path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
notebook/PXC8-25GB-042020.ipynb
###Markdown Percona XtraDB Cluster 8.0 in IO bound workloadPercona XtraDB Cluster 8.0 is on the final stretch before GA release, and we have pre-release packages available for testing: https://www.percona.com/blog/2020/03/19/help-drive-the-future-of-percona-xtradb-cluster/I want to see how Percona XtraDB Cluster 8.0 performs in CPU and IO-bound scenarios , like in my previous posts about MySQL Group Replication:https://docs.google.com/document/d/1vHYl8GaMnYeXsJWvg_k9FH1NmznxH9N4vY8HOcubfa4/editIn this blog I want to evaluate Percona XtraDB Cluster 8.0 Scaling capabilities in both cases when we increase the amount of nodes and increase user connections. The version I used is Percona-XtraDB-Cluster-8.0.18 available from https://www.percona.com/downloads/Percona-XtraDB-Cluster-80/Percona-XtraDB-Cluster-8.0.18-9.1.rc/binary/tarball/Percona-XtraDB-Cluster_8.0.18.9_Linux.x86_64.bionic.tar.gzFor this testing I deploy multi node bare metal servers, where each node and client are dedicated to an individual server and connected between themselves by 10Gb networkAlso I will use 3-nodes and 5-nodes Percona XtraDB Cluster setup. Hardware specifications:```System | Supermicro; SYS-F619P2-RTN; v0123456789 (Other) Platform | Linux Release | Ubuntu 18.04.4 LTS (bionic) Kernel | 5.3.0-42-genericArchitecture | CPU = 64-bit, OS = 64-bit Threading | NPTL 2.27 SELinux | No SELinux detectedVirtualized | No virtualization detected Processor Processors | physical = 2, cores = 40, virtual = 80, hyperthreading = yes Models | 80xIntel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz Caches | 80x28160 KB Memory Total | 187.6G```For the benchmark I use sysbench-tpcc 1000W, prepared database as```./tpcc.lua --mysql-host=172.16.0.11 --mysql-user=sbtest --mysql-password=sbtest --mysql-db=sbtest --time=300 --threads=64 --report-interval=1 --tables=10 --scale=100 --db-driver=mysql --use_fk=0 --force_pk=1 --trx_level=RC prepare```The configs, scripts and raw results are available on our github: https://github.com/Percona-Lab-results/PXC-8-March2020Workload is “IO bound”, that is data (about 100GB) does not fit into innodb_buffer_pool (25GB) and there are intensive read/write IO operations ###Code library(IRdisplay) display_html( '<script> code_show=false; function code_toggle() { if (code_show){ $(\'div.input\').hide(); } else { $(\'div.input\').show(); } code_show = !code_show } $( document ).ready(code_toggle); </script> <form action="javascript:code_toggle()"> <input type="submit" value="Click here to toggle on/off the raw code."> </form>' ) library (RCurl) library(ggplot2) library(repr) loadd <- function (cluster,nodes) { threads <- c(1,2,4,8,16,64,128,256) res = data.frame() for (val in threads) { urldown=paste0("https://raw.githubusercontent.com/Percona-Lab-results/PXC-8-March2020/master/res-tpcc-",cluster,"-",nodes,"nodes-1writer-BP25G-1","/res_thr",val,".txt") download <- getURL(urldown) dl<-strsplit(download, split='\n') data <- read.csv (text = grep("^[0-9]", dl[[1]], value = TRUE), header=F) data$threads=val data$nodes=nodes data$cluster=cluster if(nrow(res)<1){ res<-data }else{ res<-rbind(data,res) } } return(res) } r1 <- loadd("GR8","3") r2 <- loadd("GR8","5") r3 <- loadd("PXC8","3") r4 <- loadd("PXC8","5") results<-rbind(r1,r2,r3,r4) theme_set(theme_light()) theme_replace(axis.text.x=element_text(size = rel(2))) theme_replace(axis.text.y=element_text(size = rel(2))) theme_replace(axis.title.x=element_text(size = rel(1.5))) theme_replace(axis.title.y=element_text(size = rel(1.5), angle = 90)) theme_replace(legend.title=element_text(size = rel(1.5))) theme_replace(legend.text=element_text(size = rel(1.5))) theme_replace(plot.title=element_text(size = rel(2))) theme_replace(strip.text.x=element_text(size = rel(2))) theme_replace(strip.text.y=element_text(size = rel(2))) ###Output _____no_output_____ ###Markdown ResultsLet’s review the results I’ve got. 3 nodesFirst, let’s take a look at how performance changes when we increase user threads from 1 to 256 for 3 nodes. ###Code m <- ggplot(data = subset(results,cluster=="PXC8" & V1>900 & nodes==3), aes(x=as.factor(threads), y=V3, color=as.factor(nodes))) options(repr.plot.width=18, repr.plot.height=10) m + geom_boxplot()+ ylab("Throughput, tps (more is better)")+ xlab("Threads")+ scale_colour_discrete(name="Nodes") ###Output _____no_output_____ ###Markdown Percona XtraDB Cluster 3 nodes - Individual scalesTo see the density of the results it in more details, let’s draw the chart with the individual scales for each set of threads: ###Code m <- ggplot(data = subset(results,cluster=="PXC8" & V1>900 & nodes==3), aes(x=as.factor(threads), y=V3, color=as.factor(nodes))) options(repr.plot.width=18, repr.plot.height=10) m + geom_boxplot()+ ylab("Throughput, tps (more is better)")+ xlab("Threads")+ scale_colour_discrete(name="Nodes")+facet_wrap( ~ threads,scales="free")+expand_limits(y=0) ###Output _____no_output_____ ###Markdown Percona XtraDB Cluster 3 nodes, timeline for 64 threads ###Code m <- ggplot(data = subset(results,cluster=="PXC8" & V1>900 & nodes==3 & threads==64), aes(x=V1, y=V3)) options(repr.plot.width=18, repr.plot.height=10) m + geom_line(size=1)+geom_point(size=2)+ ylab("Throughput, tps (more is better)")+ xlab("----------- time, sec -------->")+ labs(title="Timeline, throughput variation, 1 sec resolution, 64 threads")+ expand_limits(y=0) ###Output _____no_output_____ ###Markdown 3 nodes vs 5 nodesNow let’s the performance under 5 nodes (comparing to 3 nodes) ###Code m <- ggplot(data = subset(results,cluster=="PXC8" & V1>900), aes(x=as.factor(threads), y=V3, color=as.factor(nodes))) options(repr.plot.width=18, repr.plot.height=10) m + geom_boxplot()+ ylab("Throughput, tps (more is better)")+ xlab("Threads")+ scale_colour_discrete(name="Nodes")+facet_wrap( ~ threads,scales="free")+expand_limits(y=0) ###Output _____no_output_____ ###Markdown Percona XtraDB Cluster 3 nodes, timeline for 64 threads3 nodes vs 5 nodes ###Code m <- ggplot(data = subset(results,cluster=="PXC8" & V1>900 & threads==64), aes(x=V1, y=V3,color=as.factor(nodes))) options(repr.plot.width=18, repr.plot.height=10) m + geom_line(size=1)+geom_point(size=2)+ ylab("Throughput, tps (more is better)")+ xlab("----------- time, sec -------->")+ labs(title="Timeline, throughput variation, 1 sec resolution, 64 threads")+ expand_limits(y=0)+ scale_colour_discrete(name="Nodes") ###Output _____no_output_____ ###Markdown Percona XtraDB Cluster vs Group ReplicationNow as we have both results for Percona XtraDB Cluster and Group Replication, we can compare how they perform under identical workloads. In this case we compare 3 nodes setup: ###Code m <- ggplot(data = subset(results,nodes=="3" & V1>900), aes(x=as.factor(threads), y=V3, color=as.factor(cluster))) options(repr.plot.width=18, repr.plot.height=10) m + geom_boxplot()+ ylab("Throughput, tps (more is better)")+ xlab("Threads")+ scale_colour_discrete(name="Nodes")+facet_wrap( ~ threads,scales="free")+expand_limits(y=0) cv <- function(x, na.rm = FALSE) { sd(x, na.rm = na.rm)/mean(x, na.rm = na.rm) } vars<-ddply(subset(results, (V1>900)), .(threads,cluster,nodes), function(Df) c(x1 = cv(Df$V3) ) ) ###Output _____no_output_____ ###Markdown We can see that Percona XtraDB Cluster consistently shows better average throughput, with much less variance compared to Group Replication. Cofficient of variationLet's calculate a cofficient of variation for both Percona XtraDB Cluster and Group Replication, for 3 nodes and 5 nodes setupshttps://en.wikipedia.org/wiki/Coefficient_of_variationI want to use cofficient of variation instead of standard devation, because standard deviation operates in absolute values and it is hard to compare standard deviation between 1 and 128 threads.Cofficient of variation shows variation in percentage (standard deviation relative to average value) - the smaller value will correspond to less variance, and less variance is better ###Code ggplot(data=vars, aes(x=as.factor(threads), y=x1*100, fill=as.factor(cluster) ) ) + geom_bar(stat="identity", position=position_dodge(), colour="black")+ geom_text(aes(label = format(x1*100, digits=2, nsmall=2)), color="black", size = 6, vjust=1.1, position=position_dodge(width = 1))+ facet_grid(nodes~.,scales="free")+ ylab("Coefficient of variation, %, less is better")+ xlab("Threads")+ scale_fill_discrete(name="Cluster") ###Output _____no_output_____
Section 2/2.4.ipynb
###Markdown To understand the utility of kernel PCA, particularly for clustering, observe that, while N points cannot in general be linearly separated in d=N dimensions. Kernel PCA has been demonstrated to be useful for novelty detection and image de-noising.KPCA reduces dimensions while also making the data linearly separable. PCA only reduces dimensionssource: https://en.wikipedia.org/wiki/Kernel_principal_component_analysis ###Code data.shape time_start = time.time() kpca = KernelPCA(kernel="poly", n_components=2) kpca_data = data.head(5000) kpca_result = kpca.fit_transform(kpca_data) print('KPCA done! Time elapsed: {} seconds'.format(time.time()-time_start)) kpca_data['kpca-one'] = kpca_result[:,0] kpca_data['kpca-two'] = kpca_result[:,1] plt.figure(figsize=(16,10)) sns.scatterplot( x="kpca-one", y="kpca-two", palette=sns.color_palette("hls", 10), data=kpca_data, legend="full", alpha=0.3 ) ###Output _____no_output_____
activity_2.ipynb
###Markdown Introduction to Python for Data ScienceActivity 2: Intro to Data VisualisationMaterials made by Jeffrey Lo, for the Python Workshop on 12 September, 2018.In this section, we will introduce Pandas and Seaborn, which builds on top of NumPy and Matplotlib, respectively. We will use a practical approach by using a real dataset from Kaggle (a data science competition platform). I have simplified and cleaned the dataset included in the ZIP folder, originally downloaded from Kaggle, for the purpose of this introductory workshop. Bike Sharing DatasetMore info here: https://www.kaggle.com/marklvl/bike-sharing-dataset/homeThis dataset contains the daily count of rental bikes between years 2011 and 2012 in Capital bikeshare system in Washington, DC with the corresponding weather and seasonal information. Importing Modules/PackagesRecall from activity 1 that we need to import our extra modules and packages first.We will use NumPy, Pandas, Matplotlib and Seaborn. The last line is a technicality, telling Python to show the graphs in-line. ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline ###Output _____no_output_____ ###Markdown PandasWe will start by using some of the functionalities of Pandas. You can think of Pandas as one that gives some functionalities of Excel. Importing data`pd.read_csv` will read the CSV file and store the dataset in the variable we named `data`. The file has to be in the same directory (folder) as this notebook, otherwise you can use subdirectories and so on.N.b If it's an Excel file, you can use `pd.read_excel`. ###Code data = pd.read_csv("bike_sharing_data_by_day_simplified.csv") ###Output _____no_output_____ ###Markdown Getting to know your dataset Below, it is clear that Pandas dataframe resembles Excel worksheet, except you cannot edit them (you would need to do this via coding).We call `.head()` to show the first 5 rows. ###Code data.head() ###Output _____no_output_____ ###Markdown **Activities:**- You can use `.tail()` to show the last 5 rows.- You can specify the number of rows to display by inputting a parameter e.g. `.head(12)`. You can also call `data.shape` to output the number of rows and columns, respectively.N.b. in machine learning, rows are called instances and columns are called features. ###Code data.shape #number of rows, columns ###Output _____no_output_____ ###Markdown Descriptive StatisticsDescriptive statistics provide simple but useful summaries about the data. In practice, it is essentially not possible to look at every single data row. It is mainly used in exploratory data analysis (EDA) in the data science process.You can start by looking at the number of data in each column - that will indicate whether or not there are missing data. In this dataset, we know that there are 731 rows and every column has 731 fields, thus there is no missing data.We can also use descriptive statistics to look for outliers and distribution of the data (min, 25%, median, 75%, max). But is there a better way to look for outliers than looking at this table? ###Code data.describe().round(1) ###Output _____no_output_____ ###Markdown DistributionWith most statistical analysis, another way to get to know your data is to visually look at the distribution of data. For simplicity, we will just look at the response variable (in this case `total_count`, or daily count of bike riders). The below plot agrees with the descriptive statistics of `total_count` (above) - the minimum is ~0, mean is ~4500, max is around ~8000+. ###Code sns.distplot(data['total_count'], kde=None) plt.show() ###Output _____no_output_____ ###Markdown **Activity:**- Try showing the distribution of casual riders over 2011-12. Time Series Plot (Matplotlib)For this particular dataset which is time-series based, clearly we should start by looking at the general trend of the number of bike shares over 2011-12. We can use the `.plot` function to plot the data from a column, if the data is time series. ###Code plt.plot(data['total_count']) plt.show() ###Output _____no_output_____ ###Markdown **Activities:**- Oftentimes it is best practice to label your graph, by calling `.title`, `.xlabel`, `.ylabel` functions from Matplotlib. Try adding this line: `plt.title("Time Series Plot of Daily Bike Riders")`- We can add `fig = plt.figure(figsize=(8,4))` to store the figure and change the figure size and any other parameters from the documentation [here](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.figure.html).- For aesthetics purposes, it is common to remove the top and right axes by adding a new line `sns.despine()`. Seaborn - More VisualisationsThere are many types of plots available, you can see from [Seaborn's Example gallery](https://seaborn.pydata.org/examples/index.html). Here are just some of them:- Barcharts (`sns.barplot`)- Boxplots (`sns.boxplot`)- Distribution plots (`sns.distplot`)- Regression plots (`sns.regplot`)- ... even Violin plots (`sns.violinplot`) Barplots ###Code fig = plt.figure(figsize=(8,4)) sns.barplot(data=data, x='month', y='total_count') plt.title("Average Daily Bike Shares (by Month)") plt.show() ###Output _____no_output_____ ###Markdown **Activities:**- There are many parameters for each function... simply Google `sns.barplot` for Seaborn documentation. Open the [parameter list for barplots](https://seaborn.pydata.org/generated/seaborn.barplot.html)- When the parameters are not specified, all the possible parameters (set by Seaborn) is set to default or none.- For barplots (and some other ones), one useful parameter is `hue` where you can specify an additional feature to be included in addition to `x` and `y`. Try adding `hue='year'` within `sns.barplot()`- The black vertical lines are the confidence intervals. We probably don't need it here, you can turn it off by adding `ci=None` within `sns.barplot()`. Boxplots and moreWhat if you want to visaulise the total bike shares against weekday? Would a barchart (barplot) work well here... or not? Try changing the code above and see!If we use a barplot, we can find only find the average daily bike shares by day of week. That is, it is essentially just 7 numbers plotted on a graph.Boxplots do more than that... they show the distribution, or variability of the data corresponding to each weekday as below. You can see that Wednesdays has a lower variability than other days, such as Thursdays and Sundays. ###Code fig = plt.figure(figsize=(8,4)) sns.boxplot(data=data, x='weekday', y='total_count') plt.title("Daily Bike Shares (by Weekday)") plt.show() ###Output _____no_output_____ ###Markdown **Activities:**- Again, you can check what other parameters you can use.... here is the [documentation for boxplots](https://seaborn.pydata.org/generated/seaborn.boxplot.html)- For boxplots, the middle horizontal line is the 50% quartile, not the mean. Thus, it is useful to show the mean by adding a new parameter `showmeans=True`.- What happens when you change from `sns.boxplot` to `sns.swarmplot`... what extra information does this show? What about `sns.violinplot`?- Try plotting weather against total_count, by replacing `weekday` with `weather` in the code above. Regression and ScatterplotsYou may recall from intro stats about regression plots, which is basically a scatterplot with a line of best fit (for simple linear regression). Seaborn can handle this as well! ###Code fig = plt.figure(figsize=(8,4)) sns.regplot(data=data, x='temperature', y='total_count') sns.despine() plt.title("Temperature vs Daily Bike Shares (2011-12)") ###Output _____no_output_____
cwpk-52-interactive-web-widgets-2.ipynb
###Markdown CWPK \52: Distributed Interactions via Web Widgets - II =======================================A Design for a Working Ecosystem of Existing Applications--------------------------In our last installment of the [*Cooking with Python and KBpedia*](https://www.mkbergman.com/cooking-with-python-and-kbpedia/) series, I discussed the rationale for using distributed Web widgets as one means to bring the use and management of a knowledge graph into closer alignment with existing content tasks. The idea is to embed small Web controls as either plug-ins, enhancements to existing application Web interfaces, or as simply accompanying Web pages. Under this design, ease-of-use and immediacy are paramount in order to facilitate the capture of new knowledge if and where it arises.More complicated knowledge graph tasks like initial builds, bulk changes, logic testing and the like are therefore kept as separate tasks. For our immediate knowledge purposes, knowledge workers should be able to issue suggestions for new concepts or modifications or deletions when they are discovered. These suggested modifications may be made to a working version of the knowledge graph that operates in parallel to a public (or staff-wide) release version. The basic concept behind this and the previous installment is that we would like to have the ability to use simple widgets -- embedded on any Web page for the applications we use -- as a means of capturing and communicating immediate new information of relevance to our knoweldge graphs. In a distributed manner, while working with production versions, we may want to communicate these updates to an interim version in the queue for review and promotion via a governance pipeline that might lead to a new production version.On some periodic basis, this modified working version could be inspected and tested by assigned managers with the responsibility to vet new, public versions. There is much governance and policy that may guide these workflows, which may also be captured by their own ontologies, that is a topic separate from the widget infrastructure to make this vision operational.While there are widgets available for analysis and visualization purposes, which we will touch upon in later installments, the ones we will emphasize in today's **CWPK** installment are focused on [CRUD](https://en.wikipedia.org/wiki/Create,_read,_update_and_delete) (*create - read - update - delete*) activities. CRUD is the means by which we manage our knowledge graphs in the immediate sense. We will be looking to develop these widgets in a manner directly useful to distributed applications. Getting StartedRemember from our last installment that we are basing our approach to code examples on the [Jupyter Notebook](https://en.wikipedia.org/wiki/Project_JupyterJupyter_Notebook) [ipywidgets](https://ipywidgets.readthedocs.io/en/latest/) package. That package does not come pre-installed, so we need to install it in our system using conda: conda install -c conda-forge ipywidgetsOnce done, we fire up our Notebook and begin with our standard start-up, only now including a new [autoFill module](https://github.com/germanesosa/ipywidget-autocomplete), which I explain next. This [module](https://github.com/germanesosa/ipywidget-autocomplete) is an example of an ipywidgets extension. Place this new autoFill.py page as a new module page within your [Spyder](https://en.wikipedia.org/wiki/Spyder_(software)) *cowpoke* project. Make sure and copy that file into the project before beginning the startup: ###Code from cowpoke.__main__ import * from cowpoke.config import * from cowpoke.autoFill import * from owlready2 import * ###Output _____no_output_____ ###Markdown Some Basic Controls (Widgets)As noted, our basic controls for this installment revolve around CRUD, though we will not address them in that order. But before we can start manipulating individual objects, we need ways to discover what is already in the KBpedia (or your own) knowledge graph. Search and [auto-completion](https://en.wikipedia.org/wiki/Autocomplete) are two essential tools for this job, particularly given the fact that KBpedia has more than 58,000 concepts and 5,000 different properties. Basic SearchRecall in [**CWPK 23**](https://www.mkbergman.com/2356/cwpk-23-text-searching-kbpedia/) that we covered owlready2's basic search function and parameters. You may use the interactive commands shown in that documentation to search by type, subclasses, IRI, etc. Auto-complete HelperWe list the auto-completion helper next because it is leveraged by virtually every widget. Auto-completion is used in a text entry box where as characters are typed, a dropdown list provides matching items that satisfy the search string as entered so far. It is a useful tool to discover what exists in a system as well as to provide the exact spelling and capitalization, which may be necessary for the match. As suggested items appear in the dropdown, if the right one appears you click it to make your current selection.The added utility we found for this is the [ipywidget-autocomplete](https://github.com/germanesosa/ipywidget-autocomplete) module, which we have added as our own module to *cowpoke*. The module provides the underlying 'autofill' code that we import in the actual routine that we use within the Notebook. Here is an example of that Notebook code, with some explanations that follow below: ###Code import cowpoke.autoFill as af from ipywidgets import * # Note 1 def open(value): show.value=value.new strlist = [] # Note 2 listing = list(kb.classes()) # Note 3 for item in listing: # Note 4 item = str(item) item = item.replace('rc.', '') strlist.append(item) autofill = af.autoFill(strlist,callback=open) show = HTML("Begin typing substring characters to see 'auto-complete'!") display(HBox([autofill,show])) ###Output _____no_output_____ ###Markdown Besides the 'autofill' component, we also are importing some of the basic ipywidgets code **(1)**. In this instance, we want to auto-complete on the 58 K concepts in KBpedia **(3)**, which we have to convert from a listing of classes to a listing of strings **(1)** and **(4)**. We can just as easily do an auto-complete on properties by changing one line **(3)**: listing = list(kb.classes())or, of course, other specifications may be entered for the boundaries of our auto-complete.To convert the owlready2 listing of classes to strings occurs by looping over all items in the list, converting each item to a string, replacing the 'rc.' prefix, and then appending the new string item to a new strlist **(4)**. The 'callback' option relates the characters typed into the text box with this string listing. This particular expression will find string matches at any position (not just the beginning) and is case insensitive.When the item appears in the dropdown list that matches your interest, pick it. This value can then be retrieved with the following statement: ###Code show.value ###Output _____no_output_____ ###Markdown Read ItemLet's use a basic *record* format to show how individual property values may be obtained for a given reference concept (RC), as we just picked with the auto-complete helper. We could obviously expand this example to include any of the possible RC property values, but we will use the most prominent ones here: ###Code r_val = show.value r_val = getattr(rc, r_val) # Note 1 a_val = str(r_val.prefLabel) # Note 2 b_val = r_val.altLabel b_items = '' for index, item in enumerate(b_val): # Note 3 item = str(item) if index == [0]: b_items = item else: b_items = b_items + '||' + item b_val = b_items c_val = str(r_val.definition) d_val = r_val.subclasses() d_items = '' for index, item in enumerate(d_val): # Note 3 item = str(item) if index == [0]: d_items = item else: d_items = d_items + '||' + item d_val = d_items e_val = str(r_val.wikidata_q_id) f_val = str(r_val.wikipedia_id) g_val = str(r_val.schema_org_id) # Note 4 a = widgets.Text(style={'description_width': '100px'}, layout=Layout(width='760px'), description='Preferred Label:', value = a_val) b = widgets.Text(style={'description_width': '100px'}, layout=Layout(width='760px'), description='AltLabel(s):', value = b_val) c = widgets.Textarea(style={'description_width': '100px'}, layout=Layout(width='760px'), description='Definition:', value = c_val) d = widgets.Textarea(style={'description_width': '100px'}, layout=Layout(width='760px'), description='subClasses:', value = d_val) e = widgets.Text(style={'description_width': '100px'}, layout=Layout(width='760px'), description='Q ID:', value = e_val) f = widgets.Text(style={'description_width': '100px'}, layout=Layout(width='760px'), description='Wikipedia ID:', value = f_val) g = widgets.Text(style={'description_width': '100px'}, layout=Layout(width='760px'), description='schema.org ID:', value = g_val) def f_out(a, b, c, d, e, f, g): print(''.format(a, b, c, d, e, f, g)) out = widgets.interactive_output(f_out, {'a': a, 'b': b, 'c': c, 'd': d, 'e': e, 'f': f, 'g': g}) widgets.HBox([widgets.VBox([a, b, c, d, e, f, g]), out]) # Note 5 ###Output _____no_output_____ ###Markdown We begin by grabbing the show.value value **(1)** that came from our picking an item from the auto-complete list. We then start retrieving individual attribute values **(2)** for that resource, some of which we need to iterate over **(3)** because they return multiple items in a list. For display purposes, we need to convert all retrieved property values to strings.We can style our widgets **(4)**. 'Layout' applies to the entire widget, and 'style' applies to selected elements. Other values are possible, depending on the widget, which we can inspect with this statement (vary by widget type): ###Code text = Text(description='text box') print(text.style.keys) ###Output _____no_output_____ ###Markdown Then, after defining a simple call procedure, we invoke the control on the Notebook page **(5)**.We could do more to clean up interim output values (such as removing brackets and quotes as we have done elsewhere), and can get fancier with grid layouts and such. In these regards, the Notebook widgets tend to work like and have parameter settings similar to other HTML widgets, though the amount of examples and degree of control is not as extensive as other widget libraries.Again, though, since so much of this in an actual deployment would need to be tailored for other Web frameworks and environments, we can simply state for now that quite a bit of control is available, depending on language, for bringing your knowledge graph information local to your current applications. Modify (Update) ItemThough strings in Python are what is known as 'immutable' (unchanging), it is possible through the string.replace('old', 'new') option to update or modify strings. For entire strings, 'old' may be brought into a text box via a variable name as shown above, altered, and then captured as show.value on a click event. The basic format of this approach can be patterned as follows (changing properties as appropriate): ###Code from ipywidgets import widgets # Run the code cell to start old_text = widgets.Text(style={'description_width': '100px'}, layout=Layout(width='760px'), description = 'Value to modify:', value = 'This is the old input.') new_text = widgets.Text(description = 'New value:', value = 'This is the NEW value.') def bind_old_to_new(sender): old_text.value = new_text.value old_text.description = new_text.description old_text.on_submit(bind_old_to_new) old_text # Click on the text box to invoke ###Output _____no_output_____
07-Extra-Content/Big-Data-Google-Colab/day-1/06-Stu_Pyspark_Dataframes_Basics/Unsolved/demographics.ipynb
###Markdown Install Java, Spark, and Findspark ###Code !apt-get install openjdk-8-jdk-headless -qq > /dev/null !wget -q http://www-us.apache.org/dist/spark/spark-2.3.2/spark-2.3.2-bin-hadoop2.7.tgz !tar xf spark-2.3.2-bin-hadoop2.7.tgz !pip install -q findspark ###Output _____no_output_____ ###Markdown Set Environmental Variables ###Code import os os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" os.environ["SPARK_HOME"] = "/content/spark-2.3.2-bin-hadoop2.7" #### Start a Spark Session import findspark findspark.init() from pyspark.sql import SparkSession spark = SparkSession.builder.appName("demographics").getOrCreate() ### Load the stocks.csv file, have Spark infer the data types from pyspark import SparkFiles url = "https://s3.amazonaws.com/dataviz-curriculum/day_1//demographics.csv" spark.sparkContext.addFile(url) df = spark.read.csv(SparkFiles.get("demographics.csv"), sep=",", header=True) df.show() ### Print the column names # Print out the first 10 rows # Select the age, height_meter, and weight_kg columns and use describe to show the summary statistics # Print the schema to see the types # Rename the Salary column to `Salary (1k)` and show only this new column # Create a new column called `Salary` where the values are the `Salary (1k)` * 1000 # Show the columns `Salary` and `Salary (1k)` ###Output _____no_output_____
lectures/21-power_perm/power_curve.ipynb
###Markdown Power CurveThis is an **interactive notebook**! If you run the cells below, it'll give you some sliders that you can adjust to see the effect that p-value threshold (the x-axis on the plot), effect size, and sample size have on the power of a simple t-test. ###Code %matplotlib notebook import numpy as np from matplotlib import pyplot as plt import scipy.stats from ipywidgets import interact import ipywidgets as widgets num_tests = 3000 p_thresholds = np.logspace(-5, np.log10(0.05), 40) #p_thresholds = np.logspace(-5, 0, 40) power_line = plt.semilogx(p_thresholds, np.linspace(0, 1, 40), '.-') plt.xlabel('p-value', size=14) plt.ylabel('power', size=14) def update(effect_size, n): arr = np.random.randn(n, num_tests) + effect_size t,p = scipy.stats.ttest_1samp(arr, 0) power = np.array([(p<p_t).mean() for p_t in p_thresholds]) power_line[0].set_ydata(power) effect_size_slider = widgets.FloatSlider(value=0.3, min=0.1, max=1.5, step=0.1) n_slider = widgets.IntSlider(value=100, min=10, max=250, step=10) interact(update, effect_size=effect_size_slider, n=n_slider); ###Output _____no_output_____
TF for AI/Exercise2_Question_Blank.ipynb
###Markdown Exercise 2In the course you learned how to do classification using Fashion MNIST, a data set containing items of clothing. There's another, similar dataset called MNIST which has items of handwriting -- the digits 0 through 9.Write an MNIST classifier that trains to 99% accuracy or above, and does it without a fixed number of epochs -- i.e. you should stop training once you reach that level of accuracy.Some notes:1. It should succeed in less than 10 epochs, so it is okay to change epochs to 10, but nothing larger2. When it reaches 99% or greater it should print out the string "Reached 99% accuracy so cancelling training!"3. If you add any additional variables, make sure you use the same names as the ones used in the classI've started the code for you below -- how would you finish it? ###Code # YOUR CODE SHOULD START HERE # YOUR CODE SHOULD END HERE import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() # YOUR CODE SHOULD START HERE # YOUR CODE SHOULD END HERE model = tf.keras.models.Sequential([ # YOUR CODE SHOULD START HERE # YOUR CODE SHOULD END HERE ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # YOUR CODE SHOULD START HERE # YOUR CODE SHOULD END HERE ###Output _____no_output_____
pytorch/autograd_tutorial1.ipynb
###Markdown Autograd========Autograd is now a core torch package for automatic differentiation.It uses a tape based system for automatic differentiation.In the forward phase, the autograd tape will remember all the operationsit executed, and in the backward phase, it will replay the operations.Variable--------In autograd, we introduce a ``Variable`` class, which is a very thinwrapper around a ``Tensor``. You can access the raw tensor through the``.data`` attribute, and after computing the backward pass, a gradientw.r.t. this variable is accumulated into ``.grad`` attribute... figure:: /_static/img/Variable.png :alt: Variable VariableThere’s one more class which is very important for autogradimplementation - a ``Function``. ``Variable`` and ``Function`` areinterconnected and build up an acyclic graph, that encodes a completehistory of computation. Each variable has a ``.grad_fn`` attribute thatreferences a function that has created a function (except for Variablescreated by the user - these have ``None`` as ``.grad_fn``).If you want to compute the derivatives, you can call ``.backward()`` ona ``Variable``. If ``Variable`` is a scalar (i.e. it holds a one elementtensor), you don’t need to specify any arguments to ``backward()``,however if it has more elements, you need to specify a ``grad_output``argument that is a tensor of matching shape. ###Code import torch from torch.autograd import Variable x = Variable(torch.ones(2, 2), requires_grad=True) print(x) # notice the "Variable containing" line print(x.data) print(x.grad) print(x.grad_fn) # we've created x ourselves ###Output _____no_output_____ ###Markdown Do an operation of x: ###Code y = x + 2 print(y) ###Output _____no_output_____ ###Markdown y was created as a result of an operation,so it has a grad_fn ###Code print(y.grad_fn) ###Output _____no_output_____ ###Markdown More operations on y: ###Code z = y * y * 3 out = z.mean() print(z, out) ###Output _____no_output_____ ###Markdown Gradients---------let's backprop now and print gradients d(out)/dx ###Code out.backward() print(x.grad) ###Output _____no_output_____ ###Markdown By default, gradient computation flushes all the internal bufferscontained in the graph, so if you even want to do the backward on somepart of the graph twice, you need to pass in ``retain_variables = True``during the first pass. ###Code x = Variable(torch.ones(2, 2), requires_grad=True) y = x + 2 y.backward(torch.ones(2, 2), retain_graph=True) # the retain_variables flag will prevent the internal buffers from being freed print(x.grad) z = y * y print(z) ###Output _____no_output_____ ###Markdown just backprop random gradients ###Code gradient = torch.randn(2, 2) # this would fail if we didn't specify # that we want to retain variables y.backward(gradient) print(x.grad) ###Output _____no_output_____
Sagemaker/Mini-Projects/IMDB Sentiment Analysis - XGBoost (Hyperparameter Tuning).ipynb
###Markdown Sentiment Analysis Using XGBoost in SageMaker_Deep Learning Nanodegree Program | Deployment_---In this example of using Amazon's SageMaker service we will construct a random tree model to predict the sentiment of a movie review. You may have seen a version of this example in a pervious lesson although it would have been done using the sklearn package. Instead, we will be using the XGBoost package as it is provided to us by Amazon. InstructionsSome template code has already been provided for you, and you will need to implement additional functionality to successfully complete this notebook. You will not need to modify the included code beyond what is requested. Sections that begin with '**TODO**' in the header indicate that you need to complete or implement some portion within them. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a ` TODO: ...` comment. Please be sure to read the instructions carefully!In addition to implementing code, there will be questions for you to answer which relate to the task and your implementation. Each section where you will answer a question is preceded by a '**Question:**' header. Carefully read each question and provide your answer below the '**Answer:**' header by editing the Markdown cell.> **Note**: Code and Markdown cells can be executed using the **Shift+Enter** keyboard shortcut. In addition, a cell can be edited by typically clicking it (double-click for Markdown cells) or by pressing **Enter** while it is highlighted. Step 1: Downloading the dataThe dataset we are going to use is very popular among researchers in Natural Language Processing, usually referred to as the [IMDb dataset](http://ai.stanford.edu/~amaas/data/sentiment/). It consists of movie reviews from the website [imdb.com](http://www.imdb.com/), each labeled as either '**pos**itive', if the reviewer enjoyed the film, or '**neg**ative' otherwise.> Maas, Andrew L., et al. [Learning Word Vectors for Sentiment Analysis](http://ai.stanford.edu/~amaas/data/sentiment/). In _Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies_. Association for Computational Linguistics, 2011.We begin by using some Jupyter Notebook magic to download and extract the dataset. ###Code %mkdir ../data !wget -O ../data/aclImdb_v1.tar.gz http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz !tar -zxf ../data/aclImdb_v1.tar.gz -C ../data ###Output mkdir: cannot create directory ‘../data’: File exists --2020-10-14 12:28:41-- http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz Resolving ai.stanford.edu (ai.stanford.edu)... 171.64.68.10 Connecting to ai.stanford.edu (ai.stanford.edu)|171.64.68.10|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 84125825 (80M) [application/x-gzip] Saving to: ‘../data/aclImdb_v1.tar.gz’ ../data/aclImdb_v1. 100%[===================>] 80.23M 24.2MB/s in 4.5s 2020-10-14 12:28:46 (17.7 MB/s) - ‘../data/aclImdb_v1.tar.gz’ saved [84125825/84125825] ###Markdown Step 2: Preparing the dataThe data we have downloaded is split into various files, each of which contains a single review. It will be much easier going forward if we combine these individual files into two large files, one for training and one for testing. ###Code import os import glob def read_imdb_data(data_dir='../data/aclImdb'): data = {} labels = {} for data_type in ['train', 'test']: data[data_type] = {} labels[data_type] = {} for sentiment in ['pos', 'neg']: data[data_type][sentiment] = [] labels[data_type][sentiment] = [] path = os.path.join(data_dir, data_type, sentiment, '*.txt') files = glob.glob(path) for f in files: with open(f) as review: data[data_type][sentiment].append(review.read()) # Here we represent a positive review by '1' and a negative review by '0' labels[data_type][sentiment].append(1 if sentiment == 'pos' else 0) assert len(data[data_type][sentiment]) == len(labels[data_type][sentiment]), \ "{}/{} data size does not match labels size".format(data_type, sentiment) return data, labels data, labels = read_imdb_data() print("IMDB reviews: train = {} pos / {} neg, test = {} pos / {} neg".format( len(data['train']['pos']), len(data['train']['neg']), len(data['test']['pos']), len(data['test']['neg']))) from sklearn.utils import shuffle def prepare_imdb_data(data, labels): """Prepare training and test sets from IMDb movie reviews.""" #Combine positive and negative reviews and labels data_train = data['train']['pos'] + data['train']['neg'] data_test = data['test']['pos'] + data['test']['neg'] labels_train = labels['train']['pos'] + labels['train']['neg'] labels_test = labels['test']['pos'] + labels['test']['neg'] #Shuffle reviews and corresponding labels within training and test sets data_train, labels_train = shuffle(data_train, labels_train) data_test, labels_test = shuffle(data_test, labels_test) # Return a unified training data, test data, training labels, test labets return data_train, data_test, labels_train, labels_test train_X, test_X, train_y, test_y = prepare_imdb_data(data, labels) print("IMDb reviews (combined): train = {}, test = {}".format(len(train_X), len(test_X))) train_X[100] ###Output _____no_output_____ ###Markdown Step 3: Processing the dataNow that we have our training and testing datasets merged and ready to use, we need to start processing the raw data into something that will be useable by our machine learning algorithm. To begin with, we remove any html formatting that may appear in the reviews and perform some standard natural language processing in order to homogenize the data. ###Code import nltk nltk.download("stopwords") from nltk.corpus import stopwords from nltk.stem.porter import * stemmer = PorterStemmer() import re from bs4 import BeautifulSoup def review_to_words(review): text = BeautifulSoup(review, "html.parser").get_text() # Remove HTML tags text = re.sub(r"[^a-zA-Z0-9]", " ", text.lower()) # Convert to lower case words = text.split() # Split string into words words = [w for w in words if w not in stopwords.words("english")] # Remove stopwords words = [PorterStemmer().stem(w) for w in words] # stem return words import pickle cache_dir = os.path.join("../cache", "sentiment_analysis") # where to store cache files os.makedirs(cache_dir, exist_ok=True) # ensure cache directory exists def preprocess_data(data_train, data_test, labels_train, labels_test, cache_dir=cache_dir, cache_file="preprocessed_data.pkl"): """Convert each review to words; read from cache if available.""" # If cache_file is not None, try to read from it first cache_data = None if cache_file is not None: try: with open(os.path.join(cache_dir, cache_file), "rb") as f: cache_data = pickle.load(f) print("Read preprocessed data from cache file:", cache_file) except: pass # unable to read from cache, but that's okay # If cache is missing, then do the heavy lifting if cache_data is None: # Preprocess training and test data to obtain words for each review #words_train = list(map(review_to_words, data_train)) #words_test = list(map(review_to_words, data_test)) print('Processing training words.') words_train = [review_to_words(review) for review in data_train] print('Processing testing words.') words_test = [review_to_words(review) for review in data_test] # Write to cache file for future runs if cache_file is not None: cache_data = dict(words_train=words_train, words_test=words_test, labels_train=labels_train, labels_test=labels_test) with open(os.path.join(cache_dir, cache_file), "wb") as f: pickle.dump(cache_data, f) print("Wrote preprocessed data to cache file:", cache_file) else: # Unpack data loaded from cache file words_train, words_test, labels_train, labels_test = (cache_data['words_train'], cache_data['words_test'], cache_data['labels_train'], cache_data['labels_test']) return words_train, words_test, labels_train, labels_test # Preprocess data train_X, test_X, train_y, test_y = preprocess_data(train_X, test_X, train_y, test_y) ###Output Read preprocessed data from cache file: preprocessed_data.pkl ###Markdown Extract Bag-of-Words featuresFor the model we will be implementing, rather than using the reviews directly, we are going to transform each review into a Bag-of-Words feature representation. Keep in mind that 'in the wild' we will only have access to the training set so our transformer can only use the training set to construct a representation. ###Code import numpy as np from sklearn.feature_extraction.text import CountVectorizer from sklearn.externals import joblib # joblib is an enhanced version of pickle that is more efficient for storing NumPy arrays def extract_BoW_features(words_train, words_test, vocabulary_size=5000, cache_dir=cache_dir, cache_file="bow_features.pkl"): """Extract Bag-of-Words for a given set of documents, already preprocessed into words.""" # If cache_file is not None, try to read from it first cache_data = None if cache_file is not None: try: with open(os.path.join(cache_dir, cache_file), "rb") as f: cache_data = joblib.load(f) print("Read features from cache file:", cache_file) except: pass # unable to read from cache, but that's okay # If cache is missing, then do the heavy lifting if cache_data is None: # Fit a vectorizer to training documents and use it to transform them # NOTE: Training documents have already been preprocessed and tokenized into words; # pass in dummy functions to skip those steps, e.g. preprocessor=lambda x: x vectorizer = CountVectorizer(max_features=vocabulary_size, preprocessor=lambda x: x, tokenizer=lambda x: x) # already preprocessed features_train = vectorizer.fit_transform(words_train).toarray() # Apply the same vectorizer to transform the test documents (ignore unknown words) features_test = vectorizer.transform(words_test).toarray() # NOTE: Remember to convert the features using .toarray() for a compact representation # Write to cache file for future runs (store vocabulary as well) if cache_file is not None: vocabulary = vectorizer.vocabulary_ cache_data = dict(features_train=features_train, features_test=features_test, vocabulary=vocabulary) with open(os.path.join(cache_dir, cache_file), "wb") as f: joblib.dump(cache_data, f) print("Wrote features to cache file:", cache_file) else: # Unpack data loaded from cache file features_train, features_test, vocabulary = (cache_data['features_train'], cache_data['features_test'], cache_data['vocabulary']) # Return both the extracted features as well as the vocabulary return features_train, features_test, vocabulary # Extract Bag of Words features for both training and test datasets train_X, test_X, vocabulary = extract_BoW_features(train_X, test_X) ###Output Read features from cache file: bow_features.pkl ###Markdown Step 4: Classification using XGBoostNow that we have created the feature representation of our training (and testing) data, it is time to start setting up and using the XGBoost classifier provided by SageMaker. Writing the datasetThe XGBoost classifier that we will be using requires the dataset to be written to a file and stored using Amazon S3. To do this, we will start by splitting the training dataset into two parts, the data we will train the model with and a validation set. Then, we will write those datasets to a file and upload the files to S3. In addition, we will write the test set input to a file and upload the file to S3. This is so that we can use SageMakers Batch Transform functionality to test our model once we've fit it. ###Code import pandas as pd val_X = pd.DataFrame(train_X[:10000]) train_X = pd.DataFrame(train_X[10000:]) val_y = pd.DataFrame(train_y[:10000]) train_y = pd.DataFrame(train_y[10000:]) test_y = pd.DataFrame(test_y) test_X = pd.DataFrame(test_X) ###Output _____no_output_____ ###Markdown The documentation for the XGBoost algorithm in SageMaker requires that the saved datasets should contain no headers or index and that for the training and validation data, the label should occur first for each sample.For more information about this and other algorithms, the SageMaker developer documentation can be found on __[Amazon's website.](https://docs.aws.amazon.com/sagemaker/latest/dg/)__ ###Code # First we make sure that the local directory in which we'd like to store the training and validation csv files exists. data_dir = '../data/xgboost' if not os.path.exists(data_dir): os.makedirs(data_dir) # First, save the test data to test.csv in the data_dir directory. Note that we do not save the associated ground truth # labels, instead we will use them later to compare with our model output. pd.DataFrame(test_X).to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([val_y, val_X], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([train_y, train_X], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) # To save a bit of memory we can set text_X, train_X, val_X, train_y and val_y to None. train_X = val_X = train_y = val_y = None ###Output _____no_output_____ ###Markdown Uploading Training / Validation files to S3Amazon's S3 service allows us to store files that can be access by both the built-in training models such as the XGBoost model we will be using as well as custom models such as the one we will see a little later.For this, and most other tasks we will be doing using SageMaker, there are two methods we could use. The first is to use the low level functionality of SageMaker which requires knowing each of the objects involved in the SageMaker environment. The second is to use the high level functionality in which certain choices have been made on the user's behalf. The low level approach benefits from allowing the user a great deal of flexibility while the high level approach makes development much quicker. For our purposes we will opt to use the high level approach although using the low-level approach is certainly an option.Recall the method `upload_data()` which is a member of object representing our current SageMaker session. What this method does is upload the data to the default bucket (which is created if it does not exist) into the path described by the key_prefix variable. To see this for yourself, once you have uploaded the data files, go to the S3 console and look to see where the files have been uploaded.For additional resources, see the __[SageMaker API documentation](http://sagemaker.readthedocs.io/en/latest/)__ and in addition the __[SageMaker Developer Guide.](https://docs.aws.amazon.com/sagemaker/latest/dg/)__ ###Code import sagemaker session = sagemaker.Session() # Store the current SageMaker session # S3 prefix (which folder will we use) prefix = 'sentiment-xgboost' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown (TODO) Creating a hypertuned XGBoost modelNow that the data has been uploaded it is time to create the XGBoost model. As in the Boston Housing notebook, the first step is to create an estimator object which will be used as the *base* of your hyperparameter tuning job. ###Code from sagemaker import get_execution_role # Our current execution role is require when creating the model as the training # and inference code will need to access the model artifacts. role = get_execution_role() # We need to retrieve the location of the container which is provided by Amazon for using XGBoost. # As a matter of convenience, the training and inference code both use the same container. from sagemaker.amazon.amazon_estimator import get_image_uri container = get_image_uri(session.boto_region_name, 'xgboost', '1.0-1') # TODO: Create a SageMaker estimator using the container location determined in the previous cell. # It is recommended that you use a single training instance of type ml.m4.xlarge. It is also # recommended that you use 's3://{}/{}/output'.format(session.default_bucket(), prefix) as the # output path. xgb = sagemaker.estimator.Estimator(container, role, train_instance_count=1, train_instance_type='ml.m4.xlarge', output_path='s3://{}/{}/output'.format(session.default_bucket(), prefix), sagemaker_session=session) # TODO: Set the XGBoost hyperparameters in the xgb object. Don't forget that in this case we have a binary # label so we should be using the 'binary:logistic' objective. xgb.set_hyperparameters(max_depth=5, eta=0.2, gamma=4, min_child_weight=6, subsample=0.8, objective='binary:logistic', early_stopping_rounds=10, num_round=200) ###Output Parameter image_name will be renamed to image_uri in SageMaker Python SDK v2. ###Markdown (TODO) Create the hyperparameter tunerNow that the base estimator has been set up we need to construct a hyperparameter tuner object which we will use to request SageMaker construct a hyperparameter tuning job.**Note:** Training a single sentiment analysis XGBoost model takes longer than training a Boston Housing XGBoost model so if you don't want the hyperparameter tuning job to take too long, make sure to not set the total number of models (jobs) too high. ###Code # First, make sure to import the relevant objects used to construct the tuner from sagemaker.tuner import IntegerParameter, ContinuousParameter, HyperparameterTuner # TODO: Create the hyperparameter tuner object xgb_hyperparameter_tuner = HyperparameterTuner(estimator = xgb, objective_metric_name = 'validation:rmse', objective_type = 'Minimize', max_jobs = 5, max_parallel_jobs = 3, hyperparameter_ranges = { 'max_depth': IntegerParameter(3, 12), 'eta' : ContinuousParameter(0.05, 0.5), 'min_child_weight': IntegerParameter(2, 8), 'subsample': ContinuousParameter(0.5, 0.9), 'gamma': ContinuousParameter(0, 10) } ) ###Output _____no_output_____ ###Markdown Fit the hyperparameter tunerNow that the hyperparameter tuner object has been constructed, it is time to fit the various models and find the best performing model. ###Code s3_input_train = sagemaker.s3_input(s3_data=train_location, content_type='text/csv') s3_input_validation = sagemaker.s3_input(s3_data=val_location, content_type='text/csv') xgb_hyperparameter_tuner.fit({'train': s3_input_train, 'validation': s3_input_validation}) ###Output _____no_output_____ ###Markdown Remember that the tuning job is constructed and run in the background so if we want to see the progress of our training job we need to call the `wait()` method. ###Code xgb_hyperparameter_tuner.wait() ###Output .................................................................................................................................................................................................................! ###Markdown (TODO) Testing the modelNow that we've run our hyperparameter tuning job, it's time to see how well the best performing model actually performs. To do this we will use SageMaker's Batch Transform functionality. Batch Transform is a convenient way to perform inference on a large dataset in a way that is not realtime. That is, we don't necessarily need to use our model's results immediately and instead we can peform inference on a large number of samples. An example of this in industry might be peforming an end of month report. This method of inference can also be useful to us as it means to can perform inference on our entire test set. Remember that in order to create a transformer object to perform the batch transform job, we need a trained estimator object. We can do that using the `attach()` method, creating an estimator object which is attached to the best trained job. ###Code # TODO: Create a new estimator object attached to the best training job found during hyperparameter tuning xgb_attached = sagemaker.estimator.Estimator.attach(xgb_hyperparameter_tuner.best_training_job()) ###Output Parameter image_name will be renamed to image_uri in SageMaker Python SDK v2. ###Markdown Now that we have an estimator object attached to the correct training job, we can proceed as we normally would and create a transformer object. ###Code # TODO: Create a transformer object from the attached estimator. Using an instance count of 1 and an instance type of ml.m4.xlarge # should be more than enough. xgb_transformer = xgb_attached.transformer(instance_count = 1, instance_type = 'ml.m4.xlarge') ###Output Parameter image will be renamed to image_uri in SageMaker Python SDK v2. ###Markdown Next we actually perform the transform job. When doing so we need to make sure to specify the type of data we are sending so that it is serialized correctly in the background. In our case we are providing our model with csv data so we specify `text/csv`. Also, if the test data that we have provided is too large to process all at once then we need to specify how the data file should be split up. Since each line is a single entry in our data set we tell SageMaker that it can split the input on each line. ###Code # TODO: Start the transform job. Make sure to specify the content type and the split type of the test data. xgb_transformer.transform(test_location, content_type='text/csv', split_type='Line') ###Output _____no_output_____ ###Markdown Currently the transform job is running but it is doing so in the background. Since we wish to wait until the transform job is done and we would like a bit of feedback we can run the `wait()` method. ###Code xgb_transformer.wait() ###Output ................................2020-10-14T12:35:53.903:[sagemaker logs]: MaxConcurrentTransforms=4, MaxPayloadInMB=6, BatchStrategy=MULTI_RECORD [2020-10-14:12:35:51:INFO] No GPUs detected (normal if no gpus installed) [2020-10-14:12:35:51:INFO] No GPUs detected (normal if no gpus installed) [2020-10-14:12:35:51:INFO] nginx config:  worker_processes auto; daemon off; pid /tmp/nginx.pid; error_log /dev/stderr;  worker_rlimit_nofile 4096;  events { worker_connections 2048; }  [2020-10-14:12:35:51:INFO] No GPUs detected (normal if no gpus installed) [2020-10-14:12:35:51:INFO] No GPUs detected (normal if no gpus installed) [2020-10-14:12:35:51:INFO] nginx config:  worker_processes auto; daemon off; pid /tmp/nginx.pid; error_log /dev/stderr;  worker_rlimit_nofile 4096;  events { worker_connections 2048; }  http { include /etc/nginx/mime.types; default_type application/octet-stream; access_log /dev/stdout combined; upstream gunicorn { server unix:/tmp/gunicorn.sock; } server { listen 8080 deferred; client_max_body_size 0; keepalive_timeout 3; location ~ ^/(ping|invocations|execution-parameters) { proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header Host $http_host; proxy_redirect off; proxy_read_timeout 60s; proxy_pass http://gunicorn; } location / { return 404 "{}"; } } }  2020/10/14 12:35:51 [crit] 19#19: *1 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" 169.254.255.130 - - [14/Oct/2020:12:35:51 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" 2020/10/14 12:35:51 [crit] 19#19: *3 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" 169.254.255.130 - - [14/Oct/2020:12:35:51 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" [2020-10-14 12:35:51 +0000] [17] [INFO] Starting gunicorn 19.10.0 [2020-10-14 12:35:51 +0000] [17] [INFO] Listening at: unix:/tmp/gunicorn.sock (17) [2020-10-14 12:35:51 +0000] [17] [INFO] Using worker: gevent [2020-10-14 12:35:51 +0000] [24] [INFO] Booting worker with pid: 24 [2020-10-14 12:35:51 +0000] [25] [INFO] Booting worker with pid: 25 http { include /etc/nginx/mime.types; default_type application/octet-stream; access_log /dev/stdout combined; upstream gunicorn { server unix:/tmp/gunicorn.sock; } server { listen 8080 deferred; client_max_body_size 0; keepalive_timeout 3; location ~ ^/(ping|invocations|execution-parameters) { proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header Host $http_host; proxy_redirect off; proxy_read_timeout 60s; proxy_pass http://gunicorn; } location / { return 404 "{}"; } } }  2020/10/14 12:35:51 [crit] 19#19: *1 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" 169.254.255.130 - - [14/Oct/2020:12:35:51 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" 2020/10/14 12:35:51 [crit] 19#19: *3 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" 169.254.255.130 - - [14/Oct/2020:12:35:51 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" [2020-10-14 12:35:51 +0000] [17] [INFO] Starting gunicorn 19.10.0 [2020-10-14 12:35:51 +0000] [17] [INFO] Listening at: unix:/tmp/gunicorn.sock (17) [2020-10-14 12:35:51 +0000] [17] [INFO] Using worker: gevent [2020-10-14 12:35:51 +0000] [24] [INFO] Booting worker with pid: 24 [2020-10-14 12:35:51 +0000] [25] [INFO] Booting worker with pid: 25 [2020-10-14 12:35:52 +0000] [29] [INFO] Booting worker with pid: 29 [2020-10-14 12:35:52 +0000] [33] [INFO] Booting worker with pid: 33 [2020-10-14:12:35:53:INFO] No GPUs detected (normal if no gpus installed) 169.254.255.130 - - [14/Oct/2020:12:35:53 +0000] "GET /ping HTTP/1.1" 200 0 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:35:53 +0000] "GET /execution-parameters HTTP/1.1" 200 84 "-" "Go-http-client/1.1" [2020-10-14:12:35:54:INFO] No GPUs detected (normal if no gpus installed) [2020-10-14:12:35:54:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:35:54:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:35:54:INFO] No GPUs detected (normal if no gpus installed) [2020-10-14:12:35:54:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:35:54:INFO] No GPUs detected (normal if no gpus installed) [2020-10-14:12:35:54:INFO] Determined delimiter of CSV input is ',' [2020-10-14 12:35:52 +0000] [29] [INFO] Booting worker with pid: 29 [2020-10-14 12:35:52 +0000] [33] [INFO] Booting worker with pid: 33 [2020-10-14:12:35:53:INFO] No GPUs detected (normal if no gpus installed) 169.254.255.130 - - [14/Oct/2020:12:35:53 +0000] "GET /ping HTTP/1.1" 200 0 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:35:53 +0000] "GET /execution-parameters HTTP/1.1" 200 84 "-" "Go-http-client/1.1" [2020-10-14:12:35:54:INFO] No GPUs detected (normal if no gpus installed) [2020-10-14:12:35:54:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:35:54:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:35:54:INFO] No GPUs detected (normal if no gpus installed) [2020-10-14:12:35:54:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:35:54:INFO] No GPUs detected (normal if no gpus installed) [2020-10-14:12:35:54:INFO] Determined delimiter of CSV input is ',' 169.254.255.130 - - [14/Oct/2020:12:35:57 +0000] "POST /invocations HTTP/1.1" 200 12281 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:35:57 +0000] "POST /invocations HTTP/1.1" 200 12237 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:35:57 +0000] "POST /invocations HTTP/1.1" 200 12287 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:35:57 +0000] "POST /invocations HTTP/1.1" 200 12281 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:35:57 +0000] "POST /invocations HTTP/1.1" 200 12237 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:35:57 +0000] "POST /invocations HTTP/1.1" 200 12287 "-" "Go-http-client/1.1" [2020-10-14:12:35:57:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:35:57:INFO] Determined delimiter of CSV input is ',' 169.254.255.130 - - [14/Oct/2020:12:35:57 +0000] "POST /invocations HTTP/1.1" 200 12259 "-" "Go-http-client/1.1" [2020-10-14:12:35:57:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:35:57:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:35:57:INFO] Determined delimiter of CSV input is ',' 169.254.255.130 - - [14/Oct/2020:12:35:57 +0000] "POST /invocations HTTP/1.1" 200 12259 "-" "Go-http-client/1.1" [2020-10-14:12:35:57:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:35:58:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:35:58:INFO] Determined delimiter of CSV input is ',' 169.254.255.130 - - [14/Oct/2020:12:36:00 +0000] "POST /invocations HTTP/1.1" 200 12258 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:36:00 +0000] "POST /invocations HTTP/1.1" 200 12255 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:36:00 +0000] "POST /invocations HTTP/1.1" 200 12244 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:36:00 +0000] "POST /invocations HTTP/1.1" 200 12258 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:36:00 +0000] "POST /invocations HTTP/1.1" 200 12255 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:36:00 +0000] "POST /invocations HTTP/1.1" 200 12244 "-" "Go-http-client/1.1" [2020-10-14:12:36:01:INFO] Determined delimiter of CSV input is ',' 169.254.255.130 - - [14/Oct/2020:12:36:01 +0000] "POST /invocations HTTP/1.1" 200 12304 "-" "Go-http-client/1.1" [2020-10-14:12:36:01:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:36:01:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:36:01:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:36:01:INFO] Determined delimiter of CSV input is ',' 169.254.255.130 - - [14/Oct/2020:12:36:01 +0000] "POST /invocations HTTP/1.1" 200 12304 "-" "Go-http-client/1.1" [2020-10-14:12:36:01:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:36:01:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:36:01:INFO] Determined delimiter of CSV input is ',' 169.254.255.130 - - [14/Oct/2020:12:36:04 +0000] "POST /invocations HTTP/1.1" 200 12227 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:36:04 +0000] "POST /invocations HTTP/1.1" 200 12227 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:36:04 +0000] "POST /invocations HTTP/1.1" 200 12268 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:36:04 +0000] "POST /invocations HTTP/1.1" 200 12264 "-" "Go-http-client/1.1" [2020-10-14:12:36:04:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:36:04:INFO] Determined delimiter of CSV input is ',' 169.254.255.130 - - [14/Oct/2020:12:36:04 +0000] "POST /invocations HTTP/1.1" 200 12241 "-" "Go-http-client/1.1" [2020-10-14:12:36:04:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:36:04:INFO] Determined delimiter of CSV input is ',' 169.254.255.130 - - [14/Oct/2020:12:36:04 +0000] "POST /invocations HTTP/1.1" 200 12268 "-" "Go-http-client/1.1" 169.254.255.130 - - [14/Oct/2020:12:36:04 +0000] "POST /invocations HTTP/1.1" 200 12264 "-" "Go-http-client/1.1" [2020-10-14:12:36:04:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:36:04:INFO] Determined delimiter of CSV input is ',' 169.254.255.130 - - [14/Oct/2020:12:36:04 +0000] "POST /invocations HTTP/1.1" 200 12241 "-" "Go-http-client/1.1" [2020-10-14:12:36:04:INFO] Determined delimiter of CSV input is ',' [2020-10-14:12:36:04:INFO] Determined delimiter of CSV input is ',' ###Markdown Now the transform job has executed and the result, the estimated sentiment of each review, has been saved on S3. Since we would rather work on this file locally we can perform a bit of notebook magic to copy the file to the `data_dir`. ###Code !aws s3 cp --recursive $xgb_transformer.output_path $data_dir ###Output Completed 256.0 KiB/476.0 KiB (2.8 MiB/s) with 1 file(s) remaining Completed 476.0 KiB/476.0 KiB (4.7 MiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-1-136004397992/sagemaker-xgboost-201014-1149-004-3b451-2020-10-14-12-30-46-903/test.csv.out to ../data/xgboost/test.csv.out ###Markdown The last step is now to read in the output from our model, convert the output to something a little more usable, in this case we want the sentiment to be either `1` (positive) or `0` (negative), and then compare to the ground truth labels. ###Code predictions = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) predictions = [round(num) for num in predictions.squeeze().values] from sklearn.metrics import accuracy_score accuracy_score(test_y, predictions) ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir # Similarly we will remove the files in the cache_dir directory and the directory itself !rm $cache_dir/* !rmdir $cache_dir ###Output _____no_output_____
4. Cliques, Triangles and Graph Structures (Student).ipynb
###Markdown Cliques, Triangles and SquaresLet's pose a problem: If A knows B and B knows C, would it be probable that A knows C as well? In a graph involving just these three individuals, it may look as such: ###Code G = nx.Graph() G.add_nodes_from(['a', 'b', 'c']) G.add_edges_from([('a','b'), ('b', 'c')]) nx.draw(G, with_labels=True) ###Output _____no_output_____ ###Markdown Let's think of another problem: If A knows B, B knows C, C knows D and D knows A, is it likely that A knows C and B knows D? How would this look like? ###Code G.add_node('d') G.add_edge('c', 'd') G.add_edge('d', 'a') nx.draw(G, with_labels=True) ###Output _____no_output_____ ###Markdown The set of relationships involving A, B and C, if closed, involves a triangle in the graph. The set of relationships that also include D form a square.You may have observed that social networks (LinkedIn, Facebook, Twitter etc.) have friend recommendation systems. How exactly do they work? Apart from analyzing other variables, closing triangles is one of the core ideas behind the system. A knows B and B knows C, then A probably knows C as well. If all of the triangles in the two small-scale networks were closed, then the graph would have represented **cliques**, in which everybody within that subgraph knows one another.In this section, we will attempt to answer the following questions:1. Can we identify cliques?2. Can we identify *potential* cliques that aren't currently present in the network?3. Can we model the probability that two unconnected individuals know one another? Load DataAs usual, let's start by loading some network data. This time round, we have a [physician trust](http://konect.uni-koblenz.de/networks/moreno_innovation) network, but slightly modified such that it is undirected rather than directed.> This directed network captures innovation spread among 246 physicians in for towns in Illinois, Peoria, Bloomington, Quincy and Galesburg. The data was collected in 1966. A node represents a physician and an edge between two physicians shows that the left physician told that the righ physician is his friend or that he turns to the right physician if he needs advice or is interested in a discussion. There always only exists one edge between two nodes even if more than one of the listed conditions are true. ###Code # Load the network. G = cf.load_physicians_network() # Make a Circos plot of the graph import numpy as np from circos import CircosPlot nodes = sorted(G.nodes()) edges = G.edges() edgeprops = dict(alpha=0.1) nodecolor = plt.cm.viridis(np.arange(len(nodes)) / len(nodes)) fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111) c = CircosPlot(nodes, edges, radius=10, ax=ax, edgeprops=edgeprops, nodecolor=nodecolor) c.draw() ###Output _____no_output_____ ###Markdown QuestionWhat can you infer about the structure of the graph from the Circos plot? CliquesIn a social network, cliques are groups of people in which everybody knows everybody. Triangles are a simple example of cliques. Let's try implementing a simple algorithm that finds out whether a node is present in a triangle or not.The core idea is that if a node is present in a triangle, then its neighbors' neighbors' neighbors should include itself. ###Code # Example code that shouldn't be too hard to follow. def in_triangle(G, node): neighbors1 = G.neighbors(node) neighbors2 = [] for n in neighbors1: neighbors = G.neighbors(n) if node in neighbors2: neighbors2.remove(node) neighbors2.extend(G.neighbors(n)) neighbors3 = [] for n in neighbors2: neighbors = G.neighbors(n) neighbors3.extend(G.neighbors(n)) return node in neighbors3 in_triangle(G, 3) ###Output _____no_output_____ ###Markdown In reality, NetworkX already has a function that *counts* the number of triangles that any given node is involved in. This is probably more useful than knowing whether a node is present in a triangle or not, but the above code was simply for practice. ###Code nx.triangles(G, 3) ###Output _____no_output_____ ###Markdown ExerciseCan you write a function that takes in one node and its associated graph as an input, and returns a list or set of itself + all other nodes that it is in a triangle relationship with?Hint: The neighbor of my neighbor should also be my neighbor, then the three of us are in a triangle relationship.Hint: Python Sets may be of great use for this problem. https://docs.python.org/2/library/stdtypes.htmlsetVerify your answer by drawing out the subgraph composed of those nodes. ###Code # Possible answer def get_triangles(G, node): neighbors = set(G.neighbors(node)) triangle_nodes = set() """ Fill in the rest of the code below. """ return triangle_nodes # Verify your answer with the following funciton call. Should return: # {1, 2, 3, 6, 23} get_triangles(G, 3) # Then, draw out those nodes. nx.draw(G.subgraph(get_triangles(G, 3)), with_labels=True) # Compare for yourself that those are the only triangles that node 3 is involved in. neighbors3 = G.neighbors(3) neighbors3.append(3) nx.draw(G.subgraph(neighbors3), with_labels=True) ###Output _____no_output_____ ###Markdown Friend Recommendation: Open TrianglesNow that we have some code that identifies closed triangles, we might want to see if we can do some friend recommendations by looking for open triangles.Open triangles are like those that we described earlier on - A knows B and B knows C, but C's relationship with A isn't captured in the graph. ExerciseCan you write a function that identifies, for a given node, the other two nodes that it is involved with in an open triangle, if there is one? Hint: You may still want to stick with set operations. Suppose we have the A-B-C triangle. If there are neighbors of C that are also neighbors of B, then those neighbors are in a triangle with B and C; consequently, if there are nodes for which C's neighbors do not overlap with B's neighbors, then those nodes are in an open triangle. The final implementation should include some conditions, and probably won't be as simple as described above. ###Code # Fill in your code here. def get_open_triangles(G, node): """ There are many ways to represent this. One may choose to represent only the nodes involved in an open triangle; this is not the approach taken here. Rather, we have a code that explicitly enumrates every open triangle present. """ open_triangle_nodes = [] neighbors = set(G.neighbors(node)) for n in neighbors: return open_triangle_nodes # # Uncomment the following code if you want to draw out each of the triplets. # nodes = get_open_triangles(G, 2) # for i, triplet in enumerate(nodes): # fig = plt.figure(i) # nx.draw(G.subgraph(triplet), with_labels=True) print(get_open_triangles(G, 3)) len(get_open_triangles(G, 3)) ###Output _____no_output_____ ###Markdown If you remember the previous section on hubs and paths, you will note that node 19 was involved in a lot of open triangles.Triangle closure is also the core idea behind social networks' friend recommendation systems; of course, it's definitely more complicated than what we've implemented here. CliquesWe have figured out how to find triangles. Now, let's find out what **cliques** are present in the network. Recall: what is the definition of a clique?- NetworkX has a [clique-finding](https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.clique.find_cliques.html) algorithm implemented.- This algorithm finds all maximally-sized cliques for a given node.- Note that maximal cliques of size `n` include all cliques of `size < n` ###Code list(nx.find_cliques(G)) ###Output _____no_output_____ ###Markdown ExerciseThis should allow us to find all n-sized maximal cliques. Try writing a function `maximal_cliques_of_size(size, G)` that implements this. ###Code def maximal_cliqes_of_size(size, G): return ______________________ maximal_cliqes_of_size(2, G) ###Output _____no_output_____ ###Markdown Connected ComponentsFrom [Wikipedia](https://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29):> In graph theory, a connected component (or just component) of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph.NetworkX also implements a [function](https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.algorithms.components.connected.connected_component_subgraphs.html) that identifies connected component subgraphs.Remember how based on the Circos plot above, we had this hypothesis that the physician trust network may be divided into subgraphs. Let's check that, and see if we can redraw the Circos visualization. ###Code ccsubgraphs = list(nx.connected_component_subgraphs(G)) len(ccsubgraphs) ###Output _____no_output_____ ###Markdown ExercisePlay a bit with the Circos API. Can you colour the nodes by their subgraph identifier? ###Code # Start by labelling each node in the master graph G by some number # that represents the subgraph that contains the node. for i, g in enumerate(_____________): # Fill in code below. # Then, pass in a list of nodecolors that correspond to the node order. node_cmap = {0: 'red', 1:'blue', 2: 'green', 3:'yellow'} nodecolor = [__________________________________________] nodes = sorted(G.nodes()) edges = G.edges() edgeprops = dict(alpha=0.1) fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111) c = CircosPlot(nodes, edges, radius=10, ax=ax, fig=fig, edgeprops=edgeprops, nodecolor=nodecolor) c.draw() plt.savefig('images/physicians.png', dpi=300) ###Output _____no_output_____ ###Markdown Cliques, Triangles and SquaresLet's pose a problem: If A knows B and B knows C, would it be probable that A knows C as well? In a graph involving just these three individuals, it may look as such: ###Code G = nx.Graph() G.add_nodes_from(['a', 'b', 'c']) G.add_edges_from([('a','b'), ('b', 'c')]) nx.draw(G, with_labels=True) ###Output _____no_output_____ ###Markdown Let's think of another problem: If A knows B, B knows C, C knows D and D knows A, is it likely that A knows C and B knows D? How would this look like? ###Code G.add_node('d') G.add_edge('c', 'd') G.add_edge('d', 'a') nx.draw(G, with_labels=True) ###Output _____no_output_____ ###Markdown The set of relationships involving A, B and C, if closed, involves a triangle in the graph. The set of relationships that also include D form a square.You may have observed that social networks (LinkedIn, Facebook, Twitter etc.) have friend recommendation systems. How exactly do they work? Apart from analyzing other variables, closing triangles is one of the core ideas behind the system. A knows B and B knows C, then A probably knows C as well. If all of the triangles in the two small-scale networks were closed, then the graph would have represented **cliques**, in which everybody within that subgraph knows one another.In this section, we will attempt to answer the following questions:1. Can we identify cliques?2. Can we identify *potential* cliques that aren't currently present in the network?3. Can we model the probability that two unconnected individuals know one another? Load DataAs usual, let's start by loading some network data. This time round, we have a [physician trust](http://konect.uni-koblenz.de/networks/moreno_innovation) network, but slightly modified such that it is undirected rather than directed.> This directed network captures innovation spread among 246 physicians in for towns in Illinois, Peoria, Bloomington, Quincy and Galesburg. The data was collected in 1966. A node represents a physician and an edge between two physicians shows that the left physician told that the righ physician is his friend or that he turns to the right physician if he needs advice or is interested in a discussion. There always only exists one edge between two nodes even if more than one of the listed conditions are true. ###Code # Load the network. G = cf.load_physicians_network() # Make a Circos plot of the graph import numpy as np from circos import CircosPlot nodes = sorted(G.nodes()) edges = G.edges() edgeprops = dict(alpha=0.1) nodecolor = plt.cm.viridis(np.arange(len(nodes)) / len(nodes)) fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111) c = CircosPlot(nodes, edges, radius=10, ax=ax, edgeprops=edgeprops, nodecolor=nodecolor) c.draw() ###Output _____no_output_____ ###Markdown QuestionWhat can you infer about the structure of the graph from the Circos plot?My answer: The structure is interesting. The graph looks like the physician trust network is comprised of discrete subnetworks. CliquesIn a social network, cliques are groups of people in which everybody knows everybody. Triangles are a simple example of cliques. Let's try implementing a simple algorithm that finds out whether a node is present in a triangle or not.The core idea is that if a node is present in a triangle, then its neighbors' neighbors' neighbors should include itself. ###Code # Example code that shouldn't be too hard to follow. def in_triangle(G, node): neighbors1 = G.neighbors(node) neighbors2 = [] for n in neighbors1: neighbors = G.neighbors(n) if node in neighbors2: neighbors2.remove(node) neighbors2.extend(G.neighbors(n)) neighbors3 = [] for n in neighbors2: neighbors = G.neighbors(n) neighbors3.extend(G.neighbors(n)) return node in neighbors3 in_triangle(G, 3) ###Output _____no_output_____ ###Markdown In reality, NetworkX already has a function that *counts* the number of triangles that any given node is involved in. This is probably more useful than knowing whether a node is present in a triangle or not, but the above code was simply for practice. ###Code nx.triangles(G, 3) ###Output _____no_output_____ ###Markdown ExerciseCan you write a function that takes in one node and its associated graph as an input, and returns a list or set of itself + all other nodes that it is in a triangle relationship with?Hint: The neighbor of my neighbor should also be my neighbor, then the three of us are in a triangle relationship.Hint: Python Sets may be of great use for this problem. https://docs.python.org/2/library/stdtypes.htmlsetVerify your answer by drawing out the subgraph composed of those nodes. ###Code # Possible answer def get_triangles(G, node): neighbors = set(G.neighbors(node)) triangle_nodes = set() """ Fill in the rest of the code below. """ return triangle_nodes # Verify your answer with the following funciton call. Should return: # {1, 2, 3, 6, 23} get_triangles(G, 3) # Then, draw out those nodes. nx.draw(G.subgraph(get_triangles(G, 3)), with_labels=True) # Compare for yourself that those are the only triangles that node 3 is involved in. neighbors3 = G.neighbors(3) neighbors3.append(3) nx.draw(G.subgraph(neighbors3), with_labels=True) ###Output _____no_output_____ ###Markdown Friend Recommendation: Open TrianglesNow that we have some code that identifies closed triangles, we might want to see if we can do some friend recommendations by looking for open triangles.Open triangles are like those that we described earlier on - A knows B and B knows C, but C's relationship with A isn't captured in the graph. ExerciseCan you write a function that identifies, for a given node, the other two nodes that it is involved with in an open triangle, if there is one? Hint: You may still want to stick with set operations. Suppose we have the A-B-C triangle. If there are neighbors of C that are also neighbors of B, then those neighbors are in a triangle with B and C; consequently, if there are nodes for which C's neighbors do not overlap with B's neighbors, then those nodes are in an open triangle. The final implementation should include some conditions, and probably won't be as simple as described above. ###Code # Possible Answer, credit Justin Zabilansky (MIT) for help on this. def get_open_triangles(G, node): """ There are many ways to represent this. One may choose to represent only the nodes involved in an open triangle; this is not the approach taken here. Rather, we have a code that explicitly enumrates every open triangle present. """ open_triangle_nodes = [] neighbors = set(G.neighbors(node)) for n in neighbors: return open_triangle_nodes # # Uncomment the following code if you want to draw out each of the triplets. # nodes = get_open_triangles(G, 2) # for i, triplet in enumerate(nodes): # fig = plt.figure(i) # nx.draw(G.subgraph(triplet), with_labels=True) print(get_open_triangles(G, 3)) len(get_open_triangles(G, 3)) ###Output _____no_output_____ ###Markdown If you remember the previous section on hubs and paths, you will note that node 19 was involved in a lot of open triangles.Triangle closure is also the core idea behind social networks' friend recommendation systems; of course, it's definitely more complicated than what we've implemented here. CliquesWe have figured out how to find triangles. Now, let's find out what **cliques** are present in the network. Recall: what is the definition of a clique?- NetworkX has a [clique-finding](https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.clique.find_cliques.html) algorithm implemented.- This algorithm finds all maximally-sized cliques for a given node.- Note that maximal cliques of size `n` include all cliques of `size < n` ###Code list(nx.find_cliques(G)) ###Output _____no_output_____ ###Markdown ExerciseThis should allow us to find all n-sized maximal cliques. Try writing a function `maximal_cliques_of_size(size, G)` that implements this. ###Code def maximal_cliqes_of_size(size, G): return ______________________ maximal_cliqes_of_size(2, G) ###Output _____no_output_____ ###Markdown Connected ComponentsFrom [Wikipedia](https://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29):> In graph theory, a connected component (or just component) of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph.NetworkX also implements a [function](https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.algorithms.components.connected.connected_component_subgraphs.html) that identifies connected component subgraphs.Remember how based on the Circos plot above, we had this hypothesis that the physician trust network may be divided into subgraphs. Let's check that, and see if we can redraw the Circos visualization. ###Code ccsubgraphs = list(nx.connected_component_subgraphs(G)) len(ccsubgraphs) ###Output _____no_output_____ ###Markdown ExercisePlay a bit with the Circos API. Can you colour the nodes by their subgraph identifier? ###Code # Start by labelling each node in the master graph G by some number # that represents the subgraph that contains the node. for i, g in enumerate(_____________): # Then, pass in a list of nodecolors that correspond to the node order. node_cmap = {0: 'red', 1:'blue', 2: 'green', 3:'yellow'} nodecolor = [__________________________________________] nodes = sorted(G.nodes()) edges = G.edges() edgeprops = dict(alpha=0.1) fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111) c = CircosPlot(nodes, edges, radius=10, ax=ax, fig=fig, edgeprops=edgeprops, nodecolor=nodecolor) c.draw() plt.savefig('images/physicians.png', dpi=300) ###Output _____no_output_____ ###Markdown Load DataAs usual, let's start by loading some network data. This time round, we have a [physician trust](http://konect.uni-koblenz.de/networks/moreno_innovation) network, but slightly modified such that it is undirected rather than directed.> This directed network captures innovation spread among 246 physicians in for towns in Illinois, Peoria, Bloomington, Quincy and Galesburg. The data was collected in 1966. A node represents a physician and an edge between two physicians shows that the left physician told that the righ physician is his friend or that he turns to the right physician if he needs advice or is interested in a discussion. There always only exists one edge between two nodes even if more than one of the listed conditions are true. ###Code # Load the network. G = cf.load_physicians_network() # Make a Circos plot of the graph import numpy as np from circos import CircosPlot nodes = sorted(G.nodes()) edges = G.edges() edgeprops = dict(alpha=0.1) nodecolor = plt.cm.viridis(np.arange(len(nodes)) / len(nodes)) fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111) c = CircosPlot(nodes, edges, radius=10, ax=ax, edgeprops=edgeprops, nodecolor=nodecolor) c.draw() ###Output _____no_output_____ ###Markdown QuestionWhat can you infer about the structure of the graph from the Circos plot? Structures in a GraphWe can leverage what we have learned in the previous notebook to identify special structures in a graph. In a network, cliques are one of these special structures. CliquesIn a social network, cliques are groups of people in which everybody knows everybody. Triangles are a simple example of cliques. Let's try implementing a simple algorithm that finds out whether a node is present in a triangle or not.The core idea is that if a node is present in a triangle, then its neighbors' neighbors' neighbors should include itself. ###Code # Example code. def in_triangle(G, node): """ Returns whether a given node is present in a triangle relationship or not. """ # We first assume that the node is not present in a triangle. is_in_triangle = False # Then, iterate over every pair of the node's neighbors. for nbr1, nbr2 in itertools.combinations(G.neighbors(node), 2): # Check to see if there is an edge between the node's neighbors. # If there is an edge, then the given node is present in a triangle. if G.has_edge(nbr1, nbr2): is_in_triangle = True # We break because any triangle that is present automatically # satisfies the problem requirements. break return is_in_triangle in_triangle(G, 3) ###Output _____no_output_____ ###Markdown In reality, NetworkX already has a function that *counts* the number of triangles that any given node is involved in. This is probably more useful than knowing whether a node is present in a triangle or not, but the above code was simply for practice. ###Code nx.triangles(G, 3) ###Output _____no_output_____ ###Markdown ExerciseCan you write a function that takes in one node and its associated graph as an input, and returns a list or set of itself + all other nodes that it is in a triangle relationship with? Do not return the triplets, but the `set`/`list` of nodes.**Possible Implementation:** If my neighbor's neighbor's neighbor includes myself, then we are in a triangle relationship.**Possible Implementation:** If I check every pair of my neighbors, any pair that are also connected in the graph are in a triangle relationship with me.Hint: Python's [`itertools`](https://docs.python.org/3/library/itertools.html) module has a `combinations` function that may be useful.Hint: NetworkX graphs have a `.has_edge(node1, node2)` function that checks whether an edge exists between two nodes.Verify your answer by drawing out the subgraph composed of those nodes. ###Code # Possible answer def get_triangles(G, node): neighbors = set(G.neighbors(node)) triangle_nodes = set() """ Fill in the rest of the code below. """ triangle_nodes.add(node) is_in_triangle = False # Then, iterate over every pair of the node's neighbors. for nbr1, nbr2 in itertools.combinations(neighbors, 2): # Check to see if there is an edge between the node's neighbors. # If there is an edge, then the given node is present in a triangle. if G.has_edge(nbr1, nbr2): # We break because any triangle that is present automatically # satisfies the problem requirements. triangle_nodes.add(nbr1) triangle_nodes.add(nbr2) return triangle_nodes # Verify your answer with the following funciton call. Should return something of the form: # {3, 9, 11, 41, 42, 67} get_triangles(G, 3) # Then, draw out those nodes. nx.draw(G.subgraph(get_triangles(G, 3)), with_labels=True) # Compare for yourself that those are the only triangles that node 3 is involved in. neighbors3 = G.neighbors(3) neighbors3.append(3) nx.draw(G.subgraph(neighbors3), with_labels=True) ###Output _____no_output_____ ###Markdown Friend Recommendation: Open TrianglesNow that we have some code that identifies closed triangles, we might want to see if we can do some friend recommendations by looking for open triangles.Open triangles are like those that we described earlier on - A knows B and B knows C, but C's relationship with A isn't captured in the graph. What are the two general scenarios for finding open triangles that a given node is involved in?1. The given node is the centre node.1. The given node is one of the termini nodes. ExerciseCan you write a function that identifies, for a given node, the other two nodes that it is involved with in an open triangle, if there is one?Note: For this exercise, only consider the case when the node of interest is the centre node.**Possible Implementation:** Check every pair of my neighbors, and if they are not connected to one another, then we are in an open triangle relationship. ###Code # Fill in your code here. def get_open_triangles(G, node): """ There are many ways to represent this. One may choose to represent only the nodes involved in an open triangle; this is not the approach taken here. Rather, we have a code that explicitly enumrates every open triangle present. """ open_triangle_nodes = [] neighbors = set(G.neighbors(node)) #for n in neighbors: for nbr1, nbr2 in itertools.combinations(neighbors, 2): # Check to see if there is an edge between the node's neighbors. # If there is an edge, then the given node is present in a triangle. if not G.has_edge(nbr1, nbr2): # We break because any triangle that is present automatically # satisfies the problem requirements. open_triangle_nodes.append([nbr1,node,nbr2]) return open_triangle_nodes # # Uncomment the following code if you want to draw out each of the triplets. nodes = get_open_triangles(G, 2) for i, triplet in enumerate(nodes): fig = plt.figure(i) nx.draw(G.subgraph(triplet), with_labels=True) print(get_open_triangles(G, 3)) len(get_open_triangles(G, 3)) ###Output [[1, 3, 67], [1, 3, 101], [1, 3, 9], [1, 3, 41], [1, 3, 42], [1, 3, 11], [1, 3, 112], [1, 3, 91], [67, 3, 101], [67, 3, 9], [67, 3, 41], [67, 3, 11], [67, 3, 112], [67, 3, 91], [101, 3, 9], [101, 3, 41], [101, 3, 42], [101, 3, 11], [101, 3, 112], [101, 3, 91], [9, 3, 42], [9, 3, 112], [9, 3, 91], [41, 3, 42], [41, 3, 11], [41, 3, 112], [41, 3, 91], [42, 3, 11], [42, 3, 112], [42, 3, 91], [11, 3, 112], [11, 3, 91], [112, 3, 91]] ###Markdown Triangle closure is also the core idea behind social networks' friend recommendation systems; of course, it's definitely more complicated than what we've implemented here. CliquesWe have figured out how to find triangles. Now, let's find out what **cliques** are present in the network. Recall: what is the definition of a clique?- NetworkX has a [clique-finding](https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.clique.find_cliques.html) algorithm implemented.- This algorithm finds all maximally-sized cliques for a given node.- Note that maximal cliques of size `n` include all cliques of `size < n` ###Code list(nx.find_cliques(G)) ###Output _____no_output_____ ###Markdown ExerciseThis should allow us to find all n-sized maximal cliques. Try writing a function `maximal_cliques_of_size(size, G)` that implements this. ###Code def maximal_cliqes_of_size(size, G): return ______________________ maximal_cliqes_of_size(2, G) ###Output _____no_output_____ ###Markdown Connected ComponentsFrom [Wikipedia](https://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29):> In graph theory, a connected component (or just component) of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph.NetworkX also implements a [function](https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.algorithms.components.connected.connected_component_subgraphs.html) that identifies connected component subgraphs.Remember how based on the Circos plot above, we had this hypothesis that the physician trust network may be divided into subgraphs. Let's check that, and see if we can redraw the Circos visualization. ###Code ccsubgraphs = list(nx.connected_component_subgraphs(G)) len(ccsubgraphs) ###Output _____no_output_____ ###Markdown ExercisePlay a bit with the Circos API. Can you colour the nodes by their subgraph identifier? ###Code # Start by labelling each node in the master graph G by some number # that represents the subgraph that contains the node. for i, g in enumerate(_____________): # Fill in code below. # Then, pass in a list of nodecolors that correspond to the node order. # Feel free to change the colours around! node_cmap = {0: 'red', 1:'blue', 2: 'green', 3:'yellow'} nodecolor = [__________________________________________] nodes = sorted(G.nodes()) edges = G.edges() edgeprops = dict(alpha=0.1) fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111) c = CircosPlot(nodes, edges, radius=10, ax=ax, fig=fig, edgeprops=edgeprops, nodecolor=nodecolor) c.draw() plt.savefig('images/physicians.png', dpi=300) ###Output _____no_output_____
EjerciciosSimplexDual/EjerciciosSimplex.ipynb
###Markdown Ejercicios ###Code import pandas as pd import numpy as np ###Output _____no_output_____ ###Markdown Simplex Problema 1a ###Code df_a1 = pd.DataFrame({'z': [1, 0, 0], 'x1': [-6, 2, 1], 'x2': [-8, 1, 3], 'x3': [-5, 1, 1], 'x4': [-9, 3, 2], 's1': [0, 1, 0], 's2': [0, 0, 1], 'RHS':[0, 5, 3]}, columns=['z','x1','x2','x3','x4','s1','s2','RHS'], index=['z', 's1', 's2']) df_a1 # Copia de trabajo wip1 = df_a1.copy() # Iteración 1 wip1.iloc[2] /= 2 wip1.iloc[0] += wip1.iloc[2] * 9 wip1.iloc[1] += wip1.iloc[2] * -3 # Cambia variables del pivote a = list(wip1.columns) a[4] = 's2' wip1.columns = a a = list(wip1.index) a[2] = 'x4' wip1.index = a # Show wip1 # Iteración 2 wip1.iloc[1] *= 2 wip1.iloc[0] += wip1.iloc[1] * 1.5 wip1.iloc[2] += wip1.iloc[1] * -0.5 # Cambia variables del pivote a = list(wip1.columns) a[1] = 's1' wip1.columns = a a = list(wip1.index) a[1] = 'x1' wip1.index = a # Show wip1 # Iteración 3 wip1.iloc[1] *= ((1/7) * -1) wip1.iloc[0] += wip1.iloc[1] * 5 wip1.iloc[2] += wip1.iloc[1] * -5 # Cambia variables del pivote a = list(wip1.columns) a[2] = 'x1' wip1.columns = a a = list(wip1.index) a[1] = 'x2' wip1.index = a # Show wip1 # Iteración 4 wip1.iloc[1] *= 7 wip1.iloc[0] += wip1.iloc[1] * (9/7) wip1.iloc[0] = np.around(wip1.iloc[0]) wip1.iloc[2] += wip1.iloc[1] * -(2/7) wip1.iloc[2] = np.around(wip1.iloc[2]) # Cambia variables del pivote a = list(wip1.columns) a[3] = 'x2' wip1.columns = a a = list(wip1.index) a[1] = 'x3' wip1.index = a # Show wip1 # Iteración 5 wip1.iloc[1] *= -1 wip1.iloc[0] += wip1.iloc[1] * 2 wip1.iloc[2] += wip1.iloc[1] * -1 # Cambia variables del pivote a = list(wip1.columns) a[1] = 'x3' wip1.columns = a a = list(wip1.index) a[1] = 's1' wip1.index = a # Show wip1 # Iteración 5 wip1.iloc[1] *= 1 wip1.iloc[0] += wip1.iloc[1] * 2 wip1.iloc[2] += wip1.iloc[1] * -1 # Cambia variables del pivote a = list(wip1.columns) a[1] = 'x3' wip1.columns = a a = list(wip1.index) a[1] = 's1' wip1.index = a # Show wip1 ###Output _____no_output_____ ###Markdown Loop Infinito ^ Problema 1b ###Code df_b1 = pd.DataFrame({'z': [1, 0, 0, 0], 'x1': [-2, 0, 1, 1], 'x2': [-3, 2, 1, 2], 'x3': [-4, 3, 2, 3], 's1': [0, 1, 0, 0], 's2': [0, 0, 1, 0], 's3': [0, 0, 0, 1], 'RHS':[0, 5, 4, 7]}, columns=['z','x1','x2','x3','s1','s2', 's3', 'RHS'], index=['z', 's1', 's2', 's3']) df_b1 wip2 = df_b1.copy() # Iteración 1 wip2.iloc[1] *= (1/3) wip2.iloc[0] += wip2.iloc[1] * 4 wip2.iloc[2] += wip2.iloc[1] * -2 wip2.iloc[3] += wip2.iloc[1] * -3 # Cambia variables del pivote a = list(wip2.columns) a[3] = 's1' wip2.columns = a a = list(wip2.index) a[1] = 'x3' wip2.index = a # Show wip2 # Iteración 2 wip2.iloc[2] *= 1 wip2.iloc[0] += wip2.iloc[2] * 2 wip2.iloc[3] += wip2.iloc[2] * -1 # Cambia variables del pivote a = list(wip2.columns) a[1] = 's2' wip2.columns = a a = list(wip2.index) a[2] = 'x1' wip2.index = a # Show wip2 # Iteración 3 wip2.iloc[1] *= (3/2) wip2.iloc[0] += wip2.iloc[1] * 1 wip2.iloc[0] = np.around(wip2.iloc[0], decimals=1) wip2.iloc[2] += wip2.iloc[1] * (1/3) wip2.iloc[2] = np.around(wip2.iloc[2], decimals=1) wip2.iloc[3] += wip2.iloc[1] * -(1/3) wip2.iloc[3] = np.around(wip2.iloc[3], decimals=1) # Cambia variables del pivote a = list(wip2.columns) a[2] = 'x3' wip2.columns = a a = list(wip2.index) a[1] = 'x2' wip2.index = a # Show wip2 ###Output _____no_output_____
exploring-nyc-film-permits/exploring-nyc-film-permits.ipynb
###Markdown Project 2 - Data Characterization About the data: The obtained data shows film permits granted for New York City. Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a street, or a park. I found this data through the suggestions for project 2 ideas on Blackboard. My story:Growing up I have watched a lot of American movies and TV shows. Many of these have shown New York City. After I came to the USA I myself visited many of the places in New York City (NYC) and visualized the movies and shows I had watched as a kid. I did not get to see an actual film shoot though. So, when I saw this data, the data scientist in me thought I should figure out when do movies actually shoot in NYC. Following questions came to my mind:1. Can this data tell me popular timing of day for film shoots? * The answer to the first question is that most popular time of day for shooting is between 5 AM and mid-day. * Theater "shoots" are an outlier when events per hour of day are analyzed and we see a lot of them seem to happen in hour "zero" or mid-night. However, this is not an issue from the perspective of analysis as this could be reasonable and not an anomaly. This is because a lot of theater shows start in the evening and can run upto mid-night. 2. Can this data tell me the popular day of the week when shooting activities occur? * Weekday-wise permit counts and the normalized value of the permit count show that weekends are outliers when shoots per day are considered. * We were able to conclude from the number of shoots per day that weekdays are fairly well balanced in matters of shooting activities.3. Can it tell me popular months of year for film shoots? * So, the answer to our third question is TV shoots happen in phases. Mostly in Fall months but some in Spring months as well. Movie shoots happen starting around Spring, peaking around summer and again a bit in the Fall.4. Winter in New York city is very beautiful due to all the snow but are the shooting really happening in the harsh winter conditions of NYC? * The graph for normalized value of total number of permits per month answers our fourth question that winter is really a bad time to shoot in New York City as the number of events go down but there still are a non-zero number of shooting activities happening. This is especially true for TV shows.5. I know some Bollywood movies have shot in Staten Island because of a large Indian community in that area but is it a popular location in general? * The graph of normalized value of total number of permits per borough and type of activity shows that Staten Island is NOT in-fact a popular shooting location.6. I like a lot of web series and watch Youtube stars like Casey Neistat who films in New York City. Given the popularity of Youtube in recent times are web shoots are rising in the city? * After filtering out some top "shooting" categories we were able to see a clear rising trend of WEB shoot activity in New York City!7. Which locations in New York City are popular for movie shoots? * WEST 48th STREET, New York City, New York is near Times Square. Intuitively this seems to be a reasonable location to be considered popular. Data properties and access information:* Download [link](https://data.cityofnewyork.us/api/views/tg4x-b46p/rows.csv?accessType=DOWNLOAD) for data source.* Data available through [NYC Open Data site](https://data.cityofnewyork.us/City-Government/Film-Permits/tg4x-b46p).* Downloaded file named: "Film_Permits.csv".* There is no cost to accessing this data.* Accessing this data does not require creation of an account.* Accessing this data does not violate any laws.* This data does not appear to have been previously analyzed based on a Google search.* A preliminary survey of the data indicates there are 40,682 rows, 14 columns, and the file size is 15.4 MB. ###Code !pip install geopy !pip install humanize !pip install folium import numpy as np import pandas as pd import time import datetime from datetime import datetime import calendar import chardet import missingno as msno import matplotlib import matplotlib.pyplot as plt import seaborn as sns from sklearn import preprocessing import os import random import re from geopy.geocoders import Nominatim import json import humanize import folium import warnings warnings.filterwarnings("ignore") start_time = time.time() print('Pandas',pd.__version__) print('Matplotlib',matplotlib.__version__) print('Seaborn',sns.__version__) print('File Size In MB : ',(os.path.getsize('Film_Permits.csv')/1048576),' MB') NYC = 'New York City' ###Output Collecting geopy Using cached https://files.pythonhosted.org/packages/75/3e/80bc987e1635ba9e7455b95e233b296c17f3d3bf3d4760fa67cdfc840e84/geopy-1.19.0-py2.py3-none-any.whl Collecting geographiclib<2,>=1.49 (from geopy) Installing collected packages: geographiclib, geopy Successfully installed geographiclib-1.49 geopy-1.19.0 Collecting humanize Installing collected packages: humanize Successfully installed humanize-0.5.1 Collecting folium Using cached https://files.pythonhosted.org/packages/43/77/0287320dc4fd86ae8847bab6c34b5ec370e836a79c7b0c16680a3d9fd770/folium-0.8.3-py2.py3-none-any.whl Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from folium) (1.11.0) Requirement already satisfied: requests in /opt/conda/lib/python3.6/site-packages (from folium) (2.20.1) Requirement already satisfied: numpy in /opt/conda/lib/python3.6/site-packages (from folium) (1.13.3) Requirement already satisfied: jinja2 in /opt/conda/lib/python3.6/site-packages (from folium) (2.10) Collecting branca>=0.3.0 (from folium) Using cached https://files.pythonhosted.org/packages/63/36/1c93318e9653f4e414a2e0c3b98fc898b4970e939afeedeee6075dd3b703/branca-0.3.1-py3-none-any.whl Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /opt/conda/lib/python3.6/site-packages (from requests->folium) (3.0.4) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.6/site-packages (from requests->folium) (2018.11.29) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /opt/conda/lib/python3.6/site-packages (from requests->folium) (1.23) Requirement already satisfied: idna<2.8,>=2.5 in /opt/conda/lib/python3.6/site-packages (from requests->folium) (2.7) Requirement already satisfied: MarkupSafe>=0.23 in /opt/conda/lib/python3.6/site-packages (from jinja2->folium) (1.1.0) Installing collected packages: branca, folium Successfully installed branca-0.3.1 folium-0.8.3 Pandas 0.23.4 Matplotlib 2.2.2 Seaborn 0.9.0 File Size In MB : 15.404823303222656 MB ###Markdown Exploring data**Encoding check for the input CSV file to ensure data is in the right format** ###Code with open('Film_Permits.csv','rb') as fraw: file_content = fraw.read() chardet.detect(file_content) ###Output _____no_output_____ ###Markdown **Character encoding of the CSV file is ascii and confidence level is 1(100%).**Exploring file contents from the CSV: ###Code !head -n 3 Film_Permits.csv ###Output EventID,EventType,StartDateTime,EndDateTime,EnteredOn,EventAgency,ParkingHeld,Borough,CommunityBoard(s),PolicePrecinct(s),Category,SubCategoryName,Country,ZipCode(s) 455604,Shooting Permit,12/11/2018 08:00:00 AM,12/11/2018 11:59:00 PM,12/07/2018 11:00:12 PM,"Mayor's Office of Film, Theatre & Broadcasting","STANHOPE STREET between WILSON AVENUE and MYRTLE AVENUE, WILSON AVENUE between MELROSE STREET and GEORGE STREET, MELROSE STREET between WILSON AVENUE and KNICKERBOCKER AVENUE, WILSON AVENUE between STOCKHOLM STREET and STANHOPE STREET",Brooklyn,4,83,Film,Feature,United States of America,"11221, 11237" 455593,Shooting Permit,12/11/2018 07:00:00 AM,12/11/2018 09:00:00 PM,12/07/2018 05:57:34 PM,"Mayor's Office of Film, Theatre & Broadcasting","STARR AVENUE between BORDEN AVENUE and VAN DAM STREET, REVIEW AVENUE between BORDEN AVENUE and VAN DAM STREET",Queens,2,108,Television,Episodic series,United States of America,11101 ###Markdown **Next, I will extract data from the CSV file and insert into a dataframe for processing** ###Code pd.options.display.max_rows = 40 start_time_before_load = time.time() film_permits_df = pd.read_csv("Film_Permits.csv") print('Time taken to load the data : ',time.time() - start_time_before_load,'seconds') film_permits_df.shape ###Output Time taken to load the data : 0.3617970943450928 seconds ###Markdown The csv/dataframe contains 40682 rows and 14 columnsLet us explore the data a bit using head(), tail(), info(), describe() ###Code film_permits_df.head() film_permits_df.tail() film_permits_df.info() film_permits_df.describe() film_permits_df.describe(include='all') film_permits_df.describe(include='object') ###Output _____no_output_____ ###Markdown **Next, I will explore the column metadata...*** What are the data types for the columns in our data?* How many unique entries are there in each column where type is object?* Below I will exlpore the first five rows of each column where type is object? * Why am I exploring unique entries for objects? * Because there could possibly be categorical data or datetime data in an object column. * After finishing the data exploration I will transform these object type columns with categorical data into 'category' type and object type columns with datetime data into 'datetime' type ###Code first_n_entries=5 print('Total rows in the dataframe:', film_permits_df.shape[0]) for col, col_type in film_permits_df.dtypes.iteritems(): if(col_type=='object'): print(col, 'has', film_permits_df[col].nunique(), 'unique entries') print('First', first_n_entries, 'entries are') print(film_permits_df[col][0:first_n_entries]) print('') ###Output Total rows in the dataframe: 40682 EventType has 4 unique entries First 5 entries are 0 Shooting Permit 1 Shooting Permit 2 Shooting Permit 3 Shooting Permit 4 Shooting Permit Name: EventType, dtype: object StartDateTime has 16151 unique entries First 5 entries are 0 12/11/2018 08:00:00 AM 1 12/11/2018 07:00:00 AM 2 12/11/2018 09:00:00 AM 3 12/10/2018 07:00:00 AM 4 12/11/2018 06:00:00 AM Name: StartDateTime, dtype: object EndDateTime has 19635 unique entries First 5 entries are 0 12/11/2018 11:59:00 PM 1 12/11/2018 09:00:00 PM 2 12/11/2018 11:00:00 PM 3 12/10/2018 08:00:00 PM 4 12/11/2018 11:00:00 PM Name: EndDateTime, dtype: object EnteredOn has 40470 unique entries First 5 entries are 0 12/07/2018 11:00:12 PM 1 12/07/2018 05:57:34 PM 2 12/07/2018 04:45:33 PM 3 12/07/2018 04:20:34 PM 4 12/07/2018 04:17:03 PM Name: EnteredOn, dtype: object EventAgency has 1 unique entries First 5 entries are 0 Mayor's Office of Film, Theatre & Broadcasting 1 Mayor's Office of Film, Theatre & Broadcasting 2 Mayor's Office of Film, Theatre & Broadcasting 3 Mayor's Office of Film, Theatre & Broadcasting 4 Mayor's Office of Film, Theatre & Broadcasting Name: EventAgency, dtype: object ParkingHeld has 24944 unique entries First 5 entries are 0 STANHOPE STREET between WILSON AVENUE and MYRT... 1 STARR AVENUE between BORDEN AVENUE and VAN DAM... 2 WEST 13 STREET between 7 AVENUE and 6 AVENUE... 3 NORTH HENRY STREET between GREENPOINT AVENUE a... 4 FULTON STREET between GREENWICH STREET and CHU... Name: ParkingHeld, dtype: object Borough has 5 unique entries First 5 entries are 0 Brooklyn 1 Queens 2 Brooklyn 3 Brooklyn 4 Manhattan Name: Borough, dtype: object CommunityBoard(s) has 668 unique entries First 5 entries are 0 4 1 2 2 1, 2 3 1 4 1 Name: CommunityBoard(s), dtype: object PolicePrecinct(s) has 1923 unique entries First 5 entries are 0 83 1 108 2 6, 90 3 94 4 1 Name: PolicePrecinct(s), dtype: object Category has 9 unique entries First 5 entries are 0 Film 1 Television 2 Television 3 Television 4 Commercial Name: Category, dtype: object SubCategoryName has 29 unique entries First 5 entries are 0 Feature 1 Episodic series 2 Episodic series 3 Episodic series 4 Commercial Name: SubCategoryName, dtype: object Country has 9 unique entries First 5 entries are 0 United States of America 1 United States of America 2 United States of America 3 United States of America 4 United States of America Name: Country, dtype: object ZipCode(s) has 3528 unique entries First 5 entries are 0 11221, 11237 1 11101 2 10011, 11211, 11249 3 11222 4 10048 Name: ZipCode(s), dtype: object ###Markdown * In the data set, there are Thirteen object type columns: EventType, StartDateTime, EndDateTime, EnteredOn, EventAgency, ParkingHeld, Borough, CommunityBoard(s), PolicePrecinct(s), Category, SubCategoryName, Country and ZipCode(s) Data Type Transformation* Now, I will count the frequency of these unique values per column and print frequency of top five most frequent elements.* I will check if a column with object data type has categorical data or not?* I will check if a column with object data type has datetime data or not?* If and when necessary, I will perform some transformations on the data. ###Code for this_column in film_permits_df.columns: print('====', this_column, 'has', film_permits_df[this_column].nunique(), 'unique entries ====') print(film_permits_df[this_column].value_counts().head(5)) print('') ###Output ==== EventID has 40682 unique entries ==== 66602 1 126487 1 125565 1 50657 1 179741 1 Name: EventID, dtype: int64 ==== EventType has 4 unique entries ==== Shooting Permit 35774 Theater Load in and Load Outs 3380 Rigging Permit 1028 DCAS Prep/Shoot/Wrap Permit 500 Name: EventType, dtype: int64 ==== StartDateTime has 16151 unique entries ==== 11/13/2018 06:00:00 AM 24 12/01/2014 06:00:00 AM 22 10/06/2014 06:00:00 AM 20 11/19/2018 06:00:00 AM 20 10/24/2018 06:00:00 AM 20 Name: StartDateTime, dtype: int64 ==== EndDateTime has 19635 unique entries ==== 08/04/2014 09:00:00 PM 14 09/22/2015 10:00:00 PM 14 08/31/2015 09:00:00 PM 14 11/18/2015 10:00:00 PM 14 10/05/2015 09:00:00 PM 13 Name: EndDateTime, dtype: int64 ==== EnteredOn has 40470 unique entries ==== 01/30/2018 12:43:07 PM 6 06/12/2012 06:58:12 PM 5 05/28/2018 09:52:30 AM 5 10/03/2018 01:48:16 PM 4 07/03/2018 12:45:41 PM 4 Name: EnteredOn, dtype: int64 ==== EventAgency has 1 unique entries ==== Mayor's Office of Film, Theatre & Broadcasting 40682 Name: EventAgency, dtype: int64 ==== ParkingHeld has 24944 unique entries ==== WEST 48 STREET between 6 AVENUE and 7 AVENUE 820 AMSTERDAM AVENUE between WEST 73 STREET and WEST 75 STREET, BROADWAY between WEST 74 STREET and WEST 75 STREET, WEST 75 STREET between AMSTERDAM AVENUE and BROADWAY 412 WEST 55 STREET between 11 AVENUE and 12 AVENUE 382 NORTH HENRY STREET between GREENPOINT AVENUE and MESEROLE AVENUE 259 WEST 44 STREET between BROADWAY and 6 AVENUE 224 Name: ParkingHeld, dtype: int64 ==== Borough has 5 unique entries ==== Manhattan 20537 Brooklyn 12263 Queens 6277 Bronx 1100 Staten Island 505 Name: Borough, dtype: int64 ==== CommunityBoard(s) has 668 unique entries ==== 1 8827 2 6824 5 4739 4 2887 7 1615 Name: CommunityBoard(s), dtype: int64 ==== PolicePrecinct(s) has 1923 unique entries ==== 94 4228 18 3337 108 2809 14 1939 1 1529 Name: PolicePrecinct(s), dtype: int64 ==== Category has 9 unique entries ==== Television 21475 Film 7322 Theater 3735 Commercial 3471 Still Photography 2627 Name: Category, dtype: int64 ==== SubCategoryName has 29 unique entries ==== Episodic series 11750 Feature 5810 Not Applicable 5808 Cable-episodic 4315 Theater 3735 Name: SubCategoryName, dtype: int64 ==== Country has 9 unique entries ==== United States of America 40635 United Kingdom 10 Japan 8 France 7 Panama 7 Name: Country, dtype: int64 ==== ZipCode(s) has 3528 unique entries ==== 11222 3686 11101 2563 10036 1723 10019 1607 10023 993 Name: ZipCode(s), dtype: int64 ###Markdown * After exploring the data I observed that EventType, EventAgency, Borough, Category, SubCategoryName and Country columns contain categorical data.* I will transform these columns into 'category' data type.* Also StartDateTime, EndDateTime, EnteredOn columns contain datetime data.* I will transform the above three columns into 'datetime' data type. ###Code """ Next, I transform the object data type for EventType to 'category' data type """ film_permits_df['EventType'] = film_permits_df['EventType'].astype('category') film_permits_df['EventType'].dtype """ Next, I transform the object data type for EventAgency to 'category' data type """ film_permits_df['EventAgency'] = film_permits_df['EventAgency'].astype('category') film_permits_df['EventAgency'].dtype """ Next, I transform the object data type for Borough to 'category' data type """ film_permits_df['Borough'] = film_permits_df['Borough'].astype('category') film_permits_df['Borough'].dtype """ Next, I transform the object data type for Category to 'category' data type """ film_permits_df['Category'] = film_permits_df['Category'].astype('category') film_permits_df['Category'].dtype """ Next, I transform the object data type for SubCategoryName to 'category' data type """ film_permits_df['SubCategoryName'] = film_permits_df['SubCategoryName'].astype('category') film_permits_df['SubCategoryName'].dtype """ Next, I transform the object data type for Country to 'category' data type """ film_permits_df['Country'] = film_permits_df['Country'].astype('category') film_permits_df['Country'].dtype def get_date(d1): return datetime.strptime(d1,"%m/%d/%Y %I:%M:%S %p").strftime('%m/%d/%Y %H:%M:%S') """ Next, I transform the object data type for StartDateTime to 'datetime' data type """ film_permits_df['StartDateTime']=film_permits_df['StartDateTime'].astype(str) film_permits_df['StartDateTime']=film_permits_df['StartDateTime'].apply(get_date) film_permits_df['StartDateTime']=pd.to_datetime( film_permits_df['StartDateTime'], format='%m/%d/%Y %H:%M:%S') """ Next, I transform the object data type for EndDateTime to 'datetime' data type """ film_permits_df['EndDateTime']=film_permits_df['EndDateTime'].astype(str) film_permits_df['EndDateTime']=film_permits_df['EndDateTime'].apply(get_date) film_permits_df['EndDateTime']=pd.to_datetime( film_permits_df['EndDateTime'], format='%m/%d/%Y %H:%M:%S') """ Next, I transform the object data type for EnteredOn to 'datetime' data type """ film_permits_df['EnteredOn']=film_permits_df['EnteredOn'].astype(str) film_permits_df['EnteredOn']=film_permits_df['EnteredOn'].apply(get_date) film_permits_df['EnteredOn']=pd.to_datetime( film_permits_df['EnteredOn'], format='%m/%d/%Y %H:%M:%S') ###Output _____no_output_____ ###Markdown Let us look at the data types of columns after transformation ###Code film_permits_df.dtypes ###Output _____no_output_____ ###Markdown Now the dataframe has...* Four object type columns: ParkingHeld, CommunityBoard(s), PolicePrecinct(s) and ZipCode(s)* Three datetime Type columns: StartDateTime, EndDateTime and EnteredOn* Six categorical columns: EventType, EventAgency, Borough, Category, SubCategoryName and Country* One numerical columns: EventID with data type int64 Data clean up, Missing data detection and Fill up Black = filled; white = empty ###Code """ Searching for missing data in sample set of 300 randomly selected data points """ _=msno.matrix(film_permits_df.sample(300)) plt.xlabel('Features in data',fontsize=16) plt.ylabel('Gaps in data',fontsize=16) plt.show() """ Searching for missing data in sample set of 3000 randomly selected data points """ _=msno.matrix(film_permits_df.sample(3000)) plt.xlabel('Features in data',fontsize=16) plt.ylabel('Gaps in data',fontsize=16) plt.show() ###Output _____no_output_____ ###Markdown Data Clean upThe data looks fairly clean to me from the graphs above but jsut to make sure, I will perform the following tasks:* Drop all rows and columns where entire row or column is NaN.* Drop columns with duplicate data or with 50% missing value.* Drop columns where all rows have the same value. * Such columns have no data variety and nothing useful to contribute to my data analysis. ###Code print('Shape of data frame before Cleanup :',film_permits_df.shape) print('Drop all rows and columns where entire row or column is NaN.') film_permits_df.dropna(how='all',axis=0,inplace=True) # rows film_permits_df.dropna(how='all',axis=1,inplace=True) # columns print('Drop columns with duplicate data or with 50% missing value.') half_count = len(film_permits_df)*.5 film_permits_df = film_permits_df.dropna(thresh=half_count, axis=1) film_permits_df = film_permits_df.drop_duplicates() print('Drop columns where all rows have the same value.') for this_column in film_permits_df.columns: if (film_permits_df[this_column].nunique()==1): unique_entry=film_permits_df.iloc[0][this_column] print('Drop column ',this_column,' where all rows have the same value : ', unique_entry) film_permits_df.drop([this_column],axis=1,inplace=True) print('Shape of data frame after cleanup :',film_permits_df.shape) ###Output Shape of data frame before Cleanup : (40682, 14) Drop all rows and columns where entire row or column is NaN. Drop columns with duplicate data or with 50% missing value. Drop columns where all rows have the same value. Drop column EventAgency where all rows have the same value : Mayor's Office of Film, Theatre & Broadcasting Shape of data frame after cleanup : (40682, 13) ###Markdown Through the above process I was able to conclude that in my dataset...* There are no rows and columns where entire row or column is NaN.* There are no columns with duplicate data and with 50% missing value.* There is one column, EventAgency where all rows have the same value. - Hence, I will be dropping the column EventAgency as it has no data variety and nothing useful to contribute to my data analysis.. Missing data detection and fill up using random sampling in a meaningful way **That is get data from the same borough** ###Code film_permits_df.head().T """ Counting null data per column """ film_permits_df.isnull().sum() """ Percentage of missing data per column """ (film_permits_df.isnull().sum()/len(film_permits_df)).sort_values(ascending=False) ###Output _____no_output_____ ###Markdown We were able to find that ZipCode(s), PolicePrecinct(s), CommunityBoard(s) columns have some missing data **Filling up missing data through sampling of data in same boroughs** ###Code print("Data index for missing ZipCode(s)",list(film_permits_df[film_permits_df['ZipCode(s)'].isnull()].index)) print("Data index for missing CommunityBoard(s)",list(film_permits_df[film_permits_df['CommunityBoard(s)'].isnull()].index)) print("Data index for missing PolicePrecinct(s)",list(film_permits_df[film_permits_df['PolicePrecinct(s)'].isnull()].index)) ''' Viewing the missing data ''' film_permits_df.iloc[[1138, 6038, 17714, 20833, 23054, 26856, 39837]] ''' Boroguh based sampling for ZipCode(s), PolicePrecinct(s), CommunityBoard(s) data ''' zipcode_smapling_dict={} communityboard_smapling_dict={} policeprecinc_smapling_dict={} null_index=list(film_permits_df[film_permits_df['ZipCode(s)'].isnull()].index) print(null_index) for indx in null_index: print('index :',indx) this_borough=film_permits_df.iloc[indx]['Borough'] print(this_borough) sample_zipcode=random.choice(list(film_permits_df[(film_permits_df['Borough']==this_borough) & (film_permits_df['ZipCode(s)'].notnull())]['ZipCode(s)'])) sample_communityboard=random.choice(list(film_permits_df[(film_permits_df['Borough']==this_borough) & (film_permits_df['CommunityBoard(s)'].notnull())]['CommunityBoard(s)'])) sample_policeprecinct=random.choice(list(film_permits_df[(film_permits_df['Borough']==this_borough) & (film_permits_df['PolicePrecinct(s)'].notnull())]['PolicePrecinct(s)'])) zipcode_smapling_dict[indx]=sample_zipcode communityboard_smapling_dict[indx]=sample_communityboard policeprecinc_smapling_dict[indx]=sample_policeprecinct print(zipcode_smapling_dict) print(communityboard_smapling_dict) print(policeprecinc_smapling_dict) ''' Filling up the missing values with sampled data ''' film_permits_df['ZipCode(s)'].fillna(zipcode_smapling_dict,inplace=True) film_permits_df['CommunityBoard(s)'].fillna(communityboard_smapling_dict,inplace=True) film_permits_df['PolicePrecinct(s)'].fillna(policeprecinc_smapling_dict,inplace=True) ''' Checking filled up data ''' film_permits_df.iloc[[1138, 6038, 17714, 20833, 23054, 26856, 39837]] film_permits_df.isnull().sum() ###Output _____no_output_____ ###Markdown **Missing data have been filled up successfully for ZipCode(s), PolicePrecinct(s), CommunityBoard(s) columns** Start of data analysis - Visualization and Exploratory Data Analysis***... for Film Permit data in New York City***Let's ask our data some questions about film permits in New York City.* How many types of "shooting" activities are happening in New York City? * What kind of "shooting" activities are these? ###Code print("There are",film_permits_df['Category'].nunique(), "kinds of \"shooting\" activities happening in",NYC) for shoot_category in film_permits_df['Category'].unique(): print(shoot_category) ###Output There are 9 kinds of "shooting" activities happening in New York City Film Television Commercial WEB Theater Still Photography Documentary Student Music Video ###Markdown * How many permits for each category of "shooting" activity have been granted in New York City? ###Code film_permits_df['Category'].value_counts() plt.figure(figsize=(15,10)) sns.countplot(x='Category',data=film_permits_df,order=film_permits_df['Category'].value_counts().index) plt.title("Number of permits granted in each category of \"shooting\" activity in New York",fontsize=20) plt.xlabel("Category",fontsize=16) plt.ylabel("Number of permits",fontsize=16) plt.show() ###Output _____no_output_____ ###Markdown * How many kinds of events are being granted permits in New York City? * What are these event categories? ###Code print("There are",film_permits_df['EventType'].nunique(), "kinds of events that are being granted permits in",NYC) for permit_category in film_permits_df['EventType'].unique(): print(permit_category) ###Output There are 4 kinds of events that are being granted permits in New York City Shooting Permit Rigging Permit Theater Load in and Load Outs DCAS Prep/Shoot/Wrap Permit ###Markdown * How many permits have been granted per category of event? ###Code film_permits_df['EventType'].value_counts() plt.figure(figsize=(15,10)) sns.countplot(x='EventType',data=film_permits_df,order=film_permits_df['EventType'].value_counts().index) plt.title("Number of permits granted per event type in New York",fontsize=20) plt.xlabel("Event type",fontsize=16) plt.ylabel("Number of permits",fontsize=16) plt.show() ###Output _____no_output_____ ###Markdown * Do all boroughs in New York City see some "shooting" activity? * Which boroughs are shoot permits being granted for? ###Code if film_permits_df['Borough'].nunique() == 5: print("Yes, shoot permits are being granted for:") else: print("No, shoot permits are being granted for:") for boroughs in film_permits_df['Borough'].unique(): print(boroughs) ###Output Yes, shoot permits are being granted for: Brooklyn Queens Manhattan Bronx Staten Island ###Markdown * How many "shooting" activities are happening in each borough? ###Code film_permits_df['Borough'].value_counts() ###Output _____no_output_____ ###Markdown I assume that a lot of foreign movies are shot in New York City. Its not just movies from Hollywood/USA. * Is that assumption true? * Which countries are shooting movies in New York? ###Code if film_permits_df['Country'].nunique() == 1 and film_permits_df['Country'].unique() == 'United States of America': print("No, it is not true. Only US based shoots are happening in",NYC) else: print("Yes, it is true. All the following countries come to shoot in",NYC) for countries in film_permits_df['Country'].unique(): print(countries) ###Output Yes, it is true. All the following countries come to shoot in New York City United States of America France Australia Canada United Kingdom Panama Netherlands Japan Germany ###Markdown How many shoots are happening per country? ###Code film_permits_df['Country'].value_counts() ###Output _____no_output_____ ###Markdown **Method defined to compute normalized value for a series**Formula for normalization [used](https://www.statisticshowto.datasciencecentral.com/normalized/) is as follows:$\mathbf{X_{new}} = {X - X_{min} \over X_{max} - X_{min}}$ ###Code ''' This method will return the value normalized between 0 and 1, for a number in a series given the number, maximum value and minimum value in the series ''' def compute_norm(number, max_val, min_val): return (number - min_val)/(max_val - min_val) ''' This method will take a series and return a df with the normalized values for that series. Created as we will reuse this a number of times. ''' def get_normalized_value_df(series_to_process, category_col_name, count_col_name): column_list = [] column_list.append(category_col_name) column_list.append(count_col_name) series_to_df = pd.DataFrame(list(series_to_process.items()), columns=column_list) normalized_value_list = [] for num in np.array(series_to_df[count_col_name]): normalized_value_list.append(compute_norm(number=float(num), max_val=float(series_to_process.nlargest(1)), min_val=float(series_to_process.nsmallest(1)) ) ) series_to_df['norm_'+count_col_name] = normalized_value_list return series_to_df ###Output _____no_output_____ ###Markdown Processing date time to extract year, month, hour, day of event ###Code ''' Computing the number of shooting permits per year ''' film_permits_df['Year'] = film_permits_df['StartDateTime'].apply(lambda time: time.year) film_permits_df['Month'] = (film_permits_df['StartDateTime'].dt.month).apply(lambda x : calendar.month_abbr[x]) film_permits_df['Hour'] = film_permits_df['StartDateTime'].apply(lambda time: time.hour) film_permits_df['Year'].value_counts() ''' Computing the number of shooting permits per month ''' months=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] film_permits_df['Year'] = film_permits_df['StartDateTime'].apply(lambda time: time.year) film_permits_df['Hour'] = film_permits_df['StartDateTime'].apply(lambda time: time.hour) film_permits_df['Month'] = pd.Categorical( film_permits_df['Month'], categories=months, ordered=True) film_permits_df['Month'].value_counts() ''' Computing the number of shooting permits per weekday ''' weekdays=['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','Sunday'] film_permits_df["Weekday"] = film_permits_df['StartDateTime'].dt.weekday_name film_permits_df['Weekday'] = pd.Categorical( film_permits_df['Weekday'], categories=['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday', 'Sunday'], ordered=True) film_permits_df['Weekday'].value_counts() ###Output _____no_output_____ ###Markdown **Extracting the top five category of shooting a activity for processing** ###Code top_category = film_permits_df['Category'].value_counts().head(5).index.values top_category top_category_df = film_permits_df[(film_permits_df['Category']=='Television')|(film_permits_df['Category']=='Film') |(film_permits_df['Category']=='Theater')|(film_permits_df['Category']=='Commercial') |(film_permits_df['Category']=='Still Photography')] top_category_pivot_df=top_category_df.pivot_table(values='EventID', index='Month', columns='Year', aggfunc=np.size) ###Output _____no_output_____ ###Markdown Next, we move onto the important questions we wanted to answer:First on list, we have:* "Can this data tell me popular timing of day for film shoots?"* "Can this data tell me the popular day of the week when shooting activities occur?"* To answer the first question, let's find out the hour of events for top five category of shooting activity ###Code top_category_hour_pivot = top_category_df.pivot_table(values='EventID', index='Category', columns=top_category_df['StartDateTime'].dt.hour, aggfunc=np.size) top_category_df.groupby([top_category_df['StartDateTime'].dt.hour, 'Category',])['EventID'].count().unstack().plot(marker='o',figsize=(15,10)) plt.title('Number of permits at hours of the day for top five category',fontsize=20) plt.ylabel('Number of permits',fontsize=16) plt.xlabel('Hours of the day',fontsize=16) plt.xticks(np.arange(24)) plt.show() ''' Computing the normalized value of total number of shooting permits per hour of day We are computing normalized values to determine the outlier hours for shooting activities. ''' hourly_permits_df = get_normalized_value_df( series_to_process=film_permits_df['StartDateTime'].dt.hour.value_counts(), category_col_name='hour',count_col_name='permit_count') hourly_permits_df.plot.bar(x='hour', y='norm_permit_count', figsize=(15,10)) plt.setp(plt.gca().get_xticklabels(), rotation=90, fontsize=12) plt.setp(plt.gca().get_yticklabels(), fontsize=12) plt.xlabel('Hour of day',fontsize=16) plt.ylabel('Normalized number of permits',fontsize=16) plt.title('Normalized value of total permits per hour of a day',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown From the above two graphs we can see that:* **The answer to the first question is that most popular time of day for shooting is between 5 AM and mid-day.*** **The outlier for hour zero is due to a lot of theater shows ending at mid-night. See purple line above.** * To answer the second question, let's find out the weekly trend for permits acquired per weekday in top five category of shooting activities ###Code top_category_df.groupby(['Weekday','Category',])['EventID'].count().unstack().plot(marker='o',figsize=(15,10)) plt.title('Weekly trend for permits acquired in top-five category of shooting activities',fontsize=20) plt.xticks(np.arange(7),weekdays) plt.xlabel('Week Day',fontsize=16) plt.ylabel('Number of permits',fontsize=16) plt.show() ''' Computing the normalized value of number of shooting permits per weekday We are computing normalized values to detect if weekends are outliers for number of shooting activities. ''' weekday_df = get_normalized_value_df(series_to_process=film_permits_df['Weekday'].value_counts(), category_col_name='weekday',count_col_name='permit_count') weekday_df.plot.bar(x='weekday', y='norm_permit_count', figsize=(15,10)) plt.setp(plt.gca().get_xticklabels(), rotation=90, fontsize=12) plt.setp(plt.gca().get_yticklabels(), fontsize=12) plt.xlabel('Week Day',fontsize=16) plt.ylabel('Normalized of permits',fontsize=16) plt.title('Normalized value of total number of permits per weekday',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown * **From the above two graphs of weekday-wise number of permits and the normalized value of number of permits, we can now answer the second question.*** **We can conclude that apart from the weekend every day is fairly well balanced in matters of shooting activities**. Next, we look at our data to find out: * "Can it tell me popular months of year for film shoots?"* "Winter in New York city is very beautiful due to all the snow but are the shoots really happening in the harsh winter conditions of NYC?"* To answer the third question, let's find out the monthly trend for permits acquired per month in top five category of shooting activities ###Code top_category_df.groupby(['Month','Category',])['EventID'].count().unstack().plot(marker='o',figsize=(15,10)) plt.title('Number of permits per month for top five category of shooting activity',fontsize=20) plt.xticks(np.arange(12),months) plt.xlabel('Month',fontsize=16) plt.ylabel('Number of permits',fontsize=16) plt.show() ''' Computing the normalized value of total number of shooting permits per month We are computing normalized values to detect if Winter months are outliers for number of shooting activities. ''' month_df = get_normalized_value_df(series_to_process=film_permits_df['Month'].value_counts(), category_col_name='month',count_col_name='permit_count') month_df.plot.bar(x='month', y='norm_permit_count', figsize=(15,10)) plt.setp(plt.gca().get_xticklabels(), rotation=90, fontsize=12) plt.setp(plt.gca().get_yticklabels(), fontsize=12) plt.xlabel('Month',fontsize=16) plt.ylabel('Normalized number of permits',fontsize=16) plt.title('Normalized value of total permits per month',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown From the above two graphs of month-wise number of shooting permits in each category and normalized value of total shooting permits per month we can see that:* Winter is generally a bad time for shooting.* From my knowledge "of watching too many TV shows", I know that they generally follow a fall shooting schedule with a fall finale and then resume shooting in spring with a season finale. This schedule is clearly visible in this graph if you look at the red line.* New York winters are cold. Naturally it would logically and logistically be easy to film movies during summer. We can see that pattern when we look at the orange line.* Fall is still a good enough time to shoot outdoors in New York. More so because of fall colors that brings out the [beauty of nature](https://www.timeout.com/newyork/things-to-do/where-to-see-the-best-fall-foliage-in-nyc) in New York.* **So, the answer to our third question is TV shoots happen in phases. Mostly in Fall but some in Spring. Movie shoots happen starting around Spring, peaking around summer and again a bit in the Fall.*** **The graph for normalized value of total permits per month answers our fourth question that winter is really a bad time to shoot in New York City as the number of events go down but there still are a non-zero number of shooting activities happening. This is especially true for TV shows.** From the permit data I would like to next find out the answer to: "I know some Bollywood movies have shot in Staten Island because of a large Indian community in that area but is it a popular location in general?" ###Code ''' Computing the normalized value of number of shooting permits per borough and event combo We are computing normalized values to detect if Staten Island is an outlier for number of shooting activities. ''' borough_df = get_normalized_value_df( series_to_process=film_permits_df.groupby(['Borough','EventType'])['EventID'].count(), category_col_name='borough_and_event', count_col_name='permit_count') borough_df.plot.bar(x='borough_and_event', y='norm_permit_count', figsize=(15,10)) plt.setp(plt.gca().get_xticklabels(), rotation=90, fontsize=12) plt.setp(plt.gca().get_yticklabels(), fontsize=12) plt.xlabel('Borough and Event combination',fontsize=16) plt.ylabel('Normalized number of permits',fontsize=16) plt.title('Normalized value of total permits per borough and event combination',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown * From the graph above we can clearly see that shooting permits are most common in Manhattan and Brooklyn. * Staten Island has the lowest number among the five boroughs.* **Which means that we have our answered the fifth question. Staten Island is NOT in-fact a popular shooting location.** Next, we take a look at some of the less popular events that acquire shooting permits in New York City. We would like to find out the answer to: "I like a lot of web series and watch Youtube stars like Casey Neistat who films in New York City. Given the popularity of Youtube in recent times are web shoots are rising in the city?"" * If we look at year wise number of permits for each category of shooting activity, it is difficult to find out web shooting activities. As it is sort of an outlier when compared to movies or TV shoots. ###Code film_permits_df.groupby(['Year','Category'])['EventID'].count().unstack().plot(kind='bar',figsize=(15,10)) plt.title('Year wise number of permits for each category of shooting activity',fontsize=20) plt.setp(plt.gca().get_xticklabels(), rotation=0, fontsize=12) plt.xlabel('Year',fontsize=16) plt.ylabel('Number of permits',fontsize=16) plt.show() ''' Computing the normalized value of number of shooting permits per borough and event combo ''' year_permit_df = get_normalized_value_df( series_to_process=film_permits_df.groupby(['Category','Year'])['EventID'].count(), category_col_name='category_year', count_col_name='permit_count') year_permit_df.plot.bar(x='category_year', y='norm_permit_count', figsize=(15,10)) plt.setp(plt.gca().get_xticklabels(), rotation=90, fontsize=12) plt.setp(plt.gca().get_yticklabels(), fontsize=12) plt.xlabel('Category and Year',fontsize=16) plt.ylabel('Normalized number of permits',fontsize=16) plt.title('Normalized value of total permits per category over the years',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown * So we look at the data that is "NOT IN" the popular shooting activity category. ###Code web_df = film_permits_df[~film_permits_df['Category'].isin(top_category)] web_df.groupby(['Year','Category'])['EventID'].count().unstack().plot(kind='bar',figsize=(15,10)) plt.title('Year wise number of permits for each low popularity shooting activity category',fontsize=20) plt.setp(plt.gca().get_xticklabels(), rotation=0, fontsize=12) plt.xlabel('Year',fontsize=16) plt.ylabel('Number of permits',fontsize=16) plt.show() ###Output _____no_output_____ ###Markdown * No further normalization is required in this case, as we are just looking for an up or down trend and not detecting outliers or comparing numerical values.* **From the above graph we can see a clear rising trend of WEB shoot activity in New York City!** Lastly, we seek the answer for "Which locations in New York City are popular for movie shoots?"We determine this using the areas where parking was held for a shooting. Assumption being people don't want to walk too far to shoot their movies/shows.**Top ten parking held locations for shooting activities** Remove multiple whitespaces learned from this [SO link](https://stackoverflow.com/questions/2077897/substitute-multiple-whitespace-with-single-whitespace-in-python)Using [GeoPy](https://github.com/geopy/geopy) to extract lat long from street address ###Code geolocator = Nominatim() street_address_list = [] lat_long_list = [] parking_series = film_permits_df['ParkingHeld'].value_counts().head(10) parking_df = pd.DataFrame(list(parking_series.items()), columns=['ParkingHeld','permit_count']) for street_info in parking_df['ParkingHeld']: street_address = street_info.split('between')[0].strip() found_numbers = re.search(r'\d+', street_address) if found_numbers is not None: indices = list(found_numbers.span()) street_number = street_address[indices[0]:indices[1]] street_parts = street_address.split(street_number) street_address = street_parts[0] + humanize.ordinal(street_number) + street_parts[1] + ', New York City, New York' else: street_address = street_address + ', New York City, New York' location_dict = geolocator.geocode(street_address).raw latitude = float(location_dict['lat']) longitude = float(location_dict['lon']) street_address_list.append(street_address) lat_long_list.append([latitude,longitude]) new_df = pd.DataFrame({'ParkingHeld':street_address_list}) parking_df.update(new_df) parking_df['lat_long'] = lat_long_list parking_df parking_df.plot.bar(x='ParkingHeld', y='permit_count', figsize=(15,10)) plt.setp(plt.gca().get_xticklabels(), rotation=90, fontsize=12) plt.setp(plt.gca().get_yticklabels(), fontsize=12) plt.xlabel('Top ten shooting locations',fontsize=16) plt.ylabel('Number of permits',fontsize=16) plt.title('Number of permits for top ten shooting locations',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown Using the [Folium library](https://python-visualization.github.io/folium/quickstart.html) let's take a look at where the popular shooting locations are in New York City! ###Code folium_map = folium.Map(location=parking_df.iloc[0]['lat_long'], zoom_start=11, tiles='Stamen Terrain') for curr_loc in list(parking_df.index): folium.Marker(location=parking_df.iloc[curr_loc]['lat_long'], popup=parking_df.iloc[curr_loc]['ParkingHeld'] ).add_to(folium_map) folium_map.add_child(folium.ClickForMarker(popup='Waypoint')) folium_map ###Output _____no_output_____ ###Markdown * The top 10 filming locations can be seen in the graph and map above.* **WEST 48th STREET, New York City, New York** is near Times Square. Intuitively this seems to be a reasonable location to be considered popular. ###Code print('Total Time taken:',time.time() - start_time,'seconds') ###Output Total Time taken: 23.470895767211914 seconds
notebooks/by_coin/polkadot_notebook_from_CSV.ipynb
###Markdown Load and inspect data ###Code dot_df = pd.read_csv(Path('../../resources/prices/coin_Polkadot.csv'), index_col='SNo') dot_df dot_df['Date'] = pd.to_datetime(dot_df['Date']).dt.date dot_df['Date'] = pd.to_datetime(dot_df['Date']) dot_df['Spread'] = dot_df.High - dot_df.Low dot_df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 191 entries, 1 to 191 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Name 191 non-null object 1 Symbol 191 non-null object 2 Date 191 non-null datetime64[ns] 3 High 191 non-null float64 4 Low 191 non-null float64 5 Open 191 non-null float64 6 Close 191 non-null float64 7 Volume 191 non-null float64 8 Marketcap 191 non-null float64 9 Spread 191 non-null float64 dtypes: datetime64[ns](1), float64(7), object(2) memory usage: 16.4+ KB ###Markdown Plot the closing value of Polkadot over time ###Code import matplotlib.dates as mdates fig, ax = plt.subplots(figsize=(12,8)) # sns.lineplot(y = dot_df.Close.values, x=dot_df.Date_mpl.values, alpha=0.8, color=color[3]) sns.lineplot(y = dot_df.Close.values, x=dot_df.Date.values, alpha=0.8, color=color[3]) ax.xaxis.set_major_locator(mdates.AutoDateLocator()) ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y.%m.%d')) # fig.autofmt_xdate() plt.xlabel('Date', fontsize=12) plt.ylabel('Price in USD', fontsize=12) plt.title("Closing price distribution of DOT", fontsize=15) plt.show() ###Output _____no_output_____ ###Markdown Candlestick chart ###Code import matplotlib.ticker as mticker # from matplotlib.finance import candlestick_ohlc import mplfinance as mpf dot_df['Date_mpl'] = dot_df['Date'].apply(lambda x: mdates.date2num(x)) temp_dot_df = dot_df.copy(deep=False) temp_dot_df = temp_dot_df.set_index(['Date']) temp_dot_df = temp_dot_df.drop(['Name', 'Symbol', 'Marketcap','Spread'], axis=1) temp_dot_df mpf.plot(temp_dot_df.loc['2020-9-1':], type='candle', mav=(5,10), volume=True) ###Output _____no_output_____ ###Markdown Price prediction ###Code from fbprophet import Prophet INPUT_FILE = "coin_Polkadot.csv" price_predict_df = pd.read_csv("../../resources/prices/" + INPUT_FILE, parse_dates=['Date'], usecols=["Date", "Close"]) price_predict_df.columns = ["ds", "y"] price_predict_df = price_predict_df[price_predict_df['ds']>'2020-9-1'] m = Prophet(changepoint_prior_scale=.7) m.fit(price_predict_df); future = m.make_future_dataframe(periods=7) forecast = m.predict(future) forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail() m.plot(forecast) m.plot_components(forecast) ###Output _____no_output_____
Week 1/Programming Assignment - Predicting sentiment from product reviews.ipynb
###Markdown Predicting sentiment from product reviews ###Code #Libraries Import import json import string import numpy as np import pandas as pd pd.set_option("Chained_Assignment",None) from sklearn.linear_model import LogisticRegression from sklearn.feature_extraction.text import CountVectorizer #read dataframe dataframe=pd.read_csv("amazon_baby.csv") dataframe.head() dataframe.info() #contains null values for name, reviews #replace null values with empty string dataframe = dataframe.fillna({'review':''}) #remove punctuations def remove_punctuation(text): translator = str.maketrans('', '', string.punctuation) return text.translate(translator) dataframe["review_without_punctuation"] = dataframe['review'].apply(lambda x : remove_punctuation(x)) dataframe=dataframe[["name","review_without_punctuation","rating"]] #ignore all reviews with rating = 3, since they tend to have a neutral sentiment dataframe=dataframe[dataframe["rating"]!=3].reset_index(drop=True) # reviews with a rating of 4 or higher to be positive reviews, while the ones with rating of 2 #or lower are negative. For the sentiment column, we use +1 for the positive class label and -1 #for the negative class label dataframe['sentiment'] = dataframe['rating'].apply(lambda rating : +1 if rating > 3 else -1) #test-train data with open('module-2-assignment-test-idx.json') as test_data_file: test_data_idx = json.load(test_data_file) with open('module-2-assignment-train-idx.json') as train_data_file: train_data_idx = json.load(train_data_file) train_data = dataframe.iloc[train_data_idx] test_data = dataframe.iloc[test_data_idx] #Build the word count vector for each review_without_punctuations vectorizer = CountVectorizer(token_pattern=r'\b\w+\b') train_matrix = vectorizer.fit_transform(train_data['review_without_punctuation']) test_matrix = vectorizer.transform(test_data['review_without_punctuation']) #Logistic model fit sentiment_model = LogisticRegression(solver='liblinear',n_jobs=1) sentiment_model.fit(train_matrix, train_data['sentiment']) ###Output _____no_output_____ ###Markdown QUIZ Predicting sentiment from product reviews Question 1How many weights are greater than or equal to 0? __Ans__: ###Code np.sum(sentiment_model.coef_ >= 0) ###Output _____no_output_____ ###Markdown Question 2Of the three data points in sample_test_data, which one has the lowest probability of being classified as a positive review? ###Code sample_test_data = test_data.iloc[10:13] sample_test_matrix = vectorizer.transform(sample_test_data['review_without_punctuation']) print(sentiment_model.classes_) print(sentiment_model.predict_proba(sample_test_matrix)) ###Output [-1 1] [[3.67713366e-03 9.96322866e-01] [9.59664165e-01 4.03358355e-02] [9.99970284e-01 2.97164132e-05]] ###Markdown __Ans__: Third Question 3Which of the following products are represented in the 20 most positive reviews? __Ans__: Third ###Code test_data["postive_review_probability"]=[x[1] for x in np.asarray(sentiment_model.predict_proba(test_matrix))] top_20=list(test_data.sort_values("postive_review_probability",ascending=False)[:20]["name"]) options_list=["Snuza Portable Baby Movement Monitor","MamaDoo Kids Foldable Play Yard Mattress Topper, Blue","Britax Decathlon Convertible Car Seat, Tiffany","Safety 1st Exchangeable Tip 3 in 1 Thermometer"] [x for x in options_list if x in top_20] ###Output _____no_output_____ ###Markdown Question 4Which of the following products are represented in the 20 most negative reviews? __Ans__: ###Code test_data["postive_review_probability"]=[x[0] for x in np.asarray(sentiment_model.predict_proba(test_matrix))] top_20=list(test_data.sort_values("postive_review_probability",ascending=False)[:20]["name"]) options_list=["The First Years True Choice P400 Premium Digital Monitor, 2 Parent Unit","JP Lizzy Chocolate Ice Classic Tote Set","Peg-Perego Tatamia High Chair, White Latte","Safety 1st High-Def Digital Monitor"] [x for x in options_list if x in top_20] ###Output _____no_output_____ ###Markdown Question 5What is the accuracy of the sentiment_model on the test_data? Round your answer to 2 decimal places (e.g. 0.76) __Ans__: ###Code def get_classification_accuracy(model, data, true_labels): pred_y=model.predict(data) correct=np.sum(pred_y==true_labels) accuracy=round(correct/len(true_labels),2) return accuracy get_classification_accuracy(sentiment_model,test_matrix,test_data["sentiment"]) ###Output _____no_output_____ ###Markdown Question 6Does a higher accuracy value on the training_data always imply that the classifier is better? __Ans__: No, higher accuracy on training data does not necessarily imply that the classifier is better. Question 7Consider the coefficients of simple_model. There should be 21 of them, an intercept term + one for each word in significant_words.How many of the 20 coefficients (corresponding to the 20 significant_words and excluding the intercept term) are positive for the simple_model? __Ans__: ###Code significant_words = ['love', 'great', 'easy', 'old', 'little', 'perfect', 'loves', 'well', 'able', 'car', 'broke', 'less', 'even', 'waste', 'disappointed', 'work', 'product', 'money', 'would', 'return'] vectorizer_word_subset = CountVectorizer(vocabulary=significant_words) # limit to 20 significant words train_matrix_sub = vectorizer_word_subset.fit_transform(train_data['review_without_punctuation']) test_matrix_sub = vectorizer_word_subset.transform(test_data['review_without_punctuation']) #Logistic model fit simple_model = LogisticRegression(solver='liblinear',n_jobs=1) simple_model.fit(train_matrix_sub, train_data['sentiment']) simple_model_coefficient = pd.DataFrame({'word':significant_words,'simple_model_coefficient':simple_model.coef_.flatten()}).sort_values(['simple_model_coefficient'], ascending=False).reset_index(drop=True) len(simple_model_coefficient[simple_model_coefficient["simple_model_coefficient"]>0]) ###Output _____no_output_____ ###Markdown Question 8Are the positive words in the simple_model also positive words in the sentiment_model? __Ans__: No ###Code simple_model_coefficient=simple_model_coefficient.set_index("word",drop=True) sentiment_model_coefficient = pd.DataFrame({'word':list(vectorizer.vocabulary_),'sentimental_model_coefficient':sentiment_model.coef_.flatten()}).sort_values(['sentimental_model_coefficient'], ascending=False).reset_index(drop=True) sentiment_model_coefficient=sentiment_model_coefficient[sentiment_model_coefficient["word"].isin(significant_words)].set_index("word",drop=True) simple_model_coefficient.join(sentiment_model_coefficient,on="word",how="left") ###Output _____no_output_____ ###Markdown Question 9Which model (sentiment_model or simple_model) has higher accuracy on the TRAINING set? __Ans__: Sentiment Model ###Code print("Sentiment Model: ",get_classification_accuracy(sentiment_model,train_matrix,train_data["sentiment"])) print("Simple Model: ",get_classification_accuracy(simple_model,train_matrix_sub,train_data["sentiment"])) ###Output Sentiment Model: 0.97 Simple Model: 0.87 ###Markdown Question 10Which model (sentiment_model or simple_model) has higher accuracy on the TEST set? __Ans__: Sentiment Model ###Code print("Sentiment Model: ",get_classification_accuracy(sentiment_model,test_matrix,test_data["sentiment"])) print("Simple Model: ",get_classification_accuracy(simple_model,test_matrix_sub,test_data["sentiment"])) ###Output Sentiment Model: 0.93 Simple Model: 0.87 ###Markdown Question 11Enter the accuracy of the majority class classifier model on the test_data. Round your answer to two decimal places (e.g. 0.76). __Ans__: ###Code #Find Majority Class freq=pd.crosstab(test_data["sentiment"],columns=["count"]).reset_index() freq #Majority class=1 baseline_model=round(freq[freq["sentiment"]==1]["count"].values[0]/freq["count"].sum(),2) print("Baseline Model: ", baseline_model) ###Output Baseline Model: 0.84
benchmarks/profet/emukit/notebooks/Emukit-tutorial-bayesian-optimization-context-variables.ipynb
###Markdown Bayesian optimization with context variables In this notebook we are going to see how to use Emukit to solve optimization problems in which certain variables are fixed during the optimization phase. These are called context variables [[1](-references)]. This is useful when some of the variables in the optimization are controllable/known factors. And example is the optimization of a the movement of a robot under conditions of the environment change (but the change is known). ###Code from emukit.test_functions import branin_function from emukit.core import ParameterSpace, ContinuousParameter, DiscreteParameter from emukit.core.initial_designs import RandomDesign from GPy.models import GPRegression from emukit.model_wrappers import GPyModelWrapper from emukit.bayesian_optimization.acquisitions import ExpectedImprovement from emukit.bayesian_optimization.loops import BayesianOptimizationLoop from emukit.core.loop import FixedIterationsStoppingCondition ###Output _____no_output_____ ###Markdown Loading the problem and the loop ###Code f, parameter_space = branin_function() ###Output _____no_output_____ ###Markdown Now we define the domain of the function to optimize. We build the model: ###Code design = RandomDesign(parameter_space) # Collect random points X = design.get_samples(10) Y = f(X) model_gpy = GPRegression(X,Y) # Train and wrap the model in Emukit model_emukit = GPyModelWrapper(model_gpy) ###Output _____no_output_____ ###Markdown And prepare the optimization object to run the loop. ###Code expected_improvement = ExpectedImprovement(model = model_emukit) bayesopt_loop = BayesianOptimizationLoop(model = model_emukit, space = parameter_space, acquisition = expected_improvement, batch_size = 1) ###Output _____no_output_____ ###Markdown Now, we set the number of iterations to run to 10. ###Code max_iter = 10 ###Output _____no_output_____ ###Markdown Running the optimization by setting a context variable To set a context, we just need to create a dictionary with the variables to fix and pass it to the Bayesian optimization object when running the optimization. Note that, every time we run new iterations we can set other variables to be the context. We run 3 sequences of 10 iterations each with different values of the context. ###Code bayesopt_loop.run_loop(f, max_iter, context={'x1':0.3}) # we set x1 as the context variable bayesopt_loop.run_loop(f, max_iter, context={'x2':0.1}) # we set x2 as the context variable bayesopt_loop.run_loop(f, max_iter) # no context ###Output Optimization restart 1/1, f = 55.82239092951151 Optimization restart 1/1, f = 61.3846273395993 Optimization restart 1/1, f = 65.9026092044098 Optimization restart 1/1, f = 70.10888667806952 Optimization restart 1/1, f = 74.1328973094729 Optimization restart 1/1, f = 77.99175645392145 Optimization restart 1/1, f = 52.29992606115588 Optimization restart 1/1, f = 57.2135370696718 Optimization restart 1/1, f = 61.71269586013616 Optimization restart 1/1, f = 64.61711212283623 Optimization restart 1/1, f = 67.32871572150273 Optimization restart 1/1, f = 67.32871572150273 Optimization restart 1/1, f = 72.46948949054092 Optimization restart 1/1, f = 76.3396222448238 Optimization restart 1/1, f = 80.13694597576568 Optimization restart 1/1, f = 82.78050118466332 Optimization restart 1/1, f = 85.53554907845636 Optimization restart 1/1, f = 87.66997139826 Optimization restart 1/1, f = 82.51513223264337 Optimization restart 1/1, f = 74.56925204657252 Optimization restart 1/1, f = 66.47734698335717 Optimization restart 1/1, f = 58.330733958274834 Optimization restart 1/1, f = 58.330733958274834 Optimization restart 1/1, f = 64.60067656071124 Optimization restart 1/1, f = 70.20437602983576 Optimization restart 1/1, f = 75.80428915860006 Optimization restart 1/1, f = 80.95909118096986 Optimization restart 1/1, f = 85.034596272839 Optimization restart 1/1, f = 89.12568615232692 Optimization restart 1/1, f = 92.23693057747008 Optimization restart 1/1, f = 97.40863200244975 Optimization restart 1/1, f = 102.46737266911367 Optimization restart 1/1, f = 106.5758265632924 ###Markdown We can now inspect the collected points. ###Code bayesopt_loop.loop_state.X ###Output _____no_output_____
examples/Tutorial_cytosim.ipynb
###Markdown Simularium Conversion Tutorial : CytoSim Data ###Code from IPython.display import Image import numpy as np from simulariumio.cytosim import CytosimConverter, CytosimData, CytosimObjectInfo from simulariumio import MetaData, DisplayData, DISPLAY_TYPE, ModelMetaData, InputFileData ###Output _____no_output_____ ###Markdown This notebook provides example python code for converting your own simulation trajectories into the format consumed by the Simularium Viewer. It creates a .simularium JSON file which you can drag and drop onto the viewer like this: ![title](img/drag_drop.gif) *** Prepare your spatial data The Simularium `CytosimConverter` consumes spatiotemporal data from CytoSim. We're working to improve performance for the Cytosim converter, and also working with the Cytosim authors to add the ability to output Simularium files directly from Cytosim. For now, if you find the conversion process is too slow, you can try to record less data from Cytosim, for example record at a larger timestep by adjusting `nb_frames` in the `run` block of your Cytosim `config.cym` file (https://gitlab.com/f.nedelec/cytosim/-/blob/8feaf45297c3f5180d24889909e3a5251a7adb1a/doc/tutorials/tuto_introduction.md).To see how to generate the Cytosim output .txt files you need, check Cytosim documentation here: https://gitlab.com/f.nedelec/cytosim/-/blob/8feaf45297c3f5180d24889909e3a5251a7adb1a/doc/sim/report.md* for Fibers, use the command `./report fiber:points > fiber_points.txt`, which will create `fiber_points.txt`* for Solids, use the command `./report solid > solids.txt`, which will create `solids.txt`* for Singles, use the command `./report single:position > singles.txt`, which will create `singles.txt`* for Couples, use the command `./report couple:state > couples.txt`, which will create `couples.txt` * in some versions of Cytosim, state is not a reporting option. In this case you can use `./report couple:[name of your couple] > couples_[name of your couple].txt` and provide a filepath for each type of couple in your data. If this is necessary, you should also check the position XYZ columns in your `couples.txt` file and override **position_indices** if they aren't at \[2, 3, 4\]The converter requires a `CytosimData` object as parameter ([see documentation](https://allen-cell-animated.github.io/simulariumio/simulariumio.cytosim.htmlsimulariumio.cytosim.cytosim_data.CytosimData)).If you'd like to specify PDB or OBJ files or color for rendering an agent type, add a `DisplayData` object for that agent type, as shown below ([see documentation](https://allen-cell-animated.github.io/simulariumio/simulariumio.data_objects.htmlmodule-simulariumio.data_objects.display_data)). ###Code box_size = 2. example_data = CytosimData( meta_data=MetaData( box_size=np.array([box_size, box_size, box_size]), scale_factor=100.0, trajectory_title="Some parameter set", model_meta_data=ModelMetaData( title="Some agent-based model", version="8.1", authors="A Modeler", description=( "An agent-based model run with some parameter set" ), doi="10.1016/j.bpj.2016.02.002", source_code_url="https://github.com/allen-cell-animated/simulariumio", source_code_license_url="https://github.com/allen-cell-animated/simulariumio/blob/main/LICENSE", input_data_url="https://allencell.org/path/to/native/engine/input/files", raw_output_data_url="https://allencell.org/path/to/native/engine/output/files", ), ), object_info={ "fibers" : CytosimObjectInfo( cytosim_file=InputFileData( file_path="../simulariumio/tests/data/cytosim/aster_pull3D_couples_actin_solid/fiber_points.txt", ), display_data={ 1 : DisplayData( name="microtubule" ), 2 : DisplayData( name="actin" ) } ), "solids" : CytosimObjectInfo( cytosim_file=InputFileData( file_path="../simulariumio/tests/data/cytosim/aster_pull3D_couples_actin_solid/solids.txt", ), display_data={ 1 : DisplayData( name="aster", radius=0.1 ), 2 : DisplayData( name="vesicle", radius=0.1 ) } ), "singles" : CytosimObjectInfo( cytosim_file=InputFileData( file_path="../simulariumio/tests/data/cytosim/aster_pull3D_couples_actin_solid/singles.txt", ), display_data={ 1 : DisplayData( name="dynein", radius=0.01, display_type=DISPLAY_TYPE.PDB, url="https://files.rcsb.org/download/3VKH.pdb", color="#f4ac1a", ), 2 : DisplayData( name="kinesin", radius=0.01, display_type=DISPLAY_TYPE.PDB, url="https://files.rcsb.org/download/3KIN.pdb", color="#0080ff", ) } ), "couples" : CytosimObjectInfo( cytosim_file=InputFileData( file_path="../simulariumio/tests/data/cytosim/aster_pull3D_couples_actin_solid/couples.txt", ), display_data={ 1 : DisplayData( name="motor complex", radius=0.02, color="#bf95d4", ) }, position_indices=[3, 4, 5] ) }, ) ###Output _____no_output_____ ###Markdown Convert and save as .simularium JSON file Once your data is shaped like in the `example_data` object, you can use the converter to generate the file at the given path: ###Code CytosimConverter(example_data).write_JSON("example_cytosim") ###Output Reading Cytosim Data ------------- Writing JSON ------------- Converting Trajectory Data ------------- saved to example_cytosim.simularium
Lesson2/Exercise21.ipynb
###Markdown Exercise 10 : Stop words removal Remove stop words (she, on, the, am, is, not) from the sentence: She sells seashells on the seashore ###Code from nltk import word_tokenize sentence = "She sells seashells on the seashore" custom_stop_word_list = ['she', 'on', 'the', 'am', 'is', 'not'] ' '.join([word for word in word_tokenize(sentence) if word.lower() not in custom_stop_word_list]) ###Output _____no_output_____
housing_1.ipynb
###Markdown ###Code from keras.datasets import boston_housing (train_data, train_targets), (test_data, test_targets) = boston_housing.load_data() train_data.shape test_data.shape train_targets from keras import models from keras import layers def build_model(): model = models.Sequential() model.add(layers.Dense(64, activation='relu',input_shape=(train_data.shape[1],))) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(1)) model.compile(optimizer='rmsprop', loss='mse', metrics=['mae']) return model import numpy as np k = 4 num_val_samples = len(train_data) // k num_epochs = 100 all_scores = [] for i in range(k): print('processing fold #', i) val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples] val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples] partial_train_data = np.concatenate([train_data[:i * num_val_samples],train_data[(i + 1) * num_val_samples:]],axis=0) partial_train_targets = np.concatenate([train_targets[:i * num_val_samples],train_targets[(i + 1) * num_val_samples:]],axis=0) model = build_model() model.fit(partial_train_data, partial_train_targets,epochs=num_epochs, batch_size=1, verbose=0) val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0) all_scores.append(val_mae) all_scores np.mean(all_scores) average_mae_history = [np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)] num_epochs = 100 all_mae_histories = [] for i in range(k): print('processing fold #', i) val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples] val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples] partial_train_data = np.concatenate( [train_data[:i * num_val_samples], train_data[(i + 1) * num_val_samples:]], axis=0) partial_train_targets = np.concatenate( [train_targets[:i * num_val_samples], train_targets[(i + 1) * num_val_samples:]], axis=0) model = build_model() history = model.fit(partial_train_data, partial_train_targets,validation_data=(val_data, val_targets),epochs=num_epochs, batch_size=1, verbose=0) mae_history = history.history['val_mean_absolute_error'] all_mae_histories.append(mae_history) average_mae_history = [np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)] import matplotlib.pyplot as plt plt.plot(range(1, len(average_mae_history) + 1), average_mae_history) plt.xlabel('Epochs') plt.ylabel('Validation MAE') plt.show() def smooth_curve(points, factor=0.9): smoothed_points = [] for point in points: if smoothed_points: previous = smoothed_points[-1] smoothed_points.append(previous * factor + point * (1 - factor)) else: smoothed_points.append(point) return smoothed_points smooth_mae_history = smooth_curve(average_mae_history[10:]) plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history) plt.xlabel('Epochs') plt.ylabel('Validation MAE') plt.show() ###Output _____no_output_____
docs/circuit-examples/qubit-couplers/TwoTransmonsDirectCoupling.ipynb
###Markdown Direct Coupler (transmon-transmon) ###Code %load_ext autoreload %autoreload 2 import qiskit_metal as metal from qiskit_metal import designs, draw from qiskit_metal import MetalGUI, Dict, Headings import pyEPR as epr ###Output _____no_output_____ ###Markdown Create the design in MetalSetup a design of a given dimension. Dimensions will be respected in the design rendering. Note that the design size extends from the origin into the first quadrant. ###Code design = designs.DesignPlanar({}, True) design.chips.main.size['size_x'] = '2mm' design.chips.main.size['size_y'] = '2mm' gui = MetalGUI(design) ###Output _____no_output_____ ###Markdown Create two transmons with one readout resonator and move it to the center of the chip previously defined. ###Code from qiskit_metal.qlibrary.qubits.transmon_pocket import TransmonPocket from qiskit_metal.qlibrary.interconnects.straight_path import RouteStraight # Just FYI, RoutePathFinder is another QComponent that could have been used instead of RouteStraight. # Be aware of the options for TransmonPocket TransmonPocket.get_template_options(design) RouteStraight.get_template_options(design) q1 = TransmonPocket(design, 'Q1', options = dict( pad_width = '425 um', pocket_height = '650um', connection_pads=dict( readout = dict(loc_W=+1,loc_H=+1, pad_width='200um') ))) q2 = TransmonPocket(design, 'Q2', options = dict( pos_x = '1.0 mm', pad_width = '425 um', pocket_height = '650um', connection_pads=dict( readout = dict(loc_W=-1,loc_H=+1, pad_width='200um') ))) bus = RouteStraight(design, 'coupler', Dict( pin_inputs=Dict( start_pin=Dict(component='Q1', pin='readout'), end_pin=Dict(component='Q2', pin='readout')), )) gui.rebuild() gui.autoscale() # Get a list of all the qcomponents in QDesign and then zoom on them. all_component_names = design.components.keys() gui.zoom_on_components(all_component_names) #Save screenshot as a .png formatted file. gui.screenshot() # Screenshot the canvas only as a .png formatted file. gui.figure.savefig('shot.png') from IPython.display import Image, display _disp_ops = dict(width=500) display(Image('shot.png', **_disp_ops)) # Closing the Qiskit Metal GUI gui.main_window.close() ###Output _____no_output_____
Assignment1/Assignment_1b.ipynb
###Markdown Scale the image by the factor of 2 ###Code def nearestNeighborInterpolation(np_image: np.ndarray, new_size: int) -> np.ndarray: """ Nearest neighbor interpolation. :param np_image: numpy array of image :param new_size: new size of image :return: nearest neighbor interpolated image """ new_image = np.zeros((new_size, new_size), dtype=np.uint8) for i in range(new_size): for j in range(new_size): new_image[i][j] = np_image[int(i/new_size*np_image.shape[0])][int(j/new_size*np_image.shape[1])] return new_image cameraman_2x = nearestNeighborInterpolation(cameraman_img, cameraman_img.shape[0]*2) plt.imshow(cameraman_2x) ###Output _____no_output_____ ###Markdown Rotate the Image ###Code def rotateImageBy90(np_image: np.ndarray) -> np.ndarray: """ Rotate an image by 90 degrees. :param np_image: numpy array of image :return: rotated image """ rotated_image = np.zeros((np_image.shape[1], np_image.shape[0]), dtype=np.uint8) for i in range(np_image.shape[1]): for j in range(np_image.shape[0]): rotated_image[i][j] = np_image[j][np_image.shape[1]-1-i] return rotated_image def rotateImage(np_image: np.ndarray, angle: int) -> np.ndarray: """ Rotate an image by a given angle. :param np_image: numpy array of image :param angle: angle to rotate by multiples of 90 degrees :return: rotated image """ stage = angle//90 new_image = np_image.copy() while stage > 0: new_image = rotateImageBy90(new_image) stage -= 1 return new_image ###Output _____no_output_____ ###Markdown Rotate by 90 degrees ###Code cameraman_90 = rotateImage(cameraman_img, 90) plt.imshow(cameraman_90) ###Output _____no_output_____ ###Markdown Rotate by 180 degrees ###Code cameraman_180 = rotateImage(cameraman_img, 180) plt.imshow(cameraman_180) ###Output _____no_output_____ ###Markdown Horizontal shear ###Code def shearImage(np_image: np.ndarray) -> np.ndarray: """ Shear an image. :param np_image: numpy array of image :return: sheared image """ fact = 10 new_image = np.zeros((np_image.shape[0], np_image.shape[1]), dtype=np.uint8) for i in range(np_image.shape[0]): for j in range(np_image.shape[1]): nj = j+int(i*fact/45) if nj < np_image.shape[0]: new_image[i][j] = np_image[i][nj] return new_image cameraman_shear = shearImage(cameraman_img) plt.imshow(cameraman_shear) ###Output _____no_output_____
main/.ipynb_checkpoints/TFIDF-checkpoint.ipynb
###Markdown Wine Points Prediction **Note:** a sample is being used due to the kernel running out of memory due to the jupyter notebook kernel running out of memory and dying when performing analysis otherwise as a result predictions depend on the sample that is given as it is obtained randomly. Furthermore these predictions vary with $\pm1\%$ ###Code wine_df = pd.read_csv("wine.csv") str_cols = ['description', 'price', 'title', 'variety', 'country', 'designation', 'province', 'winery'] reviews = wine_df.sample(20000)[['points'] + str_cols].reset_index() reviews = reviews.drop(['index'], axis=1) reviews.head() ###Output _____no_output_____ ###Markdown We first have to change features that we are going to use from categorical to numerical varialbes. This is done in order to give the features meaning when performing different forms of analysis on them in order to predict the points given to a bottle of wine ###Code # assign numerical values to string columns factorized_wine = reviews[str_cols].drop(['description'], axis=1).copy() for col in str_cols[2:]: factorized_wine[col] = pd.factorize(reviews[col])[0] factorized_wine.head() ###Output _____no_output_____ ###Markdown Now we assign the variables we just factorized along with the price of the wine to be our X values and our y value will be what we are trying to predict, which in this case are the points for a bottle of wine. ###Code X = factorized_wine.to_numpy('int64') y = reviews['points'].values X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) ###Output _____no_output_____ ###Markdown Below we perform several different formst of prediction to see which one produces the best result. We then need to determine how accurate this algorithm is given the estimates returned from the random forest regression. We do this by using `score()` which returns the coefficient of determination of the prediction ($r^2$). In other words it is the observed y variation that can be explained by the and by the regression model. We also compute the residual mean squared error of the model (rmse). linear regression ###Code from sklearn import linear_model model = linear_model.LinearRegression() model.fit(X_train, y_train) pred = model.predict(X_test) print('r2 score:', model.score(X_test,y_test)) print('rmse score:', mean_squared_error(y_test, pred, squared=False)) ###Output r2 score: 0.025621093791445948 rmse score: 3.004001678134892 ###Markdown as you can see this isnt the best prediction model so lets try some other methods and see what we get linear discriminant analysis ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis lda_model = LinearDiscriminantAnalysis() lda_model.fit(X_train, y_train) pred = lda_model.predict(X_test) print('r2 score:', lda_model.score(X_test,y_test)) print('rmse score:', mean_squared_error(y_test, pred, squared=False)) ###Output r2 score: 0.132 rmse score: 3.1166648841349627 ###Markdown The results from this method are not good either so onto the next one classification tree ###Code from sklearn import tree dt_model = tree.DecisionTreeClassifier() dt_model.fit(X_train, y_train) pred = dt_model.predict(X_test) print('r2 score:', dt_model.score(X_test,y_test)) print('rmse score:', mean_squared_error(y_test, pred, squared=False)) ###Output r2 score: 0.1468 rmse score: 3.2819506394825626 ###Markdown The methods that we have done prior as well as this one are getting use nowhere and are showing very little signs of improvement so lets pivot to a different direction and try to predict the points based off of the description of the wine. Incorporating description ###Code reviews.head() ###Output _____no_output_____ ###Markdown Because we are focusing on the description (review) of the wine here is an example of one ###Code reviews['description'][5] ###Output _____no_output_____ ###Markdown We remove punctuation and other special characters and convert everything to lower case as it is not significat that words be capitalized. ###Code descriptions = [] for descrip in reviews['description']: line = re.sub(r'\W', ' ', str(descrip)) line = line.lower() descriptions.append(line) len(descriptions) ###Output _____no_output_____ ###Markdown Here we use `TfidfVectorizer`, in order to understand what it is what term frequency-inverse document frequency (TF_IDT) is must be explained first. TF-IDF is a measure that evaluates the relevancy that a word has for a document inside a collection of other documents. Furthermore TF-IDF can be defined as the following:$ \text{Term Frequency (TF)} = \frac{\text{Frequency of a word}}{\text{Total number of words in document}} $$ \text{Inverse Document Frequency (IDF)} = \log{\frac{\text{Total number of documents}}{\text{Number of documents that contain the word}}} $$ \text{TF-IDF} = \text{TF} \cdot \text{IDF} $In turn what `TfidfVectorizer` gives us is a list of feature lists that we can use as estimators for prediction. The parameters for `TfidfVectorizer` are max_features, max_df, and stop_words. max_features tells us to only look at the top n features of the total documentmax_df causes the vectorizer to ignore terms that have a document frequency strictly higher than the given threshold. In our case because a float is its value we ignore words that appear in more that 80% of documentsstop_words allows us to pass in a set of stop words. Stop words are words that add little to no meaning to a sentence. This includes words such as i, our, him, and her. Folling this we fit and transform the data then we xplit it into training and testing data ###Code y = reviews['points'].values vec = TfidfVectorizer(max_features=2500, min_df=7, max_df=0.8, stop_words=stopwords.words('english')) X = vec.fit_transform(descriptions).toarray() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 12) ###Output _____no_output_____ ###Markdown Now that we've split the data we use `RandomForestRegressor()` to make our prediciton given that its a random forest algorithm it takes the average of the decision trees that were created and used as estimates. ###Code rfr = RandomForestRegressor() rfr.fit(X_train, y_train) pred = rfr.predict(X_test) ###Output _____no_output_____ ###Markdown Now we check to see how good our model is at predicting the points for a bottle of wine ###Code print('r2 score:', rfr.score(X_test, y_test)) print('rmse score:', mean_squared_error(y_test, pred, squared=False)) cvs = cross_val_score(rfr, X_test, y_test, cv=10) cvs.mean() ###Output _____no_output_____ ###Markdown This is solely based off the description of the wine. As you can see this is a large improvement in both the score and rmse for any sort of prediction that was done with any of the methods performed above. However, it is still not the best for several reasons. The first being the $r^2$ score, or how well our model is at making predictions. There is still a large portion of the data that is not being accurately predicted. The other issue pertains to when the model does fail at making the prediction. given that the rmse score is very high this can be interpreted as when we do fail we fail rather spectacualary. However, given that the context of this problem is making a prediction for determining arbitrary integer point values for bottles of wine, failing spectaculary is not necesarilly what is occuring. The rmse value tells use that with each incorrect prediction we are about 2.1 points off. However, it is still less than ideal.Below we see if we can improve upon these shortcomings. Combining features Next we combine the features that were obtained from `TfidfVectorizer` with the features that we just factorized in there respective rows. ###Code wine_X = factorized_wine.to_numpy('int64') X = np.concatenate((wine_X,X),axis=1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 12) rfr_fac = RandomForestRegressor() rfr_fac.fit(X_train, y_train) fac_pred = rfr_fac.predict(X_test) ###Output _____no_output_____ ###Markdown Next we perform the same actions as above to determine the accuracy of the prediction. That is we use `score()` and perform a 10 fold cross validation and then take the mean of the scores. ###Code print('r2 score:', rfr_fac.score(X_test, y_test)) print('rmse score:', mean_squared_error(y_test, fac_pred, squared=False)) fac_cvs = cross_val_score(rfr_fac, X_test, y_test, cv=10) fac_cvs.mean() ###Output _____no_output_____
C) RoadMap 3 - Torch Main 3 - Linear Algebraic Operations.ipynb
###Markdown RoadMap 3 - Linear Algebraic Operations 1. torch.addbmm - Performs a batch matrix-matrix product of matrices stored in batch1 and batch2, with a reduced add step (all matrix multiplications get accumulated along the first dimension). mat is added to the final result. 2. torch.addmm - Performs a matrix multiplication of the matrices mat1 and mat2. The matrix mat is added to the final result. 3. torch.addmv - Performs a matrix-vector product of the matrix mat and the vector vec. The vector tensor is added to the final result. 4. torch.addr - Performs the outer-product of vectors vec1 and vec2 and adds it to the matrix mat. 5. torch.bmm - Performs a batch matrix-matrix product of matrices stored in batch1 and batch2. 6. torch.eig - Computes the eigenvalues and eigenvectors of a real square matrix. 7. torch.ger - Outer product of vec1 and vec2. If vec1 is a vector of size n and vec2 is a vector of size m, then out must be a matrix of size (n×m). 8. torch.inverse - Takes the inverse of the square matrix input. 9.1 torch.det - Calculates determinant of a 2D square tensor. 9.2 torch.logdet - Calculates log-determinant of a 2D square tensor 10.1 torch.matmul - Matrix product of two tensors. 10.2 torch.mm - Performs a matrix multiplication of the matrices mat1 and mat2. 11. torch.mv - Performs a matrix-vector product of the matrix mat and the vector vec 12. torch.pinverse - Calculates the pseudo-inverse (also known as the Moore-Penrose inverse) of a 2D tensor. 13. torch.cholesky - Computes the Cholesky decomposition of a symmetric positive-definite matrix A. 14. torch.qr - Computes the QR decomposition of a matrix input, and returns matrices Q and R such that input=QR, with Q being an orthogonal matrix and R being an upper triangular matrix. 15. torch.svd - U, S, V = torch.svd(A) returns the singular value decomposition of a real matrix A of size (n x m) such that A=US(V.t) ###Code import os import sys import torch import numpy as np import torch.nn as nn from torchvision import transforms, datasets from PIL import Image import cv2 import matplotlib.pyplot as plt import torchvision # FUNCTIONAL modules - Implementing each module as functions import torch.nn.functional as F ###Output _____no_output_____ ###Markdown Extra Blog Resources1. https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f232. https://towardsdatascience.com/linear-algebra-essentials-with-numpy-part-1-af4a867ac5ca3. https://towardsdatascience.com/linear-algebra-for-deep-learning-506c19c0d6fa Matrix-matrix product batch1. torch.addbmm - Performs a batch matrix-matrix product of matrices stored in batch1 and batch2, with a reduced add step (all matrix multiplications get accumulated along the first dimension). mat is added to the final result. - beta (Number, optional) – multiplier for mat (β) - mat (Tensor) – matrix to be added - alpha (Number, optional) – multiplier for batch1 @ batch2 (α) - batch1 (Tensor) – the first batch of matrices to be multiplied - batch2 (Tensor) – the second batch of matrices to be multiplied - out (Tensor, optional) – the output tensor $$out = \beta\ mat + \alpha\ (\sum_{i=0}^{b} batch1_i \mathbin{@} batch2_i)$$ ###Code M = torch.randn(3, 5) batch1 = torch.randn(10, 3, 4) batch2 = torch.randn(10, 4, 5) out = torch.addbmm(M, batch1, batch2) print("out = ", out) ###Output out = tensor([[ 4.4034, 10.0449, -1.6211, -0.1874, 1.8084], [-13.6686, 7.2830, -24.0032, 9.1567, -2.6577], [ 3.6453, 1.3986, 2.3641, 2.6715, 4.4922]]) ###Markdown Matrix-matrix product 2. torch.addmm - Performs a matrix multiplication of the matrices mat1 and mat2. The matrix mat is added to the final result. - beta (Number, optional) – multiplier for mat (β) - mat (Tensor) – matrix to be added - alpha (Number, optional) – multiplier for batch1 @ batch2 (α) - batch1 (Tensor) – the first batch of matrices to be multiplied - batch2 (Tensor) – the second batch of matrices to be multiplied - out (Tensor, optional) – the output tensor $$out = \beta\ mat + \alpha\ (mat1_i \mathbin{@} mat2_i)$$ ###Code M = torch.randn(2, 3) mat1 = torch.randn(2, 3) mat2 = torch.randn(3, 3) out = torch.addmm(M, mat1, mat2) print("out = ", out) ###Output out = tensor([[ 2.8556, -1.9296, -3.7283], [ 0.7363, -0.2024, -0.5542]]) ###Markdown Matrix-matrix product 3. torch.addmv - Performs a matrix-vector product of the matrix mat and the vector vec. The vector tensor is added to the final result. - beta (Number, optional) – multiplier for tensor (β) - tensor (Tensor) – vector to be added - alpha (Number, optional) – multiplier for mat@vec(α) - mat (Tensor) – matrix to be multiplied - vec (Tensor) – vector to be multiplied - out (Tensor, optional) – the output tensor $$out = \beta\ mat + \alpha\ (mat1_i \mathbin{@} mat2_i)$$ ###Code M = torch.randn(2) mat = torch.randn(2, 3) vec = torch.randn(3) out = torch.addmv(M, mat, vec) print("out = ", out) ###Output out = tensor([1.3346, 0.5646]) ###Markdown Vector-vector product 4. torch.addr - Performs the outer-product of vectors vec1 and vec2 and adds it to the matrix mat. - beta (Number, optional) – multiplier for mat (β) - mat (Tensor) – matrix to be added - alpha (Number, optional) – multiplier for vec1⊗vec2(α) - vec1 (Tensor) – the first vector of the outer product - vec2 (Tensor) – the second vector of the outer product - out (Tensor, optional) – the output tensor $$out = \beta\ mat + \alpha\ (vec1 \otimes vec2)$$ ###Code vec1 = torch.arange(1., 4.) vec2 = torch.arange(1., 3.) M = torch.zeros(3, 2) out = torch.addr(M, vec1, vec2) print("out = ", out) ###Output out = tensor([[1., 2.], [2., 4.], [3., 6.]]) ###Markdown Matrix-matrix product (W/O any addition)5. torch.bmm - Performs a batch matrix-matrix product of matrices stored in batch1 and batch2. - batch1 (Tensor) – the first batch of matrices to be multiplied - batch2 (Tensor) – the second batch of matrices to be multiplied - out (Tensor, optional) – the output tensor $$out_i = batch1_i \mathbin{@} batch2_i$$ ###Code batch1 = torch.randn(10, 3, 4) batch2 = torch.randn(10, 4, 5) out = torch.bmm(batch1, batch2) print("out = ", out) print("out.size = ", out.size()) # Find eigen values ''' 6. torch.eig(a, eigenvectors=False, out=None) - Computes the eigenvalues and eigenvectors of a real square matrix. - a (Tensor) – the square matrix for which the eigenvalues and eigenvectors will be computed - eigenvectors (bool) – True to compute both eigenvalues and eigenvectors; otherwise, only eigenvalues will be computed - out (tuple, optional) – the output tensors ''' x_in = torch.randn(2, 2) eigen_values, eigen_vectors = torch.eig(x_in, True) print("x_in = ", x_in) print("eigen_values = ", eigen_values) print("eigen_vectors = ", eigen_vectors) # LAPACK based outer product ''' 7. torch.ger - Outer product of vec1 and vec2. If vec1 is a vector of size n and vec2 is a vector of size m, then out must be a matrix of size (n×m). - vec1 (Tensor) – 1-D input vector - vec2 (Tensor) – 1-D input vector - out (Tensor, optional) – optional output matrix ''' v1 = torch.arange(1., 5.) v2 = torch.arange(1., 4.) x_out = torch.ger(v1, v2) print("v1 = ", v1) print("v2 = ", v2) print("x_out = ", x_out) # Inverse of matrix ''' 8. torch.inverse - Takes the inverse of the square matrix input. ''' x = torch.rand(4, 4) x_inverse = torch.inverse(x) print("x = ", x) print("x_inverse = ", x_inverse) # Determinant of matrix ''' 9.1 torch.det - Calculates determinant of a 2D square tensor. ''' ''' 9.2 torch.logdet - Calculates log-determinant of a 2D square tensor ''' x = torch.rand(4, 4) det = torch.det(x) logdet = torch.logdet(x) print("x = ", x) print("Determinant of x = ", det) print("Log Determinant of x = ", logdet) # Matrix product ''' 10.1 torch.matmul - Matrix product of two tensors. - tensor1 (Tensor) – the first tensor to be multiplied - tensor2 (Tensor) – the second tensor to be multiplied - out (Tensor, optional) – the output tensor ''' ''' 10.2 torch.mm - Performs a matrix multiplication of the matrices mat1 and mat2. (2D tensors only) - mat1 (Tensor) – the first matrix to be multiplied - mat2 (Tensor) – the second matrix to be multiplied - out (Tensor, optional) – the output tensor ''' x1 = torch.randn(2, 2) x2 = torch.randn(2, 2) x_out = torch.matmul(x1, x2) x_out_size = x_out.size() print("Using torch.matmul") print("x1 = ", x1) print("x2 = ", x2) print("x_out = ", x_out) print("Output size = ", x_out_size) print("\n") x_out = torch.mm(x1, x2) x_out_size = x_out.size() print("Using torch.mm") print("x1 = ", x1) print("x2 = ", x2) print("x_out = ", x_out) print("Output size = ", x_out_size) print("\n") # Matrix-Vector multiplication ''' 11. torch.mv - Performs a matrix-vector product of the matrix mat and the vector vec - mat (Tensor) – matrix to be multiplied - vec (Tensor) – vector to be multiplied - out (Tensor, optional) – the output tensor ''' mat = torch.randn(2, 3) vec = torch.randn(3) out = torch.mv(mat, vec) print("out = ", out) # Moore - Penrose Inverse ''' 12. torch.pinverse - Calculates the pseudo-inverse (also known as the Moore-Penrose inverse) of a 2D tensor. - input (Tensor) – The input 2D tensor of dimensions m×n - rcond (float) – A floating point value to determine the cutoff for small singular values. Default: 1e-15 ''' x_in = torch.randn(3, 5) x_out = torch.pinverse(x_in) print("x_out = ", x_out) # Cholesky decomposition ''' 13. torch.cholesky - Computes the Cholesky decomposition of a symmetric positive-definite matrix A. - a (Tensor) – the input 2-D tensor, a symmetric positive-definite matrix - upper (bool, optional) – flag that indicates whether to return the upper or lower triangular matrix - out (Tensor, optional) – the output matrix ''' ''' Use - The Cholesky decomposition is mainly used for the numerical solution of linear equations ''' a = torch.randn(3, 3) a = torch.mm(a, a.t()) # make symmetric positive definite u = torch.cholesky(a) print("u = ", u) # QR decomposition ''' 14. torch.qr - Computes the QR decomposition of a matrix input, and returns matrices Q and R such that input=QR, with Q being an orthogonal matrix and R being an upper triangular matrix. ''' x_in = torch.randn(3, 3) q, r = torch.qr(x_in) print("q = ", q) print("r = ", r) # Singular Value Decomposition (SVD) ''' 15. torch.svd - U, S, V = torch.svd(A) returns the singular value decomposition of a real matrix A of size (n x m) such that A=US(V.t) ''' a = torch.tensor([[8.79, 6.11, -9.15, 9.57, -3.49, 9.84], [9.93, 6.91, -7.93, 1.64, 4.02, 0.15], [9.83, 5.04, 4.86, 8.83, 9.80, -8.99], [5.45, -0.27, 4.85, 0.74, 10.00, -6.02], [3.16, 7.98, 3.01, 5.80, 4.27, -5.31]]).t() u, s, v = torch.svd(a) ###Output _____no_output_____
notebooks/Figure - Mock streams.ipynb
###Markdown Mock streams ###Code # FOR PAPER style = { "linestyle": "none", "marker": 'o', "markersize": 2, "alpha": 0.1, "color": "#555555" } line_style = { "marker": None, "linestyle": '--', "color": 'k', "linewidth": 1.5, "dashes": (3,2) } data_style = dict(marker='o', ms=4, ls='none', ecolor='#333333', alpha=0.75, color='k') data_b_style = data_style.copy() data_b_style['marker'] = 's' # contour stuff levels = np.array([-2,-1,0,1]) - 0.1 for k,name_group in enumerate([all_names[:5],all_names[5:]]): fig,allaxes = pl.subplots(3, 5, figsize=(9,6.5), sharex='col', sharey='row') for i,name in enumerate(name_group): axes = allaxes[:,i] # path to file to cache the likelihoods cache_file = os.path.join(RESULTSPATH, name, "mockstream", "ln_likelihoods.npy") lls = np.load(cache_file) best_ix = lls.sum(axis=1).argmax() pot, streams, prog, _ = get_potential_stream_prog(name) stream = streams[:,best_ix] model_c,model_v = stream.to_frame(coord.Galactic, galactocentric_frame=galactocentric_frame, vcirc=vcirc, vlsr=vlsr) # cut to just points in the window ix = (model_c.l > 0*u.deg) & (model_c.l < 11*u.deg) & (model_c.b > 25.5*u.deg) & (model_c.b < 34.5*u.deg) # density in sky coords sky_ix = ix & (model_c.distance > 4.5*u.kpc) & (model_c.distance < 10*u.kpc) grid,log_dens = surface_density(model_c[sky_ix], bandwidth=0.2) cs = axes[0].contourf(grid[:,0].reshape(log_dens.shape), grid[:,1].reshape(log_dens.shape), log_dens, levels=levels, cmap='magma_r') axes[1].plot(model_c.l[ix], model_c.distance[ix], rasterized=True, **style) axes[2].plot(model_c.l[ix], galactic.decompose(model_v[2][ix]), rasterized=True, **style) # l,b axes[0].plot([3.8,3.8], [31.5,32.5], **line_style) axes[0].plot([5.85,5.85], [30.,31], **line_style) axes[0].set_aspect('equal') # l,d axes[1].plot([3.8,3.8], [8.7,9.3], **line_style) axes[1].plot([5.85,5.85], [7.2,7.8], **line_style) # l,vr axes[2].plot([3.8,3.8], [276,292], **line_style) axes[2].plot([5.85,5.85], [284,300], **line_style) # the data # _tmp = data_style.copy(); _tmp.pop('ecolor') # axes[0].plot(ophdata_fit.coord.l.degree, ophdata_fit.coord.b.degree, **_tmp) _tmp = data_b_style.copy(); _tmp.pop('ecolor') axes[0].plot(ophdata_fan.coord.l.degree, ophdata_fan.coord.b.degree, **_tmp) # axes[1].errorbar(ophdata_fit.coord.l.degree, ophdata_fit.coord.distance.to(u.kpc).value, # ophdata_fit.coord_err['distance'].to(u.kpc).value, **data_style) axes[1].errorbar(ophdata_fan.coord.l.degree, ophdata_fan.coord.distance.to(u.kpc).value, ophdata_fan.coord_err['distance'].to(u.kpc).value, **data_b_style) # axes[2].errorbar(ophdata_fit.coord.l.degree, ophdata_fit.veloc['vr'].to(u.km/u.s).value, # ophdata_fit.veloc_err['vr'].to(u.km/u.s).value, **data_style) axes[2].errorbar(ophdata_fan.coord.l.degree, ophdata_fan.veloc['vr'].to(u.km/u.s).value, ophdata_fan.veloc_err['vr'].to(u.km/u.s).value, **data_b_style) # Axis limits axes[0].set_xlim(9.,2) axes[0].set_ylim(26.5, 33.5) axes[1].set_ylim(5.3, 9.7) axes[2].set_ylim(225, 325) # Text axes[0].set_title(name_map[name], fontsize=20) axes[2].set_xlabel("$l$ [deg]", fontsize=18) if i == 0: axes[0].set_ylabel("$b$ [deg]", fontsize=18) axes[1].set_ylabel(r"$d_\odot$ [kpc]", fontsize=18) axes[2].set_ylabel(r"$v_r$ [${\rm km}\,{\rm s}^{-1}$]", fontsize=18) fig.tight_layout() # fig.savefig(os.path.join(plotpath, "mockstream{}.pdf".format(k)), rasterized=True, dpi=400) # fig.savefig(os.path.join(plotpath, "mockstream{}.png".format(k)), dpi=400) ###Output _____no_output_____ ###Markdown --- Color points by release time ###Code import matplotlib.colors as colors def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): new_cmap = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(np.linspace(minval, maxval, n))[::-1]) return new_cmap x = np.linspace(0, 1, 128) pl.scatter(x,x,c=x, cmap=truncate_colormap(pl.get_cmap('magma'), 0., .9)) custom_cmap = truncate_colormap(pl.get_cmap('magma'), 0., 0.9) scatter_kw = dict(cmap=custom_cmap, alpha=0.8, s=4, vmin=-1, vmax=0, rasterized=True) data_b_style = dict(marker='s', ms=4, ls='none', ecolor='#31a354', alpha=1, color='#31a354') line_style = { "marker": None, "linestyle": '-', "color": '#888888', "linewidth": 1.5 } for k,name_group in enumerate([all_names[:5],all_names[5:]]): fig,allaxes = pl.subplots(3, 5, figsize=(10,6.5), sharex='col', sharey='row') for i,name in enumerate(name_group): axes = allaxes[:,i] # path to file to cache the likelihoods cache_file = os.path.join(RESULTSPATH, name, "mockstream", "ln_likelihoods.npy") lls = np.load(cache_file) best_ix = lls.sum(axis=1).argmax() pot, streams, prog, release_t = get_potential_stream_prog(name) release_t = release_t/1000. stream = streams[:,best_ix] model_c,_model_v = stream.to_frame(coord.Galactic, galactocentric_frame=galactocentric_frame, vcirc=vcirc, vlsr=vlsr) # remove progenitor orbit model_c = model_c[1:] model_v = [] for v in _model_v: model_v.append(v[1:]) # cut to just points in the window ix = (model_c.l > 0*u.deg) & (model_c.l < 11*u.deg) & (model_c.b > 25.5*u.deg) & (model_c.b < 34.5*u.deg) # plot model points cs = axes[0].scatter(model_c.l[ix], model_c.b[ix], c=release_t[ix], **scatter_kw) axes[1].scatter(model_c.l[ix], model_c.distance[ix], c=release_t[ix], **scatter_kw) axes[2].scatter(model_c.l[ix], galactic.decompose(model_v[2][ix]), c=release_t[ix], **scatter_kw) # l,b axes[0].plot([3.8,3.8], [31.5,32.5], **line_style) axes[0].plot([5.85,5.85], [30.,31], **line_style) axes[0].set_aspect('equal') # l,d axes[1].plot([3.8,3.8], [8.7,9.3], **line_style) axes[1].plot([5.85,5.85], [7.2,7.8], **line_style) # l,vr axes[2].plot([3.8,3.8], [276,292], **line_style) axes[2].plot([5.85,5.85], [284,300], **line_style) # the data # _tmp = data_style.copy(); _tmp.pop('ecolor') # axes[0].plot(ophdata_fit.coord.l.degree, ophdata_fit.coord.b.degree, **_tmp) _tmp = data_b_style.copy(); _tmp.pop('ecolor') axes[0].plot(ophdata_fan.coord.l.degree, ophdata_fan.coord.b.degree, **_tmp) # axes[1].errorbar(ophdata_fit.coord.l.degree, ophdata_fit.coord.distance.to(u.kpc).value, # ophdata_fit.coord_err['distance'].to(u.kpc).value, **data_style) axes[1].errorbar(ophdata_fan.coord.l.degree, ophdata_fan.coord.distance.to(u.kpc).value, ophdata_fan.coord_err['distance'].to(u.kpc).value, **data_b_style) # axes[2].errorbar(ophdata_fit.coord.l.degree, ophdata_fit.veloc['vr'].to(u.km/u.s).value, # ophdata_fit.veloc_err['vr'].to(u.km/u.s).value, **data_style) axes[2].errorbar(ophdata_fan.coord.l.degree, ophdata_fan.veloc['vr'].to(u.km/u.s).value, ophdata_fan.veloc_err['vr'].to(u.km/u.s).value, **data_b_style) # Axis limits axes[0].set_xlim(9.,2) axes[0].set_ylim(26.5, 33.5) axes[1].set_ylim(5.3, 9.7) axes[2].set_ylim(225, 325) # Text axes[0].set_title(name_map[name], fontsize=20) axes[2].set_xlabel("$l$ [deg]", fontsize=18) if i == 0: axes[0].set_ylabel("$b$ [deg]", fontsize=18) axes[1].set_ylabel(r"$d_\odot$ [kpc]", fontsize=18) axes[2].set_ylabel(r"$v_r$ [${\rm km}\,{\rm s}^{-1}$]", fontsize=18) axes[0].set_yticks([26,28,30,32,34]) fig.tight_layout() fig.subplots_adjust(right=0.85) cbar_ax = fig.add_axes([0.87, 0.125, 0.02, 0.8]) fig.colorbar(cs, cax=cbar_ax) cbar_ax.axes.set_ylabel('Stripping time [Gyr]') fig.savefig(os.path.join(plotpath, "mockstream{}.pdf".format(k)), rasterized=True, dpi=400) fig.savefig(os.path.join(plotpath, "mockstream{}.png".format(k)), dpi=400) for k,name_group in enumerate([all_names[:5],all_names[5:]]): fig,allaxes = pl.subplots(2, 5, figsize=(10,5.2), sharex='col', sharey='row') for i,name in enumerate(name_group): axes = allaxes[:,i] # path to file to cache the likelihoods cache_file = os.path.join(RESULTSPATH, name, "mockstream", "ln_likelihoods.npy") lls = np.load(cache_file) best_ix = lls.sum(axis=1).argmax() pot, streams, prog, release_t = get_potential_stream_prog(name) release_t = release_t/1000. stream = streams[:,best_ix] model_c,_model_v = stream.to_frame(coord.Galactic, galactocentric_frame=galactocentric_frame, vcirc=vcirc, vlsr=vlsr) # remove progenitor orbit model_c = model_c[1:] model_v = [] for v in _model_v: model_v.append(v[1:]) # cut to just points in the window ix = (model_c.l > 0*u.deg) & (model_c.l < 11*u.deg) & (model_c.b > 25.5*u.deg) & (model_c.b < 34.5*u.deg) # plot model points axes[0].scatter(model_c.l[ix], galactic.decompose(model_v[0][ix]), c=release_t[ix], **scatter_kw) axes[1].scatter(model_c.l[ix], galactic.decompose(model_v[1][ix]), c=release_t[ix], **scatter_kw) # Axis limits axes[0].set_xlim(9.,2) axes[0].set_ylim(-12,-2) axes[1].set_ylim(-2,8) # Text axes[0].set_title(name_map[name], fontsize=20) axes[1].set_xlabel("$l$ [deg]", fontsize=18) if i == 0: axes[0].set_ylabel(r"$\mu_l$ [${\rm mas}\,{\rm yr}^{-1}$]", fontsize=18) axes[1].set_ylabel(r"$\mu_b$ [${\rm mas}\,{\rm yr}^{-1}$]", fontsize=18) fig.tight_layout() # fig.savefig(os.path.join(plotpath, "mockstream-pm{}.pdf".format(k)), rasterized=True, dpi=400) # fig.savefig(os.path.join(plotpath, "mockstream-pm{}.png".format(k)), dpi=400) ###Output _____no_output_____ ###Markdown --- ###Code # contour stuff levels = np.array([-2,-1,0,1]) - 0.1 fig,allaxes = pl.subplots(2, 5, figsize=(9,4.7), sharex=True, sharey=True) for k,name_group in enumerate([all_names[:5],all_names[5:]]): for i,name in enumerate(name_group): ax = allaxes[k,i] # path to file to cache the likelihoods cache_file = os.path.join(RESULTSPATH, name, "mockstream", "ln_likelihoods.npy") lls = np.load(cache_file) best_ix = lls.sum(axis=1).argmax() pot, streams, prog, _ = get_potential_stream_prog(name) stream = streams[:,best_ix] model_c,model_v = stream.to_frame(coord.Galactic, galactocentric_frame=galactocentric_frame, vcirc=vcirc, vlsr=vlsr) # cut to just points in the window ix = (model_c.l > 0*u.deg) & (model_c.l < 11*u.deg) & (model_c.b > 25.5*u.deg) & (model_c.b < 34.5*u.deg) # density in sky coords sky_ix = ix & (model_c.distance > 4.5*u.kpc) & (model_c.distance < 10*u.kpc) grid,log_dens = surface_density(model_c[sky_ix], bandwidth=0.2) cs = ax.contourf(grid[:,0].reshape(log_dens.shape), grid[:,1].reshape(log_dens.shape), log_dens, levels=levels, cmap='magma_r') # l,b ax.plot([3.8,3.8], [31.5,32.5], **line_style) ax.plot([5.85,5.85], [30.,31], **line_style) # ax.set_aspect('equal') # the data # _tmp = data_style.copy(); _tmp.pop('ecolor') # axes[0].plot(ophdata_fit.coord.l.degree, ophdata_fit.coord.b.degree, **_tmp) _tmp = data_b_style.copy(); _tmp.pop('ecolor') ax.plot(ophdata_fan.coord.l.degree, ophdata_fan.coord.b.degree, **_tmp) # Axis limits ax.set_xlim(9.,2) ax.set_ylim(26.5, 33.5) # Text ax.set_title(name_map[name], fontsize=20) if i == 2 and k == 1: ax.set_xlabel("$l$ [deg]", fontsize=18) if i == 0: ax.set_ylabel("$b$ [deg]", fontsize=18) fig.tight_layout() fig.savefig(os.path.join(plotpath, "mockstream-density.pdf"), rasterized=True, dpi=400) fig.savefig(os.path.join(plotpath, "mockstream-density.png"), dpi=400) ###Output _____no_output_____ ###Markdown --- ###Code fig,allaxes = pl.subplots(2, 5, figsize=(9,5), sharex=True, sharey=True) for k,name_group in enumerate([all_names[:5],all_names[5:]]): for i,name in enumerate(name_group): ax = allaxes[k,i] # path to file to cache the likelihoods cache_file = os.path.join(RESULTSPATH, name, "mockstream", "ln_likelihoods.npy") lls = np.load(cache_file) best_ix = lls.sum(axis=1).argmax() pot, streams, prog, _ = get_potential_stream_prog(name) stream = streams[:,best_ix] model_c,model_v = stream.to_frame(coord.Galactic, galactocentric_frame=galactocentric_frame, vcirc=vcirc, vlsr=vlsr) # ix = distance_ix(model_c.l, model_c.distance) & (model_c.l > 0) & (model_c.l < 10*u.deg) | True ix = np.ones(model_c.l.size).astype(bool) ax.plot(stream.pos[0][ix], stream.pos[2][ix], rasterized=True, **style) lbd_corners = np.vstack(map(np.ravel, np.meshgrid([1.5,9.5],[26.,33.],[5.3,9.7]))) corners_g = coord.Galactic(l=lbd_corners[0]*u.degree, b=lbd_corners[1]*u.degree, distance=lbd_corners[2]*u.kpc) corners = corners_g.transform_to(galactocentric_frame).cartesian.xyz.value # corners = corners.reshape(3,2,2,2)[...,0].reshape(3,4) # only pick 4 of the points to plot corners = corners[:,corners[1] > 0.5][[0,2]] # compute centroid cent = np.mean(corners, axis=1) # sort by polar angle corner_list = corners.T.tolist() corner_list.sort(key=lambda p: np.arctan2(p[1]-cent[1],p[0]-cent[0])) # plot polyline poly = mpl.patches.Polygon(corner_list, closed=True, fill=False, color='#2166AC', linestyle='-') ax.add_patch(poly) # ax.plot(corners[0], corners[2], ls='none', marker='o', markersize=4) # ax.plot(-galactocentric_frame.galcen_distance, 0., marker='o', color='y', markersize=8) ax.text(-galactocentric_frame.galcen_distance.value, 0., r"$\odot$", fontsize=18, ha='center', va='center') # Text ax.set_title(name_map[name], fontsize=20) if k == 1: ax.set_xlabel("$x$ [kpc]", fontsize=18) # break # break # Axis limits ax.set_xlim(-10,5) ax.set_ylim(-7.5,7.5) ax.xaxis.set_ticks([-8,-4,0,4]) ax.yaxis.set_ticks([-4,0,4]) allaxes[0,0].set_ylabel("$z$ [kpc]", fontsize=18) allaxes[1,0].set_ylabel("$z$ [kpc]", fontsize=18) fig.tight_layout() fig.savefig(os.path.join(plotpath, "mockstream-xyz.pdf"), dpi=400) # fig.savefig(os.path.join(plotpath, "mockstream-xyz.png"), dpi=400) import astropy.units as u (300*u.km/u.s / (4*u.kpc)).to(u.mas/u.yr, equivalencies=u.dimensionless_angles()) from gala.observation import distance distance(12.5 - (-2.5)) ###Output _____no_output_____ ###Markdown --- Normalize the total number of stars in "dense" part of stream ###Code def normalize_to_total_number(name, noph_stars=500): # from Bernard paper cache_file = os.path.join(RESULTSPATH, name, "mockstream", "ln_likelihoods.npy") lls = np.load(cache_file) best_ix = lls.sum(axis=1).argmax() pot, streams, prog, _ = get_potential_stream_prog(name) stream = streams[:-1000,best_ix] # cut off at time of disruption, -250 Myr (2 stars, 0.5 Myr release) # stream = streams[:,best_ix] model_c,model_v = stream.to_frame(coord.Galactic, galactocentric_frame=galactocentric_frame, vcirc=vcirc, vlsr=vlsr) ix = (model_c.distance > 4.5*u.kpc) & (model_c.distance < 15*u.kpc) # how many points are between dense part of stream? ix2 = ix & (model_c.l > 3.8*u.deg) & (model_c.l < 5.85*u.deg) & (model_c.b > 29.5*u.deg) & (model_c.b < 32.5*u.deg) print(ix2.sum()) every = int(round(ix2.sum() / float(noph_stars))) return model_c[ix]#[::every] xbounds = (2, 9) ybounds = (27, 34) area = (xbounds[1]-xbounds[0]) * (ybounds[1]-ybounds[0]) static_gal = normalize_to_total_number("static_mw") static_lb = np.vstack((static_gal.l.degree, static_gal.b.degree)) bar_gal = normalize_to_total_number("barred_mw_8") bar_lb = np.vstack((bar_gal.l.degree, bar_gal.b.degree)) from scipy.ndimage import gaussian_filter # ddeg = (6*u.arcmin).to(u.degree).value ddeg = (10*u.arcmin).to(u.degree).value xbins = np.arange(xbounds[0], xbounds[1]+ddeg, ddeg) ybins = np.arange(ybounds[0], ybounds[1]+ddeg, ddeg) H_static,_,_ = np.histogram2d(static_lb[0], static_lb[1], bins=(xbins, ybins)) H_bar,_,_ = np.histogram2d(bar_lb[0], bar_lb[1], bins=(xbins, ybins)) bg_density = 1500 # stars / deg^2 n_bg = int(bg_density*area) # bg_l = np.random.uniform(xbounds[0], xbounds[1], size=int(bg_density*area)) # bg_b = np.random.uniform(ybounds[0], ybounds[1], size=int(bg_density*area)) # bg_im = np.random.poisson(size=H_static.shape) # bg_im = bg_im * float(n_bg) / bg_im.sum() bg_im = np.random.poisson(lam=42, size=H_static.shape) bg_im.sum(), n_bg ((1500 / u.degree**2) * (10*u.arcmin)**2).decompose() static_im = H_static + bg_im bar_im = H_bar + bg_im _ = pl.hist(bg_im.ravel()) # H = gaussian_filter(H, sigma=ddeg) from scipy.stats import scoreatpercentile _flat = static_im.ravel() pl.hist(static_im.ravel(), bins=np.linspace(0, 1.5*scoreatpercentile(_flat,75),32), alpha=0.5); pl.hist(bar_im.ravel(), bins=np.linspace(0, 1.5*scoreatpercentile(_flat,75),32), alpha=0.5); vmin = scoreatpercentile(_flat,2) vmax = scoreatpercentile(_flat,98) imshow_kw = dict(extent=[xbins.min(), xbins.max(), ybins.min(), ybins.max()], origin='bottom', cmap='Greys', vmin=vmin, vmax=vmax, interpolation='nearest') line_style = { "marker": None, "linestyle": '--', "color": 'k', "linewidth": 1.5, "dashes": (3,2) } # H,_,_ = np.histogram2d(all_static[0], all_static[1], bins=(xbins, ybins)) # H = gaussian_filter(H, sigma=ddeg) pl.imshow(static_im.T, **imshow_kw) pl.plot([3.8,3.8], [31.5,32.5], **line_style) pl.plot([5.85,5.85], [30.,31], **line_style) pl.xlim(xbins.max(), xbins.min()) pl.ylim(ybins.min(), ybins.max()) pl.xlabel("$l$ [deg]") pl.ylabel("$b$ [deg]") pl.title("static") # pl.tight_layout() pl.gca().set_aspect('equal') # H,_,_ = np.histogram2d(all_bar[0], all_bar[1], bins=(xbins, ybins)) # H = gaussian_filter(H, sigma=ddeg) pl.imshow(bar_im.T, **imshow_kw) pl.plot([3.8,3.8], [31.5,32.5], **line_style) pl.plot([5.85,5.85], [30.,31], **line_style) pl.xlim(xbins.max(), xbins.min()) pl.ylim(ybins.min(), ybins.max()) pl.xlabel("$l$ [deg]") pl.ylabel("$b$ [deg]") pl.title("bar8") pl.tight_layout() _density_plot_cache = dict() line_style = { "marker": None, "linestyle": '-', "color": 'k', "linewidth": 2, } fig,allaxes = pl.subplots(2, 5, figsize=(9,5), sharex=True, sharey=True) vmin = vmax = None for i,name in enumerate(all_names): print(name) ax = allaxes.flat[i] if name not in _density_plot_cache: gal = normalize_to_total_number(name) lb = np.vstack((gal.l.degree, gal.b.degree)) H,_,_ = np.histogram2d(lb[0], lb[1], bins=(xbins, ybins)) im = H + bg_im _density_plot_cache[name] = im.T im = _density_plot_cache[name] if vmin is None: _flat = im.ravel() vmin = scoreatpercentile(_flat,2) vmax = scoreatpercentile(_flat,98) imshow_kw = dict(extent=[xbins.min(), xbins.max(), ybins.min(), ybins.max()], origin='bottom', cmap='Greys', vmin=vmin, vmax=vmax, interpolation='nearest') ax.imshow(im, **imshow_kw) ax.plot([3.8,3.8], [31.5,32.5], **line_style) ax.plot([5.85,5.85], [30.,31], **line_style) # Text ax.set_title(name_map[name], fontsize=20) if i > 4: ax.set_xlabel("$l$ [deg]", fontsize=18) ax.set(adjustable='box-forced', aspect='equal') ax.set_xlim(xbins.max(), xbins.min()) ax.set_ylim(ybins.min(), ybins.max()) allaxes[0,0].set_ylabel("$b$ [deg]", fontsize=18) allaxes[1,0].set_ylabel("$b$ [deg]", fontsize=18) fig.tight_layout() fig.savefig(os.path.join(plotpath, "densitymaps.pdf")) fig.savefig(os.path.join(plotpath, "densitymaps.png"), dpi=400) ###Output _____no_output_____ ###Markdown --- For CfA talk ###Code pick = [1,8,9] style = { "linestyle": "none", "marker": 'o', "markersize": 2, "alpha": 0.3, "color": "#555555" } line_style = { "marker": None, "linestyle": '--', "color": 'k', "linewidth": 1.5, "dashes": (3,2) } data_style = dict(marker='o', ms=4, ls='none', ecolor='#333333', alpha=0.75, color='k') data_b_style = data_style.copy() data_b_style['marker'] = 's' # contour stuff levels = np.array([-2,-1,0,1]) - 0.1 fig,allaxes = pl.subplots(2, 4, figsize=(12,6), sharex='col', sharey='row') for i,name in enumerate(['static_mw']+['barred_mw_'+str(j) for j in pick]): axes = allaxes[:,i] # path to file to cache the likelihoods cache_file = os.path.join(RESULTSPATH, name, "mockstream", "ln_likelihoods.npy") lls = np.load(cache_file) best_ix = lls.sum(axis=1).argmax() pot = op.load_potential(name) Omega = (pot.parameters['bar']['Omega']/u.Myr).to(u.km/u.s/u.kpc).value if i == 0: title = 'no bar' else: title = r'$\Omega_p={:d}\,{{\rm km/s/kpc}}$'.format(int(Omega)) pot, streams, prog, _ = get_potential_stream_prog(name) stream = streams[:,best_ix] model_c,model_v = stream.to_frame(coord.Galactic, galactocentric_frame=galactocentric_frame, vcirc=vcirc, vlsr=vlsr) # cut to just points in the window ix = (model_c.l > 0*u.deg) & (model_c.l < 11*u.deg) & (model_c.b > 25.5*u.deg) & (model_c.b < 34.5*u.deg) # density in sky coords sky_ix = ix & (model_c.distance > 4.5*u.kpc) & (model_c.distance < 10*u.kpc) grid,log_dens = surface_density(model_c[sky_ix], bandwidth=0.2) cs = axes[0].contourf(grid[:,0].reshape(log_dens.shape), grid[:,1].reshape(log_dens.shape), log_dens, levels=levels, cmap='magma_r') axes[1].plot(model_c.l[ix], galactic.decompose(model_v[2][ix]), rasterized=True, **style) # l,b axes[0].plot([3.8,3.8], [31.5,32.5], **line_style) axes[0].plot([5.85,5.85], [30.,31], **line_style) # l,vr axes[1].plot([3.8,3.8], [276,292], **line_style) axes[1].plot([5.85,5.85], [284,300], **line_style) # the data _tmp = data_b_style.copy(); _tmp.pop('ecolor') axes[0].plot(ophdata_fan.coord.l.degree, ophdata_fan.coord.b.degree, **_tmp) axes[1].errorbar(ophdata_fan.coord.l.degree, ophdata_fan.veloc['vr'].to(u.km/u.s).value, ophdata_fan.veloc_err['vr'].to(u.km/u.s).value, **data_b_style) # Axis limits axes[0].set_xlim(9.,2) axes[0].set_ylim(26.5, 33.5) axes[1].set_ylim(225, 325) # Text axes[0].set_title(title, fontsize=18) axes[1].set_xlabel("$l$ [deg]", fontsize=18) if i == 0: axes[0].set_ylabel("$b$ [deg]", fontsize=18) axes[1].set_ylabel(r"$v_r$ [${\rm km}\,{\rm s}^{-1}$]", fontsize=18) fig.tight_layout() _density_plot_cache2 = dict() line_style = { "marker": None, "linestyle": '-', "color": 'k', "linewidth": 2, } fig,allaxes = pl.subplots(1, 4, figsize=(11,3), sharex=True, sharey=True) vmin = vmax = None for i,name in enumerate(['static_mw']+['barred_mw_'+str(j) for j in pick]): print(name) ax = allaxes.flat[i] pot = op.load_potential(name) Omega = (pot.parameters['bar']['Omega']/u.Myr).to(u.km/u.s/u.kpc).value if i == 0: title = 'no bar' else: title = r'$\Omega_p={:d}\,{{\rm km/s/kpc}}$'.format(int(Omega)) if name not in _density_plot_cache2: gal = normalize_to_total_number(name) lb = np.vstack((gal.l.degree, gal.b.degree)) H,_,_ = np.histogram2d(lb[0], lb[1], bins=(xbins, ybins)) im = H + bg_im _density_plot_cache2[name] = im.T im = _density_plot_cache2[name] if vmin is None: _flat = im.ravel() vmin = scoreatpercentile(_flat,2) vmax = scoreatpercentile(_flat,98) imshow_kw = dict(extent=[xbins.min(), xbins.max(), ybins.min(), ybins.max()], origin='bottom', cmap='Greys', vmin=vmin, vmax=vmax, interpolation='nearest') ax.imshow(im, **imshow_kw) ax.plot([3.8,3.8], [31.5,32.5], **line_style) ax.plot([5.85,5.85], [30.,31], **line_style) # Text ax.set_title(title, fontsize=18) ax.set_xlabel("$l$ [deg]", fontsize=18) ax.set(adjustable='box-forced', aspect='equal') ax.set_xlim(xbins.max(), xbins.min()) ax.set_ylim(ybins.min(), ybins.max()) allaxes[0].set_ylabel("$b$ [deg]", fontsize=18) fig.tight_layout() ###Output _____no_output_____ ###Markdown --- ###Code style = { "linestyle": "none", "marker": 'o', "markersize": 2, "alpha": 0.3, "color": "#555555" } line_style = { "marker": None, "linestyle": '--', "color": 'k', "linewidth": 1.5, "dashes": (3,2) } data_style = dict(marker='o', ms=6, ls='none', alpha=0.9, color='#2166AC') data_b_style = data_style.copy() data_b_style['marker'] = 's' # contour stuff levels = np.array([-2,-1,0,1]) - 0.1 fig,allaxes = pl.subplots(2, 4, figsize=(12,6), sharex='col', sharey='row') for i,name in enumerate(['static_mw']+['barred_mw_'+str(j) for j in pick]): axes = allaxes[:,i] # path to file to cache the likelihoods cache_file = os.path.join(RESULTSPATH, name, "mockstream", "ln_likelihoods.npy") lls = np.load(cache_file) best_ix = lls.sum(axis=1).argmax() pot = op.load_potential(name) Omega = (pot.parameters['bar']['Omega']/u.Myr).to(u.km/u.s/u.kpc).value if i == 0: title = 'no bar' else: title = r'$\Omega_p={:d}\,{{\rm km/s/kpc}}$'.format(int(Omega)) pot, streams, prog, _ = get_potential_stream_prog(name) stream = streams[:,best_ix] model_c,model_v = stream.to_frame(coord.Galactic, galactocentric_frame=galactocentric_frame, vcirc=vcirc, vlsr=vlsr) # cut to just points in the window ix = (model_c.l > 0*u.deg) & (model_c.l < 11*u.deg) & (model_c.b > 25.5*u.deg) & (model_c.b < 34.5*u.deg) # density in sky coords # sky_ix = ix & (model_c.distance > 4.5*u.kpc) & (model_c.distance < 10*u.kpc) sky_ix = ix grid,log_dens = surface_density(model_c[sky_ix], bandwidth=0.2) cs = axes[0].contourf(grid[:,0].reshape(log_dens.shape), grid[:,1].reshape(log_dens.shape), log_dens, levels=levels, cmap='magma_r') axes[1].plot(model_c.l[ix], galactic.decompose(model_v[2][ix]), rasterized=True, **style) # l,b axes[0].plot([3.8,3.8], [31.5,32.5], **line_style) axes[0].plot([5.85,5.85], [30.,31], **line_style) # l,vr axes[1].plot([3.8,3.8], [276,292], **line_style) axes[1].plot([5.85,5.85], [284,300], **line_style) # the data axes[0].plot(ophdata_fan.coord.l.degree, ophdata_fan.coord.b.degree, **data_b_style) axes[1].plot(ophdata_fan.coord.l.degree, ophdata_fan.veloc['vr'].to(u.km/u.s).value, **data_b_style) # Axis limits axes[0].set_xlim(9.,2) axes[0].set_ylim(26.5, 33.5) axes[1].set_ylim(200, 350) # Text axes[0].set_title(title, fontsize=18) axes[1].set_xlabel("$l$ [deg]", fontsize=18) if i == 0: axes[0].set_ylabel("$b$ [deg]", fontsize=18) axes[1].set_ylabel(r"$v_{\rm los}$ [${\rm km}\,{\rm s}^{-1}$]", fontsize=18) fig.tight_layout() ###Output _____no_output_____ ###Markdown MOVE TO A "talk figures" NOTEBOOK ###Code style = { "marker": '.', "alpha": 0.75, "cmap": custom_cmap, "vmin": -1000, "vmax": 0. } line_style = { "marker": None, "linestyle": '--', "color": 'k', "linewidth": 1.5, "dashes": (3,2) } data_style = dict(marker='o', ms=6, ls='none', alpha=0.9, color='#2166AC') data_b_style = data_style.copy() data_b_style['marker'] = 's' # contour stuff levels = np.array([-2,-1,0,1]) - 0.1 fig,allaxes = pl.subplots(2, 4, figsize=(12,6), sharex='col', sharey='row') for i,name in enumerate(['static_mw']+['barred_mw_'+str(j) for j in pick]): axes = allaxes[:,i] # path to file to cache the likelihoods cache_file = os.path.join(RESULTSPATH, name, "mockstream", "ln_likelihoods.npy") lls = np.load(cache_file) best_ix = lls.sum(axis=1).argmax() pot = op.load_potential(name) Omega = (pot.parameters['bar']['Omega']/u.Myr).to(u.km/u.s/u.kpc).value if i == 0: title = 'no bar' else: title = r'$\Omega_p={:d}\,{{\rm km/s/kpc}}$'.format(int(Omega)) pot, streams, prog, release_t = get_potential_stream_prog(name) stream = streams[:,best_ix] model_c,_model_v = stream.to_frame(coord.Galactic, galactocentric_frame=galactocentric_frame, vcirc=vcirc, vlsr=vlsr) # remove prog orbit model_c = model_c[1:] model_v = [] for v in _model_v: model_v.append(v[1:]) # cut to just points in the window ix = (model_c.l > -2*u.deg) & (model_c.l < 14*u.deg) & (model_c.b > 23.5*u.deg) & (model_c.b < 36.5*u.deg) axes[0].scatter(model_c.l[ix], model_c.b[ix], rasterized=True, c=release_t[ix], **style) axes[1].scatter(model_c.l[ix], galactic.decompose(model_v[2][ix]), rasterized=True, c=release_t[ix], **style) # l,b axes[0].plot([3.8,3.8], [31.5,32.5], **line_style) axes[0].plot([5.85,5.85], [30.,31], **line_style) # l,vr axes[1].plot([3.8,3.8], [276,292], **line_style) axes[1].plot([5.85,5.85], [284,300], **line_style) # the data axes[0].plot(ophdata_fan.coord.l.degree, ophdata_fan.coord.b.degree, **data_b_style) axes[1].plot(ophdata_fan.coord.l.degree, ophdata_fan.veloc['vr'].to(u.km/u.s).value, **data_b_style) # Axis limits axes[0].set_xlim(9.,2) axes[0].set_ylim(26.5, 33.5) axes[1].set_ylim(200, 350) # Text axes[0].set_title(title, fontsize=18) axes[1].set_xlabel("$l$ [deg]", fontsize=18) if i == 0: axes[0].set_ylabel("$b$ [deg]", fontsize=18) axes[1].set_ylabel(r"$v_{\rm los}$ [${\rm km}\,{\rm s}^{-1}$]", fontsize=18) fig.tight_layout() from ophiuchus.experiments import LyapunovGrid bins = np.linspace(0.3,1.1,12)*u.Gyr fig,axes = pl.subplots(1, 4, figsize=(12,3.5), sharex='col', sharey='row') for i,name in enumerate(['static_mw']+['barred_mw_'+str(j) for j in pick]): pot = op.load_potential(name) Omega = (pot.parameters['bar']['Omega']/u.Myr).to(u.km/u.s/u.kpc).value if i == 0: title = 'no bar' else: title = r'$\Omega_p={:d}\,{{\rm km/s/kpc}}$'.format(int(Omega)) gr = LyapunovGrid.from_config(os.path.join(RESULTSPATH,name,"lyapunov"), os.path.join(RESULTSPATH,"global_lyapunov.cfg"), potential_name=name) d = gr.read_cache() ftmle = (d['mle_avg']*1/u.Myr) lyap_time = (1/ftmle).to(u.Myr) axes[i].hist(lyap_time, bins=bins.to(u.Myr)) axes[i].set_xlim(200,1300) axes[i].set_ylim(0,60) axes[i].xaxis.set_ticks([300,600,900,1200]) axes[i].yaxis.set_ticks([0,20,40,60]) axes[i].set_xlabel(r"$t_\lambda$ [Myr]", fontsize=18) axes[i].set_title(title, fontsize=18) axes[0].set_ylabel('$N$') fig.tight_layout() ###Output _____no_output_____
03 ML0101EN-Reg-Polynomial-Regression-Co2-py-v1.ipynb
###Markdown Polynomial RegressionAbout this NotebookIn this notebook, we learn how to use scikit-learn for Polynomial regression. We download a dataset that is related to fuel consumption and Carbon dioxide emission of cars. Then, we split our data into training and test sets, create a model using training set, evaluate our model using test set, and finally use model to predict unknown value. Table of contents Downloading Data Polynomial regression Evaluation Practice Importing Needed packages ###Code import matplotlib.pyplot as plt import pandas as pd import pylab as pl import numpy as np %matplotlib inline ###Output _____no_output_____ ###Markdown Downloading DataTo download the data, we will use !wget to download it from IBM Object Storage. ###Code !wget -O FuelConsumption.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/FuelConsumptionCo2.csv ###Output --2020-08-07 09:43:38-- https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/FuelConsumptionCo2.csv Resolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)... 67.228.254.196 Connecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)|67.228.254.196|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 72629 (71K) [text/csv] Saving to: ‘FuelConsumption.csv’ FuelConsumption.csv 100%[===================>] 70.93K --.-KB/s in 0.04s 2020-08-07 09:43:38 (1.79 MB/s) - ‘FuelConsumption.csv’ saved [72629/72629] ###Markdown __Did you know?__ When it comes to Machine Learning, you will likely be working with large datasets. As a business, where can you host your data? IBM is offering a unique opportunity for businesses, with 10 Tb of IBM Cloud Object Storage: [Sign up now for free](http://cocl.us/ML0101EN-IBM-Offer-CC) Understanding the Data `FuelConsumption.csv`:We have downloaded a fuel consumption dataset, **`FuelConsumption.csv`**, which contains model-specific fuel consumption ratings and estimated carbon dioxide emissions for new light-duty vehicles for retail sale in Canada. [Dataset source](http://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64)- **MODELYEAR** e.g. 2014- **MAKE** e.g. Acura- **MODEL** e.g. ILX- **VEHICLE CLASS** e.g. SUV- **ENGINE SIZE** e.g. 4.7- **CYLINDERS** e.g 6- **TRANSMISSION** e.g. A6- **FUEL CONSUMPTION in CITY(L/100 km)** e.g. 9.9- **FUEL CONSUMPTION in HWY (L/100 km)** e.g. 8.9- **FUEL CONSUMPTION COMB (L/100 km)** e.g. 9.2- **CO2 EMISSIONS (g/km)** e.g. 182 --> low --> 0 Reading the data in ###Code df = pd.read_csv("FuelConsumption.csv") # take a look at the dataset df.head() ###Output _____no_output_____ ###Markdown Lets select some features that we want to use for regression. ###Code #selecting our columns of interest cdf = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB','CO2EMISSIONS']] cdf.head(9) ###Output _____no_output_____ ###Markdown Lets plot Emission values with respect to Engine size: ###Code plt.scatter(cdf.ENGINESIZE, cdf.CO2EMISSIONS, color='blue') plt.xlabel("Engine size") plt.ylabel("Emission") plt.show() ###Output _____no_output_____ ###Markdown Creating train and test datasetTrain/Test Split involves splitting the dataset into training and testing sets respectively, which are mutually exclusive. After which, you train with the training set and test with the testing set. ###Code msk = np.random.rand(len(df)) < 0.8 train = cdf[msk] test = cdf[~msk] ###Output _____no_output_____ ###Markdown Polynomial regression Sometimes, the trend of data is not really linear, and looks curvy. In this case we can use Polynomial regression methods. In fact, many different regressions exist that can be used to fit whatever the dataset looks like, such as quadratic, cubic, and so on, and it can go on and on to infinite degrees.In essence, we can call all of these, polynomial regression, where the relationship between the independent variable x and the dependent variable y is modeled as an nth degree polynomial in x. Lets say you want to have a polynomial regression (let's make 2 degree polynomial):$y = b + \theta_1 x + \theta_2 x^2$Now, the question is: how we can fit our data on this equation while we have only x values, such as __Engine Size__? Well, we can create a few additional features: 1, $x$, and $x^2$.__PloynomialFeatures()__ function in Scikit-learn library, drives a new feature sets from the original feature set. That is, a matrix will be generated consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, lets say the original feature set has only one feature, _ENGINESIZE_. Now, if we select the degree of the polynomial to be 2, then it generates 3 features, degree=0, degree=1 and degree=2: ###Code from sklearn.preprocessing import PolynomialFeatures from sklearn import linear_model train_x = np.asanyarray(train[['ENGINESIZE']]) train_y = np.asanyarray(train[['CO2EMISSIONS']]) poly = PolynomialFeatures(degree=2) train_x_poly = poly.fit_transform(train_x) #train_x_poly ###Output _____no_output_____ ###Markdown **fit_transform** takes our x values, and output a list of our data raised from power of 0 to power of 2 (since we set the degree of our polynomial to 2).$\begin{bmatrix} v_1\\ v_2\\ \vdots\\ v_n\end{bmatrix}$$\longrightarrow$$\begin{bmatrix} [ 1 & v_1 & v_1^2]\\ [ 1 & v_2 & v_2^2]\\ \vdots & \vdots & \vdots\\ [ 1 & v_n & v_n^2]\end{bmatrix}$in our example$\begin{bmatrix} 2.\\ 2.4\\ 1.5\\ \vdots\end{bmatrix}$$\longrightarrow$$\begin{bmatrix} [ 1 & 2. & 4.]\\ [ 1 & 2.4 & 5.76]\\ [ 1 & 1.5 & 2.25]\\ \vdots & \vdots & \vdots\\\end{bmatrix}$ It looks like feature sets for multiple linear regression analysis, right? Yes. It Does. Indeed, Polynomial regression is a special case of linear regression, with the main idea of how do you select your features. Just consider replacing the $x$ with $x_1$, $x_1^2$ with $x_2$, and so on. Then the degree 2 equation would be turn into:$y = b + \theta_1 x_1 + \theta_2 x_2$Now, we can deal with it as 'linear regression' problem. Therefore, this polynomial regression is considered to be a special case of traditional multiple linear regression. So, you can use the same mechanism as linear regression to solve such a problems. so we can use __LinearRegression()__ function to solve it: ###Code clf = linear_model.LinearRegression() train_y_ = clf.fit(train_x_poly, train_y) # The coefficients print ('Coefficients: ', clf.coef_) print ('Intercept: ',clf.intercept_) ###Output Coefficients: [[ 0. 51.38793947 -1.66339345]] Intercept: [105.41794938] ###Markdown As mentioned before, __Coefficient__ and __Intercept__ , are the parameters of the fit curvy line. Given that it is a typical multiple linear regression, with 3 parameters, and knowing that the parameters are the intercept and coefficients of hyperplane, sklearn has estimated them from our new set of feature sets. Lets plot it: ###Code plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue') XX = np.arange(0.0, 10.0, 0.1) #arrange from 0 to 10 in interval of 0.1 yy = clf.intercept_[0]+ clf.coef_[0][1]*XX+ clf.coef_[0][2]*np.power(XX, 2) plt.plot(XX, yy, '-r' ) plt.xlabel("Engine size") plt.ylabel("Emission") ###Output _____no_output_____ ###Markdown Evaluation ###Code from sklearn.metrics import r2_score test_x = np.asanyarray(train[['ENGINESIZE']]) test_y = np.asanyarray(train[['CO2EMISSIONS']]) test_x_poly = poly.fit_transform(test_x) test_y_ = clf.predict(test_x_poly) print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2)) print("R2-score: %.2f" % r2_score(test_y_ , test_y) ) ###Output Mean absolute error: 23.26 Residual sum of squares (MSE): 935.18 R2-score: 0.69 ###Markdown PracticeTry to use a polynomial regression with the dataset but this time with degree three (cubic). Does it result in better accuracy? ###Code # For Cubic results in a very slightly better solution from sklearn.preprocessing import PolynomialFeatures from sklearn import linear_model train_x = np.asanyarray(train[['ENGINESIZE']]) train_y = np.asanyarray(train[['CO2EMISSIONS']]) poly = PolynomialFeatures(degree=3) train_x_poly = poly.fit_transform(train_x) train_x_poly clf = linear_model.LinearRegression() train_y_ = clf.fit(train_x_poly, train_y) # The coefficients print ('Coefficients: ', clf.coef_) print ('Intercept: ',clf.intercept_) plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue') XX = np.arange(0.0, 10.0, 0.1) #arrange from 0 to 10 in interval of 0.1 yy = clf.intercept_[0]+ clf.coef_[0][1]*XX+ clf.coef_[0][2]*np.power(XX, 2)+ clf.coef_[0][3]*np.power(XX, 3) plt.plot(XX, yy, '-r' ) plt.xlabel("Engine size") plt.ylabel("Emission") from sklearn.metrics import r2_score test_x = np.asanyarray(train[['ENGINESIZE']]) test_y = np.asanyarray(train[['CO2EMISSIONS']]) test_x_poly = poly.fit_transform(test_x) test_y_ = clf.predict(test_x_poly) print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2)) print("R2-score: %.2f" % r2_score(test_y_ , test_y) ) ###Output Coefficients: [[ 0. 33.48192189 3.24974737 -0.40587362]] Intercept: [124.52839587] Mean absolute error: 23.20 Residual sum of squares (MSE): 932.29 R2-score: 0.69
Chapter 02/Hello Featuretools.ipynb
###Markdown Install ###Code #!pip install featuretools # For conda # conda install -c conda-forge featuretools import featuretools as ft ###Output _____no_output_____ ###Markdown Toy dataset ###Code data = ft.demo.load_mock_customer() data.keys() ###Output _____no_output_____ ###Markdown Entities* customers: unique customers who had sessions* sessions: unique sessions and associated attributes* transactions: list of events in this session* products: list of products invloved in the transactions Creating an EntitySet ###Code es = ft.demo.load_mock_customer(return_entityset=True) es es["customers"].variables ###Output _____no_output_____ ###Markdown Generating features ###Code feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity="customers", #table or entity where feature will be added agg_primitives=["count"], trans_primitives=["month"], max_depth=1) feature_defs feature_matrix ###Output _____no_output_____ ###Markdown Creating deep features ###Code #Deep features are build by stacking primitives. #max_depth parameter decides the number of allowed primitive stacking. feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity="customers", agg_primitives=["mean", "sum", "mode"], trans_primitives=["month", "hour"], max_depth=2) feature_defs feature_matrix ###Output _____no_output_____ ###Markdown Creating an EntitySet from scratch ###Code data = ft.demo.load_mock_customer() data['products'] data["transactions"] data["sessions"] data["customers"] transactions_df = data["transactions"].merge(data["sessions"]).merge(data["customers"]) transactions_df.head() products_df = data["products"] products_df #STEP 1. Initialize an EntitySet es = ft.EntitySet(id="customer_data") #STEP 2. Add entitites es = es.entity_from_dataframe(entity_id="transactions", dataframe=transactions_df, index="transaction_id", time_index="transaction_time", #when the data in each row became known. variable_types={"product_id": ft.variable_types.Categorical, "zip_code": ft.variable_types.ZIPCode}) es.plot() # Add Products es = es.entity_from_dataframe(entity_id="products", dataframe=products_df, index="product_id") es.plot() ###Output _____no_output_____ ###Markdown Adding a relationship ###Code # STEP 3 - Add relationship #Parent comes first and child comes ater new_relationship = ft.Relationship(es["products"]["product_id"], es["transactions"]["product_id"]) es = es.add_relationship(new_relationship) es.plot() #Time to build the feature matrix feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity="products") feature_defs feature_matrix ###Output _____no_output_____
doc/pub/LogReg/ipynb/.ipynb_checkpoints/LogReg-checkpoint.ipynb
###Markdown Data Analysis and Machine Learning: Logistic Regression **Morten Hjorth-Jensen**, Department of Physics, University of Oslo and Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State UniversityDate: **Sep 26, 2018**Copyright 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license Logistic RegressionIn linear regression our main interest was centered on learning thecoefficients of a functional fit (say a polynomial) in order to beable to predict the response of a continuous variable on some unseendata. The fit to the continuous variable $y_i$ is based on someindependent variables $\hat{x}_i$. Linear regression resulted inanalytical expressions (in terms of matrices to invert) for severalquantities, ranging from the variance and thereby the confidenceintervals of the parameters $\hat{\beta}$ to the mean squarederror. If we can invert the product of the design matrices, linearregression gives then a simple recipe for fitting our data.Classification problems, however, are concerned with outcomes takingthe form of discrete variables (i.e. categories). We may for example,on the basis of DNA sequencing for a number of patients, like to findout which mutations are important for a certain disease; or based onscans of various patients' brains, figure out if there is a tumor ornot; or given a specific physical system, we'd like to identify itsstate, say whether it is an ordered or disordered system (typicalsituation in solid state physics); or classify the status of apatient, whether she/he has a stroke or not and many other similarsituations.The most common situation we encounter when we apply logisticregression is that of two possible outcomes, normally denoted as abinary outcome, true or false, positive or negative, success orfailure etc. Optimization and Deep learningLogistic regression will also serve as our stepping stone towards neuralnetwork algorithms and supervised deep learning. For logisticlearning, the minimization of the cost function leads to a non-linearequation in the parameters $\hat{\beta}$. The optmization of the problem calls therefore for minimization algorithms. This forms the bottle neck of all machine learning algorithms, namely how to find reliable minima of a multi-variable function. This leads us to the family of gradient descent methods. The latter are the working horses of basically all modern machine learning algorithms. We note also that many of the topics discussed here regression are also commonly used in modern supervised Deep Learningmodels, as we will see later. BasicsWe consider the case where the dependent variables, also called theresponses or the outcomes, $y_i$ are discrete and only take valuesfrom $k=0,\dots,K-1$ (i.e. $K$ classes).The goal is to predict theoutput classes from the design matrix $\hat{X}\in\mathbb{R}^{n\times p}$made of $n$ samples, each of which carries $p$ features or predictors. Theprimary goal is to identify the classes to which new unseen samplesbelong.Let us specialize to the case of two classes only, with outputs $y_i=0$ and $y_i=1$. Our outcomes could represent the status of a credit card user who could default or not on her/his credit card debt. That is $$y_i = \begin{bmatrix} 0 & \mathrm{no}\\ 1 & \mathrm{yes} \end{bmatrix}.$$ Linear classifierBefore moving to the logistic model, let us try to use our linear regression model to classify these two outcomes. We could for example fit a linear model to the default case if $y_i > 0.5$ and the no default case $y_i \leq 0.5$. We would then have our weighted linear combination, namely $$\begin{equation}\hat{y} = \hat{X}^T\hat{\beta} + \hat{\epsilon},\label{_auto1} \tag{1}\end{equation}$$ where $\hat{y}$ is a vector representing the possible outcomes, $\hat{X}$ is our$n\times p$ design matrix and $\hat{\beta}$ represents our estimators/predictors. Some selected propertiesThe main problem with our function is that it takes values on the entire real axis. In the case oflogistic regression, however, the labels $y_i$ are discretevariables. One simple way to get a discrete output is to have signfunctions that map the output of a linear regressor to values $\{0,1\}$,$f(s_i)=sign(s_i)=1$ if $s_i\ge 0$ and 0 if otherwise. We will encounter this model in our first demonstration of neural networks. Historically it is called the "perceptron" model in the machine learningliterature. This model is extremely simple. However, in many cases it is morefavorable to use a ``soft" classifier that outputsthe probability of a given category. This leads us to the logistic function.The code for plotting the perceptron can be seen here. This si nothing but the standard [Heaviside step function](https://en.wikipedia.org/wiki/Heaviside_step_function). The logistic functionThe perceptron is an example of a ``hard classification" model. Wewill encounter this model when we discuss neural networks aswell. Each datapoint is deterministically assigned to a category (i.e$y_i=0$ or $y_i=1$). In many cases, it is favorable to have a "soft"classifier that outputs the probability of a given category ratherthan a single value. For example, given $x_i$, the classifieroutputs the probability of being in a category $k$. Logistic regressionis the most common example of a so-called soft classifier. In logisticregression, the probability that a data point $x_i$belongs to a category $y_i=\{0,1\}$ is given by the so-called logit function (or Sigmoid) which is meant to represent the likelihood for a given event, $$p(t) = \frac{1}{1+\mathrm \exp{-t}}=\frac{\exp{t}}{1+\mathrm \exp{t}}.$$ Note that $1-p(t)= p(-t)$.The following code plots the logistic function. Two parametersWe assume now that we have two classes with $y_i$ either $0$ or $1$. Furthermore we assume also that we have only two parameters $\beta$ in our fitting of the Sigmoid function, that is we define probabilities $$\begin{align*}p(y_i=1|x_i,\hat{\beta}) &= \frac{\exp{(\beta_0+\beta_1x_i)}}{1+\exp{(\beta_0+\beta_1x_i)}},\nonumber\\p(y_i=0|x_i,\hat{\beta}) &= 1 - p(y_i=1|x_i,\hat{\beta}),\end{align*}$$ where $\hat{\beta}$ are the weights we wish to extract from data, in our case $\beta_0$ and $\beta_1$. Note that we used $$p(y_i=0\vert x_i, \hat{\beta}) = 1-p(y_i=1\vert x_i, \hat{\beta}).$$ Maximum likelihoodIn order to define the total likelihood for all possible outcomes from a dataset $\mathcal{D}=\{(y_i,x_i)\}$, with the binary labels$y_i\in\{0,1\}$ and where the data points are drawn independently, we use the so-called [Maximum Likelihood Estimation](https://en.wikipedia.org/wiki/Maximum_likelihood_estimation) (MLE) principle. We aim thus at maximizing the probability of seeing the observed data. We can then approximate the likelihood in terms of the product of the individual probabilities of a specific outcome $y_i$, that is $$\begin{align*}P(\mathcal{D}|\hat{\beta})& = \prod_{i=1}^n \left[p(y_i=1|x_i,\hat{\beta})\right]^{y_i}\left[1-p(y_i=1|x_i,\hat{\beta}))\right]^{1-y_i}\nonumber \\\end{align*}$$ from which we obtain the log-likelihood and our **cost/loss** function $$\mathcal{C}(\hat{\beta}) = \sum_{i=1}^n \left( y_i\log{p(y_i=1|x_i,\hat{\beta})} + (1-y_i)\log\left[1-p(y_i=1|x_i,\hat{\beta}))\right]\right).$$ The cost function rewrittenReordering the logarithms, we can rewrite the **cost/loss** function as $$\mathcal{C}(\hat{\beta}) = \sum_{i=1}^n \left(y_i(\beta_0+\beta_1x_i) -\log{(1+\exp{(\beta_0+\beta_1x_i)})}\right).$$ The maximum likelihood estimator is defined as the set of parameters that maximize the log-likelihood where we maximize with respect to $\beta$.Since the cost (error) function is just the negative log-likelihood, for logistic regression we have that $$\mathcal{C}(\hat{\beta})=-\sum_{i=1}^n \left(y_i(\beta_0+\beta_1x_i) -\log{(1+\exp{(\beta_0+\beta_1x_i)})}\right).$$ This equation is known in statistics as the **cross entropy**. Finally, we note that just as in linear regression, in practice we often supplement the cross-entropy with additional regularization terms, usually $L_1$ and $L_2$ regularization as we did for Ridge and Lasso regression. Minimizing the cross entropyThe cross entropy is a convex function of the weights $\hat{\beta}$ and,therefore, any local minimizer is a global minimizer. Minimizing thiscost function with respect to the two parameters $\beta_0$ and $\beta_1$ we obtain $$\frac{\partial \mathcal{C}(\hat{\beta})}{\partial \beta_0} = -\sum_{i=1}^n \left(y_i -\frac{\exp{(\beta_0+\beta_1x_i)}}{1+\exp{(\beta_0+\beta_1x_i)}}\right),$$ and $$\frac{\partial \mathcal{C}(\hat{\beta})}{\partial \beta_1} = -\sum_{i=1}^n \left(y_ix_i -x_i\frac{\exp{(\beta_0+\beta_1x_i)}}{1+\exp{(\beta_0+\beta_1x_i)}}\right).$$ A more compact expressionLet us now define a vector $\hat{y}$ with $n$ elements $y_i$, an$n\times p$ matrix $\hat{X}$ which contains the $x_i$ values and avector $\hat{p}$ of fitted probabilities $p(y_i\vert x_i,\hat{\beta})$. We can rewrite in a more compact form the firstderivative of cost function as $$\frac{\partial \mathcal{C}(\hat{\beta})}{\partial \hat{\beta}} = -\hat{X}^T\left(\hat{y}-\hat{p}\right).$$ If we in addition define a diagonal matrix $\hat{W}$ with elements $p(y_i\vert x_i,\hat{\beta})(1-p(y_i\vert x_i,\hat{\beta})$, we can obtain a compact expression of the second derivative as $$\frac{\partial^2 \mathcal{C}(\hat{\beta})}{\partial \hat{\beta}\partial \hat{\beta}^T} = \hat{X}^T\hat{W}\hat{X}.$$ Extending to more predictors Including more classes Optimizing the cost functionNewton's method and gradient descent methods A **scikit-learn** example ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt from sklearn import datasets iris = datasets.load_iris() list(iris.keys()) ['data', 'target_names', 'feature_names', 'target', 'DESCR'] X = iris["data"][:, 3:] # petal width y = (iris["target"] == 2).astype(np.int) # 1 if Iris-Virginica, else 0 from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(X, y) X_new = np.linspace(0, 3, 1000).reshape(-1, 1) y_proba = log_reg.predict_proba(X_new) plt.plot(X_new, y_proba[:, 1], "g-", label="Iris-Virginica") plt.plot(X_new, y_proba[:, 0], "b--", label="Not Iris-Virginica") plt.show() ###Output _____no_output_____ ###Markdown A simple classification problem ###Code import numpy as np from sklearn import datasets, linear_model import matplotlib.pyplot as plt def generate_data(): np.random.seed(0) X, y = datasets.make_moons(200, noise=0.20) return X, y def visualize(X, y, clf): # plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral) # plt.show() plot_decision_boundary(lambda x: clf.predict(x), X, y) plt.title("Logistic Regression") def plot_decision_boundary(pred_func, X, y): # Set min and max values and give it some padding x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole gid Z = pred_func(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral) plt.show() def classify(X, y): clf = linear_model.LogisticRegressionCV() clf.fit(X, y) return clf def main(): X, y = generate_data() # visualize(X, y) clf = classify(X, y) visualize(X, y, clf) if __name__ == "__main__": main() ###Output _____no_output_____
01. Visualization/NASA_Turbofan_Engine_Data_Visualization 3-1.ipynb
###Markdown NASA Turbofan Engine Dataset Visualization 3-1 여기서부터는 엔진별, 센서별로 분할된 데이터를 센서별로 1번부터 100번 엔진까지의 데이터를 한 차트에 보여줄 수 있도록 병합하는 코드를 만들겠다. ###Code import pandas as pd import numpy as np from pathlib import Path from pathlib import PurePath from pandas import DataFrame import xlwings as xw import xlsxwriter ###Output _____no_output_____ ###Markdown 1번 ~ 100번까지 엔진별, 센서별로 분할한 데이터를 센서별로 병합하는 코드 이전에는 엔진별로 서로 다른 종류의 모든 센서 데이터를 하나의 시계열 그래프로 나타내었다면,이번에는 엔진번호(Unit_Number), 비행시간(Time), 센서 1개에서 나온 데이터만 추출해보겠다.그리고 나중에는 이를 바탕으로 특정 한 센서를 중심으로 각 엔진들을 join한 형태의 테이블을 작성해보겠다.그전에 우선 FD001의 train에서 4번엔진의 비행 싸이클인 'Time','Fan Inlet Temp' 데이터만 추출해보겠다.필요한 코드는 아래와 같다. FD001 train set 센서별 데이터 병합 ###Code # 01. Fan Inlet Temp 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 01. Fan Inlet Temp.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/01. Fan Inlet Temp/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 02. LPC Outlet Temp 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 02. LPC Outlet Temp.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/02. LPC Outlet Temp/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 03. HPC Outlet Temp 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 03. HPC Outlet Temp.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/03. HPC Outlet Temp/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 04. LPT Outlet Temp 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 04. LPT Outlet Temp.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/04. LPT Outlet Temp/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 05. Fan Inlet Press 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 05. Fan Inlet Press.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/05. Fan Inlet Press/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 06. Bypass Duct Press 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 06. Bypass Duct Press.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/06. Bypass Duct Press/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 07. Total HPC Outlet Press 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 07. Total HPC Outlet Press.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/07. Total HPC Outlet Press/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 08. Physical Fan Speed 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 08. Physical Fan Speed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/08. Physical Fan Speed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 09. Physical Core Speed 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 09. Physical Core Speed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/09. Physical Core Speed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 10. Engine Press Ratio 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 10. Engine Press Ratio.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/10. Engine Press Ratio/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 11. Static HPC Outlet Press 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 11. Static HPC Outlet Press.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/11. Static HPC Outlet Press/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 12. Fuel Flow Ratio to Ps30 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 12. Fuel Flow Ratio to Ps30.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/12. Fuel Flow Ratio to Ps30/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 13. Corrected Fan Speed 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 13. Corrected Fan Speed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/13. Corrected Fan Speed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 14. Corrected Corr Speed 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 14. Corrected Corr Speed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/14. Corrected Corr Speed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 15. Bypass Ratio 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 15. Bypass Ratio.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/15. Bypass Ratio/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 16. Burner Fuel-Air ratio 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 16. Burner Fuel-Air ratio.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/16. Burner Fuel-Air ratio/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 17. Bleed Enthalpy 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 17. Bleed Enthalpy.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/17. Bleed Enthalpy/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 18. Demanded Fan Speed 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 18. Demanded Fan Speed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/18. Demanded Fan Speed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 19. Demanded Corrected Fan Speed 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 19. Demanded Corrected Fan Speed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/19. Demanded Corrected Fan Speed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 20. HPT Collant Bleed 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 20. HPT Collant Bleed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/20. HPT Collant Bleed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 # 21. LPT_Coolant_Bleed 데이터 병합 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 21. LPT_Coolant_Bleed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/21. LPT_Coolant_Bleed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() # 센서별 데이터 병합 종료 print('생성 파일 : ', excel_file) # 생성한 파일 이름 출력 ###Output 생성 파일 : C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/FD001 train 21. LPT_Coolant_Bleed.xlsx ###Markdown 해당 엑셀파일을 열어보면 아래와 같다. ###Code example = pd.read_excel('C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/FD001 train 01. Fan Inlet Temp.xlsx') example # 02. LPC Outlet Temp # 03. HPC Outlet Temp # 04. LPT Outlet Temp # 05. Fan Inlet Press # 06. Bypass Duct Press # 07. Total HPC Outlet Press # 08. Physical Fan Speed # 09. Physical Core Speed # 10. Engine Press Ratio # 11. Static HPC Outlet Press # 12. Fuel Flow Ratio to Ps30 # 13. Corrected Fan Speed # 14. Corrected Corr Speed # 15. Bypass Ratio # 16. Burner Fuel-Air ratio # 17. Bleed Enthalpy # 18. Demanded Fan Speed # 19. Demanded Corrected Fan Speed # 20. HPT Collant Bleed # 21. LPT_Coolant_Bleed # 02. LPC Outlet Temp # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 02. LPC Outlet Temp.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/02. LPC Outlet Temp/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 02. LPC Outlet Temp 파일 병합이 완료되었습니다.') # 03. HPC Outlet Temp # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 03. HPC Outlet Temp.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/03. HPC Outlet Temp/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 03. HPC Outlet Temp 파일 병합이 완료되었습니다.') # 04. LPT Outlet Temp # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 04. LPT Outlet Temp.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/04. LPT Outlet Temp/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 04. LPT Outlet Temp 파일 병합이 완료되었습니다.') # 05. Fan Inlet Press # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 05. Fan Inlet Press.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/05. Fan Inlet Press/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 05. Fan Inlet Press 파일 병합이 완료되었습니다.') # 06. Bypass Duct Press # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 06. Bypass Duct Press.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/06. Bypass Duct Press/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 06. Bypass Duct Press 파일 병합이 완료되었습니다.') # 07. Total HPC Outlet Press # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 07. Total HPC Outlet Press.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/07. Total HPC Outlet Press/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 07. Total HPC Outlet Press 파일 병합이 완료되었습니다.') # 08. Physical Fan Speed # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 08. Physical Fan Speed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/08. Physical Fan Speed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 08. Physical Fan Speed 파일 병합이 완료되었습니다.') # 09. Physical Core Speed # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 09. Physical Core Speed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/09. Physical Core Speed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 09. Physical Core Speed 파일 병합이 완료되었습니다.') # 10. Engine Press Ratio # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 10. Engine Press Ratio.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/10. Engine Press Ratio/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 10. Engine Press Ratio 파일 병합이 완료되었습니다.') # 11. Static HPC Outlet Press # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 11. Static HPC Outlet Press.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/11. Static HPC Outlet Press/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 11. Static HPC Outlet Press 파일 병합이 완료되었습니다.') # 12. Fuel Flow Ratio to Ps30 # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 12. Fuel Flow Ratio to Ps30.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/12. Fuel Flow Ratio to Ps30/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 12. Fuel Flow Ratio to Ps30 파일 병합이 완료되었습니다.') # 13. Corrected Fan Speed # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 13. Corrected Fan Speed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/13. Corrected Fan Speed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 13. Corrected Fan Speed 파일 병합이 완료되었습니다.') # 14. Corrected Corr Speed # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 14. Corrected Corr Speed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/14. Corrected Corr Speed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 14. Corrected Corr Speed 파일 병합이 완료되었습니다.') # 14. Corrected Corr Speed # 1. 엑셀 파일 저장 경로 folder = 'C:/Users/jhj\Desktop/NASA_Turbofan_Engine_excel_data/센서별 병합 데이터 모음/train/FD001/' excel_file = folder + 'FD001 train 14. Corrected Corr Speed.xlsx' workbook = xlsxwriter.Workbook(excel_file) # 워크북 객체 생성 worksheet = workbook.add_worksheet() # 워크시트 생성 worksheet.write(0,0,'Time (Flight Cycle)') # 2. 엔진 번호 입력 for i in range(100): Engine_Number = str(i+1) + '번 엔진' worksheet.write(0,i+1,Engine_Number) # 3. x축에 해당하는 'Time (Cycle)'을 입력 for i in range(400): worksheet.write(i+1,0,i+1) # 4. 센서별 & 엔진별 분할된 데이터를 불러와서 병합 for j in range(100): for i in range(400): direct = "='C:/Users/jhj/Desktop/NASA_Turbofan_Engine_excel_data/센서별 & 엔진별 분할 데이터 모음/train/FD001/14. Corrected Corr Speed/[" + str(j+1) + "엔진.xlsx]Sheet1'!$C" cell = str(i+2) data = direct + cell worksheet.write(i+1,j+1,data) workbook.close() print('FD001 train 14. Corrected Corr Speed 파일 병합이 완료되었습니다.') ###Output _____no_output_____
perception analysis/individual preference.ipynb
###Markdown R² and user statements ###Code g = sns.jointplot( data=df_results, x="accuracy_R2", y="accuracy", xlim=(0,1), ylim=(0,1), kind="reg" ) g.set_axis_labels('accuracy R²', 'reported accuracy importance') g = sns.jointplot( data=df_results, x="s_accuracy_R2", y="s_accuracy", xlim=(0,1), ylim=(0,1), kind="reg" ) g.set_axis_labels('group accuracy R²', 'reported group accuracy importance') g = sns.jointplot( data=df_results, x="abs_cv_R2", y="genderParity", xlim=(0,1), ylim=(0,1), kind="reg" ) g.set_axis_labels('absolute group parity R²', 'reported group parity importance') sns.set_style("white") g = sns.jointplot( data=df_results, x="ordering_utility_R2", y="accuracy", xlim=(0,1), ylim=(0,1), kind="reg" ) g.set_axis_labels('ordering utility R²', 'reported accuracy importance') sns.set_style("white") g = sns.jointplot( data=df_results, x="rND_R2", y="genderParity", xlim=(0,1), ylim=(0,1), kind="reg" ) g.set_axis_labels('absolute group parity R²', 'reported group parity importance') ###Output _____no_output_____ ###Markdown Differences between R² and user statement by R² ###Code df_results['diff_accuracy'] = df_results.accuracy - df_results.accuracy_R2 df_results['diff_s_accuracy'] = df_results.s_accuracy - df_results.s_accuracy_R2 df_results['diff_cv'] = df_results.genderParity - df_results.abs_cv_R2 df_results['diff_ordering_utility'] = df_results.accuracy - df_results.ordering_utility_R2 df_results['diff_rND'] = df_results.genderParity - df_results.rND_R2 df_results.head() g = sns.regplot(data=df_results, x='accuracy_R2', y='diff_accuracy') g.set(ylim=(-1, 1), xlim=(0, 1)) sns.despine() g = sns.regplot(data=df_results, x='s_accuracy_R2', y='diff_s_accuracy') g.set(ylim=(-1, 1), xlim=(0, 1)) sns.despine() g = sns.regplot(data=df_results, x='abs_cv_R2', y='diff_cv') g.set(ylim=(-1, 1), xlim=(0, 1)) sns.despine() g = sns.regplot(data=df_results, x='ordering_utility_R2', y='diff_ordering_utility') g.set(ylim=(-1, 1), xlim=(0, 1)) sns.despine() g = sns.regplot(data=df_results, x='rND_R2', y='diff_rND') g.set(ylim=(-1, 1), xlim=(0, 1)) sns.despine() ###Output _____no_output_____ ###Markdown R² distributions by gender ###Code g = sns.violinplot(data=df_results[df_results.gender != 'other'], y='gender', x='accuracy_R2', scale='count', inner='quartile', bw=0.3) g.set(xlim=(0, 1), xlabel='accuracy R²') sns.despine(left=True) g = sns.violinplot(data=df_results[df_results.gender != 'other'], y='gender', x='s_accuracy_R2', scale='count', inner='quartile', bw=0.3) g.set(xlim=(0, 1), xlabel='group-cond. accuracy R²') sns.despine(left=True) g = sns.violinplot(data=df_results[df_results.gender != 'other'], y='gender', x='abs_cv_R2', scale='count', inner='quartile', bw=0.3) g.set(xlim=(0, 1), xlabel='abs. gender parity R²') sns.despine(left=True) g = sns.violinplot(data=df_results[df_results.gender != 'other'], y='gender', x='ordering_utility_R2', scale='count', inner='quartile', bw=0.3) g.set(xlim=(0, 1), xlabel='ordering utility R²') sns.despine(left=True) g = sns.violinplot(data=df_results[df_results.gender != 'other'], y='gender', x='rND_R2', scale='count', inner='quartile', bw=0.3) g.set(xlim=(0, 1), xlabel='abs. gender parity R²') sns.despine(left=True) ###Output _____no_output_____ ###Markdown Models predicting R² from demographics ###Code cat_cols = [ 'language', 'age', 'edu', 'gender', ] y_cols = [ 'accuracy', 's_accuracy', 'genderParity', ] r2_cols = [ 'accuracy_R2', 's_accuracy_R2', 'abs_cv_R2', 'ordering_utility_R2', 'rND_R2' ] num_cols = [ 'believe', 'confidence', 'fear', 'political', 'religious', 'screenHeight', 'screenWidth', 'will', 'agreeableness', 'conscientiousness', 'extraversion', 'neuroticism', 'openness', ] df_users = pd.DataFrame(columns=cat_cols+num_cols+y_cols+r2_cols) for i in range(len(df_results)): user = df_results.iloc[i] user2 = df[df['user._id'] == user.id].iloc[0] new_row = {'accuracy': user['accuracy'], 's_accuracy': user['s_accuracy'], 'genderParity': user['genderParity'], 'abs_cv_R2': user['abs_cv_R2'], 'accuracy_R2': user['accuracy_R2'], 's_accuracy_R2': user['s_accuracy_R2'], 'ordering_utility_R2': user['ordering_utility_R2'], 'rND_R2': user['rND_R2'], 'believe': user2['user.believe'], 'confidence': user2['user.confidence'], 'fear': user2['user.fear'], 'political': user2['user.political'], 'religious': user2['user.religious'], 'screenHeight': user2['user.screenHeight'], 'screenWidth': user2['user.screenWidth'], 'will': user2['user.will'], 'agreeableness': user2['user.agreeableness'], 'conscientiousness': user2['user.conscientiousness'], 'extraversion': user2['user.extraversion'], 'neuroticism': user2['user.neuroticism'], 'openness': user2['user.openness'], 'language': user2['user.language'], 'age': user2['user.age'], 'edu': user2['user.edu'], 'gender': user2['user.gender'], } df_users = df_users.append(new_row, ignore_index=True) df_users from sklearn.preprocessing import KBinsDiscretizer from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.inspection import permutation_importance # split for genderParity model df_acc = df_users.copy() df_acc = df_acc.dropna(subset=['abs_cv_R2']) df_acc = df_acc.reset_index(drop=True) y = df_acc.abs_cv_R2 est = KBinsDiscretizer(n_bins=5, encode='ordinal', strategy='quantile') est.fit(y.to_numpy().reshape(-1, 1)) y = est.transform(y.to_numpy().reshape(-1, 1)).ravel() X = df_acc[num_cols + cat_cols] # build the genderParity model categorical_pipe = Pipeline([ ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore')) ]) numerical_pipe = Pipeline([ ('imputer', SimpleImputer(strategy='mean')) ]) preprocessing = ColumnTransformer( [('cat', categorical_pipe, cat_cols), ('num', numerical_pipe, num_cols)]) rf = Pipeline([ ('preprocess', preprocessing), ('classifier', RandomForestClassifier(n_jobs=-1, n_estimators=100)) ]) print("abs_cv_R2 model - RF test accuracy: %0.3f" % np.mean(cross_val_score(rf, X, y, cv=10))) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y) rf.fit(X_train, y_train) ohe = (rf.named_steps['preprocess'] .named_transformers_['cat'] .named_steps['onehot']) feature_names = ohe.get_feature_names(input_features=cat_cols) feature_names = np.r_[feature_names, num_cols] # num_cols tree_feature_importances = ( rf.named_steps['classifier'].feature_importances_) sorted_idx = tree_feature_importances.argsort() y_ticks = np.arange(0, len(feature_names)) fig, ax = plt.subplots(figsize=(10, 8)) ax.barh(y_ticks, tree_feature_importances[sorted_idx]) ax.set_yticklabels(feature_names[sorted_idx]) ax.set_yticks(y_ticks) ax.set_title("abs_cv_R2 model - Feature Importances") fig.tight_layout() plt.show() result = permutation_importance(rf, X, y, n_repeats=10, n_jobs=-1) sorted_idx = result.importances_mean.argsort() fig, ax = plt.subplots(figsize=(10, 5)) ax.boxplot(result.importances[sorted_idx].T, vert=False, labels=X.columns[sorted_idx]) ax.set_title("abs_cv_R2 model - Permutation Importances") fig.tight_layout() plt.show() # split for accuracy model df_acc = df_users.copy() df_acc = df_acc.dropna(subset=['accuracy_R2']) df_acc = df_acc.reset_index(drop=True) y = df_acc.accuracy_R2 est = KBinsDiscretizer(n_bins=5, encode='ordinal', strategy='quantile') est.fit(y.to_numpy().reshape(-1, 1)) y = est.transform(y.to_numpy().reshape(-1, 1)).ravel() X = df_acc[num_cols + cat_cols] # build the s_accuracy model categorical_pipe = Pipeline([ ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore')) ]) numerical_pipe = Pipeline([ ('imputer', SimpleImputer(strategy='mean')) ]) preprocessing = ColumnTransformer( [('cat', categorical_pipe, cat_cols), ('num', numerical_pipe, num_cols)]) rf = Pipeline([ ('preprocess', preprocessing), ('classifier', RandomForestClassifier(n_jobs=-1, n_estimators=100)) ]) print("accuracy_R2 model - RF test accuracy: %0.3f" % np.mean(cross_val_score(rf, X, y, cv=10))) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y) rf.fit(X_train, y_train) ohe = (rf.named_steps['preprocess'] .named_transformers_['cat'] .named_steps['onehot']) feature_names = ohe.get_feature_names(input_features=cat_cols) feature_names = np.r_[feature_names, num_cols] # num_cols tree_feature_importances = ( rf.named_steps['classifier'].feature_importances_) sorted_idx = tree_feature_importances.argsort() y_ticks = np.arange(0, len(feature_names)) fig, ax = plt.subplots(figsize=(10, 8)) ax.barh(y_ticks, tree_feature_importances[sorted_idx]) ax.set_yticklabels(feature_names[sorted_idx]) ax.set_yticks(y_ticks) ax.set_title("accuracy_R2 model - Feature Importances") fig.tight_layout() plt.show() result = permutation_importance(rf, X, y, n_repeats=10, n_jobs=-1) sorted_idx = result.importances_mean.argsort() fig, ax = plt.subplots(figsize=(10, 5)) ax.boxplot(result.importances[sorted_idx].T, vert=False, labels=X.columns[sorted_idx]) ax.set_title("abs_cv_R2 model - Permutation Importances") fig.tight_layout() plt.show() # split for s_accuracy model df_acc = df_users.copy() df_acc = df_acc.dropna(subset=['s_accuracy_R2']) df_acc = df_acc.reset_index(drop=True) y = df_acc.s_accuracy_R2 est = KBinsDiscretizer(n_bins=5, encode='ordinal', strategy='quantile') est.fit(y.to_numpy().reshape(-1, 1)) y = est.transform(y.to_numpy().reshape(-1, 1)).ravel() X = df_acc[num_cols + cat_cols] # build the s_accuracy model categorical_pipe = Pipeline([ ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore')) ]) numerical_pipe = Pipeline([ ('imputer', SimpleImputer(strategy='mean')) ]) preprocessing = ColumnTransformer( [('cat', categorical_pipe, cat_cols), ('num', numerical_pipe, num_cols)]) rf = Pipeline([ ('preprocess', preprocessing), ('classifier', RandomForestClassifier(n_jobs=-1, n_estimators=100)) ]) print("s_accuracy_R2 model - RF test accuracy: %0.3f" % np.mean(cross_val_score(rf, X, y, cv=10))) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y) rf.fit(X_train, y_train) ohe = (rf.named_steps['preprocess'] .named_transformers_['cat'] .named_steps['onehot']) feature_names = ohe.get_feature_names(input_features=cat_cols) feature_names = np.r_[feature_names, num_cols] # num_cols tree_feature_importances = ( rf.named_steps['classifier'].feature_importances_) sorted_idx = tree_feature_importances.argsort() y_ticks = np.arange(0, len(feature_names)) fig, ax = plt.subplots(figsize=(10, 8)) ax.barh(y_ticks, tree_feature_importances[sorted_idx]) ax.set_yticklabels(feature_names[sorted_idx]) ax.set_yticks(y_ticks) ax.set_title("s_accuracy_R2 model - Feature Importances") fig.tight_layout() plt.show() result = permutation_importance(rf, X, y, n_repeats=10, n_jobs=-1) sorted_idx = result.importances_mean.argsort() fig, ax = plt.subplots(figsize=(10, 5)) ax.boxplot(result.importances[sorted_idx].T, vert=False, labels=X.columns[sorted_idx]) ax.set_title("s_accuracy_R2 model - Permutation Importances") fig.tight_layout() plt.show() ###Output _____no_output_____
01 Beginner Level Task/Task 2-Stock Market Prediction And Forecasting Using Stacked LSTM/Beginner Level Task 2-Stock Market Prediction And Forecasting Using Stacked LSTM.ipynb
###Markdown Author : Loka Akash Reddy LGM VIP - Data Science September-2021 Task 2 : Stock Market Prediction And Forecasting Using Stacked LSTM Dataset Link : https://raw.githubusercontent.com/mwitiderrick/stockprice/master/NSE-TATAGLOBAL.csv Importing required Libraries ###Code #Importing Libraries1 %time import tensorflow as tf # This code has been tested with Tensorflow import tensorflow_datasets as tfds from tensorflow import keras import math import pandas as pd import pandas_datareader as web import numpy as np import datetime as dt import urllib.request, json import os import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns from keras.models import Sequential from keras.layers import Dense,LSTM import nltk from nltk.classify import NaiveBayesClassifier from nltk.corpus import subjectivity from nltk.sentiment import SentimentAnalyzer from nltk.sentiment.util import * from sklearn import preprocessing, metrics from sklearn.preprocessing import MinMaxScaler plt.style.use('fivethirtyeight') import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown Importing dataset ###Code df = web.DataReader('AAPL', data_source='yahoo', start='2012-01-01', end='2019-12-17') df = pd.read_csv("NSE-TATAGLOBAL.csv") df ###Output _____no_output_____ ###Markdown Inspecting Data ###Code df.head() df.shape df.info() df.describe() df.isnull().sum() df.dropna(inplace = True, how = 'all') df.isnull().sum() # number of records in both stock Market Prediction and Forecasting Using Stacked LSTM len(df) # checking for null values in both the datasets df.isna().any() df['Data'] = pd.to_datetime(df['Date']).dt.normalize() #flitering the important columns requried df = df.filter(['Date', 'Close', 'Open', 'high', 'Low', 'Volume']) # setting column 'Date' as the index column df.set_index('Date', inplace = True) # sorting the data according to the index i.e Date' df = df.sort_index(ascending = True, axis = 0) df ###Output _____no_output_____ ###Markdown Data Visualization ###Code plt.figure(figsize=(10,10)) plt.subplot(1,2,1) plt.plot(df['Open'],'b') plt.title("Open Price") plt.ylabel("Price") plt.subplot(1,2,2) plt.plot(df['Close'],'r') plt.title("Close Price") plt.ylabel("Price") plt.show() ###Output _____no_output_____ ###Markdown 200 Exponential Moving Average (EMA) and 200 Simple Moving Average (SMA) ###Code df.ewm(span=200).mean()['Close'].plot(figsize = (15,15), label = '200 EMA') df.rolling(window=200).mean()['Close'].plot(figsize=(15,15), label = '200 SMA') df['Close'].plot(label = 'Close') plt.legend() plt.ylabel('Price') plt.show() training_orig = df.loc[:, ['Close']] training_orig training_orig['Close'].plot() # setting figure size plt.figure(figsize=(16,10)) # plotting close price df['Close'].plot() # setting plot tittle x and y labels plt.title("Close Price") plt.xlabel('Date') plt.ylabel('Close Price ($)') plt.figure(figsize=(16,8)) plt.title('Close Price History') plt.plot(df['Close']) plt.xlabel('Date', fontsize = 18) plt.ylabel('Close Price USD($)', fontsize = 18) plt.show() data = df.filter(['Close']) dataset = data.values training_data_len = math.ceil(len(dataset) * .8) #scale the data scaler=MinMaxScaler(feature_range=(0,1)) scaled_data=scaler.fit_transform(dataset) scaled_data # Create training data set train_data = scaled_data[0:training_data_len,:] #split the data into x_train and y_train data sets x_train = [] y_train = [] for i in range(60,len(train_data)): x_train.append(train_data[i-60:i,0]) y_train.append(train_data[i,0]) if i <= 60: print(x_train) print(y_train) print() #convert train data to numpy arrays x_train, y_train = np.array(x_train),np.array(y_train) #Reshape x_train.shape x_train = np.reshape(x_train,(x_train.shape[0], x_train.shape[1],1)) x_train.shape # calculating 7 days moving avaerage df.rolling(7).mean().head(20) #setting figure size plt.figure(figsize = (16,10)) # plotting the close price and a 30 days rolling mean of close price df['Close'].plot() df.rolling(window=30).mean()['Close'].plot() # displaying df df # calculating data_to_use percentage_of_data = 1.0 data_to_use = int(percentage_of_data*(len(df)-1)) # using 80% of data for training train_end = int(data_to_use*0.8) total_data = len(df) start = total_data - data_to_use # printing number of records in the training and test datasets print("Number of records in Training Data:", train_end) print("Number of records in Test Data:", total_data - train_end) from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range=(0,1)) training = sc.fit_transform(np.array(training_orig['Close']).reshape(-1,1)) print(training.shape) train_size = int(len(training)*0.65) train = training[0:train_size] test = training[train_size:] print(train.shape) print(test.shape) test_plot = np.empty_like(training) test_plot[: , :] = np.nan test_plot[len(train): , :] = test plt.figure(figsize = (20,20)) plt.plot(train, 'red', label = 'train') plt.plot(test_plot, 'blue', label='test') plt.legend(loc='upper left') def helper(dataset, timestep): x=[] y=[] for i in range(len(dataset)-timestep-1): x.append(dataset[i:(i+timestep),0]) y.append(dataset[i+timestep, 0]) return np.array(x), np.array(y) x_train, y_train = helper(train,100) x_test, y_test = helper(test,100) x_train.shape, y_train.shape x_test.shape, y_test.shape x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], 1) x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], 1) x_test.shape # build LSTM Model model=Sequential() model.add(LSTM(50,return_sequences=True,input_shape=(x_train.shape[1],1))) model.add(LSTM(50,return_sequences=False)) model.add(Dense(25)) model.add(Dense(1)) #copile the model model.compile(optimizer='adam', loss='mean_squared_error') #train the model model.fit(x_train,y_train,batch_size=1,epochs=1) # copile the model model.compile(optimizer='adam', loss='mean_squared_error') #create the testing dataset #create a new array containing scaled values from index 1543 to 2003 test_data = scaled_data[training_data_len - 60:,:] # create the data sets x_test and y_test x_test=[] y_test=dataset[training_data_len:,:] for i in range(60,len(test_data)): x_test.append(test_data[i-60:i,0]) #convert the data to a numpy array x_test=np.array(x_test) #reshape x_test=np.reshape(x_test,(x_test.shape[0], x_test.shape[1],1)) #get the models predicited price values predictions=model.predict(x_test) predictions=scaler.inverse_transform(predictions) #Get the root mean squared error(RMSE) rmse=np.sqrt( np.mean((predictions - y_test)**2)) rmse train=data[:training_data_len] valid=data[training_data_len:] valid['Predictions']=predictions #visualize the data plt.figure(figsize=(16,8)) plt.title('Model') plt.xlabel('Date', fontsize=18) plt.ylabel('Close Price USD($)', fontsize=18) plt.plot(train['Close']) plt.plot(valid[['Close', 'Predictions']]) plt.legend(['Train', 'Val', 'Predictions'],loc='lower right') plt.show() #show the valid and predicted prices valid ###Output _____no_output_____
exploratory_data_analysis/SVM_Regression-Copy1.ipynb
###Markdown Cleaning the data ###Code dataframe = dataframe.replace('?',np.NAN) dict1 = dataframe.isnull().sum().to_dict() non_zero = [] for a in dict1.keys(): if dict1[a] > 100: # print a # print dict1[a] non_zero.append(a) # print non_zero for elem in non_zero: del dataframe[elem] # Perhaps its better to remove this row. # No reason in removing whole column. dataframe= dataframe.dropna() cols = list(dataframe.columns.values) ###Output _____no_output_____ ###Markdown Performing Regression ###Code cols = [ x for x in cols if x not in ['fold', 'state', 'community', 'communityname', 'county' ,'ViolentCrimesPerPop']] # cols = ['numbUrban', 'NumInShelters'] print len(cols) # print cols[0] cols1 = cols all_errors = [] X = dataframe[list(cols1)].values total_val = len(dataframe['ViolentCrimesPerPop'].values) percent = 2/float(3) edge_val = int(total_val*percent) Y = np.asarray(dataframe['ViolentCrimesPerPop'].values) for model in models: model.fit(X[:edge_val], Y[:edge_val]) y_predict = [model.predict(X[edge_val:]) for model in models] error = [0] * len(models) for i in xrange(edge_val, total_val): for k in xrange(len(models)): print k error[k] += (float(Y[i]) - y_predict[k][i-edge_val])**2 # print "Error of Estimates" error = [er/float(total_val- edge_val) for er in error] all_errors.append(error) # print error print "Im done" # arr = np.array(all_errors) # print np.min(arr, axis=0) print error best_f= np.argmin(arr, axis=0) print "SVM ranked" print arr[:,0].argsort() print "Bayesian ranked" print arr[:,2].argsort() print best_f bf = [cols[b1] for b1 in best_f] print bf # print np.min(arr,axis=1) models_chosen = np.argmin(arr,axis=1) # print models_chosen fm = {} for best in models_chosen: if best in fm: fm[best] +=1 else: fm[best] = 1 print fm cols[44] cols[50] ###Output _____no_output_____
remove_reads_from_another_fastq.ipynb
###Markdown Save `cleaned` KS162_CrePos_g5_rep3 ###Code %%bash comm -2 -3 \ <(gzip -dc /data/reddylab/Keith/collab/200924_Gemberling/data/chip_seq/processed_raw_reads/Siklenka_6683_201201A5/KS162_CrePos_g5_rep3.R1.fastq.gz \ | awk 'NR%4==1{res=$1}NR%4>1{res=res"\t"$1}NR%4==0{res=res"\t"$1; print res}' \ | sort -k1,1) \ <(gzip -dc /data/reddylab/Keith/encode4_duke/data/atac_seq/processed_raw_reads/Keith_6683_201201A5/KS136_Th17ASTARRInput_rep1.R1.fastq.gz \ | awk 'NR%4==1{res=$1}NR%4>1{res=res"\t"$1}NR%4==0{res=res"\t"$1; print res}' \ | sort -k1,1) \ | tr '\t' '\n' \ | gzip -c > /data/reddylab/Alex/tmp/cleaned.KS162_CrePos_g5_rep3.R1.fastq.gz comm -2 -3 \ <(gzip -dc /data/reddylab/Keith/collab/200924_Gemberling/data/chip_seq/processed_raw_reads/Siklenka_6683_201201A5/KS162_CrePos_g5_rep3.R2.fastq.gz \ | awk 'NR%4==1{res=$1}NR%4>1{res=res"\t"$1}NR%4==0{res=res"\t"$1; print res}' \ | sort -k1,1) \ <(gzip -dc /data/reddylab/Keith/encode4_duke/data/atac_seq/processed_raw_reads/Keith_6683_201201A5/KS136_Th17ASTARRInput_rep1.R2.fastq.gz \ | awk 'NR%4==1{res=$1}NR%4>1{res=res"\t"$1}NR%4==0{res=res"\t"$1; print res}' \ | sort -k1,1) \ | tr '\t' '\n' \ | gzip -c > /data/reddylab/Alex/tmp/cleaned.KS162_CrePos_g5_rep3.R2.fastq.gz ###Output _____no_output_____ ###Markdown Save `cleaned` KS136_Th17ASTARRInput_rep1 ###Code %%bash comm -1 -3 \ <(gzip -dc /data/reddylab/Keith/collab/200924_Gemberling/data/chip_seq/processed_raw_reads/Siklenka_6683_201201A5/KS162_CrePos_g5_rep3.R1.fastq.gz \ | awk 'NR%4==1{res=$1}NR%4>1{res=res"\t"$1}NR%4==0{res=res"\t"$1; print res}' \ | sort -k1,1) \ <(gzip -dc /data/reddylab/Keith/encode4_duke/data/atac_seq/processed_raw_reads/Keith_6683_201201A5/KS136_Th17ASTARRInput_rep1.R1.fastq.gz \ | awk 'NR%4==1{res=$1}NR%4>1{res=res"\t"$1}NR%4==0{res=res"\t"$1; print res}' \ | sort -k1,1) \ | tr '\t' '\n' \ | gzip -c > /data/reddylab/Alex/tmp/cleaned.KS136_Th17ASTARRInput_rep1.R1.fastq.gz comm -1 -3 \ <(gzip -dc /data/reddylab/Keith/collab/200924_Gemberling/data/chip_seq/processed_raw_reads/Siklenka_6683_201201A5/KS162_CrePos_g5_rep3.R2.fastq.gz \ | awk 'NR%4==1{res=$1}NR%4>1{res=res"\t"$1}NR%4==0{res=res"\t"$1; print res}' \ | sort -k1,1) \ <(gzip -dc /data/reddylab/Keith/encode4_duke/data/atac_seq/processed_raw_reads/Keith_6683_201201A5/KS136_Th17ASTARRInput_rep1.R2.fastq.gz \ | awk 'NR%4==1{res=$1}NR%4>1{res=res"\t"$1}NR%4==0{res=res"\t"$1; print res}' \ | sort -k1,1) \ | tr '\t' '\n' \ | gzip -c > /data/reddylab/Alex/tmp/cleaned.KS136_Th17ASTARRInput_rep1.R2.fastq.gz ###Output _____no_output_____
AI-Workflow-Enterprise-Model-Deployment/Model_Deployment-case-study_V3/m5-case-study-soln.ipynb
###Markdown CASE STUDY - Deploying a recommenderWe have seen the movie lens data on a toy dataset now lets try something a little bigger. You have somechoices.* [MovieLens Downloads](https://grouplens.org/datasets/movielens/latest/)If your resources are limited (your working on a computer with limited amount of memory)> continue to use the sample_movielens_ranting.csvIf you have a computer with at least 8GB of RAM> download the ml-latest-small.zipIf you have the computational resources (access to Spark cluster or high-memory machine)> download the ml-latest.zipThe two important pages for documentation are below.* [Spark MLlib collaborative filtering docs](https://spark.apache.org/docs/latest/ml-collaborative-filtering.html) * [Spark ALS docs](https://spark.apache.org/docs/latest/api/python/pyspark.mllib.htmlpyspark.mllib.recommendation.ALS) ###Code import os import shutil import pandas as pd import numpy as np import pyspark as ps from pyspark.ml import Pipeline from pyspark.ml.evaluation import RegressionEvaluator from pyspark.ml.recommendation import ALS from pyspark.sql import Row from pyspark.sql.types import DoubleType ## ensure the spark context is available spark = (ps.sql.SparkSession.builder .appName("sandbox") .getOrCreate() ) sc = spark.sparkContext print(spark.version) ## note that this solution uses ml-latest.zip data_dir = os.path.join("..","data","ml-latest") ratings_file = os.path.join(data_dir,"ratings.csv") movies_file = os.path.join(data_dir,"movies.csv") if not os.path.exists(ratings_file): print("ERROR make sure the path to the ratings file is correct") ## load the data df = spark.read.format("csv").options(header="true",inferSchema="true").load(ratings_file) df.show(n=4) movies_df = pd.read_csv(movies_file) movies_df.rename(columns={"movieId": "movie_id"},inplace=True) movies_df.head(5) ###Output _____no_output_____ ###Markdown QUESTION 1Explore the movie lens data a little and summarize it ###Code ## YOUR CODE HERE (summarize the data) df = df.withColumnRenamed("movieID", "movie_id") df = df.withColumnRenamed("userID", "user_id") df.describe().show() print('Unique users: {}'.format(df.select('user_id').distinct().count())) print('Unique movies: {}'.format(df.select('movie_id').distinct().count())) print('Movies with Rating > 2: {}'.format(df.filter('rating > 2').select('movie_id').distinct().count())) print('Movies with Rating > 3: {}'.format(df.filter('rating > 3').select('movie_id').distinct().count())) print('Movies with Rating > 4: {}'.format(df.filter('rating > 4').select('movie_id').distinct().count())) ###Output +-------+------------------+-----------------+------------------+--------------------+ |summary| user_id| movie_id| rating| timestamp| +-------+------------------+-----------------+------------------+--------------------+ | count| 27753444| 27753444| 27753444| 27753444| | mean|141942.01557064414|18487.99983414671|3.5304452124932677|1.1931218549319258E9| | stddev| 81707.40009148757|35102.62524746828| 1.066352750231982|2.1604822852233925E8| | min| 1| 1| 0.5| 789652004| | max| 283228| 193886| 5.0| 1537945149| +-------+------------------+-----------------+------------------+--------------------+ Unique users: 283228 Unique movies: 53889 Movies with Rating > 2: 50735 Movies with Rating > 3: 43107 Movies with Rating > 4: 29374 ###Markdown QUESTION 2Find the ten most popular movies---that is the then movies with the highest average rating>Hint: you may want to subset the movie matrix to only consider movies with a minimum number of ratings ###Code ## YOUR CODE HERE ## get the top rated movies with more than 100 ratings movie_counts = df.groupBy("movie_id").count() top_rated = df.groupBy("movie_id").avg('rating') top_rated = top_rated.withColumnRenamed("movie_id", "movie_id_2") top_movies = top_rated.join(movie_counts, top_rated.movie_id_2 == movie_counts.movie_id) top_movies = top_movies.filter('count>100').orderBy('avg(rating)',ascending=False).drop("movie_id_2") top_movies = top_movies.toPandas() ## add the movie titles to data frame movie_ids = top_movies['movie_id'].values inds = [np.where(movies_df['movie_id'].values==mid)[0][0] for mid in movie_ids] top_movies["title"] = movies_df['title'].values[inds] top_movies.head(10) ###Output _____no_output_____ ###Markdown QUESTION 3Compare at least 5 different values for the ``regParam``Use the `` ALS.trainImplicit()`` and compare it to the ``.fit()`` method. See the [Spark ALS docs](https://spark.apache.org/docs/latest/api/python/pyspark.mllib.htmlpyspark.mllib.recommendation.ALS)for example usage. ###Code ## YOUR CODE HERE (training, test) = df.randomSplit([0.8, 0.2]) def train_model(reg_param,implicit_prefs=False): als = ALS(maxIter=5, regParam=reg_param, userCol="user_id", itemCol="movie_id", ratingCol="rating", coldStartStrategy="drop",implicitPrefs=implicit_prefs) model = als.fit(training) predictions = model.transform(test) evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating", predictionCol="prediction") rmse = evaluator.evaluate(predictions) print("regParam={}, RMSE={}".format(reg_param,np.round(rmse,2))) for reg_param in [0.01, 0.05, 0.1, 0.15, 0.25]: train_model(reg_param) ###Output regParam=0.01, RMSE=0.84 regParam=0.05, RMSE=0.83 regParam=0.1, RMSE=0.83 regParam=0.15, RMSE=0.84 regParam=0.25, RMSE=0.87 ###Markdown QUESTION 4With your best regParam try using the `implicitPrefs` flag.>Note that the results here make sense because the data are `explicit` ratings ###Code ## YOUR CODE HERE train_model(0.1, implicit_prefs=True) ###Output regParam=0.1, RMSE=3.26 ###Markdown QUESTION 5Use model persistence to save your finalized model ###Code ## YOUR CODE HERE ## re-train using the whole data set print("...training") als = ALS(maxIter=5, regParam=0.1, userCol="user_id", itemCol="movie_id", ratingCol="rating", coldStartStrategy="drop") model = als.fit(df) ## save the model for furture use save_dir = "saved-recommender" if os.path.isdir(save_dir): print("...overwritting saved model") shutil.rmtree(save_dir) ## save the top-ten movies print("...saving top-movies") top_movies[:10000].to_csv("top-movies.csv",index=False) ## save model model.save(save_dir) print("done.") ###Output ...training ...overwritting saved model ...saving top-movies done. ###Markdown QUESTION 6Use ``spark-submit`` to load the model and demonstrate that you can load the model and interface with it. ###Code ## YOUR CODE HERE ## see recommender-submit.py ###Output _____no_output_____
notebooks/ACLUM Legislation.ipynb
###Markdown To set `aclum_urls`:- Open - Click "See more" until it goes away- In Dev Tools Console, copy output from: ```javascript Array.from(document.querySelectorAll('.listing-page-item .field-title-field a')).map(a => a.href) ``` ###Code aclum_urls = [ 'https://www.aclum.org/en/legislation/end-debt-based-incarceration-license-suspensions', 'https://www.aclum.org/en/legislation/face-surveillance-regulation', 'https://www.aclum.org/en/legislation/work-family-mobility', 'https://www.aclum.org/en/legislation/safe-communities', 'https://www.aclum.org/en/legislation/votes-act', 'https://www.aclum.org/en/legislation/remote-access-open-meetings', 'https://www.aclum.org/en/legislation/treatment-not-imprisonment-0', 'https://www.aclum.org/en/legislation/fix-massachusetts-civil-rights-act', 'https://www.aclum.org/en/legislation/massachusetts-information-privacy-act', 'https://www.aclum.org/en/legislation/artificial-intelligence-commission-0', 'https://www.aclum.org/en/legislation/automated-license-plate-readers', 'https://www.aclum.org/en/legislation/reduce-reincarceration-technical-violations-parole', 'https://www.aclum.org/en/legislation/no-cost-prison-phone-calls', 'https://www.aclum.org/en/legislation/prevent-imposition-mandatory-minimums-based-juvenile-records', 'https://www.aclum.org/en/legislation/qualified-immunity-reform', 'https://www.aclum.org/en/legislation/ending-life-without-parole', 'https://www.aclum.org/en/legislation/raise-age', 'https://www.aclum.org/en/legislation/access-justice-0', 'https://www.aclum.org/en/legislation/medication-opioid-use-disorder-all-correctional-facilities', 'https://www.aclum.org/en/legislation/treatment-non-carceral-settings-people-not-accused-crimes', 'https://www.aclum.org/en/legislation/alternatives-community-emergency-services', 'https://www.aclum.org/en/legislation/full-spectrum-pregnancy-care', 'https://www.aclum.org/en/legislation/access-emergency-contraception', 'https://www.aclum.org/en/legislation/healthy-and-safety-sex-workers', 'https://www.aclum.org/en/legislation/election-participation-eligible-incarcerated-voters', 'https://www.aclum.org/en/legislation/emergency-paid-sick-time', 'https://www.aclum.org/en/legislation/common-start-0', 'https://www.aclum.org/en/legislation/right-counsel-evictions' ] import json import re import requests from bs4 import BeautifulSoup from tqdm.notebook import tqdm def get_soup(url): response = requests.get(url) response.raise_for_status() return BeautifulSoup(response.text, "lxml") def select_string(soup, selector): try: return ' '.join(soup.select_one(selector).stripped_strings) except AttributeError: return "" def parse_bills(soup): bill_text = select_string(soup, '.field-legislation-bill') return [ { "session": 192, "number": b.replace('.', '') } for b in re.findall(r'([HS]\.\d+)', bill_text) ] def parse_legislation(url, soup): return { "id": url.split("/")[-1], "url": url, "title": select_string(soup, 'h1'), "description": select_string(soup, '.field-body p:not(.alt)'), "bills": parse_bills(soup), } aclum_legislation = [ parse_legislation(url, get_soup(url)) for url in tqdm(aclum_urls) ] aclum_legislation[0] for legislation in aclum_legislation: print(legislation['url']) print(legislation['title']) print(legislation['description']) print() with open('../dist/legislation.json', 'w') as f: json.dump(aclum_legislation, f, indent=4) ###Output _____no_output_____
docs/samples/ML Toolbox/Image Classification/Flower/Service End to End.ipynb
###Markdown Order of magnitude faster training for image classification: Part II _Transfer learning using Inception Package - Cloud Run Experience_This notebook continues the codifies the capabilities discussed in this [blog post](http://localhost:8081/). In a nutshell, it uses the pre-trained inception model as a starting point and then uses transfer learning to train it further on additional, customer-specific images. For explanation, simple flower images are used. Compared to training from scratch, the time and costs are drastically reduced.This notebook does preprocessing, training and prediction by calling CloudML API instead of running them in the Datalab container. The purpose of local work is to do some initial prototyping and debugging on small scale data - often by taking a suitable (say 0.1 - 1%) sample of the full data. The same basic steps can then be repeated with much larger datasets in cloud. Setup First run the following steps only if you are running Datalab from your local desktop or laptop (not running Datalab from a GCE VM):1. Make sure you have a GCP project which is enabled for Machine Learning API and Dataflow API.2. Run "%datalab project set --project [project-id]" to set the default project in Datalab.If you run Datalab from a GCE VM, then make sure the project of the GCE VM is enabled for Machine Learning API and Dataflow API. ###Code import mltoolbox.image.classification as model from google.datalab.ml import * bucket = 'gs://' + datalab_project_id() + '-lab' preprocess_dir = bucket + '/flowerpreprocessedcloud' model_dir = bucket + '/flowermodelcloud' staging_dir = bucket + '/staging' !gsutil mb $bucket ###Output _____no_output_____ ###Markdown PreprocessPreprocessing uses a Dataflow pipeline to convert the image format, resize images, and run the converted image through a pre-trained model to get the features or embeddings. You can also do this step using alternate technologies like Spark or plain Python code if you like. The %%ml preprocess command simplifies this task. Check out the parameters shown using --usage flag first and then run the command. If you hit "PERMISSION_DENIED" when running the following cell, you need to enable Cloud DataFlow API (url is shown in error message). The DataFlow job usually takes about 20 min to complete. ###Code train_set = CsvDataSet('gs://cloud-datalab/sampledata/flower/train1000.csv', schema='image_url:STRING,label:STRING') preprocess_job = model.preprocess_async(train_set, preprocess_dir, cloud={'num_workers': 10}) preprocess_job.wait() # Alternatively, you can query the job status by train_job.state. The wait() call blocks the notebook execution. ###Output /usr/local/lib/python2.7/dist-packages/apache_beam/coders/typecoders.py:136: UserWarning: Using fallback coder for typehint: Any. warnings.warn('Using fallback coder for typehint: %r.' % typehint) ###Markdown TrainNote that the command remains the same as that in the "local" version. ###Code train_job = model.train_async(preprocess_dir, 30, 1000, model_dir, cloud=CloudTrainingConfig('us-central1', 'BASIC')) train_job.wait() # Alternatively, you can query the job status by train_job.state. The wait() call blocks the notebook execution. ###Output _____no_output_____ ###Markdown Check your job status by running (replace the job id from the one shown above):```Job('image_classification_train_170307_002934').describe()``` Tensorboard works too with GCS path. Note that the data will show up usually a minute after tensorboard starts with GCS path. ###Code tb_id = TensorBoard.start(model_dir) ###Output _____no_output_____ ###Markdown PredictDeploy the model and run online predictions. The deployment takes about 2 ~ 5 minutes. ###Code Models().create('flower') ModelVersions('flower').deploy('beta1', model_dir) ###Output Waiting for operation "projects/bradley-playground/operations/create_flower_beta1-1488494327528" Done. ###Markdown Online prediction is currently in alpha, it helps to ensure a warm start if the first call fails. ###Code images = [ 'gs://cloud-ml-data/img/flower_photos/daisy/15207766_fc2f1d692c_n.jpg', 'gs://cloud-ml-data/img/flower_photos/tulips/6876631336_54bf150990.jpg' ] # set resize=True to avoid sending large data in prediction request. model.predict('flower.beta1', images, resize=True, cloud=True) ###Output Predicting... ###Markdown Batch Predict ###Code import google.datalab.bigquery as bq bq.Dataset('flower').create() eval_set = CsvDataSet('gs://cloud-datalab/sampledata/flower/eval670.csv', schema='image_url:STRING,label:STRING') batch_predict_job = model.batch_predict_async(eval_set, model_dir, output_bq_table='flower.eval_results_full', cloud={'temp_location': staging_dir}) batch_predict_job.wait() %%bq query --name wrong_prediction SELECT * FROM flower.eval_results_full WHERE target != predicted wrong_prediction.execute().result() ConfusionMatrix.from_bigquery('flower.eval_results_full').plot() %%bq query --name accuracy SELECT target, SUM(CASE WHEN target=predicted THEN 1 ELSE 0 END) as correct, COUNT(*) as total, SUM(CASE WHEN target=predicted THEN 1 ELSE 0 END)/COUNT(*) as accuracy FROM flower.eval_results_full GROUP BY target accuracy.execute().result() %%bq query --name logloss SELECT feature, AVG(-logloss) as logloss, count(*) as count FROM ( SELECT feature, CASE WHEN correct=1 THEN LOG(prob) ELSE LOG(1-prob) END as logloss FROM ( SELECT target as feature, CASE WHEN target=predicted THEN 1 ELSE 0 END as correct, target_prob as prob FROM flower.eval_results_full)) GROUP BY feature FeatureSliceView().plot(logloss) ###Output _____no_output_____ ###Markdown Clean up ###Code ModelVersions('flower').delete('beta1') Models().delete('flower') !gsutil -m rm -r {preprocess_dir} !gsutil -m rm -r {model_dir} ###Output _____no_output_____
FUNCOES PARAMETRO E LAMBDA/LAMBDA EXPRESSIONS.ipynb
###Markdown FUNCOES LAMBDAFunções de uma única função e pode ser chamada de função anônima.Funções lambda não possuem nomes, SÃO ATRIBUÍDAS DIRETAMENTE A VARIÁVEL (Umas das formas de usar)É atribuído a variável um *nome* a palavra reservada "lambda" o parametro seguido de dois pontos e a expressoa conforme o exemplo abaixo.nome_da_funcao = *lambda* parametro: expressao**Executa 1 linha de código e retorna o valor** ###Code def functionTeste(num): return 2 * num functionTeste(10) ###Output _____no_output_____ ###Markdown Usando LAMBDAnome_da_funcao = *lambda* parametro: expressao ###Code minha_funcao2 = lambda num: num * 2 minha_funcao2(5) #Aqui a variável é chamada já como parâmetro e usada como funcao ###Output _____no_output_____ ###Markdown USANDO LAMBDA ###Code #Exemplo de funcao imposto = 0.3 def preco_imposto(preco): return preco * ( 1 + 0.3) #Usando lambda preco_imposto2 = lambda preco: preco * (1 + imposto) preco_imposto(2) preco_imposto2(2) ###Output _____no_output_____ ###Markdown Principal Aplicação LAMBDAPrincipal utilização é usar uma função dentro de um método que já existe. Exemplo map() sort() e etc...Métodos que aceitam funções como parametro. ###Code preco_tecnologia = {'notebook asus': 2450, 'iphone': 4500, 'samsung galaxy': 3000, 'tv samsung': 1000, 'ps5': 3000, 'tablet': 1000, 'notebook dell': 3000, 'ipad': 3000, 'tv philco': 800, 'notebook hp': 1700} calcular_imposto1 = lambda valor: valor * 1.3 preco_cImposto = list(map(calcular_imposto1, preco_tecnologia.values())) print(preco_cImposto) ###Output [3185.0, 5850.0, 3900.0, 1300.0, 3900.0, 1300.0, 3900.0, 3900.0, 1040.0, 2210.0] ###Markdown Function filter()A função filter() filtra um interable.Ao invés de ter todos os valores, temos apenas aqueles que atendem a uma determinada condição.Essa função retorna **TRUE** ou **FALSE**, ela faz uma comparação ###Code preco_tecnologia2 = {'notebook asus': 2450, 'iphone': 4500, 'samsung galaxy': 3000, 'tv samsung': 1000, 'ps5': 3000, 'tablet': 1000, 'notebook dell': 3000, 'ipad': 3000, 'tv philco': 800, 'notebook hp': 1700} maior2k = lambda valor2: valor2 > 2000 produtos_acima_2k = dict(list(filter(lambda item: item[1] > 2000, preco_tecnologia2.items()))) print(produtos_acima_2k) ###Output {'notebook asus': 2450, 'iphone': 4500, 'samsung galaxy': 3000, 'ps5': 3000, 'notebook dell': 3000, 'ipad': 3000} ###Markdown LAMBDA expression para gerar funcoesAlém de aplicada com parametro de outros métodos também podem ser usadas com geradoras de funcoes ###Code def calc_imposto(impo): return lambda preco: preco * (1 + impo) calcular_produto = calc_imposto(0.1) calcular_servico = calc_imposto(0.15) calcular_royalties = calc_imposto(0.25) print(calcular_produto(100)) print(calcular_servico(90)) print(calcular_royalties(80)) ###Output 110.00000000000001 103.49999999999999 100.0
Lecture Notebooks/Econ126_Class_16-Incomplete.ipynb
###Markdown Class 16: Introduction to New-Keynesian Business Cycle ModelingIn this notebook, we will briefly explore US macroeconomic data suggesting that, contrary to the assumptions of most RBC models, there is in fact a relationship between real and nominal quantities over the business cycle. Then we will use `linearsolve` to compute impulse responses of output, inflation, and the nominal interest rate to a monetary policy shock in the New-Keynesian model. DataThe file `business_cycle_data_actual_trend_cycle.csv`, available at https://github.com/letsgoexploring/econ126/raw/master/Data/Csv/business_cycle_data_actual_trend_cycle.csv, contains actual and trend data for real GDP per capita, real consumption per capita, real investment per capita, real physical capital per capita, TFP, hours per capita, the rea money supply (M2), (nominal) interest rate on 3-month T-bills, the PCE inflation rate, and the unemployment rate; each at quarterly frequency. The GDP, consumption, investment, capital, and money supply data are in terms of 2012 dollars. Hours is measured as an index with the value in October 2012 set to 100. ###Code # Read business_cycle_data_actual_trend.csv into a Pandas DataFrame with the first column set as the index and parse_dates=True data = pd.read_csv('https://github.com/letsgoexploring/econ126/raw/master/Data/Csv/business_cycle_data_actual_trend_cycle.csv',index_col=0,parse_dates=True) # Print the last five rows of the data data.tail() ###Output _____no_output_____ ###Markdown Exercise: GDP and InflationConstruct a plot of the cyclical components of GDP and inflation. ###Code # Construct plot plt.plot(data['pce_inflation_cycle']*100,alpha=0.75,lw=3,label='Inflation') plt.plot(data['gdp_cycle']*100,c='r',alpha=0.5,label='GDP') plt.grid() plt.ylabel='Percent' plt.title('GDP and Inflation') # Place legend to right of figure. PROVIDED plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) ###Output _____no_output_____ ###Markdown Exercise: GDP and the 3-Month T-Bill RateConstruct a plot of the cyclical components of GDP and the 3-month T-bill rate. ###Code # Construct plot plt.plot(data['t_bill_3mo_cycle']*100,alpha=0.75,lw=3,label='Inflation') plt.plot(data['gdp_cycle']*100,c='r',alpha=0.5,label='GDP') plt.grid() plt.ylabel='Percent' plt.title('GDP and 3-Month T-Bill Rate') # Place legend to right of figure. PROVIDED plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) ###Output _____no_output_____ ###Markdown Correlations Between GDP, Inflation, and 3-Month T-Bill RateCompute the coefficients of corrrelation between GDP, inflation, and the 3-month T-bill rate. ###Code data[['gdp_cycle','pce_inflation_cycle','t_bill_3mo_cycle']].corr() ###Output _____no_output_____ ###Markdown Strong (but not perfect!) correlations between GDP and inflation and GDP and the T-bill rate suggest link between nominal and real quantities over the business cycle that should be exaplined by business cycle theory. The New-Keynesian ModelThe most basic version of the New-Keynesian Model can be expressed as:\begin{align}y_t & = E_t y_{t+1} - \left( r_{t} - \bar{r}\right) + g_t\\i_{t} & = r_{t} + E_t \pi_{t+1}\\i_{t} & = \bar{r} + \pi^T + \phi_{\pi}\big(\pi_t - \pi^T\big) + \phi_{y}\big(y_t - \bar{y}\big) + v_t\\\pi_t -\pi^T & = \beta \left( E_t\pi_{t+1} - \pi^T\right) + \kappa (y_t -\bar{y})+ u_t,\end{align}where: $y_t$ is (log) output, $r_t$ is the real interest rate, $i_t$ is the nominal interest rate, $\pi_t$ is the rate of inflation between periods $t-1$ and $t$, $\bar{r}$ is the long-run average real interest rate or the *natural rate of interest*, $\beta$ is the household's subjective discount factor, and $\pi^T$ is the central bank's inflation target. The coeffieints $\phi_{\pi}$ and $\phi_{y}$ reflect the degree of intensity to which the central bank *endogenously* adjusts the nominal interest rate in response to movements in inflation and output.The variables $g_t$, $u_t$, and $v_t$ represent exogenous shocks to aggregate demand, inflation, and monetary policy. They follow AR(1) processes:\begin{align}g_{t+1} & = \rho_g g_{t} + \epsilon^g_{t+1}\\u_{t+1} & = \rho_u u_{t} + \epsilon^u_{t+1}\\v_{t+1} & = \rho_v v_{t} + \epsilon^v_{t+1}.\end{align}The goal is to compute impulse responses in the model to a one percent exogenous increase in the nominal interest rate. We will use the following parameterization:| $\bar{y}$ | $\beta$ | $\bar{r}$ | $\kappa$ | $\pi^T$ | $\phi_{\pi}$ | $\phi_y$ | $\rho_g$ | $\rho_u$ | $\rho_v$ | |-----------|---------|--------------|----------|---------|--------------|----------|----------|----------|---------|| 0 | 0.995 | $-\log\beta$ | 0.1 | 0.02/4 | 1.5 | 0.5/4 | 0.5 | 0.5 | 0.5 | ###Code # Create a variable called 'parameters' that stores the model parameter values in a Pandas Series parameters = pd.Series() parameters['y_bar'] = 0 parameters['beta'] = 0.995 parameters['r_bar'] = -np.log(parameters.beta) parameters['kappa'] = 0.1 parameters['pi_T'] = 0.02/4 parameters['phi_pi'] = 1.5 parameters['phi_y'] = 0.5/4 parameters['rho_g'] = 0.5 parameters['rho_u'] = 0.5 parameters['rho_v'] = 0.5 # Print the model's parameters print(parameters) # Create variable called 'var_names' that stores the variable names in a list with state variables ordered first var_names = ['g','u','v','y','pi','i','r'] # Create variable called 'shock_names' that stores an exogenous shock name for each state variable. shock_names = ['e_g','e_u','e_v'] # Define a function that evaluates the equilibrium conditions of the model solved for zero. PROVIDED def equilibrium_equations(variables_forward,variables_current,parameters): # Parameters. PROVIDED p = parameters # Current variables. PROVIDED cur = variables_current # Forward variables. PROVIDED fwd = variables_forward # IS equation is_equation = fwd.y - (cur.r -p.r_bar) + cur.g - cur.y # Fisher_equation fisher_equation = cur.r + fwd.pi - cur.i # Monetary policy monetary_policy = p.r_bar + p.pi_T + p.phi_pi*(cur.pi - p.pi_T) + p.phi_y*cur.y + cur.v - cur.i # Phillips curve phillips_curve = p.beta*(fwd.pi- p.pi_T) + p.kappa*cur.y + cur.u - (cur.pi-p.pi_T) # Demand process demand_process = p.rho_g*cur.g - fwd.g # Monetary policy process monetary_policy_process = p.rho_v*cur.v - fwd.v # Inflation process inflation_process = p.rho_u*cur.u - fwd.u # Stack equilibrium conditions into a numpy array return np.array([ is_equation, fisher_equation, monetary_policy, phillips_curve, demand_process, monetary_policy_process, inflation_process ]) # Initialize the model into a variable named 'nk_model' nk_model = ls.model(equations = equilibrium_equations, n_states=3, var_names=var_names, shock_names=shock_names, parameters = parameters) # Compute the steady state numerically using .compute_ss() method of nk_model guess = [0,0,0,0,0.01,0.01,0.01] nk_model.compute_ss(guess) # Print the computed steady state print(nk_model.ss) # Find the log-linear approximation around the non-stochastic steady state and solve using .approximate_and_solve() method of nk_model # set argumement 'log_linear' to False because the model is already log-linear. ###Output _____no_output_____ ###Markdown Impulse ResponsesCompute a 21 period impulse response of the model's variables to a 0.01/4 unit shock to the exogenous component of monetary policy ($v_t$) in period 5. ###Code # Compute impulse responses # Print the first 10 rows of the computed impulse responses to the monetary policy shock ###Output _____no_output_____ ###Markdown Plot the computed impulses responses of the nominal interest rate, the real interest rate, output, and inflation. Express inflation and interest rates in *annualized* (e.g., multiplied by 4) terms. ###Code # Create figure. PROVIDED fig = plt.figure(figsize=(12,8)) # Create upper-left axis. PROVIDED ax1 = fig.add_subplot(2,2,1) # Create upper-right axis. PROVIDED ax2 = fig.add_subplot(2,2,2) # Create lower-left axis. PROVIDED ax3 = fig.add_subplot(2,2,3) # Create lower-right axis. PROVIDED ax4 = fig.add_subplot(2,2,4) # Set axis 1 ylabel ax1.set_ylabel('% dev from steady state') # Set axis 2 ylabel ax2.set_ylabel('% dev from steady state') # Set axis 3 ylabel ax3.set_ylabel('% dev from steady state') # Set axis 4 ylabel ax4.set_ylabel('% dev from steady state') # Set axis 1 limits ax1.set_ylim([-0.2,0.8]) # Set axis 2 limits ax2.set_ylim([-0.2,0.8]) # Set axis 3 limits ax3.set_ylim([-0.4,0.1]) # Set axis 4 limits ax4.set_ylim([-0.4,0.1]) # Plot the nominal interest rate, real interest rate, output, and inflation ###Output _____no_output_____
experiments/tl_1v2/oracle.run1-oracle.run2/trials/17/trial.ipynb
###Markdown Transfer Learning Template ###Code %load_ext autoreload %autoreload 2 %matplotlib inline import os, json, sys, time, random import numpy as np import torch from torch.optim import Adam from easydict import EasyDict import matplotlib.pyplot as plt from steves_models.steves_ptn import Steves_Prototypical_Network from steves_utils.lazy_iterable_wrapper import Lazy_Iterable_Wrapper from steves_utils.iterable_aggregator import Iterable_Aggregator from steves_utils.ptn_train_eval_test_jig import PTN_Train_Eval_Test_Jig from steves_utils.torch_sequential_builder import build_sequential from steves_utils.torch_utils import get_dataset_metrics, ptn_confusion_by_domain_over_dataloader from steves_utils.utils_v2 import (per_domain_accuracy_from_confusion, get_datasets_base_path) from steves_utils.PTN.utils import independent_accuracy_assesment from torch.utils.data import DataLoader from steves_utils.stratified_dataset.episodic_accessor import Episodic_Accessor_Factory from steves_utils.ptn_do_report import ( get_loss_curve, get_results_table, get_parameters_table, get_domain_accuracies, ) from steves_utils.transforms import get_chained_transform ###Output _____no_output_____ ###Markdown Allowed ParametersThese are allowed parameters, not defaultsEach of these values need to be present in the injected parameters (the notebook will raise an exception if they are not present)Papermill uses the cell tag "parameters" to inject the real parameters below this cell.Enable tags to see what I mean ###Code required_parameters = { "experiment_name", "lr", "device", "seed", "dataset_seed", "n_shot", "n_query", "n_way", "train_k_factor", "val_k_factor", "test_k_factor", "n_epoch", "patience", "criteria_for_best", "x_net", "datasets", "torch_default_dtype", "NUM_LOGS_PER_EPOCH", "BEST_MODEL_PATH", "x_shape", } from steves_utils.CORES.utils import ( ALL_NODES, ALL_NODES_MINIMUM_1000_EXAMPLES, ALL_DAYS ) from steves_utils.ORACLE.utils_v2 import ( ALL_DISTANCES_FEET_NARROWED, ALL_RUNS, ALL_SERIAL_NUMBERS, ) standalone_parameters = {} standalone_parameters["experiment_name"] = "STANDALONE PTN" standalone_parameters["lr"] = 0.001 standalone_parameters["device"] = "cuda" standalone_parameters["seed"] = 1337 standalone_parameters["dataset_seed"] = 1337 standalone_parameters["n_way"] = 8 standalone_parameters["n_shot"] = 3 standalone_parameters["n_query"] = 2 standalone_parameters["train_k_factor"] = 1 standalone_parameters["val_k_factor"] = 2 standalone_parameters["test_k_factor"] = 2 standalone_parameters["n_epoch"] = 50 standalone_parameters["patience"] = 10 standalone_parameters["criteria_for_best"] = "source_loss" standalone_parameters["datasets"] = [ { "labels": ALL_SERIAL_NUMBERS, "domains": ALL_DISTANCES_FEET_NARROWED, "num_examples_per_domain_per_label": 100, "pickle_path": os.path.join(get_datasets_base_path(), "oracle.Run1_framed_2000Examples_stratified_ds.2022A.pkl"), "source_or_target_dataset": "source", "x_transforms": ["unit_mag", "minus_two"], "episode_transforms": [], "domain_prefix": "ORACLE_" }, { "labels": ALL_NODES, "domains": ALL_DAYS, "num_examples_per_domain_per_label": 100, "pickle_path": os.path.join(get_datasets_base_path(), "cores.stratified_ds.2022A.pkl"), "source_or_target_dataset": "target", "x_transforms": ["unit_power", "times_zero"], "episode_transforms": [], "domain_prefix": "CORES_" } ] standalone_parameters["torch_default_dtype"] = "torch.float32" standalone_parameters["x_net"] = [ {"class": "nnReshape", "kargs": {"shape":[-1, 1, 2, 256]}}, {"class": "Conv2d", "kargs": { "in_channels":1, "out_channels":256, "kernel_size":(1,7), "bias":False, "padding":(0,3), },}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features":256}}, {"class": "Conv2d", "kargs": { "in_channels":256, "out_channels":80, "kernel_size":(2,7), "bias":True, "padding":(0,3), },}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features":80}}, {"class": "Flatten", "kargs": {}}, {"class": "Linear", "kargs": {"in_features": 80*256, "out_features": 256}}, # 80 units per IQ pair {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm1d", "kargs": {"num_features":256}}, {"class": "Linear", "kargs": {"in_features": 256, "out_features": 256}}, ] # Parameters relevant to results # These parameters will basically never need to change standalone_parameters["NUM_LOGS_PER_EPOCH"] = 10 standalone_parameters["BEST_MODEL_PATH"] = "./best_model.pth" # Parameters parameters = { "experiment_name": "tl_1v2:oracle.run1-oracle.run2", "device": "cuda", "lr": 0.0001, "n_shot": 3, "n_query": 2, "train_k_factor": 3, "val_k_factor": 2, "test_k_factor": 2, "torch_default_dtype": "torch.float32", "n_epoch": 50, "patience": 3, "criteria_for_best": "target_accuracy", "x_net": [ {"class": "nnReshape", "kargs": {"shape": [-1, 1, 2, 256]}}, { "class": "Conv2d", "kargs": { "in_channels": 1, "out_channels": 256, "kernel_size": [1, 7], "bias": False, "padding": [0, 3], }, }, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features": 256}}, { "class": "Conv2d", "kargs": { "in_channels": 256, "out_channels": 80, "kernel_size": [2, 7], "bias": True, "padding": [0, 3], }, }, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features": 80}}, {"class": "Flatten", "kargs": {}}, {"class": "Linear", "kargs": {"in_features": 20480, "out_features": 256}}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm1d", "kargs": {"num_features": 256}}, {"class": "Linear", "kargs": {"in_features": 256, "out_features": 256}}, ], "NUM_LOGS_PER_EPOCH": 10, "BEST_MODEL_PATH": "./best_model.pth", "n_way": 16, "datasets": [ { "labels": [ "3123D52", "3123D65", "3123D79", "3123D80", "3123D54", "3123D70", "3123D7B", "3123D89", "3123D58", "3123D76", "3123D7D", "3123EFE", "3123D64", "3123D78", "3123D7E", "3124E4A", ], "domains": [32, 38, 8, 44, 14, 50, 20, 26], "num_examples_per_domain_per_label": 10000, "pickle_path": "/mnt/wd500GB/CSC500/csc500-main/datasets/oracle.Run1_10kExamples_stratified_ds.2022A.pkl", "source_or_target_dataset": "target", "x_transforms": [], "episode_transforms": [], "domain_prefix": "ORACLE.run1_", }, { "labels": [ "3123D52", "3123D65", "3123D79", "3123D80", "3123D54", "3123D70", "3123D7B", "3123D89", "3123D58", "3123D76", "3123D7D", "3123EFE", "3123D64", "3123D78", "3123D7E", "3124E4A", ], "domains": [32, 38, 8, 44, 14, 50, 20, 26], "num_examples_per_domain_per_label": 10000, "pickle_path": "/mnt/wd500GB/CSC500/csc500-main/datasets/oracle.Run2_10kExamples_stratified_ds.2022A.pkl", "source_or_target_dataset": "source", "x_transforms": [], "episode_transforms": [], "domain_prefix": "ORACLE.run2_", }, ], "dataset_seed": 154325, "seed": 154325, } # Set this to True if you want to run this template directly STANDALONE = False if STANDALONE: print("parameters not injected, running with standalone_parameters") parameters = standalone_parameters if not 'parameters' in locals() and not 'parameters' in globals(): raise Exception("Parameter injection failed") #Use an easy dict for all the parameters p = EasyDict(parameters) if "x_shape" not in p: p.x_shape = [2,256] # Default to this if we dont supply x_shape supplied_keys = set(p.keys()) if supplied_keys != required_parameters: print("Parameters are incorrect") if len(supplied_keys - required_parameters)>0: print("Shouldn't have:", str(supplied_keys - required_parameters)) if len(required_parameters - supplied_keys)>0: print("Need to have:", str(required_parameters - supplied_keys)) raise RuntimeError("Parameters are incorrect") ################################### # Set the RNGs and make it all deterministic ################################### np.random.seed(p.seed) random.seed(p.seed) torch.manual_seed(p.seed) torch.use_deterministic_algorithms(True) ########################################### # The stratified datasets honor this ########################################### torch.set_default_dtype(eval(p.torch_default_dtype)) ################################### # Build the network(s) # Note: It's critical to do this AFTER setting the RNG ################################### x_net = build_sequential(p.x_net) start_time_secs = time.time() p.domains_source = [] p.domains_target = [] train_original_source = [] val_original_source = [] test_original_source = [] train_original_target = [] val_original_target = [] test_original_target = [] # global_x_transform_func = lambda x: normalize(x.to(torch.get_default_dtype()), "unit_power") # unit_power, unit_mag # global_x_transform_func = lambda x: normalize(x, "unit_power") # unit_power, unit_mag def add_dataset( labels, domains, pickle_path, x_transforms, episode_transforms, domain_prefix, num_examples_per_domain_per_label, source_or_target_dataset:str, iterator_seed=p.seed, dataset_seed=p.dataset_seed, n_shot=p.n_shot, n_way=p.n_way, n_query=p.n_query, train_val_test_k_factors=(p.train_k_factor,p.val_k_factor,p.test_k_factor), ): if x_transforms == []: x_transform = None else: x_transform = get_chained_transform(x_transforms) if episode_transforms == []: episode_transform = None else: raise Exception("episode_transforms not implemented") episode_transform = lambda tup, _prefix=domain_prefix: (_prefix + str(tup[0]), tup[1]) eaf = Episodic_Accessor_Factory( labels=labels, domains=domains, num_examples_per_domain_per_label=num_examples_per_domain_per_label, iterator_seed=iterator_seed, dataset_seed=dataset_seed, n_shot=n_shot, n_way=n_way, n_query=n_query, train_val_test_k_factors=train_val_test_k_factors, pickle_path=pickle_path, x_transform_func=x_transform, ) train, val, test = eaf.get_train(), eaf.get_val(), eaf.get_test() train = Lazy_Iterable_Wrapper(train, episode_transform) val = Lazy_Iterable_Wrapper(val, episode_transform) test = Lazy_Iterable_Wrapper(test, episode_transform) if source_or_target_dataset=="source": train_original_source.append(train) val_original_source.append(val) test_original_source.append(test) p.domains_source.extend( [domain_prefix + str(u) for u in domains] ) elif source_or_target_dataset=="target": train_original_target.append(train) val_original_target.append(val) test_original_target.append(test) p.domains_target.extend( [domain_prefix + str(u) for u in domains] ) else: raise Exception(f"invalid source_or_target_dataset: {source_or_target_dataset}") for ds in p.datasets: add_dataset(**ds) # from steves_utils.CORES.utils import ( # ALL_NODES, # ALL_NODES_MINIMUM_1000_EXAMPLES, # ALL_DAYS # ) # add_dataset( # labels=ALL_NODES, # domains = ALL_DAYS, # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "cores.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"cores_{u}" # ) # from steves_utils.ORACLE.utils_v2 import ( # ALL_DISTANCES_FEET, # ALL_RUNS, # ALL_SERIAL_NUMBERS, # ) # add_dataset( # labels=ALL_SERIAL_NUMBERS, # domains = list(set(ALL_DISTANCES_FEET) - {2,62}), # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "oracle.Run2_framed_2000Examples_stratified_ds.2022A.pkl"), # source_or_target_dataset="source", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"oracle1_{u}" # ) # from steves_utils.ORACLE.utils_v2 import ( # ALL_DISTANCES_FEET, # ALL_RUNS, # ALL_SERIAL_NUMBERS, # ) # add_dataset( # labels=ALL_SERIAL_NUMBERS, # domains = list(set(ALL_DISTANCES_FEET) - {2,62,56}), # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "oracle.Run2_framed_2000Examples_stratified_ds.2022A.pkl"), # source_or_target_dataset="source", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"oracle2_{u}" # ) # add_dataset( # labels=list(range(19)), # domains = [0,1,2], # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "metehan.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"met_{u}" # ) # # from steves_utils.wisig.utils import ( # # ALL_NODES_MINIMUM_100_EXAMPLES, # # ALL_NODES_MINIMUM_500_EXAMPLES, # # ALL_NODES_MINIMUM_1000_EXAMPLES, # # ALL_DAYS # # ) # import steves_utils.wisig.utils as wisig # add_dataset( # labels=wisig.ALL_NODES_MINIMUM_100_EXAMPLES, # domains = wisig.ALL_DAYS, # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "wisig.node3-19.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"wisig_{u}" # ) ################################### # Build the dataset ################################### train_original_source = Iterable_Aggregator(train_original_source, p.seed) val_original_source = Iterable_Aggregator(val_original_source, p.seed) test_original_source = Iterable_Aggregator(test_original_source, p.seed) train_original_target = Iterable_Aggregator(train_original_target, p.seed) val_original_target = Iterable_Aggregator(val_original_target, p.seed) test_original_target = Iterable_Aggregator(test_original_target, p.seed) # For CNN We only use X and Y. And we only train on the source. # Properly form the data using a transform lambda and Lazy_Iterable_Wrapper. Finally wrap them in a dataloader transform_lambda = lambda ex: ex[1] # Original is (<domain>, <episode>) so we strip down to episode only train_processed_source = Lazy_Iterable_Wrapper(train_original_source, transform_lambda) val_processed_source = Lazy_Iterable_Wrapper(val_original_source, transform_lambda) test_processed_source = Lazy_Iterable_Wrapper(test_original_source, transform_lambda) train_processed_target = Lazy_Iterable_Wrapper(train_original_target, transform_lambda) val_processed_target = Lazy_Iterable_Wrapper(val_original_target, transform_lambda) test_processed_target = Lazy_Iterable_Wrapper(test_original_target, transform_lambda) datasets = EasyDict({ "source": { "original": {"train":train_original_source, "val":val_original_source, "test":test_original_source}, "processed": {"train":train_processed_source, "val":val_processed_source, "test":test_processed_source} }, "target": { "original": {"train":train_original_target, "val":val_original_target, "test":test_original_target}, "processed": {"train":train_processed_target, "val":val_processed_target, "test":test_processed_target} }, }) from steves_utils.transforms import get_average_magnitude, get_average_power print(set([u for u,_ in val_original_source])) print(set([u for u,_ in val_original_target])) s_x, s_y, q_x, q_y, _ = next(iter(train_processed_source)) print(s_x) # for ds in [ # train_processed_source, # val_processed_source, # test_processed_source, # train_processed_target, # val_processed_target, # test_processed_target # ]: # for s_x, s_y, q_x, q_y, _ in ds: # for X in (s_x, q_x): # for x in X: # assert np.isclose(get_average_magnitude(x.numpy()), 1.0) # assert np.isclose(get_average_power(x.numpy()), 1.0) ################################### # Build the model ################################### # easfsl only wants a tuple for the shape model = Steves_Prototypical_Network(x_net, device=p.device, x_shape=tuple(p.x_shape)) optimizer = Adam(params=model.parameters(), lr=p.lr) ################################### # train ################################### jig = PTN_Train_Eval_Test_Jig(model, p.BEST_MODEL_PATH, p.device) jig.train( train_iterable=datasets.source.processed.train, source_val_iterable=datasets.source.processed.val, target_val_iterable=datasets.target.processed.val, num_epochs=p.n_epoch, num_logs_per_epoch=p.NUM_LOGS_PER_EPOCH, patience=p.patience, optimizer=optimizer, criteria_for_best=p.criteria_for_best, ) total_experiment_time_secs = time.time() - start_time_secs ################################### # Evaluate the model ################################### source_test_label_accuracy, source_test_label_loss = jig.test(datasets.source.processed.test) target_test_label_accuracy, target_test_label_loss = jig.test(datasets.target.processed.test) source_val_label_accuracy, source_val_label_loss = jig.test(datasets.source.processed.val) target_val_label_accuracy, target_val_label_loss = jig.test(datasets.target.processed.val) history = jig.get_history() total_epochs_trained = len(history["epoch_indices"]) val_dl = Iterable_Aggregator((datasets.source.original.val,datasets.target.original.val)) confusion = ptn_confusion_by_domain_over_dataloader(model, p.device, val_dl) per_domain_accuracy = per_domain_accuracy_from_confusion(confusion) # Add a key to per_domain_accuracy for if it was a source domain for domain, accuracy in per_domain_accuracy.items(): per_domain_accuracy[domain] = { "accuracy": accuracy, "source?": domain in p.domains_source } # Do an independent accuracy assesment JUST TO BE SURE! # _source_test_label_accuracy = independent_accuracy_assesment(model, datasets.source.processed.test, p.device) # _target_test_label_accuracy = independent_accuracy_assesment(model, datasets.target.processed.test, p.device) # _source_val_label_accuracy = independent_accuracy_assesment(model, datasets.source.processed.val, p.device) # _target_val_label_accuracy = independent_accuracy_assesment(model, datasets.target.processed.val, p.device) # assert(_source_test_label_accuracy == source_test_label_accuracy) # assert(_target_test_label_accuracy == target_test_label_accuracy) # assert(_source_val_label_accuracy == source_val_label_accuracy) # assert(_target_val_label_accuracy == target_val_label_accuracy) experiment = { "experiment_name": p.experiment_name, "parameters": dict(p), "results": { "source_test_label_accuracy": source_test_label_accuracy, "source_test_label_loss": source_test_label_loss, "target_test_label_accuracy": target_test_label_accuracy, "target_test_label_loss": target_test_label_loss, "source_val_label_accuracy": source_val_label_accuracy, "source_val_label_loss": source_val_label_loss, "target_val_label_accuracy": target_val_label_accuracy, "target_val_label_loss": target_val_label_loss, "total_epochs_trained": total_epochs_trained, "total_experiment_time_secs": total_experiment_time_secs, "confusion": confusion, "per_domain_accuracy": per_domain_accuracy, }, "history": history, "dataset_metrics": get_dataset_metrics(datasets, "ptn"), } ax = get_loss_curve(experiment) plt.show() get_results_table(experiment) get_domain_accuracies(experiment) print("Source Test Label Accuracy:", experiment["results"]["source_test_label_accuracy"], "Target Test Label Accuracy:", experiment["results"]["target_test_label_accuracy"]) print("Source Val Label Accuracy:", experiment["results"]["source_val_label_accuracy"], "Target Val Label Accuracy:", experiment["results"]["target_val_label_accuracy"]) json.dumps(experiment) ###Output _____no_output_____
3_0.ipynb
###Markdown [View in Colaboratory](https://colab.research.google.com/github/sharathsrini/Extended-Kalman-Filter-for-Sensor-Fusion/blob/master/3_0.ipynb) ###Code ############PROGRAM STARTS HERE ###################### import numpy as np import math as MT from math import floor import matplotlib.pyplot as plt import time ###CONSTANTS max_angle = 0.785398 #45Deg min_angle = -0.785398 #-45Deg free_space=0 locked_space=1 ### HYPER PARAMETERS NUMBERS_OF_STEERS=4 STEER_OFFSET=5.0*np.pi/180 LENGTH=4.0 NUM_THETA_CELLS =60 ### GRID MAKING grid_x_m = 50 grid_y_m = 50 ### FOR CELL DIVISION coll_cell_side = 0.5 grid_on_x = np.int( np.ceil(grid_x_m/coll_cell_side) ) grid_on_y = np.int( np.ceil(grid_y_m/coll_cell_side) ) ### FIT ZEROS GRID_TEST = np.zeros((grid_on_x,grid_on_y),np.int) ### INITIALIZE COST_MAPS AND ASTAR CLOSE MAPS closed_A_star=np.array([[free_space for x in range(grid_on_x)] for y in range(grid_on_y)]) cost_map = np.array([[-1 for x in range(grid_on_x)] for y in range(grid_on_y)]) policy_map = [[' ' for x in range(grid_on_x)] for y in range(grid_on_y)] ### MOTION MATRIX FOR ASTAR motion_mat=np.array([[1,0],[-1,0],[0,-1],[0,1]]) policy_mat=['>',] ### STATE CLASS class state: def __init__(self,x,y,theta,g,f,h,steer): self.x=x self.y=y self.theta=theta self.g=g self.f=f self.h=h self.steer=steer ## GOAL NODE class goal: def __init__(self, x, y): self.x = x self.y = y ### INPUT VEHICLE CO-ORDINATES class vehicle_points(): def __init__(self,input_co_ordinates,center): self.input_co_ordinates=input_co_ordinates self.center=center ### PATH CLASS FOR TRACKING class path(): def __init__(self,closed,came_from,final): self.closed=closed self.came_from=came_from self.final=final ### AUGMENT DELTA +/- GIVEN OFFSET def delta_augmentation(delta, numbers, offset): delta_list = [] delta_list.append(delta) delta_calc_add=delta_calc_sub = delta for i in range(0 ,numbers): delta_calc_add += offset delta_calc_sub -= offset if delta_calc_add < max_angle: delta_list.append(delta_calc_add) if delta_calc_sub > min_angle: delta_list.append(delta_calc_sub) return delta_list ### NEW STATE TRANSITIONS def new_state_transition(current_state,goal,speed): next_states = [] delta_angles = delta_augmentation( delta=current_state.steer, numbers=NUMBERS_OF_STEERS,offset=STEER_OFFSET) DT=1.0/speed for delta in delta_angles: omega = (speed / LENGTH) * np.tan(delta) theta2 = normalize_theta(current_state.theta + (omega * DT)) dX = speed * np.cos(theta2) * DT dY = speed * np.sin(theta2) * DT #i=i+1 #print(i,[SPEED,np.cos(theta2),DT,omega,theta2,dX,dY]) x2 = current_state.x + dX y2 = current_state.y + dY g2 = current_state.g + np.sqrt(dX*dX + dY*dY) arc_cost=arc_heuristic(goal.x-x2,goal.y-y2,theta2) #print(arc_cost) h2 = euclidean_distance([x2,y2],[goal.x,goal.y])+arc_cost if(cost_map[idx(x2)][idx(y2)]==-1): h2+=100 else: h2+=cost_map[idx(x2)][idx(y2)] f2 = g2 + h2 new_state=state(x2,y2,theta2,g2,f2,h2,delta) #jj=np.arctan2(goal.y-y2,goal.x-x2) #print(['X: ',x2,'Y: ',y2,'ang_goal',normalize_theta(jj)*180/np.pi,'taken_angle',theta2*180/np.pi,'cost:',arc_cost]) next_states.append(new_state) return next_states ### TRANSFORM VEHICLE CO-ORDINATES def transform_vehicle_co_ordinates(vehicle_point_object, next_state, angle_of_rotation): displaced_matrix = np.array([next_state[0]-vehicle_point_object.center[0],next_state[1]-vehicle_point_object.center[1]]) transformed_matrix=np.add(vehicle_point_object.input_co_ordinates,displaced_matrix) return vehicle_points(rotate_vehicle_co_ordinates(vehicle_points(transformed_matrix,next_state),angle_of_rotation),next_state) ### ROTATE VEHICLE CO-ORDINATES def rotate_vehicle_co_ordinates(vehicle_point_object,angle_of_rotation): rotation_matrix = np.array([[np.cos(angle_of_rotation), np.sin(angle_of_rotation)], [-np.sin(angle_of_rotation), np.cos(angle_of_rotation)]]) return np.add(vehicle_point_object.center,np.matmul(np.subtract(vehicle_point_object.input_co_ordinates,vehicle_point_object.center), rotation_matrix)) ### CHECK VEHICLE IN SAFE POSITION def is_vehicle_in_safe_position(vehicle_point_object,grid): for point in vehicle_point_object.input_co_ordinates: if(is_within_grid( idx(point[0]),idx(point[1])) and (grid[idx(point[0])][idx(point[1])]==0)): continue else: return False return True ### CHK A STAR VEHICLE: def A_vehicle_is_safe(vehicle_point_A,add_value,grid): vp=vehicle_point_A.input_co_ordinates+add_value for point in vp: if(is_within_grid( idx(point[0]),idx(point[1])) and (grid[idx(point[0])][idx(point[1])]==0)): continue else: #print('False',add_value) return False #('True',add_value) return True ### EUCLIDEAN DISTANCE def euclidean_distance(start_point,end_point): return np.round(np.sqrt((end_point[0]-start_point[0])**2 +(end_point[1]-start_point[1])**2),4) ### ARC HEURISTIC def arc_heuristic(x,y,theta_to_be_taken): ang_rad=normalize_theta(np.arctan2(y,x)) diff=np.pi-abs(abs(theta_to_be_taken-ang_rad)-np.pi) return diff ### NORMALIZE THETA def normalize_theta(theta): if( theta<0 ): theta +=( 2*np.pi ) elif( theta>2*np.pi ): theta %=( 2*np.pi) return theta ### THETA TO STACK NUMBER def theta_to_stack_number(theta): new = (theta+2*np.pi)%(2*np.pi) stack_number = round(new*NUM_THETA_CELLS/2*np.pi)%NUM_THETA_CELLS return int(stack_number) ### FLOOR VALUE def idx(value): return int(MT.floor(value)) ### CHECK WITHIN GRID def is_within_grid(x,y): return (x>=0 and x<grid_on_x and y>=0 and y<grid_on_y) ### IS_GOAL_REACHED def is_goal_reached(start,goal): result=False if( idx(start[0]) == idx(goal[0]) and idx(start[1])==idx(goal[1])): result=True return result ### A_STAR SEARCH def A_Star(current_state,goal,grid): vehicle_point_A=vehicle_points(np.array([[0,2],[0,1],[0,-1],[0,-2],[1,0],[2,0],[-1,0],[-2,0]]),[0,0]) print("STARTED A*") open_list = [] open_list.append(current_state ) is_goal_attained=False cost=0 heu=0 closed_A_star[current_state.x][current_state.y]=1 cost_map[current_state.x][current_state.y]=cost while(len(open_list)>0): open_list.sort(key=lambda state_srt : float(state_srt.f)) old_state=open_list.pop(0) if(goal.x==old_state.x and goal.y==old_state.y): is_goal_attained=True print("GOAL REACHED BY A*") return is_goal_attained node=np.array([old_state.x,old_state.y]) for move in motion_mat: nxt_node=node+move if( is_within_grid(nxt_node[0],nxt_node[1])): if(grid[nxt_node[0]][nxt_node[1]]==0 and closed_A_star[nxt_node[0]][nxt_node[1]]==0): if(A_vehicle_is_safe(vehicle_point_A,np.array([nxt_node]),grid)): g2=old_state.g+1 heu=euclidean_distance([nxt_node[0],nxt_node[1]],[goal.x,goal.y]) new_state=state(nxt_node[0],nxt_node[1],0,g2,g2+heu,heu,0) open_list.append(new_state) closed_A_star[nxt_node[0]][nxt_node[1]]=1 cost_map[nxt_node[0]][nxt_node[1]]=g2 #plt.plot([node[0],nxt_node[0]],[node[1],nxt_node[1]]) return is_goal_attained ### SEARCH ALGORITHM def Hybrid_A_Star(grid,current_state,goal,vehicle_point_object,speed): print("STARTED HYBRID A*") start_time = time.time() closed = np.array([[[free_space for x in range(grid_on_x)] for y in range(grid_on_y)] for cell in range(NUM_THETA_CELLS)]) came_from = [[[free_space for x in range(grid_on_x)] for y in range(grid_on_y)] for cell in range(NUM_THETA_CELLS)] is_goal_attained=False stack_number=theta_to_stack_number(current_state.theta) closed[stack_number][idx(current_state.x)][idx(current_state.y)]=1 came_from[stack_number][idx(current_state.x)][idx(current_state.y)]=current_state total_closed=1 opened=[current_state] while (len(opened)>0): opened.sort(key=lambda state_srt : float(state_srt.f)) state_now=opened.pop(0) #print([state_now.x,state_now.y,state_now.theta*np.pi/180]) if(is_goal_reached([idx(state_now.x),idx(state_now.y)],[idx(goal.x),idx(goal.y)])): is_goal_attained=True print('GOAL REACHED BY HYBRID A*') ret_path=path(closed,came_from,state_now) end_time = time.time() print(end_time - start_time) return (is_goal_attained,ret_path) for evry_state in new_state_transition(state_now,goal,speed): #print('Before',[evry_state.x,evry_state.y,evry_state.theta*np.pi/180]) if(not is_within_grid(idx(evry_state.x),idx(evry_state.y))): continue stack_num=theta_to_stack_number(evry_state.theta) #print([stack_num,idx(evry_state.x),idx(evry_state.y)]) if closed[stack_num][idx(evry_state.x)][idx(evry_state.y)]==0 and grid[idx(evry_state.x)][idx(evry_state.y)]==0: new_vehicle_point_obj = transform_vehicle_co_ordinates(vehicle_point_object,[evry_state.x,evry_state.y],evry_state.theta) #print(new_vehicle_point_obj.input_co_ordinates) if(is_vehicle_in_safe_position(new_vehicle_point_obj,grid)): opened.append(evry_state) closed[stack_num][idx(evry_state.x)][idx(evry_state.y)]=1 came_from[stack_num][idx(evry_state.x)][idx(evry_state.y)]=state_now total_closed+= 1 #print('After',[evry_state.x,evry_state.y,evry_state.theta*np.pi/180]) #plt.plot([state_now.x,evry_state.x],[state_now.y,evry_state.y]) #closed[stack_num][idx(evry_state.x)][idx(evry_state.y)]=1 #print('-------------') print('No Valid path') ret_path=path(closed,came_from,evry_state) return (is_goal_attained,ret_path) ### RECONSTRUCT PATH def reconstruct_path(came_from, start, final): path = [(final)] stack = theta_to_stack_number(final.theta) current = came_from[stack][idx(final.x)][idx(final.y)] stack = theta_to_stack_number(current.theta) while [idx(current.x), idx(current.y)] != [idx(start[0]), idx(start[1])] : path.append(current) current = came_from[stack][idx(current.x)][idx(current.y)] stack = theta_to_stack_number(current.theta) return path ###DISPLAY PATH def show_path(path, start, goal,vehicle_pt_obj_act): X=[start[0]] Y=[start[1]] Theta=[] path.reverse() X += [p.x for p in path] Y += [p.y for p in path] Theta+=[p.theta for p in path] for i in range(len(X)-1): Xj=[] Yj=[] vehicle_pt_obj_now=transform_vehicle_co_ordinates(vehicle_pt_obj_act,[X[i],Y[i]], Theta[i]) rev=vehicle_pt_obj_now.input_co_ordinates revI=rev[:4] revL=rev[4:] revF=np.concatenate([revI,revL[::-1]]) l=np.append(revF,[revF[0]],axis=0) #print(l) for i in l: Xj.append(i[0]) Yj.append(i[1]) plt.plot(Xj,Yj) print([p.steer*180/np.pi for p in path]) plt.plot(X,Y, color='black') plt.scatter([start[0]], [start[1]], color='blue') plt.scatter([goal[0]], [goal[1]], color='red') plt.show() ### PUT OBSTACLES: def put_obstacles(X_list,Y_list,grid): if(len(X_list)>0): for i in X_list: x_XO=[] x_YO=[] for k in range(i[1],i[2]): x_XO.append(i[0]) x_YO.append(k) grid[i[0]][k]=1 plt.scatter(x_XO,x_YO) if(len(Y_list)>0): for i in Y_list: y_XO=[] y_YO=[] for k in range(i[1],i[2]): y_XO.append(i[0]) y_YO.append(k) grid[k][i[0]]=1 plt.scatter(y_YO,y_XO) import numpy as np import matplotlib.pyplot as plt import math # Vehicle parameter W = 2.5 #[m] width of vehicle LF = 3.7 #[m] distance from rear to vehicle front end of vehicle LB = 1.0 #[m] distance from rear to vehicle back end of vehicle TR = 0.5 # Tyre radius [m] for plot TW = 1.2 # Tyre width [m] for plot MAX_STEER = 0.6 #[rad] maximum steering angle WB = 2.7 #[m] wheel base: rear to front steer def plot_car(x, y, yaw, steer, retrun_car = False): car_color = "-k" LENGTH = LB+LF car_OutLine = np.array([[-LB, (LENGTH - LB), (LENGTH - LB), (-LB), (-LB)], [W / 2, W / 2, - W / 2, - W / 2, W / 2]]) rr_wheel = np.array([[TR, - TR, - TR, TR, TR], [-W / 12.0 + TW, - W / 12.0 + TW, W / 12.0 + TW, W / 12.0 + TW, - W / 12.0 + TW]]) rl_wheel = np.array([[TR, - TR, - TR, TR, TR], [-W / 12.0 - TW, - W / 12.0 - TW, W / 12.0 - TW, W / 12.0 - TW, - W / 12.0 - TW]]) fr_wheel = np.array([[TR, - TR, - TR, TR, TR], [- W / 12.0 + TW, - W / 12.0 + TW, W / 12.0 + TW, W / 12.0 + TW, - W / 12.0 + TW]]) fl_wheel = np.array([[TR, - TR, - TR, TR, TR], [-W / 12.0 - TW, - W / 12.0 - TW, W / 12.0 - TW, W / 12.0 - TW, - W / 12.0 - TW]]) Rot1 = np.array([[math.cos(yaw), math.sin(yaw)], [-math.sin(yaw), math.cos(yaw)]]) Rot2 = np.array([[math.cos(steer), -math.sin(steer)], [math.sin(steer), math.cos(steer)]]) fr_wheel = np.dot(fr_wheel.T, Rot2).T fl_wheel = np.dot(fl_wheel.T, Rot2).T fr_wheel[0,:] += WB fl_wheel[0,:] += WB fr_wheel = np.dot(fr_wheel.T, Rot1).T fl_wheel = np.dot(fl_wheel.T, Rot1).T car_OutLine = np.dot(car_OutLine.T, Rot1) rr_wheel = np.dot(rr_wheel.T, Rot1).T rl_wheel = np.dot(rl_wheel.T, Rot1).T car_OutLine = car_OutLine.T car_OutLine[0,:] += x car_OutLine[1,:] += y fr_wheel[0, :] += x fr_wheel[1, :] += y rr_wheel[0, :] += x rr_wheel[1, :] += y fl_wheel[0, :] += x fl_wheel[1, :] += y rl_wheel[0, :] += x rl_wheel[1, :] += y if retrun_car == False: plt.plot(x, y, "*") plt.plot(fr_wheel[0, :], fr_wheel[1, :], car_color) plt.plot(rr_wheel[0, :], rr_wheel[1, :], car_color) plt.plot(fl_wheel[0, :], fl_wheel[1, :], car_color) plt.plot(rl_wheel[0, :], rl_wheel[1, :], car_color) plt.plot(car_OutLine[0, :], car_OutLine[1, :], car_color) else: return car_OutLine[0, :], car_OutLine[1, :] plot_car(0.0, 0.0, np.pi, 0.0, retrun_car = False) def show_animation(path, start, goal,vehicle_pt_obj_act): x =[] y = [] yaw = [] steer = [] path.reverse() x += [p.x for p in path] y += [p.y for p in path] yaw += [p.theta for p in path] steer =[p.steer*180/np.pi for p in path] print(type(steer[0])) for ii in range(0,len(x),5): plt.cla() plt.plot(x, y, "-r", label="Hybrid A* path") plot_car(x[ii], y[ii], yaw[ii], steer[ii]) plt.grid(True) plt.axis("equal") plt.pause(0.01) START=[40,45] SPEED=60 goal_node = goal( 4,3) present_heading=(np.pi/2) vehicle_pt_obj_actual = vehicle_points( np.array([[0.5,0.5],[0.5,1.5],[0.5,2.5],[0.5,3.5],[1.5,0.5],[1.5,1.5],[1.5,2.5],[1.5,3.5]]),[0,2] ) vehicle_pt_obj=transform_vehicle_co_ordinates(vehicle_pt_obj_actual,START,present_heading) #print(vehicle_pt_obj.input_co_ordinates) current_state = state(vehicle_pt_obj.center[0], vehicle_pt_obj.center[1], present_heading, 0.0, 0.0, 0.0,0.0) put_obstacles([[15,0,30],[26,0,30],[27,0,25],[60,15,35]],[],GRID_TEST) if(A_Star(state(goal_node.x,goal_node.y,0,0,0,0,0),goal(START[0],START[1]),GRID_TEST)): process_further,ret_val=Hybrid_A_Star(GRID_TEST,current_state,goal_node,vehicle_pt_obj,SPEED) if(process_further): show_animation(reconstruct_path(ret_val.came_from,START,ret_val.final),START,[goal_node.x,goal_node.y],vehicle_pt_obj_actual) else: print("GOAL CANT BE REACHED!!") else: print("GOAL CANT BE REACHED!!") ###Output STARTED A* GOAL REACHED BY A* STARTED HYBRID A* GOAL REACHED BY HYBRID A* 0.895781040192 <type 'float'>
Task 03-Music Recommendation System/Music Recommendation System.ipynb
###Markdown ![This is an image](https://letsgrowmore.in/wp-content/uploads/2021/05/growmore-removebg-preview.png) ***Virtual Internship Program******Data Science Tasks*** ***Author: SARAVANAVEL*** ***BEGINNER LEVEL TASK*** Task 3 -Music recommender systemMusic recommender system can suggest songs to users based on their listening pattern.Datasetlinks https://www.kaggle.com/c/kkbox-music-recommendation-challenge/data Importing packages ###Code import pandas as pd from sklearn.model_selection import train_test_split import numpy as np import time import Recommenders as Recommenders ###Output _____no_output_____ ###Markdown Load music data ###Code members = pd.read_csv(r'c:\LGMVIP\members.csv',parse_dates=["registration_init_time","expiration_date"]) members.head() df_train = pd.read_csv(r'c:\LGMVIP\train.csv') df_train.head() df_songs = pd.read_csv(r'c:\LGMVIP\songs.csv') df_songs.head() df_songs_extra = pd.read_csv(r'c:\LGMVIP\song_extra_info.csv') df_songs_extra.head() df_test = pd.read_csv(r'c:\LGMVIP\test.csv') df_test.head() ###Output _____no_output_____ ###Markdown Creating a new data ###Code res = df_train.merge(df_songs[['song_id','song_length','genre_ids','artist_name','language']], on=['song_id'], how='left') res.head() train = res.merge(df_songs_extra,on=['song_id'],how = 'left') train.head() song_id = train.loc[:,["name","target"]] song1 = song_id.groupby(["name"],as_index=False).count().rename(columns = {"target":"listen_count"}) song1.head() dataset=train.merge(song1,on=['name'],how= 'left') df=pd.DataFrame(dataset) df.drop(columns=['source_system_tab','source_screen_name','source_type','target','isrc'],axis=1,inplace=True) df=df.rename(columns={'msno':'user_id'}) ###Output _____no_output_____ ###Markdown Loading our new dataset ###Code df.head() ###Output _____no_output_____ ###Markdown Data Preprocessing ###Code df.shape #checking null values df.isnull().sum() #filling null values df['song_length'].fillna('0',inplace=True) df['genre_ids'].fillna('0',inplace=True) df['artist_name'].fillna('none',inplace=True) df['language'].fillna('0',inplace=True) df['name'].fillna('none',inplace=True) df['listen_count'].fillna('0',inplace=True) #Rechecking null values df.isnull().sum() print("Total no of songs:",len(df)) ###Output Total no of songs: 7377418 ###Markdown Create a subset of the dataset ###Code df = df.head(10000) #Merge song title and artist_name columns to make a new column df['song'] = df['name'].map(str) + " - " + df['artist_name'] ###Output _____no_output_____ ###Markdown Showing the most popular songs in the dataset The column listen_count denotes the no of times the song has been listened.Using this column, we’ll find the dataframe consisting of popular songs: ###Code song_gr = df.groupby(['song']).agg({'listen_count': 'count'}).reset_index() grouped_sum = song_gr['listen_count'].sum() song_gr['percentage'] = song_gr['listen_count'].div(grouped_sum)*100 song_gr.sort_values(['listen_count', 'song'], ascending = [0,1]) ###Output _____no_output_____ ###Markdown Count number of unique users in the dataset ###Code users = df['user_id'].unique() print("The no. of unique users:", len(users)) ###Output The no. of unique users: 1622 ###Markdown Now, we define a dataframe train which will create a song recommender Count the number of unique songs in the dataset ###Code ###Fill in the code here songs = df['song'].unique() len(songs) ###Output _____no_output_____ ###Markdown Create a song recommender ###Code train_data, test_data = train_test_split(df, test_size = 0.20, random_state=0) print(train.head(5)) ###Output msno \ 0 FGtllVqz18RPiwJj/edr2gV78zirAiY/9SmYvia+kCg= 1 Xumu+NIjS6QYVxDS4/t3SawvJ7viT9hPKXmf0RtLNx8= 2 Xumu+NIjS6QYVxDS4/t3SawvJ7viT9hPKXmf0RtLNx8= 3 Xumu+NIjS6QYVxDS4/t3SawvJ7viT9hPKXmf0RtLNx8= 4 FGtllVqz18RPiwJj/edr2gV78zirAiY/9SmYvia+kCg= song_id source_system_tab \ 0 BBzumQNXUHKdEBOB7mAJuzok+IJA1c2Ryg/yzTF6tik= explore 1 bhp/MpSNoqoxOIB+/l8WPqu6jldth4DIpCm3ayXnJqM= my library 2 JNWfrrC7zNN7BdMpsISKa4Mw+xVJYNnxXh3/Epw7QgY= my library 3 2A87tzfnJTSWqD7gIZHisolhe4DMdzkbd6LzO1KHjNs= my library 4 3qm6XTZ6MOCU11x8FIVbAGH5l5uMkT3/ZalWG1oo2Gc= explore source_screen_name source_type target song_length genre_ids \ 0 Explore online-playlist 1 206471.0 359 1 Local playlist more local-playlist 1 284584.0 1259 2 Local playlist more local-playlist 1 225396.0 1259 3 Local playlist more local-playlist 1 255512.0 1019 4 Explore online-playlist 1 187802.0 1011 artist_name language name \ 0 Bastille 52.0 Good Grief 1 Various Artists 52.0 Lords of Cardboard 2 Nas 52.0 Hip Hop Is Dead(Album Version (Edited)) 3 Soundway -1.0 Disco Africa 4 Brett Young 52.0 Sleep Without You isrc 0 GBUM71602854 1 US3C69910183 2 USUM70618761 3 GBUQH1000063 4 QM3E21606003 ###Markdown Creating Popularity based Music Recommendation Using popularity_recommender class we made in Recommenders.py package, we create the list given below: ###Code pm = Recommenders.popularity_recommender_py() #create an instance of the class pm.create(train_data, 'user_id', 'song') user_id1 = users[5] #Recommended songs list for a user pm.recommend(user_id1) user_id2 = users[45] pm.recommend(user_id2) ###Output _____no_output_____ ###Markdown Build a song recommender with personalizationWe now create an item similarity based collaborative filtering model that allows us to make personalized recommendations to each user. Creating Similarity based Music Recommendation in Python: ###Code is_model = Recommenders.item_similarity_recommender_py() is_model.create(train_data, 'user_id', 'song') ###Output _____no_output_____ ###Markdown Use the personalized model to make some song recommendations ###Code #Print the songs for the user in training data user_id1 = users[1] #Fill in the code here user_items2 = is_model.get_user_items(user_id2) print("------------------------------------------------------------------------------------") print("Songs played by second user %s:" % user_id2) print("------------------------------------------------------------------------------------") for user_item in user_items1: print(user_item) print("----------------------------------------------------------------------") print("Similar songs recommended for the second user:") print("----------------------------------------------------------------------") #Recommend songs for the user using personalized model is_model.recommend(user_id1) user_id2 = users[7] #Fill in the code here user_items2 = is_model.get_user_items(user_id2) print("------------------------------------------------------------------------------------") print("Songs played by second user %s:" % user_id2) print("------------------------------------------------------------------------------------") for user_item in user_items2: print(user_item) print("----------------------------------------------------------------------") print("Similar songs recommended for the second user:") print("----------------------------------------------------------------------") #Recommend songs for the user using personalized model is_model.recommend(user_id2) ###Output ------------------------------------------------------------------------------------ Songs played by second user Vgeu+u3vXE0FhQtG/Vr3I/U3V0TX/jzQAEBhi3S3qi0=: ------------------------------------------------------------------------------------ 親愛陌生人【土豆網偶像劇[歡迎愛光臨]片頭曲】 - 丁噹 (Della) 道聽塗說 (Remembering you) - 林芯儀 (Shennio Lin) 愛磁場 - 張韶涵 (Angela Chang) 宇宙小姐 - S.H.E 愛旅行的人 - 張韶涵 (Angela Chang) 敢愛敢當 - 丁噹 (Della) 九號球 - [逆轉勝] 五月天∕怪獸 原聲原創紀 ([Second Chance] Soundtrack & Autobiography of Mayday Monster) 刺情 - 張韶涵 (Angela Chang) Baby - Justin Bieber Never Forget You - 張韶涵 (Angela Chang) 安靜了 - S.H.E ---------------------------------------------------------------------- Similar songs recommended for the second user: ---------------------------------------------------------------------- No. of unique songs for the user: 11 no. of unique songs in the training set: 4722 Non zero values in cooccurence_matrix :238 ###Markdown The lists of both the users in popularity based recommendation is the same but different in case of similarity-based recommendation. We can also apply the model to find similar songs to any song in the dataset ###Code is_model.get_similar_items(['U Smile - Justin Bieber']) ###Output no. of unique songs in the training set: 4722 Non zero values in cooccurence_matrix :0
files/3.1-reading-data-with-pandas.ipynb
###Markdown Reading in data with pandas* What is Pandas?* How do I read files using Pandas? What is Pandas?A Python library -> set of functions and data structurespandas is for data analysis* Reading data stored in CSV files (other file formats can be read as well)* Slicing and subsetting data in Dataframes (tables!)* Dealing with missing data* Reshaping data (long -> wide, wide -> long)* Inserting and deleting columns from data structures* Aggregating data using data grouping facilities using the split-apply-combine paradigm* Joining of datasets (after they have been loaded into Dataframes) ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Load in data ###Code # Press 'Tab' key to use autocompletion df = pd.read_csv("SN7577.tab", sep='\t') # If you forget the sep argument df_without_sep = pd.read_csv("SN7577.tab") # How to read in the first 10 lines df_first_10 = pd.read_csv("SN7577.tab", nrows=10, sep='\t') df_first_10 # How to read a subset of the columns? df_subset = pd.read_csv("SN7577.tab", usecols=["Q1", "Q2"], sep='\t') df_subset2 = pd.read_csv("SN7577.tab", usecols=list(range(0,9)), sep='\t') list(range(0,9)) df_subset2 ###Output _____no_output_____ ###Markdown Getting information about a Dataframe ###Code # df is a shorthand for DataFrame df = pd.read_csv("SN7577.tab", sep='\t') print(type(df)) df.head() # What is the tail method? df.tail() df.tail(2) # the last 2 rows # How many rows? len(df) # How many rows and columns df.shape # property (without brackets) # How many 'cells' in the table df.size # Column names df.columns # What are the data types? df.dtypes labels = ['Q1 is bla bla', 'Q2 is something else'] ###Output _____no_output_____ ###Markdown Exercise print all columnsWhen we asked for the column names and their data types, the output was abridged, i.e. we didn’t get the values for all of the columns. Can you write a small piece of code which will print all of the values on separate lines. ###Code df.head() for column in df.columns: print(column) ###Output Q1 Q2 Q3 Q4 Q5ai Q5aii Q5aiii Q5aiv Q5av Q5avi Q5avii Q5aviii Q5aix Q5ax Q5axi Q5axii Q5axiii Q5axiv Q5axv Q5bi Q5bii Q5biii Q5biv Q5bv Q5bvi Q5bvii Q5bviii Q5bix Q5bx Q5bxi Q5bxii Q5bxiii Q5bxiv Q5bxv Q6 Q7a Q7b Q8 Q9 Q10a Q10b Q10c Q10d Q11a Q11b Q12a Q12b Q13i Q13ii Q13iii Q13iv Q14 Q15 Q16a Q16b Q16c Q16d Q16e Q16f Q16g Q16h Q17a Q17b Q17c Q17d Q17e Q17f Q17g Q18ai Q18aii Q18aiii Q18aiv Q18av Q18avi Q18avii Q18aviii Q18aix Q18bi Q18bii Q18biii Q18biv Q18bv Q18bvi Q18bvii Q18bviii Q18bix Q19a Q19b Q19c Q19d access1 access2 access3 access4 access5 access6 access7 web1 web2 web3 web4 web5 web6 web7 web8 web9 web10 web11 web12 web13 web14 web15 web16 web17 web18 dbroad intten netfq daily1 daily2 daily3 daily4 daily5 daily6 daily7 daily8 daily9 daily10 daily11 daily12 daily13 daily14 daily15 daily16 daily17 daily18 daily19 daily20 daily21 daily22 daily23 daily24 daily25 sunday1 sunday2 sunday3 sunday4 sunday5 sunday6 sunday7 sunday8 sunday9 sunday10 sunday11 sunday12 sunday13 sunday14 sunday15 sunday16 sunday17 sunday18 sunday19 sunday20 press1 press2 broadsheet1 broadsheet2 broadsheet3 popular1 popular2 popular3 popular4 popular5 sex age agegroups numage class sgrade work gor qual ethnic ethnicity party cie wrkcie income tenure tennet lstage maritl numhhd numkid numkid2 numkid31 numkid32 numkid33 numkid34 numkid35 numkid36 wts
Notebooks/.ipynb_checkpoints/Gradient Boost-checkpoint.ipynb
###Markdown Scalers ###Code from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler, OneHotEncoder import joblib #pt = PowerTransformer(method='yeo-johnson') #X[num_columns] = pt.fit_transform(X[num_columns]) X column_transformer = ColumnTransformer( [('num', StandardScaler(), num_columns), ('obj', OneHotEncoder(), obj_columns)], remainder='passthrough') trans_X = column_transformer.fit_transform(X) joblib.dump(column_transformer, '../Models/Column_Transformer.pkl') #joblib.dump(pt, '../Models/Power_Transformer.pkl') #trans_X = trans_X.toarray() y = np.asarray(y) test_x = trans_X[:1000,] test_y = y[:1000,] trans_X = trans_X[1000:,] y = y[1000:,] test_y.shape ###Output _____no_output_____ ###Markdown Train Test Split ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(trans_X, y, random_state=16, test_size=0.2) ###Output _____no_output_____ ###Markdown Gradient Boost Grid Search ###Code from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import RandomizedSearchCV from sklearn.metrics import make_scorer, mean_squared_log_error, mean_absolute_percentage_error from keras import backend as K def root_mean_squared_log_error(y_true, y_pred): return np.sqrt(np.mean(np.square(np.log(1+y_pred) - np.log(1+y_true)))) gb = GradientBoostingRegressor(random_state=42) scoring = {'MSLE': make_scorer(mean_squared_log_error), 'MAPE': make_scorer(mean_absolute_percentage_error)} random_grid = { "loss":['squared_error', 'absolute_error', 'huber'], "learning_rate": [0.001, 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2], "min_samples_split": np.linspace(1, 200, 10, dtype=int), "min_samples_leaf": np.linspace(0.1, 0.5, 12), "max_depth":[3,5,8,10,12], "max_features":["log2","sqrt"], "criterion": ["friedman_mse", "mae"], "subsample":[0.5, 0.618, 0.8, 0.85, 0.9, 0.95, 1.0], "n_estimators":[10, 20, 30, 40, 50, 60, 70, 80, 90, 100] } gb_random = RandomizedSearchCV( estimator = gb, param_distributions = random_grid, n_iter = 100, cv = 5, verbose=2, random_state=42, n_jobs = -1) gb_random.fit(X_train, y_train) params = gb_random.best_params_ gb = GradientBoostingRegressor(**params) gb.fit(X_train, y_train) predictions = gb.predict(X_test) root_mean_squared_log_error(y_test, predictions) predictions_test_x = gb.predict(test_x) root_mean_squared_log_error(test_y, predictions_test_x) joblib.dump(gb, '../Models/Gradient_Boost_Model.h5') ###Output _____no_output_____
docs/source/notebooks/Custom_Networks.ipynb
###Markdown Creating Custom Networks for Multi-Class ClassificationThis tutorial demonstrates how to define, train, and use different models for multi-class classification. We will reuse most of the code from the [Logistic Regression](Logistic_Regression.html) tutorial so if you haven't gone through that, consider reviewing it first.Note that this tutorial includes a demonstration on how to build and train a simple convolutional neural network and running this colab on CPU may take some time. Therefore, we recommend to run this colab on GPU (select ``GPU`` on the menu ``Runtime`` -> ``Change runtime type`` -> ``Hardware accelerator`` if hardware accelerator is not set to GPU). Import ModulesWe start by importing the modules we will use in our code. ###Code %pip --quiet install objax import os import numpy as np import tensorflow_datasets as tfds import objax from objax.util import EasyDict from objax.zoo.dnnet import DNNet ###Output _____no_output_____ ###Markdown Load the dataNext, we will load the "[MNIST](http://yann.lecun.com/exdb/mnist/)" dataset from [TensorFlow DataSets](https://www.tensorflow.org/datasets/api_docs/python/tfds). This dataset contains handwritten digits (i.e., numbers between 0 and 9) and to correctly identify each handwritten digit. The ``prepare`` method pads 2 pixels to the left, right, top, and bottom of each image to resize into 32 x 32 pixes. While MNIST images are grayscale the ``prepare`` method expands each image to three color channels to demonstrate the process of working with color images. The same method also rescales each pixel value to [-1, 1], and converts the image to (N, C, H, W) format. ###Code # Data: train has 60000 images - test has 10000 images # Each image is resized and converted to 32 x 32 x 3 DATA_DIR = os.path.join(os.environ['HOME'], 'TFDS') data = tfds.as_numpy(tfds.load(name='mnist', batch_size=-1, data_dir=DATA_DIR)) def prepare(x): """Pads 2 pixels to the left, right, top, and bottom of each image, scales pixel value to [-1, 1], and converts to NCHW format.""" s = x.shape x_pad = np.zeros((s[0], 32, 32, 1)) x_pad[:, 2:-2, 2:-2, :] = x return objax.util.image.nchw( np.concatenate([x_pad.astype('f') * (1 / 127.5) - 1] * 3, axis=-1)) train = EasyDict(image=prepare(data['train']['image']), label=data['train']['label']) test = EasyDict(image=prepare(data['test']['image']), label=data['test']['label']) ndim = train.image.shape[-1] del data ###Output _____no_output_____ ###Markdown Deep Neural Network ModelObjax offers many predefined models that we can use for classification. One example is the ``objax.zoo.DNNet`` model comprising multiple fully connected layers with configurable size and activation functions. ###Code dnn_layer_sizes = 3072, 128, 10 dnn_model = DNNet(dnn_layer_sizes, objax.functional.leaky_relu) ###Output _____no_output_____ ###Markdown Custom Model DefinitionAlternatively, we can define a new model customized to our machine learning task. We demonstrate this process by defining a convolutional network (ConvNet) from scratch. We use ``objax.nn.Sequential`` to compose multiple layers of convolution (``objax.nn.Conv2D``), batch normalization (``objax.nn.BatchNorm2D``), ReLU (``objax.functional.relu``), Max Pooling (``objax.functional.max_pool_2d``), Average Pooling (``jax.mean``), and Linear (``objax.nn.Linear``) layers.Since [batch normalization layer](https://arxiv.org/abs/1502.03167) behaves differently at training and at prediction, we pass the ``training`` flag to a ``__call__`` function of ``ConvNet`` class. We also use the flag to output logits at training and probability at prediction. ###Code class ConvNet(objax.Module): """ConvNet implementation.""" def __init__(self, nin, nclass): """Define 3 blocks of conv-bn-relu-conv-bn-relu followed by linear layer.""" self.conv_block1 = objax.nn.Sequential([objax.nn.Conv2D(nin, 16, 3, use_bias=False), objax.nn.BatchNorm2D(16), objax.functional.relu, objax.nn.Conv2D(16, 16, 3, use_bias=False), objax.nn.BatchNorm2D(16), objax.functional.relu]) self.conv_block2 = objax.nn.Sequential([objax.nn.Conv2D(16, 32, 3, use_bias=False), objax.nn.BatchNorm2D(32), objax.functional.relu, objax.nn.Conv2D(32, 32, 3, use_bias=False), objax.nn.BatchNorm2D(32), objax.functional.relu]) self.conv_block3 = objax.nn.Sequential([objax.nn.Conv2D(32, 64, 3, use_bias=False), objax.nn.BatchNorm2D(64), objax.functional.relu, objax.nn.Conv2D(64, 64, 3, use_bias=False), objax.nn.BatchNorm2D(64), objax.functional.relu]) self.linear = objax.nn.Linear(64, nclass) def __call__(self, x, training): x = self.conv_block1(x, training=training) x = objax.functional.max_pool_2d(x, size=2, strides=2) x = self.conv_block2(x, training=training) x = objax.functional.max_pool_2d(x, size=2, strides=2) x = self.conv_block3(x, training=training) x = x.mean((2, 3)) x = self.linear(x) return x cnn_model = ConvNet(nin=3, nclass=10) print(cnn_model.vars()) ###Output (ConvNet).conv_block1(Sequential)[0](Conv2D).w 432 (3, 3, 3, 16) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).running_mean 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).running_var 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).beta 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).gamma 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[3](Conv2D).w 2304 (3, 3, 16, 16) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).running_mean 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).running_var 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).beta 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).gamma 16 (1, 16, 1, 1) (ConvNet).conv_block2(Sequential)[0](Conv2D).w 4608 (3, 3, 16, 32) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).running_mean 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).running_var 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).beta 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).gamma 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[3](Conv2D).w 9216 (3, 3, 32, 32) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).running_mean 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).running_var 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).beta 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).gamma 32 (1, 32, 1, 1) (ConvNet).conv_block3(Sequential)[0](Conv2D).w 18432 (3, 3, 32, 64) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).running_mean 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).running_var 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).beta 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).gamma 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[3](Conv2D).w 36864 (3, 3, 64, 64) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).running_mean 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).running_var 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).beta 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).gamma 64 (1, 64, 1, 1) (ConvNet).linear(Linear).b 10 (10,) (ConvNet).linear(Linear).w 640 (64, 10) +Total(32) 73402 ###Markdown Model Training and EvaluationThe ``train_model`` method combines all the parts of defining the loss function, gradient descent, training loop, and evaluation. It takes the ``model`` as a parameter so it can be reused with the two models we defined earlier.Unlike the Logistic Regression tutorial we use the ``objax.functional.loss.cross_entropy_logits_sparse`` because we perform multi-class classification. The optimizer, gradient descent operation, and training loop remain the same. The ``DNNet`` model expects flattened images whereas ``ConvNet`` images in (C, H, W) format. The ``flatten_image`` method prepares images before passing them to the model. When using the model for inference we apply the ``objax.functional.softmax`` method to compute the probability distribution from the model's logits. ###Code # Settings lr = 0.03 # learning rate batch = 128 epochs = 100 # Train loop def train_model(model): def predict(model, x): """""" return objax.functional.softmax(model(x, training=False)) def flatten_image(x): """Flatten the image before passing it to the DNN.""" if isinstance(model, DNNet): return objax.functional.flatten(x) else: return x opt = objax.optimizer.Momentum(model.vars()) # Cross Entropy Loss def loss(x, label): return objax.functional.loss.cross_entropy_logits_sparse(model(x, training=True), label).mean() gv = objax.GradValues(loss, model.vars()) def train_op(x, label): g, v = gv(x, label) # returns gradients, loss opt(lr, g) return v train_op = objax.Jit(train_op, gv.vars() + opt.vars()) for epoch in range(epochs): avg_loss = 0 # randomly shuffle training data shuffle_idx = np.random.permutation(train.image.shape[0]) for it in range(0, train.image.shape[0], batch): sel = shuffle_idx[it: it + batch] avg_loss += float(train_op(flatten_image(train.image[sel]), train.label[sel])[0]) * len(sel) avg_loss /= it + len(sel) # Eval accuracy = 0 for it in range(0, test.image.shape[0], batch): x, y = test.image[it: it + batch], test.label[it: it + batch] accuracy += (np.argmax(predict(model, flatten_image(x)), axis=1) == y).sum() accuracy /= test.image.shape[0] print('Epoch %04d Loss %.2f Accuracy %.2f' % (epoch + 1, avg_loss, 100 * accuracy)) ###Output _____no_output_____ ###Markdown Training the DNN Model ###Code train_model(dnn_model) ###Output Epoch 0001 Loss 2.39 Accuracy 56.31 Epoch 0002 Loss 1.24 Accuracy 74.19 Epoch 0003 Loss 0.75 Accuracy 84.91 Epoch 0004 Loss 0.56 Accuracy 83.10 Epoch 0005 Loss 0.48 Accuracy 86.42 Epoch 0006 Loss 0.43 Accuracy 89.00 Epoch 0007 Loss 0.41 Accuracy 89.62 Epoch 0008 Loss 0.39 Accuracy 89.82 Epoch 0009 Loss 0.37 Accuracy 90.04 Epoch 0010 Loss 0.36 Accuracy 89.55 Epoch 0011 Loss 0.35 Accuracy 90.53 Epoch 0012 Loss 0.35 Accuracy 90.64 Epoch 0013 Loss 0.34 Accuracy 90.85 Epoch 0014 Loss 0.33 Accuracy 90.87 Epoch 0015 Loss 0.33 Accuracy 91.02 Epoch 0016 Loss 0.32 Accuracy 91.35 Epoch 0017 Loss 0.32 Accuracy 91.35 Epoch 0018 Loss 0.31 Accuracy 91.50 Epoch 0019 Loss 0.31 Accuracy 91.57 Epoch 0020 Loss 0.31 Accuracy 91.75 Epoch 0021 Loss 0.30 Accuracy 91.47 Epoch 0022 Loss 0.30 Accuracy 88.14 Epoch 0023 Loss 0.30 Accuracy 91.82 Epoch 0024 Loss 0.30 Accuracy 91.92 Epoch 0025 Loss 0.29 Accuracy 92.03 Epoch 0026 Loss 0.29 Accuracy 92.04 Epoch 0027 Loss 0.29 Accuracy 92.11 Epoch 0028 Loss 0.29 Accuracy 92.11 Epoch 0029 Loss 0.29 Accuracy 92.18 Epoch 0030 Loss 0.28 Accuracy 92.24 Epoch 0031 Loss 0.28 Accuracy 92.36 Epoch 0032 Loss 0.28 Accuracy 92.17 Epoch 0033 Loss 0.28 Accuracy 92.42 Epoch 0034 Loss 0.28 Accuracy 92.42 Epoch 0035 Loss 0.27 Accuracy 92.47 Epoch 0036 Loss 0.27 Accuracy 92.50 Epoch 0037 Loss 0.27 Accuracy 92.49 Epoch 0038 Loss 0.27 Accuracy 92.58 Epoch 0039 Loss 0.26 Accuracy 92.56 Epoch 0040 Loss 0.26 Accuracy 92.56 Epoch 0041 Loss 0.26 Accuracy 92.77 Epoch 0042 Loss 0.26 Accuracy 92.72 Epoch 0043 Loss 0.26 Accuracy 92.80 Epoch 0044 Loss 0.25 Accuracy 92.85 Epoch 0045 Loss 0.25 Accuracy 92.90 Epoch 0046 Loss 0.25 Accuracy 92.96 Epoch 0047 Loss 0.25 Accuracy 93.00 Epoch 0048 Loss 0.25 Accuracy 92.82 Epoch 0049 Loss 0.25 Accuracy 93.18 Epoch 0050 Loss 0.24 Accuracy 93.09 Epoch 0051 Loss 0.24 Accuracy 92.94 Epoch 0052 Loss 0.24 Accuracy 93.20 Epoch 0053 Loss 0.24 Accuracy 93.26 Epoch 0054 Loss 0.23 Accuracy 93.21 Epoch 0055 Loss 0.24 Accuracy 93.42 Epoch 0056 Loss 0.23 Accuracy 93.35 Epoch 0057 Loss 0.23 Accuracy 93.36 Epoch 0058 Loss 0.23 Accuracy 93.56 Epoch 0059 Loss 0.23 Accuracy 93.54 Epoch 0060 Loss 0.22 Accuracy 93.39 Epoch 0061 Loss 0.23 Accuracy 93.56 Epoch 0062 Loss 0.22 Accuracy 93.74 Epoch 0063 Loss 0.22 Accuracy 93.68 Epoch 0064 Loss 0.22 Accuracy 93.72 Epoch 0065 Loss 0.22 Accuracy 93.76 Epoch 0066 Loss 0.22 Accuracy 93.87 Epoch 0067 Loss 0.21 Accuracy 93.89 Epoch 0068 Loss 0.21 Accuracy 93.96 Epoch 0069 Loss 0.21 Accuracy 93.90 Epoch 0070 Loss 0.21 Accuracy 93.99 Epoch 0071 Loss 0.21 Accuracy 94.02 Epoch 0072 Loss 0.21 Accuracy 93.86 Epoch 0073 Loss 0.21 Accuracy 94.06 Epoch 0074 Loss 0.21 Accuracy 94.14 Epoch 0075 Loss 0.20 Accuracy 94.31 Epoch 0076 Loss 0.20 Accuracy 94.14 Epoch 0077 Loss 0.20 Accuracy 94.15 Epoch 0078 Loss 0.20 Accuracy 94.10 Epoch 0079 Loss 0.20 Accuracy 94.16 Epoch 0080 Loss 0.20 Accuracy 94.28 Epoch 0081 Loss 0.20 Accuracy 94.30 Epoch 0082 Loss 0.20 Accuracy 94.28 Epoch 0083 Loss 0.19 Accuracy 94.37 Epoch 0084 Loss 0.19 Accuracy 94.33 Epoch 0085 Loss 0.19 Accuracy 94.31 Epoch 0086 Loss 0.19 Accuracy 94.25 Epoch 0087 Loss 0.19 Accuracy 94.37 Epoch 0088 Loss 0.19 Accuracy 94.38 Epoch 0089 Loss 0.19 Accuracy 94.35 Epoch 0090 Loss 0.19 Accuracy 94.38 Epoch 0091 Loss 0.19 Accuracy 94.41 Epoch 0092 Loss 0.19 Accuracy 94.46 Epoch 0093 Loss 0.19 Accuracy 94.53 Epoch 0094 Loss 0.18 Accuracy 94.47 Epoch 0095 Loss 0.18 Accuracy 94.54 Epoch 0096 Loss 0.18 Accuracy 94.65 Epoch 0097 Loss 0.18 Accuracy 94.56 Epoch 0098 Loss 0.18 Accuracy 94.60 Epoch 0099 Loss 0.18 Accuracy 94.63 Epoch 0100 Loss 0.18 Accuracy 94.46 ###Markdown Training the ConvNet Model ###Code train_model(cnn_model) ###Output Epoch 0001 Loss 0.27 Accuracy 27.08 Epoch 0002 Loss 0.05 Accuracy 41.07 Epoch 0003 Loss 0.03 Accuracy 67.77 Epoch 0004 Loss 0.03 Accuracy 73.31 Epoch 0005 Loss 0.02 Accuracy 90.30 Epoch 0006 Loss 0.02 Accuracy 93.10 Epoch 0007 Loss 0.02 Accuracy 95.98 Epoch 0008 Loss 0.01 Accuracy 98.77 Epoch 0009 Loss 0.01 Accuracy 96.58 Epoch 0010 Loss 0.01 Accuracy 99.12 Epoch 0011 Loss 0.01 Accuracy 98.88 Epoch 0012 Loss 0.01 Accuracy 98.64 Epoch 0013 Loss 0.01 Accuracy 98.66 Epoch 0014 Loss 0.00 Accuracy 98.38 Epoch 0015 Loss 0.00 Accuracy 99.15 Epoch 0016 Loss 0.00 Accuracy 97.50 Epoch 0017 Loss 0.00 Accuracy 98.98 Epoch 0018 Loss 0.00 Accuracy 98.94 Epoch 0019 Loss 0.00 Accuracy 98.56 Epoch 0020 Loss 0.00 Accuracy 99.06 Epoch 0021 Loss 0.00 Accuracy 99.26 Epoch 0022 Loss 0.00 Accuracy 99.30 Epoch 0023 Loss 0.00 Accuracy 99.18 Epoch 0024 Loss 0.00 Accuracy 99.49 Epoch 0025 Loss 0.00 Accuracy 99.34 Epoch 0026 Loss 0.00 Accuracy 99.24 Epoch 0027 Loss 0.00 Accuracy 99.38 Epoch 0028 Loss 0.00 Accuracy 99.43 Epoch 0029 Loss 0.00 Accuracy 99.40 Epoch 0030 Loss 0.00 Accuracy 99.50 Epoch 0031 Loss 0.00 Accuracy 99.44 Epoch 0032 Loss 0.00 Accuracy 99.52 Epoch 0033 Loss 0.00 Accuracy 99.46 Epoch 0034 Loss 0.00 Accuracy 99.39 Epoch 0035 Loss 0.00 Accuracy 99.22 Epoch 0036 Loss 0.00 Accuracy 99.26 Epoch 0037 Loss 0.00 Accuracy 99.47 Epoch 0038 Loss 0.00 Accuracy 99.18 Epoch 0039 Loss 0.00 Accuracy 99.39 Epoch 0040 Loss 0.00 Accuracy 99.44 Epoch 0041 Loss 0.00 Accuracy 99.43 Epoch 0042 Loss 0.00 Accuracy 99.50 Epoch 0043 Loss 0.00 Accuracy 99.50 Epoch 0044 Loss 0.00 Accuracy 99.53 Epoch 0045 Loss 0.00 Accuracy 99.51 Epoch 0046 Loss 0.00 Accuracy 99.49 Epoch 0047 Loss 0.00 Accuracy 99.46 Epoch 0048 Loss 0.00 Accuracy 99.46 Epoch 0049 Loss 0.00 Accuracy 99.35 Epoch 0050 Loss 0.00 Accuracy 99.50 Epoch 0051 Loss 0.00 Accuracy 99.48 Epoch 0052 Loss 0.00 Accuracy 99.48 Epoch 0053 Loss 0.00 Accuracy 99.48 Epoch 0054 Loss 0.00 Accuracy 99.46 Epoch 0055 Loss 0.00 Accuracy 99.48 Epoch 0056 Loss 0.00 Accuracy 99.50 Epoch 0057 Loss 0.00 Accuracy 99.41 Epoch 0058 Loss 0.00 Accuracy 99.49 Epoch 0059 Loss 0.00 Accuracy 99.48 Epoch 0060 Loss 0.00 Accuracy 99.47 Epoch 0061 Loss 0.00 Accuracy 99.52 Epoch 0062 Loss 0.00 Accuracy 99.49 Epoch 0063 Loss 0.00 Accuracy 99.48 Epoch 0064 Loss 0.00 Accuracy 99.51 Epoch 0065 Loss 0.00 Accuracy 99.46 Epoch 0066 Loss 0.00 Accuracy 99.51 Epoch 0067 Loss 0.00 Accuracy 99.49 Epoch 0068 Loss 0.00 Accuracy 99.52 Epoch 0069 Loss 0.00 Accuracy 99.49 Epoch 0070 Loss 0.00 Accuracy 99.51 Epoch 0071 Loss 0.00 Accuracy 99.51 Epoch 0072 Loss 0.00 Accuracy 99.52 Epoch 0073 Loss 0.00 Accuracy 99.43 Epoch 0074 Loss 0.00 Accuracy 99.53 Epoch 0075 Loss 0.00 Accuracy 99.47 Epoch 0076 Loss 0.00 Accuracy 99.51 Epoch 0077 Loss 0.00 Accuracy 99.55 Epoch 0078 Loss 0.00 Accuracy 99.52 Epoch 0079 Loss 0.00 Accuracy 99.52 Epoch 0080 Loss 0.00 Accuracy 98.78 Epoch 0081 Loss 0.00 Accuracy 99.16 Epoch 0082 Loss 0.00 Accuracy 99.40 Epoch 0083 Loss 0.00 Accuracy 99.35 Epoch 0084 Loss 0.00 Accuracy 99.32 Epoch 0085 Loss 0.00 Accuracy 99.49 Epoch 0086 Loss 0.00 Accuracy 99.49 Epoch 0087 Loss 0.00 Accuracy 99.56 Epoch 0088 Loss 0.00 Accuracy 99.48 Epoch 0089 Loss 0.00 Accuracy 99.48 Epoch 0090 Loss 0.00 Accuracy 99.51 Epoch 0091 Loss 0.00 Accuracy 99.45 Epoch 0092 Loss 0.00 Accuracy 99.52 Epoch 0093 Loss 0.00 Accuracy 99.52 Epoch 0094 Loss 0.00 Accuracy 99.51 Epoch 0095 Loss 0.00 Accuracy 99.51 Epoch 0096 Loss 0.00 Accuracy 99.48 Epoch 0097 Loss 0.00 Accuracy 99.51 Epoch 0098 Loss 0.00 Accuracy 99.53 Epoch 0099 Loss 0.00 Accuracy 99.50 Epoch 0100 Loss 0.00 Accuracy 99.53 ###Markdown Training with PyTorch data processing APIOne of the pain points for ML researchers/practitioners when building a new ML model is the data processing. Here, we demonstrate how to use data processing API of [PyTorch](https://pytorch.org/) to train a model with Objax. Different deep learning library comes with different data processing APIs, and depending on your preference, you can choose an API and easily combine with Objax.Similarly, we prepare an `MNIST` dataset and apply the same data preprocessing. ###Code import torch from torchvision import datasets, transforms transform=transforms.Compose([ transforms.Pad((2,2,2,2), 0), transforms.ToTensor(), transforms.Lambda(lambda x: np.concatenate([x] * 3, axis=0)), transforms.Lambda(lambda x: x * 2 - 1) ]) train_dataset = datasets.MNIST(os.environ['HOME'], train=True, download=True, transform=transform) test_dataset = datasets.MNIST(os.environ['HOME'], train=False, download=True, transform=transform) # Define data loader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch) ###Output Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /root/MNIST/raw/train-images-idx3-ubyte.gz ###Markdown We replace data processing pipeline of the train and test loop with `train_loader` and `test_loader` and that's it! ###Code # Train loop def train_model_with_torch_data_api(model): def predict(model, x): """""" return objax.functional.softmax(model(x, training=False)) def flatten_image(x): """Flatten the image before passing it to the DNN.""" if isinstance(model, DNNet): return objax.functional.flatten(x) else: return x opt = objax.optimizer.Momentum(model.vars()) # Cross Entropy Loss def loss(x, label): return objax.functional.loss.cross_entropy_logits_sparse(model(x, training=True), label).mean() gv = objax.GradValues(loss, model.vars()) def train_op(x, label): g, v = gv(x, label) # returns gradients, loss opt(lr, g) return v train_op = objax.Jit(train_op, gv.vars() + opt.vars()) for epoch in range(epochs): avg_loss = 0 tot_data = 0 for _, (img, label) in enumerate(train_loader): avg_loss += float(train_op(flatten_image(img.numpy()), label.numpy())[0]) * len(img) tot_data += len(img) avg_loss /= tot_data # Eval accuracy = 0 tot_data = 0 for _, (img, label) in enumerate(test_loader): accuracy += (np.argmax(predict(model, flatten_image(img.numpy())), axis=1) == label.numpy()).sum() tot_data += len(img) accuracy /= tot_data print('Epoch %04d Loss %.2f Accuracy %.2f' % (epoch + 1, avg_loss, 100 * accuracy)) ###Output ###Markdown Training the DNN Model with PyTorch data API ###Code dnn_layer_sizes = 3072, 128, 10 dnn_model = DNNet(dnn_layer_sizes, objax.functional.leaky_relu) train_model_with_torch_data_api(dnn_model) ###Output Epoch 0001 Loss 2.57 Accuracy 34.35 Epoch 0002 Loss 1.93 Accuracy 58.51 Epoch 0003 Loss 1.32 Accuracy 68.46 Epoch 0004 Loss 0.83 Accuracy 80.95 Epoch 0005 Loss 0.62 Accuracy 84.74 Epoch 0006 Loss 0.53 Accuracy 86.53 Epoch 0007 Loss 0.48 Accuracy 84.18 Epoch 0008 Loss 0.45 Accuracy 88.42 Epoch 0009 Loss 0.42 Accuracy 87.34 Epoch 0010 Loss 0.40 Accuracy 89.29 Epoch 0011 Loss 0.39 Accuracy 89.31 Epoch 0012 Loss 0.38 Accuracy 89.86 Epoch 0013 Loss 0.37 Accuracy 89.91 Epoch 0014 Loss 0.36 Accuracy 86.94 Epoch 0015 Loss 0.36 Accuracy 89.89 Epoch 0016 Loss 0.35 Accuracy 90.12 Epoch 0017 Loss 0.34 Accuracy 90.40 Epoch 0018 Loss 0.34 Accuracy 90.31 Epoch 0019 Loss 0.34 Accuracy 90.79 Epoch 0020 Loss 0.33 Accuracy 90.71 Epoch 0021 Loss 0.33 Accuracy 90.70 Epoch 0022 Loss 0.33 Accuracy 90.69 Epoch 0023 Loss 0.33 Accuracy 90.91 Epoch 0024 Loss 0.32 Accuracy 90.92 Epoch 0025 Loss 0.32 Accuracy 91.06 Epoch 0026 Loss 0.32 Accuracy 91.19 Epoch 0027 Loss 0.32 Accuracy 91.31 Epoch 0028 Loss 0.31 Accuracy 91.31 Epoch 0029 Loss 0.31 Accuracy 91.20 Epoch 0030 Loss 0.31 Accuracy 91.31 Epoch 0031 Loss 0.31 Accuracy 91.36 Epoch 0032 Loss 0.31 Accuracy 91.42 Epoch 0033 Loss 0.30 Accuracy 91.27 Epoch 0034 Loss 0.31 Accuracy 91.47 Epoch 0035 Loss 0.30 Accuracy 91.57 Epoch 0036 Loss 0.30 Accuracy 91.44 Epoch 0037 Loss 0.30 Accuracy 91.55 Epoch 0038 Loss 0.30 Accuracy 91.56 Epoch 0039 Loss 0.29 Accuracy 91.75 Epoch 0040 Loss 0.29 Accuracy 91.69 Epoch 0041 Loss 0.29 Accuracy 91.60 Epoch 0042 Loss 0.29 Accuracy 91.77 Epoch 0043 Loss 0.29 Accuracy 91.76 Epoch 0044 Loss 0.29 Accuracy 91.84 Epoch 0045 Loss 0.28 Accuracy 92.05 Epoch 0046 Loss 0.28 Accuracy 91.78 Epoch 0047 Loss 0.28 Accuracy 92.01 Epoch 0048 Loss 0.28 Accuracy 91.95 Epoch 0049 Loss 0.28 Accuracy 90.11 Epoch 0050 Loss 0.28 Accuracy 92.14 Epoch 0051 Loss 0.28 Accuracy 92.03 Epoch 0052 Loss 0.27 Accuracy 92.29 Epoch 0053 Loss 0.27 Accuracy 92.17 Epoch 0054 Loss 0.27 Accuracy 92.12 Epoch 0055 Loss 0.27 Accuracy 92.34 Epoch 0056 Loss 0.27 Accuracy 92.32 Epoch 0057 Loss 0.27 Accuracy 92.47 Epoch 0058 Loss 0.27 Accuracy 92.38 Epoch 0059 Loss 0.27 Accuracy 92.39 Epoch 0060 Loss 0.26 Accuracy 92.51 Epoch 0061 Loss 0.27 Accuracy 92.50 Epoch 0062 Loss 0.26 Accuracy 92.46 Epoch 0063 Loss 0.26 Accuracy 92.65 Epoch 0064 Loss 0.26 Accuracy 92.57 Epoch 0065 Loss 0.26 Accuracy 92.63 Epoch 0066 Loss 0.26 Accuracy 92.75 Epoch 0067 Loss 0.26 Accuracy 92.57 Epoch 0068 Loss 0.26 Accuracy 92.88 Epoch 0069 Loss 0.25 Accuracy 92.53 Epoch 0070 Loss 0.25 Accuracy 92.80 Epoch 0071 Loss 0.25 Accuracy 92.71 Epoch 0072 Loss 0.25 Accuracy 92.75 Epoch 0073 Loss 0.25 Accuracy 92.84 Epoch 0074 Loss 0.25 Accuracy 92.71 Epoch 0075 Loss 0.25 Accuracy 92.95 Epoch 0076 Loss 0.25 Accuracy 92.82 Epoch 0077 Loss 0.25 Accuracy 92.90 Epoch 0078 Loss 0.25 Accuracy 92.87 Epoch 0079 Loss 0.25 Accuracy 89.55 Epoch 0080 Loss 0.25 Accuracy 92.86 Epoch 0081 Loss 0.24 Accuracy 92.99 Epoch 0082 Loss 0.24 Accuracy 93.03 Epoch 0083 Loss 0.24 Accuracy 93.03 Epoch 0084 Loss 0.24 Accuracy 93.01 Epoch 0085 Loss 0.24 Accuracy 93.13 Epoch 0086 Loss 0.24 Accuracy 93.17 Epoch 0087 Loss 0.24 Accuracy 92.87 Epoch 0088 Loss 0.24 Accuracy 92.93 Epoch 0089 Loss 0.24 Accuracy 93.16 Epoch 0090 Loss 0.24 Accuracy 93.38 Epoch 0091 Loss 0.24 Accuracy 92.98 Epoch 0092 Loss 0.24 Accuracy 93.30 Epoch 0093 Loss 0.23 Accuracy 93.09 Epoch 0094 Loss 0.23 Accuracy 93.19 Epoch 0095 Loss 0.23 Accuracy 93.25 Epoch 0096 Loss 0.23 Accuracy 93.22 Epoch 0097 Loss 0.23 Accuracy 93.28 Epoch 0098 Loss 0.23 Accuracy 93.39 Epoch 0099 Loss 0.23 Accuracy 93.25 Epoch 0100 Loss 0.23 Accuracy 93.30 ###Markdown Training the ConvNet Model with PyTorch data API ###Code cnn_model = ConvNet(nin=3, nclass=10) print(cnn_model.vars()) train_model_with_torch_data_api(cnn_model) ###Output (ConvNet).conv_block1(Sequential)[0](Conv2D).w 432 (3, 3, 3, 16) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).running_mean 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).running_var 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).beta 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).gamma 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[3](Conv2D).w 2304 (3, 3, 16, 16) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).running_mean 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).running_var 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).beta 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).gamma 16 (1, 16, 1, 1) (ConvNet).conv_block2(Sequential)[0](Conv2D).w 4608 (3, 3, 16, 32) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).running_mean 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).running_var 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).beta 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).gamma 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[3](Conv2D).w 9216 (3, 3, 32, 32) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).running_mean 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).running_var 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).beta 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).gamma 32 (1, 32, 1, 1) (ConvNet).conv_block3(Sequential)[0](Conv2D).w 18432 (3, 3, 32, 64) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).running_mean 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).running_var 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).beta 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).gamma 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[3](Conv2D).w 36864 (3, 3, 64, 64) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).running_mean 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).running_var 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).beta 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).gamma 64 (1, 64, 1, 1) (ConvNet).linear(Linear).b 10 (10,) (ConvNet).linear(Linear).w 640 (64, 10) +Total(32) 73402 Epoch 0001 Loss 0.26 Accuracy 24.18 Epoch 0002 Loss 0.05 Accuracy 37.53 Epoch 0003 Loss 0.03 Accuracy 42.17 Epoch 0004 Loss 0.03 Accuracy 73.50 Epoch 0005 Loss 0.02 Accuracy 80.33 Epoch 0006 Loss 0.02 Accuracy 83.28 Epoch 0007 Loss 0.02 Accuracy 90.87 Epoch 0008 Loss 0.01 Accuracy 98.77 Epoch 0009 Loss 0.01 Accuracy 98.42 Epoch 0010 Loss 0.01 Accuracy 98.16 Epoch 0011 Loss 0.01 Accuracy 98.74 Epoch 0012 Loss 0.01 Accuracy 95.05 Epoch 0013 Loss 0.01 Accuracy 98.89 Epoch 0014 Loss 0.00 Accuracy 98.70 Epoch 0015 Loss 0.00 Accuracy 99.01 Epoch 0016 Loss 0.00 Accuracy 98.97 Epoch 0017 Loss 0.00 Accuracy 98.79 Epoch 0018 Loss 0.00 Accuracy 98.37 Epoch 0019 Loss 0.00 Accuracy 99.19 Epoch 0020 Loss 0.00 Accuracy 99.22 Epoch 0021 Loss 0.00 Accuracy 98.43 Epoch 0022 Loss 0.00 Accuracy 99.02 Epoch 0023 Loss 0.00 Accuracy 99.38 Epoch 0024 Loss 0.00 Accuracy 99.42 Epoch 0025 Loss 0.00 Accuracy 99.45 Epoch 0026 Loss 0.00 Accuracy 99.35 Epoch 0027 Loss 0.00 Accuracy 99.42 Epoch 0028 Loss 0.00 Accuracy 99.42 Epoch 0029 Loss 0.00 Accuracy 99.14 Epoch 0030 Loss 0.00 Accuracy 99.33 Epoch 0031 Loss 0.00 Accuracy 99.36 Epoch 0032 Loss 0.00 Accuracy 99.18 Epoch 0033 Loss 0.00 Accuracy 99.43 Epoch 0034 Loss 0.00 Accuracy 99.47 Epoch 0035 Loss 0.00 Accuracy 99.49 Epoch 0036 Loss 0.00 Accuracy 99.53 Epoch 0037 Loss 0.00 Accuracy 99.38 Epoch 0038 Loss 0.00 Accuracy 99.39 Epoch 0039 Loss 0.00 Accuracy 99.49 Epoch 0040 Loss 0.00 Accuracy 99.49 Epoch 0041 Loss 0.00 Accuracy 99.47 Epoch 0042 Loss 0.00 Accuracy 99.54 Epoch 0043 Loss 0.00 Accuracy 99.35 Epoch 0044 Loss 0.00 Accuracy 99.45 Epoch 0045 Loss 0.00 Accuracy 99.47 Epoch 0046 Loss 0.00 Accuracy 99.53 Epoch 0047 Loss 0.00 Accuracy 99.50 Epoch 0048 Loss 0.00 Accuracy 99.52 Epoch 0049 Loss 0.00 Accuracy 99.51 Epoch 0050 Loss 0.00 Accuracy 99.49 Epoch 0051 Loss 0.00 Accuracy 99.45 Epoch 0052 Loss 0.00 Accuracy 99.48 Epoch 0053 Loss 0.00 Accuracy 99.50 Epoch 0054 Loss 0.00 Accuracy 99.46 Epoch 0055 Loss 0.00 Accuracy 99.50 Epoch 0056 Loss 0.00 Accuracy 99.48 Epoch 0057 Loss 0.00 Accuracy 99.46 Epoch 0058 Loss 0.00 Accuracy 99.44 Epoch 0059 Loss 0.00 Accuracy 99.46 Epoch 0060 Loss 0.00 Accuracy 99.26 Epoch 0061 Loss 0.00 Accuracy 93.99 Epoch 0062 Loss 0.00 Accuracy 97.80 Epoch 0063 Loss 0.00 Accuracy 80.26 Epoch 0064 Loss 0.00 Accuracy 99.20 Epoch 0065 Loss 0.00 Accuracy 99.38 Epoch 0066 Loss 0.00 Accuracy 99.44 Epoch 0067 Loss 0.00 Accuracy 99.51 Epoch 0068 Loss 0.00 Accuracy 99.45 Epoch 0069 Loss 0.00 Accuracy 99.42 Epoch 0070 Loss 0.00 Accuracy 99.50 Epoch 0071 Loss 0.00 Accuracy 99.52 Epoch 0072 Loss 0.00 Accuracy 99.44 Epoch 0073 Loss 0.00 Accuracy 99.41 Epoch 0074 Loss 0.00 Accuracy 99.46 Epoch 0075 Loss 0.00 Accuracy 99.42 Epoch 0076 Loss 0.00 Accuracy 99.49 Epoch 0077 Loss 0.00 Accuracy 99.50 Epoch 0078 Loss 0.00 Accuracy 99.56 Epoch 0079 Loss 0.00 Accuracy 99.52 Epoch 0080 Loss 0.00 Accuracy 99.42 Epoch 0081 Loss 0.00 Accuracy 99.49 Epoch 0082 Loss 0.00 Accuracy 99.48 Epoch 0083 Loss 0.00 Accuracy 99.44 Epoch 0084 Loss 0.00 Accuracy 99.49 Epoch 0085 Loss 0.00 Accuracy 99.53 Epoch 0086 Loss 0.00 Accuracy 99.52 Epoch 0087 Loss 0.00 Accuracy 99.52 Epoch 0088 Loss 0.00 Accuracy 99.50 Epoch 0089 Loss 0.00 Accuracy 99.51 Epoch 0090 Loss 0.00 Accuracy 99.50 Epoch 0091 Loss 0.00 Accuracy 99.49 Epoch 0092 Loss 0.00 Accuracy 99.52 Epoch 0093 Loss 0.00 Accuracy 99.50 Epoch 0094 Loss 0.00 Accuracy 99.50 Epoch 0095 Loss 0.00 Accuracy 99.55 Epoch 0096 Loss 0.00 Accuracy 99.48 Epoch 0097 Loss 0.00 Accuracy 99.51 Epoch 0098 Loss 0.00 Accuracy 99.52 Epoch 0099 Loss 0.00 Accuracy 99.49 Epoch 0100 Loss 0.00 Accuracy 99.52 ###Markdown Creating Custom Networks for Multi-Class ClassificationThis tutorial demonstrates how to define, train, and use different models for multi-class classification. We will reuse most of the code from the [Logistic Regression](Logistic_Regression.html) tutorial so if you haven't gone through that, consider reviewing it first.Note that this tutorial includes a demonstration on how to build and train a simple convolutional neural network and running this colab on CPU may take some time. Therefore, we recommend to run this colab on GPU (select ``GPU`` on the menu ``Runtime`` -> ``Change runtime type`` -> ``Hardware accelerator`` if hardware accelerator is not set to GPU). Import ModulesWe start by importing the modules we will use in our code. ###Code %pip --quiet install objax import os import numpy as np import tensorflow_datasets as tfds import objax from objax.util import EasyDict from objax.zoo.dnnet import DNNet ###Output _____no_output_____ ###Markdown Load the dataNext, we will load the "[MNIST](http://yann.lecun.com/exdb/mnist/)" dataset from [TensorFlow DataSets](https://www.tensorflow.org/datasets/api_docs/python/tfds). This dataset contains handwritten digits (i.e., numbers between 0 and 9) and to correctly identify each handwritten digit. The ``prepare`` method pads 2 pixels to the left, right, top, and bottom of each image to resize into 32 x 32 pixes. While MNIST images are grayscale the ``prepare`` method expands each image to three color channels to demonstrate the process of working with color images. The same method also rescales each pixel value to [-1, 1], and converts the image to (N, C, H, W) format. ###Code # Data: train has 60000 images - test has 10000 images # Each image is resized and converted to 32 x 32 x 3 DATA_DIR = os.path.join(os.environ['HOME'], 'TFDS') data = tfds.as_numpy(tfds.load(name='mnist', batch_size=-1, data_dir=DATA_DIR)) def prepare(x): """Pads 2 pixels to the left, right, top, and bottom of each image, scales pixel value to [-1, 1], and converts to NCHW format.""" s = x.shape x_pad = np.zeros((s[0], 32, 32, 1)) x_pad[:, 2:-2, 2:-2, :] = x return objax.util.image.nchw( np.concatenate([x_pad.astype('f') * (1 / 127.5) - 1] * 3, axis=-1)) train = EasyDict(image=prepare(data['train']['image']), label=data['train']['label']) test = EasyDict(image=prepare(data['test']['image']), label=data['test']['label']) ndim = train.image.shape[-1] del data ###Output _____no_output_____ ###Markdown Deep Neural Network ModelObjax offers many predefined models that we can use for classification. One example is the ``objax.zoo.DNNet`` model comprising multiple fully connected layers with configurable size and activation functions. ###Code dnn_layer_sizes = 3072, 128, 10 dnn_model = DNNet(dnn_layer_sizes, objax.functional.leaky_relu) ###Output _____no_output_____ ###Markdown Custom Model DefinitionAlternatively, we can define a new model customized to our machine learning task. We demonstrate this process by defining a convolutional network (ConvNet) from scratch. We use ``objax.nn.Sequential`` to compose multiple layers of convolution (``objax.nn.Conv2D``), batch normalization (``objax.nn.BatchNorm2D``), ReLU (``objax.functional.relu``), Max Pooling (``objax.functional.max_pool_2d``), Average Pooling (``jax.mean``), and Linear (``objax.nn.Linear``) layers.Since [batch normalization layer](https://arxiv.org/abs/1502.03167) behaves differently at training and at prediction, we pass the ``training`` flag to a ``__call__`` function of ``ConvNet`` class. We also use the flag to output logits at training and probability at prediction. ###Code class ConvNet(objax.Module): """ConvNet implementation.""" def __init__(self, nin, nclass): """Define 3 blocks of conv-bn-relu-conv-bn-relu followed by linear layer.""" self.conv_block1 = objax.nn.Sequential([objax.nn.Conv2D(nin, 16, 3, use_bias=False), objax.nn.BatchNorm2D(16), objax.functional.relu, objax.nn.Conv2D(16, 16, 3, use_bias=False), objax.nn.BatchNorm2D(16), objax.functional.relu]) self.conv_block2 = objax.nn.Sequential([objax.nn.Conv2D(16, 32, 3, use_bias=False), objax.nn.BatchNorm2D(32), objax.functional.relu, objax.nn.Conv2D(32, 32, 3, use_bias=False), objax.nn.BatchNorm2D(32), objax.functional.relu]) self.conv_block3 = objax.nn.Sequential([objax.nn.Conv2D(32, 64, 3, use_bias=False), objax.nn.BatchNorm2D(64), objax.functional.relu, objax.nn.Conv2D(64, 64, 3, use_bias=False), objax.nn.BatchNorm2D(64), objax.functional.relu]) self.linear = objax.nn.Linear(64, nclass) def __call__(self, x, training): x = self.conv_block1(x, training=training) x = objax.functional.max_pool_2d(x, size=2, strides=2) x = self.conv_block2(x, training=training) x = objax.functional.max_pool_2d(x, size=2, strides=2) x = self.conv_block3(x, training=training) x = x.mean((2, 3)) x = self.linear(x) return x cnn_model = ConvNet(nin=3, nclass=10) print(cnn_model.vars()) ###Output (ConvNet).conv_block1(Sequential)[0](Conv2D).w 432 (3, 3, 3, 16) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).running_mean 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).running_var 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).beta 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).gamma 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[3](Conv2D).w 2304 (3, 3, 16, 16) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).running_mean 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).running_var 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).beta 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).gamma 16 (1, 16, 1, 1) (ConvNet).conv_block2(Sequential)[0](Conv2D).w 4608 (3, 3, 16, 32) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).running_mean 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).running_var 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).beta 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).gamma 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[3](Conv2D).w 9216 (3, 3, 32, 32) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).running_mean 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).running_var 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).beta 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).gamma 32 (1, 32, 1, 1) (ConvNet).conv_block3(Sequential)[0](Conv2D).w 18432 (3, 3, 32, 64) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).running_mean 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).running_var 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).beta 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).gamma 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[3](Conv2D).w 36864 (3, 3, 64, 64) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).running_mean 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).running_var 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).beta 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).gamma 64 (1, 64, 1, 1) (ConvNet).linear(Linear).b 10 (10,) (ConvNet).linear(Linear).w 640 (64, 10) +Total(32) 73402 ###Markdown Model Training and EvaluationThe ``train_model`` method combines all the parts of defining the loss function, gradient descent, training loop, and evaluation. It takes the ``model`` as a parameter so it can be reused with the two models we defined earlier.Unlike the Logistic Regression tutorial we use the ``objax.functional.loss.cross_entropy_logits_sparse`` because we perform multi-class classification. The optimizer, gradient descent operation, and training loop remain the same. The ``DNNet`` model expects flattened images whereas ``ConvNet`` images in (C, H, W) format. The ``flatten_image`` method prepares images before passing them to the model. When using the model for inference we apply the ``objax.functional.softmax`` method to compute the probability distribution from the model's logits. ###Code # Settings lr = 0.03 # learning rate batch = 128 epochs = 100 # Train loop def train_model(model): def predict(model, x): """""" return objax.functional.softmax(model(x, training=False)) def flatten_image(x): """Flatten the image before passing it to the DNN.""" if isinstance(model, DNNet): return objax.functional.flatten(x) else: return x opt = objax.optimizer.Momentum(model.vars()) # Cross Entropy Loss def loss(x, label): return objax.functional.loss.cross_entropy_logits_sparse(model(x, training=True), label).mean() gv = objax.GradValues(loss, model.vars()) def train_op(x, label): g, v = gv(x, label) # returns gradients, loss opt(lr, g) return v train_op = objax.Jit(train_op, gv.vars() + opt.vars()) for epoch in range(epochs): avg_loss = 0 # randomly shuffle training data shuffle_idx = np.random.permutation(train.image.shape[0]) for it in range(0, train.image.shape[0], batch): sel = shuffle_idx[it: it + batch] avg_loss += float(train_op(flatten_image(train.image[sel]), train.label[sel])[0]) * len(sel) avg_loss /= it + len(sel) # Eval accuracy = 0 for it in range(0, test.image.shape[0], batch): x, y = test.image[it: it + batch], test.label[it: it + batch] accuracy += (np.argmax(predict(model, flatten_image(x)), axis=1) == y).sum() accuracy /= test.image.shape[0] print('Epoch %04d Loss %.2f Accuracy %.2f' % (epoch + 1, avg_loss, 100 * accuracy)) ###Output _____no_output_____ ###Markdown Training the DNN Model ###Code train_model(dnn_model) ###Output Epoch 0001 Loss 2.39 Accuracy 56.31 Epoch 0002 Loss 1.24 Accuracy 74.19 Epoch 0003 Loss 0.75 Accuracy 84.91 Epoch 0004 Loss 0.56 Accuracy 83.10 Epoch 0005 Loss 0.48 Accuracy 86.42 Epoch 0006 Loss 0.43 Accuracy 89.00 Epoch 0007 Loss 0.41 Accuracy 89.62 Epoch 0008 Loss 0.39 Accuracy 89.82 Epoch 0009 Loss 0.37 Accuracy 90.04 Epoch 0010 Loss 0.36 Accuracy 89.55 Epoch 0011 Loss 0.35 Accuracy 90.53 Epoch 0012 Loss 0.35 Accuracy 90.64 Epoch 0013 Loss 0.34 Accuracy 90.85 Epoch 0014 Loss 0.33 Accuracy 90.87 Epoch 0015 Loss 0.33 Accuracy 91.02 Epoch 0016 Loss 0.32 Accuracy 91.35 Epoch 0017 Loss 0.32 Accuracy 91.35 Epoch 0018 Loss 0.31 Accuracy 91.50 Epoch 0019 Loss 0.31 Accuracy 91.57 Epoch 0020 Loss 0.31 Accuracy 91.75 Epoch 0021 Loss 0.30 Accuracy 91.47 Epoch 0022 Loss 0.30 Accuracy 88.14 Epoch 0023 Loss 0.30 Accuracy 91.82 Epoch 0024 Loss 0.30 Accuracy 91.92 Epoch 0025 Loss 0.29 Accuracy 92.03 Epoch 0026 Loss 0.29 Accuracy 92.04 Epoch 0027 Loss 0.29 Accuracy 92.11 Epoch 0028 Loss 0.29 Accuracy 92.11 Epoch 0029 Loss 0.29 Accuracy 92.18 Epoch 0030 Loss 0.28 Accuracy 92.24 Epoch 0031 Loss 0.28 Accuracy 92.36 Epoch 0032 Loss 0.28 Accuracy 92.17 Epoch 0033 Loss 0.28 Accuracy 92.42 Epoch 0034 Loss 0.28 Accuracy 92.42 Epoch 0035 Loss 0.27 Accuracy 92.47 Epoch 0036 Loss 0.27 Accuracy 92.50 Epoch 0037 Loss 0.27 Accuracy 92.49 Epoch 0038 Loss 0.27 Accuracy 92.58 Epoch 0039 Loss 0.26 Accuracy 92.56 Epoch 0040 Loss 0.26 Accuracy 92.56 Epoch 0041 Loss 0.26 Accuracy 92.77 Epoch 0042 Loss 0.26 Accuracy 92.72 Epoch 0043 Loss 0.26 Accuracy 92.80 Epoch 0044 Loss 0.25 Accuracy 92.85 Epoch 0045 Loss 0.25 Accuracy 92.90 Epoch 0046 Loss 0.25 Accuracy 92.96 Epoch 0047 Loss 0.25 Accuracy 93.00 Epoch 0048 Loss 0.25 Accuracy 92.82 Epoch 0049 Loss 0.25 Accuracy 93.18 Epoch 0050 Loss 0.24 Accuracy 93.09 Epoch 0051 Loss 0.24 Accuracy 92.94 Epoch 0052 Loss 0.24 Accuracy 93.20 Epoch 0053 Loss 0.24 Accuracy 93.26 Epoch 0054 Loss 0.23 Accuracy 93.21 Epoch 0055 Loss 0.24 Accuracy 93.42 Epoch 0056 Loss 0.23 Accuracy 93.35 Epoch 0057 Loss 0.23 Accuracy 93.36 Epoch 0058 Loss 0.23 Accuracy 93.56 Epoch 0059 Loss 0.23 Accuracy 93.54 Epoch 0060 Loss 0.22 Accuracy 93.39 Epoch 0061 Loss 0.23 Accuracy 93.56 Epoch 0062 Loss 0.22 Accuracy 93.74 Epoch 0063 Loss 0.22 Accuracy 93.68 Epoch 0064 Loss 0.22 Accuracy 93.72 Epoch 0065 Loss 0.22 Accuracy 93.76 Epoch 0066 Loss 0.22 Accuracy 93.87 Epoch 0067 Loss 0.21 Accuracy 93.89 Epoch 0068 Loss 0.21 Accuracy 93.96 Epoch 0069 Loss 0.21 Accuracy 93.90 Epoch 0070 Loss 0.21 Accuracy 93.99 Epoch 0071 Loss 0.21 Accuracy 94.02 Epoch 0072 Loss 0.21 Accuracy 93.86 Epoch 0073 Loss 0.21 Accuracy 94.06 Epoch 0074 Loss 0.21 Accuracy 94.14 Epoch 0075 Loss 0.20 Accuracy 94.31 Epoch 0076 Loss 0.20 Accuracy 94.14 Epoch 0077 Loss 0.20 Accuracy 94.15 Epoch 0078 Loss 0.20 Accuracy 94.10 Epoch 0079 Loss 0.20 Accuracy 94.16 Epoch 0080 Loss 0.20 Accuracy 94.28 Epoch 0081 Loss 0.20 Accuracy 94.30 Epoch 0082 Loss 0.20 Accuracy 94.28 Epoch 0083 Loss 0.19 Accuracy 94.37 Epoch 0084 Loss 0.19 Accuracy 94.33 Epoch 0085 Loss 0.19 Accuracy 94.31 Epoch 0086 Loss 0.19 Accuracy 94.25 Epoch 0087 Loss 0.19 Accuracy 94.37 Epoch 0088 Loss 0.19 Accuracy 94.38 Epoch 0089 Loss 0.19 Accuracy 94.35 Epoch 0090 Loss 0.19 Accuracy 94.38 Epoch 0091 Loss 0.19 Accuracy 94.41 Epoch 0092 Loss 0.19 Accuracy 94.46 Epoch 0093 Loss 0.19 Accuracy 94.53 Epoch 0094 Loss 0.18 Accuracy 94.47 Epoch 0095 Loss 0.18 Accuracy 94.54 Epoch 0096 Loss 0.18 Accuracy 94.65 Epoch 0097 Loss 0.18 Accuracy 94.56 Epoch 0098 Loss 0.18 Accuracy 94.60 Epoch 0099 Loss 0.18 Accuracy 94.63 Epoch 0100 Loss 0.18 Accuracy 94.46 ###Markdown Training the ConvNet Model ###Code train_model(cnn_model) ###Output Epoch 0001 Loss 0.27 Accuracy 27.08 Epoch 0002 Loss 0.05 Accuracy 41.07 Epoch 0003 Loss 0.03 Accuracy 67.77 Epoch 0004 Loss 0.03 Accuracy 73.31 Epoch 0005 Loss 0.02 Accuracy 90.30 Epoch 0006 Loss 0.02 Accuracy 93.10 Epoch 0007 Loss 0.02 Accuracy 95.98 Epoch 0008 Loss 0.01 Accuracy 98.77 Epoch 0009 Loss 0.01 Accuracy 96.58 Epoch 0010 Loss 0.01 Accuracy 99.12 Epoch 0011 Loss 0.01 Accuracy 98.88 Epoch 0012 Loss 0.01 Accuracy 98.64 Epoch 0013 Loss 0.01 Accuracy 98.66 Epoch 0014 Loss 0.00 Accuracy 98.38 Epoch 0015 Loss 0.00 Accuracy 99.15 Epoch 0016 Loss 0.00 Accuracy 97.50 Epoch 0017 Loss 0.00 Accuracy 98.98 Epoch 0018 Loss 0.00 Accuracy 98.94 Epoch 0019 Loss 0.00 Accuracy 98.56 Epoch 0020 Loss 0.00 Accuracy 99.06 Epoch 0021 Loss 0.00 Accuracy 99.26 Epoch 0022 Loss 0.00 Accuracy 99.30 Epoch 0023 Loss 0.00 Accuracy 99.18 Epoch 0024 Loss 0.00 Accuracy 99.49 Epoch 0025 Loss 0.00 Accuracy 99.34 Epoch 0026 Loss 0.00 Accuracy 99.24 Epoch 0027 Loss 0.00 Accuracy 99.38 Epoch 0028 Loss 0.00 Accuracy 99.43 Epoch 0029 Loss 0.00 Accuracy 99.40 Epoch 0030 Loss 0.00 Accuracy 99.50 Epoch 0031 Loss 0.00 Accuracy 99.44 Epoch 0032 Loss 0.00 Accuracy 99.52 Epoch 0033 Loss 0.00 Accuracy 99.46 Epoch 0034 Loss 0.00 Accuracy 99.39 Epoch 0035 Loss 0.00 Accuracy 99.22 Epoch 0036 Loss 0.00 Accuracy 99.26 Epoch 0037 Loss 0.00 Accuracy 99.47 Epoch 0038 Loss 0.00 Accuracy 99.18 Epoch 0039 Loss 0.00 Accuracy 99.39 Epoch 0040 Loss 0.00 Accuracy 99.44 Epoch 0041 Loss 0.00 Accuracy 99.43 Epoch 0042 Loss 0.00 Accuracy 99.50 Epoch 0043 Loss 0.00 Accuracy 99.50 Epoch 0044 Loss 0.00 Accuracy 99.53 Epoch 0045 Loss 0.00 Accuracy 99.51 Epoch 0046 Loss 0.00 Accuracy 99.49 Epoch 0047 Loss 0.00 Accuracy 99.46 Epoch 0048 Loss 0.00 Accuracy 99.46 Epoch 0049 Loss 0.00 Accuracy 99.35 Epoch 0050 Loss 0.00 Accuracy 99.50 Epoch 0051 Loss 0.00 Accuracy 99.48 Epoch 0052 Loss 0.00 Accuracy 99.48 Epoch 0053 Loss 0.00 Accuracy 99.48 Epoch 0054 Loss 0.00 Accuracy 99.46 Epoch 0055 Loss 0.00 Accuracy 99.48 Epoch 0056 Loss 0.00 Accuracy 99.50 Epoch 0057 Loss 0.00 Accuracy 99.41 Epoch 0058 Loss 0.00 Accuracy 99.49 Epoch 0059 Loss 0.00 Accuracy 99.48 Epoch 0060 Loss 0.00 Accuracy 99.47 Epoch 0061 Loss 0.00 Accuracy 99.52 Epoch 0062 Loss 0.00 Accuracy 99.49 Epoch 0063 Loss 0.00 Accuracy 99.48 Epoch 0064 Loss 0.00 Accuracy 99.51 Epoch 0065 Loss 0.00 Accuracy 99.46 Epoch 0066 Loss 0.00 Accuracy 99.51 Epoch 0067 Loss 0.00 Accuracy 99.49 Epoch 0068 Loss 0.00 Accuracy 99.52 Epoch 0069 Loss 0.00 Accuracy 99.49 Epoch 0070 Loss 0.00 Accuracy 99.51 Epoch 0071 Loss 0.00 Accuracy 99.51 Epoch 0072 Loss 0.00 Accuracy 99.52 Epoch 0073 Loss 0.00 Accuracy 99.43 Epoch 0074 Loss 0.00 Accuracy 99.53 Epoch 0075 Loss 0.00 Accuracy 99.47 Epoch 0076 Loss 0.00 Accuracy 99.51 Epoch 0077 Loss 0.00 Accuracy 99.55 Epoch 0078 Loss 0.00 Accuracy 99.52 Epoch 0079 Loss 0.00 Accuracy 99.52 Epoch 0080 Loss 0.00 Accuracy 98.78 Epoch 0081 Loss 0.00 Accuracy 99.16 Epoch 0082 Loss 0.00 Accuracy 99.40 Epoch 0083 Loss 0.00 Accuracy 99.35 Epoch 0084 Loss 0.00 Accuracy 99.32 Epoch 0085 Loss 0.00 Accuracy 99.49 Epoch 0086 Loss 0.00 Accuracy 99.49 Epoch 0087 Loss 0.00 Accuracy 99.56 Epoch 0088 Loss 0.00 Accuracy 99.48 Epoch 0089 Loss 0.00 Accuracy 99.48 Epoch 0090 Loss 0.00 Accuracy 99.51 Epoch 0091 Loss 0.00 Accuracy 99.45 Epoch 0092 Loss 0.00 Accuracy 99.52 Epoch 0093 Loss 0.00 Accuracy 99.52 Epoch 0094 Loss 0.00 Accuracy 99.51 Epoch 0095 Loss 0.00 Accuracy 99.51 Epoch 0096 Loss 0.00 Accuracy 99.48 Epoch 0097 Loss 0.00 Accuracy 99.51 Epoch 0098 Loss 0.00 Accuracy 99.53 Epoch 0099 Loss 0.00 Accuracy 99.50 Epoch 0100 Loss 0.00 Accuracy 99.53 ###Markdown Training with PyTorch data processing APIOne of the pain points for ML researchers/practioners when building a new ML model is the data processing. Here, we demonstrate how to use data processing API of [PyTorch](https://pytorch.org/) to train a model with Objax. Different deep learning library comes with different data processing APIs, and depending on your preference, you can choose an API and easily combine with Objax.Similarly, we prepare an `MNIST` dataset and apply the same data preprocessing. ###Code import torch from torchvision import datasets, transforms transform=transforms.Compose([ transforms.Pad((2,2,2,2), 0), transforms.ToTensor(), transforms.Lambda(lambda x: np.concatenate([x] * 3, axis=0)), transforms.Lambda(lambda x: x * 2 - 1) ]) train_dataset = datasets.MNIST(os.environ['HOME'], train=True, download=True, transform=transform) test_dataset = datasets.MNIST(os.environ['HOME'], train=False, download=True, transform=transform) # Define data loader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch) ###Output Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /root/MNIST/raw/train-images-idx3-ubyte.gz ###Markdown We replace data processing pipeline of the train and test loop with `train_loader` and `test_loader` and that's it! ###Code # Train loop def train_model_with_torch_data_api(model): def predict(model, x): """""" return objax.functional.softmax(model(x, training=False)) def flatten_image(x): """Flatten the image before passing it to the DNN.""" if isinstance(model, DNNet): return objax.functional.flatten(x) else: return x opt = objax.optimizer.Momentum(model.vars()) # Cross Entropy Loss def loss(x, label): return objax.functional.loss.cross_entropy_logits_sparse(model(x, training=True), label).mean() gv = objax.GradValues(loss, model.vars()) def train_op(x, label): g, v = gv(x, label) # returns gradients, loss opt(lr, g) return v train_op = objax.Jit(train_op, gv.vars() + opt.vars()) for epoch in range(epochs): avg_loss = 0 tot_data = 0 for _, (img, label) in enumerate(train_loader): avg_loss += float(train_op(flatten_image(img.numpy()), label.numpy())[0]) * len(img) tot_data += len(img) avg_loss /= tot_data # Eval accuracy = 0 tot_data = 0 for _, (img, label) in enumerate(test_loader): accuracy += (np.argmax(predict(model, flatten_image(img.numpy())), axis=1) == label.numpy()).sum() tot_data += len(img) accuracy /= tot_data print('Epoch %04d Loss %.2f Accuracy %.2f' % (epoch + 1, avg_loss, 100 * accuracy)) ###Output ###Markdown Training the DNN Model with PyTorch data API ###Code dnn_layer_sizes = 3072, 128, 10 dnn_model = DNNet(dnn_layer_sizes, objax.functional.leaky_relu) train_model_with_torch_data_api(dnn_model) ###Output Epoch 0001 Loss 2.57 Accuracy 34.35 Epoch 0002 Loss 1.93 Accuracy 58.51 Epoch 0003 Loss 1.32 Accuracy 68.46 Epoch 0004 Loss 0.83 Accuracy 80.95 Epoch 0005 Loss 0.62 Accuracy 84.74 Epoch 0006 Loss 0.53 Accuracy 86.53 Epoch 0007 Loss 0.48 Accuracy 84.18 Epoch 0008 Loss 0.45 Accuracy 88.42 Epoch 0009 Loss 0.42 Accuracy 87.34 Epoch 0010 Loss 0.40 Accuracy 89.29 Epoch 0011 Loss 0.39 Accuracy 89.31 Epoch 0012 Loss 0.38 Accuracy 89.86 Epoch 0013 Loss 0.37 Accuracy 89.91 Epoch 0014 Loss 0.36 Accuracy 86.94 Epoch 0015 Loss 0.36 Accuracy 89.89 Epoch 0016 Loss 0.35 Accuracy 90.12 Epoch 0017 Loss 0.34 Accuracy 90.40 Epoch 0018 Loss 0.34 Accuracy 90.31 Epoch 0019 Loss 0.34 Accuracy 90.79 Epoch 0020 Loss 0.33 Accuracy 90.71 Epoch 0021 Loss 0.33 Accuracy 90.70 Epoch 0022 Loss 0.33 Accuracy 90.69 Epoch 0023 Loss 0.33 Accuracy 90.91 Epoch 0024 Loss 0.32 Accuracy 90.92 Epoch 0025 Loss 0.32 Accuracy 91.06 Epoch 0026 Loss 0.32 Accuracy 91.19 Epoch 0027 Loss 0.32 Accuracy 91.31 Epoch 0028 Loss 0.31 Accuracy 91.31 Epoch 0029 Loss 0.31 Accuracy 91.20 Epoch 0030 Loss 0.31 Accuracy 91.31 Epoch 0031 Loss 0.31 Accuracy 91.36 Epoch 0032 Loss 0.31 Accuracy 91.42 Epoch 0033 Loss 0.30 Accuracy 91.27 Epoch 0034 Loss 0.31 Accuracy 91.47 Epoch 0035 Loss 0.30 Accuracy 91.57 Epoch 0036 Loss 0.30 Accuracy 91.44 Epoch 0037 Loss 0.30 Accuracy 91.55 Epoch 0038 Loss 0.30 Accuracy 91.56 Epoch 0039 Loss 0.29 Accuracy 91.75 Epoch 0040 Loss 0.29 Accuracy 91.69 Epoch 0041 Loss 0.29 Accuracy 91.60 Epoch 0042 Loss 0.29 Accuracy 91.77 Epoch 0043 Loss 0.29 Accuracy 91.76 Epoch 0044 Loss 0.29 Accuracy 91.84 Epoch 0045 Loss 0.28 Accuracy 92.05 Epoch 0046 Loss 0.28 Accuracy 91.78 Epoch 0047 Loss 0.28 Accuracy 92.01 Epoch 0048 Loss 0.28 Accuracy 91.95 Epoch 0049 Loss 0.28 Accuracy 90.11 Epoch 0050 Loss 0.28 Accuracy 92.14 Epoch 0051 Loss 0.28 Accuracy 92.03 Epoch 0052 Loss 0.27 Accuracy 92.29 Epoch 0053 Loss 0.27 Accuracy 92.17 Epoch 0054 Loss 0.27 Accuracy 92.12 Epoch 0055 Loss 0.27 Accuracy 92.34 Epoch 0056 Loss 0.27 Accuracy 92.32 Epoch 0057 Loss 0.27 Accuracy 92.47 Epoch 0058 Loss 0.27 Accuracy 92.38 Epoch 0059 Loss 0.27 Accuracy 92.39 Epoch 0060 Loss 0.26 Accuracy 92.51 Epoch 0061 Loss 0.27 Accuracy 92.50 Epoch 0062 Loss 0.26 Accuracy 92.46 Epoch 0063 Loss 0.26 Accuracy 92.65 Epoch 0064 Loss 0.26 Accuracy 92.57 Epoch 0065 Loss 0.26 Accuracy 92.63 Epoch 0066 Loss 0.26 Accuracy 92.75 Epoch 0067 Loss 0.26 Accuracy 92.57 Epoch 0068 Loss 0.26 Accuracy 92.88 Epoch 0069 Loss 0.25 Accuracy 92.53 Epoch 0070 Loss 0.25 Accuracy 92.80 Epoch 0071 Loss 0.25 Accuracy 92.71 Epoch 0072 Loss 0.25 Accuracy 92.75 Epoch 0073 Loss 0.25 Accuracy 92.84 Epoch 0074 Loss 0.25 Accuracy 92.71 Epoch 0075 Loss 0.25 Accuracy 92.95 Epoch 0076 Loss 0.25 Accuracy 92.82 Epoch 0077 Loss 0.25 Accuracy 92.90 Epoch 0078 Loss 0.25 Accuracy 92.87 Epoch 0079 Loss 0.25 Accuracy 89.55 Epoch 0080 Loss 0.25 Accuracy 92.86 Epoch 0081 Loss 0.24 Accuracy 92.99 Epoch 0082 Loss 0.24 Accuracy 93.03 Epoch 0083 Loss 0.24 Accuracy 93.03 Epoch 0084 Loss 0.24 Accuracy 93.01 Epoch 0085 Loss 0.24 Accuracy 93.13 Epoch 0086 Loss 0.24 Accuracy 93.17 Epoch 0087 Loss 0.24 Accuracy 92.87 Epoch 0088 Loss 0.24 Accuracy 92.93 Epoch 0089 Loss 0.24 Accuracy 93.16 Epoch 0090 Loss 0.24 Accuracy 93.38 Epoch 0091 Loss 0.24 Accuracy 92.98 Epoch 0092 Loss 0.24 Accuracy 93.30 Epoch 0093 Loss 0.23 Accuracy 93.09 Epoch 0094 Loss 0.23 Accuracy 93.19 Epoch 0095 Loss 0.23 Accuracy 93.25 Epoch 0096 Loss 0.23 Accuracy 93.22 Epoch 0097 Loss 0.23 Accuracy 93.28 Epoch 0098 Loss 0.23 Accuracy 93.39 Epoch 0099 Loss 0.23 Accuracy 93.25 Epoch 0100 Loss 0.23 Accuracy 93.30 ###Markdown Training the ConvNet Model with PyTorch data API ###Code cnn_model = ConvNet(nin=3, nclass=10) print(cnn_model.vars()) train_model_with_torch_data_api(cnn_model) ###Output (ConvNet).conv_block1(Sequential)[0](Conv2D).w 432 (3, 3, 3, 16) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).running_mean 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).running_var 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).beta 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[1](BatchNorm2D).gamma 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[3](Conv2D).w 2304 (3, 3, 16, 16) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).running_mean 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).running_var 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).beta 16 (1, 16, 1, 1) (ConvNet).conv_block1(Sequential)[4](BatchNorm2D).gamma 16 (1, 16, 1, 1) (ConvNet).conv_block2(Sequential)[0](Conv2D).w 4608 (3, 3, 16, 32) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).running_mean 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).running_var 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).beta 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[1](BatchNorm2D).gamma 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[3](Conv2D).w 9216 (3, 3, 32, 32) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).running_mean 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).running_var 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).beta 32 (1, 32, 1, 1) (ConvNet).conv_block2(Sequential)[4](BatchNorm2D).gamma 32 (1, 32, 1, 1) (ConvNet).conv_block3(Sequential)[0](Conv2D).w 18432 (3, 3, 32, 64) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).running_mean 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).running_var 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).beta 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[1](BatchNorm2D).gamma 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[3](Conv2D).w 36864 (3, 3, 64, 64) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).running_mean 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).running_var 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).beta 64 (1, 64, 1, 1) (ConvNet).conv_block3(Sequential)[4](BatchNorm2D).gamma 64 (1, 64, 1, 1) (ConvNet).linear(Linear).b 10 (10,) (ConvNet).linear(Linear).w 640 (64, 10) +Total(32) 73402 Epoch 0001 Loss 0.26 Accuracy 24.18 Epoch 0002 Loss 0.05 Accuracy 37.53 Epoch 0003 Loss 0.03 Accuracy 42.17 Epoch 0004 Loss 0.03 Accuracy 73.50 Epoch 0005 Loss 0.02 Accuracy 80.33 Epoch 0006 Loss 0.02 Accuracy 83.28 Epoch 0007 Loss 0.02 Accuracy 90.87 Epoch 0008 Loss 0.01 Accuracy 98.77 Epoch 0009 Loss 0.01 Accuracy 98.42 Epoch 0010 Loss 0.01 Accuracy 98.16 Epoch 0011 Loss 0.01 Accuracy 98.74 Epoch 0012 Loss 0.01 Accuracy 95.05 Epoch 0013 Loss 0.01 Accuracy 98.89 Epoch 0014 Loss 0.00 Accuracy 98.70 Epoch 0015 Loss 0.00 Accuracy 99.01 Epoch 0016 Loss 0.00 Accuracy 98.97 Epoch 0017 Loss 0.00 Accuracy 98.79 Epoch 0018 Loss 0.00 Accuracy 98.37 Epoch 0019 Loss 0.00 Accuracy 99.19 Epoch 0020 Loss 0.00 Accuracy 99.22 Epoch 0021 Loss 0.00 Accuracy 98.43 Epoch 0022 Loss 0.00 Accuracy 99.02 Epoch 0023 Loss 0.00 Accuracy 99.38 Epoch 0024 Loss 0.00 Accuracy 99.42 Epoch 0025 Loss 0.00 Accuracy 99.45 Epoch 0026 Loss 0.00 Accuracy 99.35 Epoch 0027 Loss 0.00 Accuracy 99.42 Epoch 0028 Loss 0.00 Accuracy 99.42 Epoch 0029 Loss 0.00 Accuracy 99.14 Epoch 0030 Loss 0.00 Accuracy 99.33 Epoch 0031 Loss 0.00 Accuracy 99.36 Epoch 0032 Loss 0.00 Accuracy 99.18 Epoch 0033 Loss 0.00 Accuracy 99.43 Epoch 0034 Loss 0.00 Accuracy 99.47 Epoch 0035 Loss 0.00 Accuracy 99.49 Epoch 0036 Loss 0.00 Accuracy 99.53 Epoch 0037 Loss 0.00 Accuracy 99.38 Epoch 0038 Loss 0.00 Accuracy 99.39 Epoch 0039 Loss 0.00 Accuracy 99.49 Epoch 0040 Loss 0.00 Accuracy 99.49 Epoch 0041 Loss 0.00 Accuracy 99.47 Epoch 0042 Loss 0.00 Accuracy 99.54 Epoch 0043 Loss 0.00 Accuracy 99.35 Epoch 0044 Loss 0.00 Accuracy 99.45 Epoch 0045 Loss 0.00 Accuracy 99.47 Epoch 0046 Loss 0.00 Accuracy 99.53 Epoch 0047 Loss 0.00 Accuracy 99.50 Epoch 0048 Loss 0.00 Accuracy 99.52 Epoch 0049 Loss 0.00 Accuracy 99.51 Epoch 0050 Loss 0.00 Accuracy 99.49 Epoch 0051 Loss 0.00 Accuracy 99.45 Epoch 0052 Loss 0.00 Accuracy 99.48 Epoch 0053 Loss 0.00 Accuracy 99.50 Epoch 0054 Loss 0.00 Accuracy 99.46 Epoch 0055 Loss 0.00 Accuracy 99.50 Epoch 0056 Loss 0.00 Accuracy 99.48 Epoch 0057 Loss 0.00 Accuracy 99.46 Epoch 0058 Loss 0.00 Accuracy 99.44 Epoch 0059 Loss 0.00 Accuracy 99.46 Epoch 0060 Loss 0.00 Accuracy 99.26 Epoch 0061 Loss 0.00 Accuracy 93.99 Epoch 0062 Loss 0.00 Accuracy 97.80 Epoch 0063 Loss 0.00 Accuracy 80.26 Epoch 0064 Loss 0.00 Accuracy 99.20 Epoch 0065 Loss 0.00 Accuracy 99.38 Epoch 0066 Loss 0.00 Accuracy 99.44 Epoch 0067 Loss 0.00 Accuracy 99.51 Epoch 0068 Loss 0.00 Accuracy 99.45 Epoch 0069 Loss 0.00 Accuracy 99.42 Epoch 0070 Loss 0.00 Accuracy 99.50 Epoch 0071 Loss 0.00 Accuracy 99.52 Epoch 0072 Loss 0.00 Accuracy 99.44 Epoch 0073 Loss 0.00 Accuracy 99.41 Epoch 0074 Loss 0.00 Accuracy 99.46 Epoch 0075 Loss 0.00 Accuracy 99.42 Epoch 0076 Loss 0.00 Accuracy 99.49 Epoch 0077 Loss 0.00 Accuracy 99.50 Epoch 0078 Loss 0.00 Accuracy 99.56 Epoch 0079 Loss 0.00 Accuracy 99.52 Epoch 0080 Loss 0.00 Accuracy 99.42 Epoch 0081 Loss 0.00 Accuracy 99.49 Epoch 0082 Loss 0.00 Accuracy 99.48 Epoch 0083 Loss 0.00 Accuracy 99.44 Epoch 0084 Loss 0.00 Accuracy 99.49 Epoch 0085 Loss 0.00 Accuracy 99.53 Epoch 0086 Loss 0.00 Accuracy 99.52 Epoch 0087 Loss 0.00 Accuracy 99.52 Epoch 0088 Loss 0.00 Accuracy 99.50 Epoch 0089 Loss 0.00 Accuracy 99.51 Epoch 0090 Loss 0.00 Accuracy 99.50 Epoch 0091 Loss 0.00 Accuracy 99.49 Epoch 0092 Loss 0.00 Accuracy 99.52 Epoch 0093 Loss 0.00 Accuracy 99.50 Epoch 0094 Loss 0.00 Accuracy 99.50 Epoch 0095 Loss 0.00 Accuracy 99.55 Epoch 0096 Loss 0.00 Accuracy 99.48 Epoch 0097 Loss 0.00 Accuracy 99.51 Epoch 0098 Loss 0.00 Accuracy 99.52 Epoch 0099 Loss 0.00 Accuracy 99.49 Epoch 0100 Loss 0.00 Accuracy 99.52
K-Cap_2021/regressions/data.ipynb
###Markdown --- Dimensionality Reduction ###Code from sklearn.decomposition import PCA, TruncatedSVD svd = TruncatedSVD(n_components=100) svdmat = svd.fit_transform(mat.T) 4598195/(871445*94464), 871445*94464 svdmat.shape, mat.shape, mat.size, (svdmat > 0.00001).sum()/svdmat.size, mat.size/(mat.shape[0]*mat.shape[1]) len(tfidf.get_feature_names()) np.savetxt("svd_mat_0.15.tsv", svdmat, delimiter="\t") from umap import UMAP umap = UMAP( n_neighbors=15, min_dist=0.1, n_components=2, metric='euclidean', verbose=True ) orig_n = mat.T.shape[0] rand_inds = np.random.randint(orig_n, size=orig_n//10) umat = umap.fit_transform(mat.T) ###Output _____no_output_____
The+Stroop+effect.ipynb
###Markdown The Stroop effect **Independent variable** - the two conditions - congruent words, and incongruent words.**Dependent variable** - reaction time in each of the two conditions.**Hypotheses:**Null hypotheses, $H_0$ - the reaction time of the congruent words condition is greater than or equal to the incongruent words condition: $\mu_{congruent} \ge \mu_{incongruent}$Alternate hypotheses, $H_A$ - the reaction time of the congruent words condition is less than the incongruent words condition: $\mu_{congruent} < \mu_{incongruent}$Where: $\mu_{congruent}$ - Mean of congruent reaction times in seconds, $\mu_{incongruent}$ - Mean of incongruent reaction times in seconds**Recommended statistical test** - dependent samples t-test, one-tailed, negative.**Justification for the hypotheses and test selection** - to prove that the reaction time of the incongruent words conditions is significantly longer than the congruent words condition. This will be in alignment with previous experimental findings/ results - http://psychclassics.yorku.ca/Stroop/; https://en.wikipedia.org/wiki/Stroop_effectStroop_testMy stroop effect time (https://faculty.washington.edu/chudler/java/ready.html) - congruent = 13.287 secs, incongruent = 27.269 secs Reading in and previewing the data ###Code import pandas as pd stroop_data = pd.read_csv("stroopdata.csv") stroop_data.head(5) stroop_data.shape ###Output _____no_output_____ ###Markdown Descriptive statistics ###Code stroop_data.describe() ###Output _____no_output_____ ###Markdown From above:* Mean - * Congruent = 14.05 secs * Incongruent = 22.02 secs* Standard deviation - * Congruent = 3.56 secs * Incongruent = 4.80 secs* Median - * Congruent = 14.36 secs * Incongruent = 21.02 secs Data visualizations ###Code import matplotlib.pyplot as plt import seaborn as sns sns.set_style("white") fig = plt.figure(figsize=(10,4)) ax1 = fig.add_subplot(1,2,1) ax1.set_xlim(5,40) ax1.set_ylim(0,4) sns.distplot(stroop_data["Congruent"], bins=10, kde=False, color=(95/255,158/255,209/255)) ax2 = fig.add_subplot(1,2,2) ax2.set_xlim(5,40) ax2.set_ylim(0,4) sns.distplot(stroop_data["Incongruent"], bins=15, kde=False, color=(200/255, 82/255, 0/255)) sns.despine(left=True, bottom=True) ax1.set_title("Congruent task - Histogram") ax1.set_xlabel("time (secs)") ax1.set_yticks([0,1,2,3,4]) ax2.set_title("Incongruent task - Histogram") ax2.set_xlabel("time (secs)") ax2.set_yticks([0,1,2,3,4]) plt.show() sns.set_style("white") fig = plt.figure(figsize=(10,4)) ax1 = fig.add_subplot(1,2,1) sns.kdeplot(stroop_data["Congruent"], shade=True, legend=False, color=(95/255,158/255,209/255)) ax2 = fig.add_subplot(1,2,2) sns.kdeplot(stroop_data["Incongruent"], shade=True, legend=False, color=(200/255, 82/255, 0/255)) sns.despine(left=True, bottom=True) ax1.set_title("Congruent task - Kernel density plot") ax1.set_xlabel("time (secs)") ax2.set_title("Incongruent task - Kernel density plot") ax2.set_xlabel("time (secs)") plt.show() sns.set_style("white") fig, ax = plt.subplots(figsize=(5,4)) sns.boxplot(data=stroop_data, orient="h", palette=[(95/255,158/255,209/255),(200/255, 82/255, 0/255)]) sns.despine(left=True, bottom=True) ax.set_title("Congruent vs Incongruent task - Box plot") ax.set_xlabel("time (secs)") plt.show() ###Output _____no_output_____ ###Markdown **Observations:**1. Distribution of congruent and incongruent times are dense around the median and less spread out.2. It is easily noticeable that the incongruent times are considerably higher than congruent times. Dependent samples t-test $\bar x_c = 14.05$ secs$\bar x_i = 22.02$ secs$n = 24$$df = 23$ ###Code stroop_data["Congruent - Incongruent"] = stroop_data["Congruent"] - stroop_data["Incongruent"] stroop_data["Congruent - Incongruent"].std() ###Output _____no_output_____ ###Markdown $s_{c-i} = 4.86$ secs ###Code import math from scipy import stats mean_diff = stroop_data["Congruent"].mean()-stroop_data["Incongruent"].mean() std_err = stroop_data["Congruent - Incongruent"].std()/math.sqrt(stroop_data["Congruent"].count()) print(mean_diff, std_err, stats.ttest_rel(stroop_data["Congruent"], stroop_data["Incongruent"])) ###Output -7.964791666666665 0.9930286347783406 Ttest_relResult(statistic=-8.020706944109957, pvalue=4.1030005857111781e-08) ###Markdown $\bar x_c - \bar x_i = -7.96$ secsS.E. = 0.99 secs$t_{stat} = -8.021$P-value = 0.00000004t(23) = -8.021, p=.00, one-tailed$\alpha = 0.01$ i.e. confidence level = 99%$t_{critical} = -2.500$**Decision: Reject $H_0$ i.e. Reject - "the reaction time of the congruent words condition is greater than or equal to the incongruent words condition"****This means, that the reaction time of the congruent words condition is significantly less than the incongruent words condition. This outcome was expected based on previous experimental results.** ###Code margin_err = 2.807*std_err print("Confidence interval on the mean difference; 99% CI = (", round(mean_diff-margin_err,2),",",round(mean_diff+margin_err,2),")") print("d =", round(mean_diff/stroop_data["Congruent - Incongruent"].std(),2)) print("r^2", "=", round(t_stat**2/(t_stat**2+(stroop_data["Congruent"].count()-1)),2), end="") ###Output r^2 = 0.74
sandbox_script.ipynb
###Markdown Test Metric notes: WER from jiwer feels a bit weird, we just implement our own MER and CER ###Code def tokenize_for_mer(text): tokens = list(filter(lambda tok: len(tok.strip()) > 0, jieba.lcut(text))) tokens = [[tok] if tok.isascii() else list(tok) for tok in tokens] return list(chain(*tokens)) def tokenize_for_cer(text): tokens = list(filter(lambda tok: len(tok.strip()) > 0, list(text))) return tokens pred = tokenize_for_mer('我爱你 anak gembala') ref = tokenize_for_mer('我爱你 agum') editdistance.distance(pred, ref) / len(ref) pred = tokenize_for_cer('我爱你 anak gembala') ref = tokenize_for_cer('我爱你 agum') editdistance.distance(pred, ref) / len(ref) ###Output _____no_output_____ ###Markdown Code starts here ###Code ##### # Common Functions ##### CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] def remove_special_characters(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch def extract_all_chars(batch): all_text = " ".join(batch["sentence"]) vocab = list(set(all_text)) return {"vocab": [vocab], "all_text": [all_text]} ##### # Data Loading Function ##### def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech_sample"] = speech_array[0].numpy() batch["sampling_rate"] = sampling_rate return batch def load_dataset(manifest_file, num_proc): batches = {"path": [], "text": [], "target_sample_rate": []} base_path = '/'.join(manifest_file.split('/')[:-1]) manifest_df = pd.read_csv(manifest_file) manifest_df = manifest_df.rename({'text': 'target_text'}, axis=1) manifest_df['audio_path'] = manifest_df['audio_path'].apply(lambda path: f'{base_path}/{path}') batches = Dataset.from_pandas(manifest_df) batches = batches.map(speech_file_to_array_fn, num_proc=num_proc) return batches ##### # Data Collator ##### @dataclass class DataCollatorCTCWithPadding: """ Data collator that will dynamically pad the inputs received. Args: processor (:class:`~transformers.Wav2Vec2Processor`) The processor used for proccessing the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). max_length_labels (:obj:`int`, `optional`): Maximum length of the ``labels`` returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). """ processor: Wav2Vec2Processor padding: Union[bool, str] = True max_length: Optional[int] = None max_length_labels: Optional[int] = None pad_to_multiple_of: Optional[int] = None pad_to_multiple_of_labels: Optional[int] = None def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods input_features = [{"input_values": feature["input_values"]} for feature in features] label_features = [{"input_ids": feature["labels"]} for feature in features] batch = self.processor.pad( input_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) with self.processor.as_target_processor(): labels_batch = self.processor.pad( label_features, padding=self.padding, max_length=self.max_length_labels, pad_to_multiple_of=self.pad_to_multiple_of_labels, return_tensors="pt", ) # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) batch["labels"] = labels return batch ##### # Compute Metric Function ##### wer_metric = load_metric("wer") cer_metric = load_metric("cer") def tokenize_for_mer(text): tokens = list(filter(lambda tok: len(tok.strip()) > 0, jieba.lcut(text))) tokens = [[tok] if tok.isascii() else list(tok) for tok in tokens] return list(chain(*tokens)) def tokenize_for_cer(text): tokens = list(filter(lambda tok: len(tok.strip()) > 0, list(text))) return tokens def compute_metrics(pred): pred_logits = pred.predictions pred_ids = np.argmax(pred_logits, axis=-1) pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id pred_strs = processor.batch_decode(pred_ids) # we do not want to group tokens when computing the metrics label_strs = processor.batch_decode(pred.label_ids, group_tokens=False) mixed_distance, mixed_tokens = 0, 0 char_distance, char_tokens = 0, 0 for pred_str, label_str in zip(pred_strs, label_strs) # Calculate m_pred = tokenize_for_mer(pred_str) m_ref = tokenize_for_mer(label_str) mixed_distance += editdistance.distance(m_pred, m_ref) mixed_tokens += len(m_ref) c_pred = tokenize_for_cer(pred_str) c_ref = tokenize_for_cer(label_str) char_distance += editdistance.distance(c_pred, c_ref) char_tokens += len(c_ref) mer = mixed_distance / mixed_tokens cer = char_distance / char_tokens # wer = wer_metric.compute(predictions=pred_str, references=label_str) # cer = cer_metric.compute(predictions=pred_str, references=label_str) return {"mer": mer, "cer": cer} ##### # Main Functions ##### def run(model_args, data_args, training_args): ### # Prepare Dataset ### raw_datasets = DatasetDict() raw_datasets["train"] = load_dataset(data_args.train_manifest_path, data_args.num_proc) raw_datasets["valid"] = load_dataset(data_args.valid_manifest_path, data_args.num_proc) raw_datasets["test"] = load_dataset(data_args.test_manifest_path, data_args.num_proc) ### # Prepare Processor & Model ### processor = Wav2Vec2Processor.from_pretrained(model_args.model_name_or_path) model = Wav2Vec2ForCTC.from_pretrained(model_args.model_name_or_path) model.cuda() ### # Preprocessing datasets ### # Remove ignorable characters chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" def remove_special_characters(batch): if chars_to_ignore_regex is not None: batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[data_args.text_column_name]).lower() + " " else: batch["target_text"] = batch[data_args.text_column_name].lower() + " " return batch with training_args.main_process_first(desc="dataset map special characters removal"): raw_datasets = raw_datasets.map( remove_special_characters, remove_columns=[data_args.text_column_name], desc="remove special characters from datasets", ) # Preprocess audio sample and label text def prepare_dataset(batch): # Preprocess audio batch["input_values"] = processor(batch["speech_sample"]).input_values[0] # Preprocess text with processor.as_target_processor(): batch["labels"] = processor(batch["target_text"]).input_ids return batch with training_args.main_process_first(desc="dataset map preprocessing"): vectorized_datasets = raw_datasets.map( prepare_dataset, remove_columns=raw_datasets["train"].column_names, num_proc=data_args.preprocessing_num_workers, desc="preprocess datasets", ) if data_args.preprocessing_only: logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}") return ### # Prepare Data Collator and Trainer ### # Instantiate custom data collator data_collator = DataCollatorCTCWithPadding(processor=processor) # Initialize Trainer trainer = Trainer( model=model, data_collator=data_collator, args=training_args, compute_metrics=compute_metrics, train_dataset=vectorized_datasets["train"] if training_args.do_train else None, eval_dataset=vectorized_datasets["valid"] if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) ### # Training Phase ### if training_args.do_train: # use last checkpoint if exist if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank): processor.save_pretrained(training_args.output_dir) train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(vectorized_datasets["train"]) ) metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() ### # Evaluation Phase ### results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate(eval_dataset=vectorized_datasets["test"]) metrics["eval_samples"] = len(vectorized_datasets["test"]) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Write model card and (optionally) push to hub kwargs = { "finetuned_from": model_args.model_name_or_path, "tasks": "speech-recognition", "tags": ["automatic-speech-recognition", "ASCEND"], "dataset_args": f"Config: na", "dataset": f"ASCEND", "language": 'zh-en' } if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) return results def main(): ### # Parsing & Initialization ### # Parse argument parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Set random seed set_seed(training_args.seed) # Detect last checkpoint last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) ### # Prepare logger ### # Init logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) ### # RUN RUN RUN!!! ### run(model_args, data_args, training_args) ###Output _____no_output_____
Python basics practice/Python 3 (26)/All In - Exercise_Py3.ipynb
###Markdown All in - Conditional Statements, Functions, and Loops You are provided with the 'nums' list. Complete the code in the cell that follows. Use a while loop to count the number of values lower than 20. *Hint: This exercise is similar to what we did in the video lecture. You might prefer using the x[item] structure for indicating the value of an element from the list.* ###Code nums = [1,12,24,31,51,70,100] nums i=0 count=0 while nums[i]<=50: count=count+1 i=i+1 print(count) ###Output 4
functional_keras.ipynb
###Markdown THERE ARE 2 WAYS TO BULD MODELS1. sequential > 2 ways2. functional api ###Code # Sequential from keras.models import Sequential from keras.layers import Dense, Activation model = Sequential([ Dense(32, input_shape= (784,)), Activation('relu'), Dense(10), Activation('softmax'), ]) # Sequantial with .add() method model = Sequential() model.add(Dense(32,input_dim=784)) model.add(Activation('relu')) # Functional api from Keras.models import Model #what is Model for? # This returns a tensor input = Input(shape-(784,)) # a layer instance is callable on a tensor, and returns a tensor x = Dense(64, activation = 'relu')(inputs) x = Dense(64, activation = 'relu')(x) predictions = Dense(10, activation = 'softmax')(x) # This creates a model that includes # the Input layer and three Dense layers model = Model(inputs = inputs, outputs=predictions) model.compile(optimizer='rmsprop', loss ='categorical_crossentropy', metrics=['accuracy']) # model.fit(data,labels) x = [1,2,3,4] x[:-1] ###Output _____no_output_____
tutorials/Observatory_usecase6_observationdata.ipynb
###Markdown A Notebook to analyze downloaded gridded climate time-series data (Case study: the Sauk-Suiattle Watershed )<img src= "http://www.sauk-suiattle.com/images/Elliott.jpg"style="float:left;width:150px;padding:20px"> This data is compiled to digitally observe the Sauk-Suiattle Watershed, powered by HydroShare. Use this Jupyter Notebook to: Migrate data sets from prior data download events,Compute daily, monthly, and annual temperature and precipitation statistics, Visualize precipitation results relative to the forcing data, Visualize the time-series trends among the gridded cells using different Gridded data products. A Watershed Dynamics Model by the Watershed Dynamics Research Group in the Civil and Environmental Engineering Department at the University of Washington 1. HydroShare Setup and PreparationTo run this notebook, we must import several libaries. These are listed in order of 1) Python standard libraries, 2) hs_utils library provides functions for interacting with HydroShare, including resource querying, dowloading and creation, and 3) the observatory_gridded_hydromet library that is downloaded with this notebook. ###Code #conda install -c conda-forge basemap-data-hires --yes # data processing import os import pandas as pd, numpy as np, dask, json import ogh import geopandas as gpd # data migration library from utilities import hydroshare # plotting and shape libraries %matplotlib inline # silencing warning import warnings warnings.filterwarnings("ignore") import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline # spatial plotting import fiona import shapely.ops from shapely.geometry import MultiPolygon, shape, point, box, Polygon from mpl_toolkits.basemap import Basemap # # spatial plotting # import fiona # import shapely.ops # from shapely.geometry import MultiPolygon, shape, point, box, Polygon # from descartes import PolygonPatch # from matplotlib.collections import PatchCollection # from mpl_toolkits.basemap import Basemap # initialize ogh_meta meta_file = dict(ogh.ogh_meta()) sorted(meta_file.keys()) sorted(meta_file['dailymet_livneh2013'].keys()) ###Output _____no_output_____ ###Markdown Establish a secure connection with HydroShare by instantiating the hydroshare class that is defined within hs_utils. In addition to connecting with HydroShare, this command also sets and prints environment variables for several parameters that will be useful for saving work back to HydroShare. ###Code notebookdir = os.getcwd() hs=hydroshare.hydroshare() homedir = hs.getContentPath(os.environ["HS_RES_ID"]) os.chdir(homedir) print('Data will be loaded from and save to:'+homedir) ###Output _____no_output_____ ###Markdown If you are curious about where the data is being downloaded, click on the Jupyter Notebook dashboard icon to return to the File System view. The homedir directory location printed above is where you can find the data and contents you will download to a HydroShare JupyterHub server. At the end of this work session, you can migrate this data to the HydroShare iRods server as a Generic Resource. 2. Get list of gridded climate points for the watershedThis example uses a shapefile with the watershed boundary of the Sauk-Suiattle Basin, which is stored in HydroShare at the following url: https://www.hydroshare.org/resource/c532e0578e974201a0bc40a37ef2d284/. The data for our processing routines can be retrieved using the getResourceFromHydroShare function by passing in the global identifier from the url above. In the next cell, we download this resource from HydroShare, and identify that the points in this resource are available for downloading gridded hydrometeorology data, based on the point shapefile at https://www.hydroshare.org/resource/ef2d82bf960144b4bfb1bae6242bcc7f/, which is for the extent of North America and includes the average elevation for each 1/16 degree grid cell. The file must include columns with station numbers, latitude, longitude, and elevation. The header of these columns must be FID, LAT, LONG_, and ELEV or RASTERVALU, respectively. The station numbers will be used for the remainder of the code to uniquely reference data from each climate station, as well as to identify minimum, maximum, and average elevation of all of the climate stations. The webserice is currently set to a URL for the smallest geographic overlapping extent - e.g. WRF for Columbia River Basin (to use a limit using data from a FTP service, treatgeoself() would need to be edited in observatory_gridded_hydrometeorology utility). ###Code """ Sauk """ # Watershed extent hs.getResourceFromHydroShare('c532e0578e974201a0bc40a37ef2d284') sauk = hs.content['wbdhub12_17110006_WGS84_Basin.shp'] ###Output _____no_output_____ ###Markdown Summarize the file availability from each watershed mapping file ###Code # map the mappingfiles from usecase1 mappingfile1 = os.path.join(homedir,'Sauk_mappingfile.csv') mappingfile2 = os.path.join(homedir,'Elwha_mappingfile.csv') mappingfile3 = os.path.join(homedir,'RioSalado_mappingfile.csv') t1 = ogh.mappingfileSummary(listofmappingfiles = [mappingfile1, mappingfile2, mappingfile3], listofwatershednames = ['Sauk-Suiattle river','Elwha river','Upper Rio Salado'], meta_file=meta_file) t1 ###Output _____no_output_____ ###Markdown 3. Compare Hydrometeorology This section performs computations and generates plots of the Livneh 2013, Livneh 2016, and WRF 2014 temperature and precipitation data in order to compare them with each other and observations. The generated plots are automatically downloaded and saved as .png files in the "plots" folder of the user's home directory and inline in the notebook. ###Code # Livneh et al., 2013 dr1 = meta_file['dailymet_livneh2013'] # Salathe et al., 2014 dr2 = meta_file['dailywrf_salathe2014'] # define overlapping time window dr = ogh.overlappingDates(date_set1=tuple([dr1['start_date'], dr1['end_date']]), date_set2=tuple([dr2['start_date'], dr2['end_date']])) dr ###Output _____no_output_____ ###Markdown INPUT: gridded meteorology from Jupyter Hub foldersData frames for each set of data are stored in a dictionary. The inputs to gridclim_dict() include the folder location and name of the hydrometeorology data, the file start and end, the analysis start and end, and the elevation band to be included in the analsyis (max and min elevation). Create a dictionary of climate variables for the long-term mean (ltm) using the default elevation option of calculating a high, mid, and low elevation average. The dictionary here is initialized with the Livneh et al., 2013 dataset with a dictionary output 'ltm_3bands', which is used as an input to the second time we run gridclim_dict(), to add the Salathe et al., 2014 data to the same dictionary. ###Code %%time ltm_3bands = ogh.gridclim_dict(mappingfile=mappingfile1, metadata=meta_file, dataset='dailymet_livneh2013', file_start_date=dr1['start_date'], file_end_date=dr1['end_date'], file_time_step=dr1['temporal_resolution'], subset_start_date=dr[0], subset_end_date=dr[1]) %%time ltm_3bands = ogh.gridclim_dict(mappingfile=mappingfile1, metadata=meta_file, dataset='dailyvic_livneh2013', file_start_date=dr1['start_date'], file_end_date=dr1['end_date'], file_time_step=dr1['temporal_resolution'], subset_start_date=dr[0], subset_end_date=dr[1], df_dict=ltm_3bands) sorted(ltm_3bands.keys()) meta = meta_file['dailyvic_livneh2013']['variable_info'] meta_df = pd.DataFrame.from_dict(meta).T meta_df.loc[['BASEFLOW','RUNOFF'],:] ltm_3bands['STREAMFLOW_dailyvic_livneh2013']=ltm_3bands['BASEFLOW_dailyvic_livneh2013']+ltm_3bands['RUNOFF_dailyvic_livneh2013'] ltm_3bands['STREAMFLOW_dailyvic_livneh2013'] """ Sauk-Suiattle """ # Watershed extent hs.getResourceFromHydroShare('c532e0578e974201a0bc40a37ef2d284') sauk = hs.content['wbdhub12_17110006_WGS84_Basin.shp'] """ Elwha """ # Watershed extent hs.getResourceFromHydroShare('4aff8b10bc424250b3d7bac2188391e8', ) elwha = hs.content["elwha_ws_bnd_wgs84.shp"] """ Upper Rio Salado """ # Watershed extent hs.getResourceFromHydroShare('5c041d95ceb64dce8eb85d2a7db88ed7') riosalado = hs.content['UpperRioSalado_delineatedBoundary.shp'] # generate surface area for each gridded cell def computegcSurfaceArea(shapefile, spatial_resolution, vardf): """ Data-driven computation of gridded cell surface area using the list of gridded cells centroids shapefile: (dir) the path to the study site shapefile for selecting the UTM boundary spatial_resolution: (float) the spatial resolution in degree coordinate reference system e.g., 1/16 vardf: (dataframe) input dataframe that contains FID, LAT and LONG references for each gridded cell centroid return: (mean surface area in meters-squared, standard deviation in surface area) """ # ensure projection into WGS84 longlat values ogh.reprojShapefile(shapefile) # generate the figure axis fig = plt.figure(figsize=(2,2), dpi=500) ax1 = plt.subplot2grid((1,1),(0,0)) # calculate bounding box based on the watershed shapefile watershed = gpd.read_file(shapefile) watershed['watershed']='watershed' watershed = watershed.dissolve(by='watershed') # extract area centroid, bounding box info, and dimension shape lon0, lat0 = np.array(watershed.centroid.iloc[0]) minx, miny, maxx, maxy = watershed.bounds.iloc[0] # generate traverse mercatur projection m = Basemap(projection='tmerc', resolution='h', ax=ax1, lat_0=lat0, lon_0=lon0, llcrnrlon=minx, llcrnrlat=miny, urcrnrlon=maxx, urcrnrlat=maxy) # generate gridded cell bounding boxes midpt_dist=spatial_resolution/2 cat=vardf.T.reset_index(level=[1,2]).rename(columns={'level_1':'LAT','level_2':'LONG_'}) geometry = cat.apply(lambda x: shapely.ops.transform(m, box(x['LONG_']-midpt_dist, x['LAT']-midpt_dist, x['LONG_']+midpt_dist, x['LAT']+midpt_dist)), axis=1) # compute gridded cell area gc_area = geometry.apply(lambda x: x.area) plt.gcf().clear() return(gc_area.mean(), gc_area.sd()) gcSA = computeMeanSurfaceArea(shapefile=sauk, spatial_resolution=1/16, vardf=ltm_3bands['STREAMFLOW_dailyvic_livneh2013']) gcSA # convert mm/s to m/s df_dict = ltm_3bands objname = 'STREAMFLOW_dailyvic_livneh2013' dataset = objname.split('_',1)[1] gridcell_area = geo_area exceedance = 10 # convert mmps to mps mmps = df_dict[objname] mps = mmps*0.001 # multiply streamflow (mps) with grid cell surface area (m2) to produce volumetric streamflow (cms) cms = mps.multiply(np.array(geo_area)) # convert m^3/s to cfs; multiply with (3.28084)^3 cfs = cms.multiply((3.28084)**3) # output to df_dict df_dict['cfs_'+objname] = cfs # time-group by month-yearly streamflow volumetric values monthly_cfs = cfs.groupby(pd.TimeGrouper('M')).sum() monthly_cfs.index = pd.Series(monthly_cfs.index).apply(lambda x: x.strftime('%Y-%m')) # output to df_dict df_dict['monthly_cfs_'+objname] = monthly_cfs # prepare for Exceedance computations row_indices = pd.Series(monthly_cfs.index).map(lambda x: pd.datetime.strptime(x, '%Y-%m').month) months = range(1,13) Exceed = pd.DataFrame() # for each month for eachmonth in months: month_index = row_indices[row_indices==eachmonth].index month_res = monthly_cfs.iloc[month_index,:].reset_index(drop=True) # generate gridded-cell-specific 10% exceedance probability values exceed = pd.DataFrame(month_res.apply(lambda x: np.percentile(x, 0.90), axis=0)).T # append to dataframe Exceed = pd.concat([Exceed, exceed]) # set index to month order Exceed = Exceed.set_index(np.array(months)) # output to df_dict df_dict['EXCEED{0}_{1}'.format(exceedance,dataset)] = Exceed # return(df_dict) def monthlyExceedence_cfs (df_dict, daily_streamflow_dfname, gridcell_area, exceedance=10, start_date=None, end_date=None): """ streamflow_df: (dataframe) streamflow values in cu. ft per second (row_index: date, col_index: gridcell ID) daily_baseflow_df: (dataframe) groundwater flow in cu. ft per second (row_index: date, col_index: gridcell ID) daily_surfacerunoff_df: (dateframe) surface flow in cu. ft per second (row_index: date, col_index: gridcell ID) start_date: (datetime) start date end_date: (datetime) end date """ #daily_baseflow_df=None, #'BASEFLOW_dailyvic_livneh2013', #daily_surfacerunoff_df=None, #'RUNOFF_dailyvic_livneh2013', ## aggregate each daily streamflow value to a month-yearly sum mmps = df_dict[daily_streamflow_dfname] ## subset daily streamflow_df to that index range if isinstance(start_date, type(None)): startyear=0 if isinstance(end_date, type(None)): endyear=len(mmps)-1 mmps = mmps.iloc[start_date:end_date,:] # convert mmps to mps mps = mmps*0.001 # multiply streamflow (mps) with grid cell surface area (m2) to produce volumetric streamflow (cms) cms = mps.multiply(np.array(geo_area)) # convert m^3/s to cfs; multiply with (3.28084)^3 cfs = cms.multiply((3.28084)**3) # output to df_dict df_dict['cfs_'+objname] = cfs # time-group by month-yearly streamflow volumetric values monthly_cfs = cfs.groupby(pd.TimeGrouper('M')).sum() monthly_cfs.index = pd.Series(monthly_cfs.index).apply(lambda x: x.strftime('%Y-%m')) # output to df_dict df_dict['monthly_cfs_'+objname] = monthly_cfs monthly_streamflow_df = daily_streamflow_df.groupby(pd.TimeGrouper("M")).sum() # loop through each station for eachcol in monthly_streamflow_df.columns(): station_moyr = dask.delayed(monthly_streamflow_df.loc[:,eachcol]) station_moyr df_dict = ltm_3bands objname = 'STREAMFLOW_dailyvic_livneh2013' dataset = objname.split('_',1)[1] gridcell_area = geo_area exceedance = 10 ltm_3bands['STREAMFLOW_dailyvic_livneh2013']=ltm_3bands['BASEFLOW_dailyvic_livneh2013']+ltm_3bands['RUNOFF_dailyvic_livneh2013'] # function [Qex] = monthlyExceedence_cfs(file,startyear,endyear) # % Load data from specified file # data = load(file); # Y=data(:,1); # MO=data(:,2); # D=data(:,3); # t = datenum(Y,MO,D); # %%% # % startyear=data(1,1); # % endyear=data(length(data),1); # Qnode = data(:,4); # % Time control indices that cover selected period # d_start = datenum(startyear,10,01,23,0,0); % 1 hour early to catch record for that day # d_end = datenum(endyear,09,30,24,0,0); # idx = find(t>=d_start & t<=d_end); # exds=(1:19)./20; % Exceedence probabilities from 0.05 to 0.95 # mos=[10,11,12,1:9]; # Qex(1:19,1:12)=0 ; % initialize array # for imo=1:12; # mo=mos(imo); # [Y, M, D, H, MI, S] = datevec(t(idx)); # ind=find(M==mo); % find all flow values in that month in the period identified # Q1=Qnode(idx(ind)); % input is in cfs # for iex=1:19 # Qex(iex,imo)=quantile(Q1,1-exds(iex)); # end # end # end ltm_3bands['cfs_STREAMFLOW_dailyvic_livneh2013'] ltm_3bands['monthly_cfs_STREAMFLOW_dailyvic_livneh2013'] ltm_3bands['EXCEED10_dailyvic_livneh2013'] # loop through each month to compute the 10% Exceedance Probability for eachmonth in range(1,13): monthlabel = pd.datetime.strptime(str(eachmonth), '%m') ogh.renderValuesInPoints(vardf=ltm_3bands['EXCEED10_dailyvic_livneh2013'], vardf_dateindex=eachmonth, shapefile=sauk.replace('.shp','_2.shp'), outfilepath='sauk{0}exceed10.png'.format(monthlabel.strftime('%b')), plottitle='Sauk {0} 10% Exceedance Probability'.format(monthlabel.strftime('%B')), colorbar_label='cubic feet per second', cmap='seismic_r') ###Output _____no_output_____ ###Markdown 4. Visualize monthly precipitation spatially using Livneh et al., 2013 Meteorology data Apply different plotting options:time-index option Basemap option colormap option projection option ###Code %%time month=3 monthlabel = pd.datetime.strptime(str(month), '%m') ogh.renderValuesInPoints(vardf=ltm_3bands['month_PRECIP_dailymet_livneh2013'], vardf_dateindex=month, shapefile=sauk.replace('.shp','_2.shp'), outfilepath=os.path.join(homedir, 'SaukPrecip{0}.png'.format(monthlabel.strftime('%b'))), plottitle='Sauk-Suiattle watershed'+'\nPrecipitation in '+ monthlabel.strftime('%B'), colorbar_label='Average monthly precipitation (meters)', spatial_resolution=1/16, margin=0.5, epsg=3857, basemap_image='Demographics/USA_Social_Vulnerability_Index', cmap='gray_r') month=6 monthlabel = pd.datetime.strptime(str(month), '%m') ogh.renderValuesInPoints(vardf=ltm_3bands['month_PRECIP_dailymet_livneh2013'], vardf_dateindex=month, shapefile=sauk.replace('.shp','_2.shp'), outfilepath=os.path.join(homedir, 'SaukPrecip{0}.png'.format(monthlabel.strftime('%b'))), plottitle='Sauk-Suiattle watershed'+'\nPrecipitation in '+ monthlabel.strftime('%B'), colorbar_label='Average monthly precipitation (meters)', spatial_resolution=1/16, margin=0.5, epsg=3857, basemap_image='ESRI_StreetMap_World_2D', cmap='gray_r') month=9 monthlabel = pd.datetime.strptime(str(month), '%m') ogh.renderValuesInPoints(vardf=ltm_3bands['month_PRECIP_dailymet_livneh2013'], vardf_dateindex=month, shapefile=sauk.replace('.shp','_2.shp'), outfilepath=os.path.join(homedir, 'SaukPrecip{0}.png'.format(monthlabel.strftime('%b'))), plottitle='Sauk-Suiattle watershed'+'\nPrecipitation in '+ monthlabel.strftime('%B'), colorbar_label='Average monthly precipitation (meters)', spatial_resolution=1/16, margin=0.5, epsg=3857, basemap_image='ESRI_Imagery_World_2D', cmap='gray_r') month=12 monthlabel = pd.datetime.strptime(str(month), '%m') ogh.renderValuesInPoints(vardf=ltm_3bands['month_PRECIP_dailymet_livneh2013'], vardf_dateindex=month, shapefile=sauk.replace('.shp','_2.shp'), outfilepath=os.path.join(homedir, 'SaukPrecip{0}.png'.format(monthlabel.strftime('%b'))), plottitle='Sauk-Suiattle watershed'+'\nPrecipitation in '+ monthlabel.strftime('%B'), colorbar_label='Average monthly precipitation (meters)', spatial_resolution=1/16, margin=0.5, epsg=3857, basemap_image='Elevation/World_Hillshade', cmap='seismic_r') ###Output _____no_output_____ ###Markdown Visualize monthly precipitation difference between different gridded data products ###Code for month in [3, 6, 9, 12]: monthlabel = pd.datetime.strptime(str(month), '%m') outfile='SaukLivnehPrecip{0}.png'.format(monthlabel.strftime('%b')) ax1 = ogh.renderValuesInPoints(vardf=ltm_3bands['month_PRECIP_dailymet_livneh2013'], vardf_dateindex=month, shapefile=sauk.replace('.shp','_2.shp'), basemap_image='ESRI_Imagery_World_2D', cmap='seismic_r', plottitle='Sauk-Suiattle watershed'+'\nPrecipitation in '+monthlabel.strftime('%B'), colorbar_label='Average monthly precipitation (meters)', outfilepath=os.path.join(homedir, outfile)) ###Output _____no_output_____ ###Markdown comparison to WRF data from Salathe et al., 2014 ###Code %%time ltm_3bands = ogh.gridclim_dict(mappingfile=mappingfile1, metadata=meta_file, dataset='dailywrf_salathe2014', colvar=None, file_start_date=dr2['start_date'], file_end_date=dr2['end_date'], file_time_step=dr2['temporal_resolution'], subset_start_date=dr[0], subset_end_date=dr[1], df_dict=ltm_3bands) for month in [3, 6, 9, 12]: monthlabel = pd.datetime.strptime(str(month), '%m') outfile='SaukSalathePrecip{0}.png'.format(monthlabel.strftime('%b')) ax1 = ogh.renderValuesInPoints(vardf=ltm_3bands['month_PRECIP_dailywrf_salathe2014'], vardf_dateindex=month, shapefile=sauk.replace('.shp','_2.shp'), basemap_image='ESRI_Imagery_World_2D', cmap='seismic_r', plottitle='Sauk-Suiattle watershed'+'\nPrecipitation in '+monthlabel.strftime('%B'), colorbar_label='Average monthly precipitation (meters)', outfilepath=os.path.join(homedir, outfile)) def plot_meanTmin(dictionary, loc_name, start_date, end_date): # Plot 1: Monthly temperature analysis of Livneh data if 'meanmonth_temp_min_liv2013_met_daily' and 'meanmonth_temp_min_wrf2014_met_daily' not in dictionary.keys(): pass # generate month indices wy_index=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] wy_numbers=[10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9] month_strings=[ 'Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sept'] # initiate the plot object fig, ax=plt.subplots(1,1,figsize=(10, 6)) if 'meanmonth_temp_min_liv2013_met_daily' in dictionary.keys(): # Liv2013 plt.plot(wy_index, dictionary['meanmonth_temp_min_liv2013_met_daily'][wy_numbers],'r-', linewidth=1, label='Liv Temp min') if 'meanmonth_temp_min_wrf2014_met_daily' in dictionary.keys(): # WRF2014 plt.plot(wy_index, dictionary['meanmonth_temp_min_wrf2014_met_daily'][wy_numbers],'b-',linewidth=1, label='WRF Temp min') if 'meanmonth_temp_min_livneh2013_wrf2014bc_met_daily' in dictionary.keys(): # WRF2014 plt.plot(wy_index, dictionary['meanmonth_temp_min_livneh2013_wrf2014bc_met_daily'][wy_numbers],'g-',linewidth=1, label='WRFbc Temp min') # add reference line at y=0 plt.plot([1, 12],[0, 0], 'k-',linewidth=1) plt.ylabel('Temp (C)',fontsize=14) plt.xlabel('Month',fontsize=14) plt.xlim(1,12); plt.xticks(wy_index, month_strings); plt.tick_params(labelsize=12) plt.legend(loc='best') plt.grid(which='both') plt.title(str(loc_name)+'\nMinimum Temperature\n Years: '+str(start_date.year)+'-'+str(end_date.year)+'; Elevation: '+str(dictionary['analysis_elev_min'])+'-'+str(dictionary['analysis_elev_max'])+'m', fontsize=16) plt.savefig('monthly_Tmin'+str(loc_name)+'.png') plt.show() ###Output _____no_output_____ ###Markdown 6. Compare gridded model to point observations Read in SNOTEL data - assess available data If you want to plot observed snotel point precipitation or temperature with the gridded climate data, set to 'Y' Give name of Snotel file and name to be used in figure legends. File format: Daily SNOTEL Data Report - Historic - By individual SNOTEL site, standard sensors (https://www.wcc.nrcs.usda.gov/snow/snotel-data.html) ###Code # Sauk SNOTEL_file = os.path.join(homedir,'ThunderBasinSNOTEL.txt') SNOTEL_station_name='Thunder Creek' SNOTEL_file_use_colsnames = ['Date','Air Temperature Maximum (degF)', 'Air Temperature Minimum (degF)','Air Temperature Average (degF)','Precipitation Increment (in)'] SNOTEL_station_elev=int(4320/3.281) # meters SNOTEL_obs_daily = ogh.read_daily_snotel(file_name=SNOTEL_file, usecols=SNOTEL_file_use_colsnames, delimiter=',', header=58) # generate the start and stop date SNOTEL_obs_start_date=SNOTEL_obs_daily.index[0] SNOTEL_obs_end_date=SNOTEL_obs_daily.index[-1] # peek SNOTEL_obs_daily.head(5) ###Output _____no_output_____ ###Markdown Read in COOP station data - assess available datahttps://www.ncdc.noaa.gov/ ###Code COOP_file=os.path.join(homedir, 'USC00455678.csv') # Sauk COOP_station_name='Mt Vernon' COOP_file_use_colsnames = ['DATE','PRCP','TMAX', 'TMIN','TOBS'] COOP_station_elev=int(4.3) # meters COOP_obs_daily = ogh.read_daily_coop(file_name=COOP_file, usecols=COOP_file_use_colsnames, delimiter=',', header=0) # generate the start and stop date COOP_obs_start_date=COOP_obs_daily.index[0] COOP_obs_end_date=COOP_obs_daily.index[-1] # peek COOP_obs_daily.head(5) #initiate new dictionary with original data ltm_0to3000 = ogh.gridclim_dict(metadata=meta_file, mappingfile=mappingfile1, dataset='dailymet_livneh2013', file_start_date=dr1['start_date'], file_end_date=dr1['end_date'], subset_start_date=dr[0], subset_end_date=dr[1]) ltm_0to3000 = ogh.gridclim_dict(metadata=meta_file, mappingfile=mappingfile1, dataset='dailywrf_salathe2014', file_start_date=dr2['start_date'], file_end_date=dr2['end_date'], subset_start_date=dr[0], subset_end_date=dr[1], df_dict=ltm_0to3000) sorted(ltm_0to3000.keys()) # read in the mappingfile mappingfile = mappingfile1 mapdf = pd.read_csv(mappingfile) # select station by first FID firstStation = ogh.findStationCode(mappingfile=mappingfile, colvar='FID', colvalue=0) # select station by elevation maxElevStation = ogh.findStationCode(mappingfile=mappingfile, colvar='ELEV', colvalue=mapdf.loc[:,'ELEV'].max()) medElevStation = ogh.findStationCode(mappingfile=mappingfile, colvar='ELEV', colvalue=mapdf.loc[:,'ELEV'].median()) minElevStation = ogh.findStationCode(mappingfile=mappingfile, colvar='ELEV', colvalue=mapdf.loc[:,'ELEV'].min()) # print(firstStation, mapdf.iloc[0].ELEV) # print(maxElevStation, mapdf.loc[:,'ELEV'].max()) # print(medElevStation, mapdf.loc[:,'ELEV'].median()) # print(minElevStation, mapdf.loc[:,'ELEV'].min()) # let's compare monthly averages for TMAX using livneh, salathe, and the salathe-corrected livneh comp = ['month_TMAX_dailymet_livneh2013', 'month_TMAX_dailywrf_salathe2014'] obj = dict() for eachkey in ltm_0to3000.keys(): if eachkey in comp: obj[eachkey] = ltm_0to3000[eachkey] panel_obj = pd.Panel.from_dict(obj) panel_obj comp = ['meanmonth_TMAX_dailymet_livneh2013', 'meanmonth_TMAX_dailywrf_salathe2014'] obj = dict() for eachkey in ltm_0to3000.keys(): if eachkey in comp: obj[eachkey] = ltm_0to3000[eachkey] df_obj = pd.DataFrame.from_dict(obj) df_obj t_res, var, dataset, pub = each.rsplit('_',3) print(t_res, var, dataset, pub) ylab_var = meta_file['_'.join([dataset, pub])]['variable_info'][var]['desc'] ylab_unit = meta_file['_'.join([dataset, pub])]['variable_info'][var]['units'] print('{0} {1} ({2})'.format(t_res, ylab_var, ylab_unit)) %%time comp = [['meanmonth_TMAX_dailymet_livneh2013','meanmonth_TMAX_dailywrf_salathe2014'], ['meanmonth_PRECIP_dailymet_livneh2013','meanmonth_PRECIP_dailywrf_salathe2014']] wy_numbers=[10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9] month_strings=[ 'Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep'] fig = plt.figure(figsize=(20,5), dpi=500) ax1 = plt.subplot2grid((2, 2), (0, 0), colspan=1) ax2 = plt.subplot2grid((2, 2), (1, 0), colspan=1) # monthly for eachsumm in df_obj.columns: ax1.plot(df_obj[eachsumm]) ax1.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), fancybox=True, shadow=True, ncol=2, fontsize=10) plt.show() df_obj[each].index.apply(lambda x: x+2) fig, ax = plt.subplots() ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) lws=[3, 10, 3, 3] styles=['b--','go-','y--','ro-'] for col, style, lw in zip(comp, styles, lws): panel_obj.xs(key=(minElevStation[0][0], minElevStation[0][1], minElevStation[0][2]), axis=2)[col].plot(style=style, lw=lw, ax=ax, legend=True) ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), fancybox=True, shadow=True, ncol=2) fig.show() fig, ax = plt.subplots() lws=[3, 10, 3, 3] styles=['b--','go-','y--','ro-'] for col, style, lw in zip(comp, styles, lws): panel_obj.xs(key=(maxElevStation[0][0], maxElevStation[0][1], maxElevStation[0][2]), axis=2)[col].plot(style=style, lw=lw, ax=ax, legend=True) ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), fancybox=True, shadow=True, ncol=2) fig.show() ###Output _____no_output_____ ###Markdown Set up VIC dictionary (as an example) to compare to available data ###Code vic_dr1 = meta_file['dailyvic_livneh2013']['date_range'] vic_dr2 = meta_file['dailyvic_livneh2015']['date_range'] vic_dr = ogh.overlappingDates(tuple([vic_dr1['start'], vic_dr1['end']]), tuple([vic_dr2['start'], vic_dr2['end']])) vic_ltm_3bands = ogh.gridclim_dict(mappingfile=mappingfile, metadata=meta_file, dataset='dailyvic_livneh2013', file_start_date=vic_dr1['start'], file_end_date=vic_dr1['end'], file_time_step=vic_dr1['time_step'], subset_start_date=vic_dr[0], subset_end_date=vic_dr[1]) sorted(vic_ltm_3bands.keys()) ###Output _____no_output_____ ###Markdown 10. Save the results back into HydroShareUsing the `hs_utils` library, the results of the Geoprocessing steps above can be saved back into HydroShare. First, define all of the required metadata for resource creation, i.e. *title*, *abstract*, *keywords*, *content files*. In addition, we must define the type of resource that will be created, in this case *genericresource*. ***Note:*** Make sure you save the notebook at this point, so that all notebook changes will be saved into the new HydroShare resource. ###Code #execute this cell to list the content of the directory !ls -lt ###Output _____no_output_____ ###Markdown Create list of files to save to HydroShare. Verify location and names. ###Code !tar -zcf {climate2013_tar} livneh2013 !tar -zcf {climate2015_tar} livneh2015 !tar -zcf {wrf_tar} salathe2014 ThisNotebook='Observatory_Sauk_TreatGeoSelf.ipynb' #check name for consistency climate2013_tar = 'livneh2013.tar.gz' climate2015_tar = 'livneh2015.tar.gz' wrf_tar = 'salathe2014.tar.gz' mappingfile = 'Sauk_mappingfile.csv' files=[ThisNotebook, mappingfile, climate2013_tar, climate2015_tar, wrf_tar] # for each file downloaded onto the server folder, move to a new HydroShare Generic Resource title = 'Results from testing out the TreatGeoSelf utility' abstract = 'This the output from the TreatGeoSelf utility integration notebook.' keywords = ['Sauk', 'climate', 'Landlab','hydromet','watershed'] rtype = 'genericresource' # create the new resource resource_id = hs.createHydroShareResource(abstract, title, keywords=keywords, resource_type=rtype, content_files=files, public=False) ###Output _____no_output_____
Random_Forest_Regression.ipynb
###Markdown Random Forest RegressionA [random forest](https://en.wikipedia.org/wiki/Random_forest) is a meta estimator that fits a number of classifying [decision trees](https://en.wikipedia.org/wiki/Decision_tree_learning) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement (can be changed by user).Generally, Decision Tree and Random Forest models are used for classification task. However, the idea of Random Forest as a regularizing meta-estimator over single decision tree is best demonstrated by applying them to regresion problems. This way it can be shown that, **in the presence of random noise, single decision tree is prone to overfitting and learn spurious correlations while a properly constructed Random Forest model is more immune to such overfitting.** Create some syntehtic data using scikit-learn's built-in regression generator Import libraries ###Code import matplotlib.pyplot as plt %matplotlib inline import pandas as pd import numpy as np # Import make_regression method to generate artificial data samples from sklearn.datasets import make_regression ###Output _____no_output_____ ###Markdown What is *make_regression* method?It is a convinient method/function from scikit-learn stable to generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile.The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. ###Code n_samples = 100 # Number of samples n_features = 6 # Number of features n_informative = 3 # Number of informative features i.e. actual features which influence the output X, y,coef = make_regression(n_samples=n_samples, n_features=n_features, n_informative=n_informative, random_state=None, shuffle=False,noise=20,coef=True) ###Output _____no_output_____ ###Markdown Make a data frame and create basic visualizations Data Frame ###Code df1 = pd.DataFrame(data=X,columns=['X'+str(i) for i in range(1,n_features+1)]) df2=pd.DataFrame(data=y,columns=['y']) df=pd.concat([df1,df2],axis=1) df.head(10) ###Output _____no_output_____ ###Markdown Scatter plots ###Code with plt.style.context(('seaborn-dark')): for i,col in enumerate(df.columns[:-1]): plt.figure(figsize=(6,4)) plt.grid(True) plt.xlabel('Feature:'+col,fontsize=12) plt.ylabel('Output: y',fontsize=12) plt.scatter(df[col],df['y'],c='red',s=50,alpha=0.6) ###Output _____no_output_____ ###Markdown It is clear from the scatter plots that some of the features influence the output while the others don't. This is the result of choosing a particular *n_informative* in the *make_regression* method Histograms of the feature space ###Code with plt.style.context(('fivethirtyeight')): for i,col in enumerate(df.columns[:-1]): plt.figure(figsize=(6,4)) plt.grid(True) plt.xlabel('Feature:'+col,fontsize=12) plt.ylabel('Output: y',fontsize=12) plt.hist(df[col],alpha=0.6,facecolor='g') ###Output _____no_output_____ ###Markdown How will a Decision Tree regressor do?Every run will generate different result but on most occassions, **the single decision tree regressor is likely to learn spurious features** i.e. will assign small importance to features which are not true regressors. ###Code from sklearn import tree tree_model = tree.DecisionTreeRegressor(max_depth=5,random_state=None) tree_model.fit(X,y) print("Relative importance of the features: ",tree_model.feature_importances_) with plt.style.context('dark_background'): plt.figure(figsize=(10,7)) plt.grid(True) plt.yticks(range(n_features+1,1,-1),df.columns[:-1],fontsize=20) plt.xlabel("Relative (normalized) importance of parameters",fontsize=15) plt.ylabel("Features\n",fontsize=20) plt.barh(range(n_features+1,1,-1),width=tree_model.feature_importances_,height=0.5) ###Output Relative importance of the features: [ 0.06896493 0.35741588 0.54578154 0.0230699 0. 0.00476775] ###Markdown Print the $R^2$ score of the Decision Tree regression modelEven though the $R^2$ score is pretty high, the model is slightly flawed because it has assigned importance to regressors which have no true significance. ###Code print("Regression coefficient:",tree_model.score(X,y)) ###Output Regression coefficient: 0.95695111153 ###Markdown Random Forest Regressor ###Code from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor(max_depth=5, random_state=None,max_features='auto',max_leaf_nodes=5,n_estimators=100) model.fit(X, y) ###Output _____no_output_____ ###Markdown Print the relative importance of the features ###Code print("Relative importance of the features: ",model.feature_importances_) with plt.style.context('dark_background'): plt.figure(figsize=(10,7)) plt.grid(True) plt.yticks(range(n_features+1,1,-1),df.columns[:-1],fontsize=20) plt.xlabel("Relative (normalized) importance of parameters",fontsize=15) plt.ylabel("Features\n",fontsize=20) plt.barh(range(n_features+1,1,-1),width=model.feature_importances_,height=0.5) ###Output Relative importance of the features: [ 0.03456204 0.46959355 0.49500136 0. 0. 0.00084305] ###Markdown Print the $R^2$ score of the Random Forest regression model ###Code print("Regression coefficient:",model.score(X,y)) ###Output Regression coefficient: 0.811794737752 ###Markdown Benchmark to statsmodel (ordinary least-square solution by exact analytic method)[Statsmodel is a Python module](http://www.statsmodels.org/dev/index.html) that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration. ###Code import statsmodels.api as sm Xs=sm.add_constant(X) stat_model = sm.OLS(y,Xs) stat_result = stat_model.fit() print(stat_result.summary()) ###Output OLS Regression Results ============================================================================== Dep. Variable: y R-squared: 0.971 Model: OLS Adj. R-squared: 0.969 Method: Least Squares F-statistic: 521.4 Date: Thu, 04 Jan 2018 Prob (F-statistic): 2.79e-69 Time: 23:56:18 Log-Likelihood: -434.92 No. Observations: 100 AIC: 883.8 Df Residuals: 93 BIC: 902.1 Df Model: 6 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ const 0.9153 2.056 0.445 0.657 -3.167 4.998 x1 38.2702 1.900 20.142 0.000 34.497 42.043 x2 69.6705 1.888 36.908 0.000 65.922 73.419 x3 75.1667 2.057 36.546 0.000 71.082 79.251 x4 -0.3881 2.073 -0.187 0.852 -4.505 3.729 x5 -1.3036 2.038 -0.640 0.524 -5.352 2.744 x6 -0.2271 2.112 -0.108 0.915 -4.420 3.966 ============================================================================== Omnibus: 0.366 Durbin-Watson: 1.855 Prob(Omnibus): 0.833 Jarque-Bera (JB): 0.531 Skew: 0.044 Prob(JB): 0.767 Kurtosis: 2.654 Cond. No. 1.47 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ###Markdown Make arrays of regression coefficients estimated by the models ###Code rf_coef=np.array(coef) stat_coef=np.array(stat_result.params[1:]) ###Output _____no_output_____ ###Markdown Show the true regression coefficients (as returned by the generator function) and the OLS model's estimated coefficients side by side ###Code df_coef = pd.DataFrame(data=[rf_coef,stat_coef],columns=df.columns[:-1],index=['True Regressors', 'OLS method estimation']) df_coef ###Output _____no_output_____ ###Markdown Show the relative importance of regressors side by sideFor Random Forest Model, show the relative importance of features as determined by the meta-estimator. For the OLS model, show normalized t-statistic values.**It will be clear that although the RandomForest regressor identifies the important regressors correctly, it does not assign the same level of relative importance to them as done by OLS method t-statistic** ###Code df_importance = pd.DataFrame(data=[model.feature_importances_,stat_result.tvalues[1:]/sum(stat_result.tvalues[1:])], columns=df.columns[:-1], index=['RF Regressor relative importance', 'OLS method normalized t-statistic']) df_importance ###Output _____no_output_____ ###Markdown Bangalore House Price Prediction With Random Forest Regression ###Code import pandas as pd path = r"https://drive.google.com/uc?export=download&id=1xxDtrZKfuWQfl-6KA9XEd_eatitNPnkB" df = pd.read_csv(path) df.head() df.tail() X=df.drop("price",axis=1) y=df["price"] print("shape of X:",X.shape) print("shape of y:",y.shape) from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=51) print("shape of X_train:",X_train.shape) print("shape of X_test:",X_test.shape) print("shape of y_train:",y_train.shape) print("shape of y_test:",y_test.shape) ###Output shape of X_train: (5696, 107) shape of X_test: (1424, 107) shape of y_train: (5696,) shape of y_test: (1424,) ###Markdown Random Forest Regression Model ###Code from sklearn.ensemble import RandomForestRegressor rfre=RandomForestRegressor() rfre.fit(X_train,y_train) rfre.score(X_test,y_test) rfre_100=RandomForestRegressor(n_estimators=500) rfre_100.fit(X_train,y_train) rfre_100.score(X_test,y_test) ###Output _____no_output_____ ###Markdown Predict the Value of House ###Code X_test.iloc[-1,:] rfre.predict([X_test.iloc[-1,:]]) y_test.iloc[-1] rfre.predict(X_test) y_test ###Output _____no_output_____
nbs/8.0_interpretability.i.ipynb
###Markdown Interpretability Notebook>> Leyli Jan 2021> In this notebook you will find the Prototypes and Criticism functionality for interpreting higher dimensional spaces. ###Code # ! pip install -e . <----- Install in the console #! pip install XXX import numpy as np import pandas as pd #Export import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) m = np.zeros(5) print(m) m ###Output _____no_output_____
k_armed_testbed.ipynb
###Markdown K armed bandit testbed Figure 2.2 and 2.3 and Exersice 2.5: from 'Reinforcement Learning: an introduction' by Sutton & Barto. ###Code import numpy as np from dataclasses import dataclass from multiprocessing import Pool, cpu_count from tqdm.notebook import tqdm ###Output _____no_output_____ ###Markdown Simulation ###Code @dataclass class Simulation(): qa: np.ndarray A: np.ndarray R: np.ndarray name: str = '' greedy_policy = lambda qa, eps, K: qa.argmax() if np.random.rand() > eps else np.random.randint(K) get_reward = lambda q, a: np.random.normal(loc = q[a]) def play_one_game(args): eps, K, tmax, qa, Qa, alpha, qa_type = args # initialize registers to zeros A = np.zeros(tmax, dtype = np.uint); R = np.zeros_like(A, dtype = np.float) # initialize current estimates of action values and action counters use_sampleavg = alpha == 'sampleaverage' if use_sampleavg: Na = np.zeros(K, dtype = np.uint) for t in range(tmax): # update true action values - if not constant if qa_type == 'randomwalk': qa += np.random.normal(scale = 0.01, size = K) # choose action and compute reward a = greedy_policy(Qa, eps, K) r = get_reward(qa, a) # update action values estimates if use_sampleavg: Na[a] += 1 Qa[a] += (r - Qa[a]) / Na[a] else: Qa[a] += (r - Qa[a]) * alpha # save to register A[t], R[t] = a, r return qa, A, R def simulate_kbandits(K, N, tmax, **kwargs): """K-armed bandits game simulation. Args: K (int): number of bandits arms. N (int): numer of episods/repetitions. tmax (int): number of epochs per episod. eps (float): percentage of greed/exploration probability. Defaults to 0. name (str): name of the simulation. Defaults to empty an string. stepsize (str or float): stepsize for the update of action values. Defaults to "mean". actval_type (str): type of true unknown action values, either "constant" or "randomwalk". Defaults to "constant". actval_init (np.array): initial conditions for the estimate of action values. Defaults to all zeros. Returns: Simulation: `Simulation` class object containing the true action values `qa`, the actions taken `A`, the rewards received `R`, and the estimated action values `Qa` by sample-average. """ # arguments validation assert K > 0, 'number of bandits arms must be positive' assert N > 0, 'number of repetitions must be positive' assert tmax > 0, 'number of episodes length must be positive' alpha = kwargs.get('stepsize', 'sampleaverage') eps = kwargs.get('eps', 0.0) qa_type = kwargs.get('actval_type', 'constant') Qa_init = kwargs.get('actval_init', np.zeros(K, dtype = np.float)) assert alpha == 'sampleaverage' or isinstance(alpha, float), 'stepsize must either be a float or "sampleaverage"' assert 0.0 <= eps <= 1.0, 'eps must be between 0 and 1' assert qa_type in ['constant', 'randomwalk'], 'invalid action value type' assert isinstance(Qa_init, np.ndarray) and Qa_init.shape == (K,), 'Initial conditions for action values is either not an array or has length != K' # initialize registers to zeros A = np.zeros((N, tmax), dtype = np.uint); R = np.zeros_like(A, dtype = np.float) # initialize true and estimated action values per action per each game if qa_type == 'constant': qa = np.random.normal(size = (N, K)) else: qa = np.zeros((N, K), dtype = np.float) # play N games args = [(eps, K, tmax, qa[n, :], Qa_init.copy(), alpha, qa_type) for n in range(N)] pool = Pool(cpu_count()) for n, o in enumerate(tqdm(pool.imap(play_one_game, args), total = N, desc = 'playing N times')): qa[n, :], A[n, :], R[n, :] = o pass pool.close() pool.join() return Simulation(qa, A, R, kwargs.get('name', '')) ###Output _____no_output_____ ###Markdown Plotting ###Code import plotly.graph_objects as go import matplotlib.pyplot as plt PLOT_INTERACTIVE = False def plot_true_action_values(sim, n): x = np.arange(1, sim.qa.shape[1] + 1) y = sim.qa[n, :] if PLOT_INTERACTIVE: fig = go.Figure() fig.add_trace(go.Scatter( x = x, y = y, mode = 'markers', error_y = { 'type': 'constant', 'value': 1, 'color': 'purple' }, marker = dict(color = 'purple', size = 15))) fig.update_xaxes(title_text = 'Action') fig.update_yaxes(title_text = f'Reward distribution (+/- std) for game {n}') fig.show() else: _, ax = plt.subplots(figsize = (17, 7)) ax.set_title(f'Reward distribution (+/- std) for game {n}') ax.errorbar(x, y, 1, fmt = 'o', ms = 20) ax.set_xticks(list(range(1, len(y) + 1))) ax.set_xlabel('Action') ax.set_ylabel('Reward') def plot_mean_rewards(*sims): if PLOT_INTERACTIVE: fig = go.Figure() for sim in sims: fig.add_trace(go.Scatter(y = sim.R.mean(axis = 0), name = sim.name)) fig.update_xaxes(title_text = 'Steps') fig.update_yaxes(title_text = 'Mean reward') fig.show() else: _, ax = plt.subplots(figsize = (17, 7)) for sim in sims: ax.plot(sim.R.mean(axis = 0), label = sim.name) ax.set_title('Mean reward per step') ax.set_xlabel('Steps') ax.set_ylabel('Mean reward') ax.legend() def plot_optimal_actions(*sims): if PLOT_INTERACTIVE: fig = go.Figure() for sim in sims: qa_opt = sim.qa.argmax(axis = 1) act_is_opt = (sim.A.transpose() == qa_opt).transpose() # for some reasoning, can only broadcast-compare on second dimension fig.add_trace(go.Scatter(y = act_is_opt.mean(axis = 0), name = sim.name)) fig.update_xaxes(title_text = 'Steps') fig.update_yaxes(title_text = '% Optimal action', range = (0, 1), tickformat = ',.0%') fig.show() else: _, ax = plt.subplots(figsize = (17, 7)) for sim in sims: qa_opt = sim.qa.argmax(axis = 1) act_is_opt = (sim.A.transpose() == qa_opt).transpose() # for some reasoning, can only broadcast-compare on second dimension ax.plot(act_is_opt.mean(axis = 0), label = sim.name) ax.set_title('Optimal decisions per step') ax.set_xlabel('Steps') ax.set_ylabel('% Optimal action') ax.set_ylim(0, 1) vals = ax.get_yticks() ax.set_yticklabels(['{:,.0%}'.format(x) for x in vals]) ax.legend() ###Output _____no_output_____ ###Markdown Main ###Code # Figure 2.2 K = 10 N = 2000 tmax = 1000 greedy = simulate_kbandits(K, N, tmax, eps = 0, name = 'e = 0') eps_greedy_01 = simulate_kbandits(K, N, tmax, eps = 0.1, name = 'e = 0.1') eps_greedy_001 = simulate_kbandits(K, N, tmax, eps = 0.01, name = 'e = 0.01') plot_true_action_values(greedy, 27) plot_mean_rewards(eps_greedy_01, eps_greedy_001, greedy) plot_optimal_actions(eps_greedy_01, eps_greedy_001, greedy) # Exercise 2.5 K = 10 N = 1000 tmax = 10000 sample_avg = simulate_kbandits(K, N, tmax, eps = 0.1, actval_type = 'randomwalk', name = 'sample avg') const_size = simulate_kbandits(K, N, tmax, eps = 0.1, actval_type = 'randomwalk', stepsize = 0.1, name = 'a = 0.1') plot_mean_rewards(sample_avg, const_size) plot_optimal_actions(sample_avg, const_size) # Figure 2.3 K = 10 N = 2000 tmax = 1000 greed_no_zero_init = simulate_kbandits(K, N, tmax, eps = 0, stepsize = 0.1, actval_init = np.ones(K) * 5.0, name = 'Q1 = 5, e = 0, a = 0.1') greed_zero_init = simulate_kbandits(K, N, tmax, eps = 0.1, stepsize = 0.1, actval_init = np.zeros(K), name = 'Q1 = 0, e = 0.1, a = 0.1') plot_mean_rewards(greed_no_zero_init, greed_zero_init) plot_optimal_actions(greed_no_zero_init, greed_zero_init) ###Output _____no_output_____
notebooks/5_Machine_learning_classification.ipynb
###Markdown Very quick machine learningThis notebook goes with We're going to go over a very simple machine learning exercise. We're using the data from the [2016 SEG machine learning contest](https://github.com/seg/2016-ml-contest). This exercise previously appeared as [an Agile blog post](http://ageo.co/xlines04). ###Code import numpy as np %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns import sklearn ###Output _____no_output_____ ###Markdown Read the data [Pandas](http://pandas.pydata.org/) is really convenient for this sort of data. ###Code import pandas as pd uid = "1WZsd3AqH9dEOOabZNjlu1M-a8RlzTyu9BYc2cw8g6J8" uri = f"https://docs.google.com/spreadsheets/d/{uid}/export?format=csv" df = pd.read_csv(uri) df.head() ###Output _____no_output_____ ###Markdown A word about the data. This dataset is not, strictly speaking, open data. It has been shared by the Kansas Geological Survey for the purposes of the contest. That's why I'm not copying the data into this repository, but instead reading it from the web. We are working on making an open access version of this dataset. In the meantime, I'd appreciarte it if you didn't replicate the data anywhere. Thanks! Inspect the dataFirst, we need to see what we have. ###Code df.describe() facies_dict = {1:'sandstone', 2:'c_siltstone', 3:'f_siltstone', 4:'marine_silt_shale', 5:'mudstone', 6:'wackestone', 7:'dolomite', 8:'packstone', 9:'bafflestone'} df["Facies"] = df["Facies Code"].replace(facies_dict) df.groupby('Facies').count() features = ['GR', 'ILD', 'DeltaPHI', 'PHIND', 'PE'] sns.pairplot(df, vars=features, hue='Facies') fig, axs = plt.subplots(ncols=5, figsize=(15, 3)) for ax, feature in zip(axs, features): sns.distplot(df[feature], ax=ax) ###Output _____no_output_____ ###Markdown Label and feature engineering ###Code fig, axs = plt.subplots(nrows=5, figsize=(15, 10)) for ax, feature in zip(axs, features): for facies in df.Facies.unique(): sns.kdeplot(df.loc[df.Facies==facies][feature], ax=ax, label=facies) ax.legend('') sns.distplot(df.ILD) sns.distplot(np.log10(df.ILD)) df['log_ILD'] = np.log10(df.ILD) ###Output _____no_output_____ ###Markdown Get the feature vectors, `X` ###Code features = ['GR', 'log_ILD', 'DeltaPHI', 'PHIND', 'PE'] ###Output _____no_output_____ ###Markdown Now we'll load the data we want. First the feature vectors, `X`. We'll just get the logs, which are in columns 4 to 8: ###Code X = df[features].values X.shape X ###Output _____no_output_____ ###Markdown Get the label vector, `y` ###Code y = df.Facies.values y y.shape plt.figure(figsize=(15,2)) plt.fill_between(np.arange(y.size), y, -1) ###Output _____no_output_____ ###Markdown We have data! Almost ready to train, we just have to get our test / train subsets sorted. Extracting some training data ###Code from sklearn.model_selection import train_test_split X_train, X_val, y_train, y_val = train_test_split(X, y) X_train.shape, y_train.shape, X_val.shape, y_val.shape ###Output _____no_output_____ ###Markdown **Optional exercise:** Use [the docs for `train_test_split`](http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) to set the size of the test set, and also to set a random seed for the splitting. Now the fun can really begin. Training ###Code from sklearn.neighbors import KNeighborsClassifier clf = KNeighborsClassifier() clf.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Predict and evaulate ###Code y_pred = clf.predict(X_val) ###Output _____no_output_____ ###Markdown How did we do? A quick score: ###Code from sklearn.metrics import accuracy_score accuracy_score(y_val, y_pred) ###Output _____no_output_____ ###Markdown A better score: ###Code from sklearn.metrics import f1_score f1_score(y_val, y_pred, average='weighted') ###Output _____no_output_____ ###Markdown We can also get a quick score, without using `predict`, but it's not always clear what this score represents. ###Code clf.score(X_val, y_val) ###Output _____no_output_____ ###Markdown Model tuning and model selection **Optional exercise:** Let's change the hyperparameters of the model. E.g. try changing the `n_neighbours` argument. ###Code clf = KNeighborsClassifier(... HYPERPARAMETERS GO HERE ...) clf.fit(X_train, y_train) clf.score(X_val, y_val) ###Output _____no_output_____ ###Markdown **Optional exercise:** Try another classifier. ###Code from sklearn.svm import SVC clf = SVC(gamma='auto') clf.fit(X_train, y_train) clf.score(X_val, y_val) ###Output _____no_output_____ ###Markdown **Optional exercise:** Let's look at another classifier. Try changing some hyperparameters, eg `verbose`, `n_estimators`, `n_jobs`, and `random_state`. ###Code from sklearn.ensemble import ExtraTreesClassifier clf = ExtraTreesClassifier(n_estimators=100) clf.fit(X_train, y_train) clf.score(X_val, y_val) ###Output _____no_output_____ ###Markdown All models have the same API (but not the same hyperparameters), so it's very easy to try lots of models. More in-depth evaluationThe confusion matrix, showing exactly what kinds of mistakes (type 1 and type 2 errors) we're making: ###Code from sklearn.metrics import confusion_matrix confusion_matrix(y_val, y_pred) ###Output _____no_output_____ ###Markdown Finally, the classification report shows the type 1 and type 2 error rates (well, 1 - the error) for each facies, along with the combined, F1, score: ###Code from sklearn.metrics import classification_report print(classification_report(y_val, y_pred)) ###Output _____no_output_____
notebooks/affiliation_scores.ipynb
###Markdown Weisfeiler-Lehman RDF ###Code RANDOM_STATE = 42 depth_values = [1, 2, 3] iteration_values = [0, 2, 4, 6] C_values = [0.001, 0.01, 0.1, 1., 10., 100.] results = OrderedDict() for d in depth_values: for it in iteration_values: wlrdf_graph = wlkernel.WLRDFGraph(triples, instances, max_depth=d) kernel_matrix = wlkernel.wlrdf_kernel_matrix(wlrdf_graph, instances, iterations=it) kernel_matrix = wlkernel.kernel_matrix_normalization(kernel_matrix) results[(d, it)] = [0, 0, 0] for c in C_values: classifier = svm.SVC(C=c, kernel='precomputed', class_weight='balanced', random_state=RANDOM_STATE) scores = cross_validate(classifier, kernel_matrix, y, cv=10, scoring=('accuracy', 'f1_macro')) acc_mean = scores['test_accuracy'].mean() f1_mean = scores['test_f1_macro'].mean() if acc_mean > results[(d, it)][0]: results[(d, it)] = [acc_mean, f1_mean, c] fn = 'wlrdf_affiliation_results_with_normalization' df_res = pd.DataFrame(index=list(results.keys())) df_res['accuracy'] = [t[0] for t in results.values()] df_res['f1'] = [t[1] for t in results.values()] df_res['C'] = [t[2] for t in results.values()] df_res = df_res.set_index(pd.MultiIndex.from_tuples(df_res.index, names=['depth', 'iterations'])) df_res.to_csv(f'../results/{fn}.csv') df_res_test = pd.read_csv(f'../results/{fn}.csv', index_col=['depth', 'iterations']) df_res_test.to_html(f'../results/{fn}.html') df_res_test ###Output _____no_output_____ ###Markdown Weisfeiler-Lehman ###Code RANDOM_STATE = 42 depth_values = [1, 2, 3] iteration_values = [0, 2, 4, 6] C_values = [0.001, 0.01, 0.1, 1., 10., 100.] results = OrderedDict() for d in depth_values: for it in iteration_values: wl_graphs = [wlkernel.WLGraph(triples, instance, max_depth=d) for instance in instances] kernel_matrix = wlkernel.wl_kernel_matrix(wl_graphs, iterations=it) kernel_matrix = wlkernel.kernel_matrix_normalization(kernel_matrix) results[(d, it)] = [0, 0, 0] for c in C_values: classifier = svm.SVC(C=c, kernel='precomputed', class_weight='balanced', random_state=RANDOM_STATE) scores = cross_validate(classifier, kernel_matrix, y, cv=10, scoring=('accuracy', 'f1_macro')) acc_mean = scores['test_accuracy'].mean() f1_mean = scores['test_f1_macro'].mean() if acc_mean > results[(d, it)][0]: results[(d, it)] = [acc_mean, f1_mean, c] fn = 'wl_affiliation_results_with_normalization' df_res = pd.DataFrame(index=list(results.keys())) df_res['accuracy'] = [t[0] for t in results.values()] df_res['f1'] = [t[1] for t in results.values()] df_res['C'] = [t[2] for t in results.values()] df_res = df_res.set_index(pd.MultiIndex.from_tuples(df_res.index, names=['depth', 'iterations'])) df_res.to_csv(f'../results/{fn}.csv') df_res_test = pd.read_csv(f'../results/{fn}.csv', index_col=['depth', 'iterations']) df_res_test.to_html(f'../results/{fn}.html') df_res_test ###Output _____no_output_____
cnn/cifar10-augmentation/cifar10_augmentation-gpu.ipynb
###Markdown Convolutional Neural Networks---In this notebook, we train a CNN on augmented images from the CIFAR-10 database. 1. Load CIFAR-10 Database ###Code import keras from keras.datasets import cifar10 # load the pre-shuffled train and test data (x_train, y_train), (x_test, y_test) = cifar10.load_data() ###Output Using TensorFlow backend. ###Markdown 2. Visualize the First 24 Training Images ###Code import numpy as np import matplotlib.pyplot as plt %matplotlib inline fig = plt.figure(figsize=(20,5)) for i in range(36): ax = fig.add_subplot(3, 12, i + 1, xticks=[], yticks=[]) ax.imshow(np.squeeze(x_train[i])) ###Output _____no_output_____ ###Markdown 3. Rescale the Images by Dividing Every Pixel in Every Image by 255 ###Code # rescale [0,255] --> [0,1] x_train = x_train.astype('float32')/255 x_test = x_test.astype('float32')/255 ###Output _____no_output_____ ###Markdown 4. Break Dataset into Training, Testing, and Validation Sets ###Code from keras.utils import np_utils # break training set into training and validation sets (x_train, x_valid) = x_train[5000:], x_train[:5000] (y_train, y_valid) = y_train[5000:], y_train[:5000] # one-hot encode the labels num_classes = len(np.unique(y_train)) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) y_valid = keras.utils.to_categorical(y_valid, num_classes) # print shape of training set print('x_train shape:', x_train.shape) # print number of training, validation, and test images print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print(x_valid.shape[0], 'validation samples') ###Output x_train shape: (45000, 32, 32, 3) 45000 train samples 10000 test samples 5000 validation samples ###Markdown 5. Create and Configure Augmented Image Generatorreference documentation: https://keras.io/preprocessing/image/**Arguments**- featurewise_center: Boolean. Set input mean to 0 over the dataset, feature-wise.- samplewise_center: Boolean. Set each sample mean to 0.- featurewise_std_normalization: Boolean. Divide inputs by std of the dataset, feature-wise.- samplewise_std_normalization: Boolean. Divide each input by its std.- zca_epsilon: epsilon for ZCA whitening. Default is 1e-6.- zca_whitening: Boolean. Apply ZCA whitening.- rotation_range: Int. Degree range for random rotations.- width_shift_range: Float (fraction of total width). Range for random horizontal shifts.- height_shift_range: Float (fraction of total height). Range for random vertical shifts.- shear_range: Float. Shear Intensity (Shear angle in counter-clockwise direction as radians)- zoom_range: Float or [lower, upper]. Range for random zoom. If a float, [lower, upper] = [1-zoom_range, 1+zoom_range].- channel_shift_range: Float. Range for random channel shifts.- fill_mode: One of {"constant", "nearest", "reflect" or "wrap"}. Default is 'nearest'. Points outside the boundaries of the input are filled according to the given mode:- 'constant': kkkkkkkk|abcd|kkkkkkkk (cval=k)- 'nearest': aaaaaaaa|abcd|dddddddd- 'reflect': abcddcba|abcd|dcbaabcd- 'wrap': abcdabcd|abcd|abcdabcd- cval: Float or Int. Value used for points outside the boundaries when fill_mode = "constant".- horizontal_flip: Boolean. Randomly flip inputs horizontally.- vertical_flip: Boolean. Randomly flip inputs vertically.- rescale: rescaling factor. Defaults to None. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (before applying any other transformation).- preprocessing_function: function that will be implied on each input. The function will run after the image is resized and augmented. The function should take one argument: one image (Numpy tensor with rank 3), and should output a Numpy tensor with the same shape.- data_format: One of {"channels_first", "channels_last"}. "channels_last" mode means that the images should have shape (samples, height, width, channels), "channels_first" mode means that the images should have shape (samples, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".- validation_split: Float. Fraction of images reserved for validation (strictly between 0 and 1).**example:** datagen = ImageDataGenerator( featurewise_center=True, featurewise_std_normalization=True, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) ###Code from keras.preprocessing.image import ImageDataGenerator from datetime import timedelta from time import time start = time() featurewise_center = False # original set up: None, Set input mean to 0 over the dataset, feature-wise. featurewise_std_normalization=False # original set up: None, Set each sample mean to 0. rotation_range=10 # original set up: None, degree range for random rotation width_shift_range=0.1 # original set up: 0.1, randomly shift images horizontally (% of total width) height_shift_range=0.1 # original set up: 0.1, randomly shift images vertically (% of total height) horizontal_flip=True # original set up: True, randomly flip images horizontally zoom_range=0.2 # Range for random zoom # create and configure augmented image generator datagen_train = ImageDataGenerator( featurewise_center=featurewise_center, featurewise_std_normalization=featurewise_std_normalization, rotation_range=rotation_range, width_shift_range=width_shift_range, height_shift_range=height_shift_range, horizontal_flip=horizontal_flip, zoom_range=zoom_range) # create and configure augmented image generator datagen_valid = ImageDataGenerator( featurewise_center=featurewise_center, featurewise_std_normalization=featurewise_std_normalization, rotation_range=rotation_range, width_shift_range=width_shift_range, height_shift_range=height_shift_range, horizontal_flip=horizontal_flip, zoom_range=zoom_range) # fit augmented image generator on data datagen_train.fit(x_train) datagen_valid.fit(x_valid) print("Image pre-processing finished. Total time elapsed: {}".format(timedelta(seconds=time() - start))) ###Output Image pre-processing finished. Total time elapsed: 0:00:00.232618 ###Markdown 6. Visualize Original and Augmented Images ###Code import matplotlib.pyplot as plt # take subset of training data x_train_subset = x_train[:12] # visualize subset of training data fig = plt.figure(figsize=(20,2)) for i in range(0, len(x_train_subset)): ax = fig.add_subplot(1, 12, i+1) ax.imshow(x_train_subset[i]) fig.suptitle('Subset of Original Training Images', fontsize=20) plt.show() # visualize augmented images fig = plt.figure(figsize=(20,2)) for x_batch in datagen_train.flow(x_train_subset, batch_size=12): for i in range(0, 12): ax = fig.add_subplot(1, 12, i+1) ax.imshow(x_batch[i]) fig.suptitle('Augmented Images', fontsize=20) plt.show() break; ###Output _____no_output_____ ###Markdown 7. Define the Model Architecture ###Code from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout model = Sequential() model.add(Conv2D(filters=16, kernel_size=2, padding='same', activation='relu', input_shape=(32, 32, 3))) model.add(MaxPooling2D(pool_size=2)) model.add(Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Dropout(0.3)) model.add(Flatten()) model.add(Dense(500, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(10, activation='softmax')) model.summary() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d_13 (Conv2D) (None, 32, 32, 16) 208 _________________________________________________________________ max_pooling2d_13 (MaxPooling (None, 16, 16, 16) 0 _________________________________________________________________ conv2d_14 (Conv2D) (None, 16, 16, 32) 2080 _________________________________________________________________ max_pooling2d_14 (MaxPooling (None, 8, 8, 32) 0 _________________________________________________________________ conv2d_15 (Conv2D) (None, 8, 8, 64) 8256 _________________________________________________________________ max_pooling2d_15 (MaxPooling (None, 4, 4, 64) 0 _________________________________________________________________ dropout_9 (Dropout) (None, 4, 4, 64) 0 _________________________________________________________________ flatten_5 (Flatten) (None, 1024) 0 _________________________________________________________________ dense_9 (Dense) (None, 500) 512500 _________________________________________________________________ dropout_10 (Dropout) (None, 500) 0 _________________________________________________________________ dense_10 (Dense) (None, 10) 5010 ================================================================= Total params: 528,054.0 Trainable params: 528,054.0 Non-trainable params: 0.0 _________________________________________________________________ ###Markdown 8. Compile the Model ###Code # compile the model model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown 9. Train the Model ###Code from keras.callbacks import ModelCheckpoint batch_size = 32 epochs = 10 #100 start = time() # train the model # benchmark on cpu: 47s per epoch # val accuracy evolution on first 10 epochs: 46% to 66% checkpointer = ModelCheckpoint(filepath='aug_model_gpu.weights.best.hdf5', verbose=1, save_best_only=True) hist = model.fit_generator(datagen_train.flow(x_train, y_train, batch_size=batch_size), steps_per_epoch=x_train.shape[0] // batch_size, epochs=epochs, verbose=2, callbacks=[checkpointer], validation_data=datagen_valid.flow(x_valid, y_valid, batch_size=batch_size), validation_steps=x_valid.shape[0] // batch_size) print("training finished. Total time elapsed: {}".format(timedelta(seconds=time() - start))) def plotHistory(hist): e = [x+1 for x in hist.epoch] val_loss_history = hist.history['val_loss'] minValLossVal = min(val_loss_history) minValLossIdx = val_loss_history.index(minValLossVal)+1 # summarize history for accuracy plt.plot(e, hist.history['acc']) plt.plot(e, hist.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.grid() plt.show() # summarize history for loss plt.plot(e, hist.history['loss']) plt.plot(e, hist.history['val_loss']) plt.plot(minValLossIdx, minValLossVal, 'or') plt.annotate( "epoch {}: {:.4f}".format(minValLossIdx, minValLossVal), xy=(minValLossIdx, minValLossVal), xytext=(0, 20), textcoords='offset points', ha='right', va='bottom', bbox=dict(boxstyle='round,pad=0.5', fc='red', alpha=0.5), arrowprops=dict(arrowstyle = '->', connectionstyle='arc3,rad=0')) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.grid() plt.show() plotHistory(hist) ###Output _____no_output_____ ###Markdown 10. Load the Model with the Best Validation Accuracy ###Code # load the weights that yielded the best validation accuracy model.load_weights('aug_model_gpu.weights.best.hdf5') ###Output _____no_output_____ ###Markdown 11. Calculate Classification Accuracy on Test Set ###Code # evaluate and print test accuracy # benchmark with original image preprocessing: 0.581 score = model.evaluate(x_test, y_test, verbose=0) print('\n', 'Test accuracy:', score[1]) ###Output Test accuracy: 0.6674
notebooks/AI_for_good_Accessing_satellite_data_apply_Kmeans.ipynb
###Markdown A simple example that retrives a time series of a satellite image set and visualizes itNote: While the image set corresponds to a time series progression, it is not clear what the time stamp of a particular image is ###Code ## Define your image collection collection = ee.ImageCollection('LANDSAT/LC8_L1T_TOA') ## Define time range and filter the data collection_time = collection.filterDate('2000-01-01', '2018-01-01') #YYYY-MM-DD ## Select location based on location of tile path = collection_time.filter(ee.Filter.eq('WRS_PATH', 198)) pathrow = path.filter(ee.Filter.eq('WRS_ROW', 24)) ## Select imagery with less then 5% of image covered by clouds clouds = pathrow.filter(ee.Filter.lt('CLOUD_COVER', 10)) ## Select bands bands = clouds.select(['B4', 'B5', 'B6']) ## Retrieve a list of the images collectionList = bands.toList(bands.size()) # Converts the image collection to a list accessible via index collectionSize = collectionList.size().getInfo() # Get the information about the dates of this collection collectionDates = [ee.Image(collectionList.get(indx)).getInfo()['properties']['DATE_ACQUIRED'] for indx in range(collectionSize)] print('='*100) print('The number of items in this collection: ', collectionSize) print() print('Dates in the collection:') print(collectionDates) print('='*100) # Define the region of interest ROI = ee.Geometry.Rectangle([5.727906, 51.993435, 5.588144, 51.944356]) # Choose a specific image from the collection List indx = 0 image = ee.Image(collectionList.get(indx)) parameters = {'min': 0, 'max': 0.5, 'bands': ['B4', 'B5', 'B6'], 'region': ROI } # Plot the satellite image Image(url = image.getThumbUrl(parameters)) ###Output ==================================================================================================== The number of items in this collection: 16 Dates in the collection: ['2013-09-30', '2014-03-09', '2014-07-31', '2014-09-17', '2014-10-03', '2015-01-07', '2015-03-12', '2015-08-03', '2015-11-23', '2015-12-09', '2016-02-27', '2016-03-14', '2016-07-20', '2016-11-25', '2016-12-27', '2017-04-02'] ==================================================================================================== ###Markdown Having visualized the image, we now show how to convert it into a Numpy array so that we can manipulate the image ###Code # Reference # https://gis.stackexchange.com/questions/350771/earth-engine-simplest-way-to-move-from-ee-image-to-array-for-use-in-sklearn # Now that we have a specific image from the list, we convert it to a numpy array indx = 0 # Retrieve the specific image image = ee.Image(collectionList.get(indx))# info = image.getInfo() print(info.keys())#['DATE_ACQUIRED']) #print(info['properties']) # Define an area of interest. aoi = ee.Geometry.Polygon([[[5.588144,51.993435], [5.727906, 51.993435],[5.727906, 51.944356],[5.588144, 51.944356]]], None, False) # Get 2-d pixel array for AOI - returns feature with 2-D pixel array as property per band. band_arrs = image.sampleRectangle(region=aoi) # Get individual band arrays. band_arr_b4 = band_arrs.get('B4') band_arr_b5 = band_arrs.get('B5') band_arr_b6 = band_arrs.get('B6') # Transfer the arrays from server to client and cast as np array. np_arr_b4 = np.array(band_arr_b4.getInfo()) np_arr_b5 = np.array(band_arr_b5.getInfo()) np_arr_b6 = np.array(band_arr_b6.getInfo()) # Expand the dimensions of the arrays np_arr_b4 = np.expand_dims(np_arr_b4, 2) np_arr_b5 = np.expand_dims(np_arr_b5, 2) np_arr_b6 = np.expand_dims(np_arr_b6, 2) # Stack the individual bands to make a 3-D array. rgb_img = np.concatenate((np_arr_b4, np_arr_b5, np_arr_b6), 2) print(rgb_img.shape) # Plot the array plt.imshow(rgb_img) plt.show() indx = 0 # Load a pre-computed Landsat composite for input. input = ee.Image(collectionList.get(indx)) # Define a region in which to generate a sample of the input. region = ee.Geometry.Polygon([[[5.588144,51.993435], [5.727906, 51.993435],[5.727906, 51.944356],[5.588144, 51.944356]]], None, False) #Map.addLayer(ee.Image().paint(region, 0, 2), {}, 'region') # Make the training dataset. training = input.sample(**{ 'region': region, 'scale': 30, 'numPixels': 5000 }) # Instantiate the clusterer and train it. clusterer = ee.Clusterer.wekaKMeans(6).train(training) # Cluster the input using the trained clusterer. result = input.cluster(clusterer) print(result.getInfo()['bands']) # Define an area of interest. aoi = ee.Geometry.Polygon([[[5.588144,51.993435], [5.727906, 51.993435],[5.727906, 51.944356],[5.588144, 51.944356]]], None, False) # Get 2-d pixel array for AOI - returns feature with 2-D pixel array as property per band. band_arrs = result.sampleRectangle(region=aoi) data = np.array(band_arrs.get('cluster').getInfo()) print(data.shape) #plt.plot(data) plt.imshow(data) plt.plot() plt.show() plt.clf() plt.imshow(rgb_img) plt.show() print(np.sum(data.flatten()==1 )) ###Output (194, 327)
examples/matplotlib/ring_gear_plot.ipynb
###Markdown Ring Gear profile ###Code module = 1.0 n_teeth = 19 pressure_angle = 20.0 fig, ax = plt.subplots(figsize=(8, 8)) ax.set_aspect('equal') gear = RingGear(module, n_teeth, width=5.0, rim_width=1.5, pressure_angle=pressure_angle) pts = gear.gear_points() x, y = pts[:, 0], pts[:, 1] ax.plot(x, y, label='gear profile', color='C0') circles = ( (gear.r0, 'pitch circle'), (gear.ra, 'addendum circle'), (gear.rb, 'base circle'), (gear.rd, 'dedendum circle'), ) t = np.linspace(0.0, np.pi * 2.0, 200) for r, lbl in circles: cx = np.cos(t) * r cy = np.sin(t) * r ax.plot(cx, cy, label=lbl, linestyle='--', linewidth=0.8) cx = np.cos(t) * gear.rim_r cy = np.sin(t) * gear.rim_r ax.plot(cx, cy, color='C0') plt.legend(loc='center') plt.show() ###Output _____no_output_____ ###Markdown Planetary Gearset ###Code animate = False # Set to True to animate module = 1.0 sun_teeth = 32 planet_teeth = 16 ring_teeth = sun_teeth + planet_teeth * 2 n_planets = 4 ring = RingGear(module, ring_teeth, 5.0, 5.0) sun = SpurGear(module, sun_teeth, 5.0) planet = SpurGear(module, planet_teeth, 5.0) orbit_r = sun.r0 + planet.r0 planet_a = np.pi * 2.0 / n_planets ratio = 1.0 / ((planet.z / sun.z) * 2.0) c_ratio = 1.0 / (ring.z / sun.z + 1.0) fig, ax = plt.subplots(figsize=(8, 8)) ax.set_aspect('equal') def plot_gears(frame): ax.clear() pts = ring.gear_points() x, y = pts[:, 0], pts[:, 1] ax.plot(x, y) w = np.pi * 2.0 / 200.0 * frame w1 = w * ratio w2 = w * c_ratio pts = sun.gear_points() x, y = pts[:, 0], pts[:, 1] x, y = rotate_xy(x, y, sun.tau / 2.0 + w) ax.plot(x, y) for i in range(n_planets): pts = planet.gear_points() x, y = pts[:, 0], pts[:, 1] x, y = rotate_xy(x, y, -w1) cx = np.cos(i * planet_a + w2) * orbit_r cy = np.sin(i * planet_a + w2) * orbit_r x += cx y += cy ax.plot(x, y, color='C2') if animate: anim = animation.FuncAnimation(fig, plot_gears, 400, interval=25) else: plot_gears(0) plt.show() ###Output _____no_output_____
Macro/pyautogui_SSAM_trj_to_csv.ipynb
###Markdown Install ###Code #!pip install pyperclip #!pip install pyautogui ###Output _____no_output_____ ###Markdown Imports ###Code import pyperclip #> Copy & paste Korean sentence import pyautogui as ptg #> Macro import os import numpy as np import time ###Output _____no_output_____ ###Markdown Settings Get SSAM Button coordinates* **`ptg.position`** : It gets coordinates of location of mouse cursor. ###Code ptg.position() ###Output _____no_output_____ ###Markdown Set coordinates of SSAM Buttons ###Code configuration_tab = (1968, 42) # SSAM configuration Tab add_button = (2034, 155) # add Button file_write = (2813, 742) # Input window of file name(파일이름 입력창) open_button = (3348, 778) # open button analyze_button = (2014, 474) # analyze button analyze_complete = (2926, 569) # Close 'analyze complete' window summary_tab = (2103, 47) # Summary Tab export_csv_button = (2089, 608) # Export to csv file button save_csv_button = (3322, 775) # Save to CSV button select_file = (2343, 106) # File name list delete_button = (2025, 187) # Delete button ###Output _____no_output_____ ###Markdown Set .trj File Names ###Code length = [str(600 + i * 50) + 'm' for i in range(9)] num = [] for i in range(1, 57): if i < 10: num.append('00' + str(i)) else: num.append('0' + str(i)) length f = [] for l in length: for n in num: file_name = f'낙동jc_allpc_{l}_{n}.trj' #> .trj file names are automately created f.append(file_name) len(f) f[29] ###Output _____no_output_____ ###Markdown RUN! Automately Create SSAM Result Files ###Code for i in range(len(f)): # Click : Configuration Tab ptg.click(x=configuration_tab[0], y=configuration_tab[1], clicks=1, button='left') # Click : ADD Button ptg.click(x=add_button[0], y=add_button[1], clicks=1, button='left') time.sleep(1) # Click : File name input window ptg.click(x=file_write[0], y=file_write[1], clicks=1, button='left') # Go to C: ptg.typewrite('C:', 0.1) ptg.press('enter') #> Click : File name input window ptg.click(x=file_write[0], y=file_write[1], clicks=1, button='left') ptg.keyDown('backspace') ptg.keyUp('backspace') # Go to E: - where .trj files were saved in. ptg.typewrite('E:', 0.1) ptg.press('enter') # Click : File name input window ptg.click(x=file_write[0], y=file_write[1], clicks=1, button='left') ptg.keyDown('backspace') ptg.keyUp('backspace') # Go to the folder : Put your folder name('[엇갈림구간] VISSIM traj 파일' ) and press enter pyperclip.copy('[엇갈림구간] VISSIM traj 파일') ptg.hotkey("ctrl", "v") ptg.press('enter') # Click : File name input window ptg.click(x=file_write[0], y=file_write[1], clicks=1, button='left') ptg.keyDown('backspace') ptg.keyUp('backspace') # Go to the folder : Put your folder name('A_1_낙동JC') and press enter pyperclip.copy('A_1_낙동JC') ptg.hotkey("ctrl", "v") ptg.press('enter') # Click : File name input window ptg.click(x=file_write[0], y=file_write[1], clicks=1, button='left') ptg.keyDown('backspace') ptg.keyUp('backspace') # Put your file name pyperclip.copy(f[i]) ptg.hotkey("ctrl", "v") #> Click : Open button ptg.click(x=open_button[0], y=open_button[1], clicks=1, button='left') time.sleep(1) #> Time Sleep : It depends on your computer environment. After some trial and error, you may have to put in other stable values. # Click : Analyze button ptg.click(x=analyze_button[0], y=analyze_button[1], clicks=1, button='left') time.sleep(15) #> Time Sleep : It depends on your computer environment. After some trial and error, you may have to put in other stable values. # Click : Analysis complete Window #> Time Sleep : It depends on your computer environment. After some trial and error, you may have to put in other stable values. ptg.click(x=analyze_complete[0], y=analyze_complete[1], clicks=3, button='left') time.sleep(1) ptg.click(x=analyze_complete[0], y=analyze_complete[1], clicks=3, button='left') time.sleep(1) #> Click : Summary tab ptg.click(x=summary_tab[0], y=summary_tab[1], clicks=1, button='left') # Click : Export to csv file button ptg.click(x=export_csv_button[0], y=export_csv_button[1], clicks=1, button='left') time.sleep(1) #> Click : Save to csv button ptg.click(x=save_csv_button[0], y=save_csv_button[1], clicks=1, button='left') time.sleep(1) #> Click : Configuration tab ptg.click(x=configuration_tab[0], y=configuration_tab[1], clicks=1, button='left') #> Click : Select file ptg.click(x=select_file[0], y=select_file[1], clicks=1, button='left') #> Click : Delete button ptg.click(x=delete_button[0], y=delete_button[1], clicks=3, button='left') time.sleep(1) ###Output _____no_output_____
01-tle-fitting-example.ipynb
###Markdown DescriptionThis Notebook does the following:* Propagate a spacecraft using a numerical propagator, with the following perturbation forces included: * Gravity field (EIGEN6S with degree 64, order 64) * Atmospheric drag (NRLMSISE00 at average solar activity) * Solar radiation pressure * Moon attraction * Sun attraction* Fit a Two-Line Elements set on the spacecraft states obtained by the propagation Parameters Spacecraft properties ###Code sc_mass = 400.0 # kg sc_cross_section = 0.3 # m2 cd_drag_coeff = 2.0 cr_radiation_pressure = 1.0 ###Output _____no_output_____ ###Markdown * The start date has an influence on the solar activity and therefore on the drag* The duration has an influence on the mean elements being fitted to the Keplerian elements ###Code from datetime import datetime date_start = datetime(2019, 1, 1) fitting_duration_d = 1 # days ###Output _____no_output_____ ###Markdown Keplerian elements ###Code import numpy as np a = 7000.0e3 # meters e = 0.001 i = float(np.deg2rad(98.0)) # Conversion to Python float is required for Orekit pa = float(np.deg2rad(42.0)) raan = float(np.deg2rad(42.0)) ma = float(np.deg2rad(42.0)) # Mean anomaly ###Output _____no_output_____ ###Markdown Satellite information ###Code satellite_number = 99999 classification = 'X' launch_year = 2018 launch_number = 42 launch_piece = 'F' ephemeris_type = 0 element_number = 999 revolution_number = 100 ###Output _____no_output_____ ###Markdown Numerical propagator parameters ###Code dt = 60.0 # s, period at which the spacecraft states are saved to fit the TLE prop_min_step = 0.001 # s prop_max_step = 300.0 # s prop_position_error = 10.0 # m # Estimator parameters estimator_position_scale = 1.0 # m estimator_convergence_thres = 1e-3 estimator_max_iterations = 25 estimator_max_evaluations = 35 ###Output _____no_output_____ ###Markdown Setting up Orekit Creating VM and loading data zip ###Code import orekit orekit.initVM() from orekit.pyhelpers import setup_orekit_curdir setup_orekit_curdir() ###Output _____no_output_____ ###Markdown Setting up frames ###Code from org.orekit.frames import FramesFactory, ITRFVersion from org.orekit.utils import IERSConventions gcrf = FramesFactory.getGCRF() teme = FramesFactory.getTEME() itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, False) from org.orekit.models.earth import ReferenceEllipsoid wgs84_ellipsoid = ReferenceEllipsoid.getWgs84(itrf) from org.orekit.bodies import CelestialBodyFactory moon = CelestialBodyFactory.getMoon() sun = CelestialBodyFactory.getSun() ###Output _____no_output_____ ###Markdown Creating the Keplerian orbit ###Code from org.orekit.orbits import KeplerianOrbit, PositionAngle from org.orekit.utils import Constants as orekit_constants from orekit.pyhelpers import datetime_to_absolutedate date_start_orekit = datetime_to_absolutedate(date_start) keplerian_orbit = KeplerianOrbit(a, e, i, pa, raan, ma, PositionAngle.MEAN, gcrf, date_start_orekit, orekit_constants.EIGEN5C_EARTH_MU) ###Output _____no_output_____ ###Markdown Creating the initial TLE from the Keplerian elements. The mean elements should differ from the Keplerian elements, but they will be fitted later. ###Code from org.orekit.propagation.analytical.tle import TLE mean_motion = float(np.sqrt(orekit_constants.EIGEN5C_EARTH_MU / np.power(a, 3))) mean_motion_first_derivative = 0.0 mean_motion_second_derivative = 0.0 b_star_first_guess = 1e-5 # Does not play any role, because it is a free parameter when fitting the TLE tle_first_guess = TLE(satellite_number, classification, launch_year, launch_number, launch_piece, ephemeris_type, element_number, date_start_orekit, mean_motion, mean_motion_first_derivative, mean_motion_second_derivative, e, i, pa, raan, ma, revolution_number, b_star_first_guess) print(tle_first_guess) ###Output 1 99999X 18042F 19001.00000000 .00000000 00000-0 10000-4 0 9996 2 99999 98.0000 42.0000 0010000 42.0000 42.0000 14.82366875 1004 ###Markdown Setting up the numerical propagator ###Code from org.orekit.attitudes import NadirPointing nadir_pointing = NadirPointing(gcrf, wgs84_ellipsoid) from org.orekit.propagation.conversion import DormandPrince853IntegratorBuilder integrator_builder = DormandPrince853IntegratorBuilder(prop_min_step, prop_max_step, prop_position_error) from org.orekit.propagation.conversion import NumericalPropagatorBuilder propagator_builder = NumericalPropagatorBuilder(keplerian_orbit, integrator_builder, PositionAngle.MEAN, estimator_position_scale) propagator_builder.setMass(sc_mass) propagator_builder.setAttitudeProvider(nadir_pointing) # Earth gravity field with degree 64 and order 64 from org.orekit.forces.gravity.potential import GravityFieldFactory gravity_provider = GravityFieldFactory.getConstantNormalizedProvider(64, 64) from org.orekit.forces.gravity import HolmesFeatherstoneAttractionModel gravity_attraction_model = HolmesFeatherstoneAttractionModel(itrf, gravity_provider) propagator_builder.addForceModel(gravity_attraction_model) # Moon and Sun perturbations from org.orekit.forces.gravity import ThirdBodyAttraction moon_3dbodyattraction = ThirdBodyAttraction(moon) propagator_builder.addForceModel(moon_3dbodyattraction) sun_3dbodyattraction = ThirdBodyAttraction(sun) propagator_builder.addForceModel(sun_3dbodyattraction) # Solar radiation pressure from org.orekit.forces.radiation import IsotropicRadiationSingleCoefficient isotropic_radiation_single_coeff = IsotropicRadiationSingleCoefficient(sc_cross_section, cr_radiation_pressure); from org.orekit.forces.radiation import SolarRadiationPressure solar_radiation_pressure = SolarRadiationPressure(sun, wgs84_ellipsoid.getEquatorialRadius(), isotropic_radiation_single_coeff) propagator_builder.addForceModel(solar_radiation_pressure) # Atmospheric drag from org.orekit.forces.drag.atmosphere.data import MarshallSolarActivityFutureEstimation msafe = MarshallSolarActivityFutureEstimation( '(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\p{Digit}\p{Digit}\p{Digit}\p{Digit}F10\.(?:txt|TXT)', MarshallSolarActivityFutureEstimation.StrengthLevel.AVERAGE) from org.orekit.data import DataProvidersManager DM = DataProvidersManager.getInstance() DM.feed(msafe.getSupportedNames(), msafe) # Feeding the F10.7 bulletins to Orekit's data manager from org.orekit.forces.drag.atmosphere import NRLMSISE00 atmosphere = NRLMSISE00(msafe, sun, wgs84_ellipsoid) from org.orekit.forces.drag import IsotropicDrag isotropic_drag = IsotropicDrag(sc_cross_section, cd_drag_coeff) from org.orekit.forces.drag import DragForce drag_force = DragForce(atmosphere, isotropic_drag) propagator_builder.addForceModel(drag_force) propagator = propagator_builder.buildPropagator([a, e, i, pa, raan, ma]) ###Output _____no_output_____ ###Markdown Propagating and fitting TLE Propagating ###Code from org.orekit.propagation import SpacecraftState initial_state = SpacecraftState(keplerian_orbit, sc_mass) propagator.resetInitialState(initial_state) propagator.setEphemerisMode() date_end_orekit = date_start_orekit.shiftedBy(fitting_duration_d * 86400.0) state_end = propagator.propagate(date_end_orekit) ###Output _____no_output_____ ###Markdown Getting generating ephemeris and saving all intermediate spacecraft states ###Code from java.util import ArrayList states_list = ArrayList() bounded_propagator = propagator.getGeneratedEphemeris() date_current = date_start_orekit while date_current.compareTo(date_end_orekit) <= 0: spacecraft_state = bounded_propagator.propagate(date_current) states_list.add(spacecraft_state) date_current = date_current.shiftedBy(dt) ###Output _____no_output_____ ###Markdown Fitting the TLE, based on great example by RomaricH on the Orekit forum: https://forum.orekit.org/t/generation-of-tle/265/4 ###Code from org.orekit.propagation.conversion import TLEPropagatorBuilder, FiniteDifferencePropagatorConverter from org.orekit.propagation.analytical.tle import TLEPropagator threshold = 1.0 # "absolute threshold for optimization algorithm", but no idea about its impact tle_builder = TLEPropagatorBuilder(tle_first_guess, PositionAngle.MEAN, 1.0) fitter = FiniteDifferencePropagatorConverter(tle_builder, threshold, 1000) fitter.convert(states_list, False, 'BSTAR') # Setting BSTAR as free parameter tle_propagator = TLEPropagator.cast_(fitter.getAdaptedPropagator()) tle_fitted = tle_propagator.getTLE() ###Output _____no_output_____ ###Markdown Now let's compare the initial guess with the fitted TLE: ###Code print(tle_first_guess) print('') print(tle_fitted) ###Output 1 99999X 18042F 19001.00000000 .00000000 00000-0 10000-4 0 9996 2 99999 98.0000 42.0000 0010000 42.0000 42.0000 14.82366875 1004 1 99999X 18042F 19001.00000000 .00000000 00000-0 86025-3 0 9995 2 99999 97.9236 42.2567 0016635 52.1798 31.8862 14.78537902 1007
MonkeyNetPyTorch.ipynb
###Markdown ###Code import os os.environ['KAGGLE_USERNAME'] = "theroyakash" os.environ['KAGGLE_KEY'] = "👀" !kaggle datasets download -d slothkong/10-monkey-species !unzip /content/10-monkey-species.zip import torch import torch.nn as nn from PIL import Image import torch.utils.data as data import torchvision from torchvision import transforms, models from tqdm.auto import tqdm import numpy as np from matplotlib import pyplot as plt # Set seed for recreating results import random torch.manual_seed(123) np.random.seed(123) random.seed(123) label2name = { 'n0':'alouatta_palliata', 'n1':'erythrocebus_patas', 'n2':'cacajao_calvus', 'n3':'macaca_fuscata', 'n4':'cebuella_pygmea', 'n5':'cebus_capucinus', 'n6':'mico_argentatus', 'n7':'saimiri_sciureus', 'n8':'aotus_nigriceps', 'n9':'trachypithecus_johnii', } name2id = { 'alouatta_palliata':0, 'erythrocebus_patas':1, 'cacajao_calvus':2, 'macaca_fuscata':3, 'cebuella_pygmea':4, 'cebus_capucinus':5, 'mico_argentatus':6, 'saimiri_sciureus':7, 'aotus_nigriceps':8, 'trachypithecus_johnii':9, } class Transform(): """ Image Transformer class. Args: - ``resize``: Image size after resizing - ``mean``: R,G,B avg of each channel - ``std``: Standard deviation of each channel """ def __init__(self, resize, mean, std): self.transform = { 'train': transforms.Compose([ transforms.RandomResizedCrop(resize, scale=(0.5, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean, std=std) ]), 'validation': transforms.Compose([ transforms.Resize(resize), transforms.CenterCrop(resize), transforms.ToTensor(), transforms.Normalize(mean, std) ]) } def __call__(self, image, phase='train'): return self.transform[str(phase)](image) import glob def pathlist(phase): root = '/content/' target = os.path.join(root+phase+'/**/**/*.jpg') paths = [] for path in glob.glob(target): paths.append(path) return paths train_list = pathlist(phase='training') validation_list = pathlist(phase='validation') class Dataset(torch.utils.data.Dataset): """ Dataset class. Args: - ``path_list``: List of paths for the data - ``transform``: Image Transform Object - ``phase``: Traning or Validation """ def __init__(self, path_list, transform, phase): self.path_list = path_list self.transform = transform self.phase = phase def __len__(self): return len(self.path_list) def __getitem__(self, idx): image_path = self.path_list[idx] image = Image.open(image_path) # Pre-processing: transformed_image = self.transform(image, self.phase) # Get Label of the Image array = image_path.split('/') label = array[-2] name = label2name[label] # Transform Label to Number label_number = name2id[name] return transformed_image, label_number image_size = 224 mean = (0.485,0.456,0.406) std = (0.229,0.224,0.225) # Training and Validation Dataset Generator from Dataset Class training_dataset = Dataset(path_list=train_list, transform=Transform(image_size, mean, std), phase='train') validation_dataset = Dataset(validation_list, transform=Transform(image_size, mean, std), phase='validation') batch_size = 64 training_dataloader = torch.utils.data.DataLoader(training_dataset, batch_size=batch_size, shuffle=True) validation_dataloader = torch.utils.data.DataLoader(validation_dataset, batch_size=batch_size, shuffle=True) dataloaders = { 'train': training_dataloader, 'validation': validation_dataloader } network = torchvision.models.vgg16(pretrained=True) network.classifier[6] = nn.Linear(in_features=4096, out_features=10) network.train() criterion = nn.CrossEntropyLoss() # Fine tuning param_to_update_1 = [] param_to_update_2 = [] param_to_update_3 = [] # learn parameter list update_param_names_1 = ['features'] update_param_names_2 = ['classifier.0.weight','classifier.0.bias','classifier.3.weight','classifier.3.bias'] update_param_names_3 = ['classifier.6.weight','classifier.6.bias'] for name,param in network.named_parameters(): print(name) if update_param_names_1[0] in name: param.requires_grad = True param_to_update_1.append(param) elif name in update_param_names_2: param.requires_grad = True param_to_update_2.append(param) elif name in update_param_names_3: param.requires_grad = True param_to_update_3.append(param) else: param.requires_grad = False optimizer = torch.optim.SGD([ {'params':param_to_update_1,'lr':1e-4}, {'params':param_to_update_2,'lr':5e-4}, {'params':param_to_update_3,'lr':1e-3}, ],momentum=0.9) def train_model(net,dataloaders_dict,criterion,optimizer,num_epochs): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f'Using device: {device} for deep learning') network.to(device) history_train_loss = [] history_train_acc = [] history_val_loss = [] history_val_acc = [] torch.backends.cudnn.benchmark = True for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch+1,num_epochs)) print('-------------------------------------') for phase in ['train','validation']: if phase == 'train': network.train() else: network.eval() epoch_loss = 0.0 epoch_corrects = 0 # pick mini batch from dataloader for inputs,labels in tqdm(dataloaders_dict[phase]): inputs = inputs.to(device) labels = labels.to(device) # init optimizer optimizer.zero_grad() # calculate forward with torch.set_grad_enabled(phase=='train'): outputs = network(inputs) loss = criterion(outputs,labels) # calculate loss _,preds = torch.max(outputs,1) # predict label # backward (train only) if phase == 'train': loss.backward() optimizer.step() # update loss sum epoch_loss += loss.item() * inputs.size(0) # correct answer count epoch_corrects += torch.sum(preds == labels.data) # show loss and correct answer rate per epoch epoch_loss = epoch_loss / len(dataloaders_dict[phase].dataset) epoch_acc = epoch_corrects.double() / len(dataloaders_dict[phase].dataset) print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase,epoch_loss,epoch_acc)) if phase == 'train': history_train_loss.append(epoch_loss) history_train_acc.append(epoch_acc) else: history_val_loss.append(epoch_loss) history_val_acc.append(epoch_acc) return history_train_loss,history_train_acc,history_val_loss,history_val_acc num_epochs=10 train_loss,train_acc,val_loss,val_acc = train_model(network, dataloaders, criterion, optimizer, num_epochs=num_epochs) ###Output _____no_output_____
Session02/IntroToDataProductsAndTasks.ipynb
###Markdown Session 02: Intro to the Science Pipelines Software and Data productsOwner(s): **Yusra AlSayyad** ([@yalsayyad](https://github.com/LSSTScienceCollaborations/StackClub/issues/new?body=@yalsayyad))Last Verified to Run: **2020-05-14?**Verified Stack Release: **w_2020_19**Now that you have brought yourself to the data via the Science Platform (Lesson 1), you can retrieve that data and rerun elements of the Science Pipelines. Today we'll cover:* What are the **Science Pipelines**?* What is this **Stack**?* What are the **data products**?* How to rerun an element of the pipelines, a **Task**, with a different configuration. We'll only quickly inspect the images and catalogs. Next week's lesson will be dedicated to learning more sophisticated methods for exploring the data. 1. Overview of the Science Pipelines and the stack (presentation)The stack is an implementation of the science pipelines and its corresponding library. 2. The Data ProductsData products include both catalogs and images.Instead of operating directly on files and directories, we interact with on-disk data products via an abstraction layer called the data Butler. The butler operates on data repositories. DM regularly tests the science pipelines on precursor data from HSC, DECam, and simulated data generated by DESC that we call "DC2 ImSim". These Data Release Production (DRP) outputs can be found in `/datasets`. This notebook will be using HSC Gen 2 repo.*Jargon Watch: Gen2/Gen3 - We're in the process of building a brand new Butler, which we are calling the 3rd Generation Butler, or Gen3 for short.* | generation | Class || ------------- | ------------- || Gen 2 | `lsst.daf.persistence.Butler` || Gen 3 | `lsst.daf.butler.Butler` |A Gen 2 Butler is the first stack object we are going to instantiate, with a path to a directory that is a repo. ###Code # What version of the Stack am I using? ! echo $HOSTNAME ! eups list lsst_distrib -s import os REPO = '/datasets/hsc/repo/rerun/RC/w_2020_19/DM-24822' from lsst.daf.persistence import Butler butler = Butler(REPO) HSC_REGISTRY_COLUMNS = ['taiObs', 'expId', 'pointing', 'dataType', 'visit', 'dateObs', 'frameId', 'filter', 'field', 'pa', 'expTime', 'ccdTemp', 'ccd', 'proposal', 'config', 'autoguider'] butler.queryMetadata('calexp', HSC_REGISTRY_COLUMNS, dataId={'filter': 'HSC-I', 'visit': 30504, 'ccd': 50}) ###Output _____no_output_____ ###Markdown **Common error messages** when instantiating a Butler:1) ```PermissionError: [Errno 13] Permission denied: '/datasets/hsc/repo/rerun/RC/w_2020_19/DM-248222'```- Translation: This directory does not exist. Confirm with `os.path.exists(REPO)`2) `RuntimeError: No default mapper could be established from inputs`:- Translation: This directory exists, but is not a data repo. Does `REPO` have a file called `repositoryCfg.yaml` in it? Nope? It's not a data repo. Use `os.listdir` to see what's in your directory*Next we'll look at 3 types of data products:** Images* Catalogs: lsst.afw.table* Catalogs: parquet/pyArrow DataFrames 2.1 Images ###Code VISIT = 34464 CCD = 81 exposure = butler.get('calexp', visit=int(VISIT), ccd=CCD) ###Output _____no_output_____ ###Markdown **Common error messages** when getting data:1) `'HscMapper' object has no attribute 'map_calExp'`- You're asking for a data product that doesn't exist. In this example, I asked for a 'calExp' with a capital E, which is not a thing. Double check your spelling in: https://github.com/lsst/obs_base/blob/master/policy/exposures.yaml for images or https://github.com/lsst/obs_base/blob/master/policy/datasets.yaml for catalogs or models.2) `NoResults: No locations for get: datasetType:calexp dataId:DataId(initialdata={'visit': 34464, 'ccd': 105}, tag=set())`:- This file doesn't exist. If you don't believe the Butler, add "_filename" to the data product you want, and you'll get back the filename you can lookup. For example: butler.get('calexp_filename', visit=VISIT, ccd=105) ###Code butler.get('calexp_filename', visit=VISIT, ccd=105) ###Output _____no_output_____ ###Markdown Rare error message: Did you try that and now it says it can't find the filename? `NoResults: No locations for get: datasetType:calexp_filename dataId:DataId(initialdata={'visit': 34464, 'ccd': 81}, tag=set())` Sqlalchemy doesn't handle data types well. Force your visit or ccd numbers to be integers like `butler.get('calexp', visit=int(34464), ...` Q: If I can get the filename from the butler, why can't I just read it in manually like I do other fits files and fits tables?A: Because in operations, the data will not be on a shared GPFS disk like you're reading from now. We guarantee `butler.get` to work the same regardless of the backend storage. Exposure ObjectsThe data that the butler just fetched for us is an `Exposure` object. It composes a `maskedImage` which has 3 `Image` object: an `image`, `mask`, and `variance`. These are pointers/views! ###Code exposure exposure.maskedImage.image exposure.maskedImage.mask exposure.maskedImage.variance # These shortcuts work too. exposure.image exposure.variance exposure.mask # each image also has an array property e.g. exposure.image.array ###Output _____no_output_____ ###Markdown The exposures also include a WCS Object, a PSF Object and ExposureInfo. These can be accessed via the following methods. ###Code wcs = exposure.getWcs() psf = exposure.getPsf() photoCalib = exposure.getPhotoCalib() expInfo = exposure.getInfo() visitInfo = expInfo.getVisitInfo() ###Output _____no_output_____ ###Markdown - [x] **Exercise:** Use tab-complete or '?exposure' to explore the Exposure. Explore details are in this visit info. What was the exposure time? What was the observation date? Exploring the other methods of Exposure object, what are the dimensions of the image? ###Code ?exposure # visitInfo. # exposure. ###Output _____no_output_____ ###Markdown For more documentation on Exposure objects:* https://pipelines.lsst.io/modules/lsst.afw.image/indexing-conventions.htmlFor another notebook on Exposure objects:* https://github.com/LSSTScienceCollaborations/StackClub/blob/master/Basics/Calexp_guided_tour.ipynbSession 3 will introduce more sophisticated image display tools, and go into detail on the `Display` objects in the stack, but let's take a quick look at this image: ###Code import numpy as np import matplotlib import matplotlib.pyplot as plt import lsst.afw.display as afw_display %matplotlib inline matplotlib.rcParams["figure.figsize"] = (6, 4) matplotlib.rcParams["font.size"] = 12 matplotlib.rcParams["figure.dpi"] = 120 # Let's smooth it first just for fun. from skimage.filters import gaussian exposure.image.array[:] = gaussian(exposure.image.array, sigma=5) # and display it display = afw_display.Display(frame=1, backend='matplotlib') display.scale("linear", "zscale") display.mtv(exposure) ###Output _____no_output_____ ###Markdown From the colorbar, you can tell that the background has been subtracted.The first step of the pipeline, `processCcd` takes a `postISRCCD` as input. Before detection and measurement, it estimates a naive background and subtracts it. Indeed we store a `calexp` with the background subtracted and model that was subtracted from the original `postISRCCD` as the `calexpBackground`.*Jargon Watch: ISR - Instrument Signature Removal (ISR) encapsulates all the steps you normally associated with reducing astronomical imaging data (bias subtraction, flat fielding, crosstalk correction, cosmic ray removal, etc.)*There's full focal plane background estimation step that produces a delta on the `calexpBackground`, which is called `skyCorr`. Let's quickly plot these: ###Code # Fetch background models from the butler background = butler.get('calexpBackground', visit=VISIT, ccd=CCD) skyCorr = butler.get('skyCorr', visit=VISIT, ccd=CCD) # call "getImage" to evaluate the model on a pixel grid plt.subplot(121) plt.imshow(background.getImage().array, origin='lower', cmap='gray') plt.title("Local Polynomial Bkgd") plt.subplot(122) plt.imshow(background.getImage().array - skyCorr.getImage().array, origin='lower', cmap='gray') plt.title("SkyCorr Bkgd") exposure = butler.get('calexp', visit=VISIT, ccd=CCD) background = butler.get('calexpBackground', visit=VISIT, ccd=CCD) # create a view to the masked image mi = exposure.maskedImage # add the background image to that view. mi += background.getImage() display1 = afw_display.Display(frame=1, backend='matplotlib') display1.scale("linear", "zscale") exposure.image.array[:] = gaussian(exposure.image.array, sigma=5) display1.mtv(exposure) ###Output _____no_output_____ ###Markdown It is good to get in the habit of mathmatical operations on maskedImages instead of images, because it scales the variance plane appropriately. For example, when you multiply a `MaskedImage` by 2, it multiplies the `Image` by 2 and the `Variance` by 4. **Exercise 2.1)** Coadds have dataId's defined by their SkyMap. Fetch the `deepCoadd` with `tract=9813`, `patch='3,3'` and `filter='HSC-I'` from the same repo. Bonus: a `deepCoadd_calexp` has had an additional aggressive background model applied called a `deepCoadd_calexp_background`. Confirm that the `deepCoadd_calexp` + `deepCoadd_calexp_background` = `deepCoadd` ###Code deepCoadd = butler.get('deepCoadd', tract=9813, patch='3,3', filter='HSC-I') deepCoadd_calexp_background = butler.get('deepCoadd_calexp_background', tract=9813, patch='3,3', filter='HSC-I') deepCoadd_calexp = butler.get('deepCoadd_calexp', tract=9813, patch='3,3', filter='HSC-I') mi = deepCoadd_calexp.maskedImage mi += deepCoadd_calexp_background.getImage() deepCoadd.image.array - deepCoadd_calexp.image.array ###Output _____no_output_____ ###Markdown 2.2 Catalogs (lsst.afw.table format)afwTables are for passing to tasks. The pipeline needed C++ readable table format, so we wrote one. If you want to pass a catalog to a Task, it'll probably take one of these. They are:* Row stores and* the column names are oriented for softwareThe source table immediatly output by processCcd is called `src` ###Code src = butler.get('src', visit=VISIT, ccd=CCD) src ###Output _____no_output_____ ###Markdown The returned object, `src`, is a `lsst.afw.table.SourceCatalog` object. ###Code src.getSchema() ###Output _____no_output_____ ###Markdown Inspecting the schema reveals that instFluxes are in uncalibrated units of counts. coord_ra/coord_dec are in units of radians. `lsst.afw.table.SourceCatalog`s have their own API. However if you are *just* going to use it for analysis, you can convert it to an AstroPy table or a pandas DataFrame: ###Code src.asAstropy() df = src.asAstropy().to_pandas() df.tail() ###Output _____no_output_____ ###Markdown 2.3 Catalogs (Parquet/PyArrow DataFrame format)* Output data product ready for analysis* Column store* Full visit and full tract options* Column namesThe parquet outputs have been transformed to database-specified units. Fluxes are in nanojanskys, coordinates are in degrees. These will match what you get via the Portal and the Catalog Access tool Simon showed last week.**NOTE:** The `sourceTable` is a relatively new edition to the Stack, and probably requires a stack version more recent than v19. ###Code parq = butler.get('sourceTable', visit=VISIT, ccd=CCD) ###Output _____no_output_____ ###Markdown The `ParquetTable` is just a light wrapper around a `pyarrow.parquet.ParquetFile`.You can get a parquet table from the butler, but it doesn't fetch any columns until you ask for them. It's a column store which means that it can read only one column at a time. This is great for analysis when you want to plot two million element arrays. In a row-store you'd have to read the whole ten million-row table just for those two columns you wanted. But don't even try to loop through rows! If you want a whole row, use the `afwTable`. Last I checked the processing step that consolidates the Source Tables from a per-ccd Source Table to a `parq = butler.get('sourceTable', visit=VISIT)` ###Code parq # inspect the columns with: parq.columns ###Output _____no_output_____ ###Markdown Note that the column names are different. Now fetch just the columns you want. For example: ###Code df = parq.toDataFrame(columns=['ra', 'decl', 'PsFlux', 'PsFluxErr', 'sky_source', 'PixelFlags_bad', 'PixelFlags_sat', 'PixelFlags_saturated']) ###Output _____no_output_____ ###Markdown **Exercise:** Using this DataFrame `df`, make a histogram of `PsFlux` for sky sources using this parquet source table. If `sky_source == True` then the source was not a normal detection, but rather an randomly placed centroid to measure properties of blank sky. The distribution should be centered at 0. **Exercise:** A parquet `objectTable_tract` contains deep coadd measurements for 1.5 sq. deg. tract.**Make a r-i vs. g-r plot** of stars with a r-band SNR > 100. Use `refExtendedness` == 0 to select for stars. It means that the galaxy model Flux was similar to the PSF Flux. By the looks of your plot, what do you think about using refExtendedness for star galaxy separation?* ###Code # butler = Butler('/datasets/hsc/repo/rerun/DM-23243/OBJECT/DEEP') # parq = butler.get('objectTable_tract', tract=9813) # parq.columns ###Output _____no_output_____ ###Markdown Tasks**TL;DR If you remember one thing about tasks it's go to http://pipelines.lsst.io, then click on lsst.pipe.base**On the landing page for lsst.pipe.base documenation https://pipelines.lsst.io/modules/lsst.pipe.base/index.html, you'll see a number of tutorials on how to use Tasks and how to create one.CmdlineTask extends Task with commandline driver utils for use with Gen2 Butlers, and will be deprecated soon. However, not all the links under "CommandlineTask" will become obsolete. For example, Retargeting subtasks of command-line tasks will live on.Read: https://pipelines.lsst.io/modules/lsst.pipe.base/task-framework-overview.htmlWhat is a Task?Tasks implement astronomical data processing functionality. They are:* **Configurable:** Modify a task’s behavior by changing its configuration. Automatically apply camera-specific modifications* **Hierarchical:** Tasks can call other tasks as subtasks* **Extensible:** Replace (“retarget”) any subtask with a variant. Write your own subclass of a task. ###Code # Edited highlights of ${PIPE_TASKS_DIR}/example/exampleStatsTask.py import sys import numpy as np from lsst.geom import Box2I, Point2I, Extent2I from lsst.afw.image import MaskedImageF from lsst.pipe.tasks.exampleStatsTasks import ExampleSimpleStatsTask, ExampleSigmaClippedStatsTask # Load a MaskedImageF -- an image containing floats # together with a mask and a per-pixel variance. WIDTH = 40 HEIGHT = 20 maskedImage = MaskedImageF(Box2I(Point2I(10, 20), Extent2I(WIDTH, HEIGHT))) x = np.random.normal(10, 20, size=WIDTH*HEIGHT) # Because we are shoving it into an ImageF and numpy defaults # to double precision X = x.reshape(HEIGHT, WIDTH).astype(np.float32) im = maskedImage.image im.array = X # We initialize the Task once but can call it many times. task = ExampleSimpleStatsTask() # Simply call the .run() method with the MaskedImageF. # Most Tasks have a .run() method. Look there first. result = task.run(maskedImage) # And print the result. print(result) ###Output Struct(mean=10.747188781565054; meanErr=0.7108371746222903; stdDev=20.1055114597963; stdDevErr=0.5023235396455004) ###Markdown Using a Task with configurationNow we are going to instantiate Tasks with two different configs. Configs must be set *before* instantiating the task. Do not change the config of an already-instatiated Task object. It will not do what you think it's doing. In fact, during commandline processing, the `Task` drivers such as `CmdLineTask` freeze the configs before running the Task. When you're running them from notebooks, they are not frozen, hence this warning. ###Code # Edited highlights of ${PIPE_TASKS_DIR}/example/exampleStatsTask.py config1 = ExampleSigmaClippedStatsTask.ConfigClass(numSigmaClip=1) config2 = ExampleSigmaClippedStatsTask.ConfigClass() config2.numSigmaClip = 3 task1 = ExampleSigmaClippedStatsTask(config=config1) task2 = ExampleSigmaClippedStatsTask(config=config2) print(task1.run(maskedImage).mean) print(task2.run(maskedImage).mean) # Example of what not to do # ------------------------- # task1 = ExampleSigmaClippedStatsTask(config=config1) # print(task1.run(maskedImage).mean) # DO NOT EVER DO THIS! # task1.config.numSigmaClip = 3 <--- bad bad bad # print(task1.run(maskedImage).mean) ###Output 10.687153584309756 10.822356706360981 ###Markdown Background Subtraction and Task ConfigurationThe following example of reconfiguring a task is one step in an introduction to `processCcd`: https://github.com/lsst-sqre/notebook-demo/blob/master/AAS_2019_tutorial/intro-process-ccd.ipynb`processCcd`, our basic source extractor run as the first step step in the pipeline, will be covered in more detail in Session 4. ###Code from lsst.meas.algorithms import SubtractBackgroundTask # Add the background back in so that we can remodel it (like we did above) postISRCCD = butler.get("calexp", visit=30502, ccd=CCD) bkgd = butler.get("calexpBackground", visit=30502, ccd=CCD) mi = exposure.maskedImage mi += bkgd.getImage() # Execute this cell to get fun & terrible results! bkgConfig = SubtractBackgroundTask.ConfigClass() bkgConfig.useApprox = False bkgConfig.binSize = 20 ###Output _____no_output_____ ###Markdown The `config` object here is an instance of a class that inherits from `lsst.pex.config.Config` that contains a set of `lsst.pex.config.Field` objects that define the options that can be modified. Each `Field` behaves more or less like a Python `property`, and you can get information on all of the fields in a config object by either using `help`: ###Code help(bkgConfig) SubtractBackgroundTask.ConfigClass.algorithm? bkgTask = SubtractBackgroundTask(config=bkgConfig) bkgResult = bkgTask.run(exposure) display1 = afw_display.Display(frame=1, backend='matplotlib') display1.scale("linear", min=-0.5, max=10) display1.mtv(exposure[700:1400,1800:2400]) ###Output _____no_output_____
Deep_Learning_Classifier_model.ipynb
###Markdown Import libraries & dataset ###Code import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import time import statistics as stats import requests import pickle import json from sklearn.svm import LinearSVC import xgboost as xgb from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier import tensorflow as tf from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.compose import ColumnTransformer from sklearn.feature_selection import SelectFromModel from sklearn.metrics import classification_report from sklearn.base import clone from sklearn.externals.joblib import dump, load from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS from imblearn.over_sampling import SMOTE, SMOTENC, ADASYN, BorderlineSMOTE from imblearn.under_sampling import NearMiss, RandomUnderSampler df = pd.read_csv('http://puma.swstats.info/files/kickstarter_with_trends.csv', index_col="ID") df.columns ###Output /usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+. warnings.warn(msg, category=FutureWarning) /usr/local/lib/python3.6/dist-packages/sklearn/externals/six.py:31: FutureWarning: The module is deprecated in version 0.21 and will be removed in version 0.23 since we've dropped support for Python 2.7. Please rely on the official version of six (https://pypi.org/project/six/). "(https://pypi.org/project/six/).", FutureWarning) /usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.neighbors.base module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.neighbors. Anything that cannot be imported from sklearn.neighbors is now part of the private API. warnings.warn(message, FutureWarning) ###Markdown Prepare for data cleaning ###Code link = 'https://3l7z4wecia.execute-api.us-east-1.amazonaws.com/default/api-dynamodb/' get_categories = { "operation": "list", "table": "categories", } categories = requests.post(link, json=get_categories) categories = categories.json()['Items'] categories_proper = dict() for item in categories: categories_proper[item['name']] = item['id'] # map NAME to ID get_main_categories = { "operation": "list", "table": "maincategories", } main_categories = requests.post(link, json=get_main_categories) main_categories = main_categories.json()['Items'] main_categories_proper = dict() for item in main_categories: main_categories_proper[item['name']] = item['id'] # map NAME to ID get_countries = { "operation": "list", "table": "countries", } countries = requests.post(link, json=get_countries) countries = countries.json()['Items'] countries_proper = dict() for item in countries: countries_proper[item['name']] = item['id'] # map NAME to ID ###Output _____no_output_____ ###Markdown Clean & prepare data* Calculate campaign length * Delete all incomplete data (like country == N,0")* Delete all kickstarter projects with different state than 'failed' and 'successful' * Cast to numerical types all non-numerical features and drop all empty data* Use Label Encoding or One-Hot Encoding ###Code df_clean = df.copy() indexes = df_clean[df_clean['country'] == 'N,0"'].index df_clean.drop(indexes, inplace=True) # drop live & undefined states indexes = df_clean[(df_clean['state'] == 'live') | (df_clean['state'] == 'undefined')].index df_clean.drop(indexes, inplace=True) df_clean['campaign_length'] = pd.to_timedelta((pd.to_datetime(df_clean['deadline']) - pd.to_datetime(df_clean['launched'])), unit='days').dt.days # df_clean = df_clean[(df_clean['usd_goal_real'] >= 10) & (df_clean['campaign_length'] >= 7)] # drop all with lower goal than 10$ and shorter than week ########################################################## # """ Label Encoding - if you want to run this, just comment lines with quotation marks jsons = dict() map_dict = { 'category': categories_proper, 'main_category': main_categories_proper, 'country': countries_proper, } for key, val in map_dict.items(): df_clean[key] = df_clean[key].map(val) json.dump(jsons, open('categories.json', 'w')) df_clean.drop(['tokenized_name', 'currency', 'name'], inplace=True, axis=1) df_clean.dropna(inplace=True) # """ ########################################################## ########################################################### """ One-Hot Encoding - if you want to run this, just comment lines with quotation marks column_transformer = ColumnTransformer([('encoder', OneHotEncoder(), ['category', 'main_category', 'currency', 'country'])], sparse_threshold=0, n_jobs=-1) onehot = pd.DataFrame(column_transformer.fit_transform(df_clean)).set_index(df_clean.index) new_cols_encoding = [col.replace('encoder__x0_', '').replace('encoder__x1_', '').replace('encoder__x2_', '').replace('encoder__x3_', '') for col in column_transformer.get_feature_names()] onehot.columns = new_cols_encoding df_clean = pd.concat([df_clean, onehot], axis=1) df_clean.drop(['category', 'main_category', 'currency', 'country', 'tokenized_name'], inplace=True, axis=1) df_clean = df_clean.loc[:,~df_clean.columns.duplicated()] """ ########################################################## df_xd = df_clean[~df_clean['state'].str.contains('successful')].index df_clean.loc[df_clean['state'].str.contains('successful'), 'state'] = 1 df_clean.loc[df_xd, 'state'] = 0 df_clean['state'] = df_clean['state'].astype(int) df_clean ###Output _____no_output_____ ###Markdown Check features correlationWe say features are dependant, if abs(correlation) > .5 ###Code corr = df_clean.corr() plt.matshow(corr) plt.show() corr[(corr > .5) | (corr < -.5)] ###Output _____no_output_____ ###Markdown Delete unnecessary featuresWe delete dupe features (like converted goal value) and the ones that user won't be able to provide, like backers. ###Code df_shortened = df_clean.copy() df_shortened.drop(['pledged', 'backers', 'usd pledged', 'deadline', 'launched', 'usd_pledged_real', 'goal'], axis=1, inplace=True) df_shortened ###Output _____no_output_____ ###Markdown Split dataSplit data for training & test set, with 10% being in test set. 30k is enough for testing. ###Code X = df_shortened.drop('state', axis=1) y = df_shortened['state'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.1, random_state=2137) # 90%:10% X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=.1, random_state=2137) # 81%:9% -> 90% X_train ###Output _____no_output_____ ###Markdown Data Over/Undersampling ###Code print(pd.Series(train_data['y']).value_counts()) def sample_data(sampler, X_train, y_train, cols): start = time.time() X_train_new, y_train_new = sampler.fit_sample(X_train, y_train) X_train_new = pd.DataFrame(X_train_new) X_train_new.columns = cols print(f"SMOTENC done in {round(time.time() - start, 2)} seconds") return { 'x': X_train_new, 'y': y_train_new, } train_data = sample_data(SMOTENC([0, 1, 2], n_jobs=-1), X_train, y_train, X_train.columns) test_data = { 'x': X_test, 'y': y_test } val_data = { 'x': X_val, 'y': y_val } print(pd.Series(train_data['y']).value_counts()) print(pd.Series(test_data['y']).value_counts()) print(pd.Series(val_data['y']).value_counts()) ###Output /usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function safe_indexing is deprecated; safe_indexing is deprecated in version 0.22 and will be removed in version 0.24. warnings.warn(msg, category=FutureWarning) /usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function safe_indexing is deprecated; safe_indexing is deprecated in version 0.22 and will be removed in version 0.24. warnings.warn(msg, category=FutureWarning) ###Markdown (Optional) Delete all irrelevant featuresDelete all irrelevant features, but keep AT MAX 5 ###Code """ If you want to use this cell, just comment lines with quotation marks at the beginning logistic = LogisticRegression(C=1, penalty="l2", max_iter=1000).fit(X_train, y_train) model = SelectFromModel(logistic, prefit=True, max_features=5) X_new = model.transform(X_train) selected_features = pd.DataFrame(model.inverse_transform(X_new), index=X_train.index, columns=X_train.columns) selected_columns = selected_features.columns[selected_features.var() != 0] X_train = X_train[selected_columns] X_test = X_test[selected_columns] selected_features """ ###Output _____no_output_____ ###Markdown Standarization & min-max scalingStandarization -> mean-stdMin-Max scaling -> min-max ###Code def standarize(X_train, X_test, X_val): cols = X_train.columns indexes_x_train = X_train.index indexes_x_test = X_test.index indexes_x_val = X_val.index X_train_categorical = X_train[['category', 'main_category', 'country']] X_test_categorical = X_test[['category', 'main_category', 'country']] X_val_categorical = X_val[['category', 'main_category', 'country']] scaler = StandardScaler() scaler.fit(X_train.drop(['category', 'main_category', 'country'], axis=1)) X_train = pd.concat([X_train_categorical, pd.DataFrame(scaler.transform(X_train.drop(['category', 'main_category', 'country'], axis=1))).set_index(indexes_x_train)], axis=1) X_test = pd.concat([X_test_categorical, pd.DataFrame(scaler.transform(X_test.drop(['category', 'main_category', 'country'], axis=1))).set_index(indexes_x_test)], axis=1) X_val = pd.concat([X_val_categorical, pd.DataFrame(scaler.transform(X_val.drop(['category', 'main_category', 'country'], axis=1))).set_index(indexes_x_val)], axis=1) X_train.columns = cols X_test.columns = cols X_val.columns = cols return X_train, X_test, X_val, scaler train_data['x'], test_data['x'], val_data['x'], standarizer = standarize(train_data['x'], test_data['x'], val_data['x']) test_data['x'] ###Output _____no_output_____ ###Markdown Load Standarizer (Scaler) from Web Server Deep Learning ###Code ! pip install -q tensorflow-model-optimization from tensorflow_model_optimization.sparsity import keras as sparsity l = tf.keras.layers batch_size = 1024 epochs = 500 end_step = np.ceil(1.0 * train_data['x'].shape[0] / batch_size).astype(np.int32) * epochs pruning_params = { 'pruning_schedule': sparsity.PolynomialDecay(initial_sparsity=0.01, final_sparsity=0.2, begin_step=round(end_step/epochs/2), end_step=end_step, frequency=end_step/epochs) } tf.random.set_seed(2137) pruned_model = tf.keras.Sequential([ sparsity.prune_low_magnitude( tf.keras.layers.Dense(12, input_dim=train_data['x'].shape[1], activation='selu'), **pruning_params), l.BatchNormalization(), sparsity.prune_low_magnitude( tf.keras.layers.Dense(12, activation='relu'),**pruning_params), l.Flatten(), sparsity.prune_low_magnitude( tf.keras.layers.Dense(12*train_data['x'].shape[1], activation='selu'),**pruning_params), l.Dropout(0.001), sparsity.prune_low_magnitude(tf.keras.layers.Dense(1, activation='sigmoid'), **pruning_params) ]) pruned_model.summary() pruned_model.compile( loss=tf.keras.losses.binary_crossentropy, optimizer='Adam', metrics=['accuracy']) # Add a pruning step callback to peg the pruning step to the optimizer's # step. Also add a callback to add pruning summaries to tensorboard callbacks = [ sparsity.UpdatePruningStep(), sparsity.PruningSummaries(log_dir=logdir, profile_batch=0) ] pruned_model.fit(train_data['x'],train_data['y'], batch_size=batch_size, epochs=epochs, verbose=1, callbacks=callbacks, validation_data=(val_data['x'],val_data['y'])) score = pruned_model.evaluate(test_data['x'],test_data['y'], verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) # Zapisanie modelu sieci pruned_model.save('Model_Sieci_Glebokiego_Uczenia') # Wczytanie modelu sieci siec = tf.keras.models.load_model('Model_Sieci_Glebokiego_Uczenia') import seaborn as sns y_pred=siec.predict_classes(train_data['x']) con_mat = tf.math.confusion_matrix(labels=train_data['y'], predictions=y_pred).numpy() con_mat_norm = np.around(con_mat.astype('float') / con_mat.sum(axis=1)[:, np.newaxis], decimals=2) con_mat_df = pd.DataFrame(con_mat_norm) figure = plt.figure(figsize=(8, 8)) sns.heatmap(con_mat_df, annot=True,cmap=plt.cm.Blues) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() ###Output _____no_output_____
Capstone WEEK 3-1: lab_jupyter_launch_site_location.ipynb
###Markdown **Launch Sites Locations Analysis with Folium** Estimated time needed: **40** minutes The launch success rate may depend on many factors such as payload mass, orbit type, and so on. It may also depend on the location and proximities of a launch site, i.e., the initial position of rocket trajectories. Finding an optimal location for building a launch site certainly involves many factors and hopefully we could discover some of the factors by analyzing the existing launch site locations. In the previous exploratory data analysis labs, you have visualized the SpaceX launch dataset using `matplotlib` and `seaborn` and discovered some preliminary correlations between the launch site and success rates. In this lab, you will be performing more interactive visual analytics using `Folium`. Objectives This lab contains the following tasks:* **TASK 1:** Mark all launch sites on a map* **TASK 2:** Mark the success/failed launches for each site on the map* **TASK 3:** Calculate the distances between a launch site to its proximitiesAfter completed the above tasks, you should be able to find some geographical patterns about launch sites. Let's first import required Python packages for this lab: ###Code !pip3 install folium !pip3 install wget import folium import wget import pandas as pd # Import folium MarkerCluster plugin from folium.plugins import MarkerCluster # Import folium MousePosition plugin from folium.plugins import MousePosition # Import folium DivIcon plugin from folium.features import DivIcon ###Output _____no_output_____ ###Markdown If you need to refresh your memory about folium, you may download and refer to this previous folium lab: [Generating Maps with Python](https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/labs/module\_3/DV0101EN-3-5-1-Generating-Maps-in-Python-py-v2.0.ipynb) Task 1: Mark all launch sites on a map First, let's try to add each site's location on a map using site's latitude and longitude coordinates The following dataset with the name `spacex_launch_geo.csv` is an augmented dataset with latitude and longitude added for each site. ###Code # Download and read the `spacex_launch_geo.csv` spacex_csv_file = wget.download('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/spacex_launch_geo.csv') spacex_df=pd.read_csv(spacex_csv_file) ###Output _____no_output_____ ###Markdown Now, you can take a look at what are the coordinates for each site. ###Code # Select relevant sub-columns: `Launch Site`, `Lat(Latitude)`, `Long(Longitude)`, `class` spacex_df = spacex_df[['Launch Site', 'Lat', 'Long', 'class']] launch_sites_df = spacex_df.groupby(['Launch Site'], as_index=False).first() launch_sites_df = launch_sites_df[['Launch Site', 'Lat', 'Long']] launch_sites_df ###Output _____no_output_____ ###Markdown Above coordinates are just plain numbers that can not give you any intuitive insights about where are those launch sites. If you are very good at geography, you can interpret those numbers directly in your mind. If not, that's fine too. Let's visualize those locations by pinning them on a map. We first need to create a folium `Map` object, with an initial center location to be NASA Johnson Space Center at Houston, Texas. ###Code # Start location is NASA Johnson Space Center nasa_coordinate = [29.559684888503615, -95.0830971930759] site_map = folium.Map(location=nasa_coordinate, zoom_start=10) ###Output _____no_output_____ ###Markdown We could use `folium.Circle` to add a highlighted circle area with a text label on a specific coordinate. For example, ###Code # Create a blue circle at NASA Johnson Space Center's coordinate with a popup label showing its name circle = folium.Circle(nasa_coordinate, radius=1000, color='#d35400', fill=True).add_child(folium.Popup('NASA Johnson Space Center')) # Create a blue circle at NASA Johnson Space Center's coordinate with a icon showing its name marker = folium.map.Marker( nasa_coordinate, # Create an icon as a text label icon=DivIcon( icon_size=(20,20), icon_anchor=(0,0), html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % 'NASA JSC', ) ) site_map.add_child(circle) site_map.add_child(marker) ###Output _____no_output_____ ###Markdown and you should find a small yellow circle near the city of Houston and you can zoom-in to see a larger circle. Now, let's add a circle for each launch site in data frame `launch_sites` *TODO:* Create and add `folium.Circle` and `folium.Marker` for each launch site on the site map An example of folium.Circle: `folium.Circle(coordinate, radius=1000, color='000000', fill=True).add_child(folium.Popup(...))` An example of folium.Marker: `folium.map.Marker(coordinate, icon=DivIcon(icon_size=(20,20),icon_anchor=(0,0), html='%s' % 'label', ))` ###Code # Initial the map site_map = folium.Map(location=nasa_coordinate, zoom_start=5) # For each launch site, add a Circle object based on its coordinate (Lat, Long) values. In addition, add Launch site name as a popup label for lat, long, label in zip(launch_sites_df['Lat'], launch_sites_df['Long'], launch_sites_df['Launch Site']): circle=folium.Circle([lat,long],radius=1000,color='#d35400', fill=True).add_child(folium.Popup(str(label))) marker=folium.Marker([lat,long], icon=DivIcon( icon_size=(20,20), icon_anchor=(0,0), html='<div style="font-size:20; color:#d35400;">'+label+'</div><br/>', ) ) site_map.add_child(circle) site_map.add_child(marker) site_map ###Output _____no_output_____ ###Markdown The generated map with marked launch sites should look similar to the following: Now, you can explore the map by zoom-in/out the marked areas, and try to answer the following questions:* Are all launch sites in proximity to the Equator line?* Are all launch sites in very close proximity to the coast?Also please try to explain your findings. Task 2: Mark the success/failed launches for each site on the map Next, let's try to enhance the map by adding the launch outcomes for each site, and see which sites have high success rates.Recall that data frame spacex_df has detailed launch records, and the `class` column indicates if this launch was successful or not ###Code spacex_df.tail(10) spacex_df ###Output _____no_output_____ ###Markdown Next, let's create markers for all launch records.If a launch was successful `(class=1)`, then we use a green marker and if a launch was failed, we use a red marker `(class=0)` Note that a launch only happens in one of the four launch sites, which means many launch records will have the exact same coordinate. Marker clusters can be a good way to simplify a map containing many markers having the same coordinate. Let's first create a `MarkerCluster` object ###Code marker_cluster = MarkerCluster() ###Output _____no_output_____ ###Markdown *TODO:* Create a new column in `launch_sites` dataframe called `marker_color` to store the marker colors based on the `class` value ###Code launch_sites_df['marker_color'] = '' # Apply a function to check the value of `class` column # If class=1, marker_color value will be green # If class=0, marker_color value will be red # Function to assign color to launch outcome def assign_marker_color(launch_outcome): if launch_outcome == 1: return 'green' else: return 'red' spacex_df['marker_color'] = spacex_df['class'].apply(assign_marker_color) spacex_df.tail(10) ###Output _____no_output_____ ###Markdown *TODO:* For each launch result in `spacex_df` data frame, add a `folium.Marker` to `marker_cluster` ###Code # Add marker_cluster to current site_map site_map.add_child(marker_cluster) # for each row in spacex_df data frame # create a Marker object with its coordinate # and customize the Marker's icon property to indicate if this launch was successed or failed, # e.g., icon=folium.Icon(color='white', icon_color=row['marker_color'] for index, row in spacex_df.iterrows(): # TODO: Create and add a Marker cluster to the site map marker= folium.Marker((row['Lat'],row['Long']), icon=folium.Icon(color = 'white',icon_color=row['marker_color'])) marker_cluster.add_child(marker) site_map ###Output _____no_output_____ ###Markdown Your updated map may look like the following screenshots: From the color-labeled markers in marker clusters, you should be able to easily identify which launch sites have relatively high success rates. TASK 3: Calculate the distances between a launch site to its proximities Next, we need to explore and analyze the proximities of launch sites. Let's first add a `MousePosition` on the map to get coordinate for a mouse over a point on the map. As such, while you are exploring the map, you can easily find the coordinates of any points of interests (such as railway) ###Code # Add Mouse Position to get the coordinate (Lat, Long) for a mouse over on the map formatter = "function(num) {return L.Util.formatNum(num, 5);};" mouse_position = MousePosition( position='topright', separator=' Long: ', empty_string='NaN', lng_first=False, num_digits=20, prefix='Lat:', lat_formatter=formatter, lng_formatter=formatter, ) site_map.add_child(mouse_position) site_map ###Output _____no_output_____ ###Markdown Now zoom in to a launch site and explore its proximity to see if you can easily find any railway, highway, coastline, etc. Move your mouse to these points and mark down their coordinates (shown on the top-left) in order to the distance to the launch site. You can calculate the distance between two points on the map based on their `Lat` and `Long` values using the following method: ###Code from math import sin, cos, sqrt, atan2, radians def calculate_distance(lat1, lon1, lat2, lon2): # approximate radius of earth in km R = 6373.0 lat1 = radians(lat1) lon1 = radians(lon1) lat2 = radians(lat2) lon2 = radians(lon2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance = R * c return distance ###Output _____no_output_____ ###Markdown *TODO:* Mark down a point on the closest coastline using MousePosition and calculate the distance between the coastline point and the launch site. ###Code # find coordinate of the closet coastline # e.g.,: Lat: 28.56367 Lon: -80.57163 # distance_coastline = calculate_distance(launch_site_lat, launch_site_lon, coastline_lat, coastline_lon) launch_site_lat = 28.563197 launch_site_lon = -80.576820 coastline_lat = 28.5631 coastline_lon = -80.56807 distance_coastline = calculate_distance(launch_site_lat, launch_site_lon, coastline_lat, coastline_lon) distance_coastline ###Output _____no_output_____ ###Markdown *TODO:* After obtained its coordinate, create a `folium.Marker` to show the distance ###Code # Create and add a folium.Marker on your selected closest coastline point on the map # Display the distance between coastline point and launch site using the icon property # for example # distance_marker = folium.Marker( # coordinate, # icon=DivIcon( # icon_size=(20,20), # icon_anchor=(0,0), # html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % "{:10.2f} KM".format(distance), # ) # ) distance_coastline = calculate_distance(launch_site_lat, launch_site_lon, coastline_lat, coastline_lon) coordinate_coastline = [coastline_lat, coastline_lon] distance_marker = folium.Marker( coordinate_coastline, icon=DivIcon( icon_size=(20,20), icon_anchor=(0,0), html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % "{:10.2f} KM".format(distance_coastline), ) ) ###Output _____no_output_____ ###Markdown *TODO:* Draw a `PolyLine` between a launch site to the selected coastline point ###Code # Create a `folium.PolyLine` object using the coastline coordinates and launch site coordinate #lines=folium.PolyLine(locations=coordinates, weight=1) coordinates_coastline = [[launch_site_lat, launch_site_lon], [coastline_lat, coastline_lon]] lines=folium.PolyLine(locations=coordinates_coastline, weight=1) site_map.add_child(lines) site_map.add_child(lines) ###Output _____no_output_____ ###Markdown Your updated map with distance line should look like the following screenshot: *TODO:* Similarly, you can draw a line betwee a launch site to its closest city, railway, highway, etc. You need to use `MousePosition` to find the their coordinates on the map first A railway map symbol may look like this: A highway map symbol may look like this: A city map symbol may look like this: ###Code # Create a marker with distance to a closest city, railway, highway, etc. # Draw a line between the marker to the launch site # Create a marker with distance to a closest city # Draw a line between the marker to the launch site launch_site_lat = 28.563197 launch_site_lon = -80.576820 Titusville_lat = 28.61105 Titusville_lon = -80.81028 distance_Titusville = calculate_distance(launch_site_lat, launch_site_lon, Titusville_lat, Titusville_lon) coordinate_Titusville = [Titusville_lat, Titusville_lon] distance_marker = folium.Marker( coordinate_Titusville, icon=DivIcon( icon_size=(20,20), icon_anchor=(0,0), html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % "{:10.2f} KM".format(distance_Titusville), ) ) coordinates_Titusville = [[launch_site_lat, launch_site_lon], [Titusville_lat, Titusville_lon]] lines=folium.PolyLine(locations=coordinates_Titusville, weight=1) site_map.add_child(lines) # Create a marker with distance to a closest city, railway, highway, etc. # Draw a line between the marker to the launch site # Create a marker with distance to a closest highway # Draw a line between the marker to the launch site launch_site_lat = 28.563197 launch_site_lon = -80.576820 SamuelCphilips_lat = 28.5634 SamuelCphilips_lon = -80.57086 distance_SamuelCphilips = calculate_distance(launch_site_lat, launch_site_lon, SamuelCphilips_lat, SamuelCphilips_lon) coordinate_SamuelCphilips = [SamuelCphilips_lat,SamuelCphilips_lon] distance_marker = folium.Marker( coordinate_SamuelCphilips, icon=DivIcon( icon_size=(20,20), icon_anchor=(0,0), html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % "{:10.2f} KM".format(distance_SamuelCphilips), ) ) coordinates_SamuelCphilips = [[launch_site_lat, launch_site_lon], [SamuelCphilips_lat, SamuelCphilips_lon]] lines=folium.PolyLine(locations=coordinates_SamuelCphilips, weight=1) site_map.add_child(lines) # Create a marker with distance to a closest city, railway, highway, etc. # Draw a line between the marker to the launch site # Create a marker with distance to a closest railway # Draw a line between the marker to the launch site launch_site_lat = 28.563197 launch_site_lon = -80.576820 nasaRailway_lat = 28.5724 nasaRailway_lon = -80.58525 distance_nasaRailway = calculate_distance(launch_site_lat, launch_site_lon, nasaRailway_lat, nasaRailway_lon) coordinate_nasaRailway = [nasaRailway_lat, nasaRailway_lon] distance_marker = folium.Marker( coordinate_nasaRailway, icon=DivIcon( icon_size=(20,20), icon_anchor=(0,0), html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % "{:10.2f} KM".format(distance_nasaRailway), ) ) coordinates_nasaRailway = [[launch_site_lat, launch_site_lon], [nasaRailway_lat, nasaRailway_lon]] lines=folium.PolyLine(locations=coordinates_nasaRailway, weight=1) site_map.add_child(lines) ###Output _____no_output_____
Kopie_von_Kopie_von_batch_process_4_neural_style_tf_shareable.ipynb
###Markdown Style Transfer Batch ProcessorStyle transfer is the process of applying one texture (the Style image) to the content of another image (the Content image). this notebook is based on [derrick neural style playground](https://github.com/dvschultz/ai/blob/master/neural_style_tf.ipynb).Only use this once you understand the playground!This notebook is meant to speed up the process.I run this notebook across a few accounts for processingQuestions? twitter: @errthangisalive Set up our RuntimeColab needs to know we need to use a GPU-powered machine in order to do style transfers. At the top of this page, click on the `Runtime` tab, then select `Change runtime type`. In the modal that pops up, select `GPU` under the `Hardware accelerator` options.We then need to make sure we’re using the latest version of Tensorflow 1, otherwise we get some annoying messages. ###Code #install TF 1.15 to avoid some annoying warning messages # Restart runtime using 'Runtime' -> 'Restart runtime...' %tensorflow_version 1.x import tensorflow as tf print(tf.__version__) !nvidia-smi ###Output _____no_output_____ ###Markdown Install the neural-style-tf libraryWe’re going to work with the library called Neural Style. This is a version I’ve customized to do a couple things that I think are helpful for artists.In the next cell, type `Shift+Return` to run the code ###Code #import some image display tools from IPython.display import Image, display #install the library in colab !git clone https://github.com/dvschultz/neural-style-tf #change into that directory %cd neural-style-tf/ #install the library dependencies (it's likely Colab already has them installed, but let's be sure) !pip install -r requirements.txt #install the VGG19 pre-trained model !wget http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-19.mat ###Output _____no_output_____ ###Markdown 2 ways to do Batch Processing1. Optical flow, this process takes a long time but I think better results2. Batch style transfer, this process is fasterwe'll do everything from google drive so lets connect that first. ###Code from google.colab import drive drive.mount('/content/drive') cd /content/neural-style-tf/ ###Output _____no_output_____ ###Markdown optical flow for video in 1, 2, 3 steps1. first we create image sequences from the video with ffmpeg2. then we generate optical flow files3. then we combine the files into a video with ffmpeg ###Code #1 create image sequences from video (tip: use a google drive path) !ffmpeg -i inputsomefilename.mp4 outputsomefilename%04d.png #2 generate opt-flow frame by frame (tip: use a google drive path) cd /content/neural-style-tf/video_input/ !bash ./make-opt-flow.sh "inputsomefilename%04d.png" "./outputsomefoldername" #3 style transfers frames by frame use (tip: use a google drive path) cd /content/neural-style-tf/ !python neural_style.py --video --video_input_dir ./outputsomefoldername --style_imgs yourstyleimage.png --max_size 1024 --frame_iterations 500 --style_scale 0.1 --content_weight 1e0 --start_frame 1 --end_frame 99 --first_frame_iterations 400 --verbose --content_frame_frmt somefilename{}.png --init_img_type random --video_output_dir /myDrivefoldersomewhere #4 create video from image sequences (tip: use a google drive path) !ffmpeg -i inputsomefilename%04d.png -vcodec mpeg4 outputsomefilename.mp4 ###Output _____no_output_____ ###Markdown batch style transferthis is fairly easy, batch process for a folder of imagesfirst you must edit the neural_style.py replace this line (648):``` img_path = os.path.join(out_dir, args.img_output_dir+'-'+str(args.max_iterations)+'.png')```with:``` img_path = os.path.join(out_dir, str(args.content_img.split(".")[0])+'.png')``` ###Code #(tip: use a google drive path) import os for files in os.listdir("/content/drive/MyDrive/input4"): !python neural_style.py --content_img_dir /content/drive/MyDrive/input4 --content_img $files --style_imgs f2.jpg --max_size 500 --max_iterations 500 --style_scale 0.75 --content_weight 1e0 --img_output_dir /content/drive/MyDrive/output ###Output _____no_output_____
.ipynb_checkpoints/IexFinder-checkpoint.ipynb
###Markdown Symbolic Calculation of Extreme Values Zoufiné Lauer-Baré ([LinkedIn](https://www.linkedin.com/in/zoufine-lauer-bare-14677a77), [OrcidID](https://orcid.org/0000-0002-7083-6909))The ```exFinder``` package, provides methods that calculate the extreme values of multivariate functions $$f:\mathbb{R}^2\to\mathbb{R}$$ symbolically. It is based mathematically on ```SymPy``` and ```NumPy```. ###Code f = (x-2)**4+(x-2*y)**2 exFinder(f) f=y**2*(x-1)+x**2*(x+1) exFinder(f) f = sym.exp(-(x**2+y**2)) exFinder(f) ###Output _____no_output_____
repayment_simulations.ipynb
###Markdown Repayment of varying total amounts Asumptions:- The same annual income progression - starting with 25k and increasing 5% each year- Constant inflation rate of 2%- Varying total amounts to pay off - 30k, 40k, 50k ###Code annual_rpis = [2 for _ in range(30)] annual_salaries = [27000 * 1.05 ** i for i in range(30)] total_debts = [30000, 40000, 50000] repayments0, interest_added_0, balance_0 = simulate_repayment(loan_outstanding=total_debts[0], annual_rpis=annual_rpis, annual_salaries=annual_salaries) repayments1, interest_added_1, balance_1 = simulate_repayment(loan_outstanding=total_debts[1], annual_rpis=annual_rpis, annual_salaries=annual_salaries) repayments2, interest_added_2, balance_2 = simulate_repayment(loan_outstanding=total_debts[2], annual_rpis=annual_rpis, annual_salaries=annual_salaries) fig, ax = plt.subplots(2, 1, figsize=(12, 12)) x_months = np.arange(1, len(balance_0)+1) / 12 ax[0].plot(x_months, balance_0, label="debt balance - 30k debt") ax[0].plot(x_months, balance_1, label="debt balance - 40k debt") ax[0].plot(x_months, balance_2, label="debt balance - 50k debt") ax[0].grid() ax[0].set_xlabel("Years of repayment") ax[0].set_ylabel("Outstanding balance") ax[0].legend() ax[1].plot(x_months, repayments0, label="monthly repayment - 30k debt") ax[1].plot(x_months, repayments1, label="monthly repayment - 40k debt") ax[1].plot(x_months, repayments2, label="monthly repayment - 50k debt") ax[1].plot(x_months, interest_added_0, label="monthly interest added - 30k debt") ax[1].plot(x_months, interest_added_1, label="monthly interest added - 40k debt") ax[1].plot(x_months, interest_added_2, label="monthly interest added - 50k debt") ax[1].set_xlabel("Years of repayment") ax[1].set_ylabel("Interest added / Monthly repayment") ax[1].grid() ax[1].legend() plt.show() pv_repayments0 = calculate_present_value(repayments0, annual_rpis) pv_repayments1 = calculate_present_value(repayments1, annual_rpis) pv_repayments2 = calculate_present_value(repayments2, annual_rpis) years_repayments0 = months_till_clearance(balance_0) / 12 years_repayments1 = months_till_clearance(balance_1) / 12 years_repayments2 = months_till_clearance(balance_2) / 12 print(f"Present Value of repayments - 30k debt: {pv_repayments0} in {np.round(years_repayments0, 1)} years") print(f"Present Value of repayments - 40k debt: {pv_repayments1} in {np.round(years_repayments1, 1)} years") print(f"Present Value of repayments - 50k debt: {pv_repayments2} in {np.round(years_repayments2, 1)} years") ###Output _____no_output_____ ###Markdown Repayment with varying inflation rates Asumptions:- The same annual income progression - starting with 25k and increasing 5% each year- Constant amount to pay off - 30k- Varying average inflation rates 2%, 3%, 4% ###Code annual_rpi_2 = [2 for _ in range(30)] annual_rpi_3 = [3 for _ in range(30)] annual_rpi_4 = [4 for _ in range(30)] annual_salaries = [27000 * 1.05 ** i for i in range(30)] total_debt = 30000 repayments0, interest_added_0, balance_0 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpi_2, annual_salaries=annual_salaries) repayments1, interest_added_1, balance_1 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpi_3, annual_salaries=annual_salaries) repayments2, interest_added_2, balance_2 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpi_4, annual_salaries=annual_salaries) fig, ax = plt.subplots(2, 1, figsize=(12, 12)) x_months = np.arange(1, len(balance_0)+1) / 12 ax[0].plot(x_months, balance_0, label=r"debt balance - 2% rpi") ax[0].plot(x_months, balance_1, label=r"debt balance - 3% rpi") ax[0].plot(x_months, balance_2, label=r"debt balance - 4% rpi") ax[0].set_xlabel("Years of repayment") ax[0].set_ylabel("Outstanding balance") ax[0].grid() ax[0].legend() ax[1].plot(x_months, repayments0, label=r"monthly repayment - 2% rpi") ax[1].plot(x_months, repayments1, label=r"monthly repayment - 3% rpi") ax[1].plot(x_months, repayments2, label=r"monthly repayment - 4% rpi") ax[1].plot(x_months, interest_added_0, label=r"monthly interest added - 2% rpi") ax[1].plot(x_months, interest_added_1, label=r"monthly interest added - 3% rpi") ax[1].plot(x_months, interest_added_2, label=r"monthly interest added - 4% rpi") ax[1].set_xlabel("Years of repayment") ax[1].set_ylabel("Interest added / Monthly repayment") ax[1].grid() ax[1].legend() plt.show() pv_repayments0 = np.sum(np.array(repayments0) / np.array(get_monthly_discount_factor(annual_rpi_2)[:len(repayments0)])) pv_repayments1 = np.sum(np.array(repayments1) / np.array(get_monthly_discount_factor(annual_rpi_3)[:len(repayments1)])) pv_repayments2 = np.sum(np.array(repayments2) / np.array(get_monthly_discount_factor(annual_rpi_4)[:len(repayments2)])) years_repayments0 = months_till_clearance(balance_0) / 12 years_repayments1 = months_till_clearance(balance_1) / 12 years_repayments2 = months_till_clearance(balance_2) / 12 print(f"Present Value of repayments - 2% rpi: {pv_repayments0} in {np.round(years_repayments0, 1)} years") print(f"Present Value of repayments - 3% rpi: {pv_repayments1} in {np.round(years_repayments1, 1)} years") print(f"Present Value of repayments - 4% rpi: {pv_repayments2} in {np.round(years_repayments2, 1)} years") ###Output _____no_output_____ ###Markdown Repayment with varying salary progressions Asumptions:- Constant amount to pay off - 30k- Constant average inflation rate - 2%- Varying annual income progression - 23k with 3%, 27k with 5%, 50k with 15% ###Code total_debt = 30000 annual_rpis = [2 for _ in range(30)] annual_salaries_1 = [23000 * 1.03 ** i for i in range(30)] annual_salaries_2 = [27000 * 1.05 ** i for i in range(30)] annual_salaries_3 = [50000 * 1.15 ** i for i in range(30)] repayments0, interest_added_0, balance_0 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpis, annual_salaries=annual_salaries_1) repayments1, interest_added_1, balance_1 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpis, annual_salaries=annual_salaries_2) repayments2, interest_added_2, balance_2 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpis, annual_salaries=annual_salaries_3) fig, ax = plt.subplots(2, 1, figsize=(12, 12)) x_months = np.arange(1, len(balance_0)+1) / 12 ax[0].plot(x_months, balance_0, label=r"debt balance - 23k salary") ax[0].plot(x_months, balance_1, label=r"debt balance - 27k salary") ax[0].plot(x_months, balance_2, label=r"debt balance - 50k salary") ax[0].set_xlabel("Years of repayment") ax[0].set_ylabel("Outstanding balance") ax[0].grid() ax[0].legend() ax[1].plot(x_months, repayments0, label=r"monthly repayment - 23k salary") ax[1].plot(x_months, repayments1, label=r"monthly repayment - 27k salary") ax[1].plot(x_months, repayments2, label=r"monthly repayment - 50k salary") ax[1].plot(x_months, interest_added_0, label=r"monthly interest added - 23k salary") ax[1].plot(x_months, interest_added_1, label=r"monthly interest added - 27k salary") ax[1].plot(x_months, interest_added_2, label=r"monthly interest added - 50k salary") ax[1].set_xlabel("Years of repayment") ax[1].set_ylabel("Interest added / Monthly repayment") ax[1].grid() ax[1].legend() plt.show() pv_repayments0 = np.sum(np.array(repayments0) / np.array(get_monthly_discount_factor(annual_rpis)[:len(repayments0)])) pv_repayments1 = np.sum(np.array(repayments1) / np.array(get_monthly_discount_factor(annual_rpis)[:len(repayments1)])) pv_repayments2 = np.sum(np.array(repayments2) / np.array(get_monthly_discount_factor(annual_rpis)[:len(repayments2)])) years_repayments0 = months_till_clearance(balance_0) / 12 years_repayments1 = months_till_clearance(balance_1) / 12 years_repayments2 = months_till_clearance(balance_2) / 12 print(f"Present Value of repayments - 23k salary: {pv_repayments0} in {np.round(years_repayments0, 1)} years") print(f"Present Value of repayments - 27k salary: {pv_repayments1} in {np.round(years_repayments1, 1)} years") print(f"Present Value of repayments - 50k salary: {pv_repayments2} in {np.round(years_repayments2, 1)} years") ###Output _____no_output_____ ###Markdown Repayment with discretionary repayments Asumptions:- Constant amount to pay off - 30k- Constant average inflation rate - 2%- Constant annual income progression - 40k with 10%- Varying amounts of discretionary repayments - 0, 5k, 10k ###Code total_debt = 30000 annual_rpis = [2 for _ in range(30)] annual_salaries = [40000 * 1.05 ** i for i in range(30)] repayments0, interest_added_0, balance_0 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpis, annual_salaries=annual_salaries) repayments1, interest_added_1, balance_1 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpis, annual_salaries=annual_salaries, discretionary_repayments={0: 5000}) repayments2, interest_added_2, balance_2 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpis, annual_salaries=annual_salaries, discretionary_repayments={0: 10000}) fig, ax = plt.subplots(2, 1, figsize=(12, 12)) x_months = np.arange(1, len(balance_0)+1) / 12 ax[0].plot(x_months, balance_0, label=r"debt balance - 0k repayment") ax[0].plot(x_months, balance_1, label=r"debt balance - 5k repayment") ax[0].plot(x_months, balance_2, label=r"debt balance - 10k repayment") ax[0].set_xlabel("Years of repayment") ax[0].set_ylabel("Outstanding balance") ax[0].grid() ax[0].legend() ax[1].plot(x_months, repayments0, label=r"monthly repayment - 0k repayment") ax[1].plot(x_months, repayments1, label=r"monthly repayment - 5k repayment") ax[1].plot(x_months, repayments2, label=r"monthly repayment - 10k repayment") ax[1].plot(x_months, interest_added_0, label=r"monthly interest added - 0k repayment") ax[1].plot(x_months, interest_added_1, label=r"monthly interest added - 5k repayment") ax[1].plot(x_months, interest_added_2, label=r"monthly interest added - 10k repayment") ax[1].set_xlabel("Years of repayment") ax[1].set_ylabel("Interest added / Monthly repayment") ax[1].grid() ax[1].legend() ax[1].set_ylim(0, 500) plt.show() pv_repayments0 = np.sum(np.array(repayments0) / np.array(get_monthly_discount_factor(annual_rpis)[:len(repayments0)])) pv_repayments1 = np.sum(np.array(repayments1) / np.array(get_monthly_discount_factor(annual_rpis)[:len(repayments1)])) pv_repayments2 = np.sum(np.array(repayments2) / np.array(get_monthly_discount_factor(annual_rpis)[:len(repayments2)])) years_repayments0 = months_till_clearance(balance_0) / 12 years_repayments1 = months_till_clearance(balance_1) / 12 years_repayments2 = months_till_clearance(balance_2) / 12 print(f"Present Value of repayments - 0k repayment: {pv_repayments0} in {np.round(years_repayments0, 1)} years") print(f"Present Value of repayments - 5k repayment: {pv_repayments1} in {np.round(years_repayments1, 1)} years") print(f"Present Value of repayments - 10k repayment: {pv_repayments2} in {np.round(years_repayments2, 1)} years") ###Output _____no_output_____ ###Markdown Calculating the real (inflation adjusted) rate of return of each repayment _investments_ ###Code investment_5k_return = (1 + (pv_repayments0 - pv_repayments1) / 5000) ** (1 / (years_repayments0)) investment_10k_return = (1 + (pv_repayments0 - pv_repayments2) / 10000) ** (1 / (years_repayments0)) print(f"Annualised rate of return on debt repayment: {np.round((investment_5k_return - 1) * 100, 2)}%") print(f"Annualised rate of return on debt repayment: {np.round((investment_10k_return - 1) * 100, 2)}%") total_debt = 45000 annual_rpis = [2 for _ in range(30)] annual_salaries = [27000 * 1.05 ** i for i in range(30)] repayments0, interest_added_0, balance_0 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpis, annual_salaries=annual_salaries) repayments1, interest_added_1, balance_1 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpis, annual_salaries=annual_salaries, discretionary_repayments={0: 5000}) repayments2, interest_added_2, balance_2 = simulate_repayment(loan_outstanding=total_debt, annual_rpis=annual_rpis, annual_salaries=annual_salaries, discretionary_repayments={0: 10000}) fig, ax = plt.subplots(2, 1, figsize=(12, 12)) x_months = np.arange(1, len(balance_0)+1) / 12 ax[0].plot(x_months, balance_0, label=r"debt balance - 0k repayment") ax[0].plot(x_months, balance_1, label=r"debt balance - 5k repayment") ax[0].plot(x_months, balance_2, label=r"debt balance - 10k repayment") ax[0].set_xlabel("Years of repayment") ax[0].set_ylabel("Outstanding balance") ax[0].grid() ax[0].legend() ax[1].plot(x_months, repayments0, label=r"monthly repayment - 0k repayment") ax[1].plot(x_months, repayments1, label=r"monthly repayment - 5k repayment") ax[1].plot(x_months, repayments2, label=r"monthly repayment - 10k repayment") ax[1].plot(x_months, interest_added_0, label=r"monthly interest added - 0k repayment") ax[1].plot(x_months, interest_added_1, label=r"monthly interest added - 5k repayment") ax[1].plot(x_months, interest_added_2, label=r"monthly interest added - 10k repayment") ax[1].set_xlabel("Years of repayment") ax[1].set_ylabel("Interest added / Monthly repayment") ax[1].grid() ax[1].legend() ax[1].set_ylim(0, 700) plt.show() pv_repayments0 = np.sum(np.array(repayments0) / np.array(get_monthly_discount_factor(annual_rpis)[:len(repayments0)])) pv_repayments1 = np.sum(np.array(repayments1) / np.array(get_monthly_discount_factor(annual_rpis)[:len(repayments1)])) pv_repayments2 = np.sum(np.array(repayments2) / np.array(get_monthly_discount_factor(annual_rpis)[:len(repayments2)])) years_repayments0 = months_till_clearance(balance_0) / 12 years_repayments1 = months_till_clearance(balance_1) / 12 years_repayments2 = months_till_clearance(balance_2) / 12 print(f"Present Value of repayments - 0k repayment: {pv_repayments0} in {np.round(years_repayments0, 1)} years") print(f"Present Value of repayments - 5k repayment: {pv_repayments1} in {np.round(years_repayments1, 1)} years") print(f"Present Value of repayments - 10k repayment: {pv_repayments2} in {np.round(years_repayments2, 1)} years") investment_5k_return = (1 + (pv_repayments0 - pv_repayments1) / 5000) ** (1 / (years_repayments0)) investment_10k_return = (1 + (pv_repayments0 - pv_repayments2) / 10000) ** (1 / (years_repayments0)) print(f"Annualised rate of return on debt repayment: {np.round((investment_5k_return - 1) * 100, 2)}%") print(f"Annualised rate of return on debt repayment: {np.round((investment_10k_return - 1) * 100, 2)}%") ###Output Annualised rate of return on debt repayment: -2.11% Annualised rate of return on debt repayment: 0.62%
labs/Lab_03_DL Keras Intro Convolutional Models.ipynb
###Markdown Keras Intro: Convolutional ModelsKeras Documentation: https://keras.ioIn this notebook we explore how to use Keras to implement Convolutional models Machine learning on images ###Code import pandas as pd import numpy as np %matplotlib inline import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown MNIST ###Code from keras.datasets import mnist (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train.shape X_test.shape plt.imshow(X_train[0], cmap='gray') X_train_flat = X_train.reshape(-1, 28*28) X_test_flat = X_test.reshape(-1, 28*28) X_train_flat.shape X_train_sc = X_train_flat.astype('float32') / 255.0 X_test_sc = X_test_flat.astype('float32') / 255.0 from keras.utils.np_utils import to_categorical y_train_cat = to_categorical(y_train) y_test_cat = to_categorical(y_test) y_train[0] y_train_cat[0] y_train_cat.shape y_test_cat.shape ###Output _____no_output_____ ###Markdown Fully connected on images ###Code from keras.models import Sequential from keras.layers import Dense import keras.backend as K K.clear_session() model = Sequential() model.add(Dense(512, input_dim=28*28, activation='relu')) model.add(Dense(256, activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) h = model.fit(X_train_sc, y_train_cat, batch_size=128, epochs=10, verbose=1, validation_split=0.3) plt.plot(h.history['acc']) plt.plot(h.history['val_acc']) plt.legend(['Training', 'Validation']) plt.title('Accuracy') plt.xlabel('Epochs') test_accuracy = model.evaluate(X_test_sc, y_test_cat)[1] test_accuracy ###Output _____no_output_____ ###Markdown Convolutional layers ###Code from keras.layers import Conv2D from keras.layers import MaxPool2D from keras.layers import Flatten, Activation X_train_t = X_train_sc.reshape(-1, 28, 28, 1) X_test_t = X_test_sc.reshape(-1, 28, 28, 1) X_train_t.shape K.clear_session() model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=(28, 28, 1))) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Activation('relu')) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) model.summary() model.fit(X_train_t, y_train_cat, batch_size=128, epochs=2, verbose=1, validation_split=0.3) model.evaluate(X_test_t, y_test_cat) ###Output _____no_output_____
devel/skimage_vs_matplotlib.ipynb
###Markdown Ignore label 0 (default) ###Code data1, data2 = make_data([10,10]) show_data(data1,data2) print(skimage.metrics.adapted_rand_error(data1, data2)) data1, data2 = make_data([11,10]) show_data(data1,data2) print(skimage.metrics.adapted_rand_error(data1, data2)) ###Output (0.26315789473684215, 0.7368421052631579, 0.7368421052631579) ###Markdown Use all labels ###Code data1, data2 = make_data([10,10]) show_data(data1,data2) print(skimage.metrics.adapted_rand_error(data1, data2, ignore_labels=())) data1, data2 = make_data([11,10]) show_data(data1,data2) print(skimage.metrics.adapted_rand_error(data1, data2, ignore_labels=())) ###Output (0.44881889763779526, 0.5343511450381679, 0.5691056910569106) (0.43578447983734325, 0.5471574104502136, 0.5823714585519413) ###Markdown Check labels missplacement ###Code data1, data2 = make_data([10,10]) data2 = data1.copy() data2[4,4]=1 show_data(data1,data2) print(skimage.metrics.adapted_rand_error(data1, data2, ignore_labels=())) data1, data2 = make_data([10,10]) data2 = data1.copy() data2[4,4]=0 show_data(data1,data2) print(skimage.metrics.adapted_rand_error(data1, data2, ignore_labels=())) ###Output (0.01572656741455225, 0.9953350296861747, 0.9734549979261717)
notebook/.ipynb_checkpoints/3 - EDA_feat_engineering-checkpoint.ipynb
###Markdown 3. Análise Exploratória (EDA) e Feature Engineering ###Code # libs: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.max_columns',60) #Testes estatísticos import scipy from scipy.stats import stats import statsmodels.api as sm from feature_engine.categorical_encoders import CountFrequencyCategoricalEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline #Clusterização from sklearn.cluster import DBSCAN from sklearn.neighbors import NearestNeighbors from kneed import KneeLocator #fearture selection: from sklearn.feature_selection import f_classif, chi2 from statsmodels.stats.outliers_influence import variance_inflation_factor import warnings warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown Dados Constantes ###Code DATA_INPUT_CLEANED = '../data/DATA_train_cleaned.csv' DATA_OUTPUT_TRAIN_ENG = '../data/DATA_train_eng.csv' df_train = pd.read_csv(DATA_INPUT_CLEANED) df_train.head() df_train = df_train.drop('Unnamed: 0', axis=1) df_train.shape ###Output _____no_output_____ ###Markdown **Base de dados:**Base de treino com 4209 observações, sendo 849 imóveis da baixada santista.Cidades: Santos, São Vicente, Guarujá, Praia grande, Mongaguá, Itanhaém, Peruíbe e Bertioga. 3.1 Análise Exploratória (EDA) Classificação de variáveis ###Code df_train.dtypes # Transformação de Object para dateTime def para_datetime(df): df['Check-In'] = pd.to_datetime(df_train['Check-In'], format ='%Y-%m-%d') df['Check-Out'] = pd.to_datetime(df_train['Check-Out'], format ='%Y-%m-%d') return df df_train = para_datetime(df_train) col_num = ['Número Hóspedes', 'Número Quartos', 'Número Camas', 'Número Banheiros', 'Avaliação', 'Número Comentários', 'Preço com taxas'] col_cat = ['Academia', 'Ar-condicionado', 'Cozinha', 'Elevador', 'Estacionamento gratuito', 'Máquina de Lavar', 'Permitido animais', 'Piscina', 'Secadora', 'Self check-In', 'Vista para as águas', 'Vista para o mar', 'Wi-Fi', 'Café da Manhã', 'Entrada/saída para esquis', 'Jacuzzi', 'Lareira interna','Lava-louças', 'Novo preço mais baixo', 'Raridade', 'Localização'] col_date = ['Check-In', 'Check-Out'] Target = ['Preço/Noite'] # Número de ID print(f'Total de ID únicos: {len(df_train["ID"].unique())}') # Transformar tudo para letras maíusculas. df_train['Localização'] = df_train['Localização'].apply(lambda x: x.upper()) ###Output _____no_output_____ ###Markdown Histograma Númericas e categóricas ###Code col_cat.remove('Localização') for colunas in col_num + col_cat + Target: plt.figure(figsize=(6, 4)) plt.hist(df_train[colunas]) plt.title(f'Histograma de {colunas}', fontsize=12, fontweight='bold') plt.xlabel(f'Valores de {colunas}') plt.ylabel(f'Frequência') #plt.savefig(f'../img/hist_{colunas}.png') plt.show() ###Output _____no_output_____ ###Markdown **Considerações:** **Número de hóspedes:** Frequência entre 4 e 6 – distribuição assimétrica à direita**Número de quartos:** Frequência 1, seguido de 2 e 3 – distribuição assimétrica à direita**Número de camas:** 2 é a maior frequência disparado, depois 1, 3 camas -distribuição assimétrica à direita.**Número de banheiros:** maior frequência 1, depois bem longe 2.**Avaliação:** distribuição assimétrica à esquerda e maior frequência de notas 5, seguidos de 4,75.**Número de comentários:** assimétrica à direita e maior frequência 25.**Preço com taxas:** distribuição assimétrica à direita e maior frequência de preços totais (duas diárias) entre 500 e 1000 reais.**Preço/Noite:** distribuição assimétrica à direita e maior frequência na faixa de 100 a 200 reais.**Academia:** maioria não tem. Proporção ≈ 4000/250 **Ar-condicionado:** praticamente empatados entre ter e não.**Cozinha:** Maioria tem. Proporção ≈ 2700/1500 **Elevador:** Maioria não tem. Proporção ≈ 3000/1400 **Estacionamento gratuíto:** ligeiramente maior para sim. Proporção ≈ 2400/1800 **Máquina de lavar:** Maioria não tem. Proporção ≈ 3700/500 **Permitidos animais:** A maioria não permite. Proporção ≈ 3500/800 **Piscina:** A maioria não tem. Proporção ≈ 3000/1200 **Secadora:** Imensa maioria não tem. Proporção ≈ 4000/100 **Self check-in:** A maioria não tem. Proporção ≈ 3300/1000 **Vista para águas:** maioria não tem. Proporção ≈ 4000/100 **Vista para o mar:** maioria não tem. Proporção ≈ 3400/800 **Wi-fi:** Maioria tem. Proporção ≈ 3600/500 **Oferece café da manhã:** Não tem em 100% das observações **Entrada e saída de esqui:** Não tem em 100% das observações **Jacuzzi:** Não tem em praticamente 100% das observações. **Lareira interna:** Não tem em praticamente 100% das observações **Lava-louças:** Não tem em praticamente 100% das observações. **Tag Preço Novo Mais baixo:** Praticamente dividido. **Tag Raridade:** Praticamente dividido. Raio-X - Imóveis mais frequentes na base de dados.Imóvel localizado em Santos com capacidade de 4 a 6 hospedes, sendo 1 quarto, 2 camas, 1 banheiro, avaliação acima de 4,75 (notas de 1-5), com no máximo 25 comentários no anúncio e preço/noite na faixa entre 100 e 200 reais. Matriz de Correlação: ###Code # Correção entre as variáveis numéricas correlacao_num = df_train[col_num + Target].corr()['Preço/Noite'].sort_values(ascending=False) correlacao_num # Matriz de Correlação correlacao = df_train[col_num + Target].corr() plt.figure(figsize=(8,6)) sns.heatmap(correlacao, cmap="YlGnBu", annot=True) plt.savefig(f'../img/matriz_correlacao.png') plt.show() # Estatísticamente colunas = ['Número Hóspedes', 'Número Quartos', 'Número Camas', 'Número Banheiros', 'Avaliação', 'Número Comentários'] correlation_features = [] for col in colunas: cor, p = stats.spearmanr(df_train[col],df_train[Target]) if p <= 0.5: correlation_features.append(col) print(f'p-value: {p}, correlation: {cor}') print(f'Existe correlação entre {col} e {Target}.') print('--'*30) else: print(f'p-value: {p}, correlation: {cor}') print(f'Não há correlação entre {col} e {Target}.') print('--'*30) ###Output p-value: 6.623876109521824e-188, correlation: 0.4288234209127937 Existe correlação entre Número Hóspedes e ['Preço/Noite']. ------------------------------------------------------------ p-value: 5.19620215557542e-226, correlation: 0.46604714774207756 Existe correlação entre Número Quartos e ['Preço/Noite']. ------------------------------------------------------------ p-value: 5.751401084000197e-79, correlation: 0.28409140272357275 Existe correlação entre Número Camas e ['Preço/Noite']. ------------------------------------------------------------ p-value: 5.559706477507899e-225, correlation: 0.4651001524381476 Existe correlação entre Número Banheiros e ['Preço/Noite']. ------------------------------------------------------------ p-value: 6.461844436581712e-12, correlation: 0.10561393105023931 Existe correlação entre Avaliação e ['Preço/Noite']. ------------------------------------------------------------ p-value: 3.035135545539631e-11, correlation: -0.10218483438753917 Existe correlação entre Número Comentários e ['Preço/Noite']. ------------------------------------------------------------ ###Markdown **Considerações:** **Matriz de Correlação**Correlações positiva em Número de banheiros, número de quartos e número de hospedes. 0.59, 0.58 e 0.52 respectivamente. Seguido de Número de camas 0.37.Sendo assim O preço/Noite aumenta quanto maior for o número de banheiros, quartos e hospedes o que nos remete que quanto maior o imóvel mais caro será a diária dele. Baixa correlação em avaliação e números de comentários. Este sendo negativa. (Conforme abaixa o preço aumenta o número de comentários.**Correlação entre as features.**Alta correlação positiva entre as variáveis número de hospedes com número de quartos, camas e banheiros, o que sustenta uma das argumentações de quanto maior estes itens maior será a diária (Preço/Noite). Hipóteses ###Code atributos = ['Número Hóspedes', 'Número Quartos', 'Número Camas', 'Número Banheiros'] ###Output _____no_output_____ ###Markdown H1 ###Code # H1: Imóveis com maior número de atributos (número de Hospedes, Quartos, Camas e banheiro) possuem maior preço/noite maior? for colunas in atributos: plt.figure(figsize=(10,8)) sns.boxplot(x=df_train[colunas], y= 'Preço/Noite', data=df_train, showfliers=False) plt.title(f'Box Plot {colunas}') plt.xlabel(colunas) plt.ylabel('Preço/Noite') #plt.savefig(f'../img/box_plot_atributos_{colunas}.png') plt.show() ###Output _____no_output_____ ###Markdown **Considerações:**Graficamente é possível ver a tendência de crescimento. Quanto maior é número desses itens maior será o preço/Noite H2 ###Code # H2: Imóveis com Comodidades tem o preço/noite maior? for colunas in col_cat: plt.figure(figsize=(6,6)) sns.boxplot(x=df_train[colunas], y='Preço/Noite', data=df_train, showfliers=False) plt.title(f'Box Plot {colunas}') plt.xlabel(colunas) plt.ylabel('Preço/Noite') #plt.savefig(f'../img/box_plot_comodidades_{colunas}.png') plt.show() ###Output _____no_output_____ ###Markdown Testes das Hipóteses H1 e H2: ###Code def teste_t(df, features, target='0', alpha=0.05): """ Teste T-Student df = DataFrame fearures = List of columns to be tested target = 'Target' alpha = significance index. Default is 0.05 """ import scipy for colunas in features: true_target = df.loc[df[colunas] == 1, [target]] false_target = df.loc[df[colunas]==0, [target]] teste_T_result = scipy.stats.ttest_ind(true_target, false_target, equal_var=False) if teste_T_result[1] < alpha: print(f'{colunas}: ') print(f'{teste_T_result}') print(f'Não') print('-'*30) else: print(f'{colunas}: ') print(f'{teste_T_result}') print(f'Sim - O preço é maior') print('-'*30) # H1: Imóveis com maior número de atributos (número de Hospesdes, Quartos, Camas e banheiro) possuem maior preço/noite maior? teste_t(df_train, atributos, target='Preço/Noite') ###Output Número Hóspedes: Ttest_indResult(statistic=array([nan]), pvalue=array([nan])) Sim - O preço é maior ------------------------------ Número Quartos: Ttest_indResult(statistic=array([nan]), pvalue=array([nan])) Sim - O preço é maior ------------------------------ Número Camas: Ttest_indResult(statistic=array([0.20198042]), pvalue=array([0.84178474])) Sim - O preço é maior ------------------------------ Número Banheiros: Ttest_indResult(statistic=array([-0.41358328]), pvalue=array([0.67920837])) Sim - O preço é maior ------------------------------ ###Markdown **Considerações:**É estatisticamente comprovado pelo teste t-student de que quanto maior for o tamanho do imóvel maior será o preço dele. ###Code # H2: Imóveis com Comodidades tem o preço/noite maior? teste_t(df_train, col_cat, target='Preço/Noite') ###Output Academia: Ttest_indResult(statistic=array([-2.04011699]), pvalue=array([0.04266947])) Não ------------------------------ Ar-condicionado: Ttest_indResult(statistic=array([1.9791777]), pvalue=array([0.04786125])) Não ------------------------------ Cozinha: Ttest_indResult(statistic=array([4.1373094]), pvalue=array([3.59416842e-05])) Não ------------------------------ Elevador: Ttest_indResult(statistic=array([-17.06749817]), pvalue=array([5.08097563e-63])) Não ------------------------------ Estacionamento gratuito: Ttest_indResult(statistic=array([-0.90894358]), pvalue=array([0.36343889])) Sim - O preço é maior ------------------------------ Máquina de Lavar: Ttest_indResult(statistic=array([-1.24409889]), pvalue=array([0.21396324])) Sim - O preço é maior ------------------------------ Permitido animais: Ttest_indResult(statistic=array([-11.28474957]), pvalue=array([5.30645242e-28])) Não ------------------------------ Piscina: Ttest_indResult(statistic=array([19.40450262]), pvalue=array([3.35987321e-75])) Não ------------------------------ Secadora: Ttest_indResult(statistic=array([1.91078605]), pvalue=array([0.05745774])) Sim - O preço é maior ------------------------------ Self check-In: Ttest_indResult(statistic=array([-9.72963491]), pvalue=array([5.59752902e-22])) Não ------------------------------ Vista para as águas: Ttest_indResult(statistic=array([-1.15786276]), pvalue=array([0.24810592])) Sim - O preço é maior ------------------------------ Vista para o mar: Ttest_indResult(statistic=array([-8.80590041]), pvalue=array([3.70878473e-18])) Não ------------------------------ Wi-Fi: Ttest_indResult(statistic=array([6.87587315]), pvalue=array([1.29321065e-11])) Não ------------------------------ Café da Manhã: Ttest_indResult(statistic=array([-5.77656846]), pvalue=array([6.15574438e-06])) Não ------------------------------ Entrada/saída para esquis: Ttest_indResult(statistic=array([-0.26163455]), pvalue=array([0.81050166])) Sim - O preço é maior ------------------------------ Jacuzzi: Ttest_indResult(statistic=array([7.11528731]), pvalue=array([1.36042142e-09])) Não ------------------------------ Lareira interna: Ttest_indResult(statistic=array([5.75807653]), pvalue=array([0.00027015])) Não ------------------------------ Lava-louças: Ttest_indResult(statistic=array([2.18167626]), pvalue=array([0.04971726])) Não ------------------------------ Novo preço mais baixo: Ttest_indResult(statistic=array([nan]), pvalue=array([nan])) Sim - O preço é maior ------------------------------ Raridade: Ttest_indResult(statistic=array([nan]), pvalue=array([nan])) Sim - O preço é maior ------------------------------ ###Markdown **Considerações do teste:**Academia, Ar-condicionado, cozinha, elevador, permitido animais, piscina, self- Check-In, Vista para o mar, wi-fi, café da manhã, Jacuzzi, lareira interna e lava-louças. Não possuem a diária maior (Preço/Noite) estatisticamente de acordo com o teste t-student.Estacionamento gratuito, máquina de lavar, secadora, vista para águas, entrada/saída para esquis, Tag novo preço mais baixo e Raridade. Possuem o preço maior (Preço/Noite) estatisticamente de acordo com o teste t-student.**Observação:**Piscina, Wi-fi, Jacuzzi e Lava-louças embora graficamente apontaram como tendo maior preço/noite, elas não foram estatisticamente significantes no teste t-student.Vamos entender o porquê de vista para águas tem o preço mais alto do que vista para o mar. Graficamente: Na vista para o mar. A caixa que possui maior tanho e maior cauda é aquela que o preço é menor. Em relação a vista para águas. O tamanho das caixas e a cauda são parecidos.Neste caso o ideal seria agrupar as duas fatures. E testar novamente para saber se ter água a frente influencia no preço/noite. H3 - Localização ###Code len(df_train['Localização'].unique()) # vmmos observar a distribuição: plt.figure(figsize=(12,8)) df_train['Localização'].hist() plt.show() df_train['Localização'].value_counts() ###Output _____no_output_____ ###Markdown Para facilitar, vamos transformar essa variável categórica em frequência.**Neste caso teremos pontos com maior concentração** ###Code # Usando o transformador de Frequency Encounder. cfce = CountFrequencyCategoricalEncoder(encoding_method='frequency', variables=['Localização']) df_train_transf = cfce.fit_transform(df_train) plt.figure(figsize=(8,6)) df_train_transf['Localização'].hist() plt.show() ###Output _____no_output_____ ###Markdown Agora é posível ver melhor a sua distribuição.Temos um local de maior concentração e depois alguns outros locais. Seria possível dizer que pode até haver duas modas. ###Code # H3: Existe Correlação entre a localização e o Preço/Noite? local = ['Localização', 'Preço/Noite'] correlacao_local = df_train_transf[local].corr()['Preço/Noite'] correlacao_local # vamos testar estatísticamente: cor, p = stats.spearmanr(df_train_transf['Localização'],df_train_transf['Preço/Noite']) if p <= 0.5: print(f'p-value: {p}, correlation: {cor}') print(f'Existe correlação.') else: print(f'p-value: {p}, correlation: {cor}') print(f'Não há correlação.') ###Output p-value: 4.3741112668780545e-08, correlation: -0.08426624393023412 Existe correlação. ###Markdown **Considerações:**É possível observar que 95% de confiança que o preço/noite tende a ser menor em locais com maior concentração de imóveis disponíveis. Ou seja, quanto maior a oferta menor o preço. **Feature Engineering:**Criar uma coluna sinalizando se o local tem alta demanda naquele local. Comportamento Preço/Noite ao longo do período de coleta ###Code df_train.pivot_table(values='Preço/Noite', columns='Check-In',aggfunc='mean').T.plot() plt.show() # Primeiro, vamos gerar um dataframe agrupado por mês, com a média, desvio padrão, min e máximo. df_preco_medio = df_train.groupby('Check-In').agg(Mean = ('Preço/Noite', 'mean'), Desvio = ('Preço/Noite', 'std'), Median = ('Preço/Noite', 'median'), Min = ('Preço/Noite', 'min'), Max = ('Preço/Noite', 'max')).reset_index() df_preco_medio plt.figure(figsize=(16, 4)) #faz o plot da linha plt.plot(df_preco_medio['Check-In'], df_preco_medio['Mean'], 'o-', label='Média') plt.plot(df_preco_medio['Check-In'], df_preco_medio['Desvio'], 'o--', label='Desvio') # Adiciona títulos plt.title( 'Gráfico da média e desvio-padrão Preço/Noite no período', fontsize=15, fontweight='bold') plt.xlabel('Check-In') plt.ylabel('Valor de Preço/Noite (R$)') plt.legend() plt.savefig(f'../img/media_preço_noite_por_periodo.png') plt.show() ###Output _____no_output_____ ###Markdown **Considerações** É possível notar uma queda acentuada no dia 02/04 - motivo - Feriado Sexta-feira Santa.Não é possível afirmar pois faltam mais dados de outros períodos, mas sendo o check-in no dia do feriado o preço a priori seria menor.Considerando ser uma região litoranea, o preços podem ser mais altos na meses mais quentes do ano.Verão: Janeiro, Fevereiro e Março Lista de Feriados ###Code # Importar lista de feriados df_feriados = pd.read_csv('../data/feriados_nacionais_2021.csv', sep=';') df_feriados def transform_holiday_table(df): df.replace({'feriado nacional' : '1', 'ponto facultativo': '1'}, inplace=True) df.rename(columns={'status': 'É_feriado'}, inplace=True) df.rename(columns={'data': 'Check-In' }, inplace=True) df['Check-In'] = pd.to_datetime(df_feriados['Check-In'], format ='%Y-%m-%d') return df df_feriados = transform_holiday_table(df_feriados) df_feriados # Vamos juntar as duas tabelas Preço Médio e Feriados df_preco_medio = df_preco_medio.merge(df_feriados, left_on='Check-In', right_on='Check-In', how='left') df_preco_medio = df_preco_medio.fillna(0) df_preco_medio ###Output _____no_output_____ ###Markdown **Considerações**É possível perceber que quando a data de check-In coincide no mesmo dia do feriado temos uma redução de preço médio.**Featuring Engineering:**Criar uma coluna informando se o feriado no dia do check-In e na semana Valor da taxa ###Code def create_taxa(df): df['Diária com taxas'] = df['Preço com taxas'] / 2 df['Taxa'] = df['Diária com taxas'] - df['Preço/Noite'] # Tratando Valores Negativos df['Taxa'] = df['Taxa'].mask(df['Taxa'].lt(0)).ffill().fillna(0).convert_dtypes() return df # Criando coluna temporária diária com taxas. df_train['Diária com taxas'] = df_train['Preço com taxas'] / 2 # Calculo da Taxa df_train['Taxa'] = df_train['Diária com taxas'] - df_train['Preço/Noite'] # Percebemmos que surgiriam valores negativos que não fazem sentido. df_train.loc[df_train['Taxa'] < 0] # Transformação dos valores negativos em 0 df_train['Taxa'] = df_train['Taxa'].mask(df_train['Taxa'].lt(0)).ffill().fillna(0).convert_dtypes() df_train['Taxa'].value_counts() # Observando a distribuição da variável criada. df_train['Taxa'].hist() plt.show() ###Output _____no_output_____ ###Markdown **Conclusões:**Apesar das transformações realizadas. Os valores são inconsistentes e não fazem sentido.Dropar as colunas Preço com taxas, Diária com taxas e taxas Será que há clusters? ###Code # Vamos usar o DBSCAN X = df_train.drop({'ID', 'Check-In', 'Check-Out'}, axis=1) cfce = CountFrequencyCategoricalEncoder(encoding_method='frequency', variables=['Localização']) pipe = Pipeline(steps=[('scaler', MinMaxScaler())]) X = cfce.fit_transform(X) X = pipe.fit_transform(X) # DBSCAN # método para tunar o eps # trabalhando com o número de ouro 10 vizinhos nearest_neighbors = NearestNeighbors(n_neighbors=11) neighbors = nearest_neighbors.fit(X) distances, indices = neighbors.kneighbors(X) distances = np.sort(distances[:,10], axis=0) # Escolha do EPS i = np.arange(len(distances)) knee = KneeLocator(i, distances, S=1, curve='convex', direction='increasing', interp_method='polynomial') fig = plt.figure(figsize=(5, 5)) knee.plot_knee() plt.xlabel("Points") plt.ylabel("Distance") plt.show() print(distances[knee.knee]) # trabalhando com o núemro de eps fornecido no gráfico. db = DBSCAN(eps=distances[knee.knee], min_samples=11).fit(X) labels = db.labels_ fig = plt.figure(figsize=(10, 10)) sns.scatterplot(X[:,0], X[:,1], hue=["cluster={}".format(x) for x in labels]) plt.show() ###Output _____no_output_____ ###Markdown **Conclusão:**Podemos perceber que não há grupos, porem foi identificado outliers.Vamos criar uma coluna sinalizando quem são os outliers. 3.2 Feature Engineering **Ações:*** Agrupar as variáveis vista para águas e vista para o mar* Criar uma coluna sinalizando se o local tem alta demanda oferta de locais disponíveis naquele local.* Criar uma coluna informando se é feriado no dia do check-In com peso negativo* Criar uma coluna informando se há feriado na semana do check-In.* Criar coluna é outlier* Transformar a coluna Check-in em dia, mês e ano. 1. Agrupar as variáveis vista para águas e vista para o mar em uma única variável. ###Code # Agrupando as duas variáveis. df_train['Vista'] = df_train['Vista para as águas'] + df_train['Vista para o mar'] df_train.drop({'Vista para as águas', 'Vista para o mar'}, axis=1, inplace=True) # 0 não tem esse atributo # 1 tem uma ou outra vista. # 2 Tem as duas vistas. df_train['Vista'].value_counts() # Vamos testar: features = ['Vista'] teste_t(df_train, features , target='Preço/Noite') def create_vista(df): """ Create variable called Vista df= Dataframe """ df['Vista'] = df_train['Vista para as águas'] + df['Vista para o mar'] return df ###Output _____no_output_____ ###Markdown A dúvida anterior era se as duas variáveis teriam melhor desempenho no teste t-studend. Porém não houve melhora na estatística. 2. Criar uma coluna sinalizando se o local tem alta demanda oferta de locais disponíveis naquele local ###Code def tranform_frequency(df, variables='Localização'): """ Transform categorical variable into frequency df = dataset variable = name of vaviable to be transformed """ from feature_engine.categorical_encoders import CountFrequencyCategoricalEncoder cfce = CountFrequencyCategoricalEncoder(encoding_method='frequency', variables=[variables]) df = cfce.fit_transform(df) return df df_train = tranform_frequency(df_train, variables='Localização') df_train['Localização'].max() def eng_create_demand(df): """ Create new a column called Demanda from maximum localization df= dataset """ df['Demanda'] = df['Localização'] df['Demanda'] = [1 if i == df['Localização'].max() else 0 for i in df['Demanda']] return df df_train = eng_create_demand(df_train) df_train['Demanda'].value_counts() ###Output _____no_output_____ ###Markdown 3. Criar uma coluna informando se é feriado no dia do check-In ###Code df_feriados = pd.read_csv('../data/feriados_nacionais_2021.csv', sep=';') def eng_create_is_holiday(df , df_feriados): """ Create new column called É feriado. df = Dataframe df_feriados = Dafaframe contendo uma lista de feriados nacionais """ #import da tabela feriado df_feriados = df_feriados.drop('evento', axis=1) df_feriados.replace({'feriado nacional' : '1', 'ponto facultativo': '1'}, inplace=True) df_feriados.rename(columns={'status': 'É_feriado'}, inplace=True) df_feriados.rename(columns={'data': 'Check-In' }, inplace=True) df_feriados['Check-In'] = pd.to_datetime(df_feriados['Check-In'], format ='%Y-%m-%d') # Vamos juntar as duas tabelas Preço Médio e Feriados df = df.merge(df_feriados, left_on='Check-In', right_on='Check-In', how='left') #preenche os nulos com 0 df = df.fillna(0) return df df_train = eng_create_is_holiday(df_train, df_feriados) df_train['É_feriado'].value_counts() ###Output _____no_output_____ ###Markdown 4. Identificar os outliers ###Code labels df_train['É outilier'] = labels df_train['É outilier'].value_counts() def eng_is_outlier(df, n_neighbors=11 ): """ Create column is outlier from DBSCAM model df = DataFrame n_neighbors = default is 11 """ #libs from feature_engine.categorical_encoders import CountFrequencyCategoricalEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.cluster import DBSCAN from sklearn.neighbors import NearestNeighbors from kneed import KneeLocator X = df.drop({'ID', 'Check-In', 'Check-Out'}, axis=1) cfce = CountFrequencyCategoricalEncoder(encoding_method='frequency', variables=['É Feriado']) pipe = Pipeline(steps=[('scaler', MinMaxScaler())]) X = cfce.fit_transform(X) X = pipe.fit_transform(X) nearest_neighbors = NearestNeighbors(n_neighbors=11) neighbors = nearest_neighbors.fit(X) distances, indices = neighbors.kneighbors(X) distances = np.sort(distances[:,10], axis=0) i = np.arange(len(distances)) knee = KneeLocator(i, distances, S=1, curve='convex', direction='increasing', interp_method='polynomial') db = DBSCAN(eps=distances[knee.knee], min_samples=11).fit(X) labels = db.labels_ df['É outilier'] = labels return df #df_train = eng_is_outlier(df_train) ###Output _____no_output_____ ###Markdown 5. Transformar a coluna Check-in em dia, mês e ano. ###Code df_train['Check-In'].dt.year df_train['Check-In'].dt.weekday ###Output _____no_output_____ ###Markdown As colunas ano e dia da semana são constantes, neste caso vamos colocar-las na funçao e processo de split. ###Code def create_dates(df, date='Check-In'): """ Split date into year, month, day and day of year df = DataFrame date = put date column. Default is 'Check-In' In week, Monday is 0 and Sunday is 6. """ df['Mes'] = df[date].dt.month df['Dia'] = df[date].dt.day df['Semana_do_ano'] = df[date].dt.week return df df_train = create_dates(df_train) df_train.head() ###Output _____no_output_____ ###Markdown 6. Criar uma coluna informando se há feriado na semana do check-In ###Code # Tabela de feriados df_feriados def eng_create_holiday_week(df , df_feriados): """ Create new column called Semana de feriado. df = Dataframe df_feriados = Dafaframe contendo uma lista de feriados nacionais """ #import da tabela feriado df_feriados = df_feriados.drop({'evento', 'status'}, axis=1) df_feriados.rename(columns={'data': 'Check-In' }, inplace=True) df_feriados['Check-In'] = pd.to_datetime(df_feriados['Check-In'], format ='%Y-%m-%d') df_feriados['Semana de Feriado'] = df_feriados['Check-In'].dt.week # Vamos juntar as duas tabelas Preço Médio e Feriados df = df.merge(df_feriados, left_on='Check-In', right_on='Check-In', how='left') #preenche os nulos com 0 df = df.fillna(int(0)) return df df_train = eng_create_holiday_week(df_train, df_feriados) df_train['Semana de Feriado'].value_counts() df_train.head() ###Output _____no_output_____ ###Markdown Exportar ###Code df_train.to_csv(DATA_OUTPUT_TRAIN_ENG) ###Output _____no_output_____
Models and Tags Analysis notebooks/Logistic regression model.ipynb
###Markdown Model Analysis with Logistic regression ###Code import pandas as pd import numpy as np import re from tqdm import tqdm import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt import seaborn as sns from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from wordcloud import WordCloud from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem.snowball import SnowballStemmer from sklearn.model_selection import train_test_split from sklearn.multiclass import OneVsRestClassifier from sklearn.linear_model import SGDClassifier from sklearn.linear_model import LogisticRegression from sklearn import metrics from sklearn.metrics import f1_score,precision_score,recall_score %%time ## sample_500k is a sample from main dataset preprocess_data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Stack overflow Tag /preprocessed_3title_100k.csv") preprocess_data.head() preprocess_data.head() def text_splitter(text): return text.split() # binary='true' will give a binary vectorizer tag_vectorizer = CountVectorizer(tokenizer = text_splitter, binary=True) multi_label_y = tag_vectorizer.fit_transform(preprocess_data['tags'].values.astype(str)) # make sum column wise tag_column_sum = multi_label_y.sum(axis=0).tolist()[0] # To select n number of top tags def select_top_tags(n): # To get sotred list (means: tags appear in maximum number of questions come first) # top 10: [3711, 15246, 22934, 15324, 1054, 15713, 3720, 24481, 14905, 1897] sorted_tags = sorted(range(len(tag_column_sum)), key=lambda i: tag_column_sum[i], reverse=True) # With this line of code we get tags in our columns which are come in most of the questions # we will get shape: (999999, n) multi_label_n_y = multi_label_y[:,sorted_tags[:n]] return multi_label_n_y # def questions_covered_fn(n): multi_label_n_y = select_top_tags(n) # This line will give us row wise sum of each row [[1, 2], [[3], # [4, 3]] to [7]] row_sum_array = multi_label_n_y.sum(axis=1) # Counts the number of non-zero values in the array return (np.count_nonzero(row_sum_array==0)) # With this code we checking how much percent questions are explained by how many tags # Here we are starting from 500 because we think top 500 are most important tags we can't skip them questions_covered=[] total_tags=multi_label_y.shape[1] total_qs=preprocess_data.shape[0] for i in range(500, total_tags, 100): questions_covered.append(np.round(((total_qs-questions_covered_fn(i))/total_qs)*100,3)) multi_label_n_y = select_top_tags(500) print("number of questions that are not covered :", questions_covered_fn(5500),"out of ", total_qs) print("Number of tags in sample :", multi_label_y.shape[1]) print("number of tags taken :", multi_label_n_y.shape[1],"-->",round((multi_label_n_y.shape[1]/multi_label_y.shape[1]),3)*100,"%") total_size=preprocess_data.shape[0] train_size=int(0.80*total_size) x_train=preprocess_data.head(train_size) x_test=preprocess_data.tail(total_size - train_size) y_train = multi_label_n_y[0:train_size,:] y_test = multi_label_n_y[train_size:total_size,:] # To get new features with tfidf technique get 200000 features with upto 3-grams vectorizer = TfidfVectorizer(min_df=0.00009, max_features=200000, smooth_idf=True, norm="l2", tokenizer = text_splitter, sublinear_tf=False, ngram_range=(1,3)) # Apply this vectorizer only on question data column x_train_multi_label = vectorizer.fit_transform(x_train['question']) x_test_multi_label = vectorizer.transform(x_test['question']) # Now check data shapes after featurization print("Dimensions of train data X:",x_train_multi_label.shape, "Y :",y_train.shape) print("Dimensions of test data X:",x_test_multi_label.shape,"Y:",y_test.shape) from joblib import dump dump(vectorizer, '/content/drive/MyDrive/Colab Notebooks/Stack overflow Tag /stackoverflow_tfidf_vectorizer_logistic_regression_100k.pkl') classifier = OneVsRestClassifier(LogisticRegression(penalty='l1',solver='liblinear'), n_jobs=-1) import time start = time.time() classifier.fit(x_train_multi_label, y_train) print("Time it takes to run this :",(time.time()-start)/60,"minutes") dump(classifier, '/content/drive/MyDrive/Colab Notebooks/Stack overflow Tag /stackoverflow_model_logistic_regression_100k.pkl') predictions = classifier.predict(x_test_multi_label) print("accuracy :",metrics.accuracy_score(y_test,predictions)) print("macro f1 score :",metrics.f1_score(y_test, predictions, average = 'macro')) print("micro f1 scoore :",metrics.f1_score(y_test, predictions, average = 'micro')) print("hamming loss :",metrics.hamming_loss(y_test,predictions)) report = metrics.classification_report(y_test, predictions, output_dict=True) report_df = pd.DataFrame(report).transpose() report_df.to_csv("/content/report_3title_100k.csv") ###Output _____no_output_____
AQI/models/7. Implementing ANN.ipynb
###Markdown Implementing ANN Authors:- Nooruddin Shaikh- Milind Sai- Saurabh Jejurkar- Kartik Bhargav ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn import metrics import keras from keras.models import Sequential from keras.layers import Dense from keras.layers import LeakyReLU,PReLU,ELU from keras.layers import Dropout import tensorflow as tf data = pd.read_csv("Data/final_data.csv") data.head() #Splitting Data X = data.iloc[:, :-1] #Independent features y = data.iloc[:, -1] #Dependent feature #Train Test Splitting X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) NN_model = Sequential() # The Input Layer : NN_model.add(Dense(128, kernel_initializer='normal',input_dim = X_train.shape[1], activation='relu')) # The Hidden Layers : NN_model.add(Dense(256, kernel_initializer='normal',activation='relu')) NN_model.add(Dense(256, kernel_initializer='normal',activation='relu')) NN_model.add(Dense(256, kernel_initializer='normal',activation='relu')) # The Output Layer : NN_model.add(Dense(1, kernel_initializer='normal',activation='linear')) # Compile the network : NN_model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mean_absolute_error']) NN_model.summary() # Fitting the ANN to the Training set model_history = NN_model.fit(X_train, y_train,validation_split=0.33, batch_size = 10, epochs = 100) prediction = NN_model.predict(X_test) y_test sns.distplot(y_test.values.reshape(-1,1)-prediction) plt.scatter(y_test,prediction) print('MAE:', metrics.mean_absolute_error(y_test, prediction)) print('MSE:', metrics.mean_squared_error(y_test, prediction)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, prediction))) from sklearn.metrics import r2_score r2_score(y_test, prediction) ###Output _____no_output_____ ###Markdown Prediction ###Code X_test.head() y_test.head() print(NN_model.predict([[38.82,26.56,0.82,10.25,20.06]])) print(NN_model.predict([[63.58,40.25,0.23,27.84,50.72]])) print(NN_model.predict([[62.33,2.60,0.59,7.46,29.58]])) print(NN_model.predict([[118.43,84.21,0.89,37.55,39.59]])) print(NN_model.predict([[37.67,37.32,1.06,7.06,34.92]])) ###Output [[87.93328]] [[138.57399]] [[128.83249]] [[279.8932]] [[88.93133]]
additional/examples/data_preporation.ipynb
###Markdown ###Code %matplotlib inline plt.figure(figsize=(16, 8)) plt.plot(df_stock["Open"]) plt.plot(df_stock["High"]) plt.plot(df_stock["Low"]) plt.plot(df_stock["Close"]) plt.title('История цен акций NVIDIA') plt.ylabel('Price (USD)') plt.xlabel('Days') plt.legend(['Open','High','Low','Close'], loc='upper left') plt.show() %matplotlib inline tone_columns = [e for e in df_stock.columns if 'tone' in e] plt.figure(figsize=(16, 8)) for tc in tone_columns: plt.plot(df_stock[tc]) plt.title('История тональности главных продуктов NVIDIA') plt.ylabel('Tone') plt.xlabel('Days') plt.legend(tone_columns, loc='upper left') plt.show() %matplotlib inline news_count_columns = [e for e in df_stock.columns if 'count' in e] plt.figure(figsize=(16, 8)) for nc in news_count_columns: plt.plot(df_stock[nc]) plt.title('История количества новостей главных продуктов NVIDIA') plt.ylabel('Number') plt.xlabel('Days') plt.legend(news_count_columns, loc='upper left') plt.show() ###Output _____no_output_____
nbs/datasets/prepare-conala.ipynb
###Markdown © 2020 NokiaLicensed under the BSD 3 Clause licenseSPDX-License-Identifier: BSD-3-Clause Prepare Conala snippet collection and evaluation data ###Code from pathlib import Path import json from collections import defaultdict from codesearch.data import load_jsonl, save_jsonl corpus_url = "http://www.phontron.com/download/conala-corpus-v1.1.zip" conala_dir = Path("conala-corpus") conala_train_fn = conala_dir/"conala-test.json" conala_test_fn = conala_dir/"conala-train.json" conala_mined_fn = conala_dir/"conala-mined.jsonl" conala_snippets_fn = "conala-curated-snippets.jsonl" conala_retrieval_test_fn = "conala-test-curated-0.5.jsonl" if not conala_train_fn.exists(): !wget $corpus_url !unzip conala-corpus-v1.1.zip conala_mined = load_jsonl(conala_mined_fn) ###Output _____no_output_____ ###Markdown The mined dataset seems to noisy to incorporate in the snippet collection: ###Code !sed -n '10000,10009p;10010q' $conala_mined_fn with open(conala_train_fn) as f: conala_train = json.load(f) with open(conala_test_fn) as f: conala_test = json.load(f) conala_all = conala_train + conala_test conala_all[:2], len(conala_all), len(conala_train), len(conala_test) for s in conala_all: if s["rewritten_intent"] == "Convert the first row of numpy matrix `a` to a list": print(s) question_ids = {r["question_id"] for r in conala_all} intents = set(r["intent"] for r in conala_all) len(question_ids), len(conala_all), len(intents) id2snippet = defaultdict(list) for r in conala_all: id2snippet[r["question_id"]].append(r) for r in conala_all: if not r["intent"]: print(r) if r["intent"].lower() == (r["rewritten_intent"] or "").lower(): print(r) import random random.seed(42) snippets = [] eval_records = [] for question_id in id2snippet: snippets_ = [r for r in id2snippet[question_id] if r["rewritten_intent"]] if not snippets_: continue for i, record in enumerate(snippets_): snippet_record = { "id": f'{record["question_id"]}-{i}', "code": record["snippet"], "description": record["rewritten_intent"], "language": "python", "attribution": f"https://stackoverflow.com/questions/{record['question_id']}" } snippets.append(snippet_record) # occasionally snippets from the same question have a slightly different intent # to avoid similar queries, we create only one query per question query = random.choice(snippets_)["intent"] if any(query.lower() == r["description"].lower() for r in snippets[-len(snippets_):] ): print(f"filtering query {query}") continue relevant_ids = [r["id"] for r in snippets[-len(snippets_):] ] eval_records.append({"query": query, "relevant_ids": relevant_ids}) snippets[:2], len(snippets), eval_records[:2], len(eval_records) id2snippet_ = {r["id"]: r for r in snippets} for i, eval_record in enumerate(eval_records): print(f"Query: {eval_record['query']}") print(f"Relevant descriptions: {[id2snippet_[id]['description'] for id in eval_record['relevant_ids']]}") if i == 10: break from codesearch.text_preprocessing import compute_overlap compute_overlap("this is a test", "test test") overlaps = [] filtered_eval_records = [] for r in eval_records: query = r["query"] descriptions = [id2snippet_[id]['description'] for id in r['relevant_ids']] overlap = max(compute_overlap(query, d)[1] for d in descriptions) overlaps.append(overlap) if overlap < 0.5 : filtered_eval_records.append(r) filtered_eval_records[:2], len(filtered_eval_records) save_jsonl(conala_snippets_fn, snippets) save_jsonl(conala_retrieval_test_fn, filtered_eval_records) ###Output _____no_output_____
notebooks/NLUsentimentPerformanceEval.ipynb
###Markdown Notebook for testing performance of NLU Sentiment[Watson Developer Cloud](https://www.ibm.com/watsondevelopercloud) is a platform of cognitive services that leverage machine learning techniques to help partners and clients solve a variety business problems. It is critical to understand that training a machine learning solution is an iterative process where it is important to continually improve the solution by providing new examples and measuring the performance of the trained solution. In this notebook, we show how you can compute important Machine Learning metrics (accuracy, precision, recall, confusion_matrix) to judge the performance of your solution. For more details on these various metrics, please consult the **[Is Your Chatbot Ready for Prime-Time?](https://developer.ibm.com/dwblog/2016/chatbot-cognitive-performance-metrics-accuracy-precision-recall-confusion-matrix/)** blog. The notebook assumes you have already created a Watson [Natural Language Understanding](https://www.ibm.com/watson/services/natural-language-understanding/) instance. To leverage this notebook, you need to provide the following information* Credentials for your NLU instance (username and password)* csv file with your text utterances and corresponding sentiment labels (positive, negative, neutral)* results csv file to write the results to ###Code # Only run this cell if you don't have pandas_ml or watson_developer_cloud installed !pip install pandas_ml # You can specify the latest verion of watson_developer_cloud (1.0.0 as of November 20, 2017) #!pip install -I watson-developer-cloud==1.0.0 ## install latest watson developer cloud Python SDK !pip install --upgrade watson-developer-cloud #Import utilities import json import sys import codecs import unicodecsv as csv from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt import pandas_ml from pandas_ml import ConfusionMatrix from watson_developer_cloud import NaturalLanguageUnderstandingV1 from watson_developer_cloud.natural_language_understanding.features import (v1 as Features) ###Output _____no_output_____ ###Markdown Provide the path to the parms file which includes credentials to access your NLU service as well as the inputtest csv file and the output csv file to write the output results to. ###Code # Sample parms file data #{ # "url": "https://gateway.watsonplatform.net/natural-language-understanding/api/v1", # "user":"YOUR_NLU_USERNAME", # "password": "YOUR_NLU_PASSWORD", # "test_csv_file": "COMPLETE_PATH_TO_YOUR_TEST_CSV_FILE", # "results_csv_file": "COMPLETE PATH TO RESULTS FILE (any file you can write to)", # "confmatrix_csv_file": "COMPLETE PATH TO CONFUSION MATRIX FILE (any file you can write to)" #} # Provide complete path to the file which includes all required parms # A sample parms file is included (example_parms.json) nluParmsFile = 'COMPLETE PATH TO YOUR PARMS FILE' parms = '' with open(nluParmsFile) as parmFile: parms = json.load(parmFile) url=parms['url'] user=parms['user'] password=parms['password'] test_csv_file=parms['test_csv_file'] results_csv_file=parms['results_csv_file'] confmatrix_csv_file=parms['confmatrix_csv_file'] json.dumps(parms) # Create an object for your NLU instance natural_language_understanding = NaturalLanguageUnderstandingV1( version = '2017-02-27', username = user, password = password ) ###Output _____no_output_____ ###Markdown Define useful methods to return sentiment of text using NLU. ###Code # Given a text string and a pointer to NLU instance, get back NLU sentiment response def getNLUresponse(nlu_instance,features,string): nlu_analysis = natural_language_understanding.analyze(features, string, return_analyzed_text=True) return nlu_analysis # Process multiple text utterances (provided via csv file) in batch. Effectively, read the csv file and for each text # utterance, get NLU sentiment. Aggregate and return results. def batchNLU(nlu_instance,features,csvfile): test_labels=[] nlupredict_labels=[] nlupredict_score =[] text=[] i=0 print ('reading csv file: ', csvfile) with open(csvfile, 'rb') as csvfile: # For better handling of utf8 encoded text csvReader = csv.reader(csvfile, encoding="utf-8-sig") for row in csvReader: print(row) # Assume input text is 2 column csv file, first column is text # and second column is the label/class/intent # Sometimes, the text string includes commas which may split # the text across multiple colmns. The following code handles that. if len(row) > 2: qelements = row[0:len(row)-1] utterance = ",".join(qelements) test_labels.append(row[len(row)-1]) else: utterance = row[0] test_labels.append(row[1]) utterance = utterance.replace('\r', ' ') print ('i: ', i, ' testing row: ', utterance) nlu_response = getNLUresponse(nlu_instance,features,utterance) if nlu_response['sentiment']: nlupredict_labels.append(nlu_response['sentiment']['document']['label']) nlupredict_score.append(nlu_response['sentiment']['document']['score']) else: nlupredict_labels.append('') nlupredict_score.append(0) text.append(utterance) i = i+1 if(i%250 == 0): print("") print("Processed ", i, " records") if(i%10 == 0): sys.stdout.write('.') print("") print("Finished processing ", i, " records") return test_labels, nlupredict_labels, nlupredict_score, text # Plot confusion matrix as an image def plot_conf_matrix(conf_matrix): plt.figure() plt.imshow(conf_matrix) plt.show() # Print confusion matrix to a csv file def confmatrix2csv(conf_matrix,labels,csvfile): with open(csvfile, 'wb') as csvfile: csvWriter = csv.writer(csvfile) row=list(labels) row.insert(0,"") csvWriter.writerow(row) for i in range(conf_matrix.shape[0]): row=list(conf_matrix[i]) row.insert(0,labels[i]) csvWriter.writerow(row) # This is an optional step to quickly test response from NLU for a given utterance testQ='it was great talking to your agent ' features = {"sentiment":{}} results = getNLUresponse(natural_language_understanding,features,testQ) print(json.dumps(results, indent=2)) ###Output _____no_output_____ ###Markdown Call NLU on the specified csv file and collect results. ###Code features = {"sentiment":{}} test_labels,nlupredict_labels,nlupredict_score,text=batchNLU(natural_language_understanding,features,test_csv_file) # print results to csv file including original text, the correct label, # the predicted label and the score reported by NLU. csvfileOut=results_csv_file with open(csvfileOut, 'wb') as csvOut: outrow=['text','true label','NLU Predicted label','Score'] csvWriter = csv.writer(csvOut,dialect='excel') csvWriter.writerow(outrow) for i in range(len(text)): outrow=[text[i],test_labels[i],nlupredict_labels[i],str(nlupredict_score[i])] csvWriter.writerow(outrow) # Compute confusion matrix labels=list(set(test_labels)) nlu_confusion_matrix = confusion_matrix(test_labels, nlupredict_labels, labels) nluConfMatrix = ConfusionMatrix(test_labels, nlupredict_labels) # Print out confusion matrix with labels to csv file confmatrix2csv(nlu_confusion_matrix,labels,confmatrix_csv_file) %matplotlib inline nluConfMatrix.plot() # Compute accuracy of classification acc=accuracy_score(test_labels, nlupredict_labels) print('Classification Accuracy: ', acc) # print precision, recall and f1-scores for the different classes print(classification_report(test_labels, nlupredict_labels, labels=labels)) #Optional if you would like each of these metrics separately #[precision,recall,fscore,support]=precision_recall_fscore_support(test_labels, nlupredict_labels, labels=labels) #print("precision: ", precision) #print("recall: ", recall) #print("f1 score: ", fscore) #print("support: ", support) ###Output _____no_output_____
chapter25.ipynb
###Markdown Chapter 25. Introduction to the Various Connectivity Analyses ###Code import numpy as np import matplotlib.pyplot as plt from numpy.fft import fft, ifft ###Output _____no_output_____ ###Markdown 25.3 ###Code s_rate = 1000 rand_sig1 = np.random.randn(3*s_rate) rand_sig2 = np.random.randn(3*s_rate) # filter @ 5Hz f = 5 # freq of wavelet in Hz time = np.arange(-1, 1 + 1/s_rate, 1/s_rate) # time for wavelet from -1 to 1 in secs s = 6/(2*np.pi*f) # stdev of Gaussian wavelet = np.exp(2*np.pi*1j*f*time) * np.exp(-time**2 / (2*s**2)) # fft params n_wavelet = len(wavelet) n_data = len(rand_sig1) n_convolution = n_data+n_wavelet-1 half_of_wavelet_size = len(wavelet)//2 # fft of wavelet and eeg data convolution_result_fft = ifft(fft(wavelet, n_convolution) * fft(rand_sig1, n_convolution))*np.sqrt(s)/10 filtsig1 = convolution_result_fft[half_of_wavelet_size:-half_of_wavelet_size].real anglesig1 = np.angle(convolution_result_fft[half_of_wavelet_size:-half_of_wavelet_size]) convolution_result_fft = ifft(fft(wavelet, n_convolution) * fft(rand_sig2, n_convolution))*np.sqrt(s)/10 filtsig2 = convolution_result_fft[half_of_wavelet_size:-half_of_wavelet_size].real anglesig2 = np.angle(convolution_result_fft[half_of_wavelet_size:-half_of_wavelet_size]) fig, ax = plt.subplots(2,1,sharex='all', sharey='all') ax[0].plot(rand_sig1) ax[0].plot(filtsig1) ax[1].plot(rand_sig2) ax[1].plot(filtsig2) correlations = np.zeros((5, int(1000/f))) # write simpler correlation coeff instead of np.corrcoef # i.e. the dotproduct between two vecs, divided by their lengths corr = lambda x,y: x@y/(np.linalg.norm(x)*np.linalg.norm(y)) for i in range(1, int(1000/f)): # corr of unfiltered random sig correlations[0, i] = corr(rand_sig1[:-i], rand_sig1[i:]) # corr of filtered sig correlations[1, i] = corr(filtsig1[:-i], filtsig1[i:]) # phase clustering correlations[2, i] = np.abs(np.mean(np.exp(1j * np.angle(anglesig1[:-i] -anglesig1[i:])))) # diff of correlations of filtered signal correlations[3, i] = corr(filtsig2[:-i], filtsig2[i:]) - correlations[1,i] # difference of phase clusterings correlations[4, i] = np.abs(np.mean(np.exp(1j * np.angle(anglesig2[:-i] -anglesig2[i:])))) - correlations[2,i] plt.plot(correlations.T) plt.legend(['unfilt','power corr','ipsc','corr diffs','psc diffs']) ###Output _____no_output_____
for-the-homework-of-hyl.ipynb
###Markdown 在全部117个品牌中,其安装的数量多数(91个)是少于10个的,我们暂且决定不规范地把他们归为`Others` 即,下面我们将将`BRANDS <= 10` 归为 `Others` ###Code ans[(ans["COUNT"]>30)] import matplotlib.pyplot as plt # plt.figure(dpi=200,figsize=(2,1)) plt.plot(ans["BRANDS"],ans["COUNT"],color='r',marker='o',linestyle='dashed') plt.axis([0,10,10,3000]) plt.annotate('Most Popular Phone \n used to play the game',xy=(0,2600),xytext=(3,2500), fontsize=16, # arrowprops=dict(facecolor='black',shrink=0.1) arrowprops=dict(arrowstyle='<-') ) plt.xticks(fontsize=8) # plt.legend() plt.savefig('line-chart') plt.show() # assign the data samsung = phone_brands.BRANDS.value_counts()['SAMSUNG'] oppo = phone_brands.BRANDS.value_counts()['OPPO'] huawei = phone_brands.BRANDS.value_counts()['HUAWEI'] xiaomi = phone_brands.BRANDS.value_counts()['XIAOMI'] asus = phone_brands.BRANDS.value_counts()['ASUS'] htc = phone_brands.BRANDS.value_counts()['HTC'] sony = phone_brands.BRANDS.value_counts()['SONY'] vivo = phone_brands.BRANDS.value_counts()['VIVO'] lge = phone_brands.BRANDS.value_counts()['LGE'] names = ['SAMSUNG', 'OPPO', 'HUAWEI', 'XIAOMI', 'ASUS', 'HTC', 'SONY', 'VIVO', 'LGE'] size = [samsung, oppo, huawei, xiaomi, asus, htc, sony, vivo, lge] #explode = (0.2, 0, 0) # create a pie chart plt.pie(x=size, labels=names, # colors=['red', 'darkorange', 'silver',], colors=['#74d2e7','#48a9c5','#0085ad','#8db9ca','#4298b5', '#005670', '#00205b', '#008eaa'], autopct='%1.2f%%', pctdistance=0.6, textprops=dict(fontweight='bold'), wedgeprops={'linewidth':7, 'edgecolor':'white'}) # create circle for the center of the plot to make the pie look like a donut my_circle = plt.Circle((0,0), 0.6, color='white') # plot the donut chart fig = plt.gcf() fig.set_size_inches(8,8) fig.gca().add_artist(my_circle) plt.title('\nTop 8 (COUNT >= 100) Phone Brands', fontsize=14, fontweight='bold') plt.savefig('Pie-chart') plt.show() # plt.savefig('Pie-chart') ###Output _____no_output_____ ###Markdown **To Do List:**- [ ] **南丁格尔玫瑰图**- [x] **折线图**- [x] **饼状图**https://www.kaggle.com/alafun/for-the-homework-of-hyl ###Code # plt.rcParams['font.sans-serif'] = ['SimHei'] product_type=["SWE08UF","SWE18UF","SWE25F","SWE40UF","SWE60E","SWE70E","SWE80E9","SWE100E","SWE150E","SWE155E","SWE205E","SWE215E","SWE365E-3","SWE385E","SWE470E","SWE500E","SWE580E","SWE900E"] sales_num=[int(abs(i)*100) for i in np.random.randn(len(product_type))] sn=pd.DataFrame({"产品类型":product_type,"销量":sales_num}).sort_values("销量",ascending=False) N=len(product_type) theta=np.linspace(0+(100/180)*np.pi,2*np.pi+(100/180)*np.pi,N,endpoint=False) width=2*np.pi/N colors=plt.cm.viridis([i for i in np.random.random(N)]) plt.figure(figsize=(15,15)) plt.subplot(111,projection="polar") bars=plt.bar(theta,sn["销量"],width=width,bottom=30,color=colors) for r,s,t,bar in zip(theta,sn["销量"],sn["产品类型"],bars): plt.text(r,s+45,t+"\n"+str(s)+' ',ha="center",va="baseline",fontsize=14) plt.axis("off") # plt.savefig(".jpg") ###Output _____no_output_____
model/model-keras.ipynb
###Markdown Model built with raw TensorFlowThis model is an attempt to drop HuggingFace transformers library and use pure TensorFlow code.The goal is to get a single source of truth and to use directly Google's models.Adapted from: ###Code # Base import os import shutil import numpy as np import pandas as pd import matplotlib.pyplot as plt # Tensorflow import tensorflow as tf import tensorflow_hub as hub import tensorflow_text as text import tensorflowjs as tfjs #from official.nlp import optimization # to create AdamW optimizer # Data from datasets import load_dataset # Custom from helper_functions import load_sst_dataset, plot_model_history, save_ts_model ###Output _____no_output_____ ###Markdown Configuration ###Code # Set TensorFlow to log only the errors tf.get_logger().setLevel('ERROR') # Force the use of the CPU instead of the GPU if running out of GPU memory device = '/CPU:0' # input '/CPU:0' to use the CPU or '/GPU:0' for the GPU # Model to be used bert_model_name = 'small_bert/bert_en_uncased_L-2_H-128_A-2' tfhub_handle_encoder = 'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-128_A-2/2' tfhub_handle_preprocess = 'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3' # Tokenizing parameters max_length = 60 # Max length of an input # Training parameters epochs = 1 # 1 is enough for code testing ###Output _____no_output_____ ###Markdown Load the dataset ###Code text_train, Y1, Y2, text_test, Y1_test, Y2_test = load_sst_dataset() ###Output WARNING:datasets.builder:Reusing dataset sst (C:\Users\thiba\.cache\huggingface\datasets\sst\default\1.0.0\b8a7889ef01c5d3ae8c379b84cc4080f8aad3ac2bc538701cbe0ac6416fb76ff) 100%|██████████| 3/3 [00:00<00:00, 1000.23it/s] ###Markdown Load Bert ###Code # For preprocessing bert_preprocess_model = hub.KerasLayer(tfhub_handle_preprocess) # Bert itself bert_model = hub.KerasLayer(tfhub_handle_encoder) ###Output _____no_output_____ ###Markdown Build the model ###Code def build_model(): # Input text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text') # Preprocessing preprocessing_layer = hub.KerasLayer(tfhub_handle_preprocess, name='preprocessing') # Encoder encoder_inputs = preprocessing_layer(text_input) encoder = hub.KerasLayer(tfhub_handle_encoder, trainable=True, name='BERT_encoder') # Encoder's output outputs = encoder(encoder_inputs) net = outputs['pooled_output'] net = tf.keras.layers.Dropout(0.1)(net) # Classifier regression = tf.keras.layers.Dense(1, name='regression', activation=None)(net) classifier = tf.keras.layers.Dense(1, name='classifier', activation='sigmoid')(net) # Final output outputs = {'regression': regression, 'classifier': classifier} # Return the model return tf.keras.Model(text_input, outputs) # Build the model model = build_model() # Loss function used loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # Metric for results evaluation metrics = tf.metrics.BinaryAccuracy() # Define the optimizer optimizer = tf.keras.optimizers.Adam( learning_rate=5e-05, epsilon=1e-08, decay=0.01, clipnorm=1.0) # Compile the model model.compile(optimizer=optimizer, loss=loss, metrics=metrics) # Training input x = {'text': tf.convert_to_tensor(text_train)} # Training output y = {'classifier': Y2, 'regression':Y1} # doc: https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit history = model.fit( x=x, y=y, validation_split=0.2, batch_size=64, epochs=epochs, ) # Test input x_test = {'text': tf.convert_to_tensor(text_test)} # Test output y_test = {'classifier': Y2_test, 'regression':Y1_test} model_eval = model.evaluate( x=x_test, y=y_test, ) ###Output 104/104 [==============================] - 26s 254ms/step - loss: 1.4230 - classifier_loss: 0.7068 - regression_loss: 0.7161 - classifier_binary_accuracy: 0.4953 - regression_binary_accuracy: 0.0033 ###Markdown Save the model with model.save Documentation: ```save_format```- tf: Tensorflow SavedModel- h5: HDF5 ###Code # Save to Tensorflow SavedModel model.save("./formats/tf_savedmodel",save_format='tf') # Save to HDF5 model.save('./formats/tf_hdf5/model.h5',save_format='h5') ###Output _____no_output_____ ###Markdown Convert the model with tensorflowjs_converter Documentation: ```--input_format```- tf_saved_model: SavedModel- tfjs_layers_model: TensorFlow.js JSON format- keras: Keras HDF5```--output_format```- tfjs_layers_model- tfjs_graph_model- keras ###Code # Keras HDF5 --> tfjs_layers_model !tensorflowjs_converter --input_format keras --output_format tfjs_layers_model ./formats/tf_hdf5/model.h5 ./formats/tfjs_layers_model_from_keras_hdf5 # Keras HDF5 --> tfjs_graph_model !tensorflowjs_converter --input_format keras --output_format tfjs_graph_model ./formats/tf_hdf5/model.h5 ./formats/tfjs_graph_model_from_keras_hdf5 # tf_saved_model --> tfjs_layers_model !tensorflowjs_converter --input_format tf_saved_model --output_format=tfjs_layers_model ./formats/tf_savedmodel ./formats/tfjs_layers_model_from_tf_saved_model # tf_saved_model --> tfjs_graph_model !tensorflowjs_converter --input_format tf_saved_model --output_format=tfjs_graph_model ./formats/tf_savedmodel ./formats/tfjs_graph_model_from_tf_saved_model ###Output 2021-10-17 21:13:22.786947: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-10-17 21:13:23.483860: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1789 MB memory: -> device: 0, name: NVIDIA GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1 Traceback (most recent call last): File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflow\python\framework\ops.py", line 3962, in _get_op_def return self._op_def_cache[type] KeyError: 'CaseFoldUTF8' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflow\python\saved_model\load.py", line 902, in load_internal loader = loader_cls(object_graph_proto, saved_model_proto, export_dir, File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflow\python\saved_model\load.py", line 137, in __init__ function_deserialization.load_function_def_library( File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflow\python\saved_model\function_deserialization.py", line 388, in load_function_def_library func_graph = function_def_lib.function_def_to_graph(copy) File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflow\python\framework\function_def_to_graph.py", line 63, in function_def_to_graph graph_def, nested_to_flat_tensor_name = function_def_to_graph_def( File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflow\python\framework\function_def_to_graph.py", line 228, in function_def_to_graph_def op_def = default_graph._get_op_def(node_def.op) # pylint: disable=protected-access File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflow\python\framework\ops.py", line 3966, in _get_op_def pywrap_tf_session.TF_GraphGetOpDef(self._c_graph, compat.as_bytes(type), tensorflow.python.framework.errors_impl.NotFoundError: Op type not registered 'CaseFoldUTF8' in binary running on IDEAPAD. Make sure the Op and Kernel are registered in the binary running in this process. Note that if you are loading a saved graph which used ops from tf.contrib, accessing (e.g.) `tf.contrib.resampler` should be done before importing the graph, as contrib ops are lazily registered when the module is first accessed. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\thiba\anaconda3\envs\bert\lib\runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\thiba\anaconda3\envs\bert\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "C:\Users\thiba\anaconda3\envs\bert\Scripts\tensorflowjs_converter.exe\__main__.py", line 7, in <module> File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflowjs\converters\converter.py", line 813, in pip_main main([' '.join(sys.argv[1:])]) File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflowjs\converters\converter.py", line 817, in main convert(argv[0].split(' ')) File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflowjs\converters\converter.py", line 803, in convert _dispatch_converter(input_format, output_format, args, quantization_dtype_map, File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflowjs\converters\converter.py", line 523, in _dispatch_converter tf_saved_model_conversion_v2.convert_tf_saved_model( File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflowjs\converters\tf_saved_model_conversion_v2.py", line 599, in convert_tf_saved_model model = _load_model(saved_model_dir, saved_model_tags) File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflowjs\converters\tf_saved_model_conversion_v2.py", line 536, in _load_model model = load(saved_model_dir, saved_model_tags) File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflow\python\saved_model\load.py", line 864, in load result = load_internal(export_dir, tags, options)["root"] File "C:\Users\thiba\anaconda3\envs\bert\lib\site-packages\tensorflow\python\saved_model\load.py", line 905, in load_internal raise FileNotFoundError( FileNotFoundError: Op type not registered 'CaseFoldUTF8' in binary running on IDEAPAD. Make sure the Op and Kernel are registered in the binary running in this process. Note that if you are loading a saved graph which used ops from tf.contrib, accessing (e.g.) `tf.contrib.resampler` should be done before importing the graph, as contrib ops are lazily registered when the module is first accessed. If trying to load on a different device from the computational device, consider using setting the `experimental_io_device` option on tf.saved_model.LoadOptions to the io_device such as '/job:localhost'. ###Markdown Export directly the model with tfjs convertors As suggested in: Where is the API documentation of tfjs.converters ?From our test, it saves the model to the tfjs_layers_model format by default. ###Code # Save directly tfjs.converters.save_keras_model(model, './formats/tfjs-direct') ###Output _____no_output_____
machine_learning_nanodegree/modulo-02/projeto/boston_housing_PT.ipynb
###Markdown Nanodegree Engenheiro de Machine Learning Modelo de Avaliação e Validação Projeto 1: Estimando Preços dos Imóveis de BostonBem-vindo ao primeiro projeto do Nanodegree de Engenheiro de Machine Learning! Neste Notebook, alguns templates de código estão sendo fornecidos para você, e você irá precisar implementar funcionalidades adicionais para completar este projeto com sucesso. Você não vai precisar modificar o código que foi incluído além do que está sendo pedido. Seções que começam com **'Implementação'** no cabeçalho indicam que o bloco de código seguinte vai exigir que você providencie funcionalidade adicional. Instruções serão fornecidas para cada seção e as especificidades da implementação são marcadas no bloco de código com o comando 'TODO'. Não esqueça de ler as instruções atentamente!Além do código implementado, haverá questões relacionadas com o projeto e sua implementação que você deve responder. Cada seção em que há uma questão para você responder, ela será precedida por **'Questão X'** no cabeçalho. Leia cada questão cuidadosamente e dê respostas completas no seguinte box de texto que contém **'Resposta: '**. O projeto enviado será avaliado com base nas respostas para cada uma das questões e a implementação que você nos forneceu. >**Nota:** Células de Código e de Markdown podem ser executadas utilizando o atalho de teclado **Shift + Enter**. Além disso, as células Markdown podem ser editadas ao clicar normalmente duas vezes na célula para entrar no modo de edição. Antes de começarCertifique-se que a sua versão do scikit-learn é a mesma que deve ser utilizada neste notebook. Execute a célula abaixo para verificar se sua versão é a ideal. Se você não quiser fazer *downgrade*, você precisa ficar atento as diferenças citadas ao decorrer do código. ###Code import sklearn print 'The scikit-learn version is ', sklearn.__version__ if sklearn.__version__ >= '0.18': print "Você precisa fazer downgrade do scikit-learn ou ficar atento as diferenças nas versões citadas." print "Pode ser feito executando:\n" print "pip install scikit-learn==0.17" else: print "Tudo certo!" ###Output The scikit-learn version is 0.19.1 Você precisa fazer downgrade do scikit-learn ou ficar atento as diferenças nas versões citadas. Pode ser feito executando: pip install scikit-learn==0.17 ###Markdown Ambiente de análiseAntes de qualquer análise, para auxiliar na reprodutibilidade por outras pessoas, eu gosto de utilizar uma função que mostra de modo detalhado o meu **ambiente de análise** (hardware, software, versões do Python e packages utilizados). A próxima célula define essa função e mostra o meu ambiente.**ATENÇÃO:** eu fiz essa função para poder reportar meu ambiente de trabalho, em Linux. Não me preocupei em preparar a função para funcionar corretamente em Windows ou Mac, portanto, **a função não deve funcionar em Windows ou Mac!** ###Code def ambienteDaAnalise(): """ Abrantes Araújo Silva Filho [email protected] Imprime informações a respeito do ambiente de análise utilizado, incluindo detalhes do hardware, software, versões do Python e packages utilizados. Pré-requisitos: utiliza os packages subprocess, sys, pip, platform, psutil e math Limitações: essa função foi pensada para sistemas operacionais Linux, não testada em Windows ou Mac. Na verdae nem me preocupei em preparar a função para funcionar corretamente em Windows ou Mac, portanto provavelmente ela NÃO FUNCIONARÁ nesses sistemas operacionais! Inputs: nenhum Outputs: print de informações Retorno: nenhum """ import os import subprocess import sys import pip import platform import psutil import math data = subprocess.check_output(['date', '+%Y-%m-%d, %H:%M (UTC %:z), %A']).replace('\n', '') nomeComputador = platform.node() arquiteturaComputador = platform.machine() processador = platform.processor() MHz = psutil.cpu_freq()[2] / 1000.0 coresFisicos = psutil.cpu_count(logical = False) coresLogicos = psutil.cpu_count() memoriaFisica = math.ceil(psutil.virtual_memory()[0] / 1024 / 1024 / 1024.0) plataforma = platform.system() plataforma2 = sys.platform osName = os.name versaoSO = platform.version() release = platform.release() versaoPython = platform.python_version() implementacaoPython = platform.python_implementation() buildPython = platform.python_build()[0] + ', ' + platform.python_build()[1] interpreterPython = sys.version.replace('\n', '') pacotes = sorted(["%s==%s" % (i.key, i.version) \ for i in pip.get_installed_distributions()]) print('|-----------------------------------------------------------|') print('| HARDWARE |') print('|-----------------------------------------------------------|') print('Host: ' + nomeComputador) print('Arquitetura: ' + arquiteturaComputador) print('Processador: ' + processador + ' de ' + str(MHz) + ' MHz (' \ + str(coresFisicos) + ' cores físicos e ' + str(coresLogicos) + \ ' cores lógicos)') print('Memória física: ' + str(memoriaFisica) + ' GB') print('|-----------------------------------------------------------|') print('| SOFTWARE |') print('|-----------------------------------------------------------|') print('Plataforma: ' + plataforma + ' (' + plataforma2 + ', ' + osName \ + ')') print('Versão: ' + versaoSO) print('Release: ' + release) print('|-----------------------------------------------------------|') print('| PYTHON |') print('|-----------------------------------------------------------|') print('Python: ' + versaoPython) print('Implementação: ' + implementacaoPython) print('Build: ' + buildPython) print('Interpreter: ' + interpreterPython) print('|-----------------------------------------------------------|') print('| PACKAGES |') print('|-----------------------------------------------------------|') for pacote in pacotes: print(pacote) print('|-----------------------------------------------------------|') print('| DATA |') print('|-----------------------------------------------------------|') print('A data atual do sistema é: ' + data) ambienteDaAnalise() ###Output |-----------------------------------------------------------| | HARDWARE | |-----------------------------------------------------------| Host: analytics01 Arquitetura: x86_64 Processador: x86_64 de 3.3 MHz (2 cores físicos e 4 cores lógicos) Memória física: 8.0 GB |-----------------------------------------------------------| | SOFTWARE | |-----------------------------------------------------------| Plataforma: Linux (linux2, posix) Versão: #29~16.04.2-Ubuntu SMP Tue Jan 9 22:00:44 UTC 2018 Release: 4.13.0-26-generic |-----------------------------------------------------------| | PYTHON | |-----------------------------------------------------------| Python: 2.7.14 Implementação: CPython Build: default, Dec 7 2017 17:05:42 Interpreter: 2.7.14 |Anaconda, Inc.| (default, Dec 7 2017, 17:05:42) [GCC 7.2.0] |-----------------------------------------------------------| | PACKAGES | |-----------------------------------------------------------| alabaster==0.7.10 asn1crypto==0.24.0 astroid==1.6.0 babel==2.5.1 backports-abc==0.5 backports.functools-lru-cache==1.4 backports.shutil-get-terminal-size==1.0.0 backports.ssl-match-hostname==3.5.0.1 beautifulsoup4==4.6.0 bleach==2.1.2 certifi==2017.11.5 cffi==1.11.2 chardet==3.0.4 cloudpickle==0.5.2 configparser==3.5.0 cryptography==2.1.4 cycler==0.10.0 decorator==4.1.2 docopt==0.6.2 docutils==0.14 entrypoints==0.2.3 enum34==1.1.6 functools32==3.2.3.post2 html5lib==1.0.1 idna==2.6 imagesize==0.7.1 ipaddress==1.0.19 ipykernel==4.7.0 ipython-genutils==0.2.0 ipython==5.4.1 ipywidgets==7.1.0 isort==4.2.15 jedi==0.11.0 jinja2==2.10 jsonschema==2.6.0 jupyter-client==5.2.1 jupyter-console==5.2.0 jupyter-core==4.4.0 lazy-object-proxy==1.3.1 markupsafe==1.0 matplotlib==2.1.1 mccabe==0.6.1 mistune==0.8.1 nbconvert==5.3.1 nbformat==4.4.0 notebook==5.2.2 numpy==1.14.0 numpydoc==0.7.0 pandas==0.22.0 pandocfilters==1.4.2 parso==0.1.1 pathlib2==2.3.0 patsy==0.4.1 pexpect==4.3.1 pickleshare==0.7.4 pip==9.0.1 prompt-toolkit==1.0.15 psutil==5.4.3 ptyprocess==0.5.2 pycodestyle==2.3.1 pycparser==2.18 pyflakes==1.6.0 pygments==2.2.0 pylint==1.8.1 pyopenssl==17.5.0 pyparsing==2.2.0 pysocks==1.6.7 python-dateutil==2.6.1 pytz==2017.3 pyzmq==16.0.3 qtawesome==0.4.4 qtconsole==4.3.1 qtpy==1.3.1 requests==2.18.4 rope==0.10.7 scandir==1.6 scikit-learn==0.19.1 scipy==1.0.0 seaborn==0.8.1 setuptools==36.5.0.post20170921 simplegeneric==0.8.1 singledispatch==3.4.0.3 six==1.11.0 snowballstemmer==1.2.1 sphinx==1.6.6 sphinxcontrib-websupport==1.0.1 spyder==3.2.6 statsmodels==0.8.0 stemgraphic==0.3.7 subprocess32==3.2.7 terminado==0.8.1 testpath==0.3.1 tornado==4.5.3 traitlets==4.3.2 typing==3.6.2 unicodecsv==0.14.1 urllib3==1.22 wcwidth==0.1.7 webencodings==0.5.1 wheel==0.30.0 widgetsnbextension==3.1.0 wrapt==1.10.11 |-----------------------------------------------------------| | DATA | |-----------------------------------------------------------| A data atual do sistema é: 2018-01-15, 22:52 (UTC -02:00), segunda ###Markdown ComeçandoNeste projeto, você irá avaliar o desempenho e o poder de estimativa de um modelo que foi treinado e testado em dados coletados dos imóveis dos subúrbios de Boston, Massachusetts. Um modelo preparado para esses dados e visto como *bem ajustado* pode ser então utilizado para certas estimativas sobre um imóvel – em particular, seu valor monetário. Esse modelo seria de grande valor para alguém como um agente mobiliário, que poderia fazer uso dessas informações diariamente.O conjunto de dados para este projeto se origina do [repositório de Machine Learning da UCI](https://archive.ics.uci.edu/ml/datasets/Housing). Os dados de imóveis de Boston foram coletados em 1978 e cada uma das 489 entradas representa dados agregados sobre 14 atributos para imóveis de vários subúrbios de Boston. Para o propósito deste projeto, os passos de pré-processamento a seguir foram feitos para esse conjunto de dados:- 16 observações de dados possuem um valor `'MEDV'` de 50.0. Essas observações provavelmente contêm **valores ausentes ou censurados** e foram removidas.- 1 observação de dados tem um valor `'RM'` de 8.78. Essa observação pode ser considerada **valor atípico (outlier)** e foi removida.- Os atributos `'RM'`, `'LSTAT'`, `'PTRATIO'`, and `'MEDV'` são essenciais. O resto dos **atributos irrelevantes** foram excluídos.- O atributo `'MEDV'` foi **escalonado multiplicativamente** para considerar 35 anos de inflação de mercado.** Execute a célula de código abaixo para carregar o conjunto dos dados dos imóveis de Boston, além de algumas bibliotecas de Python necessárias para este projeto. Você vai saber que o conjunto de dados carregou com sucesso se o seu tamanho for reportado. ** ###Code # Importar as bibliotecas necessárias para este projeto import numpy as np import pandas as pd import visuals as vs # Supplementary code import matplotlib.pyplot as plt from sklearn.cross_validation import ShuffleSplit # Formatação mais bonita para os notebooks %matplotlib inline # Executar o conjunto de dados de imóveis de Boston data = pd.read_csv('housing.csv') prices = data['MEDV'] features = data.drop('MEDV', axis = 1) # Êxito print "O conjunto de dados de imóveis de Boston tem {} pontos com {} variáveis em cada.".format(*data.shape) ###Output O conjunto de dados de imóveis de Boston tem 489 pontos com 4 variáveis em cada. ###Markdown Explorando os DadosNa primeira seção deste projeto, você fará uma rápida investigação sobre os dados de imóveis de Boston e fornecerá suas observações. Familiarizar-se com os dados durante o processo de exploração é uma prática fundamental que ajuda você a entender melhor e justificar seus resultados.Dado que o objetivo principal deste projeto é construir um modelo de trabalho que tem a capacidade de estimar valores dos imóveis, vamos precisar separar os conjuntos de dados em **atributos** e **variável alvo**. O **atributos**, `'RM'`, `'LSTAT'` e `'PTRATIO'`, nos dão informações quantitativas sobre cada ponto de dado. A **variável alvo**, `'MEDV'`, será a variável que procuramos estimar. Eles são armazenados em `features` e ` prices`, respectivamente. Minha Análise Exploratória dos DadosAntes de continuar a responder as questões deste projeto, incluí aqui uma breve análise exploratória para me ajudar a compreender melhor o dataset: ###Code # CONHECIMENTO OS DADOS: # Primeiras e útlimas observações print(data.head()) print('') print(data.tail()) # Alguma variável tem NA? data.isna().apply(np.sum) # OK, nenhuma variável tem NA. Vamos a uma descrição básica das variáveis: data.describe() # Range das variáveis: data.max() - data.min() # Vamos ter uma noção visual da distribuição das variáveis: data.hist('MEDV') plt.show() data.boxplot('MEDV') plt.show() data.hist('RM') plt.show() data.boxplot('RM') plt.show() data.hist('LSTAT') plt.show() data.boxplot('LSTAT') plt.show() data.hist('PTRATIO') plt.show() data.boxplot('PTRATIO') plt.show() ###Output _____no_output_____ ###Markdown Implementação: Calcular EstatísticasPara a sua primeira implementação de código, você vai calcular estatísticas descritivas sobre preços dos imóveis de Boston. Dado que o `numpy` já foi importado para você, use essa biblioteca para executar os cálculos necessários. Essas estatísticas serão extremamente importantes depois para analisar várias estimativas resultantes do modelo construído.Na célula de código abaixo, você precisará implementar o seguinte:- Calcular o mínimo, o máximo, a média, a mediana e o desvio padrão do `'MEDV'`, que está armazenado em `prices`. - Armazenar cada cálculo em sua respectiva variável. ###Code # TODO: Preço mínimo dos dados minimum_price = np.min(prices) # TODO: Preço máximo dos dados maximum_price = np.max(prices) # TODO: Preço médio dos dados mean_price = np.mean(prices) # TODO: Preço mediano dos dados median_price = np.median(prices) # TODO: Desvio padrão do preço dos dados # Atenção: por padrão o Numpy utiliza N graus de liberdade no denominador do cálculo # da variância (e, portanto, do desvio padrão). Para igualar o comportamento do cálculo # do desvio padrão do Numpy com o do Pandas e do R, que utilizam N-1 graus de liberdade # (Correção de Bessel), utilizei o parâmetro "ddof" abaixo: std_price = np.std(prices, ddof = 1) # Mostrar as estatísticas calculadas print "Estatísticas para os dados dos imóveis de Boston:\n" print "Preço mínimo: ${:,.2f}".format(minimum_price) print "Preço máximo: ${:,.2f}".format(maximum_price) print "Preço médio: ${:,.2f}".format(mean_price) print "Preço mediano: ${:,.2f}".format(median_price) print "Desvio padrão dos preços: ${:,.2f}".format(std_price) ###Output Estatísticas para os dados dos imóveis de Boston: Preço mínimo: $105,000.00 Preço máximo: $1,024,800.00 Preço médio: $454,342.94 Preço mediano: $438,900.00 Desvio padrão dos preços: $165,340.28 ###Markdown Questão 1 - Observação de AtributosPara lembrar, estamos utilizando três atributos do conjunto de dados dos imóveis de Boston: `'RM'`, `'LSTAT'` e `'PTRATIO'`. Para cada observação de dados (vizinhança):- `'RM'` é o número médio de cômodos entre os imóveis na vizinhança.- `'LSTAT'` é a porcentagem de proprietários na vizinhança considerados de "classe baixa" (proletariado).- `'PTRATIO'` é a razão de estudantes para professores nas escolas de ensino fundamental e médio na vizinhança.**Usando a sua intuição, para cada um dos atributos acima, você acha que um aumento no seu valor poderia levar a um _aumento_ no valor do `'MEDV'` ou uma _diminuição_ do valor do `'MEDV'`? Justifique sua opinião para cada uma das opções.** **Dica:** Você pode tentar responder pensando em perguntas como:* Você espera que um imóvel que tem um valor `'RM'` de 6 custe mais ou menos que um imóvel com valor `'RM'` de 7?* Você espera que um imóvel em um bairro que tem um valor `'LSTAT'` de 15 custe mais ou menos que em um bairro com valor `'LSTAD'` de 20?* Você espera que um imóvel em um bairro que tem um valor `'PTRATIO'` de 10 custe mais ou menos que em um bairro com `'PTRATIO'` de 15? **Resposta:** Intuitivamente, pelo senso comum, eu espero que:* `'RM'` tenha correlação positiva com `'MEDV'`, ou seja, quando `'RM'` aumenta, `'MEDV'` também aumenta. * Arrazoado: se o número médio de cômodos na vizinhança aumenta, possivelmente estamos um um local ou bairro com casas de maior tamanho, para pessoas com maior poder aquisitivo; assim, eu espero que o valor das casas também aumente.* `'LSTAT'` tenha correlação negativa com `'MEDV'`, ou seja, quando `'LSTAT'` aumenta, `'MEDV'` diminui. * Arrazoado: se a porcentagem de proprietários na vizinhança considerados de classe baixa aumenta, possivelmente estamos em um local ou bairro com casas de preços mais baixos; assim, eu espero que o valor das casas diminua quando o número de vizinhos de classe baixa aumente.* `'PTRATIO'` tenha correlação negativa com `'MEDV'`, ou seja, quando `'PTRATION'` diminui, `'MEDV'` aumenta. * Arrazoado: se a razão de estudantes para professores nas escolas de ensino fundamental e médio na vizinhança diminui, possivelmente estamos em um local ou bairro onde os pais podem pagar por uma educação mais exclusiva para seus filhos; assim eu espero que quando os pais tem um poder aquisitivo maior, a razão estudante/professor diminui e o valor das casas aumente.Vou conferir esses meus pressupostos visualmente, com scatters plots na célula abaixo: ###Code # Scatter Matrix das variáveis, e diagonal com density plots pd.plotting.scatter_matrix(data, alpha = 0.2, diagonal = 'kde', figsize = (10,10)) plt.show() data.plot.scatter('RM', 'MEDV') plt.show() data.plot.scatter('LSTAT', 'MEDV') plt.show() data.plot.scatter('PTRATIO', 'MEDV') plt.show() ###Output _____no_output_____ ###Markdown Conforme os gráficos acima parecem sugerir, as duas primeiras suposições entre as relações de `'MEDV'` com as variáveis `'RM'` e `'LSTAT'` estavam corretas.A relação entre `'PTRATIO'` e `'MEDV'` é mais difícil de estabelecer com certeza, parece uma correlação negativa, mas é difícil dizer pelo scatter plot. Vou fazer um boxplot comparando o `'MEDV'` com valores arredondados ("discretizados" com a função round) da variável `'PTRATIO'`: ###Code # Adiciona variável temporário ao dataframe, discretizando a PTRATIO como uma string de iteiros (com a função round): data['temp'] = features['PTRATIO'].apply(round).apply(int).apply(str) # Faz o boxplot da MEDV por PTRATIO discretizada: data.boxplot('MEDV', by = 'temp', figsize=(10,10)) plt.show() # Remove variável temporária: data = data.drop('temp', axis = 1) ###Output _____no_output_____ ###Markdown Mesmo com o boxplot acima ainda é difícil estabelecer qualquer correlação conclusiva entre `'PTRATIO'` e `'MEDV'`. O que o gráfico parece indicar é que para `'PTRATIO'` de 13, o valor mediano de `'MEDV'` é bem alto (ao redor de 700.000), e que para `'PTRATIO'` a partir de 20, o valor mediano de `'MEDV'` tende a ser mais baixo (até 400.000). Mas como a variação dos preços em cada faixa é muito grande, nada pode ser dito com certeza. Para uma idéia melhor da relação entre essas variáveis, podemos utilizar um cálculo de correlação ou um modelo de regressão linear simples (célula abaixo). ###Code # Import da função de regressão linear from sklearn.linear_model import LinearRegression # Variável dependente y = prices # Variável independente x = data['PTRATIO'].values.reshape(-1, 1) # Ajuste do modelo modelo = LinearRegression() modelo.fit(x, y) print(modelo.coef_) ###Output [-40647.21475514] ###Markdown Pela regressão linear simples entre `'PTRATIO'` e `'MEDV'` existe uma correlação negativa entre essas variáveis. O modelo simples (sem considerar outras variáveis de confundimento ou interação) mostra que a cada aumento unitário da `'PTRARIO'` o valor de `'MEDV'` tende a diminuir cerca de 40 mil dólares. ---- Desenvolvendo um ModeloNa segunda seção deste projeto, você vai desenvolver ferramentas e técnicas necessárias para um modelo que faz estimativas. Ser capaz de fazer avaliações precisas do desempenho de cada modelo através do uso dessas ferramentas e técnicas ajuda a reforçar a confiança que você tem em suas estimativas. Implementação: Definir uma Métrica de DesempenhoÉ difícil medir a qualidade de um modelo dado sem quantificar seu desempenho durante o treinamento e teste. Isso é geralmente feito utilizando algum tipo de métrica de desempenho, através do cálculo de algum tipo de erro, qualidade de ajuste, ou qualquer outra medida útil. Para este projeto, você irá calcular o [*coeficiente de determinação*](https://pt.wikipedia.org/wiki/R%C2%B2), R2, para quantificar o desempenho do seu modelo. O coeficiente de determinação é uma estatística útil no campo de análise de regressão uma vez que descreve o quão "bom" é a capacidade do modelo em fazer estimativas. Os valores para R2 têm um alcance de 0 a 1, que captura a porcentagem da correlação ao quadrado entre a estimativa e o valor atual da **variável alvo**. Um modelo R2 de valor 0 sempre falha ao estimar a variável alvo, enquanto que um modelo R2 de valor 1, estima perfeitamente a variável alvo. Qualquer valor entre 0 e 1 indica qual a porcentagem da variável alvo (ao utilizar o modelo) que pode ser explicada pelos **atributos**. *Um modelo pode dar também um R2 negativo, que indica que o modelo não é melhor do que aquele que estima ingenuamente a média da variável alvo.*Para a função ‘performance_metric’ na célula de código abaixo, você irá precisar implementar o seguinte:- Utilizar o `r2_score` do `sklearn.metrics` para executar um cálculo de desempenho entre `y_true` e `y_predict`.- Atribuir a pontuação do desempenho para a variável `score`. ###Code # TODO: Importar 'r2_score' def performance_metric(y_true, y_predict): """ Calcular e retornar a pontuação de desempenho entre valores reais e estimados baseado na métrica escolhida. """ # Importa a função r2_score: from sklearn.metrics import r2_score # TODO: Calcular a pontuação de desempenho entre 'y_true' e 'y_predict' score = r2_score(y_true, y_predict) # Devolver a pontuação return score ###Output _____no_output_____ ###Markdown Questão 2 - Qualidade do AjusteAdmita que um conjunto de dados que contém cinco observações de dados e um modelo fez a seguinte estimativa para a variável alvo:| Valores Reais | Estimativa || :-------------: | :--------: || 3.0 | 2.5 || -0.5 | 0.0 || 2.0 | 2.1 || 7.0 | 7.8 || 4.2 | 5.3 |** Executar a célula de código abaixo para usar a função `performance_metric’ e calcular o coeficiente de determinação desse modelo. ** ###Code # Calcular o desempenho deste modelo score = performance_metric([3, -0.5, 2, 7, 4.2], [2.5, 0.0, 2.1, 7.8, 5.3]) print "O coeficiente de determinação, R^2, do modelo é {:.3f}.".format(score) ###Output O coeficiente de determinação, R^2, do modelo é 0.923. ###Markdown * Você consideraria que esse modelo foi capaz de capturar a variação da variável alvo com sucesso? Por que ou por que não?** Dica: *** R2 score com valor 0 significa que a variável dependente não pode ser estimada pela variável independente.* R2 score com valor 1 significa que a variável dependente pode ser estimada pela variável independente.* R2 score com valor entre 0 e 1 significa quanto a variável dependente pode ser estimada pela variável independente.* R2 score com valor 0.40 significa que 40 porcento da variância em Y é estimável por X. **Resposta:** Sim, pois 92% da variância da variável dependente pôde ser explicada pelo modelo com as variáveis independentes. Implementação: Misturar e Separar os DadosSua próxima implementação exige que você pegue o conjunto de dados de imóveis de Boston e divida os dados em subconjuntos de treinamento e de teste. Geralmente os dados são também misturados em uma ordem aleatória ao criar os subconjuntos de treinamento e de teste para remover qualquer viés (ou erro sistemático) na ordenação do conjunto de dados.Para a célula de código abaixo, você vai precisar implementar o seguinte:- Utilize `train_test_split` do `sklearn.cross_validation` para misturar e dividir os dados de `features` e `prices` em conjuntos de treinamento e teste. (se estiver com a versão do scikit-learn > 0.18, utilizar o `sklearn.model_selection`. Leia mais [aqui](http://scikit-learn.org/0.19/modules/generated/sklearn.cross_validation.train_test_split.html)) - Divida os dados em 80% treinamento e 20% teste. - Mude o `random_state` do `train_test_split` para um valor de sua escolha. Isso garante resultados consistentes.- Atribuir a divisão de treinamento e teste para X_train`, `X_test`, `y_train` e `y_test`. ###Code # TODO: Importar 'train_test_split' from sklearn.cross_validation import train_test_split # TODO: Misturar e separar os dados em conjuntos de treinamento e teste X_train, X_test, y_train, y_test = train_test_split(features, prices, test_size = 0.2, random_state = 1974) # Êxito print "Separação entre treino e teste feita com êxito." ###Output Separação entre treino e teste feita com êxito. ###Markdown Questão 3 - Treinamento e Teste* Qual o benefício de separar o conjunto de dados em alguma relação de subconjuntos de treinamento e de teste para um algoritmo de aprendizagem?**Dica:** O que pode dar errado se não houver uma maneira de testar seu modelo? **Resposta:** se não separarmos uma proporção dos dados para servir de teste final para o algoritmo de aprendizagem escolhido, não conseguiremos saber se o modelo definido é bom de verdade, não conseguiremos estimar seu desempenho e sua capacidade de generalização.O objetivo do conjunto de teste é estimar a qualidade do modelo em um conjunto de dados em uma situação próxima daquela em que ele irá operar, com dados não vistos na fase de treinamento. Se não temos esses dados de treinamento, não conseguiremos saber como o modelo se comportará com novos dados e assim não saberemos se o modelo é bom e/ou generalizável.Esse modelo que foi treinado com todos os dados teria um escore muito bom nos dados de treinamento, mas seria muito ruim na predição de dados que ele não conhece. Essa situação é chamada de **overfitting** e significa que o modelo treinado não é generalizável.Dividir o conjunto de dados em dados de treinamento e dados de teste garante que o modelo deverá aprender com um subconjunto de dados e que será testado com um novo conjunto de dados que o modelo não conhece e os resultados da predição nesse novo conjunto de dados poderão nos confirmar se o modelo é bom ou não. ---- Analisando o Modelo de DesempenhoNa terceira parte deste projeto, você verá o desempenho em aprendizagem e teste de vários modelos em diversos subconjuntos de dados de treinamento. Além disso, você irá investigar um algoritmo em particular com um parâmetro `'max_depth'` (profundidade máxima) crescente, em todo o conjunto de treinamento, para observar como a complexidade do modelo afeta o desempenho. Plotar o desempenho do seu modelo baseado em critérios diversos pode ser benéfico no processo de análise, por exemplo: para visualizar algum comportamento que pode não ter sido aparente nos resultados sozinhos. Curvas de AprendizagemA célula de código seguinte produz quatro gráficos para um modelo de árvore de decisão com diferentes níveis de profundidade máxima. Cada gráfico visualiza a curva de aprendizagem do modelo para ambos treinamento e teste, assim que o tamanho do conjunto treinamento aumenta. Note que a região sombreada da curva de aprendizagem denota a incerteza daquela curva (medida como o desvio padrão). O modelo é pontuado em ambos os conjuntos treinamento e teste utilizando R2, o coeficiente de determinação. **Execute a célula de código abaixo e utilizar esses gráficos para responder as questões a seguir.** ###Code # Criar curvas de aprendizagem para tamanhos de conjunto de treinamento variável e profundidades máximas vs.ModelLearning(features, prices) ###Output _____no_output_____ ###Markdown Questão 4 - Compreendendo os Dados* Escolha qualquer um dos gráficos acima e mencione a profundidade máxima escolhida.* O que acontece com a pontuação da curva de treinamento se mais pontos de treinamento são adicionados? E o que acontece com a curva de teste?* Ter mais pontos de treinamento beneficia o modelo?**Dica:** As curvas de aprendizagem convergem para uma pontuação em particular? Geralmente, quanto mais dados você tem, melhor. Mas, se sua curva de treinamento e teste estão convergindo com um desempenho abaixo do benchmark, o que seria necessário? Pense sobre os prós e contras de adicionar mais pontos de treinamento baseado na convergência das curvas de treinamento e teste. **Resposta:*** *Primeira pergunta*: pelos quatro gráficos de Learning Curves apresentados, eu escolheria como o melhor modelo a árvore de decisão com `max_depth = 3`, já que esse modelo apresentou um bom resultado (menos erros) tanto no conjunto de treinamento quanto no conjunto de teste. * Também podemos ver que a característica de convergência das curvas de treinamento e de teste em um nível de erro baixo (conforme indicado pelo alto score) é característica de modelos mais próximos ao ideal, sem overfitting nem underfitting. A característica de convergência das curvas nos modelos mais próximos ao ideal é a seguinte: * Curva de Treinamento: começa com poucos erros (escore alto) e, à medida em que mais pontos de treinamento são adicionados, a curva começa a apresentar mais erros (e o escore diminui um pouco), mas mesmo assim ainda apresenta escore bom (poucos erros) * Curva e Teste: começa com muito erros (escore baixo) e, à medida em que mais pontos de teste são adicionados, a curta começa a apresentam menos erros (e o escore aumenta bastante) * Característica da Convergência: as curvas de treinamento e teste tendem a convergir em um nível baixo de erro (escore alto) * *Segunda pergunta*: quando mais pontos de treinamento são adicionados, as características das Learning Curves variará conforme o ajuste do modelo, se mais próximo do ideal, se está com underfitting ou com overfitting. Em geral: * Modelos mais próximos do ideal: * Curva de Treinamento: começa com poucos erros (escore alto) e, à medida em que mais pontos de treinamento são adicionados, a curva começa a apresentar mais erros (e o escore diminui um pouco), mas mesmo assim ainda apresenta escore bom (poucos erros) * Curva e Teste: começa com muito erros (escore baixo) e, à medida em que mais pontos de teste são adicionados, a curta começa a apresentam menos erros (e o escore aumenta bastante) * Característica da Convergência: as curvas de treinamento e teste tendem a convergir em um nível baixo de erro (escore alto) * Modelos com underfitting: * Curva de Treinamento: começa com poucos erros (escore alto) e, à medida em que mais pontos de treinamento são adicionados, a curva começa a apresentar mais erros (e o escore diminui bastante), passando a apresentar um escore ruim (em um nível mais alto de erros) * Curva e Teste: começa com muito erros (escore baixo) e, à medida em que mais pontos de teste são adicionados, a curta começa a apresentam um pouco menos de erro, mas o escore continua baixo * Característica da Convergência: as curvas de treinamento e teste tendem a convergir em um nível alto de erro (escore baixo) * Modelos com overfitting: * Curva de Treinamento: começa com poucos erros (escore alto) e, à medida em que mais pontos de treinamento são adicionados, os erros aumentam muito pouco ou quase nada, mantendo um escore bem alto * Curva e Teste: começa com muito erros (escore baixo) e, à medida em que mais pontos de teste são adicionados, a curta começa a apresentar um pouco menos de erro, mas o escore continua baixo * Característica da Convergência: como a curva de treinamento apresenta escore muito alto e a curva de teste apresenta escore muito baixo as curvas não tendem à convergência, ao contrário: tendem a ficar separadas (quanto mais separadas, maior o overfitting) * *Terceira pergunta*: sim, ter mais pontos de treinamento beneficia o modelo que pode "aprender" a partir de uma base com maior variabilidade e, assim, ser capaz de ser mais generalizável. O limite é que não podemos utilizar *todos* os pontos do dataset para o treinamento pois isso poderia levar a uma situação de overfitting e diminuir a capacidade preditiva para novos dados. Curvas de ComplexidadeA célula de código a seguir produz um gráfico para um modelo de árvore de decisão que foi treinada e validada nos dados de treinamento utilizando profundidades máximas diferentes. O gráfico produz duas curvas de complexidade – uma para o treinamento e uma para a validação. Como a **curva de aprendizagem**, a área sombreada de ambas as curvas de complexidade denota uma incerteza nessas curvas, e o modelo pontuou em ambos os conjuntos de treinamento e validação utilizando a função `performance_metric`. ** Execute a célula de código abaixo e utilize o gráfico para responder as duas questões a seguir. ** ###Code vs.ModelComplexity(X_train, y_train) ###Output _____no_output_____ ###Markdown Questão 5 - Equilíbrio entre viés e variância* Quando o modelo é treinado com o profundidade máxima 1, será que o modelo sofre mais de viés (erro sistemático) ou variância (erro aleatório)?* E o que acontece quando o modelo é treinado com profundidade máxima 10? Quais pistas visuais existem no gráfico para justificar suas conclusões?**Dica:** Como você sabe que um modelo está experimentando viés alto ou variância alta? Viés alto é um sinal de *underfitting* (o modelo não é complexo o suficiente para aprender os dados) e alta variância é um sinal de *overfitting* (o modelo está "decorando" os dados e não consegue generalizar bem o problema). Pense em modelos (com profundidade de 1 e 10, por exemplo) e qual deles está alinhado com qual parte do equilíbrio. **Respostas:*** *Primeira pergunta*: o modelo com `max_depth = 1` está sofrendo mais de viés (erro sistemático) pois o modelo não é complexo o suficiente para captar toda as características que podem ser aprendidas com os dados e, assim, sistematicamente, ele não consegue fazer uma boa predição. Esse modelo sofre de underfitting.* *Segunda pergunta*: o modelo com `max_depth = 10` está sofrendo mais de variância (erro aleatório) pois o modelo foi tão complexo que, na verdade, ele não "aprendeu" realmente com os dados, ele praticamente "decorou" os dados e se ajustou perfeitamente ao dataset e, assim, ele não consegue fazer uma boa predição pois ele não é generalizável o suficiente para captar a variabilidade que pode existir em novos dados. Esse modelo sofre de overfitting. Visualmente o Complexity Model Graph mostra que, a partir de `max_depth = 5` o escore na curva de treinamento é cada vez melhor, aproximando-se de 1.0, e o escore na curva de validação começa a diminuir fazendo com que as curvas se distanciem. Isso é característico de um modelo com overfitting: bons escores no treinamento, mas escores baixos no teste. O gráfico mostra esse distanciamento das curvas de modo bem claro. Questão 6 - Modelo Ótimo de Melhor Suposição* Qual profundidade máxima (`'max_depth'`) você acredita que resulta em um modelo que melhor generaliza um dado desconhecido?* Que intuição te levou a essa resposta?**Dica: ** Olhe no gráfico acima e veja o desempenho de validação para várias profundidades atribuidas ao modelo. Ele melhora conforme a profundidade fica maior? Em qual ponto nós temos nosso melhor desempenho de validação sem supercomplicar nosso modelo? E lembre-se, de acordo com a [Navalha de Occam](https://pt.wikipedia.org/wiki/Navalha_de_Occam), sempre devemos optar pelo mais simples ao complexo se ele conseguir definir bem o problema. **Resposta:**Eu escolheria como melhor o modelo com `max_depth = 3` pois apresenta um número baixo de erros tanto no conjunto de treinamento quanto no conjunto de teste, conforme pode-se observer pelo Model Complexity Graph acima.O modelo com `max_depth = 4` também seria um bom candidato com nível de erro um pouco mais baixo que o modelo com `max_depth = 3`, mas eu não escolheria o modelo com profundidade 4 pois o ganho em relação ao modelo com profundidade 3 é pequeno e, em contrapartida, a complexidade do modelo aumentaria muito. ----- Avaliando o Desempenho do ModeloNesta parte final do projeto, você irá construir um modelo e fazer uma estimativa de acordo com o conjunto de atributos do cliente utilizando um modelo otimizado a partir de `fit_model`. Questão 7 - Busca em Matriz* O que é a técnica de busca em matriz (*grid search*)?* Como ela pode ser aplicada para otimizar um algoritmo de aprendizagem?** Dica: ** Quando explicar a técnica de busca em matriz, tenha certeza que você explicou o motivo dela ser usada, o que a 'matriz' significa nesse caso e qual o objetivo da técnica. Para ter uma resposta mais sólida, você pode também dar exemplo de um parâmetro em um modelo que pode ser otimizado usando essa técnica. **RESPOSTA DA PRIMEIRA PERGUNTA:**Antes de explicar o que é a *grid search* temos que diferenciar o que são os **parâmetros** e os **hiperparâmetros** de um algoritmo de aprendizagem.Os **parâmetros** de um modelo de aprendizagem são obtidos a partir do treinamento do modelo, por exemplo: em um modelo de regressão linear ou de regressão logística, os parâmetros estimados são os valores para cada coeficiante do modelo. Vejamos na prática um exemplo. Um modelo de regressão linear poderia nos fornecer o sequinte resultado (valores fictícios):\begin{equation}MEDV = 100000 + 200000 \times RM - 40000 \times LSTAT - 5000 \times PTRATIO\end{equation}Na regressão linear acima, os **parâmetros** são os valores estimados para cada coeficiente do modelo. Eles são determinados a partir do próprio treinamento do modelo.Os **hiperparâmetros** são outra coisa: eles são parâmetros que devem ser *definidos ANTES que o processo de treinamento e aprendizagem do modelo comece*, são uma espécie de "pressupostos" que nosso modelo utilizará para proceder com o treinamento.Nem todos os algoritmos utilizam hiperparâmetros, por exemplo: regressão linear simples não utiliza nenhum hiperparâmetro, mas SVM utiliza 2 hiperparâmetros principais (o Kernel e o Gamma).Note que como os **hiperparâmetros** devem ser definidos ANTES do aprendizado do modelo, uma tarefa importante é *determinar a melhor combinação de hiperparâmetros* para que o modelo tenha boa capacidade preditiva. Isso é chamado de **otimização de hiperparâmetros** e é o processo de escolher o melhor conjunto de hiperparâmetros para o algoritmo de aprendizagem em uso.E uma das técnicas de otimização de hiperparâmetros é a **GRID SEARCH**, que consiste em uma busca manual e exaustiva em um subconjunto de hiperparâmetros do algoritmo de aprendizagem (uma matriz de hiperparâmetros) guiada por alguma métrica de performance (tipicamente determinada por cross-validation ou por validação em um conjunto de dados de validação separado do conjunto de dados de teste).Um exemplo concreto ajudará a esclarecer o conceito de Grid Search: considere que vamos treinam um algoritmo de SVM. Esse algoritmo tem 2 hiperparâmetros principais, o *Kernel* e o *Gamma* (existem outros hiperparâmetros para a SVM, mas vamos considerar inicialmente somente esses dois). O *Kernel* pode ser escolhido entre as opções `rbf`, `linear`, `poly`, `sigmoid`, e o *Gamma* é um valor numérico real positivo (para os Kernels rbf, poly ou sigmoid).Como podemos então estabelecer a melhor combinação entre esses hiperparâmetros, sendo que o Kernel é um valor nominal e o Gamme é um valor real positivo? Bem, aqui usamos a GRID SEARCH e construímos uma matriz com os valores possíveis do Kernel e com alguns valores escolhidos do Gamma (geralmente em escala logarítmica para abranger uma grande quantidade de valores). Nossa matriz poderia se parecer com a seguinte:| Gamma \ Kernel | rbf | poly | sigmoid ||----------------|:---:|:----:|:-------:|| 0,1 | | | || 1 | | | || 10 | | | || 100 | | | |Agora treinaremos nosso modelo de SVM para cada combinação de Kernel/Gamma definida em nossa matriz e utilizamos alguma métrica de avaliação (obtida, por exemplo, por cross-validation) como o F1 Score e verificamos qual combinação foi a de melhor desempenho (no exemplo fictício abaixo, a melhor combinação foi com Kernel rfb e gamma de 100):| Gamma \ Kernel | rbf | poly | sigmoid ||----------------|---------:|---------:|---------:|| 0,1 | F1 = 0,2 | F1 = 0,4 | F1 = 0,4 || 1 | F1 = 0,3 | F1 = 0,5 | F1 = 0,3 || 10 | F1 = 0,6 | F1 = 0,6 | F1 = 0,2 || 100 | **F1 = 0,8** | F1 = 0,6 | F1 = 0,2 |Note que o processo da GRID SEARCH pode se tornar bastante complexo se o número de hiperparâmetros a serem definidos é maior do que 2. Com 3 hiperparâmetros, teríamos uma matriz tridimensional para testar (o produto cartesiano entre o conjunto de todos os valores possíveis dos hiperparâmetros) e com 4 hiperparâmetros teríamos uma matriz de quatro dimensões para testar. Quanto maior o número de hiperparâmetros, mais complexa fica a GRID SEARCH.**RESPOSTA DA SEGUNDA PERGUNTA:**Conforme já demonstrado na resposta anterior, a GRID SEARCH é uma das técnicas que podem ser utilizadas na otimização de hiperparâmetros para nos ajudar a decidir qual a combinação ótima desses hiperparâmetros que levam ao melhor algoritmo de aprendizagem. Questão 8 - Validação Cruzada* O que é a técnica de treinamento de validação-cruzada k-fold?* Quais benefícios essa técnica proporciona para busca em matriz ao otimizar um modelo?**Dica:** Lembre-se de expllicar o que significa o 'k' da validação-cruzada k-fold, como a base de dados é dividida e quantas vezes ela é executada.Assim como há um raciocínio por trás de utilizar um conjunto de teste, o que poderia dar errado ao utilizar busca em matriz sem um conjunto de validação cruzada? Você pode utilizar a [documentação](http://scikit-learn.org/stable/modules/cross_validation.htmlcross-validation) para basear sua resposta. **RESPOSTA DA PRIMEIRA PERGUNTA:**Uma das principais questões que o cientista de dados tem que responder é determinar se o algoritmo de treinamento e o modelo resultante é bom, ou seja, se é capaz de prever bem a variável resposta, sendo generalizável para novos dados. Para esse treinamento e avaliação, algumas situações são possíveis:* *__Usar todos os dados para treinamento__*: uma possibilidade é usar todos os dados para treinamento do modelo. Isso é absolutamente ineficaz e errado pois simplesmente não poderemos determinar se o modelo é bom. Se todos os dados foram utilizados para treinamento, como podemos saber se o modelo é generalizável? Não temos mais nenhum dado para testar e esse modelo provavelmente sofrerá de muito overfitting.* *__Usar um conjunto de treinamento e um conjunto de teste__*: dividir os dados em dois conjuntos separados (treinamento e teste) já permite que o modelo treinado seja avaliado para determinar se é bom. A idéia aqui é treinar o modelo e estimar os parâmetros com os dados de treinamento, e testar a qualidade do modelo em um conjunto de dados de teste que segue a mesma distribuição de probabilidade dos dados de treinamento (na prática os dados são divididos aleatoriamente em dados de treinamento e de teste, garantindo assim que os dados de teste sejam representativos dos dados de treinamento). Mas essa abordagem também tem um problema: se quisermos otimizar os hiperparâmetros dos algoritmos em uma Grid Search, por exemplo, *__não podemos utilizar os dados de teste__*, pois o conhecimento dos resultados com os dados de teste poderia influenciar a escolha dos hiperparâmetros e assim gerar overfitting e diminuir a capacidade e generalização do modelo. Os dados de teste devem ser utilizados somente no final de todo o processo, para determinar a qualidade geral do modelo: não podem ser utilizados durante o processo de treinamento em si.* *__Usar um conjunto de treinamento, um conjunto de validação e um conjunto de teste__*: dividindo os dados em três conjuntos separados (mas com a mesma ditribuição de probabilidade do conjunto de treinamento) podemos treinar o modelo com o conjunto de dados de treinamento, validar os modelos e otimizar os hiperparâmetros com o conjunto de dados de valiação e, após a escolha do modelo final, testar a qualidade do modelo com o conjunto de dados de teste. Essa é a melhor abordagem: usamos conjuntos de dados separados para o treinamento, validação e teste. Entretanto, essa abordagem apresenta uma desvantagem: ao separarmos o conjunto de teste dos dados, já estamos diminuindo a quantidade de dados disponíveis para o treinamento do modelo; e ao separarmos mais um conjunto de dados, para a validação, estaremos diminuindo drasticamente ainda mais os dados disponíveis para o treinamento e isso pode causar um efeito indesejável: os resultados do modelo podem variar muito dependendo da escolha aleatória dos conjuntos de treinamento e validação. É para resolver esse problema que utilizamos a **Cross-Validation**.A **Cross-Validation** é uma técnica de validação para verificar como os resultados de um modelo são generalizáveis para outros conjuntos de dados, ou seja, é uma abordagem para avaliar a qualidade de nosso modelo, *sem utilizar os dados de teste durante a validação*.De modo geral o conceito de cross-validation envolve particionar os dados de treinamento em subconjuntos complementares, realizar o treinamento do modelo em um subconjunto (que passa a ser considerado como o conjunto de treinamento), e validar o modelo obtido com o outro subconjunto (que passa a ser considerado como o conjunto de validação). Além disso, para reduzir a variabilidade, a maioria dos métodos de cross-validation é realizada usando uma forma de "rodízio", onde múltiplas rodadas de cross-validation são realizadas e, a cada rodada, o modelo é treinado e validado utilizando diferentes partições dos dados. O resultado final da validação é dado por alguma forma de combinação dos resultados de cada rodada (por exemplo, a média) para estimar a qualidade do modelo preditivo treinado.Em resumo, técnicas de cross-validation combinam métricas de avaliação do modelo para obter uma informação mais precisa a respeito da performance preditiva do modelo.Existem diversas técnicas para a realização da cross-validation, tais como:* Cross-validation exaustiva: são métodos que realizam o treinamento e a validação em todas as maneiras possíveis de dividir os dados em conjuntos de treinamento e validação. As mais comuns são: * Leave-p-out cross-validation * Leave-one-out corss-validation* Cross-validation não-exaustiva: são métodos que realizam o treinamento e a validação em algumas das maneiras possíveis de dividir os dados em conjuntos de treinamento e validação. As mais comuns são: * K-Fold Cross-Validation * Holdout * Repeated random sub-samplingA **K-Fold Cross-Validation** é uma técnica de validação cruzada não exaustiva que divide **aleatoriamente** o conjunto de dados de treinamento (sendo que o conjunto de dados de teste já foi separado previamente) em **K** grupos de mesmo tamanho. Desses K grupos, um é escolhido para ser considerado como conjunto de validação, e o restante dos **K - 1** grupos são utilizados no treinamento do modelo. Esse procedimento de validação é repetido **K** vezes, cada vez utilizando um grupo diferente como dados de validação. Esses **K** resultados diferentes são combinados e a média deles é utilizada como estimativa da qualidade do modelo.O número exato de K grupos é sujeito a debate, sendo comuns valores de 4, 5 ou 10 grupos.Como um exemplo, vamos considerar um dataset com 100 observações. Separamos 20% dos dados para teste, e ficamos com 80 observações para treinamento. Dessas 80 observações, faremos uma K-Fold Cross-Validation usando `K = 4`, ou seja, dividiremos as 80 observações em 4 grupos de igual tamanho (20 observações em cada grupo). Chamaremos esses grupos de A, B, C e D. O processo de K-Fold Cross-validation é então repedito K vezes (em nosso exemplo, 4 vezes) e, em cada repetição, um grupo diferente é utilizado como validação, e o restante dos grupos (`K - 1`, 3 em nosso exemplo) será utilizado para treinamento:| **Rodada** | **Grupo de Validação** | **Grupos de Treinamento** ||:----------:|:----------------------:|:-------------------------:|| 1 | A | B, C, D || 2 | B | A, C, D || 3 | C | A, B, D || 4 | D | A, B, C |A média dos K resultados das métricas de avaliação desse modelo será considerada como a avaliação do modelo.**RESPOSTA DA SEGUNDA PERGUNTA:**A K-Fold Cross-Validation nos permite validar os modelos e otimizar os hiperparâmetros através de algum processo de otimização, como o Grid Search, sem que os dados de teste tenham qualquer influência no processo de treinamento e validação. Especificamente para a Grid Search, o maior benefício da K-Fold Cross Validation é que todos os dados são utilizados para treinamento e validação (K - 1 vezes como treinamento, e 1 vez como validação), nos dando uma maior segurança que não estamos superestimando ou subestimando a qualidade do modelo (o que terima maior chance de ocorrer se estivéssemos usando somente 1 grupo de validação fixo). Implementação: Ajustar um ModeloNa sua última implementação, você vai precisar unir tudo o que foi aprendido e treinar um modelo utilizando o **algoritmo de árvore de decisão**. Para garantir que você está produzindo um modelo otimizado, você treinará o modelo utilizando busca em matriz para otimizar o parâmetro de profundidade máxima (`'max_depth'`) para uma árvore de decisão. Esse parâmetro pode ser entendido como o número de perguntas que o algoritmo de árvore de decisão pode fazer sobre os dados antes de fazer uma estimativa. Árvores de decisão são parte de uma classe de algoritmos chamados *algoritmos de aprendizagem supervisionada*.Além disso, você verá que a implementação está usando o `ShuffleSplit()` como alternativa para a validação cruzada (veja a variável `cv_sets`). Ela não é a técnica que você descreveu na **Questão 8**, mas ela é tão útil quanto. O `ShuffleSplit()` abaixo irá criar 10 (`n_splits`) conjuntos misturados e 20% (`test_size`) dos dados serão utilizados para validação. Enquanto estiver trabalhando na sua implementação, pense nas diferenças e semelhanças com a validação k-fold.** Fique atento que o `ShuffleSplit` tem diferentes parâmetros nas versões 0.17 e 0.18/0.19 do scikit-learn.*** [Versão 0.17](http://scikit-learn.org/0.17/modules/generated/sklearn.cross_validation.ShuffleSplit.htmlsklearn.cross_validation.ShuffleSplit) - `ShuffleSplit(n, n_iter=10, test_size=0.1, train_size=None, indices=None, random_state=None, n_iterations=None)`* [Versão 0.18](http://scikit-learn.org/0.18/modules/generated/sklearn.model_selection.ShuffleSplit.htmlsklearn.model_selection.ShuffleSplit) - `ShuffleSplit(n_splits=10, test_size=’default’, train_size=None, random_state=None)`Para a função `fit_model` na célula de código abaixo, você vai precisar implementar o seguinte:- Utilize o [`DecisionTreeRegressor`](http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) do `sklearn.tree` para gerar um objeto regressor de árvore de decisão. - Atribua esse objeto à variável `'regressor'`.- Gere um dicionário para `'max_depth'` com os valores de 1 a 10 e atribua isso para a variável `'params'`.- Utilize o [`make_scorer`](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html) do `sklearn.metrics` para gerar um objeto de função de pontuação. - Passe a função `performance_metric` como um parâmetro para esse objeto. - Atribua a função de pontuação à variável `'scoring_fnc'`.- Utilize o [`GridSearchCV`](http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html) do `sklearn.grid_search` para gerar um objeto de busca por matriz. - Passe as variáveis `'regressor'`, `'params'`, `'scoring_fnc'` and `'cv_sets'` como parâmetros para o objeto. - Atribua o objeto `GridSearchCV` para a variável `'grid'`. ###Code # TODO: Importar 'make_scorer', 'DecisionTreeRegressor' e 'GridSearchCV' from sklearn.model_selection import ShuffleSplit from sklearn.metrics import make_scorer from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import GridSearchCV def fit_model(X, y): """ Desempenhar busca em matriz sobre o parâmetro the 'max_depth' para uma árvore de decisão de regressão treinada nos dados de entrada [X, y]. """ # Gerar conjuntos de validação-cruzada para o treinamento de dados # sklearn versão 0.17: ShuffleSplit(n, n_iter=10, test_size=0.1, train_size=None, random_state=None) # sklearn versão 0.18: ShuffleSplit(n_splits=10, test_size=0.1, train_size=None, random_state=None) cv_sets = ShuffleSplit(n_splits = 10, test_size = 0.20, random_state = 0) # TODO: Gerar uma árvore de decisão de regressão de objeto regressor = DecisionTreeRegressor(random_state = 1974) # TODO: Gerar um dicionário para o parâmetro 'max_depth' com um alcance de 1 a 10 params = {'max_depth': range(1,11)} # TODO: Transformar 'performance_metric' em uma função de pontuação utilizando 'make_scorer' scoring_fnc = make_scorer(performance_metric) # TODO: Gerar o objeto de busca em matriz grid = GridSearchCV(estimator = regressor, param_grid = params, scoring = scoring_fnc, cv = cv_sets) # Ajustar o objeto de busca em matriz com os dados para calcular o modelo ótimo grid = grid.fit(X, y) # Devolver o modelo ótimo depois de realizar o ajuste dos dados return grid.best_estimator_ ###Output _____no_output_____ ###Markdown Fazendo EstimativasUma vez que o modelo foi treinado em conjunto de dados atribuído, ele agora pode ser utilizado para fazer estimativas em novos conjuntos de entrada de dados. No caso do *regressor da árvore de decisão*, o modelo aprendeu *quais são as melhores perguntas sobre a entrada de dados*, e pode responder com uma estimativa para a **variável alvo**. Você pode utilizar essas estimativas para conseguir informações sobre os dados dos quais o valor da variável alvo é desconhecida – por exemplo, os dados dos quais o modelo não foi treinado. Questão 9 - Modelo Ótimo* Qual profundidade máxima do modelo ótimo? Como esse resultado se compara com a sua suposição na **Questão 6**? ** Executar a célula de código abaixo para ajustar o regressor da árvore de decisão com os dados de treinamento e gerar um modelo ótimo. ** ###Code # Ajustar os dados de treinamento para o modelo utilizando busca em matriz reg = fit_model(X_train, y_train) # Produzir valores para 'max_depth' print "O parâmetro 'max_depth' é {} para o modelo ótimo.".format(reg.get_params()['max_depth']) ###Output O parâmetro 'max_depth' é 4 para o modelo ótimo. ###Markdown **Dica: ** A resposta vem da saída do código acima.**Resposta:**Através do uso da Grid Search e Cross-Validation, o melhor modelo de árvore de decisão é o modelo com `max_depth = 4`. Na Questão 6 eu tinha apontado que o modelo com profundidade 3 seria melhor pois o ganho na qualidade do modelo com 4 níveis de profundidade talvez não superasse a desvantagem de usar um modelo mais complexo. Questão 10 - Estimando Preços de VendaImagine que você era um corretor imobiliário na região de Boston ansioso para utilizar esse modelo que ajuda os imóveis que seus clientes desejam vender. Você coletou as seguintes informações de três dos seus clientes:| Atributos | Cliente 1 | Cliente 2 | Cliente 3 || :---: | :---: | :---: | :---: || Número total de cômodos em um imóvel | 5 cômodos | 4 cômodos | 8 cômodos || Nível de pobreza da vizinhança (em %) | 17% | 32% | 3% || Razão estudante:professor das escolas próximas | 15-to-1 | 22-to-1 | 12-to-1 |* Qual valor você sugeriria para cada um dos seus clientes para a venda de suas casas?* Esses preços parecem razoáveis dados os valores para cada atributo?* **Dica:** Utilize as estatísticas que você calculou na seção **Explorando Dados** para ajudar a justificar sua resposta. Dos três clientes, o Cliente 3 tem a maior casa, no melhor bairro de escolas públicas e menor inídice de pobreza; Cliente 2 tem a menor casa, em um bairro com índice de pobreza relativamente alto e sem as melhores escolas públicas.** Execute a célula de códigos abaixo para que seu modelo otimizado faça estimativas para o imóvel de cada um dos clientes.** ###Code # Gerar uma matriz para os dados do cliente client_data = [[5, 17, 15], # Cliente 1 [4, 32, 22], # Cliente 2 [8, 3, 12]] # Cliente 3 # Mostrar estimativas for i, price in enumerate(reg.predict(client_data)): print "Preço estimado para a casa do cliente {}: ${:,.2f}".format(i+1, price) # Características das casas com valores MUITO próximos aos do primeiro ciente (mais ou menos 1/30 std): data[(data['MEDV'] > 414184.162 - std_price/30) & (data['MEDV'] < 414184.62 + std_price/30)].sort_values('MEDV') # Características das casas com valores MUITO próximos aos do segundo ciente (mais ou menos 1/30 std): data[(data['MEDV'] > 230452.17 - std_price/10) & (data['MEDV'] < 230452.17 + std_price/10)].sort_values('MEDV') # Características das casas com valores BEM próximos aos do terceiro ciente (mais ou menos 1/15 std): data[(data['MEDV'] > 896962.50 - std_price/15) & (data['MEDV'] < 896962.50 + std_price/15)].sort_values('MEDV') ###Output _____no_output_____ ###Markdown **Resposta:**Eu apontaria para cada cliente os valores que o modelo de árvore de decisão calculou, pois parecem ser bem adequados às características dos clientes:* O cliente 3 é o que tem a maior casa, no melhor bairro de escolas públicas e menor inídice de pobreza. O valor previsto pelo modelo é bem parecido com as características de casas com valores próximos.* O cliente 2 tem a menor casa, em um bairro com índice de pobreza relativamente alto e sem as melhores escolas públicas. O valor previsto pelo modelo é semelhante com as características de casas com valores próximos mas, à primeira impressão parece que o modelo talvez tenha superestimado o valor pois esse cliente está em situação mais desfavorável do que os clientes de casas com valores semelhantes.* O cliente 1 é um cliente intermediário. O valor previsto pelo modelo é bem parecido com as características de casas com valores próximos. Como essa casa tem um valor intermediário, muito mais casas estão nessa faixa de valores, quando comparadas com as casas nas faixas de valores inferiores (cliente 2) ou superiores (cliente 3) SensibilidadeUm modelo ótimo não é necessariamente um modelo robusto. Às vezes, um modelo é muito complexo ou muito simples para generalizar os novos dados. Às vezes, o modelo pode utilizar um algoritmo de aprendizagem que não é apropriado para a estrutura de dados especificado. Outras vezes, os próprios dados podem ter informação excessiva ou exemplos insuficientes para permitir que o modelo apreenda a variável alvo – ou seja, o modelo não pode ser ajustado.** Execute a célula de código abaixo para rodar a função `fit_model` dez vezes com diferentes conjuntos de treinamento e teste para ver como as estimativas para um cliente específico mudam se os dados foram treinados.** ###Code vs.PredictTrials(features, prices, fit_model, client_data) ###Output Trial 1: $391,183.33 Trial 2: $419,700.00 Trial 3: $415,800.00 Trial 4: $420,622.22 Trial 5: $418,377.27 Trial 6: $411,931.58 Trial 7: $399,663.16 Trial 8: $407,232.00 Trial 9: $351,577.61 Trial 10: $413,700.00 Range in prices: $69,044.61 ###Markdown Questão 11 - Aplicabilidade* Em poucas linhas, argumente se o modelo construído deve ou não ser utilizado de acordo com as configurações do mundo real.**Dica:** Olhe os valores calculados acima. Algumas questões para responder:* Quão relevante dados coletados em 1978 podem ser nos dias de hoje? A inflação é importante?* Os atributos presentes são suficientes para descrever um imóvel?* Esse modelo é robusto o suficiente para fazer estimativas consistentes?* Dados coletados em uma cidade urbana como Boston podem ser aplicados para uma cidade rural?* É justo julgar o preço de um único imóvel baseado nas características de todo o bairro? **Resposta:**O modelo treinado **não poderia** ser utilizado em cenários reais hoje em dia, pois uma série de limitações importantes existem:* Os dados são de 1978 e, mesmo corrigidos pela inflação, podem não representar a estrutura de preços atual dos imóveis pois vários fatores externos importantes causaram grandes mudanças no preço dos imóveis, por exemplo: a bolha imobiliária de 2008 nos EUA.* O único atributo do próprio imóvel que foi incluído no modelo foi o número de quartos. Outros atributos que poderiam ser importantes no modelo foram deixados de fora, como por exemplo: área construída, número de pavimentos, tipo de construção (madeira, alvenaria, etc.), vagas de garagem, área de lazer, piscina, quantidade de banheiros e suítes, ano de construção e outros.* Algumas características do bairro e localização do imóvel que talvez fossem importantes no modelo foram deixados de fora, como por exemplo: presença de praças e áreas de lazer e localização em área nobre da cidade.* Como resultado da simplicidade do modelo e do pequeno número de observações que foram utilizadas para o treinamento do modelo (e provável underfitting em cenários reais), ele não é capaz de fazer estimativas mais consistentes. > **Nota**: Uma vez que você tenha completado todos os códigos e respondido todas as questões acima, você pode finalizar seu trabalho exportando o iPython Notebook como um documento HTML.Você pode fazer isso usando o menu acima e navegando até* **File -> Download as -> HTML (.html)*** **Arquivo -> Download como -> HTML (.html)**> Inclua o documento gerado junto com esse notebook na sua submissão. ###Code print('Projeto do Módulo 2 do Programa Nanodegree Engenheiro de Machine Learning') print('Aluno: Abrantes Araújo Silva Filho') ###Output Projeto do Módulo 2 do Programa Nanodegree Engenheiro de Machine Learning Aluno: Abrantes Araújo Silva Filho
11_MarkovAnalysis/11_09_TimeDependentSolution.ipynb
###Markdown 11.9 Time dependent solutionIn this notebook, the numerical computation of the Kolmogorov formula is presented at different time step.The Kolmogorov formula is:$$P(t) = P(0) \cdot \exp(t\,A)$$In the following, the *system* depicted above is considered with:- State 2: Normal operating state- State 1: Degraded operating state- State 0: Failure state$\lambda_{i,j}$ is the transition rate from state $i$ to state $j$. Therefore $\lambda_{2,1}$ and $\lambda_{1,0}$ should be considered as degradation rates while $\lambda_{0,2}$ is a renewing rate. The initial state is the state 2.![](./../images/Schema_11_09.png) Import ###Code import numpy as np from scipy.linalg import expm %matplotlib notebook import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Parameters ###Code # Transition rates (1/h) lambda_21 = 1e-3 lambda_10 = 1e-3 lambda_02 = 1e-2 # Time (h) t_start = 0 t_end = 24*365*4 t_nstep = 10000 # Initial state state0 = 2 ###Output _____no_output_____ ###Markdown Equation variables ###Code # matrix A A = np.array([ [-lambda_02, 0, lambda_02], [lambda_10, -lambda_10, 0], [0, lambda_21, -lambda_21]]) # initial system state P0 = np.zeros((3, )) P0[state0] = 1 # time vector t = np.linspace(t_start, t_end, t_nstep) ###Output _____no_output_____ ###Markdown Numerical computation ###Code P = np.zeros((3, t_nstep)) for it in range(t_nstep): P[:, it] = P0@expm(t[it]*A) ###Output _____no_output_____ ###Markdown Illustration ###Code fig = plt.figure(figsize=(8, 4)) ax = fig.add_subplot(1, 1, 1) vColor = ['r', 'b', 'g'] for jd in range(3): ax.plot(t, P[jd, :], color=vColor[jd], label='State {:d}'.format(jd)) ax.set_xlabel('Time [h]') ax.set_ylabel('State probability [-]') ax.legend() ax.grid(True) ###Output _____no_output_____
documentation/baseFiles/Untitled2.ipynb
###Markdown Exploring Pathlib ###Code from pathlib import Path # get home folder homePath = Path(str(Path.home())) homePath.as_posix() homePath.name # use join path to descend homePath.joinpath('csBehaviorData').joinpath('cad').exists() cadPath = homePath.joinpath('csBehaviorData').joinpath('cad') cadPathGlob = sorted(cadPath.rglob("*.csv")) cadPathGlob cadPathGlob[0].as_posix() txtPath = cadPath.touch('testText.txt') txtPath = cadPath.joinpath('qText.txt') txtPath.touch() a=['kl','lk',1] tempNoteString = '' for v in a: if type(v) is not 'string': v = '{}'.format(v) tempNoteString = tempNoteString + v + '\n' txtPath.write_text(tempNoteString) tempNoteString txtPath.write_text("\n Hi there \n" + txtPath.read_text()) csDataPath.exists() if csDataPath.exists()==0: csDataPath.mkdir() homePath.joinpath('cad').exists() import time import datetime tdStamp=datetime.datetime.now().strftime("%Y_%m_%d_%H:%M:%S") type(tdStamp) ###Output _____no_output_____
Content-Based Filtering.ipynb
###Markdown Content Based FilteringUsing the idea of cosine similaries in the follwoing formal is: ###Code import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics. pairwise import linear_kernel ###Output _____no_output_____ ###Markdown Wrangle the data ###Code data = pd.read_csv("system-data.csv") tf = TfidfVectorizer(analyzer='word', ngram_range=(1,3), min_df=0, stop_words='english') tf_matrix = tf.fit_transform(data['description']) ###Output _____no_output_____ ###Markdown Caculate cosine of similarities ###Code def cosine_calculate(data): cosine_similarties = linear_kernel(tf_matrix, tf_matrix) results = {} for index, row in data.iterrows(): similar_indices = cosine_similarties[index].argsort()[:-100:-1] similar_items = [(cosine_similarties[index][i], data['id'][i]) for i in similar_indices] results[row['id']] = similar_items[1:] return results def item(id): return data.loc[data['id'] == id]['description'].tolist()[0].split(' - ')[0] def recommend_item(item_id, num): print("Recommending " + str(num) + " products similar to " + item(item_id) + "...") print("-------") results = cosine_calculate(data) recs = results[item_id][:num] for rec in recs: print("Recommended: " + item(rec[1]) + " (score:" + str(rec[0]) + ")") ###Output _____no_output_____ ###Markdown Now recommend an Item ###Code recommend_item(item_id=11, num=3) recommend_item(item_id=5, num=5) recommend_item(item_id=42, num=2) ###Output Recommending 2 products similar to Freewheeler... ------- Recommended: Freewheeler max (score:0.6896990390184957) Recommended: Mlc wheelie (score:0.21279952106418648)
notebooks/chapter11_image/06_speech_py2.ipynb
###Markdown > This is one of the 100 recipes of the [IPython Cookbook](http://ipython-books.github.io/), the definitive guide to high-performance scientific computing and data science in Python. 11.6. Applying digital filters to speech sounds > **PYTHON 2 VERSION** You need the pydub package: you can install it with `pip install pydub`. (https://github.com/jiaaro/pydub/) This package requires the open-source multimedia library FFmpeg for the decompression of MP3 files. (http://www.ffmpeg.org) 1. Let's import the packages. ###Code import urllib import urllib2 import cStringIO import numpy as np import scipy.signal as sg import pydub import matplotlib.pyplot as plt from IPython.display import Audio, display %matplotlib inline ###Output _____no_output_____ ###Markdown 2. We create a Python function to generate a sound from an English sentence. This function uses Google's Text-To-Speech (TTT) API. We retrieve the sound in mp3 format, and we convert it to the Wave format with pydub. Finally, we retrieve the raw sound data by removing the wave header with NumPy. ###Code def speak(sentence): url = "http://translate.google.com/translate_tts?tl=en&q=" + \ urllib.quote_plus(sentence) req = urllib2.Request(url, headers={'User-Agent': ''}) mp3 = urllib2.urlopen(req).read() # We convert the mp3 bytes to wav. audio = pydub.AudioSegment.from_mp3(cStringIO.StringIO(mp3)) wave = audio.export(cStringIO.StringIO(), format='wav') wave.reset() wave = wave.read() # We get the raw data by removing the 24 first bytes # of the header. x = np.frombuffer(wave, np.int16)[24:] / 2.**15 return x, audio.frame_rate ###Output _____no_output_____ ###Markdown 3. We create a function that plays a sound (represented by a NumPy vector) in the notebook, using IPython's `Audio` class. ###Code def play(x, fr, autoplay=False): display(Audio(x, rate=fr, autoplay=autoplay)) ###Output _____no_output_____ ###Markdown 4. Let's play the sound "Hello world". We also display the waveform with matplotlib. ###Code x, fr = speak("Hello world") play(x, fr) plt.figure(figsize=(6,3)); t = np.linspace(0., len(x)/fr, len(x)) plt.plot(t, x, lw=1); ###Output _____no_output_____ ###Markdown 5. Now, we will hear the effect of a Butterworth low-pass filter applied to this sound (500 Hz cutoff frequency). ###Code b, a = sg.butter(4, 500./(fr/2.), 'low') x_fil = sg.filtfilt(b, a, x) play(x_fil, fr) plt.figure(figsize=(6,3)); plt.plot(t, x, lw=1); plt.plot(t, x_fil, lw=1); ###Output _____no_output_____ ###Markdown We hear a muffled voice. 6. And now with a high-pass filter (1000 Hz cutoff frequency). ###Code b, a = sg.butter(4, 1000./(fr/2.), 'high') x_fil = sg.filtfilt(b, a, x) play(x_fil, fr) plt.figure(figsize=(6,3)); plt.plot(t, x, lw=1); plt.plot(t, x_fil, lw=1); ###Output _____no_output_____ ###Markdown It sounds like a phone call. 7. Finally, we can create a simple widget to quickly test the effect of a high-pass filter with an arbitrary cutoff frequency. ###Code from IPython.html import widgets @widgets.interact(t=(100., 5000., 100.)) def highpass(t): b, a = sg.butter(4, t/(fr/2.), 'high') x_fil = sg.filtfilt(b, a, x) play(x_fil, fr, autoplay=True) ###Output _____no_output_____
PCA(Principle_component_analysis).ipynb
###Markdown Inference : First PCA is having the variance of 76.86 % means it contains the data 76.86 % second PCA contains 13.11 % of the total data and so on.. ###Code # calculating cumulative variance var_c = np.cumsum(np.round(var,decimals = 4)*100) var_c ###Output _____no_output_____ ###Markdown Inference : If we use first PCA it will be like we are using 76.87 percent of data, if we will use 1st and 2nd PCA it will be like we are using 89.98 percent of the total data and so on... ###Code # Now we will view the PCA components which are created by PCA internally, pca.components_ will display all the components to us pca.components_ # Now visualizing the variance plot for PCA components obtained plt.plot(var_c, color = 'red' ) ###Output _____no_output_____ ###Markdown Inference : From this plot we can infer that PCA 1 is capturing 76.8 percent of data PCA 2 is capturing 89.98 percent of data and so on... ###Code # Getting first PCA values a = pca_values[:, 0:1] # getting second PCA values b = pca_values[:,1:2] plt.scatter(x= a, y=b) # we will join this pca values with the university names of our original data. final_data = pd.concat([pd.DataFrame(pca_values[:,0:2], columns =['pc1','pc2']) ,univ[['Univ']]], axis = 1) final_data plt.figure(figsize = (10,8)) sns.scatterplot(data = final_data, x = 'pc1', y = 'pc2', hue = 'Univ') ###Output _____no_output_____
ha_regression.ipynb
###Markdown Regression Analysis: Seasonal Effects with Sklearn Linear RegressionIn this notebook, you will build a SKLearn linear regression model to predict Yen futures ("settle") returns with *lagged* Yen futures returns. ###Code # Futures contract on the Yen-dollar exchange rate: # This is the continuous chain of the futures contracts that are 1 month to expiration yen_futures = pd.read_csv( Path("yen.csv"), index_col="Date", infer_datetime_format=True, parse_dates=True ) yen_futures.head() # Trim the dataset to begin on January 1st, 1990 yen_futures = yen_futures.loc["1990-01-01":, :] yen_futures.head() test = yen_futures.copy() test['Return'] = test['Settle'].pct_change()*100 # df.replace([np.inf, -np.inf], np.nan, inplace=True).dropna(subset=["col1", "col2"], how="all") test.replace([np.inf, -np.inf], np.nan, inplace=True) test.dropna(inplace = True) test.head(5) ###Output _____no_output_____ ###Markdown Data Preparation Returns ###Code # Create a series using "Settle" price percentage returns, drop any nan"s, and check the results: # (Make sure to multiply the pct_change() results by 100) # In this case, you may have to replace inf, -inf values with np.nan"s # YOUR CODE HERE! test = yen_futures.copy() yen_futures['Return'] = yen_futures['Settle'].pct_change()*100 # df.replace([np.inf, -np.inf], np.nan, inplace=True).dropna(subset=["col1", "col2"], how="all") yen_futures.replace([np.inf, -np.inf], np.nan, inplace=True) yen_futures.dropna(inplace = True) yen_futures.tail(5) ###Output _____no_output_____ ###Markdown Lagged Returns ###Code # Create a lagged return using the shift function # YOUR CODE HERE! yen_futures ['Lagged_Return'] = yen_futures ['Return'].shift() yen_futures.tail(5) ###Output _____no_output_____ ###Markdown Train Test Split Author's Note: using the cell bellow produces results that are *different* from the results in the starter notebook. ###Code # Create a train/test split for the data using 2018-2019 for testing and the rest for training train = yen_futures[:'2017'].copy() test = yen_futures['2018':].copy() train.head(5) # Create four dataframes: # X_train (training set using just the independent variables), X_test (test set of of just the independent variables) # Y_train (training set using just the "y" variable, i.e., "Futures Return"), Y_test (test set of just the "y" variable): # YOUR CODE HERE! # remove nas train.dropna(inplace=True) test.dropna(inplace = True) # set up train and test X_train = train['Lagged_Return'].to_frame() X_test = test['Lagged_Return'].to_frame() Y_train = train['Return'] Y_test = test['Return'] # set maximum number of lines pd.set_option('display.max_rows', 10) X_train # Create a Linear Regression model and fit it to the training data from sklearn.linear_model import LinearRegression # Fit a SKLearn linear regression using just the training set (X_train, Y_train): # YOUR CODE HERE! model = LinearRegression() model.fit(X_train, Y_train) # Create a Linear Regression model and fit it to the training data from sklearn.linear_model import LinearRegression # Fit a SKLearn linear regression using just the training set (X_train, Y_train): # YOUR CODE HERE! ###Output _____no_output_____ ###Markdown Make predictions using the Testing DataNote: We want to evaluate the model using data that it has never seen before, in this case: X_test. ###Code # Make a prediction of "y" values using just the test dataset # YOUR CODE HERE! prediction = model.predict(X_test) prediction[0:5] # Assemble actual y data (Y_test) with predicted y data (from just above) into two columns in a dataframe: # YOUR CODE HERE! Results = Y_test.to_frame() Results["Predicted Return"] = prediction # # Plot the first 20 predictions vs the true values # # YOUR CODE HERE! # Results[:20].plot(subplots=True) # Plot the first 20 predictions vs the true values # YOUR CODE HERE! import matplotlib.pyplot as plt Results[:20].plot(subplots=True) plt.savefig(Path("./Images/Regression_Prediction.png")) ###Output _____no_output_____ ###Markdown Out-of-Sample PerformanceEvaluate the model using "out-of-sample" data (X_test and y_test) ###Code from sklearn.metrics import mean_squared_error # Calculate the mean_squared_error (MSE) on actual versus predicted test "y" # YOUR CODE HERE! mse = mean_squared_error( Results["Return"], Results["Predicted Return"] ) # Using that mean-squared-error, calculate the root-mean-squared error (RMSE): # YOUR CODE HERE! rmse = np.sqrt(mse) print(f"Out-of-Sample Root Mean Squared Error (RMSE): {rmse}") ###Output Out-of-Sample Root Mean Squared Error (RMSE): 0.4154832784856737 ###Markdown In-Sample PerformanceEvaluate the model using in-sample data (X_train and y_train) ###Code # Construct a dataframe using just the "y" training data: # YOUR CODE HERE! in_sample_results = Y_train.to_frame() # Add a column of "in-sample" predictions to that dataframe: # YOUR CODE HERE! in_sample_results["In-sample Predictions"] = model.predict(X_train) # Calculate in-sample mean_squared_error (for comparison to out-of-sample) # YOUR CODE HERE! in_sample_mse = mean_squared_error( in_sample_results["Return"], in_sample_results["In-sample Predictions"] ) # Calculate in-sample root mean_squared_error (for comparison to out-of-sample) # YOUR CODE HERE! in_sample_rmse = np.sqrt(in_sample_mse) print(f"In-sample Root Mean Squared Error (RMSE): {in_sample_rmse}") ###Output In-sample Root Mean Squared Error (RMSE): 0.5963660785073426
i18n/locales/ja/widgets-index.ipynb
###Markdown ウィジェットのデモンストレーション 実験できる実用的なコードを提供するだけでなく、本テキストブックは特定の概念を説明するのに役立つ多くのウィジェットも提供します。 ここでは、それらをインデックスとして提供しています。 各セルを実行してウィジェットを操作します。**注意:** コードセルの左下隅にある 「Try」 を押すか、[IBM Quantum Experience](https://quantum-computing.ibm.com/jupyter/user/qiskit-textbook/content/widgets-index.ipynb) でこのページを表示して、対話機能を有効にする必要があります。 インタラクティブコード本テキストブックの最も重要なインタラクティブ要素は、コードを変更して実験する機能です。 これは本テキストブックのWebページで直接可能ですが、Jupyterノートブックとして表示して、セルを追加したり、変更を保存したりすることもできます。 インタラクティブなPythonコードでは、[ipywidgets](https://ipywidgets.readthedocs.io/en/latest/) を介したウィジェットも使用できます。以降、Qiskit テキストブックが提供するウィジェットの一部を紹介します。 ###Code #「try」をクリックしてから「run」をクリックして出力を確認します print("This is code works!") ###Output This is code works! ###Markdown ゲートデモこのウィジェットは、Q-sphereを通して示される、量子ビットに対するいくつかのゲートの効果を示しています。 [単一量子ビットゲート](./ch-states/single-qubit-gates.html)で多く使用されています。 ###Code from qiskit_textbook.widgets import gate_demo gate_demo() ###Output _____no_output_____ ###Markdown バイナリデモンストレーションこのシンプルなウィジェットを使用すると、2進数を操作できます。 [原子の計算](./ch-states/atoms-computation.html)にあります。 ###Code from qiskit_textbook.widgets import binary_widget binary_widget(nbits=5) ###Output _____no_output_____ ###Markdown スケーラブルな回路ウィジェット[量子フーリエ変換の章](./ch-algorithms/quantum-fourier-transform.html) のような回路を使用する場合、さまざまな量子ビットの数にどのようにスケーリングするかを確認すると便利なことがよくあります。 関数が回路(QuantumCircuit)といくつかの量子ビット(int)を入力として受け取る場合、以下のウィジェットを使用してどのようにスケーリングするかを確認できます。 ###Code from qiskit_textbook.widgets import scalable_circuit from numpy import pi def qft_rotations(circuit, n): """Performs qft on the first n qubits in circuit (without swaps)""" if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cu1(pi/2**(n-qubit), qubit, n) # 関数の最後で、次の量子ビットで同じ関数を再度呼び出します(関数の前半でnを1つ減らしました) qft_rotations(circuit, n) def swap_qubits(circuit, n): """Reverse the order of qubits""" for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): """QFT on the first n qubits in circuit""" qft_rotations(circuit, n) swap_qubits(circuit, n) return circuit scalable_circuit(qft) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:11: DeprecationWarning: The QuantumCircuit.cu1 method is deprecated as of 0.16.0. It will be removed no earlier than 3 months after the release date. You should use the QuantumCircuit.cp method instead, which acts identically. # This is added back by InteractiveShellApp.init_path() ###Markdown ベルンシュタイン-ヴァジラニ ウィジェットこのウィジェットを介して、[ベルンシュタイン-ヴァジラニ アルゴリズム](./ch-algorithms/bernstein-vazirani.html) のインスタンスから数学を追跡できます。 ボタンを押して、アルゴリズムのさまざまなステップを適用します。 最初の引数は量子ビットの数を設定し、2番目の引数は非表示のバイナリ文字列を設定してからセルを再実行します。 `hide_oracle = False`を設定してセルを再実行することにより、オラクルの内容を明らかにすることもできます。 ###Code from qiskit_textbook.widgets import bv_widget bv_widget(2, "11", hide_oracle=True) ###Output _____no_output_____ ###Markdown ドイチュ-ジョザ ウィジェットベルンシュタイン-ヴァジラニ ウィジェットと同様に、ドイチュ-ジョザ ウィジェットを介して、[ドイチュ-ジョザ アルゴリズム](./ch-algorithms/deutsch-josza.html)のインスタンスから数学を追跡できます。 ボタンを押して、アルゴリズムのさまざまなステップを適用します。 「case」は"balanced"または"constant"、「size」は"small"または"large"にすることができます。 ランダムに選択されたオラクルに対してセルを再実行します。 `hide_oracle = False`を設定してセルを再実行することにより、オラクルの内容を明らかにすることもできます。 ###Code from qiskit_textbook.widgets import dj_widget dj_widget(size="large", case="balanced", hide_oracle=True) ###Output _____no_output_____
notebooks/08_UMAP_gridsearch.ipynb
###Markdown Calculate UMAP embeddings with different parameters ###Code import os import pandas as pd import sys import numpy as np from pandas.core.common import flatten import pickle import umap from pathlib import Path import librosa import numba import math from scipy.signal import butter, lfilter from preprocessing_functions import calc_zscore, pad_spectro, create_padded_data from preprocessing_functions import preprocess_spec_numba,preprocess_spec_numba_fl, pad_transform_spectro from spectrogramming_functions import generate_mel_spectrogram, generate_stretched_spectrogram wd = os.getcwd() DF = os.path.join(os.path.sep, str(Path(wd).parents[0]), "data", "processed", "df_focal_reduced.pkl") OUT_COORDS = os.path.join(os.path.sep, str(Path(wd).parents[0]), "data", "interim", "parameter_search", "grid_search") ###Output _____no_output_____ ###Markdown Generate dataframe for grid search ###Code spec_df = pd.read_pickle(DF) spec_df.shape # Bandpass filters for calculating audio intensity LOWCUT = 300.0 HIGHCUT = 3000.0 # Function that calculates intensity score from # amplitude audio data # Input: 1D numeric numpy array (audio data) # Output: Float (Intensity) def calc_audio_intense_score(audio): res = 10*math.log((np.mean(audio**2)),10) return res # Butter bandpass filter implementation: # from https://scipy-cookbook.readthedocs.io/items/ButterworthBandpass.html def butter_bandpass(lowcut, highcut, fs, order=5): nyq = 0.5 * fs low = lowcut / nyq high = highcut / nyq b, a = butter(order, [low, high], btype='band') return b, a def butter_bandpass_filter(data, lowcut, highcut, fs, order=5): b, a = butter_bandpass(lowcut, highcut, fs, order=order) y = lfilter(b, a, data) return y from spectrogramming_functions import generate_spectrogram # Using the band-pass filtered signal! raw_audios = spec_df['raw_audio'] srs = spec_df['samplerate_hz'] audio_filtered = [butter_bandpass_filter(audio, LOWCUT, HIGHCUT, sr, order=6) for audio,sr in zip(raw_audios, srs)] spec_df['raw_audio_filtered'] = audio_filtered # Spectrogramming parameters FFT_WIN = 0.03 # FFT_WIN*samplerate = length of fft/n_fft (number of audio frames that go in one fft) FFT_HOP = FFT_WIN/8 # FFT_HOP*samplerate = n of audio frames between successive ffts N_MELS = 40 # number of mel bins WINDOW = 'hann' # each frame of audio is windowed by a window function (its length can also be # determined and is then padded with zeros to match n_fft. we use window_length = length of fft FMAX = 4000 N_MFCC = 13 MAX_DURATION = 0.5 raw_specs = spec_df.apply(lambda row: generate_spectrogram(row['raw_audio'], row['samplerate_hz'], WINDOW, FFT_WIN, FFT_HOP), axis=1) spec_df['raw_specs'] = raw_specs raw_specs_filtered = spec_df.apply(lambda row: generate_spectrogram(row['raw_audio_filtered'], row['samplerate_hz'], WINDOW, FFT_WIN, FFT_HOP), axis=1) spec_df['raw_specs_filtered'] = raw_specs_filtered raw_specs_stretched = spec_df.apply(lambda row: generate_stretched_spectrogram(row['raw_audio'], row['samplerate_hz'], row['duration_s'], WINDOW, FFT_WIN, FFT_HOP, MAX_DURATION), axis=1) spec_df['raw_specs_stretched'] = raw_specs_stretched raw_specs_filtered_stretched = spec_df.apply(lambda row: generate_stretched_spectrogram(row['raw_audio_filtered'], row['samplerate_hz'], row['duration_s'], WINDOW, FFT_WIN, FFT_HOP, MAX_DURATION), axis=1) spec_df['raw_specs_filtered_stretched'] = raw_specs_filtered_stretched spec_df.to_pickle(os.path.join(os.path.sep, str(Path(wd).parents[0]), "data", "processed", "df_grid.pkl")) ###Output _____no_output_____ ###Markdown Gridsearch ###Code @numba.njit() def unpack_specs(a,b): """ Function that unpacks two specs that have been transformed into a 1D array with preprocessing_functions.pad_transform_spec and restores their original 2D shape Parameters ---------- a,b : 1D numpy arrays (numeric) Returns ------- spec_s, spec_l : 2D numpy arrays (numeric) the restored specs Example ------- >>> """ a_shape0 = int(a[0]) a_shape1 = int(a[1]) b_shape0 = int(b[0]) b_shape1 = int(b[1]) spec_a= np.reshape(a[2:(a_shape0*a_shape1)+2], (a_shape0, a_shape1)) spec_b= np.reshape(b[2:(b_shape0*b_shape1)+2], (b_shape0, b_shape1)) len_a = a_shape1 len_b = b_shape1 # find bigger spec spec_s = spec_a spec_l = spec_b if len_a>len_b: spec_s = spec_b spec_l = spec_a return spec_s, spec_l spec_df = pd.read_pickle(os.path.join(os.path.sep, str(Path(wd).parents[0]), "data", "processed", "df_grid.pkl")) DEF_PREPROCESS_TYPE = 'zs' DEF_METRIC_TYPE = 'euclidean' DEF_DURATION_METHOD = 'pad' DEF_MIN_DIST = 0 DEF_SPREAD = 1 DEF_N_NEIGHBORS = 15 DEF_N_COMPS = 3 DEF_DENOISE = 'no' DEF_N_MELS = 40 DEF_F_UNIT = 'dB' # Spectrogramming parameters FFT_WIN = 0.03 # FFT_WIN*samplerate = length of fft/n_fft (number of audio frames that go in one fft) FFT_HOP = FFT_WIN/8 # FFT_HOP*samplerate = n of audio frames between successive ffts N_MELS = 40 # number of mel bins WINDOW = 'hann' # each frame of audio is windowed by a window function (its length can also be # determined and is then padded with zeros to match n_fft. we use window_length = length of fft FMAX = 4000 N_MFCC = 13 MAX_DURATION = 0.5 MIN_OVERLAP = 0.9 from scipy.spatial.distance import correlation from scipy.spatial.distance import cosine def get_param_string(): param_combi = "_".join([str(x) for x in [preprocess_type, metric_type, duration_method, min_dist, spread, n_neighbors, n_comps, input_type, denoise, n_mels, f_unit, bp_filtered]]) return param_combi def calc_umap(data, outname, metric=DEF_METRIC_TYPE, min_dist=DEF_MIN_DIST, spread=DEF_SPREAD, n_neighbors=DEF_N_NEIGHBORS, n_comps=DEF_N_COMPS,n = 1): for i in range(n): reducer = umap.UMAP(n_components = n_comps, min_dist=min_dist, spread=spread, n_neighbors=n_neighbors, metric=metric, random_state=2204) embedding = reducer.fit_transform(data) print("\r"+outname, end="") np.savetxt(outname+'_'+str(i)+'.csv', embedding, delimiter=";") # *************** DO THE FULL GRIDSEARCH *************** n_neighbors = DEF_N_NEIGHBORS spread = DEF_SPREAD min_dist = DEF_MIN_DIST n_comps = 3 input_type = "specs" FMAX = 4000 for duration_method in ['pad', 'pairwise-pad', 'stretched', 'timeshift-pad', 'timeshift-overlap', 'overlap']: for preprocess_type in ['no', 'zs', 'zs-fl-ce']: for metric_type in ['cosine', 'euclidean', 'correlation', 'manhattan']: for denoise in ['yes', 'no']: for n_mels in [0, 10, 20, 30, 40, 50]: for f_unit in ['dB', 'magnitude']: for bp_filtered in ['yes', 'no']: outname = os.path.join(os.path.sep, OUT_COORDS, get_param_string()) #print("\r"+outname, end="") try: # select dataframe column if bp_filtered=='yes': if duration_method=='stretched': specs = spec_df.raw_specs_filtered_stretched.copy() else: specs = spec_df.raw_specs_filtered.copy() else: if duration_method=='stretched': specs = spec_df.raw_specs_stretched.copy() else: specs = spec_df.raw_specs.copy() # Mel transform if n_mels>0: srs = spec_df.samplerate_hz.copy() specs = [librosa.feature.melspectrogram(S=s, sr=sr, n_mels=n_mels, fmax=FMAX) for s, sr in zip(specs, srs)] else: # Problem: Because of the varying samplerate, the non-mel-transformed spectrograms are not all of the same height!! # So if I'm using them, I need to cut the ones with the larger frequency range. n_bins = [s.shape[0] for s in specs] min_bins = np.min(n_bins) specs = [s[0:min_bins,:] for s in specs] # Spectrogram intensity unit if f_unit=="dB": specs = [librosa.power_to_db(s, ref=np.max) for s in specs] # Denoising if denoise=='yes': specs = [(s-np.median(s, axis=0)) for s in specs] # Pre-processing if preprocess_type=='zs': specs = [calc_zscore(s) for s in specs] elif preprocess_type=='zs-fl-ce': specs = [calc_zscore(s) for s in specs] specs = [np.where(s<0,0,s) for s in specs] specs = [np.where(s>3,3,s) for s in specs] # Duration method if duration_method in ['pad', 'stretched']: data = create_padded_data(specs) calc_umap(data, outname=outname, metric = metric_type) else: n_bins = specs[0].shape[0] maxlen = np.max([spec.shape[1] for spec in specs]) * n_bins + 2 trans_specs = [pad_transform_spectro(spec, maxlen) for spec in specs] data = np.asarray(trans_specs) # set spec_dist depending on metric_type!! if metric_type=='euclidean': @numba.njit() def spec_dist(a,b,size): dist = np.sqrt((np.sum(np.subtract(a,b)*np.subtract(a,b)))) / np.sqrt(size) return dist elif metric_type=='manhattan': @numba.njit() def spec_dist(a,b,size): dist = (np.sum(np.abs(np.subtract(a,b)))) / size return dist elif metric_type=='cosine': @numba.njit() def spec_dist(a,b,size): # turn into unit vectors by dividing each vector field by magnitude of vector dot_product = np.sum(a*b) a_magnitude = np.sqrt(np.sum(a*a)) b_magnitude = np.sqrt(np.sum(b*b)) dist = 1 - dot_product/(a_magnitude*b_magnitude) return dist elif metric_type=='correlation': @numba.njit() def spec_dist(a,b,size): a_meandiff = a - np.mean(a) b_meandiff = b - np.mean(b) dot_product = np.sum(a_meandiff*b_meandiff) a_meandiff_magnitude = np.sqrt(np.sum(a_meandiff*a_meandiff)) b_meandiff_magnitude = np.sqrt(np.sum(b_meandiff*b_meandiff)) dist = 1 - dot_product/(a_meandiff_magnitude * b_meandiff_magnitude) return dist # for duration_method in ['pad', 'pairwise-pad', 'stretch', 'timeshift-pad', 'timeshift-overlap', 'overlap']: if duration_method=='pairwise-pad': @numba.njit() def calc_pairwise_pad(a, b): spec_s, spec_l = unpack_specs(a,b) n_padding = int(spec_l.shape[1] - spec_s.shape[1]) n_bins = spec_s.shape[0] # pad the smaller spec (if necessary) if n_padding!=0: pad = np.full((n_bins, n_padding), 0.0) spec_s_padded = np.concatenate((spec_s, pad), axis=1) spec_s_padded = spec_s_padded.astype(np.float64) else: spec_s_padded = spec_s.astype(np.float64) # compute distance spec_s_padded = np.reshape(spec_s_padded, (-1)).astype(np.float64) spec_l = np.reshape(spec_l, (-1)).astype(np.float64) size = spec_l.shape[0] dist = spec_dist(spec_s_padded, spec_l, size) return dist calc_umap(data, outname=outname, metric = calc_pairwise_pad) elif duration_method=='timeshift-pad': @numba.njit() def calc_timeshift_pad(a,b): spec_s, spec_l = unpack_specs(a,b) len_s = spec_s.shape[1] len_l = spec_l.shape[1] nfreq = spec_s.shape[0] # define start position min_overlap_frames = int(MIN_OVERLAP * len_s) start_timeline = min_overlap_frames-len_s max_timeline = len_l - min_overlap_frames n_of_calculations = int((((max_timeline+1-start_timeline)+(max_timeline+1-start_timeline))/2) +1) distances = np.full((n_of_calculations),999.) count=0 for timeline_p in range(start_timeline, max_timeline+1,2): #print("timeline: ", timeline_p) # mismatch on left side if timeline_p < 0: len_overlap = len_s - abs(timeline_p) pad_s = np.full((nfreq, (len_l-len_overlap)),0.) pad_l = np.full((nfreq, (len_s-len_overlap)),0.) s_config = np.append(spec_s, pad_s, axis=1).astype(np.float64) l_config = np.append(pad_l, spec_l, axis=1).astype(np.float64) # mismatch on right side elif timeline_p > (len_l-len_s): len_overlap = len_l - timeline_p pad_s = np.full((nfreq, (len_l-len_overlap)),0.) pad_l = np.full((nfreq, (len_s-len_overlap)),0.) s_config = np.append(pad_s, spec_s, axis=1).astype(np.float64) l_config = np.append(spec_l, pad_l, axis=1).astype(np.float64) # no mismatch on either side else: len_overlap = len_s start_col_l = timeline_p end_col_l = start_col_l + len_overlap pad_s_left = np.full((nfreq, start_col_l),0.) pad_s_right = np.full((nfreq, (len_l - end_col_l)),0.) l_config = spec_l.astype(np.float64) s_config = np.append(pad_s_left, spec_s, axis=1).astype(np.float64) s_config = np.append(s_config, pad_s_right, axis=1).astype(np.float64) size = s_config.shape[0]*s_config.shape[1] distances[count] = spec_dist(s_config, l_config, size) count = count + 1 min_dist = np.min(distances) return min_dist calc_umap(data, outname=outname, metric = calc_timeshift_pad) elif duration_method=='timeshift-overlap': @numba.njit() def calc_timeshift(a,b): spec_s, spec_l = unpack_specs(a,b) len_l = spec_l.shape[1] len_s = spec_s.shape[1] # define start position min_overlap_frames = int(MIN_OVERLAP * len_s) start_timeline = min_overlap_frames-len_s max_timeline = len_l - min_overlap_frames n_of_calculations = (max_timeline+1-start_timeline)+(max_timeline+1-start_timeline) distances = np.full((n_of_calculations),999.) count=0 for timeline_p in range(start_timeline, max_timeline+1): # mismatch on left side if timeline_p < 0: start_col_l = 0 len_overlap = len_s - abs(timeline_p) end_col_l = start_col_l + len_overlap end_col_s = len_s # until the end start_col_s = end_col_s - len_overlap # mismatch on right side elif timeline_p > (len_l-len_s): start_col_l = timeline_p len_overlap = len_l - timeline_p end_col_l = len_l start_col_s = 0 end_col_s = start_col_s + len_overlap # no mismatch on either side else: start_col_l = timeline_p len_overlap = len_s end_col_l = start_col_l + len_overlap start_col_s = 0 end_col_s = len_s # until the end s_s = spec_s[:,start_col_s:end_col_s].astype(np.float64) s_l = spec_l[:,start_col_l:end_col_l].astype(np.float64) size = s_s.shape[0]*s_s.shape[1] distances[count] = spec_dist(s_s, s_l, size) count = count + 1 min_dist = np.min(distances) return min_dist calc_umap(data, outname=outname, metric = calc_timeshift) elif duration_method=='overlap': @numba.njit() def calc_overlap_only(a,b): spec_s, spec_l = unpack_specs(a,b) #only use overlap section from longer spec spec_l = spec_l[:spec_s.shape[0],:spec_s.shape[1]] spec_s = spec_s.astype(np.float64) spec_l = spec_l.astype(np.float64) size = spec_s.shape[1]*spec_s.shape[0] dist = spec_dist(spec_s, spec_l, size) return dist calc_umap(data, outname=outname, metric = calc_overlap_only) except: print("FAILED: ", get_param_string()) break ###Output _____no_output_____ ###Markdown Check results ###Code n_neighbors = DEF_N_NEIGHBORS spread = DEF_SPREAD min_dist = DEF_MIN_DIST n_comps = 3 input_type = "specs" FMAX = 4000 expected_files = [] for duration_method in ['pad', 'pairwise-pad', 'stretched', 'timeshift-pad', 'timeshift-overlap', 'overlap']: for preprocess_type in ['no', 'zs', 'zs-fl-ce']: for metric_type in ['cosine', 'euclidean', 'correlation', 'manhattan']: for denoise in ['yes', 'no']: for n_mels in [0, 10, 20, 30, 40, 50]: for f_unit in ['dB', 'magnitude']: for bp_filtered in ['yes', 'no']: expected_files.append(get_param_string()+'_0.csv') print('Expected: ',len(expected_files)) all_embedding_files = list(sorted(os.listdir(OUT_COORDS))) print('Observed: ',len(all_embedding_files)) missing_in_observed = [x for x in expected_files if x not in all_embedding_files] print(len(missing_in_observed)) missing_in_observed def get_params_from_filename(embedding_file): embedding_params_string = embedding_file.replace('.csv', '') embedding_params_list = embedding_params_string.split('_') return embedding_params_list for f in missing_in_observed[:1]: print(f) preprocess_type, metric_type, duration_method,min_dist, spread, n_neighbors, n_comps, input_type, denoise, n_mels, f_unit, bp_filtered, n_repeat = get_params_from_filename(f) min_dist = int(min_dist) spread = int(spread) n_neighbors = int(n_neighbors) n_comps = int(n_comps) n_mels = int(n_mels) if bp_filtered=='yes': if duration_method=='stretched': specs = spec_df.raw_specs_filtered_stretched.copy() else: specs = spec_df.raw_specs_filtered.copy() else: if duration_method=='stretched': specs = spec_df.raw_specs_stretched.copy() else: specs = spec_df.raw_specs.copy() if n_mels>0: srs = spec_df.samplerate_hz.copy() specs = [librosa.feature.melspectrogram(S=s, sr=sr, n_mels=n_mels, fmax=FMAX) for s, sr in zip(specs, srs)] else: # Problem: Because of the varying samplerate, the non-mel-transformed spectrograms are not all of the same height!! # So if I'm using them, I need to cut the ones with the more frequency range. n_bins = [s.shape[0] for s in specs] min_bins = np.min(n_bins) specs = [s[0:min_bins,:] for s in specs] if denoise=='yes': specs = [(s-np.median(s, axis=0)) for s in specs] #if preprocess_type=='zs': # specs = [calc_zscore(s) for s in specs] if preprocess_type=='zs-fl-ce': specs = [calc_zscore(s) for s in specs] specs = [np.where(s<0,0,s) for s in specs] specs = [np.where(s>3,3,s) for s in specs] x=specs[0] pd.DataFrame(x) np.min(x) np.max(x) import matplotlib.pyplot as plt n, bins, pathc = plt.hist(x) specs_z = [calc_zscore(s) for s in specs] x_z = specs_z[0] pd.DataFrame(x_z) n, bins, pathc = plt.hist(x_z) specs = [np.where(s<0,0,s) for s in specs_z] specs = [np.where(s>3,3,s) for s in specs_z] f = specs[0] np.min(f) def calc_umap(data, outname, metric=DEF_METRIC_TYPE, min_dist=DEF_MIN_DIST, spread=DEF_SPREAD, n_neighbors=DEF_N_NEIGHBORS, n_comps=DEF_N_COMPS,n = 1): for i in range(n): reducer = umap.UMAP(n_components = n_comps, min_dist=min_dist, spread=spread, n_neighbors=n_neighbors, metric=metric, random_state=1) embedding = reducer.fit_transform(data) print(outname) np.savetxt(outname+'_'+str(i)+'.csv', embedding, delimiter=";") # Re-do missing for f in missing_in_observed: preprocess_type, metric_type, duration_method,min_dist, spread, n_neighbors, n_comps, input_type, denoise, n_mels, f_unit, bp_filtered, n_repeat = get_params_from_filename(f) min_dist = int(min_dist) spread = int(spread) n_neighbors = int(n_neighbors) n_comps = int(n_comps) n_mels = int(n_mels) outname = os.path.join(os.path.sep, OUT_COORDS, get_param_string()) try: # select dataframe column #print("SELECT") if bp_filtered=='yes': if duration_method=='stretched': specs = spec_df.raw_specs_filtered_stretched.copy() else: specs = spec_df.raw_specs_filtered.copy() else: if duration_method=='stretched': specs = spec_df.raw_specs_stretched.copy() else: specs = spec_df.raw_specs.copy() except: print("FAILED SELECT: ", get_param_string()) try: # Mel transform #print("n_mels") if n_mels>0: #print("LAGGA") srs = spec_df.samplerate_hz.copy() specs = [librosa.feature.melspectrogram(S=s, sr=sr, n_mels=n_mels, fmax=FMAX) for s, sr in zip(specs, srs)] else: # Problem: Because of the varying samplerate, the non-mel-transformed spectrograms are not all of the same height!! # So if I'm using them, I need to cut the ones with the more frequency range. #print("SMALLE") n_bins = [s.shape[0] for s in specs] min_bins = np.min(n_bins) specs = [s[0:min_bins,:] for s in specs] #print("NEMELS") except: print("FAILED MEL: ", get_param_string()) try: # Spectrogram intensity unit #print("UNIT") if f_unit=="dB": specs = [librosa.power_to_db(s, ref=np.max) for s in specs] except: print("FAILED INTENSITY UNIT: ", get_param_string()) # Denoising if denoise=='yes': specs = [(s-np.median(s, axis=0)) for s in specs] try: #print("OPREPRO")# Pre-processing if preprocess_type=='zs': specs = [calc_zscore(s) for s in specs] elif preprocess_type=='zs-fl-ce': specs = [calc_zscore(s) for s in specs] specs = [np.where(s<0,0,s) for s in specs] specs = [np.where(s>3,3,s) for s in specs] except: print("FAILED PREPROCESS: ", get_param_string()) try: #print("trnasform") n_bins = specs[0].shape[0] maxlen = np.max([spec.shape[1] for spec in specs]) * n_bins + 2 trans_specs = [pad_transform_spectro(spec, maxlen) for spec in specs] data = np.asarray(trans_specs) except: print("FAILED DATA PREP: ", get_param_string()) # set spec_dist depending on metric_type!! if metric_type=='euclidean': @numba.njit() def spec_dist(a,b,size): dist = np.sqrt((np.sum(np.subtract(a,b)*np.subtract(a,b)))) / np.sqrt(size) return dist elif metric_type=='manhattan': @numba.njit() def spec_dist(a,b,size): dist = (np.sum(np.abs(np.subtract(a,b)))) / size return dist elif metric_type=='cosine': @numba.njit() def spec_dist(a,b,size): # turn into unit vectors by dividing each vector field by magnitude of vector dot_product = np.sum(a*b) a_magnitude = np.sqrt(np.sum(a*a)) b_magnitude = np.sqrt(np.sum(b*b)) if (a_magnitude*b_magnitude)==0: dist=0 else: dist = 1 - dot_product/(a_magnitude*b_magnitude) return dist elif metric_type=='correlation': @numba.njit() def spec_dist(a,b,size): a_meandiff = a - np.mean(a) b_meandiff = b - np.mean(b) dot_product = np.sum(a_meandiff*b_meandiff) a_meandiff_magnitude = np.sqrt(np.sum(a_meandiff*a_meandiff)) b_meandiff_magnitude = np.sqrt(np.sum(b_meandiff*b_meandiff)) if (a_meandiff_magnitude * b_meandiff_magnitude)==0: dist = 0 else: dist = 1 - dot_product/(a_meandiff_magnitude * b_meandiff_magnitude) return dist if duration_method=='timeshift-overlap': #print("CHEFDDF") @numba.njit() def calc_timeshift(a,b): spec_s, spec_l = unpack_specs(a,b) len_l = spec_l.shape[1] len_s = spec_s.shape[1] # define start position min_overlap_frames = int(MIN_OVERLAP * len_s) start_timeline = min_overlap_frames-len_s max_timeline = len_l - min_overlap_frames n_of_calculations = (max_timeline+1-start_timeline)+(max_timeline+1-start_timeline) distances = np.full((n_of_calculations),999.) count=0 for timeline_p in range(start_timeline, max_timeline+1): # mismatch on left side if timeline_p < 0: start_col_l = 0 len_overlap = len_s - abs(timeline_p) end_col_l = start_col_l + len_overlap end_col_s = len_s # until the end start_col_s = end_col_s - len_overlap # mismatch on right side elif timeline_p > (len_l-len_s): start_col_l = timeline_p len_overlap = len_l - timeline_p end_col_l = len_l start_col_s = 0 end_col_s = start_col_s + len_overlap # no mismatch on either side else: start_col_l = timeline_p len_overlap = len_s end_col_l = start_col_l + len_overlap start_col_s = 0 end_col_s = len_s # until the end s_s = spec_s[:,start_col_s:end_col_s].astype(np.float64) s_l = spec_l[:,start_col_l:end_col_l].astype(np.float64) size = s_s.shape[0]*s_s.shape[1] distances[count] = spec_dist(s_s, s_l, size) count = count + 1 min_dist = np.min(distances) return min_dist try: calc_umap(data, outname=outname, metric = calc_timeshift) except: print("FAILED UMAP: ", get_param_string()) ###Output /home/mthomas/anaconda3/envs/meerkat_umap_env_3/lib/python3.7/site-packages/umap/umap_.py:1728: UserWarning: custom distance metric does not return gradient; inverse_transform will be unavailable. To enable using inverse_transform method method, define a distance function that returns a tuple of (distance [float], gradient [np.array]) "custom distance metric does not return gradient; inverse_transform will be unavailable. "
Python/numpy-pandas/05_correlation_coefficient_pearson.ipynb
###Markdown 상관계수 ( Correlation Coefficient ) Index1. 분산1. 공분산1. 상관계수1. 결정계수1. 프리미어리그 데이터 상관계수 분석 ###Code import numpy as np ###Output _____no_output_____ ###Markdown 샘플 데이터 생성 ###Code data1 = np.array([80, 85, 100, 90, 95]) data2 = np.array([70, 80, 100, 95, 95]) ###Output _____no_output_____ ###Markdown 2. 분산(variance)- 1개의 이산정도를 나타냄- 편차제곱의 평균 $ variance = \frac{\sum_{i=1}^n{(x_i-\bar{x})^2}}{n}, (\bar{x}:평균) $ ###Code # variance code def variance(data): avg = np.average(data) var = 0 for num in data: var += (num - avg) ** 2 return var / len(data) variance(data1), variance(data2) np.var(data1), np.var(data2) variance(data1) ** 0.5, variance(data2) ** 0.5 np.std(data1), np.std(data2) ###Output _____no_output_____ ###Markdown 일반 함수와 numpy 함수의 퍼포먼스 비교 ###Code p_data1 = np.random.randint(60, 100, int(1E5)) p_data2 = np.random.randint(60, 100, int(1E5)) p_data2[-5:] # 일반함수 %%time variance(p_data1), variance(p_data2) # numpy %%time np.var(p_data1), np.var(p_data2) ###Output Wall time: 2 ms ###Markdown 3. 공분산(covariance)- 2개의 확률변수의 상관정도를 나타냄- 평균 편차곱- 방향성은 보여줄수 있으나 강도를 나타내는데 한계가 있다 - 표본데이터의 크기에 따라서 값의 차이가 큰 단점이 있다 $ covariance = \frac{\sum_{i=1}^{n}{(x_i-\bar{x})(y_i-\bar{y})}}{n}, (\bar{x}:x의 평균, \bar{y}:y의 평균) $ ###Code # covariance function def covariance(data1, data2): data1_avg = np.average(data1) data2_avg = np.average(data2) cov = 0 for num1, num2 in list(zip(data1, data2)): cov += ((num1 - data1_avg) * (num2 - data2_avg)) return cov / (len(data1) - 1) data1 = np.array([80, 85, 100, 90, 95]) data2 = np.array([70, 80, 100, 95, 95]) np.cov(data1, data2)[0, 1] covariance(data1, data2) data3 = np.array([80, 85, 100, 90, 95]) data4 = np.array([100, 90, 70, 90, 80]) np.cov(data3, data4)[0, 1] covariance(data3, data4) data5 = np.array([800, 850, 1000, 900, 950]) data6 = np.array([1000, 900, 700, 900, 800]) np.cov(data5, data6)[0, 1] covariance(data5, data6) ###Output _____no_output_____ ###Markdown 4. 상관계수(correlation coefficient)- 공분산의 한계를 극복하기 위해서 만들어짐- -1 ~ 1까지의 수를 가지며 0과 가까울수록 상관도가 적음을 의미- x의 분산과 y의 분산을 곱한 결과의 제곱근을 나눠주면 x나 y의 변화량이 클수록 0에 가까워짐- https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.corrcoef.html $ correlation-coefficient = \frac{공분산}{\sqrt{{x분산} \cdot {y분산}}} $ 최종 상관계수 $ r = \frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{{\sum(x-\bar{x})^2}\cdot{\sum(y-\bar{y})^2}}} $ ###Code # correlation coefficient function def corrcoef_func(data1, data2): data1_avg = np.average(data1) data2_avg = np.average(data2) cov = 0 var1 = 0 var2 = 0 # 공분산 for num1, num2 in list(zip(data1, data2)): cov += (num1 - data1_avg) * (num2 - data2_avg) covariance = cov / len(data1 - 1) # data1, data2의 분산 for num1, num2 in list(zip(data1, data2)): var1 += (num1 - data1_avg) ** 2 var2 += (num2 - data2_avg) ** 2 variance1 = var1 / len(data1) variance2 = var2 / len(data1) return covariance / ((variance1 * variance2) ** 0.5) round(corrcoef_func(data1, data2), 2), \ round(corrcoef_func(data3, data4), 2), \ round(corrcoef_func(data5, data6), 2) round(np.corrcoef(data1, data2)[0, 1], 2), \ round(np.corrcoef(data3, data4)[0, 1], 2), \ round(np.corrcoef(data5, data6)[0, 1], 2) ###Output _____no_output_____ ###Markdown 5. 결정계수(cofficient of determination: R-squared)- x로부터 y를 예측할수 있는 정도- 상관계수의 제곱 (상관계수를 양수화)- 수치가 클수록 회귀분석을 통해 예측할수 있는 수치의 정도가 더 정확 ###Code round(np.corrcoef(data1, data2)[0, 1] ** 2, 2), \ round(np.corrcoef(data1, data4)[0, 1] ** 2, 2) ###Output _____no_output_____ ###Markdown 6. 프리미어리그 데이터 상관계수 분석- 2016년 프리미어리그 성적에서 득점과 실점 데이터중에 승점에 영향을 더 많이 준 데이터는? ###Code import pandas as pd df = pd.read_csv("datas/premierleague.csv") df.tail() # 득점 gf = np.array(df["gf"]) gf # 실점 ga = np.array(df["ga"]) ga # 승점 points = np.array(df["points"]) points data1, data2 = np.corrcoef(gf, points)[0, 1] ** 2, np.corrcoef(ga, points)[0, 1] ** 2 data1, data2 round(data1, 2), round(data2, 2) ###Output _____no_output_____
_notebooks/2021-12-02-advent-of-code-2.ipynb
###Markdown Advent of Code 2021 - Day 2> My solution and thoughts- toc: false- badges: false- comments: false- categories: [advent-of-code] Day 2!Technically, I wrote this the same day as day 1, and on the third day release... but you can forgive that, right? Part 1Anyway, we're on to day 2! This challenge centers around calculating positions. So our input is a list of directions, and values to apply to those directions. First things first, we're going to want to split those up into something meaningful. Personally, I love a good `namedtuple`: ###Code from collections import namedtuple Movement = namedtuple('Movement', ['direction', 'value']) ###Output _____no_output_____ ###Markdown So each instance in the input list can now be instantiated as a `Movement`, so let's read in that data! ###Code with open('../assets/inputs/aoc/2021/day_2.txt', 'r') as data_file: lines = data_file.readlines() movements = [Movement(line.strip().split(' ')[0], int(line.strip().split(' ')[1])) for line in lines] display(movements[:3]) display(movements[997:]) ###Output _____no_output_____ ###Markdown Ok! We have some data, and we've got it formatted in a way that seems reasonable. Essentially, we need to calculate the horizontal and vertical position that the list of movements leaves us in. We will subtract from the vertical when we go up, add when we go down, and add to the horizontal when we move forward. This is a pretty easy set of conditions: ###Code horizontal_position = 0 vertical_position = 0 for movement in movements: if movement.direction == 'up': vertical_position -= movement.value elif movement.direction == 'down': vertical_position += movement.value else: horizontal_position += movement.value display(horizontal_position * vertical_position) ###Output _____no_output_____ ###Markdown Since the puzzle asks us to give the answer as the multiple of our tracked values, we do.Success!But, what about that code? Does it look... a little gross? I think it does. Namely, we're doing almost the exact same thing for every branch. Can we clean that up?One approach that I like is to declare the operations in a dictionary: ###Code import operator as ops movement_operation = { 'up': ops.sub, 'down': ops.add, 'forward': ops.add } ###Output _____no_output_____ ###Markdown Now we can re-write a bit: ###Code horizontal_position = 0 vertical_position = 0 for movement in movements: op = movement_operation[movement.direction] if movement.direction in ['up', 'down']: vertical_position = op(vertical_position, movement.value) else: horizontal_position = op(horizontal_position, movement.value) display(horizontal_position * vertical_position) ###Output _____no_output_____ ###Markdown Is this better? It's a little harder to read, and we have now encoded that `vertical_position` has to be the thing that both 'up' and 'down' deal with. If we were to need to change 'down' to deal with some other value, this is harder to break apart. On the other hand, the operations are now lifted. If I need to change the operation that is performed for anything, I can do so in one place and be sure that it propogates to all the usage points. That's pretty cool. Part 2Now we introduce the idea of "aim". This is fun if you're a person who has played _entirely_ too much [Subnautica](http://subnauticagame.com/) because the idea makes sense. In this story, you're piloting a sub-marine vehicle. So the aim is basically where the nose of the craft is pointed. Adjusting 'up' and 'down' now affects aim, and only forward changes the values. Pretty easy: ###Code aim = 0 horizontal_position = 0 vertical_position = 0 for movement in movements: op = movement_operation[movement.direction] if movement.direction in ['up', 'down']: aim = op(aim, movement.value) else: horizontal_position = op(horizontal_position, movement.value) vertical_position = op(vertical_position, (movement.value * aim)) display(horizontal_position * vertical_position) ###Output _____no_output_____
PCA&Boruta/PCA/BA888_PCA.ipynb
###Markdown ###Code ## upload files and import library from google.colab import files uploaded = files.upload() import pandas as pd import numpy as np train = pd.read_csv('train_data.csv',index_col=0) test = pd.read_csv('test_data.csv',index_col=0) ## base on Kiki's feature selection results and data prepare process from sklearn.preprocessing import StandardScaler features = ['Effect_of_forex_changes_on_cash','EPS_Diluted','Revenue_Growth','Gross_Profit_Growth','Net_cash_flow_/_Change_in_cash','EPS','Financing_Cash_Flow', 'Weighted_Average_Shares_Growth','EPS_Diluted_Growth','Book_Value_per_Share_Growth','Operating_Cash_Flow_growth','Receivables_growth', 'Weighted_Average_Shs_Out','EPS_Growth','Weighted_Average_Shares_Diluted_Growth','SG&A_Expenses_Growth','Operating_Cash_Flow','Retained_earnings_(deficit)', 'Operating_Income_Growth','Operating_Cash_Flow_per_Share'] # Separating out the features x_train = train.loc[:, features].values x_test= test.loc[:,features].values # transfer into dataframe x_train = pd.DataFrame(data=x_train,columns=[features]) x_test = pd.DataFrame(data=x_test,columns=[features]) # transfer to numeric for X-train and X-test cols = x_train.select_dtypes(exclude=['float']).columns cols2 = x_test.select_dtypes(exclude=['float']).columns x_train[cols] = x_train[cols].apply(pd.to_numeric, downcast='float', errors='coerce') x_test[cols2] = x_test[cols2].apply(pd.to_numeric, downcast='float', errors='coerce') # Separating out the target y_train = train.loc[:,['Class']].values y_test = test.loc[:,['Class']].values # transfer into dataframe y_train= pd.DataFrame(data=y_train,columns=["Class"]) y_test= pd.DataFrame(data=y_test,columns=["Class"]) # transfer to numeric for y-train y_train['Class'] =y_train['Class'].apply(pd.to_numeric, downcast='float', errors='coerce') # replace x NAs with 0 x_train.fillna(0, inplace=True) x_test.fillna(0, inplace=True) # drop NAs in y y_train[pd.isnull(y_train).any(axis=1)] y_train.dropna(inplace = True) # drop corresponding x rows x_train.drop(x_train.index[[7928,12726,12727,17688,17689]],inplace=True) # winsorize the x-train from scipy.stats.mstats import winsorize # remove outliers 5% higher than the max and 5% lower than the min using for loop and winsorize for col in x_train: x_train[col] = winsorize(x_train[col], limits=[0.05,0.05]) # Standardizing the features from sklearn.preprocessing import StandardScaler x_train = StandardScaler().fit_transform(x_train) x_test = StandardScaler().fit_transform(x_test) from sklearn.decomposition import PCA pca = PCA(n_components=6) principalComponents = pca.fit_transform(x_train) principalDf = pd.DataFrame(data = principalComponents, columns = ['principal component 1', 'principal component 2','principal component 3','principal component 4','principal component 5','principal component 6']) finalDf = pd.concat([principalDf, y_train.reindex(principalDf.index)], axis=1, sort=False) pca.explained_variance_ratio_ # sns.pairplot(data=finalDf, hue="Class", height=8,corner=True) # sns.set_context("notebook", font_scale=2) # import KMeans from sklearn.cluster import KMeans # Convert DataFrame to matrix mat = principalDf.values # Using sklearn, change clusters accordingly km = KMeans(n_clusters=2) km.fit(mat) # Get cluster assignment labels labels = km.labels_ labels finalDf['Group']=labels finalDf finalDf['Match'] = np.where(finalDf['Group'] == finalDf['Class'], 1,0) # The variable total adds up the total number of matches. Total = finalDf['Match'].sum() print (Total/17685) ###Output 0.5014984450098954
Predicting the artist from text.ipynb
###Markdown Predicting the artist from text using Web Scraping and a Naive Bayes classifier __1) The Goal:__ Build a text classification model to predict the artist from a piece of text. __2) Get the Data:__ Download HTML pages, Get a list of song urls, Extract lyrics from song urls __3) Split the Data:__ As usual. __4) Exploratory Data Analysis (EDA):__ No need for EDA here.__5)-9) Feature Engineering (FE), Train Model, Optimize Hyperparameters/Cross-Validation:__ Convert text to numbers by applying the Bag Of Words method; Build and train a Naive Bayes classifier; Balance out the dataset.__10) Calculate Test Score__ __11) Deploy and Monitor:__ Write a command-line interface ------------------ Getting the data: Web Scraping ###Code import requests from bs4 import BeautifulSoup from bs4 import SoupStrainer ###Output _____no_output_____ ###Markdown Step 1. Get the raw HTML text from the target website ###Code type(requests.get('https://www.metrolyrics.com/' + artist + '-alpage-1.html')) #.text is a string artist = 'michael-jackson' with open('mj_page1.html', 'w') as file: file.write(requests.get('https://www.metrolyrics.com/' + artist + '-alpage-1.html').text) with open('mj_page1.html', 'r') as file: soup = BeautifulSoup(markup=file) pages = [] for link in soup.find_all(class_ = 'pages')[0].find_all('a'): pages.append(link.get('href')) print(pages) ###Output ['http://www.metrolyrics.com/michael-jackson-alpage-1.html', 'http://www.metrolyrics.com/michael-jackson-alpage-2.html', 'http://www.metrolyrics.com/michael-jackson-alpage-3.html', 'http://www.metrolyrics.com/michael-jackson-alpage-4.html', 'http://www.metrolyrics.com/michael-jackson-alpage-5.html', 'http://www.metrolyrics.com/michael-jackson-alpage-6.html'] ###Markdown Takes a long time. don't run !for i in range(len(pages)): with open('mj_page'+str(i+1)+'.html', 'w') as file: file.write(requests.get(pages[i]).text) ###Code mj_links = [] for i in range(len(pages)): with open('mj_page'+str(i+1)+'.html', 'r') as file: soup = BeautifulSoup(markup=file) for div in soup.find_all('div', attrs={'class':'module', 'id': 'popular'}): for td in div.find_all('td'): if td.a is not None: mj_links.append(td.a.get('href')) print(len(mj_links)) print(len(pages)) ###Output 402 6 ###Markdown Takes a long time. don't run !mj_lyrics = [] for link in mj_links: soup = BeautifulSoup(markup=requests.get(link).text) lyrics_section = soup.find(attrs={'class': 'module', 'id':'popular'}) lyrics_chunk = [] for verse in soup.find_all('p', class_='verse'): for string in verse.stripped_strings: lyrics_chunk.append(string) mj_lyrics = mj_lyrics+lyrics_chunk.append((' '.join(lyrics_chunk), 'michael jackson'))with open('mj_lyrics.txt', 'w') as file: for i in range(len(mj_lyrics)): file.write(mj_lyrics[i] + '\n') ###Code len(mj_links), len(mj_lyrics) # Run this to use mj_lyrics ! with open('mj_lyrics.txt', 'r') as f: mj_lyrics = [line.rstrip() for line in f] given = 'aaaabbbcca' result = [] i = 0 count = 0 for l in given: if l == given[i]: count = count + 1 else: i = i + count new_count = 0 count = new_count + 1 result.append((l,count)) tuple_result = [] for i in range((len(result))): if (i+1) < len(result): if result[i][0] == result[i+1][0]: continue else: tuple_result.append(result[i]) continue else: tuple_result.append(result[len(result)-1]) print(tuple_result) bsjgefue = print(bsjgefue) soup___________ = [BeautifulSoup(markup=markup) for markup in pages] print(soup___________) ###Output [<html><body><p>http://www.metrolyrics.com/michael-jackson-alpage-1.html</p></body></html>, <html><body><p>http://www.metrolyrics.com/michael-jackson-alpage-2.html</p></body></html>, <html><body><p>http://www.metrolyrics.com/michael-jackson-alpage-3.html</p></body></html>, <html><body><p>http://www.metrolyrics.com/michael-jackson-alpage-4.html</p></body></html>, <html><body><p>http://www.metrolyrics.com/michael-jackson-alpage-5.html</p></body></html>, <html><body><p>http://www.metrolyrics.com/michael-jackson-alpage-6.html</p></body></html>] ###Markdown mj_1page = requests.get('https://www.metrolyrics.com/michael-jackson-alpage-1.html')with open('file.html', 'w') as file: file.write(mj_1page.text) mj_1page.text[:100] ###Code ### Step 2. Convert the raw HTML string to a BeautifulSoup-object, so that we can parse the data. ###Output _____no_output_____ ###Markdown mj_1page_soup = BeautifulSoup(mj_1page.text, 'html.parser')mj_1page_soup.find_all(class_ = 'pages') ###Code ### Step 3. Use the BeautifulSoup object to parse the HTML document tree down to the tag that contains the data you want. - There are multiple ways to get to the solution! - `.find()` always returns the first instance of your "query" - `.find_all()` returns a list-like object (called a "ResultSet") that contains the matching results. - `.text` returns the actual part of the tag that is outside of the **< angled brackets >** (i.e. the text) ###Output _____no_output_____ ###Markdown tag_list = []for tag in mj_1page_soup.find_all(class_ = 'pages'): print(tag.text) tag_list.append(tag.text)tag_list pages = []for link in mj_1page_soup.find_all(class_ = 'pages')[0].find_all('a'): pages.append(link.get('href')) print(len(pages),pages) ###Code ------------------------------- ### So you've spent a lot of time writing useful code...Now what? ###Output _____no_output_____ ###Markdown artist = 'michael-jackson'url = 'https://www.metrolyrics.com/' + artist + '-alpage-1.html'response = requests.get(url)soup = BeautifulSoup(markup=response.text) mj_links = []for div in soup.find_all('div', attrs={'class':'module', 'id': 'popular'}): print('here') for td in div.find_all('td'): if td.a is not None: mj_links.append(td.a.get('href')) mj_lyrics = []for li in mj_links[:10]: response = requests.get(li) soup2 = BeautifulSoup(markup=response.text) lyrics_section = soup2.find(attrs={'class': 'module', 'id':'popular'}) lyrics_chunk = [] for verse in soup2.find_all('p', class_='verse'): lyrics_chunk.append(verse.text) mj_lyrics.append((' '.join(lyrics_chunk), 'michael jackson')) ###Code ### Saving the list of all the Michael Jackson lyrics as a binary data stream. ###Output _____no_output_____ ###Markdown import picklewith open('mj_lyrics_binary.txt', 'wb') as filehandle: pickle.dump(mj_lyrics, filehandle) ###Code ### Reading the list of all Michael Jackson lyrics from the binary data file. ###Output _____no_output_____ ###Markdown with open('mj_lyrics_binary.txt', 'rb') as filehandle: test_binary = pickle.load(filehandle) type(test_binary), len(test_binary) type(mj_lyrics), len(mj_lyrics) ###Code ### Saving and reading the list of all the Michael Jackson lyrics as JavaScript Objecct Notation (JSON). ###Output _____no_output_____ ###Markdown import jsonwith open('mj_lyrics_json.txt', 'w') as filehandle: json.dump(mj_lyrics, filehandle) with open('mj_lyrics_json.txt', 'r') as filehandle: test_json = json.load(filehandle)type(test_json), len(test_json) ###Code ---------------- --------------- ###Output _____no_output_____ ###Markdown artist = 'mariah-carey'url = 'https://www.metrolyrics.com/' + artist + '-alpage-1.html'response = requests.get(url)soup = BeautifulSoup(markup=response.text) mc_links = []for div in soup.find_all('div', attrs={'class':'module', 'id': 'popular'}): print('here') for td in div.find_all('td'): if td.a is not None: mc_links.append(td.a.get('href')) mc_lyrics = []for li in mc_links[:10]: response = requests.get(li) soup2 = BeautifulSoup(markup=response.text) lyrics_section = soup2.find(attrs={'class': 'module', 'id':'popular'}) lyrics_chunk = [] for verse in soup2.find_all('p', class_='verse'): lyrics_chunk.append(verse.text) mc_lyrics.append((' '.join(lyrics_chunk), 'mariah carey')) type(mc_lyrics), len(mc_lyrics) ###Code ### Saving the list of all the Michael Jackson lyrics as JavaScript Objecct Notation (JSON). ###Output _____no_output_____ ###Markdown with open('mc_lyrics_json.txt', 'w') as filehandle: json.dump(mc_lyrics, filehandle) ###Code ---------------- --------------- ### Clean up text ###Output _____no_output_____ ###Markdown mc_lyrics_str = ' '.join(map(str, mc_lyrics))mc_lyrics_string_3=mc_lyrics_str.replace('("','')mc_lyrics_string_2=mc_lyrics_string_3.replace('", ', ' ')mc_lyrics_string_1=mc_lyrics_string_2.replace(" 'mariah carey')", ". ")mc_lyrics_string=mc_lyrics_string_1.replace(r"\n", ". ")print(mc_lyrics_string) ###Code import spacy nlp = spacy.load('en_core_web_md') with open('mj_lyrics_json.txt', 'r') as filehandle: mj_json = json.load(filehandle) #with open('mc_lyrics_json.txt', 'r') as filehandle: # mc_json = json.load(filehandle) text_original = [i[0] for i in mj_json] text = nlp(text_original[0]) # when we make it, it's already tokenized for token in text: print(token) ###Output Sadness had been close as my next of kin Then Happy came one day , chased my blues away My life began when Happy smiled Sweet , like candy to a child Stay here and love me just a while Let Sadness see what Happy does Let Happy be where Sadness was Happy , that 's you , you made my life brand new Lost as a little lamb was I , till you came in My life began when happy smiled Sweet , like candy to a child Stay here and love me just a while Let Sadness see what Happy does Let Happy be where Sadness was ( Till now ) Where have I been , what lifetime was I in ? Suspended between time and space Lonely until , Happy came smiling up at me Sadness had no choice but to flee I said a prayer so silently Let Sadness see what Happy does Let Happy be where Sadness was till now Till now Happy , yeah , yeah , happy La , la , la , la , la , la , la , la Yeah happy , ooh , happy La , la , la , la , la , la , la , la Happy , oh yeah happy La , la , la , la , la , la , la , la Happy ###Markdown Linguistic Features ###Code # Tokenization, stop words li = [] for token in text: if token.is_stop == True: li.append(token) print('Tokens that are stop words: {}'.format(li)) li = [] for token in text: if token.is_stop == True: if token.lemma_ not in li: li.append(token.lemma_) print('Tokens that are stop words: {}'.format(li)) text_original[2] def spacy_cleaner(document): tokenize_doc = nlp(document) new_doc = [] for token in tokenize_doc: if not token.is_stop and token.is_alpha: new_doc.append(token.lemma_) return new_doc jfjffkjfku = [] with open('mj_lyrics_json.txt', 'r') as filehandle: mj_json = json.load(filehandle) text_original = [i[0] for i in mj_json] jfjffkjfku = [spacy_cleaner(song) for song in text_original] print(jfjffkjfku[1]) # POS-tagging for token in text[:15]: print(token, token.pos_) spacy.explain('CCONJ') # Named Entity Recognition (NER) text2 = nlp("My name is Ada Lovelace, I am in New York until Christmas and work at Google since May 2020.") text2 spacy.displacy.render(text2, style = 'ent') # Dependencies spacy.displacy.render(text2, style='dep') ###Output _____no_output_____ ###Markdown Word embeddings ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt things = pd.DataFrame({'size': [60, 65, 15, 90, 92, 45, 70, 50, 21], 'roundness': [76, 11, 94, 99, 96, 8, 18, 15, 56]}, index=['Apple', 'Banana', 'Blueberry', 'Melon', 'Football', 'Pen', 'Shoe', 'Spoon', 'Dice']) things plt.figure(figsize=(8,6)) plt.scatter(things['size'], things['roundness']) plt.xlabel('size'), plt.ylabel('roundness') for i, txt in enumerate(things.index): plt.annotate(txt, (things.iloc[i][0], things.iloc[i][1]+2), fontsize=12) ###Output _____no_output_____ ###Markdown Word vectors in SpacySpacy can compare two word(vector)s regarding how similar they are. For this, you need a model of at least medium size, e.g. `en_core_web_md`. ###Code pd.DataFrame(nlp('cat').vector) word1 = nlp('cat') word2 = nlp('dog') round(word1.similarity(word2), 2) word1 = nlp('hound') round(word1.similarity(word2), 2) word1 = nlp('genius') word2 = nlp('man') round(word1.similarity(word2), 2) word1 = nlp('genius') word2 = nlp('woman') round(word1.similarity(word2), 2) def vec(s): return nlp.vocab[s].vector.reshape(1, -1) new_queen = vec('king') - vec('man') + vec('woman') from sklearn.metrics.pairwise import cosine_similarity cosine_similarity(new_queen, vec('queen')) ###Output _____no_output_____ ###Markdown ---------------- "Bag of Words" Step 1. Construct a Text Corpus- This is basically what you end up with after all your scraping and cleaning. ###Code #for i in mj_lyrics_string: # print(i[0]) with open('mj_lyrics_json.txt', 'r') as filehandle: mj_json = json.load(filehandle) with open('mc_lyrics_json.txt', 'r') as filehandle: mc_json = json.load(filehandle) mj_corpus = [i[0] for i in mj_json] mc_corpus = [i[0] for i in mc_json] CORPUS = mj_corpus + mc_corpus ###Output _____no_output_____ ###Markdown len(CORPUS)CORPUS[19]new = CORPUSnew_print = []for i in range(len(new)): (.replace('("','')) new_print.append(new[i].replace(r"\n", ". "))new_print[0] ###Code LABELS = ['michael jackson'] * len(mj_lyrics) + ['mariah carey'] * len(mc_lyrics) ###Output _____no_output_____ ###Markdown Step 2. Vectorize the text input using the "Bag of Words" technique. ###Code import pandas as pd from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(stop_words='english') vec = cv.fit_transform(CORPUS[i] for i in range(len(CORPUS))) pd.DataFrame(vec.todense(), columns = cv.get_feature_names(), index=LABELS).head() #cv.get_stop_words() ###Output _____no_output_____ ###Markdown Step 3. Apply Tf-Idf Transformation (Normalization)* TF - Term Frequency (% count of a word $w$ in doc $d$)* IDF - Inverse Document Frequency ###Code from sklearn.feature_extraction.text import TfidfTransformer tf = TfidfTransformer() vec2 = tf.fit_transform(vec) pd.DataFrame(vec2.todense(), columns = cv.get_feature_names(), index = LABELS).head() ###Output _____no_output_____ ###Markdown Step 4. Put everything together in a pipeline ###Code from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(stop_words = 'english') X = vectorizer.fit_transform(CORPUS).todense() from sklearn.ensemble import RandomForestClassifier m = RandomForestClassifier() m.fit(X, LABELS) m.score(X, LABELS) #m.predict(['yellow submarine']) from sklearn.pipeline import make_pipeline pipeline = make_pipeline(TfidfVectorizer(stop_words='english'), RandomForestClassifier(max_depth=10)) pipeline.fit(CORPUS, LABELS) pipeline.predict_proba(['3002']) #mariah carey is the second one pipeline.predict_proba(['addicted']) pipeline.predict_proba(['bad']) pipeline.predict_proba(['Alexandra']) # same default prediction whether it's chocolate or Alexandra # up sampeling, down sampeling ###Output _____no_output_____ ###Markdown -------------------------- The Naive Bayes Classifier A simple, probabilistic classification model built on top of Bayes' Theorem. --- Naive Bayes in Scikit-Learn ###Code from sklearn.naive_bayes import ComplementNB import pandas as pd from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(stop_words='english') vec = cv.fit_transform(CORPUS[i] for i in range(len(CORPUS))) pd.DataFrame(vec.todense(), columns = cv.get_feature_names(), index=LABELS).head() from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import make_pipeline import numpy as np pipeline = make_pipeline(TfidfVectorizer(stop_words='english'), ComplementNB(alpha=0.5)) pipeline.fit(CORPUS, LABELS) pipeline.predict_proba(['100']) # first is mariah carey pipeline.predict_proba(['2000']) pipeline.predict_proba(['tensor tarragons rule']) # ??? ###Output _____no_output_____ ###Markdown --- ###Code fe = pipeline.named_steps['tfidfvectorizer'] nb_model = pipeline.named_steps['complementnb'] df = pd.DataFrame(np.exp(nb_model.feature_log_prob_), columns=fe.get_feature_names(), index=['Michael Jackson', 'Mariah Carey']).T df.head() df['diff'] = df['Michael Jackson'] - df['Mariah Carey'] df['diff'].sort_values().plot.bar(figsize=(30, 8), fontsize=25); ###Output _____no_output_____
colab_notebooks/ntbk_04b_labeled_train_bert_gold_labels.ipynb
###Markdown Dive into Abusive Language with SnorkelAuthor: BingYune Chen Updated: 2021-07-18---------- Train BERT using Ground Truth labelsWe just completed the following step to work with our BERT model:1. Fine-tuned BERT model using Sentiment140 to generalize on Twitter data**We will now train our BERT model from Step 1 using ground truth labels for X_train to compare against Snorkel labels for X_train.** ###Code # Imports and setup for Google Colab # Mount Google Drive from google.colab import drive ## module to use Google Drive with Python drive.mount('/content/drive') ## mount to access contents # Install python libraries ! pip install --upgrade tensorflow --quiet ! pip install snorkel --quiet ! pip install tensorboard==1.15.0 --quiet ! pip install transformers --quiet # Imports for data and plotting import numpy as np import pandas as pd import pickle import os import re import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns sns.set(font_scale=1.5, style='whitegrid') plt.rcParams["font.family"] = "sans serif" # Style configuration COLORS = [ '#0059ff', '#fdbd28', '#28D9AA', '#EE5149', '#060F41', '#788995', '#FF69B4', '#7F00FF', ] GREY = '#788995' DARK_GREY = '#060F41' BLUE = '#0059ff' DBLUE = '#060F41' GOLD = '#fdbd28' GREEN = '#28D9AA' RED = '#EE5149' BLACK = '#000000' WHITE = '#FFFFFF' LINEWIDTH = 5 LINESPACING = 1.25 FS_SUPTITLE = 30 FS_CAPTION = 24 FS_LABEL = 24 FS_FOOTNOTE = 20 # Imports for snorkel analysis and multi-task learning from snorkel.labeling.model import LabelModel from snorkel.labeling import filter_unlabeled_dataframe # Imports for bert language model from sklearn.model_selection import train_test_split from sklearn.utils.class_weight import compute_class_weight from sklearn import metrics import transformers import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') from torch.utils.data import TensorDataset, DataLoader from torch.utils.data import RandomSampler, SequentialSampler import time import datetime import random # Access notebook directory # Define paths LOAD_MODEL = '../models/' LOAD_LFS = '../archive_git_lfs/models/' LOAD_DATA = '../data/processed/' SAVE_MODEL = '../models/' SAVE_DATA = '../data/published/' SAVE_FIG = '../assets/' # Define files for training TRAIN_FILE = 'df_train.pkl' ## update TRAIN_LFS_FILE = 'lf_train_final.pkl' # Define files for validation and testing VALID_FILE = 'df_valid.pkl' VALID_LFS_FILE = 'lf_valid_final.pkl' TEST_FILE = 'df_test.pkl' TEST_LFS_FILE = 'lf_test_final.pkl' # Define model names to save and load MODEL_FILE1 = 'bert_tokens_{}_v1.pkl'.format(TRAIN_FILE[:-4]) MODEL_FILE2 = 'bert_tokens_df_valid.pkl' MODEL_FILE3 = 'bert_tokens_df_test.pkl' MODEL_FILE4 = 'bert_trainstats_{}_v1.pt'.format(TRAIN_FILE[:-4]) # Define current version of BERT model to load BERT_PRE = 'model_bert_ts140_dict.pt' ## update ## fine-tuned on Sentiment140 # Define new version of BERT model to save BERT_POST_DICT = 'model_bert_{}_dict_v1.pt'.format(TRAIN_FILE[:-4]) BERT_POST_FULL = 'model_bert_{}_full_v1.pt'.format(TRAIN_FILE[:-4]) BERT_POST_CHECKPOINT = 'model_bert_{}_v1_'.format(TRAIN_FILE[:-4]) # Define figure names FIG_FILE1 = 'lm-conf-matrix-{}-v1.png'.format(TRAIN_FILE[:-4]) FIG_FILE2 = 'bert-train-val-loss-{}-v1.png'.format(TRAIN_FILE[:-4]) FIG_FILE3 = 'bert-conf-matrix-{}-v1.png'.format(TRAIN_FILE[:-4]) FIG_FILE4 = 'bert-auc-roc-pre-rec-{}-v1.png'.format(TRAIN_FILE[:-4]) # Load labeled dataset for training df_train = pd.read_pickle(os.path.join(LOAD_DATA, TRAIN_FILE)) df_train.reset_index(drop=True, inplace=True) df_valid = pd.read_pickle(os.path.join(LOAD_DATA, VALID_FILE)) df_valid.reset_index(drop=True, inplace=True) df_test = pd.read_pickle(os.path.join(LOAD_DATA, TEST_FILE)) df_test.reset_index(drop=True, inplace=True) pd.set_option('display.max_colwidth', 500) # Load matrix of votes obtained from all the labeling functions l_train = pd.read_pickle(os.path.join(LOAD_MODEL, TRAIN_LFS_FILE)) l_valid = pd.read_pickle(os.path.join(LOAD_MODEL, VALID_LFS_FILE)) l_test = pd.read_pickle(os.path.join(LOAD_MODEL, TEST_LFS_FILE)) ###Output _____no_output_____ ###Markdown Snorkel Label Model`Majority Vote` is the simpliest function Snorkel uses to generate a class label, based on the most voted label from all of the labeling functions. However, in order to take advantage of Snorkel's full functionality, `Label Model` predicts new class labels by learning to estimate the accuracy and correlations of the labeling functions based on their conflicts and overlaps. We will use the `Label Model` function to generate a single confidence-weighted label given a matrix of predictions. ###Code # Apply LabelModel, no gold labels for training label_model_train = LabelModel( cardinality=2, ## number of classes verbose=True ) label_model_train.fit(L_train=l_train, n_epochs=2000, log_freq=100, seed=42 ) # Get our predictions for the unlabeled dataset probs_train = label_model_train.predict(L=l_train) # Calculate Label Model F1 score using validation data label_model_f1 = label_model_train.score( L=l_valid, Y=df_valid.label, tie_break_policy='random', metrics=['f1'] )['f1'] print(f"{'Label Model F1:': <25} {label_model_f1:.2f}") # Filter out unlabeled data points df_train_filtered, probs_train_filtered = filter_unlabeled_dataframe( X=df_train, y=probs_train, L=l_train ) print('Shape of X_train: {} Shape of X_train_probs: {}'.format( df_train_filtered.shape, probs_train_filtered.shape ) ) # Confirm 100% coverage from labeling functions # Explore conflicts between gold labels and LM labels df_train_filtered['lm_label'] = probs_train_filtered df_train_filtered.loc[ df_train_filtered['lm_label'] != df_train_filtered['label'], :].head(50) # Evaluate performance of Label Model # Code adapted from Mauro Di Pietro # >>> https://towardsdatascience.com/text-classification-with-nlp-tf-idf-vs-word2vec-vs-bert-41ff868d1794 classes = np.unique(df_train_filtered.label) y_test_array = pd.get_dummies(df_train_filtered.label, drop_first=False).values # Print Accuracy, Precision, Recall accuracy = metrics.accuracy_score( df_train_filtered.label, df_train_filtered.lm_label ) auc = metrics.roc_auc_score(df_train_filtered.label, df_train_filtered.lm_label) print("Accuracy:", round(accuracy,2)) print("ROC-AUC:", round(auc,2)) print("Detail:") print(metrics.classification_report( df_train_filtered.label, df_train_filtered.lm_label ) ) # Plot confusion matrix cm = metrics.confusion_matrix( df_train_filtered.label, df_train_filtered.lm_label ) fig, ax = plt.subplots(figsize=(7.5, 7.5)) sns.heatmap(cm, annot=True, fmt='d', ax=ax, cmap=plt.cm.Blues, cbar=False) ax.set(xlabel="Predicted Label", ylabel="True Label", xticklabels=classes, yticklabels=classes, title="Confusion Matrix for Label Model") plt.yticks(rotation=0) plt.savefig(os.path.join(SAVE_FIG, FIG_FILE1), bbox_inches='tight' ) plt.show(); ## F1 of 88% ###Output Accuracy: 0.85 ROC-AUC: 0.87 Detail: precision recall f1-score support 0 0.68 0.92 0.78 8377 1 0.96 0.82 0.88 19583 accuracy 0.85 27960 macro avg 0.82 0.87 0.83 27960 weighted avg 0.88 0.85 0.85 27960 ###Markdown Train BERT ModelThe output of the Snorkel `LabelModel` is a set of labels that can be used with most popular supervised learning models such as Logistic Regression, XGBoost, and neural networks. ###Code # Create BERT tokenizer (original BERT of 110M parameters) # BERT tokenizer can handle punctuation, simleys, etc. # Previously replaced mentions and urls with special tokens (#has_url, #has_mention) bert_token = transformers.BertTokenizerFast.from_pretrained( 'bert-base-uncased', do_lower_case=True) # Create helper function for text parsing def bert_encode(tweet_df, tokenizer): ## add '[CLS]' token as prefix to flag start of text ## append '[SEP]' token to flag end of text ## append '[PAD]' token to fill uneven text bert_tokens = tokenizer.batch_encode_plus( tweet_df['tweet'].to_list(), padding='max_length', truncation=True, max_length=30 ) ## convert list to tensors input_word_ids = torch.tensor(bert_tokens['input_ids']) input_masks = torch.tensor(bert_tokens['attention_mask']) input_type_ids = torch.tensor(bert_tokens['token_type_ids']) inputs = { 'input_word_ids': input_word_ids, 'input_masks': input_masks, 'input_type_ids': input_type_ids } return inputs # Apply BERT encoding for training ''' X_train = bert_encode(df_train_filtered, bert_token) with open(MODEL_FILE1, 'wb') as file: pickle.dump(X_train, file) ''' X_train = pd.read_pickle(os.path.join(LOAD_LFS + MODEL_FILE1)) y_train = df_train.label.values ## use original training labels y_train_lm = probs_train_filtered ## use noisy labels from Snorkel LM ''' # Apply BERT encoding for validation X_valid = bert_encode(df_valid, bert_token) with open(MODEL_FILE2, 'wb') as file: pickle.dump(X_valid, file) # Apply BERT encoding for testing X_test = bert_encode(df_test, bert_token) with open(MODEL_FILE3, 'wb') as file: pickle.dump(X_test, file) ''' # Load BERT encodes for validation and testing X_valid = pd.read_pickle(os.path.join(LOAD_MODEL, MODEL_FILE2)) y_valid = df_valid.label.values X_test = pd.read_pickle(os.path.join(LOAD_MODEL, MODEL_FILE3)) y_test = df_test.label.values # Define helper functions to calculate accuracy # Code adapted from Chris McCormick # >>> https://mccormickml.com/2019/07/22/BERT-fine-tuning/#32-required-formatting # Calculate accuracy for predictions vs labels def flat_accuracy(preds, labels): pred_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() return np.sum(pred_flat == labels_flat) / len(labels_flat) # Return time in seconds as string hh:mm:ss def format_time(elapsed): ## round to the nearest second elapsed_rounded = int(round((elapsed))) ## format as hh:mm:ssa return str(datetime.timedelta(seconds=elapsed_rounded)) # Redfine BERT model for additional fine-tuning nlp_bert = transformers.BertForSequenceClassification.from_pretrained( 'bert-base-uncased', ## use 12-layer BERT model, uncased vocab num_labels=2, ## binary classfication output_attentions = False, ## model returns attentions weights output_hidden_states = False, ## model returns all hidden-states ) nlp_bert.cuda() # Load saved BERT model nlp_bert.load_state_dict(torch.load(os.path.join(LOAD_LFS, BERT_PRE))) # Get all of the model's parameters as a list of tuples # Code adapted from Chris McCormick # >>> https://mccormickml.com/2019/07/22/BERT-fine-tuning/#32-required-formatting params = list(nlp_bert.named_parameters()) print('The BERT model has {:} different named parameters.\n'.format( len(params)) ) print('==== Embedding Layer ====\n') for p in params[0:5]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== First Transformer ====\n') for p in params[5:21]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== Output Layer ====\n') for p in params[-4:]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) # Create data loaders for train and test set # Pass batches of train data and test data as input to the model during training batch_size = 32 ## define batch size, authors recommend 16 or 32 for fine-tuning # Wrap tensors for train X_train_data = TensorDataset( X_train['input_word_ids'], X_train['input_masks'], torch.tensor(y_train) ## use ground truth labels ) # Make sampler for sampling the data during training X_train_sampler = RandomSampler(X_train_data) # Make dataLoader for train set X_train_dataloader = DataLoader( X_train_data, sampler=X_train_sampler, batch_size=batch_size ) # Wrap tensors for valid X_valid_data = TensorDataset( X_valid['input_word_ids'], X_valid['input_masks'], torch.tensor(y_valid) ) # Make sampler for sampling the data during training X_valid_sampler = SequentialSampler(X_valid_data) # Make dataLoader for validation set X_valid_dataloader = DataLoader( X_valid_data, sampler=X_valid_sampler, batch_size=batch_size ) # Wrap tensors for test X_test_data = TensorDataset( X_test['input_word_ids'], X_test['input_masks'], torch.tensor(y_test) ) # Make sampler for predicting data after training X_test_sampler = SequentialSampler(X_test_data) # Make dataLoader for testing set X_test_dataloader = DataLoader( X_test_data, sampler=X_test_sampler, batch_size=batch_size ) # Define optimizer optimizer = transformers.AdamW(nlp_bert.parameters(), lr=2e-5, ## learning rate eps=1e-8 # small number prevent divison by zero ) # Check the class weights for imbalanced classes class_weights = compute_class_weight( 'balanced', np.unique(y_train), # use ground truth labels y_train ) print("Class Weights:", class_weights) # Update model architecture to handle imbalanced classes weights= torch.tensor(class_weights, dtype=torch.float) ## convert to tensor weights = weights.to('cuda') ## push to GPU cross_entropy = torch.nn.NLLLoss(weight=weights) ## define the loss function # Define learning rate scheduler epochs = 4 ## define number of training epochs total_steps = len(X_train_dataloader) * epochs ## batches X epochs scheduler = transformers.get_linear_schedule_with_warmup( optimizer, num_warmup_steps=0, num_training_steps=total_steps ) # Run training loop # Code adapted from Chris McCormick # >>> https://mccormickml.com/2019/07/22/BERT-fine-tuning/#32-required-formatting seed_val = 42 random.seed(seed_val) np.random.seed(seed_val) torch.manual_seed(seed_val) torch.cuda.manual_seed_all(seed_val) # Store quantities such as training and validation loss, # validation accuracy, and timings training_stats = [] # Measure the total training time for the whole run total_t0 = time.time() # Loop each epoch... for epoch_i in range(0, epochs): ## perform one full pass over the training set print("") print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs)) print('Training...') ## measure how long the training epoch takes. t0 = time.time() ## reset the total loss for this epoch. total_train_loss = 0 ## put the model into training mode nlp_bert.train() ## loop each batch of training data... for step, batch in enumerate(X_train_dataloader): ## update progress every 40 batches if step % 40 == 0 and not step == 0: ## calculate elapsed time in minutes elapsed = format_time(time.time() - t0) ## report progress print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format( step, len(X_train_dataloader), elapsed)) ## unpack this training batch from our dataloader ## NOTE: `model.to(device) is in-place operation ## batch (Tensor) to GPU is not in-place operation b_input_ids = batch[0].to('cuda') ## input ids b_input_mask = batch[1].to('cuda') ## attention masks b_labels = batch[2].to('cuda') ## labels ## Clear previously calculated gradients before performing backward pass nlp_bert.zero_grad() ## perform a forward pass (evaluate the model on this training batch) loss_logit_dict = nlp_bert(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels ) loss = loss_logit_dict['loss'] logits = loss_logit_dict['logits'] ## accumulate the training loss over all of the batches ## calculate the average loss at the end total_train_loss += loss.item() ## perform a backward pass to calculate the gradients loss.backward() ## clip the norm of the gradients to 1.0 ## prevent the "exploding gradients" problem torch.nn.utils.clip_grad_norm_(nlp_bert.parameters(), 1.0) ## update parameters and take a step using the computed gradient optimizer.step() ## dictates update rule based on gradients, lr, etc. ## update the learning rate scheduler.step() ## save checkpoint ''' print("") print("Saving Checkpoint...") torch.save({'epoch': epoch_i, 'model_state_dict': nlp_bert.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': loss }, os.path.join( SAVE_MODEL, BERT_POST_CHECKPOINT + 'epoch{}_chkpt.pt'.format(epoch_i) ) ) ''' ## calculate the average loss over all of the batches avg_train_loss = total_train_loss / len(X_train_dataloader) ## measure how long this epoch took training_time = format_time(time.time() - t0) print("") print(" Average training loss: {0:.2f}".format(avg_train_loss)) print(" Training epoch took: {:}".format(training_time)) ## start validation print("") print("Running Validation...") t0 = time.time() ## put the model in evaluation mode--the dropout layers behave differently nlp_bert.eval() ## define tracking variables total_eval_accuracy = 0 total_eval_loss = 0 nb_eval_steps = 0 ## evaluate data for one epoch for batch in X_valid_dataloader: ## unpack this training batch from our dataloader b_input_ids = batch[0].to('cuda') ## input ids b_input_mask = batch[1].to('cuda') ## attention masks b_labels = batch[2].to('cuda') ## labels ## tell pytorch not to bother with constructing the compute graph during # the forward pass, since this is only needed for backprop (training) with torch.no_grad(): ## check forward pass, calculate logit predictions loss_logit_dict = nlp_bert(b_input_ids, token_type_ids=None, ## segment ids for multiple sentences attention_mask=b_input_mask, labels=b_labels ) loss = loss_logit_dict['loss'] logits = loss_logit_dict['logits'] ## accumulate the validation loss total_eval_loss += loss.item() ## move logits and labels to CPU logits = logits.detach().cpu().numpy() label_ids = b_labels.to('cpu').numpy() ## calculate the accuracy for this batch of tweets total_eval_accuracy += flat_accuracy(logits, label_ids) ## report the final accuracy for this validation run avg_val_accuracy = total_eval_accuracy / len(X_valid_dataloader) print(" Accuracy: {0:.2f}".format(avg_val_accuracy)) ## calculate the average loss over all of the batches avg_val_loss = total_eval_loss / len(X_valid_dataloader) ## measure how long the validation run took validation_time = format_time(time.time() - t0) print(" Validation Loss: {0:.2f}".format(avg_val_loss)) print(" Validation took: {:}".format(validation_time)) ## record all statistics from this epoch training_stats.append( { 'epoch': epoch_i + 1, 'Training Loss': avg_train_loss, 'Valid. Loss': avg_val_loss, 'Valid. Accur.': avg_val_accuracy, 'Training Time': training_time, 'Validation Time': validation_time } ) print("") print("Training complete!") print("Total training took {:} (h:mm:ss)".format( format_time(time.time()-total_t0) ) ) # Display floats with two decimal places pd.set_option('precision', 2) # Create a DataFrame from our training statistics df_stats = pd.DataFrame(data=training_stats) # Use the 'epoch' as the row index df_stats = df_stats.set_index('epoch') ''' # A hack to force the column headers to wrap df = df.style.set_table_styles( [dict(selector="th", props=[('max-width', '70px')])] ) ''' # Save training stats ''' with open(MODEL_FILE4, 'wb') as file: pickle.dump(df_stats, file) ''' # Display the table df_stats # Increase the plot size and font size fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 15/1.6)) # Plot the learning curve plt.plot(df_stats['Training Loss'], 'b-o', label="Training") plt.plot(df_stats['Valid. Loss'], 'g-o', label="Validation") # Label the plot plt.title("Training & Validation Loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.legend() plt.xticks([1, 2, 3, 4]) plt.savefig(os.path.join(SAVE_FIG, FIG_FILE2), bbox_inches='tight' ) plt.show(); # Overfitting if training loss << validation loss # Underfitting if training loss >> validation loss # Just right if training loss ~ validation loss # Redfine BERT model for additional fine-tuning with epochs = 2 nlp_bert = transformers.BertForSequenceClassification.from_pretrained( 'bert-base-uncased', ## use 12-layer BERT model, uncased vocab num_labels=2, ## binary classfication output_attentions = False, ## model returns attentions weights output_hidden_states = False, ## model returns all hidden-states ) nlp_bert.cuda() # Load saved BERT model nlp_bert.load_state_dict(torch.load(os.path.join(LOAD_LFS, BERT_PRE))) # Define learning rate scheduler epochs = 2 ## define number of training epochs total_steps = len(X_train_dataloader) * epochs ## batches X epochs scheduler = transformers.get_linear_schedule_with_warmup( optimizer, num_warmup_steps=0, num_training_steps=total_steps ) # Run training loop # Code adapted from Chris McCormick # >>> https://mccormickml.com/2019/07/22/BERT-fine-tuning/#32-required-formatting seed_val = 42 random.seed(seed_val) np.random.seed(seed_val) torch.manual_seed(seed_val) torch.cuda.manual_seed_all(seed_val) # Store quantities such as training and validation loss, # validation accuracy, and timings training_stats = [] # Measure the total training time for the whole run total_t0 = time.time() # Loop each epoch... for epoch_i in range(0, epochs): ## perform one full pass over the training set print("") print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs)) print('Training...') ## measure how long the training epoch takes. t0 = time.time() ## reset the total loss for this epoch. total_train_loss = 0 ## put the model into training mode nlp_bert.train() ## loop each batch of training data... for step, batch in enumerate(X_train_dataloader): ## update progress every 40 batches if step % 40 == 0 and not step == 0: ## calculate elapsed time in minutes elapsed = format_time(time.time() - t0) ## report progress print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format( step, len(X_train_dataloader), elapsed)) ## unpack this training batch from our dataloader ## NOTE: `model.to(device) is in-place operation ## batch (Tensor) to GPU is not in-place operation b_input_ids = batch[0].to('cuda') ## input ids b_input_mask = batch[1].to('cuda') ## attention masks b_labels = batch[2].to('cuda') ## labels ## Clear previously calculated gradients before performing backward pass nlp_bert.zero_grad() ## perform a forward pass (evaluate the model on this training batch) loss_logit_dict = nlp_bert(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels ) loss = loss_logit_dict['loss'] logits = loss_logit_dict['logits'] ## accumulate the training loss over all of the batches ## calculate the average loss at the end total_train_loss += loss.item() ## perform a backward pass to calculate the gradients loss.backward() ## clip the norm of the gradients to 1.0 ## prevent the "exploding gradients" problem torch.nn.utils.clip_grad_norm_(nlp_bert.parameters(), 1.0) ## update parameters and take a step using the computed gradient optimizer.step() ## dictates update rule based on gradients, lr, etc. ## update the learning rate scheduler.step() ## save checkpoint print("") print("Saving Checkpoint...") torch.save({'epoch': epoch_i, 'model_state_dict': nlp_bert.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': loss }, os.path.join( SAVE_MODEL, BERT_POST_CHECKPOINT + 'epoch{}_chkpt.pt'.format(epoch_i) ) ) ## calculate the average loss over all of the batches avg_train_loss = total_train_loss / len(X_train_dataloader) ## measure how long this epoch took training_time = format_time(time.time() - t0) print("") print(" Average training loss: {0:.2f}".format(avg_train_loss)) print(" Training epoch took: {:}".format(training_time)) ## start validation print("") print("Running Validation...") t0 = time.time() ## put the model in evaluation mode--the dropout layers behave differently nlp_bert.eval() ## define tracking variables total_eval_accuracy = 0 total_eval_loss = 0 nb_eval_steps = 0 ## evaluate data for one epoch for batch in X_valid_dataloader: ## unpack this training batch from our dataloader b_input_ids = batch[0].to('cuda') ## input ids b_input_mask = batch[1].to('cuda') ## attention masks b_labels = batch[2].to('cuda') ## labels ## tell pytorch not to bother with constructing the compute graph during # the forward pass, since this is only needed for backprop (training) with torch.no_grad(): ## check forward pass, calculate logit predictions loss_logit_dict = nlp_bert(b_input_ids, token_type_ids=None, ## segment ids for multiple sentences attention_mask=b_input_mask, labels=b_labels ) loss = loss_logit_dict['loss'] logits = loss_logit_dict['logits'] ## accumulate the validation loss total_eval_loss += loss.item() ## move logits and labels to CPU logits = logits.detach().cpu().numpy() label_ids = b_labels.to('cpu').numpy() ## calculate the accuracy for this batch of tweets total_eval_accuracy += flat_accuracy(logits, label_ids) ## report the final accuracy for this validation run avg_val_accuracy = total_eval_accuracy / len(X_valid_dataloader) print(" Accuracy: {0:.2f}".format(avg_val_accuracy)) ## calculate the average loss over all of the batches avg_val_loss = total_eval_loss / len(X_valid_dataloader) ## measure how long the validation run took validation_time = format_time(time.time() - t0) print(" Validation Loss: {0:.2f}".format(avg_val_loss)) print(" Validation took: {:}".format(validation_time)) ## record all statistics from this epoch training_stats.append( { 'epoch': epoch_i + 1, 'Training Loss': avg_train_loss, 'Valid. Loss': avg_val_loss, 'Valid. Accur.': avg_val_accuracy, 'Training Time': training_time, 'Validation Time': validation_time } ) print("") print("Training complete!") print("Total training took {:} (h:mm:ss)".format( format_time(time.time()-total_t0) ) ) # Save current state with best parameters ''' torch.save(nlp_bert.state_dict(), os.path.join(SAVE_MODEL, BERT_POST_DICT) ) # Save full model torch.save(nlp_bert, os.path.join(SAVE_MODEL, BERT_POST_FULL)) ''' # Redfine BERT model for additional fine-tuning nlp_bert = transformers.BertForSequenceClassification.from_pretrained( 'bert-base-uncased', ## use 12-layer BERT model, uncased vocab num_labels=2, ## binary classfication output_attentions = False, ## model returns attentions weights output_hidden_states = False, ## model returns all hidden-states ) nlp_bert.cuda() # Load saved BERT model nlp_bert.load_state_dict(torch.load(os.path.join(LOAD_LFS, BERT_POST_DICT))) # Prediction on test set # Code adapted from Chris McCormick # >>> https://mccormickml.com/2019/07/22/BERT-fine-tuning/#32-required-formatting print('Predicting labels for {:,} test sentences...'.format( len(X_test['input_word_ids']))) # Put model in evaluation mode nlp_bert.eval() # Tracking variables predictions , true_labels = [], [] # Predict for batch in X_test_dataloader: # Add batch to GPU batch = tuple(t.to('cuda') for t in batch) # Unpack the inputs from our dataloader b_input_ids, b_input_mask, b_labels = batch # Telling the model not to compute or store gradients, saving memory and # speeding up prediction with torch.no_grad(): # Forward pass, calculate logit predictions outputs = nlp_bert(b_input_ids, token_type_ids=None, attention_mask=b_input_mask) logits = outputs[0] # Move logits and labels to CPU logits = logits.detach().cpu().numpy() label_ids = b_labels.to('cpu').numpy() # Store predictions and true labels predictions.append(logits) true_labels.append(label_ids) print(' DONE.') # Flatten arrays into single list y_test_true = [item for sublist in true_labels for item in sublist] y_test_preds = [np.argmax(item) for sublist in predictions for item in sublist] # Convert logit to odds to probability preds_prob = np.array( [[np.exp(a) / (1 + np.exp(a)), np.exp(b) / (1 + np.exp(b))] for sublist in predictions for a,b in sublist] ) # Evaluate performance of BERT # Code adapted from Mauro Di Pietro # >>> https://towardsdatascience.com/text-classification-with-nlp-tf-idf-vs-word2vec-vs-bert-41ff868d1794 classes = np.unique(y_test_true) y_test_array = pd.get_dummies(y_test_true, drop_first=False).values # Print Accuracy, Precision, Recall accuracy = metrics.accuracy_score(y_test_true, y_test_preds) auc = metrics.roc_auc_score(y_test_true, y_test_preds) print("Accuracy:", round(accuracy,2)) print("ROC-AUC:", round(auc,2)) print("Detail:") print(metrics.classification_report(y_test_true, y_test_preds)) # Plot confusion matrix cm = metrics.confusion_matrix(y_test_true, y_test_preds) fig, ax = plt.subplots(figsize=(7.5, 7.5)) sns.heatmap(cm, annot=True, fmt='d', ax=ax, cmap=plt.cm.Blues, cbar=False) ax.set(xlabel="Predicted Label", ylabel="True Label", xticklabels=classes, yticklabels=classes, title="Confusion Matrix for BERT") plt.yticks(rotation=0) plt.savefig(os.path.join(SAVE_FIG, FIG_FILE3), bbox_inches='tight' ) plt.show(); ## F1 score of 93% # Evaluate performance of BERT model # Code adapted from Mauro Di Pietro # >>> https://towardsdatascience.com/text-classification-with-nlp-tf-idf-vs-word2vec-vs-bert-41ff868d1794 # Plot ROC classes_name = ['NO_ABUSE', 'ABUSE '] fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(15, 15/1.6)) fpr, tpr, thresholds = metrics.roc_curve( y_test_array[:,0], preds_prob[:,0] ) ax1.plot(fpr, tpr, color=COLORS[0], lw=LINEWIDTH, alpha=1.0, label='BERT w/o Snorkel (area={0:0.2f})'.format( metrics.roc_auc_score(y_test_true, y_test_preds) ) ) ax1.plot([0,1], [0,1], color=RED, linewidth=LINEWIDTH, linestyle='--') ax1.set_adjustable('box') ax1.set(xlim=[-0.05,1.05], ylim=[0.0,1.05], aspect=1, title="Receiver Operating Characteristic" ) ax1.set_xlabel('False Positive Rate', color=DARK_GREY, fontsize=20, alpha=0.6, labelpad=16 ) ax1.set_ylabel('True Positive Rate (Recall)', color=DARK_GREY, fontsize=20, alpha=0.6, labelpad=16 ) ax1.tick_params(axis='both', labelsize=16, length=8, colors=GREY) ax1.legend(loc="lower right", frameon=False, fontsize='small') ax1.grid(b=True, color=GREY, alpha=0.1, linewidth=3) for spine in ['top', 'right', 'left', 'bottom']: ax1.spines[spine].set_visible(False) # Plot precision-recall curve precision, recall, thresholds = metrics.precision_recall_curve( y_test_array[:,0], preds_prob[:,0]) ax2.plot(recall, precision, color=COLORS[0], lw=LINEWIDTH, alpha=1.0, label='BERT w/o Snorkel (area={0:0.2f})'.format( metrics.auc(recall, precision) ) ) ax2.set(xlim=[-0.05,1.05], ylim=[0.0,1.05], aspect=1, title="Precision-Recall Curve" ) ax2.set_xlabel('True Positive Rate (Recall)', color=DARK_GREY, fontsize=20, alpha=0.6, labelpad=16 ) ax2.set_ylabel('Precision', color=DARK_GREY, fontsize=20, alpha=0.6, labelpad=16 ) ax2.tick_params(axis='both', labelsize=16, length=8, colors=GREY) ax2.legend(loc="lower right", frameon=False, fontsize='small') ax2.set_adjustable('box') ax2.grid(b=True, color=GREY, alpha=0.1, linewidth=3) for spine in ['top', 'right', 'left', 'bottom']: ax2.spines[spine].set_visible(False) plt.savefig(os.path.join(SAVE_FIG, FIG_FILE4), bbox_inches='tight', facecolor=fig.get_facecolor(), edgecolor='none' ) plt.show(); ###Output _____no_output_____
jupyter_notebooks/2.2_stats_b_cleaning.ipynb
###Markdown Batter Stats from Data Collection Cleaning---*By Ihza Gonzales*This notebook aims to clean the data that was collected in a previous notebook. Cleaning includes merging the different seasons of each player, checking for null values, and changing the date as the index. Import Libraries--- ###Code import pandas as pd import numpy as np pd.set_option('display.max_columns', None) ###Output _____no_output_____ ###Markdown Functions Implemented--- ###Code def merge_years (mlbid, first, last): """ Function reads data and merges the data of player for all years Saves merged dataframe """ base_path = '../data/og_players_bat/' #This string will be used to specifiy the player player_name = first + '-' + last + '-' + str(mlbid) + '-2021' #Full path to file file_path = base_path + player_name + '.csv' try: df = pd.read_csv(file_path) years = ['2018', '2019', '2020'] for year in years: try: #This string will be used to specifiy the player player_name = first + '-' + last + '-' + str(mlbid) + '-' + year #Full path to file file_path = base_path + player_name + '.csv' df_2 = pd.read_csv(file_path) df = df.append(df_2, ignore_index = True) except: pass df.to_csv(f'../data/clean_players_bat/{first}-{last}-{mlbid}.csv', index = False) except FileNotFoundError: pass def clean_data(mlbid, first, last): """ Function to read in and clean data. Since all the csv files are similar, this puts all files in similar formats. Deletes the "unnamed: 0" column and removes rows with the montly totals. Save new file with the clean data. """ base_path = '../data/clean_players_bat/' #This string will be used to specifiy the player player_name = first + '-' + last + '-' + str(mlbid) #Full path to file file_path = base_path + player_name + '.csv' try: #read in csv file of stats df = pd.read_csv(file_path) #drop unnamed: 0 column df.drop(columns = ['Unnamed: 0'], inplace = True) #check for null values total_nulls = df.isnull().sum().sum() if total_nulls == 0: #Only want rows with dates not the total of each month months = ['March', 'April', 'May', 'June', 'July', 'August', 'September', 'October'] for month in months: df = df[df['date'] != month] df.reset_index(drop=True, inplace = True) #Sort rows by date then set it as index df["date"] = pd.to_datetime(df["date"]) df = df.sort_values(by="date") #Save Clean Dataframe df.to_csv(f'../data/clean_players_bat/{first}-{last}-{mlbid}.csv') else: print(f'{first} {last} has null values') except FileNotFoundError: pass def convert_date (mlbid, first, last): """ Function converts date to datetime and sets it as index. Returns the updated csv file """ base_path = '../data/clean_players_bat/' #This string will be used to specifiy the player player_name = first + '-' + last + '-' + str(mlbid) #Full path to file file_path = base_path + player_name + '.csv' try: #read in csv file of stats df = pd.read_csv(file_path) #drop unnamed: 0 column df.drop(columns = ['Unnamed: 0'], inplace = True) #Set data as index and remove date column df.set_index(pd.DatetimeIndex(df['date']), inplace=True) df.drop(columns = ['date'], inplace = True) #Save Clean Dataframe df.to_csv(f'../data/clean_players_bat/{first}-{last}-{mlbid}.csv', index_label = False) except (FileNotFoundError, KeyError): print(f'{first} {last}') ###Output _____no_output_____ ###Markdown Import the File with Active Batters--- ###Code players = pd.read_csv('../data/mlb_players_bat.csv').drop('Unnamed: 0', axis = 1) players.head() ###Output _____no_output_____ ###Markdown Merging, Cleaning, and Converting All Player Files--- ###Code for index, row in players.iterrows(): mlbid = row['MLBID'] first = row['FIRSTNAME'] last = row['LASTNAME'] merge_years(mlbid, first, last) clean_data(mlbid, first, last) convert_date(mlbid, first, last) print ('Finished') # Copied from https://stackoverflow.com/questions/16476924/how-to-iterate-over-rows-in-a-dataframe-in-pandas ###Output Finished
python3/notebooks/television/keras-linear-reg-functional-api.ipynb
###Markdown http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm ###Code import pandas as pd import numpy as np import keras from matplotlib import pyplot as plt from keras.layers import Input, Dense from keras.models import Model from sklearn.preprocessing import StandardScaler, MinMaxScaler, Normalizer %matplotlib inline df = pd.read_csv("data.csv") df.head() df.columns,df.dtypes # df["People per Television"] = df["People per Television"].as_numeric df["People per Television"] = pd.to_numeric(df["People per Television"],errors='coerce') df = df.dropna() df.head() # x = ppl/television # y = ppl/doctor x = df["People per Television"].values.reshape(-1,1).astype(np.float64) y = df["People per Physician"].values.reshape(-1,1).astype(np.float64) x.shape,y.shape sc = StandardScaler() x_ = sc.fit_transform(x) y_ = sc.fit_transform(y) inputs = Input(shape=(1,)) preds = Dense(1,activation='linear')(inputs) model = Model(inputs=inputs,outputs=preds) sgd=keras.optimizers.SGD() model.compile(optimizer=sgd ,loss='mse') model.fit(x_,y_, batch_size=1, verbose=1, epochs=10, shuffle=False) plt.scatter(x_,y_,color='black') plt.plot(x_,model.predict(x_), color='blue', linewidth=3) # min-max 0,1 sc = MinMaxScaler(feature_range=(0,1)) x_ = sc.fit_transform(x) y_ = sc.fit_transform(y) inputs = Input(shape=(1,)) preds = Dense(1,activation='linear')(inputs) model = Model(inputs=inputs,outputs=preds) sgd=keras.optimizers.SGD() model.compile(optimizer=sgd ,loss='mse') model.fit(x_,y_, batch_size=1, epochs=10, verbose=1, shuffle=False) plt.scatter(x_,y_,color='black') plt.plot(x_,model.predict(x_), color='blue', linewidth=3) # min-max -1,1 sc = MinMaxScaler(feature_range=(-1,1)) x_ = sc.fit_transform(x) y_ = sc.fit_transform(y) inputs = Input(shape=(1,)) preds = Dense(1,activation='linear')(inputs) model = Model(inputs=inputs,outputs=preds) sgd=keras.optimizers.SGD() model.compile(optimizer=sgd ,loss='mse') model.fit(x_,y_, batch_size=1, verbose=1, epochs=10, shuffle=False) plt.scatter(x_,y_,color='black') plt.plot(x_,model.predict(x_), color='blue', linewidth=3) ###Output Epoch 1/10 38/38 [==============================] - 0s - loss: 0.1739 Epoch 2/10 38/38 [==============================] - 0s - loss: 0.0847 Epoch 3/10 38/38 [==============================] - 0s - loss: 0.0775 Epoch 4/10 38/38 [==============================] - 0s - loss: 0.0762 Epoch 5/10 38/38 [==============================] - 0s - loss: 0.0755 Epoch 6/10 38/38 [==============================] - 0s - loss: 0.0750 Epoch 7/10 38/38 [==============================] - 0s - loss: 0.0745 Epoch 8/10 38/38 [==============================] - 0s - loss: 0.0741 Epoch 9/10 38/38 [==============================] - 0s - loss: 0.0738 Epoch 10/10 38/38 [==============================] - 0s - loss: 0.0736
notebooks/review_of_fundamentals_a.ipynb
###Markdown Table of Contents1&nbsp;&nbsp;Review of fundamentals1.1&nbsp;&nbsp;Simple operations1.2&nbsp;&nbsp;Conditionals1.3&nbsp;&nbsp;Lists Review of fundamentalsIn this notebook, you will guess the output of simple Python statements. You should be able to correctly predict most (if not all) of them. If you get something wrong, figure out why! Simple operations ###Code 3 + 10 3 = 10 3 == 10 3 ** 10 '3 + 10' 3 * '10' a*10 'a' * 10 int('3') + int('10') int('hello world') 10 / 5 10 / 4 float(10 / 4) float(10)/4 type("True") type(True) ###Output _____no_output_____ ###Markdown Conditionals ###Code a=3 if (a==3): print "it's a three!" a=3 if a==3: print "it's a four!" a=3 if a=4: print "it's a four!" a=3 if a<10: print "we're here" elif a<100: print "and also here" a=3 if a<10: print "we're here" if a<100: print "and also here" a = "True" if a: print "we're in the 'if'" else: print "we're in the else" a = "False" if a: print "we're in the 'if'" else: print "we're in the 'else'" ###Output we're in the 'if' ###Markdown If you were surprised by that, think about the difference between `False` and `"False"` ###Code a = 5 b = 10 if a and b: print "a is", a print "b is", b c = 20 if c or d: print "c is", c print "d is", d c = 20 if c and d: print "c is", c print "d is", d ###Output _____no_output_____ ###Markdown Lists ###Code animals= ['dog', 'cat', 'panda'] if panda in animals: print "a hit!" animals= ['dog', 'cat', 'panda'] if "panda" or "giraffe" in animals: print "a hit!" if ["dog", "cat"] in animals: print "we're here" some_nums = range(1,10) print some_nums print some_nums[0] animals= ['dog', 'cat', 'panda'] print animals[-1] animals= ['dog', 'cat', 'panda'] print animals.index('cat') animals= ['dog', 'cat', 'panda'] more_animals = animals+['giraffe'] print more_animals animals= ['dog', 'cat', 'panda'] more_animals = animals.append('giraffe') print more_animals ###Output None ###Markdown The above is a tricky one! The issue is that append() does not return a value. It simply appends ###Code animals= ['dog', 'cat', 'panda'] animals.append("giraffe") print animals animals= ['dog', 'cat', 'panda'] for num,animal in enumerate(animals): print "Number", num+1, "is", animals animals= ['dog', 'cat', 'panda'] for num,animal in enumerate(animals): print "Number", num, "is", animal print "\nWe have", len(animals), "animals in our list." animals= ['dog', 'cat', 'panda'] while animals: print animals.pop() print "\nWe have", len(animals), "animals in our list." ###Output panda cat dog We have 0 animals in our list.
notebooks/dev_summit_2019/Step 5 - Spatially Assign Work.ipynb
###Markdown Spatially Assign Work¶In this example, assignments will be assigned to specific workers based on the city district that it falls in. A layer in ArcGIS Online representing the city districts in Palm Springs will be used.* Note: This example requires having Arcpy or Shapely installed in the Python environment. Import ArcGIS API for PythonImport the `arcgis` library and some modules within it. ###Code from datetime import datetime from arcgis.gis import GIS from arcgis.geometry import Geometry from arcgis.mapping import WebMap from arcgis.apps import workforce from datetime import datetime ###Output _____no_output_____ ###Markdown Connect to organization and Get the ProjectLet's connect to ArcGIS Online and get the Project with assignments. ###Code gis = GIS("https://arcgis.com", "workforce_scripts") item = gis.content.get("c765482bd0b9479b9104368da54df90d") project = workforce.Project(item) ###Output _____no_output_____ ###Markdown Get Layer of City DistrictsLet's get the layer representing city districts and display it. ###Code districts_layer = gis.content.get("8a79535e0dc04410b5564c0e45428a2c").layers[0] districts_map = gis.map("Palm Springs, CA", zoomlevel=10) districts_map.add_layer(districts_layer) districts_map ###Output _____no_output_____ ###Markdown Add Assignments to the Map ###Code districts_map.add_layer(project.assignments_layer) ###Output _____no_output_____ ###Markdown Create a spatially enabled dataframe of the districts ###Code districts_df = districts_layer.query(as_df=True) ###Output _____no_output_____ ###Markdown Get all of the unassigned assignments ###Code assignments = project.assignments.search("status=0") ###Output _____no_output_____ ###Markdown Assign Assignments Based on Which District They Intersect¶Let's fetch the districts layer and query to get all of the districts. Then, for each unassigned assignment intersect the assignment with all districts to determine which district it falls in. Assignments in district 10 should be assigned to James. Assignments in district 9 should be assigned to Aaron. Finally update all of the assignments using "batch_update". ###Code aaron = project.workers.get(user_id="aaron_nitro") james = project.workers.get(user_id="james_Nitro") for assignment in assignments: contains = districts_df["SHAPE"].geom.contains(Geometry(assignment.geometry)) containers = districts_df[contains] if not containers.empty: district = containers['ID'].iloc[0] if district == 10: assignment.worker = james assignment.status = "assigned" assignment.assigned_date = datetime.utcnow() elif district == 9: assignment.worker = aaron assignment.status = "assigned" assignment.assigned_date = datetime.utcnow() assignments = project.assignments.batch_update(assignments) ###Output _____no_output_____ ###Markdown Verify Assignments are Assigned ###Code webmap = gis.map("Palm Springs", zoomlevel=11) webmap.add_layer(project.assignments_layer) webmap ###Output _____no_output_____
Projects/2018-World-cup-predictions pro.ipynb
###Markdown Data exploration & visualization ###Code #function for each feature(datatype & null ) def data_info(data): total_null = data.isnull().sum() tt=pd.DataFrame(total_null,columns=["n_null"]) types = [] for col in data.columns: dtype = str(data[col].dtype) types.append(dtype) tt['Types'] = types if(data.isna().sum().any())==False: print("data has no null values") else: print("data has null values") return(np.transpose(tt.sort_values(by="n_null",ascending=False))) data_info(World_cup) data_info(results) results.describe().transpose() results.describe(include='O').transpose() #results for teams participate in world cup winner=[] for i in results.index: if results["home_score"][i]>results["away_score"][i]: winner.append(results["home_team"][i]) elif results["home_score"][i]==results["away_score"][i]: winner.append("draw") else: winner.append(results["away_team"][i]) results["winner"]=winner #adding goal difference col results["goal_difference"]= np.absolute(results["home_score"]- results["away_score"]) results.tail() #all 32 country that will participate World_cup_teams= World_cup.Team.unique() World_cup_teams World_cup_home=results[results["home_team"].isin(World_cup_teams)] World_cup_away=results[results["away_team"].isin(World_cup_teams)] df_teams=pd.concat((World_cup_home,World_cup_away)) df_teams.drop_duplicates() year=[] for date in df_teams["date"]: year.append(int(date[:4])) df_teams["year"]=year df_teams_1930=df_teams[df_teams["year"] >= 1930] df_teams_1930 df_teams_1930=df_teams_1930.drop(["date","tournament","city","country","year","home_score","away_score","goal_difference"],axis=1) df_teams_1930 df_teams_1930=df_teams_1930.reset_index(drop=True) df_teams_1930.loc[df_teams_1930.home_team == df_teams_1930.winner ,"winner"]=1 df_teams_1930.loc[df_teams_1930.away_team == df_teams_1930.winner ,"winner"]=2 df_teams_1930.loc[df_teams_1930.winner == "draw" ,"winner"]=0 df_teams_1930 final=pd.get_dummies(df_teams_1930,prefix=["home_team","away_team"],columns=["home_team","away_team"]) x=final.drop("winner",axis=1) y=final["winner"] y=y.astype('int') x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3) y_train logreg=LogisticRegression() logreg.fit(x_train,y_train.values.ravel()) print(logreg.score(x_train,y_train)) print(logreg.score(x_test,y_test)) decision_tree = DecisionTreeClassifier() decision_tree.fit(x_train, y_train.values.ravel()) Y_pred = decision_tree.predict(x_test) acc_decision_tree = round(decision_tree.score(x_train, y_train) * 100, 2) acc_decision_tree fifa_rankings=pd.read_csv("../datasets/FIFA-2018-World-cup/fifa_rankings.csv") fixtures=pd.read_csv("../datasets/FIFA-2018-World-cup/fixtures.csv") pred_set=[] fixtures.insert(1,"home_ranking",fixtures["Home Team"].map(fifa_rankings.set_index("Team")["Position"])) fixtures.insert(2,"away_ranking",fixtures["Away Team"].map(fifa_rankings.set_index("Team")["Position"])) fixtures for index,row in fixtures.iterrows(): if row["home_ranking"]>row["away_ranking"]: pred_set.append({"Home Team":row["Home Team"],"Away Team":row["Away Team"],"winner":None}) else: pred_set.append({"Home Team":row["Away Team"],"Away Team":row["Home Team"],"winner":None}) pred_set_df=pd.DataFrame(pred_set) #used later backup_pred_set=pred_set_df pred_set_df=pd.get_dummies(pred_set_df,prefix=["Home Team","Away Team"],columns=["Home Team","Away Team"]) final.shape #teams not participate in world cup missing_cols=set(final.columns) -set(pred_set_df.columns) for c in missing_cols: pred_set_df[c]=0 pred_set_df= pred_set_df[final.columns] #pred_set_df pred_set_df=pred_set_df.drop("winner",axis=1) #group matches predictions = logreg.predict(pred_set_df) for i in range(fixtures.shape[0]): print(backup_pred_set.iloc[i, 1] + " and " + backup_pred_set.iloc[i, 0]) if predictions[i] == 2: print("Winner: " + backup_pred_set.iloc[i, 1]) elif predictions[i] == 1: print("Draw") elif predictions[i] == 0: print("Winner: " + backup_pred_set.iloc[i, 0]) '''' print('Probability of ' + backup_pred_set.iloc[i, 1] + ' winning: ', '%.3f'%(logreg.predict_proba(pred_set_df)[i][2])) print('Probability of Draw: ', '%.3f'%(logreg.predict_proba(pred_set)[i][1])) print('Probability of ' + backup_pred_set.iloc[i, 0] + ' winning: ', '%.3f'%(logreg.predict_proba(pred_set_df)[i][0])) print("") ''' ###Output Russia and Saudi Arabia Draw Uruguay and Egypt Draw Iran and Morocco Draw Portugal and Spain Draw France and Australia Draw Argentina and Iceland Draw Peru and Denmark Draw Croatia and Nigeria Draw Costa Rica and Serbia Draw Germany and Mexico Draw Brazil and Switzerland Draw Sweden and Korea Republic Draw Belgium and Panama Draw England and Tunisia Draw Colombia and Japan Draw Poland and Senegal Draw Egypt and Russia Draw Portugal and Morocco Draw Uruguay and Saudi Arabia Draw Spain and Iran Draw Denmark and Australia Draw France and Peru Draw Argentina and Croatia Draw Brazil and Costa Rica Draw Iceland and Nigeria Draw Switzerland and Serbia Draw Belgium and Tunisia Draw Mexico and Korea Republic Draw Germany and Sweden Draw England and Panama Draw Senegal and Japan Draw Poland and Colombia Draw Uruguay and Russia Draw Egypt and Saudi Arabia Draw Portugal and Iran Draw Spain and Morocco Draw France and Denmark Draw Peru and Australia Draw Argentina and Nigeria Draw Croatia and Iceland Draw Mexico and Sweden Draw Germany and Korea Republic Draw Brazil and Serbia Draw Switzerland and Costa Rica Draw Poland and Japan Draw Colombia and Senegal Draw Tunisia and Panama Draw Belgium and England Draw Winner Group A and Runner-up Group B Draw Winner Group C and Runner-up Group D Draw Winner Group B and Runner-up Group A Draw Winner Group D and Runner-up Group C Draw Winner Group E and Runner-up Group F Draw Winner Group G and Runner-up Group H Draw Winner Group F and Runner-up Group E Draw Winner Group H and Runner-up Group G Draw To be announced and To be announced Draw To be announced and To be announced Draw To be announced and To be announced Draw To be announced and To be announced Draw To be announced and To be announced Draw To be announced and To be announced Draw To be announced and To be announced Draw To be announced and To be announced Draw
ScientificComputingRobertJohansson/Lecture-5-Sympy.ipynb
###Markdown Sympy - Symbolic algebra in Python J.R. Johansson (jrjohansson at gmail.com)The latest version of this [IPython notebook](http://ipython.org/notebook.html) lecture is available at [http://github.com/jrjohansson/scientific-python-lectures](http://github.com/jrjohansson/scientific-python-lectures).The other notebooks in this lecture series are indexed at [http://jrjohansson.github.io](http://jrjohansson.github.io). ###Code %matplotlib inline import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Introduction There are two notable Computer Algebra Systems (CAS) for Python:* [SymPy](http://sympy.org/en/index.html) - A python module that can be used in any Python program, or in an IPython session, that provides powerful CAS features. * [Sage](http://www.sagemath.org/) - Sage is a full-featured and very powerful CAS enviroment that aims to provide an open source system that competes with Mathematica and Maple. Sage is not a regular Python module, but rather a CAS environment that uses Python as its programming language.Sage is in some aspects more powerful than SymPy, but both offer very comprehensive CAS functionality. The advantage of SymPy is that it is a regular Python module and integrates well with the IPython notebook. In this lecture we will therefore look at how to use SymPy with IPython notebooks. If you are interested in an open source CAS environment I also recommend to read more about Sage.To get started using SymPy in a Python program or notebook, import the module `sympy`: ###Code from sympy import * ###Output _____no_output_____ ###Markdown To get nice-looking $\LaTeX$ formatted output run: ###Code init_printing() # or with older versions of sympy/ipython, load the IPython extension #%load_ext sympy.interactive.ipythonprinting # or #%load_ext sympyprinting ###Output _____no_output_____ ###Markdown Symbolic variables In SymPy we need to create symbols for the variables we want to work with. We can create a new symbol using the `Symbol` class: ###Code x = Symbol('x') (pi + x)**2 # alternative way of defining symbols a, b, c = symbols("a, b, c") type(a) ###Output _____no_output_____ ###Markdown We can add assumptions to symbols when we create them: ###Code x = Symbol('x', real=True) x.is_imaginary x = Symbol('x', positive=True) x > 0 ###Output _____no_output_____ ###Markdown Complex numbers The imaginary unit is denoted `I` in Sympy. ###Code 1+1*I I**2 (x * I + 1)**2 ###Output _____no_output_____ ###Markdown Rational numbers There are three different numerical types in SymPy: `Real`, `Rational`, `Integer`: ###Code r1 = Rational(4,5) r2 = Rational(5,4) r1 r1+r2 r1/r2 ###Output _____no_output_____ ###Markdown Numerical evaluation SymPy uses a library for artitrary precision as numerical backend, and has predefined SymPy expressions for a number of mathematical constants, such as: `pi`, `e`, `oo` for infinity.To evaluate an expression numerically we can use the `evalf` function (or `N`). It takes an argument `n` which specifies the number of significant digits. ###Code pi.evalf(n=50) y = (x + pi)**2 N(y, 5) # same as evalf ###Output _____no_output_____ ###Markdown When we numerically evaluate algebraic expressions we often want to substitute a symbol with a numerical value. In SymPy we do that using the `subs` function: ###Code y.subs(x, 1.5) N(y.subs(x, 1.5)) ###Output _____no_output_____ ###Markdown The `subs` function can of course also be used to substitute Symbols and expressions: ###Code y.subs(x, a+pi) ###Output _____no_output_____ ###Markdown We can also combine numerical evolution of expressions with NumPy arrays: ###Code import numpy x_vec = numpy.arange(0, 10, 0.1) y_vec = numpy.array([N(((x + pi)**2).subs(x, xx)) for xx in x_vec]) fig, ax = plt.subplots() ax.plot(x_vec, y_vec); ###Output _____no_output_____ ###Markdown However, this kind of numerical evolution can be very slow, and there is a much more efficient way to do it: Use the function `lambdify` to "compile" a Sympy expression into a function that is much more efficient to evaluate numerically: ###Code f = lambdify([x], (x + pi)**2, 'numpy') # the first argument is a list of variables that # f will be a function of: in this case only x -> f(x) y_vec = f(x_vec) # now we can directly pass a numpy array and f(x) is efficiently evaluated ###Output _____no_output_____ ###Markdown The speedup when using "lambdified" functions instead of direct numerical evaluation can be significant, often several orders of magnitude. Even in this simple example we get a significant speed up: ###Code %%timeit y_vec = numpy.array([N(((x + pi)**2).subs(x, xx)) for xx in x_vec]) %%timeit y_vec = f(x_vec) ###Output The slowest run took 22.35 times longer than the fastest. This could mean that an intermediate result is being cached. 100000 loops, best of 3: 3.02 µs per loop ###Markdown Algebraic manipulations One of the main uses of an CAS is to perform algebraic manipulations of expressions. For example, we might want to expand a product, factor an expression, or simply an expression. The functions for doing these basic operations in SymPy are demonstrated in this section. Expand and factor The first steps in an algebraic manipulation ###Code (x+1)*(x+2)*(x+3) expand((x+1)*(x+2)*(x+3)) ###Output _____no_output_____ ###Markdown The `expand` function takes a number of keywords arguments which we can tell the functions what kind of expansions we want to have performed. For example, to expand trigonometric expressions, use the `trig=True` keyword argument: ###Code sin(a+b) expand(sin(a+b), trig=True) ###Output _____no_output_____ ###Markdown See `help(expand)` for a detailed explanation of the various types of expansions the `expand` functions can perform. The opposite a product expansion is of course factoring. The factor an expression in SymPy use the `factor` function: ###Code factor(x**3 + 6 * x**2 + 11*x + 6) ###Output _____no_output_____ ###Markdown Simplify The `simplify` tries to simplify an expression into a nice looking expression, using various techniques. More specific alternatives to the `simplify` functions also exists: `trigsimp`, `powsimp`, `logcombine`, etc. The basic usages of these functions are as follows: ###Code # simplify expands a product simplify((x+1)*(x+2)*(x+3)) # simplify uses trigonometric identities simplify(sin(a)**2 + cos(a)**2) simplify(cos(x)/sin(x)) ###Output _____no_output_____ ###Markdown apart and together To manipulate symbolic expressions of fractions, we can use the `apart` and `together` functions: ###Code f1 = 1/((a+1)*(a+2)) f1 apart(f1) f2 = 1/(a+2) + 1/(a+3) f2 together(f2) ###Output _____no_output_____ ###Markdown Simplify usually combines fractions but does not factor: ###Code simplify(f2) ###Output _____no_output_____ ###Markdown Calculus In addition to algebraic manipulations, the other main use of CAS is to do calculus, like derivatives and integrals of algebraic expressions. Differentiation Differentiation is usually simple. Use the `diff` function. The first argument is the expression to take the derivative of, and the second argument is the symbol by which to take the derivative: ###Code y diff(y**2, x) ###Output _____no_output_____ ###Markdown For higher order derivatives we can do: ###Code diff(y**2, x, x) diff(y**2, x, 2) # same as above ###Output _____no_output_____ ###Markdown To calculate the derivative of a multivariate expression, we can do: ###Code x, y, z = symbols("x,y,z") f = sin(x*y) + cos(y*z) ###Output _____no_output_____ ###Markdown $\frac{d^3f}{dxdy^2}$ ###Code diff(f, x, 1, y, 2) ###Output _____no_output_____ ###Markdown Integration Integration is done in a similar fashion: ###Code f integrate(f, x) ###Output _____no_output_____ ###Markdown By providing limits for the integration variable we can evaluate definite integrals: ###Code integrate(f, (x, -1, 1)) ###Output _____no_output_____ ###Markdown and also improper integrals ###Code integrate(exp(-x**2), (x, -oo, oo)) ###Output _____no_output_____ ###Markdown Remember, `oo` is the SymPy notation for inifinity. Sums and products We can evaluate sums and products using the functions: 'Sum' ###Code n = Symbol("n") Sum(1/n**2, (n, 1, 10)) Sum(1/n**2, (n,1, 10)).evalf() Sum(1/n**2, (n, 1, oo)).evalf() ###Output _____no_output_____ ###Markdown Products work much the same way: ###Code Product(n, (n, 1, 10)) # 10! ###Output _____no_output_____ ###Markdown Limits Limits can be evaluated using the `limit` function. For example, ###Code limit(sin(x)/x, x, 0) ###Output _____no_output_____ ###Markdown We can use 'limit' to check the result of derivation using the `diff` function: ###Code f diff(f, x) ###Output _____no_output_____ ###Markdown $\displaystyle \frac{\mathrm{d}f(x,y)}{\mathrm{d}x} = \frac{f(x+h,y)-f(x,y)}{h}$ ###Code h = Symbol("h") limit((f.subs(x, x+h) - f)/h, h, 0) ###Output _____no_output_____ ###Markdown OK! We can change the direction from which we approach the limiting point using the `dir` keywork argument: ###Code limit(1/x, x, 0, dir="+") limit(1/x, x, 0, dir="-") ###Output _____no_output_____ ###Markdown Series Series expansion is also one of the most useful features of a CAS. In SymPy we can perform a series expansion of an expression using the `series` function: ###Code series(exp(x), x) ###Output _____no_output_____ ###Markdown By default it expands the expression around $x=0$, but we can expand around any value of $x$ by explicitly include a value in the function call: ###Code series(exp(x), x, 1) ###Output _____no_output_____ ###Markdown And we can explicitly define to which order the series expansion should be carried out: ###Code series(exp(x), x, 1, 10) ###Output _____no_output_____ ###Markdown The series expansion includes the order of the approximation, which is very useful for keeping track of the order of validity when we do calculations with series expansions of different order: ###Code s1 = cos(x).series(x, 0, 5) s1 s2 = sin(x).series(x, 0, 2) s2 expand(s1 * s2) ###Output _____no_output_____ ###Markdown If we want to get rid of the order information we can use the `removeO` method: ###Code expand(s1.removeO() * s2.removeO()) ###Output _____no_output_____ ###Markdown But note that this is not the correct expansion of $\cos(x)\sin(x)$ to $5$th order: ###Code (cos(x)*sin(x)).series(x, 0, 6) ###Output _____no_output_____ ###Markdown Linear algebra Matrices Matrices are defined using the `Matrix` class: ###Code m11, m12, m21, m22 = symbols("m11, m12, m21, m22") b1, b2 = symbols("b1, b2") A = Matrix([[m11, m12],[m21, m22]]) A b = Matrix([[b1], [b2]]) b ###Output _____no_output_____ ###Markdown With `Matrix` class instances we can do the usual matrix algebra operations: ###Code A**2 A * b ###Output _____no_output_____ ###Markdown And calculate determinants and inverses, and the like: ###Code A.det() A.inv() ###Output _____no_output_____ ###Markdown Solving equations For solving equations and systems of equations we can use the `solve` function: ###Code solve(x**2 - 1, x) solve(x**4 - x**2 - 1, x) ###Output _____no_output_____ ###Markdown System of equations: ###Code solve([x + y - 1, x - y - 1], [x,y]) ###Output _____no_output_____ ###Markdown In terms of other symbolic expressions: ###Code solve([x + y - a, x - y - c], [x,y]) ###Output _____no_output_____ ###Markdown Further reading * http://sympy.org/en/index.html - The SymPy projects web page.* https://github.com/sympy/sympy - The source code of SymPy.* http://live.sympy.org - Online version of SymPy for testing and demonstrations. Versions ###Code %reload_ext version_information %version_information numpy, matplotlib, sympy ###Output _____no_output_____
morse-2.ipynb
###Markdown alphabet permutations ###Code ''' A .- | . - B -... | -.. . | -. .. | -. . . | - . .. | - . . . | - .. . | - ... C -.-. | -.- . | -. -. | -. - . | - .-. | - .- . | - . -. | - . - . D -.. | -. . | - .. | - . . E . F ..-. | ..- . | .. -. | . . -. | . .-. | . . - . G --. | -- . | - -. | - - . H .... | ... . | .. .. | . ... | .. . . | . . .. | . . . . I .. | . . J .--- | .-- - | .- -- | .- - - | . --- | . -- - | . - -- | . - - - K -.- | -. - | - .- | - . - L .-.. | .-. . | .- .. | .- . . | . -.. | . -. . | . - .. | . - . . M -- | - - N -. | - . O --- | -- - | - -- | - - - P .--. | .-- . | .- -. | .- - . | . --. | . -- . | . - -. | . - - . Q --.- | --. - | -- .- | -- . - | - -.- | - -. - | - - .- | - - . - R .-. | .- . | . -. S ... | .. . | . .. T - U ..- | .. - | . .- | . . - V ...- | ... - | .. .- | .. . - | . ..- | . .. - | . . .- | . . . - W .-- | .- - | . -- | . - - X -..- | -.. - | -. .- | -. . - | - ..- | - .. - | - . .- | - . . - Y -.-- | -.- - | -. -- | -. - - | - .-- | - .- - | - . -- | - . - - Z --.. | --. . | -- .. | -- . . | - -.. | - -. . | - - .. | - - . . ''' ###Output _____no_output_____ ###Markdown build sentence ###Code morse_sentence = '......-...-..---.-----.-..-..-..' ###Output _____no_output_____ ###Markdown build words ###Code words = ['HELL', 'HELLO', 'WORLD', 'OWORLD', 'TEST'] def encode_word(word): encoded_word = ''.join([alphabet_map[letter] for letter in word]) return encoded_word word_translator = {encode_word(word):word for word in words} word_translator encoded_word_translator_map = {} def generate_word_translator(word, sep=''): letters = [] for letter in word: letters.append(alphabet_map[letter]) encoded_word = sep.join(letters) encoded_word_translator_map[encoded_word] = word [generate_word_translator(w) for w in words] encoded_word_translator_map encoded_word_counts_map = {} def generate_word_count(word, sep=''): letters = [] for letter in word: letters.append(alphabet_map[letter]) encoded_word = sep.join(letters) if encoded_word in encoded_word_counts_map: encoded_word_counts_map[encoded_word] += 1 else: encoded_word_counts_map[encoded_word] = 1 [generate_word_count(w) for w in words] encoded_word_counts_map encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} encoded_word_sizes_map morse_words = list(encoded_word_counts_map.keys()) morse_words ###Output _____no_output_____ ###Markdown decode words ###Code def decode_words_test(level, current_sentence, remaining): if not remaining: print(f'== {level} {current_sentence}') return 1 nb_options = 0 for word, duplicates in encoded_word_counts_map.items(): if remaining.startswith(word): print(f'{level} {current_sentence} + {word}, {duplicates}') new_sentence = current_sentence.copy() new_sentence.append(word) i = encoded_word_sizes_map[word] new_remaining = str(remaining[i:]) nb_options += decode_words_test(level+1, new_sentence, new_remaining) * duplicates return nb_options morse_sentence = '......-...-..---.-----.-..-..-..' # HELLOWORLD words = ['HELL', 'HELLO', 'WORLD', 'OWORLD', 'TEST'] encoded_word_counts_map = {} [generate_word_count(w) for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_words_test(0, [], morse_sentence) print(res) assert res == 2 # HELLO WORLD, HELL OWORLD morse_sentence = '......-...-..---' # HELLO words = ['HELL', 'HELLO', 'WORLD', 'OWORLD', 'TEST', 'HE', 'EH', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w) for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_words_test(0, [], morse_sentence) print(res) assert res == 4 # HELLO, HELL O, HE L L O, EH L L O morse_sentence = '......-...-..---' # HELLO words = ['HELL', 'TEST'] encoded_word_counts_map = {} [generate_word_count(w) for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_words_test(0, [], morse_sentence) print(res) assert res == 0 # no match morse_sentence = '......-..' # HEL fix HE L hide HEL words = ['HEL', 'HE', 'EH', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w) for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_words_test(0, [], morse_sentence) print(res) assert res == 3 # HEL, HE L, EH L morse_sentence = '......-..' # HEL fix HE L hide HEL words = ['HEL', 'HE', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w) for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_words_test(0, [], morse_sentence) print(res) assert res == 2 # HEL, HE L ###Output _____no_output_____ ###Markdown decode letters ###Code def decode_letters_test(level, current_sentence, remaining): def translate(word): return ''.join([reverse_alphabet_map[l] for l in word.split('|')]) words = [translate(word) for word in current_sentence] key = ' '.join(words) if not remaining: print(f'{key} == {level} {current_sentence}') return 1 nb_options = 0 for encoded_letter in morse_alphabet: if remaining.startswith(encoded_letter): print(f'{key} {level} {current_sentence} + {encoded_letter}') new_sentence = current_sentence.copy() new_sentence.append(encoded_letter) i = len(encoded_letter) new_remaining = str(remaining[i:]) nb_options += decode_letters_test(level+1, new_sentence, new_remaining) return nb_options morse_sentence = '....' # E . I .. S ... H .... words = ['EEEE', 'II', 'SE', 'ES', 'H', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w) for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_letters_test(0, [], morse_sentence) print(res) assert res == 8 # EEEE, EEI, EIE, ES, H, IEE, II, SE ###Output _____no_output_____ ###Markdown decode list of letters ###Code # confusion HEL HE L def decode_words_old(level, current_sentence, current_word, remaining): if not remaining: print(f'====> {level} {current_sentence}') return 1 if not current_word else 0 nb_options = 0 new_letter = remaining[0] new_word = current_word.copy() new_word.append(new_letter) word = '|'.join(new_word) if word in encoded_word_counts_map: print(f'{level} {current_sentence} -> found {word}') new_sentence = current_sentence.copy() new_sentence.append(word) new_remaining = remaining.copy() nb_options += decode_words(level+1, new_sentence, [], new_remaining[1:]) * encoded_word_counts_map[word] else: print(f'{level} {current_sentence} + {new_word}') new_remaining = remaining.copy() nb_options += decode_words_old(level+1, current_sentence, new_word, new_remaining[1:]) return nb_options def decode_words(level, current_sentence, current_word, remaining): if not remaining: print(f'====> {level} {current_sentence}') return 1 if not current_word else 0 nb_options = 0 new_letter = remaining[0] new_word = current_word.copy() new_word.append(new_letter) word = '|'.join(new_word) if word in encoded_word_counts_map: print(f'{level} {current_sentence} -> found {word}') new_sentence = current_sentence.copy() new_sentence.append(word) new_remaining = remaining.copy() nb_options += decode_words(level+1, new_sentence, [], new_remaining[1:]) * encoded_word_counts_map[word] print(f'{level} {current_sentence} + {new_word}') new_remaining = remaining.copy() nb_options += decode_words(level+1, current_sentence, new_word, new_remaining[1:]) return nb_options morse_sentence = '....' # E . I .. S ... H .... words = ['EEEE', 'EIE', 'SE', 'ES', 'H', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w,'|') for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} morse_sentence_letters = ['.', '..', '.'] # EIE res = decode_words(0, [], [], morse_sentence_letters) print(res) assert res == 1 # EIE morse_sentence = '....' # E . I .. S ... H .... words = ['EIE', 'SE', 'ES', 'H', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w,'|') for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} morse_sentence_letters = ['.', '...'] # ES res = decode_words(0, [], [], morse_sentence_letters) print(res) assert res == 1 # ES morse_sentence = '....' # E . I .. S ... H .... words = ['S', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w,'|') for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} morse_sentence_letters = ['.', '...'] # ES res = decode_words(0, [], [], morse_sentence_letters) print(res) assert res == 0 # no match morse_sentence = '......-..' # HEL words = ['HEL', 'HE', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w,'|') for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} morse_sentence_letters = ['....', '.', '.-..'] # ES res = decode_words(0, [], [], morse_sentence_letters) print(res) assert res == 2 # HEL, HE L ###Output _____no_output_____ ###Markdown mix ###Code def decode_words(level, current_sentence, current_word, remaining): def translate(word): return ''.join([reverse_alphabet_map[l] for l in word.split('|')]) words = [translate(word) for word in current_sentence] keys = ' '.join(words) keyw = ''.join([reverse_alphabet_map[l] for l in current_word]) key = f'{keys}+{keyw}' if not remaining: if not current_word: print(f'{key} ==== {level} {current_sentence} {current_word}') else: print(f'{key} ====X {level} {current_sentence} {current_word}') return 1 if not current_word else 0 nb_options = 0 new_letter = remaining[0] new_word = current_word.copy() new_word.append(new_letter) word = '|'.join(new_word) if word in encoded_word_counts_map: new_sentence = current_sentence.copy() new_sentence.append(word) new_remaining = remaining.copy() #print(f'{key} {level} {new_sentence} [] rem={new_remaining[1:]}' ) nb_options += decode_words(level+1, new_sentence, [], new_remaining[1:]) * encoded_word_counts_map[word] # if else find HE L and stop before HEL new_remaining = remaining.copy() #print(f'{key} {level} {current_sentence} {new_word} rem={new_remaining[1:]}' ) nb_options += decode_words(level+1, current_sentence, new_word, new_remaining[1:]) return nb_options def decode_letters(level, current_sentence, remaining): if not remaining: #if current_sentence: print(f'==> {level} {current_sentence}') return decode_words(0, [], [], current_sentence) if current_sentence else 0 nb_options = 0 for encoded_letter in morse_alphabet: if remaining.startswith(encoded_letter): #print(f'{level} {current_sentence} + {encoded_letter}') new_sentence = current_sentence.copy() new_sentence.append(encoded_letter) i = len(encoded_letter) new_remaining = str(remaining[i:]) nb_options += decode_letters(level+1, new_sentence, new_remaining) return nb_options morse_sentence = '....' # E . I .. S ... H .... words = ['EIE', 'SE', 'ES', 'H', 'L', 'O'] encoded_word_translator_map [generate_word_translator(w) for w in words] encoded_word_counts_map = {} [generate_word_count(w,'|') for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_letters(0, [], morse_sentence) print(res) assert res == 4 # EIE, ES, H, SE morse_sentence = '....' # E . I .. S ... H .... words = ['S', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w,'|') for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_letters(0, [], morse_sentence) print(res) assert res == 0 # no match morse_sentence = '.....' # confusion EH/HE words = ['HEL', 'HE', 'EH', 'O'] encoded_word_counts_map = {} [generate_word_count(w,'|') for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_letters(0, [], morse_sentence) print(res) assert res == 2 # HE, EH morse_sentence = '......-..' # HEL single option words = ['HEL', 'O'] encoded_word_counts_map = {} [generate_word_count(w,'|') for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_letters(0, [], morse_sentence) print(res) assert res == 1 # HEL morse_sentence = '......-..' # HEL no EH/HE confusion words = ['HEL', 'HE', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w,'|') for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_letters(0, [], morse_sentence) print(res) assert res == 2 # HEL, HE L -- fix stops when HE L is foundd and never reach HEL morse_sentence = '......-..' # HEL with confusion EH/HE words = ['HEL', 'HE', 'EH', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w,'|') for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_letters(0, [], morse_sentence) print(res) assert res == 3 # HEL, HE L, EH L morse_sentence = '......-...-..---' # HELLO with confusion EH/HE words = ['HELL', 'HELLO', 'WORLD', 'OWORLD', 'TEST', 'HE', 'EH', 'L', 'O'] encoded_word_counts_map = {} [generate_word_count(w,'|') for w in words] encoded_word_sizes_map = {word:len(word) for word in encoded_word_counts_map.keys()} res = decode_letters(0, [], morse_sentence) print(res) assert res == 4 # HELLO, HELL O, HE L L O, EH L L O print('ok') ###Output _____no_output_____ ###Markdown solution finalisée ###Code alphabet = '''A .- B -... C -.-. D -.. E . F ..-. G --. H .... I .. J .--- K -.- L .-.. M -- N -. O --- P .--. Q --.- R .-. S ... T - U ..- V ...- W .-- X -..- Y -.-- Z --..''' def generate_alphabet_map(): key = None alphabet_map = {} for value in alphabet.split(): if not key is None: alphabet_map[key] = value key = None else: key = value return alphabet_map alphabet_map = generate_alphabet_map() morse_alphabet = alphabet_map.values() #morse_alphabet encoded_word_list = [] def generate_word_list(word, sep=''): letters = [] for letter in word: letters.append(alphabet_map[letter]) encoded_word = sep.join(letters) encoded_word_list.append(encoded_word) def decode_words(current_word, remaining): if not remaining: return 1 if not current_word else 0 nb_options = 0 new_letter = remaining[0] new_word = current_word.copy() new_word.append(new_letter) word = '|'.join(new_word) if word in encoded_word_list: new_remaining = remaining.copy() nb_options += decode_words([], new_remaining[1:]) new_remaining = remaining.copy() nb_options += decode_words(new_word, new_remaining[1:]) return nb_options def decode_letters(current_sentence, remaining): if not remaining: return decode_words([], current_sentence) if current_sentence else 0 nb_options = 0 for encoded_letter in morse_alphabet: if remaining.startswith(encoded_letter): new_sentence = current_sentence.copy() new_sentence.append(encoded_letter) i = len(encoded_letter) new_remaining = str(remaining[i:]) nb_options += decode_letters(new_sentence, new_remaining) return nb_options morse_sentence = '....' # E . I .. S ... H .... words = ['EIE', 'SE', 'ES', 'H', 'L', 'O'] encoded_word_list = [] [generate_word_list(w,'|') for w in words] print(encoded_word_list) res = decode_letters([], morse_sentence) print(res) assert res == 4 # EIE, ES, H, SE morse_sentence = '....' # E . I .. S ... H .... words = ['S', 'L', 'O'] encoded_word_list = [] [generate_word_list(w,'|') for w in words] print(encoded_word_list) res = decode_letters([], morse_sentence) print(res) assert res == 0 # no match morse_sentence = '.....' # confusion EH/HE words = ['HEL', 'HE', 'EH', 'O'] encoded_word_list = [] [generate_word_list(w,'|') for w in words] print(encoded_word_list) res = decode_letters([], morse_sentence) print(res) assert res == 2 # HE, EH morse_sentence = '......-..' # HEL single option words = ['HEL', 'O'] encoded_word_list = [] [generate_word_list(w,'|') for w in words] print(encoded_word_list) res = decode_letters([], morse_sentence) print(res) assert res == 1 # HEL morse_sentence = '......-..' # HEL no EH/HE confusion words = ['HEL', 'HE', 'L', 'O'] encoded_word_list = [] [generate_word_list(w,'|') for w in words] print(encoded_word_list) res = decode_letters([], morse_sentence) print(res) assert res == 2 # HEL, HE L -- fix stops when HE L is foundd and never reach HEL morse_sentence = '......-..' # HEL with confusion EH/HE words = ['HEL', 'HE', 'EH', 'L', 'O'] encoded_word_list = [] [generate_word_list(w,'|') for w in words] print(encoded_word_list) res = decode_letters([], morse_sentence) print(res) assert res == 3 # HEL, HE L, EH L morse_sentence = '......-...-..---' # HELLO with confusion EH/HE words = ['HELL', 'HELLO', 'WORLD', 'OWORLD', 'TEST', 'HE', 'EH', 'L', 'O'] encoded_word_list = [] [generate_word_list(w,'|') for w in words] print(encoded_word_list) res = decode_letters([], morse_sentence) print(res) assert res == 4 # HELLO, HELL O, HE L L O, EH L L O ###Output ['....|.|.-..|.-..', '....|.|.-..|.-..|---', '.--|---|.-.|.-..|-..', '---|.--|---|.-.|.-..|-..', '-|.|...|-', '....|.', '.|....', '.-..', '---'] 4
Decorators/@classmethod.ipynb
###Markdown Introduction **What?** @classmethod Class decorators - `@property` The Pythonic way to introduce attributes is to make them public, and not introduce getters and setters to retrieve or change them.- `@classmethod` To add additional constructor to the class.- `@staticmethod` To attach functions to classes so people won't misuse them in wrong places. @classmethod - `@classmethod` is bound to a class rather than an object.- Class methods can be called by both class and object. - These methods can be called with a class **or** with an object. Example ###Code from datetime import date class Person: def __init__(self, name, age): """ This will create the object by name and age """ self.name = name self.age = age """ This will create the object by name and year """ @classmethod def fromBirthYear(cls, name, year): return cls(name, date.today().year - year) def display(self): print("Name : ", self.name, "Age : ", self.age) person = Person('mayank', 21) person.display() person1 = Person.fromBirthYear('mayank', 2000) person1.display() # called by the class person1 = Person('just something', 1000) # called by the object person2 = person1.fromBirthYear('mayank', 2000) person2.display() ###Output Name : mayank Age : 21
processing/.ipynb_checkpoints/Ensemble_Features-checkpoint.ipynb
###Markdown **The module is for matching the original features with the results get from three methods**The different datasets will be generated here: ###Code import pandas as pd # ori_df = pd.read_csv('../dataset/Dataset.csv') ori_df = pd.read_pickle('../dataset/Dataset.pkl') # ori_df.to_pickle('../dataset/Dataset.pkl') ori_df ###Output _____no_output_____ ###Markdown 1. Dataset for feature-selector ###Code df_features_all = pd.read_pickle('../dataset/Feature_Selector/selected_features.pkl') df_features_all = df_features_all.iloc[:,2:] df_features_all = df_features_all.reset_index() df_features_all['label'] = ori_df['label'] df_features_all # save the result to dataset df_features_all.to_pickle('../dataset/training_data/features_selected.pkl') ###Output _____no_output_____ ###Markdown 2. Dataset for TF_IDF in total ###Code # load all tf-idf features df_tf_idf_all = pd.read_pickle('../dataset/TF_IDF_Sen/features_ran_all.pkl') # load tf-idf featuers without some of normal features df_tf_idf_part = pd.read_pickle('../dataset/TF_IDF_Sen/features_ran_delete_nor.pkl') # define the module to match features def match_features(features_all, extracted_features): # create the dict with {index: features} features_dict = {} features_dict = {feature.split(":")[0]:feature.split(":")[1] for feature in features_all} indexes = [] # create the indexes list to save the matched index for index, feature in features_dict.items(): if feature in extracted_features: indexes.append(index) # add the label column indexes.append('label') return indexes ###Output _____no_output_____ ###Markdown load all features in order to match from them ###Code with open('../dataset/Dynfeatures.txt', encoding='utf-8') as fr: features_all = fr.read().splitlines() features_all tf_idf_all = df_tf_idf_all['Features'] tf_idf_all.values ###Output _____no_output_____ ###Markdown create the indexes list for all tf_idf sentences ###Code tf_idf_all_indexes = match_features(features_all = features_all, extracted_features = tf_idf_all.values) tf_idf_all_indexes ori_df[tf_idf_all_indexes] # save the result to dataset ori_df[tf_idf_all_indexes].to_pickle('../dataset/TF_IDF_Sen/features_ran_all_indexes.pkl') ###Output _____no_output_____ ###Markdown 3. Dataset for TF_IDF after deleting some of normal features ###Code df_tf_idf_part tf_idf_part = df_tf_idf_part['Features'] tf_idf_part.values ###Output _____no_output_____ ###Markdown create the indexes list for part tf_idf sentences ###Code tf_idf_part_indexes = match_features(features_all = features_all, extracted_features = tf_idf_part.values) tf_idf_part_indexes # ori_df[tf_idf_part_indexes] # save the result to dataset ori_df[tf_idf_part_indexes].to_pickle('../dataset/TF_IDF_Sen/features_ran_part_indexes.pkl') ###Output _____no_output_____ ###Markdown 4. Dataset for unique 3-Gram features ###Code thr_Gram_df = pd.read_pickle('../dataset/N-Gram/unique_fd_three.pkl') thr_Gram_df features_all # define the module to match strings features def match_strings(features_all, extracted_strings): # create the dict with {index: features} features_dict = {} if row['a'].str.contains('foo')==True features_dict = {feature.split(":")[0]:feature.split(":")[1] for feature in features_all} indexes = [] # create the indexes list to save the matched index for index, feature in features_dict.items(): if feature in extracted_features: indexes.append(index) # add the label column indexes.append('label') return indexes # if two 3-grams exist in one string, count it once only # join the words to strings extracted_strings = [] for features in thr_Gram_df['features'] fullstring = "S\\tack\\Abuse" substring = "tack" if fullstring.find(substring) != -1: print("Found!") else: print("Not found!") ###Output Found! ###Markdown 5. Dataset for unique 4-Gram features ###Code four_Gram_df = pd.read_pickle('../dataset/N-Gram/unique_fd_four.pkl') four_Gram_df # if two 4-grams exist in one string, count it once only ###Output _____no_output_____ ###Markdown 6. Dataset for combine feature-selector + TF_IDF + unique 4-Gram and delete the duplicate features ###Code # read all the separate dataset and delete the label column ###Output _____no_output_____
Classification Predict.ipynb
###Markdown Classification Predict Problem statement BackgroundMany companies are built around lessening one’s environmental impact or carbon footprint. They offer products and services that are environmentally friendly and sustainable, in line with their values and ideals. They would like to determine how people perceive climate change and whether or not they believe it is a real threat. Problem StatementCreate a Machine Learning model that is able to classify whether or not a person believes in climate change, based on their novel tweet data. Importing the libraries ###Code # Analysis Libraries import pandas as pd import numpy as np from collections import Counter # Visualisation Libraries import matplotlib.pyplot as plt import seaborn as sns sns.set_style("whitegrid") from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from PIL import Image # Language Processsing Libraries import nltk nltk.download(['punkt','stopwords']) nltk.download('vader_lexicon') nltk.download('popular') from sklearn.utils import resample from nltk.stem import WordNetLemmatizer from nltk.tokenize import sent_tokenize, word_tokenize from nltk.tokenize import word_tokenize, TreebankWordTokenizer import re import string from nltk import SnowballStemmer import spacy # ML Libraries from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC,SVC from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import classification_report,confusion_matrix,accuracy_score,recall_score,precision_score from sklearn.feature_extraction.text import TfidfVectorizer from sklearn import metrics from nltk import SnowballStemmer # Code for hiding seaborn warnings import warnings warnings.filterwarnings("ignore") ###Output [nltk_data] Downloading package punkt to /root/nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Package stopwords is already up-to-date! [nltk_data] Downloading package vader_lexicon to /root/nltk_data... [nltk_data] Package vader_lexicon is already up-to-date! [nltk_data] Downloading collection 'popular' [nltk_data] | [nltk_data] | Downloading package cmudict to /root/nltk_data... [nltk_data] | Package cmudict is already up-to-date! [nltk_data] | Downloading package gazetteers to /root/nltk_data... [nltk_data] | Package gazetteers is already up-to-date! [nltk_data] | Downloading package genesis to /root/nltk_data... [nltk_data] | Package genesis is already up-to-date! [nltk_data] | Downloading package gutenberg to /root/nltk_data... [nltk_data] | Package gutenberg is already up-to-date! [nltk_data] | Downloading package inaugural to /root/nltk_data... [nltk_data] | Package inaugural is already up-to-date! [nltk_data] | Downloading package movie_reviews to [nltk_data] | /root/nltk_data... [nltk_data] | Package movie_reviews is already up-to-date! [nltk_data] | Downloading package names to /root/nltk_data... [nltk_data] | Package names is already up-to-date! [nltk_data] | Downloading package shakespeare to /root/nltk_data... [nltk_data] | Package shakespeare is already up-to-date! [nltk_data] | Downloading package stopwords to /root/nltk_data... [nltk_data] | Package stopwords is already up-to-date! [nltk_data] | Downloading package treebank to /root/nltk_data... [nltk_data] | Package treebank is already up-to-date! [nltk_data] | Downloading package twitter_samples to [nltk_data] | /root/nltk_data... [nltk_data] | Package twitter_samples is already up-to-date! [nltk_data] | Downloading package omw to /root/nltk_data... [nltk_data] | Package omw is already up-to-date! [nltk_data] | Downloading package wordnet to /root/nltk_data... [nltk_data] | Package wordnet is already up-to-date! [nltk_data] | Downloading package wordnet_ic to /root/nltk_data... [nltk_data] | Package wordnet_ic is already up-to-date! [nltk_data] | Downloading package words to /root/nltk_data... [nltk_data] | Package words is already up-to-date! [nltk_data] | Downloading package maxent_ne_chunker to [nltk_data] | /root/nltk_data... [nltk_data] | Package maxent_ne_chunker is already up-to-date! [nltk_data] | Downloading package punkt to /root/nltk_data... [nltk_data] | Package punkt is already up-to-date! [nltk_data] | Downloading package snowball_data to [nltk_data] | /root/nltk_data... [nltk_data] | Package snowball_data is already up-to-date! [nltk_data] | Downloading package averaged_perceptron_tagger to [nltk_data] | /root/nltk_data... [nltk_data] | Package averaged_perceptron_tagger is already up- [nltk_data] | to-date! [nltk_data] | [nltk_data] Done downloading collection popular ###Markdown Load Data X_df DataFrame contains three columns; sentiment, message and tweetid ###Code X_df = pd.read_csv('train.csv') X_df.head(5) ###Output _____no_output_____ ###Markdown Exploratory Data Analysis A check for uniqueness indicates that the message column has over 1000 duplicates due to repeated tweetids. This should be removed as to not train the model on repeated data. ###Code # Inspect structure of dataset X_df.info() # Generate dataframe to indicate unique values number_of_unique=[X_df[i].nunique() for i in X_df.columns] # Number of unique values per column column_names=[i for i in X_df.columns] unique_zip=list(zip(column_names,number_of_unique)) unique_df=pd.DataFrame(unique_zip,columns=['Column_Feature','Unique_Values']) unique_df # A function to remove duplicate rows from the message column def delete_dup(df): df=df.copy() df = df.drop_duplicates(subset='message') #messges specified as subset to evaluate return df X_df=delete_dup(X_df) # Recheck for duplicates number_of_unique=[X_df[i].nunique() for i in X_df.columns] unique_df=pd.DataFrame(unique_zip,columns=['Column_Feature','Unique_Values']) unique_df ###Output _____no_output_____ ###Markdown In order to give our graphs more context, we have added the text version of the sentiment to the train DataFrame. These new columns will be deleted as they do not assist in the actual classification problem. ###Code # A function to add the text version of 'sentiment'. This is just for graphing purposes # and should be droped. def add_text_sent(df): # Copy the input DataFrame out_df = df.copy() sentiment_text = [] # Loop though the sentiments and assign the text version. # Pro: 1, News: 2, Neutral: 0, Anti: -1 for sent in df['sentiment']: if sent == 1: sentiment_text.append('Pro') elif sent == 2: sentiment_text.append('News') elif sent == 0: sentiment_text.append('Neutral') elif sent == -1: sentiment_text.append('Anti') out_df['sentiment_text'] = sentiment_text out_df.drop(['message', 'tweetid'], axis = 1, inplace = True) return out_df # Function to arrange the DataFrame to show percentage of classes def class_table(df): out_df = df.groupby(['sentiment_text']).count() class_perc = [round(100 * x / len(df), 1) for x in out_df['sentiment']] out_df['% of Total Classes'] = class_perc return out_df # Create a new DataFrame for graphing purposes. Show the sentiment classes as a # percentage. new_X_df = add_text_sent(X_df) new_X_df_t = class_table(new_X_df) new_X_df_t ###Output _____no_output_____ ###Markdown The class labels of the training data are not balanced. As shown in the table above, most of the tweets (50.8%) are classified as `Pro`, which in the context of the `Problem Statement` means they believe in man-made climate change. The other classes (`News`, `Neutral` and `Anti`) account for `24.9%`, `15.8%` and `8.6%`respectively. This presents a challenge in that the models developed might have a bias in classifying tweets. To further illustrate this distribution, a bar graph of the count of each sentiment class is shown below: ###Code # Show the ditribution of the classes as a graph f, ax = plt.subplots(figsize=(10, 8)) sns.set(style="whitegrid") ax = sns.countplot(x="sentiment_text", data=new_X_df) plt.title('Message Count', fontsize =20) plt.show() ###Output _____no_output_____ ###Markdown Length of Tweets per Sentiment Class ###Code # Add a column of length of tweets new_X_df['message_length'] = X_df['message'].str.len() new_X_df.head() # Display the boxplot of the length of tweets. plt.figure(figsize=(12.8,6)) sns.boxplot(data=new_X_df, x='sentiment_text', y='message_length'); ###Output _____no_output_____ ###Markdown The Tweets seem to be around `125` characters loong on average. This is shown by both the mean of the classes in the boxplots above and distribution density of the classes below. All the classes have a distribution density centred around `125` characters. The length of `Neutral` Tweets seem to have a wider range and `Pro` Tweets have a shorter range. The `Pro` Tweets also seem to have a lot of `outliers` by this measurement. ###Code # Plot of distribution of scores for building categories plt.figure(figsize=(12.8,6)) # Density plot of Energy Star scores sns.kdeplot(new_X_df[new_X_df['sentiment_text'] == 'Pro']['message_length'], label = 'Pro', shade = False, alpha = 0.8); sns.kdeplot(new_X_df[new_X_df['sentiment_text'] == 'News']['message_length'], label = 'News', shade = False, alpha = 0.8); sns.kdeplot(new_X_df[new_X_df['sentiment_text'] == 'Neutral']['message_length'], label = 'Neutral', shade = False, alpha = 0.8); sns.kdeplot(new_X_df[new_X_df['sentiment_text'] == 'Anti']['message_length'], label = 'Anti', shade = False, alpha = 0.8); # label the plot plt.xlabel('message length (char)', size = 15); plt.ylabel('Density', size = 15); plt.title('Density Plot of Message Length by Sentiment Class ', size = 20); ###Output _____no_output_____ ###Markdown Data Preprocessing Text data needs to be pre-processed before modelling. Steps taken include1. Removing/Replacing of certain text and characters2. Tokenization and lemmatization of text **Clean Text Data** ###Code # Function to remove/replace unwanted text such as characters,URLs etc def clean(text): text=text.replace("'",'') text=text.replace(".",' ') text=text.replace(" ",'') text=text.replace(",",' ') text=text.replace("_",' ') text=text.replace("!",' ') text=text.replace("RT",'retweet') #Replace RT(Retweet) with relay text=text.replace(r'\d+','') text=re.sub('((www\.[^\s]+)|(https?://[^\s]+)|(https?//[^\s]+))','weblink',text) text=re.sub('((co/[^\s]+)|(co?://[^\s]+)|(co?//[^\s]+))','',text) text=text.lower() # Lowercase tweet text =text.lstrip('\'"') # Remove extra white space return text ###Output _____no_output_____ ###Markdown Punctuation at the beginning and end of words can be removed ###Code #Function 3 def rm_punc(text): clean_text=[] for i in str(text).split(): rm=i.strip('\'"?,.:_/<>!') clean_text.append(rm) return ' '.join(clean_text) X_df['message']=X_df['message'].apply(clean) X_df['message']=X_df['message'].apply(rm_punc) X_df.head(5) ###Output _____no_output_____ ###Markdown Furthermore, the @ and must be dealt with by replacing at with @ and removing ###Code # Function replaces the @ symbol with the word at def at(text): return ' '.join(re.sub("(@+)","at ",text).split()) # Function replaces the # symbol with the word tag def hashtag(text): return ' '.join(re.sub("(#+)"," tag ",text).split()) # Remove hashtags and replace @ X_df['message']=X_df['message'].apply(at) X_df['message']=X_df['message'].apply(hashtag) X_df.head(5) ###Output _____no_output_____ ###Markdown **Tokenize and Lemmatization** Split tweets into individual words via tokenization in the tokens column. ###Code # Tokenise each tweet messge tokeniser = TreebankWordTokenizer() X_df['tokens'] = X_df['message'].apply(tokeniser.tokenize) X_df.head(5) ###Output _____no_output_____ ###Markdown Perform Lemmatization of tokens to group together the different inflected forms of a word so they can be analysed as a single item ###Code # Function performs lemmatization in the tokens column def lemma(text): lemma = WordNetLemmatizer() return [lemma.lemmatize(i) for i in text] ###Output _____no_output_____ ###Markdown Generate Lemmatization column ###Code X_df['lemma'] =X_df['tokens'].apply(lemma) X_df.head(5) ###Output _____no_output_____ ###Markdown Lastly a new column derived from the lemma column can be generate in order to train the model/s ###Code # Insert new clean message column X_df['clean message'] = X_df['lemma'].apply(lambda i: ' '.join(i)) X_df.head(5) ###Output _____no_output_____ ###Markdown Text Analysis The words most popular amongst the sentiment groups can be represented visually. This provides insights into the nature of the Tweet messages for each class **Word Clouds** The strings generated for each sentiment class will provide the information used to generate the wordclouds for each class ###Code # Create copy of X_df to generate word cloud DataFrame word_df=X_df.copy() # Remove small words that will clutter word cloud and have no significant meaning def remove_small(text): output=[] for i in text.split(): if len(i)>3: output.append(i) else: pass return ' '.join(output) word_df['clean message']=word_df['clean message'].apply(remove_small) # Create and generate a word cloud image: # Display the generated image: fig, axs = plt.subplots(2, 2, figsize=(18,10)) # Anti class word cloud anti_wordcloud = WordCloud(width=1800, height = 1200,background_color="white").generate(' '.join(i for i in word_df[word_df['sentiment']==-1]['clean message'])) axs[0, 0].imshow(anti_wordcloud, interpolation='bilinear') axs[0, 0].set_title('Anti Tweets') axs[0, 0].axis('off') # Neutral cloud word cloud neutral_wordcloud = WordCloud(width=1800, height = 1200,background_color="white").generate(' '.join(i for i in word_df[word_df['sentiment']==0]['clean message'])) axs[0, 1].imshow(neutral_wordcloud, interpolation='bilinear') axs[0, 1].set_title('Neutral Tweets') axs[0, 1].axis('off') # Positive class word cloud positive_wordcloud = WordCloud(width=1800, height = 1200).generate(' '.join(i for i in word_df[word_df['sentiment']==1]['clean message'])) axs[1, 0].imshow(positive_wordcloud, interpolation='bilinear') axs[1, 0].set_title('Positive Tweets') axs[1, 0].axis('off') # News class word cloud news_wordcloud = WordCloud(width=1800, height = 1200).generate(' '.join(i for i in word_df[word_df['sentiment']==2]['clean message'])) axs[1, 1].imshow(news_wordcloud, interpolation='bilinear') axs[1, 1].set_title('News Tweets') axs[1, 1].axis('off') plt.show() ###Output _____no_output_____ ###Markdown From the word clouds it is clear that all groups speak about climate change and global warming as expected. The word clouds of each group however contain information that echo their sentiment.1. The Anti cloud contains words such as fake, man made and scam2. The Positive cloud contains words such as real, believe,change and talk climate3. The Neutral cloud contains a mixture of words that could lean either to anti or positive4. The News cloud contains words and names such as Trump, Scott Pruitt (Administrator of the United States Environmental Protection Agency) and change policy. Typical of news reporting. **Named Entity Recognition** Futhermore, it can be seen which people and organisations are refered in tweets using NER ###Code # Spacy will be used to generate entities nlp = spacy.load('en_core_web_sm') # A new dataframe NER_df is created for the following visualisations NER_df=pd.DataFrame(X_df['clean message']) # Function generates docs to get Name Entity Recognitions def doc(text): doc=nlp(text) return doc # Create a new column containing the nlp transformed text NER_df['doc']=NER_df['clean message'].apply(doc) #Functions below extract Persons and organisations from the input parameter text. If entity is not found 'None' is populated in cell def person(doc): if doc.ents: for ent in doc.ents: if ent.label_=='PERSON': return (ent.text) else: return ('None') def org(doc): if doc.ents: for ent in doc.ents: if ent.label_=='ORG': return (ent.text) else: return ('None') # Generate new columns 'persons' and 'organisation' NER_df['persons']=NER_df['doc'].apply(person) NER_df['organisation']=NER_df['doc'].apply(org) ###Output _____no_output_____ ###Markdown Below are the plots for the top persons and organisations tweeted about ###Code # Retrive all the PERSON labels from the NER_df and generate a new dataframe person_df for analysis persons=[i for i in NER_df['persons']] person_counts = Counter(persons).most_common(20) person_df=pd.DataFrame(person_counts,columns=['persons name','count']) person_df.drop([0,1,7,8,13,15,16],axis=0,inplace=True) # rows removed due to 'None' entries, incorrect classification or different entry of a same entity (repetition) # Plot top persons tweeted f, ax = plt.subplots(figsize=(30, 10)) sns.set(style='white',font_scale=1.2) sns.barplot(x=person_df[person_df['count'] <1000].iloc[:,0],y=person_df[person_df['count'] <1000].iloc[:,1]) plt.xlabel('Persons Name') plt.ylabel('Mentions') plt.show() ###Output _____no_output_____ ###Markdown As seen in the plot above, the people most tweeted about are prominent USA politicians such as Donald trump and Al Gore, Leonardo Dicaprio is also a popular figure tweeted about regarding climate change. Although there is a misclassifications of doe(Department of Energy) ###Code # Retrive all the ORG labels from the NER_df and generate a new dataframe org_df for analysis org=[i for i in NER_df['organisation']] org_counts = Counter(org).most_common(15) org_df=pd.DataFrame(org_counts,columns=['organisation name','count']) org_df.drop([0,1,3,8,12],axis=0,inplace=True) # rows removed due to 'None' entries, incorrect classification or different entry of a same entity (repetition) # Plot top organisations tweeted f, ax = plt.subplots(figsize=(30, 10)) sns.set(style='white',font_scale=2) org_bar=sns.barplot(x=org_df[org_df['count'] <1000].iloc[:,0],y=org_df[org_df['count'] <1000].iloc[:,1]) plt.xlabel('Organisation Name') plt.ylabel('Mentions') plt.show() ###Output _____no_output_____ ###Markdown There are many organisations that are referenced in tweets but the epa (United States Environmental Protection Agency) is mentioned the most, followed by well known organisations such as CNN (news) , the UN (ntergovernmental organization) and DOE( Department of Energy) Model Training and Testing The Perparation of the data for modelling will require spliting of features and labels. In this instance, only the sentiment and clean message columns are required from X_df **Train/Test Split** X and y training features split from X_df ###Code # Feature and label split X=X_df['clean message'] y=X_df['sentiment'] ###Output _____no_output_____ ###Markdown 25% of data allocated to testing, with random state set to 42 ###Code X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) ###Output _____no_output_____ ###Markdown **SVC Classification with TfidfVectorization** Parameter Search performed using GridSearch.(Takes a while to run, output hardcopied in pipeline.Uncheck to run) ###Code #pipeline = Pipeline([('tfidf', TfidfVectorizer()),('clf', SVC())]) #parameters = { # 'tfidf__max_df': (0.25, 0.5, 0.75),'tfidf__ngram_range': [(1, 1), (1, 2), (1, 3)], # 'tfidf__max_features':(500,2500,5000),'clf__C':(0.1,1,10),'clf__gamma':(1,0.1,0.001)} #svc = GridSearchCV(pipeline, parameters, cv=2, n_jobs=2, verbose=3) #svc.fit(X_train, y_train) #svc.best_params_ #svc_predictions = svc.predict(X_test) ###Output _____no_output_____ ###Markdown From the Gridsearch. The ideal parameters for SVC classification combined with TfidfVectoriztion is c=10 , gamma=1 , max_df=0.25 , max_features=5000 , ngram=(1,1) Fitting model with optimized parameters ###Code #Pipeline svc = Pipeline( [('tfidf', TfidfVectorizer(analyzer='word', max_df=0.75,max_features=5000,ngram_range=(1,1))) ,('clf', SVC(C=10,gamma=1))]) # Train model model=svc.fit(X_train, y_train) # Form a prediction set predictions = model.predict(X_test) # Print Results #Confusion matrix confusion = 'Confusion Matrix'.center(100, '*') print(confusion) matrix=confusion_matrix(y_test,predictions) print(confusion_matrix(y_test,predictions)) print('') #Classification report report='Classification Report'.center(100,'*') print(report) print('') print(classification_report(y_test,predictions)) print('') #Model Performance performance='Performance Metrics'.center(100,'*') print(performance) print('The model accuracy is :',accuracy_score(y_test,predictions)) print('The model recall is :',recall_score(y_test, predictions,average='weighted')) F1 = 2 * (precision_score(y_test,predictions,average='weighted') * recall_score(y_test, predictions,average='weighted')) / (precision_score(y_test,predictions,average='weighted') + recall_score(y_test, predictions,average='weighted')) print('The model F1score is : ',F1) ###Output ******************************************Confusion Matrix****************************************** [[ 105 40 154 12] [ 23 184 311 42] [ 19 77 1570 129] [ 2 7 188 695]] ***************************************Classification Report**************************************** precision recall f1-score support -1 0.70 0.34 0.46 311 0 0.60 0.33 0.42 560 1 0.71 0.87 0.78 1795 2 0.79 0.78 0.79 892 accuracy 0.72 3558 macro avg 0.70 0.58 0.61 3558 weighted avg 0.71 0.72 0.70 3558 ****************************************Performance Metrics***************************************** The model accuracy is : 0.7178189994378864 The model recall is : 0.7178189994378864 The model F1score is : 0.7140773273071888 ###Markdown **Save model as pickle** ###Code import pickle model_save_path = "SVC.pkl" with open(model_save_path,'wb') as file: pickle.dump(svc,file) ###Output _____no_output_____ ###Markdown Model Prediction on test.csv Perform data cleaning as done before on the test dataframe from test.csv ###Code #import tes.csv test=pd.read_csv('test.csv') # Text cleaning test['message']=test['message'].apply(clean) #clean data test['message']=test['message'].apply(rm_punc) #remove punctuation test['message']=test['message'].apply(at) #replace @ test['message']=test['message'].apply(hashtag) #remove # # Tokenize messages tokeniser = TreebankWordTokenizer() test['tokens'] = test['message'].apply(tokeniser.tokenize) # Lemmatize tokens column test['lemma'] = test['tokens'].apply(lemma) # Generate clean message column test['clean message'] = test['lemma'].apply(lambda i: ' '.join(i)) test.head(5) #Drop columns not needed for predictions drop_list=['message','tokens','lemma'] test.drop(drop_list,axis=1,inplace=True) ###Output _____no_output_____ ###Markdown Final Dataframe format for kaggle prediction ###Code test.head(5) ###Output _____no_output_____ ###Markdown Load model pickle to make predictions ###Code model_load_path = "SVC.pkl" with open(model_load_path,'rb') as file: pickle_rick = pickle.load(file) # Perfom predictions on test set kaggle_predictions = pickle_rick.predict(test['clean message']) kaggle_predictions = pd.DataFrame(kaggle_predictions) kaggle_predictions.rename(columns={0: "sentiment"}, inplace=True) kaggle_predictions["tweetid"] = test['tweetid'] cols = ['tweetid','sentiment'] kaggle_predictions = kaggle_predictions[cols] ###Output _____no_output_____ ###Markdown Write predictions to upload_kaggle_pred.csv ###Code kaggle_predictions.to_csv(path_or_buf='/content/upload_kaggle_pred.csv',index=False) ###Output _____no_output_____