
for yr in yr_list:
st = str(yr)+'-03-10'
end = str(yr)+'-09-31'
ind = [st<i<end for i in all_pd_US_pro['receipt_date']] # all ['date'] --> ['receipt_date']
locals()['all_pd_US_pro_'+str(yr)]= all_pd_US_pro[ind]
n_reports = len(locals()['all_pd_US_pro_'+str(yr)])
n_re.append(n_reports)
print('rows in {}:{}'.format(yr,n_reports))
yr_list = [2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]
"""initialize the Data frame """
se_matrix = pd.DataFrame({'SE': list(whatever_.PT), 'name':list(whatever_['PT_name']) }) #'medra_ID': list(SE_dic_df['medra_ID'])
for yr in yr_list:
n_report = len(locals()['all_pd_US_pro_'+str(yr)])
print('{} year has {} reports'.format(yr, n_report))
A =[]
for se in tqdm(SE_list):
name = locals()['all_pd_US_pro_'+str(yr)]
indx = [se in j for j in name.SE]
n_A = sum(indx)
A.append(n_A)
B = [n_report - i for i in A]
se_matrix[str(yr)+'_A'] = A
se_matrix[str(yr)+'_B'] = B
pickle.dump(se_matrix, open('../Data/pandemic/SE_uncondition_raw.pk', 'wb'))
para = se_matrix
yr_list = [2013, 2014, 2015, 2016, 2017, 2018, 2019]
for yr in yr_list: # calculate ROR
para[str(yr)+'_ROR'] = (para['2020_A']*para[str(yr)+'_B'])/(para['2020_B']*para[str(yr)+'_A'])
for yr in yr_list: # calculate Delta: average difference
para[str(yr)+'_Delta'] = (para['2020_A'] - para[str(yr)+'_A'])/para[str(yr)+'_A']
pd.set_option('display.max_columns', None)
"""Note: 0/0 = NaN, 1/0 = inf"""
para.head()
pickle.dump(para, open('../Data/pandemic/SE_uncondition.pk', 'wb')) # update the dataframe with ROR and Delta
###Output
_____no_output_____
###Markdown
Sanity check
###Code
uncondition_2019_history = pickle.load(open('../Data/pandemic/SE_uncondition.pk', 'rb'))
uncondition_2019_history[uncondition_2019_history.name=='cardiac arrest']
x = uncondition_2019_history[uncondition_2019_history['2019_Delta']>0]
print(x.shape)
y = x[x['2020_A']>1000]
print(y.shape)
y[['SE', 'name','2018_A', '2019_A', '2020_A', '2019_Delta']]
uncondition_2019_history[uncondition_2019_history.name=='cough']
###Output
_____no_output_____
###Markdown
Population distribution
###Code
all_pd_US_pro = pickle.load(open('../Data/pandemic/all_pd_US_pro.pk', 'rb')) # update the dataframe with ROR and Delta
len(all_pd_US_pro)
st = '-03-10'
end = '-09-31'
ind = [st<i[4:]<end for i in all_pd_US_pro['receipt_date']]
all_pd_US_pro_period= all_pd_US_pro[ind]
n_all = len(all_pd_US_pro_period)
print('the #-reports during March 11-Sept 30, accmulated from 2013-2020', n_all)
n_male = len(all_pd_US_pro_period[all_pd_US_pro_period.gender=='1'])
n_female = len(all_pd_US_pro_period[all_pd_US_pro_period.gender=='2'])
in_young = [str(0)<str(i)<str(20) for i in all_pd_US_pro_period.age]
in_adult = [str(19)<str(i)<str(65) for i in all_pd_US_pro_period.age]
in_elderly = [str(64)<str(i) for i in all_pd_US_pro_period.age]
n_young = len(all_pd_US_pro_period[in_young])
n_adult = len(all_pd_US_pro_period[in_adult])
n_elderly = len(all_pd_US_pro_period[in_elderly])
# unknown sex:
n_unknownsex = n_all-n_male-n_female
n_unknownage = n_all - n_young -n_adult-n_elderly
print('#-male reports',n_male, n_male/n_all)
print('#-female reports',n_female, n_female/n_all)
print('unknown sex: ', n_unknownsex, n_unknownsex/n_all)
# unknown age
print('#-young reports', n_young, n_young/n_all)
print('#-adult reports', n_adult, n_adult/n_all)
print('#-elderly reports',n_elderly, n_elderly/n_all)
print('unknown age', n_unknownage, n_unknownage/n_all)
## mean and std average
young_age = np.array(list(all_pd_US_pro_period[in_young].age))
print(young_age.mean(), young_age.std())
adult_age = np.array(list(all_pd_US_pro_period[in_adult].age))
print(adult_age.mean(), adult_age.std())
elderly_age = np.array(list(all_pd_US_pro_period[in_elderly].age))
print(elderly_age.mean(), elderly_age.std())
# "1= Physician
# 2= Pharmacist
# 3= Other Health Professional
# 4= Lawyer
# 5= Consumer"
## Qualification/reporter distribution
all_pd = pickle.load(open('../Data/curated/patient_safety.pk', 'rb'))
print('#-of all reports',all_pd.shape)
all_pd_US = all_pd[all_pd.country=='US']
print('Focus on US, reports #', all_pd_US.shape)
st = '-03-10'
end = '-09-31'
ind = [st<i[4:]<end for i in all_pd_US['receipt_date']]
all_pd_US_period= all_pd_US[ind]
all_pd_US_period['qualify'].value_counts()
###Output
#-of all reports (9325731, 23)
Focus on US, reports # (6351817, 23)
###Markdown
Conditioned on Gender Male
###Code
all_pd_US_pro = pickle.load(open('../Data/pandemic/all_pd_US_pro.pk', 'rb')) # update the dataframe with ROR and Delta
print(len(all_pd_US_pro))
all_pd_US_pro_male = all_pd_US_pro[all_pd_US_pro.gender=='1']
DF = all_pd_US_pro_male
# reports in 2020
"""initialize the Data frame """
# SE_list = list(SE_dic_df.code)
# male_matrix = pd.DataFrame({'SE': SE_list, 'name':list(SE_dic_df.index), 'medra_ID': list(SE_dic_df['medra_ID'])})
SE_list = list(sorted(set(list(itertools.chain(*DF.SE)))))
ind = [i in SE_list for i in meddra_pd_all.PT]
whatever_ = meddra_pd_all[ind]
male_matrix = pd.DataFrame({'SE': list(whatever_.PT), 'name':list(whatever_['PT_name']) })
yr_list = [2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]
for yr in yr_list:
st = str(yr)+'-03-10'
end = str(yr)+'-09-31'
ind = [st<i<end for i in DF['receipt_date']]
locals()['all_pd_US_pro_'+str(yr)]= DF[ind]
print('rows in {}:{}'.format(yr,len(locals()['all_pd_US_pro_'+str(yr)])))
n_report = len(locals()['all_pd_US_pro_'+str(yr)])
print('{} year has {} reports'.format(yr, n_report))
A =[]
for se in tqdm(SE_list):
name = locals()['all_pd_US_pro_'+str(yr)]
indx = [se in j for j in name.SE]
n_A = sum(indx)
A.append(n_A)
B = [n_report - i for i in A]
male_matrix[str(yr)+'_A'] = A
male_matrix[str(yr)+'_B'] = B
male_matrix.head(3)
pickle.dump(male_matrix, open('../Data/pandemic/SE_male_raw.pk', 'wb'))
para_male = male_matrix
yr_list = [2013, 2014, 2015, 2016, 2017, 2018, 2019]
for yr in yr_list: # calculate ROR
para_male[str(yr)+'_ROR'] = (para_male['2020_A']*para_male[str(yr)+'_B'])/(para_male['2020_B']*para_male[str(yr)+'_A'])
for yr in yr_list: # calculate Delta: average difference
para_male[str(yr)+'_Delta'] = (para_male['2020_A'] - para_male[str(yr)+'_A'])/para_male[str(yr)+'_A']
pd.set_option('display.max_columns', None)
"""Note: 0/0 = NaN, 1/0 = inf"""
para_male.head()
pickle.dump(para_male, open('../Data/pandemic/SE_male.pk', 'wb')) # update the dataframe with ROR and Delta
###Output
_____no_output_____
###Markdown
Female
###Code
all_pd_US_pro_female = all_pd_US_pro[all_pd_US_pro.gender=='2']
DF = all_pd_US_pro_female
# reports in 2020
"""initialize the Data frame """
# SE_list = list(SE_dic_df.code)
# female_matrix = pd.DataFrame({'SE': SE_list, 'name':list(SE_dic_df.index), 'medra_ID': list(SE_dic_df['medra_ID'])})
SE_list = list(sorted(set(list(itertools.chain(*DF.SE)))))
ind = [i in SE_list for i in meddra_pd_all.PT]
whatever_ = meddra_pd_all[ind]
female_matrix = pd.DataFrame({'SE': list(whatever_.PT), 'name':list(whatever_['PT_name']) })
yr_list = [2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]
for yr in yr_list:
st = str(yr)+'-03-10'
end = str(yr)+'-09-31'
ind = [st<i<end for i in DF['receipt_date']]
locals()['all_pd_US_pro_'+str(yr)]= DF[ind]
print('rows in {}:{}'.format(yr,len(locals()['all_pd_US_pro_'+str(yr)])))
n_report = len(locals()['all_pd_US_pro_'+str(yr)])
print('{} year has {} reports'.format(yr, n_report))
A =[]
for se in tqdm(SE_list):
name = locals()['all_pd_US_pro_'+str(yr)]
indx = [se in j for j in name.SE]
n_A = sum(indx)
A.append(n_A)
B = [n_report - i for i in A]
female_matrix[str(yr)+'_A'] = A
female_matrix[str(yr)+'_B'] = B
pickle.dump(female_matrix, open('../Data/pandemic/SE_female_raw.pk', 'wb'))
para_female = female_matrix
yr_list = [2013, 2014, 2015, 2016, 2017, 2018, 2019]
for yr in yr_list: # calculate ROR
para_female[str(yr)+'_ROR'] = (para_female['2020_A']*para_female[str(yr)+'_B'])/(para_female['2020_B']*para_female[str(yr)+'_A'])
for yr in yr_list: # calculate Delta: average difference
para_female[str(yr)+'_Delta'] = (para_female['2020_A'] - para_female[str(yr)+'_A'])/para_female[str(yr)+'_A']
pd.set_option('display.max_columns', None)
"""Note: 0/0 = NaN, 1/0 = inf"""
para_female.head()
pickle.dump(para_female, open('../Data/pandemic/SE_female.pk', 'wb')) # update the dataframe with ROR and Delta
###Output
_____no_output_____
###Markdown
Conditioned on AgeBased on [WHO](https://www.who.int/hiv/pub/guidelines/arv2013/intro/keyterms/en/) and the [Men Ageing And Health](https://apps.who.int/iris/bitstream/handle/10665/66941/WHO_NMH_NPH_01.2.pdf;jsessionid=A48157B9B4DFAA3A9874176D8A7C2894?sequence=1), the age group:- Young: 1-19 - Adult: 20-65- Elderly: >65 Bin age into groups
###Code
age_US_df = pickle.load(open('../Data/pandemic/all_pd_US_pro.pk', 'rb')) # update the dataframe with ROR and Delta
# Bin age into groups
age_US_df['age'] = pd.to_numeric(age_US_df['age'], errors='coerce')
bins = [1, 20, 65, max(age_US_df.age)+1]
age_labels = ['young', 'adult','elderly']
age_US_df['age_group'] = pd.cut(age_US_df.age, bins, right = False, labels= age_labels)
###Output
_____no_output_____
###Markdown
Three age groups
###Code
for age in age_labels:
age_US_df_group = age_US_df[age_US_df.age_group==age]
DF = age_US_df_group
# reports in 2020
"""initialize the Data frame """
# SE_list = list(SE_dic_df.code)
# age_matrix = pd.DataFrame({'SE': SE_list, 'name':list(SE_dic_df.index), 'medra_ID': list(SE_dic_df['medra_ID'])})
"""Remember sort the SE set!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11"""
SE_list = list(sorted(set(list(itertools.chain(*DF.SE)))))
ind = [i in SE_list for i in meddra_pd_all.PT]
whatever_ = meddra_pd_all[ind]
age_matrix = pd.DataFrame({'SE': list(whatever_.PT), 'name':list(whatever_['PT_name']) })
yr_list = [2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]
for yr in yr_list:
st = str(yr)+'-03-10'
end = str(yr)+'-09-31'
ind = [st<i<end for i in DF['receipt_date']]
locals()['all_pd_US_pro_'+str(yr)]= DF[ind]
print('rows in {}:{}'.format(yr,len(locals()['all_pd_US_pro_'+str(yr)])))
n_report = len(locals()['all_pd_US_pro_'+str(yr)])
print('{} year has {} reports'.format(yr, n_report))
A =[]
for se in tqdm(SE_list):
name = locals()['all_pd_US_pro_'+str(yr)]
indx = [se in j for j in name.SE]
n_A = sum(indx)
A.append(n_A)
B = [n_report - i for i in A]
age_matrix[str(yr)+'_A'] = A
age_matrix[str(yr)+'_B'] = B
pickle.dump(age_matrix, open('../Data/pandemic/SE_'+age+'_raw.pk', 'wb'))
para_age = age_matrix
yr_list = [2013, 2014, 2015, 2016, 2017, 2018, 2019]
for yr in yr_list: # calculate ROR
para_age[str(yr)+'_ROR'] = (para_age['2020_A']*para_age[str(yr)+'_B'])/(para_age['2020_B']*para_age[str(yr)+'_A'])
for yr in yr_list: # calculate Delta: average difference
para_age[str(yr)+'_Delta'] = (para_age['2020_A'] - para_age[str(yr)+'_A'])/para_age[str(yr)+'_A']
"""Note: 0/0 = NaN, 1/0 = inf"""
pickle.dump(para_age, open('../Data/pandemic/SE_'+age+'.pk', 'wb')) # update the dataframe with ROR and Delta
print(age,'related data saved')
locals()['all_pd_US_pro_'+str(yr)].head(10)
###Output
_____no_output_____ |
nb/075_submission.ipynb | ###Markdown
Overview- nb067ベース(cv:0.94102, sub:0.945)- wavenet(not_roll)- nb070(mlp(deep))のprobaを使う- ROLL_FEATS = False- MOD_BATCH = True Const
###Code
NB = '075'
isSmallSet = False
if isSmallSet:
LENGTH = 7000
else:
LENGTH = 500_000
ROLL_FEATS = False
MOD_BATCH7 = True
PATH_PROBAS = './../data/output_ignore/probas_nb070_mlp_deep_cv_0.9383.npz'
PATH_TRAIN = './../data/input/train_clean.csv'
PATH_TEST = './../data/input/test_clean.csv'
PATH_SMPLE_SUB = './../data/input/sample_submission.csv'
DIR_OUTPUT = './../data/output/'
DIR_OUTPUT_IGNORE = './../data/output_ignore/'
cp = ['#f8b195', '#f67280', '#c06c84', '#6c5b7b', '#355c7d']
sr = 10*10**3 # 10 kHz
###Output
_____no_output_____
###Markdown
Import everything I need :)
###Code
import warnings
warnings.filterwarnings('ignore')
import time
import gc
import random
import os
import itertools
import multiprocessing
import numpy as np
from scipy import signal
# from pykalman import KalmanFilter
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from fastprogress import progress_bar
from lightgbm import LGBMRegressor
from sklearn.model_selection import KFold, train_test_split, StratifiedKFold, GroupKFold
from sklearn.metrics import f1_score, mean_absolute_error, confusion_matrix
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
# from sklearn.svm import SVR
from sklearn.linear_model import Lasso
# from dtreeviz.trees import dtreeviz
import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.callbacks import Callback, LearningRateScheduler
from tensorflow.keras.losses import categorical_crossentropy
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import backend as K
from tensorflow.keras import losses, models, optimizers
# import tensorflow_addons as tfa
###Output
_____no_output_____
###Markdown
My function
###Code
def f1_macro(true, pred):
return f1_score(true, pred, average='macro')
def get_df_batch(df, batch):
idxs = df['batch'] == batch
assert any(idxs), 'そのようなbatchはありません'
return df[idxs]
def get_signal_mv_mean(df, n=3001):
signal_mv = np.zeros(len(df))
for bt in df['batch'].unique():
idxs = df['batch'] == bt
_signal_mv = df['signal'][idxs].rolling(n, center=True).mean().interpolate('spline', order=5, limit_direction='both').values
signal_mv[idxs] = _signal_mv
return signal_mv
def get_signal_mv_std(df, n=3001):
signal_mv = np.zeros(len(df))
for bt in df['batch'].unique():
idxs = df['batch'] == bt
_signal_mv = df['signal'][idxs].rolling(n, center=True).std().interpolate('spline', order=5, limit_direction='both').values
signal_mv[idxs] = _signal_mv
return signal_mv
def get_signal_mv_min(df, n=3001):
signal_mv = np.zeros(len(df))
for bt in df['batch'].unique():
idxs = df['batch'] == bt
_signal_mv = df['signal'][idxs].rolling(n, center=True).min().interpolate('spline', order=5, limit_direction='both').values
signal_mv[idxs] = _signal_mv
return signal_mv
def get_signal_mv_max(df, n=3001):
signal_mv = np.zeros(len(df))
for bt in df['batch'].unique():
idxs = df['batch'] == bt
_signal_mv = df['signal'][idxs].rolling(n, center=True).max().interpolate('spline', order=5, limit_direction='both').values
signal_mv[idxs] = _signal_mv
return signal_mv
def group_feat_train(_train):
train = _train.copy()
# group init
train['group'] = int(0)
# group 1
idxs = (train['batch'] == 3) | (train['batch'] == 7)
train['group'][idxs] = int(1)
# group 2
idxs = (train['batch'] == 5) | (train['batch'] == 8)
train['group'][idxs] = int(2)
# group 3
idxs = (train['batch'] == 2) | (train['batch'] == 6)
train['group'][idxs] = int(3)
# group 4
idxs = (train['batch'] == 4) | (train['batch'] == 9)
train['group'][idxs] = int(4)
return train[['group']]
def group_feat_test(_test):
test = _test.copy()
# group init
test['group'] = int(0)
x_idx = np.arange(len(test))
# group 1
idxs = (100000<=x_idx) & (x_idx<200000)
test['group'][idxs] = int(1)
idxs = (900000<=x_idx) & (x_idx<=1000000)
test['group'][idxs] = int(1)
# group 2
idxs = (200000<=x_idx) & (x_idx<300000)
test['group'][idxs] = int(2)
idxs = (600000<=x_idx) & (x_idx<700000)
test['group'][idxs] = int(2)
# group 3
idxs = (400000<=x_idx) & (x_idx<500000)
test['group'][idxs] = int(3)
# group 4
idxs = (500000<=x_idx) & (x_idx<600000)
test['group'][idxs] = int(4)
idxs = (700000<=x_idx) & (x_idx<800000)
test['group'][idxs] = int(4)
return test[['group']]
class permutation_importance():
def __init__(self, model, metric):
self.is_computed = False
self.n_feat = 0
self.base_score = 0
self.model = model
self.metric = metric
self.df_result = []
def compute(self, X_valid, y_valid):
self.n_feat = len(X_valid.columns)
if self.metric == 'auc':
y_valid_score = self.model.predict_proba(X_valid)[:, 1]
fpr, tpr, thresholds = roc_curve(y_valid, y_valid_score)
self.base_score = auc(fpr, tpr)
else:
pred = np.round(self.model.predict(X_valid)).astype('int8')
self.base_score = self.metric(y_valid, pred)
self.df_result = pd.DataFrame({'feat': X_valid.columns,
'score': np.zeros(self.n_feat),
'score_diff': np.zeros(self.n_feat)})
# predict
for i, col in enumerate(X_valid.columns):
df_perm = X_valid.copy()
np.random.seed(1)
df_perm[col] = np.random.permutation(df_perm[col])
y_valid_pred = self.model.predict(df_perm)
if self.metric == 'auc':
y_valid_score = self.model.predict_proba(df_perm)[:, 1]
fpr, tpr, thresholds = roc_curve(y_valid, y_valid_score)
score = auc(fpr, tpr)
else:
score = self.metric(y_valid, np.round(y_valid_pred).astype('int8'))
self.df_result['score'][self.df_result['feat']==col] = score
self.df_result['score_diff'][self.df_result['feat']==col] = self.base_score - score
self.is_computed = True
def get_negative_feature(self):
assert self.is_computed!=False, 'compute メソッドが実行されていません'
idx = self.df_result['score_diff'] < 0
return self.df_result.loc[idx, 'feat'].values.tolist()
def get_positive_feature(self):
assert self.is_computed!=False, 'compute メソッドが実行されていません'
idx = self.df_result['score_diff'] > 0
return self.df_result.loc[idx, 'feat'].values.tolist()
def show_permutation_importance(self, score_type='loss'):
'''score_type = 'loss' or 'accuracy' '''
assert self.is_computed!=False, 'compute メソッドが実行されていません'
if score_type=='loss':
ascending = True
elif score_type=='accuracy':
ascending = False
else:
ascending = ''
plt.figure(figsize=(15, int(0.25*self.n_feat)))
sns.barplot(x="score_diff", y="feat", data=self.df_result.sort_values(by="score_diff", ascending=ascending))
plt.title('base_score - permutation_score')
def plot_corr(df, abs_=False, threshold=0.95):
if abs_==True:
corr = df.corr().abs()>threshold
vmin = 0
else:
corr = df.corr()
vmin = -1
# Plot
fig, ax = plt.subplots(figsize=(12, 10), dpi=100)
fig.patch.set_facecolor('white')
sns.heatmap(corr,
xticklabels=df.corr().columns,
yticklabels=df.corr().columns,
vmin=vmin,
vmax=1,
center=0,
annot=False)
# Decorations
ax.set_title('Correlation', fontsize=22)
def get_low_corr_column(df, threshold):
df_corr = df.corr()
df_corr = abs(df_corr)
columns = df_corr.columns
# 対角線の値を0にする
for i in range(0, len(columns)):
df_corr.iloc[i, i] = 0
while True:
columns = df_corr.columns
max_corr = 0.0
query_column = None
target_column = None
df_max_column_value = df_corr.max()
max_corr = df_max_column_value.max()
query_column = df_max_column_value.idxmax()
target_column = df_corr[query_column].idxmax()
if max_corr < threshold:
# しきい値を超えるものがなかったため終了
break
else:
# しきい値を超えるものがあった場合
delete_column = None
saved_column = None
# その他との相関の絶対値が大きい方を除去
if sum(df_corr[query_column]) <= sum(df_corr[target_column]):
delete_column = target_column
saved_column = query_column
else:
delete_column = query_column
saved_column = target_column
# 除去すべき特徴を相関行列から消す(行、列)
df_corr.drop([delete_column], axis=0, inplace=True)
df_corr.drop([delete_column], axis=1, inplace=True)
return df_corr.columns # 相関が高い特徴量を除いた名前リスト
def reduce_mem_usage(df, verbose=True):
numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
start_mem = df.memory_usage().sum() / 1024**2
for col in df.columns:
if col!='open_channels':
col_type = df[col].dtypes
if col_type in numerics:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
end_mem = df.memory_usage().sum() / 1024**2
if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem))
return df
def create_signal_mod(train):
left = 3641000
right = 3829000
thresh_dict = {
3: [0.1, 2.0],
2: [-1.1, 0.7],
1: [-2.3, -0.6],
0: [-3.8, -2],
}
train['signal'] = train['signal'].values
for ch in train[train['batch']==7]['open_channels'].unique():
idxs_noisy = (train['open_channels']==ch) & (left<train.index) & (train.index<right)
idxs_not_noisy = (train['open_channels']==ch) & ~idxs_noisy
mean = train[idxs_not_noisy]['signal'].mean()
idxs_outlier = idxs_noisy & (thresh_dict[ch][1]<train['signal'].values)
train['signal'][idxs_outlier] = mean
idxs_outlier = idxs_noisy & (train['signal'].values<thresh_dict[ch][0])
train['signal'][idxs_outlier] = mean
return train
def create_signal_mod2(train):
left = 3641000
right = 3829000
thresh_dict = {
3: [0.1, 2.0],
2: [-1.1, 0.7],
1: [-2.3, -0.6],
0: [-3.8, -2],
}
train['signal'] = train['signal'].values
for ch in train[train['batch']==7]['open_channels'].unique():
idxs_noisy = (train['open_channels']==ch) & (left<train.index) & (train.index<right)
idxs_not_noisy = (train['open_channels']==ch) & ~idxs_noisy
mean = train[idxs_not_noisy]['signal'].mean()
std = train[idxs_not_noisy]['signal'].std()
idxs_outlier = idxs_noisy & (thresh_dict[ch][1]<train['signal'].values)
noise = np.random.normal(loc=0, scale=std, size=len(train['signal'].values[idxs_outlier]))
train['signal'][idxs_outlier] = mean + noise
idxs_outlier = idxs_noisy & (train['signal'].values<thresh_dict[ch][0])
noise = np.random.normal(loc=0, scale=std, size=len(train['signal'].values[idxs_outlier]))
train['signal'][idxs_outlier] = mean + noise
return train
def train_lgbm(X, y, X_te, lgbm_params, random_state=5, n_fold=5, verbose=50, early_stopping_rounds=100, show_fig=True):
# using features
print(f'features({len(X.columns)}): \n{X.columns}') if not verbose==0 else None
# folds = KFold(n_splits=n_fold, shuffle=True, random_state=random_state)
folds = StratifiedKFold(n_splits=n_fold, shuffle=True, random_state=random_state)
scores = []
oof = np.zeros(len(X))
oof_round = np.zeros(len(X))
test_pred = np.zeros(len(X_te))
df_pi = pd.DataFrame(columns=['feat', 'score_diff'])
for fold_n, (train_idx, valid_idx) in enumerate(folds.split(X, y=y)):
if verbose==0:
pass
else:
print('\n------------------')
print(f'- Fold {fold_n + 1}/{N_FOLD} started at {time.ctime()}')
# prepare dataset
X_train, X_valid = X.iloc[train_idx], X.iloc[valid_idx]
y_train, y_valid = y[train_idx], y[valid_idx]
# train
model = LGBMRegressor(**lgbm_params, n_estimators=N_ESTIMATORS)
model.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_valid, y_valid)],
verbose=verbose,
early_stopping_rounds=early_stopping_rounds)
# pred
y_valid_pred = model.predict(X_valid, model.best_iteration_)
y_valid_pred_round = np.round(y_valid_pred).astype('int8')
_test_pred = model.predict(X_te, model.best_iteration_)
if show_fig==False:
pass
else:
# permutation importance
pi = permutation_importance(model, f1_macro) # model と metric を渡す
pi.compute(X_valid, y_valid)
pi_result = pi.df_result
df_pi = pd.concat([df_pi, pi_result[['feat', 'score_diff']]])
# result
oof[valid_idx] = y_valid_pred
oof_round[valid_idx] = y_valid_pred_round
score = f1_score(y_valid, y_valid_pred_round, average='macro')
scores.append(score)
test_pred += _test_pred
if verbose==0:
pass
else:
print(f'---> f1-score(macro) valid: {f1_score(y_valid, y_valid_pred_round, average="macro"):.4f}')
print('')
print('====== finish ======')
print('score list:', scores)
print('CV mean score(f1_macro): {0:.4f}, std: {1:.4f}'.format(np.mean(scores), np.std(scores)))
print(f'oof score(f1_macro): {f1_score(y, oof_round, average="macro"):.4f}')
print('')
if show_fig==False:
pass
else:
# visualization
plt.figure(figsize=(5, 5))
plt.plot([0, 10], [0, 10], color='gray')
plt.scatter(y, oof, alpha=0.05, color=cp[1])
plt.xlabel('true')
plt.ylabel('pred')
plt.show()
# confusion_matrix
plot_confusion_matrix(y, oof_round, classes=np.arange(11))
# permutation importance
plt.figure(figsize=(15, int(0.25*len(X.columns))))
order = df_pi.groupby(["feat"]).mean()['score_diff'].reset_index().sort_values('score_diff', ascending=False)
sns.barplot(x="score_diff", y="feat", data=df_pi, order=order['feat'])
plt.title('base_score - permutation_score')
plt.show()
# submission
test_pred = test_pred/N_FOLD
test_pred_round = np.round(test_pred).astype('int8')
return test_pred_round, test_pred, oof_round, oof
def plot_confusion_matrix(truth, pred, classes, normalize=False, title=''):
cm = confusion_matrix(truth, pred)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.figure(figsize=(10, 10))
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion matrix', size=15)
plt.colorbar(fraction=0.046, pad=0.04)
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.grid(False)
plt.tight_layout()
def train_test_split_lgbm(X, y, X_te, lgbm_params, random_state=5, test_size=0.3, verbose=50, early_stopping_rounds=100, show_fig=True):
# using features
print(f'features({len(X.columns)}): \n{X.columns}') if not verbose==0 else None
# folds = KFold(n_splits=n_fold, shuffle=True, random_state=random_state)
# folds = StratifiedKFold(n_splits=n_fold, shuffle=True, random_state=random_state)
# prepare dataset
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=test_size, random_state=random_state)
# train
model = LGBMRegressor(**lgbm_params, n_estimators=N_ESTIMATORS)
model.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_valid, y_valid)],
verbose=verbose,
early_stopping_rounds=early_stopping_rounds)
# pred
oof = model.predict(X_valid, model.best_iteration_)
oof_round = np.round(oof).astype('int8')
test_pred = model.predict(X_te, model.best_iteration_)
test_pred_round = np.round(test_pred).astype('int8')
print('====== finish ======')
print(f'oof score(f1_macro): {f1_score(y_valid, oof_round, average="macro"):.4f}')
print('')
if show_fig==False:
pass
else:
# visualization
plt.figure(figsize=(5, 5))
plt.plot([0, 10], [0, 10], color='gray')
plt.scatter(y_valid, oof, alpha=0.05, color=cp[1])
plt.xlabel('true')
plt.ylabel('pred')
plt.show()
# confusion_matrix
plot_confusion_matrix(y_valid, oof_round, classes=np.arange(11))
# permutation importance
pi = permutation_importance(model, f1_macro) # model と metric を渡す
pi.compute(X_valid, y_valid)
pi.show_permutation_importance(score_type='accuracy') # loss or accuracy
plt.show()
return test_pred_round, test_pred, oof_round, oof
###Output
_____no_output_____
###Markdown
ref: https://www.kaggle.com/martxelo/fe-and-ensemble-mlp-and-lgbm
###Code
def calc_gradients(s, n_grads=4):
'''
Calculate gradients for a pandas series. Returns the same number of samples
'''
grads = pd.DataFrame()
g = s.values
for i in range(n_grads):
g = np.gradient(g)
grads['grad_' + str(i+1)] = g
return grads
def calc_low_pass(s, n_filts=10):
'''
Applies low pass filters to the signal. Left delayed and no delayed
'''
wns = np.logspace(-2, -0.3, n_filts)
# wns = [0.3244]
low_pass = pd.DataFrame()
x = s.values
for wn in wns:
b, a = signal.butter(1, Wn=wn, btype='low')
zi = signal.lfilter_zi(b, a)
low_pass['lowpass_lf_' + str('%.4f' %wn)] = signal.lfilter(b, a, x, zi=zi*x[0])[0]
low_pass['lowpass_ff_' + str('%.4f' %wn)] = signal.filtfilt(b, a, x)
return low_pass
def calc_high_pass(s, n_filts=10):
'''
Applies high pass filters to the signal. Left delayed and no delayed
'''
wns = np.logspace(-2, -0.1, n_filts)
# wns = [0.0100, 0.0264, 0.0699, 0.3005, 0.4885, 0.7943]
high_pass = pd.DataFrame()
x = s.values
for wn in wns:
b, a = signal.butter(1, Wn=wn, btype='high')
zi = signal.lfilter_zi(b, a)
high_pass['highpass_lf_' + str('%.4f' %wn)] = signal.lfilter(b, a, x, zi=zi*x[0])[0]
high_pass['highpass_ff_' + str('%.4f' %wn)] = signal.filtfilt(b, a, x)
return high_pass
def calc_roll_stats(s, windows=[10, 50, 100, 500, 1000, 3000]):
'''
Calculates rolling stats like mean, std, min, max...
'''
roll_stats = pd.DataFrame()
for w in windows:
roll_stats['roll_mean_' + str(w)] = s.rolling(window=w, min_periods=1).mean().interpolate('spline', order=5, limit_direction='both')
roll_stats['roll_std_' + str(w)] = s.rolling(window=w, min_periods=1).std().interpolate('spline', order=5, limit_direction='both')
roll_stats['roll_min_' + str(w)] = s.rolling(window=w, min_periods=1).min().interpolate('spline', order=5, limit_direction='both')
roll_stats['roll_max_' + str(w)] = s.rolling(window=w, min_periods=1).max().interpolate('spline', order=5, limit_direction='both')
roll_stats['roll_range_' + str(w)] = roll_stats['roll_max_' + str(w)] - roll_stats['roll_min_' + str(w)]
roll_stats['roll_q10_' + str(w)] = s.rolling(window=w, min_periods=1).quantile(0.10).interpolate('spline', order=5, limit_direction='both')
roll_stats['roll_q25_' + str(w)] = s.rolling(window=w, min_periods=1).quantile(0.25).interpolate('spline', order=5, limit_direction='both')
roll_stats['roll_q50_' + str(w)] = s.rolling(window=w, min_periods=1).quantile(0.50).interpolate('spline', order=5, limit_direction='both')
roll_stats['roll_q75_' + str(w)] = s.rolling(window=w, min_periods=1).quantile(0.75).interpolate('spline', order=5, limit_direction='both')
roll_stats['roll_q90_' + str(w)] = s.rolling(window=w, min_periods=1).quantile(0.90).interpolate('spline', order=5, limit_direction='both')
# add zeros when na values (std)
# roll_stats = roll_stats.fillna(value=0)
return roll_stats
def calc_ewm(s, windows=[10, 50, 100, 500, 1000, 3000]):
'''
Calculates exponential weighted functions
'''
ewm = pd.DataFrame()
for w in windows:
ewm['ewm_mean_' + str(w)] = s.ewm(span=w, min_periods=1).mean()
ewm['ewm_std_' + str(w)] = s.ewm(span=w, min_periods=1).std()
# add zeros when na values (std)
ewm = ewm.fillna(value=0)
return ewm
def divide_and_add_features(s, signal_size=500000):
'''
Divide the signal in bags of "signal_size".
Normalize the data dividing it by 15.0
'''
# normalize
s = s/15.0
ls = []
for i in progress_bar(range(int(s.shape[0]/signal_size))):
sig = s[i*signal_size:(i+1)*signal_size].copy().reset_index(drop=True)
sig_featured = add_features(sig)
ls.append(sig_featured)
return pd.concat(ls, axis=0)
###Output
_____no_output_____
###Markdown
ref: https://www.kaggle.com/nxrprime/single-model-lgbm-kalman-filter-ii
###Code
def Kalman1D(observations,damping=1):
# To return the smoothed time series data
observation_covariance = damping
initial_value_guess = observations[0]
transition_matrix = 1
transition_covariance = 0.1
initial_value_guess
kf = KalmanFilter(
initial_state_mean=initial_value_guess,
initial_state_covariance=observation_covariance,
observation_covariance=observation_covariance,
transition_covariance=transition_covariance,
transition_matrices=transition_matrix
)
pred_state, state_cov = kf.smooth(observations)
return pred_state
###Output
_____no_output_____
###Markdown
Preparation setting
###Code
sns.set()
###Output
_____no_output_____
###Markdown
load dataset
###Code
df_tr = pd.read_csv(PATH_TRAIN)
df_te = pd.read_csv(PATH_TEST)
###Output
_____no_output_____
###Markdown
処理のしやすさのために、バッチ番号を振る
###Code
batch_list = []
for n in range(10):
batchs = np.ones(500000)*n
batch_list.append(batchs.astype(int))
batch_list = np.hstack(batch_list)
df_tr['batch'] = batch_list
batch_list = []
for n in range(4):
batchs = np.ones(500000)*n
batch_list.append(batchs.astype(int))
batch_list = np.hstack(batch_list)
df_te['batch'] = batch_list
###Output
_____no_output_____
###Markdown
smallset?
###Code
if isSmallSet:
print('small set mode')
# train
batchs = df_tr['batch'].values
dfs = []
for i_bt, bt in enumerate(df_tr['batch'].unique()):
idxs = batchs == bt
_df = df_tr[idxs][:LENGTH].copy()
dfs.append(_df)
df_tr = pd.concat(dfs).reset_index(drop=True)
# test
batchs = df_te['batch'].values
dfs = []
for i_bt, bt in enumerate(df_te['batch'].unique()):
idxs = batchs == bt
_df = df_te[idxs][:LENGTH].copy()
dfs.append(_df)
df_te = pd.concat(dfs).reset_index(drop=True)
###Output
_____no_output_____
###Markdown
Train
###Code
# configurations and main hyperparammeters
# EPOCHS = 180
EPOCHS = 180
NNBATCHSIZE = 16
GROUP_BATCH_SIZE = 4000
SEED = 321
LR = 0.0015
SPLITS = 5
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
# tf.random.set_seed(seed)
# read data
def read_data():
train = pd.read_csv(PATH_TRAIN, dtype={'time': np.float32, 'signal': np.float32, 'open_channels':np.int32})
test = pd.read_csv(PATH_TEST, dtype={'time': np.float32, 'signal': np.float32})
sub = pd.read_csv(PATH_SMPLE_SUB, dtype={'time': np.float32})
# Y_train_proba = np.load('./../data/input/Y_train_proba.npy')
# Y_test_proba = np.load('./../data/input/Y_test_proba.npy')
probas = np.load(PATH_PROBAS)
Y_train_proba = probas['arr_0']
Y_test_proba = probas['arr_1']
for i in range(11):
train[f"proba_{i}"] = Y_train_proba[:, i]
test[f"proba_{i}"] = Y_test_proba[:, i]
# add offset
batch_list = []
for n in range(10):
batchs = np.ones(500000)*n
batch_list.append(batchs.astype(int))
batch_list = np.hstack(batch_list)
train['batch'] = batch_list
batch_list = []
for n in range(4):
batchs = np.ones(500000)*n
batch_list.append(batchs.astype(int))
batch_list = np.hstack(batch_list)
test['batch'] = batch_list
group = group_feat_train(train)
train = pd.concat([train, group], axis=1)
group = group_feat_test(test)
test = pd.concat([test, group], axis=1)
off_set_4 = 0.952472 - (-1.766044)
off_set_9 = 0.952472 - (-1.770441)
# batch4
idxs = train['batch'] == 4
train['signal'][idxs] = train['signal'].values + off_set_4
# batch9
idxs = train['batch'] == 9
train['signal'][idxs] = train['signal'].values + off_set_9
off_set_test = 2.750
# group4
idxs = test['group'] == 4
test['signal'][idxs] = test['signal'][idxs].values + off_set_test
# mod batch7
if MOD_BATCH7:
train = create_signal_mod2(train)
plt.figure(figsize=(20, 3))
plt.plot(train['signal'])
plt.show()
plt.figure(figsize=(20, 3))
plt.plot(test['signal'])
plt.show()
train = train.drop(['batch', 'group'], axis=1)
test = test.drop(['batch', 'group'], axis=1)
return train, test, sub
# create batches of 4000 observations
def batching(df, batch_size):
df['group'] = df.groupby(df.index//batch_size, sort=False)['signal'].agg(['ngroup']).values
df['group'] = df['group'].astype(np.uint16)
return df
# normalize the data (standard scaler). We can also try other scalers for a better score!
def normalize(train, test):
train_input_mean = train.signal.mean()
train_input_sigma = train.signal.std()
train['signal'] = (train.signal - train_input_mean) / train_input_sigma
test['signal'] = (test.signal - train_input_mean) / train_input_sigma
return train, test
# get lead and lags features
def lag_with_pct_change(df, windows):
for window in windows:
df['signal_shift_pos_' + str(window)] = df.groupby('group')['signal'].shift(window).fillna(0)
df['signal_shift_neg_' + str(window)] = df.groupby('group')['signal'].shift(-1 * window).fillna(0)
return df
def roll_stats(df, windows):
for w in windows:
df['roll_mean_' + str(w)] = df.groupby('group')['signal'].rolling(window=w, min_periods=1).mean().values
df['roll_std_' + str(w)] = df.groupby('group')['signal'].rolling(window=w, min_periods=1).std().values
return df
# main module to run feature engineering. Here you may want to try and add other features and check if your score imporves :).
def run_feat_engineering(df, batch_size):
# create batches
df = batching(df, batch_size = batch_size)
# create leads and lags (1, 2, 3 making them 6 features)
df = lag_with_pct_change(df, [1, 2, 3])
# create signal ** 2 (this is the new feature)
df['signal_2'] = df['signal'] ** 2
# roll_stats
if ROLL_FEATS:
df = roll_stats(df, [10, 300])
return df
# fillna with the mean and select features for training
def feature_selection(train, test):
features = [col for col in train.columns if col not in ['index', 'group', 'open_channels', 'time']]
train = train.replace([np.inf, -np.inf], np.nan)
test = test.replace([np.inf, -np.inf], np.nan)
for feature in features:
feature_mean = pd.concat([train[feature], test[feature]], axis = 0).mean()
train[feature] = train[feature].fillna(feature_mean)
test[feature] = test[feature].fillna(feature_mean)
return train, test, features
# model function (very important, you can try different arquitectures to get a better score. I believe that top public leaderboard is a 1D Conv + RNN style)
def Classifier(shape_):
def cbr(x, out_layer, kernel, stride, dilation):
x = Conv1D(out_layer, kernel_size=kernel, dilation_rate=dilation, strides=stride, padding="same")(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
return x
def wave_block(x, filters, kernel_size, n):
dilation_rates = [2**i for i in range(n)]
x = Conv1D(filters = filters,
kernel_size = 1,
padding = 'same')(x)
res_x = x
for dilation_rate in dilation_rates:
tanh_out = Conv1D(filters = filters,
kernel_size = kernel_size,
padding = 'same',
activation = 'tanh',
dilation_rate = dilation_rate)(x)
sigm_out = Conv1D(filters = filters,
kernel_size = kernel_size,
padding = 'same',
activation = 'sigmoid',
dilation_rate = dilation_rate)(x)
x = Multiply()([tanh_out, sigm_out])
x = Conv1D(filters = filters,
kernel_size = 1,
padding = 'same')(x)
res_x = Add()([res_x, x])
return res_x
inp = Input(shape = (shape_))
x = cbr(inp, 64, 7, 1, 1)
# x = BatchNormalization()(x) # 追加 (参考: https://www.kaggle.com/siavrez/wavenet-keras)
# x = wave_block(x, 8, 3, 18) # 追加
x = BatchNormalization()(x)
x = wave_block(x, 16, 3, 12)
x = BatchNormalization()(x)
x = wave_block(x, 32, 3, 8)
x = BatchNormalization()(x)
x = wave_block(x, 64, 3, 4)
x = BatchNormalization()(x)
x = wave_block(x, 128, 3, 1)
x = cbr(x, 32, 7, 1, 1)
x = BatchNormalization()(x)
x = Dropout(0.2)(x)
out = Dense(11, activation = 'softmax', name = 'out')(x)
model = models.Model(inputs = inp, outputs = out)
opt = Adam(lr = LR)
# opt = tfa.optimizers.SWA(opt)
# model.compile(loss = losses.CategoricalCrossentropy(), optimizer = opt, metrics = ['accuracy'])
model.compile(loss = categorical_crossentropy, optimizer = opt, metrics = ['accuracy'])
return model
# function that decrease the learning as epochs increase (i also change this part of the code)
def lr_schedule(epoch):
if epoch < 30:
lr = LR
elif epoch < 40:
lr = LR / 3
elif epoch < 50:
lr = LR / 5
elif epoch < 60:
lr = LR / 7
elif epoch < 70:
lr = LR / 9
elif epoch < 80:
lr = LR / 11
elif epoch < 90:
lr = LR / 13
else:
lr = LR / 100
return lr
# class to get macro f1 score. This is not entirely necessary but it's fun to check f1 score of each epoch (be carefull, if you use this function early stopping callback will not work)
class MacroF1(Callback):
def __init__(self, model, inputs, targets):
self.model = model
self.inputs = inputs
self.targets = np.argmax(targets, axis = 2).reshape(-1)
def on_epoch_end(self, epoch, logs):
pred = np.argmax(self.model.predict(self.inputs), axis = 2).reshape(-1)
score = f1_score(self.targets, pred, average = 'macro')
print(f'F1 Macro Score: {score:.5f}')
# main function to perfrom groupkfold cross validation (we have 1000 vectores of 4000 rows and 8 features (columns)). Going to make 5 groups with this subgroups.
def run_cv_model_by_batch(train, test, _splits, batch_col, feats, sample_submission, nn_epochs, nn_batch_size):
seed_everything(SEED)
K.clear_session()
# config = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1,
# gpu_options=tf.compat.v1.GPUOptions(
# visible_device_list='4', # specify GPU number
# allow_growth=True
# )
# )
# sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=config)
# tf.compat.v1.keras.backend.set_session(sess)
# tf.compat.v1 ---> tf (tensorflow2系からtensorflow1系に変更)
config = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1,
# gpu_options=tf.GPUOptions(
# visible_device_list='4', # specify GPU number
# allow_growth=True
# )
)
sess = tf.Session(graph=tf.get_default_graph(), config=config)
tf.keras.backend.set_session(sess)
oof_ = np.zeros((len(train), 11)) # build out of folds matrix with 11 columns, they represent our target variables classes (from 0 to 10)
preds_ = np.zeros((len(test), 11))
target = ['open_channels']
group = train['group']
kf = GroupKFold(n_splits=_splits)
splits = [x for x in kf.split(train, train[target], group)]
new_splits = []
for sp in splits:
new_split = []
new_split.append(np.unique(group[sp[0]]))
new_split.append(np.unique(group[sp[1]]))
new_split.append(sp[1])
new_splits.append(new_split)
# pivot target columns to transform the net to a multiclass classification estructure (you can also leave it in 1 vector with sparsecategoricalcrossentropy loss function)
tr = pd.concat([pd.get_dummies(train.open_channels), train[['group']]], axis=1)
tr.columns = ['target_'+str(i) for i in range(11)] + ['group']
target_cols = ['target_'+str(i) for i in range(11)]
train_tr = np.array(list(tr.groupby('group').apply(lambda x: x[target_cols].values))).astype(np.float32)
train = np.array(list(train.groupby('group').apply(lambda x: x[feats].values)))
test = np.array(list(test.groupby('group').apply(lambda x: x[feats].values)))
for n_fold, (tr_idx, val_idx, val_orig_idx) in enumerate(new_splits[0:], start=0):
train_x, train_y = train[tr_idx], train_tr[tr_idx]
valid_x, valid_y = train[val_idx], train_tr[val_idx]
print(f'Our training dataset shape is {train_x.shape}')
print(f'Our validation dataset shape is {valid_x.shape}')
gc.collect()
shape_ = (None, train_x.shape[2]) # input is going to be the number of feature we are using (dimension 2 of 0, 1, 2)
model = Classifier(shape_)
# using our lr_schedule function
cb_lr_schedule = LearningRateScheduler(lr_schedule)
model.fit(train_x,train_y,
epochs = nn_epochs,
callbacks = [cb_lr_schedule, MacroF1(model, valid_x, valid_y)], # adding custom evaluation metric for each epoch
batch_size = nn_batch_size,verbose = 2,
validation_data = (valid_x,valid_y))
preds_f = model.predict(valid_x)
f1_score_ = f1_score(np.argmax(valid_y, axis=2).reshape(-1), np.argmax(preds_f, axis=2).reshape(-1), average = 'macro') # need to get the class with the biggest probability
print(f'Training fold {n_fold + 1} completed. macro f1 score : {f1_score_ :1.5f}')
preds_f = preds_f.reshape(-1, preds_f.shape[-1])
oof_[val_orig_idx,:] += preds_f
te_preds = model.predict(test)
te_preds = te_preds.reshape(-1, te_preds.shape[-1])
preds_ += te_preds / _splits
# calculate the oof macro f1_score
f1_score_ = f1_score(np.argmax(train_tr, axis = 2).reshape(-1), np.argmax(oof_, axis = 1), average = 'macro') # axis 2 for the 3 Dimension array and axis 1 for the 2 Domension Array (extracting the best class)
print(f'Training completed. oof macro f1 score : {f1_score_:1.5f}')
# submission
save_path = f'{DIR_OUTPUT}submission_nb{NB}_cv_{f1_score_:.4f}.csv'
print(f'submission save path: {save_path}')
sample_submission['open_channels'] = np.argmax(preds_, axis = 1).astype(int)
sample_submission.to_csv(save_path, index=False, float_format='%.4f')
# probas
save_path = f'{DIR_OUTPUT_IGNORE}probas_nb{NB}_cv_{f1_score_:.4f}'
print(f'probas save path: {save_path}')
np.savez_compressed(save_path, oof_, preds_)
return oof_
%%time
# this function run our entire program
def run_everything():
print(f'Reading Data Started...({time.ctime()})')
train, test, sample_submission = read_data()
train, test = normalize(train, test)
print(f'Reading and Normalizing Data Completed')
print(f'Creating Features({time.ctime()})')
print(f'Feature Engineering Started...')
train = run_feat_engineering(train, batch_size = GROUP_BATCH_SIZE)
test = run_feat_engineering(test, batch_size = GROUP_BATCH_SIZE)
train, test, features = feature_selection(train, test)
print(f'Feature Engineering Completed...')
print(f'Training Wavenet model with {SPLITS} folds of GroupKFold Started...({time.ctime()})')
oof_ = run_cv_model_by_batch(train, test, SPLITS, 'group', features, sample_submission, EPOCHS, NNBATCHSIZE)
print(f'Training completed...')
return oof_
oof_ = run_everything()
###Output
Reading Data Started...(Sun May 17 08:47:29 2020)
###Markdown
analysis
###Code
df_tr = pd.read_csv(PATH_TRAIN)
batch_list = []
for n in range(10):
batchs = np.ones(500000)*n
batch_list.append(batchs.astype(int))
batch_list = np.hstack(batch_list)
df_tr['batch'] = batch_list
# group 特徴量を作成
group = group_feat_train(df_tr)
df_tr = pd.concat([df_tr, group], axis=1)
y = df_tr['open_channels'].values
oof = np.argmax(oof_, axis=1).astype(int)
for group in sorted(df_tr['group'].unique()):
idxs = df_tr['group'] == group
oof_grp = oof[idxs].astype(int)
y_grp = y[idxs]
print(f'group_score({group}): {f1_score(y_grp, oof_grp, average="micro"):4f}')
max_ = df_tr.loc[df_tr['batch']==3]['signal'].max()
min_ = df_tr.loc[df_tr['batch']==3]['signal'].min()
idxs = (df_tr['batch']==7) & (df_tr['signal']>max_)
df_tr['signal'][idxs] = max_
idxs = (df_tr['batch']==7) & (df_tr['signal']<min_)
df_tr['signal'][idxs] = min_
###Output
_____no_output_____
###Markdown
可視化
###Code
x_idx = np.arange(len(df_tr))
idxs = y != oof
failed = np.zeros(len(df_tr))
failed[idxs] = 1
n = 200
b = np.ones(n)/n
failed_move = np.convolve(failed, b, mode='same')
fig, axs = plt.subplots(2, 1, figsize=(20, 6))
axs = axs.ravel()
# fig = plt.figure(figsize=(20, 3))
for i_gr, group in enumerate(sorted(df_tr['group'].unique())):
idxs = df_tr['group'] == group
axs[0].plot(np.arange(len(df_tr))[idxs], df_tr['signal'].values[idxs], color=cp[i_gr], label=f'group={group}')
for x in range(10):
axs[0].axvline(x*500000 + 500000, color='gray')
axs[0].text(x*500000 + 250000, 5, x)
axs[0].plot(x_idx, failed_move*10, '.', color='black', label='failed_mv')
axs[0].set_xlim(0, 5500000)
axs[0].legend()
axs[1].plot(x_idx, y)
axs[1].set_xlim(0, 5500000)
# fig.legend()
###Output
_____no_output_____ |
doc/turtle/turtle.ipynb | ###Markdown
Dessiner avec la tortueLe module `turtle` permet de dessiner à l'aide d'une petite tortue.
###Code
cd turtle
from turtle import *
forward(100)
###Output
_____no_output_____
###Markdown
Utilisez la fonction `done()` pour terminer. Ensuite vous pouvez fermer la fentêtre.
###Code
done()
ls
###Output
turtle.cfg turtle.ipynb turtle1.png
###Markdown
Etoile
###Code
from turtle import *
color('red', 'yellow')
begin_fill()
while True:
forward(200)
left(170)
if abs(pos()) < 1:
break
end_fill()
done()
###Output
_____no_output_____
###Markdown
Square
###Code
for i in range(4):
forward(100)
left(90)
def square(d):
for i in range(4):
forward(d)
left(90)
square(10)
for i in range(10, 100, 10):
square(i)
done()
###Output
_____no_output_____
###Markdown
Config
###Code
cat turtle.cfg
circle(50)
dot()
import random
for i in range(10):
x = random.randint(-100, 100)
y = random.randint(-100, 100)
goto(x, y)
dot()
clear()
###Output
_____no_output_____ |
pandas_exercise3.ipynb | ###Markdown
###Code
import pandas as pd
import numpy as np
url='https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/04_Apply/Students_Alcohol_Consumption/student-mat.csv'
df=pd.read_csv(url)
df.head()
school=df.loc[:,"school":"guardian"]
school.head()
#capatilize the all the string
capitalizer=lambda x: x.capitalize()
school['Fjob'].apply(capitalizer)
school['Mjob'].apply(capitalizer)
school.tail()
school['Fjob']=school['Fjob'].apply(capitalizer)
school['Mjob']=school['Mjob'].apply(capitalizer)
school.tail()
def legal_drinker(x):
if x > 17:
return True
else:
return False
school["legal_drinker"]=school['age'].apply(legal_drinker)
school.head()
def multiply(x):
if type(x) is int:
return 10 * x
return x
school.applymap(multiply).head(5)
###Output
_____no_output_____ |
notebooks/Figure 4 - 2D_vs_3D_analysis.ipynb | ###Markdown
Load cell detections, cell-type labels, ventricle segmentation, and organoid segmentation
###Code
centers = np.load(os.path.join(working_dir, 'centroids.npy'))
labels = np.load(os.path.join(working_dir, 'nuclei_gating.npy'))
foreground = io.imread(os.path.join(working_dir, 'segment_foreground.tif'))
ventricles = io.imread(os.path.join(working_dir, 'segment_ventricles.tif'))
centers.shape, labels.shape, foreground.shape, ventricles.shape
###Output
_____no_output_____
###Markdown
Get voxel dimensions to be able to refer to physical dimensions
###Code
downsample = np.array([1, 6, 6])
voxelsize = utils.read_voxel_size(os.path.join(working_dir, 'voxel_size.csv'))
voxelsize_down = voxelsize * downsample
voxelsize, voxelsize_down
###Output
_____no_output_____
###Markdown
Count cells along z-axis to see where which slices are valid
###Code
%matplotlib notebook
zrange = 330
zcounts = np.bincount(centers[:, 0], minlength=len(foreground))
zmean = (np.arange(len(foreground)) * zcounts).sum() // zcounts.sum()
plt.figure()
sns.lineplot(np.arange(len(foreground)), zcounts)
plt.plot([zmean, zmean], [0, 5000], 'r-')
plt.plot([zmean-zrange, zmean-zrange], [0, 5000], 'r--')
plt.plot([zmean+zrange, zmean+zrange], [0, 5000], 'r--')
plt.xlabel('zslice #')
plt.ylabel('count')
plt.title('zcounts')
plt.show()
plt.figure()
plot.zprojection(ventricles, centers / downsample, zlim=[zmean-1, zmean+1], markersize=2)
plt.imshow(foreground[zmean], cmap='gray', alpha=0.5)
plt.axis('off')
plt.title('foreground, ventricles, and cell centers @ zmean')
plt.show()
###Output
_____no_output_____
###Markdown
Get SOX2, TBR1, and DN centers
###Code
utils.read_csv(os.path.join(working_dir, 'celltype_names.csv'))
centers_sox2 = centers[np.where(labels[:, 0] == 1)]
centers_tbr1 = centers[np.where(labels[:, 1] == 1)]
centers_dn = centers[np.where(np.logical_and(labels[:, 0] == 0,
labels[:, 1] == 0))]
centers_sox2.shape, centers_tbr1.shape, centers_dn.shape
ventricles_smooth = smooth_segmentation(ventricles, sigma=2) > 0.5
def pseudoslice(zlim):
# Get full slice bounds
zstart = zlim[0]
zstop = zlim[1]
start = np.asarray([zstart, 0, 0])
stop = np.asarray([zstop, *foreground.shape[1:]])
# Extract cells in full slice
slice_centers = utils.filter_points_in_box(centers / downsample, start, stop)
slice_sox2 = utils.filter_points_in_box(centers_sox2 / downsample, start, stop)
slice_tbr1 = utils.filter_points_in_box(centers_tbr1 / downsample, start, stop)
slice_dn = utils.filter_points_in_box(centers_dn / downsample, start, stop)
# Extract segmentations of full slice
slice_foreground = foreground[zstart:zstop]
slice_ventricles = ventricles_smooth[zstart:zstop]
slice_data = {
'centers': slice_centers,
'centers_sox2': slice_sox2,
'centers_tbr1': slice_tbr1,
'centers_dn': slice_dn,
'foreground': slice_foreground,
'ventricles': slice_ventricles,
}
return slice_data
def measure_pseudoslice(s):
# Cell frequencies
freq_sox2 = len(s['centers_sox2']) / len(s['centers'])
freq_tbr1 = len(s['centers_tbr1']) / len(s['centers'])
freq_dn = len(s['centers_dn']) / len(s['centers'])
# Cell densities
svol = (s['foreground'] > 0).sum() * voxelsize_down.prod() / 1000**3
density_centers = len(s['centers']) / svol
density_sox2 = len(s['centers_sox2']) / svol
density_tbr1 = len(s['centers_sox2']) / svol
density_dn = len(s['centers_dn']) / svol
# Ventricle count
seg = s['ventricles']
lbl, n_ventricles = label(seg)
# Ventricle eq. diameter
regions = regionprops(lbl)
eqdiams = np.asarray([r.equivalent_diameter for r in regions])
ave_eqdiam = eqdiams.mean()
measurements = {
'sox2 frequency': freq_sox2,
'tbr1 frequency': freq_tbr1,
'dn frequency': freq_dn,
'cell density': density_centers,
'sox2 cell density': density_sox2,
'tbr1 cell density': density_tbr1,
'dn cell density': density_dn,
'ventricle count': n_ventricles,
'ventricle average diameter': ave_eqdiam
}
return measurements
###Output
_____no_output_____
###Markdown
Get whole org measurements by taking large pseudoslice
###Code
zcenter = zmean
nslices = zrange
zlim = [zcenter-nslices, zcenter+nslices]
# zlim = [0, 650]
s = pseudoslice(zlim)
wholeorg = measure_pseudoslice(s)
wholeorg
zrange = 180
zcounts = np.bincount(centers[:, 0], minlength=len(foreground))
zmean = (np.arange(len(foreground)) * zcounts).sum() // zcounts.sum()
plt.figure()
sns.lineplot(np.arange(len(foreground)), zcounts)
plt.plot([zmean, zmean], [0, 5000], 'r-')
plt.plot([zmean-zrange, zmean-zrange], [0, 5000], 'r--')
plt.plot([zmean+zrange, zmean+zrange], [0, 5000], 'r--')
plt.xlabel('zslice #')
plt.ylabel('count')
plt.title('zcounts')
plt.show()
zmin = zmean - zrange
zmax = zmean + zrange
zmin, zmax
def sample_and_measure(zcenter):
zlim = np.asarray([zcenter - nslices//2, zcenter + nslices//2]).astype(np.int)
s = pseudoslice(zlim)
return measure_pseudoslice(s)
thickness = 100 # micron
n_samples = 10000
nslices = thickness // voxelsize_down[0]
zcenters = np.random.randint(zmin + nslices//2, zmax - nslices//2, n_samples)
with mp.Pool(mp.cpu_count()) as pool:
ms = list(tqdm(pool.imap(sample_and_measure, zcenters), total=len(zcenters)))
df = pd.DataFrame(ms)
df.head()
%matplotlib inline
for measurement in list(wholeorg.keys()):
plt.figure(figsize=(4, 2))
sns.distplot(df[measurement], label='2D')
plt.plot([wholeorg[measurement]], [0], 'r*', label='3D')
plt.xlabel(measurement)
plt.legend()
plt.tight_layout()
plt.show()
###Output
_____no_output_____
###Markdown
We have an estimate of the population variance from this bootstrapped sampling procedure.For any of the measurements that are not systematically biased, we can estimate the sample size neededfor the mean to be expected to be within 5% of the true mean using the central limit theorem.$$\hat{\sigma} = \frac{\sigma}{\sqrt{n}} \Rightarrow n = (\frac{\sigma}{\hat{\sigma}})^2$$We need our expected sample mean to be within 5% of the true sample mean,$$2 \hat{\sigma} = 0.05 \mu \Rightarrow \hat{\sigma} = 0.025 \mu$$$$n = \frac{\sigma^2}{(0.025 \mu)^2} $$
###Code
measurement = 'tbr1 frequency'
mu = wholeorg[measurement]
sigma = df[measurement].std()
n = sigma**2 / (0.025 * mu)**2
f'Minimum number of slices {np.ceil(n).astype(np.int)} to be within 5%'
measurement = 'ventricle average diameter'
mu = wholeorg[measurement]
sigma = df[measurement].std()
n = sigma**2 / (0.025 * mu)**2
f'Minimum number of slices {np.ceil(n).astype(np.int)} to be within 5%'
f'Maximum possible slices in zrange: {((zmax-zmin)*voxelsize_down[0] / thickness).astype(np.int)}'
# Save results
df.to_excel(os.path.join(working_dir, 'pseudosections.xlsx'))
df_wholeorg = pd.DataFrame(wholeorg, index=[0])
df_wholeorg.head()
df_wholeorg.to_excel(os.path.join(working_dir, 'pseudosections_wholeorg.xlsx'))
###Output
_____no_output_____
###Markdown
Aggregate all measurements
###Code
working_dir = '/data/datasets/organoid_phenotyping/analysis/d35_vs_d60'
analysis = pd.read_csv(os.path.join(working_dir, 'analysis.csv'), index_col=0)
analysis.head()
dfs = []
dfs_wholeorg = []
for org_idx, path in enumerate(analysis.index):
folder = analysis['type'].loc[path]
if folder != 'Lancaster_d35':
continue
df = pd.read_excel(os.path.join(working_dir, folder, path, 'dataset/pseudosections.xlsx'), index_col=0)
df['org_idx'] = len(df) * [org_idx]
df.index = np.arange(len(df)) + org_idx * len(df)
df_wholeorg = pd.read_excel(os.path.join(working_dir, folder, path, 'dataset/pseudosections_wholeorg.xlsx'), index_col=0)
dfs.append(df)
dfs_wholeorg.append(df_wholeorg)
df = pd.concat(dfs)
df_wholeorg = pd.concat(dfs_wholeorg)
df.head()
df.tail()
df_wholeorg.index = np.arange(len(df_wholeorg))
df_wholeorg.head()
###Output
_____no_output_____
###Markdown
Pick out 3 slices, show slice variability in a simple bar chart
###Code
slices = df.iloc[12:15].copy()
wholeorg = df_wholeorg.iloc[0].copy()
wholeorg['sample'] = 'Whole org'
df_example = slices
df_example['sample'] = ['Section 1', 'Section 2', 'Section 3']
df_example = df_example.append(wholeorg)
df_example
%matplotlib inline
plt.figure(figsize=(6, 4))
plt.subplot(1, 3, 1)
sns.barplot(x='sample', y='sox2 frequency', data=df_example, color='r')
plt.ylim([0, 0.6])
plt.subplot(1, 3, 2)
sns.barplot(x='sample', y='tbr1 frequency', data=df_example, color='g')
plt.ylim([0, 0.6])
plt.subplot(1, 3, 3)
sns.barplot(x='sample', y='dn frequency', data=df_example, color='b')
plt.ylim([0, 0.6])
plt.tight_layout()
sns.despine()
plt.savefig(os.path.join(working_dir, 'example_slices.pdf'), bbox_inches='tight')
plt.show()
###Output
_____no_output_____
###Markdown
SOX2, TBR1, DN freq distributions intraorganoid vs interorganoid
###Code
df_wholeorg
df_wholeorg2 = df_wholeorg.drop([9, 11])
df2 = df#.loc[::1000]
plt.figure(figsize=(3, 5))
plt.subplot(3, 1, 1)
sns.distplot(df2['sox2 frequency'], bins=32, kde_kws={'bw': 0.02, 'shade': False}, hist=False, color='k', label='2D')
sns.distplot(df_wholeorg2['sox2 frequency'], kde_kws={'bw': 0.02, 'shade': True}, hist=False, rug=True, color='r', label='3D')
plt.xlim([0, 0.8])
plt.legend()
# plt.ylabel('Density')
plt.subplot(3, 1, 2)
sns.distplot(df2['tbr1 frequency'], bins=32, kde_kws={'bw': 0.025, 'shade': False}, hist=False, color='k')
sns.distplot(df_wholeorg2['tbr1 frequency'], kde_kws={'bw': 0.010, 'shade': True}, hist=False, rug=True, color='g')
plt.xlim([0, 0.8])
plt.ylabel('Density')
plt.subplot(3, 1, 3)
sns.distplot(df2['dn frequency'], bins=32, kde_kws={'bw': 0.03, 'shade': False}, hist=False, color='k')
sns.distplot(df_wholeorg2['dn frequency'], kde_kws={'bw': 0.03, 'shade': True}, hist=False, rug=True, color='b')
plt.xlim([0, 0.8])
# plt.ylabel('Density')
sns.despine()
plt.tight_layout()
plt.savefig(os.path.join(working_dir, 'pseudoslice_2d_vs_3d_dist.pdf'), bbox_inches='tight')
plt.show()
###Output
_____no_output_____
###Markdown
Use variance ratio to estimate the number of samples needed for slices to match whole org
###Code
n = 1
n_sox2 = (df2['sox2 frequency'].std() / (df_wholeorg2['sox2 frequency'].std()/np.sqrt(n)))**2
n_tbr1 = (df2['tbr1 frequency'].std() / (df_wholeorg2['tbr1 frequency'].std()/np.sqrt(n)))**2
n_dn = (df2['dn frequency'].std() / (df_wholeorg2['dn frequency'].std()/np.sqrt(n)))**2
n_sox2, n_tbr1, n_dn
df_sigma = pd.DataFrame({'celltype': 2 * ['SOX2', 'TBR1', 'DN'],
'sigma': [
df_wholeorg2['sox2 frequency'].std(),
df_wholeorg2['tbr1 frequency'].std(),
df_wholeorg2['dn frequency'].std(),
df2['sox2 frequency'].std(),
df2['tbr1 frequency'].std(),
df2['dn frequency'].std()
],
'type': 3 * ['3D'] + 3 * ['2D']})
df_sigma
plt.figure(figsize=(3, 4))
sns.barplot(x='celltype', y='sigma', hue='type', data=df_sigma)
plt.tight_layout()
plt.savefig(os.path.join(working_dir, 'pseudoslice_2d_vs_3d_sigma.pdf'), bbox_inches='tight')
plt.show()
###Output
_____no_output_____ |
Project2_Bacmman/0_making_selections.ipynb | ###Markdown
Dependencies
###Code
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
%gui qt
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os
from pybacmman.selections import saveAndOpenSelection
###Output
_____no_output_____
###Markdown
Import Measurements from BACMMAN - The next command will read measurments exported from bacmman
###Code
dsName = "test_run" # change to the actual name of the experiment
objectClassIdx = 1
folder_path = "~/switchdrive/Biozentrum/Data/Bacmman_i2i/" # change this path so that it points to the folder containing experiment folders
data = pd.read_csv(os.path.join(folder_path, dsName, f"{dsName}_{objectClassIdx}.csv"), sep=';') # 1 is for the object class #1 = bacteria
data
ax = data.GrowthRateArea.hist(bins=100, range=(-0.01, 0.05))
ax.set_xlabel("Growth Rate")
ax.set_title("Bacteria MutH Growth Rate")
###Output
_____no_output_____
###Markdown
Import Selections from BACMMAN - The next command will read selection exported from bacmman- See [here](https://github.com/jeanollion/bacmman/wiki/Selectionscreate-selections-from-python) on how to make selection - Task: make a selection only containing channels with cells - Hint: you can see if channels contain cells by selecting `Bacteria` in Displayed Objects` and then click one channel in the right panel - To export selection from BACMMAN select selections from the _data browsing_ tab and run the menu command _Run > Extract Selected Selections_
###Code
selection = pd.read_csv(os.path.join(folder_path, dsName, f"{dsName}_Selections.csv"), sep=';') # 1 is for the object class #1 = bacteria
selection
###Output
_____no_output_____
###Markdown
You can use this selection to subset a dataframe: use both _Position_ and _Indices_ columns to identify an object.
###Code
from pybacmman.pandas import subsetByDataframe
subset = subsetByDataframe(data, selection, on=["Position", "Indices"])
print(f"number of rows in data: {data.shape[0]}, selection: {selection.shape[0]} subset: {subset.shape[0]}")
subset.head()
###Output
number of rows in data: 2784, selection: 2784 subset: 2784
###Markdown
Export Selections To BACMMAN - The next command will create a subset of data containing only long cells, and save it as a selection directly into BACMMAN.- BACMMAN should be open before executing this command.
###Code
data_subset = data[data.Length>8]
print(f"number of objects: {data_subset.shape[0]}")
saveAndOpenSelection(data_subset, dsName, 1, "long cells", address='127.0.0.1', port=25333, python_proxy_port=25334)
###Output
number of objects: 1
###Markdown
- If an error occurs, if can be a problem of communication between java and python. BACMMAN includes a python gateway that is able to listen to queries from python. In the menu Misc> Python Gateway you can set the adress, port and python port and they must match with those set as argument of the _saveAndOpenSelection_ function. Manually edit segmentation and trackingIf needed you can manually edit segmentation and tracking using the Bacmman GUI, see [here](https://github.com/jeanollion/bacmman/wiki/Data-Curation) for instructions. You can also look [at this screencast](https://www.github.com/jeanollion/bacmman/wiki/resources/screencast/manual_correction_dataset2.webm) Using PandasLet's look in some more detail into the data structure. We can select the first frame and look at the table Note: you can remove `.head()` to look at the full table, or you can use `.tail()` to look at the end part
###Code
data[data['Frame']==0].head(n=10)
###Output
_____no_output_____
###Markdown
Now let's look at the last frame, and try to figure out how lineage info is stored and how cells are assigned id's
###Code
data[data['Frame']==49].head(n=10)
###Output
_____no_output_____
###Markdown
There is quite some info here, but it is a bit obscure:- `Position` is the name of the position (image)- `PositionIdx` is an integer keeping track of which position you are in - `Indices` corresponds to frame_nr - channel_nr - cell-nr- `Frame` is frame nr- `Idx` is cell nr (1 = mother cells)- `Bacteria` lineage keeps track of cell lineage (after each division a letter is added)Annoyingly there is no field for channel, so let's add it. > **Exercise** > > Think about how you could do this> > Hint: you can use python package [`re`](https://docs.python.org/3/library/re.html) to extract it from the `Indices` field
###Code
#enter code here
import re
ChIdx = #make list/array with channel number for each row in data
data['ChannelIdx'] = ChIdx
data.head()
###Output
_____no_output_____
###Markdown
Now let's look at the mother cell and first offspring in the first channel. Try to understand how lineages are connected.As you might notice lineages in different channels have the same BacteriaLineage code. Often it is very useful to have a unique lineage id, a number that is constant throughout a cell's life and that only occurs once within the data table. Can you come up with a good idea of how to implement this?
###Code
data.loc[(data['Channel']==0) & (data['Idx']<2) & (data['Frame']<13)]
###Output
_____no_output_____
###Markdown
To uniquely id a cell linage we need three pieces of info- `Position-idx`- `Channel-idx`- `Bacteria-Lineage`> **Exercise** > Add a unique lineage id to the dataframe
###Code
data['LinIdx'] = # add code here
data.head()
###Output
_____no_output_____
###Markdown
Slight detour: [pandas dataframes](https://pandas.pydata.org) combined with [seaborn poltting library](https://seaborn.pydata.org) allow for some powerful data analysis.here two minor examples.First we plot the average life time of cells.Then we plot the length at birth vs length at division.
###Code
life_time_cell = data.groupby('LinIdx').size()
ax = sns.histplot(life_time_cell)
ax.set_xlabel('life time of cell (in frames)')
df_first_frame = data.groupby('LinIdx').first()
df_last_frame = data.groupby('LinIdx').last()
# df_last_frame includes cells that are lost, we should exclude them
df_last_frame = df_last_frame.loc[(~np.isnan(df_last_frame['NextDivisionFrame']))]
fig, axs = plt.subplots(1,3, figsize=(12,4))
sns.histplot(ax=axs[0], data=df_first_frame, x='Length')
sns.histplot(ax=axs[1], data=df_last_frame, x='Length')
sns.scatterplot(ax=axs[2], x=df_first_frame['Length'], y=df_last_frame['Length'])
titles = ['length at birth', 'length at division', 'length at division vs length at birth']
for idx, title in enumerate(titles): axs[idx].set_title(title)
###Output
_____no_output_____ |
dd_1/Part 4/Section 14 - Metaprogramming/09 - Metaclass Parameters.ipynb | ###Markdown
Metaclass Parameters When we use a metaclass we typically have something like this:
###Code
class Metaclass(type):
def __new__(mcls, name, bases, cls_dict):
return super().__new__(mcls, name, bases, cls_dict)
class MyClass(metaclass=Metaclass):
pass
type(MyClass), type(MyClass())
###Output
_____no_output_____
###Markdown
But is there a way to pass *additional* arguments to the metaclass `__new__` method? Starting in Python 3.6, the answer is yes. The restriction is that they **must** be passed as named arguments (positional args being used for specifying inheritance). First let's just try out a simple example to understand the syntax:
###Code
class Metaclass(type):
def __new__(mcls, name, bases, cls_dict, arg1, arg2, arg3=None):
print(arg1, arg2, arg3)
return super().__new__(mcls, name, bases, cls_dict)
class MyClass(metaclass=Metaclass, arg1=10, arg2=20, arg3=30):
pass
class MyClass(metaclass=Metaclass, arg1=10, arg2=20):
pass
###Output
10 20 None
###Markdown
As you can see our metaclass `__new__` method received those arguments. Let's look at a more practical example of this:
###Code
class AutoClassAttrib(type):
def __new__(cls, name, bases, cls_dict, extra_attrs=None):
if extra_attrs:
print('Creating class with some extra attributes: ', extra_attrs)
# here I'm going to things directly into the cls_dict namespace
# but could also create the class first, then add using setattr
for attr_name, attr_value in extra_attrs:
cls_dict[attr_name] = attr_value
return super().__new__(cls, name, bases, cls_dict)
class Account(metaclass=AutoClassAttrib, extra_attrs=[('account_type', 'Savings'), ('apr', 0.5)]):
pass
vars(Account)
###Output
_____no_output_____
###Markdown
As you can see the class now has these two extra attributes. We could also have just done it this way:
###Code
class AutoClassAttrib(type):
def __new__(cls, name, bases, cls_dict, extra_attrs=None):
new_cls = super().__new__(cls, name, bases, cls_dict)
if extra_attrs:
print('Creating class with some extra attributes: ', extra_attrs)
for attr_name, attr_value in extra_attrs:
setattr(new_cls, attr_name, attr_value)
return new_cls
class Account(metaclass=AutoClassAttrib, extra_attrs=[('account_type', 'Savings'), ('apr', 0.5)]):
pass
vars(Account)
###Output
_____no_output_____
###Markdown
Of course, we could just use `**kwargs` instead, to make it easier:
###Code
class AutoClassAttrib(type):
def __new__(cls, name, bases, cls_dict, **kwargs):
new_cls = super().__new__(cls, name, bases, cls_dict)
if kwargs:
print('Creating class with some extra attributes: ', kwargs)
for attr_name, attr_value in kwargs.items():
setattr(new_cls, attr_name, attr_value)
return new_cls
class Account(metaclass=AutoClassAttrib, account_type='Savings', apr=0.5):
pass
vars(Account)
###Output
_____no_output_____ |
examples/basic/data/basic.ipynb | ###Markdown
Sidebar Controls
###Code
VBox([Label(value='Parameter a:'), a_widget, Label(value='Parameter b:'), b_widget])
###Output
_____no_output_____
###Markdown
Column Output
###Code
out
###Output
_____no_output_____ |
aulas/eleicoes_2020.ipynb | ###Markdown
Conjuntos de dados disponíveis aqui:https://www.tse.jus.br/eleicoes/estatisticas/repositorio-de-dados-eleitorais-1/repositorio-de-dados-eleitorais **Importando os dados**
###Code
import pandas as pd
import seaborn as sns
sns.set()
cand_BRASIL = pd.read_csv("/content/drive/My Drive/Colab Datasets/eleicoes/consulta_cand_2020_BRASIL.csv", sep=';', encoding='iso-8859-1')
cand_BRASIL
cand_BRASIL.info()
cand_BRASIL[cand_BRASIL['NM_URNA_CANDIDATO'].str.contains('BOLSONARO') == True]
cand_BRASIL['ST_REELEICAO'].value_counts(normalize=True)*100
cand_BRASIL['DS_GRAU_INSTRUCAO'].value_counts(normalize=True)
cand_BRASIL['DS_GRAU_INSTRUCAO'].value_counts(normalize=True).plot(kind='bar', title='Grau de Instrucao Candidatos 2020');
(100*cand_BRASIL['SG_PARTIDO'].value_counts(normalize=True)).plot(kind='bar', figsize=(12,6), title='Candidados por Partido 2020')
cand_RJ = pd.read_csv("/content/drive/My Drive/Colab Datasets/eleicoes/consulta_cand_2020_RJ.csv", sep=';', encoding='iso-8859-1')
cand_RJ
cand_RJ.info()
cand_RJ['ST_REELEICAO'].value_counts(normalize=True)*100
cand_RJ[cand_RJ['SG_PARTIDO']=='MDB']['DS_GRAU_INSTRUCAO'].value_counts(normalize=True)*100
cand_RJ[cand_RJ['SG_PARTIDO']=='PSOL']['DS_GRAU_INSTRUCAO'].value_counts(normalize=True)*100
cand_RJ[cand_RJ['SG_PARTIDO']=='NOVO']['DS_GRAU_INSTRUCAO'].value_counts(normalize=True)*100
perfil_eleitorado_2020 = pd.read_csv("/content/drive/My Drive/Colab Datasets/eleicoes/perfil_eleitorado_2020.csv", sep=';', encoding='iso-8859-1')
perfil_eleitorado_2020.info()
perfil_abstencao = pd.read_csv('/content/drive/My Drive/Colab Datasets/eleicoes/perfil_comparecimento_abstencao_2018.csv', sep=';', encoding='iso-8859-1')
perfil_abstencao.info()
perfil_abstencao['DS_GRAU_ESCOLARIDADE'].value_counts()
perfil_abstencao['NR_ZONA'].value_counts()
###Output
_____no_output_____ |
DL_PY/cap8.ipynb | ###Markdown

###Code
# create model
model = Sequential()
#entrada
model.add(Dense(12, input_dim=8,kernel_initializer= "uniform" , activation= "relu" ))
#capas profundas
model.add(Dense(8, kernel_initializer= "uniform" , activation= "relu" ))
#capa de salida, sigmoid por que arroja valores entre 0 y 1
model.add(Dense(1, kernel_initializer= "uniform" , activation= "sigmoid" ))
model.compile(loss= "binary_crossentropy", optimizer= "adam" , metrics=[ "accuracy" ])
#model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10)
model.fit(X_train, y_train, validation_data=(X_test,y_test),epochs=200, batch_size=10)
scores = model.evaluate(X_test,y_test)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
import numpy as np
import pandas as pd
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
import seaborn as sns
logreg = LogisticRegression(solver="liblinear")
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
cnf_matrix = metrics.confusion_matrix(y_test,y_pred)
cnf_matrix
metrics.accuracy_score(y_test,y_pred)
class_names = [0,1]
fig, ax = plt.subplots()
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names)
plt.yticks(tick_marks, class_names)
sns.heatmap(pd.DataFrame(cnf_matrix), annot = True, cmap="Blues_r", fmt="g")
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title("Matriz de confusion", y=1.1)
plt.ylabel("Etiqueta Actual")
plt.xlabel("Etiqueta de prediccion")
###Output
_____no_output_____ |
Jupyter Notebooks/Ridge Classifier.ipynb | ###Markdown
Machine Learning Models for SCOPE: Ridge ClassifierModels will be coded here, but the official write up will be in the RMarkdown document.
###Code
# load the data files
import pandas as pd
import numpy as np
from pymodelutils import utils
logs = pd.read_csv("data/metis_logs.csv")
logs.head()
# filter down to show the average opinion (0 means no alert, 1 means alert)
logs['run_date'] = logs['run_date'].astype('datetime64[ns]')
logs['is_alert'] = (np.where(logs['is_alert'] == 'f', 0, 1))
logs = logs.groupby(['series', 'kpi', 'run_date']).mean().round(0).reset_index()
logs['is_campaign'] = np.where(logs['campaign_id'] > 0, 1, 0)
logs = logs.drop(columns=['client_id', 'partner_id', 'campaign_id'])
logs['is_alert'].describe()
AS_data = pd.read_csv("data/python_AS.csv")
AS_data.head()
TS_data = pd.read_csv("data/python_TS.csv")
TS_data.head()
RexT_data = pd.read_csv("data/python_RexT.csv")
RexT_data.head()
###Output
_____no_output_____
###Markdown
Data PrepR has already filtered down the data to the days we are going to use and marked what is disqualified. We still have to handle the feature selection and one-hot encoding of select columns though. We also need to normalize it since out KPIs behave quite differently.
###Code
# add column for AS to tell if it is campaign level or not
AS_data['is_campaign'] = np.where(AS_data['campaign_id'] > 0, 1, 0)
# drop the data we don't need for the model or for matching back to the logs
AS_keep_columns = ['series', 'day', 'run_date', 'kpi', 'value', 'disqualified', 'is_campaign']
TS_keep_columns = ['series', 'day', 'run_date', 'site_type', 'event_name',
'kpi', 'value', 'disqualified']
RexT_drop_columns = ['ranking',
'day_of_week',
'day_of_month',
'month_of_year',
'day_of_year',
'week_of_year']
AS_data = AS_data[AS_keep_columns]
TS_data = TS_data[TS_keep_columns]
RexT_data = RexT_data.drop(columns=RexT_drop_columns)
AS_data.head()
TS_data.head()
RexT_data.head()
# add a new column to determine how many days before the run_date the day column entry is
# this will enable us to pivot that data into separate columns for the features of our model
utils.prep_dates(AS_data)
utils.prep_dates(TS_data)
utils.prep_dates(RexT_data)
# inner joins to logs
AS_data = pd.merge(AS_data, logs, on=['series', 'run_date', 'kpi', 'is_campaign'], how='inner')
TS_data = pd.merge(TS_data, logs, on=['series', 'run_date', 'kpi'], how='inner')
RexT_data = pd.merge(RexT_data, logs, on=['series', 'run_date', 'kpi'], how='inner')
# filter out the disqualified data (AS and TS data only)
AS_disqualified = AS_data[AS_data.disqualified]
TS_disqualified = TS_data[TS_data.disqualified]
# valid for model (AS and TS data only)
valid_AS_raw = AS_data[~(AS_data.disqualified)]
valid_TS_raw = TS_data[~(TS_data.disqualified)]
# keep a copy of the raw RexT data
RexT_data_raw = RexT_data.copy(deep=True)
# final preparations to the data shape for use in the model
valid_AS = utils.data_prep_pipeline(valid_AS_raw.copy(),
indices=['series', 'run_date', 'kpi', 'is_campaign', 'is_alert'],
cols=['kpi'],
scaling_method=['standardize', 'min_max', 'percent_of_mean'])
disqualified_AS = utils.data_prep_pipeline(AS_disqualified.copy(),
indices=['series', 'run_date', 'kpi', 'is_campaign', 'is_alert'],
cols=['kpi'],
scaling_method=['standardize', 'min_max', 'percent_of_mean'])
valid_TS = utils.data_prep_pipeline(valid_TS_raw.copy(),
indices=['series', 'run_date', 'site_type', 'event_name', 'is_alert'],
cols=['site_type', 'event_name'],
scaling_method=['standardize', 'min_max', 'percent_of_mean'])
disqualified_TS = utils.data_prep_pipeline(TS_disqualified.copy(),
indices=['series', 'run_date', 'site_type', 'event_name', 'is_alert'],
cols=['site_type', 'event_name'],
scaling_method=['standardize', 'min_max', 'percent_of_mean'])
valid_RexT = utils.data_prep_pipeline(utils.clean_regions(RexT_data),
indices=['isCountry', 'isSubregion', 'isRegion',
'series', 'run_date', 'is_alert'],
cols=['series'],
scaling_method=['standardize', 'min_max', 'percent_of_mean'])
# for the TS data we need to drop event_name_SITE LEVEL because it will always be the same as site_type_SITE LEVEL
valid_TS = {key : value.drop(columns='event_name_SITE LEVEL') for key, value in valid_TS.items()}
# add back missing columns for the disqualified data
disqualified_TS['min_max']['time_delta_24'], disqualified_TS['min_max']['time_delta_25'] = (0,0)
disqualified_TS['min_max']['site_type_SITE LEVEL'], disqualified_TS['min_max']['site_type_aios'] = (0,0)
disqualified_TS['min_max']['time_delta_diff_23'], disqualified_TS['min_max']['time_delta_diff_24'] = (0,0)
valid_AS['min_max'].head()
valid_TS['percent_of_mean'].head()
valid_RexT['standardize'].head()
###Output
_____no_output_____
###Markdown
ModellingNow that all the data is prepped, we can start building some logistic regression models to test on. We also need to split our data into a test and train set being careful that we have an equal proportion of anomalies in each (because they are very few, we have to make sure we don't train or test the model on all the anomalies while the other gets none). Split Data into Train and Test Sets
###Code
from sklearn.model_selection import train_test_split
# scaling method to test
AS_scaler = 'min_max'
TS_scaler = 'min_max'
RexT_scaler = 'min_max'
# separate out data into feature matrices and target arrays
AS_features = valid_AS[AS_scaler][[col for col in valid_AS[AS_scaler].columns
if col not in ['series', 'run_date', 'is_alert']]] # this needs to be the model features
AS_targets = valid_AS[AS_scaler]['is_alert'] # this needs to be the results from the logs (only)
TS_features = valid_TS[TS_scaler][[col for col in valid_TS[TS_scaler].columns
if col not in ['series', 'run_date', 'is_alert']]]
TS_targets = valid_TS[TS_scaler]['is_alert']
RexT_features = valid_RexT[RexT_scaler][[col for col in valid_RexT[RexT_scaler].columns
if col not in ['run_date', 'is_alert']]]
RexT_targets = valid_RexT[RexT_scaler]['is_alert']
test_RexT_features = RexT_features.drop(columns=[col for col in RexT_features.columns
if 'series' in col
or col in ['isCountry', 'isSubregion', 'isRegion']])
# split into a train and test set without differences
AS_X_train, AS_X_test, AS_y_train, AS_y_test = train_test_split(AS_features[[col for col in AS_features.columns
if 'diff' not in col]],
AS_targets,
test_size=0.2,
random_state=25)
TS_X_train, TS_X_test, TS_y_train, TS_y_test = train_test_split(TS_features[[col for col in TS_features.columns
if 'diff' not in col]],
TS_targets,
test_size=0.2,
random_state=25)
RexT_X_train, RexT_X_test, RexT_y_train, RexT_y_test = train_test_split(test_RexT_features[[col for col in
test_RexT_features.columns
if 'diff' not in col]],
RexT_targets,
test_size=0.5,
random_state=25)
# split into a train and test set with differences
AS_X_train_diff, AS_X_test_diff, AS_y_train_diff, AS_y_test_diff = train_test_split(AS_features,
AS_targets,
test_size=0.2,
random_state=25)
TS_X_train_diff, TS_X_test_diff, TS_y_train_diff, TS_y_test_diff = train_test_split(TS_features,
TS_targets,
test_size=0.2,
random_state=25)
RexT_X_train_diff, RexT_X_test_diff, RexT_y_train_diff, RexT_y_test_diff = train_test_split(test_RexT_features,
RexT_targets,
test_size=0.5,
random_state=25)
###Output
_____no_output_____
###Markdown
Let's make sure that we have similar percentage of anomalies in our test and train sets.
###Code
# AS
print('Total alerts in training set: ' + str(AS_y_train.sum()))
print('Total alerts in test set: ' + str(AS_y_test.sum()))
pd.DataFrame({'train' : AS_y_train.value_counts(normalize=True),
'test' : AS_y_test.value_counts(normalize=True)})
# TS
print('Total alerts in training set: ' + str(TS_y_train.sum()))
print('Total alerts in test set: ' + str(TS_y_test.sum()))
pd.DataFrame({'train' : TS_y_train.value_counts(normalize=True),
'test' : TS_y_test.value_counts(normalize=True)})
# RexT
print('Total alerts in training set: ' + str(RexT_y_train.sum()))
print('Total alerts in test set: ' + str(RexT_y_test.sum()))
pd.DataFrame({'train' : RexT_y_train.value_counts(normalize=True),
'test' : RexT_y_test.value_counts(normalize=True)})
###Output
Total alerts in training set: 9.0
Total alerts in test set: 13.0
###Markdown
Ridge Classifier without Differences
###Code
%%capture
# ^ don't print errors about precision, recall, F1-score being 0
from sklearn.linear_model import RidgeClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer, f1_score, precision_score, recall_score, fbeta_score, zero_one_loss
ridge = RidgeClassifier(normalize=False, random_state=42)
parameters = {'alpha':[0.1, 0.5, 1, 5],
'fit_intercept' : [True, False],
'class_weight' : ['balanced', None]}
scoring = {'auc': 'roc_auc',
# only reports on alerts flagged
'precision_binary' : make_scorer(precision_score, average='binary'),
# global count of everything like confusion matrix
'precision_micro' : make_scorer(precision_score, average='micro'),
# same as macro but with a weighted average to account for imbalance of the classes
'precision_weighted' : make_scorer(precision_score, average='weighted'),
'recall_weighted' : make_scorer(recall_score, average='weighted'),
'recall_binary' : make_scorer(recall_score, average='binary'),
'recall_micro' : make_scorer(recall_score, average='micro'),
'f1_score_weighted' : make_scorer(f1_score, average='weighted'),
'f1_score_binary' : make_scorer(f1_score, average='binary'),
'f1_score_micro' : make_scorer(f1_score, average='micro'),
# emphasize recall more
'f2_score_weighted' : make_scorer(fbeta_score, beta=2, average='weighted'),
'f2_score_binary' : make_scorer(fbeta_score, beta=2, average='binary'),
'f2_score_micro' : make_scorer(fbeta_score, beta=2, average='micro'),
# emphasize precision more
'f0.5_score_weighted' : make_scorer(fbeta_score, beta=0.5, average='weighted'),
'f0.5_score_binary' : make_scorer(fbeta_score, beta=0.5, average='binary'),
'f0.5_score_micro' : make_scorer(fbeta_score, beta=0.5, average='micro'),
# percent of misclassifications
'zero_one_loss_normalized' : make_scorer(zero_one_loss, greater_is_better=False),
# number of misclassifications
'zero_one_loss_count' : make_scorer(zero_one_loss, greater_is_better=False, normalize=False),
'accuracy' : 'accuracy'}
# pick '_weighted' if you want to be right on each class proportionally
# ('macro' isn't really appropriate due to the class imbalance)
# pick '_binary' if you want to perform best on the alert class
# pick '_micro' to count globally all TP, FP, TN, FN (like confusion matrix)
# so for our purposes 'f1_score' with one of the above is likely to be the best
refit_AS = 'precision_micro'
refit_TS = 'precision_micro'
refit_RexT = 'auc'
AS_ridge_grid = GridSearchCV(estimator=ridge, param_grid=parameters,
scoring=scoring, refit=refit_AS, return_train_score=True)
TS_ridge_grid = GridSearchCV(estimator=ridge, param_grid=parameters,
scoring=scoring, refit=refit_TS, return_train_score=True)
RexT_ridge_grid = GridSearchCV(estimator=ridge, param_grid=parameters,
scoring=scoring, refit=refit_RexT, return_train_score=True)
# fit the models to find the best version
AS_ridge_model = AS_ridge_grid.fit(AS_X_train, AS_y_train)
TS_ridge_model = TS_ridge_grid.fit(TS_X_train, TS_y_train)
RexT_ridge_model = RexT_ridge_grid.fit(RexT_X_train, RexT_y_train)
###Output
_____no_output_____
###Markdown
Best Models AS
###Code
print(AS_ridge_model.best_estimator_)
print(refit_AS + ' (Mean cross-validated score of the best_estimator): ' + \
str(AS_ridge_model.best_score_))
for col, coef in zip(AS_X_train.columns, AS_ridge_model.best_estimator_.coef_[0]):
print(col + '\t' + str(round(coef, 2)))
###Output
RidgeClassifier(alpha=1, class_weight=None, copy_X=True, fit_intercept=False,
max_iter=None, normalize=False, random_state=42, solver='auto',
tol=0.001)
precision_micro (Mean cross-validated score of the best_estimator): 0.7950985346134412
is_campaign 0.06
time_delta_01 0.1
time_delta_02 0.04
time_delta_03 0.02
time_delta_04 0.0
time_delta_05 0.0
time_delta_06 0.03
time_delta_07 -0.01
time_delta_08 -0.01
time_delta_09 0.0
time_delta_10 0.0
time_delta_11 0.0
time_delta_12 0.03
time_delta_13 0.01
time_delta_14 -0.02
time_delta_15 0.0
time_delta_16 -0.01
time_delta_17 -0.0
time_delta_18 0.02
time_delta_19 -0.0
time_delta_20 -0.01
time_delta_21 -0.01
time_delta_22 0.01
time_delta_23 -0.01
time_delta_24 -0.01
time_delta_25 -0.0
kpi_clicks -0.51
kpi_client_rext -0.64
kpi_conversions -0.66
kpi_cos -0.64
kpi_cr -0.68
kpi_ctr -0.81
kpi_displays -0.5
kpi_margin -1.11
kpi_order_value -0.64
kpi_rext_euro -0.96
kpi_spend -0.54
kpi_tac -0.96
###Markdown
TS
###Code
print(TS_ridge_model.best_estimator_)
print(refit_TS + ' (Mean cross-validated score of the best_estimator): ' + \
str(TS_ridge_model.best_score_))
for col, coef in zip(TS_X_train.columns, TS_ridge_model.best_estimator_.coef_[0]):
print(col + '\t' + str(round(coef, 2)))
###Output
RidgeClassifier(alpha=0.1, class_weight=None, copy_X=True, fit_intercept=True,
max_iter=None, normalize=False, random_state=42, solver='auto',
tol=0.001)
precision_micro (Mean cross-validated score of the best_estimator): 0.9198706431908013
time_delta_01 0.09
time_delta_02 0.02
time_delta_03 -0.01
time_delta_04 -0.05
time_delta_05 0.0
time_delta_06 0.01
time_delta_07 -0.0
time_delta_08 -0.02
time_delta_09 -0.02
time_delta_10 0.01
time_delta_11 0.01
time_delta_12 0.02
time_delta_13 0.0
time_delta_14 -0.01
time_delta_15 0.0
time_delta_16 0.02
time_delta_17 -0.0
time_delta_18 0.03
time_delta_19 0.03
time_delta_20 0.04
time_delta_21 -0.02
time_delta_22 -0.02
time_delta_23 0.01
time_delta_24 0.03
time_delta_25 0.0
site_type_SITE LEVEL 0.02
site_type_aa 0.02
site_type_aios -0.05
site_type_d -0.04
site_type_m 0.05
site_type_t -0.0
event_name_basket -0.03
event_name_homepage -0.03
event_name_listing 0.01
event_name_product -0.01
event_name_sales -0.04
event_name_search 0.09
###Markdown
RexT
###Code
print(RexT_ridge_model.best_estimator_)
print(refit_RexT + ' (Mean cross-validated score of the best_estimator): ' + \
str(RexT_ridge_model.best_score_))
for col, coef in zip(RexT_X_train.columns, RexT_ridge_model.best_estimator_.coef_[0]):
print(col + '\t' + str(round(coef, 2)))
###Output
RidgeClassifier(alpha=0.5, class_weight=None, copy_X=True, fit_intercept=True,
max_iter=None, normalize=False, random_state=42, solver='auto',
tol=0.001)
auc (Mean cross-validated score of the best_estimator): 0.937037037037037
time_delta_01 0.66
time_delta_02 -0.4
time_delta_03 0.01
time_delta_04 -0.07
time_delta_05 0.02
time_delta_06 0.03
time_delta_07 0.04
time_delta_08 -0.05
time_delta_09 -0.04
time_delta_10 -0.12
time_delta_11 0.07
time_delta_12 0.02
time_delta_13 0.07
time_delta_14 -0.17
time_delta_15 0.03
time_delta_16 -0.03
time_delta_17 0.15
time_delta_18 -0.11
time_delta_19 -0.07
time_delta_20 -0.09
time_delta_21 0.09
time_delta_22 -0.04
time_delta_23 0.09
time_delta_24 -0.16
time_delta_25 0.03
time_delta_26 0.24
time_delta_27 -0.14
time_delta_28 -0.08
time_delta_29 -0.06
time_delta_30 0.08
###Markdown
Model Evaluation ROC Curve
###Code
from sklearn.metrics import roc_curve, auc
AS_y_prob_fit = AS_ridge_model.decision_function(AS_X_test)
TS_y_prob_fit = TS_ridge_model.decision_function(TS_X_test)
RexT_y_prob_fit = RexT_ridge_model.decision_function(RexT_X_test)
AS_ridge_roc_curve = roc_curve(AS_y_test, AS_y_prob_fit, pos_label=1) # returns tuple: fpr, tpr, thresholds
AS_ridge_roc_curve_AUC = auc(AS_ridge_roc_curve[0], AS_ridge_roc_curve[1]) # needs fpr, tpr
TS_ridge_roc_curve = roc_curve(TS_y_test, TS_y_prob_fit, pos_label=1)
TS_ridge_roc_curve_AUC = auc(TS_ridge_roc_curve[0], TS_ridge_roc_curve[1])
RexT_ridge_roc_curve = roc_curve(RexT_y_test, RexT_y_prob_fit, pos_label=1)
RexT_ridge_roc_curve_AUC = auc(RexT_ridge_roc_curve[0], RexT_ridge_roc_curve[1])
# ROC Curve without 1 period differences
utils.model_roc_curves(roc_data_dict={'AS' : AS_ridge_roc_curve,
'TS' : TS_ridge_roc_curve,
'RexT' : RexT_ridge_roc_curve},
auc_dict={'AS' : AS_ridge_roc_curve_AUC,
'TS' : TS_ridge_roc_curve_AUC,
'RexT' : RexT_ridge_roc_curve_AUC},
method_name='Ridge Classifier')
###Output
_____no_output_____
###Markdown
Confusion Matrix
###Code
AS_threshold = 0.001
utils.confusion_matrix_visual(AS_y_test[AS_X_test.is_campaign == 0],
AS_ridge_model.decision_function(AS_X_test[AS_X_test.is_campaign == 0]) \
>= AS_threshold, 'AS Client-level')
utils.confusion_matrix_visual(AS_y_test[AS_X_test.is_campaign == 1],
AS_ridge_model.decision_function(AS_X_test[AS_X_test.is_campaign == 1]) \
>= AS_threshold, 'AS Campaign-level')
utils.confusion_matrix_visual(AS_y_test,
AS_ridge_model.decision_function(AS_X_test) \
>= AS_threshold, 'AS Overall')
TS_threshold = 0.0000001
utils.confusion_matrix_visual(TS_y_test,
TS_ridge_model.decision_function(TS_X_test) \
>= TS_threshold,
'TS')
RexT_threshold = 0.000000001
utils.confusion_matrix_visual(RexT_y_test,
RexT_ridge_model.decision_function(RexT_X_test) \
>= RexT_threshold,
'RexT')
###Output
TP to FP ratio: 2.0
###Markdown
On disqualified data.
###Code
utils.confusion_matrix_visual(disqualified_AS['min_max']['is_alert'],
AS_ridge_model.decision_function(disqualified_AS['min_max'].\
drop([col for col in disqualified_AS['min_max'].columns
if 'diff' in col or col in ['run_date', 'series', 'is_alert']], axis=1)) \
>= AS_threshold, 'AS Overall')
disqualified_TS['min_max']['time_delta_24'], disqualified_TS['min_max']['time_delta_25'] = (0,0)
disqualified_TS['min_max']['site_type_SITE LEVEL'], disqualified_TS['min_max']['site_type_aios'] = (0,0)
utils.confusion_matrix_visual(disqualified_TS['min_max']['is_alert'],
TS_ridge_model.decision_function(disqualified_TS['min_max'].\
drop([col for col in disqualified_TS['min_max'].columns
if 'diff' in col or col in ['run_date', 'series', 'is_alert']], axis=1)) \
>= TS_threshold,
'TS')
###Output
TP to FP ratio: nan
###Markdown
Metrics
###Code
utils.classification_report_all(y_test_dict={'AS' : AS_y_test,
'TS' : TS_y_test,
'RexT' : RexT_y_test},
y_pred_dict={'AS' :
AS_ridge_model.decision_function(AS_X_test) >= \
AS_threshold,
'TS' :
TS_ridge_model.decision_function(TS_X_test) >= \
TS_threshold,
'RexT' :
RexT_ridge_model.decision_function(RexT_X_test) >= \
RexT_threshold})
###Output
AS results
precision recall f1-score support
False 0.80 1.00 0.89 775
True 0.86 0.08 0.15 215
avg / total 0.81 0.80 0.73 990
Percent misclassified: 20.2%
Count misclassified: 200
------------------------------------------------------
TS results
precision recall f1-score support
False 0.92 1.00 0.96 638
True 0.50 0.02 0.03 58
avg / total 0.88 0.92 0.88 696
Percent misclassified: 8.33%
Count misclassified: 58
------------------------------------------------------
RexT results
precision recall f1-score support
False 0.89 0.99 0.93 86
True 0.67 0.15 0.25 13
avg / total 0.86 0.88 0.84 99
Percent misclassified: 12.12%
Count misclassified: 12
###Markdown
Logistic Regression with Differences
###Code
%%capture
# ^ don't print errors about precision, recall, F1-score being 0
from sklearn.linear_model import RidgeClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer, f1_score, precision_score, recall_score, fbeta_score, zero_one_loss
ridge_diff = RidgeClassifier(normalize=False, random_state=42)
parameters = {'alpha':[0.1, 0.5, 1, 5],
'fit_intercept' : [True, False],
'class_weight' : ['balanced', None]}
scoring = {'auc': 'roc_auc',
'precision_binary' : make_scorer(precision_score, average='binary'),
'precision_micro' : make_scorer(precision_score, average='micro'),
'precision_weighted' : make_scorer(precision_score, average='weighted'),
'recall_weighted' : make_scorer(recall_score, average='weighted'),
'recall_binary' : make_scorer(recall_score, average='binary'),
'recall_micro' : make_scorer(recall_score, average='micro'),
'f1_score_weighted' : make_scorer(f1_score, average='weighted'),
'f1_score_binary' : make_scorer(f1_score, average='binary'),
'f1_score_micro' : make_scorer(f1_score, average='micro'),
'f2_score_weighted' : make_scorer(fbeta_score, beta=2, average='weighted'),
'f2_score_binary' : make_scorer(fbeta_score, beta=2, average='binary'),
'f2_score_micro' : make_scorer(fbeta_score, beta=2, average='micro'),
'f0.5_score_weighted' : make_scorer(fbeta_score, beta=0.5, average='weighted'),
'f0.5_score_binary' : make_scorer(fbeta_score, beta=0.5, average='binary'),
'f0.5_score_micro' : make_scorer(fbeta_score, beta=0.5, average='micro'),
'zero_one_loss_normalized' : make_scorer(zero_one_loss, greater_is_better=False),
'zero_one_loss_count' : make_scorer(zero_one_loss, greater_is_better=False, normalize=False),
'accuracy' : 'accuracy'}
# pick '_weighted' if you want to be right on each class proportionally
# ('macro' isn't really appropriate due to the class imbalance)
# pick '_binary' if you want to perform best on the alert class
# pick '_micro' to count globally all TP, FP, TN, FN (like confusion matrix)
# so for our purposes 'f1_score' with one of the above is likely to be the best
refit_AS = 'precision_weighted'
refit_TS = 'precision_micro'
refit_RexT = 'auc'
AS_ridge_diff_grid = GridSearchCV(estimator=ridge_diff, param_grid=parameters,
scoring=scoring, refit=refit_AS, return_train_score=True)
TS_ridge_diff_grid = GridSearchCV(estimator=ridge_diff, param_grid=parameters,
scoring=scoring, refit=refit_TS, return_train_score=True)
RexT_ridge_diff_grid = GridSearchCV(estimator=ridge_diff, param_grid=parameters,
scoring=scoring, refit=refit_RexT, return_train_score=True)
# fit the models to find the best version
AS_ridge_model_diff = AS_ridge_diff_grid.fit(AS_X_train_diff, AS_y_train_diff)
TS_ridge_model_diff = TS_ridge_diff_grid.fit(TS_X_train_diff, TS_y_train_diff)
RexT_ridge_model_diff = RexT_ridge_diff_grid.fit(RexT_X_train_diff, RexT_y_train_diff)
###Output
_____no_output_____
###Markdown
Best Models AS
###Code
print(AS_ridge_model_diff.best_estimator_)
print(refit_AS + ' (Mean cross-validated score of the best_estimator): ' + \
str(AS_ridge_model_diff.best_score_))
for col, coef in zip(AS_X_train_diff.columns, AS_ridge_model_diff.best_estimator_.coef_[0]):
print(col + '\t' + str(round(coef, 2)))
###Output
RidgeClassifier(alpha=0.1, class_weight='balanced', copy_X=True,
fit_intercept=True, max_iter=None, normalize=False,
random_state=42, solver='auto', tol=0.001)
precision_weighted (Mean cross-validated score of the best_estimator): 0.7681255474122398
is_campaign 0.12
time_delta_01 0.1
time_delta_02 0.07
time_delta_03 0.03
time_delta_04 0.02
time_delta_05 0.01
time_delta_06 0.04
time_delta_07 0.0
time_delta_08 0.0
time_delta_09 -0.02
time_delta_10 0.02
time_delta_11 -0.01
time_delta_12 0.05
time_delta_13 -0.02
time_delta_14 0.01
time_delta_15 0.01
time_delta_16 -0.03
time_delta_17 -0.05
time_delta_18 0.09
time_delta_19 -0.02
time_delta_20 -0.04
time_delta_21 0.01
time_delta_22 0.05
time_delta_23 -0.02
time_delta_24 -0.05
time_delta_25 0.04
kpi_clicks 0.29
kpi_client_rext 0.14
kpi_conversions 0.13
kpi_cos 0.13
kpi_cr 0.06
kpi_ctr -0.09
kpi_displays 0.3
kpi_margin -0.65
kpi_order_value 0.12
kpi_rext_euro -0.33
kpi_spend 0.24
kpi_tac -0.33
time_delta_diff_24 0.18
time_delta_diff_23 -0.04
time_delta_diff_22 -0.05
time_delta_diff_21 0.07
time_delta_diff_20 0.13
time_delta_diff_19 0.02
time_delta_diff_18 -0.06
time_delta_diff_17 0.13
time_delta_diff_16 -0.02
time_delta_diff_15 -0.03
time_delta_diff_14 -0.03
time_delta_diff_13 0.12
time_delta_diff_12 -0.01
time_delta_diff_11 0.03
time_delta_diff_10 -0.05
time_delta_diff_09 0.02
time_delta_diff_08 -0.05
time_delta_diff_07 -0.03
time_delta_diff_06 -0.01
time_delta_diff_05 0.01
time_delta_diff_04 -0.04
time_delta_diff_03 -0.01
time_delta_diff_02 0.01
time_delta_diff_01 -0.0
###Markdown
TS
###Code
print(TS_ridge_model_diff.best_estimator_)
print(refit_TS + ' (Mean cross-validated score of the best_estimator): ' + \
str(TS_ridge_model_diff.best_score_))
for col, coef in zip(TS_X_train_diff.columns, TS_ridge_model_diff.best_estimator_.coef_[0]):
print(col + '\t' + str(round(coef, 2)))
###Output
RidgeClassifier(alpha=0.1, class_weight=None, copy_X=True, fit_intercept=True,
max_iter=None, normalize=False, random_state=42, solver='auto',
tol=0.001)
precision_micro (Mean cross-validated score of the best_estimator): 0.9191519942508085
time_delta_01 0.08
time_delta_02 0.04
time_delta_03 -0.01
time_delta_04 0.0
time_delta_05 -0.07
time_delta_06 -0.03
time_delta_07 0.07
time_delta_08 -0.04
time_delta_09 -0.08
time_delta_10 0.04
time_delta_11 -0.07
time_delta_12 0.09
time_delta_13 0.01
time_delta_14 -0.01
time_delta_15 -0.05
time_delta_16 0.05
time_delta_17 -0.01
time_delta_18 0.0
time_delta_19 -0.01
time_delta_20 0.02
time_delta_21 0.01
time_delta_22 0.02
time_delta_23 0.01
time_delta_24 0.06
time_delta_25 -0.04
site_type_SITE LEVEL 0.03
site_type_aa 0.01
site_type_aios -0.05
site_type_d -0.03
site_type_m 0.05
site_type_t 0.0
event_name_basket -0.03
event_name_homepage -0.03
event_name_listing 0.01
event_name_product -0.02
event_name_sales -0.04
event_name_search 0.09
time_delta_diff_24 -0.07
time_delta_diff_23 -0.01
time_delta_diff_22 -0.02
time_delta_diff_21 0.06
time_delta_diff_20 0.11
time_delta_diff_19 0.08
time_delta_diff_18 0.03
time_delta_diff_17 0.01
time_delta_diff_16 -0.0
time_delta_diff_15 0.07
time_delta_diff_14 -0.03
time_delta_diff_13 -0.02
time_delta_diff_12 -0.0
time_delta_diff_11 0.12
time_delta_diff_10 -0.0
time_delta_diff_09 0.05
time_delta_diff_08 -0.06
time_delta_diff_07 -0.09
time_delta_diff_06 0.05
time_delta_diff_05 -0.02
time_delta_diff_04 -0.12
time_delta_diff_03 -0.03
time_delta_diff_02 -0.03
time_delta_diff_01 0.01
###Markdown
RexT
###Code
print(RexT_ridge_model_diff.best_estimator_)
print(refit_RexT + ' (Mean cross-validated score of the best_estimator): ' + \
str(RexT_ridge_model_diff.best_score_))
for col, coef in zip(RexT_X_train_diff.columns, RexT_ridge_model_diff.best_estimator_.coef_[0]):
print(col + '\t' + str(round(coef, 2)))
###Output
RidgeClassifier(alpha=5, class_weight=None, copy_X=True, fit_intercept=True,
max_iter=None, normalize=False, random_state=42, solver='auto',
tol=0.001)
auc (Mean cross-validated score of the best_estimator): 0.9370370370370369
time_delta_01 0.28
time_delta_02 -0.02
time_delta_03 0.08
time_delta_04 -0.07
time_delta_05 0.01
time_delta_06 -0.02
time_delta_07 -0.01
time_delta_08 -0.03
time_delta_09 -0.02
time_delta_10 -0.07
time_delta_11 0.04
time_delta_12 -0.02
time_delta_13 0.01
time_delta_14 -0.06
time_delta_15 -0.01
time_delta_16 0.04
time_delta_17 0.01
time_delta_18 -0.08
time_delta_19 0.01
time_delta_20 -0.05
time_delta_21 0.03
time_delta_22 0.01
time_delta_23 -0.01
time_delta_24 -0.04
time_delta_25 -0.02
time_delta_26 0.07
time_delta_27 -0.01
time_delta_28 -0.02
time_delta_29 -0.05
time_delta_30 0.01
time_delta_diff_29 -0.05
time_delta_diff_28 -0.05
time_delta_diff_27 -0.04
time_delta_diff_26 0.07
time_delta_diff_25 -0.01
time_delta_diff_24 -0.09
time_delta_diff_23 0.06
time_delta_diff_22 -0.1
time_delta_diff_21 0.02
time_delta_diff_20 0.01
time_delta_diff_19 -0.04
time_delta_diff_18 0.1
time_delta_diff_17 0.06
time_delta_diff_16 -0.05
time_delta_diff_15 0.03
time_delta_diff_14 -0.03
time_delta_diff_13 0.07
time_delta_diff_12 0.02
time_delta_diff_11 -0.01
time_delta_diff_10 -0.05
time_delta_diff_09 -0.0
time_delta_diff_08 -0.02
time_delta_diff_07 -0.01
time_delta_diff_06 0.05
time_delta_diff_05 -0.08
time_delta_diff_04 -0.1
time_delta_diff_03 -0.08
time_delta_diff_02 -0.03
time_delta_diff_01 0.32
###Markdown
Model Evaluation ROC Curve
###Code
from sklearn.metrics import roc_curve, auc
AS_y_prob_fit_diff = AS_ridge_model_diff.decision_function(AS_X_test_diff)
TS_y_prob_fit_diff = TS_ridge_model_diff.decision_function(TS_X_test_diff)
RexT_y_prob_fit_diff = RexT_ridge_model_diff.decision_function(RexT_X_test_diff)
AS_ridge_roc_curve_diff = roc_curve(AS_y_test_diff, AS_y_prob_fit_diff, pos_label=1)
AS_ridge_roc_curve_AUC_diff = auc(AS_ridge_roc_curve_diff[0], AS_ridge_roc_curve_diff[1]) # needs fpr, tpr
TS_ridge_roc_curve_diff = roc_curve(TS_y_test_diff, TS_y_prob_fit_diff, pos_label=1)
TS_ridge_roc_curve_AUC_diff = auc(TS_ridge_roc_curve_diff[0], TS_ridge_roc_curve_diff[1])
RexT_ridge_roc_curve_diff = roc_curve(RexT_y_test_diff, RexT_y_prob_fit_diff, pos_label=1)
RexT_ridge_roc_curve_AUC_diff = auc(RexT_ridge_roc_curve_diff[0], RexT_ridge_roc_curve_diff[1])
# ROC Curve
utils.model_roc_curves(roc_data_dict={'AS' : AS_ridge_roc_curve_diff,
'TS' : TS_ridge_roc_curve_diff,
'RexT' : RexT_ridge_roc_curve_diff},
auc_dict={'AS' : AS_ridge_roc_curve_AUC_diff,
'TS' : TS_ridge_roc_curve_AUC_diff,
'RexT' : RexT_ridge_roc_curve_AUC_diff},
method_name='Ridge Classifier with Differences')
###Output
_____no_output_____
###Markdown
Confusion Matrix
###Code
AS_threshold = 0.4
utils.confusion_matrix_visual(AS_y_test_diff[AS_X_test_diff.is_campaign == 0],
AS_ridge_model_diff.decision_function(AS_X_test_diff[AS_X_test_diff.is_campaign == 0]) \
>= AS_threshold, 'AS Client-level')
utils.confusion_matrix_visual(AS_y_test_diff[AS_X_test_diff.is_campaign == 1],
AS_ridge_model_diff.decision_function(AS_X_test_diff[AS_X_test_diff.is_campaign == 1]) \
>= AS_threshold, 'AS Campaign-level')
utils.confusion_matrix_visual(AS_y_test_diff[AS_X_test_diff.is_campaign == 1],
AS_ridge_model_diff.decision_function(AS_X_test_diff[AS_X_test_diff.is_campaign == 1]) \
>= AS_threshold, 'AS Overall')
TS_threshold = 0.001
utils.confusion_matrix_visual(TS_y_test_diff,
TS_ridge_model_diff.decision_function(TS_X_test_diff) \
>= TS_threshold,
'TS')
RexT_threshold = 0.01
utils.confusion_matrix_visual(RexT_y_test_diff,
RexT_ridge_model_diff.decision_function(RexT_X_test_diff) \
>= RexT_threshold,
'RexT')
###Output
TP to FP ratio: inf
###Markdown
On disqualified data.
###Code
utils.confusion_matrix_visual(disqualified_AS['min_max']['is_alert'],
AS_ridge_model_diff.decision_function(disqualified_AS['min_max'].\
drop([col for col in disqualified_AS['min_max'].columns
if col in ['run_date', 'series', 'is_alert']], axis=1)) \
>= AS_threshold, 'AS Overall')
utils.confusion_matrix_visual(disqualified_TS['min_max']['is_alert'],
TS_ridge_model_diff.decision_function(disqualified_TS['min_max'].\
drop([col for col in disqualified_TS['min_max'].columns
if col in ['run_date', 'series', 'is_alert']], axis=1)) \
>= TS_threshold,
'TS')
###Output
TP to FP ratio: 0.0
###Markdown
Metrics
###Code
utils.classification_report_all(y_test_dict={'AS' : AS_y_test_diff,
'TS' : TS_y_test_diff,
'RexT' : RexT_y_test_diff},
y_pred_dict={'AS' :
AS_ridge_model_diff.decision_function(AS_X_test_diff) >= \
AS_threshold,
'TS' :
TS_ridge_model_diff.decision_function(TS_X_test_diff) >= \
TS_threshold,
'RexT' :
RexT_ridge_model_diff.decision_function(RexT_X_test_diff) >= \
RexT_threshold})
###Output
AS results
precision recall f1-score support
False 0.82 0.94 0.88 775
True 0.54 0.25 0.34 215
avg / total 0.76 0.79 0.76 990
Percent misclassified: 20.91%
Count misclassified: 207
------------------------------------------------------
TS results
precision recall f1-score support
False 0.92 1.00 0.96 638
True 0.67 0.03 0.07 58
avg / total 0.90 0.92 0.88 696
Percent misclassified: 8.19%
Count misclassified: 57
------------------------------------------------------
RexT results
precision recall f1-score support
False 0.89 1.00 0.94 86
True 1.00 0.15 0.27 13
avg / total 0.90 0.89 0.85 99
Percent misclassified: 11.11%
Count misclassified: 11
|
notebooks/sklearn-mnist-viz.ipynb | ###Markdown
MNIST handwritten digits visualization with scikit-learnIn this notebook, we'll use some popular visualization techniques to visualize MNIST digits. This notebook is based on the scikit-learn embedding examples found [here](http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html).First, the needed imports.
###Code
%matplotlib inline
from time import time
from pml_utils import get_mnist
import numpy as np
import sklearn
from sklearn import random_projection, decomposition, manifold, __version__
import matplotlib.pyplot as plt
from distutils.version import LooseVersion as LV
assert(LV(__version__) >= LV("0.20")), "Version >= 0.20 of sklearn is required."
###Output
_____no_output_____
###Markdown
Then we load the MNIST data. First time it downloads the data, which can take a while.In this notebook, we only use 1024 first samples of the training data. This reduces the time needed to calculate the visualizations and makes the visualizations appear less crowded.
###Code
X_train, y_train, X_test, y_test = get_mnist('MNIST')
# Let's inspect only 1024 first training samples in this notebook
X = X_train[:1024]
y = y_train[:1024]
print()
print('MNIST data loaded:')
print('X:', X.shape)
print('y:', y.shape)
###Output
_____no_output_____
###Markdown
Let's start by inspecting our data. For such a small dataset, we can actually draw all the samples at once:
###Code
n_img_per_row = 32 # 32*32=1024
img = np.zeros((28 * n_img_per_row, 28 * n_img_per_row))
for i in range(n_img_per_row):
ix = 28 * i
for j in range(n_img_per_row):
iy = 28 * j
img[ix:ix + 28, iy:iy + 28] = X[i * n_img_per_row + j,:].reshape(28,28)
img = np.max(img)-img
plt.figure(figsize=(9, 9))
plt.imshow(img, cmap='gray')
plt.title('1024 first MNIST digits')
ax=plt.axis('off')
###Output
_____no_output_____
###Markdown
Let's define a helper function to plot the different visualizations:
###Code
def plot_embedding(X, title=None, time=None, show_digits=True):
x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X - x_min) / (x_max - x_min)
plt.figure(figsize=(9,6))
plt.axis('off')
if show_digits:
for i in range(X.shape[0]):
plt.text(X[i, 0], X[i, 1], str(y[i]),
color=plt.cm.Set1(int(y[i]) / 10.),
fontdict={'weight': 'bold', 'size': 9})
else:
s = plt.scatter(X[:, 0], X[:, 1],
color=[plt.cm.Set1(int(yi) / 10.) for yi in y])
if title is not None:
if t0 is not None:
plt.title("%s (%.2fs)" % (title, time))
else:
plt.title(title)
###Output
_____no_output_____
###Markdown
1. Random projectionA simple first visualization is a [random projection](http://scikit-learn.org/stable/modules/random_projection.htmlrandom-projection) of the data into two dimensions.
###Code
t0 = time()
rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
t = time() - t0
plot_embedding(X_projected, "Random projection", t)
###Output
_____no_output_____
###Markdown
The data can also be plotted with points instead of digit labels by setting `show_digits=False`:
###Code
plot_embedding(X_projected, "Random projection", t, show_digits=False)
###Output
_____no_output_____
###Markdown
2. PCA[Principal component analysis](http://scikit-learn.org/stable/modules/decomposition.htmlpca) (PCA) is a standard method to decompose a high-dimensional dataset in a set of successive orthogonal components that explain a maximum amount of the variance. Here we project the data into two first principal components. The components have the maximal possible variance under the orthogonality constraint.
###Code
t0 = time()
pca = decomposition.PCA(n_components=2)
X_pca = pca.fit_transform(X)
t = time() - t0
plot_embedding(X_pca, "PCA projection", t)
###Output
_____no_output_____
###Markdown
3. MDS[Multidimensional scaling](http://scikit-learn.org/stable/modules/manifold.htmlmultidimensional-scaling) (MDS) seeks a low-dimensional representation of the data in which the distances try to respect the distances in the original high-dimensional space.
###Code
t0 = time()
mds = manifold.MDS(n_components=2, max_iter=500)
X_mds = mds.fit_transform(X)
t = time() - t0
plot_embedding(X_mds, "MDS embedding", t)
###Output
_____no_output_____
###Markdown
4. t-SNE[t-distributed Stochastic Neighbor Embedding](http://scikit-learn.org/stable/modules/manifold.htmlt-sne) (t-SNE) is a relatively new and popular tool to visualize high-dimensional data. t-SNE is particularly sensitive to local structure and can often reveal clusters in the data.t-SNE has an important tuneable parameter called `perplexity`, that can have a large effect on the resulting visualization, depending on the data. Typical values for perplexity are between 5 and 50.
###Code
t0 = time()
perplexity=30
tsne = manifold.TSNE(n_components=2, perplexity=perplexity)
X_tsne = tsne.fit_transform(X)
t = time() - t0
plot_embedding(X_tsne, "t-SNE embedding with perplexity=%d" % perplexity, t)
###Output
_____no_output_____
###Markdown
5. UMAP[Uniform Manifold Approximation and Projection](https://umap-learn.readthedocs.io/en/latest/index.html) (UMAP) is another recently published technique for data visualization and dimensionality reduction based on manifold learning and topological data analysis.UMAP is not included in scikit-learn but is available in PyPi as umap-learn. If not readily available, it can be installed with pip.
###Code
# Uncomment (remove the "#") the next line to install:
#!pip install umap-learn
import umap
###Output
_____no_output_____
###Markdown
The main hyperparameters of UMAP include `n_neighbors` and `min_dist`, which control the the size of the local neighborhood considered and how tightly the algorithm packs neighboring points together, respectively. The values of both hyperparameters have a significant impact on the resulting visualization.
###Code
t0 = time()
n_neighbors = 15
min_dist = 0.1
umapmodel = umap.UMAP(n_neighbors=n_neighbors, min_dist=min_dist)
X_umap = umapmodel.fit_transform(X)
t = time() - t0
plot_embedding(X_umap, "UMAP projection with n_neighbors=%d, min_dist=%.2f" % (n_neighbors, min_dist), t)
###Output
_____no_output_____ |
docs/notebooks/round_trip_tear_sheet_example.ipynb | ###Markdown
Round Trip Tear Sheet Example When evaluating the performance of an investing strategy, it is helpful to quantify the frequency, duration, and profitability of its independent bets, or "round trip" trades. A round trip trade is started when a new long or short position is opened and then later completely or partially closed out.The intent of the round trip tearsheet is to help differentiate strategies that profited off a few lucky trades from strategies that profited repeatedly from genuine alpha. Breaking down round trip profitability by traded name and sector can also help inform universe selection and identify exposure risks. For example, even if your equity curve looks robust, if only two securities in your universe of fifteen names contributed to overall profitability, you may have reason to question the logic of your strategy.To identify round trips, pyfolio reconstructs the complete portfolio based on the transactions that you pass in. When you make a trade, pyfolio checks if shares are already present in your portfolio purchased at a certain price. If there are, we compute the PnL, returns and duration of that round trip trade. In calculating round trips, pyfolio will also append position closing transactions at the last timestamp in the positions data. This closing transaction will cause the PnL from any open positions to realized as completed round trips.
###Code
import pyfolio as pf
%matplotlib inline
import gzip
import os
import pandas as pd
# silence warnings
import warnings
warnings.filterwarnings('ignore')
transactions = pd.read_csv(gzip.open('../tests/test_data/test_txn.csv.gz'),
index_col=0, parse_dates=True)
positions = pd.read_csv(gzip.open('../tests/test_data/test_pos.csv.gz'),
index_col=0, parse_dates=True)
returns = pd.read_csv(gzip.open('../tests/test_data/test_returns.csv.gz'),
index_col=0, parse_dates=True, header=None)[1]
# Optional: Sector mappings may be passed in as a dict or pd.Series. If a mapping is
# provided, PnL from symbols with mappings will be summed to display profitability by sector.
sect_map = {'COST': 'Consumer Goods', 'INTC':'Technology', 'CERN':'Healthcare', 'GPS':'Technology',
'MMM': 'Construction', 'DELL': 'Technology', 'AMD':'Technology'}
###Output
_____no_output_____
###Markdown
The easiest way to run the analysis is to call `pyfolio.create_round_trip_tear_sheet()`. Passing in a sector map is optional. You can also pass `round_trips=True` to `pyfolio.create_full_tear_sheet()` to have this be created along all the other analyses.
###Code
pf.create_round_trip_tear_sheet(returns, positions, transactions, sector_mappings=sect_map)
###Output
_____no_output_____
###Markdown
Under the hood, several functions are being called. `extract_round_trips()` does the portfolio reconstruction and creates the round-trip trades.
###Code
rts = pf.round_trips.extract_round_trips(transactions,
portfolio_value=positions.sum(axis='columns') / (returns + 1))
rts.head()
pf.round_trips.print_round_trip_stats(rts)
###Output
_____no_output_____ |
Summer2020_Modules/module4_Kaleb_lesson.ipynb | ###Markdown
Intro to Image Processing: An Image as Numbers Purpose: To view an image from a computer's persepctive (as an array of numbers) Created by: Kaleb DeckerCreation Date: 7/30/2020 *Step 1: Necessary Imports*
###Code
import numpy as np
from skimage import io #importing a specific module from scikit-image
import matplotlib.pyplot as plt
###Output
_____no_output_____
###Markdown
*Step 2: User Inputs*
###Code
cell_im_location = r'C:\Users\Kaleb\Documents\GitHub\textile\example_data\ogd_cells.tif'
###Output
_____no_output_____
###Markdown
*Step 3: Reading in the image*
###Code
cell_im = io.imread(cell_im_location)
###Output
_____no_output_____
###Markdown
*Step 4: Viewing the Image*
###Code
cell_im
cell_im.shape
red_cell_im = cell_im[:,:,0]
green_cell_im = cell_im[:,:,1]
blue_cell_im = cell_im[:,:,2]
red_cell_im
blue_cell_im
green_cell_im
plt.imshow(cell_im)
plt.imshow(red_cell_im, cmap='gray')
fig, ax = plt.subplots(2,2)
ax[0,0].imshow(red_cell_im, cmap = 'gray')
ax[1,0].imshow(green_cell_im, cmap = 'gray')
ax[0,1].imshow(blue_cell_im, cmap = 'gray')
ax[1,1].imshow(cell_im)
fig, ax = plt.subplots(2,2)
ax[0,0].imshow(red_cell_im, cmap = 'gray')
ax[0,0].get_xaxis().set_visible(False)
ax[0,0].get_yaxis().set_visible(False)
ax[0,0].set_title('Red Channel - PI')
ax[1,0].imshow(green_cell_im, cmap = 'gray')
ax[1,0].get_xaxis().set_visible(False)
ax[1,0].get_yaxis().set_visible(False)
ax[1,0].set_title('Green Channel - Iba1')
ax[0,1].imshow(blue_cell_im, cmap = 'gray')
ax[0,1].get_xaxis().set_visible(False)
ax[0,1].get_yaxis().set_visible(False)
ax[0,1].set_title('Blue Channel - Dapi')
ax[1,1].imshow(cell_im)
ax[1,1].get_xaxis().set_visible(False)
ax[1,1].get_yaxis().set_visible(False)
ax[1,1].set_title('All Channels')
###Output
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
|
ExamplePlot.ipynb | ###Markdown
This notebook allows to visualize a TSNE and PCA of the iris dataset Load data
###Code
import numpy as np
random_data = np.random.random(size=(50, 2))
###Output
_____no_output_____
###Markdown
Animation
###Code
from transformation import Visualizer
tv = Visualizer(random_data)
tv.jupyter_visualize()
tv.save_gif('images/random_ts.gif')
###Output
_____no_output_____ |
2020/day08/main.ipynb | ###Markdown
Day 8: Handheld Haltinghttps://adventofcode.com/2020/day/8 Part 1 Op details (note to self)- `acc` increases or decreases a single global value called the accumulator by the value given in the argument. For example, `acc +7` would increase the accumulator by 7. The accumulator starts at 0. After an acc instruction, the instruction immediately below it is executed next.- `jmp` jumps to a new instruction relative to itself. The next instruction to execute is found using the argument as an offset from the jmp instruction; for example, `jmp +2` would skip the next instruction, `jmp +1` would continue to the instruction immediately below it, and `jmp -20` would cause the instruction 20 lines above to be executed next.- `nop` stands for **N**o **OP**eration - it does nothing. The instruction immediately below it is executed next.
###Code
# Grab our data
from pathlib import Path
INPUTS = Path('input.txt').resolve().read_text().strip()
instructions = [x.strip() for x in INPUTS.split('\n')]
###Output
_____no_output_____
###Markdown
DetailsSo, we need to run consecutively through the commands, starting with `acc = 0`, and determine:1. the point at which any command is re-run; and2. what the value of `acc` is prior to that execution.Simple enough. We need to keep a running set of command lines that have been executed from the set of instructions, then continuously check if the current command index exists in that set. Meanwhile, we take the appropriate operation given the current command line instruction.
###Code
def check_instructions(lines):
curr = 0
accum = 0
seen = {curr}
valid = True
while True:
accum_delta = 0
try:
line = lines[curr]
except IndexError:
# We hit the end?
break
op, arg = line.split()
if op == 'nop':
delta = 1
elif op == 'acc':
delta = 1
accum_delta = int(arg)
elif op == 'jmp':
delta = int(arg)
if (curr + delta) in seen:
valid = False
break
accum += accum_delta
curr += delta
seen.add(curr)
return accum, valid
accumulator, _ = check_instructions(instructions)
print(f"Value of acc at the loop point: {accumulator}")
###Output
Value of acc at the loop point: 2051
###Markdown
Part 2Similar to the first part, but this time need to determine what one instruction - either a `jmp` or `nop` - has to be swapped in order to generate a solution.I'll admit, I got stumped by this for a bit, then looked around for similar solutions made by others. Where it seems I got stuck was by initially assuming that the one instruction causing the loop in Part 1 was the same instruction that had to be swapped; but that's not necessarily true.Instead, we need to go through the code lines and swap `jmp`s to `nop`s and vice versa to test which set of full code lines can actually generate a good solution.
###Code
for idx, line in enumerate(instructions):
test_instructions = instructions[:]
op, arg = line.split()
# Do the op swap (doo, doo doo duh-doo duh-doo doo DOO!)
if op == 'jmp':
op = 'nop'
elif op == 'nop':
op = 'jmp'
new_line = f"{op} {arg}"
test_instructions[idx] = new_line
accum, valid = check_instructions(test_instructions)
if valid:
break
print(f"Valid accumulator is {accum}, with a swapped instruction at line {idx+1}")
###Output
Valid accumulator is 2304, with a swapped instruction at line 322
|
Machine Learning/Query Optimization/notebooks/Appendix A - BM25 tuning.ipynb | ###Markdown
Appendix A: Tuning BM25 parameters for the MSMARCO Document datasetThe following shows a principled, data-driven approach to tuning BM25 parameters with a basic query, using the MSMARCO Document dataset. This assumes familiarity with basic query tuning as shown in the "Query tuning" notebooks.BM25 contains two parameters `k1` and `b`. Roughly speaking (very roughly), `k1` controls the amount of term saturation (at some point, more terms does not mean more relevant) and `b` controls the importance of document length. A deeper look into these parameters is beyond the scope of this notebook, but our [three part blog series on understanding BM25](https://www.elastic.co/blog/practical-bm25-part-1-how-shards-affect-relevance-scoring-in-elasticsearch) is very useful for that.Be aware that not all query types will see improvements with BM25 tuning. Sometimes it's more impactful to just tune query parameters. As always you try it out with your datasets first and get concrete measurements. We recommend customizing index settings/analyzers first, then do query parmeter tuning and get your baseline measurements. Next, try the best index settings/analyzers with BM25 tuning, then do query parameter tuning and see if it makes any improvement on your baseline. If there's no significant difference it's best to just stick with the default BM25 parameters for simplicty.
###Code
%load_ext autoreload
%autoreload 2
import importlib
import os
import sys
from elasticsearch import Elasticsearch
from skopt.plots import plot_objective
# project library
sys.path.insert(0, os.path.abspath('..'))
import qopt
importlib.reload(qopt)
from qopt.notebooks import evaluate_mrr100_dev, optimize_bm25_mrr100
from qopt.optimize import Config, set_bm25_parameters
# use a local Elasticsearch or Cloud instance (https://cloud.elastic.co/)
es = Elasticsearch('http://localhost:9200')
# set the parallelization parameter `max_concurrent_searches` for the Rank Evaluation API calls
max_concurrent_searches = 10
index = 'msmarco-document'
index_defaults = 'msmarco-document.defaults'
template_id = 'combined_matches'
# no query params
query_params = {}
# default Elasticsearch BM25 params
default_bm25_params = {'k1': 1.2, 'b': 0.75}
###Output
_____no_output_____
###Markdown
Baseline evaluationFor tuning the BM25 parameters, we're going to use just a `match` query per field, combined using a `bool` `should` query. This will search for query terms across the `url`, `title`, and `body` fields, and we'll be attempting to optimize the BM25 parameters that are used in the scoring function for each field. In theory, each field could have it's own BM25 [similarty](https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.htmlbm25) and parameters, but we'll leave that as an exercise to the reader.Since BM25 parameters are actually index settings in Elasticsearch (they are theoretically query parameters, but they are implemented as index settings to be consistent with other similarity modules), we need to make sure to set the parameters before any evaluation step. At optimization time, we'lll do the same process: set the BM25 parameters to try, then run the rank evaluation API on the training query dataset.
###Code
%%time
set_bm25_parameters(es, index, **default_bm25_params)
_ = evaluate_mrr100_dev(es, max_concurrent_searches, index, template_id, query_params)
###Output
Evaluation with: MRR@100
Score: 0.2504
CPU times: user 1.8 s, sys: 436 ms, total: 2.23 s
Wall time: 57.4 s
###Markdown
That's the same baseline that we've seen in the "Query tuning" notebook, so we know we're setup correctly. OptimizationNow we're ready to run the optimization procedure and see if we can improve on that, while holding the default query parameters constant.We know that there's [roughly a standard range](https://www.elastic.co/blog/practical-bm25-part-3-considerations-for-picking-b-and-k1-in-elasticsearch) for each parameter, so we use those. We also set internally before running the optimization some static initial points to try, based on some well-known default parameter values: * Elasticsearch defaults: `k1`: `1.2`, `b`: `0.75` * Anserini [1] defaults: `k1`: `0.9`, `b`: `0.4` [1] [anserini](https://github.com/castorini/anserini) is a commonly used tool in academia for research into search systems
###Code
%%time
_, best_params, _, metadata = optimize_bm25_mrr100(es, max_concurrent_searches, index, template_id, query_params,
config_space=Config.parse({
'method': 'bayesian',
'num_iterations': 40,
'num_initial_points': 20,
'space': {
'k1': { 'low': 0.5, 'high': 5.0 },
'b': { 'low': 0.3, 'high': 1.0 },
}
}))
###Output
Optimizing parameters
- metric: MRR@100
- queries: data/msmarco-document-sampled-queries.1000.tsv
- queries: data/msmarco/document/msmarco-doctrain-qrels.tsv
- iteration 2 scored 0.2188 with: {'k1': 0.9, 'b': 0.4}
- iteration 3 scored 0.2353 with: {'k1': 3.370604288950908, 'b': 0.6502501160664012}
- iteration 4 scored 0.2350 with: {'k1': 4.019769356834095, 'b': 0.6559624038852268}
- iteration 5 scored 0.2183 with: {'k1': 4.550172007175469, 'b': 0.36646469797122216}
- iteration 6 scored 0.2197 with: {'k1': 4.510703804651055, 'b': 0.9990275259776924}
- iteration 7 scored 0.2235 with: {'k1': 1.2557048044556212, 'b': 0.5681787231476463}
- iteration 8 scored 0.2218 with: {'k1': 0.9492476027695534, 'b': 0.7428739712003931}
- iteration 9 scored 0.2255 with: {'k1': 1.3366685724014589, 'b': 0.5938330471247484}
- iteration 10 scored 0.2330 with: {'k1': 4.309783310447555, 'b': 0.7759034485189735}
- iteration 11 scored 0.2195 with: {'k1': 1.5781739190991968, 'b': 0.3015016529905641}
- iteration 12 scored 0.2347 with: {'k1': 2.321429376689379, 'b': 0.6884699589963544}
- iteration 13 scored 0.2134 with: {'k1': 3.2448226638738626, 'b': 0.9900046900427262}
- iteration 14 scored 0.2206 with: {'k1': 1.2433964265691286, 'b': 0.44356562662805726}
- iteration 15 scored 0.2156 with: {'k1': 3.100612400611909, 'b': 0.9849404289368413}
- iteration 16 scored 0.2257 with: {'k1': 4.248042138475732, 'b': 0.9035284880309848}
- iteration 17 scored 0.2224 with: {'k1': 1.5765807997258139, 'b': 0.8720332943348184}
- iteration 18 scored 0.2305 with: {'k1': 2.820111431030238, 'b': 0.5168856770938441}
- iteration 19 scored 0.2224 with: {'k1': 2.1959597161860107, 'b': 0.9250145634446965}
- iteration 20 scored 0.2257 with: {'k1': 4.442190681266682, 'b': 0.9260152008360161}
- iteration 21 scored 0.2242 with: {'k1': 3.064655836349819, 'b': 0.3791113353101573}
- iteration 22 scored 0.2187 with: {'k1': 3.5202769215682608, 'b': 0.9588940533178607}
- iteration 23 scored 0.2325 with: {'k1': 5.0, 'b': 0.7043761223003595}
- iteration 24 scored 0.2159 with: {'k1': 0.5095249433797535, 'b': 0.9952556818182101}
- iteration 25 scored 0.2283 with: {'k1': 4.99733655784174, 'b': 0.5513516063009762}
- iteration 26 scored 0.2353 with: {'k1': 3.0693561332209263, 'b': 0.7097705952925664}
- iteration 27 scored 0.2302 with: {'k1': 4.997079968717751, 'b': 0.8338225591267308}
- iteration 28 scored 0.2349 with: {'k1': 2.9298189101138057, 'b': 0.6705355989029556}
- iteration 29 scored 0.2286 with: {'k1': 3.9017616725688504, 'b': 0.5275669866319284}
- iteration 30 scored 0.2126 with: {'k1': 0.5083768089070996, 'b': 0.3051975488098463}
- iteration 31 scored 0.2335 with: {'k1': 3.057438645555967, 'b': 0.7943805950296335}
- iteration 32 scored 0.2356 with: {'k1': 3.4996216258157684, 'b': 0.7046625041391483}
- iteration 33 scored 0.2130 with: {'k1': 4.988190005294321, 'b': 0.301967374589563}
- iteration 34 scored 0.2157 with: {'k1': 0.511035678225668, 'b': 0.5863790923927636}
- iteration 35 scored 0.2206 with: {'k1': 3.6684915070895987, 'b': 0.300110477096296}
- iteration 36 scored 0.2205 with: {'k1': 4.989302876768119, 'b': 0.9832605278104865}
- iteration 37 scored 0.2305 with: {'k1': 2.3444431239676398, 'b': 0.6014003085957186}
- iteration 38 scored 0.2325 with: {'k1': 2.4639270689494523, 'b': 0.7717536517097305}
- iteration 39 scored 0.2358 with: {'k1': 3.4589142889460534, 'b': 0.7043929438792035}
- iteration 40 scored 0.2329 with: {'k1': 4.415526839360014, 'b': 0.6737248394761717}
Best score: 0.2358
Best params: {'k1': 3.4589142889460534, 'b': 0.7043929438792035}
Final params: {'k1': 3.4589142889460534, 'b': 0.7043929438792035}
CPU times: user 37.3 s, sys: 9.16 s, total: 46.4 s
Wall time: 7min 13s
###Markdown
Here's a look at the parameter space, which is easy to plot here since there are just two parameters.
###Code
_ = plot_objective(metadata, sample_source='result')
%%time
set_bm25_parameters(es, index, **best_params)
_ = evaluate_mrr100_dev(es, max_concurrent_searches, index, template_id, query_params)
###Output
Evaluation with: MRR@100
Score: 0.2594
CPU times: user 1.92 s, sys: 534 ms, total: 2.45 s
Wall time: 34.2 s
###Markdown
Interesting that we do see an improvement but it's not very significant. One hypothesis is that maybe our analyzers are doing work that means there's not much left to tune. Let's try this again but using the default analyzers with the index `msmarco-document.defaults`.First we set the baseline that we're comparing against. We expect it to be lower than the baseline with the custom analyzers. We saw this in the "Analyzers" notebook as well already.
###Code
%%time
set_bm25_parameters(es, index_defaults, **default_bm25_params)
_ = evaluate_mrr100_dev(es, max_concurrent_searches, index_defaults, template_id, query_params)
###Output
Evaluation with: MRR@100
Score: 0.2403
CPU times: user 2.19 s, sys: 687 ms, total: 2.88 s
Wall time: 4min 12s
###Markdown
Now let's optimize BM25. Before we do that, let's also increase the possible range of `k1` to make sure we really see a maximum score from somewhere within the range and not at a maximum or minumum value in the range.
###Code
%%time
_, best_params, _, metadata = optimize_bm25_mrr100(es, max_concurrent_searches, index_defaults, template_id, query_params,
config_space=Config.parse({
'method': 'bayesian',
'num_iterations': 50,
'num_initial_points': 25,
'space': {
'k1': { 'low': 0.5, 'high': 10.0 },
'b': { 'low': 0.3, 'high': 1.0 },
}
}))
_ = plot_objective(metadata, sample_source='result')
%%time
set_bm25_parameters(es, index_defaults, **best_params)
_ = evaluate_mrr100_dev(es, max_concurrent_searches, index_defaults, template_id, query_params)
###Output
Evaluation with: MRR@100
Score: 0.2661
CPU times: user 2 s, sys: 651 ms, total: 2.65 s
Wall time: 1min 6s
###Markdown
That's a much larger improvement over the baseline, and actually this optimized version with the default analyzers beats the tuned version with the custom analyzers! Goes to show you that you can't make assumptions — you need to test your hypothesis! Conclusion Before we wrap up, it's good to set all the indices back to their default values, in case we use those indices for other experiments.
###Code
set_bm25_parameters(es, index, **default_bm25_params)
set_bm25_parameters(es, index_defaults, **default_bm25_params)
###Output
_____no_output_____ |
Notebooks/CalebAssignment.ipynb | ###Markdown
QN1: Calculate the % GC and % AT content in the trna sequence
###Code
def AT_GC_content(tRNA):
GC = ((tRNA.count('C') + tRNA.count('G'))/len(tRNA))*100
AT = 100 - GC
return print('GC content = ' + str(GC) + ' and the AT content = ' + str(AT))
AT_GC_content('AAAAATCCCGAGGCGGCTATATAGGGCTCCGGAGGCGTAATATAAAA')
###Output
GC content = 46.808510638297875 and the AT content = 53.191489361702125
###Markdown
QN2: Given the following amino acid sequence (MNKMDLVADVAEKTDLSKAKATEVIDAVFA), find the first, last and the 5th amino acids in the sequence
###Code
def pos_seq(seq):
pos = print(seq[0] + seq[4] + seq[-1])
return pos
pos_seq('MNKMDLVADVAEKTDLSKAKATEVIDAVFA')
###Output
MDA
###Markdown
QN3: The above amino acid is a bacterial restriction enzyme that recognizes "TCCGGA". Find the first restriction site in the following sequence: AAAAATCCCGAGGCGGCTATATAGGGCTCCGGAGGCGTAATATAAAA
###Code
def first_rest(dna,pattern):
pos = dna.find(pattern)
if pos == -1:
return print('substring not found')
else:
return print('The pattern is between index ' + str(pos)+ ' : ' + str(pos+len(pattern)))
sample_dna = 'AAAAATCCCGAGGCGGCTATATAGGGCTCCGGAGGCGTAATATAAAA'
sample_pattern = 'TCCGGA'
first_rest(sample_dna,sample_pattern)
###Output
The pattern is between index 27 : 33
###Markdown
QN4: Using strings, lists, tuples and dictionaries concepts, find the reverse complement of AAAAATCCCGAGGCGGCTATATAGGGCTCCGGAGGCGTAATATAAAA
###Code
dnaseq= "AAAAATCCCGAGGCGGCTATATAGGGCTCCGGAGGCGTAATATAAAA"
def rev_comp(dna):
mycomp1=dna.replace('A','t')
mycomp2=mycomp1.replace('T','a')
mycomp3=mycomp2.replace('G','c')
mycomp4=mycomp3.replace('C','g')
mycomp5=mycomp4.upper()
reverse = mycomp5[::-1]
return reverse
rev_comp(dnaseq)
###Output
_____no_output_____
###Markdown
QN5: Write a program to manage bank withdrawals at the ATM. Expand the script in the previous cell to also manage ATM deposits
###Code
def ATMCHECK(pin):
acountbal = 50000
choice = input("Please enter 'b' to check balance or 'w' to withdraw or 'd' to deposit: ")
while choice != 'q':
if choice.lower() in ('w','b','d'):
if choice.lower() == 'b':
print("Your balance is: %d" % acountbal)
print("Anything else?")
choice = input("Enter b for balance, w to withdraw or q to quit: ")
print(choice.lower())
elif choice.lower() == 'd':
deposit = float(input('please enter the amount you want to deposit: '))
acountbal = acountbal + deposit
print(choice.lower())
print("Anything else?")
choice = input("Enter b for balance, w to withdraw or q to quit: ")
print(choice.lower())
else:
withdraw = float(input("Enter amount to withdraw: "))
if withdraw <= acountbal:
print("here is your: %.2f" % withdraw)
acountbal = acountbal - withdraw
print("Anything else?")
choice = input("Enter b for balance, w to withdraw or q to quit: ")
#choice = 'q'
else:
print("You have insufficient funds: %.2f" % acountbal)
else:
print('wrong choice')
choice = input("Please enter 'b' to check balance or 'w' to withdraw: ")
return acountbal
ATMCHECK(7878)
###Output
_____no_output_____
###Markdown
QN7: Create a while loop that starts with x = 0 and increments x until x is equal to 5. Each iteration should print to the console.
###Code
def print5num(num):
i = 0
while i < num:
i = i+1
return (i
print5num(5)
###Output
_____no_output_____
###Markdown
QN8: Repeat the previous problem, but the loop will skip printing x = 5 to the console but will print values of x from 6 to 10.
###Code
def print_num2(num):
i = 0
while i < num:
i = i+1
if i == 5:
continue
print(i)
print_num2(10)
###Output
1
2
3
4
6
7
8
9
10
###Markdown
QN9: Create a for loop that prints values from 4 to 10 to the console.
###Code
def print_num(num):
i = 0
for i in range(3,num):
i = i+1
print(i)
print_num(10)
###Output
4
5
6
7
8
9
10
###Markdown
QN10: Write a function percentageGC that calculates the GC content of a DNA sequenceThe function should return the %GC content The Function should return a message if the provided sequence is not DNA (This should be checked by a different function, called by your function)
###Code
mydna = "CAGTGATGATGACGAT"
yourdna = "ACGATCGAGACGTAGTA"
testdna = "ATFRACGATTGHAHYAK"
def VALIDITY(dna):
nucleotide = {'A', 'C', 'G', 'T'} #valid bases
myseq = set(mydna)
if myseq == nucleotide:
print("Valid")
else:
print("invalid, The program can't calculate PerGC")
VALIDITY(mydna)
def percentageGC(dna):
GC = (dna.count('C') + dna.count('G'))/len(dna)*100
print("The percentage GC is",GC)
return GC
percentageGC(mydna)
###Output
The percentage GC is 43.75
###Markdown
QN11: Write a function the reads the file (humchr.txt) and writes to another file (gene_names.txt) a clean list of gene names.
###Code
import urllib.request
import urllib.request
url = "https://www.uniprot.org/docs/humchrx.txt"
destination_filename = "../Data/humchrx.txt"
urllib.request.urlretrieve(url, destination_filename)
def write2file(gene_list, out_file):
"""
Takes a gene list and writes the output to file
"""
with open(out_file, 'w') as outfile:
outfile.write('\n'.join(gene_list))
def remove_empty(gene_list):
"""
Given a gene list, removes items
that start with dash (empty)
"""
tag = True
while tag:
try:
gene_list.remove('-')
except ValueError:
tag = False
return gene_list
def clean_genes(input_file, out_file):
"""
Given a chromosome annotation file, extract the
genes and write them to another file
"""
gene_list = []
tag = False
with open(input_file, 'r') as humchrx:
for line in humchrx:
if line.startswith('Gene'):
tag=True
if line == '\n':
tag = False
if tag:
gene_list.append(line.split()[0])
#clean the gene list
gene_list.pop(2)
gene_list[0] = gene_list[0]+"_"+gene_list[1]
gene_list.pop(1)
gene_list = remove_empty(gene_list)
## Writing to file
write2file(gene_list, out_file)
clean_genes('../Data/humchrx.txt', 'testing.txt')
###Output
_____no_output_____
###Markdown
QN12: Convert the function you wrote in exercise 1 into a python module. Then, import the module and use the function to read humchrx.txt file and create a gene list file.1. Convert the function you wrote in exercise 1 into a python module. Then, import the module and use the function to read humchrx.txt file and create a gene list file.2. Create a stand-alone script that does all the above.
###Code
import write_to_file
write_to_file.clean_genes('../Data/humchrx.txt', 'genes.txt')
###Output
_____no_output_____
###Markdown
QN13: Using the same concept, convert your script in exercise 1 to take command line arguments (input and output files)
###Code
pw
ls
import sys
if len(sys.argv)!=3:
print("enter the script, inputfile and output file respectively")
sys.exit()
inputfile = sys.argv[1]
outputfile = sys.argv[2]
def write2file(gene_list, out_file):
"""
Takes a gene list and writes the output to file
"""
with open("/home/eanbit7/Python4Bioinformatics2020/Notebooks/out_file", 'w') as out_file2:
out_file2.write('\n'.join(gene_list))
def remove_empty(gene_list):
"""
Given a gene list, removes items
that start with dash (empty)
"""
tag = True
while tag:
try:
gene_list.remove('-')
except ValueError:
tag = False
return gene_list
def clean_genes(input_file, out_file2):
"""
Given a chromosome annotation file, extract the
genes and write them to another file
"""
gene_list = []
tag = False
with open("/home/eanbit7/Desktop/Python4Bioinformatics2019/Data/humchrx.txt", 'r') as humchrx:
for line in humchrx:
if line.startswith('Gene'):
tag=True
if line == '\n':
tag = False
if tag:
gene_list.append(line.split()[0])
#clean the gene list
gene_list.pop(2)
gene_list[0] = gene_list[0]+"_"+gene_list[1]
gene_list.pop(1)
gene_list = remove_empty(gene_list)
## Writing to file
write2file(gene_list, out_file2)
clean_genes('/home/eanbit7/Desktop/Python4Bioinformatics2019/Data/humchrx.txt', '/home/eanbit7/Python4Bioinformatics2020/Notebooks/testing.txt1')
print('bye')
import trial
###Output
bye
###Markdown
QN14: Using a DNA sequence read from file, answer the following questions:1. Show that the DNA string contains only four letters.2. In the DNA string there are regions that have a repeating letter. What is the letter and length of the longest repeating region?3. How many ’ATG’s are in the DNA string?
###Code
bases = 'ATGC'
dna = 'AAAAATCCCGAGGCGGCTATATAGGGCTCCGGAGGCGTAATATAAAA'
def num_bases(sequence):
my_list = list(sequence)
set_dna = set(my_list)
return set_dna
num_bases(dna)
def count_ATG(dna):
if dna.find('ATG')== -1:
return 'Pattern not found'
else:
return dna.count('ATG')
count_ATG(mydna)
cd='AAAGGGCTTAGCTTAATTAAAGTGGCTGATTTGCCCCCGTTCAGTTGATTTGCAGAGTGGGGTTTTGCAGTCCTTA'
def longest_repeating_nucleotide():
dna_seq = input('please enter the DNA sequence')
A_list = [] # initialize an empty list to store repeating nucleotides
tag = False
As = [] # initialize an empty list to store repeating nucleotides that will be appended to initialized A_list above
for nuc in dna_seq:
for dna in dna_seq:
if dna == nuc:
tag = True
As.append(dna)
else:
if len(As) > 1:
A_list.append(As)
As = []
tag = False
len_list = [len(x) for x in A_list]
long_index = len_list.index(max(len_list))
print('*'*100)
print('%s is the longest repeating letter, repeat %d times' %(A_list[long_index][0], len(A_list[long_index])))
longest_repeating_nucleotide()
###Output
_____no_output_____ |
examples/ruGPT3XL_ILM.ipynb | ###Markdown
Install lib
###Code
%%bash
rm -rf /usr/local/cuda
ln -s /usr/local/cuda-10.1 /usr/local/cuda
!nvcc --version
!stat /usr/local/cuda
!pip uninstall -y triton
!pip uninstall -y torch
%%bash
export LD_LIBRARY_PATH=/usr/lib/
!apt-get install clang-9 llvm-9 llvm-9-dev llvm-9-tools
!pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
%%writefile setup.sh
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
!sh setup.sh
!pip install triton==0.2.3
# !pip uninstall -y typing
!pip install cpufeature
!DS_BUILD_CPU_ADAM=1 DS_BUILD_SPARSE_ATTN=1 pip install deepspeed==0.3.7
!ds_report
import deepspeed.ops.sparse_attention.sparse_attn_op
%cd /content/
!rm -rf rugpt3xl_ilm
!cat /content/rugpt3xl_ilm/requirements.txt
!git clone https://github.com/lauberto/rugpt3xl_ilm.git
# TODO: add path to requirements.txt and install requirements (make sure to use the requirements necessary both for ILM and RUGP3XL)
%%writefile ilm_requirements.txt
boto3==1.13.16
botocore==1.16.16
certifi==2020.4.5.1
chardet==3.0.4
click==7.1.2
docutils==0.15.2
filelock==3.0.12
idna==2.9
jmespath==0.10.0
joblib==0.15.1
nltk==3.4.5
numpy==1.18.2
python-dateutil==2.8.1
regex==2020.5.14
requests==2.23.0
s3transfer==0.3.3
sacremoses==0.0.43
sentencepiece==0.1.91
six==1.15.0
tokenizers==0.5.2
tqdm==4.46.0
transformers==2.7.0
urllib3==1.25.9
# %cd /content/rugpt3xl_ilm
! pip install -r ilm_requirements.txt
! python -c "import nltk; nltk.download('punkt')"
!pip install transformers==3.5.1
!cp /content/rugpt3xl_ilm/src_utils/trainer_pt_utils.py /usr/local/lib/python3.7/dist-packages/transformers/trainer_pt_utils.py
###Output
_____no_output_____
###Markdown
Test model Load model
###Code
import warnings
warnings.filterwarnings("ignore")
import sys
sys.path.append("rugpt3xl_ilm/")
import os
os.environ["USE_DEEPSPEED"] = "1"
###Output
_____no_output_____
###Markdown
ILM
###Code
from google.colab import drive
drive.mount('/content/gdrive')
%cd gdrive/My Drive/RUGPT3XL
# TODO: upload data to gdrive
# TODO: use the right path for the script below
!! python3 /content/rugpt3xl_ilm/train_ilm.py \
experiment \
/content/gdrive/RUGPT3XL/model_Economics \
/content/gdrive/RUGPT3XL/data/Economics_char_masks/ \
--seed 0 \
--train_examples_tag train \
--data_loader_num_workers 8 \
--eval_examples_tag valid \
--eval_max_num_examples 512 \
--tokenizer_name RUGPT3XL \
--model_name sberbank-ai/rugpt3xl 2>&1 | tee rugpt3xl_TrainerLog.txt
!cat /content/rugpt3xl_ilm/ilm/official_gpt2_encoder/encoder.py
###Output
_____no_output_____
###Markdown
Install lib
###Code
%%bash
rm -rf /usr/local/cuda
ln -s /usr/local/cuda-10.1 /usr/local/cuda
!nvcc --version
!stat /usr/local/cuda
!pip uninstall -y triton
!pip uninstall -y torch
%%bash
export LD_LIBRARY_PATH=/usr/lib/
!apt-get install clang-9 llvm-9 llvm-9-dev llvm-9-tools
!pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
%%writefile setup.sh
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
!sh setup.sh
!pip install triton==0.2.3
# !pip uninstall -y typing
!pip install cpufeature
!DS_BUILD_CPU_ADAM=1 DS_BUILD_SPARSE_ATTN=1 pip install deepspeed==0.3.7
!ds_report
import deepspeed.ops.sparse_attention.sparse_attn_op
%cd /content/
!rm -rf rugpt3xl_ilm
!cat /content/rugpt3xl_ilm/requirements.txt
!git clone https://github.com/lauberto/rugpt3xl_ilm.git
# TODO: add path to requirements.txt and install requirements (make sure to use the requirements necessary both for ILM and RUGP3XL)
%%writefile ilm_requirements.txt
boto3==1.13.16
botocore==1.16.16
certifi==2020.4.5.1
chardet==3.0.4
click==7.1.2
docutils==0.15.2
filelock==3.0.12
idna==2.9
jmespath==0.10.0
joblib==0.15.1
nltk==3.4.5
numpy==1.18.2
python-dateutil==2.8.1
regex==2020.5.14
requests==2.23.0
s3transfer==0.3.3
sacremoses==0.0.43
sentencepiece==0.1.91
six==1.15.0
tokenizers==0.5.2
tqdm==4.46.0
urllib3==1.25.9
# %cd /content/rugpt3xl_ilm
! pip install -r ilm_requirements.txt
! python -c "import nltk; nltk.download('punkt')"
!pip install transformers==3.5.1
!cp /content/rugpt3xl_ilm/src_utils/trainer_pt_utils.py /usr/local/lib/python3.7/dist-packages/transformers/trainer_pt_utils.py
###Output
_____no_output_____
###Markdown
Test model Load model
###Code
import warnings
warnings.filterwarnings("ignore")
import sys
sys.path.append("rugpt3xl_ilm/")
import os
os.environ["USE_DEEPSPEED"] = "1"
###Output
_____no_output_____
###Markdown
ILM
###Code
from google.colab import drive
drive.mount('/content/gdrive')
%cd gdrive/My Drive/RUGPT3XL
# TODO: upload data to gdrive
# TODO: use the right path for the script below
!! python3 /content/rugpt3xl_ilm/train_ilm.py \
experiment \
/content/gdrive/RUGPT3XL/model_Economics \
/content/gdrive/RUGPT3XL/data/Economics_char_masks/ \
--seed 0 \
--train_examples_tag train \
--data_loader_num_workers 8 \
--eval_examples_tag valid \
--eval_max_num_examples 512 \
--tokenizer_name RUGPT3XL \
--model_name sberbank-ai/rugpt3xl 2>&1 | tee rugpt3xl_TrainerLog.txt
!cat /content/rugpt3xl_ilm/ilm/official_gpt2_encoder/encoder.py
###Output
"""Byte pair encoding utilities"""
import os
import json
import regex as re
from functools import lru_cache
from ilm.tokenize_util import Tokenizer
from ilm.paths import OFFICIAL_GPT2_ENCODER_DIR, OFFICIAL_RUGPT3_ENCODER_DIR
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class Encoder:
def __init__(self, encoder, bpe_merges, errors='replace'):
self.encoder = encoder
self.decoder = {v:k for k,v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
return bpe_tokens
def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
return text
def get_encoder(tokenizer):
if tokenizer == Tokenizer.RUGPT3XL:
models_dir = OFFICIAL_RUGPT3_ENCODER_DIR
with open(os.path.join(models_dir, 'vocab.json'), 'r') as f:
encoder = json.load(f)
with open(os.path.join(models_dir, 'merges.txt'), 'r', encoding="utf-8") as f:
bpe_data = f.read()
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
return Encoder(
encoder=encoder,
bpe_merges=bpe_merges,
)
elif tokenizer == Tokenizer.GPT2:
models_dir = OFFICIAL_GPT2_ENCODER_DIR
with open(os.path.join(models_dir, 'encoder.json'), 'r') as f:
encoder = json.load(f)
with open(os.path.join(models_dir, 'vocab.bpe'), 'r', encoding="utf-8") as f:
bpe_data = f.read()
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
return Encoder(
encoder=encoder,
bpe_merges=bpe_merges,
)
else:
raise NotImplementedError("Only GPT2 and RUGPT3XL tokenizer-wrapping is supported.")
|
tegridy-tools/notebooks/MIDI_MIR_Statistics.ipynb | ###Markdown
MIDI MIR Statistics Notebook (ver 1.0)
***
View detailed info and stats for the specified MIDI file
***
Project Los Angeles
Tegridy Code 2021
###Code
#@title Install all dependencies
!git clone https://github.com/asigalov61/tegridy-tools
!pip install mido
!pip install visual_midi
!pip install pypianoroll
!git clone https://github.com/sniperwrb/python-midi
!apt-get install swig
%cd /content/python-midi
!python setup.py install
%cd /content/
!mkdir /content/midis/
#@title Import needed modules
import os
import numpy as np
import mido
import string
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.colors import colorConverter
import sys, math, time
import midi
from pypianoroll import Multitrack, Track
from mido import MidiFile
from operator import itemgetter
from visual_midi import Plotter
from visual_midi import Preset
from pretty_midi import PrettyMIDI
import midi
from midi.constants import NOTE_NAME_MAP_SHARP
import argparse
import networkx as nx
#@title Specify the input MIDI file to analyze
MIDI_file_to_analyze = "/content/tegridy-tools/tegridy-tools/seed.mid" #@param {type:"string"}
#@title visual_midi Bokeh Plot
preset = Preset(plot_width=850)
plotter = Plotter(preset, plot_max_length_bar=4)
pm = PrettyMIDI(MIDI_file_to_analyze)
plotter.show_notebook(pm)
#@title Plot Piano Roll
# inherit the origin mido class
class MidiFile(mido.MidiFile):
def __init__(self, filename):
mido.MidiFile.__init__(self, filename)
self.sr = 10
self.meta = {}
self.events = self.get_events()
def get_events(self):
mid = self
print(mid)
# There is > 16 channel in midi.tracks. However there is only 16 channel related to "music" events.
# We store music events of 16 channel in the list "events" with form [[ch1],[ch2]....[ch16]]
# Lyrics and meta data used a extra channel which is not include in "events"
events = [[] for x in range(16)]
# Iterate all event in the midi and extract to 16 channel form
for track in mid.tracks:
for msg in track:
try:
channel = msg.channel
events[channel].append(msg)
except AttributeError:
try:
if type(msg) != type(mido.UnknownMetaMessage):
self.meta[msg.type] = msg.dict()
else:
pass
except:
print("error",type(msg))
return events
def get_roll(self):
events = self.get_events()
# Identify events, then translate to piano roll
# choose a sample ratio(sr) to down-sample through time axis
sr = self.sr
# compute total length in tick unit
length = self.get_total_ticks()
# allocate memory to numpy array
roll = np.zeros((16, 128, length // sr), dtype="int8")
# use a register array to save the state(no/off) for each key
note_register = [int(-1) for x in range(128)]
# use a register array to save the state(program_change) for each channel
timbre_register = [1 for x in range(16)]
for idx, channel in enumerate(events):
time_counter = 0
volume = 100
# Volume would change by control change event (cc) cc7 & cc11
# Volume 0-100 is mapped to 0-127
print("channel", idx, "start")
for msg in channel:
if msg.type == "control_change":
if msg.control == 7:
volume = msg.value
# directly assign volume
if msg.control == 11:
volume = volume * msg.value // 127
# change volume by percentage
# print("cc", msg.control, msg.value, "duration", msg.time)
if msg.type == "program_change":
timbre_register[idx] = msg.program
#print("channel", idx, "pc", msg.program, "time", time_counter, "duration", msg.time)
if msg.type == "note_on":
#print("on ", msg.note, "time", time_counter, "duration", msg.time, "velocity", msg.velocity)
note_on_start_time = time_counter // sr
note_on_end_time = (time_counter + msg.time) // sr
intensity = volume * msg.velocity // 127
# When a note_on event *ends* the note start to be play
# Record end time of note_on event if there is no value in register
# When note_off event happens, we fill in the color
if note_register[msg.note] == -1:
note_register[msg.note] = (note_on_end_time,intensity)
else:
# When note_on event happens again, we also fill in the color
old_end_time = note_register[msg.note][0]
old_intensity = note_register[msg.note][1]
roll[idx, msg.note, old_end_time: note_on_end_time] = old_intensity
note_register[msg.note] = (note_on_end_time,intensity)
if msg.type == "note_off":
try:
#print("off", msg.note, "time", time_counter, "duration", msg.time, "velocity", msg.velocity)
note_off_start_time = time_counter // sr
note_off_end_time = (time_counter + msg.time) // sr
note_on_end_time = note_register[msg.note][0]
intensity = note_register[msg.note][1]
# fill in color
roll[idx, msg.note, note_on_end_time:note_off_end_time] = intensity
note_register[msg.note] = -1 # reinitialize register
except:
continue
time_counter += msg.time
# TODO : velocity -> done, but not verified
# TODO: Pitch wheel
# TODO: Channel - > Program Changed / Timbre catagory
# TODO: real time scale of roll
# if there is a note not closed at the end of a channel, close it
for key, data in enumerate(note_register):
if data != -1:
note_on_end_time = data[0]
intensity = data[1]
# print(key, note_on_end_time)
note_off_start_time = time_counter // sr
roll[idx, key, note_on_end_time:] = intensity
note_register[idx] = -1
return roll
def get_roll_image(self):
roll = self.get_roll()
plt.ioff()
K = 16
transparent = colorConverter.to_rgba('black')
colors = [mpl.colors.to_rgba(mpl.colors.hsv_to_rgb((i / K, 1, 1)), alpha=1) for i in range(K)]
cmaps = [mpl.colors.LinearSegmentedColormap.from_list('my_cmap', [transparent, colors[i]], 128) for i in
range(K)]
for i in range(K):
cmaps[i]._init() # create the _lut array, with rgba values
# create your alpha array and fill the colormap with them.
# here it is progressive, but you can create whathever you want
alphas = np.linspace(0, 1, cmaps[i].N + 3)
cmaps[i]._lut[:, -1] = alphas
fig = plt.figure(figsize=(12, 9))
a1 = fig.add_subplot(111)
a1.axis("equal")
a1.set_facecolor("black")
array = []
for i in range(K):
try:
img = a1.imshow(roll[i], interpolation='nearest', cmap=cmaps[i], aspect='auto')
array.append(img.get_array())
except IndexError:
pass
return array
def draw_roll(self):
roll = self.get_roll()
# build and set fig obj
plt.ioff()
fig = plt.figure(figsize=(12, 9))
a1 = fig.add_subplot(111)
a1.axis("equal")
a1.set_facecolor("black")
# change unit of time axis from tick to second
tick = self.get_total_ticks()
second = mido.tick2second(tick, self.ticks_per_beat, self.get_tempo())
#print(second)
if second > 10:
x_label_period_sec = second // 10
else:
x_label_period_sec = second / 10 # ms
#print(x_label_period_sec)
x_label_interval = mido.second2tick(x_label_period_sec, self.ticks_per_beat, self.get_tempo()) / self.sr
#print(x_label_interval)
plt.xticks([int(x * x_label_interval) for x in range(20)], [round(x * x_label_period_sec, 2) for x in range(20)])
# change scale and label of y axis
plt.yticks([y*16 for y in range(8)], [y*16 for y in range(8)])
# build colors
channel_nb = 16
transparent = colorConverter.to_rgba('black')
colors = [mpl.colors.to_rgba(mpl.colors.hsv_to_rgb((i / channel_nb, 1, 1)), alpha=1) for i in range(channel_nb)]
cmaps = [mpl.colors.LinearSegmentedColormap.from_list('my_cmap', [transparent, colors[i]], 128) for i in
range(channel_nb)]
# build color maps
for i in range(channel_nb):
cmaps[i]._init()
# create your alpha array and fill the colormap with them.
alphas = np.linspace(0, 1, cmaps[i].N + 3)
# create the _lut array, with rgba values
cmaps[i]._lut[:, -1] = alphas
# draw piano roll and stack image on a1
for i in range(channel_nb):
try:
a1.imshow(roll[i], origin="lower", interpolation='nearest', cmap=cmaps[i], aspect='auto')
except IndexError:
pass
# draw color bar
colors = [mpl.colors.hsv_to_rgb((i / channel_nb, 1, 1)) for i in range(channel_nb)]
cmap = mpl.colors.LinearSegmentedColormap.from_list('my_cmap', colors, 16)
a2 = fig.add_axes([0.05, 0.80, 0.9, 0.15])
cbar = mpl.colorbar.ColorbarBase(a2, cmap=cmap,
orientation='horizontal',
ticks=list(range(16)))
# show piano roll
plt.draw()
plt.ion()
plt.show(block=True)
#plt.savefig('test.jpg', dpi=300)
def get_tempo(self):
try:
return self.meta["set_tempo"]["tempo"]
except:
return 500000
def get_total_ticks(self):
max_ticks = 0
for channel in range(16):
ticks = sum(msg.time for msg in self.events[channel])
if ticks > max_ticks:
max_ticks = ticks
return max_ticks
mid = MidiFile(MIDI_file_to_analyze)
# get the list of all events
# events = mid.get_events()
# get the np array of piano roll image
roll = mid.get_roll()
# draw piano roll by pyplot
mid.draw_roll()
#@title MIDI Stats 1
# https://github.com/LiuFang816/SALSTM_py_data/blob/d494b3041069d377d6a7a9c296a14334f2fa5acc/python/olofmogren_c-rnn-gan/c-rnn-gan-master/midi_statistics.py
# https://github.com/gbramleysimmons/musictransformers
def msg2dict(msg):
result = dict()
if 'note_on' in msg:
on_ = True
elif 'note_off' in msg:
on_ = False
else:
on_ = None
result['time'] = int(msg[msg.rfind('time'):].split(' ')[0].split('=')[1].translate(
str.maketrans({a: None for a in string.punctuation})))
if on_ is not None:
for k in ['note', 'velocity']:
result[k] = int(msg[msg.rfind(k):].split(' ')[0].split('=')[1].translate(
str.maketrans({a: None for a in string.punctuation})))
return [result, on_]
def switch_note(last_state, note, velocity, on_=True):
# piano has 88 notes, corresponding to note id 21 to 108, any note out of this range will be ignored
result = [0] * 88 if last_state is None else last_state.copy()
if 21 <= note <= 108:
result[note-21] = velocity if on_ else 0
return result
def get_new_state(new_msg, last_state):
new_msg, on_ = msg2dict(str(new_msg))
new_state = switch_note(last_state, note=new_msg['note'], velocity=new_msg['velocity'], on_=on_) if on_ is not None else last_state
return [new_state, new_msg['time']]
def track2seq(track):
# piano has 88 notes, corresponding to note id 21 to 108, any note out of the id range will be ignored
result = []
last_state, last_time = get_new_state(str(track[0]), [0]*88)
for i in range(1, len(track)):
new_state, new_time = get_new_state(track[i], last_state)
if new_time > 0:
result += [last_state]*new_time
last_state, last_time = new_state, new_time
return result
def mid2arry(mid, min_msg_pct=0.1):
tracks_len = [len(tr) for tr in mid.tracks]
min_n_msg = max(tracks_len) * min_msg_pct
# convert each track to nested list
all_arys = []
for i in range(len(mid.tracks)):
if len(mid.tracks[i]) > min_n_msg:
ary_i = track2seq(mid.tracks[i])
all_arys.append(ary_i)
# make all nested list the same length
max_len = max([len(ary) for ary in all_arys])
for i in range(len(all_arys)):
if len(all_arys[i]) < max_len:
all_arys[i] += [[0] * 88] * (max_len - len(all_arys[i]))
all_arys = np.array(all_arys)
all_arys = all_arys.max(axis=0)
# trim: remove consecutive 0s in the beginning and at the end
sums = all_arys.sum(axis=1)
ends = np.where(sums > 0)[0]
return all_arys[min(ends): max(ends)]
def print_array(midi_array):
plt.plot(range(midi_array.shape[0]), np.multiply(np.where(midi_array > 0, 1, 0), range(1, 89)), marker='.',
markersize=1, linestyle='')
#plt.show()
plt.savefig('MIDI Stats Graph.png', dpi=300)
def main():
# Need to change filepath to midi path
filepath = MIDI_file_to_analyze
midi_file = mido.MidiFile(filepath, clip=True)
midi_array = mid2arry(midi_file)
print_array(midi_array)
if __name__ == '__main__':
main()
#@title MIDI Stats 2
# Tools to load and save midi files for the rnn-gan-project.
# https://github.com/LiuFang816/SALSTM_py_data/blob/d494b3041069d377d6a7a9c296a14334f2fa5acc/python/olofmogren_c-rnn-gan/c-rnn-gan-master/midi_statistics.py
#
# https://github.com/TimStroup/Classical-Music-Generator/blob/847a410acb7e993c33e2116af45a7ccdb6b1a9e9/midi_statistics.py
#
# Written by Olof Mogren, http://mogren.one/
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
GENRE = 0
COMPOSER = 1
SONG_DATA = 2
# INDICES IN BATCHES:
LENGTH = 0
FREQ = 1
VELOCITY = 2
TICKS_FROM_PREV_START = 3
# INDICES IN SONG DATA (NOT YET BATCHED):
BEGIN_TICK = 3
CHANNEL = 4
debug = ''
#debug = 'overfit'
base_tones = {'C': 0,
'C#': 1,
'D': 2,
'D#': 3,
'E': 4,
'F': 5,
'F#': 6,
'G': 7,
'G#': 8,
'A': 9,
'A#': 10,
'B': 11}
scale = {}
#Major scale:
scale['major'] = [0,2,4,5,7,9,11]
#(W-W-H-W-W-W-H)
#(2 2 1 2 2 2 1)
#Natural minor scale:
scale['natural_minor'] = [0,2,3,5,7,8,10]
#(W-H-W-W-H-W-W)
#(2 1 2 2 1 2 2)
#Harmonic minor scale:
scale['harmonic_minor'] = [0,2,3,5,7,8,11]
#(W-H-W-W-H-WH-H)
#(2 1 2 2 1 3 1)
tone_names = {}
for tone_name in base_tones:
tone_names[base_tones[tone_name]] = tone_name
def get_tones(midi_pattern):
"""
returns a dict of statistics, keys: [scale_distribution,
"""
tones = []
for track in midi_pattern:
for event in track:
if type(event) == midi.events.SetTempoEvent:
pass # These are currently ignored
elif (type(event) == midi.events.NoteOffEvent) or \
(type(event) == midi.events.NoteOnEvent and \
event.velocity == 0):
pass # not needed here
elif type(event) == midi.events.NoteOnEvent:
tones.append(event.data[0])
return tones
def detect_beat(midi_pattern):
"""
returns a dict of statistics, keys: [scale_distribution,
"""
abs_ticks = []
# Tempo:
ticks_per_quarter_note = float(midi_pattern.resolution)
for track in midi_pattern:
abs_tick=0
for event in track:
abs_tick += event.tick
if type(event) == midi.events.SetTempoEvent:
pass # These are currently ignored
elif (type(event) == midi.events.NoteOffEvent) or \
(type(event) == midi.events.NoteOnEvent and \
event.velocity == 0):
pass
elif type(event) == midi.events.NoteOnEvent:
abs_ticks.append(abs_tick)
stats = {}
for quarter_note_estimate in range(int(ticks_per_quarter_note), int(0.75*ticks_per_quarter_note), -1):
#print('est: {}'.format(quarter_note_estimate))
avg_ticks_off = []
for begin_tick in range(quarter_note_estimate):
ticks_off = []
for abs_tick in abs_ticks:
#print('abs_tick: {} % {}'.format(abs_tick, quarter_note_estimate/4))
sixteenth_note_estimate = quarter_note_estimate/4
ticks_off_sixteenths = int((begin_tick+abs_tick)%sixteenth_note_estimate)
if ticks_off_sixteenths > sixteenth_note_estimate/2:
# off, but before beat
ticks_off_sixteenths = -(ticks_off_sixteenths-sixteenth_note_estimate)
#print('ticks_off: {}'.format(ticks_off_sixteenths))
ticks_off.append(ticks_off_sixteenths)
avg_ticks_off.append(float(sum(ticks_off))/float(len(ticks_off)))
#print('avg_ticks_off: {}. min: {}.'.format(avg_ticks_off, min(avg_ticks_off)))
stats[quarter_note_estimate] = min(avg_ticks_off)
return stats
def get_abs_ticks(midi_pattern):
abs_ticks = []
for track in midi_pattern:
abs_tick=0
for event in track:
abs_tick += event.tick
if type(event) == midi.events.SetTempoEvent:
pass # These are currently ignored
elif (type(event) == midi.events.NoteOffEvent) or \
(type(event) == midi.events.NoteOnEvent and \
event.velocity == 0):
pass
elif type(event) == midi.events.NoteOnEvent:
abs_ticks.append(abs_tick)
abs_ticks.sort()
return abs_ticks
def get_top_k_intervals(midi_pattern, k):
"""
returns a fraction of the noteon events in midi_pattern that are polyphonous
(several notes occurring at the same time).
Here, two note on events are counted as the same event if they
occur at the same time, and in this case it is considered a polyphonous event.
"""
intervals = {}
abs_ticks = get_abs_ticks(midi_pattern)
accumulator = 0
last_abs_tick = 0
for abs_tick in abs_ticks:
interval = abs_tick-last_abs_tick
if interval not in intervals:
intervals[interval] = 0
intervals[interval] += 1
accumulator += 1
last_abs_tick = abs_tick
intervals_list = [(interval, intervals[interval]/float(accumulator)) for interval in intervals]
intervals_list.sort(key=lambda i: i[1], reverse=True)
return intervals_list[:k]
def get_polyphony_score(midi_pattern):
"""
returns a fraction of the noteon events in midi_pattern that are polyphonous
(several notes occurring at the same time).
Here, two note on events are counted as the same event if they
occur at the same time, and in this case it is considered a polyphonous event.
"""
abs_ticks = get_abs_ticks(midi_pattern)
monophonous_events = 0
polyphonous_events = 0
last_abs_tick = 0
tones_in_current_event = 0
for abs_tick in abs_ticks:
if abs_tick == last_abs_tick:
tones_in_current_event += 1
else:
if tones_in_current_event == 1:
monophonous_events += 1
elif tones_in_current_event > 1:
polyphonous_events += 1
tones_in_current_event = 1
last_abs_tick = abs_tick
if tones_in_current_event == 1:
monophonous_events += 1
elif tones_in_current_event > 1:
polyphonous_events += 1
if polyphonous_events == 0:
return 0.0
return float(polyphonous_events)/(polyphonous_events+monophonous_events)
def get_rhythm_stats(midi_pattern):
"""
returns a dict of statistics, keys: [scale_distribution,
"""
abs_ticks = []
# Tempo:
ticks_per_quarter_note = float(midi_pattern.resolution)
# Multiply with output_ticks_pr_input_tick for output ticks.
for track in midi_pattern:
abs_tick=0
for event in track:
abs_tick += event.tick
if type(event) == midi.events.SetTempoEvent:
pass # These are currently ignored
elif (type(event) == midi.events.NoteOffEvent) or \
(type(event) == midi.events.NoteOnEvent and \
event.velocity == 0):
pass
elif type(event) == midi.events.NoteOnEvent:
abs_ticks.append(abs_tick)
stats = {}
for abs_tick in abs_ticks:
ticks_since_quarter_note = int(abs_tick%ticks_per_quarter_note)
if ticks_since_quarter_note not in stats:
stats[ticks_since_quarter_note] = 1
else:
stats[ticks_since_quarter_note] += 1
return stats
def get_intensities(midi_pattern):
"""
returns a dict of statistics, keys: [scale_distribution,
"""
intensities = []
for track in midi_pattern:
abs_tick=0
for event in track:
abs_tick += event.tick
if type(event) == midi.events.SetTempoEvent:
pass # These are currently ignored
elif (type(event) == midi.events.NoteOffEvent) or \
(type(event) == midi.events.NoteOnEvent and \
event.velocity == 0):
pass
elif type(event) == midi.events.NoteOnEvent:
intensities.append(event.velocity)
return (min(intensities), max(intensities))
def get_midi_pattern(filename):
try:
return midi.read_midifile(filename)
except:
print ('Error reading {}'.format(filename))
return None
def tones_to_scales(tones):
"""
Midi to tone name (octave: -5):
0: C
1: C#
2: D
3: D#
4: E
5: F
6: F#
7: G
8: G#
9: A
10: A#
11: B
Melodic minor scale is ignored.
One octave is 12 tones.
"""
counts = {}
for base_tone in base_tones:
counts[base_tone] = {}
counts[base_tone]['major'] = 0
counts[base_tone]['natural_minor'] = 0
counts[base_tone]['harmonic_minor'] = 0
if not len(tones):
frequencies = {}
for base_tone in base_tones:
frequencies[base_tone] = {}
for scale_label in scale:
frequencies[base_tone][scale_label] = 0.0
return frequencies
for tone in tones:
for base_tone in base_tones:
for scale_label in scale:
if tone%12-base_tones[base_tone] in scale[scale_label]:
counts[base_tone][scale_label] += 1
frequencies = {}
for base_tone in counts:
frequencies[base_tone] = {}
for scale_label in counts[base_tone]:
frequencies[base_tone][scale_label] = float(counts[base_tone][scale_label])/float(len(tones))
return frequencies
def repetitions(tones):
rs = {}
#print(tones)
#print(len(tones)/2)
for l in range(2, min(len(tones)/2, 10)):
#print (l)
rs[l] = 0
for i in range(len(tones)-l*2):
for j in range(i+l,len(tones)-l):
#print('comparing \'{}\' and \'{}\''.format(tones[i:i+l], tones[j:j+l]))
if tones[i:i+l] == tones[j:j+l]:
rs[l] += 1
rs2 = {}
for r in rs:
if rs[r]:
rs2[r] = rs[r]
return rs2
def tone_to_tone_name(tone):
"""
Midi to tone name (octave: -5):
0: C
1: C#
2: D
3: D#
4: E
5: F
6: F#
7: G
8: G#
9: A
10: A#
11: B
One octave is 12 tones.
"""
base_tone = tone_names[tone%12]
octave = tone/12-5
return '{} {}'.format(base_tone, octave)
def max_likelihood_scale(tones):
scale_statistics = tones_to_scales(tones)
stat_list = []
for base_tone in scale_statistics:
for scale_label in scale_statistics[base_tone]:
stat_list.append((base_tone, scale_label, scale_statistics[base_tone][scale_label]))
stat_list.sort(key=lambda e: e[2], reverse=True)
return (stat_list[0][0]+' '+stat_list[0][1], stat_list[0][2])
def tone_to_freq(tone):
"""
returns the frequency of a tone.
formulas from
* https://en.wikipedia.org/wiki/MIDI_Tuning_Standard
* https://en.wikipedia.org/wiki/Cent_(music)
"""
return math.pow(2, ((float(tone)-69.0)/12.0)) * 440.0
def freq_to_tone(freq):
"""
returns a dict d where
d['tone'] is the base tone in midi standard
d['cents'] is the cents to make the tone into the exact-ish frequency provided.
multiply this with 8192 to get the midi pitch level.
formulas from
* https://en.wikipedia.org/wiki/MIDI_Tuning_Standard
* https://en.wikipedia.org/wiki/Cent_(music)
"""
if freq == 0.0:
return None
float_tone = (69.0+12*math.log(float(freq)/440.0, 2))
int_tone = int(float_tone)
cents = int(1200*math.log(float(freq)/tone_to_freq(int_tone), 2))
return {'tone': int_tone, 'cents': cents}
def cents_to_pitchwheel_units(cents):
return int(40.96*(float(cents)))
def get_all_stats(midi_pattern):
stats = {}
if not midi_pattern:
print('Failed to read midi pattern.')
return None
tones = get_tones(midi_pattern)
if len(tones) == 0:
print('This is an empty song.')
return None
stats['num_tones'] = len(tones)
stats['tone_min'] = min(tones)
stats['freq_min'] = tone_to_freq(min(tones))
stats['tone_max'] = max(tones)
stats['freq_max'] = tone_to_freq(max(tones))
stats['tone_span'] = max(tones)-min(tones)
stats['freq_span'] = tone_to_freq(max(tones))-tone_to_freq(min(tones))
stats['tones_unique'] = len(set(tones))
rs = repetitions(tones)
for r in range(2,10):
if r in rs:
stats['repetitions_{}'.format(r)] = rs[r]
else:
stats['repetitions_{}'.format(r)] = 0
ml = max_likelihood_scale(tones)
stats['scale'] = ml[0]
stats['scale_score'] = ml[1]
beat_stats = detect_beat(midi_pattern)
minval = float(midi_pattern.resolution)
argmin = -1
for beat in beat_stats:
#print('Looking at beat: {}. Avg ticks off: {}.'.format(beat, beat_stats[beat]))
if beat_stats[beat] < minval:
minval = beat_stats[beat]
argmin = beat
stats['estimated_beat'] = argmin
stats['estimated_beat_avg_ticks_off'] = minval
(min_int, max_int) = get_intensities(midi_pattern)
stats['intensity_min'] = min_int
stats['intensity_max'] = max_int
stats['intensity_span'] = max_int-min_int
stats['polyphony_score'] = get_polyphony_score(midi_pattern)
stats['top_10_intervals'] = get_top_k_intervals(midi_pattern, 10)
stats['top_2_interval_difference'] = 0.0
if len(stats['top_10_intervals']) > 1:
stats['top_2_interval_difference'] = abs(stats['top_10_intervals'][1][0]-stats['top_10_intervals'][0][0])
stats['top_3_interval_difference'] = 0.0
if len(stats['top_10_intervals']) > 2:
stats['top_3_interval_difference'] = abs(stats['top_10_intervals'][2][0]-stats['top_10_intervals'][0][0])
return stats
def get_gnuplot_line(midi_patterns, i, showheader=True):
stats = []
print('#getting stats...')
stats_time = time.time()
for p in midi_patterns:
stats.append(get_all_stats(p))
print('done. time: {}'.format(time.time()-stats_time))
#print(stats)
stats_keys_string = ['scale']
stats_keys = ['scale_score', 'tone_min', 'tone_max', 'tone_span', 'freq_min', 'freq_max', 'freq_span', 'tones_unique', 'repetitions_2', 'repetitions_3', 'repetitions_4', 'repetitions_5', 'repetitions_6', 'repetitions_7', 'repetitions_8', 'repetitions_9', 'estimated_beat', 'estimated_beat_avg_ticks_off', 'intensity_min', 'intensity_max', 'intensity_span', 'polyphony_score', 'top_2_interval_difference', 'top_3_interval_difference', 'num_tones']
gnuplotline = ''
if showheader:
gnuplotline = '# global-step {} {}\n'.format(' '.join([s.replace(' ', '_') for s in stats_keys_string]), ' '.join(stats_keys))
gnuplotline += '{} {} {}\n'.format(i, ' '.join(['{}'.format(stats[0][key].replace(' ', '_')) for key in stats_keys_string]), ' '.join(['{:.3f}'.format(sum([s[key] for s in stats])/float(len(stats))) for key in stats_keys]))
return gnuplotline
def main():
if len(sys.argv) > 2 and sys.argv[1] == '--gnuplot':
#number = sys.argv[2]
patterns = []
for i in range(3,len(sys.argv)):
#print(i)
filename = sys.argv[i]
print('#File: {}'.format(filename))
#patterns.append(get_midi_pattern(filename))
print(get_gnuplot_line([get_midi_pattern(filename)], i, showheader=(i==0)))
else:
for i in range(1,len(sys.argv)):
#filename = sys.argv[i]
filename = MIDI_file_to_analyze
print('File: {}'.format(filename))
midi_pattern = get_midi_pattern(filename)
stats = get_all_stats(midi_pattern)
if stats is None:
print('Could not extract stats.')
else:
print ('ML scale estimate: {}: {:.2f}'.format(stats['scale'], stats['scale_score']))
print ('Min tone: {}, {:.1f} Hz.'.format(tone_to_tone_name(stats['tone_min']), stats['freq_min']))
print ('Max tone: {}, {:.1f} Hz.'.format(tone_to_tone_name(stats['tone_max']), stats['freq_max']))
print ('Span: {} tones, {:.1f} Hz.'.format(stats['tone_span'], stats['freq_span']))
print ('Unique tones: {}'.format(stats['tones_unique']))
for r in range(2,10):
print('Repetitions of len {}: {}'.format(r, stats['repetitions_{}'.format(r)]))
print('Estimated beat: {}. Avg ticks off: {:.2f}.'.format(stats['estimated_beat'], stats['estimated_beat_avg_ticks_off']))
print('Intensity: min: {}, max: {}.'.format(stats['intensity_min'], stats['intensity_max']))
print('Polyphonous events: {:.2f}.'.format(stats['polyphony_score']))
print('Top intervals:')
for interval,score in stats['top_10_intervals']:
print('{}: {:.2f}.'.format(interval,score))
print('Top 2 interval difference: {}.'.format(stats['top_2_interval_difference']))
print('Top 3 interval difference: {}.'.format(stats['top_3_interval_difference']))
if __name__ == "__main__":
main()
#@title MIDI Stats 3 (Ground Truth)
# https://github.com/mbereket/music-transcription
# Comverts MIDI file pattern to representation of notes events in absolute time
class NoteEvents:
def __init__(self, pattern, note_tracks=None, start_on_note=True):
self._event_list = []
self.note_time_list = []
pattern.make_ticks_abs()
self.pattern = pattern
self.ticks_per_beat = pattern.resolution
self.numNotes = 88
# offset between note index and MIDI note number
self.noteOffset = 9
# list of track names to include notes from
self.note_tracks = note_tracks
self.names = self._name_tracks()
self.start_on_note = start_on_note
self._parse_events()
def _name_tracks(self):
names = [None] * len(self.pattern)
for i in range(len(self.pattern)):
for event in self.pattern[i]:
if type(event) == midi.events.TrackNameEvent:
names[i] = event.text
break
return names
def _parse_events(self):
for i in range(len(self.pattern)):
for event in self.pattern[i]:
if type(event) in (midi.events.NoteOnEvent, midi.events.NoteOffEvent):
if self.note_tracks == None or self.names[i] in self.note_tracks:
self._event_list.append(event)
elif type(event) == midi.events.SetTempoEvent:
self._event_list.append(event)
elif type(event) == midi.events.EndOfTrackEvent and event.tick != 0:
self._event_list.append(event)
self._event_list = sorted(self._event_list, key=lambda x: x.tick)
self._event_list_timed()
def _event_list_timed(self):
assert(type(self._event_list[0]) == midi.events.SetTempoEvent)
microseconds_per_beat = self._event_list[0].get_mpqn()
prev_time = 0
prev_tick = 0
microseconds_per_tick = float(microseconds_per_beat) / self.ticks_per_beat
for event in self._event_list:
tick_diff = event.tick - prev_tick
curr_time = prev_time + (tick_diff * microseconds_per_tick)
if type(event) != midi.events.SetTempoEvent:
self.note_time_list.append((event, curr_time))
prev_time = curr_time
prev_tick = event.tick
else:
prev_time = curr_time
prev_tick = event.tick
microseconds_per_beat = event.get_mpqn()
microseconds_per_tick = float(microseconds_per_beat) / self.ticks_per_beat
start_time = self.note_time_list[0][1]
if self.start_on_note:
for i, tup in enumerate(self.note_time_list):
self.note_time_list[i] = (tup[0],tup[1]-start_time)
self._last_event_time = self.note_time_list[-1][1]
def _note_off(self, note_event):
return ((type(note_event) == midi.events.NoteOnEvent) and (note_event.get_velocity() == 0)) \
or type(note_event) == midi.events.NoteOffEvent
# returns index of first slice at or after given time
# time in microseconds
def time_to_slice(self, t, slices_per_second):
microseconds_per_slice = 1e6 / slices_per_second
return np.ceil(float(t) / microseconds_per_slice).astype(int)
# duration in seconds
def get_ground_truth(self, slices_per_second, duration=None):
microseconds_per_slice = 1e6 / slices_per_second
number_slices = np.ceil(self._last_event_time / microseconds_per_slice).astype(int)
ground_truth = np.zeros(self.numNotes * number_slices).reshape(self.numNotes, number_slices)
template = np.zeros(self.numNotes).reshape(self.numNotes,1)
prev_time = 0
for note, curr_time in self.note_time_list:
if prev_time != curr_time:
prev_time_slice = self.time_to_slice(prev_time, slices_per_second)
curr_time_slice = self.time_to_slice(curr_time, slices_per_second)
#make all slices in [prev_time, curr_time) equal to current template
ground_truth[:,prev_time_slice:curr_time_slice] = template.repeat(curr_time_slice - prev_time_slice, axis=1)
if type(note) == midi.events.EndOfTrackEvent:
break
pitch_index = note.get_pitch() - self.noteOffset
if pitch_index >= 0 and pitch_index < self.numNotes:
if self._note_off(note):
template[pitch_index] = 0
else:
template[pitch_index] = 1
prev_time = curr_time
if duration != None:
ground_truth = ground_truth[:,:self.time_to_slice(1e6 * duration, slices_per_second)]
return ground_truth
if __name__ == '__main__':
pattern = midi.read_midifile(MIDI_file_to_analyze)
events = NoteEvents(pattern)
truth = events.get_ground_truth(31.25, 15)
plt.matshow(truth)
plt.show()
#@title MIDI Stats 4
# https://github.com/Astner/exjobb/blob/1abc750a7a4d9af52e273ef24c2c32d0e431e1a6/concepts-master/experimental/higherorder/formats/midi/miditocontext/midiutils.py
#
# Copyright 2015 Daniel Gillblad ([email protected]).
# Licensed under the Apache License, Version 2.0 (the "License")
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Selecte active channels
# Here, all channels except 10 are used, as this MIDI channel is used for percussion only
# in General MIDI files (note that we index channels from 0, not 1)
activeChannels = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15)
# Time during which events are considered simultaneous
simTimeLimit = 50
# Fraction of time notes need to be overlapping to be considered played together
overlapFracLimit = 0.95
# Print info on specified MIDI file
def printMidiFileInfo(midifile):
mid = MidiFile(midifile)
print("File:", os.path.basename(midifile),
"Type:", mid.type,
"Length: ",
end = "")
if mid.type < 2:
print(mid.length)
else:
print("N/A")
# Print messages in MIDI file
def printMidiMessages(midifile):
mid = MidiFile(midifile)
for i, track in enumerate(mid.tracks):
print('Track {}: {}'.format(i, track.name))
for message in track:
print(message)
# Simple class for representing current note state,
# given a series of messages given in order to the update method.
class NoteState:
nstate = [-1] * 128
def printState(self):
print('|', end = '')
for i in self.nstate[22:116]:
if i >= 0:
print('*', end = '')
else:
print('-', end = '')
print('|')
def update(self, message, time = 0):
if message.type == 'all_notes_off':
self.nstate = [-1] * 128
elif message.type == 'note_off' or (message.type == 'note_on' and message.velocity <= 0):
rmsg = [(self.nstate[message.note], time, message.note)]
self.nstate[message.note] = -1
return rmsg
elif message.type == 'note_on':
self.nstate[message.note] = time
return []
return []
# Determines if a message is a "note" message: note on, note off, or all notes off
def isNoteMessage(msg):
if msg.type == 'note_on' or msg.type == 'note_off' or msg.type == 'all_notes_off':
return True
else:
return False
# Determines if a message is a "note" message on a specific channel
def isNoteMessageOnChannel(msg, ch):
if isNoteMessage(msg) and msg.channel == ch:
return True
else:
return False
# Convert a MIDI file to a list of note events, each note given by
# (start-time, end-time, note number). Returns a nested list with
# one list per channel per track.
def fileToNoteList(midifile):
mid = MidiFile(midifile)
allnotes = []
for i, track in enumerate(mid.tracks):
tracknotes = []
for channel in activeChannels:
channelnotes = []
state = NoteState()
cTime = 0
for message in track:
cTime += message.time
if isNoteMessageOnChannel(message, channel):
channelnotes += state.update(message, cTime)
if len(channelnotes) >= 1:
tracknotes += [sorted(channelnotes, key=itemgetter(0,1))]
if len(tracknotes) >= 1:
allnotes += [tracknotes]
return allnotes
# Convert a note list to a list of notes played together.
def playedTogether(notelist):
together = []
for i, note in enumerate(notelist):
# Find overlaps
for fnote in notelist[i + 1:]:
if fnote[0] > note[1]:
break
overlap_a = (note[1] - fnote[0]) / (note[1] - note[0])
overlap_b = (fnote[1] - note[1]) / (fnote[1] - fnote[0])
if overlap_a >= overlapFracLimit or overlap_b >= overlapFracLimit:
together += [[note[2], fnote[2]]]
return together
# Find all notes played together in midifile, separated by track and channel
def allNotesPlayedTogether(midifile):
notelists = fileToNoteList(midifile)
alltogether = []
for t in notelists:
for c in t:
alltogether += playedTogether(c)
return alltogether
# Print a graphic representation of all note messages in a MIDI file
# on a (reasonable) easy to read format.
def printNoteMessages(midifile):
mid = MidiFile(midifile)
for i, track in enumerate(mid.tracks):
print('Track {}: {}'.format(i, track.name))
for channel in activeChannels:
print('Channel:', channel)
state = NoteState()
cTime = 0
simTime = 0
for message in track:
cTime += message.time
if isNoteMessageOnChannel(message, channel):
# If message is outside what would be considered simultaneous,
# emit last state and reset simultaneous time counter
if (simTime + message.time) >= simTimeLimit:
print(cTime, end = '')
state.printState()
simTime = 0
else:
simTime += message.time
state.update(message, cTime)
# Print a graphic representation of all note messages in a MIDI file
# on a (reasonable) easy to read format, grouping near simultaneous note events
# for readability.
def printGroupedNoteOnMessages(midifile):
mid = MidiFile(midifile)
for i, track in enumerate(mid.tracks):
print('Track {}: {}'.format(i, track.name))
for channel in activeChannels:
print('Channel:', channel)
cTime = 0
gTime = 0
nSet = set()
for message in track:
cTime += message.time
if message.type == 'note_on' and message.velocity > 0 and message.channel == channel:
if (cTime - gTime) >= simTimeLimit:
print(cTime, nSet)
gTime = cTime
nSet.clear()
nSet.add(message.note)
else:
nSet.add(message.note)
# Collect a set of statistics for a specified MIDI file object.
def collectMidiNoteStatistics(midifileobj, channel_activity, played_notes, note_offs,
running_status, all_notes_off):
for i, track in enumerate(midifileobj.tracks):
for channel in activeChannels:
for message in track:
if(isNoteMessage(message)):
channel_activity[message.channel] += 1
if message.type == 'note_on' and message.velocity > 0:
played_notes[message.note] += 1
if message.type == 'note_off':
note_offs[message.channel] += 1
if message.type == 'note_on' and message.velocity <= 0:
running_status[message.channel] += 1
if message.type == 'all_notes_off':
all_notes_off[message.channel] += 1
# Print MIDI file statistics compiled for all MIDI files found in the specified directory
# and all sub-directories recursively.
def printMidiFileStatistics(root_dir):
nr_files = 0
nr_file_types = [0] * 3
nr_length_files = 0
total_length = 0
channel_activity = [0] * 16
played_notes = [0] * 127
note_offs = [0] * 16 # Per channel
running_status = [0] * 16 # Per channel
all_notes_off = [0] * 16 # Per channel
mid = MidiFile(MIDI_file_to_analyze)
nr_files += 1
nr_file_types[mid.type] += 1
if mid.type < 2:
nr_length_files += 1
total_length += mid.length
collectMidiNoteStatistics(mid, channel_activity, played_notes, note_offs,
running_status, all_notes_off)
print('--------------------------------------------------------------------------')
print('Number of .mid files:', nr_files, ' Type 0:', nr_file_types[0],
' Type 1:', nr_file_types[1], ' Type 2:', nr_file_types[2])
print('Average length: {:.1f}'.format(total_length / nr_length_files))
print('--------------------------------------------------------------------------')
print('Note on messages: ', sum(played_notes))
print('Note off messages: ', sum(note_offs))
print('Running status off: ', sum(running_status))
print('All notes off: ', sum(all_notes_off))
print('--------------------------------------------------------------------------')
print('Channel activity distribution:')
total_activity = sum(channel_activity)
for i, act in enumerate(channel_activity):
if act > 0:
print('{:2d}: {:.1%} '.format(i + 1, act / total_activity))
print('--------------------------------------------------------------------------')
print('Note distribution:')
total_notes = sum(played_notes)
for i, nt in enumerate(played_notes):
if nt > 0:
print('{:2d}: {:.2%} '.format(i, nt / total_notes))
print('--------------------------------------------------------------------------')
# Visit files recursively from a root directory.
def visitFilesRecursively(root_dir, extension, apply_func, verbose = True):
base_dir = os.path.abspath(root_dir)
for root, subdirs, files in os.walk(base_dir):
if verbose:
print('# Directory: ' + root)
for filename in files:
if os.path.splitext(filename)[1] == extension:
if verbose:
print(' - %s ' % (filename))
file_path = os.path.join(root, filename)
res = apply_func(file_path)
printMidiFileStatistics('/content/')
#@title Time varying key of a MIDI file
# Identifies the time varying key of a MIDI file
# Hilary Mogul
# [email protected]
# May 2014
# Version 0.0.1
from pretty_midi import PrettyMIDI
import numpy as np
import midi
import os
import sys
def make_chroma_vector(chroma_slice):
"""Returns chroma vector of sums from starting time to ending time"""
chroma_vector = np.zeros((12,1))
chroma_vector[0] = np.sum(chroma_slice[11,])
for i in range(1,12):
chroma_vector[i] = np.sum(chroma_slice[11-i])
return chroma_vector
def get_approx_key(chroma_vector, keys):
"""Returns index of approximated key, and the score that this approximated key got"""
chroma_vector = chroma_vector[:]
scores = []
end = keys.shape[0] -1
for i in range(0,end):
key_vector = keys[i,:]
score = np.dot(key_vector,chroma_vector)
scores.append(score)
key_index = scores.index(max(scores))
arr = np.array([[key_index, max(scores)]])
return arr
def get_key_score(chroma_vector, keys, key_index):
"""Returns the score of an approximated key, given the index of the key weights to try out"""
chroma_vector = np.rot90(chroma_vector,3)
chroma_vector = chroma_vector[0,:]
key_vector = keys[key_index,:]
score = np.dot(key_vector,chroma_vector)
return score
def load_keys():
""" Returns arrays of the weighted keys, and the corresponding names of them """
#Building of weighted vectors
if not os.path.exists("key_base_info.npz"):
print("Building default array- major keys only")
key_weight = np.array([[ 3, -1, 1, -1, 2, 1, -1, 2, -1, 1, -1, 2]])
key_weight = np.vstack((key_weight,np.array([[2, 3, -1, 1, -1, 2, 1, -1, 2, -1, 1, -1]])))
key_weight = np.vstack((key_weight,np.array([[-1, 2, 3, -1, 1, -1, 2, 1, -1, 2, -1, 1]])))
key_weight = np.vstack((key_weight,np.array([[1, -1, 2, 3, -1, 1, -1, 2, 1, -1, 2, -1]])))
key_weight = np.vstack((key_weight,np.array([[-1, 1, -1, 2, 3, -1, 1, -1, 2, 1, -1, 2]])))
key_weight = np.vstack((key_weight,np.array([[2, -1, 1, -1, 2, 3, -1, 1, -1, 2, 1, -1]])))
key_weight = np.vstack((key_weight,np.array([[-1, 2, -1, 1, -1, 2, 3, -1, 1, -1, 2, 1]])))
key_weight = np.vstack((key_weight,np.array([[1, -1, 2, -1, 1, -1, 2, 3, -1, 1, -1, 2]])))
key_weight = np.vstack((key_weight,np.array([[2, 1, -1, 2, -1, 1, -1, 2, 3, -1, 1, -1]])))
key_weight = np.vstack((key_weight,np.array([[-1, 2, 1, -1, 2, -1, 1, -1, 2, 3, -1, 1]])))
key_weight = np.vstack((key_weight,np.array([[1, -1, 2, 1, -1, 2, -1, 1, -1, 2, 3, -1]])))
key_weight = np.vstack((key_weight,np.array([[-1, 1, -1, 2, 1, -1, 2, -1, 1, -1, 2, 3]])))
names = np.array([['C-Maj', 'C#-Maj', 'D-Maj', 'D#-Maj', 'E-Maj', 'F-Maj','F#-Maj','G-Maj','G#-Maj', 'A-Maj', 'A#-Maj','B-Maj']])
np.savez("key_base_info", key_weight, names)
npzfile = np.load("key_base_info.npz")
key_weight = npzfile['arr_0']
names = npzfile['arr_1']
#vector of key names (This version will use only major keys)
return key_weight, names
#Main function of program:
def identify_key(midi_filename, command_line_print = True, save_results = True, measure_value = 1):
""" Runs key identification algorithm
:parameters:
- midi_filename : String of name of existing midi file to process.
- command_line_print : Boolean to allow for printing results to command line.
- save_results : Boolean to allow saving the approximated key and the names of those keys to a .npz file matching the midi files name
- measure_value : int > 0 that sets how many beats the program will process per approximation.
"""
song = PrettyMIDI((midi_filename))
#get beat locations for slices
beats = song.get_beats() #output is an np.ndarray
times = beats.flatten()
sectionBeats = True
#create slices of chroma data to process including summing them up
#output: every "measure" of beats
if measure_value< 1 or measure_value >times.size or measure_value == None:
sectionBeats = False
print ("WARNING: measure_value selected less than 1 or greater than beat size. Will do one approximation for the whole song.")
key_weight, names = load_keys()
#get Chroma features
chroma = song.get_chroma()
#normalize chroma features
chroma /= (chroma.max( axis = 0 ) + (chroma.max( axis = 0 ) == 0))
# first case
if sectionBeats:
chroma_slice = chroma[:,0:round(times[0])*100]
else:
chroma_slice = chroma
# Sum rows to find intensity of each note.
vec = np.sum(chroma_slice, axis=1)
keys_approx = get_approx_key(vec, key_weight)
#for each slice, get approximated key and score into 2 column array (key, score)
#possiblymay need to use indices of key names instead of actual keys
#chroma time indices have a resolution of 10 ms
times_used = np.array([[times[0]]])
if sectionBeats:
for t in range(1, times.size-1,measure_value):
#make chroma slice based on time
if times.size -t < measure_value:
chroma_slice = chroma[:,round(times[t]*100):round(times[t+1]*100)]
# print chroma_slice
# vec = make_chroma_vector(chroma_slice)
vec = np.sum(chroma_slice, axis=1)
# vec = vec[::-1]
else:
chroma_slice = chroma[:,round(times[t]*100):round(times[t+1]*100)]
# print chroma_slice
# vec = make_chroma_vector(chroma_slice)
vec = np.sum(chroma_slice, axis=1)
# vec = vec[::-1]
apr = get_approx_key(vec, key_weight)
#if the score isn't 0 (which happens in silence), add the approximated key to the list
if not apr[0,1] == 0:
keys_approx = np.vstack((keys_approx, apr))
times_used = np.vstack((times_used, np.array([[times[t]]])))
# DUMMIED OUT CODE FOR FUTURE IMPLEMENTATION
# final_keys = np.array([ [ keys_approx[0,0],times[0,0] ] ]) #mark first
# print final_keys
#
# #iterate through rows of array- if there is a change, get % difference in scores for each key and use threshold to figure
# #if it is a key change. mark key change in final 2 column array of (key, time start)
# threshold = .15 #experimental value
#
# if times.size > 1:
# print "going thru removal loop"
# for t in range (1, keys_approx.shape[0]):
# current = keys_approx[t,0]
# prev = keys_approx[t-1,0]
# if not current == prev: #if not equal to previous, check % difference of scores
# print "In key change check"
# score1 = keys_approx[t,1] #score of key of this time slice
# # print score1
# vec = make_chroma_vector(chroma, round(times[0,t])*100,round(times[0,t+1])*100 )
# # print vec
# score2 = get_key_score(vec, key_weight, prev) #score it would have gotten with last input key
# # print score2
# diff = abs(score1-score2)/(score1+score2)
# print diff
# if diff > threshold:
# arr = np.array([[keys_approx[t,0], times[t,0] ]])
# # print arr
# print "Key change at index: ", times[t,0]
# final_keys = np.vstack((final_keys, arr))
# else:
# print "difference not large enough to constitute key change "
#keys_approx = final_keys
e = keys_approx.shape[0]
if command_line_print:
for i in range(0, e):
key_int = int(keys_approx[i,0])
print("In key: ",names[0,key_int],"at time: ", times_used[i,0])
if save_results:
filename = os.path.basename(midi_filename)
filename_raw = os.path.splitext(filename)[0]
# if not os.path.exists(directory):
dirname = "Results_of_key_approximation"
if not os.path.exists(dirname):
os.makedirs(dirname)
np.savez(dirname+"/"+filename_raw+"_key_approx-vars", keys_approx = keys_approx, names = names)
file_results = open(dirname+"/"+filename_raw+"_key_approx-text_form.txt",'w')
file_results.write(filename_raw+"\n")
for i in range(0, e):
key_int = int(keys_approx[i,0])
file_results.write("In key: "+names[0,key_int]+" at time: "+ str(times_used[i,0])+"\n")
file_results.close()
return keys_approx, names
x = identify_key(MIDI_file_to_analyze)
#@title Detailed chords analysis
%cd /content/
# https://github.com/realbchan/MidiAnalysis
import bisect
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
class Utils:
# initialize, build mapping from a note number to a note letter
def __init__(self):
self.number_to_letter_mappings = dict()
self.pattern = ['A', 'A#/Bb', 'B', 'C', 'C#/Db', 'D', 'D#/Eb', 'E', 'F', 'F#/Gb', 'G', 'G#/Ab']
self.build_number_letter_mapping()
# this method maps a number to a note letter and it's octave
# notes on my keyboard is from note=21 to note=108 == 88 keys
# I dont think the piano can represent anything out of this range
def build_number_letter_mapping(self):
octave = 0
for num_note in range(21, 109):
letter = self.pattern[(num_note - 21) % len(self.pattern)]
if letter == 'C':
octave += 1
note = (self.pattern[(num_note - 21) % len(self.pattern)], octave)
self.number_to_letter_mappings[num_note] = note
# get method, retrieve note letter from note number
def note_number_to_letter(self, num_note):
return self.number_to_letter_mappings[num_note]
# each note or chord is considered a "Tone"
# This is the parent class for Note and Chord
class Tone:
def __init__(self):
# this threshold limit determines how "close"
# a note is to another note in seconds, this can be tuned
self.threshold_limit = .25
def is_note(self):
return False
def is_chord(self):
return False
# must be implemented in Note and Chord
def is_close(self, other_note):
raise NotImplementedError("To be implemented")
# I define a Note to be a single musical note played
# If there are 1 or 2 notes "close" by, it is considered a Chord
class Note(Tone):
# takes in parameters from message, calculates duration
def __init__(self, absoluteStart, absoluteStop, notePlayed, velocityStart, velocityStop):
super().__init__()
self.absoluteStart = absoluteStart
self.absoluteStop = absoluteStop
self.duration = self.absoluteStop - self.absoluteStart
self.notePlayed = notePlayed
self.velocityStart = velocityStart
self.velocityStop = velocityStop
# def __key(self):
# return (self.notePlayed[0], self.notePlayed[1])
# def __hash__(self):
# return hash(self.__key())
def __lt__(self, other_note):
note_letter, note_octave = self.notePlayed[0], self.notePlayed[1]
other_note_letter, other_note_octave = other_note.notePlayed[0], other_note.notePlayed[1]
if note_octave < other_note_octave:
return True
elif note_octave == other_note_octave:
return other_note_letter < note_letter
else:
return False
def __str__(self):
return str(self.notePlayed)
def __repr__(self):
return self.__str__()
def is_note(self):
return True
# uses self.threshold to determine if a note is close
def is_close(self, other_note):
start_difference = abs(self.absoluteStart - other_note.absoluteStart)
stop_difference = abs(self.absoluteStop - other_note.absoluteStop)
if start_difference <= self.threshold_limit and stop_difference <= self.threshold_limit:
return True
return False
# a chord is considered 1 or 2 notes that are close by
class Chord(Tone):
# we need to keep track of the average parameters of a chord
def __init__(self):
super().__init__()
self.notes_in_chord = tuple()
self.num_chords = 0
self.average_duration = 0
self.average_start_time = 0
self.average_stop_time = 0
def __str__(self):
return str(self.notes_in_chord)
# def __key(self):
# return tuple(note.__hash__() for note in self.notes_in_chord)
# def __hash__(self):
# return hash(self.__key())
def is_chord(self):
return True
# on adding a note, recalculate averages
def add_note(self, note):
self.average_duration = self.get_new_average(self.average_duration, note.duration)
self.average_start_time = self.get_new_average(self.average_start_time, note.absoluteStart)
self.average_stop_time = self.get_new_average(self.average_stop_time, note.absoluteStop)
self.num_chords += 1
note_letter, note_octave = note.notePlayed
list_notes_in_chord = list(self.notes_in_chord)
if len(self.notes_in_chord) > 0:
bisect.insort_left(list_notes_in_chord, note)
else:
list_notes_in_chord.append(note)
self.notes_in_chord = tuple(list_notes_in_chord)
# print(self.notes_in_chord)
# calculate new arbitrary average
def get_new_average(self, previous_cumulation, next_number):
previous_sum = previous_cumulation * self.num_chords
current_sum = previous_sum + next_number
return current_sum / (self.num_chords + 1)
# similar to is_close for Note
def is_close(self, other_note):
start_difference = abs(self.average_start_time - other_note.absoluteStart)
stop_difference = abs(self.average_stop_time - other_note.absoluteStop)
if start_difference <= self.threshold_limit and stop_difference <= self.threshold_limit:
return True
return False
# a Song is a list of Tones
# it represents a midi track as a whole
class Song:
def __init__(self):
self.tones = list()
def __str__(self):
return ''.join(str(tone) for tone in self.tones)
# sorts tones by start
def sort_by_start_of_tone(self):
# sorting comparator, probably could refactor
def get_start(tone):
if tone.is_note():
return tone.absoluteStart
else:
return tone.average_start_time
self.tones.sort(key=get_start)
# add note to song, will detect if needs to make a chord
def add_note(self, note):
if len(self.tones) == 0:
self.tones.append(note)
else:
for previous_tone in self.tones[::-1]:
# retrieve previous tone's end, chord or note
previous_tone_end = None
if previous_tone.is_chord():
previous_tone_end = previous_tone.average_stop_time
else:
previous_tone_end = previous_tone.absoluteStop
# check if the previous' end time is close to current note
# if it's not in threshold, this is just a singular note
if abs(previous_tone_end - note.absoluteStop) <= note.threshold_limit:
# current note's end is close to previous end, check if both start
# and end are close
if previous_tone.is_close(note):
# in the event that we need to make a new chord,
# we need to save the index of the previous_tone,
#create a chord, and insert it back to original position
if previous_tone.is_note():
chord = Chord()
chord.add_note(previous_tone)
chord.add_note(note)
saveIndex = self.tones.index(previous_tone)
self.tones.pop(saveIndex)
self.tones.insert(saveIndex, chord)
break
else:
previous_tone.add_note(note)
break
continue
else:
self.tones.append(note)
break
class ToneFrequency:
def __init__(self, song):
self.song = song
self.frequency_of_all_notes = self.get_all_note_frequency()
self.frequency_of_only_chords = self.get_frequency_only_chords()
self.plot_get_frequency_only_chords()
def get_all_note_frequency(self):
frequencies = defaultdict(int)
for tone in self.song.tones:
if tone.is_note():
frequencies[tone.notePlayed] += 1
else:
for note in tone.notes_in_chord:
frequencies[note.notePlayed] += 1
return frequencies
def get_frequency_only_chords(self):
frequencies = defaultdict(int)
for tone in self.song.tones:
if tone.is_chord():
notes = tuple(note.notePlayed for note in tone.notes_in_chord)
frequencies[notes] += 1
return frequencies
def plot_get_frequency_only_chords(self):
D = self.frequency_of_only_chords
plt.bar(range(len(D)), list(D.values()), align='center')
plt.xticks(range(len(D)), list(D.keys()))
# # for python 2.x:
# plt.bar(range(len(D)), D.values(), align='center') # python 2.x
# plt.xticks(range(len(D)), D.keys()) # in python 2.x
plt.show()
from mido import MidiFile
from mido.midifiles.units import tempo2bpm, bpm2tempo, tick2second, second2tick
# from midiUtils import Utils, Tone, Note, Chord, Song
#from toneFrequency import ToneFrequency
util = Utils()
mid = MidiFile(MIDI_file_to_analyze)
# mid = MidiFile('./whenTheSaintsLeftHandMelody/wtsgmi5.mid')
print((mid.ticks_per_beat))
# print(mid.ticks_per_beat, 1000)
# print(mid.tracks)
# exit()
tempoPerMinute = 500000
totalNotes = list()
song = Song()
for i, track in enumerate(mid.tracks):
print('Track {}: {}'.format(i, track.name))
cumulative_time = 0
currently_played_notes = dict()
for msg in track:
try:
if not msg.is_meta:
cumulative_time += tick2second(msg.time, mid.ticks_per_beat, tempoPerMinute)
message_note = util.note_number_to_letter(msg.note)
if message_note in currently_played_notes:
absoluteStart, velocityStart = currently_played_notes.pop(message_note)
note = Note(absoluteStart, cumulative_time, message_note, velocityStart, msg.velocity)
song.add_note(note)
else:
currently_played_notes[message_note] = (cumulative_time, msg.velocity)
except:
continue
# print(len(song.tones))
# song.sort_by_start_of_tone()
for tone in song.tones:
print(tone)
frequencies = ToneFrequency(song)
print(frequencies.frequency_of_all_notes)
print(frequencies.frequency_of_only_chords)
#@title Pydot Graph
pattern = midi.read_midifile(MIDI_file_to_analyze)
notes = {NOTE_NAME_MAP_SHARP[name]: name.replace('s', '#').replace('_', '')
for name in NOTE_NAME_MAP_SHARP}
l = pattern[0]
tracks = []
for track in pattern:
x = list()
y = list()
t = 0
for ev in track:
t += ev.tick
if type(ev) == midi.events.NoteOnEvent:
pitch, vel = ev.data
if vel > 0:
y.append(pitch)
x.append(t)
if len(x) > 0:
tracks.append((x, y))
colors = ['orange', 'green', 'red']
n = 0
for track in tracks:
G = nx.DiGraph()
for i in range(len(track[1])-1):
G.add_edge(notes[track[1][i]],
notes[track[1][i+1]],
color=colors[n])
G.add_node(notes[track[1][i]],
color=colors[n])
G.add_node(notes[track[1][i+1]],
color=colors[n])
nx.drawing.nx_pydot.write_dot(G, "g%s.dot" % n)
n += 1
nx.draw_networkx(G)
#plt.figure(figsize=(19, 10), dpi=300)
plt.savefig('Dot_Graph.jpg')
#@title Generate and plot MIDI file's Parson's code and contour.
length_of_the_code_and_contour_in_notes = 70 #@param {type:"slider", min:10, max:2000, step:10}
code_and_contour_start_offset_in_notes = 0 #@param {type:"slider", min:0, max:1000, step:10}
#!/usr/bin/env python
# https://github.com/snus-kin/parsons-code
"""
Take a midi file and convert it to parsons code, with a limit and offset
"""
def midi_to_parsons(midifile, limit=code_and_contour_start_offset_in_notes + length_of_the_code_and_contour_in_notes, offset=code_and_contour_start_offset_in_notes):
"""
Input: midifile (string) = A midi file path
limit (int) = How long is the parsons code
offset (int) = How many notes in do we start
Output: parsons (string) = A string containing a parsons code length
limit at an offset from the start of the file
"""
count = 0
parsons = ""
for message in mido.MidiFile(midifile):
if "note_on" in str(message) and offset == 0:
if parsons == "":
# initialise list
prev = message.note
parsons += "*"
# simple comparison
elif message.note > prev:
parsons += "U"
prev = message.note
elif message.note < prev:
parsons += "D"
prev = message.note
elif message.note == prev:
parsons += "R"
prev = message.note
#increment count
count += 1
if count >= limit:
break
elif "note_on" in str(message):
offset -= 1
return parsons
code = midi_to_parsons(MIDI_file_to_analyze)
#print(code)
""" Parsons code to contour plot """
def contour(code):
print('Song Parson Code is:')
print(code)
print('')
if code[0] != "*":
raise ValueError("Parsons Code must start with '*'")
contour_dict = {}
pitch = 0
index = 0
maxp = 0
minp = 0
contour_dict[(pitch, index)] = "*"
for point in code:
if point == "R":
index += 1
contour_dict[(pitch, index)] = "-"
index += 1
contour_dict[(pitch, index)] = "*"
elif point == "U":
index += 1
pitch -= 1
contour_dict[(pitch, index)] = "/"
index += 1
pitch -= 1
contour_dict[(pitch, index)] = "*"
if pitch < maxp:
maxp = pitch
elif point == "D":
index += 1
pitch += 1
contour_dict[(pitch, index)] = "\\"
index += 1
pitch += 1
contour_dict[(pitch, index)] = "*"
if pitch > minp:
minp = pitch
for pitch in range(maxp, minp+1):
line = [" " for _ in range(index + 1)]
for pos in range(index + 1):
if (pitch, pos) in contour_dict:
line[pos] = contour_dict[(pitch, pos)]
print("".join(line))
contour(code)
###Output
_____no_output_____ |
Lectures notebooks/(Lectures notebooks) coursera Mathematics and Python/12.sample distribution evaluation/sample_distribution_evaluation.ipynb | ###Markdown
Дискретное распределение Сгенерируем выборку объёма 100 из дискретного распределения с шестью равновероятными исходами.
###Code
sample = np.random.choice([1,2,3,4,5,6], 100)
###Output
_____no_output_____
###Markdown
Представим теперь, что эта выборка была получена не искусственно, а путём подбрасывания симметричного шестигранного кубика 100 раз. Оценим вероятности выпадения каждой из сторон с помощью частот:
###Code
# посчитаем число выпадений каждой из сторон:
from collections import Counter
c = Counter(sample)
print("Число выпадений каждой из сторон:")
print(c)
# теперь поделим на общее число подбрасываний и получим вероятности:
print("Вероятности выпадений каждой из сторон:")
print({k: v/100.0 for k, v in c.items()})
###Output
Число выпадений каждой из сторон:
Counter({1: 24, 2: 17, 4: 16, 3: 15, 5: 15, 6: 13})
Вероятности выпадений каждой из сторон:
{1: 0.24, 2: 0.17, 3: 0.15, 4: 0.16, 5: 0.15, 6: 0.13}
###Markdown
Это и есть оценка функции вероятности дискретного распределения. Непрерывное распределение Сгенерируем выборку объёма 100 из стандартного нормального распределения (с $\mu=0$ и $\sigma^2=1$):
###Code
norm_rv = sts.norm(0, 1)
sample = norm_rv.rvs(100)
###Output
_____no_output_____
###Markdown
Эмпирическая функция распределения для полученной выборки:
###Code
x = np.linspace(-4,4,100)
cdf = norm_rv.cdf(x)
plt.plot(x, cdf, label='theoretical CDF')
# для построения ECDF используем библиотеку statsmodels
from statsmodels.distributions.empirical_distribution import ECDF
ecdf = ECDF(sample)
plt.step(ecdf.x, ecdf.y, label='ECDF')
plt.ylabel('$f(x)$')
plt.xlabel('$x$')
plt.legend(loc='upper left')
###Output
_____no_output_____
###Markdown
Гистограмма выборки:
###Code
plt.hist(sample, normed=True)
plt.ylabel('fraction of samples')
plt.xlabel('$x$')
###Output
_____no_output_____
###Markdown
Попробуем задавать число карманов гистограммы вручную:
###Code
plt.hist(sample, bins=3, normed=True)
plt.ylabel('fraction of samples')
plt.xlabel('$x$')
plt.hist(sample, bins=40, normed=True)
plt.ylabel('fraction of samples')
plt.xlabel('$x$')
###Output
_____no_output_____
###Markdown
Эмпирическая оценка плотности, построенная по выборке с помощью ядерного сглаживания:
###Code
# для построения используем библиотеку Pandas:
df = pd.DataFrame(sample, columns=['KDE'])
ax = df.plot(kind='density')
# на том же графике построим теоретическую плотность распределения:
x = np.linspace(-4,4,100)
pdf = norm_rv.pdf(x)
plt.plot(x, pdf, label='theoretical pdf', alpha=0.5)
plt.legend()
plt.ylabel('$f(x)$')
plt.xlabel('$x$')
###Output
_____no_output_____ |
projects/TwoStream/notebooks/vae_inference.ipynb | ###Markdown
Inference/Sampling of the Image and Mask VAEs
###Code
import numpy as np
import torch
import torch.nn as nn
from matplotlib import pyplot as plt
from connectomics.data.utils import readh5
from connectomics.config import get_cfg_defaults
import sys
sys.path.append("../")
from twostream.vae import VAE
from twostream.config import add_twostream_config
from twostream.dataset import VolumeDatasetCenterPatch
from twostream.utils import collate_fn_patch
# Load configs and build model
cfg_base = '../configs/JWR15/JWR15-VAE-2D-Base.yaml'
cfg_file_img = '../configs/JWR15/JWR15-VAE-2D-Image.yaml'
cfg_file_mask = '../configs/JWR15/JWR15-VAE-2D-Mask.yaml'
def get_config(cfg_base, cfg_file):
cfg = get_cfg_defaults()
add_twostream_config(cfg)
cfg.merge_from_file(cfg_base)
cfg.merge_from_file(cfg_file)
return cfg
cfg_img = get_config(cfg_base, cfg_file_img)
cfg_mask = get_config(cfg_base, cfg_file_mask)
from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
def show(image, cmap='viridis', title='Test Title', interpolation=None):
num_imgs = image.shape[-3] # c (optional), z, y, x
fig = plt.figure(figsize=(20., 3.))
fig.suptitle(title, fontsize=14)
grid = ImageGrid(fig, 111, # similar to subplot(111)
nrows_ncols=(1, num_imgs), # creates 2x2 grid of axes
axes_pad=0.1, # pad between axes in inch.
)
image_list = np.split(image, num_imgs, -3)
for ax, im in zip(grid, [np.squeeze(x) for x in image_list]):
# Iterating over the grid returns the Axes.
if im.ndim == 3:
im = im.transpose(1,2,0)
ax.imshow(im, cmap=cmap, interpolation=interpolation)
ax.axis('off')
plt.show()
def build_model(cfg, device, checkpoint):
kwargs = {
# defaults in pytorch-connectomics
"img_channels": cfg.MODEL.IN_PLANES,
"act_mode": cfg.MODEL.ACT_MODE,
"norm_mode": cfg.MODEL.NORM_MODE,
# unique ones in two-stream project
"latent_dim": cfg.TWOSTREAM.LATENT_DIM,
"hidden_dims": cfg.TWOSTREAM.HIDDEN_DIMS,
"width": cfg.TWOSTREAM.WIDTH,
}
model = VAE(**kwargs)
gpu_device_ids = list(range(torch.cuda.device_count()))
model = nn.DataParallel(model, device_ids=gpu_device_ids)
model = model.to(device)
checkpoint = torch.load(checkpoint)
model.module.load_state_dict(checkpoint['state_dict'])
return model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae_img = build_model(cfg_img, device, "../../../outputs/JWR15_Syn_VAE_Image/checkpoint_400000.pth.tar")
vae_mask = build_model(cfg_mask, device, "../../../outputs/JWR15_Syn_VAE_Mask/checkpoint_400000.pth.tar")
###Output
_____no_output_____
###Markdown
1. Random Sampling
###Code
with torch.no_grad():
sampled_img = vae_img.module.sample(10, device)
sampled_mask = vae_mask.module.sample(10, device)
show(sampled_img.cpu().numpy().transpose(1,0,2,3), title=None, cmap='gray')
show(sampled_mask.cpu().numpy().transpose(1,0,2,3), title=None, cmap='gray')
###Output
_____no_output_____
###Markdown
2. Inference and Interpolation
###Code
# load volumes
img = readh5("../../../datasets/synapse/img.h5")
syn = readh5("../../../datasets/synapse/syn.h5")
ds = VolumeDatasetCenterPatch([syn], [img], label_type='syn', sample_size=128, mode='test')
loader = torch.utils.data.DataLoader(ds, batch_size=10, shuffle=False, pin_memory=False,
collate_fn=collate_fn_patch, num_workers=1)
loader = iter(loader)
sample = next(loader)
img, seg = sample.img, sample.seg
show(img.numpy().transpose(1,0,2,3), title=None, cmap='gray')
show(seg.numpy().transpose(1,0,2,3), title=None, cmap='gray')
with torch.no_grad():
mu, log_var = vae_img.module.encode(img.to(device))
print(f"Shape of the image embedding: {mu.shape}")
result = vae_img.module.decode(mu).detach().cpu()
show(result.numpy().transpose(1,0,2,3), title=None, cmap='gray')
mu, log_var = vae_mask.module.encode(seg.to(device))
print(f"Shape of the mask embedding: {mu.shape}")
result = vae_mask.module.decode(mu).detach().cpu()
show(result.numpy().transpose(1,0,2,3), title=None, cmap='gray')
def interpolate(start, end, model):
weights = np.linspace(0.0, 1.0, 10)
with torch.no_grad():
mu1, _ = model.module.encode(start)
mu2, _ = model.module.encode(end)
interpolated = [(1.0-a)*mu1 + a*mu2 for a in weights]
interpolated = torch.cat(interpolated, 0)
result = model.module.decode(interpolated).detach().cpu()
show(result.numpy().transpose(1,0,2,3), title=None, cmap='gray')
interpolate(img[0:1].to(device), img[1:2].to(device), vae_img)
interpolate(seg[1:2].to(device), seg[4:5].to(device), vae_mask)
###Output
_____no_output_____ |
python/algorithms/tree.ipynb | ###Markdown
Tree Data Structure Tree TraversalResources:- [Blog: Demystifying Depth-First Search](https://medium.com/basecs/demystifying-depth-first-search-a7c14cccf056)- [Blog: Breaking Down Breadth-First Search](https://medium.com/basecs/breaking-down-breadth-first-search-cebe696709d9) SummaryThere are two main ways to traverse through a tree. By traversing, we essentially mean we try to walk through the tree without repeating ourselves.- For **depth first search (DFS)**, we start down a path and we won't stop until we get to the end. In other words, we traverse through one branch of the tree until we get to a leaf and only then will we work back up to the trunk of the tree.- In **breadth first search (BFS)**, we would search through the nodes from one level to the next, and traverse through all the children of a node before moving on to visit the grandchildren nodes ImplementationResources:- [Blog: How to Implement Breadth-First Search in Python](https://pythoninwonderland.wordpress.com/2017/03/18/how-to-implement-breadth-first-search-in-python/)- [Blog: Depth-First Search and Breadth-First Search in Python](http://eddmann.com/posts/depth-first-search-and-breadth-first-search-in-python/)From an implementation standpoint, the difference between the two is that the breadth first search uses a queue, while depth first search uses a stack.**Breadth First Search (BFS)**We will use a graph that has 7 nodes and 7 edges as our example. The edges are undirected and unweighted. Distance between two nodes will be measured based on the number of edges separating two vertices.When using BFS to traverse through all the nodes in the graph, the algorithm follows the following steps:- Check the starting node and add its neighbours to the queue.- Mark the starting node as explored.- Get the first node from the queue / remove it from the queue.- Check if node has already been visited.- If not, go through the neighbours of the node.- Add the neighbour nodes to the queue.- Mark the node as explored.- Loop through steps 3 to 7 until the queue is empty.
###Code
# adjacency list can be efficiently represented as
# a python dictionary, where the nodes are the keys
# and the nodes that they are connected to are stored
# as a list of values
graph = {'A': ['B', 'C', 'E'],
'B': ['A','D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B','D'],
'F': ['C'],
'G': ['C']}
from collections import deque
def bfs(graph, start):
"""Graph traversal using Breadth First Searh"""
# keep track of all visited nodes
visited = set()
# keep track nodes to be checked
queue = deque(start)
while queue:
node = queue.popleft()
if node not in visited:
visited.add(node)
neighbors = graph[node]
for neighbor in neighbors:
queue.append(neighbor)
return visited
start = 'A'
bfs(graph, start)
###Output
_____no_output_____
###Markdown
For depth first search, the list of actions to perform upon each visit to a node:- Mark the current vertex as being visited.- Explore each adjacent vertex that is not included in the visited set.
###Code
def dfs(graph, start):
"""Graph traversal using Depth First Searh"""
visited = set()
stack = [start]
while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
neighbors = graph[node]
for neighbor in neighbors:
stack.append(neighbor)
return visited
start = 'A'
dfs(graph, start)
###Output
_____no_output_____ |
notebooks/SU-2015-7-LogistickaRegresija.ipynb | ###Markdown
Sveučilište u ZagrebuFakultet elektrotehnike i računarstva Strojno učenjehttp://www.fer.unizg.hr/predmet/suAk. god. 2015./2016. Bilježnica 7: Logistička regresija(c) 2015 Jan ŠnajderVerzija: 0.2 (2015-11-16)
###Code
import scipy as sp
import scipy.stats as stats
import matplotlib.pyplot as plt
import pandas as pd
%pylab inline
###Output
Populating the interactive namespace from numpy and matplotlib
###Markdown
Sadržaj:* Model logističke regresije* Gubitak unakrsne entropije* Minimizacija pogreške* Poveznica s generativnim modelom* Usporedba linearnih modela* Sažetak Model logističke regresije Podsjetnik: poopćeni linearni modeli$$h(\mathbf{x}) = \color{red}{f\big(}\mathbf{w}^\intercal\tilde{\mathbf{x}}\color{red}{\big)}$$* $f : \mathbb{R}\to[0,1]$ ili $f : \mathbb{R}\to[-1,+1]$ je **aktivacijska funkcija*** Linearna granica u ulaznom prostoru (premda je $f$ nelinearna) * Međutim, ako preslikavamo s $\boldsymbol\phi(\mathbf{x})$ u prostor značajki, granica u ulaznom prostoru može biti nelinearna* Model nelinearan u parametrima (jer je $f$ nelinearna) * Komplicira optimizaciju (nema rješenja u zatvorenoj formi) Podsjetnik: klasifikacija regresijom* Model:$$ h(\mathbf{x}) = \mathbf{w}^\intercal\boldsymbol{\phi}(\mathbf{x}) \qquad (f(\alpha)=\alpha)$$* [Skica]* Funkcija gubitka: kvadratni gubitak* Optimizacijski postupak: izračun pseudoinverza (rješenje u zatvorenoj formi)* Prednosti: * Uvijek dobivamo rješenje * Nedostatci: * Nerobusnost: ispravno klasificirani primjeri utječu na granicu $\Rightarrow$ pogrešna klasifikacija čak i kod linearno odvojivih problema * Izlaz modela nije probabilistički Podsjetnik: perceptron* Model:$$h(\mathbf{x}) = f\big(\mathbf{w}^\intercal\boldsymbol\phi(\mathbf{x})\big)\qquad f(\alpha) = \begin{cases}+1 & \text{ako $\alpha\geq0$}\\-1 & \text{inače}\end{cases}$$* [Skica]* Funkcija gubitka: količina pogrešne klasifikacije $$\mathrm{max}(0,-\tilde{\mathbf{w}}^\intercal\boldsymbol{\phi}(\mathbf{x})y)$$* Optimizacijski postupak: gradijentni spust* Prednosti: * Ispravno klasificirani primjeri ne utječu na granicu $\Rightarrow$ ispravna klasifikacija linearno odvojivih problema* Nedostatci: * Aktivacijska funkcija nije derivabilna $\Rightarrow$ funkcija gubitka nije derivabilna $\Rightarrow$ gradijent funkcije pogreške nije nula u točki minimuma $\Rightarrow$ postupak ne konvergira ako primjeri nisu linearno odvojivi * Decizijska granica ovisi o početnom izboru težina * Izlaz modela nije probabilistički Logistička regresija* Ideja: upotrijebiti aktivacijsku funkciju s izlazima $[0,1]$ ali koja jest derivabilna* **Logistička (sigmoidalna) funkcija**:$$ \sigma(\alpha) = \frac{1}{1 + \exp(-\alpha)}$$
###Code
def sigm(x): return 1 / (1 + sp.exp(-x))
xs = sp.linspace(-10, 10)
plt.plot(xs, sigm(xs));
###Output
_____no_output_____
###Markdown
* Nagib sigmoide može se regulirati množenjem ulaza određenim faktorom:
###Code
plt.plot(xs, sigm(0.5*xs), 'r');
plt.plot(xs, sigm(xs), 'g');
plt.plot(xs, sigm(2*xs), 'b');
###Output
_____no_output_____
###Markdown
* Derivacija sigmoidalne funkcije: $$\frac{\partial\sigma(\alpha)}{\partial\alpha} = \frac{\partial}{\partial\alpha}\big(1 + \exp(-\alpha)\big) =\sigma(\alpha)\big(1 - \sigma(\alpha)\big)$$ * Model **logističke regresije**:$$ h(\mathbf{x}|\mathbf{w}) = \sigma\big(\mathbf{w}^\intercal\boldsymbol{\phi}(\mathbf{x})\big) = \frac{1}{1+\exp(-\mathbf{w}^\intercal\boldsymbol{\phi}(\mathbf{x}))}$$* **NB:** Logistička regresija je klasifikacijski model (unatoč nazivu)! Probabilistički izlaz* $h(\mathbf{x})\in[0,1]$, pa $h(\mathbf{x})$ možemo tumačiti kao **vjerojatnost** da primjer pripada klasi $\mathcal{C}_1$ (klasi za koju $y=1$):$$h(\mathbf{x}|\mathbf{w}) = \sigma\big(\mathbf{w}^\intercal\mathbf{\phi}(\mathbf{x})\big) = \color{red}{P(y=1|\mathbf{x})}$$* Vidjet ćemo kasnije da postoji i dublje opravdanje za takvu interpretaciju Funkcija logističkog gubitka* Definirali smo model, trebamo još definirati **funkciju gubitka** i **optimizacijski postupak*** Logistička funkcija koristi **gubitak unakrsne entropije** Definicija* Funkcija pokriva dva slučajeva (kada je oznaka primjera $y=1$ i kada je $y=0$):$$L(h(\mathbf{x}),y) =\begin{cases}- \ln h(\mathbf{x}) & \text{ako $y=1$}\\- \ln \big(1-h(\mathbf{x})\big) & \text{ako $y=0$}\end{cases}$$* Ovo možemo napisati sažetije:$$L(h(\mathbf{x}),y) = - y \ln h(\mathbf{x}) - (1-y)\ln \big(1-h(\mathbf{x})\big)$$
###Code
xs = linspace(0, 1)
plt.plot(xs, -sp.log(xs));
plt.plot(xs, 1 - sp.log(1 - xs));
###Output
_____no_output_____
###Markdown
* Ako $y=1$, funkcija kažnjava model to više što je njegov izlaz manji od jedinice. Slično, ako $y=0$, funkcija kažnjava model to više što je njegov izlaz veći od nule* Intutivno se ovakva funkcija čini u redu, ali je pitanje kako smo do nje došli Izvod* Funkciju gubitka izvest ćemo iz **funkcije pogreške** * Podsjetnik: funkcija pogreške = očekivanje funkcije gubitka * Budući da logistička regresija daje vjerojatnosti oznaka za svaki primjer, možemo izračunati kolika je vjerojatnost označenog skupa primjera $\mathcal{D}$ pod našim modelom, odnosno kolika je izglednost parametra $\mathbf{w}$ modela* Želimo da ta izglednost bude što veća, pa ćemo funkciju pogreške definirati kao **negativnu log-izglednost** parametara $\mathbf{w}$:$$E(\mathbf{w}|\mathcal{D}) = -\ln\mathcal{L}(\mathbf{w}|\mathcal{D})$$* Želimo maksimizirati log-izglednost, tj. minimizirati ovu pogrešku* Log-izglednost:$$\begin{align*}\ln\mathcal{L}(\mathbf{w}|\mathcal{D})&= \ln p(\mathcal{D}|\mathbf{w})= \ln\prod_{i=1}^N p(\mathbf{x}^{(i)}, y^{(i)}|\mathbf{w})\\&= \ln\prod_{i=1}^N P(y^{(i)}|\mathbf{x}^{(i)},\mathbf{w})p(\mathbf{x}^{(i)})\\&= \sum_{i=1}^N \ln P(y^{(i)}|\mathbf{x}^{(i)},\mathbf{w}) + \underbrace{\color{gray}{\sum_{i=1}^N \ln p(\mathbf{x}^{(i)})}}_{\text{ne ovisi o $\mathbf{w}$}}\end{align*}$$* $y^{(i)}$ je oznaka $i$-tog primjera koja može biti 0 ili 1 $\Rightarrow$ **Bernoullijeva varijabla*** Budući da $y^{(i)}$ Bernoullijeva varijabla, njezina distribucija je:$$P(y^{(i)}) = \mu^{y^{(i)}}(1-\mu)^{y^{(i)}}$$gdje je $\mu$ vjerojatnost da $y^{(i)}=1$* Naš model upravo daje vjerojatnost da primjer $\mathcal{x}^{(i)}$ ima oznaku $y^{(i)}=1$, tj.:$$\mu = P(y^{(i)}=1|\mathbf{x}^{(i)},\mathbf{w}) = \color{red}{h(\mathbf{x}^{(i)} | \mathbf{w})}$$* To znači da vjerojatnost oznake $y^{(i)}$ za dani primjer $\mathbf{x}^{i}$ možemo napisati kao:$$P(y^{(i)}|\mathbf{x}^{(i)},\mathbf{w}) = \color{red}{h(\mathbf{x}^{(i)}|\mathbf{w})}^{y^{(i)}}\big(1-\color{red}{h(\mathbf{x}^{(i)}|\mathbf{w})}\big)^{1-y^{(i)}}$$* Nastavljamo s izvodom log-izglednosti:$$\begin{align*}\ln\mathcal{L}(\mathbf{w}|\mathcal{D}) &= \sum_{i=1}^N \ln P(y^{(i)}|\mathbf{x}^{(i)},\mathbf{w}) \color{gray}{+ \text{konst.}}\\&\Rightarrow \sum_{i=1}^N\ln \Big(h(\mathbf{x}^{(i)}|\mathbf{w})^{y^{(i)}}\big(1-h(\mathbf{x}^{(i)}|\mathbf{w})\big)^{1-y^{(i)}}\Big) \\& = \sum_{i=1}^N \Big(y^{(i)} \ln h(\mathbf{x}^{(i)}|\mathbf{w})+ (1-y^{(i)})\ln\big(1-h(\mathbf{x}^{(i)}|\mathbf{w})\big)\Big)\end{align*}$$* Empirijsku pogrešku definiramo kao negativnu log-izglednost (do na konstantu):$$E(\mathbf{w}|\mathcal{D}) = \sum_{i=1}^N \Big(-y^{(i)} \ln h(\mathbf{x}^{(i)}|\mathbf{w}) - (1-y^{(i)})\ln \big(1-h(\mathbf{x}^{(i)}|\mathbf{w})\big)\Big)$$* Alternativno (kako ne bi ovisila o broju primjera):$$E(\mathbf{w}|\mathcal{D}) = \color{red}{\frac{1}{N}} \sum_{i=1}^N\Big( - y^{(i)} \ln h(\mathbf{x}^{(i)}|\mathbf{w})- (1-y^{(i)})\ln \big(1-h(\mathbf{x}^{(i)}|\mathbf{w})\big)\Big)$$$\Rightarrow$ **pogreška unakrsne entropije** (engl. *cross-entropy error*)* Iz pogreške možemo iščitati funkciju gubitka:$$L(h(\mathbf{x}),y) = - y \ln h(\mathbf{x}) - (1-y)\ln \big(1-h(\mathbf{x})\big)$$$\Rightarrow$ **gubitak unakrsne entropije** (engl. *cross-entropy loss*)* **NB:** Izraz kompaktno definira grananje za dva slučaja (za $y=1$ i za $y=0$)
###Code
def cross_entropy_loss(h_x, y):
return -y * sp.log(h_x) - (1 - y) * sp.log(1 - h_x)
xs = linspace(0, 1)
plt.plot(xs, cross_entropy_loss(xs, 0), label='y=0')
plt.plot(xs, cross_entropy_loss(xs, 1), label='y=1')
plt.ylabel('$L(h(\mathbf{x}),y)$')
plt.xlabel('$h(\mathbf{x}) = \sigma(w^\intercal\mathbf{x}$)')
plt.legend()
plt.show()
###Output
_____no_output_____
###Markdown
* **Q:** Koliki je gubitak na primjeru $\mathbf{x}$ za koji model daje $h(\mathbf{x})=P(y=1|\mathbf{x})=0.7$, ako je stvarna oznaka primjera $y=0$? Koliki je gubitak ako je stvarna oznaka $y=1$?* Gubitaka nema jedino onda kada je primjer savršeno točno klasificiran ($h(x)=1$ za $y=1$ odnosno $h(x)=0$ za $y=0$)* U svim drugim slučajevima postoji gubitak: čak i ako je primjer ispravno klasificiran (na ispravnoj strani granice) postoji malen gubitak, ovisno o pouzdanosti klasifikacije* Ipak, primjeri na ispravnoj strani granice ($h(\mathbf{x})\geq 0.5$ za $y=1$ odnosno $h(\mathbf{x})< 0.5$ za $y=0$) nanose puno manji gubitak od primjera na pogrešnoj strani granice
###Code
#TODO: konkretan primjer u ravnini
###Output
_____no_output_____
###Markdown
Minimizacija pogreške$$\begin{align*}E(\mathbf{w}) &=\sum_{i=1}^N L\big(h(\mathbf{x}^{(i)}|\mathbf{w}),y^{(i)}\big)\\L(h(\mathbf{x}),y) &= - y \ln h(\mathbf{x}) - (1-y)\ln \big(1-h(\mathbf{x})\big)\\h(\mathbf{x}) &= \sigma(\mathbf{w}^\intercal\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^\intercal\mathbf{x})}\end{align*}$$* Ne postoji rješenje u zatvorenoj formi (zbog nelinearnosti funkcije $\sigma$)* Minimiziramo **gradijentnim spustom**:$$ \nabla E(\mathbf{w}) =\sum_{i=1}^N \nabla L\big(h(\mathbf{x}^{(i)}|\mathbf{w}),y^{(i)}\big)$$* Prisjetimo se:$$\frac{\partial\sigma(\alpha)}{\partial\alpha} = \sigma(\alpha)\big(1 - \sigma(\alpha)\big)$$* Dobivamo: $$\nabla L\big(h(\mathbf{x}),y\big) = \Big(-\frac{y}{h(\mathbf{x})} + \frac{1-y}{1-h(\mathbf{x})}\Big)h(\mathbf{x})\big(1-h(\mathbf{x})\big)\tilde{\mathbf{x}} = \big(h(\mathbf{x})-y\big)\tilde{\mathbf{x}}$$* Gradijent-vektor pogreške:$$ \nabla E(\mathbf{w}) = \sum_{i=1}^N \big(h(\mathbf{x}^{(i)})-y^{(i)}\big)\tilde{\mathbf{x}}^{(i)}$$ Gradijentni spust (*batch*)> $\mathbf{w} \gets (0,0,\dots,0)$> **ponavljaj** do konvergencije> $\quad \Delta\mathbf{w} \gets (0,0,\dots,0)$> $\quad$ **za** $i=1,\dots, N$> $\qquad h \gets \sigma(\mathbf{w}^\intercal\tilde{\mathbf{x}}^{(i)})$> $\qquad \Delta \mathbf{w} \gets \Delta\mathbf{w} + (h-y^{(i)})\, \tilde{\mathbf{x}}^{(i)}$> $\quad \mathbf{w} \gets \mathbf{w} - \eta \Delta\mathbf{w} $ Stohastički gradijentni spust (*on-line*)> $\mathbf{w} \gets (0,0,\dots,0)$> **ponavljaj** do konvergencije> $\quad$ (slučajno permutiraj primjere u $\mathcal{D}$)> $\quad$ **za** $i=1,\dots, N$> $\qquad$ $h \gets \sigma(\mathbf{w}^\intercal\tilde{\mathbf{x}}^{(i)})$> $\qquad$ $\mathbf{w} \gets \mathbf{w} - \eta (h-y^{(i)})\tilde{\mathbf{x}}^{(i)}$
###Code
#TODO kod + primjer
###Output
_____no_output_____ |
Day_5(Python).ipynb | ###Markdown
Dictionary Syntax: > {key1:value1, key2: value2,...}
###Code
{'id':13,
'name':"Haseeb",
"course":"A.I"}
dict1 = {'id':13,
'name':"Haseeb",
"course":"A.I"}
dict1
d1 = {}
d1['id'] = 13
d1['name'] = "Haseeb"
d1['Course'] = "A.I"
d1
###Output
_____no_output_____
###Markdown
dict ( ) The dict() constructor builds dictionaries directly from sequences of key-value pairs:
###Code
{'sape': 4139, 'guido': 4127, 'jack': 4098}
dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
dict(sape = 4139,guido = 4127, jack = 4098)
###Output
_____no_output_____
###Markdown
.clear()
###Code
d1 = {'id': 123, 'name': 'Haseeb', 'course': 'A.I'}
print(d1)
d1.clear() # In Memory Function, Empty Dictionary...
print(d1)
d1 = {'id': 200, 'name': 'Haseeb', 'course': 'A.I'}
print(d1)
del(d1) # Destory the variable also...
print(d1)
###Output
{'id': 200, 'name': 'Haseeb', 'course': 'A.I'}
###Markdown
.copy()
###Code
d1 = {'id': 200, 'name': 'Haseeb', 'course': 'A.I'}
print(d1)
d2 = d1 #Shallow Copy
d2['id'] = 0
print(d1)
print(d2)
d1 = {'id': 200, 'name': 'Haseeb', 'course': 'A.I'}
print(d1)
d2 = d1.copy() #Deep Copy
d2['id'] = 0
print(d1)
print(d2)
###Output
{'id': 200, 'name': 'Haseeb', 'course': 'A.I'}
{'id': 200, 'name': 'Haseeb', 'course': 'A.I'}
{'id': 0, 'name': 'Haseeb', 'course': 'A.I'}
###Markdown
.fromkeys() Signature: dict.fromkeys(iterable, value=None, /) Create a new dictionary with keys from iterable and values set to value.
###Code
l1 = ['id', 'name', 'course', 'address']
dict_formkeys = dict.fromkeys(l1) #value = None by default
dict_formkeys
l1 = ['id', 'name', 'course', 'address']
val = "NAN"
dict_formkeys = dict.fromkeys(l1,val)
dict_formkeys
#What? if we don't have fromkeys()
a = input('Enter keys for dictionary: ')
a = a.split(',')
print(a)
dict3 = {}
print(dict3)
for i in a:
dict3[i] = None
dict3
# using fromkeys() to set key values as input from user for dict...
a = input('Enter keys for dictionary: ').split(',')
dict.fromkeys(a)
# setting key and values as input from user in dict...
keys = input("Enter KEys For Dictionary: ").split(",")
val = input("Enter Value for Dictionary: ").split(",")
d4 = {}
for i in range(len(val)):
d4[keys[i]] = val[i]
d4
ids = [1,2,3]
name = ['Haseeb', 'Raza', 'Yasir']
course = ['ds', 'cnc', 'web']
zip_variable = zip(ids,name,course)
list(zip_variable)
zip_variable = zip(ids,name)
dict(zip_variable)
#dict(list(zip_variable))
zip_variable = zip(ids,zip(name,course))
print(dict(zip_variable))
#print(dict(zip_variable)[2])
#print(dict(zip_variable)[2][0])
dict2 = { 'id': input('Enter id: '),
'name': input('Enter name: '),
'skills': input('Enter skills: ').split(',')
}
dict2
###Output
Enter id: 013
Enter name: Haseeb
Enter skills: Python, Numpy, Pandas, PHP
###Markdown
.get()
###Code
dict1 = {"id" : 13, "name": "Haseeb"}
dict1["id"]
dict1["course"]
#We use get method to get value of key... it allow us to show message as per need if value not found...
dict1.get("course", "Not Available")
###Output
_____no_output_____
###Markdown
.items()
###Code
dic = {'id': '0', 'name': 'Haseeb', 'skills': ['pyhton', 'numpy', 'pandas']}
dic.items()
###Output
_____no_output_____
###Markdown
.key()
###Code
dic.keys()
###Output
_____no_output_____
###Markdown
.values()
###Code
dic.values()
a_dict = {'color': 'blue', 'fruit': 'apple', 'pet':'dog'}
for key in a_dict: # by default it picks keys
print(key)
a_dict = {'color': 'blue', 'fruit': 'apple', 'pet':'dog'}
keys = a_dict.keys()
print(keys)
print()
for key in a_dict.keys(): # selecting keys
print(key)
a_dict = {'color': 'blue', 'fruit': 'apple', 'pet':'dog'}
values = a_dict.values()
print(values)
print()
for value in a_dict.values(): # selecting values
print(value)
a_dict = {'one': 1, 'two':2, 'three':3, 'four':4}
new_dict = {}
for key, value in a_dict.items():
if value <= 2:
new_dict[key] = value
print(new_dict)
print(a_dict)
a_dict = {'one': 1, 'two':2, 'three':3, 'four':4}
new_dict = {}
for key, value in a_dict.items():
new_dict[value] = key
print(a_dict)
print(new_dict)
incomes = {'apples': 5600.0, 'orange': 3500.0, 'banana':5000.0}
total_cost = 0.0
for value in incomes.values():
total_cost += value
print(f'total price is {total_cost}')
sum(incomes.values())
###Output
_____no_output_____
###Markdown
.pop()
###Code
prices = {'apple': 0.40, 'orange': 0.35, 'banana': 0.25}
for key in prices.keys():
if key == 'orange':
del prices[key]
prices = {'apple': 0.40, 'orange': 0.35, 'banana': 0.25}
del prices["orange"] # pop specified key and don't return value
prices
# to tackle dictionary changed size during iteration problem
dic = {'id': '0', 'name': 'Haseeb', 'skills': ['pyhton', 'numpy', 'pandas']}
print(dic)
print(dic.pop('id')) # pop specified key and return value
print(dic)
# to tackle dictionary changed size during iteration problem
dic = {'id': '0', 'name': 'Haseeb', 'skills': ['pyhton', 'numpy', 'pandas']}
print(dic)
a = dic.pop('id')
print(a) # return value
print(dic)
###Output
{'id': '0', 'name': 'Haseeb', 'skills': ['pyhton', 'numpy', 'pandas']}
0
{'name': 'Haseeb', 'skills': ['pyhton', 'numpy', 'pandas']}
###Markdown
.popitem()
###Code
dic = {'id': '0', 'name': 'qasim', 'skills': ['pyhton', 'numpy', 'pandas']}
print(dic)
print(dic.popitem()) # pop last item and return it as well
print(dic)
a_dict = {'color': 'blue', 'fruit': 'apple', 'pet':'dog'}
print(a_dict)
while True:
try:
print(f'Dictionary length: {len(a_dict)}')
item = a_dict.popitem()
print(f'Removed : {item}')
except KeyError:
print('The dictionary has no item now..!!!')
break
###Output
{'color': 'blue', 'fruit': 'apple', 'pet': 'dog'}
Dictionary length: 3
Removed : ('pet', 'dog')
Dictionary length: 2
Removed : ('fruit', 'apple')
Dictionary length: 1
Removed : ('color', 'blue')
Dictionary length: 0
The dictionary has no item now..!!!
###Markdown
.setdefault()
###Code
dic = {'id': '0', 'name': 'Haseeb', 'skills': ['pyhton', 'numpy', 'pandas']}
print(dic)
print(dic.setdefault('id', '13')) # can't make already avaliable key to default
print(dic)
dic = {'id': '0', 'name': 'qasim', 'skills': ['pyhton', 'numpy', 'pandas']}
print(dic)
print(dic.setdefault('course', 'DS')) # add new key, value pair as default
print(dic)
###Output
{'id': '0', 'name': 'qasim', 'skills': ['pyhton', 'numpy', 'pandas']}
DS
{'id': '0', 'name': 'qasim', 'skills': ['pyhton', 'numpy', 'pandas'], 'course': 'DS'}
###Markdown
.update()
###Code
d1 = {'age1':10, 'age2':20, 'age3':30}
d2 = {'age1':15, 'age2':25, 'age3':35, 'age4':5}
d1.update(d2)
d1
#sorting key wise
d1 = {
'a':200,
'c':300,
'b':600,
'd':400
}
d2={}
for key in sorted(d1.keys()):
d2[key] = d1[key]
print(d2)
#sorting key wise by default
d1 = {
'a':200,
'c':300,
'b':600,
'd':400
}
d2={}
for key,val in sorted(d1.items()):
d2[key] = d1[key]
print(d2)
moon = {}
scores = {'a':200,'c':300,'b':600,'d':400}
for key,value in sorted(scores.items(),key = lambda kv:kv[1]): #kv[1] sort by vlaue
moon[key] = value
print(moon)
moon = {}
scores = {'a':200,'c':300,'b':600,'d':400}
for key,value in sorted(scores.items(),key = lambda kv:kv[0]): #kv[1] sort by keys
moon[key] = value
print(moon)
scores = {'a':200,'c':300,'b':600,'d':400}
{k:v for k, v in sorted(scores.items(), key=lambda x:x[1], reverse=True)}
moon = {}
scores = {'b':100, 'c':200, 'a':300}
for key,value in sorted(scores.items(), reverse=True): # sort by keys
moon[key] = value
print(moon)
l1 = []
run = True
while run:
choice = input('press n/N to stop and y/Y to run: ')
if choice == 'n' or choice == 'N':
run = False
elif choice == 'y' or choice == 'Y':
d1 = {'id': input('Enter your id: '),
'name': input('Enter your name: '),
'course': input('Enter course name: ')}
l1.append(d1)
print(l1) # display list of dictionaries
###Output
press n/N to stop and y/Y to run: y
Enter your id: 013
Enter your name: Haseeb
Enter course name: DS
press n/N to stop and y/Y to run: Y
Enter your id: 014
Enter your name: Kamran
Enter course name: CNC
press n/N to stop and y/Y to run: n
[{'id': '013', 'name': 'Haseeb', 'course': 'DS'}, {'id': '014', 'name': 'Kamran', 'course': 'CNC'}]
###Markdown
Dictionary comprehension
###Code
objects = ['blue', 'apple', 'dog']
categories = ['color', 'fruit', 'animal']
new_dic = { key : value for key, value in zip(categories, objects)}
print(new_dic)
d = {'color': 'blue', 'fruit': 'apple', 'animal': 'dog'}
new_d = { value : key for key,value in d.items()}
print(new_d)
a_dict = {'one': 1, 'two':2, 'three':3, 'four':4}
new_dict = {k : v for k, v in a_dict.items() if v <= 2}
print(new_dict)
###Output
{'one': 1, 'two': 2}
###Markdown
Iteration through dictionnaries using some python builtin functions map() filter() ChainMap() itertools() chain() cycle() map()use to mapy/appl a function on dictionary...
###Code
prices = {'apples': 0.45, 'orange': 0.35, 'banana':0.25}
def discount(current_prices):
return (current_prices[0], round(current_prices[1]*0.95, 2)) # 0.95 means applying 5% discount
new_prices = dict(map(discount, prices.items()))
new_prices
prices = {'apples': 0.45, 'orange': 0.35, 'banana':0.25}
def has_low_price(price):
return prices[price] < 0.4
#print(filter(has_low_price, prices.keys())) ---> return object so converting object into list
low_price = list(filter(has_low_price, prices.keys()))
print(low_price)
from collections import ChainMap
fruit_prices = {'apple': 0.40, 'orange': 0.35}
vegetable_prices = {'pepper': 0.20, 'onion':0.55}
chained_dict = ChainMap(fruit_prices, vegetable_prices)
print(chained_dict)
# for key in chained_dict:
# print(key , '-->', chained_dict[key])
for key,value in chained_dict.items():
print(key, '-->', value)
from itertools import cycle
fruit_prices = {'apple': 0.40, 'orange': 0.35}
times = 3
total_items = times * len(fruit_prices)
for item in cycle(fruit_prices.items()):
# print(total_items)
if not total_items:
break
total_items -=1
print(item)
from itertools import chain
fruit_prices = {'apple': 0.40, 'orange': 0.35}
vegetable_prices = {'pepper': 0.20, 'onion':0.55}
for item in chain(fruit_prices.items(),vegetable_prices.items()):
print(item)
###Output
('apple', 0.4)
('orange', 0.35)
('pepper', 0.2)
('onion', 0.55)
###Markdown
Using the dictionary unpacking operaor(**)
###Code
fruit_prices = {'apple': 0.40, 'orange': 0.35}
vegetable_prices = {'pepper': 0.20, 'onion':0.55}
print({**vegetable_prices, **fruit_prices})
for k , v in {**vegetable_prices, **fruit_prices}.items():
print(k, '-->', v)
# the apple key is present in both dictionaries. after you merger them, the fruit_price va;ue for apple(0.40) prevailed,
# becuase fruit price is the right mosrt dictionary
fruit_prices = {'apple': 0.40, 'orange': 0.35}
vegetable_prices = {'pepper': 0.20, 'onion':0.55, 'apple': 0.30}
print({**vegetable_prices, **fruit_prices})
x = {'a':1, 'b':2}
y = {'b':3, 'c': 4}
{**x, **y}
###Output
_____no_output_____ |
health/Ashley/v2-2018.06.13/Health Data - Elizabeth Ashley Flack.ipynb | ###Markdown
Health Data - Elizabeth Ashley FlackOriginal data is available on [Google Sheets](https://docs.google.com/spreadsheets/d/1vaXOXPluOg_lg0uqKC-qLBt6odL0GPFPcYzOP2vbaiM/editgid=1309334105).
###Code
# Juptyer Notebook Settings
options(repr.plot.width=5, repr.plot.height=5) # plot size, inches
###Output
_____no_output_____
###Markdown
I. Load Semi-Raw DataThis data has already been somewhat wrangled in that secondary variables (namespaced as `Indicator.SECONDARY_VARIABLE_NAME`) have been created.
###Code
dat = read.csv("data/Health Data - Elizabeth Ashley Flack.csv", header = TRUE)
tail(dat) # See last 6 obs
# head(dat) # See first 6 obs
###Output
_____no_output_____
###Markdown
II. Explore Semi-Raw Data
###Code
summary(dat)
sapply(dat, typeof) # Check types of all fields, using "simple apply" to apply typeof() to all fields in "dat".
###Output
_____no_output_____
###Markdown
III. Clean Data III.1 Convert read.csv() List to Data Frame
###Code
df <- data.frame(dat) # Better for data analysis
###Output
_____no_output_____
###Markdown
III.2 Drop unneeded columns
###Code
tail(df, n=1)$Notes.Unstructured
drops <- c("Notes.Unstructured") # Create vector of fields to drop
df <- df[ , !(names(df) %in% drops)] # Creates a new data frame from the first one, including any fields that aren't in list of fields to filter out.
tail(df, n=1)$Notes.Unstructured
###Output
_____no_output_____
###Markdown
III.3 Remove any rows with missing values
###Code
nrow(df) # Number of original rows
# str() makes for much more concise, truncated output
str(colSums(is.na(df))) # shows total number of observations w/ any "na's", i.e. missing values, in columns
str(colSums(!is.na(df))) # shows total obs w/ any non-"na's"
df <- df[complete.cases(df), ]
nrow(df) # Number of rows left after filtering rows with any missing values
###Output
_____no_output_____
###Markdown
IV.4 Streamline Data Types
###Code
c('Original type and class of Date field, followed by an example value: ')
typeof(df$Date)
class(df$Date)
df$Date[1]
df$Date <- as.Date(df$Date, format='%m/%d/%Y')
c('New type ,class, and example after applying date formatting: ')
typeof(df$Date)
class(df$Date)
df$Date[1]
###Output
_____no_output_____
###Markdown
IV. Explore Clean Data
###Code
summary(df)
###Output
_____no_output_____
###Markdown
V. Analyses V.1 Simple Plots Data Visualization Reference Info Ggplot2Tutorial: http://www.cookbook-r.com/Graphs/Bar_and_line_graphs_(ggplot2)/Options for `geom_line()`- Line type, e.g. `linetype='dashed'`- Line color, e.g. `color='red'` Presence of any headache on weekday for timespan of entire dataset
###Code
lm1 <- lm(Symptom.1 ~ Weekday, data=df)
plot(df$Weekday, df$Symptom.1)
###Output
_____no_output_____
###Markdown
Health over time
###Code
# For this section, I should comment out certain lines.
library(ggplot2) # imports ggplot2
var <- df$Indicator.Health # y-axis
time <- df$Date # x-axis
options(repr.plot.width=7, repr.plot.height=4.5) # Sets Jupyter Notebook plot size, inches
# aes() means "aesthetics". for y-axis, I flipped it an magnified by 10.
ggplot(data=df, aes(x=time, y=-10*(var), colour=(-10*var), color=qsec, group=1)) +
geom_line() + # draws line between points
geom_point() + # adds dots for data points
theme(plot.title = element_text(hjust = 0.5)) + # centers title
scale_color_gradient(low="#AA4444", high="#ff0000") + # line color, reflected by legend
scale_x_date(date_breaks='1 month', date_labels="%b '%y") + # otherwise labels didn't show year
stat_smooth(method='lm', col='#2e64ba') + # draws linear model, i.e. regression line with confidence bands
labs(x='Time', y='Adverse Health Measure (AHM)', title='Adverse Health Measure (AHM), Daily', colour='AHM')
options(repr.plot.width=7, repr.plot.height=7) # (1) Resets Jupyter Notebook plot size back to default
a_lm <- lm(Indicator.Health ~ Date, data=df)
plot(df$Date, df$Indicator.Health)
lines(df$Date, a_lm$fitted)
###Output
_____no_output_____
###Markdown
V.2 Linear Models
###Code
a_lm <- lm(Indicator.Utility ~ Date, data=df)
plot(df$Date, df$Indicator.Utility)
lines(df$Date, a_lm$fitted)
a_lm <- lm(Indicator.Health ~ Date, data=df)
plot(df$Date, df$Indicator.Health)
lines(df$Date, a_lm$fitted)
a_lm <- lm(Indicator.Wellbeing ~ Date, data=df)
plot(df$Date, df$Indicator.Wellbeing)
lines(df$Date, a_lm$fitted)
###Output
_____no_output_____ |
Chapter11/model_performance_drifts/monitoring_data_drift_performance.ipynb | ###Markdown
Important data
###Code
import pandas as pd
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from evidently.dashboard import Dashboard
from evidently.tabs import DataDriftTab, NumTargetDriftTab,CatTargetDriftTab
###Output
_____no_output_____
###Markdown
Load reference data
###Code
reference_data = pd.read_csv("training_data.csv",
header=None,
names=[ "day{}".format(i) for i in range(0,14) ]+["target"] )
reference_data.head(5)
###Output
_____no_output_____
###Markdown
Get Production Input Data
###Code
latest_input_data = pd.read_csv("to_score_input_data.csv",
header=None,
names=[ "day{}".format(i) for i in range(0,14) ] )
latest_input_data
import mlflow
###Output
_____no_output_____
###Markdown
Input Data Drift Check
###Code
EXPERIMENT_NAME="./reports_data_drift"
mlflow.set_experiment(EXPERIMENT_NAME)
with mlflow.start_run():
drift_dashboard = Dashboard(tabs=[DataDriftTab])
drift_dashboard.calculate(reference_data,latest_input_data)
drift_dashboard.save(EXPERIMENT_NAME+"/input_data_drift.html")
drift_dashboard._save_to_json(EXPERIMENT_NAME+"/input_data_drift.json")
mlflow.log_artifacts(EXPERIMENT_NAME)
###Output
_____no_output_____ |
slides/DLAP2020_ising_detection.ipynb | ###Markdown
2Dイジング模型の相転移検出 in Deep learning and physics 2020- 富谷昭夫ニューラルネットを使って $\beta_{cr} = 0.440686$ を検出する。
###Code
#ライブラリのロード
import matplotlib.pyplot as plt
import numpy as np
###Output
_____no_output_____
###Markdown
ここでGoogle drive をマウントしてください。配位(conf/L32b***_***.npy) はgoogle drive に入れてください。
###Code
# もしGoogle drive のマウントが上手く行かない場合に実行してください。
#from google.colab import drive
#drive.mount('/content/drive')
# もしマウントができていれば配位の数(1900)が表示されます。
!ls -l drive/MyDrive/conf|grep npy|wc -l
# パラメータリスト
prm_list = [
# beta, file_name,
[0.90,"drive/MyDrive/conf/L32b090_"],
[0.85,"drive/MyDrive/conf/L32b085_"],
[0.80,"drive/MyDrive/conf/L32b080_"],
[0.70,"drive/MyDrive/conf/L32b070_"],
[0.65,"drive/MyDrive/conf/L32b065_"],
[0.60,"drive/MyDrive/conf/L32b060_"],
[0.55,"drive/MyDrive/conf/L32b055_"],
[0.50,"drive/MyDrive/conf/L32b050_"],
[0.47,"drive/MyDrive/conf/L32b047_"],
[0.42,"drive/MyDrive/conf/L32b042_"],
[0.40,"drive/MyDrive/conf/L32b040_"],
[0.35,"drive/MyDrive/conf/L32b035_"],
[0.30,"drive/MyDrive/conf/L32b030_"],
[0.25,"drive/MyDrive/conf/L32b025_"],
[0.20,"drive/MyDrive/conf/L32b020_"],
[0.15,"drive/MyDrive/conf/L32b015_"],
[0.10,"drive/MyDrive/conf/L32b010_"],
[0.05,"drive/MyDrive/conf/L32b005_"],
[0.00,"drive/MyDrive/conf/L32b000_"]
]
# beta19 x conf100 = 1900 data
print("読み込めているかのテスト")
for iconf in range(2):
print("beta=090")
file = f"drive/MyDrive/conf/L32b090_{iconf}.npy"
sc = np.load(file)
plt.imshow(sc, cmap='gray')
plt.show()
for iconf in range(2):
print("beta=040")
file = f"drive/MyDrive/conf/L32b040_{iconf}.npy"
sc = np.load(file)
plt.imshow(sc, cmap='gray')
plt.show()
for iconf in range(2):
print("beta=000")
file = f"drive/MyDrive/conf/L32b000_{iconf}.npy"
sc = np.load(file)
plt.imshow(sc, cmap='gray')
plt.show()
###Output
読み込めているかのテスト
beta=090
###Markdown
教師ラベルの設定とデータの分割
###Code
nconf = 100 # The number of configurations per beta
betacr = 0.440686 # critical temp for 2d ising
#
data = []
labels = []
betas = []
nprm=len(prm_list)
for ibeta in range(nprm):
beta = prm_list[ibeta][0]
fname = prm_list[ibeta][1]
for itrj in range(nconf):
npsc = np.load(f"{fname}{itrj}.npy")
data.append(npsc)
if beta > betacr:
labels.append([0,1])
else:
labels.append([1,0])
betas.append(beta)
data = np.array(data)
labels = np.array(labels)
#
train_data=data[0::2]
train_labels=labels[0::2]
train_betas=betas[0::2] # this will not be used in training
#
val_data=data[1::2]
val_labels=labels[1::2]
val_betas=betas[1::2]
#
# beta18 x conf100 = 1800 data
# beta18 x conf50 = 900 training_data(18x50,same beta = 50) + 900 val_data
print("train_data.shape = ", train_data.shape)
print("val_data.shape = ", val_data.shape)
###Output
train_data.shape = (950, 32, 32)
val_data.shape = (950, 32, 32)
###Markdown
Tensorflow
###Code
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
###Output
2.3.0
###Markdown
Model def
###Code
tf.random.set_seed(12345)
model_FC = keras.Sequential([
keras.layers.Flatten(input_shape=(32, 32)),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(2, activation='softmax')
])
model_FC.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
model_FC.fit(train_data, train_labels, epochs=10)
xs=[]
y1s=[]
y2s=[]
Ndatamax = 950
Nsameclass = 50
for ii in range(0,Ndatamax,Nsameclass):
res = model_FC(val_data[ii:ii+Nsameclass])
x = val_betas[ii]
y1= np.mean(res.numpy().T[0] )
y2=np.mean(res.numpy().T[1] )
xs.append( x)
y1s.append( y1 )
y2s.append( y2 )
print(x,y1,y2)
plt.axvline(x=0.440686, ymin=0, ymax=1, ls="dashed",color="gray",label="Critical(Ans)")
plt.plot(xs,y1s,label="class:High",marker="o",color="red")
plt.plot(xs,y2s,label="class:Low",marker="o",color="blue")
plt.legend()
plt.xlabel(r"$\beta=1/T$")
plt.ylabel(r"Prob")
plt.show()
# 交点を求める。
u1,v1 = xs[9],y1s[9]
u2,v2 = xs[8],y1s[8]
w1,t1 = xs[9],y2s[9]
w2,t2 = xs[8],y2s[8]
print(u1,v1)
print(u2,v2)
#
print(w1,t1)
print(w2,t2)
from numpy.linalg import solve
tan1=(v2-v1)/(u2-u1)
tan2=(t2-t1)/(w2-w1)
MatA = [[1, -tan1],
[1, -tan2]]
vecB = [v1-tan1*u1,
t1-tan2*w1]
#
sol = solve(MatA, vecB)
print("sol x,y = ", sol)
#
xx = np.linspace(0,1)
yy = tan1*(xx-u1)+v1
plt.plot(xx,yy)
#
yy = tan2*(xx-w1)+t1
plt.plot(xx, yy)
plt.ylim(0,1)
plt.show()
#
beta_cr = 0.440686
er = round(abs(beta_cr - sol[1])/beta_cr *100,2)
print(f"Relative error = {er} %")
###Output
0.42 0.90538
0.47 0.0024133257
0.42 0.09461986
0.47 0.9975867
sol x,y = [0.49999998 0.44244712]
###Markdown
Convolutional neural networkCNN
###Code
tf.random.set_seed(12345)
model_CNN = keras.Sequential([
keras.layers.Conv2D(filters = 1,
kernel_size=(4, 4),
activation='relu',
input_shape=(32, 32, 1)
),
keras.layers.Flatten(),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(2, activation='softmax')
])
model_CNN.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
train_data_cnn=np.array(train_data)
train_data_cnn = train_data_cnn.reshape(train_data.shape[0], train_data.shape[1], train_data.shape[2], 1)
train_data_cnn.shape
model_CNN.fit(train_data_cnn, train_labels, epochs=10)
xs=[]
y1s=[]
y2s=[]
Ndatamax = 950
Nsameclass = 50
for ii in range(0,Ndatamax,Nsameclass):
res = model_CNN(val_data[ii:ii+Nsameclass])
x = val_betas[ii]
y1= np.mean(res.numpy().T[0] )
y2=np.mean(res.numpy().T[1] )
xs.append( x )
y1s.append( y1 )
y2s.append( y2 )
print(x,y1,y2)
plt.axvline(x=0.440686, ymin=0, ymax=1, ls="dashed",color="gray",label="Critical")
plt.plot(xs,y1s,label="class:High",marker="o",color="red")
plt.plot(xs,y2s,label="class:Low",marker="o",color="blue")
plt.legend()
plt.xlabel(r"$\beta=1/T$")
plt.ylabel(r"Prob")
plt.show()
u1,v1 = xs[9],y1s[9]
u2,v2 = xs[8],y1s[8]
w1,t1 = xs[9],y2s[9]
w2,t2 = xs[8],y2s[8]
print(u1,v1)
print(u2,v2)
#
print(w1,t1)
print(w2,t2)
from numpy.linalg import solve
tan1=(v2-v1)/(u2-u1)
tan2=(t2-t1)/(w2-w1)
MatA = [[1, -tan1],
[1, -tan2]]
vecB = [v1-tan1*u1,
t1-tan2*w1]
#
sol = solve(MatA, vecB)
print("sol x,y = ", sol)
#
xx = np.linspace(0,1)
yy = tan1*(xx-u1)+v1
plt.plot(xx,yy)
#
yy = tan2*(xx-w1)+t1
plt.plot(xx, yy)
plt.ylim(0,1)
plt.show()
#
beta_cr = 0.440686
er = round(abs(beta_cr - sol[1])/beta_cr *100,2)
print(f"Relative error = {er} %")
###Output
_____no_output_____ |
pyFIRS/examples/05_Merge Tiled Derivatives Together.ipynb | ###Markdown
Launch a parallel computing cluster.
###Code
cluster = LocalCluster(scheduler_port=7001, dashboard_address=7002)
c = Client(cluster)
num_cores = len(c.ncores()) # identify how many workers we have
###Output
_____no_output_____
###Markdown
At this point, you should also be able to view an interactive dashboard on port 7002. If you're executing this on a remote server, you'll need to set up port forward so you can view the dashboard on your local machine's browser. Once you've done that, or if you're processing on your own machine, you can view the dashboard at [http://localhost:7002/status](http://localhost:7002/status).
###Code
las = lastools.useLAStools('/storage/lidar/LAStools/bin')
# define data handling directories
INTERIM = os.path.join(WORKDIR, 'interim')
PROCESSED = os.path.join(WORKDIR,'processed')
# push stuff to the workers on the cluster
c.scatter([INTERIM, PROCESSED, las, TARGET_EPSG, num_cores], broadcast=True);
tiles_to_merge = [fname(tile) for tile in
glob.glob(os.path.join(PROCESSED, 'points', '*.laz'))]
print('Found {:,d} tiles to merge derivative products from.'.format(
len(tiles_to_merge)))
###Output
_____no_output_____
###Markdown
Merge tiled derivative outputs togetherMerge all the tiled GeoTiffs and Shapefiles into single overview files. We'll produce a shapefile showing the layout of the non-buffered tiles as a single shapefile. This is a single process that takes a few seconds to run, so no need to distribute it using `dask`.
###Code
@dask.delayed
def tile_boundaries(*args, **kwargs):
infiles_path = os.path.join(PROCESSED, 'points', '*.laz')
OUTFILE = os.path.join(PROCESSED, 'vectors', 'tiles.shp')
if os.path.exists(OUTFILE):
pass
else:
proc = las.lasboundary(i=infiles_path,
use_bb=True, # use bounding box of tiles
overview=True,
labels=True,
cores=num_cores, # use parallel processing
oshp=True,
o=OUTFILE)
return 'tile_boundaries'
@dask.delayed
def make_footprint(*args, **kwargs):
if os.path.exists(os.path.join(PROCESSED, 'vectors', 'footprint.shp')):
pass
else:
gdf = gpd.read_file(os.path.join(PROCESSED, 'vectors', 'tiles.shp'))
gdf['mil_points'] = gdf['num_points'] / 1000000.
buffered = gdf.drop(['file_name',
'point_size',
'point_type',
'num_points'],
axis=1)
buffered.geometry = gdf.buffer(0.01) # buffer by 1cm
union = gpd.GeoDataFrame(geometry=[buffered.unary_union],
crs=buffered.crs)
union['footprint_id'] = union.index + 1
buffered = gpd.tools.sjoin(buffered,
union,
how='left').drop('index_right', axis=1)
aggfuncs = {'mil_points': 'sum',
'version': 'first',
'min_x': 'min',
'min_y': 'min',
'min_z': 'min',
'max_x': 'max',
'max_y': 'max',
'max_z': 'max'}
dissolved = buffered.dissolve(by='footprint_id', aggfunc=aggfuncs)
OUTFILE = os.path.join(PROCESSED, 'vectors', 'footprint.shp')
dissolved.to_file(OUTFILE)
return 'footprint'
###Output
_____no_output_____
###Markdown
Merge the bare earth tiles into a single GeoTiff.
###Code
# @dask.delayed
def make_vrt(infiles, vrtfile):
"""Mosaics files into a single GeoTiff
Parameters
----------
infiles : list
list of paths to input files to mosaic
vrtfile : str, path to file
path to VRT file that will be created
Returns
--------
proc : CompletedProcess
the result of executing gdalbuildvrt using subprocess
"""
proc = subprocess.run(['gdalbuildvrt',
vrtfile,
*infiles],
stderr=subprocess.PIPE,
stdout=subprocess.PIPE)
return proc
@dask.delayed
def merge_dem(*args, **kwargs):
infiles = glob.glob(
os.path.join(PROCESSED, 'rasters', 'dem_tiles', '*.tif'))
VRTFILE = os.path.join(PROCESSED, 'rasters', 'dem.vrt')
if os.path.exists(VRTFILE):
pass
else:
make_vrt(infiles, VRTFILE)
return 'dem'
@dask.delayed
def merge_intensity(*args, **kwargs):
infiles = glob.glob(
os.path.join(PROCESSED, 'rasters', 'intensity_tiles', '*.tif'))
VRTFILE = os.path.join(PROCESSED, 'rasters', 'intensity.vrt')
if os.path.exists(VRTFILE):
pass
else:
make_vrt(infiles, VRTFILE)
return 'intensity'
###Output
_____no_output_____
###Markdown
Now merge the hillshade tiles into a single raster formatted as GeoTiff.
###Code
@dask.delayed
def merge_hillshade(*args, **kwargs):
infiles = glob.glob(
os.path.join(PROCESSED, 'rasters', 'hillshade_tiles', '*.tif'))
VRTFILE = os.path.join(PROCESSED, 'rasters', 'hillshade.vrt')
if os.path.exists(VRTFILE):
pass
else:
make_vrt(infiles, VRTFILE)
return 'hillshade'
###Output
_____no_output_____
###Markdown
Merge the trimmed canopy height model tiles into a single raster.
###Code
@dask.delayed
def merge_chm(*args, **kwargs):
infiles = glob.glob(
os.path.join(PROCESSED, 'rasters', 'chm_tiles', '*.tif'))
VRTFILE = os.path.join(PROCESSED, 'rasters', 'chm.vrt')
if os.path.exists(VRTFILE):
pass
else:
make_vrt(infiles, VRTFILE)
return 'chm'
###Output
_____no_output_____
###Markdown
Merge the cleaned tiles of building footprints together into a single shapefile. We'll use `geopandas` to concatenate all the polygons together into a single geodataframe and then write out to a new shapefile.
###Code
@dask.delayed
def merge_bldgs(*args, **kwargs):
infiles = glob.glob(
os.path.join(PROCESSED, 'vectors', 'building_tiles', '*.shp'))
OUTFILE = os.path.join(PROCESSED, 'vectors', 'buildings.shp')
if os.path.exists(OUTFILE):
pass
else:
# list of geodataframes with tiles of building footprints
gdflist = [gpd.read_file(tile) for tile in infiles]
# merge them all together
merged = pd.concat(gdflist, ignore_index=True)
# add projection information back in
merged.crs = gdflist[0].crs
# and write the merged data to a new shapefile
merged.to_file(OUTFILE)
return 'bldgs'
@dask.delayed
def merge_highpoints(*args, **kwargs):
infiles = glob.glob(
os.path.join(INTERIM, 'chm_tiles', 'treesegs', '*HighPoints.shp'))
OUTFILE = os.path.join(PROCESSED, 'vectors', 'high_points.shp')
if os.path.exists(OUTFILE):
pass
else:
# list of geodataframes with tiles of building footprints
gdflist = [gpd.read_file(tile) for tile in infiles]
# merge them all together
merged = pd.concat(gdflist, ignore_index=True)
# add projection information back in
merged.crs = gdflist[0].crs
# and write the merged data to a new shapefile
merged.to_file(OUTFILE)
return 'highpoints'
@dask.delayed
def merge_crowns(*args, **kwargs):
infiles = glob.glob(
os.path.join(INTERIM, 'chm_tiles', 'treesegs', '*Polygons.shp'))
OUTFILE = os.path.join(PROCESSED, 'vectors', 'tree_crowns.shp')
if os.path.exists(OUTFILE):
pass
else:
# list of geodataframes with tiles of building footprints
gdflist = [gpd.read_file(tile) for tile in infiles]
# merge them all together
merged = gpd.GeoDataFrame(pd.concat(gdflist, ignore_index=True))
# add projection information back in
merged.crs = gdflist[0].crs
# and write the merged data to a new shapefile
merged.to_file(OUTFILE)
return 'crowns'
all_grid_tiles_paths = glob.glob(
os.path.join(PROCESSED, 'rasters',
'gridmetrics_tiles', '*_strat0_intensity-median.tif'))
all_grid_tiles = [fname(tile).split('_strat0_intensity-median')[0] for
tile in all_grid_tiles_paths]
example_tile = os.path.basename(
all_grid_tiles_paths[0]).split('_strat0_intensity-median.tif')[0]
grid_rasters = [os.path.basename(file).split(example_tile)[-1][1:-4] for
file in glob.glob(
os.path.join(PROCESSED, 'rasters',
'gridmetrics_tiles', example_tile + '*.tif'))]
print('{:d} different types of rasters from gridmetrics '
'to process for each tile:\r\n'.format(len(grid_rasters)))
for i, raster in enumerate(grid_rasters):
print('{}. {}'.format(i+1, raster))
all_gridsurf_tiles_paths = glob.glob(
os.path.join(PROCESSED, 'rasters',
'gridsurface_tiles', '*_potential_volume.tif'))
all_gridsurf_tiles = [fname(tile).split('_strat0_intensity-median')[0] for
tile in all_gridsurf_tiles_paths]
example_tile = os.path.basename(
all_gridsurf_tiles_paths[0]).split('_potential_volume.tif')[0]
gridsurf_rasters = [os.path.basename(file).split(example_tile)[-1][1:-4] for
file in glob.glob(
os.path.join(PROCESSED, 'rasters',
'gridsurface_tiles',
example_tile + '*.tif'))]
# we don't want these redundant rasters
gridsurf_rasters = [x for x in gridsurf_rasters if x not
in ['mean_height', 'max_height']]
print('{:d} different types of rasters from gridsurface '
'to process for each tile:\r\n'.format(len(gridsurf_rasters)))
for i, raster in enumerate(gridsurf_rasters):
print('{}. {}'.format(i+1, raster))
@dask.delayed
def merge_gridmetric(metric):
infiles = glob.glob(
os.path.join(PROCESSED, 'rasters',
'gridmetrics_tiles', '*{}.tif'.format(metric)))
VRTFILE = os.path.join(PROCESSED, 'rasters', '{}.vrt'.format(metric))
if os.path.exists(VRTFILE):
pass
else:
make_vrt(infiles, VRTFILE)
return metric
@dask.delayed
def merge_gridsurface(metric):
infiles = glob.glob(
os.path.join(PROCESSED, 'rasters',
'gridsurface_tiles', '*{}.tif'.format(metric)))
VRTFILE = os.path.join(PROCESSED, 'rasters',
'gridsurface_tiles', '{}.vrt'.format(metric))
if os.path.exists(VRTFILE):
pass
else:
make_vrt(infiles, VRTFILE)
return metric
###Output
_____no_output_____
###Markdown
A single state that will depend upon the completion of the merged rasters and vectors.
###Code
@dask.delayed
def merge_done(*args, **kwargs):
return
# building the computation receipe
merge_dsk = {}
merge_dsk['tile_boundaries'] = (tile_boundaries,)
merge_dsk['footprint'] = (make_footprint, 'tile_boundaries')
merge_dsk['merge_bldgs'] = (merge_bldgs,)
merge_dsk['merge_hill'] = (merge_hillshade,)
merge_dsk['merge_dem'] = (merge_dem,)
merge_dsk['merge_intensity'] = (merge_intensity,)
merge_dsk['merge_chm'] = (merge_chm,)
for raster in grid_rasters:
merge_dsk['merge_gridmetric-{}'.format(raster)] = (merge_gridmetric,
raster)
for raster in gridsurf_rasters:
merge_dsk['merge_gridsurface-{}'.format(raster)] = (merge_gridsurface,
raster)
merge_dsk['merge_done'] = (merge_done,
['tile_boundaries', 'footprint']+ #) # +
['merge_bldgs'] + #)
['merge_hill', 'merge_dem'] +
['merge_chm', 'merge_intensity'] +
['merge_gridmetric-{}'.format(raster) for
raster in grid_rasters] +
['merge_gridsurface-{}'.format(raster) for
raster in gridsurf_rasters])
merge_graph = c.get(merge_dsk, 'merge_done') # build the computation graph
merge_graph.visualize(rankdir='LR')
merge_results = c.persist(merge_graph) # this might take a while...
progress(merge_results)
# merge_results.result()
# c.cancel(merge_results)
# c.close()
# cluster.close()
###Output
_____no_output_____ |
notebooks/CommonModulus.ipynb | ###Markdown
Common modulus attackSuppose Alice sends the RSA encryptions of the same message $m$to two people using the same RSA modulus $n$ and relatively prime public exponents $e_1$ and $e_2$.An attacker can retrieve the message $m$ only from the public data(i.e., the modulus $n$, the public exponents $e_1$ and $e_2$,and the encryptions $c_i = m^{e_i} \bmod{n}$ for $i = 1, 2$).By using the extended Euclidean algorithm,one can compute integers $a$ and $b$ such that $a e_1 + b e_2 = 1$.Then the message $m$ can be retrieved as $c_1^a c_2^b \equiv m^{a e_1 + b e_2} \equiv m \pmod{n}$. ExampleLet $n = 55$, $e_1 = 3$, $e_2 = 7$, $c_1 = 8$ and $c_2 = 18$.
###Code
from algorithms.euclidean import eea
n = 55
e1, e2 = 3, 7
c1, c2 = 8, 18
###Output
_____no_output_____
###Markdown
Let us compute $a$ and $b$.
###Code
a, b = eea(c1, c2)
a, b
###Output
_____no_output_____
###Markdown
We can now retrieve the message.
###Code
m = c1^a * c2^b % n
m
###Output
_____no_output_____
###Markdown
Let us verify that the decryption really encrypts to the given ciphertexts.
###Code
[m^e % n for e in (e1, e2)]
###Output
_____no_output_____ |
assignments/PythonBasicsProgramming/Programming_Assignment_9.ipynb | ###Markdown
1. Write a Python program to check if the given number is a Disarium Number?
###Code
number = input("Enter a number to check if it is Disarium Number: ")
disarium = 0
for i in range(len(number)):
disarium += int(number[i])**(i+1)
if int(number) == disarium:
print(f"Given number {number} is a disarium number")
else:
print(f"Given number {number} is not a disarium number")
###Output
Enter a number to check if it is Disarium Number: 135
Given number 135 is a disarium number
###Markdown
2. Write a Python program to print all disarium numbers between 1 to 100?
###Code
for i in range(1, 101):
number = str(i)
disarium = 0
for i in range(len(number)):
disarium += int(number[i])**(i+1)
if int(number) == disarium:
print(number, end=" ")
###Output
1 2 3 4 5 6 7 8 9 89
###Markdown
3. Write a Python program to check if the given number is Happy Number?
###Code
def is_happy_number(n):
slow, fast = n, n
while(True):
slow = numSquareSum(slow)
fast = numSquareSum(numSquareSum(fast))
if(slow != fast):
continue;
else:
break
return (slow == 1)
def num_square_sum(n):
squareSum = 0;
while(n):
squareSum += (n % 10) * (n % 10);
n = int(n / 10);
return squareSum
n = int(input("Enter a number to check if it is a Happy Number: "))
if is_happy_number(n):
print(f"{n} is a Happy number");
else:
print(f"{n} is not a Happy number");
###Output
Enter a number to check if it is a Happy Number: 13
13 is a Happy number
###Markdown
4. Write a Python program to print all happy numbers between 1 and 100?
###Code
def is_happy_number(n):
slow, fast = n, n
while(True):
slow = numSquareSum(slow)
fast = numSquareSum(numSquareSum(fast))
if(slow != fast):
continue
else:
break
return (slow == 1)
def num_square_sum(n):
squareSum = 0
while(n):
squareSum += (n % 10) * (n % 10)
n = int(n / 10)
return squareSum
for n in range(1, 101):
if is_happy_number(n):
print(n, end= " ")
###Output
1 7 10 13 19 23 28 31 32 44 49 68 70 79 82 86 91 94 97 100
###Markdown
5. Write a Python program to determine whether the given number is a Harshad Number?
###Code
# The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9 (1 + 8 = 9), and 18 is divisible by 9.
def is_harshad_number(n):
s = 0
for c in str(n):
s += int(c)
if n % s == 0:
return True
return False
x = int(input("Enter a Harshad Number:"))
if is_harshad_number(x):
print(f"{x} is a Harshad Number")
else:
print(f"{x} is not a Harshad Number")
###Output
Enter a Harshad Number:198
198 is a Harshad Number
###Markdown
6. Write a Python program to print all pronic numbers between 1 and 100?
###Code
def is_harshad_number(n):
s = 0
for c in str(n):
s += int(c)
if n % s == 0:
return True
return False
for i in range(1, 101):
if is_harshad_number(i):
print(i, end= " ")
###Output
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 45 48 50 54 60 63 70 72 80 81 84 90 100 |
data/experimental_data_analysis.ipynb | ###Markdown
Perception of amplitude modulation-induced vibratoData analysis and exploration. Helper functions follow. Skip to next cell to see results. Study 1: Perceived fusion.**Note**: Results are min-max normalized per subject.
###Code
study_type = 0
df = du.load_and_clean_data()
df = du.min_max_norm(df)
df = du.isolate_study(df, study_type)
df = df.reset_index(drop=True)
# The average variation of ratings, within subject, per stimulus condition.
display(du.average_std_of_ratings(df).sort_values())
display(du.get_summary(df))
du.box_plot(df, study_type, savefig=True)
# du.response_histograms(df, 10)
# The average minimum response per stim condition, per subject.
# df.groupby(['subjectNo','condition'])['response'].min().groupby('condition').mean()
df['subjectNo'].nunique()
###Output
_____no_output_____
###Markdown
Study 2: Perceived realismPerceived realism.**Note**:Ratings are min-max normalized per subject.
###Code
study_type = 1
df = du.load_and_clean_data()
df = du.isolate_study(df, study_type)
df = du.min_max_norm(df)
df = df.reset_index(drop=True)
display(du.average_std_of_ratings(df))
display(du.get_summary(df))
du.box_plot(df, study_type, savefig=True)
# du.response_histograms(df, 10)
df['subjectNo'].nunique()
###Output
_____no_output_____
###Markdown
Main statistical analysis Anova, T-test and check for normal distribution
###Code
# Indicate study type here (0 -> fusion, 1 -> realism)
study_type = 1
df = du.load_and_clean_data()
df = du.isolate_study(df, study_type)
df = du.min_max_norm(df)
df = du.anova_prep(df)
df = df.reset_index(drop=True)
# ANOVA with repeated measures notes.
# for condition in df['condition'].unique():
# print(f"Condition: {condition}")
# display(pg.normality(df[df['condition']==condition]['rating']))
# sm.qqplot(df[df['condition']==condition]['rating'], fit=True, line="45")
# plt.savefig(f"./figs/qq_studytype_{study_type}_{condition}.png", dpi=300)
# display(df.rm_anova(dv='rating', within='condition', subject='subjectNo', correction=True))
# # display(pg.friedman(data=df, dv='rating', within='condition', subject='subjectNo', method='f'))
tmp = df.pairwise_ttests(
dv='rating',
within='condition',
subject='subjectNo',
padjust='holm',
parametric=True # False -> Use Wilcoxon
)
# for i in range(4):
# display(tmp.loc[i*10:i*10 + 9])
display(tmp)
###Output
_____no_output_____
###Markdown
InferenceThe plan:- Multiple linear regresion, from timbre toolbox ratings to realness, fusion.- Descriptor commonalities among stimulus conditions?- Perhaps, perhaps, train three quantile linear classifiers, 25%, 50%, 75%. Post hocTables that quantify the variability in the randomized stimulus conditions.
###Code
import seaborn as sns
import numpy as np
df = du.load_and_clean_data()
tmp = du.load_tt_descriptors()
df = pd.merge(tmp, df, on='stimulus')
pd.set_option('display.max_columns', None)
features = [
'STFT__SpectralCentroidMed',
'STFT__SpectralCentroidIQR',
'STFT__SpectralCrestMed',
'STFT__SpectralCrestIQR',
'HARMONIC__HarmonicOddToEvenRatioMed',
'HARMONIC__HarmonicOddToEvenRatioIQR',
'HARMONIC__HarmonicEnergyIQR',
'HARMONIC__HarmonicEnergyMed',
'HARMONIC__SpectralFlatnessMed',
'HARMONIC__SpectralFlatnessIQR',
# 'STFT__SpectralSpreadMed',
# 'STFT__SpectralSkewnessMed',
# 'STFT__SpectralKurtosisMed',
# 'STFT__SpectralFlatnessMed',
# 'STFT__SpectralSlopeMed',
# 'STFT__SpectralDecreaseMed',
# 'STFT__SpectralRollOffMed',
# 'STFT__SpectralFluxMed',
# 'HARMONIC__PitchIQR',
# 'HARMONIC__SpectralCentroidIQR',
# 'HARMONIC__SpectralSpreadIQR',
# 'HARMONIC__SpectralSkewnessIQR',
# 'HARMONIC__SpectralKurtosisIQR',
# 'HARMONIC__SpectralCrestIQR',
# 'HARMONIC__SpectralSlopeIQR',
# 'HARMONIC__SpectralDecreaseIQR',
# 'HARMONIC__SpectralRollOffIQR',
# 'HARMONIC__SpectralVariationIQR',
# 'HARMONIC__SpectralFluxIQR',
# 'HARMONIC__HarmonicSpectralDeviationIQR',
# 'HARMONIC__Tristimulus_1IQR',
# 'HARMONIC__Tristimulus_2IQR',
# 'HARMONIC__Tristimulus_3IQR',
# 'HARMONIC__InharmonicityIQR',
# 'HARMONIC__NoiseEnergyIQR',
# 'HARMONIC__NoisinessIQR',
# 'STFT__SpectralSpreadIQR',
# 'STFT__SpectralSkewnessIQR',
# 'STFT__SpectralKurtosisIQR',
# 'STFT__SpectralFlatnessIQR',
# 'STFT__SpectralSlopeIQR',
# 'STFT__SpectralDecreaseIQR',
# 'STFT__SpectralRollOffIQR',
# 'STFT__SpectralVariationIQR',
# 'STFT__SpectralFluxIQR',
# 'HARMONIC__PitchMed',
# 'HARMONIC__SpectralCentroidMed',
# 'HARMONIC__SpectralSpreadMed',
# 'HARMONIC__SpectralSkewnessMed',
# 'HARMONIC__SpectralKurtosisMed',
# 'HARMONIC__SpectralFlatnessMed',
# 'HARMONIC__SpectralCrestMed',
# 'HARMONIC__SpectralSlopeMed',
# 'HARMONIC__SpectralDecreaseMed',
# 'HARMONIC__SpectralRollOffMed',
# 'HARMONIC__SpectralVariationMed',
# 'HARMONIC__SpectralFluxMed',
# 'HARMONIC__HarmonicSpectralDeviationMed',
# 'HARMONIC__Tristimulus_1Med',
# 'HARMONIC__Tristimulus_2Med',
# 'HARMONIC__Tristimulus_3Med',
# 'HARMONIC__InharmonicityMed',
# 'HARMONIC__NoiseEnergyMed',
# 'HARMONIC__NoisinessMed'
]
corr = tmp[features].corr()
# Generate a mask for the upper triangle
mask = np.triu(np.ones_like(corr, dtype=bool))
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
# Generate a custom diverging colormap
cmap = sns.diverging_palette(230, 20, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,
square=True, linewidths=.5, cbar_kws={"shrink": .5})
# these_feats = [
# 'HARMONIC__SpectralFlatnessMed',
# # 'HARMONIC__SpectralFlatnessIQR',
# # 'HARMONIC__HarmonicEnergyIQR',
# 'HARMONIC__HarmonicEnergyMed',
# ]
import copy
this_feats = copy.copy(features)
print('='*50 + '\nMEAN\n' + '='*50)
display(df.groupby('condition')[these_feats].mean().sort_values(by='HARMONIC__SpectralFlatnessMed'))
print('='*50 + '\nSTD\n' + '='*50)
display(df.groupby('condition')[these_feats].std())
print('='*50 + '\nCoefficient of Variability\n' + '='*50)
display(df.groupby('condition')[these_feats].std()/df.groupby('condition')[these_feats].mean())
tmp = pd.DataFrame()
tmp['mean'] = df[these_feats].mean()
tmp['std'] = df[these_feats].std()
tmp['coefficient_of_variation'] = tmp['std']/tmp['mean']
display(tmp)
###Output
==================================================
MEAN
==================================================
###Markdown
Relationship between descriptors and ratings
###Code
# Inspecting relationship between TT descriptors and ratings.
study_type = 1
tmp_index = features + ['stimulus']
df = du.load_and_clean_data()
df = du.min_max_norm(df)
tt = du.load_tt_descriptors()
df = pd.merge(tt[tmp_index], df, on='stimulus')
df = du.isolate_study(df, study_type=study_type)
print('='*20+'Correlations within subject within condition.'+'='*20)
correlations = pd.DataFrame()
for subject in df['subjectNo'].unique():
# Calculate within subject correlations to descriptors.
tmp = df[df['subjectNo'] == subject]
tmp = tmp.groupby('condition')[features].corrwith(tmp['response'], method='spearman')
tmp['subjectNo'] = subject
correlations = correlations.append(tmp)
tmp = correlations.groupby('condition')[features].mean()
display(tmp)
print('='*20+'Correlations within subject.'+'='*20)
for feature in features:
pearson = du.within_subject_correlation(df, feature, 'pearson')
spearman = du.within_subject_correlation(df, feature, 'spearman')
spiel = f"{feature}, pearson = {pearson}, spearman = {spearman}"
print(spiel)
# Linear regression.
study_type = 1
tmp_index = features + ['stimulus']
df = du.load_and_clean_data()
df = du.min_max_norm(df)
tt = du.load_tt_descriptors()
df = pd.merge(tt[tmp_index], df, on='stimulus')
df_ = du.isolate_study(df, study_type=study_type)
new = df_.groupby('condition')[features + ['response']].mean()
new.to_csv(f"rates_tt_study_{study_type}.csv")
lm = pg.linear_regression(df_[features], df_['response'])
display(lm.round(4))
sse = np.sum(lm.residuals_**2)
n = 4400
k = 10
def AIC(_n, _k, _sse):
return _n * np.log(_sse/_n) + 2*_k
print(f"Simple multiple regression AIC:\t {AIC(n, lm.df_model_, sse)}")
# formula = 'response ~ ' + ' + '.join([f + '|groups' for f in features])
model = sm.MixedLM(df_['response'],df_[features], groups=df_["subjectNo"])
result = model.fit(reml=False)
print(result.summary())
print(f"AIC:\t{result.aic}")
print(f"BIC:\t{result.bic}")
study_type = 0
tmp_index = features + ['stimulus']
df = du.load_and_clean_data()
df = du.min_max_norm(df)
tt = du.load_tt_descriptors()
df = pd.merge(tt[tmp_index], df, on='stimulus')
tt_means = df[features].mean()
# Logistic regression on quantiles.
study_type = 0
tmp_index = features + ['stimulus']
df = du.load_and_clean_data()
df = du.min_max_norm(df)
tt = du.load_tt_descriptors()
df = pd.merge(tt[tmp_index], df, on='stimulus')
df = du.isolate_study(df, study_type=study_type)
# Standardize.
df[features] = (df[features] - df[features].mean())/df[features].std()
# Range normalize.
# df[features] = (df[features] - df[features].min())/(df[features].max() - df[features].min())
# Convert each subjects' ratings into 1/0 above below median.
quantile = .50
df['response'] = df.groupby('subjectNo')['response'].transform(
lambda x: (x < np.quantile(x, q=quantile)).astype(int)
)
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_validate
X = df[features]
y = df['response']
clf = LogisticRegression(max_iter=200)
scores = cross_validate(clf, X, y, return_estimator=True, scoring=['roc_auc'])
scores['estimator'][0].intercept_
# print(scores.keys())
print(f"ROC AUC:\t{scores['test_roc_auc'].mean()}")
tmp = []
for est in scores['estimator']:
tmp.append(est.coef_)
ans = dict(zip(features, np.array(tmp).squeeze().mean(axis=0)))
for key, val in ans.items():
print(f"{key}:\t{val}")
###Output
ROC AUC: 0.7398858521592123
STFT__SpectralCentroidMed: 0.7128298331690445
STFT__SpectralCentroidIQR: 0.1723944030189358
STFT__SpectralCrestMed: 0.29239722320127626
STFT__SpectralCrestIQR: 0.040004440772270146
HARMONIC__HarmonicOddToEvenRatioMed: -0.04237170811944522
HARMONIC__HarmonicOddToEvenRatioIQR: -0.09168302582832635
HARMONIC__HarmonicEnergyIQR: 0.18561126441818815
HARMONIC__HarmonicEnergyMed: 0.006021138622016707
HARMONIC__SpectralFlatnessMed: -0.3148393770928664
HARMONIC__SpectralFlatnessIQR: 0.0931881909178502
###Markdown
Explorations
###Code
np.mean(lm.residuals_**2)
###Output
_____no_output_____ |
tests/notebooks/mESC-marker-only.ipynb | ###Markdown
mESC analysis using Cyclum with Prior Knowledge (Infinite Weights)We utilize prior knowledge by only keeping marker genes (i.e., infinite weights).We still use the mESC dataset. For simplicity we have converted the dataset into TPM.The original count data is available at ArrayExpress: [E-MTAB-2805](https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2805/). Tools to transform data are also provided and explained in the following sections.
###Code
# Add ../../ to path
import os,sys,inspect
current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parent_dir = os.path.dirname(current_dir)
sys.path.insert(0, parent_dir)
###Output
_____no_output_____
###Markdown
Import necessary packages
###Code
%matplotlib inline
%load_ext autoreload
%autoreload 1
import pandas as pd
import numpy as np
import sklearn as skl
import cyclum.tuning
import cyclum.models
from cyclum import writer
###Output
Using TensorFlow backend.
###Markdown
Read dataHere we have label, so we load both. However, the label is not used until evaluation.
###Code
input_file_mask = '/home/shaoheng/Documents/data/mESC/mesc-tpm'
def preprocess(input_file_mask):
"""
Read in data and perform log transform (log2(x+1)), centering (mean = 1) and scaling (sd = 1).
"""
tpm = writer.read_df_from_binary(input_file_mask).T
sttpm = pd.DataFrame(data=skl.preprocessing.scale(np.log2(tpm.values + 1)), index=tpm.index, columns=tpm.columns)
label = pd.read_csv(input_file_mask + '-label.txt', sep="\t", index_col=0).T
return sttpm, label
sttpm, label = preprocess(input_file_mask)
marker_df = pd.read_table('/home/shaoheng/Documents/cyclum2/data/MGI-cell-cycle-0007049.txt', index_col=False)
marker_df.head()
sttpm = sttpm.loc[:, marker_df['Symbol'].unique()]
sttpm = sttpm.dropna(1)
sttpm.shape
###Output
/home/shaoheng/miniconda3/envs/tf-gpu/lib/python3.7/site-packages/pandas/core/indexing.py:1418: FutureWarning:
Passing list-likes to .loc or [] with any missing label will raise
KeyError in the future, you can use .reindex() as an alternative.
See the documentation here:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike
return self._getitem_tuple(key)
###Markdown
There is no convention whether cells should be columns or rows. Here we require cells to be rows. Set up the model and fit the model
###Code
model = cyclum.tuning.CyclumAutoTune(sttpm, max_linear_dims=5,
epochs=500, rate=2e-4, verbose=100,
encoder_width=[30, 20])
model.show_elbow()
display(model.show_structure())
model.train(sttpm, epochs=1600, verbose=100, rate=2e-4)
pseudotime = model.predict_pseudotime(sttpm)
###Output
_____no_output_____
###Markdown
IllustrationsWe illustrate the results on a circle, to show its circular nature. There is virtually no start and end of the circle.Red, green and blue represents G0/G1, S and G2/M phase respectively.The inner lines represents single cells. The cells spread across theThe areas outside
###Code
import cyclum.illustration
color_map = {'stage': {"g0/g1": "red", "s": "green", "g2/m": "blue"},
'subcluster': {"intact": "cyan", "perturbed": "violet"}}
cyclum.illustration.plot_round_distr_color(pseudotime, label['stage'], color_map['stage'])
pass
from cyclum.hdfrw import mat2hdf
mat2hdf(pseudotime, '/home/shaoheng/Documents/data/EMTAB2805/cyclum-marker-only-pseudotime.h5')
###Output
_____no_output_____ |
Visualization_of_ResNet_101_v2.ipynb | ###Markdown
###Code
import tensorflow as tf
import numpy as np
from tensorflow import keras
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing.image import img_to_array, load_img
import random
from PIL import Image
model = tf.keras.applications.ResNet101V2(include_top=False, weights = 'imagenet', input_shape=(150,150,3))
model.summary()
conv_layers = [layer for layer in model.layers if '_conv' in str(layer.name)]
num_conv_layers = len(conv_layers)
selected_conv_layers = [conv_layers[i] for i in [12,25,38,51,64,77,90,103]]
selected_conv_layers
###Output
_____no_output_____
###Markdown
Visualization of the Conv Layers of ResNet101v2
###Code
img_path = '/content/drive/MyDrive/Brain_Tumor_Classification/input/Final_Tumor_Dataset/Train/yes/Image1006.jpg'
img = Image.open(img_path)
img
successive_outputs = [layer.output for layer in selected_conv_layers]
#visualization_model = Model(img_input, successive_outputs)
visualization_model = tf.keras.models.Model(inputs = model.input, outputs = successive_outputs)
img = load_img(img_path, target_size=(150,150)) # this is a PIL image
x = img_to_array(img) # Numpy array with shape (150, 150, 3)
x = x.reshape((1,) + x.shape) # Numpy array with shape (1, 150, 150, 3)
# Rescale by 1/255
x /= 255
# Let's run our image through our network, thus obtaining all
# intermediate representations for this image.
successive_feature_maps = visualization_model.predict(x)
# These are the names of the layers, so can have them as part of our plot
layer_names = [layer.name for layer in model.layers[1:]]
# Now let's display our representations
for layer_name, feature_map in zip(layer_names, successive_feature_maps):
if len(feature_map.shape) == 4:
# Just do this for the conv / maxpool layers, not the fully-connected layers
n_features = 1 # number of features in feature map
# The feature map has shape (1, size, size, n_features)
size = feature_map.shape[1]
# We will tile our images in this matrix
display_grid = np.zeros((size, size * n_features))
i = random.randint(0, feature_map.shape[-1])
# Postprocess the feature to make it visually palatable
x = feature_map[0, :, :, i]
x -= x.mean()
x /= x.std()
x *= 64
x += 128
x = np.clip(x, 0, 255).astype('uint8')
# We'll tile each filter into this big horizontal grid
display_grid[:, 0 : size] = x
# Display the grid
scale = 5. / n_features
plt.figure(figsize=(scale * n_features, scale))
plt.title(layer_name)
plt.grid(False)
plt.imshow(display_grid, aspect='auto', cmap='viridis')
###Output
WARNING:tensorflow:11 out of the last 11 calls to <function Model.make_predict_function.<locals>.predict_function at 0x7fd977b804d0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.
###Markdown
ConclusionIn the initial layers of the ResNet model, we can decipher what the layers are learning but as we see for the later layers of the model, the dimensions of the outputs are reduced as Convolutional layers half the dimensions and so the outputs tend to be in an encoded format and so hard to interpret.
###Code
###Output
_____no_output_____ |
notebooks/.ipynb_checkpoints/Hello,_Colaboratory_test-checkpoint.ipynb | ###Markdown
[View in Colaboratory](https://colab.research.google.com/github/BlueMoon55/Python_Test/blob/master/Hello,_Colaboratory.ipynb) Colaboratory へようこそColaboratory は、機械学習の教育や研究の促進を目的とした Google 研究プロジェクトです。完全にクラウドで実行される Jupyter ノートブック環境を特別な設定なしにご利用いただけます。Colaboratory ノートブックは [Google ドライブ](https://drive.google.com)に保存され、Google ドキュメントや Google スプレッドシートと同じように共有できます。Colaboratory の利用は無料です。詳細については、[よくある質問](https://research.google.com/colaboratory/faq.html)をご覧ください。 ローカル ランタイムのサポートColaboratory では、ローカルマシン上の Jupyter ランタイムへの接続もサポートしています。詳しくは、[ドキュメント](https://research.google.com/colaboratory/local-runtimes.html)をご覧ください。 Python 3Colaboratory では、Python 2 と Python 3 の両方のコードの実行をサポートしています。* 新しいノートブックを作成するときに、Python 2 と Python 3 のいずれかを選択できます。* ノートブックに関連付けられている言語を変更することもできます。この情報は `.ipynb` ファイルに書き込まれるため、将来のセッションでも維持されます。
###Code
import sys
print('Hello, Colaboratory from Python {}!'.format(sys.version_info[0]))
###Output
Hello, Colaboratory from Python 3!
###Markdown
TensorFlow の実行 Colaboratory では、ワンクリックで TensorFlow のコードをブラウザ上で実行できます。以下の例は 2 つのマトリックスを追加します。$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$
###Code
import tensorflow as tf
import numpy as np
with tf.Session():
input1 = tf.constant(1.0, shape=[2, 3])
input2 = tf.constant(np.reshape(np.arange(1.0, 7.0, dtype=np.float32), (2, 3)))
output = tf.add(input1, input2)
result = output.eval()
result
###Output
_____no_output_____
###Markdown
視覚化 Colaboratory には [matplotlib](https://matplotlib.org/) などの広く使用されているライブラリが含まれており、視覚化を簡単に行えます。
###Code
!pip install matplotlib
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(20)
y = [x_i + np.random.randn(1) for x_i in x]
a, b = np.polyfit(x, y, 1)
_ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-')
###Output
_____no_output_____
###Markdown
新しいライブラリを使用する必要がある場合は、`pip install` でインストールします。一般的に使用されているライブラリをインポートする方法については、[ライブラリのインポートのサンプル ノートブック](/notebooks/snippets/importing_libraries.ipynb)をご覧ください。
###Code
# Only needs to be run once at the top of the notebook.
!pip install -q matplotlib-venn
# Now the newly-installed library can be used anywhere else in the notebook.
from matplotlib_venn import venn2
_ = venn2(subsets = (3, 2, 1))
###Output
_____no_output_____
###Markdown
フォームフォームを使用してコード内の値をパラメータ化できます。詳しくは、[フォームのサンプル ノートブック](/notebooks/forms.ipynb)をご覧ください。
###Code
#@title Examples
text = 'value' #@param
date_input = '2018-03-22' #@param {type:"date"}
number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1}
dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"]
###Output
_____no_output_____
###Markdown
詳細情報:- [Colaboratory の概要](/notebooks/basic_features_overview.ipynb)- [ライブラリのインポートと依存関係のインストール](/notebooks/snippets/importing_libraries.ipynb)- [マークダウンに関するガイド](/notebooks/markdown_guide.ipynb)- [グラフ](/notebooks/charts.ipynb)- [ウィジェット](/notebooks/widgets.ipynb)- [データの読み込みと保存: ローカル ファイル、Google ドライブ、Google スプレッドシート、Google Cloud Storage](/notebooks/io.ipynb)- [Google Cloud BigQuery のサンプル ノートブック](/notebooks/bigquery.ipynb)- [GPU を使用した TensorFlow](/notebooks/gpu.ipynb)- [フォーム](/notebooks/forms.ipynb) テスト用セクション
###Code
!pip install janome
from janome.tokenizer import Tokenizer # janome.tokenizerをインポート
import re, pprint # reとpprintモジュールをインポート
''' 形態素解析を行う
text :解析対象の文章
戻り値 :見出しと品詞のペアを格納した多重リスト
'''
def analyze(text):
t = Tokenizer() # Tokenizerオブジェクトを生成
tokens = t.tokenize(text) # 形態素解析を実行
result = [] # 形態素と品詞を格納するリスト
for token in tokens: # リストからTokenオブジェクトを1つずつ取り出す
result.append( # 形態素と品詞情報をリストにしてresultに追加
[token.surface, # 形態素を取得
token.part_of_speech]) # 品詞情報を取得
return(result) # 解析結果の多重リストを返す
'''
品詞が名詞であるかを調べる関数
part :形態素解析の品詞の部分
戻り値 :名詞であればTrue、そうでなければFalse
'''
def keyword_check(part):
return re.match( # 名詞であればTrue、それ以外ばFalseを返す
'名詞,(一般|固有名詞|サ変接続|形容動詞語幹)',
part
)
#=================================================
# プログラムの起点
#=================================================
if __name__ == '__main__':
print('文章を入力')
S_input = input() # 文章を取得
pprint.pprint(analyze(S_input)) # 入力された文章を解析
# from analyzer import * # analyzerモジュールをインポート
# import analyzer
import os
def make_freq(file):
"""テキストファイルを読み込んで形態素解析結果を返す
戻り値 : 解析結果を格納した多重リスト
"""
print('テキストを読み込んでいます...')
with open(file, # ファイル名を指定
'r', # 読み取り専用で開く
encoding = 'utf_8' # エンコード方式を指定
) as f:
text = f.read() # 全データをtextに格納
text = re.sub('\n', '', text) # 文末の改行文字を取り除く
word_dic = {} # 語を保持するリスト
analyze_list = analyze(text) # 形態素解析の結果をリストとして取得
for word, part in analyze_list: # 多重リストの要素を2つのパラメーターに取り出す
if (keyword_check(part)): # keyword_check()関数の戻り値がTrueの場合
if word in word_dic: # 辞書に語と同じキーがあるか
word_dic[word] += 1 # キーの値に1加算
else: # 該当するキーがなければ
word_dic[word] = 1 # 単語をキーにして値を1にする
return(word_dic) # 頻度表としての辞書を返す
def show(word_dic):
"""頻度表を出力する
"""
out_file_name = 'freq_'+file_name+'.txt'
file = open(out_file_name, 'w', encoding = 'utf_8')
for word in sorted(
word_dic, # 対象の辞書
key = word_dic.get, # 並べ替えの基準(key)を辞書の値にする
reverse = True # 降順で並べ替え
):
print( # キー(単語)と値(頻度)を出力
word + '(' + str(word_dic[word]) + ')'
)
file.write(word + ',' + str(word_dic[word]) + '\n')
file.close()
#=================================================
# プログラムの起点
#=====中小企業における.txt============================================
if __name__ == '__main__':
print('カレントDIR: '+os.getcwd())
file_name = input('ファイル名を入力してください>>>')
freq = make_freq(file_name) # 頻度表を取得する
show(freq) # 画面表示
###Output
カレントDIR: /content
ファイル名を入力してください>>>aa
テキストを読み込んでいます...
|
1.5 Named Entity Recognition.ipynb | ###Markdown
We want to preprocess the data so that the named entities are replaced with label tag pairs.
###Code
nltk.download()
import nltk
plot = 'An American teenager named Sean Boswell is a loner in school, however he challenges his rival for an ' + \
'illegal street racing, and he totals his car in the end of the race. To avoid time in prison he is sent to ' + \
'Tokyo to live with his father who is in the military. As soon as he arrives he discovers a new, fun but ' + \
'dangerous way of street racing in the underworld of the streets of Tokyo, Japan. Sean Boswell, an Alabama ' + \
'teenager with a record for street racing, moves to his father\'s resident city of Tokyo, Japan to avoid a ' + \
'prison sentence in America. Boswell quickly falls in love with the world of drift racing in Tokyo\'s ' + \
'underground and a Japanese girl named Neela. However, Boswell\'s presence and growing talent for drifting ' + \
'unsettles the Japanese Mafia, which makes thousands of dollars from the sport. Confrontations arise, and ' + \
'Sean is faced with a simple decision: drift or die. After totaling his car in an illegal street race, ' + \
'Shaun Boswell is sent to live with his father, who is in the military, in Tokyo, Japan, to avoid '+ \
'juvy or even jail. While in school, he befriends Twinkie, a "military brat." Twinkie introduces him to ' + \
'the world of racing in Japan. Though forbidden to drive, he decides to race against D.K., the "Drift King", ' + \
'who has ties to the Yakuza, and loses, totaling the car because of his lack of knowledge of drifting, ' + \
'racing that involves dangerous hair pin turns. To repay his debt, he enters the underground world of drift ' + \
'street racing. As he becomes better and better, he must finally prove his worth in that world by once again ' + \
'racing D.K. Sean Boswell, who has always been an outsider. A loner at school, his only connection to the ' + \
'indifferent world around him is through illegal street racing -- which has made him particularly unpopular ' + \
'with the local authorities. To avoid jail time, Sean is sent out of the country to live with his Farther in ' + \
'the military, in a cramped apartment in a low-rent section of Tokyo. In the land that gave birth to the ' + \
'majority of modified racers on the road, the simple street race has been replaced by the ultimate ' + \
'pedal-to-the-metal, gravity-defying automotive challenge ... drift racing, a deadly combination of brutal ' + \
'speed on heart stopping courses of hairpin turns and switchbacks. For his first unsuccessful foray in drift ' + \
'racing, Shean unknowingly takes on D.K., the "Drift King," with ties to the Yakuza, the Japanese ' + \
'crime machine. The only way he can pay off the debt of his loss is to venture into the deadly realm of the ' + \
'Tokyo underworld, where the stakes are life and death. To avoid jail time, street racer Sean Boswell is sent ' + \
'to live with his father in Tokyo. There he discovers drift racing. After losing a race to Yakuza-connected ' + \
'D.K., the Drift King, Sean has to enter the Tokyo underworld to find a way to pay his debt.'
tokenized = nltk.word_tokenize(plot)
tagged = nltk.pos_tag(tokenized)
#print(tagged)
namedEnt = nltk.ne_chunk(tagged)
sean = namedEnt[4]
teenager = namedEnt[2]
print(namedEnt[4])
print(namedEnt[4].label())
print(namedEnt[4][0][1])
print(namedEnt[2])
def ne(doc):
tokenized = nltk.word_tokenize(doc)
tagged = nltk.pos_tag(tokenized)
namedEnt = nltk.ne_chunk(tagged)
return ' '.join([(e.label()+'_'+e[0][1]) if isinstance(e,nltk.tree.Tree) else e[0] for e in namedEnt])
ne(plot)
import io, json
from collections import OrderedDict
def load_movies(path):
""" Loads the data into memory. """
with io.open(path, 'r', encoding = 'latin-1') as f:
movies = json.load(f)
od = OrderedDict({(movie['title'],movie['year']):{'plot':movie['plot'],'cast':set(movie['cast']), \
'genres':set(movie['genres'])} \
for movie in movies}.items())
return od
def write_movies(movies, path):
with io.open(path, 'w', encoding='latin-1') as f:
data = [{'title':title,'year':year,'plot':val['plot'], 'cast':list(val['cast']), \
'genres':list(val['genres'])} for (title,year),val in movies.items()]
f.write(json.dumps(data, ensure_ascii=False))
movies = load_movies('data.json')
for movie, val in movies.items():
plot = val['plot']
val['plot'] = ne(plot)
write_movies(movies, 'ne_data.json')
###Output
_____no_output_____ |
.ipynb_checkpoints/Ensemble_Models-checkpoint.ipynb | ###Markdown
Load in the Validation and Test Set
###Code
X_val = np.load("/Users/Hoang/Machine_Learning/skin_cancer/skin_cancer_192_256/256_192_val.npy")
X_test = np.load("/Users/Hoang/Machine_Learning/skin_cancer/skin_cancer_192_256/256_192_test.npy")
y_val = np.load("/Users/Hoang/Machine_Learning/skin_cancer/skin_cancer_192_256/val_labels.npy")
y_test = np.load("/Users/Hoang/Machine_Learning/skin_cancer/skin_cancer_192_256/test_labels.npy")
y_val = to_categorical(y_val)
y_test = to_categorical(y_test)
X_val.shape, X_test.shape, y_val.shape, y_test.shape
input_shape = X_val[0,:,:,:].shape
model_input = Input(shape=input_shape)
###Output
_____no_output_____
###Markdown
Define InceptionV3
###Code
inception = InceptionV3(input_shape=input_shape, input_tensor=model_input, include_top=False, weights=None)
for layer in inception.layers:
layer.trainable = True
inception_last_layer = inception.get_layer('mixed10')
print('last layer output shape:', inception_last_layer.output_shape)
inception_last_output = inception_last_layer.output
# Flatten the output layer to 1 dimension
x_inception = layers.GlobalMaxPooling2D()(inception_last_output)
# Add a fully connected layer with 512 hidden units and ReLU activation
x_inception = layers.Dense(512, activation='relu')(x_inception)
# Add a dropout rate of 0.7
x_inception = layers.Dropout(0.5)(x_inception)
# Add a final sigmoid layer for classification
x_inception = layers.Dense(7, activation='softmax')(x_inception)
# Configure and compile the model
inception_model = Model(model_input, x_inception)
optimizer = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=True)
inception_model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
inception_model.load_weights("InceptionV3full.h5")
inception_model.summary()
###Output
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 192, 256, 3) 0
__________________________________________________________________________________________________
conv2d_185 (Conv2D) (None, 95, 127, 32) 864 input_1[0][0]
__________________________________________________________________________________________________
batch_normalization_185 (BatchN (None, 95, 127, 32) 96 conv2d_185[0][0]
__________________________________________________________________________________________________
activation_184 (Activation) (None, 95, 127, 32) 0 batch_normalization_185[0][0]
__________________________________________________________________________________________________
conv2d_186 (Conv2D) (None, 93, 125, 32) 9216 activation_184[0][0]
__________________________________________________________________________________________________
batch_normalization_186 (BatchN (None, 93, 125, 32) 96 conv2d_186[0][0]
__________________________________________________________________________________________________
activation_185 (Activation) (None, 93, 125, 32) 0 batch_normalization_186[0][0]
__________________________________________________________________________________________________
conv2d_187 (Conv2D) (None, 93, 125, 64) 18432 activation_185[0][0]
__________________________________________________________________________________________________
batch_normalization_187 (BatchN (None, 93, 125, 64) 192 conv2d_187[0][0]
__________________________________________________________________________________________________
activation_186 (Activation) (None, 93, 125, 64) 0 batch_normalization_187[0][0]
__________________________________________________________________________________________________
max_pooling2d_9 (MaxPooling2D) (None, 46, 62, 64) 0 activation_186[0][0]
__________________________________________________________________________________________________
conv2d_188 (Conv2D) (None, 46, 62, 80) 5120 max_pooling2d_9[0][0]
__________________________________________________________________________________________________
batch_normalization_188 (BatchN (None, 46, 62, 80) 240 conv2d_188[0][0]
__________________________________________________________________________________________________
activation_187 (Activation) (None, 46, 62, 80) 0 batch_normalization_188[0][0]
__________________________________________________________________________________________________
conv2d_189 (Conv2D) (None, 44, 60, 192) 138240 activation_187[0][0]
__________________________________________________________________________________________________
batch_normalization_189 (BatchN (None, 44, 60, 192) 576 conv2d_189[0][0]
__________________________________________________________________________________________________
activation_188 (Activation) (None, 44, 60, 192) 0 batch_normalization_189[0][0]
__________________________________________________________________________________________________
max_pooling2d_10 (MaxPooling2D) (None, 21, 29, 192) 0 activation_188[0][0]
__________________________________________________________________________________________________
conv2d_193 (Conv2D) (None, 21, 29, 64) 12288 max_pooling2d_10[0][0]
__________________________________________________________________________________________________
batch_normalization_193 (BatchN (None, 21, 29, 64) 192 conv2d_193[0][0]
__________________________________________________________________________________________________
activation_192 (Activation) (None, 21, 29, 64) 0 batch_normalization_193[0][0]
__________________________________________________________________________________________________
conv2d_191 (Conv2D) (None, 21, 29, 48) 9216 max_pooling2d_10[0][0]
__________________________________________________________________________________________________
conv2d_194 (Conv2D) (None, 21, 29, 96) 55296 activation_192[0][0]
__________________________________________________________________________________________________
batch_normalization_191 (BatchN (None, 21, 29, 48) 144 conv2d_191[0][0]
__________________________________________________________________________________________________
batch_normalization_194 (BatchN (None, 21, 29, 96) 288 conv2d_194[0][0]
__________________________________________________________________________________________________
activation_190 (Activation) (None, 21, 29, 48) 0 batch_normalization_191[0][0]
__________________________________________________________________________________________________
activation_193 (Activation) (None, 21, 29, 96) 0 batch_normalization_194[0][0]
__________________________________________________________________________________________________
average_pooling2d_18 (AveragePo (None, 21, 29, 192) 0 max_pooling2d_10[0][0]
__________________________________________________________________________________________________
conv2d_190 (Conv2D) (None, 21, 29, 64) 12288 max_pooling2d_10[0][0]
__________________________________________________________________________________________________
conv2d_192 (Conv2D) (None, 21, 29, 64) 76800 activation_190[0][0]
__________________________________________________________________________________________________
conv2d_195 (Conv2D) (None, 21, 29, 96) 82944 activation_193[0][0]
__________________________________________________________________________________________________
conv2d_196 (Conv2D) (None, 21, 29, 32) 6144 average_pooling2d_18[0][0]
__________________________________________________________________________________________________
batch_normalization_190 (BatchN (None, 21, 29, 64) 192 conv2d_190[0][0]
__________________________________________________________________________________________________
batch_normalization_192 (BatchN (None, 21, 29, 64) 192 conv2d_192[0][0]
__________________________________________________________________________________________________
batch_normalization_195 (BatchN (None, 21, 29, 96) 288 conv2d_195[0][0]
__________________________________________________________________________________________________
batch_normalization_196 (BatchN (None, 21, 29, 32) 96 conv2d_196[0][0]
__________________________________________________________________________________________________
activation_189 (Activation) (None, 21, 29, 64) 0 batch_normalization_190[0][0]
__________________________________________________________________________________________________
activation_191 (Activation) (None, 21, 29, 64) 0 batch_normalization_192[0][0]
__________________________________________________________________________________________________
activation_194 (Activation) (None, 21, 29, 96) 0 batch_normalization_195[0][0]
__________________________________________________________________________________________________
activation_195 (Activation) (None, 21, 29, 32) 0 batch_normalization_196[0][0]
__________________________________________________________________________________________________
mixed0 (Concatenate) (None, 21, 29, 256) 0 activation_189[0][0]
activation_191[0][0]
activation_194[0][0]
activation_195[0][0]
__________________________________________________________________________________________________
conv2d_200 (Conv2D) (None, 21, 29, 64) 16384 mixed0[0][0]
__________________________________________________________________________________________________
batch_normalization_200 (BatchN (None, 21, 29, 64) 192 conv2d_200[0][0]
__________________________________________________________________________________________________
activation_199 (Activation) (None, 21, 29, 64) 0 batch_normalization_200[0][0]
__________________________________________________________________________________________________
conv2d_198 (Conv2D) (None, 21, 29, 48) 12288 mixed0[0][0]
__________________________________________________________________________________________________
conv2d_201 (Conv2D) (None, 21, 29, 96) 55296 activation_199[0][0]
__________________________________________________________________________________________________
batch_normalization_198 (BatchN (None, 21, 29, 48) 144 conv2d_198[0][0]
__________________________________________________________________________________________________
batch_normalization_201 (BatchN (None, 21, 29, 96) 288 conv2d_201[0][0]
__________________________________________________________________________________________________
activation_197 (Activation) (None, 21, 29, 48) 0 batch_normalization_198[0][0]
__________________________________________________________________________________________________
activation_200 (Activation) (None, 21, 29, 96) 0 batch_normalization_201[0][0]
__________________________________________________________________________________________________
average_pooling2d_19 (AveragePo (None, 21, 29, 256) 0 mixed0[0][0]
__________________________________________________________________________________________________
conv2d_197 (Conv2D) (None, 21, 29, 64) 16384 mixed0[0][0]
__________________________________________________________________________________________________
conv2d_199 (Conv2D) (None, 21, 29, 64) 76800 activation_197[0][0]
__________________________________________________________________________________________________
conv2d_202 (Conv2D) (None, 21, 29, 96) 82944 activation_200[0][0]
__________________________________________________________________________________________________
conv2d_203 (Conv2D) (None, 21, 29, 64) 16384 average_pooling2d_19[0][0]
__________________________________________________________________________________________________
batch_normalization_197 (BatchN (None, 21, 29, 64) 192 conv2d_197[0][0]
__________________________________________________________________________________________________
batch_normalization_199 (BatchN (None, 21, 29, 64) 192 conv2d_199[0][0]
__________________________________________________________________________________________________
batch_normalization_202 (BatchN (None, 21, 29, 96) 288 conv2d_202[0][0]
__________________________________________________________________________________________________
batch_normalization_203 (BatchN (None, 21, 29, 64) 192 conv2d_203[0][0]
__________________________________________________________________________________________________
activation_196 (Activation) (None, 21, 29, 64) 0 batch_normalization_197[0][0]
__________________________________________________________________________________________________
activation_198 (Activation) (None, 21, 29, 64) 0 batch_normalization_199[0][0]
__________________________________________________________________________________________________
activation_201 (Activation) (None, 21, 29, 96) 0 batch_normalization_202[0][0]
__________________________________________________________________________________________________
activation_202 (Activation) (None, 21, 29, 64) 0 batch_normalization_203[0][0]
__________________________________________________________________________________________________
mixed1 (Concatenate) (None, 21, 29, 288) 0 activation_196[0][0]
activation_198[0][0]
activation_201[0][0]
activation_202[0][0]
__________________________________________________________________________________________________
conv2d_207 (Conv2D) (None, 21, 29, 64) 18432 mixed1[0][0]
__________________________________________________________________________________________________
batch_normalization_207 (BatchN (None, 21, 29, 64) 192 conv2d_207[0][0]
__________________________________________________________________________________________________
activation_206 (Activation) (None, 21, 29, 64) 0 batch_normalization_207[0][0]
__________________________________________________________________________________________________
conv2d_205 (Conv2D) (None, 21, 29, 48) 13824 mixed1[0][0]
__________________________________________________________________________________________________
conv2d_208 (Conv2D) (None, 21, 29, 96) 55296 activation_206[0][0]
__________________________________________________________________________________________________
batch_normalization_205 (BatchN (None, 21, 29, 48) 144 conv2d_205[0][0]
__________________________________________________________________________________________________
batch_normalization_208 (BatchN (None, 21, 29, 96) 288 conv2d_208[0][0]
__________________________________________________________________________________________________
activation_204 (Activation) (None, 21, 29, 48) 0 batch_normalization_205[0][0]
__________________________________________________________________________________________________
activation_207 (Activation) (None, 21, 29, 96) 0 batch_normalization_208[0][0]
__________________________________________________________________________________________________
average_pooling2d_20 (AveragePo (None, 21, 29, 288) 0 mixed1[0][0]
__________________________________________________________________________________________________
conv2d_204 (Conv2D) (None, 21, 29, 64) 18432 mixed1[0][0]
__________________________________________________________________________________________________
conv2d_206 (Conv2D) (None, 21, 29, 64) 76800 activation_204[0][0]
__________________________________________________________________________________________________
conv2d_209 (Conv2D) (None, 21, 29, 96) 82944 activation_207[0][0]
__________________________________________________________________________________________________
conv2d_210 (Conv2D) (None, 21, 29, 64) 18432 average_pooling2d_20[0][0]
__________________________________________________________________________________________________
batch_normalization_204 (BatchN (None, 21, 29, 64) 192 conv2d_204[0][0]
__________________________________________________________________________________________________
batch_normalization_206 (BatchN (None, 21, 29, 64) 192 conv2d_206[0][0]
__________________________________________________________________________________________________
batch_normalization_209 (BatchN (None, 21, 29, 96) 288 conv2d_209[0][0]
__________________________________________________________________________________________________
batch_normalization_210 (BatchN (None, 21, 29, 64) 192 conv2d_210[0][0]
__________________________________________________________________________________________________
activation_203 (Activation) (None, 21, 29, 64) 0 batch_normalization_204[0][0]
__________________________________________________________________________________________________
activation_205 (Activation) (None, 21, 29, 64) 0 batch_normalization_206[0][0]
__________________________________________________________________________________________________
activation_208 (Activation) (None, 21, 29, 96) 0 batch_normalization_209[0][0]
__________________________________________________________________________________________________
activation_209 (Activation) (None, 21, 29, 64) 0 batch_normalization_210[0][0]
__________________________________________________________________________________________________
mixed2 (Concatenate) (None, 21, 29, 288) 0 activation_203[0][0]
activation_205[0][0]
activation_208[0][0]
activation_209[0][0]
__________________________________________________________________________________________________
conv2d_212 (Conv2D) (None, 21, 29, 64) 18432 mixed2[0][0]
__________________________________________________________________________________________________
batch_normalization_212 (BatchN (None, 21, 29, 64) 192 conv2d_212[0][0]
__________________________________________________________________________________________________
activation_211 (Activation) (None, 21, 29, 64) 0 batch_normalization_212[0][0]
__________________________________________________________________________________________________
conv2d_213 (Conv2D) (None, 21, 29, 96) 55296 activation_211[0][0]
__________________________________________________________________________________________________
batch_normalization_213 (BatchN (None, 21, 29, 96) 288 conv2d_213[0][0]
__________________________________________________________________________________________________
activation_212 (Activation) (None, 21, 29, 96) 0 batch_normalization_213[0][0]
__________________________________________________________________________________________________
conv2d_211 (Conv2D) (None, 10, 14, 384) 995328 mixed2[0][0]
__________________________________________________________________________________________________
conv2d_214 (Conv2D) (None, 10, 14, 96) 82944 activation_212[0][0]
__________________________________________________________________________________________________
batch_normalization_211 (BatchN (None, 10, 14, 384) 1152 conv2d_211[0][0]
__________________________________________________________________________________________________
batch_normalization_214 (BatchN (None, 10, 14, 96) 288 conv2d_214[0][0]
__________________________________________________________________________________________________
activation_210 (Activation) (None, 10, 14, 384) 0 batch_normalization_211[0][0]
__________________________________________________________________________________________________
activation_213 (Activation) (None, 10, 14, 96) 0 batch_normalization_214[0][0]
__________________________________________________________________________________________________
max_pooling2d_11 (MaxPooling2D) (None, 10, 14, 288) 0 mixed2[0][0]
__________________________________________________________________________________________________
mixed3 (Concatenate) (None, 10, 14, 768) 0 activation_210[0][0]
activation_213[0][0]
max_pooling2d_11[0][0]
__________________________________________________________________________________________________
conv2d_219 (Conv2D) (None, 10, 14, 128) 98304 mixed3[0][0]
__________________________________________________________________________________________________
batch_normalization_219 (BatchN (None, 10, 14, 128) 384 conv2d_219[0][0]
__________________________________________________________________________________________________
activation_218 (Activation) (None, 10, 14, 128) 0 batch_normalization_219[0][0]
__________________________________________________________________________________________________
conv2d_220 (Conv2D) (None, 10, 14, 128) 114688 activation_218[0][0]
__________________________________________________________________________________________________
batch_normalization_220 (BatchN (None, 10, 14, 128) 384 conv2d_220[0][0]
__________________________________________________________________________________________________
activation_219 (Activation) (None, 10, 14, 128) 0 batch_normalization_220[0][0]
__________________________________________________________________________________________________
conv2d_216 (Conv2D) (None, 10, 14, 128) 98304 mixed3[0][0]
__________________________________________________________________________________________________
conv2d_221 (Conv2D) (None, 10, 14, 128) 114688 activation_219[0][0]
__________________________________________________________________________________________________
batch_normalization_216 (BatchN (None, 10, 14, 128) 384 conv2d_216[0][0]
__________________________________________________________________________________________________
batch_normalization_221 (BatchN (None, 10, 14, 128) 384 conv2d_221[0][0]
__________________________________________________________________________________________________
activation_215 (Activation) (None, 10, 14, 128) 0 batch_normalization_216[0][0]
__________________________________________________________________________________________________
activation_220 (Activation) (None, 10, 14, 128) 0 batch_normalization_221[0][0]
__________________________________________________________________________________________________
conv2d_217 (Conv2D) (None, 10, 14, 128) 114688 activation_215[0][0]
__________________________________________________________________________________________________
conv2d_222 (Conv2D) (None, 10, 14, 128) 114688 activation_220[0][0]
__________________________________________________________________________________________________
batch_normalization_217 (BatchN (None, 10, 14, 128) 384 conv2d_217[0][0]
__________________________________________________________________________________________________
batch_normalization_222 (BatchN (None, 10, 14, 128) 384 conv2d_222[0][0]
__________________________________________________________________________________________________
activation_216 (Activation) (None, 10, 14, 128) 0 batch_normalization_217[0][0]
__________________________________________________________________________________________________
activation_221 (Activation) (None, 10, 14, 128) 0 batch_normalization_222[0][0]
__________________________________________________________________________________________________
average_pooling2d_21 (AveragePo (None, 10, 14, 768) 0 mixed3[0][0]
__________________________________________________________________________________________________
conv2d_215 (Conv2D) (None, 10, 14, 192) 147456 mixed3[0][0]
__________________________________________________________________________________________________
conv2d_218 (Conv2D) (None, 10, 14, 192) 172032 activation_216[0][0]
__________________________________________________________________________________________________
conv2d_223 (Conv2D) (None, 10, 14, 192) 172032 activation_221[0][0]
__________________________________________________________________________________________________
conv2d_224 (Conv2D) (None, 10, 14, 192) 147456 average_pooling2d_21[0][0]
__________________________________________________________________________________________________
batch_normalization_215 (BatchN (None, 10, 14, 192) 576 conv2d_215[0][0]
__________________________________________________________________________________________________
batch_normalization_218 (BatchN (None, 10, 14, 192) 576 conv2d_218[0][0]
__________________________________________________________________________________________________
batch_normalization_223 (BatchN (None, 10, 14, 192) 576 conv2d_223[0][0]
__________________________________________________________________________________________________
batch_normalization_224 (BatchN (None, 10, 14, 192) 576 conv2d_224[0][0]
__________________________________________________________________________________________________
activation_214 (Activation) (None, 10, 14, 192) 0 batch_normalization_215[0][0]
__________________________________________________________________________________________________
activation_217 (Activation) (None, 10, 14, 192) 0 batch_normalization_218[0][0]
__________________________________________________________________________________________________
activation_222 (Activation) (None, 10, 14, 192) 0 batch_normalization_223[0][0]
__________________________________________________________________________________________________
activation_223 (Activation) (None, 10, 14, 192) 0 batch_normalization_224[0][0]
__________________________________________________________________________________________________
mixed4 (Concatenate) (None, 10, 14, 768) 0 activation_214[0][0]
activation_217[0][0]
activation_222[0][0]
activation_223[0][0]
__________________________________________________________________________________________________
conv2d_229 (Conv2D) (None, 10, 14, 160) 122880 mixed4[0][0]
__________________________________________________________________________________________________
batch_normalization_229 (BatchN (None, 10, 14, 160) 480 conv2d_229[0][0]
__________________________________________________________________________________________________
activation_228 (Activation) (None, 10, 14, 160) 0 batch_normalization_229[0][0]
__________________________________________________________________________________________________
conv2d_230 (Conv2D) (None, 10, 14, 160) 179200 activation_228[0][0]
__________________________________________________________________________________________________
batch_normalization_230 (BatchN (None, 10, 14, 160) 480 conv2d_230[0][0]
__________________________________________________________________________________________________
activation_229 (Activation) (None, 10, 14, 160) 0 batch_normalization_230[0][0]
__________________________________________________________________________________________________
conv2d_226 (Conv2D) (None, 10, 14, 160) 122880 mixed4[0][0]
__________________________________________________________________________________________________
conv2d_231 (Conv2D) (None, 10, 14, 160) 179200 activation_229[0][0]
__________________________________________________________________________________________________
batch_normalization_226 (BatchN (None, 10, 14, 160) 480 conv2d_226[0][0]
__________________________________________________________________________________________________
batch_normalization_231 (BatchN (None, 10, 14, 160) 480 conv2d_231[0][0]
__________________________________________________________________________________________________
activation_225 (Activation) (None, 10, 14, 160) 0 batch_normalization_226[0][0]
__________________________________________________________________________________________________
activation_230 (Activation) (None, 10, 14, 160) 0 batch_normalization_231[0][0]
__________________________________________________________________________________________________
conv2d_227 (Conv2D) (None, 10, 14, 160) 179200 activation_225[0][0]
__________________________________________________________________________________________________
conv2d_232 (Conv2D) (None, 10, 14, 160) 179200 activation_230[0][0]
__________________________________________________________________________________________________
batch_normalization_227 (BatchN (None, 10, 14, 160) 480 conv2d_227[0][0]
__________________________________________________________________________________________________
batch_normalization_232 (BatchN (None, 10, 14, 160) 480 conv2d_232[0][0]
__________________________________________________________________________________________________
activation_226 (Activation) (None, 10, 14, 160) 0 batch_normalization_227[0][0]
__________________________________________________________________________________________________
activation_231 (Activation) (None, 10, 14, 160) 0 batch_normalization_232[0][0]
__________________________________________________________________________________________________
average_pooling2d_22 (AveragePo (None, 10, 14, 768) 0 mixed4[0][0]
__________________________________________________________________________________________________
conv2d_225 (Conv2D) (None, 10, 14, 192) 147456 mixed4[0][0]
__________________________________________________________________________________________________
conv2d_228 (Conv2D) (None, 10, 14, 192) 215040 activation_226[0][0]
__________________________________________________________________________________________________
conv2d_233 (Conv2D) (None, 10, 14, 192) 215040 activation_231[0][0]
__________________________________________________________________________________________________
conv2d_234 (Conv2D) (None, 10, 14, 192) 147456 average_pooling2d_22[0][0]
__________________________________________________________________________________________________
batch_normalization_225 (BatchN (None, 10, 14, 192) 576 conv2d_225[0][0]
__________________________________________________________________________________________________
batch_normalization_228 (BatchN (None, 10, 14, 192) 576 conv2d_228[0][0]
__________________________________________________________________________________________________
batch_normalization_233 (BatchN (None, 10, 14, 192) 576 conv2d_233[0][0]
__________________________________________________________________________________________________
batch_normalization_234 (BatchN (None, 10, 14, 192) 576 conv2d_234[0][0]
__________________________________________________________________________________________________
activation_224 (Activation) (None, 10, 14, 192) 0 batch_normalization_225[0][0]
__________________________________________________________________________________________________
activation_227 (Activation) (None, 10, 14, 192) 0 batch_normalization_228[0][0]
__________________________________________________________________________________________________
activation_232 (Activation) (None, 10, 14, 192) 0 batch_normalization_233[0][0]
__________________________________________________________________________________________________
activation_233 (Activation) (None, 10, 14, 192) 0 batch_normalization_234[0][0]
__________________________________________________________________________________________________
mixed5 (Concatenate) (None, 10, 14, 768) 0 activation_224[0][0]
activation_227[0][0]
activation_232[0][0]
activation_233[0][0]
__________________________________________________________________________________________________
conv2d_239 (Conv2D) (None, 10, 14, 160) 122880 mixed5[0][0]
__________________________________________________________________________________________________
batch_normalization_239 (BatchN (None, 10, 14, 160) 480 conv2d_239[0][0]
__________________________________________________________________________________________________
activation_238 (Activation) (None, 10, 14, 160) 0 batch_normalization_239[0][0]
__________________________________________________________________________________________________
conv2d_240 (Conv2D) (None, 10, 14, 160) 179200 activation_238[0][0]
__________________________________________________________________________________________________
batch_normalization_240 (BatchN (None, 10, 14, 160) 480 conv2d_240[0][0]
__________________________________________________________________________________________________
activation_239 (Activation) (None, 10, 14, 160) 0 batch_normalization_240[0][0]
__________________________________________________________________________________________________
conv2d_236 (Conv2D) (None, 10, 14, 160) 122880 mixed5[0][0]
__________________________________________________________________________________________________
conv2d_241 (Conv2D) (None, 10, 14, 160) 179200 activation_239[0][0]
__________________________________________________________________________________________________
batch_normalization_236 (BatchN (None, 10, 14, 160) 480 conv2d_236[0][0]
__________________________________________________________________________________________________
batch_normalization_241 (BatchN (None, 10, 14, 160) 480 conv2d_241[0][0]
__________________________________________________________________________________________________
activation_235 (Activation) (None, 10, 14, 160) 0 batch_normalization_236[0][0]
__________________________________________________________________________________________________
activation_240 (Activation) (None, 10, 14, 160) 0 batch_normalization_241[0][0]
__________________________________________________________________________________________________
conv2d_237 (Conv2D) (None, 10, 14, 160) 179200 activation_235[0][0]
__________________________________________________________________________________________________
conv2d_242 (Conv2D) (None, 10, 14, 160) 179200 activation_240[0][0]
__________________________________________________________________________________________________
batch_normalization_237 (BatchN (None, 10, 14, 160) 480 conv2d_237[0][0]
__________________________________________________________________________________________________
batch_normalization_242 (BatchN (None, 10, 14, 160) 480 conv2d_242[0][0]
__________________________________________________________________________________________________
activation_236 (Activation) (None, 10, 14, 160) 0 batch_normalization_237[0][0]
__________________________________________________________________________________________________
activation_241 (Activation) (None, 10, 14, 160) 0 batch_normalization_242[0][0]
__________________________________________________________________________________________________
average_pooling2d_23 (AveragePo (None, 10, 14, 768) 0 mixed5[0][0]
__________________________________________________________________________________________________
conv2d_235 (Conv2D) (None, 10, 14, 192) 147456 mixed5[0][0]
__________________________________________________________________________________________________
conv2d_238 (Conv2D) (None, 10, 14, 192) 215040 activation_236[0][0]
__________________________________________________________________________________________________
conv2d_243 (Conv2D) (None, 10, 14, 192) 215040 activation_241[0][0]
__________________________________________________________________________________________________
conv2d_244 (Conv2D) (None, 10, 14, 192) 147456 average_pooling2d_23[0][0]
__________________________________________________________________________________________________
batch_normalization_235 (BatchN (None, 10, 14, 192) 576 conv2d_235[0][0]
__________________________________________________________________________________________________
batch_normalization_238 (BatchN (None, 10, 14, 192) 576 conv2d_238[0][0]
__________________________________________________________________________________________________
batch_normalization_243 (BatchN (None, 10, 14, 192) 576 conv2d_243[0][0]
__________________________________________________________________________________________________
batch_normalization_244 (BatchN (None, 10, 14, 192) 576 conv2d_244[0][0]
__________________________________________________________________________________________________
activation_234 (Activation) (None, 10, 14, 192) 0 batch_normalization_235[0][0]
__________________________________________________________________________________________________
activation_237 (Activation) (None, 10, 14, 192) 0 batch_normalization_238[0][0]
__________________________________________________________________________________________________
activation_242 (Activation) (None, 10, 14, 192) 0 batch_normalization_243[0][0]
__________________________________________________________________________________________________
activation_243 (Activation) (None, 10, 14, 192) 0 batch_normalization_244[0][0]
__________________________________________________________________________________________________
mixed6 (Concatenate) (None, 10, 14, 768) 0 activation_234[0][0]
activation_237[0][0]
activation_242[0][0]
activation_243[0][0]
__________________________________________________________________________________________________
conv2d_249 (Conv2D) (None, 10, 14, 192) 147456 mixed6[0][0]
__________________________________________________________________________________________________
batch_normalization_249 (BatchN (None, 10, 14, 192) 576 conv2d_249[0][0]
__________________________________________________________________________________________________
activation_248 (Activation) (None, 10, 14, 192) 0 batch_normalization_249[0][0]
__________________________________________________________________________________________________
conv2d_250 (Conv2D) (None, 10, 14, 192) 258048 activation_248[0][0]
__________________________________________________________________________________________________
batch_normalization_250 (BatchN (None, 10, 14, 192) 576 conv2d_250[0][0]
__________________________________________________________________________________________________
activation_249 (Activation) (None, 10, 14, 192) 0 batch_normalization_250[0][0]
__________________________________________________________________________________________________
conv2d_246 (Conv2D) (None, 10, 14, 192) 147456 mixed6[0][0]
__________________________________________________________________________________________________
conv2d_251 (Conv2D) (None, 10, 14, 192) 258048 activation_249[0][0]
__________________________________________________________________________________________________
batch_normalization_246 (BatchN (None, 10, 14, 192) 576 conv2d_246[0][0]
__________________________________________________________________________________________________
batch_normalization_251 (BatchN (None, 10, 14, 192) 576 conv2d_251[0][0]
__________________________________________________________________________________________________
activation_245 (Activation) (None, 10, 14, 192) 0 batch_normalization_246[0][0]
__________________________________________________________________________________________________
activation_250 (Activation) (None, 10, 14, 192) 0 batch_normalization_251[0][0]
__________________________________________________________________________________________________
conv2d_247 (Conv2D) (None, 10, 14, 192) 258048 activation_245[0][0]
__________________________________________________________________________________________________
conv2d_252 (Conv2D) (None, 10, 14, 192) 258048 activation_250[0][0]
__________________________________________________________________________________________________
batch_normalization_247 (BatchN (None, 10, 14, 192) 576 conv2d_247[0][0]
__________________________________________________________________________________________________
batch_normalization_252 (BatchN (None, 10, 14, 192) 576 conv2d_252[0][0]
__________________________________________________________________________________________________
activation_246 (Activation) (None, 10, 14, 192) 0 batch_normalization_247[0][0]
__________________________________________________________________________________________________
activation_251 (Activation) (None, 10, 14, 192) 0 batch_normalization_252[0][0]
__________________________________________________________________________________________________
average_pooling2d_24 (AveragePo (None, 10, 14, 768) 0 mixed6[0][0]
__________________________________________________________________________________________________
conv2d_245 (Conv2D) (None, 10, 14, 192) 147456 mixed6[0][0]
__________________________________________________________________________________________________
conv2d_248 (Conv2D) (None, 10, 14, 192) 258048 activation_246[0][0]
__________________________________________________________________________________________________
conv2d_253 (Conv2D) (None, 10, 14, 192) 258048 activation_251[0][0]
__________________________________________________________________________________________________
conv2d_254 (Conv2D) (None, 10, 14, 192) 147456 average_pooling2d_24[0][0]
__________________________________________________________________________________________________
batch_normalization_245 (BatchN (None, 10, 14, 192) 576 conv2d_245[0][0]
__________________________________________________________________________________________________
batch_normalization_248 (BatchN (None, 10, 14, 192) 576 conv2d_248[0][0]
__________________________________________________________________________________________________
batch_normalization_253 (BatchN (None, 10, 14, 192) 576 conv2d_253[0][0]
__________________________________________________________________________________________________
batch_normalization_254 (BatchN (None, 10, 14, 192) 576 conv2d_254[0][0]
__________________________________________________________________________________________________
activation_244 (Activation) (None, 10, 14, 192) 0 batch_normalization_245[0][0]
__________________________________________________________________________________________________
activation_247 (Activation) (None, 10, 14, 192) 0 batch_normalization_248[0][0]
__________________________________________________________________________________________________
activation_252 (Activation) (None, 10, 14, 192) 0 batch_normalization_253[0][0]
__________________________________________________________________________________________________
activation_253 (Activation) (None, 10, 14, 192) 0 batch_normalization_254[0][0]
__________________________________________________________________________________________________
mixed7 (Concatenate) (None, 10, 14, 768) 0 activation_244[0][0]
activation_247[0][0]
activation_252[0][0]
activation_253[0][0]
__________________________________________________________________________________________________
conv2d_257 (Conv2D) (None, 10, 14, 192) 147456 mixed7[0][0]
__________________________________________________________________________________________________
batch_normalization_257 (BatchN (None, 10, 14, 192) 576 conv2d_257[0][0]
__________________________________________________________________________________________________
activation_256 (Activation) (None, 10, 14, 192) 0 batch_normalization_257[0][0]
__________________________________________________________________________________________________
conv2d_258 (Conv2D) (None, 10, 14, 192) 258048 activation_256[0][0]
__________________________________________________________________________________________________
batch_normalization_258 (BatchN (None, 10, 14, 192) 576 conv2d_258[0][0]
__________________________________________________________________________________________________
activation_257 (Activation) (None, 10, 14, 192) 0 batch_normalization_258[0][0]
__________________________________________________________________________________________________
conv2d_255 (Conv2D) (None, 10, 14, 192) 147456 mixed7[0][0]
__________________________________________________________________________________________________
conv2d_259 (Conv2D) (None, 10, 14, 192) 258048 activation_257[0][0]
__________________________________________________________________________________________________
batch_normalization_255 (BatchN (None, 10, 14, 192) 576 conv2d_255[0][0]
__________________________________________________________________________________________________
batch_normalization_259 (BatchN (None, 10, 14, 192) 576 conv2d_259[0][0]
__________________________________________________________________________________________________
activation_254 (Activation) (None, 10, 14, 192) 0 batch_normalization_255[0][0]
__________________________________________________________________________________________________
activation_258 (Activation) (None, 10, 14, 192) 0 batch_normalization_259[0][0]
__________________________________________________________________________________________________
conv2d_256 (Conv2D) (None, 4, 6, 320) 552960 activation_254[0][0]
__________________________________________________________________________________________________
conv2d_260 (Conv2D) (None, 4, 6, 192) 331776 activation_258[0][0]
__________________________________________________________________________________________________
batch_normalization_256 (BatchN (None, 4, 6, 320) 960 conv2d_256[0][0]
__________________________________________________________________________________________________
batch_normalization_260 (BatchN (None, 4, 6, 192) 576 conv2d_260[0][0]
__________________________________________________________________________________________________
activation_255 (Activation) (None, 4, 6, 320) 0 batch_normalization_256[0][0]
__________________________________________________________________________________________________
activation_259 (Activation) (None, 4, 6, 192) 0 batch_normalization_260[0][0]
__________________________________________________________________________________________________
max_pooling2d_12 (MaxPooling2D) (None, 4, 6, 768) 0 mixed7[0][0]
__________________________________________________________________________________________________
mixed8 (Concatenate) (None, 4, 6, 1280) 0 activation_255[0][0]
activation_259[0][0]
max_pooling2d_12[0][0]
__________________________________________________________________________________________________
conv2d_265 (Conv2D) (None, 4, 6, 448) 573440 mixed8[0][0]
__________________________________________________________________________________________________
batch_normalization_265 (BatchN (None, 4, 6, 448) 1344 conv2d_265[0][0]
__________________________________________________________________________________________________
activation_264 (Activation) (None, 4, 6, 448) 0 batch_normalization_265[0][0]
__________________________________________________________________________________________________
conv2d_262 (Conv2D) (None, 4, 6, 384) 491520 mixed8[0][0]
__________________________________________________________________________________________________
conv2d_266 (Conv2D) (None, 4, 6, 384) 1548288 activation_264[0][0]
__________________________________________________________________________________________________
batch_normalization_262 (BatchN (None, 4, 6, 384) 1152 conv2d_262[0][0]
__________________________________________________________________________________________________
batch_normalization_266 (BatchN (None, 4, 6, 384) 1152 conv2d_266[0][0]
__________________________________________________________________________________________________
activation_261 (Activation) (None, 4, 6, 384) 0 batch_normalization_262[0][0]
__________________________________________________________________________________________________
activation_265 (Activation) (None, 4, 6, 384) 0 batch_normalization_266[0][0]
__________________________________________________________________________________________________
conv2d_263 (Conv2D) (None, 4, 6, 384) 442368 activation_261[0][0]
__________________________________________________________________________________________________
conv2d_264 (Conv2D) (None, 4, 6, 384) 442368 activation_261[0][0]
__________________________________________________________________________________________________
conv2d_267 (Conv2D) (None, 4, 6, 384) 442368 activation_265[0][0]
__________________________________________________________________________________________________
conv2d_268 (Conv2D) (None, 4, 6, 384) 442368 activation_265[0][0]
__________________________________________________________________________________________________
average_pooling2d_25 (AveragePo (None, 4, 6, 1280) 0 mixed8[0][0]
__________________________________________________________________________________________________
conv2d_261 (Conv2D) (None, 4, 6, 320) 409600 mixed8[0][0]
__________________________________________________________________________________________________
batch_normalization_263 (BatchN (None, 4, 6, 384) 1152 conv2d_263[0][0]
__________________________________________________________________________________________________
batch_normalization_264 (BatchN (None, 4, 6, 384) 1152 conv2d_264[0][0]
__________________________________________________________________________________________________
batch_normalization_267 (BatchN (None, 4, 6, 384) 1152 conv2d_267[0][0]
__________________________________________________________________________________________________
batch_normalization_268 (BatchN (None, 4, 6, 384) 1152 conv2d_268[0][0]
__________________________________________________________________________________________________
conv2d_269 (Conv2D) (None, 4, 6, 192) 245760 average_pooling2d_25[0][0]
__________________________________________________________________________________________________
batch_normalization_261 (BatchN (None, 4, 6, 320) 960 conv2d_261[0][0]
__________________________________________________________________________________________________
activation_262 (Activation) (None, 4, 6, 384) 0 batch_normalization_263[0][0]
__________________________________________________________________________________________________
activation_263 (Activation) (None, 4, 6, 384) 0 batch_normalization_264[0][0]
__________________________________________________________________________________________________
activation_266 (Activation) (None, 4, 6, 384) 0 batch_normalization_267[0][0]
__________________________________________________________________________________________________
activation_267 (Activation) (None, 4, 6, 384) 0 batch_normalization_268[0][0]
__________________________________________________________________________________________________
batch_normalization_269 (BatchN (None, 4, 6, 192) 576 conv2d_269[0][0]
__________________________________________________________________________________________________
activation_260 (Activation) (None, 4, 6, 320) 0 batch_normalization_261[0][0]
__________________________________________________________________________________________________
mixed9_0 (Concatenate) (None, 4, 6, 768) 0 activation_262[0][0]
activation_263[0][0]
__________________________________________________________________________________________________
concatenate_4 (Concatenate) (None, 4, 6, 768) 0 activation_266[0][0]
activation_267[0][0]
__________________________________________________________________________________________________
activation_268 (Activation) (None, 4, 6, 192) 0 batch_normalization_269[0][0]
__________________________________________________________________________________________________
mixed9 (Concatenate) (None, 4, 6, 2048) 0 activation_260[0][0]
mixed9_0[0][0]
concatenate_4[0][0]
activation_268[0][0]
__________________________________________________________________________________________________
conv2d_274 (Conv2D) (None, 4, 6, 448) 917504 mixed9[0][0]
__________________________________________________________________________________________________
batch_normalization_274 (BatchN (None, 4, 6, 448) 1344 conv2d_274[0][0]
__________________________________________________________________________________________________
activation_273 (Activation) (None, 4, 6, 448) 0 batch_normalization_274[0][0]
__________________________________________________________________________________________________
conv2d_271 (Conv2D) (None, 4, 6, 384) 786432 mixed9[0][0]
__________________________________________________________________________________________________
conv2d_275 (Conv2D) (None, 4, 6, 384) 1548288 activation_273[0][0]
__________________________________________________________________________________________________
batch_normalization_271 (BatchN (None, 4, 6, 384) 1152 conv2d_271[0][0]
__________________________________________________________________________________________________
batch_normalization_275 (BatchN (None, 4, 6, 384) 1152 conv2d_275[0][0]
__________________________________________________________________________________________________
activation_270 (Activation) (None, 4, 6, 384) 0 batch_normalization_271[0][0]
__________________________________________________________________________________________________
activation_274 (Activation) (None, 4, 6, 384) 0 batch_normalization_275[0][0]
__________________________________________________________________________________________________
conv2d_272 (Conv2D) (None, 4, 6, 384) 442368 activation_270[0][0]
__________________________________________________________________________________________________
conv2d_273 (Conv2D) (None, 4, 6, 384) 442368 activation_270[0][0]
__________________________________________________________________________________________________
conv2d_276 (Conv2D) (None, 4, 6, 384) 442368 activation_274[0][0]
__________________________________________________________________________________________________
conv2d_277 (Conv2D) (None, 4, 6, 384) 442368 activation_274[0][0]
__________________________________________________________________________________________________
average_pooling2d_26 (AveragePo (None, 4, 6, 2048) 0 mixed9[0][0]
__________________________________________________________________________________________________
conv2d_270 (Conv2D) (None, 4, 6, 320) 655360 mixed9[0][0]
__________________________________________________________________________________________________
batch_normalization_272 (BatchN (None, 4, 6, 384) 1152 conv2d_272[0][0]
__________________________________________________________________________________________________
batch_normalization_273 (BatchN (None, 4, 6, 384) 1152 conv2d_273[0][0]
__________________________________________________________________________________________________
batch_normalization_276 (BatchN (None, 4, 6, 384) 1152 conv2d_276[0][0]
__________________________________________________________________________________________________
batch_normalization_277 (BatchN (None, 4, 6, 384) 1152 conv2d_277[0][0]
__________________________________________________________________________________________________
conv2d_278 (Conv2D) (None, 4, 6, 192) 393216 average_pooling2d_26[0][0]
__________________________________________________________________________________________________
batch_normalization_270 (BatchN (None, 4, 6, 320) 960 conv2d_270[0][0]
__________________________________________________________________________________________________
activation_271 (Activation) (None, 4, 6, 384) 0 batch_normalization_272[0][0]
__________________________________________________________________________________________________
activation_272 (Activation) (None, 4, 6, 384) 0 batch_normalization_273[0][0]
__________________________________________________________________________________________________
activation_275 (Activation) (None, 4, 6, 384) 0 batch_normalization_276[0][0]
__________________________________________________________________________________________________
activation_276 (Activation) (None, 4, 6, 384) 0 batch_normalization_277[0][0]
__________________________________________________________________________________________________
batch_normalization_278 (BatchN (None, 4, 6, 192) 576 conv2d_278[0][0]
__________________________________________________________________________________________________
activation_269 (Activation) (None, 4, 6, 320) 0 batch_normalization_270[0][0]
__________________________________________________________________________________________________
mixed9_1 (Concatenate) (None, 4, 6, 768) 0 activation_271[0][0]
activation_272[0][0]
__________________________________________________________________________________________________
concatenate_5 (Concatenate) (None, 4, 6, 768) 0 activation_275[0][0]
activation_276[0][0]
__________________________________________________________________________________________________
activation_277 (Activation) (None, 4, 6, 192) 0 batch_normalization_278[0][0]
__________________________________________________________________________________________________
mixed10 (Concatenate) (None, 4, 6, 2048) 0 activation_269[0][0]
mixed9_1[0][0]
concatenate_5[0][0]
activation_277[0][0]
__________________________________________________________________________________________________
global_max_pooling2d_2 (GlobalM (None, 2048) 0 mixed10[0][0]
__________________________________________________________________________________________________
dense_3 (Dense) (None, 512) 1049088 global_max_pooling2d_2[0][0]
__________________________________________________________________________________________________
dropout_2 (Dropout) (None, 512) 0 dense_3[0][0]
__________________________________________________________________________________________________
dense_4 (Dense) (None, 7) 3591 dropout_2[0][0]
==================================================================================================
Total params: 22,855,463
Trainable params: 22,821,031
Non-trainable params: 34,432
__________________________________________________________________________________________________
###Markdown
Define DenseNet 201
###Code
denseNet = DenseNet201(input_shape=input_shape, input_tensor=model_input, include_top=False, weights=None)
for layer in denseNet.layers:
layer.trainable = True
denseNet_last_layer = denseNet.get_layer('relu')
print('last layer output shape:', denseNet_last_layer.output_shape)
denseNet_last_output = denseNet_last_layer.output
# Flatten the output layer to 1 dimension
x_denseNet = layers.GlobalMaxPooling2D()(denseNet_last_output)
# Add a fully connected layer with 512 hidden units and ReLU activation
x_denseNet = layers.Dense(512, activation='relu')(x_denseNet)
# Add a dropout rate of 0.7
x_denseNet = layers.Dropout(0.5)(x_denseNet)
# Add a final sigmoid layer for classification
x_denseNet = layers.Dense(7, activation='softmax')(x_denseNet)
# Configure and compile the model
denseNet_model = Model(model_input, x_denseNet)
optimizer = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=True)
denseNet_model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
denseNet_model.load_weights("DenseNetFull.h5")
denseNet_model.summary()
###Output
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 192, 256, 3) 0
__________________________________________________________________________________________________
zero_padding2d_1 (ZeroPadding2D (None, 198, 262, 3) 0 input_1[0][0]
__________________________________________________________________________________________________
conv1/conv (Conv2D) (None, 96, 128, 64) 9408 zero_padding2d_1[0][0]
__________________________________________________________________________________________________
conv1/bn (BatchNormalization) (None, 96, 128, 64) 256 conv1/conv[0][0]
__________________________________________________________________________________________________
conv1/relu (Activation) (None, 96, 128, 64) 0 conv1/bn[0][0]
__________________________________________________________________________________________________
zero_padding2d_2 (ZeroPadding2D (None, 98, 130, 64) 0 conv1/relu[0][0]
__________________________________________________________________________________________________
pool1 (MaxPooling2D) (None, 48, 64, 64) 0 zero_padding2d_2[0][0]
__________________________________________________________________________________________________
conv2_block1_0_bn (BatchNormali (None, 48, 64, 64) 256 pool1[0][0]
__________________________________________________________________________________________________
conv2_block1_0_relu (Activation (None, 48, 64, 64) 0 conv2_block1_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block1_1_conv (Conv2D) (None, 48, 64, 128) 8192 conv2_block1_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block1_1_bn (BatchNormali (None, 48, 64, 128) 512 conv2_block1_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block1_1_relu (Activation (None, 48, 64, 128) 0 conv2_block1_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block1_2_conv (Conv2D) (None, 48, 64, 32) 36864 conv2_block1_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block1_concat (Concatenat (None, 48, 64, 96) 0 pool1[0][0]
conv2_block1_2_conv[0][0]
__________________________________________________________________________________________________
conv2_block2_0_bn (BatchNormali (None, 48, 64, 96) 384 conv2_block1_concat[0][0]
__________________________________________________________________________________________________
conv2_block2_0_relu (Activation (None, 48, 64, 96) 0 conv2_block2_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block2_1_conv (Conv2D) (None, 48, 64, 128) 12288 conv2_block2_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block2_1_bn (BatchNormali (None, 48, 64, 128) 512 conv2_block2_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block2_1_relu (Activation (None, 48, 64, 128) 0 conv2_block2_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block2_2_conv (Conv2D) (None, 48, 64, 32) 36864 conv2_block2_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block2_concat (Concatenat (None, 48, 64, 128) 0 conv2_block1_concat[0][0]
conv2_block2_2_conv[0][0]
__________________________________________________________________________________________________
conv2_block3_0_bn (BatchNormali (None, 48, 64, 128) 512 conv2_block2_concat[0][0]
__________________________________________________________________________________________________
conv2_block3_0_relu (Activation (None, 48, 64, 128) 0 conv2_block3_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block3_1_conv (Conv2D) (None, 48, 64, 128) 16384 conv2_block3_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block3_1_bn (BatchNormali (None, 48, 64, 128) 512 conv2_block3_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block3_1_relu (Activation (None, 48, 64, 128) 0 conv2_block3_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block3_2_conv (Conv2D) (None, 48, 64, 32) 36864 conv2_block3_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block3_concat (Concatenat (None, 48, 64, 160) 0 conv2_block2_concat[0][0]
conv2_block3_2_conv[0][0]
__________________________________________________________________________________________________
conv2_block4_0_bn (BatchNormali (None, 48, 64, 160) 640 conv2_block3_concat[0][0]
__________________________________________________________________________________________________
conv2_block4_0_relu (Activation (None, 48, 64, 160) 0 conv2_block4_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block4_1_conv (Conv2D) (None, 48, 64, 128) 20480 conv2_block4_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block4_1_bn (BatchNormali (None, 48, 64, 128) 512 conv2_block4_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block4_1_relu (Activation (None, 48, 64, 128) 0 conv2_block4_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block4_2_conv (Conv2D) (None, 48, 64, 32) 36864 conv2_block4_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block4_concat (Concatenat (None, 48, 64, 192) 0 conv2_block3_concat[0][0]
conv2_block4_2_conv[0][0]
__________________________________________________________________________________________________
conv2_block5_0_bn (BatchNormali (None, 48, 64, 192) 768 conv2_block4_concat[0][0]
__________________________________________________________________________________________________
conv2_block5_0_relu (Activation (None, 48, 64, 192) 0 conv2_block5_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block5_1_conv (Conv2D) (None, 48, 64, 128) 24576 conv2_block5_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block5_1_bn (BatchNormali (None, 48, 64, 128) 512 conv2_block5_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block5_1_relu (Activation (None, 48, 64, 128) 0 conv2_block5_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block5_2_conv (Conv2D) (None, 48, 64, 32) 36864 conv2_block5_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block5_concat (Concatenat (None, 48, 64, 224) 0 conv2_block4_concat[0][0]
conv2_block5_2_conv[0][0]
__________________________________________________________________________________________________
conv2_block6_0_bn (BatchNormali (None, 48, 64, 224) 896 conv2_block5_concat[0][0]
__________________________________________________________________________________________________
conv2_block6_0_relu (Activation (None, 48, 64, 224) 0 conv2_block6_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block6_1_conv (Conv2D) (None, 48, 64, 128) 28672 conv2_block6_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block6_1_bn (BatchNormali (None, 48, 64, 128) 512 conv2_block6_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block6_1_relu (Activation (None, 48, 64, 128) 0 conv2_block6_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block6_2_conv (Conv2D) (None, 48, 64, 32) 36864 conv2_block6_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block6_concat (Concatenat (None, 48, 64, 256) 0 conv2_block5_concat[0][0]
conv2_block6_2_conv[0][0]
__________________________________________________________________________________________________
pool2_bn (BatchNormalization) (None, 48, 64, 256) 1024 conv2_block6_concat[0][0]
__________________________________________________________________________________________________
pool2_relu (Activation) (None, 48, 64, 256) 0 pool2_bn[0][0]
__________________________________________________________________________________________________
pool2_conv (Conv2D) (None, 48, 64, 128) 32768 pool2_relu[0][0]
__________________________________________________________________________________________________
pool2_pool (AveragePooling2D) (None, 24, 32, 128) 0 pool2_conv[0][0]
__________________________________________________________________________________________________
conv3_block1_0_bn (BatchNormali (None, 24, 32, 128) 512 pool2_pool[0][0]
__________________________________________________________________________________________________
conv3_block1_0_relu (Activation (None, 24, 32, 128) 0 conv3_block1_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block1_1_conv (Conv2D) (None, 24, 32, 128) 16384 conv3_block1_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block1_1_bn (BatchNormali (None, 24, 32, 128) 512 conv3_block1_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block1_1_relu (Activation (None, 24, 32, 128) 0 conv3_block1_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block1_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block1_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block1_concat (Concatenat (None, 24, 32, 160) 0 pool2_pool[0][0]
conv3_block1_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block2_0_bn (BatchNormali (None, 24, 32, 160) 640 conv3_block1_concat[0][0]
__________________________________________________________________________________________________
conv3_block2_0_relu (Activation (None, 24, 32, 160) 0 conv3_block2_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block2_1_conv (Conv2D) (None, 24, 32, 128) 20480 conv3_block2_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block2_1_bn (BatchNormali (None, 24, 32, 128) 512 conv3_block2_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block2_1_relu (Activation (None, 24, 32, 128) 0 conv3_block2_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block2_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block2_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block2_concat (Concatenat (None, 24, 32, 192) 0 conv3_block1_concat[0][0]
conv3_block2_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block3_0_bn (BatchNormali (None, 24, 32, 192) 768 conv3_block2_concat[0][0]
__________________________________________________________________________________________________
conv3_block3_0_relu (Activation (None, 24, 32, 192) 0 conv3_block3_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block3_1_conv (Conv2D) (None, 24, 32, 128) 24576 conv3_block3_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block3_1_bn (BatchNormali (None, 24, 32, 128) 512 conv3_block3_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block3_1_relu (Activation (None, 24, 32, 128) 0 conv3_block3_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block3_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block3_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block3_concat (Concatenat (None, 24, 32, 224) 0 conv3_block2_concat[0][0]
conv3_block3_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block4_0_bn (BatchNormali (None, 24, 32, 224) 896 conv3_block3_concat[0][0]
__________________________________________________________________________________________________
conv3_block4_0_relu (Activation (None, 24, 32, 224) 0 conv3_block4_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block4_1_conv (Conv2D) (None, 24, 32, 128) 28672 conv3_block4_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block4_1_bn (BatchNormali (None, 24, 32, 128) 512 conv3_block4_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block4_1_relu (Activation (None, 24, 32, 128) 0 conv3_block4_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block4_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block4_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block4_concat (Concatenat (None, 24, 32, 256) 0 conv3_block3_concat[0][0]
conv3_block4_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block5_0_bn (BatchNormali (None, 24, 32, 256) 1024 conv3_block4_concat[0][0]
__________________________________________________________________________________________________
conv3_block5_0_relu (Activation (None, 24, 32, 256) 0 conv3_block5_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block5_1_conv (Conv2D) (None, 24, 32, 128) 32768 conv3_block5_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block5_1_bn (BatchNormali (None, 24, 32, 128) 512 conv3_block5_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block5_1_relu (Activation (None, 24, 32, 128) 0 conv3_block5_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block5_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block5_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block5_concat (Concatenat (None, 24, 32, 288) 0 conv3_block4_concat[0][0]
conv3_block5_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block6_0_bn (BatchNormali (None, 24, 32, 288) 1152 conv3_block5_concat[0][0]
__________________________________________________________________________________________________
conv3_block6_0_relu (Activation (None, 24, 32, 288) 0 conv3_block6_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block6_1_conv (Conv2D) (None, 24, 32, 128) 36864 conv3_block6_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block6_1_bn (BatchNormali (None, 24, 32, 128) 512 conv3_block6_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block6_1_relu (Activation (None, 24, 32, 128) 0 conv3_block6_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block6_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block6_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block6_concat (Concatenat (None, 24, 32, 320) 0 conv3_block5_concat[0][0]
conv3_block6_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block7_0_bn (BatchNormali (None, 24, 32, 320) 1280 conv3_block6_concat[0][0]
__________________________________________________________________________________________________
conv3_block7_0_relu (Activation (None, 24, 32, 320) 0 conv3_block7_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block7_1_conv (Conv2D) (None, 24, 32, 128) 40960 conv3_block7_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block7_1_bn (BatchNormali (None, 24, 32, 128) 512 conv3_block7_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block7_1_relu (Activation (None, 24, 32, 128) 0 conv3_block7_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block7_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block7_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block7_concat (Concatenat (None, 24, 32, 352) 0 conv3_block6_concat[0][0]
conv3_block7_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block8_0_bn (BatchNormali (None, 24, 32, 352) 1408 conv3_block7_concat[0][0]
__________________________________________________________________________________________________
conv3_block8_0_relu (Activation (None, 24, 32, 352) 0 conv3_block8_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block8_1_conv (Conv2D) (None, 24, 32, 128) 45056 conv3_block8_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block8_1_bn (BatchNormali (None, 24, 32, 128) 512 conv3_block8_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block8_1_relu (Activation (None, 24, 32, 128) 0 conv3_block8_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block8_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block8_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block8_concat (Concatenat (None, 24, 32, 384) 0 conv3_block7_concat[0][0]
conv3_block8_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block9_0_bn (BatchNormali (None, 24, 32, 384) 1536 conv3_block8_concat[0][0]
__________________________________________________________________________________________________
conv3_block9_0_relu (Activation (None, 24, 32, 384) 0 conv3_block9_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block9_1_conv (Conv2D) (None, 24, 32, 128) 49152 conv3_block9_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block9_1_bn (BatchNormali (None, 24, 32, 128) 512 conv3_block9_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block9_1_relu (Activation (None, 24, 32, 128) 0 conv3_block9_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block9_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block9_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block9_concat (Concatenat (None, 24, 32, 416) 0 conv3_block8_concat[0][0]
conv3_block9_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block10_0_bn (BatchNormal (None, 24, 32, 416) 1664 conv3_block9_concat[0][0]
__________________________________________________________________________________________________
conv3_block10_0_relu (Activatio (None, 24, 32, 416) 0 conv3_block10_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block10_1_conv (Conv2D) (None, 24, 32, 128) 53248 conv3_block10_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block10_1_bn (BatchNormal (None, 24, 32, 128) 512 conv3_block10_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block10_1_relu (Activatio (None, 24, 32, 128) 0 conv3_block10_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block10_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block10_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block10_concat (Concatena (None, 24, 32, 448) 0 conv3_block9_concat[0][0]
conv3_block10_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block11_0_bn (BatchNormal (None, 24, 32, 448) 1792 conv3_block10_concat[0][0]
__________________________________________________________________________________________________
conv3_block11_0_relu (Activatio (None, 24, 32, 448) 0 conv3_block11_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block11_1_conv (Conv2D) (None, 24, 32, 128) 57344 conv3_block11_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block11_1_bn (BatchNormal (None, 24, 32, 128) 512 conv3_block11_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block11_1_relu (Activatio (None, 24, 32, 128) 0 conv3_block11_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block11_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block11_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block11_concat (Concatena (None, 24, 32, 480) 0 conv3_block10_concat[0][0]
conv3_block11_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block12_0_bn (BatchNormal (None, 24, 32, 480) 1920 conv3_block11_concat[0][0]
__________________________________________________________________________________________________
conv3_block12_0_relu (Activatio (None, 24, 32, 480) 0 conv3_block12_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block12_1_conv (Conv2D) (None, 24, 32, 128) 61440 conv3_block12_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block12_1_bn (BatchNormal (None, 24, 32, 128) 512 conv3_block12_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block12_1_relu (Activatio (None, 24, 32, 128) 0 conv3_block12_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block12_2_conv (Conv2D) (None, 24, 32, 32) 36864 conv3_block12_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block12_concat (Concatena (None, 24, 32, 512) 0 conv3_block11_concat[0][0]
conv3_block12_2_conv[0][0]
__________________________________________________________________________________________________
pool3_bn (BatchNormalization) (None, 24, 32, 512) 2048 conv3_block12_concat[0][0]
__________________________________________________________________________________________________
pool3_relu (Activation) (None, 24, 32, 512) 0 pool3_bn[0][0]
__________________________________________________________________________________________________
pool3_conv (Conv2D) (None, 24, 32, 256) 131072 pool3_relu[0][0]
__________________________________________________________________________________________________
pool3_pool (AveragePooling2D) (None, 12, 16, 256) 0 pool3_conv[0][0]
__________________________________________________________________________________________________
conv4_block1_0_bn (BatchNormali (None, 12, 16, 256) 1024 pool3_pool[0][0]
__________________________________________________________________________________________________
conv4_block1_0_relu (Activation (None, 12, 16, 256) 0 conv4_block1_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block1_1_conv (Conv2D) (None, 12, 16, 128) 32768 conv4_block1_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block1_1_bn (BatchNormali (None, 12, 16, 128) 512 conv4_block1_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block1_1_relu (Activation (None, 12, 16, 128) 0 conv4_block1_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block1_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block1_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block1_concat (Concatenat (None, 12, 16, 288) 0 pool3_pool[0][0]
conv4_block1_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block2_0_bn (BatchNormali (None, 12, 16, 288) 1152 conv4_block1_concat[0][0]
__________________________________________________________________________________________________
conv4_block2_0_relu (Activation (None, 12, 16, 288) 0 conv4_block2_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block2_1_conv (Conv2D) (None, 12, 16, 128) 36864 conv4_block2_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block2_1_bn (BatchNormali (None, 12, 16, 128) 512 conv4_block2_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block2_1_relu (Activation (None, 12, 16, 128) 0 conv4_block2_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block2_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block2_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block2_concat (Concatenat (None, 12, 16, 320) 0 conv4_block1_concat[0][0]
conv4_block2_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block3_0_bn (BatchNormali (None, 12, 16, 320) 1280 conv4_block2_concat[0][0]
__________________________________________________________________________________________________
conv4_block3_0_relu (Activation (None, 12, 16, 320) 0 conv4_block3_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block3_1_conv (Conv2D) (None, 12, 16, 128) 40960 conv4_block3_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block3_1_bn (BatchNormali (None, 12, 16, 128) 512 conv4_block3_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block3_1_relu (Activation (None, 12, 16, 128) 0 conv4_block3_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block3_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block3_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block3_concat (Concatenat (None, 12, 16, 352) 0 conv4_block2_concat[0][0]
conv4_block3_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block4_0_bn (BatchNormali (None, 12, 16, 352) 1408 conv4_block3_concat[0][0]
__________________________________________________________________________________________________
conv4_block4_0_relu (Activation (None, 12, 16, 352) 0 conv4_block4_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block4_1_conv (Conv2D) (None, 12, 16, 128) 45056 conv4_block4_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block4_1_bn (BatchNormali (None, 12, 16, 128) 512 conv4_block4_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block4_1_relu (Activation (None, 12, 16, 128) 0 conv4_block4_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block4_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block4_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block4_concat (Concatenat (None, 12, 16, 384) 0 conv4_block3_concat[0][0]
conv4_block4_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block5_0_bn (BatchNormali (None, 12, 16, 384) 1536 conv4_block4_concat[0][0]
__________________________________________________________________________________________________
conv4_block5_0_relu (Activation (None, 12, 16, 384) 0 conv4_block5_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block5_1_conv (Conv2D) (None, 12, 16, 128) 49152 conv4_block5_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block5_1_bn (BatchNormali (None, 12, 16, 128) 512 conv4_block5_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block5_1_relu (Activation (None, 12, 16, 128) 0 conv4_block5_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block5_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block5_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block5_concat (Concatenat (None, 12, 16, 416) 0 conv4_block4_concat[0][0]
conv4_block5_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block6_0_bn (BatchNormali (None, 12, 16, 416) 1664 conv4_block5_concat[0][0]
__________________________________________________________________________________________________
conv4_block6_0_relu (Activation (None, 12, 16, 416) 0 conv4_block6_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block6_1_conv (Conv2D) (None, 12, 16, 128) 53248 conv4_block6_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block6_1_bn (BatchNormali (None, 12, 16, 128) 512 conv4_block6_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block6_1_relu (Activation (None, 12, 16, 128) 0 conv4_block6_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block6_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block6_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block6_concat (Concatenat (None, 12, 16, 448) 0 conv4_block5_concat[0][0]
conv4_block6_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block7_0_bn (BatchNormali (None, 12, 16, 448) 1792 conv4_block6_concat[0][0]
__________________________________________________________________________________________________
conv4_block7_0_relu (Activation (None, 12, 16, 448) 0 conv4_block7_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block7_1_conv (Conv2D) (None, 12, 16, 128) 57344 conv4_block7_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block7_1_bn (BatchNormali (None, 12, 16, 128) 512 conv4_block7_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block7_1_relu (Activation (None, 12, 16, 128) 0 conv4_block7_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block7_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block7_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block7_concat (Concatenat (None, 12, 16, 480) 0 conv4_block6_concat[0][0]
conv4_block7_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block8_0_bn (BatchNormali (None, 12, 16, 480) 1920 conv4_block7_concat[0][0]
__________________________________________________________________________________________________
conv4_block8_0_relu (Activation (None, 12, 16, 480) 0 conv4_block8_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block8_1_conv (Conv2D) (None, 12, 16, 128) 61440 conv4_block8_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block8_1_bn (BatchNormali (None, 12, 16, 128) 512 conv4_block8_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block8_1_relu (Activation (None, 12, 16, 128) 0 conv4_block8_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block8_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block8_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block8_concat (Concatenat (None, 12, 16, 512) 0 conv4_block7_concat[0][0]
conv4_block8_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block9_0_bn (BatchNormali (None, 12, 16, 512) 2048 conv4_block8_concat[0][0]
__________________________________________________________________________________________________
conv4_block9_0_relu (Activation (None, 12, 16, 512) 0 conv4_block9_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block9_1_conv (Conv2D) (None, 12, 16, 128) 65536 conv4_block9_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block9_1_bn (BatchNormali (None, 12, 16, 128) 512 conv4_block9_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block9_1_relu (Activation (None, 12, 16, 128) 0 conv4_block9_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block9_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block9_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block9_concat (Concatenat (None, 12, 16, 544) 0 conv4_block8_concat[0][0]
conv4_block9_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block10_0_bn (BatchNormal (None, 12, 16, 544) 2176 conv4_block9_concat[0][0]
__________________________________________________________________________________________________
conv4_block10_0_relu (Activatio (None, 12, 16, 544) 0 conv4_block10_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block10_1_conv (Conv2D) (None, 12, 16, 128) 69632 conv4_block10_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block10_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block10_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block10_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block10_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block10_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block10_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block10_concat (Concatena (None, 12, 16, 576) 0 conv4_block9_concat[0][0]
conv4_block10_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block11_0_bn (BatchNormal (None, 12, 16, 576) 2304 conv4_block10_concat[0][0]
__________________________________________________________________________________________________
conv4_block11_0_relu (Activatio (None, 12, 16, 576) 0 conv4_block11_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block11_1_conv (Conv2D) (None, 12, 16, 128) 73728 conv4_block11_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block11_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block11_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block11_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block11_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block11_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block11_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block11_concat (Concatena (None, 12, 16, 608) 0 conv4_block10_concat[0][0]
conv4_block11_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block12_0_bn (BatchNormal (None, 12, 16, 608) 2432 conv4_block11_concat[0][0]
__________________________________________________________________________________________________
conv4_block12_0_relu (Activatio (None, 12, 16, 608) 0 conv4_block12_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block12_1_conv (Conv2D) (None, 12, 16, 128) 77824 conv4_block12_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block12_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block12_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block12_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block12_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block12_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block12_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block12_concat (Concatena (None, 12, 16, 640) 0 conv4_block11_concat[0][0]
conv4_block12_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block13_0_bn (BatchNormal (None, 12, 16, 640) 2560 conv4_block12_concat[0][0]
__________________________________________________________________________________________________
conv4_block13_0_relu (Activatio (None, 12, 16, 640) 0 conv4_block13_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block13_1_conv (Conv2D) (None, 12, 16, 128) 81920 conv4_block13_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block13_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block13_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block13_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block13_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block13_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block13_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block13_concat (Concatena (None, 12, 16, 672) 0 conv4_block12_concat[0][0]
conv4_block13_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block14_0_bn (BatchNormal (None, 12, 16, 672) 2688 conv4_block13_concat[0][0]
__________________________________________________________________________________________________
conv4_block14_0_relu (Activatio (None, 12, 16, 672) 0 conv4_block14_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block14_1_conv (Conv2D) (None, 12, 16, 128) 86016 conv4_block14_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block14_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block14_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block14_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block14_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block14_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block14_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block14_concat (Concatena (None, 12, 16, 704) 0 conv4_block13_concat[0][0]
conv4_block14_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block15_0_bn (BatchNormal (None, 12, 16, 704) 2816 conv4_block14_concat[0][0]
__________________________________________________________________________________________________
conv4_block15_0_relu (Activatio (None, 12, 16, 704) 0 conv4_block15_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block15_1_conv (Conv2D) (None, 12, 16, 128) 90112 conv4_block15_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block15_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block15_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block15_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block15_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block15_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block15_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block15_concat (Concatena (None, 12, 16, 736) 0 conv4_block14_concat[0][0]
conv4_block15_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block16_0_bn (BatchNormal (None, 12, 16, 736) 2944 conv4_block15_concat[0][0]
__________________________________________________________________________________________________
conv4_block16_0_relu (Activatio (None, 12, 16, 736) 0 conv4_block16_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block16_1_conv (Conv2D) (None, 12, 16, 128) 94208 conv4_block16_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block16_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block16_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block16_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block16_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block16_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block16_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block16_concat (Concatena (None, 12, 16, 768) 0 conv4_block15_concat[0][0]
conv4_block16_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block17_0_bn (BatchNormal (None, 12, 16, 768) 3072 conv4_block16_concat[0][0]
__________________________________________________________________________________________________
conv4_block17_0_relu (Activatio (None, 12, 16, 768) 0 conv4_block17_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block17_1_conv (Conv2D) (None, 12, 16, 128) 98304 conv4_block17_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block17_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block17_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block17_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block17_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block17_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block17_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block17_concat (Concatena (None, 12, 16, 800) 0 conv4_block16_concat[0][0]
conv4_block17_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block18_0_bn (BatchNormal (None, 12, 16, 800) 3200 conv4_block17_concat[0][0]
__________________________________________________________________________________________________
conv4_block18_0_relu (Activatio (None, 12, 16, 800) 0 conv4_block18_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block18_1_conv (Conv2D) (None, 12, 16, 128) 102400 conv4_block18_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block18_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block18_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block18_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block18_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block18_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block18_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block18_concat (Concatena (None, 12, 16, 832) 0 conv4_block17_concat[0][0]
conv4_block18_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block19_0_bn (BatchNormal (None, 12, 16, 832) 3328 conv4_block18_concat[0][0]
__________________________________________________________________________________________________
conv4_block19_0_relu (Activatio (None, 12, 16, 832) 0 conv4_block19_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block19_1_conv (Conv2D) (None, 12, 16, 128) 106496 conv4_block19_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block19_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block19_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block19_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block19_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block19_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block19_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block19_concat (Concatena (None, 12, 16, 864) 0 conv4_block18_concat[0][0]
conv4_block19_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block20_0_bn (BatchNormal (None, 12, 16, 864) 3456 conv4_block19_concat[0][0]
__________________________________________________________________________________________________
conv4_block20_0_relu (Activatio (None, 12, 16, 864) 0 conv4_block20_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block20_1_conv (Conv2D) (None, 12, 16, 128) 110592 conv4_block20_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block20_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block20_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block20_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block20_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block20_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block20_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block20_concat (Concatena (None, 12, 16, 896) 0 conv4_block19_concat[0][0]
conv4_block20_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block21_0_bn (BatchNormal (None, 12, 16, 896) 3584 conv4_block20_concat[0][0]
__________________________________________________________________________________________________
conv4_block21_0_relu (Activatio (None, 12, 16, 896) 0 conv4_block21_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block21_1_conv (Conv2D) (None, 12, 16, 128) 114688 conv4_block21_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block21_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block21_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block21_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block21_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block21_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block21_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block21_concat (Concatena (None, 12, 16, 928) 0 conv4_block20_concat[0][0]
conv4_block21_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block22_0_bn (BatchNormal (None, 12, 16, 928) 3712 conv4_block21_concat[0][0]
__________________________________________________________________________________________________
conv4_block22_0_relu (Activatio (None, 12, 16, 928) 0 conv4_block22_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block22_1_conv (Conv2D) (None, 12, 16, 128) 118784 conv4_block22_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block22_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block22_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block22_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block22_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block22_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block22_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block22_concat (Concatena (None, 12, 16, 960) 0 conv4_block21_concat[0][0]
conv4_block22_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block23_0_bn (BatchNormal (None, 12, 16, 960) 3840 conv4_block22_concat[0][0]
__________________________________________________________________________________________________
conv4_block23_0_relu (Activatio (None, 12, 16, 960) 0 conv4_block23_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block23_1_conv (Conv2D) (None, 12, 16, 128) 122880 conv4_block23_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block23_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block23_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block23_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block23_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block23_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block23_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block23_concat (Concatena (None, 12, 16, 992) 0 conv4_block22_concat[0][0]
conv4_block23_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block24_0_bn (BatchNormal (None, 12, 16, 992) 3968 conv4_block23_concat[0][0]
__________________________________________________________________________________________________
conv4_block24_0_relu (Activatio (None, 12, 16, 992) 0 conv4_block24_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block24_1_conv (Conv2D) (None, 12, 16, 128) 126976 conv4_block24_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block24_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block24_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block24_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block24_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block24_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block24_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block24_concat (Concatena (None, 12, 16, 1024) 0 conv4_block23_concat[0][0]
conv4_block24_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block25_0_bn (BatchNormal (None, 12, 16, 1024) 4096 conv4_block24_concat[0][0]
__________________________________________________________________________________________________
conv4_block25_0_relu (Activatio (None, 12, 16, 1024) 0 conv4_block25_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block25_1_conv (Conv2D) (None, 12, 16, 128) 131072 conv4_block25_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block25_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block25_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block25_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block25_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block25_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block25_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block25_concat (Concatena (None, 12, 16, 1056) 0 conv4_block24_concat[0][0]
conv4_block25_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block26_0_bn (BatchNormal (None, 12, 16, 1056) 4224 conv4_block25_concat[0][0]
__________________________________________________________________________________________________
conv4_block26_0_relu (Activatio (None, 12, 16, 1056) 0 conv4_block26_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block26_1_conv (Conv2D) (None, 12, 16, 128) 135168 conv4_block26_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block26_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block26_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block26_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block26_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block26_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block26_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block26_concat (Concatena (None, 12, 16, 1088) 0 conv4_block25_concat[0][0]
conv4_block26_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block27_0_bn (BatchNormal (None, 12, 16, 1088) 4352 conv4_block26_concat[0][0]
__________________________________________________________________________________________________
conv4_block27_0_relu (Activatio (None, 12, 16, 1088) 0 conv4_block27_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block27_1_conv (Conv2D) (None, 12, 16, 128) 139264 conv4_block27_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block27_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block27_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block27_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block27_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block27_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block27_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block27_concat (Concatena (None, 12, 16, 1120) 0 conv4_block26_concat[0][0]
conv4_block27_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block28_0_bn (BatchNormal (None, 12, 16, 1120) 4480 conv4_block27_concat[0][0]
__________________________________________________________________________________________________
conv4_block28_0_relu (Activatio (None, 12, 16, 1120) 0 conv4_block28_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block28_1_conv (Conv2D) (None, 12, 16, 128) 143360 conv4_block28_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block28_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block28_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block28_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block28_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block28_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block28_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block28_concat (Concatena (None, 12, 16, 1152) 0 conv4_block27_concat[0][0]
conv4_block28_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block29_0_bn (BatchNormal (None, 12, 16, 1152) 4608 conv4_block28_concat[0][0]
__________________________________________________________________________________________________
conv4_block29_0_relu (Activatio (None, 12, 16, 1152) 0 conv4_block29_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block29_1_conv (Conv2D) (None, 12, 16, 128) 147456 conv4_block29_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block29_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block29_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block29_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block29_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block29_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block29_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block29_concat (Concatena (None, 12, 16, 1184) 0 conv4_block28_concat[0][0]
conv4_block29_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block30_0_bn (BatchNormal (None, 12, 16, 1184) 4736 conv4_block29_concat[0][0]
__________________________________________________________________________________________________
conv4_block30_0_relu (Activatio (None, 12, 16, 1184) 0 conv4_block30_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block30_1_conv (Conv2D) (None, 12, 16, 128) 151552 conv4_block30_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block30_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block30_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block30_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block30_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block30_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block30_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block30_concat (Concatena (None, 12, 16, 1216) 0 conv4_block29_concat[0][0]
conv4_block30_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block31_0_bn (BatchNormal (None, 12, 16, 1216) 4864 conv4_block30_concat[0][0]
__________________________________________________________________________________________________
conv4_block31_0_relu (Activatio (None, 12, 16, 1216) 0 conv4_block31_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block31_1_conv (Conv2D) (None, 12, 16, 128) 155648 conv4_block31_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block31_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block31_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block31_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block31_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block31_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block31_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block31_concat (Concatena (None, 12, 16, 1248) 0 conv4_block30_concat[0][0]
conv4_block31_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block32_0_bn (BatchNormal (None, 12, 16, 1248) 4992 conv4_block31_concat[0][0]
__________________________________________________________________________________________________
conv4_block32_0_relu (Activatio (None, 12, 16, 1248) 0 conv4_block32_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block32_1_conv (Conv2D) (None, 12, 16, 128) 159744 conv4_block32_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block32_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block32_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block32_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block32_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block32_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block32_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block32_concat (Concatena (None, 12, 16, 1280) 0 conv4_block31_concat[0][0]
conv4_block32_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block33_0_bn (BatchNormal (None, 12, 16, 1280) 5120 conv4_block32_concat[0][0]
__________________________________________________________________________________________________
conv4_block33_0_relu (Activatio (None, 12, 16, 1280) 0 conv4_block33_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block33_1_conv (Conv2D) (None, 12, 16, 128) 163840 conv4_block33_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block33_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block33_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block33_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block33_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block33_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block33_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block33_concat (Concatena (None, 12, 16, 1312) 0 conv4_block32_concat[0][0]
conv4_block33_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block34_0_bn (BatchNormal (None, 12, 16, 1312) 5248 conv4_block33_concat[0][0]
__________________________________________________________________________________________________
conv4_block34_0_relu (Activatio (None, 12, 16, 1312) 0 conv4_block34_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block34_1_conv (Conv2D) (None, 12, 16, 128) 167936 conv4_block34_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block34_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block34_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block34_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block34_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block34_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block34_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block34_concat (Concatena (None, 12, 16, 1344) 0 conv4_block33_concat[0][0]
conv4_block34_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block35_0_bn (BatchNormal (None, 12, 16, 1344) 5376 conv4_block34_concat[0][0]
__________________________________________________________________________________________________
conv4_block35_0_relu (Activatio (None, 12, 16, 1344) 0 conv4_block35_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block35_1_conv (Conv2D) (None, 12, 16, 128) 172032 conv4_block35_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block35_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block35_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block35_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block35_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block35_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block35_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block35_concat (Concatena (None, 12, 16, 1376) 0 conv4_block34_concat[0][0]
conv4_block35_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block36_0_bn (BatchNormal (None, 12, 16, 1376) 5504 conv4_block35_concat[0][0]
__________________________________________________________________________________________________
conv4_block36_0_relu (Activatio (None, 12, 16, 1376) 0 conv4_block36_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block36_1_conv (Conv2D) (None, 12, 16, 128) 176128 conv4_block36_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block36_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block36_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block36_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block36_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block36_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block36_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block36_concat (Concatena (None, 12, 16, 1408) 0 conv4_block35_concat[0][0]
conv4_block36_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block37_0_bn (BatchNormal (None, 12, 16, 1408) 5632 conv4_block36_concat[0][0]
__________________________________________________________________________________________________
conv4_block37_0_relu (Activatio (None, 12, 16, 1408) 0 conv4_block37_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block37_1_conv (Conv2D) (None, 12, 16, 128) 180224 conv4_block37_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block37_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block37_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block37_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block37_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block37_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block37_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block37_concat (Concatena (None, 12, 16, 1440) 0 conv4_block36_concat[0][0]
conv4_block37_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block38_0_bn (BatchNormal (None, 12, 16, 1440) 5760 conv4_block37_concat[0][0]
__________________________________________________________________________________________________
conv4_block38_0_relu (Activatio (None, 12, 16, 1440) 0 conv4_block38_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block38_1_conv (Conv2D) (None, 12, 16, 128) 184320 conv4_block38_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block38_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block38_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block38_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block38_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block38_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block38_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block38_concat (Concatena (None, 12, 16, 1472) 0 conv4_block37_concat[0][0]
conv4_block38_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block39_0_bn (BatchNormal (None, 12, 16, 1472) 5888 conv4_block38_concat[0][0]
__________________________________________________________________________________________________
conv4_block39_0_relu (Activatio (None, 12, 16, 1472) 0 conv4_block39_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block39_1_conv (Conv2D) (None, 12, 16, 128) 188416 conv4_block39_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block39_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block39_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block39_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block39_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block39_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block39_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block39_concat (Concatena (None, 12, 16, 1504) 0 conv4_block38_concat[0][0]
conv4_block39_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block40_0_bn (BatchNormal (None, 12, 16, 1504) 6016 conv4_block39_concat[0][0]
__________________________________________________________________________________________________
conv4_block40_0_relu (Activatio (None, 12, 16, 1504) 0 conv4_block40_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block40_1_conv (Conv2D) (None, 12, 16, 128) 192512 conv4_block40_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block40_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block40_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block40_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block40_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block40_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block40_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block40_concat (Concatena (None, 12, 16, 1536) 0 conv4_block39_concat[0][0]
conv4_block40_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block41_0_bn (BatchNormal (None, 12, 16, 1536) 6144 conv4_block40_concat[0][0]
__________________________________________________________________________________________________
conv4_block41_0_relu (Activatio (None, 12, 16, 1536) 0 conv4_block41_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block41_1_conv (Conv2D) (None, 12, 16, 128) 196608 conv4_block41_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block41_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block41_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block41_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block41_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block41_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block41_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block41_concat (Concatena (None, 12, 16, 1568) 0 conv4_block40_concat[0][0]
conv4_block41_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block42_0_bn (BatchNormal (None, 12, 16, 1568) 6272 conv4_block41_concat[0][0]
__________________________________________________________________________________________________
conv4_block42_0_relu (Activatio (None, 12, 16, 1568) 0 conv4_block42_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block42_1_conv (Conv2D) (None, 12, 16, 128) 200704 conv4_block42_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block42_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block42_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block42_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block42_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block42_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block42_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block42_concat (Concatena (None, 12, 16, 1600) 0 conv4_block41_concat[0][0]
conv4_block42_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block43_0_bn (BatchNormal (None, 12, 16, 1600) 6400 conv4_block42_concat[0][0]
__________________________________________________________________________________________________
conv4_block43_0_relu (Activatio (None, 12, 16, 1600) 0 conv4_block43_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block43_1_conv (Conv2D) (None, 12, 16, 128) 204800 conv4_block43_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block43_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block43_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block43_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block43_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block43_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block43_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block43_concat (Concatena (None, 12, 16, 1632) 0 conv4_block42_concat[0][0]
conv4_block43_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block44_0_bn (BatchNormal (None, 12, 16, 1632) 6528 conv4_block43_concat[0][0]
__________________________________________________________________________________________________
conv4_block44_0_relu (Activatio (None, 12, 16, 1632) 0 conv4_block44_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block44_1_conv (Conv2D) (None, 12, 16, 128) 208896 conv4_block44_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block44_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block44_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block44_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block44_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block44_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block44_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block44_concat (Concatena (None, 12, 16, 1664) 0 conv4_block43_concat[0][0]
conv4_block44_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block45_0_bn (BatchNormal (None, 12, 16, 1664) 6656 conv4_block44_concat[0][0]
__________________________________________________________________________________________________
conv4_block45_0_relu (Activatio (None, 12, 16, 1664) 0 conv4_block45_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block45_1_conv (Conv2D) (None, 12, 16, 128) 212992 conv4_block45_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block45_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block45_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block45_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block45_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block45_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block45_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block45_concat (Concatena (None, 12, 16, 1696) 0 conv4_block44_concat[0][0]
conv4_block45_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block46_0_bn (BatchNormal (None, 12, 16, 1696) 6784 conv4_block45_concat[0][0]
__________________________________________________________________________________________________
conv4_block46_0_relu (Activatio (None, 12, 16, 1696) 0 conv4_block46_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block46_1_conv (Conv2D) (None, 12, 16, 128) 217088 conv4_block46_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block46_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block46_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block46_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block46_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block46_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block46_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block46_concat (Concatena (None, 12, 16, 1728) 0 conv4_block45_concat[0][0]
conv4_block46_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block47_0_bn (BatchNormal (None, 12, 16, 1728) 6912 conv4_block46_concat[0][0]
__________________________________________________________________________________________________
conv4_block47_0_relu (Activatio (None, 12, 16, 1728) 0 conv4_block47_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block47_1_conv (Conv2D) (None, 12, 16, 128) 221184 conv4_block47_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block47_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block47_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block47_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block47_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block47_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block47_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block47_concat (Concatena (None, 12, 16, 1760) 0 conv4_block46_concat[0][0]
conv4_block47_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block48_0_bn (BatchNormal (None, 12, 16, 1760) 7040 conv4_block47_concat[0][0]
__________________________________________________________________________________________________
conv4_block48_0_relu (Activatio (None, 12, 16, 1760) 0 conv4_block48_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block48_1_conv (Conv2D) (None, 12, 16, 128) 225280 conv4_block48_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block48_1_bn (BatchNormal (None, 12, 16, 128) 512 conv4_block48_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block48_1_relu (Activatio (None, 12, 16, 128) 0 conv4_block48_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block48_2_conv (Conv2D) (None, 12, 16, 32) 36864 conv4_block48_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block48_concat (Concatena (None, 12, 16, 1792) 0 conv4_block47_concat[0][0]
conv4_block48_2_conv[0][0]
__________________________________________________________________________________________________
pool4_bn (BatchNormalization) (None, 12, 16, 1792) 7168 conv4_block48_concat[0][0]
__________________________________________________________________________________________________
pool4_relu (Activation) (None, 12, 16, 1792) 0 pool4_bn[0][0]
__________________________________________________________________________________________________
pool4_conv (Conv2D) (None, 12, 16, 896) 1605632 pool4_relu[0][0]
__________________________________________________________________________________________________
pool4_pool (AveragePooling2D) (None, 6, 8, 896) 0 pool4_conv[0][0]
__________________________________________________________________________________________________
conv5_block1_0_bn (BatchNormali (None, 6, 8, 896) 3584 pool4_pool[0][0]
__________________________________________________________________________________________________
conv5_block1_0_relu (Activation (None, 6, 8, 896) 0 conv5_block1_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block1_1_conv (Conv2D) (None, 6, 8, 128) 114688 conv5_block1_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block1_1_bn (BatchNormali (None, 6, 8, 128) 512 conv5_block1_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block1_1_relu (Activation (None, 6, 8, 128) 0 conv5_block1_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block1_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block1_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block1_concat (Concatenat (None, 6, 8, 928) 0 pool4_pool[0][0]
conv5_block1_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block2_0_bn (BatchNormali (None, 6, 8, 928) 3712 conv5_block1_concat[0][0]
__________________________________________________________________________________________________
conv5_block2_0_relu (Activation (None, 6, 8, 928) 0 conv5_block2_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block2_1_conv (Conv2D) (None, 6, 8, 128) 118784 conv5_block2_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block2_1_bn (BatchNormali (None, 6, 8, 128) 512 conv5_block2_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block2_1_relu (Activation (None, 6, 8, 128) 0 conv5_block2_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block2_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block2_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block2_concat (Concatenat (None, 6, 8, 960) 0 conv5_block1_concat[0][0]
conv5_block2_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_0_bn (BatchNormali (None, 6, 8, 960) 3840 conv5_block2_concat[0][0]
__________________________________________________________________________________________________
conv5_block3_0_relu (Activation (None, 6, 8, 960) 0 conv5_block3_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_1_conv (Conv2D) (None, 6, 8, 128) 122880 conv5_block3_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_1_bn (BatchNormali (None, 6, 8, 128) 512 conv5_block3_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_1_relu (Activation (None, 6, 8, 128) 0 conv5_block3_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block3_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_concat (Concatenat (None, 6, 8, 992) 0 conv5_block2_concat[0][0]
conv5_block3_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block4_0_bn (BatchNormali (None, 6, 8, 992) 3968 conv5_block3_concat[0][0]
__________________________________________________________________________________________________
conv5_block4_0_relu (Activation (None, 6, 8, 992) 0 conv5_block4_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block4_1_conv (Conv2D) (None, 6, 8, 128) 126976 conv5_block4_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block4_1_bn (BatchNormali (None, 6, 8, 128) 512 conv5_block4_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block4_1_relu (Activation (None, 6, 8, 128) 0 conv5_block4_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block4_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block4_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block4_concat (Concatenat (None, 6, 8, 1024) 0 conv5_block3_concat[0][0]
conv5_block4_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block5_0_bn (BatchNormali (None, 6, 8, 1024) 4096 conv5_block4_concat[0][0]
__________________________________________________________________________________________________
conv5_block5_0_relu (Activation (None, 6, 8, 1024) 0 conv5_block5_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block5_1_conv (Conv2D) (None, 6, 8, 128) 131072 conv5_block5_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block5_1_bn (BatchNormali (None, 6, 8, 128) 512 conv5_block5_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block5_1_relu (Activation (None, 6, 8, 128) 0 conv5_block5_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block5_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block5_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block5_concat (Concatenat (None, 6, 8, 1056) 0 conv5_block4_concat[0][0]
conv5_block5_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block6_0_bn (BatchNormali (None, 6, 8, 1056) 4224 conv5_block5_concat[0][0]
__________________________________________________________________________________________________
conv5_block6_0_relu (Activation (None, 6, 8, 1056) 0 conv5_block6_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block6_1_conv (Conv2D) (None, 6, 8, 128) 135168 conv5_block6_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block6_1_bn (BatchNormali (None, 6, 8, 128) 512 conv5_block6_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block6_1_relu (Activation (None, 6, 8, 128) 0 conv5_block6_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block6_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block6_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block6_concat (Concatenat (None, 6, 8, 1088) 0 conv5_block5_concat[0][0]
conv5_block6_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block7_0_bn (BatchNormali (None, 6, 8, 1088) 4352 conv5_block6_concat[0][0]
__________________________________________________________________________________________________
conv5_block7_0_relu (Activation (None, 6, 8, 1088) 0 conv5_block7_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block7_1_conv (Conv2D) (None, 6, 8, 128) 139264 conv5_block7_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block7_1_bn (BatchNormali (None, 6, 8, 128) 512 conv5_block7_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block7_1_relu (Activation (None, 6, 8, 128) 0 conv5_block7_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block7_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block7_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block7_concat (Concatenat (None, 6, 8, 1120) 0 conv5_block6_concat[0][0]
conv5_block7_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block8_0_bn (BatchNormali (None, 6, 8, 1120) 4480 conv5_block7_concat[0][0]
__________________________________________________________________________________________________
conv5_block8_0_relu (Activation (None, 6, 8, 1120) 0 conv5_block8_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block8_1_conv (Conv2D) (None, 6, 8, 128) 143360 conv5_block8_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block8_1_bn (BatchNormali (None, 6, 8, 128) 512 conv5_block8_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block8_1_relu (Activation (None, 6, 8, 128) 0 conv5_block8_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block8_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block8_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block8_concat (Concatenat (None, 6, 8, 1152) 0 conv5_block7_concat[0][0]
conv5_block8_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block9_0_bn (BatchNormali (None, 6, 8, 1152) 4608 conv5_block8_concat[0][0]
__________________________________________________________________________________________________
conv5_block9_0_relu (Activation (None, 6, 8, 1152) 0 conv5_block9_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block9_1_conv (Conv2D) (None, 6, 8, 128) 147456 conv5_block9_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block9_1_bn (BatchNormali (None, 6, 8, 128) 512 conv5_block9_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block9_1_relu (Activation (None, 6, 8, 128) 0 conv5_block9_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block9_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block9_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block9_concat (Concatenat (None, 6, 8, 1184) 0 conv5_block8_concat[0][0]
conv5_block9_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block10_0_bn (BatchNormal (None, 6, 8, 1184) 4736 conv5_block9_concat[0][0]
__________________________________________________________________________________________________
conv5_block10_0_relu (Activatio (None, 6, 8, 1184) 0 conv5_block10_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block10_1_conv (Conv2D) (None, 6, 8, 128) 151552 conv5_block10_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block10_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block10_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block10_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block10_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block10_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block10_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block10_concat (Concatena (None, 6, 8, 1216) 0 conv5_block9_concat[0][0]
conv5_block10_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block11_0_bn (BatchNormal (None, 6, 8, 1216) 4864 conv5_block10_concat[0][0]
__________________________________________________________________________________________________
conv5_block11_0_relu (Activatio (None, 6, 8, 1216) 0 conv5_block11_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block11_1_conv (Conv2D) (None, 6, 8, 128) 155648 conv5_block11_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block11_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block11_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block11_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block11_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block11_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block11_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block11_concat (Concatena (None, 6, 8, 1248) 0 conv5_block10_concat[0][0]
conv5_block11_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block12_0_bn (BatchNormal (None, 6, 8, 1248) 4992 conv5_block11_concat[0][0]
__________________________________________________________________________________________________
conv5_block12_0_relu (Activatio (None, 6, 8, 1248) 0 conv5_block12_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block12_1_conv (Conv2D) (None, 6, 8, 128) 159744 conv5_block12_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block12_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block12_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block12_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block12_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block12_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block12_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block12_concat (Concatena (None, 6, 8, 1280) 0 conv5_block11_concat[0][0]
conv5_block12_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block13_0_bn (BatchNormal (None, 6, 8, 1280) 5120 conv5_block12_concat[0][0]
__________________________________________________________________________________________________
conv5_block13_0_relu (Activatio (None, 6, 8, 1280) 0 conv5_block13_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block13_1_conv (Conv2D) (None, 6, 8, 128) 163840 conv5_block13_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block13_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block13_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block13_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block13_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block13_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block13_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block13_concat (Concatena (None, 6, 8, 1312) 0 conv5_block12_concat[0][0]
conv5_block13_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block14_0_bn (BatchNormal (None, 6, 8, 1312) 5248 conv5_block13_concat[0][0]
__________________________________________________________________________________________________
conv5_block14_0_relu (Activatio (None, 6, 8, 1312) 0 conv5_block14_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block14_1_conv (Conv2D) (None, 6, 8, 128) 167936 conv5_block14_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block14_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block14_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block14_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block14_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block14_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block14_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block14_concat (Concatena (None, 6, 8, 1344) 0 conv5_block13_concat[0][0]
conv5_block14_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block15_0_bn (BatchNormal (None, 6, 8, 1344) 5376 conv5_block14_concat[0][0]
__________________________________________________________________________________________________
conv5_block15_0_relu (Activatio (None, 6, 8, 1344) 0 conv5_block15_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block15_1_conv (Conv2D) (None, 6, 8, 128) 172032 conv5_block15_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block15_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block15_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block15_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block15_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block15_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block15_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block15_concat (Concatena (None, 6, 8, 1376) 0 conv5_block14_concat[0][0]
conv5_block15_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block16_0_bn (BatchNormal (None, 6, 8, 1376) 5504 conv5_block15_concat[0][0]
__________________________________________________________________________________________________
conv5_block16_0_relu (Activatio (None, 6, 8, 1376) 0 conv5_block16_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block16_1_conv (Conv2D) (None, 6, 8, 128) 176128 conv5_block16_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block16_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block16_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block16_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block16_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block16_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block16_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block16_concat (Concatena (None, 6, 8, 1408) 0 conv5_block15_concat[0][0]
conv5_block16_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block17_0_bn (BatchNormal (None, 6, 8, 1408) 5632 conv5_block16_concat[0][0]
__________________________________________________________________________________________________
conv5_block17_0_relu (Activatio (None, 6, 8, 1408) 0 conv5_block17_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block17_1_conv (Conv2D) (None, 6, 8, 128) 180224 conv5_block17_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block17_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block17_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block17_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block17_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block17_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block17_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block17_concat (Concatena (None, 6, 8, 1440) 0 conv5_block16_concat[0][0]
conv5_block17_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block18_0_bn (BatchNormal (None, 6, 8, 1440) 5760 conv5_block17_concat[0][0]
__________________________________________________________________________________________________
conv5_block18_0_relu (Activatio (None, 6, 8, 1440) 0 conv5_block18_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block18_1_conv (Conv2D) (None, 6, 8, 128) 184320 conv5_block18_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block18_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block18_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block18_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block18_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block18_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block18_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block18_concat (Concatena (None, 6, 8, 1472) 0 conv5_block17_concat[0][0]
conv5_block18_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block19_0_bn (BatchNormal (None, 6, 8, 1472) 5888 conv5_block18_concat[0][0]
__________________________________________________________________________________________________
conv5_block19_0_relu (Activatio (None, 6, 8, 1472) 0 conv5_block19_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block19_1_conv (Conv2D) (None, 6, 8, 128) 188416 conv5_block19_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block19_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block19_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block19_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block19_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block19_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block19_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block19_concat (Concatena (None, 6, 8, 1504) 0 conv5_block18_concat[0][0]
conv5_block19_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block20_0_bn (BatchNormal (None, 6, 8, 1504) 6016 conv5_block19_concat[0][0]
__________________________________________________________________________________________________
conv5_block20_0_relu (Activatio (None, 6, 8, 1504) 0 conv5_block20_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block20_1_conv (Conv2D) (None, 6, 8, 128) 192512 conv5_block20_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block20_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block20_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block20_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block20_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block20_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block20_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block20_concat (Concatena (None, 6, 8, 1536) 0 conv5_block19_concat[0][0]
conv5_block20_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block21_0_bn (BatchNormal (None, 6, 8, 1536) 6144 conv5_block20_concat[0][0]
__________________________________________________________________________________________________
conv5_block21_0_relu (Activatio (None, 6, 8, 1536) 0 conv5_block21_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block21_1_conv (Conv2D) (None, 6, 8, 128) 196608 conv5_block21_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block21_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block21_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block21_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block21_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block21_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block21_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block21_concat (Concatena (None, 6, 8, 1568) 0 conv5_block20_concat[0][0]
conv5_block21_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block22_0_bn (BatchNormal (None, 6, 8, 1568) 6272 conv5_block21_concat[0][0]
__________________________________________________________________________________________________
conv5_block22_0_relu (Activatio (None, 6, 8, 1568) 0 conv5_block22_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block22_1_conv (Conv2D) (None, 6, 8, 128) 200704 conv5_block22_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block22_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block22_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block22_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block22_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block22_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block22_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block22_concat (Concatena (None, 6, 8, 1600) 0 conv5_block21_concat[0][0]
conv5_block22_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block23_0_bn (BatchNormal (None, 6, 8, 1600) 6400 conv5_block22_concat[0][0]
__________________________________________________________________________________________________
conv5_block23_0_relu (Activatio (None, 6, 8, 1600) 0 conv5_block23_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block23_1_conv (Conv2D) (None, 6, 8, 128) 204800 conv5_block23_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block23_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block23_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block23_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block23_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block23_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block23_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block23_concat (Concatena (None, 6, 8, 1632) 0 conv5_block22_concat[0][0]
conv5_block23_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block24_0_bn (BatchNormal (None, 6, 8, 1632) 6528 conv5_block23_concat[0][0]
__________________________________________________________________________________________________
conv5_block24_0_relu (Activatio (None, 6, 8, 1632) 0 conv5_block24_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block24_1_conv (Conv2D) (None, 6, 8, 128) 208896 conv5_block24_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block24_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block24_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block24_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block24_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block24_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block24_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block24_concat (Concatena (None, 6, 8, 1664) 0 conv5_block23_concat[0][0]
conv5_block24_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block25_0_bn (BatchNormal (None, 6, 8, 1664) 6656 conv5_block24_concat[0][0]
__________________________________________________________________________________________________
conv5_block25_0_relu (Activatio (None, 6, 8, 1664) 0 conv5_block25_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block25_1_conv (Conv2D) (None, 6, 8, 128) 212992 conv5_block25_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block25_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block25_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block25_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block25_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block25_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block25_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block25_concat (Concatena (None, 6, 8, 1696) 0 conv5_block24_concat[0][0]
conv5_block25_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block26_0_bn (BatchNormal (None, 6, 8, 1696) 6784 conv5_block25_concat[0][0]
__________________________________________________________________________________________________
conv5_block26_0_relu (Activatio (None, 6, 8, 1696) 0 conv5_block26_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block26_1_conv (Conv2D) (None, 6, 8, 128) 217088 conv5_block26_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block26_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block26_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block26_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block26_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block26_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block26_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block26_concat (Concatena (None, 6, 8, 1728) 0 conv5_block25_concat[0][0]
conv5_block26_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block27_0_bn (BatchNormal (None, 6, 8, 1728) 6912 conv5_block26_concat[0][0]
__________________________________________________________________________________________________
conv5_block27_0_relu (Activatio (None, 6, 8, 1728) 0 conv5_block27_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block27_1_conv (Conv2D) (None, 6, 8, 128) 221184 conv5_block27_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block27_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block27_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block27_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block27_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block27_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block27_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block27_concat (Concatena (None, 6, 8, 1760) 0 conv5_block26_concat[0][0]
conv5_block27_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block28_0_bn (BatchNormal (None, 6, 8, 1760) 7040 conv5_block27_concat[0][0]
__________________________________________________________________________________________________
conv5_block28_0_relu (Activatio (None, 6, 8, 1760) 0 conv5_block28_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block28_1_conv (Conv2D) (None, 6, 8, 128) 225280 conv5_block28_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block28_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block28_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block28_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block28_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block28_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block28_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block28_concat (Concatena (None, 6, 8, 1792) 0 conv5_block27_concat[0][0]
conv5_block28_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block29_0_bn (BatchNormal (None, 6, 8, 1792) 7168 conv5_block28_concat[0][0]
__________________________________________________________________________________________________
conv5_block29_0_relu (Activatio (None, 6, 8, 1792) 0 conv5_block29_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block29_1_conv (Conv2D) (None, 6, 8, 128) 229376 conv5_block29_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block29_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block29_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block29_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block29_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block29_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block29_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block29_concat (Concatena (None, 6, 8, 1824) 0 conv5_block28_concat[0][0]
conv5_block29_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block30_0_bn (BatchNormal (None, 6, 8, 1824) 7296 conv5_block29_concat[0][0]
__________________________________________________________________________________________________
conv5_block30_0_relu (Activatio (None, 6, 8, 1824) 0 conv5_block30_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block30_1_conv (Conv2D) (None, 6, 8, 128) 233472 conv5_block30_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block30_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block30_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block30_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block30_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block30_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block30_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block30_concat (Concatena (None, 6, 8, 1856) 0 conv5_block29_concat[0][0]
conv5_block30_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block31_0_bn (BatchNormal (None, 6, 8, 1856) 7424 conv5_block30_concat[0][0]
__________________________________________________________________________________________________
conv5_block31_0_relu (Activatio (None, 6, 8, 1856) 0 conv5_block31_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block31_1_conv (Conv2D) (None, 6, 8, 128) 237568 conv5_block31_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block31_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block31_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block31_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block31_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block31_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block31_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block31_concat (Concatena (None, 6, 8, 1888) 0 conv5_block30_concat[0][0]
conv5_block31_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block32_0_bn (BatchNormal (None, 6, 8, 1888) 7552 conv5_block31_concat[0][0]
__________________________________________________________________________________________________
conv5_block32_0_relu (Activatio (None, 6, 8, 1888) 0 conv5_block32_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block32_1_conv (Conv2D) (None, 6, 8, 128) 241664 conv5_block32_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block32_1_bn (BatchNormal (None, 6, 8, 128) 512 conv5_block32_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block32_1_relu (Activatio (None, 6, 8, 128) 0 conv5_block32_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block32_2_conv (Conv2D) (None, 6, 8, 32) 36864 conv5_block32_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block32_concat (Concatena (None, 6, 8, 1920) 0 conv5_block31_concat[0][0]
conv5_block32_2_conv[0][0]
__________________________________________________________________________________________________
bn (BatchNormalization) (None, 6, 8, 1920) 7680 conv5_block32_concat[0][0]
__________________________________________________________________________________________________
relu (Activation) (None, 6, 8, 1920) 0 bn[0][0]
__________________________________________________________________________________________________
global_max_pooling2d_3 (GlobalM (None, 1920) 0 relu[0][0]
__________________________________________________________________________________________________
dense_5 (Dense) (None, 512) 983552 global_max_pooling2d_3[0][0]
__________________________________________________________________________________________________
dropout_3 (Dropout) (None, 512) 0 dense_5[0][0]
__________________________________________________________________________________________________
dense_6 (Dense) (None, 7) 3591 dropout_3[0][0]
==================================================================================================
Total params: 19,309,127
Trainable params: 19,080,071
Non-trainable params: 229,056
__________________________________________________________________________________________________
###Markdown
Define Ensemble Model
###Code
def ensemble(models, model_input):
outputs = [model.outputs[0] for model in models]
y = layers.Average()(outputs)
model = Model(model_input, y, name='ensemble')
return model
ensemble_model = ensemble([denseNet_model, inception_model], model_input)
ensemble_model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
###Output
_____no_output_____
###Markdown
TestingThis is taking very long because I am running on my own PC to save money instead of on Floydhub
###Code
loss_val, acc_val = ensemble_model.evaluate(X_val, y_val, verbose=1)
print("Validation: accuracy = %f ; loss_v = %f" % (acc_val, loss_val))
loss_test, acc_test = ensemble_model.evaluate(X_test, y_test, verbose=1)
print("Test: accuracy = %f ; loss = %f" % (acc_test, loss_test))
###Output
1002/1002 [==============================] - 419s 418ms/step
Test: accuracy = 0.885230 ; loss = 0.411560
|
notebooks/OLD/decision_variables_OLD.ipynb | ###Markdown
Problem formulation1. Define decision variables2. Define constraints (on the decision variables)3. Define objective function Global decision variables - FSIInputs required:- maximum building extents in 3D (in the form of a .obj to be provided by user)- the current occupation latticeNB THESE ARE ACTUALLY OBJECTIVE FUNCTIONS
###Code
# first we define the decision variables for the programmatic minimum requirement of the entire project (manifesting itself as FSI)
# then we find the solar yield of the entire project, this includes solar heat gain and PV potential as aggregated values (manifesting itself as collisisons per m2)
import trimesh as tm
import os
import pyvista as pv
import numpy as np
import topogenesis as tg
lattice_path = os.path.relpath("../data/voxelized_envelope.csv")
occ_lattice = tg.lattice_from_csv(lattice_path) # the current occupation lattice
path = os.path.relpath('../data/my_envelope.obj') # building outer boundaries file path
buildingplot = tm.load(path) # load specified building boundary mesh (footprint extruded to max height, USER INPUT)
base = buildingplot.apply_transform(tm.transformations.projection_matrix((0,0,0), (0,0,-1))) # project mesh on z plane to get footprint
env_all_vox = occ_lattice.flatten() # flattened lattice of all possible positions, True is occupied, False is unoccupied
FSI_min = 2.0 # current goal for the FSI, can be a variable
# FSI DO: maybe it is faster to take footprint outside of the equation so it does not recompute the footprint everytime?
def FSI(footprint, occupationlattice): # calculate FSI based on occupation lattice and mesh plot
vox_size = occupationlattice.unit[0]
m2_plot = footprint.area/2 # area calculates both sides of the flattened mesh, we need only 1
cell_count = [i for i in occupationlattice if i != False ]
m2_total = vox_size**2*len(cell_count)
FSI = m2_total/m2_plot
return FSI
def FSI_fast(floors, floor_percent=0.8): # calculate FSI based on floorcount, plot coverage of the floors
m2_floor = floor_percent
FSI = m2_floor*floors
#FSI = m2_total/m2_plot
return FSI
# FSI(base,env_all_vox)
FSI_fast(3)
import trimesh as tm
import os
import pyvista as pv
import numpy as np
import topogenesis as tg
lattice_path = os.path.relpath("../data/voxelized_envelope.csv")
occ_lattice = tg.lattice_from_csv(lattice_path) # the current occupation lattice
path = os.path.relpath('../data/my_envelope.obj') # building outer boundaries file path
buildingplot = tm.load(path) # load specified building boundary mesh (footprint extruded to max height, USER INPUT)
np.arange(9)
###Output
_____no_output_____
###Markdown
Global decision variables - Aggregated Solar Score (ASS) (working title) (PV and heat gain)Inputs required:- Building mass (mesh or .obj) OR floorcount + roof area- Coordinates OR solar vectors (prepared) using Ladybug plugin- DO: check values for constants, check if it is needed iteratively or only global
###Code
# this includes a. the PV potential (calculated by roof area over total floor area)
# and b. the solar heat gain over the year (calculated by G-value/SHGC, window/wall ratio, solar heat gain coefficient of opaque components)
# PV potential - how much roof area per m2 is available for installing PV
def PV_fast(floors): # this gives ESTIMATED RATIO between floor area and PV area. Needs to be recomputed at the end of the local scale (or continuously calculated) DO: find out
PV = 1/floors
return PV
# Annual solar energy output of PV is calculated as follows:
# E(kwh) = A*r*H*PR where A = total solar panel area, r = solar panel yield/efficiency, H = Annual average solar radiation, PR = performance ratio
# from: https://photovoltaic-software.com/principle-ressources/how-calculate-solar-energy-power-pv-systems
r = 0.15 # yield/efficiency estimate
H = 1050 # to be updated, currently wikipedia estimate. Slope, tilt, orientation may change values. kWh.y so maybe *365???
PR = 0.75 # default value, estimate
def PV(occupationlattice): # an accurate value (kWh estimate) of the PV potential DO: change to only check for the added voxels of the current iteration?
vox_size = occupationlattice.unit[0]
cell_count = [ i for i in occupationlattice if i != False ] # change to only include voxels on the 'roof'
A = len(cell_count)*vox_size # update to actual roof area
E = A*r*H*PR # the estimated solar yield in kWh for the year
return E
PV(env_all_vox)
# solar heat gain (windows only), include opaque surfaces?
# Aggregated score
###Output
_____no_output_____
###Markdown
Local cost/objective function - Energy usage (minimize)inputs required:- current floor area (per building unit type)- constant value (per building unit type)
###Code
# skip for now, maybe skip permanently? --> too dependant on building (material) quality and not only on massing/envelope
###Output
_____no_output_____ |
tasks/human_pose/pytorch_to_onnx_v2.ipynb | ###Markdown
First, let's load the JSON file which describes the human pose task. This is in COCO format, it is the category descriptor pulled from the annotations file. We modify the COCO category slightly, to add a neck keypoint. We will use this task description JSON to create a topology tensor, which is an intermediate data structure that describes the part linkages, as well as which channels in the part affinity field each linkage corresponds to.
###Code
import json
import trt_pose.coco
with open('human_pose.json', 'r') as f:
human_pose = json.load(f)
topology = trt_pose.coco.coco_category_to_topology(human_pose)
###Output
_____no_output_____
###Markdown
Next, we'll load our model. Each model takes at least two parameters, *cmap_channels* and *paf_channels* corresponding to the number of heatmap channelsand part affinity field channels. The number of part affinity field channels is 2x the number of links, because each link has a channel corresponding to thex and y direction of the vector field for each link.
###Code
import trt_pose.models
num_parts = len(human_pose['keypoints'])
num_links = len(human_pose['skeleton'])
# model = trt_pose.models.resnet18_baseline_att(num_parts, 2 * num_links, pretrained=False).cuda().eval()
model = trt_pose.models.densenet121_baseline_att(num_parts, 2 * num_links, pretrained=False).cuda().eval()
###Output
_____no_output_____
###Markdown
Next, let's load the model weights. You will need to download these according to the table in the README.
###Code
import torch
# MODEL_WEIGHTS = 'resnet18_baseline_att_224x224_A_epoch_249.pth'
# ONNX_OUTPUT = 'resnet18_baseline_att_224x224_A_epoch_249.onnx'
MODEL_WEIGHTS = 'densenet121_baseline_att_256x256_B_epoch_160.pth'
ONNX_OUTPUT = 'densenet121_baseline_att_256x256_B_epoch_160.onnx'
model.load_state_dict(torch.load(MODEL_WEIGHTS))
###Output
_____no_output_____
###Markdown
Convert a pytorch model to ONNX format
###Code
# WIDTH = 224
# HEIGHT = 224
WIDTH = 256
HEIGHT = 256
data = torch.zeros((1, 3, HEIGHT, WIDTH)).cuda()
torch_out = model(data)
torch.onnx.export(model,
data,
ONNX_OUTPUT,
export_params=True,
opset_version=10,
do_constant_folding=True
)
###Output
_____no_output_____
###Markdown
Verify converted ONNX model
###Code
import onnx
onnx_model = onnx.load(ONNX_OUTPUT)
onnx.checker.check_model(onnx_model)
# Print a human readable representation of the graph
print(onnx.helper.printable_graph(onnx_model.graph))
###Output
graph torch-jit-export (
%0[FLOAT, 1x3x256x256]
) optional inputs with matching initializers (
%0.densenet.features.conv0.weight[FLOAT, 64x3x7x7]
%0.densenet.features.norm0.weight[FLOAT, 64]
%0.densenet.features.norm0.bias[FLOAT, 64]
%0.densenet.features.norm0.running_mean[FLOAT, 64]
%0.densenet.features.norm0.running_var[FLOAT, 64]
%0.densenet.features.norm0.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer1.norm1.weight[FLOAT, 64]
%0.densenet.features.denseblock1.denselayer1.norm1.bias[FLOAT, 64]
%0.densenet.features.denseblock1.denselayer1.norm1.running_mean[FLOAT, 64]
%0.densenet.features.denseblock1.denselayer1.norm1.running_var[FLOAT, 64]
%0.densenet.features.denseblock1.denselayer1.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer1.conv1.weight[FLOAT, 128x64x1x1]
%0.densenet.features.denseblock1.denselayer1.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer1.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer1.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer1.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer1.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer1.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock1.denselayer2.norm1.weight[FLOAT, 96]
%0.densenet.features.denseblock1.denselayer2.norm1.bias[FLOAT, 96]
%0.densenet.features.denseblock1.denselayer2.norm1.running_mean[FLOAT, 96]
%0.densenet.features.denseblock1.denselayer2.norm1.running_var[FLOAT, 96]
%0.densenet.features.denseblock1.denselayer2.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer2.conv1.weight[FLOAT, 128x96x1x1]
%0.densenet.features.denseblock1.denselayer2.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer2.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer2.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer2.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer2.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer2.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock1.denselayer3.norm1.weight[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer3.norm1.bias[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer3.norm1.running_mean[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer3.norm1.running_var[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer3.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer3.conv1.weight[FLOAT, 128x128x1x1]
%0.densenet.features.denseblock1.denselayer3.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer3.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer3.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer3.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer3.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer3.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock1.denselayer4.norm1.weight[FLOAT, 160]
%0.densenet.features.denseblock1.denselayer4.norm1.bias[FLOAT, 160]
%0.densenet.features.denseblock1.denselayer4.norm1.running_mean[FLOAT, 160]
%0.densenet.features.denseblock1.denselayer4.norm1.running_var[FLOAT, 160]
%0.densenet.features.denseblock1.denselayer4.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer4.conv1.weight[FLOAT, 128x160x1x1]
%0.densenet.features.denseblock1.denselayer4.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer4.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer4.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer4.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer4.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer4.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock1.denselayer5.norm1.weight[FLOAT, 192]
%0.densenet.features.denseblock1.denselayer5.norm1.bias[FLOAT, 192]
%0.densenet.features.denseblock1.denselayer5.norm1.running_mean[FLOAT, 192]
%0.densenet.features.denseblock1.denselayer5.norm1.running_var[FLOAT, 192]
%0.densenet.features.denseblock1.denselayer5.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer5.conv1.weight[FLOAT, 128x192x1x1]
%0.densenet.features.denseblock1.denselayer5.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer5.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer5.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer5.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer5.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer5.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock1.denselayer6.norm1.weight[FLOAT, 224]
%0.densenet.features.denseblock1.denselayer6.norm1.bias[FLOAT, 224]
%0.densenet.features.denseblock1.denselayer6.norm1.running_mean[FLOAT, 224]
%0.densenet.features.denseblock1.denselayer6.norm1.running_var[FLOAT, 224]
%0.densenet.features.denseblock1.denselayer6.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer6.conv1.weight[FLOAT, 128x224x1x1]
%0.densenet.features.denseblock1.denselayer6.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer6.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer6.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer6.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock1.denselayer6.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock1.denselayer6.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.transition1.norm.weight[FLOAT, 256]
%0.densenet.features.transition1.norm.bias[FLOAT, 256]
%0.densenet.features.transition1.norm.running_mean[FLOAT, 256]
%0.densenet.features.transition1.norm.running_var[FLOAT, 256]
%0.densenet.features.transition1.norm.num_batches_tracked[INT64, scalar]
%0.densenet.features.transition1.conv.weight[FLOAT, 128x256x1x1]
%0.densenet.features.denseblock2.denselayer1.norm1.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer1.norm1.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer1.norm1.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer1.norm1.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer1.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer1.conv1.weight[FLOAT, 128x128x1x1]
%0.densenet.features.denseblock2.denselayer1.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer1.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer1.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer1.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer1.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer1.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock2.denselayer2.norm1.weight[FLOAT, 160]
%0.densenet.features.denseblock2.denselayer2.norm1.bias[FLOAT, 160]
%0.densenet.features.denseblock2.denselayer2.norm1.running_mean[FLOAT, 160]
%0.densenet.features.denseblock2.denselayer2.norm1.running_var[FLOAT, 160]
%0.densenet.features.denseblock2.denselayer2.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer2.conv1.weight[FLOAT, 128x160x1x1]
%0.densenet.features.denseblock2.denselayer2.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer2.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer2.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer2.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer2.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer2.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock2.denselayer3.norm1.weight[FLOAT, 192]
%0.densenet.features.denseblock2.denselayer3.norm1.bias[FLOAT, 192]
%0.densenet.features.denseblock2.denselayer3.norm1.running_mean[FLOAT, 192]
%0.densenet.features.denseblock2.denselayer3.norm1.running_var[FLOAT, 192]
%0.densenet.features.denseblock2.denselayer3.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer3.conv1.weight[FLOAT, 128x192x1x1]
%0.densenet.features.denseblock2.denselayer3.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer3.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer3.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer3.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer3.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer3.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock2.denselayer4.norm1.weight[FLOAT, 224]
%0.densenet.features.denseblock2.denselayer4.norm1.bias[FLOAT, 224]
%0.densenet.features.denseblock2.denselayer4.norm1.running_mean[FLOAT, 224]
%0.densenet.features.denseblock2.denselayer4.norm1.running_var[FLOAT, 224]
%0.densenet.features.denseblock2.denselayer4.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer4.conv1.weight[FLOAT, 128x224x1x1]
%0.densenet.features.denseblock2.denselayer4.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer4.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer4.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer4.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer4.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer4.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock2.denselayer5.norm1.weight[FLOAT, 256]
%0.densenet.features.denseblock2.denselayer5.norm1.bias[FLOAT, 256]
%0.densenet.features.denseblock2.denselayer5.norm1.running_mean[FLOAT, 256]
%0.densenet.features.denseblock2.denselayer5.norm1.running_var[FLOAT, 256]
%0.densenet.features.denseblock2.denselayer5.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer5.conv1.weight[FLOAT, 128x256x1x1]
%0.densenet.features.denseblock2.denselayer5.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer5.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer5.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer5.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer5.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer5.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock2.denselayer6.norm1.weight[FLOAT, 288]
%0.densenet.features.denseblock2.denselayer6.norm1.bias[FLOAT, 288]
%0.densenet.features.denseblock2.denselayer6.norm1.running_mean[FLOAT, 288]
%0.densenet.features.denseblock2.denselayer6.norm1.running_var[FLOAT, 288]
%0.densenet.features.denseblock2.denselayer6.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer6.conv1.weight[FLOAT, 128x288x1x1]
%0.densenet.features.denseblock2.denselayer6.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer6.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer6.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer6.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer6.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer6.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock2.denselayer7.norm1.weight[FLOAT, 320]
%0.densenet.features.denseblock2.denselayer7.norm1.bias[FLOAT, 320]
%0.densenet.features.denseblock2.denselayer7.norm1.running_mean[FLOAT, 320]
%0.densenet.features.denseblock2.denselayer7.norm1.running_var[FLOAT, 320]
%0.densenet.features.denseblock2.denselayer7.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer7.conv1.weight[FLOAT, 128x320x1x1]
%0.densenet.features.denseblock2.denselayer7.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer7.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer7.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer7.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer7.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer7.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock2.denselayer8.norm1.weight[FLOAT, 352]
%0.densenet.features.denseblock2.denselayer8.norm1.bias[FLOAT, 352]
%0.densenet.features.denseblock2.denselayer8.norm1.running_mean[FLOAT, 352]
%0.densenet.features.denseblock2.denselayer8.norm1.running_var[FLOAT, 352]
%0.densenet.features.denseblock2.denselayer8.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer8.conv1.weight[FLOAT, 128x352x1x1]
%0.densenet.features.denseblock2.denselayer8.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer8.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer8.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer8.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer8.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer8.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock2.denselayer9.norm1.weight[FLOAT, 384]
%0.densenet.features.denseblock2.denselayer9.norm1.bias[FLOAT, 384]
%0.densenet.features.denseblock2.denselayer9.norm1.running_mean[FLOAT, 384]
%0.densenet.features.denseblock2.denselayer9.norm1.running_var[FLOAT, 384]
%0.densenet.features.denseblock2.denselayer9.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer9.conv1.weight[FLOAT, 128x384x1x1]
%0.densenet.features.denseblock2.denselayer9.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer9.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer9.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer9.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer9.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer9.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock2.denselayer10.norm1.weight[FLOAT, 416]
%0.densenet.features.denseblock2.denselayer10.norm1.bias[FLOAT, 416]
%0.densenet.features.denseblock2.denselayer10.norm1.running_mean[FLOAT, 416]
%0.densenet.features.denseblock2.denselayer10.norm1.running_var[FLOAT, 416]
%0.densenet.features.denseblock2.denselayer10.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer10.conv1.weight[FLOAT, 128x416x1x1]
%0.densenet.features.denseblock2.denselayer10.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer10.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer10.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer10.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer10.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer10.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock2.denselayer11.norm1.weight[FLOAT, 448]
%0.densenet.features.denseblock2.denselayer11.norm1.bias[FLOAT, 448]
%0.densenet.features.denseblock2.denselayer11.norm1.running_mean[FLOAT, 448]
%0.densenet.features.denseblock2.denselayer11.norm1.running_var[FLOAT, 448]
%0.densenet.features.denseblock2.denselayer11.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer11.conv1.weight[FLOAT, 128x448x1x1]
%0.densenet.features.denseblock2.denselayer11.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer11.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer11.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer11.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer11.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer11.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock2.denselayer12.norm1.weight[FLOAT, 480]
%0.densenet.features.denseblock2.denselayer12.norm1.bias[FLOAT, 480]
%0.densenet.features.denseblock2.denselayer12.norm1.running_mean[FLOAT, 480]
%0.densenet.features.denseblock2.denselayer12.norm1.running_var[FLOAT, 480]
%0.densenet.features.denseblock2.denselayer12.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer12.conv1.weight[FLOAT, 128x480x1x1]
%0.densenet.features.denseblock2.denselayer12.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer12.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer12.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer12.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock2.denselayer12.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock2.denselayer12.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.transition2.norm.weight[FLOAT, 512]
%0.densenet.features.transition2.norm.bias[FLOAT, 512]
%0.densenet.features.transition2.norm.running_mean[FLOAT, 512]
%0.densenet.features.transition2.norm.running_var[FLOAT, 512]
%0.densenet.features.transition2.norm.num_batches_tracked[INT64, scalar]
%0.densenet.features.transition2.conv.weight[FLOAT, 256x512x1x1]
%0.densenet.features.denseblock3.denselayer1.norm1.weight[FLOAT, 256]
%0.densenet.features.denseblock3.denselayer1.norm1.bias[FLOAT, 256]
%0.densenet.features.denseblock3.denselayer1.norm1.running_mean[FLOAT, 256]
%0.densenet.features.denseblock3.denselayer1.norm1.running_var[FLOAT, 256]
%0.densenet.features.denseblock3.denselayer1.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer1.conv1.weight[FLOAT, 128x256x1x1]
%0.densenet.features.denseblock3.denselayer1.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer1.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer1.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer1.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer1.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer1.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer2.norm1.weight[FLOAT, 288]
%0.densenet.features.denseblock3.denselayer2.norm1.bias[FLOAT, 288]
%0.densenet.features.denseblock3.denselayer2.norm1.running_mean[FLOAT, 288]
%0.densenet.features.denseblock3.denselayer2.norm1.running_var[FLOAT, 288]
%0.densenet.features.denseblock3.denselayer2.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer2.conv1.weight[FLOAT, 128x288x1x1]
%0.densenet.features.denseblock3.denselayer2.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer2.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer2.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer2.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer2.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer2.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer3.norm1.weight[FLOAT, 320]
%0.densenet.features.denseblock3.denselayer3.norm1.bias[FLOAT, 320]
%0.densenet.features.denseblock3.denselayer3.norm1.running_mean[FLOAT, 320]
%0.densenet.features.denseblock3.denselayer3.norm1.running_var[FLOAT, 320]
%0.densenet.features.denseblock3.denselayer3.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer3.conv1.weight[FLOAT, 128x320x1x1]
%0.densenet.features.denseblock3.denselayer3.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer3.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer3.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer3.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer3.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer3.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer4.norm1.weight[FLOAT, 352]
%0.densenet.features.denseblock3.denselayer4.norm1.bias[FLOAT, 352]
%0.densenet.features.denseblock3.denselayer4.norm1.running_mean[FLOAT, 352]
%0.densenet.features.denseblock3.denselayer4.norm1.running_var[FLOAT, 352]
%0.densenet.features.denseblock3.denselayer4.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer4.conv1.weight[FLOAT, 128x352x1x1]
%0.densenet.features.denseblock3.denselayer4.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer4.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer4.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer4.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer4.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer4.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer5.norm1.weight[FLOAT, 384]
%0.densenet.features.denseblock3.denselayer5.norm1.bias[FLOAT, 384]
%0.densenet.features.denseblock3.denselayer5.norm1.running_mean[FLOAT, 384]
%0.densenet.features.denseblock3.denselayer5.norm1.running_var[FLOAT, 384]
%0.densenet.features.denseblock3.denselayer5.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer5.conv1.weight[FLOAT, 128x384x1x1]
%0.densenet.features.denseblock3.denselayer5.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer5.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer5.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer5.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer5.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer5.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer6.norm1.weight[FLOAT, 416]
%0.densenet.features.denseblock3.denselayer6.norm1.bias[FLOAT, 416]
%0.densenet.features.denseblock3.denselayer6.norm1.running_mean[FLOAT, 416]
%0.densenet.features.denseblock3.denselayer6.norm1.running_var[FLOAT, 416]
%0.densenet.features.denseblock3.denselayer6.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer6.conv1.weight[FLOAT, 128x416x1x1]
%0.densenet.features.denseblock3.denselayer6.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer6.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer6.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer6.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer6.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer6.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer7.norm1.weight[FLOAT, 448]
%0.densenet.features.denseblock3.denselayer7.norm1.bias[FLOAT, 448]
%0.densenet.features.denseblock3.denselayer7.norm1.running_mean[FLOAT, 448]
%0.densenet.features.denseblock3.denselayer7.norm1.running_var[FLOAT, 448]
%0.densenet.features.denseblock3.denselayer7.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer7.conv1.weight[FLOAT, 128x448x1x1]
%0.densenet.features.denseblock3.denselayer7.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer7.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer7.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer7.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer7.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer7.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer8.norm1.weight[FLOAT, 480]
%0.densenet.features.denseblock3.denselayer8.norm1.bias[FLOAT, 480]
%0.densenet.features.denseblock3.denselayer8.norm1.running_mean[FLOAT, 480]
%0.densenet.features.denseblock3.denselayer8.norm1.running_var[FLOAT, 480]
%0.densenet.features.denseblock3.denselayer8.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer8.conv1.weight[FLOAT, 128x480x1x1]
%0.densenet.features.denseblock3.denselayer8.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer8.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer8.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer8.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer8.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer8.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer9.norm1.weight[FLOAT, 512]
%0.densenet.features.denseblock3.denselayer9.norm1.bias[FLOAT, 512]
%0.densenet.features.denseblock3.denselayer9.norm1.running_mean[FLOAT, 512]
%0.densenet.features.denseblock3.denselayer9.norm1.running_var[FLOAT, 512]
%0.densenet.features.denseblock3.denselayer9.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer9.conv1.weight[FLOAT, 128x512x1x1]
%0.densenet.features.denseblock3.denselayer9.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer9.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer9.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer9.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer9.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer9.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer10.norm1.weight[FLOAT, 544]
%0.densenet.features.denseblock3.denselayer10.norm1.bias[FLOAT, 544]
%0.densenet.features.denseblock3.denselayer10.norm1.running_mean[FLOAT, 544]
%0.densenet.features.denseblock3.denselayer10.norm1.running_var[FLOAT, 544]
%0.densenet.features.denseblock3.denselayer10.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer10.conv1.weight[FLOAT, 128x544x1x1]
%0.densenet.features.denseblock3.denselayer10.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer10.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer10.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer10.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer10.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer10.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer11.norm1.weight[FLOAT, 576]
%0.densenet.features.denseblock3.denselayer11.norm1.bias[FLOAT, 576]
%0.densenet.features.denseblock3.denselayer11.norm1.running_mean[FLOAT, 576]
%0.densenet.features.denseblock3.denselayer11.norm1.running_var[FLOAT, 576]
%0.densenet.features.denseblock3.denselayer11.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer11.conv1.weight[FLOAT, 128x576x1x1]
%0.densenet.features.denseblock3.denselayer11.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer11.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer11.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer11.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer11.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer11.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer12.norm1.weight[FLOAT, 608]
%0.densenet.features.denseblock3.denselayer12.norm1.bias[FLOAT, 608]
%0.densenet.features.denseblock3.denselayer12.norm1.running_mean[FLOAT, 608]
%0.densenet.features.denseblock3.denselayer12.norm1.running_var[FLOAT, 608]
%0.densenet.features.denseblock3.denselayer12.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer12.conv1.weight[FLOAT, 128x608x1x1]
%0.densenet.features.denseblock3.denselayer12.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer12.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer12.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer12.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer12.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer12.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer13.norm1.weight[FLOAT, 640]
%0.densenet.features.denseblock3.denselayer13.norm1.bias[FLOAT, 640]
%0.densenet.features.denseblock3.denselayer13.norm1.running_mean[FLOAT, 640]
%0.densenet.features.denseblock3.denselayer13.norm1.running_var[FLOAT, 640]
%0.densenet.features.denseblock3.denselayer13.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer13.conv1.weight[FLOAT, 128x640x1x1]
%0.densenet.features.denseblock3.denselayer13.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer13.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer13.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer13.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer13.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer13.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer14.norm1.weight[FLOAT, 672]
%0.densenet.features.denseblock3.denselayer14.norm1.bias[FLOAT, 672]
%0.densenet.features.denseblock3.denselayer14.norm1.running_mean[FLOAT, 672]
%0.densenet.features.denseblock3.denselayer14.norm1.running_var[FLOAT, 672]
%0.densenet.features.denseblock3.denselayer14.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer14.conv1.weight[FLOAT, 128x672x1x1]
%0.densenet.features.denseblock3.denselayer14.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer14.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer14.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer14.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer14.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer14.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer15.norm1.weight[FLOAT, 704]
%0.densenet.features.denseblock3.denselayer15.norm1.bias[FLOAT, 704]
%0.densenet.features.denseblock3.denselayer15.norm1.running_mean[FLOAT, 704]
%0.densenet.features.denseblock3.denselayer15.norm1.running_var[FLOAT, 704]
%0.densenet.features.denseblock3.denselayer15.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer15.conv1.weight[FLOAT, 128x704x1x1]
%0.densenet.features.denseblock3.denselayer15.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer15.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer15.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer15.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer15.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer15.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer16.norm1.weight[FLOAT, 736]
%0.densenet.features.denseblock3.denselayer16.norm1.bias[FLOAT, 736]
%0.densenet.features.denseblock3.denselayer16.norm1.running_mean[FLOAT, 736]
%0.densenet.features.denseblock3.denselayer16.norm1.running_var[FLOAT, 736]
%0.densenet.features.denseblock3.denselayer16.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer16.conv1.weight[FLOAT, 128x736x1x1]
%0.densenet.features.denseblock3.denselayer16.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer16.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer16.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer16.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer16.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer16.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer17.norm1.weight[FLOAT, 768]
%0.densenet.features.denseblock3.denselayer17.norm1.bias[FLOAT, 768]
%0.densenet.features.denseblock3.denselayer17.norm1.running_mean[FLOAT, 768]
%0.densenet.features.denseblock3.denselayer17.norm1.running_var[FLOAT, 768]
%0.densenet.features.denseblock3.denselayer17.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer17.conv1.weight[FLOAT, 128x768x1x1]
%0.densenet.features.denseblock3.denselayer17.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer17.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer17.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer17.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer17.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer17.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer18.norm1.weight[FLOAT, 800]
%0.densenet.features.denseblock3.denselayer18.norm1.bias[FLOAT, 800]
%0.densenet.features.denseblock3.denselayer18.norm1.running_mean[FLOAT, 800]
%0.densenet.features.denseblock3.denselayer18.norm1.running_var[FLOAT, 800]
%0.densenet.features.denseblock3.denselayer18.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer18.conv1.weight[FLOAT, 128x800x1x1]
%0.densenet.features.denseblock3.denselayer18.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer18.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer18.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer18.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer18.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer18.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer19.norm1.weight[FLOAT, 832]
%0.densenet.features.denseblock3.denselayer19.norm1.bias[FLOAT, 832]
%0.densenet.features.denseblock3.denselayer19.norm1.running_mean[FLOAT, 832]
%0.densenet.features.denseblock3.denselayer19.norm1.running_var[FLOAT, 832]
%0.densenet.features.denseblock3.denselayer19.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer19.conv1.weight[FLOAT, 128x832x1x1]
%0.densenet.features.denseblock3.denselayer19.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer19.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer19.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer19.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer19.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer19.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer20.norm1.weight[FLOAT, 864]
%0.densenet.features.denseblock3.denselayer20.norm1.bias[FLOAT, 864]
%0.densenet.features.denseblock3.denselayer20.norm1.running_mean[FLOAT, 864]
%0.densenet.features.denseblock3.denselayer20.norm1.running_var[FLOAT, 864]
%0.densenet.features.denseblock3.denselayer20.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer20.conv1.weight[FLOAT, 128x864x1x1]
%0.densenet.features.denseblock3.denselayer20.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer20.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer20.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer20.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer20.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer20.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer21.norm1.weight[FLOAT, 896]
%0.densenet.features.denseblock3.denselayer21.norm1.bias[FLOAT, 896]
%0.densenet.features.denseblock3.denselayer21.norm1.running_mean[FLOAT, 896]
%0.densenet.features.denseblock3.denselayer21.norm1.running_var[FLOAT, 896]
%0.densenet.features.denseblock3.denselayer21.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer21.conv1.weight[FLOAT, 128x896x1x1]
%0.densenet.features.denseblock3.denselayer21.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer21.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer21.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer21.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer21.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer21.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer22.norm1.weight[FLOAT, 928]
%0.densenet.features.denseblock3.denselayer22.norm1.bias[FLOAT, 928]
%0.densenet.features.denseblock3.denselayer22.norm1.running_mean[FLOAT, 928]
%0.densenet.features.denseblock3.denselayer22.norm1.running_var[FLOAT, 928]
%0.densenet.features.denseblock3.denselayer22.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer22.conv1.weight[FLOAT, 128x928x1x1]
%0.densenet.features.denseblock3.denselayer22.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer22.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer22.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer22.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer22.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer22.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer23.norm1.weight[FLOAT, 960]
%0.densenet.features.denseblock3.denselayer23.norm1.bias[FLOAT, 960]
%0.densenet.features.denseblock3.denselayer23.norm1.running_mean[FLOAT, 960]
%0.densenet.features.denseblock3.denselayer23.norm1.running_var[FLOAT, 960]
%0.densenet.features.denseblock3.denselayer23.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer23.conv1.weight[FLOAT, 128x960x1x1]
%0.densenet.features.denseblock3.denselayer23.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer23.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer23.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer23.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer23.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer23.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock3.denselayer24.norm1.weight[FLOAT, 992]
%0.densenet.features.denseblock3.denselayer24.norm1.bias[FLOAT, 992]
%0.densenet.features.denseblock3.denselayer24.norm1.running_mean[FLOAT, 992]
%0.densenet.features.denseblock3.denselayer24.norm1.running_var[FLOAT, 992]
%0.densenet.features.denseblock3.denselayer24.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer24.conv1.weight[FLOAT, 128x992x1x1]
%0.densenet.features.denseblock3.denselayer24.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer24.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer24.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer24.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock3.denselayer24.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock3.denselayer24.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.transition3.norm.weight[FLOAT, 1024]
%0.densenet.features.transition3.norm.bias[FLOAT, 1024]
%0.densenet.features.transition3.norm.running_mean[FLOAT, 1024]
%0.densenet.features.transition3.norm.running_var[FLOAT, 1024]
%0.densenet.features.transition3.norm.num_batches_tracked[INT64, scalar]
%0.densenet.features.transition3.conv.weight[FLOAT, 512x1024x1x1]
%0.densenet.features.denseblock4.denselayer1.norm1.weight[FLOAT, 512]
%0.densenet.features.denseblock4.denselayer1.norm1.bias[FLOAT, 512]
%0.densenet.features.denseblock4.denselayer1.norm1.running_mean[FLOAT, 512]
%0.densenet.features.denseblock4.denselayer1.norm1.running_var[FLOAT, 512]
%0.densenet.features.denseblock4.denselayer1.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer1.conv1.weight[FLOAT, 128x512x1x1]
%0.densenet.features.denseblock4.denselayer1.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer1.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer1.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer1.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer1.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer1.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer2.norm1.weight[FLOAT, 544]
%0.densenet.features.denseblock4.denselayer2.norm1.bias[FLOAT, 544]
%0.densenet.features.denseblock4.denselayer2.norm1.running_mean[FLOAT, 544]
%0.densenet.features.denseblock4.denselayer2.norm1.running_var[FLOAT, 544]
%0.densenet.features.denseblock4.denselayer2.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer2.conv1.weight[FLOAT, 128x544x1x1]
%0.densenet.features.denseblock4.denselayer2.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer2.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer2.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer2.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer2.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer2.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer3.norm1.weight[FLOAT, 576]
%0.densenet.features.denseblock4.denselayer3.norm1.bias[FLOAT, 576]
%0.densenet.features.denseblock4.denselayer3.norm1.running_mean[FLOAT, 576]
%0.densenet.features.denseblock4.denselayer3.norm1.running_var[FLOAT, 576]
%0.densenet.features.denseblock4.denselayer3.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer3.conv1.weight[FLOAT, 128x576x1x1]
%0.densenet.features.denseblock4.denselayer3.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer3.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer3.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer3.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer3.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer3.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer4.norm1.weight[FLOAT, 608]
%0.densenet.features.denseblock4.denselayer4.norm1.bias[FLOAT, 608]
%0.densenet.features.denseblock4.denselayer4.norm1.running_mean[FLOAT, 608]
%0.densenet.features.denseblock4.denselayer4.norm1.running_var[FLOAT, 608]
%0.densenet.features.denseblock4.denselayer4.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer4.conv1.weight[FLOAT, 128x608x1x1]
%0.densenet.features.denseblock4.denselayer4.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer4.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer4.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer4.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer4.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer4.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer5.norm1.weight[FLOAT, 640]
%0.densenet.features.denseblock4.denselayer5.norm1.bias[FLOAT, 640]
%0.densenet.features.denseblock4.denselayer5.norm1.running_mean[FLOAT, 640]
%0.densenet.features.denseblock4.denselayer5.norm1.running_var[FLOAT, 640]
%0.densenet.features.denseblock4.denselayer5.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer5.conv1.weight[FLOAT, 128x640x1x1]
%0.densenet.features.denseblock4.denselayer5.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer5.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer5.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer5.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer5.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer5.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer6.norm1.weight[FLOAT, 672]
%0.densenet.features.denseblock4.denselayer6.norm1.bias[FLOAT, 672]
%0.densenet.features.denseblock4.denselayer6.norm1.running_mean[FLOAT, 672]
%0.densenet.features.denseblock4.denselayer6.norm1.running_var[FLOAT, 672]
%0.densenet.features.denseblock4.denselayer6.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer6.conv1.weight[FLOAT, 128x672x1x1]
%0.densenet.features.denseblock4.denselayer6.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer6.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer6.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer6.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer6.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer6.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer7.norm1.weight[FLOAT, 704]
%0.densenet.features.denseblock4.denselayer7.norm1.bias[FLOAT, 704]
%0.densenet.features.denseblock4.denselayer7.norm1.running_mean[FLOAT, 704]
%0.densenet.features.denseblock4.denselayer7.norm1.running_var[FLOAT, 704]
%0.densenet.features.denseblock4.denselayer7.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer7.conv1.weight[FLOAT, 128x704x1x1]
%0.densenet.features.denseblock4.denselayer7.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer7.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer7.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer7.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer7.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer7.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer8.norm1.weight[FLOAT, 736]
%0.densenet.features.denseblock4.denselayer8.norm1.bias[FLOAT, 736]
%0.densenet.features.denseblock4.denselayer8.norm1.running_mean[FLOAT, 736]
%0.densenet.features.denseblock4.denselayer8.norm1.running_var[FLOAT, 736]
%0.densenet.features.denseblock4.denselayer8.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer8.conv1.weight[FLOAT, 128x736x1x1]
%0.densenet.features.denseblock4.denselayer8.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer8.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer8.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer8.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer8.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer8.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer9.norm1.weight[FLOAT, 768]
%0.densenet.features.denseblock4.denselayer9.norm1.bias[FLOAT, 768]
%0.densenet.features.denseblock4.denselayer9.norm1.running_mean[FLOAT, 768]
%0.densenet.features.denseblock4.denselayer9.norm1.running_var[FLOAT, 768]
%0.densenet.features.denseblock4.denselayer9.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer9.conv1.weight[FLOAT, 128x768x1x1]
%0.densenet.features.denseblock4.denselayer9.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer9.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer9.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer9.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer9.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer9.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer10.norm1.weight[FLOAT, 800]
%0.densenet.features.denseblock4.denselayer10.norm1.bias[FLOAT, 800]
%0.densenet.features.denseblock4.denselayer10.norm1.running_mean[FLOAT, 800]
%0.densenet.features.denseblock4.denselayer10.norm1.running_var[FLOAT, 800]
%0.densenet.features.denseblock4.denselayer10.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer10.conv1.weight[FLOAT, 128x800x1x1]
%0.densenet.features.denseblock4.denselayer10.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer10.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer10.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer10.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer10.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer10.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer11.norm1.weight[FLOAT, 832]
%0.densenet.features.denseblock4.denselayer11.norm1.bias[FLOAT, 832]
%0.densenet.features.denseblock4.denselayer11.norm1.running_mean[FLOAT, 832]
%0.densenet.features.denseblock4.denselayer11.norm1.running_var[FLOAT, 832]
%0.densenet.features.denseblock4.denselayer11.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer11.conv1.weight[FLOAT, 128x832x1x1]
%0.densenet.features.denseblock4.denselayer11.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer11.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer11.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer11.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer11.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer11.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer12.norm1.weight[FLOAT, 864]
%0.densenet.features.denseblock4.denselayer12.norm1.bias[FLOAT, 864]
%0.densenet.features.denseblock4.denselayer12.norm1.running_mean[FLOAT, 864]
%0.densenet.features.denseblock4.denselayer12.norm1.running_var[FLOAT, 864]
%0.densenet.features.denseblock4.denselayer12.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer12.conv1.weight[FLOAT, 128x864x1x1]
%0.densenet.features.denseblock4.denselayer12.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer12.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer12.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer12.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer12.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer12.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer13.norm1.weight[FLOAT, 896]
%0.densenet.features.denseblock4.denselayer13.norm1.bias[FLOAT, 896]
%0.densenet.features.denseblock4.denselayer13.norm1.running_mean[FLOAT, 896]
%0.densenet.features.denseblock4.denselayer13.norm1.running_var[FLOAT, 896]
%0.densenet.features.denseblock4.denselayer13.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer13.conv1.weight[FLOAT, 128x896x1x1]
%0.densenet.features.denseblock4.denselayer13.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer13.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer13.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer13.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer13.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer13.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer14.norm1.weight[FLOAT, 928]
%0.densenet.features.denseblock4.denselayer14.norm1.bias[FLOAT, 928]
%0.densenet.features.denseblock4.denselayer14.norm1.running_mean[FLOAT, 928]
%0.densenet.features.denseblock4.denselayer14.norm1.running_var[FLOAT, 928]
%0.densenet.features.denseblock4.denselayer14.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer14.conv1.weight[FLOAT, 128x928x1x1]
%0.densenet.features.denseblock4.denselayer14.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer14.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer14.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer14.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer14.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer14.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer15.norm1.weight[FLOAT, 960]
%0.densenet.features.denseblock4.denselayer15.norm1.bias[FLOAT, 960]
%0.densenet.features.denseblock4.denselayer15.norm1.running_mean[FLOAT, 960]
%0.densenet.features.denseblock4.denselayer15.norm1.running_var[FLOAT, 960]
%0.densenet.features.denseblock4.denselayer15.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer15.conv1.weight[FLOAT, 128x960x1x1]
%0.densenet.features.denseblock4.denselayer15.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer15.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer15.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer15.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer15.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer15.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.denseblock4.denselayer16.norm1.weight[FLOAT, 992]
%0.densenet.features.denseblock4.denselayer16.norm1.bias[FLOAT, 992]
%0.densenet.features.denseblock4.denselayer16.norm1.running_mean[FLOAT, 992]
%0.densenet.features.denseblock4.denselayer16.norm1.running_var[FLOAT, 992]
%0.densenet.features.denseblock4.denselayer16.norm1.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer16.conv1.weight[FLOAT, 128x992x1x1]
%0.densenet.features.denseblock4.denselayer16.norm2.weight[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer16.norm2.bias[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer16.norm2.running_mean[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer16.norm2.running_var[FLOAT, 128]
%0.densenet.features.denseblock4.denselayer16.norm2.num_batches_tracked[INT64, scalar]
%0.densenet.features.denseblock4.denselayer16.conv2.weight[FLOAT, 32x128x3x3]
%0.densenet.features.norm5.weight[FLOAT, 1024]
%0.densenet.features.norm5.bias[FLOAT, 1024]
%0.densenet.features.norm5.running_mean[FLOAT, 1024]
%0.densenet.features.norm5.running_var[FLOAT, 1024]
%0.densenet.features.norm5.num_batches_tracked[INT64, scalar]
%0.densenet.classifier.weight[FLOAT, 1000x1024]
%0.densenet.classifier.bias[FLOAT, 1000]
%1.cmap_up.0.weight[FLOAT, 1024x256x4x4]
%1.cmap_up.0.bias[FLOAT, 256]
%1.cmap_up.1.weight[FLOAT, 256]
%1.cmap_up.1.bias[FLOAT, 256]
%1.cmap_up.1.running_mean[FLOAT, 256]
%1.cmap_up.1.running_var[FLOAT, 256]
%1.cmap_up.1.num_batches_tracked[INT64, scalar]
%1.cmap_up.3.weight[FLOAT, 256x256x4x4]
%1.cmap_up.3.bias[FLOAT, 256]
%1.cmap_up.4.weight[FLOAT, 256]
%1.cmap_up.4.bias[FLOAT, 256]
%1.cmap_up.4.running_mean[FLOAT, 256]
%1.cmap_up.4.running_var[FLOAT, 256]
%1.cmap_up.4.num_batches_tracked[INT64, scalar]
%1.cmap_up.6.weight[FLOAT, 256x256x4x4]
%1.cmap_up.6.bias[FLOAT, 256]
%1.cmap_up.7.weight[FLOAT, 256]
%1.cmap_up.7.bias[FLOAT, 256]
%1.cmap_up.7.running_mean[FLOAT, 256]
%1.cmap_up.7.running_var[FLOAT, 256]
%1.cmap_up.7.num_batches_tracked[INT64, scalar]
%1.paf_up.0.weight[FLOAT, 1024x256x4x4]
%1.paf_up.0.bias[FLOAT, 256]
%1.paf_up.1.weight[FLOAT, 256]
%1.paf_up.1.bias[FLOAT, 256]
%1.paf_up.1.running_mean[FLOAT, 256]
%1.paf_up.1.running_var[FLOAT, 256]
%1.paf_up.1.num_batches_tracked[INT64, scalar]
%1.paf_up.3.weight[FLOAT, 256x256x4x4]
%1.paf_up.3.bias[FLOAT, 256]
%1.paf_up.4.weight[FLOAT, 256]
%1.paf_up.4.bias[FLOAT, 256]
%1.paf_up.4.running_mean[FLOAT, 256]
%1.paf_up.4.running_var[FLOAT, 256]
%1.paf_up.4.num_batches_tracked[INT64, scalar]
%1.paf_up.6.weight[FLOAT, 256x256x4x4]
%1.paf_up.6.bias[FLOAT, 256]
%1.paf_up.7.weight[FLOAT, 256]
%1.paf_up.7.bias[FLOAT, 256]
%1.paf_up.7.running_mean[FLOAT, 256]
%1.paf_up.7.running_var[FLOAT, 256]
%1.paf_up.7.num_batches_tracked[INT64, scalar]
%1.cmap_att.weight[FLOAT, 256x256x3x3]
%1.cmap_att.bias[FLOAT, 256]
%1.paf_att.weight[FLOAT, 256x256x3x3]
%1.paf_att.bias[FLOAT, 256]
%1.cmap_conv.weight[FLOAT, 18x256x1x1]
%1.cmap_conv.bias[FLOAT, 18]
%1.paf_conv.weight[FLOAT, 42x256x1x1]
%1.paf_conv.bias[FLOAT, 42]
) {
%778 = Conv[dilations = [1, 1], group = 1, kernel_shape = [7, 7], pads = [3, 3, 3, 3], strides = [2, 2]](%0, %0.densenet.features.conv0.weight)
%779 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%778, %0.densenet.features.norm0.weight, %0.densenet.features.norm0.bias, %0.densenet.features.norm0.running_mean, %0.densenet.features.norm0.running_var)
%780 = Relu(%779)
%781 = MaxPool[kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%780)
%782 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%781, %0.densenet.features.denseblock1.denselayer1.norm1.weight, %0.densenet.features.denseblock1.denselayer1.norm1.bias, %0.densenet.features.denseblock1.denselayer1.norm1.running_mean, %0.densenet.features.denseblock1.denselayer1.norm1.running_var)
%783 = Relu(%782)
%784 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%783, %0.densenet.features.denseblock1.denselayer1.conv1.weight)
%785 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%784, %0.densenet.features.denseblock1.denselayer1.norm2.weight, %0.densenet.features.denseblock1.denselayer1.norm2.bias, %0.densenet.features.denseblock1.denselayer1.norm2.running_mean, %0.densenet.features.denseblock1.denselayer1.norm2.running_var)
%786 = Relu(%785)
%787 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%786, %0.densenet.features.denseblock1.denselayer1.conv2.weight)
%788 = Concat[axis = 1](%781, %787)
%789 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%788, %0.densenet.features.denseblock1.denselayer2.norm1.weight, %0.densenet.features.denseblock1.denselayer2.norm1.bias, %0.densenet.features.denseblock1.denselayer2.norm1.running_mean, %0.densenet.features.denseblock1.denselayer2.norm1.running_var)
%790 = Relu(%789)
%791 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%790, %0.densenet.features.denseblock1.denselayer2.conv1.weight)
%792 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%791, %0.densenet.features.denseblock1.denselayer2.norm2.weight, %0.densenet.features.denseblock1.denselayer2.norm2.bias, %0.densenet.features.denseblock1.denselayer2.norm2.running_mean, %0.densenet.features.denseblock1.denselayer2.norm2.running_var)
%793 = Relu(%792)
%794 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%793, %0.densenet.features.denseblock1.denselayer2.conv2.weight)
%795 = Concat[axis = 1](%788, %794)
%796 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%795, %0.densenet.features.denseblock1.denselayer3.norm1.weight, %0.densenet.features.denseblock1.denselayer3.norm1.bias, %0.densenet.features.denseblock1.denselayer3.norm1.running_mean, %0.densenet.features.denseblock1.denselayer3.norm1.running_var)
%797 = Relu(%796)
%798 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%797, %0.densenet.features.denseblock1.denselayer3.conv1.weight)
%799 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%798, %0.densenet.features.denseblock1.denselayer3.norm2.weight, %0.densenet.features.denseblock1.denselayer3.norm2.bias, %0.densenet.features.denseblock1.denselayer3.norm2.running_mean, %0.densenet.features.denseblock1.denselayer3.norm2.running_var)
%800 = Relu(%799)
%801 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%800, %0.densenet.features.denseblock1.denselayer3.conv2.weight)
%802 = Concat[axis = 1](%795, %801)
%803 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%802, %0.densenet.features.denseblock1.denselayer4.norm1.weight, %0.densenet.features.denseblock1.denselayer4.norm1.bias, %0.densenet.features.denseblock1.denselayer4.norm1.running_mean, %0.densenet.features.denseblock1.denselayer4.norm1.running_var)
%804 = Relu(%803)
%805 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%804, %0.densenet.features.denseblock1.denselayer4.conv1.weight)
%806 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%805, %0.densenet.features.denseblock1.denselayer4.norm2.weight, %0.densenet.features.denseblock1.denselayer4.norm2.bias, %0.densenet.features.denseblock1.denselayer4.norm2.running_mean, %0.densenet.features.denseblock1.denselayer4.norm2.running_var)
%807 = Relu(%806)
%808 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%807, %0.densenet.features.denseblock1.denselayer4.conv2.weight)
%809 = Concat[axis = 1](%802, %808)
%810 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%809, %0.densenet.features.denseblock1.denselayer5.norm1.weight, %0.densenet.features.denseblock1.denselayer5.norm1.bias, %0.densenet.features.denseblock1.denselayer5.norm1.running_mean, %0.densenet.features.denseblock1.denselayer5.norm1.running_var)
%811 = Relu(%810)
%812 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%811, %0.densenet.features.denseblock1.denselayer5.conv1.weight)
%813 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%812, %0.densenet.features.denseblock1.denselayer5.norm2.weight, %0.densenet.features.denseblock1.denselayer5.norm2.bias, %0.densenet.features.denseblock1.denselayer5.norm2.running_mean, %0.densenet.features.denseblock1.denselayer5.norm2.running_var)
%814 = Relu(%813)
%815 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%814, %0.densenet.features.denseblock1.denselayer5.conv2.weight)
%816 = Concat[axis = 1](%809, %815)
%817 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%816, %0.densenet.features.denseblock1.denselayer6.norm1.weight, %0.densenet.features.denseblock1.denselayer6.norm1.bias, %0.densenet.features.denseblock1.denselayer6.norm1.running_mean, %0.densenet.features.denseblock1.denselayer6.norm1.running_var)
%818 = Relu(%817)
%819 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%818, %0.densenet.features.denseblock1.denselayer6.conv1.weight)
%820 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%819, %0.densenet.features.denseblock1.denselayer6.norm2.weight, %0.densenet.features.denseblock1.denselayer6.norm2.bias, %0.densenet.features.denseblock1.denselayer6.norm2.running_mean, %0.densenet.features.denseblock1.denselayer6.norm2.running_var)
%821 = Relu(%820)
%822 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%821, %0.densenet.features.denseblock1.denselayer6.conv2.weight)
%823 = Concat[axis = 1](%816, %822)
%824 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%823, %0.densenet.features.transition1.norm.weight, %0.densenet.features.transition1.norm.bias, %0.densenet.features.transition1.norm.running_mean, %0.densenet.features.transition1.norm.running_var)
%825 = Relu(%824)
%826 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%825, %0.densenet.features.transition1.conv.weight)
%827 = Pad[mode = 'constant', pads = [0, 0, 0, 0, 0, 0, 0, 0], value = 0](%826)
%828 = AveragePool[kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%827)
%829 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%828, %0.densenet.features.denseblock2.denselayer1.norm1.weight, %0.densenet.features.denseblock2.denselayer1.norm1.bias, %0.densenet.features.denseblock2.denselayer1.norm1.running_mean, %0.densenet.features.denseblock2.denselayer1.norm1.running_var)
%830 = Relu(%829)
%831 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%830, %0.densenet.features.denseblock2.denselayer1.conv1.weight)
%832 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%831, %0.densenet.features.denseblock2.denselayer1.norm2.weight, %0.densenet.features.denseblock2.denselayer1.norm2.bias, %0.densenet.features.denseblock2.denselayer1.norm2.running_mean, %0.densenet.features.denseblock2.denselayer1.norm2.running_var)
%833 = Relu(%832)
%834 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%833, %0.densenet.features.denseblock2.denselayer1.conv2.weight)
%835 = Concat[axis = 1](%828, %834)
%836 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%835, %0.densenet.features.denseblock2.denselayer2.norm1.weight, %0.densenet.features.denseblock2.denselayer2.norm1.bias, %0.densenet.features.denseblock2.denselayer2.norm1.running_mean, %0.densenet.features.denseblock2.denselayer2.norm1.running_var)
%837 = Relu(%836)
%838 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%837, %0.densenet.features.denseblock2.denselayer2.conv1.weight)
%839 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%838, %0.densenet.features.denseblock2.denselayer2.norm2.weight, %0.densenet.features.denseblock2.denselayer2.norm2.bias, %0.densenet.features.denseblock2.denselayer2.norm2.running_mean, %0.densenet.features.denseblock2.denselayer2.norm2.running_var)
%840 = Relu(%839)
%841 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%840, %0.densenet.features.denseblock2.denselayer2.conv2.weight)
%842 = Concat[axis = 1](%835, %841)
%843 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%842, %0.densenet.features.denseblock2.denselayer3.norm1.weight, %0.densenet.features.denseblock2.denselayer3.norm1.bias, %0.densenet.features.denseblock2.denselayer3.norm1.running_mean, %0.densenet.features.denseblock2.denselayer3.norm1.running_var)
%844 = Relu(%843)
%845 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%844, %0.densenet.features.denseblock2.denselayer3.conv1.weight)
%846 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%845, %0.densenet.features.denseblock2.denselayer3.norm2.weight, %0.densenet.features.denseblock2.denselayer3.norm2.bias, %0.densenet.features.denseblock2.denselayer3.norm2.running_mean, %0.densenet.features.denseblock2.denselayer3.norm2.running_var)
%847 = Relu(%846)
%848 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%847, %0.densenet.features.denseblock2.denselayer3.conv2.weight)
%849 = Concat[axis = 1](%842, %848)
%850 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%849, %0.densenet.features.denseblock2.denselayer4.norm1.weight, %0.densenet.features.denseblock2.denselayer4.norm1.bias, %0.densenet.features.denseblock2.denselayer4.norm1.running_mean, %0.densenet.features.denseblock2.denselayer4.norm1.running_var)
%851 = Relu(%850)
%852 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%851, %0.densenet.features.denseblock2.denselayer4.conv1.weight)
%853 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%852, %0.densenet.features.denseblock2.denselayer4.norm2.weight, %0.densenet.features.denseblock2.denselayer4.norm2.bias, %0.densenet.features.denseblock2.denselayer4.norm2.running_mean, %0.densenet.features.denseblock2.denselayer4.norm2.running_var)
%854 = Relu(%853)
%855 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%854, %0.densenet.features.denseblock2.denselayer4.conv2.weight)
%856 = Concat[axis = 1](%849, %855)
%857 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%856, %0.densenet.features.denseblock2.denselayer5.norm1.weight, %0.densenet.features.denseblock2.denselayer5.norm1.bias, %0.densenet.features.denseblock2.denselayer5.norm1.running_mean, %0.densenet.features.denseblock2.denselayer5.norm1.running_var)
%858 = Relu(%857)
%859 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%858, %0.densenet.features.denseblock2.denselayer5.conv1.weight)
%860 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%859, %0.densenet.features.denseblock2.denselayer5.norm2.weight, %0.densenet.features.denseblock2.denselayer5.norm2.bias, %0.densenet.features.denseblock2.denselayer5.norm2.running_mean, %0.densenet.features.denseblock2.denselayer5.norm2.running_var)
%861 = Relu(%860)
%862 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%861, %0.densenet.features.denseblock2.denselayer5.conv2.weight)
%863 = Concat[axis = 1](%856, %862)
%864 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%863, %0.densenet.features.denseblock2.denselayer6.norm1.weight, %0.densenet.features.denseblock2.denselayer6.norm1.bias, %0.densenet.features.denseblock2.denselayer6.norm1.running_mean, %0.densenet.features.denseblock2.denselayer6.norm1.running_var)
%865 = Relu(%864)
%866 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%865, %0.densenet.features.denseblock2.denselayer6.conv1.weight)
%867 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%866, %0.densenet.features.denseblock2.denselayer6.norm2.weight, %0.densenet.features.denseblock2.denselayer6.norm2.bias, %0.densenet.features.denseblock2.denselayer6.norm2.running_mean, %0.densenet.features.denseblock2.denselayer6.norm2.running_var)
%868 = Relu(%867)
%869 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%868, %0.densenet.features.denseblock2.denselayer6.conv2.weight)
%870 = Concat[axis = 1](%863, %869)
%871 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%870, %0.densenet.features.denseblock2.denselayer7.norm1.weight, %0.densenet.features.denseblock2.denselayer7.norm1.bias, %0.densenet.features.denseblock2.denselayer7.norm1.running_mean, %0.densenet.features.denseblock2.denselayer7.norm1.running_var)
%872 = Relu(%871)
%873 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%872, %0.densenet.features.denseblock2.denselayer7.conv1.weight)
%874 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%873, %0.densenet.features.denseblock2.denselayer7.norm2.weight, %0.densenet.features.denseblock2.denselayer7.norm2.bias, %0.densenet.features.denseblock2.denselayer7.norm2.running_mean, %0.densenet.features.denseblock2.denselayer7.norm2.running_var)
%875 = Relu(%874)
%876 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%875, %0.densenet.features.denseblock2.denselayer7.conv2.weight)
%877 = Concat[axis = 1](%870, %876)
%878 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%877, %0.densenet.features.denseblock2.denselayer8.norm1.weight, %0.densenet.features.denseblock2.denselayer8.norm1.bias, %0.densenet.features.denseblock2.denselayer8.norm1.running_mean, %0.densenet.features.denseblock2.denselayer8.norm1.running_var)
%879 = Relu(%878)
%880 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%879, %0.densenet.features.denseblock2.denselayer8.conv1.weight)
%881 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%880, %0.densenet.features.denseblock2.denselayer8.norm2.weight, %0.densenet.features.denseblock2.denselayer8.norm2.bias, %0.densenet.features.denseblock2.denselayer8.norm2.running_mean, %0.densenet.features.denseblock2.denselayer8.norm2.running_var)
%882 = Relu(%881)
%883 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%882, %0.densenet.features.denseblock2.denselayer8.conv2.weight)
%884 = Concat[axis = 1](%877, %883)
%885 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%884, %0.densenet.features.denseblock2.denselayer9.norm1.weight, %0.densenet.features.denseblock2.denselayer9.norm1.bias, %0.densenet.features.denseblock2.denselayer9.norm1.running_mean, %0.densenet.features.denseblock2.denselayer9.norm1.running_var)
%886 = Relu(%885)
%887 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%886, %0.densenet.features.denseblock2.denselayer9.conv1.weight)
%888 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%887, %0.densenet.features.denseblock2.denselayer9.norm2.weight, %0.densenet.features.denseblock2.denselayer9.norm2.bias, %0.densenet.features.denseblock2.denselayer9.norm2.running_mean, %0.densenet.features.denseblock2.denselayer9.norm2.running_var)
%889 = Relu(%888)
%890 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%889, %0.densenet.features.denseblock2.denselayer9.conv2.weight)
%891 = Concat[axis = 1](%884, %890)
%892 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%891, %0.densenet.features.denseblock2.denselayer10.norm1.weight, %0.densenet.features.denseblock2.denselayer10.norm1.bias, %0.densenet.features.denseblock2.denselayer10.norm1.running_mean, %0.densenet.features.denseblock2.denselayer10.norm1.running_var)
%893 = Relu(%892)
%894 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%893, %0.densenet.features.denseblock2.denselayer10.conv1.weight)
%895 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%894, %0.densenet.features.denseblock2.denselayer10.norm2.weight, %0.densenet.features.denseblock2.denselayer10.norm2.bias, %0.densenet.features.denseblock2.denselayer10.norm2.running_mean, %0.densenet.features.denseblock2.denselayer10.norm2.running_var)
%896 = Relu(%895)
%897 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%896, %0.densenet.features.denseblock2.denselayer10.conv2.weight)
%898 = Concat[axis = 1](%891, %897)
%899 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%898, %0.densenet.features.denseblock2.denselayer11.norm1.weight, %0.densenet.features.denseblock2.denselayer11.norm1.bias, %0.densenet.features.denseblock2.denselayer11.norm1.running_mean, %0.densenet.features.denseblock2.denselayer11.norm1.running_var)
%900 = Relu(%899)
%901 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%900, %0.densenet.features.denseblock2.denselayer11.conv1.weight)
%902 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%901, %0.densenet.features.denseblock2.denselayer11.norm2.weight, %0.densenet.features.denseblock2.denselayer11.norm2.bias, %0.densenet.features.denseblock2.denselayer11.norm2.running_mean, %0.densenet.features.denseblock2.denselayer11.norm2.running_var)
%903 = Relu(%902)
%904 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%903, %0.densenet.features.denseblock2.denselayer11.conv2.weight)
%905 = Concat[axis = 1](%898, %904)
%906 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%905, %0.densenet.features.denseblock2.denselayer12.norm1.weight, %0.densenet.features.denseblock2.denselayer12.norm1.bias, %0.densenet.features.denseblock2.denselayer12.norm1.running_mean, %0.densenet.features.denseblock2.denselayer12.norm1.running_var)
%907 = Relu(%906)
%908 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%907, %0.densenet.features.denseblock2.denselayer12.conv1.weight)
%909 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%908, %0.densenet.features.denseblock2.denselayer12.norm2.weight, %0.densenet.features.denseblock2.denselayer12.norm2.bias, %0.densenet.features.denseblock2.denselayer12.norm2.running_mean, %0.densenet.features.denseblock2.denselayer12.norm2.running_var)
%910 = Relu(%909)
%911 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%910, %0.densenet.features.denseblock2.denselayer12.conv2.weight)
%912 = Concat[axis = 1](%905, %911)
%913 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%912, %0.densenet.features.transition2.norm.weight, %0.densenet.features.transition2.norm.bias, %0.densenet.features.transition2.norm.running_mean, %0.densenet.features.transition2.norm.running_var)
%914 = Relu(%913)
%915 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%914, %0.densenet.features.transition2.conv.weight)
%916 = Pad[mode = 'constant', pads = [0, 0, 0, 0, 0, 0, 0, 0], value = 0](%915)
%917 = AveragePool[kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%916)
%918 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%917, %0.densenet.features.denseblock3.denselayer1.norm1.weight, %0.densenet.features.denseblock3.denselayer1.norm1.bias, %0.densenet.features.denseblock3.denselayer1.norm1.running_mean, %0.densenet.features.denseblock3.denselayer1.norm1.running_var)
%919 = Relu(%918)
%920 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%919, %0.densenet.features.denseblock3.denselayer1.conv1.weight)
%921 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%920, %0.densenet.features.denseblock3.denselayer1.norm2.weight, %0.densenet.features.denseblock3.denselayer1.norm2.bias, %0.densenet.features.denseblock3.denselayer1.norm2.running_mean, %0.densenet.features.denseblock3.denselayer1.norm2.running_var)
%922 = Relu(%921)
%923 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%922, %0.densenet.features.denseblock3.denselayer1.conv2.weight)
%924 = Concat[axis = 1](%917, %923)
%925 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%924, %0.densenet.features.denseblock3.denselayer2.norm1.weight, %0.densenet.features.denseblock3.denselayer2.norm1.bias, %0.densenet.features.denseblock3.denselayer2.norm1.running_mean, %0.densenet.features.denseblock3.denselayer2.norm1.running_var)
%926 = Relu(%925)
%927 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%926, %0.densenet.features.denseblock3.denselayer2.conv1.weight)
%928 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%927, %0.densenet.features.denseblock3.denselayer2.norm2.weight, %0.densenet.features.denseblock3.denselayer2.norm2.bias, %0.densenet.features.denseblock3.denselayer2.norm2.running_mean, %0.densenet.features.denseblock3.denselayer2.norm2.running_var)
%929 = Relu(%928)
%930 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%929, %0.densenet.features.denseblock3.denselayer2.conv2.weight)
%931 = Concat[axis = 1](%924, %930)
%932 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%931, %0.densenet.features.denseblock3.denselayer3.norm1.weight, %0.densenet.features.denseblock3.denselayer3.norm1.bias, %0.densenet.features.denseblock3.denselayer3.norm1.running_mean, %0.densenet.features.denseblock3.denselayer3.norm1.running_var)
%933 = Relu(%932)
%934 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%933, %0.densenet.features.denseblock3.denselayer3.conv1.weight)
%935 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%934, %0.densenet.features.denseblock3.denselayer3.norm2.weight, %0.densenet.features.denseblock3.denselayer3.norm2.bias, %0.densenet.features.denseblock3.denselayer3.norm2.running_mean, %0.densenet.features.denseblock3.denselayer3.norm2.running_var)
%936 = Relu(%935)
%937 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%936, %0.densenet.features.denseblock3.denselayer3.conv2.weight)
%938 = Concat[axis = 1](%931, %937)
%939 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%938, %0.densenet.features.denseblock3.denselayer4.norm1.weight, %0.densenet.features.denseblock3.denselayer4.norm1.bias, %0.densenet.features.denseblock3.denselayer4.norm1.running_mean, %0.densenet.features.denseblock3.denselayer4.norm1.running_var)
%940 = Relu(%939)
%941 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%940, %0.densenet.features.denseblock3.denselayer4.conv1.weight)
%942 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%941, %0.densenet.features.denseblock3.denselayer4.norm2.weight, %0.densenet.features.denseblock3.denselayer4.norm2.bias, %0.densenet.features.denseblock3.denselayer4.norm2.running_mean, %0.densenet.features.denseblock3.denselayer4.norm2.running_var)
%943 = Relu(%942)
%944 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%943, %0.densenet.features.denseblock3.denselayer4.conv2.weight)
%945 = Concat[axis = 1](%938, %944)
%946 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%945, %0.densenet.features.denseblock3.denselayer5.norm1.weight, %0.densenet.features.denseblock3.denselayer5.norm1.bias, %0.densenet.features.denseblock3.denselayer5.norm1.running_mean, %0.densenet.features.denseblock3.denselayer5.norm1.running_var)
%947 = Relu(%946)
%948 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%947, %0.densenet.features.denseblock3.denselayer5.conv1.weight)
%949 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%948, %0.densenet.features.denseblock3.denselayer5.norm2.weight, %0.densenet.features.denseblock3.denselayer5.norm2.bias, %0.densenet.features.denseblock3.denselayer5.norm2.running_mean, %0.densenet.features.denseblock3.denselayer5.norm2.running_var)
%950 = Relu(%949)
%951 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%950, %0.densenet.features.denseblock3.denselayer5.conv2.weight)
%952 = Concat[axis = 1](%945, %951)
%953 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%952, %0.densenet.features.denseblock3.denselayer6.norm1.weight, %0.densenet.features.denseblock3.denselayer6.norm1.bias, %0.densenet.features.denseblock3.denselayer6.norm1.running_mean, %0.densenet.features.denseblock3.denselayer6.norm1.running_var)
%954 = Relu(%953)
%955 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%954, %0.densenet.features.denseblock3.denselayer6.conv1.weight)
%956 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%955, %0.densenet.features.denseblock3.denselayer6.norm2.weight, %0.densenet.features.denseblock3.denselayer6.norm2.bias, %0.densenet.features.denseblock3.denselayer6.norm2.running_mean, %0.densenet.features.denseblock3.denselayer6.norm2.running_var)
%957 = Relu(%956)
%958 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%957, %0.densenet.features.denseblock3.denselayer6.conv2.weight)
%959 = Concat[axis = 1](%952, %958)
%960 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%959, %0.densenet.features.denseblock3.denselayer7.norm1.weight, %0.densenet.features.denseblock3.denselayer7.norm1.bias, %0.densenet.features.denseblock3.denselayer7.norm1.running_mean, %0.densenet.features.denseblock3.denselayer7.norm1.running_var)
%961 = Relu(%960)
%962 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%961, %0.densenet.features.denseblock3.denselayer7.conv1.weight)
%963 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%962, %0.densenet.features.denseblock3.denselayer7.norm2.weight, %0.densenet.features.denseblock3.denselayer7.norm2.bias, %0.densenet.features.denseblock3.denselayer7.norm2.running_mean, %0.densenet.features.denseblock3.denselayer7.norm2.running_var)
%964 = Relu(%963)
%965 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%964, %0.densenet.features.denseblock3.denselayer7.conv2.weight)
%966 = Concat[axis = 1](%959, %965)
%967 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%966, %0.densenet.features.denseblock3.denselayer8.norm1.weight, %0.densenet.features.denseblock3.denselayer8.norm1.bias, %0.densenet.features.denseblock3.denselayer8.norm1.running_mean, %0.densenet.features.denseblock3.denselayer8.norm1.running_var)
%968 = Relu(%967)
%969 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%968, %0.densenet.features.denseblock3.denselayer8.conv1.weight)
%970 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%969, %0.densenet.features.denseblock3.denselayer8.norm2.weight, %0.densenet.features.denseblock3.denselayer8.norm2.bias, %0.densenet.features.denseblock3.denselayer8.norm2.running_mean, %0.densenet.features.denseblock3.denselayer8.norm2.running_var)
%971 = Relu(%970)
%972 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%971, %0.densenet.features.denseblock3.denselayer8.conv2.weight)
%973 = Concat[axis = 1](%966, %972)
%974 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%973, %0.densenet.features.denseblock3.denselayer9.norm1.weight, %0.densenet.features.denseblock3.denselayer9.norm1.bias, %0.densenet.features.denseblock3.denselayer9.norm1.running_mean, %0.densenet.features.denseblock3.denselayer9.norm1.running_var)
%975 = Relu(%974)
%976 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%975, %0.densenet.features.denseblock3.denselayer9.conv1.weight)
%977 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%976, %0.densenet.features.denseblock3.denselayer9.norm2.weight, %0.densenet.features.denseblock3.denselayer9.norm2.bias, %0.densenet.features.denseblock3.denselayer9.norm2.running_mean, %0.densenet.features.denseblock3.denselayer9.norm2.running_var)
%978 = Relu(%977)
%979 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%978, %0.densenet.features.denseblock3.denselayer9.conv2.weight)
%980 = Concat[axis = 1](%973, %979)
%981 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%980, %0.densenet.features.denseblock3.denselayer10.norm1.weight, %0.densenet.features.denseblock3.denselayer10.norm1.bias, %0.densenet.features.denseblock3.denselayer10.norm1.running_mean, %0.densenet.features.denseblock3.denselayer10.norm1.running_var)
%982 = Relu(%981)
%983 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%982, %0.densenet.features.denseblock3.denselayer10.conv1.weight)
%984 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%983, %0.densenet.features.denseblock3.denselayer10.norm2.weight, %0.densenet.features.denseblock3.denselayer10.norm2.bias, %0.densenet.features.denseblock3.denselayer10.norm2.running_mean, %0.densenet.features.denseblock3.denselayer10.norm2.running_var)
%985 = Relu(%984)
%986 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%985, %0.densenet.features.denseblock3.denselayer10.conv2.weight)
%987 = Concat[axis = 1](%980, %986)
%988 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%987, %0.densenet.features.denseblock3.denselayer11.norm1.weight, %0.densenet.features.denseblock3.denselayer11.norm1.bias, %0.densenet.features.denseblock3.denselayer11.norm1.running_mean, %0.densenet.features.denseblock3.denselayer11.norm1.running_var)
%989 = Relu(%988)
%990 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%989, %0.densenet.features.denseblock3.denselayer11.conv1.weight)
%991 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%990, %0.densenet.features.denseblock3.denselayer11.norm2.weight, %0.densenet.features.denseblock3.denselayer11.norm2.bias, %0.densenet.features.denseblock3.denselayer11.norm2.running_mean, %0.densenet.features.denseblock3.denselayer11.norm2.running_var)
%992 = Relu(%991)
%993 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%992, %0.densenet.features.denseblock3.denselayer11.conv2.weight)
%994 = Concat[axis = 1](%987, %993)
%995 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%994, %0.densenet.features.denseblock3.denselayer12.norm1.weight, %0.densenet.features.denseblock3.denselayer12.norm1.bias, %0.densenet.features.denseblock3.denselayer12.norm1.running_mean, %0.densenet.features.denseblock3.denselayer12.norm1.running_var)
%996 = Relu(%995)
%997 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%996, %0.densenet.features.denseblock3.denselayer12.conv1.weight)
%998 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%997, %0.densenet.features.denseblock3.denselayer12.norm2.weight, %0.densenet.features.denseblock3.denselayer12.norm2.bias, %0.densenet.features.denseblock3.denselayer12.norm2.running_mean, %0.densenet.features.denseblock3.denselayer12.norm2.running_var)
%999 = Relu(%998)
%1000 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%999, %0.densenet.features.denseblock3.denselayer12.conv2.weight)
%1001 = Concat[axis = 1](%994, %1000)
%1002 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1001, %0.densenet.features.denseblock3.denselayer13.norm1.weight, %0.densenet.features.denseblock3.denselayer13.norm1.bias, %0.densenet.features.denseblock3.denselayer13.norm1.running_mean, %0.densenet.features.denseblock3.denselayer13.norm1.running_var)
%1003 = Relu(%1002)
%1004 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1003, %0.densenet.features.denseblock3.denselayer13.conv1.weight)
%1005 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1004, %0.densenet.features.denseblock3.denselayer13.norm2.weight, %0.densenet.features.denseblock3.denselayer13.norm2.bias, %0.densenet.features.denseblock3.denselayer13.norm2.running_mean, %0.densenet.features.denseblock3.denselayer13.norm2.running_var)
%1006 = Relu(%1005)
%1007 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1006, %0.densenet.features.denseblock3.denselayer13.conv2.weight)
%1008 = Concat[axis = 1](%1001, %1007)
%1009 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1008, %0.densenet.features.denseblock3.denselayer14.norm1.weight, %0.densenet.features.denseblock3.denselayer14.norm1.bias, %0.densenet.features.denseblock3.denselayer14.norm1.running_mean, %0.densenet.features.denseblock3.denselayer14.norm1.running_var)
%1010 = Relu(%1009)
%1011 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1010, %0.densenet.features.denseblock3.denselayer14.conv1.weight)
%1012 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1011, %0.densenet.features.denseblock3.denselayer14.norm2.weight, %0.densenet.features.denseblock3.denselayer14.norm2.bias, %0.densenet.features.denseblock3.denselayer14.norm2.running_mean, %0.densenet.features.denseblock3.denselayer14.norm2.running_var)
%1013 = Relu(%1012)
%1014 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1013, %0.densenet.features.denseblock3.denselayer14.conv2.weight)
%1015 = Concat[axis = 1](%1008, %1014)
%1016 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1015, %0.densenet.features.denseblock3.denselayer15.norm1.weight, %0.densenet.features.denseblock3.denselayer15.norm1.bias, %0.densenet.features.denseblock3.denselayer15.norm1.running_mean, %0.densenet.features.denseblock3.denselayer15.norm1.running_var)
%1017 = Relu(%1016)
%1018 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1017, %0.densenet.features.denseblock3.denselayer15.conv1.weight)
%1019 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1018, %0.densenet.features.denseblock3.denselayer15.norm2.weight, %0.densenet.features.denseblock3.denselayer15.norm2.bias, %0.densenet.features.denseblock3.denselayer15.norm2.running_mean, %0.densenet.features.denseblock3.denselayer15.norm2.running_var)
%1020 = Relu(%1019)
%1021 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1020, %0.densenet.features.denseblock3.denselayer15.conv2.weight)
%1022 = Concat[axis = 1](%1015, %1021)
%1023 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1022, %0.densenet.features.denseblock3.denselayer16.norm1.weight, %0.densenet.features.denseblock3.denselayer16.norm1.bias, %0.densenet.features.denseblock3.denselayer16.norm1.running_mean, %0.densenet.features.denseblock3.denselayer16.norm1.running_var)
%1024 = Relu(%1023)
%1025 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1024, %0.densenet.features.denseblock3.denselayer16.conv1.weight)
%1026 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1025, %0.densenet.features.denseblock3.denselayer16.norm2.weight, %0.densenet.features.denseblock3.denselayer16.norm2.bias, %0.densenet.features.denseblock3.denselayer16.norm2.running_mean, %0.densenet.features.denseblock3.denselayer16.norm2.running_var)
%1027 = Relu(%1026)
%1028 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1027, %0.densenet.features.denseblock3.denselayer16.conv2.weight)
%1029 = Concat[axis = 1](%1022, %1028)
%1030 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1029, %0.densenet.features.denseblock3.denselayer17.norm1.weight, %0.densenet.features.denseblock3.denselayer17.norm1.bias, %0.densenet.features.denseblock3.denselayer17.norm1.running_mean, %0.densenet.features.denseblock3.denselayer17.norm1.running_var)
%1031 = Relu(%1030)
%1032 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1031, %0.densenet.features.denseblock3.denselayer17.conv1.weight)
%1033 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1032, %0.densenet.features.denseblock3.denselayer17.norm2.weight, %0.densenet.features.denseblock3.denselayer17.norm2.bias, %0.densenet.features.denseblock3.denselayer17.norm2.running_mean, %0.densenet.features.denseblock3.denselayer17.norm2.running_var)
%1034 = Relu(%1033)
%1035 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1034, %0.densenet.features.denseblock3.denselayer17.conv2.weight)
%1036 = Concat[axis = 1](%1029, %1035)
%1037 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1036, %0.densenet.features.denseblock3.denselayer18.norm1.weight, %0.densenet.features.denseblock3.denselayer18.norm1.bias, %0.densenet.features.denseblock3.denselayer18.norm1.running_mean, %0.densenet.features.denseblock3.denselayer18.norm1.running_var)
%1038 = Relu(%1037)
%1039 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1038, %0.densenet.features.denseblock3.denselayer18.conv1.weight)
%1040 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1039, %0.densenet.features.denseblock3.denselayer18.norm2.weight, %0.densenet.features.denseblock3.denselayer18.norm2.bias, %0.densenet.features.denseblock3.denselayer18.norm2.running_mean, %0.densenet.features.denseblock3.denselayer18.norm2.running_var)
%1041 = Relu(%1040)
%1042 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1041, %0.densenet.features.denseblock3.denselayer18.conv2.weight)
%1043 = Concat[axis = 1](%1036, %1042)
%1044 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1043, %0.densenet.features.denseblock3.denselayer19.norm1.weight, %0.densenet.features.denseblock3.denselayer19.norm1.bias, %0.densenet.features.denseblock3.denselayer19.norm1.running_mean, %0.densenet.features.denseblock3.denselayer19.norm1.running_var)
%1045 = Relu(%1044)
%1046 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1045, %0.densenet.features.denseblock3.denselayer19.conv1.weight)
%1047 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1046, %0.densenet.features.denseblock3.denselayer19.norm2.weight, %0.densenet.features.denseblock3.denselayer19.norm2.bias, %0.densenet.features.denseblock3.denselayer19.norm2.running_mean, %0.densenet.features.denseblock3.denselayer19.norm2.running_var)
%1048 = Relu(%1047)
%1049 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1048, %0.densenet.features.denseblock3.denselayer19.conv2.weight)
%1050 = Concat[axis = 1](%1043, %1049)
%1051 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1050, %0.densenet.features.denseblock3.denselayer20.norm1.weight, %0.densenet.features.denseblock3.denselayer20.norm1.bias, %0.densenet.features.denseblock3.denselayer20.norm1.running_mean, %0.densenet.features.denseblock3.denselayer20.norm1.running_var)
%1052 = Relu(%1051)
%1053 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1052, %0.densenet.features.denseblock3.denselayer20.conv1.weight)
%1054 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1053, %0.densenet.features.denseblock3.denselayer20.norm2.weight, %0.densenet.features.denseblock3.denselayer20.norm2.bias, %0.densenet.features.denseblock3.denselayer20.norm2.running_mean, %0.densenet.features.denseblock3.denselayer20.norm2.running_var)
%1055 = Relu(%1054)
%1056 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1055, %0.densenet.features.denseblock3.denselayer20.conv2.weight)
%1057 = Concat[axis = 1](%1050, %1056)
%1058 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1057, %0.densenet.features.denseblock3.denselayer21.norm1.weight, %0.densenet.features.denseblock3.denselayer21.norm1.bias, %0.densenet.features.denseblock3.denselayer21.norm1.running_mean, %0.densenet.features.denseblock3.denselayer21.norm1.running_var)
%1059 = Relu(%1058)
%1060 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1059, %0.densenet.features.denseblock3.denselayer21.conv1.weight)
%1061 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1060, %0.densenet.features.denseblock3.denselayer21.norm2.weight, %0.densenet.features.denseblock3.denselayer21.norm2.bias, %0.densenet.features.denseblock3.denselayer21.norm2.running_mean, %0.densenet.features.denseblock3.denselayer21.norm2.running_var)
%1062 = Relu(%1061)
%1063 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1062, %0.densenet.features.denseblock3.denselayer21.conv2.weight)
%1064 = Concat[axis = 1](%1057, %1063)
%1065 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1064, %0.densenet.features.denseblock3.denselayer22.norm1.weight, %0.densenet.features.denseblock3.denselayer22.norm1.bias, %0.densenet.features.denseblock3.denselayer22.norm1.running_mean, %0.densenet.features.denseblock3.denselayer22.norm1.running_var)
%1066 = Relu(%1065)
%1067 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1066, %0.densenet.features.denseblock3.denselayer22.conv1.weight)
%1068 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1067, %0.densenet.features.denseblock3.denselayer22.norm2.weight, %0.densenet.features.denseblock3.denselayer22.norm2.bias, %0.densenet.features.denseblock3.denselayer22.norm2.running_mean, %0.densenet.features.denseblock3.denselayer22.norm2.running_var)
%1069 = Relu(%1068)
%1070 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1069, %0.densenet.features.denseblock3.denselayer22.conv2.weight)
%1071 = Concat[axis = 1](%1064, %1070)
%1072 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1071, %0.densenet.features.denseblock3.denselayer23.norm1.weight, %0.densenet.features.denseblock3.denselayer23.norm1.bias, %0.densenet.features.denseblock3.denselayer23.norm1.running_mean, %0.densenet.features.denseblock3.denselayer23.norm1.running_var)
%1073 = Relu(%1072)
%1074 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1073, %0.densenet.features.denseblock3.denselayer23.conv1.weight)
%1075 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1074, %0.densenet.features.denseblock3.denselayer23.norm2.weight, %0.densenet.features.denseblock3.denselayer23.norm2.bias, %0.densenet.features.denseblock3.denselayer23.norm2.running_mean, %0.densenet.features.denseblock3.denselayer23.norm2.running_var)
%1076 = Relu(%1075)
%1077 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1076, %0.densenet.features.denseblock3.denselayer23.conv2.weight)
%1078 = Concat[axis = 1](%1071, %1077)
%1079 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1078, %0.densenet.features.denseblock3.denselayer24.norm1.weight, %0.densenet.features.denseblock3.denselayer24.norm1.bias, %0.densenet.features.denseblock3.denselayer24.norm1.running_mean, %0.densenet.features.denseblock3.denselayer24.norm1.running_var)
%1080 = Relu(%1079)
%1081 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1080, %0.densenet.features.denseblock3.denselayer24.conv1.weight)
%1082 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1081, %0.densenet.features.denseblock3.denselayer24.norm2.weight, %0.densenet.features.denseblock3.denselayer24.norm2.bias, %0.densenet.features.denseblock3.denselayer24.norm2.running_mean, %0.densenet.features.denseblock3.denselayer24.norm2.running_var)
%1083 = Relu(%1082)
%1084 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1083, %0.densenet.features.denseblock3.denselayer24.conv2.weight)
%1085 = Concat[axis = 1](%1078, %1084)
%1086 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1085, %0.densenet.features.transition3.norm.weight, %0.densenet.features.transition3.norm.bias, %0.densenet.features.transition3.norm.running_mean, %0.densenet.features.transition3.norm.running_var)
%1087 = Relu(%1086)
%1088 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1087, %0.densenet.features.transition3.conv.weight)
%1089 = Pad[mode = 'constant', pads = [0, 0, 0, 0, 0, 0, 0, 0], value = 0](%1088)
%1090 = AveragePool[kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%1089)
%1091 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1090, %0.densenet.features.denseblock4.denselayer1.norm1.weight, %0.densenet.features.denseblock4.denselayer1.norm1.bias, %0.densenet.features.denseblock4.denselayer1.norm1.running_mean, %0.densenet.features.denseblock4.denselayer1.norm1.running_var)
%1092 = Relu(%1091)
%1093 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1092, %0.densenet.features.denseblock4.denselayer1.conv1.weight)
%1094 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1093, %0.densenet.features.denseblock4.denselayer1.norm2.weight, %0.densenet.features.denseblock4.denselayer1.norm2.bias, %0.densenet.features.denseblock4.denselayer1.norm2.running_mean, %0.densenet.features.denseblock4.denselayer1.norm2.running_var)
%1095 = Relu(%1094)
%1096 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1095, %0.densenet.features.denseblock4.denselayer1.conv2.weight)
%1097 = Concat[axis = 1](%1090, %1096)
%1098 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1097, %0.densenet.features.denseblock4.denselayer2.norm1.weight, %0.densenet.features.denseblock4.denselayer2.norm1.bias, %0.densenet.features.denseblock4.denselayer2.norm1.running_mean, %0.densenet.features.denseblock4.denselayer2.norm1.running_var)
%1099 = Relu(%1098)
%1100 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1099, %0.densenet.features.denseblock4.denselayer2.conv1.weight)
%1101 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1100, %0.densenet.features.denseblock4.denselayer2.norm2.weight, %0.densenet.features.denseblock4.denselayer2.norm2.bias, %0.densenet.features.denseblock4.denselayer2.norm2.running_mean, %0.densenet.features.denseblock4.denselayer2.norm2.running_var)
%1102 = Relu(%1101)
%1103 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1102, %0.densenet.features.denseblock4.denselayer2.conv2.weight)
%1104 = Concat[axis = 1](%1097, %1103)
%1105 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1104, %0.densenet.features.denseblock4.denselayer3.norm1.weight, %0.densenet.features.denseblock4.denselayer3.norm1.bias, %0.densenet.features.denseblock4.denselayer3.norm1.running_mean, %0.densenet.features.denseblock4.denselayer3.norm1.running_var)
%1106 = Relu(%1105)
%1107 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1106, %0.densenet.features.denseblock4.denselayer3.conv1.weight)
%1108 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1107, %0.densenet.features.denseblock4.denselayer3.norm2.weight, %0.densenet.features.denseblock4.denselayer3.norm2.bias, %0.densenet.features.denseblock4.denselayer3.norm2.running_mean, %0.densenet.features.denseblock4.denselayer3.norm2.running_var)
%1109 = Relu(%1108)
%1110 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1109, %0.densenet.features.denseblock4.denselayer3.conv2.weight)
%1111 = Concat[axis = 1](%1104, %1110)
%1112 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1111, %0.densenet.features.denseblock4.denselayer4.norm1.weight, %0.densenet.features.denseblock4.denselayer4.norm1.bias, %0.densenet.features.denseblock4.denselayer4.norm1.running_mean, %0.densenet.features.denseblock4.denselayer4.norm1.running_var)
%1113 = Relu(%1112)
%1114 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1113, %0.densenet.features.denseblock4.denselayer4.conv1.weight)
%1115 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1114, %0.densenet.features.denseblock4.denselayer4.norm2.weight, %0.densenet.features.denseblock4.denselayer4.norm2.bias, %0.densenet.features.denseblock4.denselayer4.norm2.running_mean, %0.densenet.features.denseblock4.denselayer4.norm2.running_var)
%1116 = Relu(%1115)
%1117 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1116, %0.densenet.features.denseblock4.denselayer4.conv2.weight)
%1118 = Concat[axis = 1](%1111, %1117)
%1119 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1118, %0.densenet.features.denseblock4.denselayer5.norm1.weight, %0.densenet.features.denseblock4.denselayer5.norm1.bias, %0.densenet.features.denseblock4.denselayer5.norm1.running_mean, %0.densenet.features.denseblock4.denselayer5.norm1.running_var)
%1120 = Relu(%1119)
%1121 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1120, %0.densenet.features.denseblock4.denselayer5.conv1.weight)
%1122 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1121, %0.densenet.features.denseblock4.denselayer5.norm2.weight, %0.densenet.features.denseblock4.denselayer5.norm2.bias, %0.densenet.features.denseblock4.denselayer5.norm2.running_mean, %0.densenet.features.denseblock4.denselayer5.norm2.running_var)
%1123 = Relu(%1122)
%1124 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1123, %0.densenet.features.denseblock4.denselayer5.conv2.weight)
%1125 = Concat[axis = 1](%1118, %1124)
%1126 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1125, %0.densenet.features.denseblock4.denselayer6.norm1.weight, %0.densenet.features.denseblock4.denselayer6.norm1.bias, %0.densenet.features.denseblock4.denselayer6.norm1.running_mean, %0.densenet.features.denseblock4.denselayer6.norm1.running_var)
%1127 = Relu(%1126)
%1128 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1127, %0.densenet.features.denseblock4.denselayer6.conv1.weight)
%1129 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1128, %0.densenet.features.denseblock4.denselayer6.norm2.weight, %0.densenet.features.denseblock4.denselayer6.norm2.bias, %0.densenet.features.denseblock4.denselayer6.norm2.running_mean, %0.densenet.features.denseblock4.denselayer6.norm2.running_var)
%1130 = Relu(%1129)
%1131 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1130, %0.densenet.features.denseblock4.denselayer6.conv2.weight)
%1132 = Concat[axis = 1](%1125, %1131)
%1133 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1132, %0.densenet.features.denseblock4.denselayer7.norm1.weight, %0.densenet.features.denseblock4.denselayer7.norm1.bias, %0.densenet.features.denseblock4.denselayer7.norm1.running_mean, %0.densenet.features.denseblock4.denselayer7.norm1.running_var)
%1134 = Relu(%1133)
%1135 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1134, %0.densenet.features.denseblock4.denselayer7.conv1.weight)
%1136 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1135, %0.densenet.features.denseblock4.denselayer7.norm2.weight, %0.densenet.features.denseblock4.denselayer7.norm2.bias, %0.densenet.features.denseblock4.denselayer7.norm2.running_mean, %0.densenet.features.denseblock4.denselayer7.norm2.running_var)
%1137 = Relu(%1136)
%1138 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1137, %0.densenet.features.denseblock4.denselayer7.conv2.weight)
%1139 = Concat[axis = 1](%1132, %1138)
%1140 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1139, %0.densenet.features.denseblock4.denselayer8.norm1.weight, %0.densenet.features.denseblock4.denselayer8.norm1.bias, %0.densenet.features.denseblock4.denselayer8.norm1.running_mean, %0.densenet.features.denseblock4.denselayer8.norm1.running_var)
%1141 = Relu(%1140)
%1142 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1141, %0.densenet.features.denseblock4.denselayer8.conv1.weight)
%1143 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1142, %0.densenet.features.denseblock4.denselayer8.norm2.weight, %0.densenet.features.denseblock4.denselayer8.norm2.bias, %0.densenet.features.denseblock4.denselayer8.norm2.running_mean, %0.densenet.features.denseblock4.denselayer8.norm2.running_var)
%1144 = Relu(%1143)
%1145 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1144, %0.densenet.features.denseblock4.denselayer8.conv2.weight)
%1146 = Concat[axis = 1](%1139, %1145)
%1147 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1146, %0.densenet.features.denseblock4.denselayer9.norm1.weight, %0.densenet.features.denseblock4.denselayer9.norm1.bias, %0.densenet.features.denseblock4.denselayer9.norm1.running_mean, %0.densenet.features.denseblock4.denselayer9.norm1.running_var)
%1148 = Relu(%1147)
%1149 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1148, %0.densenet.features.denseblock4.denselayer9.conv1.weight)
%1150 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1149, %0.densenet.features.denseblock4.denselayer9.norm2.weight, %0.densenet.features.denseblock4.denselayer9.norm2.bias, %0.densenet.features.denseblock4.denselayer9.norm2.running_mean, %0.densenet.features.denseblock4.denselayer9.norm2.running_var)
%1151 = Relu(%1150)
%1152 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1151, %0.densenet.features.denseblock4.denselayer9.conv2.weight)
%1153 = Concat[axis = 1](%1146, %1152)
%1154 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1153, %0.densenet.features.denseblock4.denselayer10.norm1.weight, %0.densenet.features.denseblock4.denselayer10.norm1.bias, %0.densenet.features.denseblock4.denselayer10.norm1.running_mean, %0.densenet.features.denseblock4.denselayer10.norm1.running_var)
%1155 = Relu(%1154)
%1156 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1155, %0.densenet.features.denseblock4.denselayer10.conv1.weight)
%1157 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1156, %0.densenet.features.denseblock4.denselayer10.norm2.weight, %0.densenet.features.denseblock4.denselayer10.norm2.bias, %0.densenet.features.denseblock4.denselayer10.norm2.running_mean, %0.densenet.features.denseblock4.denselayer10.norm2.running_var)
%1158 = Relu(%1157)
%1159 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1158, %0.densenet.features.denseblock4.denselayer10.conv2.weight)
%1160 = Concat[axis = 1](%1153, %1159)
%1161 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1160, %0.densenet.features.denseblock4.denselayer11.norm1.weight, %0.densenet.features.denseblock4.denselayer11.norm1.bias, %0.densenet.features.denseblock4.denselayer11.norm1.running_mean, %0.densenet.features.denseblock4.denselayer11.norm1.running_var)
%1162 = Relu(%1161)
%1163 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1162, %0.densenet.features.denseblock4.denselayer11.conv1.weight)
%1164 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1163, %0.densenet.features.denseblock4.denselayer11.norm2.weight, %0.densenet.features.denseblock4.denselayer11.norm2.bias, %0.densenet.features.denseblock4.denselayer11.norm2.running_mean, %0.densenet.features.denseblock4.denselayer11.norm2.running_var)
%1165 = Relu(%1164)
%1166 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1165, %0.densenet.features.denseblock4.denselayer11.conv2.weight)
%1167 = Concat[axis = 1](%1160, %1166)
%1168 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1167, %0.densenet.features.denseblock4.denselayer12.norm1.weight, %0.densenet.features.denseblock4.denselayer12.norm1.bias, %0.densenet.features.denseblock4.denselayer12.norm1.running_mean, %0.densenet.features.denseblock4.denselayer12.norm1.running_var)
%1169 = Relu(%1168)
%1170 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1169, %0.densenet.features.denseblock4.denselayer12.conv1.weight)
%1171 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1170, %0.densenet.features.denseblock4.denselayer12.norm2.weight, %0.densenet.features.denseblock4.denselayer12.norm2.bias, %0.densenet.features.denseblock4.denselayer12.norm2.running_mean, %0.densenet.features.denseblock4.denselayer12.norm2.running_var)
%1172 = Relu(%1171)
%1173 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1172, %0.densenet.features.denseblock4.denselayer12.conv2.weight)
%1174 = Concat[axis = 1](%1167, %1173)
%1175 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1174, %0.densenet.features.denseblock4.denselayer13.norm1.weight, %0.densenet.features.denseblock4.denselayer13.norm1.bias, %0.densenet.features.denseblock4.denselayer13.norm1.running_mean, %0.densenet.features.denseblock4.denselayer13.norm1.running_var)
%1176 = Relu(%1175)
%1177 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1176, %0.densenet.features.denseblock4.denselayer13.conv1.weight)
%1178 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1177, %0.densenet.features.denseblock4.denselayer13.norm2.weight, %0.densenet.features.denseblock4.denselayer13.norm2.bias, %0.densenet.features.denseblock4.denselayer13.norm2.running_mean, %0.densenet.features.denseblock4.denselayer13.norm2.running_var)
%1179 = Relu(%1178)
%1180 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1179, %0.densenet.features.denseblock4.denselayer13.conv2.weight)
%1181 = Concat[axis = 1](%1174, %1180)
%1182 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1181, %0.densenet.features.denseblock4.denselayer14.norm1.weight, %0.densenet.features.denseblock4.denselayer14.norm1.bias, %0.densenet.features.denseblock4.denselayer14.norm1.running_mean, %0.densenet.features.denseblock4.denselayer14.norm1.running_var)
%1183 = Relu(%1182)
%1184 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1183, %0.densenet.features.denseblock4.denselayer14.conv1.weight)
%1185 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1184, %0.densenet.features.denseblock4.denselayer14.norm2.weight, %0.densenet.features.denseblock4.denselayer14.norm2.bias, %0.densenet.features.denseblock4.denselayer14.norm2.running_mean, %0.densenet.features.denseblock4.denselayer14.norm2.running_var)
%1186 = Relu(%1185)
%1187 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1186, %0.densenet.features.denseblock4.denselayer14.conv2.weight)
%1188 = Concat[axis = 1](%1181, %1187)
%1189 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1188, %0.densenet.features.denseblock4.denselayer15.norm1.weight, %0.densenet.features.denseblock4.denselayer15.norm1.bias, %0.densenet.features.denseblock4.denselayer15.norm1.running_mean, %0.densenet.features.denseblock4.denselayer15.norm1.running_var)
%1190 = Relu(%1189)
%1191 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1190, %0.densenet.features.denseblock4.denselayer15.conv1.weight)
%1192 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1191, %0.densenet.features.denseblock4.denselayer15.norm2.weight, %0.densenet.features.denseblock4.denselayer15.norm2.bias, %0.densenet.features.denseblock4.denselayer15.norm2.running_mean, %0.densenet.features.denseblock4.denselayer15.norm2.running_var)
%1193 = Relu(%1192)
%1194 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1193, %0.densenet.features.denseblock4.denselayer15.conv2.weight)
%1195 = Concat[axis = 1](%1188, %1194)
%1196 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1195, %0.densenet.features.denseblock4.denselayer16.norm1.weight, %0.densenet.features.denseblock4.denselayer16.norm1.bias, %0.densenet.features.denseblock4.denselayer16.norm1.running_mean, %0.densenet.features.denseblock4.denselayer16.norm1.running_var)
%1197 = Relu(%1196)
%1198 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1197, %0.densenet.features.denseblock4.denselayer16.conv1.weight)
%1199 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1198, %0.densenet.features.denseblock4.denselayer16.norm2.weight, %0.densenet.features.denseblock4.denselayer16.norm2.bias, %0.densenet.features.denseblock4.denselayer16.norm2.running_mean, %0.densenet.features.denseblock4.denselayer16.norm2.running_var)
%1200 = Relu(%1199)
%1201 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1200, %0.densenet.features.denseblock4.denselayer16.conv2.weight)
%1202 = Concat[axis = 1](%1195, %1201)
%1203 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1202, %0.densenet.features.norm5.weight, %0.densenet.features.norm5.bias, %0.densenet.features.norm5.running_mean, %0.densenet.features.norm5.running_var)
%1204 = ConvTranspose[dilations = [1, 1], group = 1, kernel_shape = [4, 4], pads = [1, 1, 1, 1], strides = [2, 2]](%1203, %1.cmap_up.0.weight, %1.cmap_up.0.bias)
%1205 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1204, %1.cmap_up.1.weight, %1.cmap_up.1.bias, %1.cmap_up.1.running_mean, %1.cmap_up.1.running_var)
%1206 = Relu(%1205)
%1207 = ConvTranspose[dilations = [1, 1], group = 1, kernel_shape = [4, 4], pads = [1, 1, 1, 1], strides = [2, 2]](%1206, %1.cmap_up.3.weight, %1.cmap_up.3.bias)
%1208 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1207, %1.cmap_up.4.weight, %1.cmap_up.4.bias, %1.cmap_up.4.running_mean, %1.cmap_up.4.running_var)
%1209 = Relu(%1208)
%1210 = ConvTranspose[dilations = [1, 1], group = 1, kernel_shape = [4, 4], pads = [1, 1, 1, 1], strides = [2, 2]](%1209, %1.cmap_up.6.weight, %1.cmap_up.6.bias)
%1211 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1210, %1.cmap_up.7.weight, %1.cmap_up.7.bias, %1.cmap_up.7.running_mean, %1.cmap_up.7.running_var)
%1212 = Relu(%1211)
%1213 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1212, %1.cmap_att.weight, %1.cmap_att.bias)
%1214 = Sigmoid(%1213)
%1215 = ConvTranspose[dilations = [1, 1], group = 1, kernel_shape = [4, 4], pads = [1, 1, 1, 1], strides = [2, 2]](%1203, %1.paf_up.0.weight, %1.paf_up.0.bias)
%1216 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1215, %1.paf_up.1.weight, %1.paf_up.1.bias, %1.paf_up.1.running_mean, %1.paf_up.1.running_var)
%1217 = Relu(%1216)
%1218 = ConvTranspose[dilations = [1, 1], group = 1, kernel_shape = [4, 4], pads = [1, 1, 1, 1], strides = [2, 2]](%1217, %1.paf_up.3.weight, %1.paf_up.3.bias)
%1219 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1218, %1.paf_up.4.weight, %1.paf_up.4.bias, %1.paf_up.4.running_mean, %1.paf_up.4.running_var)
%1220 = Relu(%1219)
%1221 = ConvTranspose[dilations = [1, 1], group = 1, kernel_shape = [4, 4], pads = [1, 1, 1, 1], strides = [2, 2]](%1220, %1.paf_up.6.weight, %1.paf_up.6.bias)
%1222 = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.899999976158142](%1221, %1.paf_up.7.weight, %1.paf_up.7.bias, %1.paf_up.7.running_mean, %1.paf_up.7.running_var)
%1223 = Relu(%1222)
%1224 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%1223, %1.paf_att.weight, %1.paf_att.bias)
%1225 = Tanh(%1224)
%1226 = Mul(%1212, %1214)
%1227 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1226, %1.cmap_conv.weight, %1.cmap_conv.bias)
%1228 = Mul(%1223, %1225)
%1229 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%1228, %1.paf_conv.weight, %1.paf_conv.bias)
return %1227, %1229
}
|
NLP_with_PyTorch/3_document-embedding/3-2. ELMo.ipynb | ###Markdown
3-2. ELMo1 Prepare dataset: Gutenberg1.1 For pretraining1.2 For training2 Build the model2.1 Bidirectional language model2.2 ELMo3 Train the model3.1 Pretrain bidirectional language model3.2 Train ELMo for sentiment analysis Prepare dataset: Gutenberg
###Code
from torchtext.experimental.datasets import IMDB
from torchtext.data.utils import get_tokenizer
tokenizer = get_tokenizer("spacy")
train, test = IMDB(tokenizer=tokenizer)
vocab = train.get_vocab()
ngrams = 2
x = []
y = []
for _, words in train:
for i in range(len(words)-ngrams):
text = words[i:i+ngrams]
label = words[i+ngrams]
x.append(text.tolist())
y.append(label.tolist())
###Output
_____no_output_____
###Markdown
```pythonwith open("./IMBD_bigram.json", "w") as w: json.dump({"data": x, "label": y}, w)``` For pretraining * transform to character-level n-gram dataset * original script```%load https://gist.githubusercontent.com/akurniawan/30719686669dced49e7ced720329a616/raw/7b9f9967c01ce87ac505520a5aa58d3b24c55c66/translation_char_example.py``` * modified```%load https://gist.github.com/naturale0/6bb3b8a5c682bd281de87e408fa71bf1/raw/df8b7e198f149f81c4f72af977760b2eb3226cdf/translation_char_example.py```
###Code
# Modified a little to fit classification
import itertools
from torchtext.experimental.datasets import TextClassificationDataset
from torchtext.vocab import build_vocab_from_iterator
from torchtext.experimental.functional import sequential_transforms
def build_char_vocab(data, index, bow="<w>", eow="</w>"):
"""
build character level vocabulary
"""
tok_list = [
[bow],
[eow],
]
for line in data:
tokens = list(itertools.chain.from_iterable(line[index]))
tok_list.append(tokens)
return build_vocab_from_iterator(tok_list)
def stoi(vocab):
"""
change string to index
"""
def func(tok_iter):
return [[vocab[char] for char in word]\
for word in tok_iter]
return func
def tokenize_char(bow="<w>", eow="</w>", max_word_length=20):
"""
attach bow, eow token and pad with token
"""
def func(tok_iter):
result = np.empty((max(len_seq), max_word_length+2), dtype=object)
# "≥" for padding
result[:len(tok_iter)] = [
[bow] + word + [eow] \
+ ["<pad>"] * (max_word_length - len(word)) \
if len(word) < max_word_length \
else [bow] + word[:max_word_length] + [eow]
for word in tok_iter]
return result
return func
# Cache training data for vocabulary construction
train_data = [(line[0], [vocab.itos[ix] for ix in line[1]]) for line in zip(y, x)]
train_data[:3]
# Setup vocabularies (both words and chars)
char_vocab = build_char_vocab(train_data, index=1)
# Building the dataset with character level tokenization
def char_tokenizer(words):
return [list(word) for word in words]
char_transform = sequential_transforms(
char_tokenizer,
tokenize_char(),
stoi(char_vocab),
lambda x: torch.tensor(x)
)
trainset = TextClassificationDataset(
train_data,
char_vocab,
(lambda x: x, char_transform),
)
# Prepare DataLoader
def collate_fn(batch):
label, text = zip(*batch)
label = torch.LongTensor(label)
text = torch.stack(text)
#lens = list(map(lambda x: len(x[(x != 0).all(dim=1)]), text))
return label, text
pretrainloader = data.DataLoader(trainset, batch_size=32, collate_fn=collate_fn)
###Output
_____no_output_____
###Markdown
For training
###Code
# Modified a little to fit classification
import itertools
from torchtext.experimental.datasets import TextClassificationDataset
from torchtext.vocab import build_vocab_from_iterator
from torchtext.experimental.functional import sequential_transforms
def build_char_vocab(data, index, bow="<w>", eow="</w>"):
"""
build character level vocabulary
"""
tok_list = [
[bow],
[eow],
]
for line in data:
tokens = list(itertools.chain.from_iterable(line[index]))
tok_list.append(tokens)
return build_vocab_from_iterator(tok_list)
def stoi(vocab):
"""
change string to index
"""
def func(tok_iter):
return [[vocab[char] for char in word]\
for word in tok_iter]
return func
def tokenize_char(bow="<w>", eow="</w>", max_word_length=20):
"""
attach bow, eow token and pad with token
"""
def func(tok_iter):
result = np.empty((max(len_seq), max_word_length+2), dtype=object)
# "≥" for padding
result[:len(tok_iter)] = [
[bow] + word + [eow] \
+ ["<pad>"] * (max_word_length - len(word)) \
if len(word) < max_word_length \
else [bow] + word[:max_word_length] + [eow]
for word in tok_iter]
return result
return func
# Cache training data for vocabulary construction
train_data = [(line[0], [vocab.itos[ix] for ix in line[1]]) for line in train]
# store list of seq length for packing later
len_seq = list(map(lambda x: len(x), train_data))
# Setup vocabularies (both words and chars)
char_vocab = build_char_vocab(train_data, index=1)
# Building the dataset with character level tokenization
def char_tokenizer(words):
return [list(word) for word in words]
char_transform = sequential_transforms(
char_tokenizer,
tokenize_char(),
stoi(char_vocab),
lambda x: torch.tensor(x)
)
trainset = TextClassificationDataset(
train_data,
char_vocab,
(lambda x: x, char_transform),
)
# Prepare DataLoader
def collate_fn(batch):
label, text = zip(*batch)
label = torch.stack(label)
text = torch.stack(text)
#lens = list(map(lambda x: len(x[(x != 0).all(dim=1)]), text))
return label, text
trainloader = data.DataLoader(trainset, batch_size=32, collate_fn=collate_fn)
###Output
_____no_output_____
###Markdown
Build the model Bidirectional language model
###Code
x = next(iter(pretrainloader))[1]
x.shape
x2 = nn.Embedding(len(char_vocab), 4)(x)
x2.shape
x2.permute(0,3,1,2).shape
x3 = nn.Conv2d(4, 5, (1, 3))(x2.permute(0,3,1,2))
x3.shape
x4 = F.max_pool2d(x3, kernel_size=(1, x3.shape[3]))
x4.shape
x5 = torch.squeeze(x4)
x5.shape, x5.view(-1, ngrams*5).shape, x5.permute(2, 0, 1).shape # (seq_len, batch, input_size)
x6 = nn.Linear(ngrams*5, 10)(x5.view(-1, ngrams*5))
x6.shape
o, h = nn.LSTM(5, 6)(x5.permute(2, 0, 1))
len(h), o.shape
class CharConv(nn.Module):
def __init__(self):
super(self, BiLM).__init__()
# Embedding layer
CHAR_EMBEDDING_DIM = 16
self.char_embedding = nn.Embedding(len(char_vocab), CHAR_EMBEDDING_DIM)
# Conv layers
self.convs = [
nn.Conv2d(CHAR_EMBEDDING_DIM, 4, 1),
nn.Conv2d(CHAR_EMBEDDING_DIM, 4, (1, 2)),
nn.Conv2d(CHAR_EMBEDDING_DIM, 8, (1, 3)),
nn.Conv2d(CHAR_EMBEDDING_DIM, 16, (1, 4)),
nn.Conv2d(CHAR_EMBEDDING_DIM, 32, (1, 5)),
nn.Conv2d(CHAR_EMBEDDING_DIM, 64, (1, 6)),
nn.Conv2d(CHAR_EMBEDDING_DIM, 128, (1, 7))
]
def forward(self, x):
# character-level convolution
x = self.char_embedding(x).permute(0,3,1,2)
x = [conv(x) for conv in self.convs]
x = [F.max_pool2d(x_c, kernel_size=x_c.shape[3]) for x_c in x]
x = [torch.squeeze(x_p) for x_p in x]
x = torch.vstack(x) # 1, n_batch, concat_length
x = x.permute(2, 0, 1)
return x
class BiLSTM(nn.Module):
def __init__(self):
# Bi-LSTM
self.lstm1 = nn.LSTM(256, 1024, bidirectional=True)
self.proj = nn.Linear(1024, 128, bias=False)
self.lstm2 = nn.LSTM(128, 1024, bidirectional=True)
def forward(self, x):
pass
class BiLM(nn.Module):
def __init__(self, char_cnn, bi_lstm):
# Highway connection
CHAR_EMBEDDING_DIM = 16
self.highway = nn.Linear(ngrams * 256, 256)
self.transform = nn.Linear(ngrams * 256, 256)
self.char_cnn = char_cnn
self.bi_lstm = bi_lstm
def forward(self, x):
# Character-level convolution
x = self.char_cnn(x)
x = x.view(1, -1)
# highway
h = self.highway(x)
t_gate = torch.sigmoid(self.transform(x))
c_gate = 1 - t_gate
x = h * t_gate + x * c_gate
# Bi-LSTM
self.bi_lstm(x)
###Output
_____no_output_____ |
examples/tutorials/research/02_domain.ipynb | ###Markdown
Advanced Usage of Domain [`Domain`](https://analysiscenter.github.io/batchflow/api/batchflow.research.htmlbatchflow.research.Domain) and auxiliary classes ([`Alias`](https://analysiscenter.github.io/batchflow/api/batchflow.research.htmlbatchflow.research.Alias), [`Option`](https://analysiscenter.github.io/batchflow/api/batchflow.research.htmlbatchflow.research.Option), [`ConfigAlias`](https://analysiscenter.github.io/batchflow/api/batchflow.research.htmlbatchflow.research.ConfigAlias)) are used to define combinations of parameters to try in `Research`. We start with some useful imports.
###Code
import sys
import os
import shutil
import matplotlib
%matplotlib inline
sys.path.append('../../../..')
from batchflow import NumpySampler as NS
from batchflow.research import Alias, Option, Domain
###Output
_____no_output_____
###Markdown
Basic usage `Domain` is a class to define domain of parameters. In the simplest case, it is for parameter name and values that will be used in a `Research`. Values for the parameter can be defined as array or [`Sampler`](https://analysiscenter.github.io/batchflow/api/batchflow.sampler.html).
###Code
domain = Domain(p=['v1', 'v2'])
###Output
_____no_output_____
###Markdown
Each instance of `Domain` class has attribute `iterator` which produces configs from the domain.
###Code
list(domain.iterator)
###Output
_____no_output_____
###Markdown
All configs from domain have several additional keys: `'repetition'` and `'updates'`. The first one defines the serial number of the repetition for the config (see `n_reps` below). The key `'updates'` defines the number of domain updates before getting of the current config (see `set_update` [documentation](https://analysiscenter.github.io/batchflow/api/batchflow.research.htmlbatchflow.research.Domain.set_update) and [tutorial 6](https://github.com/analysiscenter/batchflow/blob/research/examples/tutorials/research/06_update_domain.ipynb)) Each item generated by `Domain` is `ConfigAlias` instance: wrapper for `Config` with methods `config` and `alias`. That methods return wrapped `Config` and corresponding dict with `str` representations of values.To set or reset `iterator` use `set_iter` method. It also accepts some parameters that will be described below.If you get attribute `iterator` without `set_iter_params`, firstly it will be called with default parameters.
###Code
domain.set_iter_params()
config = next(domain.iterator)
config.config(), config.alias()
###Output
_____no_output_____
###Markdown
`Alias` is used to create `str` representation of each value of the domain because they will be used as folder names and to have more readable representation of configs with non-string values.`Alias` is `__name__` attribute of the value or `str` representation. One can define custom alias by using `Alias` class.
###Code
domain = Domain(p=[Alias('v1', 'alias'), NS])
config = next(domain.iterator)
print('alias: {:14} value: {}'.format(config.alias()['p'], config.config()['p']))
config = next(domain.iterator)
print('alias: {:14} value: {}'.format(config.alias()['p'], config.config()['p']))
###Output
alias: alias value: v1
alias: NumpySampler value: <class 'batchflow.batchflow.sampler.NumpySampler'>
###Markdown
You can define the number of times to produce each item of the domain as `n_reps` parameter of `set_iter`. Each produced `ConfigAlias` will have `'repetition'` key.
###Code
domain.set_iter_params(n_reps=2)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
Also you can define `n_iters` parameter to define the number of configs that we will get from `Domain`. By default it is equel to the actual number of unique elements.
###Code
domain.set_iter_params(n_items=3, n_reps=2)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
The period of the repetitions can be defined by `repeat_each` parameter. By default, for array-like parameter values all configs will be genereated one time and then repeated. In the case of samplers `repeat_each=100`.
###Code
domain.set_iter_params(n_items=3, n_reps=2, repeat_each=1)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
Operations MultiplicationThe resulting `Domain` will produce configs from Cartesian product of values. It means that we will get all possible combinations of parameter values. Here and below we will pop `'repetition'` and `'updates'` keys from configs to make cell output simpler except the cases while `n_reps != 1` (by setting `additional=False`).
###Code
domain = Option('p1', ['v1', 'v2']) * Option('p2', ['v3', 'v4'])
domain.set_iter_params(additional=False)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
SumPlus unites lists of values.
###Code
domain = Option('p1', ['v1', 'v2']) + Option('p2', ['v3', 'v4'])
domain.set_iter_params(additional=False)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
`@` multiplication Result is a scalar product of options.
###Code
op1 = Option('p1', ['v1', 'v2'])
op2 = Option('p2', ['v3', 'v4'])
op3 = Option('p3', ['v5', 'v6'])
domain = op1 @ op2 @ op3
domain.set_iter_params(additional=False)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
You also can combine all operations because all of them can be applied to resulting domains.
###Code
op1 = Option('p1', ['v1', 'v2'])
op2 = Option('p2', ['v3', 'v4'])
op3 = Option('p3', list(range(2)))
op4 = Option('p4', list(range(3, 5)))
domain = (op1 @ op2 + op3) * op4
domain.set_iter_params(additional=False)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
`size` attribute will return the size of resulting domain
###Code
print(domain.size)
###Output
8
###Markdown
Note that you will get the total number of produced confgs. For example, if you have one `Option` with two values and `n_iters=5` and `n_reps=2` in `set_iter` then the size will be 10.
###Code
domain = Domain(p1=list(range(3)))
domain.set_iter_params(n_items=5, n_reps=2)
domain.size
###Output
_____no_output_____
###Markdown
Options with Samplers Instead of array-like options you can use `Sampler` instances as `Option` value. Iterator will produce independent samples from domain.
###Code
domain = Domain(p1=NS('n'))
domain.set_iter_params(n_items=3, additional=False)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
If `n_reps > 1` then samples will be repeated.
###Code
domain.set_iter_params(n_items=3, n_reps=2, additional=False)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
If `set_iter_params` will be called with `n_items=None` then resulting iterator will be infinite.
###Code
domain.set_iter_params(n_items=None, additional=False)
print('size: ', domain.size)
for _ in range(5):
print(next(domain.iterator))
###Output
size: None
{'p1': '-0.2899207280882731'}
{'p1': '0.2600709832908798'}
{'p1': '-2.661256482222706'}
{'p1': '-1.991252358812105'}
{'p1': '0.427651230662582'}
###Markdown
`repeat_each` parameter defines how often elements from infinite generator will be repeated (by default, `repeat_each=100`).
###Code
domain.set_iter_params(n_items=None, n_reps=2, repeat_each=2)
print('Domain size: {} \n'.format(domain.size))
for _ in range(8):
print(next(domain.iterator))
###Output
Domain size: None
{'p1': '2.5545455103045875', 'repetition': '0', 'updates': '0'}
{'p1': '-2.256729995007879', 'repetition': '0', 'updates': '0'}
{'p1': '2.5545455103045875', 'repetition': '1', 'updates': '0'}
{'p1': '-2.256729995007879', 'repetition': '1', 'updates': '0'}
{'p1': '-0.05577228813667809', 'repetition': '0', 'updates': '0'}
{'p1': '0.17618486668664568', 'repetition': '0', 'updates': '0'}
{'p1': '-0.05577228813667809', 'repetition': '1', 'updates': '0'}
{'p1': '0.17618486668664568', 'repetition': '1', 'updates': '0'}
###Markdown
If one multiply array-like options and sampler options, resulting iterator will produce combinations of array-like options with independent sampler from sampler options.
###Code
domain = Option('p1', NS('n')) * Option('p2', NS('u')) * Option('p3', [1, 2, 3])
domain.set_iter_params(additional=False)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
Domains with Weights By default configs are consequently produced from option in a sum from the left to the right.
###Code
op1 = Option('p1', ['v1', 'v2'])
op2 = Option('p2', ['v3', 'v4'])
op3 = Option('p3', ['v5', 'v6'])
domain = op1 + op2 + op3
domain.set_iter_params(additional=False)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
To sample options from sum independently with some probabilities you can multiply corresponding options by float.
###Code
domain = 0.3 * op1 + 0.2 * op2 + 0.5 * op3
domain.set_iter_params(additional=False)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
If you sum options with and without weights,* they are grouped into consequent groups where all options has or not weights,* consequently for each group configs are generated consequently (for groups with weights) or sampled as described above.
###Code
domain = op1 + 1.0 * op2 + 1.0 * op3
domain.set_iter_params(additional=False)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
Thus, we firstly get all configs from `op1`, then configs uniformly sampled from `op2` and `op3`. Obviously, if we define some weight too large, firstly we get all samples from corresponding option.
###Code
domain = op1 + 1.0 * op2 + 100.0 * op3
domain.set_iter_params(additional=False)
list(domain.iterator)
###Output
_____no_output_____
###Markdown
Consider more dificult situation. We will get* all configs from `options[0]`* configs will be sampled from `1.2 * options[1] + 2.3 * options[2]`* all configs from `options[3]`* configs will be sampled from `1.7 * options[4] + 3.4 * options[5]`
###Code
options = [Option('p'+str(i), ['v'+str(i)]) for i in range(6)]
domain = options[0] + 1.2 * options[1] + 2.3 * options[2] + options[3] + 1.7 * options[4] + 3.4 * options[5]
domain.set_iter_params(12, additional=False)
list(domain.iterator)
###Output
_____no_output_____ |
Taylor-Swift-Demo.ipynb | ###Markdown
Taylor Swift Song Matching Demo First, import the packages you'll need If you don't have numpy, you'll need to get it, but it should come with most standard python packages.
###Code
from taylorswift import *
###Output
_____no_output_____
###Markdown
Then run the code! The example below demonstrates the author's representation of their relationship with the James Webb Space Telescope. When you run the code, you'll be able to input your own answers and get your own personalized song list based on the details of your relationship.
###Code
taylorswift()
###Output
For these first four questions, if you are in a relationship, answer them with respect to your current relationship. If you are not currently in a relationship, answer them by considering either your most recent past relationship, or a potential relationship on the horizon, whichever you prefer.
Which of these best describes your relationship?
1 - Our relationship ended because of cataclysmic past offenses. OR Our relationship has some serious problems.
2 - My feelings were a bit hurt when our relationship ended. OR Our relationship is going ok but has some problems.
3 - Our relationship ended, but not in a horribly bad way. It just ended. OR I feel pretty mediocre about the quality of our relationship.
4 - I wish I was in a relationship, but I don't think it will happen right now. OR I'm happy without a relationship right now.
5 - My relationship is pretty casual at the moment, not official or anything. OR I look back fondly on my past relationship, without feeling hurt or angry.
6 - My relationship is going well and we're thinking about long-term commitment.
7 - I'm getting married and/or comitting to this relationship for the rest of my life.
|
work/ch08/ch08.ipynb | ###Markdown
Chapter 8 Attention 1. Attentionの仕組み1. Attention付きseq2seqの実装1. Attentionの評価1. Attentionに関する残りのテーマ1. Attentionの応用1. まとめ Attentionレイヤの実装
###Code
import sys
sys.path.append('..')
from common.np import * # import numpy as np
from common.layers import Softmax
class WeightSum:
def __init__(self):
self.params, self.grads = [], []
self.cache = None
def forward(self, hs, a):
N, T, H = hs.shape
ar = a.reshape(N, T, 1)#.repeat(T, axis=1)
t = hs * ar
c = np.sum(t, axis=1)
self.cache = (hs, ar)
return c
def backward(self, dc):
hs, ar = self.cache
N, T, H = hs.shape
dt = dc.reshape(N, 1, H).repeat(T, axis=1)
dar = dt * hs
dhs = dt * ar
da = np.sum(dar, axis=2)
return dhs, da
class AttentionWeight:
def __init__(self):
self.params, self.grads = [], []
self.softmax = Softmax()
self.cache = None
def forward(self, hs, h):
N, T, H = hs.shape
hr = h.reshape(N, 1, H)#.repeat(T, axis=1)
t = hs * hr
s = np.sum(t, axis=2)
a = self.softmax.forward(s)
self.cache = (hs, hr)
return a
def backward(self, da):
hs, hr = self.cache
N, T, H = hs.shape
ds = self.softmax.backward(da)
dt = ds.reshape(N, T, 1).repeat(H, axis=2)
dhs = dt * hr
dhr = dt * hs
dh = np.sum(dhr, axis=1)
return dhs, dh
class Attention:
def __init__(self):
self.params, self.grads = [], []
self.attention_weight_layer = AttentionWeight()
self.weight_sum_layer = WeightSum()
self.attention_weight = None
def forward(self, hs, h):
a = self.attention_weight_layer.forward(hs, h)
out = self.weight_sum_layer.forward(hs, a)
self.attention_weight = a
return out
def backward(self, dout):
dhs0, da = self.weight_sum_layer.backward(dout)
dhs1, dh = self.attention_weight_layer.backward(da)
dhs = dhs0 + dhs1
return dhs, dh
class TimeAttention:
def __init__(self):
self.params, self.grads = [], []
self.layers = None
self.attention_weights = None
def forward(self, hs_enc, hs_dec):
N, T, H = hs_dec.shape
out = np.empty_like(hs_dec)
self.layers = []
self.attention_weights = []
for t in range(T):
layer = Attention()
out[:, t, :] = layer.forward(hs_enc, hs_dec[:,t,:])
self.layers.append(layer)
self.attention_weights.append(layer.attention_weight)
return out
def backward(self, dout):
N, T, H = dout.shape
dhs_enc = 0
dhs_dec = np.empty_like(dout)
for t in range(T):
layer = self.layers[t]
dhs, dh = layer.backward(dout[:, t, :])
dhs_enc += dhs
dhs_dec[:,t,:] = dh
return dhs_enc, dhs_dec
###Output
_____no_output_____
###Markdown
Attention付きseq2seqの実装
###Code
import sys
sys.path.append('..')
from common.time_layers import *
from ch07.seq2seq import Encoder, Seq2seq
class AttentionEncoder(Encoder):
def forward(self, xs):
xs = self.embed.forward(xs)
hs = self.lstm.forward(xs)
return hs
def backward(self, dhs):
dout = self.lstm.backward(dhs)
dout = self.embed.backward(dout)
return dout
class AttentionDecoder:
def __init__(self, vocab_size, wordvec_size, hidden_size):
V, D, H = vocab_size, wordvec_size, hidden_size
rn = np.random.randn
embed_W = (rn(V, D) / 100).astype('f')
lstm_Wx = (rn(D, 4 * H) / np.sqrt(D)).astype('f')
lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
lstm_b = np.zeros(4 * H).astype('f')
affine_W = (rn(2*H, V) / np.sqrt(2*H)).astype('f')
affine_b = np.zeros(V).astype('f')
self.embed = TimeEmbedding(embed_W)
self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True)
self.attention = TimeAttention()
self.affine = TimeAffine(affine_W, affine_b)
layers = [self.embed, self.lstm, self.attention, self.affine]
self.params, self.grads = [], []
for layer in layers:
self.params += layer.params
self.grads += layer.grads
def forward(self, xs, enc_hs):
h = enc_hs[:,-1]
self.lstm.set_state(h)
out = self.embed.forward(xs)
dec_hs = self.lstm.forward(out)
c = self.attention.forward(enc_hs, dec_hs)
out = np.concatenate((c, dec_hs), axis=2)
score = self.affine.forward(out)
return score
def backward(self, dscore):
dout = self.affine.backward(dscore)
N, T, H2 = dout.shape
H = H2 // 2
dc, ddec_hs0 = dout[:,:,:H], dout[:,:,H:]
denc_hs, ddec_hs1 = self.attention.backward(dc)
ddec_hs = ddec_hs0 + ddec_hs1
dout = self.lstm.backward(ddec_hs)
dh = self.lstm.dh
denc_hs[:, -1] += dh
self.embed.backward(dout)
return denc_hs
def generate(self, enc_hs, start_id, sample_size):
sampled = []
sample_id = start_id
h = enc_hs[:, -1]
self.lstm.set_state(h)
for _ in range(sample_size):
x = np.array([sample_id]).reshape((1, 1))
out = self.embed.forward(x)
dec_hs = self.lstm.forward(out)
c = self.attention.forward(enc_hs, dec_hs)
out = np.concatenate((c, dec_hs), axis=2)
score = self.affine.forward(out)
sample_id = np.argmax(score.flatten())
sampled.append(sample_id)
return sampled
class AttentionSeq2seq(Seq2seq):
def __init__(self, vocab_size, wordvec_size, hidden_size):
args = vocab_size, wordvec_size, hidden_size
self.encoder = AttentionEncoder(*args)
self.decoder = AttentionDecoder(*args)
self.softmax = TimeSoftmaxWithLoss()
self.params = self.encoder.params + self.decoder.params
self.grads = self.encoder.grads + self.decoder.grads
###Output
_____no_output_____
###Markdown
Attention付きseq2seqの学習
###Code
import numpy as np
import matplotlib.pyplot as plt
from dataset import sequence
from common.optimizer import Adam
from common.trainer import Trainer
from common.util import eval_seq2seq
from ch07.seq2seq import Seq2seq
from ch07.peeky_seq2seq import PeekySeq2seq
# データの読み込み
(x_train, t_train), (x_test, t_test) = sequence.load_data('date.txt')
char_to_id, id_to_char = sequence.get_vocab()
# 入力文を反転
x_train, x_test = x_train[:, ::-1], x_test[:, ::-1]
# ハイパーパラメータの設定
vocab_size = len(char_to_id)
wordvec_size = 16
hidden_size = 256
batch_size = 128
max_epoch = 10
max_grad = 5.0
model = AttentionSeq2seq(vocab_size, wordvec_size, hidden_size)
# model = Seq2seq(vocab_size, wordvec_size, hidden_size)
# model = PeekySeq2seq(vocab_size, wordvec_size, hidden_size)
optimizer = Adam()
trainer = Trainer(model, optimizer)
acc_list = []
for epoch in range(max_epoch):
trainer.fit(x_train, t_train, max_epoch=1,
batch_size=batch_size, max_grad=max_grad)
correct_num = 0
for i in range(len(x_test)):
question, correct = x_test[[i]], t_test[[i]]
verbose = i < 10
correct_num += eval_seq2seq(model, question, correct,
id_to_char, verbose, is_reverse=True)
acc = float(correct_num) / len(x_test)
acc_list.append(acc)
print('val acc %.3f%%' % (acc * 100))
model.save_params()
# グラフの描画
x = np.arange(len(acc_list))
plt.plot(x, acc_list, marker='o')
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.ylim(-0.05, 1.05)
plt.show()
###Output
| epoch 1 | iter 1 / 351 | time 1[s] | loss 4.08
###Markdown
Attentionの可視化
###Code
from dataset import sequence
import matplotlib.pyplot as plt
(x_train, t_train), (x_test, t_test) = \
sequence.load_data('date.txt')
char_to_id, id_to_char = sequence.get_vocab()
# Reverse input
x_train, x_test = x_train[:, ::-1], x_test[:, ::-1]
vocab_size = len(char_to_id)
wordvec_size = 16
hidden_size = 256
model = AttentionSeq2seq(vocab_size, wordvec_size, hidden_size)
model.load_params()
_idx = 0
def visualize(attention_map, row_labels, column_labels):
fig, ax = plt.subplots()
ax.pcolor(attention_map, cmap=plt.cm.Greys_r, vmin=0.0, vmax=1.0)
ax.patch.set_facecolor('black')
ax.set_yticks(np.arange(attention_map.shape[0])+0.5, minor=False)
ax.set_xticks(np.arange(attention_map.shape[1])+0.5, minor=False)
ax.invert_yaxis()
ax.set_xticklabels(row_labels, minor=False)
ax.set_yticklabels(column_labels, minor=False)
global _idx
_idx += 1
plt.show()
np.random.seed(1984)
for _ in range(5):
idx = [np.random.randint(0, len(x_test))]
x = x_test[idx]
t = t_test[idx]
model.forward(x, t)
d = model.decoder.attention.attention_weights
d = np.array(d)
attention_map = d.reshape(d.shape[0], d.shape[2])
# reverse for print
attention_map = attention_map[:,::-1]
x = x[:,::-1]
row_labels = [id_to_char[i] for i in x[0]]
column_labels = [id_to_char[i] for i in t[0]]
column_labels = column_labels[1:]
visualize(attention_map, row_labels, column_labels)
###Output
_____no_output_____ |
2-supervised_learning.ipynb | ###Markdown
Synthetic Dataset
###Code
import numpy as np
import matplotlib.pyplot as plt
import mglearn
# Generate Dataset for Classification
X, y = mglearn.datasets.make_forge()
# Plot Dataset
mglearn.discrete_scatter(X[:,0],X[:,1],y)
plt.legend(['Class 0', "Class 1"], loc=4)
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
print("X.shape: {}".format(X.shape))
# Generate Dataset for Regression
X, y = mglearn.datasets.make_wave(n_samples=40)
plt.plot(X,y,'o')
plt.ylim(-3,3)
plt.xlabel("Feature")
plt.ylabel("Target")
###Output
_____no_output_____
###Markdown
Real World Dataset
###Code
# Data for Classification - Cancer
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
print("Cancer Keys: {}".format(cancer.keys()))
print("Shape of the cancer.data: {}".format(cancer.data.shape))
print("Sample Counts per class: {}".format({n: v for n,v in zip(cancer.target_names, np.bincount(cancer.target))}))
print("Features {}".format(cancer.feature_names))
print(cancer.DESCR +"\n")
# Data for Regression - Boston Housing
from sklearn.datasets import load_boston
boston = load_boston()
print("Data Shape: {}".format(boston.data.shape))
print(boston.DESCR +"\n")
# Extending the features using Feature Engineering
X, y = mglearn.datasets.load_extended_boston()
print("X.shape: {}".format(X.shape))
###Output
X.shape: (506, 104)
###Markdown
**K-Nearest Neighbors**
###Code
# Plotting the basic knn with 1 nearest neighbor
mglearn.plots.plot_knn_classification(n_neighbors=1)
# with k nearest neighbors
mglearn.plots.plot_knn_classification(n_neighbors=3)
# Performing kNN using scikit-learn
from sklearn.model_selection import train_test_split
X, y = mglearn.datasets.make_forge()
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=3)
clf.fit(X_train, y_train)
print("Test set pred: {}".format(clf.predict(X_test)))
# Evaluate the performance of the model
print("Test Set Accuracy: {:.2f}".format(clf.score(X_test, y_test)))
# Visualizing the prediction
fig, axes = plt.subplots(1,3, figsize=(10,3))
for n_neighbors, ax in zip([1,3,9], axes):
# Instantiate and fit in a single line
clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(X,y)
mglearn.plots.plot_2d_separator(clf, X, fill=True, eps=0.5, ax=ax, alpha=0.4)
mglearn.discrete_scatter(X[:,0], X[:,1], y, ax=ax)
ax.set_title("{} neighbors".format(n_neighbors))
ax.set_xlabel("feature 0")
ax.set_ylabel("feature 1")
axes[0].legend(loc=3)
# fitting kNN to a real dataset classification
from sklearn.datasets import load_breast_cancer
# Load and split the data
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify=cancer.target, random_state=42)
# Fitting and scoring using diff neighbors
training_accuracy = []
test_accuracy = []
n_neighbors = range(1,11) # Using ranges of values for neighbors
for n_neighbor in n_neighbors:
clf = KNeighborsClassifier(n_neighbors=n_neighbor).fit(X_train, y_train)
training_accuracy.append(clf.score(X_train, y_train))
test_accuracy.append(clf.score(X_test, y_test))
plt.plot(n_neighbors, training_accuracy, label="training accuracy")
plt.plot(n_neighbors, test_accuracy, label="test accuracy")
plt.xlabel("n_neighbors")
plt.ylabel("Accuracy")
plt.legend()
# Regression using kNN
mglearn.plots.plot_knn_regression(n_neighbors=1)
# for more no of neighbors it takes the avg or mean of the target variables
mglearn.plots.plot_knn_regression(n_neighbors=3)
# Fitting kNN to the sample data wave
from sklearn.neighbors import KNeighborsRegressor
X, y = mglearn.datasets.make_wave(n_samples=40)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
reg = KNeighborsRegressor(n_neighbors=3)
reg.fit(X_train, y_train)
print("Test set predictions: {}".format(reg.predict(X_test)))
print("Test set R^2; {:.2f}".format(reg.score(X_test, y_test)))
# Analysis of kNN for regression
fig, axes = plt.subplots(1,3, figsize=(15,4))
line = np.linspace(-3,3,1000).reshape(-1,1) # Create 1000 data points, evenly spaced between -3 and 3, and change the shape
for n_neighbors, ax in zip([1,3,9], axes):
reg = KNeighborsRegressor(n_neighbors=n_neighbors)
reg.fit(X_train, y_train)
ax.plot(line, reg.predict(line))
ax.plot(X_train, y_train, '^', c=mglearn.cm2(0), markersize=8)
ax.plot(X_test, y_test, 'v', c=mglearn.cm2(1), markersize=8)
ax.set_title("{} neighbors\n Train Score: {:.2f} Test Score: {:.2f}"
.format(n_neighbors, reg.score(X_train, y_train), reg.score(X_test, y_test)))
ax.set_xlabel("Feature")
ax.set_ylabel("Target")
axes[0].legend(["Model predictions", "Training data/target", "Test data/target"], loc='best')
###Output
_____no_output_____ |
01-python/04-CLASES.ipynb | ###Markdown
**CLASES**
###Code
class Nada:
pass
una_nada = Nada()
print(una_nada)
print(type(una_nada))
class Auto:
color = None # Declaración atributo Público
__numero_chasis = 1 # Declaración atributo Privado
def __init__(self, color): # Constructor
print("Empezo el Constructor") # Self = this, debe ser declarado
self.color = color
nuevo_auto = Auto("Rosado")
print(nuevo_auto.color)
class Auto:
color = None # Atributos Públicos
__numero_chasis = 1 # Atributos Privados
def __init__(self, color): # Constructor self = this
print("Empezo el Constructor")
self.color = color
def setear_chasis(self, nuevo_chasis): # Métodos Pública
self.__numero_chasis = nuevo_chasis
return self.__calculo_chasis() # Devuelve Método Privado
def __calculo_chasis(self): # Métodos Privado
return self.__numero_chasis * 1.17
nuevo_auto = Auto("Rosado")
print(nuevo_auto.color)
print(nuevo_auto.setear_chasis(100))
class Auto:
color = None # Atributos Públicos
__numero_chasis = 1 # Atributos Privados
def __init__(self, color): # Constructor self = this
print("Empezo el Constructor")
self.color = color
def setear_chasis(self, nuevo_chasis): # Métodos Pública
self.__numero_chasis = nuevo_chasis
return self.__calculo_chasis() # Devuelve Método Privado
def __calculo_chasis(self): # Métodos Privado
return self.__numero_chasis * 1.17
def __str__(self): # To String - Sobreescribir
parte_uno = f"Color: {self.color} \n"
parte_dos = f"Numero Chasis: {self.__numero_chasis}"
return parte_uno + parte_dos
nuevo_auto = Auto("Rosado")
#print(nuevo_auto.color)
print(nuevo_auto.setear_chasis(100))
print(nuevo_auto)
# Heredar Clase
class BMW(Auto):
def __init__(self, color, chasis):
print("Iniciar constructor hijo")
super().__init__(color) # Llamar Constructor Padre
super().setear_chasis(chasis) # Llamar a Método
nuevo_bmw = BMW("Blanco", 150)
print(nuevo_bmw)
###Output
Iniciar constructor hijo
Empezo el Constructor
Color: Blanco
Numero Chasis: 150
|
Implementations/FY21/ACC_GTFS_accessibility_analysis_Cap_Haitien_Haiti/Step1_build_graph_and_add_ferries2_w_adv_snap.ipynb | ###Markdown
Step 1: Extract and merge walk graph and ferries graphExtract the walk network via OSMNX within the AOI, and then add ferries to the network
###Code
%load_ext autoreload
%autoreload 2
import osmnx as ox
import pandas as pd
import geopandas as gpd
import networkx as nx
import numpy as np
from shapely.geometry import Point
import os, sys
sys.path.append(r'C:\repos\GOSTnets')
import GOSTnets as gn
# configuring ferry as a useful tag
ox.utils.config(useful_tags_way= [
"bridge",
"tunnel",
"oneway",
"lanes",
"ref",
"name",
"highway",
"maxspeed",
"service",
"access",
"area",
"landuse",
"width",
"est_width",
"junction",
"ferry"
])
###Output
_____no_output_____
###Markdown
Extract Walk network via OSMNX
###Code
# import extent
cap_haitian_extent = gpd.read_file(r"input_folder/cap_haitien_study_area_w_buffer.shp")
extent = cap_haitian_extent.geometry[0]
extent
# Pull in the walk network with OSMnx
%time Gwalk = ox.graph_from_polygon(extent, network_type='walk')
#Gwalk.graph
# Visually inspect (takes a minute or two)
ox.plot_graph(Gwalk)
###Output
_____no_output_____
###Markdown
Extract Ferries over AOIVisited https://overpass-turbo.eu/ and manually ran a query for ferries (way["ferry"]) within Cap Haitien. Detected the only ferries near Pointe Labadie, so a bounding box was manually created in QGIS that covered all of the ferries.
###Code
# import extent
cap_haitien_extent = gpd.read_file("input_folder/cap_haitien_ferry_extent.shp")
extent = cap_haitien_extent.geometry[0]
extent
walk_custom = '["ferry"]'
# Pull in the walk network with OSMNX
%time Gferries = ox.graph_from_polygon(extent, custom_filter=walk_custom)
print(nx.info(Gferries))
Gferries
Gferries.edges
# test
Gferries.edges[616085737, 6733460125,0]
Gferries.nodes
###Output
_____no_output_____
###Markdown
Add ferry nodes and edges to the walking graph
###Code
# add each osm node to the graph
# even if the node already exists in the graph, it won't create duplicates
for node, data in Gferries.nodes.items():
#print(node,data)
Gwalk.add_node(node, **data)
# add each osm edge to the graph
for edge, data in Gferries.edges.items():
print(edge,data)
Gwalk.add_edges_from([edge], **data)
print(nx.info(Gwalk))
Gwalk.nodes[6770195160]
# save again and inspect
#gn.save(Gwalk,"cap_haitien_walk_w_ferries_via_osmnx",r"temp")
###Output
_____no_output_____
###Markdown
Advanced SnappingNow we want to take our population grid vector points and use them to expand the graph.
###Code
# load origins
origins = gpd.read_file(r"input_folder\cap_haitien_worldpop_pts2.shp")
###Output
_____no_output_____
###Markdown
Make the node_ID really high in order to not interfere with exisiting OSMIDs from the graph
###Code
origins['node_ID'] = 1110000000 + origins.index
origins
# find graph utm zone
G_utm = gn.utm_of_graph(Gwalk)
G_utm
# testing
# for edge, data in Gwalk.edges.items():
# print(edge,data)
###Output
_____no_output_____
###Markdown
This is the GOSTnets advanced_snap function. note on GOSTnets implementation detail:As of now make sure node_key_col='node_ID' because gn.advanced_snap does node_gdf_from_graph(G) and node_gdf_from_graph has node_ID for the ID column
###Code
# example of nodes in Gwalk
gn.example_node(Gwalk,n=5)
%%time
G2, pois_meter, new_footway_edges = gn.advanced_snap(Gwalk, origins, u_tag = 'stnode', v_tag = 'endnode', node_key_col='node_ID', poi_key_col='node_ID', path=None, threshold=2000, measure_crs=G_utm)
print(nx.info(G2))
G2_edges = gn.edge_gdf_from_graph(G2)
#G2_edges
#list(G2.edges(data=True))[:10]
###Output
_____no_output_____
###Markdown
save for Step 2
###Code
gn.save(G2,"cap_haitien_walk_w_ferries_via_osmnx_origins_adv_snap",r"temp")
# testing
#nodes = gn.node_gdf_from_graph(G2)
# testing
#G2.nodes[6770195160]
###Output
_____no_output_____
###Markdown
new_poi_nodes will be used for the origin nodes when calculating an OD matrix
###Code
new_footway_edges.head()
###Output
_____no_output_____
###Markdown
The edges that were longer than the threshold of 2000m were already eliminated from the new_footway_edges DF, therefore we will eliminate the new_poi_nodes that don't exist in the new_footway_edges
###Code
# yields the elements in `list_2` that are NOT in `list_1`
elim_new_poi_nodes = np.setdiff1d(list(new_poi_nodes.node_ID),list(new_footway_edges.node_ID))
len(elim_new_poi_nodes)
new_poi_nodes2 = new_poi_nodes[~new_poi_nodes['node_ID'].isin(elim_new_poi_nodes)]
new_poi_nodes2
new_poi_nodes2 = new_poi_nodes2[['node_ID','VALUE','geometry']]
# save new_nodes
new_poi_nodes2.to_csv(r"temp/origin_nodes.csv")
###Output
_____no_output_____
###Markdown
Inspecting disconnected subgraphs
###Code
# compatible with NetworkX 2.4
list_of_subgraphs = list(G2.subgraph(c).copy() for c in nx.weakly_connected_components(G2))
max_graph = None
max_edges = 0
# To sort the list in place...
list_of_subgraphs.sort(key=lambda x: x.number_of_edges(), reverse=True)
for subgraph in list_of_subgraphs:
print(len(subgraph))
# to inspect
gn.save(subgraph,f"{len(subgraph)}_inspect",r"temp", pickle = False, edges = True, nodes = False)
###Output
267226
|
Code/8.1-MultinomialLogitAndProbitModels/01-biogeme-basics.ipynb | ###Markdown
An introduction to Biogeme Biogeme Basics: Logit Model
###Code
import pandas as pd
import numpy as np
import biogeme.database as db
import biogeme.biogeme as bio
import biogeme.models as models
import biogeme.expressions as exp
import seaborn as sns
import matplotlib.pyplot as plt
###Output
_____no_output_____
###Markdown
**Import Swissmetro data**
###Code
pandas = pd.read_csv("../../Data/6-Discrete Choice Models/swissmetro.dat",sep='\t')
database = db.Database("data/swissmetro", pandas)
###Output
_____no_output_____
###Markdown
Let's see what this dataset has * dataset consists of survey data collected on the trains between St. Gallen and Geneva, Switzerland, during March 1998* It is necessary to obtain data from surveys of hypothetical markets/situations, which include the innovation, to assess the impact. * Survey data were collected on rail-based travels, interviewing 470 respondents. Due to data problems, only 441 are used here. A similar method for relevant car trips. A total of 1070 persons filled in the survey completely and were willing to participate in the second SP survey, which was generated using the same approach used for the rail interviews. 750 usable SP surveys were returned, from the license-plate based survey.* Nine stated choice situations were generated for each the respondents, offering three alternatives: rail, Swissmetro and carBierlaire, M., Axhausen, K. and Abay, G. (2001), The acceptance of modal innovation: The case of Swissmetro, in ‘Proceedings of the Swiss Transport Research Conference’, Ascona, Switzerland.  
###Code
plt.figure(figsize=(10,5))
chart = sns.countplot(pandas['PURPOSE'])
chart.set_xticklabels(chart.get_xticklabels(), rotation=30, horizontalalignment='right');
chart.set_xticklabels(['Commuter', 'Shopping', 'Business', 'Leisure', 'Return from work','Return from shopping', 'Return from business','Return from leisure','Other']);
###Output
_____no_output_____
###Markdown
**Use collumn names as variables**
###Code
globals().update(database.variables)
###Output
_____no_output_____
###Markdown
**Exclude some unwanted entries**
###Code
exclude = (( PURPOSE != 1 ) * ( PURPOSE != 3 ) + ( CHOICE == 0 )) > 0
database.remove(exclude)
###Output
_____no_output_____
###Markdown
**Define some dummy variables**
###Code
SM_COST = SM_CO * ( GA == 0 )
TRAIN_COST = TRAIN_CO * ( GA == 0 )
CAR_AV_SP = exp.DefineVariable ('CAR_AV_SP', CAR_AV * ( SP !=0 ), database)
TRAIN_AV_SP = exp.DefineVariable ('TRAIN_AV_SP', TRAIN_AV * ( SP != 0 ), database)
###Output
_____no_output_____
###Markdown
**Rescale some data**
###Code
TRAIN_TT_SCALED = exp.DefineVariable('TRAIN_TT_SCALED', TRAIN_TT / 100.0, database)
TRAIN_COST_SCALED = exp.DefineVariable('TRAIN_COST_SCALED', TRAIN_COST / 100, database)
SM_TT_SCALED = exp.DefineVariable('SM_TT_SCALED', SM_TT / 100.0 , database)
SM_COST_SCALED = exp.DefineVariable('SM_COST_SCALED', SM_COST / 100 , database)
CAR_TT_SCALED = exp.DefineVariable('CAR_TT_SCALED', CAR_TT / 100 , database)
CAR_CO_SCALED = exp.DefineVariable('CAR_CO_SCALED', CAR_CO / 100 , database)
pandas = database.data
plt.figure(figsize=(10,5))
chart = sns.countplot(pandas['PURPOSE'])
chart.set_xticklabels(chart.get_xticklabels(), rotation=30, horizontalalignment='right');
chart.set_xticklabels(['Commuter', 'Business']);
plt.figure(1, figsize=(10,5))
chart = sns.countplot(pandas['TRAIN_AV'])
chart.set_xticklabels(chart.get_xticklabels(), rotation=30, horizontalalignment='right');
chart.set_xticklabels(['Yes']);
chart.set(title='Train Availability', xlabel="Available", ylabel = "Count");
plt.figure(2, figsize=(10,5))
chart = sns.countplot(pandas['CAR_AV'])
chart.set_xticklabels(chart.get_xticklabels(), rotation=30, horizontalalignment='right');
chart.set_xticklabels(['No', 'Yes']);
chart.set(title='Car Availability', xlabel="Available", ylabel = "Count");
plt.figure(3, figsize=(10,5))
chart = sns.countplot(pandas['SM_AV'])
chart.set_xticklabels(chart.get_xticklabels(), rotation=30, horizontalalignment='right');
chart.set_xticklabels(['Yes']);
chart.set(title='Swissmetro Availability', xlabel="Available", ylabel = "Count");
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
pandas.describe()
###Output
_____no_output_____
###Markdown
**Define the utility functions** \begin{align}V_1 & = \beta_{Train} + \beta_{time}X_{Train_{TT}} + \beta_{cost}X_{Train_{cost}}\\V_2 & = \beta_{SM} + \beta_{time}X_{SM_{TT}} + \beta_{cost}X_{SM_{cost}}\\V_3 & = \beta_{Car} + \beta_{time}X_{Car_{TT}} + \beta_{cost}X_{Car_{cost}}\\\end{align} **Create parameters to be estimated**`Beta`1. name of parameter2. default value for the parameter3. lower bound4. upper bound5. flag indicating if parameter is to be estimated
###Code
ASC_CAR = exp.Beta('ASC_CAR',0,None ,None ,0)
ASC_TRAIN = exp.Beta('ASC_TRAIN',0,None ,None ,0)
ASC_SM = exp.Beta('ASC_SM',0,None ,None ,1)
B_TIME = exp.Beta('B_TIME',0,None ,None ,0)
B_COST = exp.Beta('B_COST',0,None ,None ,0)
###Output
_____no_output_____
###Markdown
**Define the utility functions**
###Code
V1 = ASC_TRAIN + \
B_TIME * TRAIN_TT_SCALED + \
B_COST * TRAIN_COST_SCALED
V2 = ASC_SM + \
B_TIME * SM_TT_SCALED + \
B_COST * SM_COST_SCALED
V3 = ASC_CAR + \
B_TIME * CAR_TT_SCALED + \
B_COST * CAR_CO_SCALED
###Output
_____no_output_____
###Markdown
**Associate utility functions with alternatives and associate availability of alternatives**Create a python dictionary with all utility functionsCreate a python dictionary with availability of choices
###Code
V = {1: V1,
2: V2,
3: V3}
av = {1: TRAIN_AV_SP,
2: SM_AV,
3: CAR_AV_SP}
###Output
_____no_output_____
###Markdown
**Define the model**
###Code
logprob = models.loglogit(V, av, CHOICE)
###Output
_____no_output_____
###Markdown
**Define the Biogeme object*** Give the database with all variables* Give the log likelihood model
###Code
biogeme = bio.BIOGEME(database, logprob)
biogeme.modelName = "swissmetro_logit_basic"
###Output
_____no_output_____
###Markdown
**Estimate the model**1. A `.html` can be generated with a report of the results and can be opened with a browser2. A `.pickle` file can also be generaetd with a snapshot with the results. This file can then be used in other scripts
###Code
biogeme.generateHtml = True
biogeme.generatePickle = False
results = biogeme.estimate()
print(f"HTML file: {results.data.htmlFileName}")
print(f"Pickle file: {results.data.pickleFileName }")
###Output
HTML file: swissmetro_logit_basic.html
Pickle file: None
###Markdown
**Print results**
###Code
betas = results.getBetaValues()
for k,v in betas.items():
print(f"{k:10}=\t{v:.3g}")
###Output
ASC_CAR = -0.155
ASC_TRAIN = -0.701
B_COST = -1.08
B_TIME = -1.28
###Markdown
**Get the variance-covariance matrix**
###Code
results.getVarCovar()
###Output
_____no_output_____ |
.ipynb_checkpoints/NB5_check_brain_heart_expression_210419-checkpoint.ipynb | ###Markdown
Check the brain and heart expression of network genesRequires downloading GTEX data (https://gtexportal.org/home/datasets). Large files
###Code
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import networkx as nx
import pandas as pd
import random
# latex rendering of text in graphs
import matplotlib as mpl
mpl.rc('text', usetex = False)
mpl.rc('font', family = 'serif')
from matplotlib import rcParams
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Arial']
sns.set_style('white')
sns.set_style("ticks", {"xtick.major.size": 15, "ytick.major.size": 15})
plt.rcParams['svg.fonttype'] = 'none'
import sys
% matplotlib inline
###Output
_____no_output_____
###Markdown
Load the ASD-CHD network genes
###Code
ASD_CHD_df = pd.read_excel('data/supplemental_tables_cell_systems_210416.xlsx',sheet_name='Table S4',skiprows=1)
ASD_CHD_df.index=ASD_CHD_df['gene']
print(len(ASD_CHD_df))
display(ASD_CHD_df.head())
ASD_CHD_genes = ASD_CHD_df.index.tolist()
len(ASD_CHD_genes)
###Output
_____no_output_____
###Markdown
Load Gtex sample metadataFilter by brain, heart samples, so we don't have to load full GTEX
###Code
gtex_meta = pd.read_csv('/Users/brinrosenthal/Documents/CCBB_tickets_data/GTEX/RNAseq/GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt',
sep='\t')
gtex_meta.index=gtex_meta['SAMPID']
gtex_meta.head()
gtex_meta_brain_heart = gtex_meta[gtex_meta['SMTS'].isin(['Brain','Heart'])]
print(len(gtex_meta_brain_heart))
gtex_samps_keep = gtex_meta_brain_heart.index.tolist()
gtex_meta_brain_heart['SMTS'].value_counts()
gtex_meta['SMTS'].value_counts()
###Output
_____no_output_____
###Markdown
Try just reading the whole fileThis chunk is parsing GTEX file... skip to next section if we don't need to do this. Can just read in exp_brain_heart protein coding
###Code
# Skip to read in exp_gtex_brain_heart if pre-computed
exp_gtex_df = pd.read_csv('/Users/brinrosenthal/Documents/CCBB_tickets_data/GTEX/RNAseq/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_reads.gct.gz',
sep='\t',skiprows=2)
exp_gtex_df.head()
gtex_samps_keep = list(np.intersect1d(gtex_samps_keep,exp_gtex_df.columns.tolist()))
print(len(gtex_samps_keep))
exp_gtex_brain_heart = exp_gtex_df[['Description']+gtex_samps_keep]
exp_gtex_brain_heart.head()
# drop the duplicate gene names
print(len(exp_gtex_brain_heart))
exp_gtex_brain_heart=exp_gtex_brain_heart.drop_duplicates(subset='Description')
print(len(exp_gtex_brain_heart))
# exp_gtex_brain_heart.to_csv('/Users/brin/Documents/CCBB_tickets_data/GTEX/RNAseq/GTEX_counts_brain_heart.txt',sep='\t')
###Output
_____no_output_____
###Markdown
Load the interactomePCnet downloaded from ndex and parsed to networkx format https://ndexbio.org//network/f93f402c-86d4-11e7-a10d-0ac135e8bacf
###Code
# filter by protein coding genes in PCnet
G_pcnet = nx.read_gpickle('/Users/brinrosenthal/Documents/CCBB_tickets_data/PCnet/G_PCnet.gpickle')
print(len(G_pcnet.nodes()))
print(len(G_pcnet.edges()))
genes_gtex_pcnet=list(np.intersect1d(exp_gtex_brain_heart.index.tolist(),G_pcnet.nodes()))
print(len(genes_gtex_pcnet))
exp_gtex_brain_heart.index=exp_gtex_brain_heart['Description']
exp_gtex_brain_heart = exp_gtex_brain_heart.loc[genes_gtex_pcnet]
print(len(exp_gtex_brain_heart))
exp_gtex_brain_heart.head()
# save the protein coding (also pcnet) genes
# exp_gtex_brain_heart.to_csv('/Users/brin/Documents/CCBB_tickets_data/GTEX/RNAseq/GTEX_counts_brain_heart_pc.txt',sep='\t')
###Output
_____no_output_____
###Markdown
Load the filtered GTEX brain, heart, other tissues exp data
###Code
exp_gtex_brain_heart = pd.read_csv('/Users/brinrosenthal/Documents/CCBB_tickets_data/GTEX/RNAseq/GTEX_counts_brain_heart_pc.txt',
sep='\t',)
exp_gtex_brain_heart.index=exp_gtex_brain_heart['Description']
exp_gtex_brain_heart = exp_gtex_brain_heart[exp_gtex_brain_heart.columns.tolist()[2:]]
exp_gtex_brain_heart.head()
# normalize expression by sample (convert to counts per million)
cpm_gtex_brain_heart = exp_gtex_brain_heart.copy(deep=True)
cpm_gtex_brain_heart = cpm_gtex_brain_heart.divide(exp_gtex_brain_heart.sum())*1000000
cpm_gtex_brain_heart.head()
# now calculate the average tissue-specific expression
brain_samps = list(np.intersect1d(gtex_meta_brain_heart[gtex_meta_brain_heart['SMTS']=='Brain'].index.tolist(),
cpm_gtex_brain_heart.columns.tolist()))
print(len(brain_samps))
heart_samps = list(np.intersect1d(gtex_meta_brain_heart[gtex_meta_brain_heart['SMTS']=='Heart'].index.tolist(),
cpm_gtex_brain_heart.columns.tolist()))
print(len(heart_samps))
cpm_gtex_brain = cpm_gtex_brain_heart[brain_samps]
cpm_gtex_brain.head()
cpm_gtex_heart = cpm_gtex_brain_heart[heart_samps]
cpm_gtex_heart.head()
gtex_brain_avg_exp = cpm_gtex_brain.mean(axis=1)
gtex_brain_avg_exp.head()
gtex_heart_avg_exp = cpm_gtex_heart.mean(axis=1)
gtex_heart_avg_exp.head()
# sns.jointplot(gtex_heart_avg_exp.loc[ASD_CHD_genes],gtex_brain_avg_exp.loc[ASD_CHD_genes])
gtex_multi_tissue_avg_prank = pd.DataFrame(gtex_heart_avg_exp.rank(pct=True),
columns=['heart_prank']).join(pd.DataFrame(gtex_brain_avg_exp.rank(pct=True),
columns=['brain_prank']))
gtex_multi_tissue_avg_prank.head()
gtex_multi_tissue_avg_prank.loc[['MYT1L','TBR1','CAPN12','TBL1XR1','AGAP1','HDGFRP2','PNPLA7','SCN2A']]
jp = sns.jointplot(x='heart_prank',y='brain_prank',data=gtex_multi_tissue_avg_prank.loc[ASD_CHD_genes],
kind='scatter',alpha=.3,color='gray',joint_kws={'s':6},marginal_kws={'color':'white'},height=4.5)
plt.sca(jp.ax_marg_x)
sns.distplot(gtex_multi_tissue_avg_prank['heart_prank'].loc[ASD_CHD_genes].dropna().tolist(),color='#C410C4',kde=False)
plt.sca(jp.ax_marg_y)
sns.distplot(gtex_multi_tissue_avg_prank['brain_prank'].loc[ASD_CHD_genes].dropna().tolist(),color='#0ED50A',kde=False,vertical=True)
plt.sca(jp.ax_joint)
plt.xlabel('GTEX heart percentile expression',fontsize=16)
plt.ylabel('GTEX brain percentile expression',fontsize=16)
plt.plot([0,1],[.75,.75],'--',color='gray')
plt.plot([.75,.75],[0,1],'--',color='gray')
# write out brain/heart avg percentile rank for loading to cytoscape
# gtex_brain_heart_avg_prank.to_csv('gtex_brain_heart_avg_prank.csv')
gtex_multi_tissue_avg_prank.loc[['SCN1A','SCN10A','SMARCA2']]
min_brain_heart = gtex_multi_tissue_avg_prank[['brain_prank','heart_prank']].T.min()
min_brain_heart.head()
plt.figure(figsize=(2.08,1.69))
bins = np.linspace(0,1,11)
dfig = sns.distplot(min_brain_heart,bins=bins,color='gray',label='all expressed genes')
sns.distplot(min_brain_heart.loc[ASD_CHD_genes].dropna(),bins=bins,color='#FF7400',label='$z_{ASD-CHD}>3$')
plt.xlim([0,1])
plt.xticks(np.linspace(0,1,6))
from scipy.stats import mannwhitneyu
print(mannwhitneyu(min_brain_heart.tolist(),min_brain_heart.loc[ASD_CHD_genes].dropna().tolist()))
plt.legend(loc='upper left',fontsize=6,frameon=False)
plt.ylabel('density',fontsize=8)
plt.xlabel('GTEX min(brain,heart) expression,\npercentile',fontsize=8)
plt.xticks(fontsize=8)
plt.yticks(fontsize=8)
plt.savefig('../../manuscript/figures_1911/Figure4/Figure4_final assets/GTEX_min_brain_heart_dist.png',dpi=300,bbox_inches='tight')
plt.savefig('../../manuscript/figures_1911/Figure4/Figure4_final assets/GTEX_min_brain_heart_dist.svg',dpi=300,bbox_inches='tight')
# plt.savefig('../../manuscript/figures_1911/Figure4/GTEX_min_brain_heart_dist.pdf',dpi=300,bbox_inches='tight')
bins = np.linspace(0,1,11)
bins
###Output
_____no_output_____ |
projects/learn-python3/notebooks/beginner/exercises/exceptions_exercise.ipynb | ###Markdown
1. Dealing with exceptionsFill `____` parts of the implementation below. `sum_of_list` function takes a list as argument and calculates the sum of values in the list. If some element in the list can not be converted to a numeric value, it should be ignored from the sum.
###Code
def sum_of_list(values):
sum = 0
for val in values:
try:
numeric_val = float(val)
except:
continue
sum += numeric_val
return sum
list1 = [1, 2, 3]
list2 = ['1', 2.5, '3.0']
list3 = ['', '1']
list4 = []
list5 = ['John', 'Doe', 'was', 'here']
nasty_list = [KeyError(), [], dict()]
assert sum_of_list(list1) == 6
assert sum_of_list(list2) == 6.5
assert sum_of_list(list3) == 1
assert sum_of_list(list4) == 0
assert sum_of_list(list5) == 0
assert sum_of_list(nasty_list) == 0
###Output
_____no_output_____
###Markdown
2. Using custom exceptionsImplement `verify_short_string` function which takes a single string as argument. If the length of the input string is more than ten characters, the function should raise `TooLongString` exception (note: you have to create `TooLongString` yourself). The function does not have to return anything.
###Code
class TooLongString(Exception):
pass
def verify_short_string(string):
if len(string) > 10:
raise TooLongString
# These should not raise
verify_short_string('short')
verify_short_string('10 chars')
# This should raise
try:
verify_short_string('this is long')
except TooLongString as e:
# This is ok
pass
else:
# This means that there was no exception
assert False
###Output
_____no_output_____ |
Marian_Vinas_Copy_of_LS_DS_222_assignment.ipynb | ###Markdown
Lambda School Data Science*Unit 2, Sprint 2, Module 2*--- Random Forests Assignment- [ ] Read [“Adopting a Hypothesis-Driven Workflow”](http://archive.is/Nu3EI), a blog post by a Lambda DS student about the Tanzania Waterpumps challenge.- [ ] Continue to participate in our Kaggle challenge.- [ ] Define a function to wrangle train, validate, and test sets in the same way. Clean outliers and engineer features.- [ ] Try Ordinal Encoding.- [ ] Try a Random Forest Classifier.- [ ] Submit your predictions to our Kaggle competition. (Go to our Kaggle InClass competition webpage. Use the blue **Submit Predictions** button to upload your CSV file. Or you can use the Kaggle API to submit your predictions.)- [ ] Commit your notebook to your fork of the GitHub repo. Stretch Goals Doing- [ ] Add your own stretch goal(s) !- [ ] Do more exploratory data analysis, data cleaning, feature engineering, and feature selection.- [ ] Try other [categorical encodings](https://contrib.scikit-learn.org/category_encoders/).- [ ] Get and plot your feature importances.- [ ] Make visualizations and share on Slack. ReadingTop recommendations in _**bold italic:**_ Decision Trees- A Visual Introduction to Machine Learning, [Part 1: A Decision Tree](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/), and _**[Part 2: Bias and Variance](http://www.r2d3.us/visual-intro-to-machine-learning-part-2/)**_- [Decision Trees: Advantages & Disadvantages](https://christophm.github.io/interpretable-ml-book/tree.htmladvantages-2)- [How a Russian mathematician constructed a decision tree — by hand — to solve a medical problem](http://fastml.com/how-a-russian-mathematician-constructed-a-decision-tree-by-hand-to-solve-a-medical-problem/)- [How decision trees work](https://brohrer.github.io/how_decision_trees_work.html)- [Let’s Write a Decision Tree Classifier from Scratch](https://www.youtube.com/watch?v=LDRbO9a6XPU) Random Forests- [_An Introduction to Statistical Learning_](http://www-bcf.usc.edu/~gareth/ISL/), Chapter 8: Tree-Based Methods- [Coloring with Random Forests](http://structuringtheunstructured.blogspot.com/2017/11/coloring-with-random-forests.html)- _**[Random Forests for Complete Beginners: The definitive guide to Random Forests and Decision Trees](https://victorzhou.com/blog/intro-to-random-forests/)**_ Categorical encoding for trees- [Are categorical variables getting lost in your random forests?](https://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-your-random-forests/)- [Beyond One-Hot: An Exploration of Categorical Variables](http://www.willmcginnis.com/2015/11/29/beyond-one-hot-an-exploration-of-categorical-variables/)- _**[Categorical Features and Encoding in Decision Trees](https://medium.com/data-design/visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931)**_- _**[Coursera — How to Win a Data Science Competition: Learn from Top Kagglers — Concept of mean encoding](https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv)**_- [Mean (likelihood) encodings: a comprehensive study](https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study)- [The Mechanics of Machine Learning, Chapter 6: Categorically Speaking](https://mlbook.explained.ai/catvars.html) Imposter Syndrome- [Effort Shock and Reward Shock (How The Karate Kid Ruined The Modern World)](http://www.tempobook.com/2014/07/09/effort-shock-and-reward-shock/)- [How to manage impostor syndrome in data science](https://towardsdatascience.com/how-to-manage-impostor-syndrome-in-data-science-ad814809f068)- ["I am not a real data scientist"](https://brohrer.github.io/imposter_syndrome.html)- _**[Imposter Syndrome in Data Science](https://caitlinhudon.com/2018/01/19/imposter-syndrome-in-data-science/)**_ More Categorical Encodings**1.** The article **[Categorical Features and Encoding in Decision Trees](https://medium.com/data-design/visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931)** mentions 4 encodings:- **"Categorical Encoding":** This means using the raw categorical values as-is, not encoded. Scikit-learn doesn't support this, but some tree algorithm implementations do. For example, [Catboost](https://catboost.ai/), or R's [rpart](https://cran.r-project.org/web/packages/rpart/index.html) package.- **Numeric Encoding:** Synonymous with Label Encoding, or "Ordinal" Encoding with random order. We can use [category_encoders.OrdinalEncoder](https://contrib.scikit-learn.org/category_encoders/ordinal.html).- **One-Hot Encoding:** We can use [category_encoders.OneHotEncoder](https://contrib.scikit-learn.org/category_encoders/onehot.html).- **Binary Encoding:** We can use [category_encoders.BinaryEncoder](https://contrib.scikit-learn.org/category_encoders/binary.html).**2.** The short video **[Coursera — How to Win a Data Science Competition: Learn from Top Kagglers — Concept of mean encoding](https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv)** introduces an interesting idea: use both X _and_ y to encode categoricals.Category Encoders has multiple implementations of this general concept:- [CatBoost Encoder](https://contrib.scikit-learn.org/category_encoders/catboost.html)- [Generalized Linear Mixed Model Encoder](https://contrib.scikit-learn.org/category_encoders/glmm.html)- [James-Stein Encoder](https://contrib.scikit-learn.org/category_encoders/jamesstein.html)- [Leave One Out](https://contrib.scikit-learn.org/category_encoders/leaveoneout.html)- [M-estimate](https://contrib.scikit-learn.org/category_encoders/mestimate.html)- [Target Encoder](https://contrib.scikit-learn.org/category_encoders/targetencoder.html)- [Weight of Evidence](https://contrib.scikit-learn.org/category_encoders/woe.html)Category Encoder's mean encoding implementations work for regression problems or binary classification problems. For multi-class classification problems, you will need to temporarily reformulate it as binary classification. For example:```pythonencoder = ce.TargetEncoder(min_samples_leaf=..., smoothing=...) Both parameters > 1 to avoid overfittingX_train_encoded = encoder.fit_transform(X_train, y_train=='functional')X_val_encoded = encoder.transform(X_train, y_val=='functional')```For this reason, mean encoding won't work well within pipelines for multi-class classification problems.**3.** The **[dirty_cat](https://dirty-cat.github.io/stable/)** library has a Target Encoder implementation that works with multi-class classification.```python dirty_cat.TargetEncoder(clf_type='multiclass-clf')```It also implements an interesting idea called ["Similarity Encoder" for dirty categories](https://www.slideshare.net/GaelVaroquaux/machine-learning-on-non-curated-data-154905090).However, it seems like dirty_cat doesn't handle missing values or unknown categories as well as category_encoders does. And you may need to use it with one column at a time, instead of with your whole dataframe.**4. [Embeddings](https://www.kaggle.com/colinmorris/embedding-layers)** can work well with sparse / high cardinality categoricals._**I hope it’s not too frustrating or confusing that there’s not one “canonical” way to encode categoricals. It’s an active area of research and experimentation — maybe you can make your own contributions!**_ SetupYou can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab (run the code cell below).
###Code
%%capture
import sys
# If you're on Colab:
if 'google.colab' in sys.modules:
DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Kaggle-Challenge/master/data/'
!pip install category_encoders==2.*
# If you're working locally:
else:
DATA_PATH = '../data/'
import pandas as pd
from sklearn.model_selection import train_test_split
train = pd.merge(pd.read_csv(DATA_PATH+'waterpumps/train_features.csv'),
pd.read_csv(DATA_PATH+'waterpumps/train_labels.csv'))
test = pd.read_csv(DATA_PATH+'waterpumps/test_features.csv')
sample_submission = pd.read_csv(DATA_PATH+'waterpumps/sample_submission.csv')
train.shape, test.shape
import numpy as np
# Split train into train & val
train, val = train_test_split(train, train_size=0.80, test_size=0.20,
stratify=train['status_group'], random_state=42)
def wrangle(X):
"""Wrangle train, validate, and test sets in the same way"""
# Prevent SettingWithCopyWarning
X = X.copy()
# About 3% of the time, latitude has small values near zero,
# outside Tanzania, so we'll treat these values like zero.
X['latitude'] = X['latitude'].replace(-2e-08, 0)
# When columns have zeros and shouldn't, they are like null values.
# So we will replace the zeros with nulls, and impute missing values later.
# Also create a "missing indicator" column, because the fact that
# values are missing may be a predictive signal.
cols_with_zeros = ['longitude', 'latitude', 'construction_year',
'gps_height', 'population']
for col in cols_with_zeros:
X[col] = X[col].replace(0, np.nan)
X[col+'_MISSING'] = X[col].isnull()
# Drop duplicate columns
duplicates = ['quantity_group', 'payment_type']
X = X.drop(columns=duplicates)
# Drop recorded_by (never varies) and id (always varies, random)
unusable_variance = ['recorded_by', 'id']
X = X.drop(columns=unusable_variance)
# Convert date_recorded to datetime
X['date_recorded'] = pd.to_datetime(X['date_recorded'], infer_datetime_format=True)
# Extract components from date_recorded, then drop the original column
X['year_recorded'] = X['date_recorded'].dt.year
X['month_recorded'] = X['date_recorded'].dt.month
X['day_recorded'] = X['date_recorded'].dt.day
X = X.drop(columns='date_recorded')
# Engineer feature: how many years from construction_year to date_recorded
X['years'] = X['year_recorded'] - X['construction_year']
X['years_MISSING'] = X['years'].isnull()
# return the wrangled dataframe
return X
train = wrangle(train)
val = wrangle(val)
test = wrangle(test)
# The status_group column is the target
target = 'status_group'
# Get a dataframe with all train columns except the target
train_features = train.drop(columns=[target])
# Get a list of the numeric features
numeric_features = train_features.select_dtypes(include='number').columns.tolist()
# Get a series with the cardinality of the nonnumeric features
cardinality = train_features.select_dtypes(exclude='number').nunique()
# Get a list of all categorical features with cardinality <= 50
categorical_features = cardinality[cardinality <= 50].index.tolist()
# Combine the lists
features = numeric_features + categorical_features
# Arrange data into X features matrix and y target vector
X_train = train[features]
y_train = train[target]
X_val = val[features]
y_val = val[target]
X_test = test[features]
#Scikit-Learn
import category_encoders as ce
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
from sklearn.pipeline import make_pipeline
pipeline = make_pipeline(
ce.one_hot.OneHotEncoder(use_cat_names=True),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1, random_state=42)
)
pipeline.fit(X_train, y_train)
print(f'Validation Accuracy: {pipeline.score(X_val, y_val)}')
print(f'X_train before encoding: {X_train.shape}')
encoder = pipeline.named_steps['onehotencoder']
X_train_enc = encoder.transform(X_train)
print(f'X_train after encoding: {X_train_enc.shape}')
import matplotlib.pyplot as plt
rf = pipeline.named_steps['randomforestclassifier']
importances = pd.Series(rf.feature_importances_, X_train_enc.columns)
n = 20
plt.figure(figsize=(10, n/2))
plt.title(f'Top {n} feature importances')
importances.sort_values()[-n:].plot.barh()
rf.feature_importances_.shape
#Ordinal Encoding
%%time
X_train = train.drop(columns=target)
y_train = train[target]
X_val = val.drop(columns=target)
y_val = val[target]
X_test = test
pipeline = make_pipeline(
ce.ordinal.OrdinalEncoder(),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1, random_state=42)
)
pipeline.fit(X_train, y_train)
print(f'Validation accuracy: {pipeline.score(X_val, y_val)}')
print(f'X_train before encoding: {X_train.shape}')
encoder = pipeline.named_steps['ordinalencoder']
X_train_enc = encoder.transform(X_train)
print(f'X_train after encoding: {X_train_enc.shape}')
rf = pipeline.named_steps['randomforestclassifier']
importances = pd.Series(rf.feature_importances_, X_train_enc.columns)
n = 20
plt.figure(figsize=(10, n/2))
plt.title(f'Top {n} feature importances')
importances.sort_values()[-n:].plot.barh()
#categorical exploration, 1 feature at a time
feature = 'extraction_type_class'
X_train[feature].value_counts()
import seaborn as sns
plt.figure(figsize=(16,9))
sns.barplot(
x=train[feature],
y=train['status_group']=='functional',
color='gray'
);
X_train[feature].head(20)
#One Hot Encoding
X_train[[feature]].head()
encoder = ce.OneHotEncoder(use_cat_names=True)
encoded = encoder.fit_transform(X_train[[feature]])
print(f'{len(encoded.columns)} columns')
encoded.head(20)
#One-Hot encoding, logistic regression, validation accuracy
from sklearn.linear_model import LogisticRegressionCV
from sklearn.preprocessing import StandardScaler
lr = make_pipeline(
ce.OneHotEncoder(use_cat_names=True),
SimpleImputer(),
StandardScaler(),
LogisticRegressionCV(multi_class='auto', solver='lbfgs', cv=5, n_jobs=-1)
)
lr.fit(X_train[[feature]], y_train)
score = lr.score(X_val[[feature]], y_val)
print('Logistic Regression, Validation Accuracy', score)
#One-Hot Encoding, Decision Tree, Validation Accuracy
from sklearn.tree import DecisionTreeClassifier
dt = make_pipeline(
ce.OneHotEncoder(use_cat_names=True),
SimpleImputer(),
DecisionTreeClassifier(random_state=42)
)
dt.fit(X_train[[feature]], y_train)
score = dt.score(X_val[[feature]], y_val)
print('Decision Tree, Validation Accuracy', score)
#One-Hot Encoding, Logistic Regression, Model Interpretation
model = lr.named_steps['logisticregressioncv']
encoder = lr.named_steps['onehotencoder']
encoded_columns = encoder.transform(X_val[[feature]]).columns
coefficients = pd.Series(model.coef_[0], encoded_columns)
coefficients.sort_values().plot.barh(color='grey');
#One-Hot Encoding, Decision Tree, Model Interpretation
import graphviz
from sklearn.tree import export_graphviz
model = dt.named_steps['decisiontreeclassifier']
encoder = dt.named_steps['onehotencoder']
encoded_columns = encoder.transform(X_val[[feature]]).columns
dot_data = export_graphviz(model,
out_file=None,
max_depth=7,
feature_names=encoded_columns,
class_names=model.classes_,
impurity=False,
filled=True,
proportion=True,
rounded=True)
display(graphviz.Source(dot_data))
#Ordinal Encoding
X_train[[feature]].head(10)
encoder = ce.OrdinalEncoder()
encoded = encoder.fit_transform(X_train[[feature]])
print(f'1 column, {encoded[feature].nunique()} unique values')
encoded.head(20)
#Ordinal Encoding, Logistic Regression, Validation Accuracy
lr = make_pipeline(
ce.OrdinalEncoder(),
SimpleImputer(),
StandardScaler(),
LogisticRegressionCV(multi_class='auto', solver='lbfgs', cv=5, n_jobs=-1)
)
lr.fit(X_train[[feature]], y_train)
score = lr.score(X_val[[feature]], y_val)
print('Logistic Regression, Validation Accuracy', score)
#Ordinal Encoding, Decision Tree, Validation Accuracy
dt = make_pipeline(
ce.OrdinalEncoder(),
SimpleImputer(),
DecisionTreeClassifier(random_state=42)
)
dt.fit(X_train[[feature]], y_train)
score = dt.score(X_val[[feature]], y_val)
print('Decision Tree, Validation Accuracy', score)
#Ordinal Encoding, Logistic Regression, Model Interpretation
model = lr.named_steps['logisticregressioncv']
encoder = lr.named_steps['ordinalencoder']
encoded_columns = encoder.transform(X_val[[feature]]).columns
coefficients = pd.Series(model.coef_[0], encoded_columns)
coefficients.sort_values().plot.barh(color='grey');
lr.named_steps['logisticregressioncv'].coef_
lr.named_steps['logisticregressioncv'].intercept_
#Ordinal Encoding, Decision Tree, Model Interpretation
model = dt.named_steps['decisiontreeclassifier']
encoder = dt.named_steps['ordinalencoder']
encoded_columns = encoder.transform(X_val[[feature]]).columns
dot_data = export_graphviz(model,
out_file=None,
max_depth=5,
feature_names=encoded_columns,
class_names=model.classes_,
impurity=False,
filled=True,
proportion=True,
rounded=True)
display(graphviz.Source(dot_data))
from sklearn.metrics import accuracy_score
y_pred = pipeline.predict(X_val)
accuracy = accuracy_score(y_val, y_pred)
print(f'Accuracy score = {accuracy * 100} %')
predictions = pipeline.predict(X_test)
submission = sample_submission.copy()
submission['status_group'] = predictions
submission.to_csv('submission.csv', index=False)
###Output
_____no_output_____ |
tasks/Kurdyukova_Python_HW_1.ipynb | ###Markdown
Домашнее задание №1 (курс "Практикум по программированию на языке Python") Тема: Введение в язык Python.**Автор**: Мурат Апишев**Выдана**: 25 февраля 2021**Дедлайн**: 21:00 11 марта 2021**Среда выполнения**: Jupyter Notebook (Python 3.7+) Правила:Результат выполнения задания - Jupyter Notebook с кодом. __Максимальное число баллов за задание - 20__.Все ячейки должны быть "выполненными", при этом результат должен воспроизводиться при проверке (на Python 3.7). Если какой-то код не был запущен или отрабатывает с ошибками, то пункт не засчитывается. Задание, сданное после дедлайна, _не принимается_. Можно отправить недоделанное задание, выполненные пункты будут оценены.Готовое задание отправляется на почту [email protected].Задание выполняется самостоятельно. Если какие-то студенты будут уличены в списывании, все они автоматически получат за эту работу 0 баллов. Если вы нашли в Интернете какой-то специфичный код, который собираетесь заимствовать, обязательно укажите это в задании - наверняка вы не единственный, кто найдёт и использует эту информацию.__Удалять фрагменты формулировок заданий запрещается.__ Постановка задачи:- В данной работе нужно решить набор задач, проверяющих владение базовыми инструментами языка.- Каждая задача представляет собой написание одной или более функций, а также набора тестов, проверяющих работу этой функции в общих и крайних случаях.- Отсутствие тестов автоматически уменьшает количество баллов за задание как минимум в два раза, некачественные тесты также будут штрафоваться.- Если в задании указано использовать несколько разных вариантов решения, подразумевается использование различных инструментов (циклы, списковые включения, генераторы, встроенные функции, функции модулей стандартной библотеки и т.п.), замена, например, цикла for на цикл while не является иным способом решения.- Даже если это не указано явно в требованиях, код должен быть по возможности неизбыточным, работать с разумной сложностью и объёмом потребялемой памяти, проверяющие могут снизить балл за задание, выполненное без учёта этого требования.- Результирующий код должен быть читаемым, с единой системой отступов и адеквантными названиями переменных, проверяющие могут снизить балл за задание, выполненное без учёта этого требования. __Задание 1 (0.5 балла):__ Дано натуральное число. Требуется определить, является ли год с данным номером високосным. Если год является високосным, то выведите YES, иначе выведите NO. Напомним, что в соответствии с григорианским календарем, год является високосным, если его номер кратен 4, но не кратен 100, а также если он кратен 400.
###Code
def task_01_func(year):
print('YES' if (year % 400 == 0) or (year % 100 != 0 and year % 4 == 0) else 'NO')
#Тесты
task_01_func(1200) #Число делится на 400
task_01_func(1700) #Число не делится на 400, делится на 4, но делится на 100
task_01_func(2016) #Число не делится на 100 и делится на 4
task_01_func(2005) #Число не делится на 100 и делится на 4
###Output
YES
NO
YES
NO
###Markdown
__Задание 2 (0.5 балла):__ Дано натуральное число. Найдите число знаков в его десятичной записи. Предложите как минимум два различных решения.
###Code
import math
def task_02_func(number): #Способ 1
count = 0
while number >= 1:
number /= 10
count += 1
print(count)
#Тесты
task_02_func(33)
task_02_func(123456789)
task_02_func(4)
print('\n')
def task_02_f(number): #Способ 2, идея подсмотрена тут https://coderoad.ru/2189800/Длина-целого-числа-в-Python
number = int(math.log10(number)) + 1
print(number)
#Тесты
task_02_f(66)
task_02_f(3123231231)
task_02_f(2)
###Output
2
9
1
2
10
1
###Markdown
__Задание 3 (0.5 балла):__ По данному натуральном n вычислите сумму 1!+2!+3!+...+n!. В решении этой задачи с помощью циклов можно использовать только один цикл. Предложите как минимум два различных решения.
###Code
import math
def task_03_func(n): #Способ 1, используем цикл
s = 0
for i in range(1, n + 1):
s += math.factorial(i)
print(s)
#Тесты
task_03_func(1)
task_03_func(4)
task_03_func(8)
print('\n')
def task_03_f(n): #Способ 2, опрерируем списком
lst = [math.factorial(i) for i in range(1, n)]
return sum(lst)
#Тесты
task_03_func(1)
task_03_func(4)
task_03_func(8)
###Output
1
33
46233
1
33
46233
###Markdown
__Задание 4 (0.5 балла):__ Определить, является ли введённая строка палиндромом (то есть одинаково читается с обеих сторон). Предложите как минимум три различных решения.
###Code
def task_04_func(s): #Способ 1
print('s is a palindromo' if s == s[::-1] else "s isn't a palindromo")
#Тесты
task_04_func('abba')
task_04_func('abcba')
task_04_func('abcde')
print('\n')
def task_04_f(s): #Способ 2
count = 0
for i in range(len(s) // 2 + 1):
if s[i] != s[len(s) - i - 1]:
count += 1
print('s is a palindromo' if count == 0 else "s isn't a palindromo")
#Тесты
task_04_f('abba')
task_04_f('abcba')
task_04_f('abcdd')
print('\n')
def task_04_function(s): #Способ 3
print('s is a palindromo' if s[:len(s) // 2][::-1] == s[len(s) - (len(s) // 2):] else "s isn't a palindromo")
#Тесты
task_04_function('abba')
task_04_function('abcba')
task_04_function('abcdd')
###Output
s is a palindromo
s is a palindromo
s isn't a palindromo
s is a palindromo
s is a palindromo
s isn't a palindromo
s is a palindromo
s is a palindromo
s isn't a palindromo
###Markdown
__Задание 5 (1 балл):__ Дан текст в виде строки. Напишите функцию, которая возвращает словарь, где ключами являются уникальные слова из этого текста, а значениями - число раз, которое данное слово встретилось в тексте. Считать, что слова разделяются пробелами. Предложите как минимум два различных решения.
###Code
def task_05_func(text): #Способ 1
text = text.lower()
lst = text.split()
d = dict.fromkeys(lst, 1)
for e in d.keys():
for r in lst:
if(e == r):
d[e] += 1
d[e] -= 1
print(d)
#Тесты
task_05_func('В первый день весны')
task_05_func('На краешке Земли')
task_05_func('Я не знаю что это такое если бы я знала что это такое я не знаю что это такое')
print('\n')
def task_05_f(text): #Способ 2, идею подсмотрела тут https://www.cyberforum.ru/python-beginners/thread2587116.html
text = text.lower()
lst = text.split()
s = set(lst)
d ={}
for e in s:
d[e] = lst.count(e)
print(d)
#Тесты
task_05_f('В первый день весны')
task_05_f('На краешке Земли')
task_05_f('Я не знаю что это такое если бы я знала что это такое я не знаю что это такое')
###Output
{'в': 1, 'первый': 1, 'день': 1, 'весны': 1}
{'на': 1, 'краешке': 1, 'земли': 1}
{'я': 3, 'не': 2, 'знаю': 2, 'что': 3, 'это': 3, 'такое': 3, 'если': 1, 'бы': 1, 'знала': 1}
{'весны': 1, 'первый': 1, 'в': 1, 'день': 1}
{'земли': 1, 'краешке': 1, 'на': 1}
{'что': 3, 'знала': 1, 'не': 2, 'я': 3, 'бы': 1, 'если': 1, 'знаю': 2, 'это': 3, 'такое': 3}
###Markdown
__Задание 6 (1 балл):__ Напишите функцию, которая принимает на вход строку и символ и возвращает:- если символ встретился в строке один раз - кортеж (индекс вхождения, None);- если два и более раз - кортеж (индекс первого вхождения, индекс последнего вхождения);- если ни разу - кортеж (None, None).Запрещается делать более одного прохода по каждому элементу строки.
###Code
def task_06_func(s, char): #Код подсмотрела здесь https://ru.stackoverflow.com/questions/779572/Первое-и-последнее-вхождение-без-метода-count-и-циклов
tpl = ([None, None])
a = s.find(char)
b = s.rfind(char)
if a == -1:
print(tpl)
elif a == b:
tpl[0] = a
print(tpl)
else:
tpl[0] = a
tpl[1] = b
print(tpl)
#Тетсы
task_06_func('молоко', 'о')
task_06_func('солнышко', 'а')
task_06_func('ёжик', 'и')
###Output
[1, 5]
[None, None]
[2, None]
###Markdown
__Задание 7 (1 балл):__ Дан список целых чисел. Напишите функцию, которая возвращает копию этого списка, из которой удалены отрицательные числа, а все прочие числа возведены в квадрат. Также возвращаемая последовательность должна быть отсортирована по убыванию. Предложите как минимум три различных решения.
###Code
def task_07_func(lst): #Способ 1
l = []
for e in lst:
if e >= 0:
l.append(e * e)
l.sort(reverse = True)
print(l)
#Тест
task_07_func([2, 5, -1, 7, 8, -4])
def task_07_f(lst): #Способ 2
l = lst.copy()
j = 0
for i, e in enumerate(lst):
if e < 0:
l.remove(e)
else:
l[j] *= l[j]
j += 1
l.sort(reverse = True)
print(l)
#Тест
task_07_f([2, 5, -1, 7, 8, -4])
def task_07_function(lst): #Способ 3
f = filter(lambda x: x >= 0, lst)
m = map(lambda x: x ** 2, f)
l = list(m)
l.sort(reverse = True)
print(l)
#Тест
task_07_function([2, 5, -1, 7, 8, -4])
###Output
[64, 49, 25, 4]
[64, 49, 25, 4]
[64, 49, 25, 4]
###Markdown
__Задание 8 (1 балл):__ Напишите функцию, которая принимает на вход список кортежей одинаковой длины и индекс `index` элемента в кортеже и возвращает генератор, итерирование по которому позволит получит все кортежи входного списка, отсортированные по убыванию элементов этих кортежей с индексом `index`.
###Code
def task_08_func(lst, index):
lst = sorted(lst, key = lambda x: x[index], reverse = True)
for tpl in lst:
yield tpl
#Тесты
for e in task_08_func([(1, 2, 3), (7, 8, 9), (4, 5, 6)], 1):
print(e)
print('\n')
for e in task_08_func([(1, 'A', None), (4, 'X', 7), (7, 'R', 10)], 0):
print(e)
###Output
(7, 8, 9)
(4, 5, 6)
(1, 2, 3)
(7, 'R', 10)
(4, 'X', 7)
(1, 'A', None)
###Markdown
__Задание 9 (1 балл):__ Напишите функцию, которая получает на вход натуральное число `n` и выводит первые `n` строк треугольника Паскаля.
###Code
def current_row(n): #Идею подсмотрела тут https://www.cyberforum.ru/python-beginners/thread2164097.html
row = []
for i in range(n):
if i == 0 or i == n-1:
row.append(1)
else:
c_row = current_row(n-1)
row.append(c_row[i-1] + c_row[i])
return(row)
def task_09_func(n):
for i in range(1, n+1):
print(current_row(i))
task_09_func(5)
###Output
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
###Markdown
__Задание 10 (1 балл):__ Напишите функцию, которая принимает на вход абсолютный путь к директории и две строки с расширениями файлов. В результате её выполнения у всех файлов в указанной директории, имеющих первое расширение, расширение должно измениться на второе. В конце работы функция должна возвращать кортеж из двух элементов:1. сколько всего в директории файлов (именно файлов, не директорий);2. у скольки из них расширение было изменено.Допускается только один проход по каждому файлу из указанной директории.
###Code
import pathlib
from pathlib import Path
import os
def task_10_func(dir_path, prev_extension, next_extension):
t1 = 0
t2 = 0
for r, d, f in os.walk(dir_path):
for e in f:
t1 += 1
if os.path.splitext(e)[1] == prev_extension:
name = os.path.splitext(e)[0]
os.rename(e, name + next_extension)
t2 += 1
return(tuple([t1, t2]))
###Output
_____no_output_____
###Markdown
__Задание 11 (1 балл):__ Описать функцию, которая принимает на вход два списка и возвращает список уникальных элементов, которые есть в первом входном списке и отсутствуют во втором. Запрещается использовать циклы и списковые включения/генераторы списков.
###Code
def task_11_func(first_list, second_list):
A = set(first_list)
B = set(second_list)
A = A - B
print(list(A))
task_11_func(['a', 'b', 'c'], ['a', 'c', 'd'])
print('\n')
task_11_func([1, 1, 3, 5, 6, 10, 5], [1, 10])
###Output
['b']
[3, 5, 6]
###Markdown
__Задание 12 (1 балл):__ Напишите функцию, которая получает на вход путь к файлу, в котором в каждой строке записано одно вещественное число, а также путь к выходному файлу. Функция должна прочитать содержимое файла, игнорировать строки с нечётными индексами, а строки с чётными индексами должна увеличить на минимальное из чисел, содержащихся в этом файле. Полученные числа нужно записать в выходной файл с точностью 5 знаков после запятой.Требуется сделать не более двух проходов по входному файлу, расход памяти на протяжении работы должен быть O(1) (то есть никак не зависеть от числа строк во входном файле).
###Code
import os
import ntpath
def task_12_func(input_path, output_path):
with open(ntpath.basename(input_path), 'r') as f1:
with open(ntpath.basename(output_path), 'a') as f2:
m1 = f1.readlines()
m2 = list(map(lambda x: float(x[:len(x) - 1]), m1))
MIN = min(m2)
for i, e in enumerate(m2):
if i % 2 == 0:
l = e + MIN
f2.write('{:.5f}\n'.format(l))
f2.close()
f1.close()
###Output
_____no_output_____
###Markdown
__Задание 13 (1 балл):__ Написать функцию, которая принимает на вход число `n`, которое может быть либо натуральным, либо -1, и возвращает генератор чисел Фиббоначи. Если входной параметр равен натуральному числу, то генератор должен выдавать последовательно числа Фиббоначи до `n`-го. Если `n` равно -1, то генератор должен быть бесконечным.
###Code
from itertools import count
def task_13_func(n):
f1 = 1
f2 = 1
for i in count(start = 0):
c = f1
f1 = f2
f2 += c
if(i == n):
break
yield c
#Тесты
for e in task_13_func(10):
print(e)
print('\n')
for e in task_13_func(-1):
print(e)
if e == 2584: #Останавливаем бесконечный генератор, например, на таком числе фиббоначи
break
###Output
1
1
2
3
5
8
13
21
34
55
1
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
###Markdown
__Задание 14 (1 балл):__ Написать функцию, которая принимает на вход произвольный объект, проверяет его тип, и для целого числа возвращает список всех магических методов объекта, начинающихся с `__a`, для строк - с `__s`. Для всех прочих типов должен возвращаться список немагических методов. В задании запрещается использовать циклы и списковые включения/генераторы списков.
###Code
def task_14_func(n):
if(type(n) == type(5)):
print(list(filter(lambda x: x[:3] == '__a', dir(n))))
elif(type(n) == type('yuy')):
print(list(filter(lambda x: x[:3] == '__s', dir(n))))
else:
print(list(filter(lambda x: x[:2] != '__', dir(n))))
#Тесты
task_14_func(5)
print(list(dir(5)))
print('\n')
task_14_func('abc')
print(list(dir('abc')))
print('\n')
task_14_func([1, 3, 4, 6])
print(list(dir([1, 3, 4, 6])))
###Output
['__abs__', '__add__', '__and__']
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__gt__', '__hash__', '__index__', '__init__', '__init_subclass__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__', '__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag', 'numerator', 'real', 'to_bytes']
['__setattr__', '__sizeof__', '__str__', '__subclasshook__']
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']
['append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
###Markdown
__Задание 15 (1.5 балла):__ Написать функцию, которая во входной строке заменяет вхождения всех английских заглавных букв на их номер в таблице ASCII, затем производит сплит по минимальной из цифр строки. Предложите как минимум два различных решения, одно из которых не должно использовать циклы. При использовании циклов допускается не более двух проходов по строке.
###Code
#Способ 1
def task_15_func(n):
n1 = ""
m = 10
for e in n:
if ord(e) >= 65 and ord(e) <= 90:
n1 += str(ord(e))
a = ord(e) // 10
b = ord(e) - a * 10
if min(a, b) < m:
m = min(a, b)
else:
n1 += e
if ord(e) >= 48 and ord(e) <= 57 and int(e) < m:
m = int(e)
print(n1) #для тестов
print(n1.split(str(m)))
#Тесты
task_15_func('adsdvrAdcsSdvdAcdcsdEfv')
print('\n')
task_15_func('fvf1svsv1fvadfvGfvdfvCdfs343')
print('\n')
task_15_func('vfkvndfkjvdfk')
print('\n')
task_15_func('vvmslk1mvvlkm5vf')
###Output
adsdvr65dcs83dvd65cdcsd69fv
['adsdvr65dcs8', 'dvd65cdcsd69fv']
fvf1svsv1fvadfv71fvdfv67dfs343
['fvf', 'svsv', 'fvadfv7', 'fvdfv67dfs343']
vfkvndfkjvdfk
['vfkvndfkjvdfk']
vvmslk1mvvlkm5vf
['vvmslk', 'mvvlkm5vf']
###Markdown
__Задание 16 (1.5 балла):__ Написать функцию, которая принимает на вход строку и извлекает из неё мобильные телефонные номера с помощью регулярных выражений. Функция должна поддерживать общепринятые варианты написания номера, как со всевозможными разделителями, так и без них (обеспечьте поддержку не менее 10 различных случаев). Возвращаемым значением функции является список всех найденных в строке номеров, если их не было, нужно вернуть пустой список.
###Code
def task_16_func(n):
...
###Output
_____no_output_____
###Markdown
__Задание 17 (5 баллов):__ Опишем бинарное дерево, представленное в виде вложенных кортежей, в каждом узле дерева хранится вещественное число и ссылка на левое и правое поддерево.Пример: для сбалансированного дерева``` v_0 / \ v_11 v_12 / \ / \v_21 v_22 v_23 v_24```представление в виде кортежей будет выглядеть так:```(v_0, (v_11, (v_21, None, None), (v_22, None, None) ), (v_12, (v_23, None, None), (v_24, None, None) ))```Необходимо написать функцию, которая принимает на вход бинарное дерево (не обязательно сбалансированное), закодированное описанным способом в виде кортежа, производит его обход в глубину и для каждой листовой вершины вычисляет сумму всех значений от корня до неё включительно. Функция ничего не возвращает, вместо этого она выводит получаемые суммы в порядке следования листовых вершин (слева направо).Реализуйте два решения: на основе рекурсии и на основе циклов.
###Code
def task_17_func(n):
...
###Output
_____no_output_____ |
Cross Validation/Heart disease predictor with k-fold cross validation.ipynb | ###Markdown
K-Fold Cross Validation
###Code
from sklearn.model_selection import cross_val_score
#cross validation for model gaussianNB (naive bayes)
cv_score_NB= cross_val_score(model,x,y,cv=10)
#if there is alphabetical value or catagorical value then we have to preprocess the dataset with encoder or vectorizer
cv_score_NB
cv_score_NB.mean()
#cross validation for Random forest classifier
cv_score_RFC= cross_val_score(Rclf,x,y,cv=10)
#if there is alphabetical value or catagorical value then we have to preprocess the dataset with encoder or vectorizer
cv_score_RFC
###Output
_____no_output_____ |
mnist/visualize-clusters-mnist.ipynb | ###Markdown
Load the data.
###Code
import gzip
import numpy as np
import matplotlib.pyplot as plt
def load_data(filename, dims):
with gzip.open(filename, "rb") as infile:
# consume magic number
infile.read(4)
# consume dimensions data
infile.read(4 * len(dims))
return np.frombuffer(infile.read(np.prod(dims)), dtype=np.uint8).reshape(dims)
# training data
train_images = load_data("data/train-images-idx3-ubyte.gz", [60000, 28, 28])
train_labels = load_data("data/train-labels-idx1-ubyte.gz", [60000])
# testing data
test_images = load_data("data/t10k-images-idx3-ubyte.gz", [10000, 28, 28])
test_labels = load_data("data/t10k-labels-idx1-ubyte.gz", [10000])
###Output
_____no_output_____
###Markdown
Process the data for training and testing.
###Code
train_x = train_images.astype(np.float) / 255
train_y = np.zeros((60000, 10))
train_y[np.arange(60000),train_labels] = 1
test_x = test_images.astype(np.float) / 255
test_y = np.zeros((10000, 10))
test_y[np.arange(10000),test_labels] = 1
###Output
_____no_output_____
###Markdown
Create embeddings for the training data.
###Code
import os
import pickle
from umap import UMAP
from sklearn.decomposition import PCA
def create_embeddings(data, ignore_cache=False):
umap_dir = "cache/umap.pickle"
pca_dir = "cache/pca.pickle"
if not os.path.isfile(umap_dir) or ignore_cache:
umap_reducer = UMAP(random_state=42).fit(data)
pickle.dump(umap_reducer, open(umap_dir, "wb"))
else:
umap_reducer = pickle.load(open(umap_dir, "rb"))
if not os.path.isfile(pca_dir) or ignore_cache:
pca_reducer = PCA(n_components=2, random_state=42).fit(data)
pickle.dump(pca_reducer, open(pca_dir, "wb"))
else:
pca_reducer = pickle.load(open(pca_dir, "rb"))
return umap_reducer, pca_reducer
umap_reducer, pca_reducer = create_embeddings(train_x.reshape(-1, 784), ignore_cache=False)
umap_data = umap_reducer.transform(train_x.reshape(-1, 784))
pca_data = pca_reducer.transform(train_x.reshape(-1, 784))
def plot_embeddings():
fig, axes = plt.subplots(1, 2, squeeze=True, figsize=(8,4))
axes[0].scatter(umap_data[:,0], umap_data[:,1], s=1, c=train_labels, cmap='Spectral')
axes[0].set_title("UMAP Embedding")
axes[1].scatter(pca_data[:,0], pca_data[:,1], s=1, c=train_labels, cmap='Spectral')
axes[1].set_title("PCA Embedding")
plt.setp(axes, xticks=[], yticks=[])
plt.tight_layout()
plot_embeddings()
###Output
_____no_output_____
###Markdown
Train the model with random weights.
###Code
import keras
import keras.layers as layers
import keras.models as models
from model import GaussMembership, normalized_product_fn
def plot_cluster_movement(ax, data, init, current):
change = current - init
ax.scatter(data[:,0], data[:,1], s=1, c=train_labels, cmap='Spectral')
s1 = ax.scatter(init[:,0], init[:,1], s=100, c="k", marker="^")
s2 = ax.scatter(current[:,0], current[:,1], s=100, c="r", marker="^")
for i in range(change.shape[0]):
ax.arrow(init[i,0], init[i,1], change[i,0], change[i,1])
ax.legend([s1, s2], ["Before Training", "After Training"])
# create the model
model = keras.Sequential([
layers.Reshape((784,), input_shape=(28,28)),
GaussMembership(10),
layers.Lambda(lambda x: normalized_product_fn(x)),
layers.Dense(10, activation="sigmoid"),])
# set weights randomly
model.layers[1].set_weights((
# multiplying the by the mean is a way to ensure that the centers occupy the same subset of the
# feature space as the input data
np.random.normal(1., 0.1, size=(10,784)) * np.mean(train_x.reshape(-1, 784), axis=0, keepdims=True),
np.random.normal(1., 0.1, size=(10,784))))
model.compile(
optimizer="adam",
loss="binary_crossentropy",
metrics=[keras.metrics.categorical_accuracy])
init_mu, init_sigma = model.layers[1].get_weights()
# train the model
history = model.fit(
x=train_x,
y=train_y,
batch_size=64,
epochs=50,
validation_data=(test_x, test_y),
verbose=1,
shuffle=True)
final_mu, final_sigma = model.layers[1].get_weights()
# plot the cluster movement
fig, axes = plt.subplots(1, 2, squeeze=True, figsize=(8,4))
axes[0].set_title("Cluster Movement (UMAP)")
plot_cluster_movement(
axes[0], umap_data,
umap_reducer.transform(init_mu),
umap_reducer.transform(final_mu))
axes[1].set_title("Cluster Movement (PCA)")
plot_cluster_movement(
axes[1], pca_data,
pca_reducer.transform(init_mu),
pca_reducer.transform(final_mu))
# plot the loss and accuracy
fig, axes = plt.subplots(1, 2, figsize=(8, 4), squeeze=True)
axes[0].set_title("Loss")
axes[0].plot(history.history["loss"], c="b")
axes[0].plot(history.history["val_loss"], c="r")
axes[1].set_title("Accuracy")
#axes[1].set_ylim((0.8, 1))
axes[1].plot(history.history["categorical_accuracy"], c="b")
axes[1].plot(history.history["val_categorical_accuracy"], c="r")
###Output
Using TensorFlow backend.
WARNING: Logging before flag parsing goes to stderr.
W0214 10:31:57.238629 140593226557248 deprecation.py:323] From /home/ryan-desktop/anaconda3/envs/keras/lib/python3.7/site-packages/tensorflow/python/ops/math_grad.py:102: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
###Markdown
The clusters still do not seem to occupy logical locations. We will create images from the mu and sigma parameters to try and figure out why this is.
###Code
fig, axes = plt.subplots(2, 10, figsize=(16,3))
for i in range(10):
axes[0][i].imshow(final_mu[i,:].reshape(28, 28), cmap="Greys", interpolation="none")
axes[1][i].imshow(final_sigma[i,:].reshape(28, 28), cmap="Greys", interpolation="none")
plt.setp(axes, xticks=[], yticks=[], frame_on=False)
plt.tight_layout(h_pad=0, w_pad=0)
###Output
_____no_output_____
###Markdown
The images above offer some insight as to why the centers learned by the network do not make sense. The mu plots (on the top row) show that the the centers learned hardly resemble handwritten digits. This means gives some insight to why they appear in weird locations on the 2D embeddings. UMAP learns a 2D manifold close to the data in the original feature space and then uses the manifold to project the data to 2D. Since these centers do not resemble the original data, it is likely that they are not near this manifold and UMAP maps them to locations that are not near the original digits.I believe something similar is occuring with PCA, where the clusters exist outside of the subset of space where the original data exists meaning PCA cannot meaningfully transform them.
###Code
import skfuzzy as skf
# create the model
model = keras.Sequential([
layers.Reshape((784,), input_shape=(28,28)),
GaussMembership(10),
layers.Lambda(lambda x: normalized_product_fn(x)),
layers.Dense(10, activation="sigmoid"),])
init_mu, memberships, u0, d, jm, p, fpc = skf.cmeans(
train_x.reshape(-1, 784).T, 10, 1.1, 1e-8, 1000, seed=0)
# set weights with fcm
model.layers[1].set_weights((
init_mu,
np.random.normal(1., 0.1, size=(10,784))))
model.compile(
optimizer="adam",
loss="binary_crossentropy",
metrics=[keras.metrics.categorical_accuracy])
init_mu, init_sigma = model.layers[1].get_weights()
# train the model
history = model.fit(
x=train_x,
y=train_y,
batch_size=64,
epochs=50,
validation_data=(test_x, test_y),
verbose=1,
shuffle=True)
final_mu, final_sigma = model.layers[1].get_weights()
# plot the cluster movement
fig, axes = plt.subplots(1, 2, squeeze=True, figsize=(8,4))
axes[0].set_title("Cluster Movement (UMAP)")
plot_cluster_movement(
axes[0], umap_data,
umap_reducer.transform(init_mu),
umap_reducer.transform(final_mu))
axes[1].set_title("Cluster Movement (PCA)")
plot_cluster_movement(
axes[1], pca_data,
pca_reducer.transform(init_mu),
pca_reducer.transform(final_mu))
# plot the loss and accuracy
fig, axes = plt.subplots(1, 2, figsize=(8, 4), squeeze=True)
axes[0].set_title("Loss")
axes[0].plot(history.history["loss"], c="b")
axes[0].plot(history.history["val_loss"], c="r")
axes[1].set_title("Accuracy")
#axes[1].set_ylim((0.8, 1))
axes[1].plot(history.history["categorical_accuracy"], c="b")
axes[1].plot(history.history["val_categorical_accuracy"], c="r")
###Output
Train on 60000 samples, validate on 10000 samples
Epoch 1/50
60000/60000 [==============================] - 3s 51us/step - loss: 0.4163 - categorical_accuracy: 0.1536 - val_loss: 0.3099 - val_categorical_accuracy: 0.2886
Epoch 2/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.2594 - categorical_accuracy: 0.5189 - val_loss: 0.2258 - val_categorical_accuracy: 0.6185
Epoch 3/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.2052 - categorical_accuracy: 0.6794 - val_loss: 0.1881 - val_categorical_accuracy: 0.7264
Epoch 4/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.1745 - categorical_accuracy: 0.7412 - val_loss: 0.1632 - val_categorical_accuracy: 0.7651
Epoch 5/50
60000/60000 [==============================] - 3s 47us/step - loss: 0.1537 - categorical_accuracy: 0.7720 - val_loss: 0.1454 - val_categorical_accuracy: 0.7927
Epoch 6/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.1388 - categorical_accuracy: 0.8005 - val_loss: 0.1338 - val_categorical_accuracy: 0.8126
Epoch 7/50
60000/60000 [==============================] - 3s 49us/step - loss: 0.1265 - categorical_accuracy: 0.8259 - val_loss: 0.1210 - val_categorical_accuracy: 0.8461
Epoch 8/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.1155 - categorical_accuracy: 0.8513 - val_loss: 0.1109 - val_categorical_accuracy: 0.8582
Epoch 9/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.1061 - categorical_accuracy: 0.8632 - val_loss: 0.1030 - val_categorical_accuracy: 0.8737
Epoch 10/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.0994 - categorical_accuracy: 0.8731 - val_loss: 0.0980 - val_categorical_accuracy: 0.8786
Epoch 11/50
60000/60000 [==============================] - 3s 49us/step - loss: 0.0945 - categorical_accuracy: 0.8799 - val_loss: 0.0934 - val_categorical_accuracy: 0.8831
Epoch 12/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.0906 - categorical_accuracy: 0.8857 - val_loss: 0.0907 - val_categorical_accuracy: 0.8853
Epoch 13/50
60000/60000 [==============================] - 3s 47us/step - loss: 0.0873 - categorical_accuracy: 0.8894 - val_loss: 0.0873 - val_categorical_accuracy: 0.8904
Epoch 14/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.0845 - categorical_accuracy: 0.8934 - val_loss: 0.0854 - val_categorical_accuracy: 0.8928
Epoch 15/50
60000/60000 [==============================] - 3s 49us/step - loss: 0.0819 - categorical_accuracy: 0.8962 - val_loss: 0.0831 - val_categorical_accuracy: 0.8946
Epoch 16/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.0791 - categorical_accuracy: 0.8991 - val_loss: 0.0792 - val_categorical_accuracy: 0.8956
Epoch 17/50
60000/60000 [==============================] - 3s 50us/step - loss: 0.0747 - categorical_accuracy: 0.9031 - val_loss: 0.0750 - val_categorical_accuracy: 0.9039
Epoch 18/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.0713 - categorical_accuracy: 0.9089 - val_loss: 0.0721 - val_categorical_accuracy: 0.9090
Epoch 19/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.0685 - categorical_accuracy: 0.9127 - val_loss: 0.0707 - val_categorical_accuracy: 0.9126
Epoch 20/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0661 - categorical_accuracy: 0.9151 - val_loss: 0.0674 - val_categorical_accuracy: 0.9136
Epoch 21/50
60000/60000 [==============================] - 3s 47us/step - loss: 0.0638 - categorical_accuracy: 0.9179 - val_loss: 0.0668 - val_categorical_accuracy: 0.9146
Epoch 22/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0621 - categorical_accuracy: 0.9193 - val_loss: 0.0647 - val_categorical_accuracy: 0.9154
Epoch 23/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0602 - categorical_accuracy: 0.9221 - val_loss: 0.0640 - val_categorical_accuracy: 0.9185
Epoch 24/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0588 - categorical_accuracy: 0.9238 - val_loss: 0.0633 - val_categorical_accuracy: 0.9191
Epoch 25/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0571 - categorical_accuracy: 0.9257 - val_loss: 0.0614 - val_categorical_accuracy: 0.9208
Epoch 26/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0552 - categorical_accuracy: 0.9290 - val_loss: 0.0598 - val_categorical_accuracy: 0.9205
Epoch 27/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0533 - categorical_accuracy: 0.9296 - val_loss: 0.0584 - val_categorical_accuracy: 0.9243
Epoch 28/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0520 - categorical_accuracy: 0.9312 - val_loss: 0.0584 - val_categorical_accuracy: 0.9220
Epoch 29/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0507 - categorical_accuracy: 0.9329 - val_loss: 0.0569 - val_categorical_accuracy: 0.9247
Epoch 30/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0495 - categorical_accuracy: 0.9344 - val_loss: 0.0560 - val_categorical_accuracy: 0.9235
Epoch 31/50
60000/60000 [==============================] - 3s 47us/step - loss: 0.0485 - categorical_accuracy: 0.9350 - val_loss: 0.0554 - val_categorical_accuracy: 0.9265
Epoch 32/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0476 - categorical_accuracy: 0.9358 - val_loss: 0.0555 - val_categorical_accuracy: 0.9224
Epoch 33/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0467 - categorical_accuracy: 0.9377 - val_loss: 0.0548 - val_categorical_accuracy: 0.9236
Epoch 34/50
60000/60000 [==============================] - 3s 46us/step - loss: 0.0458 - categorical_accuracy: 0.9376 - val_loss: 0.0529 - val_categorical_accuracy: 0.9252
Epoch 35/50
60000/60000 [==============================] - 3s 47us/step - loss: 0.0450 - categorical_accuracy: 0.9391 - val_loss: 0.0520 - val_categorical_accuracy: 0.9293
Epoch 36/50
60000/60000 [==============================] - 3s 51us/step - loss: 0.0447 - categorical_accuracy: 0.9393 - val_loss: 0.0528 - val_categorical_accuracy: 0.9249
Epoch 37/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.0437 - categorical_accuracy: 0.9410 - val_loss: 0.0522 - val_categorical_accuracy: 0.9291
Epoch 38/50
60000/60000 [==============================] - 3s 51us/step - loss: 0.0433 - categorical_accuracy: 0.9412 - val_loss: 0.0523 - val_categorical_accuracy: 0.9278
Epoch 39/50
60000/60000 [==============================] - 3s 49us/step - loss: 0.0428 - categorical_accuracy: 0.9420 - val_loss: 0.0512 - val_categorical_accuracy: 0.9301
Epoch 40/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.0422 - categorical_accuracy: 0.9419 - val_loss: 0.0521 - val_categorical_accuracy: 0.9270
Epoch 41/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.0420 - categorical_accuracy: 0.9422 - val_loss: 0.0511 - val_categorical_accuracy: 0.9299
Epoch 42/50
60000/60000 [==============================] - 3s 47us/step - loss: 0.0414 - categorical_accuracy: 0.9434 - val_loss: 0.0509 - val_categorical_accuracy: 0.9313
Epoch 43/50
60000/60000 [==============================] - 3s 47us/step - loss: 0.0410 - categorical_accuracy: 0.9435 - val_loss: 0.0504 - val_categorical_accuracy: 0.9292
Epoch 44/50
60000/60000 [==============================] - 3s 49us/step - loss: 0.0407 - categorical_accuracy: 0.9451 - val_loss: 0.0501 - val_categorical_accuracy: 0.9312
Epoch 45/50
60000/60000 [==============================] - 3s 47us/step - loss: 0.0403 - categorical_accuracy: 0.9446 - val_loss: 0.0496 - val_categorical_accuracy: 0.9307
Epoch 46/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.0402 - categorical_accuracy: 0.9442 - val_loss: 0.0496 - val_categorical_accuracy: 0.9307
Epoch 47/50
60000/60000 [==============================] - 3s 47us/step - loss: 0.0397 - categorical_accuracy: 0.9451 - val_loss: 0.0495 - val_categorical_accuracy: 0.9312
Epoch 48/50
60000/60000 [==============================] - 3s 48us/step - loss: 0.0394 - categorical_accuracy: 0.9458 - val_loss: 0.0491 - val_categorical_accuracy: 0.9316
Epoch 49/50
60000/60000 [==============================] - 3s 50us/step - loss: 0.0391 - categorical_accuracy: 0.9466 - val_loss: 0.0486 - val_categorical_accuracy: 0.9308
Epoch 50/50
60000/60000 [==============================] - 3s 50us/step - loss: 0.0388 - categorical_accuracy: 0.9469 - val_loss: 0.0504 - val_categorical_accuracy: 0.9292
###Markdown
Here, the clusters start in locations that appear correct. However, as the model learns the clusters move away from the seemingly correct locations. I would assume this is because the centers found by FCM are near the UMAP manifold, but move away during training.
###Code
fig, axes = plt.subplots(2, 10, figsize=(16,3))
for i in range(10):
axes[0][i].imshow(final_mu[i,:].reshape(28, 28), cmap="Greys", interpolation="none")
axes[1][i].imshow(final_sigma[i,:].reshape(28, 28), cmap="Greys", interpolation="none")
plt.setp(axes, xticks=[], yticks=[], frame_on=False)
plt.tight_layout(h_pad=0, w_pad=0)
###Output
_____no_output_____
###Markdown
Of all the rules, the only one that resembles a digit is the rule for 0. The rest look random. This section was suppose to use gradient descent to train the input images to maximize each output. This would let us see what the network thinks is most important for each digit. Unfortunately, it is very inconsistent and rarely converges to the desired result (the network classifies it as something other than what the target was).
###Code
# from keras import backend as K
# prediction = 1
# while prediction != 0:
# image = np.random.normal(0.5, 0.1, size=(1,28,28))
# # train the image to classifier as 0
# target = np.zeros((1,10))
# target[:,0] = 1
# # loss and gradients
# loss = -K.sum(target * K.log(model.output) + (1 - target) * K.log(1 - model.output))
# grads = K.gradients(loss, model.inputs)
# grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-8)
# iterate = K.function(model.inputs, [loss, grads])
# for i in range(20):
# loss_val, grads_val = iterate([image])
# image -= grads_val.reshape(1,28,28)
###Output
_____no_output_____ |
Recommendation Systems/Recommendation System - Books.ipynb | ###Markdown
Book Recommendation System
###Code
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import warnings
from keras.layers import Input, Embedding, Flatten, Dot, Dense
from keras.models import Model
%matplotlib inline
dataset = pd.read_csv('D:/Personal/Practice Projects/Recommendation System/goodbooks/goodbooks-10k/ratings.csv')
dataset.head()
dataset.shape
from sklearn.model_selection import train_test_split
train, test = train_test_split(dataset, test_size=0.2, random_state=42)
train.head()
test.head()
n_users = len(dataset.user_id.unique())
n_users
n_books = len(dataset.book_id.unique())
n_books
book_input = Input(shape=[1], name="Book-Input")
book_embedding = Embedding(n_books+1, 5, name="Book-Embedding")(book_input)
book_vec = Flatten(name="Flatten-Books")(book_embedding)
user_input = Input(shape=[1], name="User-Input")
user_embedding = Embedding(n_users+1, 5, name="User-Embedding")(user_input)
user_vec = Flatten(name="Flatten-Users")(user_embedding)
prod = Dot(name="Dot-Product", axes=1)([book_vec, user_vec])
model = Model([user_input, book_input], prod)
model.compile('adam', 'mean_squared_error')
from keras.models import load_model
if os.path.exists('regression_model.h5'):
model = load_model('regression_model.h5')
else:
history = model.fit([train.user_id, train.book_id], train.rating, epochs=5, verbose=1)
model.save('regression_model.h5')
plt.plot(history.history['loss'])
plt.xlabel("Epochs")
plt.ylabel("Training Error")
model.evaluate([test.user_id, test.book_id], test.rating)
predictions = model.predict([test.user_id.head(10), test.book_id.head(10)])
[print(predictions[i], test.rating.iloc[i]) for i in range(0,10)]
###Output
[4.697358] 5
[3.7322755] 4
[3.161058] 3
[4.2724395] 5
[3.0228083] 3
[4.424722] 3
[3.9317112] 3
[4.8768115] 4
[3.9131103] 3
[4.5833607] 5
###Markdown
Visualizing Embeddings
###Code
# Extract embeddings
book_em = model.get_layer('Book-Embedding')
book_em_weights = book_em.get_weights()[0]
book_em_weights[:5]
from sklearn.decomposition import PCA
import seaborn as sns
pca = PCA(n_components=2)
pca_result = pca.fit_transform(book_em_weights)
sns.scatterplot(x=pca_result[:,0], y=pca_result[:,1])
book_em_weights = book_em_weights / np.linalg.norm(book_em_weights, axis = 1).reshape((-1, 1))
book_em_weights[0][:10]
np.sum(np.square(book_em_weights[0]))
pca = PCA(n_components=2)
pca_result = pca.fit_transform(book_em_weights)
sns.scatterplot(x=pca_result[:,0], y=pca_result[:,1])
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=300)
tnse_results = tsne.fit_transform(book_em_weights)
sns.scatterplot(x=tnse_results[:,0], y=tnse_results[:,1])
###Output
_____no_output_____
###Markdown
Making Recommendations
###Code
# Creating dataset for making recommendations for the first user
book_data = np.array(list(set(dataset.book_id)))
book_data[:5]
user = np.array([1 for i in range(len(book_data))])
user[:5]
predictions = model.predict([user, book_data])
predictions = np.array([a[0] for a in predictions])
recommended_book_ids = (-predictions).argsort()[:5]
recommended_book_ids
# print predicted scores
predictions[recommended_book_ids]
books = pd.read_csv('D:/Personal/Practice Projects/Recommendation System/goodbooks/goodbooks-10k/books.csv')
books.head()
books[books['id'].isin(recommended_book_ids)]
###Output
_____no_output_____ |
notebooks/API DEVLOPMENT - FLASK.ipynb | ###Markdown
FLASK API DEVLOPMENT
###Code
import os
## write the sample program to script file
hello_world_api_script_file = os.path.join(os.path.pardir, 'src', 'models', 'hello_world_api.py')
%%writefile $hello_world_api_script_file
from flask import Flask, request
app = Flask(__name__)
@app.route('/api',methods=['POST'])
def say_hello():
data = request.get_json(force=True)
name = data['name']
return "hello {0}".format(name)
if __name__ == '__main__':
app.run(host = '0.0.0.0', port = 10001, debug=False)
###Output
Overwriting ..\src\models\hello_world_api.py
###Markdown
Call the API
###Code
import json
import requests
url = 'http://127.0.0.1:10001/api'
data = json.dumps({'name': 'vipin'})
r = requests.post(url, data)
##response
r.text
###Output
_____no_output_____ |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.