path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
notebooks/MS2DeepScore_tutorial.ipynb
###Markdown Using ms2deepscore: How to load data, train a model, and compute similarities. ###Code from pathlib import Path from matchms.importing import load_from_mgf from tensorflow import keras import pandas as pd from ms2deepscore import SpectrumBinner from ms2deepscore.data_generators import DataGeneratorAllSpectrums from ms2deepscore.models import SiameseModel from ms2deepscore import MS2DeepScore ###Output _____no_output_____ ###Markdown Data loading Here we load in a small sample of test spectrum as well as reference scores data. ###Code TEST_RESOURCES_PATH = Path.cwd().parent / 'tests' / 'resources' spectrums_filepath = str(TEST_RESOURCES_PATH / "pesticides_processed.mgf") score_filepath = str(TEST_RESOURCES_PATH / "pesticides_tanimoto_scores.json") ###Output _____no_output_____ ###Markdown Load processed spectrums from .mgf file. For processing itself see [matchms](https://github.com/matchms/matchms) documentation. ###Code spectrums = list(load_from_mgf(spectrums_filepath)) ###Output _____no_output_____ ###Markdown Load reference scores from a .json file. This is a Pandas DataFrame with reference similarity scores (=labels) for compounds identified by inchikeys. Columns and index should be inchikeys, the value in a row x column depicting the similarity score for that pair. Must be symmetric (reference_scores_df[i,j] == reference_scores_df[j,i]) and column names should be identical to the index. ###Code tanimoto_scores_df = pd.read_json(score_filepath) ###Output _____no_output_____ ###Markdown Data preprocessing Bin the spectrums using `ms2deepscore.SpectrumBinner`. In this binned form we can feed spectra to the model. ###Code spectrum_binner = SpectrumBinner(1000, mz_min=10.0, mz_max=1000.0, peak_scaling=0.5) binned_spectrums = spectrum_binner.fit_transform(spectrums) ###Output Spectrum binning: 100%|██████████| 76/76 [00:00<00:00, 1366.15it/s] Create BinnedSpectrum instances: 100%|██████████| 76/76 [00:00<00:00, 69478.44it/s] ###Markdown Create a data generator that will generate batches of training examples.Each training example consists of a pair of binned spectra and the corresponding reference similarity score. ###Code dimension = len(spectrum_binner.known_bins) data_generator = DataGeneratorAllSpectrums(binned_spectrums, tanimoto_scores_df, dim=dimension) ###Output _____no_output_____ ###Markdown Model training Initialize a SiameseModel. It consists of a dense 'base' network that produces an embedding for each of the 2 inputs. The 'head' model computes the cosine similarity between the embeddings. ###Code model = SiameseModel(spectrum_binner, base_dims=(200, 200, 200), embedding_dim=200, dropout_rate=0.2) model.compile(loss='mse', optimizer=keras.optimizers.Adam(lr=0.001)) model.summary() ###Output Model: "base" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= base_input (InputLayer) [(None, 543)] 0 _________________________________________________________________ dense1 (Dense) (None, 200) 108800 _________________________________________________________________ normalization1 (BatchNormali (None, 200) 800 _________________________________________________________________ dropout1 (Dropout) (None, 200) 0 _________________________________________________________________ dense2 (Dense) (None, 200) 40200 _________________________________________________________________ normalization2 (BatchNormali (None, 200) 800 _________________________________________________________________ dropout2 (Dropout) (None, 200) 0 _________________________________________________________________ dense3 (Dense) (None, 200) 40200 _________________________________________________________________ normalization3 (BatchNormali (None, 200) 800 _________________________________________________________________ dropout3 (Dropout) (None, 200) 0 _________________________________________________________________ embedding (Dense) (None, 200) 40200 ================================================================= Total params: 231,800 Trainable params: 230,600 Non-trainable params: 1,200 _________________________________________________________________ Model: "head" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_a (InputLayer) [(None, 543)] 0 __________________________________________________________________________________________________ input_b (InputLayer) [(None, 543)] 0 __________________________________________________________________________________________________ base (Functional) (None, 200) 231800 input_a[0][0] input_b[0][0] __________________________________________________________________________________________________ cosine_similarity (Dot) (None, 1) 0 base[0][0] base[1][0] ================================================================================================== Total params: 231,800 Trainable params: 230,600 Non-trainable params: 1,200 __________________________________________________________________________________________________ ###Markdown Train the model on the data, for the sake of simplicity we use the same dataset for training and validation. ###Code model.fit(data_generator, validation_data=data_generator, epochs=2) ###Output Epoch 1/2 2/2 [==============================] - 2s 413ms/step - loss: 0.0799 - val_loss: 0.0490 Epoch 2/2 2/2 [==============================] - 0s 167ms/step - loss: 0.1049 - val_loss: 0.0576 ###Markdown Model inference Calculate similariteis for a pair of spectra ###Code similarity_measure = MS2DeepScore(model) score = similarity_measure.pair(spectrums[0], spectrums[1]) print(score) ###Output Spectrum binning: 100%|██████████| 1/1 [00:00<00:00, 1144.11it/s] Create BinnedSpectrum instances: 100%|██████████| 1/1 [00:00<00:00, 9532.51it/s] Spectrum binning: 100%|██████████| 1/1 [00:00<00:00, 870.91it/s] Create BinnedSpectrum instances: 100%|██████████| 1/1 [00:00<00:00, 8830.11it/s] ###Markdown Calculate similarities for a 3x3 matrix of spectra ###Code scores = similarity_measure.matrix(spectrums[:3], spectrums[:3]) print(scores) ###Output Spectrum binning: 100%|██████████| 3/3 [00:00<00:00, 1661.99it/s] Create BinnedSpectrum instances: 100%|██████████| 3/3 [00:00<00:00, 14074.85it/s] Calculating vectors of reference spectrums: 100%|██████████| 3/3 [00:00<00:00, 21.24it/s] Spectrum binning: 100%|██████████| 3/3 [00:00<00:00, 1515.83it/s] Create BinnedSpectrum instances: 100%|██████████| 3/3 [00:00<00:00, 11949.58it/s] Calculating vectors of reference spectrums: 100%|██████████| 3/3 [00:00<00:00, 19.07it/s]
ImageClassification/LeNet_MNIST.ipynb
###Markdown Image Classification using LeNet CNN MNIST Dataset - Handwritten Digits (0-9) ###Code # import the necessary packages from LeNet import LeNet from sklearn.model_selection import train_test_split from keras.datasets import mnist from keras.optimizers import SGD from keras.utils import np_utils from keras import backend as K import numpy as np import argparse import cv2 ###Output _____no_output_____ ###Markdown Load the data ###Code # grab the MNIST dataset (may take time the first time) print("[INFO] downloading MNIST...") ((trainData, trainLabels), (testData, testLabels)) = mnist.load_data() ###Output _____no_output_____ ###Markdown Prepare the data ###Code # parameters for MNIST data set num_classes = 10 image_width = 28 image_height = 28 image_channels = 1 # shape the input data using "channels last" ordering # num_samples x rows x columns x depth trainData = trainData.reshape( (trainData.shape[0], image_height, image_width, image_channels)) testData = testData.reshape( (testData.shape[0], image_height, image_width, image_channels)) # scale data to the range of [0.0, 1.0] trainData = trainData.astype("float32") / 255.0 testData = testData.astype("float32") / 255.0 # transform the training and testing labels into vectors in the # range [0, classes] -- this generates a vector for each label, # where the index of the label is set to `1` and all other entries # to `0`; in the case of MNIST, there are 10 class labels trainLabels = np_utils.to_categorical(trainLabels, num_classes) # one hot encoding testLabels = np_utils.to_categorical(testLabels, num_classes) ###Output _____no_output_____ ###Markdown Train Model ###Code # initialize the model print("[INFO] compiling model...") model = LeNet.build(numChannels=image_channels, imgRows=image_height, imgCols=image_width, numClasses=num_classes, weightsPath=None) # initialize the optimizer opt = SGD(lr=0.01) # Stochastic Gradient Descent # build the model model.compile(loss="categorical_crossentropy", # Soft-Max optimizer=opt, metrics=["accuracy"]) # initialize hyper parameters batch_size = 128 epochs = 1 print("[INFO] training...") model.fit(trainData, trainLabels, batch_size=batch_size, epochs=epochs, verbose=1) # show the accuracy on the testing set print("[INFO] evaluating...") (loss, accuracy) = model.evaluate(testData, testLabels, batch_size=batch_size, verbose=1) print("[INFO] accuracy: {:.2f}%".format(accuracy * 100)) model.save_weights("lenet_mnist_test.hdf5", overwrite=True) ###Output _____no_output_____ ###Markdown Evaluate Pre-trained Model ###Code # load the model weights print("[INFO] compiling model...") model = LeNet.build(numChannels=image_channels, imgRows=image_height, imgCols=image_width, numClasses=num_classes, weightsPath="weights/lenet_weights_mnist.hdf5") # initialize the optimizer opt = SGD(lr=0.01) # Stochastic Gradient Descent # build the model model.compile(loss="categorical_crossentropy", # Soft-Max optimizer=opt, metrics=["accuracy"]) # show the accuracy on the testing set print("[INFO] evaluating...") (loss, accuracy) = model.evaluate(testData, testLabels, batch_size=batch_size, verbose=1) print("[INFO] accuracy: {:.2f}%".format(accuracy * 100)) ###Output _____no_output_____ ###Markdown Model Predictions ###Code # set prediction parameters num_predictions = 10 # randomly select a few testing digits for i in np.random.choice(np.arange(0, len(testLabels)), size=(num_predictions,)): # classify the digit probs = model.predict(testData[np.newaxis, i]) prediction = probs.argmax(axis=1) image = (testData[i] * 255).astype("uint8") # merge the channels into one image image = cv2.merge([image] * 3) # resize the image from a 28 x 28 image to a 96 x 96 image so we # can better see it image = cv2.resize(image, (96, 96), interpolation=cv2.INTER_LINEAR) print("[INFO] Predicted: {}, Actual: {}".format( prediction[0], np.argmax(testLabels[i]))) # show the image and prediction cv2.putText(image, str(prediction[0]), (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 2) cv2.imshow("Digit", image) cv2.waitKey(0) # close the display window cv2.destroyAllWindows() ###Output _____no_output_____
product_c_3d_mode.ipynb
###Markdown ###Code !git clone https://github.com/ultralytics/yolov5 # clone %cd yolov5 %pip install -qr requirements.txt # install import torch from yolov5 import utils from IPython.display import Image, clear_output # to display images display = utils.notebook_init() # checks print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU')) %cd /content/yolov5 !pip install roboflow from roboflow import Roboflow rf = Roboflow(api_key="9u8eLhhbftnfbyLtXg8t") project = rf.workspace("3d-model-realworld-evalution").project("product-c") dataset = project.version(1).download("yolov5") # this is the YAML file Roboflow wrote for us that we're loading into this notebook with our data %cat {dataset.location}/data.yaml !python train.py --img 640 --batch 64 --epochs 110 --data {dataset.location}/data.yaml --weights yolov5s.pt --cache !python detect.py --weights runs/train/exp/weights/best.pt --img 416 --conf 0.1 --source {dataset.location}/test/images #display inference on ALL test images import glob from IPython.display import Image, display for imageName in glob.glob('/content/yolov5/runs/detect/exp/*.jpg'): #assuming JPG display(Image(filename=imageName)) print("\n") !python export.py --weights /content/yolov5/runs/train/exp/weights/best.pt --include tfjs cd ../.. ! git clone https://github.com/mdhasanali3/3d-model-yolov5.git !git config --global user.email "[email protected]" !git config --global user.name "mdhasanali3" !git pull origin pwd %cd /content/3d-model-yolov5 %mkdir product_C_64b_110e %cp -r /content/yolov5/runs/train/exp/weights/best.pt /content/3d-model-yolov5/product_C_64b_110e %cp -r /content/yolov5/runs/train/exp/weights/best_web_model /content/3d-model-yolov5/product_C_64b_110e !git status !git add -A !git commit -m "product C model" !git remote -v !git remote rm origin !git remote add origin https://[email protected]/mdhasanali3/3d-model-yolov5.git !git push -u origin main ###Output _____no_output_____
docs/ml/iris_LogisticRegression.ipynb
###Markdown ロジスティック回帰モデル Pythonの機械学習用ライブラリ`scikit-learn`を使って,ロジスティック回帰モデルを使って簡単な分類問題にチャレンジしてみましょう.--- 0.ライブラリのインポート ###Code import numpy as np import pandas as pd import sklearn import seaborn as sns import matplotlib import matplotlib.pyplot as plt %matplotlib inline np.set_printoptions(precision=4) print("numpy :", np.__version__) print("pandas :", pd.__version__) print("sklearn :", sklearn.__version__) print("seaborn :", sns.__version__) print("matplotlib :", matplotlib.__version__) ###Output numpy : 1.16.1 pandas : 0.24.2 sklearn : 0.20.2 seaborn : 0.9.0 matplotlib : 3.0.2 ###Markdown 1. データの読込・整形 `sklearn.datasets`からIrisデータセットを読み込みましょう. ###Code # make data samples from sklearn.datasets import load_iris iris = load_iris() ###Output _____no_output_____ ###Markdown 次に,pandas DataFrame()クラスのインスタンスとして,変数`df_feature`, `df_target`, `df`を定義します.参考: [pandas.DataFrame — pandas 1.0.1 documentation](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html) ###Code df_feature = pd.DataFrame(iris.data, columns=iris.feature_names) df_target = pd.DataFrame(iris.target, columns=["target"]) df_target.loc[df_target['target'] == 0, 'target_name'] = "setosa" df_target.loc[df_target['target'] == 1, 'target_name'] = "versicolor" df_target.loc[df_target['target'] == 2, 'target_name'] = "virginica" df = pd.concat([df_target, df_feature], axis=1) df.head(10) ###Output _____no_output_____ ###Markdown データの要約統計量(サンプル数, 平均, 標準偏差, 四分位数, 中央値, 最小値, 最大値など)をみましょう. ###Code df.describe().T ###Output _____no_output_____ ###Markdown データの共分散行列を描画します.対角成分は自分との共分散(相関)を表すため常に1.0となります. ###Code df.corr() ###Output _____no_output_____ ###Markdown seabornを使って,共分散行列を可視化してみましょう. ###Code # Correlation matrix sns.set() cols = ['target', 'sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] # プロットしたい特徴量 plt.figure(figsize=(12,10)) plt.title('Pearson Correlation of Iris Features', y=1.01, fontsize=14) sns.heatmap(df[cols].astype(float).corr(), linewidths=0.1, vmax=1.0, cmap=sns.diverging_palette(220, 10, as_cmap=True), square=True, linecolor='white', annot=True) ###Output _____no_output_____ ###Markdown データの散布図行列を描画します.相関が大きい説明変数のペアについては, 多重共線性を考えるべきです. ###Code # pairplot sns.set() sns.pairplot(df, diag_kind='hist', height=2.0) plt.show() ###Output _____no_output_____ ###Markdown 分類用のデータセットには,各データに対応するクラスラベルが与えられています.上の散布図行列の各点を所属する3つのクラスに応じて色分けしてみましょう. ###Code sns.set() sns.pairplot(df, hue='target', diag_kind='hist', height=2.0) plt.show() ###Output _____no_output_____ ###Markdown 2. データの分割 変数`iris`から,説明変数と目的変数に相当するデータをそれぞれ取り出し,numpy.ndarray()クラスの変数`X`, `y`へ格納します. ###Code X = iris.data y = iris.target ###Output _____no_output_____ ###Markdown 全データをtrainデータとtestデータに分割します.すなわち,変数`X`を`X_train`と`X_test`に,変数`y`を`y_train`と`y_test`に分けます. ###Code # split data by Hold-out-method from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) ###Output _____no_output_____ ###Markdown `print()`で配列の形状を確認してみましょう. ###Code print("X_train: ", X_train.shape) print("y_train: ", y_train.shape) print("X_test: ", X_test.shape) print("y_test: ", y_test.shape) ###Output X_train: (120, 4) y_train: (120,) X_test: (30, 4) y_test: (30,) ###Markdown - X_train: 4次元データが120コ格納されている.- y_train: 1次元データが120コ格納されている.- X_test: 4次元データが30コ格納されている.- y_test: 1次元データが30コ格納されている. 3. モデルの作成 ###Code # Logistic Regression from sklearn.linear_model import LogisticRegression clf_lr = LogisticRegression(random_state=0, solver='lbfgs', multi_class='auto') ###Output _____no_output_____ ###Markdown 4. モデルへデータを適合させる ###Code # fit clf_lr.fit(X_train, y_train) ###Output /usr/local/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:758: ConvergenceWarning: lbfgs failed to converge. Increase the number of iterations. "of iterations.", ConvergenceWarning) ###Markdown モデルの評価 ###Code # predictions y_train_pred = clf_lr.predict(X_train) y_test_pred = clf_lr.predict(X_test) # Accuracy from sklearn.metrics import accuracy_score print('Accuracy (train) : {:>.4f}'.format(accuracy_score(y_train, y_train_pred))) print('Accuracy (test) : {:>.4f}'.format(accuracy_score(y_test, y_test_pred))) # Confusion matrix from sklearn.metrics import confusion_matrix cmat_train = confusion_matrix(y_train, y_train_pred) cmat_test = confusion_matrix(y_test, y_test_pred) def print_confusion_matrix(confusion_matrix, class_names, plt_title='Confusion matrix: ', cmap='BuGn', figsize = (6.25, 5), fontsize=10): df_cm = pd.DataFrame(confusion_matrix, index=class_names, columns=class_names) fig = plt.figure(figsize=figsize) heatmap = sns.heatmap(df_cm, annot=True, fmt="d", cmap=cmap) heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=fontsize) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right', fontsize=fontsize) plt.xlabel('Predicted label') plt.ylabel('True label') plt.title(plt_title, fontsize=fontsize*1.25) plt.show() print_confusion_matrix(cmat_train, iris.target_names, plt_title='Confusion matrix (train, 120 samples)') print_confusion_matrix(cmat_test, iris.target_names, plt_title='Confusion matrix (test, 30 samples)') ###Output _____no_output_____
.ipynb_checkpoints/dis.008-checkpoint.ipynb
###Markdown dis.008 Import libraries ###Code # Libraries for downloading data from remote server (may be ftp) import requests from urllib.request import urlopen from contextlib import closing import shutil # Library for uploading/downloading data to/from S3 import boto3 # Libraries for handling data import rasterio as rio import numpy as np # from netCDF4 import Dataset # import pandas as pd # import scipy # Libraries for various helper functions # from datetime import datetime import os import threading import sys from glob import glob from matplotlib import pyplot %matplotlib inline ###Output _____no_output_____ ###Markdown s3 tools ###Code s3_upload = boto3.client("s3") s3_download = boto3.resource("s3") s3_bucket = "wri-public-data" s3_folder = "resourcewatch/raster/ene_019_wind_energy_potential/" s3_file = "ene_018_wind_energy_potential.tif" s3_key_orig = s3_folder + s3_file s3_key_edit = s3_key_orig[0:-4] + "_edit.tif" os.environ["Zs3_key1"] = "s3://wri-public-data/" + s3_key_orig os.environ["Zs3_key2"] = "s3://wri-public-data/" + s3_key_edit class ProgressPercentage(object): def __init__(self, filename): self._filename = filename self._size = float(os.path.getsize(filename)) self._seen_so_far = 0 self._lock = threading.Lock() def __call__(self, bytes_amount): # To simplify we'll assume this is hooked up # to a single filename. with self._lock: self._seen_so_far += bytes_amount percentage = (self._seen_so_far / self._size) * 100 sys.stdout.write("\r%s %s / %s (%.2f%%)"%( self._filename, self._seen_so_far, self._size, percentage)) sys.stdout.flush() ###Output _____no_output_____ ###Markdown Define local file locations ###Code local_folder = "C:/Users/Max81007/Desktop/Python/Resource_Watch/Raster/cit.018/" file_name = "cit_018_monthly_no2_concentrations_in_atmosphere_201701.tif" local_orig = local_folder + file_name orig_extension_length = 4 #4 for each char in .tif local_edit = local_orig[:-orig_extension_length] + "_edit.tif" files = [local_orig, local_edit] for file in files: with rio.open(file, 'r') as src: profile = src.profile print(profile) ###Output {'driver': 'AAIGrid', 'dtype': 'float32', 'nodata': -1.2676499957653196e+30, 'width': 3600, 'height': 1800, 'count': 1, 'crs': None, 'transform': Affine(0.1, 0.0, -180.0, 0.0, -0.1, 90.0), 'tiled': False} ###Markdown Use rasterio to reproject and compress ###Code os.getcwd() os.chdir(local_folder) os.environ["local_orig"] =local_orig os.environ["local_edit"] =local_edit !gdalwarp -overwrite -t_srs epsg:4326 -srcnodata none -co compress=lzw %local_orig% %local_edit% files = [local_orig, local_edit] for file in files: with rio.open(file, 'r') as src: profile = src.profile print(profile) ###Output {'driver': 'AAIGrid', 'dtype': 'float32', 'nodata': -1.2676499957653196e+30, 'width': 3600, 'height': 1800, 'count': 1, 'crs': None, 'transform': Affine(0.1, 0.0, -180.0, 0.0, -0.1, 90.0), 'tiled': False} {'driver': 'GTiff', 'dtype': 'float32', 'nodata': None, 'width': 3600, 'height': 1800, 'count': 1, 'crs': CRS({'init': 'epsg:4326'}), 'transform': Affine(0.1, 0.0, -180.0, 0.0, -0.1, 90.0), 'tiled': False, 'compress': 'lzw', 'interleave': 'band'} ###Markdown Upload orig and edit files to s3 ###Code # Original s3_upload.upload_file(local_orig, s3_bucket, s3_key_orig, Callback=ProgressPercentage(local_orig)) # Edit s3_upload.upload_file(local_edit, s3_bucket, s3_key_edit, Callback=ProgressPercentage(local_edit)) os.environ["Zgs_key"] = "gs://resource-watch-public/" + s3_key_orig !echo %Zs3_key2% !echo %Zgs_key% !gsutil cp %Zs3_key2% %Zgs_key% with rio.open(local_orig) as src: data = src.read(indexes=1) pyplot.imshow(data) with rio.open(local_edit) as src: data = src.read(indexes=1) pyplot.imshow(data) os.environ["asset_id"] = "users/resourcewatch/cit_018_monthly_no2_concentrations_in_atmosphere_201701" !earthengine upload image --asset_id=%asset_id% %Zgs_key% !earthengine task info F7ZP3YOHXBMERJK2KRG4C5M2 ###Output F7ZP3YOHXBMERJK2KRG4C5M2: State: COMPLETED Type: Upload Description: Asset ingestion: users/resourcewatch/ene_018_wind_energy_potential Created: 2017-10-05 16:37:23.361000 Started: 2017-10-05 16:37:26.531000 Updated: 2017-10-05 16:39:03.039000
Labs/Lab2_Regression/.ipynb_checkpoints/Lab 2 (Part C) - Linear regression with multiple features-checkpoint.ipynb
###Markdown Lab 2 (Part C) - Linear regression with multiple features__IMPORTANT__ Please complete this Jupyter Notebook file and upload it to blackboard __before 05 February 2020__.In this part of the lab, you will implement linear regression with multiple variables to predict the price of houses. Suppose you are selling your house and you want to know what a good market price would be. One way to do this is to first collect information on recent houses sold and make a model of housing prices. 1. Loading the datasetThe file `housing-dataset.csv` contains a training set of housing prices in Portland, Oregon. The first column is the size of the house (in square feet), the second column is the number of bedrooms, and the third column is the price of the house. The following Python code helps you load the dataset from the data file into the variables $X$ and $y$. Read the code and print a small subset of $X$ and $y$ to see what they look like. ###Code %matplotlib inline import numpy as np filename = "datasets/housing-dataset.csv" mydata = np.genfromtxt(filename, delimiter=",") # We have n data-points (houses) n = len(mydata) # X is a matrix of two column, i.e. an array of n 2-dimensional data-points X = mydata[:, :2].reshape(n, 2) # y is the vector of outputs, i.e. an array of n scalar values y = mydata[:, -1] """ TODO: You can print a small subset of X and y to see what it looks like. """ print(X[:10]) print(y[:10]) ###Output [[2.104e+03 3.000e+00] [1.600e+03 3.000e+00] [2.400e+03 3.000e+00] [1.416e+03 2.000e+00] [3.000e+03 4.000e+00] [1.985e+03 4.000e+00] [1.534e+03 3.000e+00] [1.427e+03 3.000e+00] [1.380e+03 3.000e+00] [1.494e+03 3.000e+00]] [399900. 329900. 369000. 232000. 539900. 299900. 314900. 198999. 212000. 242500.] ###Markdown 2. Data normalizationBy looking at the values, note that house sizes are about 1000 times the number of bedrooms. When features differ by orders of magnitude, first performing feature scaling can make gradient descent converge much more quickly. Your task here is to write the following code to:- Subtract the mean value of each feature from the dataset.- After subtracting the mean, additionally scale (divide) the feature values by their respective *standard deviations*.In Python, you can use the numpy function `np.mean(..)` to compute the mean. This function can directly be used on a $d$-dimensional dataset to compute a $d$-dimensional mean vector `mu` where each value `mu[j]` is the mean of the $j^{th}$ feature. This is done by setting the $2^{nd}$ argument `axis` of this function to `0`. For example, consider the following matrix `A` where each line corresponds to one data-point and each column corresponds to one feature:```pythonA = [[ 100, 10], [ 30, 10], [ 230, 25]]```In this case, `np.mean(A, axis=0)` will give `[120, 15]` where 120 is the mean of the 1st column (1st feature) and 15 is the mean of the 2nd column (2nd feature). Another function `np.std(..)` exists to compute the standard deviation. The standard deviation is a way of measuring how much variation there is in the range of values of a particular feature (usually, most data points will lie within the interval: mean $\pm$ 2 standard_deviation).Once the features are normalized, you can do a scatter plot of the original dataset `X` (size of the house vs. number of bedrooms) and a scatter plot of the normalized dataset `X_normalized`. You will notice that the normalized dataset still have the same shape as the original one; the difference is that the new feature values have a similar scale and are centred arround the origin.**Implementation Note**: When normalizing the features, it is important to store the values used for normalization (the mean and the standard deviation used for the computations). Indeed, after learning the parameters of a model, we often want to predict the prices of houses we have not seen before. Given a new $x$ value (living room area and number of bedrooms), we must first normalize $x$ using the mean and standard deviation that we had previously computed from the training set. ###Code import matplotlib.pylab as plt """ TODO: Complete the following code to compute a normalized version of X called: X_normalized """ # TODO: compute mu, the mean vector from X mu = X.mean(axis=0) # TODO: compute std, the standard deviation vector from X std = X.std(axis=0) # X_normalized = (X - mu) / std X_normalized = (X-mu)/std """ TODO: - Do a scatter plot of the original dataset X - Do a scatter plot of the normalized dataset X_normalized """ fig, ax = plt.subplots() ax.set_xlabel('Size') ax.set_ylabel('Rooms') ax.scatter(X[:,0],X[:,1], color="red", marker='o', label='Data points') fig, ax = plt.subplots() ax.set_xlabel('Size') ax.set_ylabel('Rooms') ax.scatter(X_normalized[:,0],X_normalized[:,1], color="red", marker='x', label='Data points') ###Output _____no_output_____ ###Markdown Similar to what you did in Lab2 Part B, you can simplify your implementation of linear regression by adding an additional first column to `X_normalized` with all the values of this column set to $1$. To do this you can re-use the function `add_all_ones_column(..)` defined in Lab2 Part B, which takes a matrix as argument and returns a new matrix with an additional first column (of ones). ###Code """ TODO: Copy-past here the definition of the function add_all_ones_column(...) that you have see in Lab 2 (Part B). """ # definition of the function add_all_ones_column() here ... def add_all_ones_column(X): n, d = X.shape # dimension of the matrix X (n lines, d columns) XX = np.ones((n, d+1)) # new matrix of all ones with one additional column XX[:, 1:] = X # set X starting from column 1 (keep only column 0 unchanged) return XX """ TODO: Just uncomment the following lines to create a matrix X_normalized_new with an additional first column (of ones). """ X_normalized_new = add_all_ones_column(X_normalized) print("Subset of X_normalized_new") print(X_normalized_new[:10]) ###Output Subset of X_normalized_new [[ 1. 0.13141542 -0.22609337] [ 1. -0.5096407 -0.22609337] [ 1. 0.5079087 -0.22609337] [ 1. -0.74367706 -1.5543919 ] [ 1. 1.27107075 1.10220517] [ 1. -0.01994505 1.10220517] [ 1. -0.59358852 -0.22609337] [ 1. -0.72968575 -0.22609337] [ 1. -0.78946678 -0.22609337] [ 1. -0.64446599 -0.22609337]] ###Markdown You are now ready to implement the linear regression using gradient descent (with more than one feature). In this multivariate case, you can further simply your implementation by writing the cost function in the following vectorized form:$$E(\theta) = \frac{1}{2n} (X \theta - y)^T (X \theta - y)$$$$\text{where }\quadX = \begin{bmatrix}-- ~ {x^{(1)}}^T ~ -- \\ -- ~ {x^{(2)}}^T ~ -- \\ \vdots \\ -- ~ {x^{(n)}}^T ~ --\end{bmatrix}\quad \quad \quady = \begin{bmatrix}y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$The vectorized form of the gradient of $E(\theta)$ is a vector denoted as $\nabla E(\theta)$ and defined follows:$$\nabla E(\theta) = \left ( \frac{\partial E}{\partial \theta_0}, \frac{\partial E}{\partial \theta_1}, \dots, \frac{\partial E}{\partial \theta_d} \right ) = \frac{1}{n} X^T (X \theta - y)$$this is a **vector** where each $j^{th}$ value corresponds to $\frac{\partial E}{\partial \theta_j}$ (the derivative of the function $E$ with respect to the parameter $\theta_j$)One your code is finished, you will get to try out different learning rates $\alpha$ for the dataset and find a learning rate that converges quickly. To do so, you can plot the history of the cost $E(\theta)$ with respect to the number of iterations at the end of your code.For example for alpha values of 0.01, 0.05 and 0.1, the plot should look like follows:If your learning rate is too large, $E(\theta)$ can diverge and *blow up*, resulting in values which are too large for computer calculations. In these situations, Python will tend to return `NaN` or `inf` (NaN stands for "*not a number*" and is often caused by undefined operations that involve $-\inf$ and $+\inf$). If your value of $E(\theta)$ increases or even blows up, adjust your learning rate and try again. ###Code """ TODO: Write the cost function E using the vectorized form """ def E(theta, X, y): return (1/(2*len(X)))*np.transpose(X@theta - y)@(X@theta - y) """ TODO: Define the function grad_E (the gradient of E) using the vectorized form. This should return a vector of the same dimension as theta """ def grad_E(theta, X, y): return 1/len(X)*np.transpose(X)@(X@theta-y) """ TODO: Complete the definition of the function LinearRegressionWithGD(...) below Note: don't forget to call the functions E(..) and grad_E(..) with X_normalized_new instead of X The arguments of LinearRegressionWithGD(..) are: *** theta: vector of initial parameter values *** alpha: the learning rate (used by gradient descent) *** max_iterations: maximum number of iterations to perform *** epsilon: to stop iterating if the cost decreases by less than epsilon The function returns: *** errs: a list corresponding to the historical cost values *** theta: the final parameter values """ def LinearRegressionWithGD(theta, alpha, max_iterations, epsilon): errs = [] cost_list = [] for itr in range(max_iterations): mse = E(theta, X_normalized_new, y) errs.append(mse) # TODO: take a gradient descent step to adapt the vector of parameters theta theta = theta - alpha*grad_E(theta, X_normalized_new,y) # Vectorized Gradient descent # TODO: test if the cost decreases by less than epsilon (to stop iterating) CONDITION = mse - E(theta, X_normalized_new, y) < epsilon if CONDITION: break return errs, theta """ TODO: Here you will call LinearRegressionWithGD(..) in a loop with different values of alpha, and plot the cost history (errs) returned by each call of LinearRegressionWithGD(..) """ fig, ax = plt.subplots() ax.set_xlabel("Number of Iterations") ax.set_ylabel(r"Cost $E(\theta)$") theta_init = np.array([0, 0, 0]) max_iterations = 100 epsilon = 0.000000000001 for alpha in [0.01, 0.05, 0.1]: # TODO: call LinearRegressionWithGD(...) using the current alpha, to get errs and theta errs, theta = LinearRegressionWithGD(theta_init, alpha, max_iterations, epsilon) print("alpha = {}, theta = {}".format(alpha, theta)) # plot the errs using ax.plot(..) ax.plot(errs) plt.legend() fig.show() ###Output No handles with labels found to put in legend. ###Markdown Now, once you have found a good $\theta$ using gradient descent, use it to make a price prediction for a new house of 1650-square-foot with 3 bedrooms. **Note**: since the parameter vector $\theta$ was learned using the normalized dataset, you will need to normalize the new data-point corresponding to this new house before predicting its price. ###Code """ TODO: Use theta to predict the price of a 1650-square-foot house with 3 bedrooms Don't forget to normalize the feature values of this new house first. """ # Create a data-point x corresponding to the new house x = (np.array([[1650,3]])) # Normalize the feature values of x x_normalized = (x-mu)/std x_normalized = add_all_ones_column(x_normalized) # Use the vector of parameters theta to predict the price of x predict1 = x_normalized @ theta print("Prediction", predict1) """ HINT: if you are not able to compute the dot product between x and theta, then make sure that the arrays have the same size. Did you forget something? """ ###Output Prediction [293214.16354571] ###Markdown Normal Equation: Linear regression without gradient descentAs you know from the lecture, the MSE cost function $E(\theta)$ that we are trying to minimize is a convex function, and its derivative at the optimal $\theta$ (that minimizes $E(\theta)$) is equal to $0$. Therefore, to find the optimal $\theta$, one can simply compute the derivative of $E(\theta)$ with respect to $\theta$, set it equal to $0$, and solve for $\theta$.We have seen in the lecture that, by doing this, the closed-form solution is given as follows:$$\theta = (X^T X)^{-1} X^T y$$Using this formula does not require any feature scaling, and you will get an exact solution in one calculation: there is no "*loop until convergence*" like in gradient descent.You are asked to implement this equation to directly compute the best parameter vector $\theta$ for the linear regression. In Python, you can use the `inv` function from `numpy.linalg.inv` to compute the inverse of a function.Remember that while you don't need to scale your features, we still need to add a column of 1's to the $X$ matrix to have an intercept term ($\theta_0$). ###Code from numpy.linalg import inv """ TODO: Use the function add_all_ones_column(..) to add a column of 1's to X. Let's call the returned dataset X_new. """ new_X = add_all_ones_column(X) """ TODO: Compute the optimal theta using new_X and y (without using gradient descent). Use the normal equation shown above. You can use the function inv (imported above) to compute the inverse of a matrix. """ theta = np.linalg.inv(np.transpose(new_X)@new_X)@np.transpose(new_X)@y print("With the original (non-normalized) dataset: theta = {}".format(theta)) ###Output With the original (non-normalized) dataset: theta = [89597.9095428 139.21067402 -8738.01911233] ###Markdown Now, once you have computed the optimal $\theta$, use it to make a price prediction for the new house of 1650-square-foot with 3 bedrooms. Remeber that $\theta$ was computed above based on the original dataset (without normalization); so, you do not need to normalize the feature values of the new house to make the prediction in this case. ###Code """ TODO: Use theta to predict the price of a 1650-square-foot house with 3 bedrooms """ x = add_all_ones_column(np.array([[1650,3]])) prediction = x @ theta print(prediction) ###Output [293081.46433489] ###Markdown Using the previous formula does not require any feature normalization or scaling. However, you can still compute again the optimal $\theta$ when using `X_normalized_new` instead of `new_X`.By doing this, you will be able to compare the $\theta$ that you compute here with the one you got previously when you used gradient descent. The two parameter vectors should be quite similar (but not necessarily exatly the same). ###Code """ TODO: Compute the optimal theta using X_normalized_new and y (without using gradient descent). Use the normal equation (shown previously). """ theta = np.linalg.inv(np.transpose(X_normalized_new)@X_normalized_new)@np.transpose(X_normalized_new)@y print("With the normalized dataset: theta = {}".format(theta)) ###Output With the normalized dataset: theta = [340412.65957447 109447.79646964 -6578.35485416] ###Markdown Again, now that you have computed the optimal $\theta$ based on `X_normalized_new`, use it to make a price prediction for the new house of 1650-square-foot with 3 bedrooms. Do you need to normalize the feature values of the new house here? Remeber that $\theta$ was computed here based on the normalized dataset.You should find that this predicted price similar to the price you predicted previsouly for the same house. ###Code """ TODO: Use theta to predict the price of a 1650-square-foot house with 3 bedrooms """ # Cretate a data-point x corresponding to the new house x = np.array([[1650,3]]) # Normalize the feature values of x x_normalized = (x-mu)/std x_normalized = add_all_ones_column(x_normalized) predict1 = x_normalized @ theta # Use the vector of parameters theta to predict the price of x print("prediction:", predict1) ###Output prediction: [293081.4643349]
HeroesOfPymoli/Solved - HeroesOfPymoli.ipynb
###Markdown Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code ############################# # # # Homework 4 - Pandas # # Student - Matheus Gratz # # # ############################# # Dependencies and Setup import pandas as pd # File to Load (Remember to Change These) file_to_load = "Resources/purchase_data.csv" # Read Purchasing File and store into Pandas data frame purchase_data = pd.read_csv(file_to_load) purchase_data.head(5) # Cast the df types, just in case :) purchase_data.dtypes ###Output _____no_output_____ ###Markdown Player Count * Display the total number of players ###Code # Set the empty list total_players = [] # Calculate the total number of players total_players.append(len(purchase_data['SN'].unique())) # Set de Data Frame total_players_df = pd.DataFrame(total_players, columns = ['Total Players']) # Display the Data Frame total_players_df ###Output _____no_output_____ ###Markdown Purchasing Analysis (Total) * Run basic calculations to obtain number of unique items, average price, etc.* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code # Set the empty dictionary purchasing_analysis_dict = {} # Number of Unique Items num_unique_items = len(purchase_data['Item ID'].unique()) purchasing_analysis_dict['Number of Unique Items'] = num_unique_items # Average Purchase Price mean_price = purchase_data['Price'].mean(axis=0) purchasing_analysis_dict['Average Price'] = mean_price # Total Number of Purchases total_num_purchases = purchase_data['Item ID'].count() purchasing_analysis_dict['Total Number of Purchases'] = total_num_purchases # Total Revenue total_revenue = purchase_data['Price'].sum(axis=0) purchasing_analysis_dict['Total Revenue'] = total_revenue # Set the summary data frame purchasing_analysis_df = pd.DataFrame(list(purchasing_analysis_dict.values())) purchasing_analysis_df = purchasing_analysis_df.transpose() purchasing_analysis_df.columns = purchasing_analysis_dict.keys() # Format fields purchasing_analysis_df['Number of Unique Items'] = purchasing_analysis_df['Number of Unique Items'].map("{:.0f}".format) purchasing_analysis_df['Total Number of Purchases'] = purchasing_analysis_df['Total Number of Purchases'].map("{:.0f}".format) purchasing_analysis_df['Average Price'] = purchasing_analysis_df['Average Price'].map("${:.2f}".format) purchasing_analysis_df['Total Revenue'] = purchasing_analysis_df['Total Revenue'].map("${:,.2f}".format) # Display the summary data frame purchasing_analysis_df ###Output _____no_output_____ ###Markdown Gender Demographics * Percentage and Count of Male Players* Percentage and Count of Female Players* Percentage and Count of Other / Non-Disclosed ###Code # Set a data frame with unique Player Names unique_players_df = purchase_data.drop_duplicates(subset=['SN', 'Gender']) # Create a count column for each gender count_gender = unique_players_df["Gender"].value_counts() # Set the total gender_demographics_df = pd.DataFrame(count_gender) gender_demographics_df.columns = ["Total Count"] # Calculate the sum sum_players = gender_demographics_df['Total Count'].sum() # Generate te final output gender_demographics_df['Percentage of Players'] = gender_demographics_df['Total Count'] / sum_players * 100 # Format fields gender_demographics_df['Percentage of Players'] = gender_demographics_df['Percentage of Players'].map("{:.2f}%".format) # Display the summary data frame gender_demographics_df ###Output _____no_output_____ ###Markdown Purchasing Analysis (Gender) * Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code #Generate the calculations purchase_analysis_gender_df = purchase_data.groupby('Gender').agg( total_users = ('SN', 'nunique'), total_orders = ('Purchase ID', 'count'), avg_price = ('Price', 'mean'), total_revenue = ('Price', 'sum') ) # Calculate the average per person purchase_analysis_gender_df['Average Purchase Total per Person'] = purchase_analysis_gender_df['total_revenue'] / purchase_analysis_gender_df['total_users'] # Rename Columns purchase_analysis_gender_df = purchase_analysis_gender_df.rename(columns={ 'total_users' : 'Total Users', 'total_orders' : 'Purchase Count', 'avg_price' : 'Average Purchase Price', 'total_revenue' : 'Total Purchase Value', }) # Format fields purchase_analysis_gender_df['Average Purchase Price'] = purchase_analysis_gender_df['Average Purchase Price'].map("${:,.2f}".format) purchase_analysis_gender_df['Total Purchase Value'] = purchase_analysis_gender_df['Total Purchase Value'].map("${:,.2f}".format) purchase_analysis_gender_df['Average Purchase Total per Person'] = purchase_analysis_gender_df['Average Purchase Total per Person'].map("${:,.2f}".format) # Display the summary data frame purchase_analysis_gender_df ###Output _____no_output_____ ###Markdown Age Demographics * Establish bins for ages* Categorize the existing players using the age bins. Hint: use pd.cut()* Calculate the numbers and percentages by age group* Create a summary data frame to hold the results* Optional: round the percentage column to two decimal points* Display Age Demographics Table ###Code # Generate min and max ages, stablishing min and max bins. min_age = purchase_data['Age'].min() max_age = purchase_data['Age'].max() # Generate bins by list comprehension bins = [x for x in range(0, int(max_age)+1, int(max_age/9))] # Create bin labels labels = [f"from {round(bins[x])} to {round(bins[x+1])}" for x in range(len(bins)-1)] # Cut the dataframe in bins purchase_data_groups = purchase_data purchase_data_groups['Age Group'] = pd.cut(purchase_data_groups['Age'], bins, labels = labels) # Calculate fields age_demographics_df = purchase_data.groupby('Age Group').agg(total_users = ('SN', 'nunique')) # Create sum measure sum_ages = age_demographics_df['total_users'].sum() # Calculate percentages age_demographics_df['Percentage of Players'] = age_demographics_df['total_users'] / sum_ages * 100 # Format fields age_demographics_df['Percentage of Players'] = age_demographics_df['Percentage of Players'].map("{:.2f}%".format) age_demographics_df = age_demographics_df.rename(columns={'total_users' : 'Total Users'}) # Display the summary data frame age_demographics_df ###Output _____no_output_____ ###Markdown Purchasing Analysis (Age) * Bin the purchase_data data frame by age* Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code # Calculate fields purchase_data_groups = purchase_data.groupby('Age Group').agg( total_users = ('SN', 'nunique'), total_orders = ('Purchase ID', 'count'), avg_price = ('Price', 'mean'), total_revenue = ('Price', 'sum') ) purchase_data_groups['Average Purchase Total per Person'] = purchase_data_groups['total_revenue'] / purchase_data_groups['total_users'] # Rename Columns purchase_data_groups = purchase_data_groups.rename(columns={ 'total_users' : 'Total Users', 'total_orders' : 'Purchase Count', 'avg_price' : 'Average Purchase Price', 'total_revenue' : 'Total Purchase Value', }) # Format fields purchase_data_groups['Average Purchase Price'] = purchase_data_groups['Average Purchase Price'].map("${:,.2f}".format) purchase_data_groups['Total Purchase Value'] = purchase_data_groups['Total Purchase Value'].map("${:,.2f}".format) purchase_data_groups['Average Purchase Total per Person'] = purchase_data_groups['Average Purchase Total per Person'].map("${:,.2f}".format) # Display the summary data frame purchase_data_groups ###Output _____no_output_____ ###Markdown Top Spenders * Run basic calculations to obtain the results in the table below* Create a summary data frame to hold the results* Sort the total purchase value column in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the summary data frame ###Code # Calculate fields spenders_df = purchase_data.groupby('SN').agg( total_orders = ('Purchase ID', 'count'), avg_price = ('Price', 'mean'), total_revenue = ('Price', 'sum') ) spenders_df = spenders_df.sort_values('total_orders', ascending=False) # Rename Columns spenders_df = spenders_df.rename(columns={ 'total_orders' : 'Purchase Count', 'avg_price' : 'Average Purchase Price', 'total_revenue' : 'Total Purchase Value', }) # Format fields spenders_df['Average Purchase Price'] = spenders_df['Average Purchase Price'].map("${:,.2f}".format) spenders_df['Total Purchase Value'] = spenders_df['Total Purchase Value'].map("${:,.2f}".format) # Display the summary data frame spenders_df.head(5) ###Output _____no_output_____ ###Markdown Most Popular Items * Retrieve the Item ID, Item Name, and Item Price columns* Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value* Create a summary data frame to hold the results* Sort the purchase count column in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the summary data frame ###Code most_popular_items_df = purchase_data[['Item ID', 'Item Name', 'Price']] most_popular_items_gp = most_popular_items_df.groupby(['Item ID', 'Item Name']).agg( total_orders = ('Item ID', 'count'), avg_price = ('Price', 'mean'), total_revenue = ('Price', 'sum'), ) most_popular_items_gp = most_popular_items_gp.rename(columns={ 'total_orders' : 'Purchase Count', 'avg_price' : 'Item Price', 'total_revenue' : 'Total Purchase Value', }) most_popular_items_gp.sort_values('Purchase Count', ascending=False, inplace=True) # Format fields most_popular_items_gp['Item Price'] = most_popular_items_gp['Item Price'].map("${:,.2f}".format) most_popular_items_gp['Total Purchase Value'] = most_popular_items_gp['Total Purchase Value'].map("${:,.2f}".format) # Display the summary data frame most_popular_items_gp.head(5) ###Output _____no_output_____ ###Markdown Most Profitable Items * Sort the above table by total purchase value in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the data frame ###Code # Unformat fields, replacing the currency symbol and converting to a float most_popular_items_gp['Total Purchase Value'] = most_popular_items_gp['Total Purchase Value'].replace('[\$,]','',regex=True).astype(float) # Sort the data most_popular_items_gp.sort_values('Total Purchase Value', ascending=False, inplace=True) # Format fields most_popular_items_gp['Total Purchase Value'] = most_popular_items_gp['Total Purchase Value'].map("${:,.2f}".format) # Display the summary data frame most_popular_items_gp.head(5) ###Output _____no_output_____
docs/notebooks/visualisation.ipynb
###Markdown VisualisationThis notebook showcases different ways of visualizing lig-prot and prot-prot interactions, either with atomistic details or simply at the residue level. ###Code import MDAnalysis as mda import prolif as plf import numpy as np # load topology u = mda.Universe(plf.datafiles.TOP, plf.datafiles.TRAJ) lig = u.select_atoms("resname LIG") prot = u.select_atoms("protein") # create RDKit-like molecules for visualisation lmol = plf.Molecule.from_mda(lig) pmol = plf.Molecule.from_mda(prot) # get lig-prot interactions with atom info fp = plf.Fingerprint(["HBDonor", "HBAcceptor", "Cationic", "PiStacking"]) fp.run(u.trajectory[0:1], lig, prot) df = fp.to_dataframe(return_atoms=True) df.T ###Output _____no_output_____ ###Markdown py3Dmol (3Dmol.js)With py3Dmol we can easily display the interactions.For interactions involving a ring (pi-cation, pi-stacking...etc.) ProLIF returns the index of one of the ring atoms, but for visualisation having the centroid of the ring looks nicer. We'll start by writing a function to find the centroid, given the index of one of the ring atoms. ###Code from rdkit import Chem from rdkit import Geometry def get_ring_centroid(mol, index): # find ring using the atom index Chem.SanitizeMol(mol, Chem.SanitizeFlags.SANITIZE_SETAROMATICITY) ri = mol.GetRingInfo() for r in ri.AtomRings(): if index in r: break else: raise ValueError("No ring containing this atom index was found in the given molecule") # get centroid coords = mol.xyz[list(r)] ctd = plf.utils.get_centroid(coords) return Geometry.Point3D(*ctd) ###Output _____no_output_____ ###Markdown Finally, the actual visualisation code. The API of py3Dmol is exactly the same as the GLViewer class of 3Dmol.js, for which the documentation can be found [here](https://3dmol.csb.pitt.edu/doc/$3Dmol.GLViewer.html). ###Code import py3Dmol colors = { "HBAcceptor": "blue", "HBDonor": "red", "Cationic": "green", "PiStacking": "purple", } # JavaScript functions resid_hover = """function(atom,viewer) {{ if(!atom.label) {{ atom.label = viewer.addLabel('{0}:'+atom.atom+atom.serial, {{position: atom, backgroundColor: 'mintcream', fontColor:'black'}}); }} }}""" hover_func = """ function(atom,viewer) { if(!atom.label) { atom.label = viewer.addLabel(atom.interaction, {position: atom, backgroundColor: 'black', fontColor:'white'}); } }""" unhover_func = """ function(atom,viewer) { if(atom.label) { viewer.removeLabel(atom.label); delete atom.label; } }""" v = py3Dmol.view(650, 600) v.removeAllModels() models = {} mid = -1 for i, row in df.T.iterrows(): lresid, presid, interaction = i lindex, pindex = row[0] lres = lmol[lresid] pres = pmol[presid] # set model ids for reusing later for resid, res, style in [(lresid, lres, {"colorscheme": "cyanCarbon"}), (presid, pres, {})]: if resid not in models.keys(): mid += 1 v.addModel(Chem.MolToMolBlock(res), "sdf") model = v.getModel() model.setStyle({}, {"stick": style}) # add residue label model.setHoverable({}, True, resid_hover.format(resid), unhover_func) models[resid] = mid # get coordinates for both points of the interaction if interaction in ["PiStacking", "EdgeToFace", "FaceToFace", "PiCation"]: p1 = get_ring_centroid(lres, lindex) else: p1 = lres.GetConformer().GetAtomPosition(lindex) if interaction in ["PiStacking", "EdgeToFace", "FaceToFace", "CationPi"]: p2 = get_ring_centroid(pres, pindex) else: p2 = pres.GetConformer().GetAtomPosition(pindex) # add interaction line v.addCylinder({"start": dict(x=p1.x, y=p1.y, z=p1.z), "end": dict(x=p2.x, y=p2.y, z=p2.z), "color": colors[interaction], "radius": .15, "dashed": True, "fromCap": 1, "toCap": 1, }) # add label when hovering the middle of the dashed line by adding a dummy atom c = Geometry.Point3D(*plf.utils.get_centroid([p1, p2])) modelID = models[lresid] model = v.getModel(modelID) model.addAtoms([{"elem": 'Z', "x": c.x, "y": c.y, "z": c.z, "interaction": interaction}]) model.setStyle({"interaction": interaction}, {"clicksphere": {"radius": .5}}) model.setHoverable( {"interaction": interaction}, True, hover_func, unhover_func) # show protein: # first we need to reorder atoms as in the original MDAnalysis file. # needed because the RDKitConverter reorders them when infering bond order # and 3Dmol.js doesn't like when atoms from the same residue are spread accross the whole file order = np.argsort([atom.GetIntProp("_MDAnalysis_index") for atom in pmol.GetAtoms()]) mol = Chem.RenumberAtoms(pmol, order.astype(int).tolist()) mol = Chem.RemoveAllHs(mol) pdb = Chem.MolToPDBBlock(mol, flavor=0x20 | 0x10) v.addModel(pdb, "pdb") model = v.getModel() model.setStyle({}, {"cartoon": {"style":"edged"}}) v.zoomTo({"model": list(models.values())}) ###Output _____no_output_____ ###Markdown Ligand Interaction Network (LigPlot)Protein-ligand interactions are typically represented with the ligand in atomic details, residues as nodes, and interactions as edges. Such diagram can be easily displayed by calling ProLIF's builtin class `prolif.plotting.network.LigNetwork`.This diagram is interactive and allows moving around the residues, as well as clicking the legend to toggle the display of specific residues types or interactions.LigNetwork can generate two kinds of depictions:- Based on a single specific frame- By aggregating results from several framesIn the latter case, the frequency with which an interaction is seen will control the width of the corresponding edge. You can hide the least frequent interactions by using a threshold, *i.e.* `threshold=0.3` will hide interactions that occur in less than 30% of frames. ###Code from prolif.plotting.network import LigNetwork fp = plf.Fingerprint() fp.run(u.trajectory[::10], lig, prot) df = fp.to_dataframe(return_atoms=True) net = LigNetwork.from_ifp(df, lmol, # replace with `kind="frame", frame=0` for the other depiction kind="aggregate", threshold=.3, rotation=270) net.display() ###Output _____no_output_____ ###Markdown You can further customize the diagram by changing the colors in `LigNetwork.COLORS` or the residues types in `LigNetwork.RESIDUE_TYPES`. Type `help(LigNetwork)` for more details. The diagram can be saved as an HTML file by calling `net.save("output.html")`. It is not currently possible to export it as an image, so please make a screenshot instead. You can combine both saving and displaying the diagram with `net.show("output.html")`. NetworkX and pyvisNetworkX is a great library for working with graphs, but the drawing options are quickly limited so we will use networkx to create a graph, and pyvis to create interactive plots. The following code snippet will calculate the IFP, each residue (ligand or protein) is converted to a node, each interaction to an edge, and the occurence of each interaction between residues will be used to control the weight and thickness of each edge. ###Code import networkx as nx from pyvis.network import Network from tqdm.auto import tqdm from matplotlib import cm, colors from IPython.display import IFrame # get lig-prot interactions and distance between residues fp = plf.Fingerprint() fp.run(u.trajectory[::10], lig, prot) df = fp.to_dataframe() df.head() def make_graph(values, df=None, node_color=["#FFB2AC", "#ACD0FF"], node_shape="dot", edge_color="#a9a9a9", width_multiplier=1): """Convert a pandas DataFrame to a NetworkX object Parameters ---------- values : pandas.Series Series with 'ligand' and 'protein' levels, and a unique value for each lig-prot residue pair that will be used to set the width and weigth of each edge. For example: ligand protein LIG1.G ALA216.A 0.66 ALA343.B 0.10 df : pandas.DataFrame DataFrame obtained from the fp.to_dataframe() method Used to label each edge with the type of interaction node_color : list Colors for the ligand and protein residues, respectively node_shape : str One of ellipse, circle, database, box, text or image, circularImage, diamond, dot, star, triangle, triangleDown, square, icon. edge_color : str Color of the edge between nodes width_multiplier : int or float Each edge's width is defined as `width_multiplier * value` """ lig_res = values.index.get_level_values("ligand").unique().tolist() prot_res = values.index.get_level_values("protein").unique().tolist() G = nx.Graph() # add nodes # https://pyvis.readthedocs.io/en/latest/documentation.html#pyvis.network.Network.add_node for res in lig_res: G.add_node(res, title=res, shape=node_shape, color=node_color[0], dtype="ligand") for res in prot_res: G.add_node(res, title=res, shape=node_shape, color=node_color[1], dtype="protein") for resids, value in values.items(): label = "{} - {}<br>{}".format(*resids, "<br>".join([f"{k}: {v}" for k, v in (df.xs(resids, level=["ligand", "protein"], axis=1) .sum() .to_dict() .items())])) # https://pyvis.readthedocs.io/en/latest/documentation.html#pyvis.network.Network.add_edge G.add_edge(*resids, title=label, color=edge_color, weight=value, width=value*width_multiplier) return G ###Output _____no_output_____ ###Markdown Regrouping all interactionsWe will regroup all interactions as if they were equivalent. ###Code data = (df.groupby(level=["ligand", "protein"], axis=1) .sum() .astype(bool) .mean()) G = make_graph(data, df, width_multiplier=3) # display graph net = Network(width=600, height=500, notebook=True, heading="") net.from_nx(G) net.write_html("lig-prot_graph.html") IFrame("lig-prot_graph.html", width=610, height=510) ###Output _____no_output_____ ###Markdown Only plotting a specific interactionWe can also plot a specific type of interaction. ###Code data = (df.xs("Hydrophobic", level="interaction", axis=1) .mean()) G = make_graph(data, df, width_multiplier=3) # display graph net = Network(width=600, height=500, notebook=True, heading="") net.from_nx(G) net.write_html("lig-prot_hydrophobic_graph.html") IFrame("lig-prot_hydrophobic_graph.html", width=610, height=510) ###Output _____no_output_____ ###Markdown Protein-protein interactionThis kind of "residue-level" visualisation is especially suitable for protein-protein interactions. Here we'll show the interactions between one helix of our G-Protein coupled receptor (transmembrane helix 3, or TM3) in red and the rest of the protein in blue. ###Code tm3 = u.select_atoms("resid 119:152") prot = u.select_atoms("protein and not group tm3", tm3=tm3) fp = plf.Fingerprint() fp.run(u.trajectory[::10], tm3, prot) df = fp.to_dataframe() df.head() data = (df.groupby(level=["ligand", "protein"], axis=1, sort=False) .sum() .astype(bool) .mean()) G = make_graph(data, df, width_multiplier=8) # color each node based on its degree max_nbr = len(max(G.adj.values(), key=lambda x: len(x))) blues = cm.get_cmap('Blues', max_nbr) reds = cm.get_cmap('Reds', max_nbr) for n, d in G.nodes(data=True): n_neighbors = len(G.adj[n]) # show TM3 in red and the rest of the protein in blue palette = reds if d["dtype"] == "ligand" else blues d["color"] = colors.to_hex( palette(n_neighbors / max_nbr) ) # convert to pyvis network net = Network(width=640, height=500, notebook=True, heading="") net.from_nx(G) net.write_html("prot-prot_graph.html") IFrame("prot-prot_graph.html", width=650, height=510) ###Output _____no_output_____ ###Markdown Residue interaction networkAnother possible application is the visualisation of the residue interaction network of the whole protein. Since this protein is a GPCR, the graph will mostly display the HBond interactions reponsible for the secondary structure of the protein (7 alpha-helices). It would also show hydrophobic interactions between neighbor residues, so I'm simply going to disable it in the Fingerprint. ###Code prot = u.select_atoms("protein") fp = plf.Fingerprint(['HBDonor', 'HBAcceptor', 'PiStacking', 'Anionic', 'Cationic', 'CationPi', 'PiCation']) fp.run(u.trajectory[::10], prot, prot) df = fp.to_dataframe() df.head() ###Output _____no_output_____ ###Markdown To hide most of the HBond interactions responsible for the alpha-helix structuration, I will show how to do it on the pandas DataFrame for simplicity, but ideally you should copy-paste the source code inside the `fp.run` method and add the condition shown below before calculating the bitvector for a residue pair, then use the custom function instead of `fp.run`. This would make the analysis faster and more memory efficient. ###Code # remove interactions between residues i and i±4 or less mask = [] for l, p, interaction in df.columns: lr = plf.ResidueId.from_string(l) pr = plf.ResidueId.from_string(p) if (pr == lr) or (abs(pr.number - lr.number) <= 4 and interaction in ["HBDonor", "HBAcceptor", "Hydrophobic"]): mask.append(False) else: mask.append(True) df = df[df.columns[mask]] df.head() data = (df.groupby(level=["ligand", "protein"], axis=1, sort=False) .sum() .astype(bool) .mean()) G = make_graph(data, df, width_multiplier=5) # color each node based on its degree max_nbr = len(max(G.adj.values(), key=lambda x: len(x))) palette = cm.get_cmap('YlGnBu', max_nbr) for n, d in G.nodes(data=True): n_neighbors = len(G.adj[n]) d["color"] = colors.to_hex( palette(n_neighbors / max_nbr) ) # convert to pyvis network net = Network(width=640, height=500, notebook=True, heading="") net.from_nx(G) # use specific layout layout = nx.circular_layout(G) for node in net.nodes: node["x"] = layout[node["id"]][0] * 1000 node["y"] = layout[node["id"]][1] * 1000 net.toggle_physics(False) net.write_html("residue-network_graph.html") IFrame("residue-network_graph.html", width=650, height=510) ###Output _____no_output_____
alejogm0520/Repaso_Estadistico.ipynb
###Markdown Analisis de Redes: Repaso Estadistico Ejercicio 1: Hacer este gŕafico en Python. ###Code import numpy as np import matplotlib.pyplot as plt import scipy.stats as stas %matplotlib inline x = np.arange(0.01, 1, 0.01) values = [(0.5, 0.5),(5, 1),(1, 3),(2, 2),(2, 5)] for i, j in values: y = stas.beta.pdf(x,i,j) plt.plot(x,y) plt.show() ###Output _____no_output_____ ###Markdown Ejercicio 2: Con datos aleatorios de distribuciones beta, obtener y graficar sus propiedades descriptivas. ###Code md = [] mn = [] mo = [] kur = [] ske = [] for i, j in values: r = stas.beta.rvs(i, j, size=1000000) md.append(np.median(r)) mn.append(np.mean(r)) mo.append(stas.mode(r)[0][0]) kur.append(stas.kurtosis(r)) ske.append(stas.skew(r)) fig = plt.figure() ax1 = fig.add_subplot(151) ax1.set_title('Median') ax1.plot(md) ax2 = fig.add_subplot(152) ax2.set_title('Mean') ax2.plot(mn) ax3 = fig.add_subplot(153) ax3.set_title('Mode') ax3.plot(mo) ax4 = fig.add_subplot(154) ax4.set_title('Kurtosis') ax4.plot(kur) ax5 = fig.add_subplot(155) ax5.set_title('Skewness') ax5.plot(ske) axes = [ax1, ax2, ax3, ax4, ax5] for i in axes: plt.setp(i.get_xticklabels(), visible=False) plt.setp(i.get_yticklabels(), visible=False) ###Output _____no_output_____
notebook/2_data-wrangling.ipynb
###Markdown Data Wranglingในบทนี้ จะเป็นการแนะนำการทำ Data Wrangling หรือการเตรียมข้อมูล ด้วยภาษา `R` Data Wrangling เป็น ขั้นตอนในการเตรียมข้อมูลเพื่อการวิเคราะห์ซึ่งจะรวมถึงขั้นตอน- import data หมายถึง การนำเข้าข้อมูลจากหลากหลายแหล่ง- tidy data หมายถึง การจัดรูปแบบของข้อมูล เช่น การ reshape ข้อมูล- transform data หมายถึง การแปลงข้อมูล การทำ feature engineering เป็นต้น![](https://d33wubrfki0l68.cloudfront.net/571b056757d68e6df81a3e3853f54d3c76ad6efc/32d37/diagrams/data-science.png) Install and Load packages ###Code options( repr.plot.width=10, repr.plot.height=6, repr.plot.res = 300, repr.matrix.max.rows = 10, repr.matrix.max.cols = Inf ) # if running on google colab options("repos" = "https://packagemanager.rstudio.com/cran/__linux__/bionic/latest/") install.packages("RPostgres") install.packages("writexl") library(tidyverse) library(DBI) library(RPostgres) library(httr) library(vroom) library(readxl) library(writexl) ###Output -- Attaching packages ------------------------------------------------------------------------------------------------------------------------------------------------ tidyverse 1.3.1 -- v ggplot2 3.3.5 v purrr  0.3.4 v tibble  3.1.2 v dplyr  1.0.7 v tidyr  1.1.3 v stringr 1.4.0 v readr  1.4.0 v forcats 0.5.1 -- Conflicts --------------------------------------------------------------------------------------------------------------------------------------------------- tidyverse_conflicts() -- x dplyr::filter() masks stats::filter() x dplyr::lag() masks stats::lag() ###Markdown Load Data setting path ###Code getwd() setwd("..") getwd() ###Output _____no_output_____ ###Markdown csv ###Code df_csv <- read_csv("data/production_oae.csv") df_csv df_vroom <- vroom("data/production_oae.csv") df_vroom ###Output Rows: 18685 Columns: 18 -- Column specification ----------------------------------------------------------------------------------------------------------------------------------------------------------------- Delimiter: "," chr (10): commod, subcommod, variety, year_crop, province, province_code, r... dbl (7): season, year, area_plant, area_harvest, production, yield_plant, ... date (1): update_date i Use `spec()` to retrieve the full column specification for this data. i Specify the column types or set `show_col_types = FALSE` to quiet this message. ###Markdown excel ###Code df_excel <- read_excel("data/production_oae.xlsx") df_excel ###Output _____no_output_____ ###Markdown rds ###Code df_rds <- readRDS("data/production_oae.rds") df_rds ###Output _____no_output_____ ###Markdown database ###Code conn <- dbConnect( RPostgres::Postgres(), host = "192.168.4.133", user = "oae_user", password = "", dbname = "db_nabc", options="-c search_path=definition" ) dbListTables(conn) ref <- list() ref$tha1 <- dbReadTable(conn, "tha1") ref$tha1 ###Output _____no_output_____ ###Markdown API (Application Programming Interface) ###Code # https://data.moc.go.th/OpenData/GISProductPrice httr::set_config(config(ssl_verifypeer = 0L)) res <- httr::GET( "https://dataapi.moc.go.th/gis-product-prices?", query = list( product_id = "R11029", from_date = "2021-01-01", to_date = Sys.Date() ) ) res %>% httr::content("text") %>% jsonlite::fromJSON() res <- res %>% httr::content("text") %>% jsonlite::fromJSON() res$price_list ###Output _____no_output_____ ###Markdown Tidy Data ConceptTidy data คือ การจัดการข้อมูลให้อยู่ในโครงสร้างตาราง โดยที่1. column = ตัวแปร2. row = ข้อมูล3. cell = ค่าที่วัดได้> Tidy data is a way to describe data that’s organized with a particular structure – a rectangular structure, where each variable has its own column, and each observation has its own row (Wickham 2014).![](https://www.openscapes.org/img/blog/tidydata/tidydata_1.jpg) Data Wrangling/ Data Manipulationการจัดการข้อมูลมี operation หลักๆ ดังนี้- select- filter- mutate- summarize- arrange- join selectคือ การเลือกตัวแปร หรือ column ที่ต้องการ โดยสามารถเปลี่ยนชื่อตัวแปรได้ด้วย**Syntax:**```{r}df %>% select( column_x, new_column_y = column_y, ... )```Note: `%>%` คือ pipe operator ซึ่งจะนำ object ที่อยู่ก่อนหน้ามาใส่เป็น argument แรกของ function ถัดไปการใช้ `%>%` จะทำให้ code อ่านง่ายขึ้น หากไม่ใช้จะเป็น nested function ###Code df_rds %>% select(subcommod, year_crop, province_name = province, # เปลี่ยนชื่อจาก province เป็น province_name status, area_plant, area_harvest, production, yield_plant, yield_harvest ) ###Output _____no_output_____ ###Markdown filterคือ การเลือกบาง rows ของ dataframe ตามเงื่อนไขที่เราต้องการ เช่น **Syntax:**```{r}df %>% filter( logical_expression(column_x) i.e. column_x > 10 )``` ###Code df_rds %>% filter(province == "กรุงเทพมหานคร") ###Output _____no_output_____ ###Markdown mutateคือ การสร้างตัวแปร หรือ column โดยผลลัพธ์ที่ได้จะมีจำนวนแถวเท่าเดิม เช่น การคำนวณผลผลิตต่อไร่**Syntax:**```{r}df %>% mutate( new_x = expression )``` ###Code df_rds %>% mutate(area_diff = area_plant - area_harvest) ###Output _____no_output_____ ###Markdown summarizeคือ การยุบรวมข้อมูล เช่น ค่าเฉลี่ย ค่าผลรวม โดยสามารถแบ่งตามกลุ่มได้ เช่น การคำนวณเนื้อที่ ผลผลิต ผลผลิตต่อไร่ ระดับภาค ทั้งนี้ผลลัพธ์ที่ได้จาก summarize จะเป็น dataframe ที่มีจำนวนแถวลดลง**Syntax:**```{r}df %>% group_by(column1, column2, ...) %>% summarize( new_x = FUN(column_x) ) %>% ungroup()``` ###Code df_rds %>% filter(subcommod == "ข้าวนาปี", is.na(reg_oae)) %>% tail(5) %>% select(subcommod, province, area_plant:yield_harvest) df_rds %>% filter(subcommod == "ข้าวนาปี", !is.na(reg_oae)) %>% group_by(year_crop, reg_oae) %>% summarize( area_plant = sum(area_plant, na.rm = TRUE), area_harvest = sum(area_harvest, na.rm = TRUE), production = sum(production, na.rm = TRUE), yield_plant = mean(yield_plant, na.rm = TRUE), yield_harvest = mean(yield_harvest, na.rm = TRUE), ) %>% tail(4) df_rds %>% filter(subcommod == "ข้าวนาปี", !is.na(reg_oae)) %>% group_by(year_crop, reg_oae) %>% summarize( yield_plant = weighted.mean(yield_plant, area_plant, na.rm = TRUE), yield_harvest = weighted.mean(yield_harvest, area_harvest, na.rm = TRUE), area_plant = sum(area_plant, na.rm = TRUE), area_harvest = sum(area_harvest, na.rm = TRUE), production = sum(production, na.rm = TRUE) ) %>% tail(4) %>% select(year_crop, reg_oae, area_plant, area_harvest, production, yield_plant, yield_harvest) ###Output `summarise()` has grouped output by 'year_crop'. You can override using the `.groups` argument. ###Markdown arrange ###Code df_rds %>% filter(year_crop == "2563", subcommod == "ทุเรียน") %>% select(province, reg_oae, area_harvest, production, yield_harvest) %>% arrange(area_harvest) df_rds %>% filter(year_crop == "2563", subcommod == "ทุเรียน", !is.na(reg_oae)) %>% select(province, reg_oae, area_harvest, production, yield_harvest) %>% arrange(-area_harvest) %>% head(10) ###Output _____no_output_____ ###Markdown joinเป็นการเอา 2 ตาราง มาเชื่อมกัน โดยมี column เป็นตัวเชื่อม (key) การเชื่อมมีหลายรูปแบบ ดังนี้- left_join- right_join- inner_join- full_join- semi_join- anti_join![]() ###Code ref$tha1 df_rds_subset <- df_rds %>% select(commod, subcommod, season, variety, province, area_harvest, production, yield_harvest) df_rds_subset df_rds_subset %>% left_join(ref$tha1, by = c("province" = "adm1_name_th")) ###Output _____no_output_____ ###Markdown Reshape Data![](https://github.com/gadenbuie/tidyexplain/blob/master/images/static/png/original-dfs-tidy.png?raw=true) pivot widerแปลงข้อมูลจาก long format เป็น wide format ###Code df_rds %>% filter(subcommod == "ข้าวนาปี", !is.na(reg_oae)) %>% pivot_wider( province, names_prefix = "year_", names_from = year, values_from = production ) %>% arrange(-year_2564) ###Output _____no_output_____ ###Markdown pivot longerแปลงข้อมูลจาก wide format เป็น long format ###Code df_rds %>% filter(subcommod == "ข้าวนาปี") %>% pivot_longer( area_plant:yield_harvest, names_to = "attribute", values_to = "value" ) %>% select(year_crop, subcommod, province, attribute, value) ###Output _____no_output_____ ###Markdown Other useful commands - `dplyr::count`- `tidyr::fill`- etc. cheatsheet![data import](https://github.com/rstudio/cheatsheets/blob/master/pngs/data-import.png?raw=true)![dplyr](https://github.com/rstudio/cheatsheets/blob/master/pngs/data-transformation.png?raw=true)![tidyr](https://github.com/rstudio/cheatsheets/blob/master/pngs/tidyr.png?raw=true) Save ###Code df_rds %>% write_xlsx("data/df.xlsx") df_rds %>% saveRDS("data/df.rds") ###Output _____no_output_____
CONTRIBUTING.ipynb
###Markdown PyPRECIS Notebook Style GuideThanks for showing the enthusiasm to help develop the PyPRECIS notebooks. Please use this style guide as a reference when creating or modifying content... Worksheet TitleAll worksheets should start with a title formatted as a level 1 heading:```md Worksheet ?: All Worksheets Should Have a Clear Title```Worksheet titles should be followed with a short description of the worksheet. Learning AimsThis followed by a list of 3 to 4 learning aims for the worksheet. We use the HTML `div class="alert alert-block alert-warning"` to colour this is a nice way:```mdBy the end of this worksheet you should be able to: - Identify and list the names of PRECIS output data in PP format using standard Linux commands.- Use basic Iris commands to load data files, and view Iris cubes. - Use Iris commands to remove the model rim, select data variables and save the output as NetCDF files.```When rendered, it looks like this:By the end of this worksheet you should be able to: - Identify and list the names of PRECIS output data in PP format using standard Linux commands.- Use basic Iris commands to load data files, and view Iris cubes. - Use Iris commands to remove the model rim, select data variables and save the output as NetCDF files.Remember to start each learning aim with a verb. Keep them short and to the point. If you have more than 3 to 4 learning aims, consider whether there is too much content in the workbook. NotesYou may wish to use a Note box to draw the learners attention to particular actions or points to note. Note boxes are created using `div class="alert alert-block alert-info"````mdNote: In the boxes where there is code or where you are asked to type code, click in the box, then press Ctrl + Enter to run the code. Note: An percentage sign % is needed to run some commands on the shell. It is noted where this is needed.Note: A hash denotes a comment; anything written after this character does not affect the command being run. ```Which looks like:Note: In the boxes where there is code or where you are asked to type code, click in the box, then press Ctrl + Enter to run the code. Note: An percentage sign % is needed to run some commands on the shell. It is noted where this is needed.Note: A hash denotes a comment; anything written after this character does not affect the command being run. ContentsImmediately following the Learning Aims (or Note box if used) add a list of contents.```md Contents [1.1: Data locations and file names](1.1) ...additional headings```Items in the contents list are formatted as level 3 headings. Note the `[Link Name](Link location)` syntax. Each subsequent heading in the notebook needs to have a `id` tag associated with it for the links to work. These are formatted like this:```md 1.1 Data locations and file names```Remember that the `id` string must match the link location otherwise the link won't work. Remember to update both the link title numbering and the link id numbering if you are reordering content. Section HeadingsTo help users navigate round the document use section headings to break the content into sections. As detailed above, each section heading needs to have an `id` tag associated with it to build the Contents links.If you want to further subdivide each section, use bold letters with a parentheses:```md**a)** Ordinary section text continues...``` General FormattingUse links to point learners to additional learning resources. These follow the standard markdown style: `[Link text](Link location)`, eg.```md[Iris](http://scitools.org.uk/iris/docs/latest/index.html)```gives[Iris](http://scitools.org.uk/iris/docs/latest/index.html)Format key commands using bold back-ticks: ```md**`cd`**```Where certain keyboard combinations are necessary to execute commands, use the `` html formatting.```mdCtrl + Enter```which gives:Ctrl + EnterCode blocks are entered in new notebook cells, with the `Code` style. Remember, all python should be **Python 3**. ###Code # This is a code block # Make sure you include comments with your code to help explain what you are doing # Leave space if you want learners to complete portions of code ###Output _____no_output_____
HCDR_Notebook.ipynb
###Markdown Home Credit Default Risk (HCDR) Dataset and how to download Back ground Home Credit GroupMany people struggle to get loans due to insufficient or non-existent credit histories. And, unfortunately, this population is often taken advantage of by untrustworthy lenders. Home Credit GroupHome Credit strives to broaden financial inclusion for the unbanked population by providing a positive and safe borrowing experience. In order to make sure this underserved population has a positive loan experience, Home Credit makes use of a variety of alternative data--including telco and transactional information--to predict their clients' repayment abilities.While Home Credit is currently using various statistical and machine learning methods to make these predictions, they're challenging Kagglers to help them unlock the full potential of their data. Doing so will ensure that clients capable of repayment are not rejected and that loans are given with a principal, maturity, and repayment calendar that will empower their clients to be successful. Background on the datasetHome Credit is a non-banking financial institution, founded in 1997 in the Czech Republic.The company operates in 14 countries (including United States, Russia, Kazahstan, Belarus, China, India) and focuses on lending primarily to people with little or no credit history which will either not obtain loans or became victims of untrustworthly lenders.Home Credit group has over 29 million customers, total assests of 21 billions Euro, over 160 millions loans, with the majority in Asia and and almost half of them in China (as of 19-05-2018).While Home Credit is currently using various statistical and machine learning methods to make these predictions, they're challenging Kagglers to help them unlock the full potential of their data. Doing so will ensure that clients capable of repayment are not rejected and that loans are given with a principal, maturity, and repayment calendar that will empower their clients to be successful. Data files overviewThere are 7 different sources of data:* __application_train/application_test:__ the main training and testing data with information about each loan application at Home Credit. Every loan has its own row and is identified by the feature SK_ID_CURR. The training application data comes with the TARGET indicating __0: the loan was repaid__ or __1: the loan was not repaid__. The target variable defines if the client had payment difficulties meaning he/she had late payment more than X days on at least one of the first Y installments of the loan. Such case is marked as 1 while other all other cases as 0.* __bureau:__ data concerning client's previous credits from other financial institutions. Each previous credit has its own row in bureau, but one loan in the application data can have multiple previous credits.* __bureau_balance:__ monthly data about the previous credits in bureau. Each row is one month of a previous credit, and a single previous credit can have multiple rows, one for each month of the credit length.* __previous_application:__ previous applications for loans at Home Credit of clients who have loans in the application data. Each current loan in the application data can have multiple previous loans. Each previous application has one row and is identified by the feature SK_ID_PREV.* __POS_CASH_BALANCE:__ monthly data about previous point of sale or cash loans clients have had with Home Credit. Each row is one month of a previous point of sale or cash loan, and a single previous loan can have many rows.* credit_card_balance: monthly data about previous credit cards clients have had with Home Credit. Each row is one month of a credit card balance, and a single credit card can have many rows.* __installments_payment:__ payment history for previous loans at Home Credit. There is one row for every made payment and one row for every missed payment. Imports ###Code import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder import os import zipfile from sklearn.base import BaseEstimator, TransformerMixin import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.impute import SimpleImputer from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import Pipeline, FeatureUnion from pandas.plotting import scatter_matrix from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import OneHotEncoder import warnings warnings.filterwarnings('ignore') from google.colab import drive drive.mount('/content/drive') ###Output Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fpeopleapi.readonly&response_type=code Enter your authorization code: ·········· Mounted at /content/drive ###Markdown Application train ###Code import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder import os import zipfile from sklearn.base import BaseEstimator, TransformerMixin import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.impute import SimpleImputer from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import Pipeline, FeatureUnion from pandas.plotting import scatter_matrix from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import OneHotEncoder import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown Application test* __application_train/application_test:__ the main training and testing data with information about each loan application at Home Credit. Every loan has its own row and is identified by the feature SK_ID_CURR. The training application data comes with the TARGET indicating __0: the loan was repaid__ or __1: the loan was not repaid__. The target variable defines if the client had payment difficulties meaning he/she had late payment more than X days on at least one of the first Y installments of the loan. Such case is marked as 1 while other all other cases as 0. ###Code app_train = pd.read_csv(r'/content/drive/My Drive/HCDR Project/application_train.csv') app_test = pd.read_csv(r'/content/drive/My Drive/HCDR Project/application_test.csv') ###Output _____no_output_____ ###Markdown The application dataset has the most information about the client: Gender, income, family status, education ... The Other datasets* __bureau:__ data concerning client's previous credits from other financial institutions. Each previous credit has its own row in bureau, but one loan in the application data can have multiple previous credits.* __bureau_balance:__ monthly data about the previous credits in bureau. Each row is one month of a previous credit, and a single previous credit can have multiple rows, one for each month of the credit length.* __previous_application:__ previous applications for loans at Home Credit of clients who have loans in the application data. Each current loan in the application data can have multiple previous loans. Each previous application has one row and is identified by the feature SK_ID_PREV.* __POS_CASH_BALANCE:__ monthly data about previous point of sale or cash loans clients have had with Home Credit. Each row is one month of a previous point of sale or cash loan, and a single previous loan can have many rows.* credit_card_balance: monthly data about previous credit cards clients have had with Home Credit. Each row is one month of a credit card balance, and a single credit card can have many rows.* __installments_payment:__ payment history for previous loans at Home Credit. There is one row for every made payment and one row for every missed payment. ###Code ds_name = 'application_train' app_train = load_data(os.path.join(DATA_DIR, f'{ds_name}.csv'), 'ds_name') bureau = pd.read_csv("datasets/bureau.csv") bureau_balance = pd.read_csv("datasets/bureau_balance.csv") credit_card_balance = pd.read_csv("datasets/credit_card_balance.csv") installments_payments = pd.read_csv("datasets/installments_payments.csv") previous_application = pd.read_csv("datasets/previous_application.csv") POS_CASH_balance = pd.read_csv("datasets/POS_CASH_balance.csv") print("bureau - rows:",bureau.shape[0]," columns:", bureau.shape[1]) print("bureau_balance - rows:",bureau_balance.shape[0]," columns:", bureau_balance.shape[1]) print("credit_card_balance - rows:",credit_card_balance.shape[0]," columns:", credit_card_balance.shape[1]) print("installments_payments - rows:",installments_payments.shape[0]," columns:", installments_payments.shape[1]) print("previous_application - rows:",previous_application.shape[0]," columns:", previous_application.shape[1]) print("POS_CASH_balance - rows:",POS_CASH_balance.shape[0]," columns:", POS_CASH_balance.shape[1]) ###Output bureau - rows: 1716428 columns: 17 bureau_balance - rows: 27299925 columns: 3 credit_card_balance - rows: 3840312 columns: 23 installments_payments - rows: 13605401 columns: 8 previous_application - rows: 1670214 columns: 37 POS_CASH_balance - rows: 10001358 columns: 8 ###Markdown * __Bureau__ ###Code bureau.head() ###Output _____no_output_____ ###Markdown * __Bureau Balance__ ###Code bureau_balance.head() ###Output _____no_output_____ ###Markdown * __Credit card balance__ ###Code credit_card_balance.head() ###Output _____no_output_____ ###Markdown * __Installment payments__ ###Code installments_payments.head() ###Output _____no_output_____ ###Markdown * __Previous application__ ###Code previous_application.head() ###Output _____no_output_____ ###Markdown * __POS_CASH_balance__ ###Code POS_CASH_balance.head() ###Output _____no_output_____ ###Markdown Exploratory Data Analysis Summary of Application train ###Code app_train.info() app_train.describe() ###Output _____no_output_____ ###Markdown Missing data for application train ###Code total = app_train.isnull().sum().sort_values(ascending = False) percent = (app_train.isnull().sum()/app_train.isnull().count()*100).sort_values(ascending = False).round(2) missing_application_train_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing_application_train_data.head(20) ###Output _____no_output_____ ###Markdown Distribution of the target column ###Code app_train['TARGET'].astype(int).plot.hist(); ###Output _____no_output_____ ###Markdown Correlation with the target column ###Code correlations = app_train.corr()['TARGET'].sort_values() print('Most Positive Correlations:\n', correlations.tail(10)) print('\nMost Negative Correlations:\n', correlations.head(10)) ###Output Most Positive Correlations: FLAG_DOCUMENT_3 0.044346 REG_CITY_NOT_LIVE_CITY 0.044395 FLAG_EMP_PHONE 0.045982 REG_CITY_NOT_WORK_CITY 0.050994 DAYS_ID_PUBLISH 0.051457 DAYS_LAST_PHONE_CHANGE 0.055218 REGION_RATING_CLIENT 0.058899 REGION_RATING_CLIENT_W_CITY 0.060893 DAYS_BIRTH 0.078239 TARGET 1.000000 Name: TARGET, dtype: float64 Most Negative Correlations: EXT_SOURCE_3 -0.178919 EXT_SOURCE_2 -0.160472 EXT_SOURCE_1 -0.155317 DAYS_EMPLOYED -0.044932 FLOORSMAX_AVG -0.044003 FLOORSMAX_MEDI -0.043768 FLOORSMAX_MODE -0.043226 AMT_GOODS_PRICE -0.039645 REGION_POPULATION_RELATIVE -0.037227 ELEVATORS_AVG -0.034199 Name: TARGET, dtype: float64 ###Markdown Applicants Age ###Code plt.hist(app_train['DAYS_BIRTH'] / -365, edgecolor = 'k', bins = 25) plt.title('Age of Client'); plt.xlabel('Age (years)'); plt.ylabel('Count'); ###Output _____no_output_____ ###Markdown Applicants occupations ###Code sns.countplot(x='OCCUPATION_TYPE', data=app_train); plt.title('Applicants Occupation'); plt.xticks(rotation=90); ###Output _____no_output_____ ###Markdown Processing pipeline ###Code # Create a class to select numerical or categorical columns # since Scikit-Learn doesn't handle DataFrames yet class DataFrameSelector(BaseEstimator, TransformerMixin): def __init__(self, attribute_names): self.attribute_names = attribute_names def fit(self, X, y=None): return self def transform(self, X): return X[self.attribute_names].values # Identify the numeric features we wish to consider. num_attribs = [ 'AMT_INCOME_TOTAL', 'AMT_CREDIT','DAYS_EMPLOYED','DAYS_BIRTH','EXT_SOURCE_1', 'EXT_SOURCE_2','EXT_SOURCE_3'] num_pipeline = Pipeline([ ('selector', DataFrameSelector(num_attribs)), ('imputer', SimpleImputer(strategy='mean')), ('std_scaler', StandardScaler()), ]) # Identify the categorical features we wish to consider. cat_attribs = ['CODE_GENDER', 'FLAG_OWN_REALTY','FLAG_OWN_CAR','NAME_CONTRACT_TYPE', 'NAME_EDUCATION_TYPE','OCCUPATION_TYPE','NAME_INCOME_TYPE'] cat_pipeline = Pipeline([ ('selector', DataFrameSelector(cat_attribs)), ('imputer', SimpleImputer(strategy='most_frequent')), ('ohe', OneHotEncoder(sparse=False, handle_unknown="ignore")) ]) full_pipeline = FeatureUnion(transformer_list=[ ("num_pipeline", num_pipeline), ("cat_pipeline", cat_pipeline), ]) app_train_subset= app_train[['AMT_INCOME_TOTAL', 'AMT_CREDIT','DAYS_EMPLOYED','DAYS_BIRTH','EXT_SOURCE_1', 'EXT_SOURCE_2','EXT_SOURCE_3','CODE_GENDER', 'FLAG_OWN_REALTY','FLAG_OWN_CAR','NAME_CONTRACT_TYPE', 'NAME_EDUCATION_TYPE','OCCUPATION_TYPE','NAME_INCOME_TYPE']] test= app_test[['AMT_INCOME_TOTAL', 'AMT_CREDIT','DAYS_EMPLOYED','DAYS_BIRTH','EXT_SOURCE_1', 'EXT_SOURCE_2','EXT_SOURCE_3','CODE_GENDER', 'FLAG_OWN_REALTY','FLAG_OWN_CAR','NAME_CONTRACT_TYPE', 'NAME_EDUCATION_TYPE','OCCUPATION_TYPE','NAME_INCOME_TYPE']] ###Output _____no_output_____ ###Markdown Baseline ModelTo get a baseline, we will use some of the features after being preprocessed through the pipeline.The baseline model is a logistic regression model ###Code def pct(x): return round(100*x,3) results = pd.DataFrame(columns=["ExpID", "Cross fold train accuracy", "Experiment description"]) %%time full_pipeline_with_predictor = Pipeline([ ("preparation", full_pipeline), ("linear", LogisticRegression(n_jobs=-1)) ]) train_labels = app_train['TARGET'] fit_pipeline= full_pipeline_with_predictor.fit(app_train_subset, train_labels) np.random.seed(42) %%time cv = cv = KFold(n_splits=5, random_state=42, shuffle=False) logit_scores = cross_val_score(fit_pipeline, app_train_subset, train_labels, cv=cv,n_jobs = -1) log_reg_pred = fit_pipeline.predict_proba(test)[:, 1] logit_score_train = logit_scores.mean() results.loc[0] = ["Baseline", pct(logit_score_train),"Untuned LogisticRegression"] results # Submission dataframe submit = app_test[['SK_ID_CURR']] submit['TARGET'] = log_reg_pred submit.head() ###Output _____no_output_____ ###Markdown Kaggle submission ###Code submit.to_csv("submission.csv",index=False) ! kaggle competitions submit -c home-credit-default-risk -f submission.csv -m "baseline submission" !pip install kaggle !ls -a !mkdir .kaggle ###Output _____no_output_____
posts/using-pipelines-for-multiple-preprocessing-steps.ipynb
###Markdown 用管线命令处理多个步骤 管线命令不经常用,但是很有用。它们可以把多个步骤组合成一个对象执行。这样可以更方便灵活地调节和控制整个模型的配置,而不只是一个一个步骤调节。 Getting ready 这是我们把多个数据处理步骤组合成一个对象的第一部分。在scikit-learn里称为`pipeline`。这里我们首先通过计算处理缺失值;然后将数据集调整为均值为0,标准差为1的标准形。让我们创建一个有缺失值的数据集,然后再演示`pipeline`的用法: ###Code from sklearn import datasets import numpy as np mat = datasets.make_spd_matrix(10) masking_array = np.random.binomial(1, .1, mat.shape).astype(bool) mat[masking_array] = np.nan mat[:4, :4] ###Output _____no_output_____ ###Markdown How to do it... 如果不用管线命令,我们可能会这样实现: ###Code from sklearn import preprocessing impute = preprocessing.Imputer() scaler = preprocessing.StandardScaler() mat_imputed = impute.fit_transform(mat) mat_imputed[:4, :4] mat_imp_and_scaled = scaler.fit_transform(mat_imputed) mat_imp_and_scaled[:4, :4] ###Output _____no_output_____ ###Markdown 现在我们用`pipeline`来演示: ###Code from sklearn import pipeline pipe = pipeline.Pipeline([('impute', impute), ('scaler', scaler)]) ###Output _____no_output_____ ###Markdown 我们看看`pipe`的内容。和前面介绍一致,管线命令定义了处理步骤: ###Code pipe ###Output _____no_output_____ ###Markdown 然后在调用`pipe`的`fit_transform`方法,就可以把多个步骤组合成一个对象了: ###Code new_mat = pipe.fit_transform(mat) new_mat[:4, :4] ###Output _____no_output_____ ###Markdown 可以用Numpy验证一下结果: ###Code np.array_equal(new_mat, mat_imp_and_scaled) ###Output _____no_output_____ ###Markdown 完全正确!本书后面的主题中,我们会进一步展示管线命令的威力。不仅可以用于预处理步骤中,在降维、算法拟合中也可以很方便的使用。 How it works... 前面曾经提到过,每个scikit-learn的算法接口都类似。`pipeline`最重要的函数也不外乎下面三个:- `fit`- `transform`- `fit_transform`具体来说,如果管线命令有`N`个对象,前`N-1`个对象必须实现`fit`和`transform`,第`N`个对象至少实现`fit`。否则就会出现错误。如果这些条件满足,管线命令就会运行,但是不一定每个方法都可以。例如,`pipe`有个`inverse_transform`方法就是这样。因为由于计算步骤没有`inverse_transform`方法,一运行就有错误: ###Code pipe.inverse_transform(new_mat) ###Output _____no_output_____ ###Markdown 但是,`scalar`对象可以正常运行: ###Code scaler.inverse_transform(new_mat)[:4, :4] ###Output _____no_output_____
5kb_DNA_analysis/20200827_batch_IgH_batch1_proB_DMSO_Chem.ipynb
###Markdown 0. required packages for h5py ###Code import h5py from ImageAnalysis3.classes import _allowed_kwds import ast ###Output _____no_output_____ ###Markdown 1. Create field-of-view class ###Code reload(ia) reload(classes) reload(classes.batch_functions) reload(classes.field_of_view) reload(io_tools.load) reload(visual_tools) reload(ia.correction_tools) reload(ia.correction_tools.alignment) reload(ia.spot_tools.matching) reload(ia.segmentation_tools.chromosome) reload(ia.spot_tools.fitting) fov_param = {'data_folder':r'\\10.245.74.158\Chromatin_NAS_6\20200827-B_DMSO_CTP-08_IgH', 'save_folder':r'G:\Pu_Temp\2020827_proB_DMSO', 'experiment_type': 'DNA', 'num_threads': 6, 'correction_folder': r'\\10.245.74.158\Chromatin_NAS_0\Corrections\20200807-Corrections_3color', 'shared_parameters':{ 'single_im_size':[30,2048,2048], 'corr_channels':['750', '647', '561'], 'num_empty_frames': 0, 'corr_hot_pixel':True, 'corr_Z_shift':False, 'min_num_seeds':200, 'max_num_seeds': 2500, 'spot_seeding_th':125, 'normalize_intensity_local':False, 'normalize_intensity_background':False, }, } fov_ids = np.arange(3,23) reload(io_tools.load) from ImageAnalysis3.spot_tools.picking import assign_spots_to_chromosomes overwrite=False intensity_th = 200 spots_list_list = [] chrom_coords_list = [] cand_chr_spots_list = [] for _fov_id in fov_ids: # create fov class fov = classes.field_of_view.Field_of_View(fov_param, _fov_id=_fov_id, _color_info_kwargs={ '_color_filename':'Color_Usage', }, _prioritize_saved_attrs=False, ) # process image into spots id_list, spot_list = fov._process_image_to_spots('unique', _load_common_reference=True, _load_with_multiple=False, _save_images=True, _warp_images=False, _overwrite_drift=False, _overwrite_image=False, _overwrite_spot=overwrite, _verbose=True) # identify chromosomes chrom_im = fov._load_chromosome_image(_overwrite=overwrite) chrom_coords = fov._find_candidate_chromosomes_by_segmentation(_filt_size=4, _binary_per_th=99.5, _morphology_size=2, _overwrite=overwrite) fov._load_from_file('unique') chrom_coords = fov._select_chromosome_by_candidate_spots(_good_chr_loss_th=0.5, _cand_spot_intensity_th=intensity_th, _save=True, _overwrite=overwrite) # append spots_list_list.append(fov.unique_spots_list) chrom_coords_list.append(fov.chrom_coords) fov_cand_chr_spots_list = [[] for _ct in fov.chrom_coords] # finalize candidate spots for _spots in fov.unique_spots_list: _cands_list = assign_spots_to_chromosomes(_spots, fov.chrom_coords) for _i, _cands in enumerate(_cands_list): fov_cand_chr_spots_list[_i].append(_cands) cand_chr_spots_list += fov_cand_chr_spots_list print(f"kept chromosomes: {len(fov.chrom_coords)}") # combine acquired spots and chromosomes chrom_coords = np.concatenate(chrom_coords_list) from ImageAnalysis3.spot_tools.picking import convert_spots_to_hzxys dna_cand_hzxys_list = [convert_spots_to_hzxys(_spots, fov.shared_parameters['distance_zxy']) for _spots in cand_chr_spots_list] dna_reg_ids = fov.unique_ids print(f"{len(chrom_coords)} are found.") # select_hzxys close to the chromosome center dist_th = 3000 # upper limit is 5000nm intensity_th = 500 sel_dna_cand_hzxys_list = [] for _cand_hzxys, _chrom_coord in zip(dna_cand_hzxys_list, chrom_coords): _sel_cands_list = [] for _cands in _cand_hzxys: if len(_cands) == 0: _sel_cands_list.append([]) else: _dists = np.linalg.norm(_cands[:,1:4] - _chrom_coord*np.array([200,108,108]), axis=1) _sel_cands_list.append(_cands[(_dists < dist_th) & (_cands[:,0]>=intensity_th)]) # append sel_dna_cand_hzxys_list.append(_sel_cands_list) ###Output _____no_output_____ ###Markdown EM pick spots ###Code # load functions reload(ia.spot_tools.picking) from ImageAnalysis3.spot_tools.picking import Pick_spots_by_intensity, EM_pick_scores_in_population, generate_reference_from_population,evaluate_differences %matplotlib inline niter= 10 nkeep = len(sel_dna_cand_hzxys_list) num_threads = 12 # initialize init_dna_hzxys = Pick_spots_by_intensity(sel_dna_cand_hzxys_list[:nkeep]) # set save list sel_dna_hzxys_list, sel_dna_scores_list, all_dna_scores_list = [init_dna_hzxys], [], [] for _iter in range(niter): print(f"- iter:{_iter}") # generate reference ref_ct_dists, ref_local_dists, ref_ints = generate_reference_from_population( sel_dna_hzxys_list[-1], dna_reg_ids, sel_dna_hzxys_list[-1][:nkeep], dna_reg_ids, num_threads=num_threads, collapse_regions=True, ) plt.figure(figsize=(4,2)) plt.hist(np.ravel(ref_ints), bins=np.arange(0,5000,100)) plt.figure(figsize=(4,2)) plt.hist(np.ravel(ref_ct_dists), bins=np.arange(0,3000,100)) plt.figure(figsize=(4,2)) plt.hist(np.ravel(ref_local_dists), bins=np.arange(0,3000,100)) plt.show() # scoring sel_hzxys, sel_scores, all_scores = EM_pick_scores_in_population( sel_dna_cand_hzxys_list[:nkeep], dna_reg_ids, sel_dna_hzxys_list[-1], ref_ct_dists, ref_local_dists, ref_ints, sel_dna_hzxys_list[-1], dna_reg_ids, num_threads=num_threads, ) update_rate = evaluate_differences(sel_hzxys, sel_dna_hzxys_list[-1]) print(f"-- region kept: {update_rate:.4f}") sel_dna_hzxys_list.append(sel_hzxys) sel_dna_scores_list.append(sel_scores) all_dna_scores_list.append(all_scores) if update_rate > 0.995: break np.ravel(sel_dna_scores_list[-1][:10000]).shape scores = np.array(sel_dna_scores_list[-1])[np.isnan(sel_dna_scores_list[-1])==False] plt.figure(dpi=100) plt.hist(np.log(scores), 40, range=(-20,0)) plt.show() from scipy.spatial.distance import pdist, squareform sel_iter = -1 final_dna_hzxys_list = [] kept_chr_ids = [] distmap_list = [] score_th = np.exp(-10) int_th = 500 bad_spot_percentage = 0.5 for _hzxys, _scores in zip(sel_dna_hzxys_list[sel_iter], sel_dna_scores_list[sel_iter]): _kept_hzxys = np.array(_hzxys).copy() _bad_inds = _kept_hzxys[:,0] < int_th _kept_hzxys[_bad_inds] = np.nan #_kept_hzxys[_scores < score_th] = np.nan if np.mean(np.isnan(_kept_hzxys).sum(1)>0)<bad_spot_percentage: kept_chr_ids.append(True) final_dna_hzxys_list.append(_kept_hzxys) distmap_list.append(squareform(pdist(_kept_hzxys[:,1:4]))) else: kept_chr_ids.append(False) kept_chr_ids = np.array(kept_chr_ids, dtype=np.bool) distmap_list = np.array(distmap_list) median_distmap = np.nanmedian(distmap_list, axis=0) loss_rates = np.mean(np.sum(np.isnan(final_dna_hzxys_list), axis=2)>0, axis=0) fig, ax = plt.subplots(figsize=(4,2),dpi=200) ax.plot(loss_rates, '.-') ax.set_xticks(np.arange(0,150,20)) plt.show() kept_inds = np.where(loss_rates<0.5)[0] fig, ax = plt.subplots(figsize=(4,3),dpi=200) ax = ia.figure_tools.distmap.plot_distance_map(median_distmap, median_distmap[kept_inds][:,kept_inds], color_limits=[0,600], ax=ax, ticks=np.arange(0,150,20), figure_dpi=200) ax.axvline(x=74, color=[1,1,0]) ax.axhline(y=74, color=[1,1,0]) ax.set_title(f"proB DMSO, n={len(distmap_list)}", fontsize=7.5) plt.show() ###Output _____no_output_____ ###Markdown ###Code # generate full distmap full_size = np.max(dna_reg_ids) - np.min(dna_reg_ids)+1 full_median_distmap = np.ones([full_size, full_size])*np.nan full_median_distmap[np.arange(full_size), np.arange(full_size)] = np.zeros(len(full_median_distmap)) for _i, _id in enumerate(dna_reg_ids-np.min(dna_reg_ids)): full_median_distmap[_id, dna_reg_ids-np.min(dna_reg_ids)] = median_distmap[_i] import matplotlib median_cmap = matplotlib.cm.get_cmap('seismic_r') median_cmap.set_bad(color=[0.4,0.4,0.4,1]) fig, ax = plt.subplots(figsize=(4,3),dpi=200) ax = ia.figure_tools.distmap.plot_distance_map(full_median_distmap, #median_distmap[kept_inds][:,kept_inds], cmap=median_cmap, color_limits=[0,600], ax=ax, ticks=np.arange(0, np.max(dna_reg_ids)-np.min(dna_reg_ids), 50), tick_labels=np.arange(np.min(dna_reg_ids), np.max(dna_reg_ids),50), figure_dpi=200) ax.set_title(f"proB bone marrow IgH+/+, n={len(distmap_list)}", fontsize=7.5) ax.set_xlabel(f"5kb region ids", fontsize=7.5) plt.show() ###Output _____no_output_____ ###Markdown quality check ###Code with h5py.File(fov.save_filename, "r", libver='latest') as _f: _grp = _f['unique'] _ind = list(_grp['ids'][:]).index(41) _im = _grp['ims'][_ind] sel_drifts = _grp['drifts'][:,:] sel_flags = _grp['flags'][:] sel_ids = _grp['ids'][:] sel_spots = _grp['spots'][:,:,:] print(_ind, np.sum(_grp['spots'][1])) fov.unique_spots_list[100] %matplotlib notebook from matplotlib.cm import Spectral plt.figure(figsize=(5,5),dpi=150) for _id,_s in zip(sel_ids, kept_spots_list): plt.plot(_s[:,2],_s[:,3], '.', label=f'{_id}', markersize=1.5, color=Spectral(_id/len(sel_ids)), alpha=0.5) #plt.legend() plt.ylim([0,2048]) plt.xlim([0,2048]) #plt.legend() plt.show() ###Output _____no_output_____ ###Markdown visualize pciked hzxys ###Code %matplotlib notebook from matplotlib.cm import Spectral plt.figure(figsize=(5,5),dpi=150) for _i, _id in enumerate(sel_ids): plt.plot([_spots[_i,2] for _spots in final_dna_hzxys_list], [_spots[_i,3] for _spots in final_dna_hzxys_list], '.', markersize=2, color=Spectral(_id/(len(sel_ids)+1)), alpha=0.7) #for _id,_s in zip(sel_ids, kept_spots_list): # plt.plot(_s[:,2],_s[:,3], '.', label=f'{_id}', # markersize=1.5, color=Spectral(_id/len(sel_ids)), alpha=0.5) #plt.legend() #plt.ylim([0,2048]) #plt.xlim([0,2048]) #plt.legend() plt.show() ###Output _____no_output_____ ###Markdown visualize fitted spots ###Code plt.figure(figsize=(4,4),dpi=150) plt.plot(fov.chrom_coords[:,1], fov.chrom_coords[:,2], 'r.', markersize=2) plt.plot(fov.unique_spots_list[0][:,2], fov.unique_spots_list[0][:,3], 'b.', markersize=2) plt.plot(fov.unique_spots_list[-1][:,2], fov.unique_spots_list[-1][:,3], 'g.', markersize=2) sel_drifts[kept_inds] sel_drifts[kept_inds] fov.fov_id pickle.load(open(fov.drift_filename, 'rb')) bead_im, _ = io_tools.load.correct_fov_image(os.path.join(fov.data_folder[0], 'H29R29\\Conv_zscan_05.dax'), [fov.channels[fov.bead_channel_index]], correction_folder=fov.correction_folder, single_im_size=fov.shared_parameters['single_im_size'], all_channels=fov.channels, illumination_corr=True, warp_image=False, calculate_drift=False, return_drift=False, verbose=True, ) correction_tools.alignment.cross_correlation_align_single_image(bead_im[0], fov.ref_im, single_im_size=fov.shared_parameters['single_im_size']) visual_tools.imshow_mark_3d_v2([bead_im[0], fov.ref_im]) ###Output _____no_output_____
Projects/Project 2 Image Captioning/2.Training.ipynb
###Markdown Computer Vision Nanodegree Project: Image Captioning---In this notebook, you will train your CNN-RNN model. You are welcome and encouraged to try out many different architectures and hyperparameters when searching for a good model.This does have the potential to make the project quite messy! Before submitting your project, make sure that you clean up:- the code you write in this notebook. The notebook should describe how to train a single CNN-RNN architecture, corresponding to your final choice of hyperparameters. You should structure the notebook so that the reviewer can replicate your results by running the code in this notebook. - the output of the code cell in **Step 2**. The output should show the output obtained when training the model from scratch.This notebook **will be graded**. Feel free to use the links below to navigate the notebook:- [Step 1](step1): Training Setup- [Step 2](step2): Train your Model- [Step 3](step3): (Optional) Validate your Model Step 1: Training SetupIn this step of the notebook, you will customize the training of your CNN-RNN model by specifying hyperparameters and setting other options that are important to the training procedure. The values you set now will be used when training your model in **Step 2** below.You should only amend blocks of code that are preceded by a `TODO` statement. **Any code blocks that are not preceded by a `TODO` statement should not be modified**. Task 1Begin by setting the following variables:- `batch_size` - the batch size of each training batch. It is the number of image-caption pairs used to amend the model weights in each training step. - `vocab_threshold` - the minimum word count threshold. Note that a larger threshold will result in a smaller vocabulary, whereas a smaller threshold will include rarer words and result in a larger vocabulary. - `vocab_from_file` - a Boolean that decides whether to load the vocabulary from file. - `embed_size` - the dimensionality of the image and word embeddings. - `hidden_size` - the number of features in the hidden state of the RNN decoder. - `num_epochs` - the number of epochs to train the model. We recommend that you set `num_epochs=3`, but feel free to increase or decrease this number as you wish. [This paper](https://arxiv.org/pdf/1502.03044.pdf) trained a captioning model on a single state-of-the-art GPU for 3 days, but you'll soon see that you can get reasonable results in a matter of a few hours! (_But of course, if you want your model to compete with current research, you will have to train for much longer._)- `save_every` - determines how often to save the model weights. We recommend that you set `save_every=1`, to save the model weights after each epoch. This way, after the `i`th epoch, the encoder and decoder weights will be saved in the `models/` folder as `encoder-i.pkl` and `decoder-i.pkl`, respectively.- `print_every` - determines how often to print the batch loss to the Jupyter notebook while training. Note that you **will not** observe a monotonic decrease in the loss function while training - this is perfectly fine and completely expected! You are encouraged to keep this at its default value of `100` to avoid clogging the notebook, but feel free to change it.- `log_file` - the name of the text file containing - for every step - how the loss and perplexity evolved during training.If you're not sure where to begin to set some of the values above, you can peruse [this paper](https://arxiv.org/pdf/1502.03044.pdf) and [this paper](https://arxiv.org/pdf/1411.4555.pdf) for useful guidance! **To avoid spending too long on this notebook**, you are encouraged to consult these suggested research papers to obtain a strong initial guess for which hyperparameters are likely to work best. Then, train a single model, and proceed to the next notebook (**3_Inference.ipynb**). If you are unhappy with your performance, you can return to this notebook to tweak the hyperparameters (and/or the architecture in **model.py**) and re-train your model. Question 1**Question:** Describe your CNN-RNN architecture in detail. With this architecture in mind, how did you select the values of the variables in Task 1? If you consulted a research paper detailing a successful implementation of an image captioning model, please provide the reference.**Answer:** CNN modelis based on ResNet arch. It is a pretty robust model with low error rate. I have implemented most things from the paper "Show and Tell: A Neural Image Captioning Generator". Embed_size and hidden_size are set to 512 in the paper. Batch size of 64 was giving god results so i haven't changed it. To keep the training faster, i did only 3 epochs of training. (Optional) Task 2Note that we have provided a recommended image transform `transform_train` for pre-processing the training images, but you are welcome (and encouraged!) to modify it as you wish. When modifying this transform, keep in mind that:- the images in the dataset have varying heights and widths, and - if using a pre-trained model, you must perform the corresponding appropriate normalization. Question 2**Question:** How did you select the transform in `transform_train`? If you left the transform at its provided value, why do you think that it is a good choice for your CNN architecture?**Answer:** I left the transform unchanged to original because i think the operations performed are sufficient to obtain a good result. Task 3Next, you will specify a Python list containing the learnable parameters of the model. For instance, if you decide to make all weights in the decoder trainable, but only want to train the weights in the embedding layer of the encoder, then you should set `params` to something like:```params = list(decoder.parameters()) + list(encoder.embed.parameters()) ``` Question 3**Question:** How did you select the trainable parameters of your architecture? Why do you think this is a good choice?**Answer:** As I am using a pre-trained ResNet-50 model, only the embedding layer is to be trained.No layer in decoder is previously trained. So, we should train all the layers. Task 4Finally, you will select an [optimizer](http://pytorch.org/docs/master/optim.htmltorch.optim.Optimizer). Question 4**Question:** How did you select the optimizer used to train your model?**Answer:** Used Adam optimizer as it converges faster ###Code # all imports import torch import torch.nn as nn from torchvision import transforms import sys sys.path.append('/opt/cocoapi/PythonAPI') from pycocotools.coco import COCO from data_loader import get_loader from model import EncoderCNN, DecoderRNN import math ## All Variables to set ## TODO #1: Select appropriate values for the Python variables below. batch_size = 64 # batch size vocab_threshold = 4 # minimum word count threshold vocab_from_file = True # if True, load existing vocab file embed_size = 512 # dimensionality of image and word embeddings hidden_size = 512 # number of features in hidden state of the RNN decoder num_epochs = 2 # number of training epochs save_every = 1 # determines frequency of saving model weights print_every = 100 # determines window for printing average loss log_file = 'training_log.txt' # name of file with saved training loss and perplexity # (Optional) TODO #2: Amend the image transform below. transform_train = transforms.Compose([ transforms.Resize(256), # smaller edge of image resized to 256 transforms.RandomCrop(224), # get 224x224 crop from random location transforms.RandomHorizontalFlip(), # horizontally flip image with probability=0.5 transforms.ToTensor(), # convert the PIL Image to a tensor transforms.Normalize((0.485, 0.456, 0.406), # normalize image for pre-trained model (0.229, 0.224, 0.225))]) # Build data loader. data_loader = get_loader(transform=transform_train, mode='train', batch_size=batch_size, vocab_threshold=vocab_threshold, vocab_from_file=vocab_from_file) # The size of the vocabulary. vocab_size = len(data_loader.dataset.vocab) # Initialize the encoder and decoder. encoder = EncoderCNN(embed_size) decoder = DecoderRNN(embed_size, hidden_size, vocab_size) # Move models to GPU if CUDA is available. device = torch.device("cuda" if torch.cuda.is_available() else "cpu") encoder.to(device) decoder.to(device) # Define the loss function. criterion = nn.CrossEntropyLoss().cuda() if torch.cuda.is_available() else nn.CrossEntropyLoss() # TODO #3: Specify the learnable parameters of the model. params = list(decoder.parameters()) + list(encoder.embed.parameters()) # TODO #4: Define the optimizer. optimizer = torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999)) # Set the total number of training steps per epoch. total_step = math.ceil(len(data_loader.dataset.caption_lengths) / data_loader.batch_sampler.batch_size) ###Output _____no_output_____ ###Markdown Step 2: Train your ModelOnce you have executed the code cell in **Step 1**, the training procedure below should run without issue. It is completely fine to leave the code cell below as-is without modifications to train your model. However, if you would like to modify the code used to train the model below, you must ensure that your changes are easily parsed by your reviewer. In other words, make sure to provide appropriate comments to describe how your code works! You may find it useful to load saved weights to resume training. In that case, note the names of the files containing the encoder and decoder weights that you'd like to load (`encoder_file` and `decoder_file`). Then you can load the weights by using the lines below:```python Load pre-trained weights before resuming training.encoder.load_state_dict(torch.load(os.path.join('./models', encoder_file)))decoder.load_state_dict(torch.load(os.path.join('./models', decoder_file)))```While trying out parameters, make sure to take extensive notes and record the settings that you used in your various training runs. In particular, you don't want to encounter a situation where you've trained a model for several hours but can't remember what settings you used :). A Note on Tuning HyperparametersTo figure out how well your model is doing, you can look at how the training loss and perplexity evolve during training - and for the purposes of this project, you are encouraged to amend the hyperparameters based on this information. However, this will not tell you if your model is overfitting to the training data, and, unfortunately, overfitting is a problem that is commonly encountered when training image captioning models. For this project, you need not worry about overfitting. **This project does not have strict requirements regarding the performance of your model**, and you just need to demonstrate that your model has learned **_something_** when you generate captions on the test data. For now, we strongly encourage you to train your model for the suggested 3 epochs without worrying about performance; then, you should immediately transition to the next notebook in the sequence (**3_Inference.ipynb**) to see how your model performs on the test data. If your model needs to be changed, you can come back to this notebook, amend hyperparameters (if necessary), and re-train the model.That said, if you would like to go above and beyond in this project, you can read about some approaches to minimizing overfitting in section 4.3.1 of [this paper](http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7505636). In the next (optional) step of this notebook, we provide some guidance for assessing the performance on the validation dataset. ###Code import torch.utils.data as data import numpy as np import os import requests import time # Open the training log file. f = open(log_file, 'w') old_time = time.time() response = requests.request("GET", "http://metadata.google.internal/computeMetadata/v1/instance/attributes/keep_alive_token", headers={"Metadata-Flavor":"Google"}) for epoch in range(1, num_epochs+1): for i_step in range(1, total_step+1): if time.time() - old_time > 60: old_time = time.time() requests.request("POST", "https://nebula.udacity.com/api/v1/remote/keep-alive", headers={'Authorization': "STAR " + response.text}) # Randomly sample a caption length, and sample indices with that length. indices = data_loader.dataset.get_train_indices() # Create and assign a batch sampler to retrieve a batch with the sampled indices. new_sampler = data.sampler.SubsetRandomSampler(indices=indices) data_loader.batch_sampler.sampler = new_sampler # Obtain the batch. images, captions = next(iter(data_loader)) # Move batch of images and captions to GPU if CUDA is available. images = images.to(device) captions = captions.to(device) # Zero the gradients. decoder.zero_grad() encoder.zero_grad() # Pass the inputs through the CNN-RNN model. features = encoder(images) outputs = decoder(features, captions) # Calculate the batch loss. loss = criterion(outputs.view(-1, vocab_size), captions.view(-1)) # Backward pass. loss.backward() # Update the parameters in the optimizer. optimizer.step() # Get training statistics. stats = 'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' % (epoch, num_epochs, i_step, total_step, loss.item(), np.exp(loss.item())) # Print training statistics (on same line). print('\r' + stats, end="") sys.stdout.flush() # Print training statistics to file. f.write(stats + '\n') f.flush() # Print training statistics (on different line). if i_step % print_every == 0: print('\r' + stats) # Save the weights. if epoch % save_every == 0: torch.save(decoder.state_dict(), os.path.join('./models', 'decoder-%d.pkl' % epoch)) torch.save(encoder.state_dict(), os.path.join('./models', 'encoder-%d.pkl' % epoch)) # Close the training log file. f.close() ###Output Epoch [1/3], Step [100/6471], Loss: 4.5218, Perplexity: 92.0008 Epoch [1/3], Step [200/6471], Loss: 3.7283, Perplexity: 41.60764 Epoch [1/3], Step [300/6471], Loss: 3.7600, Perplexity: 42.9495 Epoch [1/3], Step [400/6471], Loss: 3.5082, Perplexity: 33.3866 Epoch [1/3], Step [500/6471], Loss: 3.3675, Perplexity: 29.0047 Epoch [1/3], Step [600/6471], Loss: 3.3409, Perplexity: 28.2457 Epoch [1/3], Step [700/6471], Loss: 3.2590, Perplexity: 26.0226 Epoch [1/3], Step [800/6471], Loss: 3.1923, Perplexity: 24.3448 Epoch [1/3], Step [900/6471], Loss: 3.4864, Perplexity: 32.66809 Epoch [1/3], Step [1000/6471], Loss: 3.2017, Perplexity: 24.5745 Epoch [1/3], Step [1100/6471], Loss: 2.8471, Perplexity: 17.23760 Epoch [1/3], Step [1200/6471], Loss: 3.3957, Perplexity: 29.83429 Epoch [1/3], Step [1300/6471], Loss: 2.8143, Perplexity: 16.6808 Epoch [1/3], Step [1400/6471], Loss: 2.7412, Perplexity: 15.5054 Epoch [1/3], Step [1500/6471], Loss: 2.7068, Perplexity: 14.9807 Epoch [1/3], Step [1600/6471], Loss: 2.8094, Perplexity: 16.5994 Epoch [1/3], Step [1700/6471], Loss: 2.7322, Perplexity: 15.3664 Epoch [1/3], Step [1800/6471], Loss: 2.7412, Perplexity: 15.5063 Epoch [1/3], Step [1900/6471], Loss: 3.0192, Perplexity: 20.4749 Epoch [1/3], Step [2000/6471], Loss: 2.7178, Perplexity: 15.1469 Epoch [1/3], Step [2100/6471], Loss: 2.5075, Perplexity: 12.2740 Epoch [1/3], Step [2200/6471], Loss: 2.6035, Perplexity: 13.5108 Epoch [1/3], Step [2300/6471], Loss: 3.2503, Perplexity: 25.7984 Epoch [1/3], Step [2400/6471], Loss: 2.4187, Perplexity: 11.2318 Epoch [1/3], Step [2500/6471], Loss: 2.6615, Perplexity: 14.3180 Epoch [1/3], Step [2600/6471], Loss: 2.4829, Perplexity: 11.9763 Epoch [1/3], Step [2700/6471], Loss: 2.2754, Perplexity: 9.73180 Epoch [1/3], Step [2800/6471], Loss: 2.4736, Perplexity: 11.8657 Epoch [1/3], Step [2900/6471], Loss: 2.3892, Perplexity: 10.9049 Epoch [1/3], Step [3000/6471], Loss: 2.5187, Perplexity: 12.4121 Epoch [1/3], Step [3100/6471], Loss: 2.3921, Perplexity: 10.9368 Epoch [1/3], Step [3200/6471], Loss: 2.4762, Perplexity: 11.8963 Epoch [1/3], Step [3300/6471], Loss: 2.3599, Perplexity: 10.5903 Epoch [1/3], Step [3400/6471], Loss: 2.4169, Perplexity: 11.2109 Epoch [1/3], Step [3500/6471], Loss: 2.3541, Perplexity: 10.5291 Epoch [1/3], Step [3600/6471], Loss: 2.9826, Perplexity: 19.7382 Epoch [1/3], Step [3700/6471], Loss: 2.3861, Perplexity: 10.8710 Epoch [1/3], Step [3800/6471], Loss: 2.3646, Perplexity: 10.6396 Epoch [1/3], Step [3900/6471], Loss: 2.3194, Perplexity: 10.1692 Epoch [1/3], Step [4000/6471], Loss: 2.3880, Perplexity: 10.8912 Epoch [1/3], Step [4100/6471], Loss: 2.3221, Perplexity: 10.1966 Epoch [1/3], Step [4200/6471], Loss: 2.3396, Perplexity: 10.3772 Epoch [1/3], Step [4300/6471], Loss: 2.3701, Perplexity: 10.6987 Epoch [1/3], Step [4400/6471], Loss: 2.6036, Perplexity: 13.5127 Epoch [1/3], Step [4500/6471], Loss: 2.2085, Perplexity: 9.10242 Epoch [1/3], Step [4600/6471], Loss: 3.3022, Perplexity: 27.1733 Epoch [1/3], Step [4700/6471], Loss: 2.7579, Perplexity: 15.7665 Epoch [1/3], Step [4800/6471], Loss: 2.5946, Perplexity: 13.3910 Epoch [1/3], Step [4900/6471], Loss: 2.8834, Perplexity: 17.8745 Epoch [1/3], Step [5000/6471], Loss: 2.2033, Perplexity: 9.05531 Epoch [1/3], Step [5100/6471], Loss: 2.2761, Perplexity: 9.73856 Epoch [1/3], Step [5200/6471], Loss: 2.6565, Perplexity: 14.2464 Epoch [1/3], Step [5300/6471], Loss: 2.4118, Perplexity: 11.1544 Epoch [1/3], Step [5400/6471], Loss: 2.4533, Perplexity: 11.6267 Epoch [1/3], Step [5500/6471], Loss: 2.0934, Perplexity: 8.11257 Epoch [1/3], Step [5600/6471], Loss: 2.3873, Perplexity: 10.8845 Epoch [1/3], Step [5700/6471], Loss: 2.1308, Perplexity: 8.421650 Epoch [1/3], Step [5800/6471], Loss: 2.4807, Perplexity: 11.9499 Epoch [1/3], Step [5900/6471], Loss: 2.2764, Perplexity: 9.74208 Epoch [1/3], Step [6000/6471], Loss: 2.4219, Perplexity: 11.2678 Epoch [1/3], Step [6100/6471], Loss: 2.0704, Perplexity: 7.92820 Epoch [1/3], Step [6200/6471], Loss: 2.2936, Perplexity: 9.91053 Epoch [1/3], Step [6300/6471], Loss: 2.2755, Perplexity: 9.73290 Epoch [1/3], Step [6400/6471], Loss: 2.6223, Perplexity: 13.7680 Epoch [2/3], Step [100/6471], Loss: 2.0691, Perplexity: 7.917986 Epoch [2/3], Step [200/6471], Loss: 2.2568, Perplexity: 9.55278 Epoch [2/3], Step [300/6471], Loss: 2.1678, Perplexity: 8.73924 Epoch [2/3], Step [400/6471], Loss: 2.1480, Perplexity: 8.56788 Epoch [2/3], Step [500/6471], Loss: 2.3019, Perplexity: 9.99277 Epoch [2/3], Step [600/6471], Loss: 2.2467, Perplexity: 9.45640 Epoch [2/3], Step [700/6471], Loss: 2.3325, Perplexity: 10.3041 Epoch [2/3], Step [800/6471], Loss: 2.2613, Perplexity: 9.59580 Epoch [2/3], Step [900/6471], Loss: 2.3086, Perplexity: 10.0604 Epoch [2/3], Step [1000/6471], Loss: 2.0802, Perplexity: 8.0061 Epoch [2/3], Step [1100/6471], Loss: 1.9997, Perplexity: 7.38687 Epoch [2/3], Step [1200/6471], Loss: 2.1149, Perplexity: 8.28851 Epoch [2/3], Step [1300/6471], Loss: 2.1374, Perplexity: 8.47731 Epoch [2/3], Step [1400/6471], Loss: 2.6317, Perplexity: 13.8978 Epoch [2/3], Step [1500/6471], Loss: 2.3402, Perplexity: 10.3838 Epoch [2/3], Step [1600/6471], Loss: 2.1557, Perplexity: 8.63413 Epoch [2/3], Step [1700/6471], Loss: 1.9921, Perplexity: 7.33107 Epoch [2/3], Step [1800/6471], Loss: 2.0854, Perplexity: 8.04818 Epoch [2/3], Step [1900/6471], Loss: 2.2936, Perplexity: 9.91088 Epoch [2/3], Step [2000/6471], Loss: 2.1862, Perplexity: 8.90100 Epoch [2/3], Step [2100/6471], Loss: 2.8537, Perplexity: 17.3522 Epoch [2/3], Step [2200/6471], Loss: 2.2995, Perplexity: 9.96886 Epoch [2/3], Step [2300/6471], Loss: 2.1319, Perplexity: 8.43075 Epoch [2/3], Step [2400/6471], Loss: 2.0518, Perplexity: 7.78208 Epoch [2/3], Step [2500/6471], Loss: 2.0349, Perplexity: 7.65116 Epoch [2/3], Step [2600/6471], Loss: 2.2648, Perplexity: 9.62892 Epoch [2/3], Step [2700/6471], Loss: 2.1298, Perplexity: 8.41290 Epoch [2/3], Step [2800/6471], Loss: 2.1986, Perplexity: 9.01254 Epoch [2/3], Step [2900/6471], Loss: 2.3103, Perplexity: 10.0773 Epoch [2/3], Step [3000/6471], Loss: 2.1846, Perplexity: 8.88720 Epoch [2/3], Step [3100/6471], Loss: 2.1580, Perplexity: 8.65340 Epoch [2/3], Step [3200/6471], Loss: 2.2292, Perplexity: 9.29246 Epoch [2/3], Step [3300/6471], Loss: 1.8819, Perplexity: 6.56583 Epoch [2/3], Step [3400/6471], Loss: 2.3803, Perplexity: 10.8081 Epoch [2/3], Step [3500/6471], Loss: 2.4078, Perplexity: 11.1094 Epoch [2/3], Step [3600/6471], Loss: 2.2128, Perplexity: 9.14174 Epoch [2/3], Step [3700/6471], Loss: 2.0495, Perplexity: 7.76377 Epoch [2/3], Step [3800/6471], Loss: 2.1137, Perplexity: 8.27880 Epoch [2/3], Step [3900/6471], Loss: 1.9873, Perplexity: 7.29551 Epoch [2/3], Step [4000/6471], Loss: 2.1141, Perplexity: 8.28184 Epoch [2/3], Step [4100/6471], Loss: 2.0982, Perplexity: 8.15194 Epoch [2/3], Step [4200/6471], Loss: 1.9257, Perplexity: 6.85990 Epoch [2/3], Step [4300/6471], Loss: 2.2778, Perplexity: 9.75528 Epoch [2/3], Step [4400/6471], Loss: 2.3145, Perplexity: 10.1204 Epoch [2/3], Step [4500/6471], Loss: 2.0857, Perplexity: 8.05058 Epoch [2/3], Step [4600/6471], Loss: 2.1453, Perplexity: 8.54506 Epoch [2/3], Step [4700/6471], Loss: 2.4439, Perplexity: 11.5181 Epoch [2/3], Step [4800/6471], Loss: 2.4398, Perplexity: 11.47123 Epoch [2/3], Step [4900/6471], Loss: 2.0735, Perplexity: 7.95266 Epoch [2/3], Step [5000/6471], Loss: 2.2301, Perplexity: 9.30038 Epoch [2/3], Step [5100/6471], Loss: 2.0144, Perplexity: 7.49646 Epoch [2/3], Step [5200/6471], Loss: 1.9276, Perplexity: 6.87286 Epoch [2/3], Step [5300/6471], Loss: 2.1884, Perplexity: 8.92124 Epoch [2/3], Step [5400/6471], Loss: 2.2629, Perplexity: 9.61060 Epoch [2/3], Step [5500/6471], Loss: 2.0748, Perplexity: 7.96294 Epoch [2/3], Step [5600/6471], Loss: 2.1107, Perplexity: 8.25371 Epoch [2/3], Step [5700/6471], Loss: 2.5667, Perplexity: 13.0221 Epoch [2/3], Step [5800/6471], Loss: 1.9837, Perplexity: 7.26987 Epoch [2/3], Step [5900/6471], Loss: 2.1704, Perplexity: 8.76209 Epoch [2/3], Step [6000/6471], Loss: 1.7752, Perplexity: 5.90156 Epoch [2/3], Step [6100/6471], Loss: 2.6451, Perplexity: 14.0843 Epoch [2/3], Step [6200/6471], Loss: 1.9639, Perplexity: 7.12730 Epoch [2/3], Step [6300/6471], Loss: 2.0161, Perplexity: 7.50875 Epoch [2/3], Step [6400/6471], Loss: 2.4282, Perplexity: 11.3384 Epoch [3/3], Step [100/6471], Loss: 2.0140, Perplexity: 7.493059 Epoch [3/3], Step [159/6471], Loss: 2.5616, Perplexity: 12.9565 ###Markdown Step 3: (Optional) Validate your ModelTo assess potential overfitting, one approach is to assess performance on a validation set. If you decide to do this **optional** task, you are required to first complete all of the steps in the next notebook in the sequence (**3_Inference.ipynb**); as part of that notebook, you will write and test code (specifically, the `sample` method in the `DecoderRNN` class) that uses your RNN decoder to generate captions. That code will prove incredibly useful here. If you decide to validate your model, please do not edit the data loader in **data_loader.py**. Instead, create a new file named **data_loader_val.py** containing the code for obtaining the data loader for the validation data. You can access:- the validation images at filepath `'/opt/cocoapi/images/train2014/'`, and- the validation image caption annotation file at filepath `'/opt/cocoapi/annotations/captions_val2014.json'`.The suggested approach to validating your model involves creating a json file such as [this one](https://github.com/cocodataset/cocoapi/blob/master/results/captions_val2014_fakecap_results.json) containing your model's predicted captions for the validation images. Then, you can write your own script or use one that you [find online](https://github.com/tylin/coco-caption) to calculate the BLEU score of your model. You can read more about the BLEU score, along with other evaluation metrics (such as TEOR and Cider) in section 4.1 of [this paper](https://arxiv.org/pdf/1411.4555.pdf). For more information about how to use the annotation file, check out the [website](http://cocodataset.org/download) for the COCO dataset. ###Code # (Optional) TODO: Validate your model. ###Output _____no_output_____
notebooks/analysis_zebrafish-related_chebi.ipynb
###Markdown Demonstration of pyMultiOmics Load the processed Zebrafish data from [1][1] [Rabinowitz, Jeremy S., et al. "Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish." Proceedings of the National Academy of Sciences 114.5 (2017): E717-E726.](https://www.pnas.org/content/114/5/E717.short) ###Code DATA_FOLDER = os.path.abspath(os.path.join('test_data', 'zebrafish_data')) DATA_FOLDER ###Output _____no_output_____ ###Markdown Read metabolomics data ###Code compound_data = pd.read_csv(os.path.join(DATA_FOLDER, 'compound_data_chebi.csv'), index_col='Identifier') compound_design = pd.read_csv(os.path.join(DATA_FOLDER, 'compound_design.csv'), index_col='sample') compound_data compound_data.loc[18139] fly_new_data = pd.read_csv(os.path.join(DATA_FOLDER, '../fly_data/fly_metabolomics_no_dupes.csv'), index_col='Identifier') fly_data = prepare_input(fly_new_data) fly_data r_chebi = get_related_chebi(fly_data) remove_dupes(r_chebi) fly_data remove_dupes(fly_data) no_dupes os.getcwd() set_log_level_info() type(compound_design) print(compound_design.head()) compound_design compound_data.head() ###Output _____no_output_____ ###Markdown Methods for adding related chebi IDs ###Code # This method is pretty inefficient with the use of iterrows but I'm not sure of another way to run this # All attempts at vectorisation failed - help Joe? def get_related_chebi_data(cmpd_data): # dont want to modify the original df cmpd_data = cmpd_data.copy() # ensure index type is set to string, since get_chebi_relation_dict also returns string as the keys cmpd_data.index = cmpd_data.index.map(str) chebi_rel_dict = get_chebi_relation_dict() with_related = list(chebi_rel_dict.keys()) cmpd_data.loc[cmpd_data.index.isin(with_related), 'related']= 'Yes' cmpd_data = cmpd_data.reset_index() # We use this related_df so that we are not looking at all rows, only those with related chebi_ids related_df = cmpd_data[cmpd_data.related=='Yes'] # print(related_df) for ix, row in related_df.iterrows(): print (ix) chebi_list = chebi_rel_dict[str(row.Identifier)] for c in chebi_list: #Check if the duplicate row with that chebi exists in the DF current_row = row current_row.Identifier = int(c) matches = cmpd_data[(cmpd_data==current_row).all(axis=1)] if len(matches) == 0: # print ("no matching rows, appending") cmpd_data = cmpd_data.append(current_row) # else: # print ("row found in DF therefore skipping") c_data = cmpd_data.drop(['related'], axis=1) c_data = c_data.set_index(['Identifier']) return c_data def get_related_chebi_data_v2(cmpd_data): cmpd_data = cmpd_data.copy() # ensure index type is set to string, since get_chebi_relation_dict also returns string as the keys cmpd_data.index = cmpd_data.index.map(str) cmpd_data = cmpd_data.reset_index() original_cmpds = set(cmpd_data['Identifier']) # used for checking later # construct the related chebi dict chebi_rel_dict = get_chebi_relation_dict() # loop through each row in cmpd_data with_related_data = [] for ix, row in cmpd_data.iterrows(): # add the current row we're looping current_identifier = row['Identifier'] with_related_data.append(row) # check if there are related compounds to add if current_identifier in chebi_rel_dict: # if yes, get the related compounds chebi_list = chebi_rel_dict[current_identifier] for c in chebi_list: # add the related chebi, but only if it's not already present in the original compound if c not in original_cmpds: current_row = row.copy() current_row['Identifier'] = c with_related_data.append(current_row) # combine all the rows into a single dataframe df = pd.concat(with_related_data, axis=1).T df = df.set_index('Identifier') logger.info('Inserted %d related compounds' % (len(df) - len(cmpd_data))) return df def remove_dupes(df): df = df.reset_index() # group df by the 'Identifier' column to_delete = [] grouped = df.groupby(df['Identifier']) for identifier, group_df in grouped: # if there are multiple rows sharing the same identifier if len(group_df) > 1: # remove 'Identifier' column from the grouped df since it can't be summed group_df = group_df.drop('Identifier', axis=1) # find the row with the largest sum across the row in the group idxmax = group_df.sum(axis=1).idxmax() # mark all the rows in the group for deletion, except the one with the largest sum temp = group_df.index.tolist() temp.remove(idxmax) to_delete.extend(temp) # actually do the deletion here logger.info('Removing %d rows with duplicate identifiers' % (len(to_delete))) df = df.drop(to_delete) df = df.set_index('Identifier') return df def get_chebi_relation_dict(): """ A method to parse the chebi relation tsv and store the relationship we want in a dictionary :return: Dict with structure Chebi_id: [related_chebi_ids] """ CHEBI_BFS_RELATION_DICT = 'chebi_bfs_relation_dict.pkl' try: chebi_bfs_relation_dict = load_object("../pyMultiOmics/data/" + CHEBI_BFS_RELATION_DICT) except Exception as e: logger.info("Constructing %s " % CHEBI_BFS_RELATION_DICT) try: chebi_relation_df = pd.read_csv("data/relation.tsv", delimiter="\t") except FileNotFoundError as e: logger.error("data/relation.tsv must be present") raise e # List of relationship we want in the dictionary select_list = ["is_conjugate_base_of", "is_conjugate_acid_of", "is_tautomer_of"] chebi_select_df = chebi_relation_df[chebi_relation_df.TYPE.isin(select_list)] chebi_relation_dict = {} # Gather all the INIT_IDs into a dictionary so that each INIT_ID is unique for ix, row in chebi_select_df.iterrows(): init_id = str(row.INIT_ID) final_id = str(row.FINAL_ID) if init_id in chebi_relation_dict.keys(): # Append the final_id onto the existing values id_1 = chebi_relation_dict[init_id] joined_string = ", ".join([id_1, final_id]) chebi_relation_dict[init_id] = joined_string else: # make a new key entry for the dict chebi_relation_dict[init_id] = final_id # Change string values to a list. graph = {k: v.replace(" ", "").split(",") for k, v in chebi_relation_dict.items()} chebi_bfs_relation_dict = {} for k, v in graph.items(): r_chebis = bfs_get_related(graph, k) r_chebis.remove(k) #remove original key from list chebi_bfs_relation_dict[k] = r_chebis try: logger.info("saving chebi_relation_dict") save_object(chebi_bfs_relation_dict, "./data/" + CHEBI_BFS_RELATION_DICT + ".pkl") except Exception as e: logger.error("Pickle didn't work because of %s " % e) traceback.print_exc() pass return chebi_bfs_relation_dict import gzip import pickle def load_object(filename): """ Load saved object from file :param filename: The file to load :return: the loaded object """ with gzip.GzipFile(filename, 'rb') as f: return pickle.load(f) def bfs_get_related(graph_dict, node): """ :param graph: Dictionary of key: ['value'] pairs :param node: the key for which all related values should be returned :return: All related keys as a list """ visited = [] # List to keep track of visited nodes. queue = [] #Initialize a queue related_keys = [] visited.append(node) queue.append(node) while queue: k = queue.pop(0) related_keys.append(k) for neighbour in graph_dict[k]: if neighbour not in visited: visited.append(neighbour) queue.append(neighbour) return related_keys def get_related_chebi_ids(chebi_ids): """ :param chebi_ids: A list of chebi IDS :return: A set of related chebi_IDs that are not already in the list """ chebi_relation_dict = get_chebi_relation_dict() related_chebis = set() for c_id in chebi_ids: if c_id in chebi_relation_dict: related_chebis.update(chebi_relation_dict[c_id]) return related_chebis ###Output _____no_output_____ ###Markdown For each chebi_id in the DF that has other relaed Chebi_ids, add on a duplicate row. For the Zebrafish DF we expect the input and output to be the same as all the related Chebi_ids are already present in the DF ###Code zebra_f_related_chebi = get_related_chebi_data_v2(compound_data) compound_data zebra_f_related_chebi zebra_f_related_chebi_no_dupes = remove_dupes(zebra_f_related_chebi) zebra_f_related_chebi_no_dupes ###Output 2021-03-29 13:21:43.472 | INFO | __main__:remove_dupes:24 - Removing 0 rows with duplicate identifiers 2021-03-29 13:21:43.472 | INFO | __main__:remove_dupes:24 - Removing 0 rows with duplicate identifiers 2021-03-29 13:21:43.472 | INFO | __main__:remove_dupes:24 - Removing 0 rows with duplicate identifiers 2021-03-29 13:21:43.472 | INFO | __main__:remove_dupes:24 - Removing 0 rows with duplicate identifiers 2021-03-29 13:21:43.472 | INFO | __main__:remove_dupes:24 - Removing 0 rows with duplicate identifiers 2021-03-29 13:21:43.472 | INFO | __main__:remove_dupes:24 - Removing 0 rows with duplicate identifiers 2021-03-29 13:21:43.472 | INFO | __main__:remove_dupes:24 - Removing 0 rows with duplicate identifiers 2021-03-29 13:21:43.472 | INFO | __main__:remove_dupes:24 - Removing 0 rows with duplicate identifiers 2021-03-29 13:21:43.472 | INFO | __main__:remove_dupes:24 - Removing 0 rows with duplicate identifiers 2021-03-29 13:21:43.472 | INFO | __main__:remove_dupes:24 - Removing 0 rows with duplicate identifiers 2021-03-29 13:21:43.472 | INFO | __main__:remove_dupes:24 - Removing 0 rows with duplicate identifiers ###Markdown For the Fly DF we expect the input and output to be the same as all the related Chebi_ids are already present in the DF ###Code fly_related_chebi = get_related_chebi_data_v2(fly_compound_data) fly_related_chebi fly_compound_data fly_r_chebi_new = get_related_chebi_data_v2(fly_new_data) fly_r_chebi_new fly_new_data fly_r_chebi_new[fly_r_chebi_new['CAR_F1.mzXML']==78386424.0] new_fly_no_dupes = remove_dupes(fly_r_chebi_new) new_fly_no_dupes fly_new_data hc_chebi_int = list(map(int, hc_chebi)) fly_new_data.loc[hc_chebi_int] new_fly_no_dupes.loc[hc_chebi] ## Difference between two databases. from pandas._testing import assert_frame_equal test1 = new_fly_no_dupes.loc[hc_chebi] fly_new_data.index = fly_new_data.index.map(str) test2 = fly_new_data.loc[hc_chebi] t1 = test1.astype(object) t2 = test2.astype(object) assert_frame_equal(t1, t2) hc_chebi = ['17203', '17750', '16414', '16704', '18132', '27596', '17533', '32796', '18049', '28483', '17256', '6032', '17015', '46905', '16168', '15603', '37023', '28587', '15978', '35704', '17215', '45133', '47977', '18050', '27570', '16958', '18183', '32816', '506227', '16347', '1547', '17380', '29069', '18123', '18344', '10072', '16283', '17895', '16785', '16828', '16349', '17154', '17747', '16015', '73685', '17981', '18019', '28123', '38571', '70744', '17549', '18095', '42111', '33198', '4167', '16865', '17587', '16946', '17310', '16856', '17992', '17521', '17515', '16467', '17562', '16020', '16708', '4170', '15354', '16899', '18300', '19062', '16643', '17295', '17368', '15746', '17489', '17858', '17196', '15676', '17482', '17351', '30769', '16335', '16870', '17596', '16027', '18295', '15891', '21547', '30797', '27781', '16040', '84543', '17345', '73124', '45658', '17713', '16742', '16610', '73238', '73882', '30836', '17148', '17361', '16695', '52742'] fly_related_chebi_no_dupes = remove_dupes(fly_related_chebi) fly_related_chebi_no_dupes all_rows = len(fly_related_chebi_no_dupes) unique_rows = len(fly_related_chebi_no_dupes['sak_h_3.mzXML'].unique()) unique_rows print ("There are", unique_rows, "unique rows out of", all_rows, "total rows in the FlyMet data") ###Output There are 892 unique rows out of 9244 total rows in the FlyMet data
code/analysis/3_figures_and_tables/supplementary_figs/FigS17/cnn_vs_MOSAIKS_scatter.ipynb
###Markdown This notebook plots errors in MOSAIKS predictions against errors in CNN predictions ###Code from mosaiks import config as c import os import pickle import pandas as pd import seaborn as sns from scipy.stats import pearsonr from mosaiks.utils.imports import * %matplotlib inline # plot settings plt.rcParams["pdf.fonttype"] = 42 sns.set(context="paper", style="ticks") ###Output _____no_output_____ ###Markdown Get task names in the specified order ###Code # get task names c_by_app = [getattr(c, i) for i in c.app_order] num_tasks = len(c.app_order) disp_names = [config["disp_name"] for config in c_by_app] ###Output _____no_output_____ ###Markdown Grab primary MOSAIKS analysis predictions and labels ###Code # get variables and determine if sampled UAR or POP in main analysis variables = [config["variable"] for config in c_by_app] sample_types = [config["sampling"] for config in c_by_app] # get filepaths for data file_paths_local = [] filetype = ["testset", "scatter"] for tx, t in enumerate(c.app_order): c = io.get_filepaths(c, t) for ft in filetype: this_filename = f"outcomes_{ft}_obsAndPred_{t}_{variables[tx]}_CONTUS_16_640_{sample_types[tx]}_100000_0_random_features_3_0.data" this_filepath_local = os.path.join(c.fig_dir_prim, this_filename) file_paths_local.append(this_filepath_local) mos_dfs = [] for tx, t in enumerate(c.app_order): file1 = file_paths_local[tx * 2] file2 = file_paths_local[tx * 2 + 1] dfs_task = [] # grab the test set and validation/training set; concatenate to match test set for CNN for fidx in [0, 1]: with open(file_paths_local[tx * 2 + fidx], "rb") as file_this: data_this = pickle.load(file_this) mos_dfs.append( pd.DataFrame( { "truth": np.squeeze(data_this["truth"]), "preds": data_this["preds"], "lat": data_this["lat"], "lon": data_this["lon"], }, index=[t] * len(data_this["lat"]), ) ) mos_df = pd.concat(mos_dfs) mos_df.index.name = "task" mos_df["errors"] = mos_df["truth"] - mos_df["preds"] ###Output _____no_output_____ ###Markdown Grab CNN predictions ###Code file_paths_local = [ os.path.join(c.data_dir, "output", "cnn_comparison", f"resnet18_{t}.pickle") for t in c.app_order ] cnn_dfs = [] for tx, t in enumerate(c.app_order): with open(file_paths_local[tx], "rb") as file_this: data_this = pickle.load(file_this) cnn_dfs.append( pd.DataFrame( { "truth": np.squeeze(data_this["y_test"]), "preds": np.squeeze(data_this["y_test_pred"]), "test_r2": data_this["test_r2"], }, index=pd.MultiIndex.from_product( [[t], np.squeeze(data_this["ids_test"])], names=["task", "ID"] ), ) ) cnn_df = pd.concat(cnn_dfs) cnn_df["errors"] = cnn_df.truth - cnn_df.preds ###Output _____no_output_____ ###Markdown Merge CNN errors to MOSAIKS errors ###Code latlons = {} for s in ["UAR", "POP"]: _, latlons[s] = io.get_X_latlon(c, s) latlons = pd.concat(latlons.values()) latlons = latlons.drop_duplicates() cnn_df = ( cnn_df.join(latlons, on="ID", how="left") .reset_index() .set_index(["task", "lat", "lon"]) ) mos_df = mos_df.set_index(["lat", "lon"], append=True) merged_df = mos_df.join(cnn_df, lsuffix="_mos", rsuffix="_cnn") # keep only matched labels merged_df = merged_df[merged_df.truth_cnn.notnull()] ###Output _____no_output_____ ###Markdown Compute R2s between CNN and MOSAIKS predictions and errors ###Code r2s = [] for t in c.app_order: r2s.append( pd.DataFrame( { "R2preds": pearsonr( merged_df.loc[t]["preds_cnn"], merged_df.loc[t]["preds_mos"] )[0] ** 2, "R2errors": pearsonr( merged_df.loc[t]["errors_cnn"], merged_df.loc[t]["errors_mos"] )[0] ** 2, }, index=[t], ) ) r2s_df = pd.concat(r2s) ###Output _____no_output_____ ###Markdown Plot CNN vs MOSAIKS predictions and errors ###Code # settings for text formatting yloc = np.linspace(1, 1 / 6, 7) - 0.06 fig, ax = plt.subplots(7, 2, figsize=(6, 10)) for tx, t in enumerate(c.app_order): # simplify ticks maxerr = round(merged_df.loc[t].filter(like="errors").abs().max().max()) maxpred = round(merged_df.loc[t].filter(like="preds").abs().max().max()) minpred = round(merged_df.loc[t].filter(like="preds").abs().min().min()) if t in ["elevation", "income", "roads"]: maxerr = round(maxerr / 10) * 10 maxpred = round(maxpred / 10) * 10 minpred = round(minpred / 10) * 10 errticks = np.linspace(-1 * maxerr, maxerr, 3) predticks = np.linspace(minpred, maxpred, 3) for jx, j in enumerate([("preds", predticks), ("errors", errticks)]): kind = j[0] ticks = j[1] ax[tx, jx].plot( merged_df.loc[t][f"{kind}_mos"], merged_df.loc[t][f"{kind}_cnn"], "o", color=c_by_app[tx]["color"], alpha=0.2, markersize=1, ) x = np.linspace(*ax[tx, jx].get_xlim()) ax[tx, jx].plot(x, x, color="grey") # force tick marks to be the same ax[tx, jx].set_xticks(ticks) ax[tx, jx].set_yticks(ticks) # force equality of lines ax[tx, jx].set_aspect("equal") # kill left and top lines sns.despine(ax=ax[tx, jx]) # add R2 r2 = r2s_df.loc[t].filter(like=kind)[0].round(2) txt = fr"$\rho^2 = {r2:.2f}$" ax[tx, jx].annotate( txt, xy=(6, 72), xycoords="axes points", size=9, ha="left", va="top" ) # add evenly spaced y labels fig.text( 0.55, yloc[tx], "CNN errors", rotation="vertical", rotation_mode="anchor", va="center", ha="center", ) fig.text( 0.07, yloc[tx], "CNN predictions", rotation="vertical", rotation_mode="anchor", va="center", ha="center", ) fig.text( 0.01, yloc[tx], c_by_app[tx]["disp_name"].capitalize().replace(" ", "\n"), weight="bold", rotation="vertical", rotation_mode="anchor", va="bottom", ha="center", ) ax[6, 0].set_xlabel("MOSAIKS predictions", ha="center", va="top", rotation="horizontal") ax[6, 1].set_xlabel("MOSAIKS errors", ha="center", va="top", rotation="horizontal") fig.tight_layout(pad=0.5) # Save save_dir = os.path.join(c.res_dir, "figures", "FigS17") os.makedirs(save_dir, exist_ok=True) fig.savefig( os.path.join(save_dir, "cnn_mosaiks_predictions_errors_scatter.png"), dpi=300, tight_layout=True, bbox_inches="tight", ) ###Output _____no_output_____
2018_05_28_Pandas_Pivot_review.ipynb
###Markdown Pandas - Pivot- Data Frame의 컬럼에서 index, columns, values를 선택하여 데이터 프레임을 만드는 방법- 아래 형태로 파라미터는 index, columns, values로 들어간다. - df.pivot(index, columns, values)- index와 columns 데이터에 해당하는 values가 2개 이상이면 에러가 발생한다. ###Code # titanic data load # https://www.kaggle.com/c/titanic/data # survived : 0-no, 1-yes titanic = pd.read_csv('train.csv') titanic.tail() # sex와 Pclass에 따라 groupby를 하고 데이터의 수를 Counts 컬럼에 추가 tatanic_f1 = pd.DataFrame(titanic, columns= ['Sex', 'Pclass']) titanic_f1 = titanic.groupby(['Sex', 'Pclass']).size().reset_index(name='Counts') titanic_f1 # pivot: 객실등급과 남녀에 따른 데이터 수 # df.pivot(index, columns, values) titanic_f1.pivot('Sex', 'Pclass', 'Counts') titanic_f1.pivot('Pclass','Sex','Counts') # 생존과 성별에 따라 groupby를 하고 데이터의 수를 Counts 컬럼에 추가 titanic.tail(5) titanic_df2 = pd.DataFrame(titanic, columns=['Survived', 'Sex']) titanic_df2 = titanic.groupby(['Survived','Sex']).size().reset_index(name='Counts') titanic_df2 # pivot: 성별과 생존에 따른 데이터 수 # df.pivot(index, column, values) titanic_df2.pivot('Sex', 'Survived', 'Counts') ###Output _____no_output_____ ###Markdown Pivot_table- pivot_table(values, index, columns, aggfunc) - values: value 값 - index: index 리스트 데이터 - columns: columns 리스트 데이터 - aggfunc: groupby aggregate 함수 - fill_value: 데이터가 없을 때 들어가는 데이터 - dropna: 없는 데이터 컬럼은 제거 ###Code titanic_df3 = pd.DataFrame(titanic) titanic_df3['Count'] = 1 titanic_df3.tail() # pivot_table: 객실등급(Plcass)과 남녀(Sex)에 따른 데이터 수 titanic_df3.pivot_table(values='Count', index='Sex', columns='Pclass', aggfunc=np.sum) # 객실등급(Pclass)과 성별별(Sex) 생존 수(Survived) titanic_df3.pivot_table(index=['Pclass', 'Sex'], columns='Survived', values='Count', aggfunc=np.sum) # 문제 # 아래와 같은 데이터 프레임을 pivot_table을 이용하여 남녀 성별별 생존 # 데이터를 구하시오. # index = Survived, Column Sex, Count result = titanic_df3.pivot_table(index='Survived', columns='Sex', values='Count', aggfunc=np.sum) result # total column result['total'] = result['female'] + result['male'] result # total row result.loc['total'] = result.loc[0] + result.loc[1] result # delete row result.drop('total', inplace=True) result result.drop('total', axis=1,inplace=True) result # SibSp: 형제/배우자 # Parch: 아이들 result1 = titanic_df3.pivot_table(index='Survived', columns = ['Pclass', 'Parch'], values = 'Count', aggfunc=sum) result1 # Nan 값들도 보이고, Parch에 없는 숫자도 보인다. # fill_value : 데이터가 없을 때 들어가는 데이터 result1 = titanic_df3.pivot_table(index='Survived', columns=['Pclass', 'Parch'], values='Count', aggfunc=np.sum, fill_value = 0) result1 # dropna: 없는 데이터 컬럼은 제거 df = titanic_df3.pivot_table(index='Survived', columns=['Parch', 'Pclass'], values='Count', aggfunc=np.sum, fill_value=0, dropna=False) df ###Output _____no_output_____
Build, train, and deploy a machine learning model with Amazon SageMaker.ipynb
###Markdown Build, train, and deploy a machine learning model with Amazon SageMaker Source: https://aws.amazon.com/getting-started/hands-on/build-train-deploy-machine-learning-model-sagemaker/?trk=el_a134p000003yWILAA2&trkCampaign=DS_SageMaker_Tutorial&sc_channel=el&sc_campaign=Data_Scientist_Hands-on_Tutorial&sc_outcome=Product_Marketing&sc_geo=mult&p=gsrc&c=lp_ds 1. Imports the required libraries and defines the environment variables you need to prepare the data, train the ML model, and deploy the ML model. ###Code # import libraries import boto3, re, sys, math, json, os, sagemaker, urllib.request from sagemaker import get_execution_role import numpy as np import pandas as pd import matplotlib.pyplot as plt from IPython.display import Image from IPython.display import display from time import gmtime, strftime from sagemaker.predictor import csv_serializer # Define IAM role role = get_execution_role() prefix = 'sagemaker/DEMO-xgboost-dm' my_region = boto3.session.Session().region_name # set the region of the instance # this line automatically looks for the XGBoost image URI and builds an XGBoost container. xgboost_container = sagemaker.image_uris.retrieve("xgboost", my_region, "latest") print("Success - the MySageMakerInstance is in the " + my_region + " region. You will use the " + xgboost_container + " container for your SageMaker endpoint.") ###Output Success - the MySageMakerInstance is in the eu-central-1 region. You will use the 813361260812.dkr.ecr.eu-central-1.amazonaws.com/xgboost:latest container for your SageMaker endpoint. ###Markdown 2. Create the S3 bucket to store your data, name should be changed. ###Code bucket_name = 'your-s3-bucket-moanesga' # <--- CHANGE THIS VARIABLE TO A UNIQUE NAME FOR YOUR BUCKET s3 = boto3.resource('s3') try: if my_region == 'us-east-1': s3.create_bucket(Bucket=bucket_name) else: s3.create_bucket(Bucket=bucket_name, CreateBucketConfiguration={ 'LocationConstraint': my_region }) print('S3 bucket created successfully') except Exception as e: print('S3 error: ',e) ###Output S3 bucket created successfully ###Markdown 3. Download the data to your SageMaker instance and load the data into a dataframe ###Code try: urllib.request.urlretrieve ("https://d1.awsstatic.com/tmt/build-train-deploy-machine-learning-model-sagemaker/bank_clean.27f01fbbdf43271788427f3682996ae29ceca05d.csv", "bank_clean.csv") print('Success: downloaded bank_clean.csv.') except Exception as e: print('Data load error: ',e) try: model_data = pd.read_csv('./bank_clean.csv',index_col=0) print('Success: Data loaded into dataframe.') except Exception as e: print('Data load error: ',e) ###Output Success: downloaded bank_clean.csv. Success: Data loaded into dataframe. ###Markdown 4. Shuffle and split the data into training data and test data. The training data (70% of customers) is used during the model training loop. You use gradient-based optimization to iteratively refine the model parameters. Gradient-based optimization is a way to find model parameter values that minimize the model error, using the gradient of the model loss function.The test data (remaining 30% of customers) is used to evaluate the performance of the model and measure how well the trained model generalizes to unseen data. ###Code train_data, test_data = np.split(model_data.sample(frac=1, random_state=1729), [int(0.7 * len(model_data))]) print(train_data.shape, test_data.shape) ###Output (28831, 61) (12357, 61) ###Markdown 5. Train the ML model This code reformats the header and first column of the training data and then loads the data from the S3 bucket. This step is required to use the Amazon SageMaker pre-built XGBoost algorithm. ###Code pd.concat([train_data['y_yes'], train_data.drop(['y_no', 'y_yes'], axis=1)], axis=1).to_csv('train.csv', index=False, header=False) boto3.Session().resource('s3').Bucket(bucket_name).Object(os.path.join(prefix, 'train/train.csv')).upload_file('train.csv') s3_input_train = sagemaker.inputs.TrainingInput(s3_data='s3://{}/{}/train'.format(bucket_name, prefix), content_type='csv') ###Output _____no_output_____ ###Markdown 6. Set up the Amazon SageMaker session, create an instance of the XGBoost model (an estimator), and define the model’s hyperparameters. ###Code sess = sagemaker.Session() xgb = sagemaker.estimator.Estimator(xgboost_container,role, instance_count=1, instance_type='ml.m4.xlarge',output_path='s3://{}/{}/output'.format(bucket_name, prefix),sagemaker_session=sess) xgb.set_hyperparameters(max_depth=5,eta=0.2,gamma=4,min_child_weight=6,subsample=0.8,silent=0,objective='binary:logistic',num_round=100) ###Output _____no_output_____ ###Markdown 7. Start the training job. This code trains the model using gradient optimization on a ml.m4.xlarge instance. After a few minutes, you should see the training logs being generated in your Jupyter notebook. ###Code xgb.fit({'train': s3_input_train}) ###Output 2021-06-30 07:52:36 Starting - Starting the training job... 2021-06-30 07:52:59 Starting - Launching requested ML instancesProfilerReport-1625039555: InProgress ...... 2021-06-30 07:54:00 Starting - Preparing the instances for training...... 2021-06-30 07:55:00 Downloading - Downloading input data... 2021-06-30 07:55:31 Training - Training image download completed. Training in progress..Arguments: train [2021-06-30:07:55:32:INFO] Running standalone xgboost training. [2021-06-30:07:55:32:INFO] Path /opt/ml/input/data/validation does not exist! [2021-06-30:07:55:32:INFO] File size need to be processed in the node: 3.38mb. Available memory size in the node: 8392.67mb [2021-06-30:07:55:32:INFO] Determined delimiter of CSV input is ',' [07:55:32] S3DistributionType set as FullyReplicated [07:55:33] 28831x59 matrix with 1701029 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 14 pruned nodes, max_depth=5 [0]#011train-error:0.100482 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 14 pruned nodes, max_depth=5 [1]#011train-error:0.099858 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 22 pruned nodes, max_depth=5 [2]#011train-error:0.099754 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 14 pruned nodes, max_depth=5 [3]#011train-error:0.099095 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 12 pruned nodes, max_depth=5 [4]#011train-error:0.098991 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 32 extra nodes, 14 pruned nodes, max_depth=5 [5]#011train-error:0.099303 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 18 pruned nodes, max_depth=5 [6]#011train-error:0.099684 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 22 pruned nodes, max_depth=5 [7]#011train-error:0.09906 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 20 pruned nodes, max_depth=5 [8]#011train-error:0.098852 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 36 extra nodes, 8 pruned nodes, max_depth=5 [9]#011train-error:0.098679 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 16 pruned nodes, max_depth=5 [10]#011train-error:0.098748 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 24 pruned nodes, max_depth=5 [11]#011train-error:0.098748 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 22 pruned nodes, max_depth=5 [12]#011train-error:0.098748 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 10 pruned nodes, max_depth=5 [13]#011train-error:0.09854 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 20 pruned nodes, max_depth=5 [14]#011train-error:0.098574 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 20 pruned nodes, max_depth=5 [15]#011train-error:0.098609 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 32 extra nodes, 16 pruned nodes, max_depth=5 [16]#011train-error:0.098817 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 16 pruned nodes, max_depth=5 [17]#011train-error:0.098817 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 18 pruned nodes, max_depth=5 [18]#011train-error:0.098679 [19]#011train-error:0.098679 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 16 pruned nodes, max_depth=5 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 12 pruned nodes, max_depth=5 [20]#011train-error:0.098713 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 10 pruned nodes, max_depth=5 [21]#011train-error:0.098505 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 14 pruned nodes, max_depth=5 [22]#011train-error:0.098401 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 8 pruned nodes, max_depth=5 [23]#011train-error:0.098332 [07:55:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 34 extra nodes, 6 pruned nodes, max_depth=5 [24]#011train-error:0.098332 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 6 pruned nodes, max_depth=5 [25]#011train-error:0.09795 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 12 pruned nodes, max_depth=5 [26]#011train-error:0.098262 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 24 pruned nodes, max_depth=5 [27]#011train-error:0.098193 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 24 pruned nodes, max_depth=3 [28]#011train-error:0.097985 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 10 pruned nodes, max_depth=5 [29]#011train-error:0.097499 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 10 pruned nodes, max_depth=5 [30]#011train-error:0.097638 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 22 pruned nodes, max_depth=5 [31]#011train-error:0.097395 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 24 pruned nodes, max_depth=5 [32]#011train-error:0.097222 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 14 pruned nodes, max_depth=5 [33]#011train-error:0.097118 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 20 pruned nodes, max_depth=5 [34]#011train-error:0.097014 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 18 pruned nodes, max_depth=5 [35]#011train-error:0.09684 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 10 pruned nodes, max_depth=5 [36]#011train-error:0.096667 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 18 pruned nodes, max_depth=5 [37]#011train-error:0.096736 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 22 pruned nodes, max_depth=5 [38]#011train-error:0.096563 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 24 pruned nodes, max_depth=5 [39]#011train-error:0.096355 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 36 pruned nodes, max_depth=3 [40]#011train-error:0.096285 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 38 pruned nodes, max_depth=4 [41]#011train-error:0.096528 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 16 pruned nodes, max_depth=4 [42]#011train-error:0.096355 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 26 pruned nodes, max_depth=5 [43]#011train-error:0.096459 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 36 pruned nodes, max_depth=5 [44]#011train-error:0.096355 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 34 pruned nodes, max_depth=2 [45]#011train-error:0.096216 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 20 pruned nodes, max_depth=5 [46]#011train-error:0.096077 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 14 pruned nodes, max_depth=5 [47]#011train-error:0.0958 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=5 [48]#011train-error:0.095904 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 16 pruned nodes, max_depth=5 [49]#011train-error:0.095904 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 34 pruned nodes, max_depth=4 [50]#011train-error:0.095834 [07:55:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 16 pruned nodes, max_depth=5 [51]#011train-error:0.095765 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [52]#011train-error:0.095904 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [53]#011train-error:0.095834 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 22 pruned nodes, max_depth=5 [54]#011train-error:0.095834 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 22 pruned nodes, max_depth=5 [55]#011train-error:0.09573 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 30 pruned nodes, max_depth=5 [56]#011train-error:0.095626 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 14 pruned nodes, max_depth=5 [57]#011train-error:0.095696 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 28 pruned nodes, max_depth=5 [58]#011train-error:0.095661 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 24 pruned nodes, max_depth=4 [59]#011train-error:0.095592 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 16 pruned nodes, max_depth=5 [60]#011train-error:0.095522 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 16 pruned nodes, max_depth=4 [61]#011train-error:0.095383 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 20 pruned nodes, max_depth=4 [62]#011train-error:0.095314 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 26 pruned nodes, max_depth=5 [63]#011train-error:0.095661 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 32 pruned nodes, max_depth=4 [64]#011train-error:0.095661 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 32 extra nodes, 18 pruned nodes, max_depth=5 [65]#011train-error:0.095418 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 36 pruned nodes, max_depth=3 [66]#011train-error:0.095314 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=5 [67]#011train-error:0.095349 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 28 pruned nodes, max_depth=3 [68]#011train-error:0.095314 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 28 pruned nodes, max_depth=0 [69]#011train-error:0.095314 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 32 pruned nodes, max_depth=3 [70]#011train-error:0.095383 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 12 pruned nodes, max_depth=5 [71]#011train-error:0.095453 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 12 pruned nodes, max_depth=5 [72]#011train-error:0.095349 [07:55:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 24 pruned nodes, max_depth=4 [73]#011train-error:0.095245 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=5 [74]#011train-error:0.095175 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 18 pruned nodes, max_depth=4 [75]#011train-error:0.095071 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 22 pruned nodes, max_depth=5 [76]#011train-error:0.095175 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 30 pruned nodes, max_depth=5 [77]#011train-error:0.095002 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 20 pruned nodes, max_depth=4 [78]#011train-error:0.095037 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 32 pruned nodes, max_depth=5 [79]#011train-error:0.095037 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 24 pruned nodes, max_depth=5 [80]#011train-error:0.095002 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 20 pruned nodes, max_depth=5 [81]#011train-error:0.094794 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 24 pruned nodes, max_depth=5 [82]#011train-error:0.094759 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 20 pruned nodes, max_depth=5 [83]#011train-error:0.094933 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 10 pruned nodes, max_depth=5 [84]#011train-error:0.09469 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 22 pruned nodes, max_depth=5 [85]#011train-error:0.094759 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 24 pruned nodes, max_depth=5 [86]#011train-error:0.094482 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 16 pruned nodes, max_depth=5 [87]#011train-error:0.094447 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [88]#011train-error:0.094482 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 24 pruned nodes, max_depth=5 [89]#011train-error:0.094378 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 28 pruned nodes, max_depth=0 [90]#011train-error:0.094343 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 28 pruned nodes, max_depth=4 [91]#011train-error:0.094274 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 20 pruned nodes, max_depth=5 [92]#011train-error:0.094239 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 32 pruned nodes, max_depth=5 [93]#011train-error:0.094169 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 28 pruned nodes, max_depth=5 [94]#011train-error:0.094169 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=5 [95]#011train-error:0.094204 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 28 pruned nodes, max_depth=0 [96]#011train-error:0.094204 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 20 pruned nodes, max_depth=5 [97]#011train-error:0.093927 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 38 pruned nodes, max_depth=0 [98]#011train-error:0.093927 [07:55:36] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 32 pruned nodes, max_depth=0 [99]#011train-error:0.093892 2021-06-30 07:56:00 Uploading - Uploading generated training model 2021-06-30 07:56:00 Completed - Training job completed Training seconds: 52 Billable seconds: 52 ###Markdown 8. Deploy the model.This code deploys the model on a server and creates a SageMaker endpoint that you can access. This step may take a few minutes to complete ###Code xgb_predictor = xgb.deploy(initial_instance_count=1,instance_type='ml.m4.xlarge') ###Output -------------! ###Markdown 9. To predict whether customers in the test data enrolled for the bank product or not, ###Code from sagemaker.serializers import CSVSerializer test_data_array = test_data.drop(['y_no', 'y_yes'], axis=1).values #load the data into an array xgb_predictor.serializer = CSVSerializer() # set the serializer type predictions = xgb_predictor.predict(test_data_array).decode('utf-8') # predict! predictions_array = np.fromstring(predictions[1:], sep=',') # and turn the prediction into an array print(predictions_array.shape) ###Output (12357,) ###Markdown 10. Evaluate model performance. Evaluate the performance and accuracy of the machine learning model.This code compares the actual vs. predicted values in a table called a confusion matrix.Based on the prediction, we can conclude that you predicted a customer will enroll for a certificate of deposit accurately for 90% of customers in the test data, with a precision of 65% (278/429) for enrolled and 90% (10,785/11,928) for didn’t enroll. ###Code cm = pd.crosstab(index=test_data['y_yes'], columns=np.round(predictions_array), rownames=['Observed'], colnames=['Predicted']) tn = cm.iloc[0,0]; fn = cm.iloc[1,0]; tp = cm.iloc[1,1]; fp = cm.iloc[0,1]; p = (tp+tn)/(tp+tn+fp+fn)*100 print("\n{0:<20}{1:<4.1f}%\n".format("Overall Classification Rate: ", p)) print("{0:<15}{1:<15}{2:>8}".format("Predicted", "No Purchase", "Purchase")) print("Observed") print("{0:<15}{1:<2.0f}% ({2:<}){3:>6.0f}% ({4:<})".format("No Purchase", tn/(tn+fn)*100,tn, fp/(tp+fp)*100, fp)) print("{0:<16}{1:<1.0f}% ({2:<}){3:>7.0f}% ({4:<}) \n".format("Purchase", fn/(tn+fn)*100,fn, tp/(tp+fp)*100, tp)) ###Output Overall Classification Rate: 89.5% Predicted No Purchase Purchase Observed No Purchase 90% (10769) 37% (167) Purchase 10% (1133) 63% (288) ###Markdown 11. Clean up. In this step, you terminate the resources you used in this lab.Important: Terminating resources that are not actively being used reduces costs and is a best practice. Not terminating your resources will result in charges to your account. Delete your endpoint: ###Code xgb_predictor.delete_endpoint(delete_endpoint_config=True) ###Output _____no_output_____ ###Markdown 12. Delete your training artifacts and S3 bucket ###Code bucket_to_delete = boto3.resource('s3').Bucket(bucket_name) bucket_to_delete.objects.all().delete() ###Output _____no_output_____
covid_19_version_iii.ipynb
###Markdown Make sure to open in colab to see the plots!You might want to change the plot sizes; just ctrl+f for "figsize" and change them all (ex.: (20,4) to (10,2)) Imports ###Code import numpy as np import pandas as pd pd.options.mode.chained_assignment = None # default='warn' import datetime as dt import matplotlib.pyplot as plt import matplotlib.dates as mdates %matplotlib inline !pip install mpld3 import mpld3 mpld3.enable_notebook() from scipy.integrate import odeint !pip install lmfit import lmfit from lmfit.lineshapes import gaussian, lorentzian import warnings warnings.filterwarnings('ignore') ###Output Requirement already satisfied: mpld3 in /usr/local/lib/python3.6/dist-packages (0.3) Requirement already satisfied: lmfit in /usr/local/lib/python3.6/dist-packages (1.0.1) Requirement already satisfied: scipy>=1.2 in /usr/local/lib/python3.6/dist-packages (from lmfit) (1.4.1) Requirement already satisfied: uncertainties>=3.0.1 in /usr/local/lib/python3.6/dist-packages (from lmfit) (3.1.2) Requirement already satisfied: numpy>=1.16 in /usr/local/lib/python3.6/dist-packages (from lmfit) (1.18.4) Requirement already satisfied: asteval>=0.9.16 in /usr/local/lib/python3.6/dist-packages (from lmfit) (0.9.18) ###Markdown We want to fit the following curve: Supplemental and Coronavirus Data ###Code # !! if you get a timeout-error, just click on the link and download the data manually !! # read the data beds = pd.read_csv("https://raw.githubusercontent.com/alamgirm/infectious_disease_modelling/master/data/beds.csv", header=0) agegroups = pd.read_csv("https://raw.githubusercontent.com/hf2000510/infectious_disease_modelling/master/data/agegroups.csv") probabilities = pd.read_csv("https://raw.githubusercontent.com/hf2000510/infectious_disease_modelling/master/data/probabilities.csv") #covid_data = pd.read_csv("https://tinyurl.com/t59cgxn", parse_dates=["Date"], skiprows=[1]) #covid_data["Location"] = covid_data["Country/Region"] # create some dicts for fast lookup # 1. beds beds_lookup = dict(zip(beds["Country"], beds["ICU_Beds"])) # 2. agegroups agegroup_lookup = dict(zip(agegroups['Location'], agegroups[['0_9', '10_19', '20_29', '30_39', '40_49', '50_59', '60_69', '70_79', '80_89', '90_100']].values)) # store the probabilities collected prob_I_to_C_1 = list(probabilities.prob_I_to_ICU_1.values) prob_I_to_C_2 = list(probabilities.prob_I_to_ICU_2.values) prob_C_to_Death_1 = list(probabilities.prob_ICU_to_Death_1.values) prob_C_to_Death_2 = list(probabilities.prob_ICU_to_Death_2.values) ###Output _____no_output_____ ###Markdown Plotting ###Code plt.gcf().subplots_adjust(bottom=0.15) def plotter(t, S, E, I, C, R, D, R_0, B, S_1=None, S_2=None, x_ticks=None, isLog=False): if S_1 is not None and S_2 is not None: print(f"percentage going to ICU: {S_1*100}; percentage dying in ICU: {S_2 * 100}") f, ax = plt.subplots(1,1,figsize=(20,6)) ax.xaxis.set_major_formatter(mdates.DateFormatter("%B-%d")) ax.xaxis.set_minor_formatter(mdates.DateFormatter("%B-%d")) if x_ticks is None: ax.set_xlabel('Time (days)') if isLog == True: #ax.semilogy(t, S, 'b', alpha=0.7, linewidth=2, label='Susceptible') ax.semilogy(t, E, 'y', alpha=0.7, linewidth=2, label='Exposed') ax.semilogy(t, I, 'r', alpha=0.7, linewidth=2, label='Infected') ax.semilogy(t, C, 'r--', alpha=0.7, linewidth=2, label='Critical') ax.semilogy(t, R, 'g', alpha=0.7, linewidth=2, label='Recovered') ax.semilogy(t, D, 'k', alpha=0.7, linewidth=2, label='Dead') else: #ax.plot(t, S, 'b', alpha=0.7, linewidth=2, label='Susceptible') ax.plot(t, E, 'y', alpha=0.7, linewidth=2, label='Exposed') ax.plot(t, I, 'r', alpha=0.7, linewidth=2, label='Infected') ax.plot(t, C, 'r--', alpha=0.7, linewidth=2, label='Critical') ax.plot(t, R, 'g', alpha=0.7, linewidth=2, label='Recovered') ax.plot(t, D, 'k', alpha=0.7, linewidth=2, label='Dead') else: ax.set_xlabel('Date') if isLog == True: ax.semilogy(x_ticks, E, 'y', alpha=0.7, linewidth=2, label='Exposed') ax.semilogy(x_ticks, I, 'r', alpha=0.7, linewidth=2, label='Infected') ax.semilogy(x_ticks, C, 'r--', alpha=0.7, linewidth=2, label='Critical') #ax.semilogy(x_ticks, R, 'g', alpha=0.7, linewidth=2, label='Recovered') ax.semilogy(x_ticks, D, 'k', alpha=0.7, linewidth=2, label='Dead') else: #ax.plot(x_ticks, S, 'b', alpha=0.7, linewidth=2, label='Susceptible') ax.plot(x_ticks, E, 'y', alpha=0.7, linewidth=2, label='Exposed') ax.plot(x_ticks, I, 'r', alpha=0.7, linewidth=2, label='Infected') ax.plot(x_ticks, C, 'r--', alpha=0.7, linewidth=2, label='Critical') #ax.plot(x_ticks, R, 'g', alpha=0.7, linewidth=2, label='Recovered') ax.plot(x_ticks, D, 'k', alpha=0.7, linewidth=2, label='Dead') ax.title.set_text('extended SEIR-Model') ax.yaxis.set_tick_params(length=0) #ax.grid(b='True', which='minor', ) legend = ax.legend() legend.get_frame().set_alpha(0.5) for spine in ('top', 'right', 'bottom', 'left'): ax.spines[spine].set_visible(False) plt.minorticks_on() plt.grid(b=True, which='minor', linestyle='dotted') plt.show(); f = plt.figure(figsize=(20,6)) # sp1 ax1 = f.add_subplot(131) if x_ticks is None: ax1.plot(t, R_0, 'b--', alpha=0.7, linewidth=2, label='R_0') else: ax1.plot(x_ticks, R_0, 'b--', alpha=0.7, linewidth=2, label='R_0') ax1.set_xlabel('Date') ax1.xaxis.set_major_formatter(mdates.DateFormatter("%B-%d")) ax1.xaxis.set_minor_formatter(mdates.DateFormatter("%B-%d")) ax1.title.set_text('R_0 over time') ax1.grid(b=True, which='major', c='w', lw=2, ls='-') legend = ax1.legend() legend.get_frame().set_alpha(0.5) for spine in ('top', 'right', 'bottom', 'left'): ax.spines[spine].set_visible(False) # sp2 ax2 = f.add_subplot(132) total_CFR = [0] + [100 * D[i] / sum(sigma*E[:i]) if sum(sigma*E[:i])>0 else 0 for i in range(1, len(t))] daily_CFR = [0] + [100 * ((D[i]-D[i-1]) / ((R[i]-R[i-1]) + (D[i]-D[i-1]))) if max((R[i]-R[i-1]), (D[i]-D[i-1]))>10 else 0 for i in range(1, len(t))] if x_ticks is None: ax2.plot(t, total_CFR, 'r--', alpha=0.7, linewidth=2, label='total') ax2.plot(t, daily_CFR, 'b--', alpha=0.7, linewidth=2, label='daily') else: ax2.plot(x_ticks, total_CFR, 'r--', alpha=0.7, linewidth=2, label='total') ax2.plot(x_ticks, daily_CFR, 'b--', alpha=0.7, linewidth=2, label='daily') ax2.set_xlabel('Date') ax2.xaxis.set_major_formatter(mdates.DateFormatter("%B-%d")) ax2.xaxis.set_minor_formatter(mdates.DateFormatter("%B-%d")) ax2.title.set_text('Fatality Rate (%)') ax2.grid(b=True, which='major', c='w', lw=2, ls='-') legend = ax2.legend() legend.get_frame().set_alpha(0.5) for spine in ('top', 'right', 'bottom', 'left'): ax.spines[spine].set_visible(False) # sp3 ax3 = f.add_subplot(133) newDs = [0] + [D[i]-D[i-1] for i in range(1, len(t))] if x_ticks is None: ax3.plot(t, newDs, 'r--', alpha=0.7, linewidth=2, label='total') ax3.plot(t, [max(0, C[i]-B(i)) for i in range(len(t))], 'b--', alpha=0.7, linewidth=2, label="over capacity") else: ax3.plot(x_ticks, newDs, 'r--', alpha=0.7, linewidth=2, label='total') ax3.plot(x_ticks, [max(0, C[i]-B(i)) for i in range(len(t))], 'b--', alpha=0.7, linewidth=2, label="over capacity") ax3.set_xlabel('Date') ax3.xaxis.set_major_formatter(mdates.DateFormatter("%B-%d")) ax3.xaxis.set_minor_formatter(mdates.DateFormatter("%B-%d")) ax3.title.set_text('Deaths per day') #ax3.yaxis.set_tick_params(length=0) #ax3.xaxis.set_tick_params(length=0) ax3.grid(b=True, which='major', c='w', lw=2, ls='-') legend = ax3.legend() legend.get_frame().set_alpha(0.5) for spine in ('top', 'right', 'bottom', 'left'): ax.spines[spine].set_visible(False) plt.show(); ###Output _____no_output_____ ###Markdown Model ###Code def deriv(y, t, beta, gamma, sigma, N, p_I_to_C, p_C_to_D, Beds): S, E, I, C, R, D = y dSdt = -beta(t) * I * S / N dEdt = beta(t) * I * S / N - sigma * E dIdt = sigma * E - 1/12.0 * p_I_to_C * I - gamma * (1 - p_I_to_C) * I dCdt = 1/12.0 * p_I_to_C * I - 1/7.5 * p_C_to_D * min(Beds(t), C) - max(0, C-Beds(t)) - (1 - p_C_to_D) * 1/6.5 * min(Beds(t), C) dRdt = gamma * (1 - p_I_to_C) * I + (1 - p_C_to_D) * 1/6.5 * min(Beds(t), C) dDdt = 1/7.5 * p_C_to_D * min(Beds(t), C) + max(0, C-Beds(t)) return dSdt, dEdt, dIdt, dCdt, dRdt, dDdt gamma = 1.0/9.0 sigma = 1.0/3.0 def logistic_R_0(t, R_0_start, k, x0, R_0_end): return (R_0_start-R_0_end) / (1 + np.exp(-k*(-t+x0))) + R_0_end def Model(days, agegroups, beds_per_100k, R_0_start, k, x0, R_0_end, prob_I_to_C, prob_C_to_D, s): def beta(t): return logistic_R_0(t, R_0_start, k, x0, R_0_end) * gamma N = sum(agegroups) def Beds(t): beds_0 = beds_per_100k / 100_000 * N return beds_0 + s*beds_0*t # 0.003 y0 = N-1.0, 1.0, 0.0, 0.0, 0.0, 0.0 t = np.linspace(0, days-1, days) ret = odeint(deriv, y0, t, args=(beta, gamma, sigma, N, prob_I_to_C, prob_C_to_D, Beds)) S, E, I, C, R, D = ret.T R_0_over_time = [beta(i)/gamma for i in range(len(t))] #R_0_over_time = [3.5 for i in range(len(t))] return t, S, E, I, C, R, D, R_0_over_time, Beds, prob_I_to_C, prob_C_to_D ###Output _____no_output_____ ###Markdown Fitting ###Code # parameters file_url="https://docs.google.com/spreadsheets/u/0/d/1742jLWWYbjFdNn2IcPGzHM6UCNnuLrWq9b4xbBzfP_M/export?format=csv" df = pd.read_csv(file_url) bddata = df["DeathCum"] #data = covid_data[covid_data["Location"] == "Bangladesh"]["Value"].values[::-1] data = df.iloc[:,8].values agegroups = agegroup_lookup["Bangladesh"] beds_per_100k = beds_lookup["Bangladesh"] # most sensitive parameter now # actual date of first infection - first reporting # 30 means = the infection started 30 days priod to first reported case # fit by visual trial and error outbreak_shift = 20 params_init_min_max = {"R_0_start": (3.0, 1.0, 5.0), "k": (1.1, 0.01, 5.0), "x0": (50, 0, 150), "R_0_end": (0.9, 0.3, 4.5), "prob_I_to_C": (0.05, 0.01, 0.1), "prob_C_to_D": (0.5, 0.05, 0.8), "s": (0.003, 0.001, 0.01)} # form: {parameter: (initial guess, minimum value, max value)} days = outbreak_shift + len(data) if outbreak_shift >= 0: y_data = np.concatenate((np.zeros(outbreak_shift), data)) else: y_data = y_data[-outbreak_shift:] x_data = np.linspace(0, days - 1, days, dtype=int) # x_data is just [0, 1, ..., max_days] array def fitter(x, R_0_start, k, x0, R_0_end, prob_I_to_C, prob_C_to_D, s): ret = Model(days, agegroups, beds_per_100k, R_0_start, k, x0, R_0_end, prob_I_to_C, prob_C_to_D, s) return ret[6][x] def fitter(x, R_0_start, k, x0, R_0_end, prob_I_to_C, prob_C_to_D, s): ret = Model(days, agegroups, beds_per_100k, R_0_start, k, x0, R_0_end, prob_I_to_C, prob_C_to_D, s) return ret[6][x] mod = lmfit.Model(fitter) for kwarg, (init, mini, maxi) in params_init_min_max.items(): mod.set_param_hint(str(kwarg), value=init, min=mini, max=maxi, vary=True) params = mod.make_params() fit_method = "leastsq" result = mod.fit(y_data, params, method="least_squares", x=x_data) result.plot_fit(datafmt="-"); result.best_values full_days = 180 first_date = np.datetime64(dt.datetime.strptime(df.iloc[:,0].values.min(),"%m/%d/%Y")) - np.timedelta64(outbreak_shift,'D') x_ticks = pd.date_range(start=first_date, periods=full_days, freq="D") base = dt.datetime(2020,3,8) xticks = [base + dt.timedelta(days=x) for x in range(0,len(x_ticks))] print("Prediction for Bangladesh") plotter(*Model(full_days, agegroup_lookup["Bangladesh"], beds_lookup["Bangladesh"], **result.best_values), x_ticks=xticks, isLog=False); from datetime import datetime start_date = datetime.strptime(df.iloc[:,0].values.min(),"%m/%d/%Y") start_date ###Output _____no_output_____
notebooks/en-gb/Communication - Send mails.ipynb
###Markdown Requirement:--For sending mail you need an outgoing mail server (that, in the case of this script, also needs to allow unauthenticated outgoing communication). Fill out the required credentials in the folowing variables: ###Code MAIL_SERVER = "mail.****.com" FROM_ADDRESS = "noreply@****.com" TO_ADDRESS = "my_friend@****.com" ###Output _____no_output_____ ###Markdown Sending a mail is, with the proper library, a piece of cake... ###Code from sender import Mail mail = Mail(MAIL_SERVER) mail.fromaddr = ("Secret admirer", FROM_ADDRESS) mail.send_message("Raspberry Pi has a soft spot for you", to=TO_ADDRESS, body="Hi sweety! Grab a smoothie?") ###Output _____no_output_____ ###Markdown ... but if we take it a little further, we can connect our doorbell project to the sending of mail! APPKEY is the Application Key for a (free) http://www.realtime.co/ "Realtime Messaging Free" subscription. See "[104 - Remote deurbel - Een cloud API gebruiken om berichten te sturen](104%20-%20Remote%20door%20bell%20-%20Using%20a%20cloud%20API%20to%20send%20messages.ipynb)" voor meer gedetailleerde info. info. ###Code APPKEY = "******" mail.fromaddr = ("Your doorbell", FROM_ADDRESS) mail_to_addresses = { "Donald Duck":"dd@****.com", "Maleficent":"mf@****.com", "BigBadWolf":"bw@****.com" } def on_message(sender, channel, message): mail_message = "{}: Call for {}".format(channel, message) print(mail_message) mail.send_message("Raspberry Pi alert!", to=mail_to_addresses[message], body=mail_message) import ortc oc = ortc.OrtcClient() oc.cluster_url = "http://ortc-developers.realtime.co/server/2.1" def on_connected(sender): print('Connected') oc.subscribe('doorbell', True, on_message) oc.set_on_connected_callback(on_connected) oc.connect(APPKEY) ###Output _____no_output_____
Starbucks_Capstone_Challenge/Starbucks_Capstone_notebook.ipynb
###Markdown Project Description: Mining Starbucks customer data - predicting offer success**[BLOGPOST](https://gonzalo-munillag.medium.com/starbucks-challenge-accepted-ded225a0867)** Table of Contents1. [Introduction and motivation](Introduction_and_motivation)2. [Installation](Installation)3. [Files in the repository](files)4. [Results](Results)5. [Details](Details)6. [Data Sets](Data) Introduction and motivation This project aims to answer a set of questions based on the provided datasets from Starbucks: transactions, customer profiles and offer types. The main question we will ask, and around which the whole project revolves, is: What is the likelihood that a customer will respond to a certain offer?Other questions to be answered are:About the offers:- Which one is the longest offer duration?- Which one is the most rewarding offer?About the customers:- What is the gender distribution?- How different genders are distributed with respect to income?- How different genders are distributed with respect to age?- What is the distribution of new memberships along time?About the transactions:- Which offers are preferred according to gender?- Which offers are preferred according to income?- Which offers are preferred according to age?- Which offers are preferred according to date of becoming a member?- Which are the most successful offers?- Which are the most profitable offers?- Which are the most profitable offers between informational?- How much money was earned in total with offers Vs. without offers?**The motivation is to improve targeting of offers to Starbucks' customers to increase revenue.****Process and results presented in this [blogpost](https://gonzalo-munillag.medium.com/starbucks-challenge-accepted-ded225a0867).**We will follow the [CRISP-DM](https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining) data science process standard for accomplishing the data analysis at hand. Installation **Packages needed**Wrangling and cleansing: pandas, json, pickleMath: numpy, math, scipyVisualization: matplotlib, IPython, Progress bar: tim, progressbarML: sklearn Files in the repository 1. data folder: 1.1 portfolio.json - containing offer ids and meta data about each offer (duration, type, etc.) 1.2 profile.json - demographic data for each customer 1.3 transcript.json - records for transactions, offers received, offers viewed, and offers completed2. Starbucks_Capstone_notebook.ipynb: Contains an executable python notebook for your to execute and modify as you wish.3. Starbucks_Capstone_notebook.html: If you are not interested in extending or executing the code yourself, you may open this file and read through the anaylsis.4. Other pickle files saving the datasets and models. Results The best model to predict if an offer will be successful is Gradient Boosting.However, 70% is not such a high accuracy, better than human though. Grid search did not show much improvements, so furtehr tunning should be carried out.We saw that the learning rate went from 0.1 to 0.5, while the rest of parameters stayed the same. The enxt logical step would be to try with a learning rate of 0.75 (as 1 was not chosen) and try to change other parameters. Details This data set contains simulated data that mimics customer behavior on the Starbucks rewards mobile app. Once every few days, Starbucks sends out an offer to users of the mobile app. An offer can be merely an advertisement for a drink or an actual offer such as a discount or BOGO (buy one get one free). Some users might not receive any offer during certain weeks. Not all users receive the same offer, and that is the challenge to solve with this data set.Your task is to combine transaction, demographic and offer data to determine which demographic groups respond best to which offer type. This data set is a simplified version of the real Starbucks app because the underlying simulator only has one product whereas Starbucks actually sells dozens of products.Every offer has a validity period before the offer expires. As an example, a BOGO offer might be valid for only 5 days. You'll see in the data set that informational offers have a validity period even though these ads are merely providing information about a product; for example, if an informational offer has 7 days of validity, you can assume the customer is feeling the influence of the offer for 7 days after receiving the advertisement.You'll be given transactional data showing user purchases made on the app including the timestamp of purchase and the amount of money spent on a purchase. This transactional data also has a record for each offer that a user receives as well as a record for when a user actually views the offer. There are also records for when a user completes an offer. Keep in mind as well that someone using the app might make a purchase through the app without having received an offer or seen an offer. ExampleTo give an example, a user could receive a discount offer buy 10 dollars get 2 off on Monday. The offer is valid for 10 days from receipt. If the customer accumulates at least 10 dollars in purchases during the validity period, the customer completes the offer.However, there are a few things to watch out for in this data set. Customers do not opt into the offers that they receive; in other words, a user can receive an offer, never actually view the offer, and still complete the offer. For example, a user might receive the "buy 10 dollars get 2 dollars off offer", but the user never opens the offer during the 10 day validity period. The customer spends 15 dollars during those ten days. There will be an offer completion record in the data set; however, the customer was not influenced by the offer because the customer never viewed the offer. CleaningThis makes data cleaning especially important and tricky.You'll also want to take into account that some demographic groups will make purchases even if they don't receive an offer. From a business perspective, if a customer is going to make a 10 dollar purchase without an offer anyway, you wouldn't want to send a buy 10 dollars get 2 dollars off offer. You'll want to try to assess what a certain demographic group will buy when not receiving any offers. AdviceBecause this is a capstone project, you are free to analyze the data any way you see fit. For example, you could build a machine learning model that predicts how much someone will spend based on demographics and offer type. Or you could build a model that predicts whether or not someone will respond to an offer. Or, you don't need to build a machine learning model at all. You could develop a set of heuristics that determine what offer you should send to each customer (i.e., 75 percent of women customers who were 35 years old responded to offer A vs 40 percent from the same demographic to offer B, so send offer A). Data Sets This data set contains simulated data that mimics customer behavior on the Starbucks rewards mobile app. Once every few days, Starbucks sends out an offer to users of the mobile app. An offer can be merely an advertisement for a drink or an actual offer such as a discount or BOGO (buy one get one free). Some users might not receive any offer during certain weeks.The data is contained in three files: portfolio.json - containing offer ids and meta data about each offer (duration, type, etc.) profile.json - demographic data for each customer transcript.json - records for transactions, offers received, offers viewed, and offers completedHere is the schema and explanation of each variable in the files: Mining Starbucks customer data - predicting purchasing likelihood We will follow the [CRISP-DM](https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining) data science process standard for accomplishing the data anaylsis at hand. 1. Business Understanding The motivation is to improve targeting of offers to Starbucks customers to increase revenue.Our goal therefore is to find a relationship between customers and Starbucks offers based on purchasing patterns from the customers.Thus, we need to understand the customers included in the datasets, identify groups within them, and assign the best matching offers to these groups.Therefore, the main question we should answer is:**What is the likelihood that a customer will respond to a certain offer?**Having a model that predicts a customer's behavior will accomplish the goal of this project.During the data exploration, other questions related to customers and offers will be formulated, as tour understanding of the data will be increased. 2. Data Understanding The goal of data understanding is to have an overview of what is in the datasets and already filter the data we need to answer the main question. After we filter the needed data, we will proceed to wrangle and clean the data to make modelling possible. After wrangling and cleaning, we will explore further the data to extract additional questions we could answer based on its new form. Metrics We first need to define a set of metrics to be able to assess whether an offer suits a particular customer (assesing whether we answered the question correctly with our model).We have a classification problem (customer-offer) and data to train a model. Thus, we we will use supervised learning models and use: 1. **Accuracy** (number of correct predictions divided by the total number of predictions), 2. **F-Score** with beta=0.5 ((1+beta^2)*Precision*Recall/(beta^2 * (Precision+Recall))) (F-score is used to combine precision (True_Positive/ (True_Positive+ False_Positive)) and recall(True_Positive / (True_Positive + False_Negative))).The data seems balanced, but nonetheless, the F-score might come in handy to choose between top models in case accuracy are similar.Definitions from [Medium blogpost](https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce). And for a better understanding on precision and recall, [wikipedia](https://en.wikipedia.org/wiki/Precision_and_recall) does the job great! Imports for data handling ###Code # Data cleaning and wrangling import pandas as pd import json import pickle # Math import numpy as np import math from scipy.stats import wasserstein_distance # Visualization import matplotlib.pyplot as plt from IPython.display import display, Math, Latex %matplotlib inline %pylab inline # progress bar import progressbar from time import sleep from time import time # ML from sklearn.model_selection import train_test_split # disable warning for mapping pd.options.mode.chained_assignment = None # default='warn' ###Output Populating the interactive namespace from numpy and matplotlib ###Markdown DataSetsThe data is contained in three files:* portfolio.json - containing offer ids and meta data about each offer (duration, type, etc.)* profile.json - demographic data for each customer* transcript.json - records for transactions, offers received, offers viewed, and offers completed Offer types: portfolio.json* id (string) - offer id* offer_type (string) - type of offer ie BOGO, discount, informational* difficulty (int) - minimum required spend to complete an offer* reward (int) - reward given for completing an offer* duration (int) - time for offer to be open, in days* channels (list of strings) ###Code # read in the json files portfolio = pd.read_json('data/portfolio.json', orient='records', lines=True) portfolio print('Size:', portfolio.size, 'Shape:', portfolio.shape) print('\n') print('Portfolio Information') print(portfolio.info()) print('\n') print('Null values [%]') print(portfolio.isnull().sum()/portfolio.shape[0]) print('\n') print('Duplicated values') # We first need toconvert the channels attribute temporaly to a string insead of a list of strings. Otherwsie "unhashable" df_temp = portfolio df_temp = df_temp.astype({"channels": str}) print(df_temp.duplicated().sum()) print('\n') print('Portfolio Description') print(portfolio.describe()) print('\n') print('Skewness: ', portfolio.skew()) ###Output Size: 60 Shape: (10, 6) Portfolio Information <class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 reward 10 non-null int64 1 channels 10 non-null object 2 difficulty 10 non-null int64 3 duration 10 non-null int64 4 offer_type 10 non-null object 5 id 10 non-null object dtypes: int64(3), object(3) memory usage: 608.0+ bytes None Null values [%] reward 0.0 channels 0.0 difficulty 0.0 duration 0.0 offer_type 0.0 id 0.0 dtype: float64 Duplicated values 0 Portfolio Description reward difficulty duration count 10.000000 10.000000 10.000000 mean 4.200000 7.700000 6.500000 std 3.583915 5.831905 2.321398 min 0.000000 0.000000 3.000000 25% 2.000000 5.000000 5.000000 50% 4.000000 8.500000 7.000000 75% 5.000000 10.000000 7.000000 max 10.000000 20.000000 10.000000 Skewness: reward 0.665459 difficulty 0.669945 duration 0.233151 dtype: float64 ###Markdown 1. There are 10 types of offers for one product (as specified in the descrition) and are characterized by 6 attributes.2. They are a mixture of integers (3) and strings (2) and arrays of strings (1).3. There are no null values.4. The offers have an average reward of 4, a duration of 6.5 days and a difficulty of 7.7.5. The domain of the integer attributes is small (0-20).6. The median (50% percentile) is not too far from the mean, thus, the integer columms should be somewhat balanced.7. Cross checking with the skewness, we see that duration is balanced, while reward and difficulty are somwhat inbalance, but it is not extreme whatsoever. 8. It is a very small datasets interms of bytes.9. We clearly see the types of categories that channels and offer_type have. 10. There are no duplicated values To answer the proposed question, we need every data point of this dataset, as it characterizes all types of offers. Customer demographics: profile.json* age (int) - age of the customer * became_member_on (int) - date when customer created an app account* gender (str) - gender of the customer (note some entries contain 'O' for other rather than M or F)* id (str) - customer id* income (float) - customer's income ###Code # read in the json files profile = pd.read_json('data/profile.json', orient='records', lines=True) profile.head() print('Size:', profile.size, 'Shape:', profile.shape) print('\n') print('Portfolio Information') print(profile.info()) print('\n') print('Null values [%]') print(profile.isnull().sum()/profile.shape[0]) print('\n') print('Duplicated values') print(profile.duplicated().sum()) print('\n') print('Portfolio Description') print(profile.describe()) print('\n') print('Skewness: ', profile.skew()) ###Output Size: 85000 Shape: (17000, 5) Portfolio Information <class 'pandas.core.frame.DataFrame'> RangeIndex: 17000 entries, 0 to 16999 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 gender 14825 non-null object 1 age 17000 non-null int64 2 id 17000 non-null object 3 became_member_on 17000 non-null int64 4 income 14825 non-null float64 dtypes: float64(1), int64(2), object(2) memory usage: 664.2+ KB None Null values [%] gender 0.127941 age 0.000000 id 0.000000 became_member_on 0.000000 income 0.127941 dtype: float64 Duplicated values 0 Portfolio Description age became_member_on income count 17000.000000 1.700000e+04 14825.000000 mean 62.531412 2.016703e+07 65404.991568 std 26.738580 1.167750e+04 21598.299410 min 18.000000 2.013073e+07 30000.000000 25% 45.000000 2.016053e+07 49000.000000 50% 58.000000 2.017080e+07 64000.000000 75% 73.000000 2.017123e+07 80000.000000 max 118.000000 2.018073e+07 120000.000000 Skewness: age 0.761858 became_member_on -0.900457 income 0.402005 dtype: float64 ###Markdown 1. There are 17000 customer records (one per customer) and there are 5 attributes to charaterize each.2. They are a mixture of numeric values (2 ints and a float) and strings (2).3. There are some null values in gender and their income. The number is the same, so most probably they are paired in the same record. ~13% is not a considerable value but nonetheless, we will consider them as part of the analysis, and see if this group of people that do not share the gender have a particular preference for a type of offer. It is also interesting to see that these values apparently have an age of 118, therefore something wnet wrong on collection.4. The average salary 5. The domain of the integer attributes is reasonable ,being the highest for the income column.6. The median (50% percentile) is not too far from the mean, thus, the integer columms should be somewhat balanced.7. Cross checking with the skewness, we see that income is balanced, while age and became_member_on are somwhat inbalance, but it is not extreme whatsoever. 8. It is a relatively small dataset in terms of bytes.9. no duplicated values As noted for the previous dataset, it is clear that we will need all these data to cluster customers and find their best fitting offer matches. Transactions: transcript.json* event (str) - record description (ie transaction, offer received, offer viewed, etc.)* person (str) - customer id* time (int) - time in hours since start of test. The data begins at time t=0* value - (dict of strings) - either an offer id or transaction amount depending on the record ###Code # read in the json files transcript = pd.read_json('data/transcript.json', orient='records', lines=True) transcript.head() print('Size:', transcript.size, 'Shape:', transcript.shape) print('\n') print('Portfolio Information') print(transcript.info()) print('\n') print('Null values [%]') print(transcript.isnull().sum()/transcript.shape[0]) print('\n') print('Duplicated values') print(profile.duplicated().sum()) print('\n') print('Portfolio Description') print(transcript.describe()) print('\n') print('Skewness: ', transcript.skew()) ###Output Size: 1226136 Shape: (306534, 4) Portfolio Information <class 'pandas.core.frame.DataFrame'> RangeIndex: 306534 entries, 0 to 306533 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 person 306534 non-null object 1 event 306534 non-null object 2 value 306534 non-null object 3 time 306534 non-null int64 dtypes: int64(1), object(3) memory usage: 9.4+ MB None Null values [%] person 0.0 event 0.0 value 0.0 time 0.0 dtype: float64 Duplicated values 0 Portfolio Description time count 306534.000000 mean 366.382940 std 200.326314 min 0.000000 25% 186.000000 50% 408.000000 75% 528.000000 max 714.000000 Skewness: time -0.318927 dtype: float64 ###Markdown 1. There are 1226136 transactions recorded in the dataset.2. Teh attributes are strings, and one int.3. There are no null values.4. The domain for time is around 30 days, which is larger than the highest duration of the offer, which is 10. this indicates that we are also measuring pruchases past the offer time. 5. The time attribute is balanced.8. It is a mediun size dataset in terms of bytes, much larger if compared to the rest of the datasets.7. No duplicated values Let us check the category types of event, as they are not compeltly described in the project description. ###Code transcript['event'].unique() ###Output _____no_output_____ ###Markdown The chronological order therefore would be:1. offer received2. offer viewed3. transaction4. offer completed With respect to 'value', we will need to clean the data to extact more information. But the amount is most probably attached when the event is 'transaction' and an offer 'id' otherwise. As with the rest of datasets, we need all information from this one as wel in order to answer the main question. Overall Observations Looking how we need all data points for answering our question (there is no attribute that we could delete without further knowledge), and that everything has the potential to be correlated, we will merge the 3 datasets into one after wrangling and cleaning. 3. Data Preparation We will follow [Tidy Data from Hadley Wickham](https://vita.had.co.nz/papers/tidy-data.pdf) to prepare the datasets. We will visualize further each dataset and come up with further questions that we also could answer. We will also indicate the data we need to answer each. There will be an exploration section after wrangling and cleansing. PORTFOLIO ###Code portfolio = pd.read_json('data/portfolio.json', orient='records', lines=True) portfolio ###Output _____no_output_____ ###Markdown Data wrangling 1. reward: no change2. Channels: create 4 new columns with binary values for the training of the model3. difficulty: no change4. duration: change to hours to be on the same units as the other dataset5. offer_type: reate 3 new columns with binary values ofr the trainig of the model6. id: Convert it into an increasing integer ID for easier representation laterIt is common to all that for better understand-ability, we will rename the attributes in a way that we can know the units of the column and that we can link the datasets as we already surmised. Rename columns ###Code # Renaming columns portfolio.columns = ['reward_[$]', 'channels', 'difficulty_[$]', 'duration_[h]', 'offer_type', 'offer_id'] ###Output _____no_output_____ ###Markdown convert to hours the duration column ###Code portfolio['duration_[h]'] = portfolio['duration_[h]'].apply(lambda x: x * 24) ###Output _____no_output_____ ###Markdown Rename the offer ids ###Code # We create a dictionary with offer ids we will need to save for later use offer_id_dict = portfolio['offer_id'].to_dict() # We invert the key-value pairs so the hash is in the key position offer_id_dict = {v: k for k, v in offer_id_dict.items()} # We save it as a pickle file with open('offer_id_dict.pickle', 'wb') as handle: pickle.dump(offer_id_dict, handle, protocol=pickle.HIGHEST_PROTOCOL) # Now we convert the column: https://stackoverflow.com/questions/20250771/remap-values-in-pandas-column-with-a-dict portfolio = portfolio.replace({"offer_id": offer_id_dict}) ###Output _____no_output_____ ###Markdown Create new columns based on offer_type ###Code # We save the dummy column of offer type (convinient for later analysis) offer_type_dummy = portfolio['offer_type'] # Get dummies: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html portfolio = pd.get_dummies(portfolio, prefix=['offer_type'], columns=['offer_type']) # We concat the dummy column portfolio = pd.concat([portfolio, offer_type_dummy], axis=1) ###Output _____no_output_____ ###Markdown Create new columns based on event ###Code # Get teh dummie variables: https://stackoverflow.com/questions/29034928/pandas-convert-a-column-of-list-to-dummies channel_dummies = pd.get_dummies(portfolio['channels'].apply(pd.Series).stack(), prefix='channel').sum(level=0) # We drop the old column and concat the new one portfolio.drop(columns=['channels'], inplace=True) # We concat the new set of columns portfolio = pd.concat([portfolio, channel_dummies], axis=1) ###Output _____no_output_____ ###Markdown Data cleansing Undesirable value detection:1. Missing values: No3. Duplicates: No 4. Incorrect values: No. We trust Starbucks that the offer portfolio is correct, as there is no way for us to verify it.5. Irrelevant: Each row is relevant becuase it belongs to a distinct offer we will have to match with customers. The dataset is not large, we do not need to use PCA to know that the channel_email column does not explain any variability (all values are the same), so we can drop it.Measures:1. Replace: No2. Modify: No3. Delete: channel_email Irrelevancy ###Code # We delete the email channel column portfolio.drop(columns=['channel_email'], inplace=True) ###Output _____no_output_____ ###Markdown We save the dataframe as a pickle file ###Code portfolio.to_pickle("./portfolio.pkl") ###Output _____no_output_____ ###Markdown Data exploration ###Code portfolio ###Output _____no_output_____ ###Markdown We now habve tidy data, each record is an observation, we only have one observation type (offer), the values are in the cells and all variable names are in the columns (except for the column offer_type which is left there for visualization purposes later, it will be deleted) This is the portfolio dataset by itself, the questions that we could make are solely related to the types of offers Starbucks has. It is not so interesting given the small size of the dataset, looking at the layout, one can have a feeling for the data already. There are 4 bogo offer types, 4 discount types and 2 informationa. There is only one offer that is using one channel and is of discount type. The rest use at least 2 channels. Let us set a few further questions:1. Which one is the longest offer duration?2. Which one is the most rewarding offer?This one however is interesting, but we cannot answer it yet: Which one is the longest offer duration? ###Code max_duration_offers = portfolio.loc[portfolio['duration_[h]'] == portfolio['duration_[h]'].max()].index print('The maximum duration offers are', portfolio.iloc[max_duration_offers]['offer_id'].iloc[0], 'and', \ portfolio.iloc[max_duration_offers]['offer_id'].iloc[1]) print('With a duration of:', portfolio['duration_[h]'].max(), 'h') ###Output The maximum duration offers are 4 and 6 With a duration of: 240 h ###Markdown Which one is the most rewarding offer? ###Code max_reward_offers = portfolio.loc[portfolio['reward_[$]'] == portfolio['reward_[$]'].max()].index print('The most rewarding offers are', portfolio.iloc[max_reward_offers]['offer_id'].iloc[0], 'and', \ portfolio.iloc[max_reward_offers]['offer_id'].iloc[1]) print('With a reward of:', portfolio['reward_[$]'].max(), '$') ###Output The most rewarding offers are 0 and 1 With a reward of: 10 $ ###Markdown However, a question that is interesting but that we cannot yet answer with this data (we need to use the other datasets as well), is what are the features of an offer that explain better which offer aligns better with a user. PROFILE ###Code # read in the json files profile = pd.read_json('data/profile.json', orient='records', lines=True) profile.head() ###Output _____no_output_____ ###Markdown Data wrangling 1. age: No changes 2. became_member_on: transform into date and time3. gender: Create dummy variables with M, F, O, and missing_gender. We keep the missing values because they do not seem random, as income has the same number of missing values4. id: transform it into an easier id to read5. income: No changesWe will change the column names to add the units and proper names. Understanding NaN records ###Code # Let us verify that the missing values of gender pair with the ones from income (profile['gender'].isnull() == profile['income'].isnull()).value_counts() ###Output _____no_output_____ ###Markdown There are no False values, therefore they match. Now let us check what types of values in age and became_member_on these outliers have. ###Code print('Here is the age from the discussed outliers') print(profile[profile['gender'].isnull()]['age'].unique()) print('Here is the number of unique became_member_on values of the discussed outliers') print(profile[profile['gender'].isnull()]['became_member_on'].nunique()) # Let us check how many unique values does age have print('Age unique values', profile['age'].nunique()) # Let us check what is the maximum age of the records that do not have missing values print('Maximum age of not outliers', profile[~profile['gender'].isnull()]['age'].max()) ###Output Age unique values 85 Maximum age of not outliers 101 ###Markdown From these data we understand that the age of the outliers (records of missing valzes) is in itself an outlier (duh!). Because the oldest person is 101. In data cleansing, we will replace 118 by the average age of the customers as age is not too skewed. If we leave it at 118, these records would be weighted higher, which is not desirable. We will do the same for the income, we will substitute the nan values with the average income, as that column was not too skewed as well. What is important for data wrangling (and this overlaps with cleansing) is that we will replace the missing values with a gender sampled from a distribution equal to the distribution of the non_missing values. This way we do not skew the column. Additionally, we will add another column called 'missing_gender', to add another layer of information about these outliers. ###Code # Let us check the number of became_member_on unique values profile['became_member_on'].nunique() ###Output _____no_output_____ ###Markdown There are 950 unique values of became_member_on in the outlier records, which is more than half of the toal unique values in the dataset. Considering that the outliers constitute about 12% of the dataset, this diversity hints that these values are true. Change column names ###Code profile.columns = ['gender', 'age', 'customer_id', 'became_member_on_[y-m-d]', 'income_[$]'] ###Output _____no_output_____ ###Markdown Transform become_member_on date and time ###Code profile['became_member_on_[y-m-d]'] = pd.to_datetime(profile['became_member_on_[y-m-d]'], format='%Y%m%d') ###Output _____no_output_____ ###Markdown Transform id into an easier id form ###Code # We create a dictionary with offer ids we will need to save for later use customer_id_dict = profile['customer_id'].to_dict() # We invert the key-value pairs so the hash is in the key position customer_id_dict = {v: k for k, v in customer_id_dict.items()} # We save it as a pickle file with open('customer_id_dict.pickle', 'wb') as handle: pickle.dump(customer_id_dict, handle, protocol=pickle.HIGHEST_PROTOCOL) # Now we convert the column: https://stackoverflow.com/questions/20250771/remap-values-in-pandas-column-with-a-dict profile = profile.replace({"customer_id": customer_id_dict}) ###Output _____no_output_____ ###Markdown Gender wrangling First we create a new binary column indicating if the record had missing values ###Code # first we identify which type of missing values has gender # We know the first value of gender is missing print(type(profile['gender'].iloc[0])) # Thus, we know we have to check with None print(profile['gender'].iloc[0] is None) print(profile['gender'].iloc[0] is np.nan) profile['missing_values'] = profile['gender'].apply(lambda x: 1 if x is None else 0) ###Output _____no_output_____ ###Markdown Second, we assign M,F or O to the missing values according to the underlying distribution of gender ###Code # We also get the frecuencies and categories. It is a nnice trick becuase value_counts does not consider None values number_None_values = profile['gender'].isnull().sum() total_gender_counts = profile.shape[0] - number_None_values frecuencies_gender = profile['gender'].value_counts() / total_gender_counts print('Frecuencies in %:') print(frecuencies_gender) # Secomf we replicate the disribution profile['gender'] = profile['gender'].apply \ (lambda x: np.random.choice(frecuencies_gender.index, p=frecuencies_gender.values) if x is None else x) ###Output _____no_output_____ ###Markdown Third, we perofrm one hot encoding on gender ###Code # Save dummy variable for later (visualization gender_dummy = profile['gender'] # Get dummies: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html profile = pd.get_dummies(profile, prefix=['gender'], columns=['gender']) profile = pd.concat([profile, gender_dummy], axis=1) ###Output _____no_output_____ ###Markdown Data cleansing Undesirable value detection:1. Missing values: income. Gender was taken care by the wrangling step.3. Duplicates: No 4. Incorrect values: age5. Irrelevant: Measures:1. Replace: replace income nans with the average of the column. Replace the age of 118 with the average age.2. Modify: no3. Delete: gender_dummy column (AFTER EXPLORATION OF ALL THE DATSETS COMBINED) We replace income nan values with the average income ###Code # We calculate the average income mean_income = profile['income_[$]'].mean() # We know the first value of income is missing print(type(profile['income_[$]'].iloc[0])) # Let us check how we can identify this value print(profile['income_[$]'].iloc[0] is None) print(profile['income_[$]'].iloc[0] is np.nan) print(pd.isna(profile['income_[$]'].iloc[0])) # We replace the nan values with the mean income profile['income_[$]'] = profile['income_[$]'].apply(lambda x: mean_income if pd.isna(x) else x) ###Output _____no_output_____ ###Markdown We replace the 118 values with the average age (we truncate it) ###Code # We get the mean age mean_age = int(profile['age'].mean()) # We replace the 118 values by the mean profile['age'] = profile['age'].apply(lambda x: mean_age if x == 118 else x) ###Output _____no_output_____ ###Markdown Data exploration ###Code profile ###Output _____no_output_____ ###Markdown We now habve tidy data, each record is an observation, we only have one observation type (customer), the values are in the cells and all variable names are in the columns (except for the column gender which is left there for visualization purposes later, it will be deleted) Question we could answe:1. What is the gender distribution?2. How different genders are distributed with respect to income?3. How different genders are distributed with respect to age?4. What is the istribution of new memberships along time? What is the gender distribution? ###Code profile['gender'].hist() ###Output _____no_output_____ ###Markdown There are more males in the dataset How different genders are distributed with respect to income? ###Code profile['income_[$]'].hist(by=profile['gender']) ###Output _____no_output_____ ###Markdown It seems that females and males have more or less the same income in this dataset. But it also seems that there is more women that earn abover the average than men. (The comparisons are not perfect becaus ethe number of women is around 3000 less than men, so the sample of women is less representative)It is worth extracting mroe insights as the distributions seem different. Let us check the [wassertein_distance](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html) ###Code wasserstein_distance(profile.loc[profile['gender'] == 'F']['income_[$]'], profile.loc[profile['gender'] == 'M']['income_[$]']) ###Output _____no_output_____ ###Markdown Indeed, the difference is prety high between the distributions of men and women. ###Code profile.loc[profile['gender'] == 'F']['income_[$]'].mean() women_mean_income = profile.loc[profile['gender'] == 'F']['income_[$]'].mean() men_mean_income = profile.loc[profile['gender'] == 'M']['income_[$]'].mean() print('Mean salary for women is', women_mean_income) print('Mean salary for men is', men_mean_income) print('In this datase, women earn more money than men in average, by: ', women_mean_income-men_mean_income, '$') women_median_income = profile.loc[profile['gender'] == 'F']['income_[$]'].median() men_median_income = profile.loc[profile['gender'] == 'M']['income_[$]'].median() print('Median salary for women is', women_median_income) print('Median salary for men is', men_median_income) print('In this dataset, however, the median is not so far from genders: ', women_median_income-men_median_income, '$') ###Output Median salary for women is 66000.0 Median salary for men is 63000.0 In this datase, however, the median is not so far from genders: 3000.0 $ ###Markdown There are around 5000 men earning above $63k and around 3500 women earning mnore than $66k. ###Code women_std_income = profile.loc[profile['gender'] == 'F']['income_[$]'].std() men_std_income = profile.loc[profile['gender'] == 'M']['income_[$]'].std() print('The std of the salary for women is', women_std_income) print('The std of the salary for men is', men_std_income) print('In this datase, however, the median is not so far from genders: ', women_std_income-men_std_income, '$') ###Output The std of the salary for women is 20981.542952480755 The std of the salary for men is 18774.535245943607 In this datase, however, the median is not so far from genders: 2207.007706537148 $ ###Markdown The stds are high, and the one from women is higher (representative that there are less women in the sample than men) How different genders distributed with respect to age? ###Code profile['age'].hist(by=profile['gender']) ###Output _____no_output_____ ###Markdown The histograms here are very similar. We could perform the same statictics as with income, but the histograms seem prety similar. Let us check the statistcial distance we used before: ###Code wasserstein_distance(profile.loc[profile['gender'] == 'F']['age'], profile.loc[profile['gender'] == 'M']['age']) ###Output _____no_output_____ ###Markdown Indeed they are very similar. What is the istribution of new memberships along time? ###Code profile['became_member_on_[y-m-d]'].value_counts().plot.line() ###Output _____no_output_____ ###Markdown There are noticeable jumps every 2 years (half of 2015 and half 2017). Perhaps they correspond to new campaigns or improvements in the app. It is also interesting that in 2018, the number of new memberships dropped (first time), thus perhaps new competitors arrived into the market. We save the dataframe as a pickle file ###Code profile.to_pickle("./profile.pkl") ###Output _____no_output_____ ###Markdown TRANSCRIPT ###Code # read in the json files transcript = pd.read_json('data/transcript.json', orient='records', lines=True) transcript ###Output _____no_output_____ ###Markdown Data wrangling 1. person: replace the ids with the ones from the previous datasets. It can be connected to customer id 2. event: no changes. We will not use this column for prediction and it is useful to have it in this format for cleaning and wrangling and visualization.3. time: no changes4. value: make dict_keys a column and dict_values the values within. Once we do that, we transform offer ids into the easier to read ids defined before and leave the nans as they are (dealt with in cleansing). And the transaction one, we could replace the nans with a 0. For the offer ids with nans (meniang there is only an amount), we can replace the nan value with higher number than the last offer id, indicating that there was no offer. With reward, we set it to 0 for nans, we must check if this coincides with offer completed.We will rename the columns so they can be combined later on.We have to think about how to collapse the records from a user into one row, so we can join the 3 datasets. This will require feature engineering. This last sentence is related ot the 'unsure' of points 2 and 4. **In essence our final dataset should have pairs of customers and offers, together with a score for how well that offer did with the customer. The score can be binary, whether it worked or not. This score must be distilled from this transcript dataset** Change column names ###Code # Renaming specific column: https://stackoverflow.com/questions/20868394/changing-a-specific-column-name-in-pandas-dataframe transcript = transcript.rename(columns = {'person':'customer_id'}) ###Output _____no_output_____ ###Markdown Replace the person id with the ones from the dictionary mapping hashes to ints ###Code # Read back the dictionary with open('customer_id_dict.pickle', 'rb') as handle: customer_id_dict = pickle.load(handle) # Now we convert the column: https://stackoverflow.com/questions/20250771/remap-values-in-pandas-column-with-a-dict transcript = transcript.replace({"customer_id": customer_id_dict}) # It tool a long time to execute the previous cell, let us do a check point transcript.to_pickle("./transcript.pkl") ###Output _____no_output_____ ###Markdown We transform the 'value' column into new columns for better wrangling ###Code # Ref: https://www.codegrepper.com/code-examples/python/dict+column+to+be+in+multiple+columns+python value_dum = transcript['value'].apply(pd.Series) transcript.to_pickle("./transcript.pkl") value_dum ###Output _____no_output_____ ###Markdown offer id and offer_id should be the same. We will combine both columns.Reward might be a new column we have not accounted for in the beginning. ###Code # Let us check if this attribute is empty - It is not value_dum['offer_id'].isnull().value_counts() # Let us check if the values that are NOT missing in offer_id overlap with the ones NOT missing in offer id print('Number of records where offer_id is NOT null', value_dum[~value_dum['offer_id'].isnull()].shape[0]) # If the number of missing values in 'offer id' is equal to the following number, then, while there is an overlap # of both attributes in missing values, there is no overlap when there is content (we can assure this by means of # the mehtod used to find this value thorugh pandas) - We count nan values of 'offer id' in a df where there are NO # nans in 'offer_id' value_dum[~value_dum['offer_id'].isnull()]['offer id'].isnull().value_counts() ###Output Number of records where offer_id is NOT null 33579 ###Markdown We thus conclude that the columns 'offer id' and 'offer_id' are the same (duh! - but one needs to cross check). We need to merge them. ###Code # Let us check how to identify the nan value print(value_dum['offer_id'].iloc[-1] is None) print(value_dum['offer_id'].iloc[-1] is np.nan) print(pd.isna(value_dum['offer_id'].iloc[-1])) # Let us check if the values that are NOT missing in offer_id overlap with the ones NOT missing in offer id value_dum['offer_id'] = value_dum.apply(lambda row: row['offer_id'] if pd.isna(row['offer id']) else row['offer id'], axis=1) # We drop the column from value_dum that is not useful value_dum.drop(columns=['offer id'], inplace=True) # We drop the old column and concat the new one transcript.drop(columns=['value'], inplace=True) # We concat the new set of columns transcript = pd.concat([transcript, value_dum], axis=1) ###Output _____no_output_____ ###Markdown We convert the offer id into the id we created before ###Code # Read back the dictionary with open('offer_id_dict.pickle', 'rb') as handle: offer_id_dict = pickle.load(handle) # Now we convert the column: https://stackoverflow.com/questions/20250771/remap-values-in-pandas-column-with-a-dict transcript = transcript.replace({"offer_id": offer_id_dict}) # It tool a long time to execute the previous cell, let us do a check point transcript.to_pickle("./transcript.pkl") ###Output _____no_output_____ ###Markdown Data cleansing Undesirable value detection:1. Missing values: offer_id, amount, reward.3. Duplicates: No4. Incorrect values: offer ids are floats and not ints (probably becuase there are nans in the same column and somehow it affected the converion)5. Irrelevant: Measures:1. Replace: offer_id nans with the value 10 (one above the last offer id). amount and reward nans will be replaced with a 02. Modify: offer_id into int again 3. Delete: none Replace offer_id nans with the value 10 ###Code # Let us check how to identify the nan value print(transcript['offer_id'].iloc[-1] == None) print(transcript['offer_id'].iloc[-1] is np.nan) print(pd.isna(transcript['offer_id'].iloc[-1])) print(transcript['offer_id'].iloc[-1] == 'nan') # We perform the change transcript['offer_id'] = transcript['offer_id'].apply(lambda x: 10 if pd.isna(x) else x) ###Output _____no_output_____ ###Markdown Convert offer_id into ints ###Code transcript = transcript.astype({"offer_id": int}) ###Output _____no_output_____ ###Markdown Replace amount nans with 0 ###Code # Let us check how to identify the nan value print(transcript['amount'].iloc[0] == None) print(transcript['amount'].iloc[0] is np.nan) print(pd.isna(transcript['amount'].iloc[0])) print(transcript['amount'].iloc[0] == 'nan') # We perform the change transcript['amount'] = transcript['amount'].apply(lambda x: 0 if pd.isna(x) else x) ###Output _____no_output_____ ###Markdown Replace reward nans with 0 ###Code # Let us check how to identify the nan value print(transcript['reward'].iloc[0] == None) print(transcript['reward'].iloc[0] is np.nan) print(pd.isna(transcript['reward'].iloc[0])) print(transcript['reward'].iloc[0] == 'nan') # We perform the change transcript['reward'] = transcript['reward'].apply(lambda x: 0 if pd.isna(x) else x) ###Output _____no_output_____ ###Markdown Let us change the column names with the appropiate units ###Code transcript.columns = ['customer_id', 'event', 'time_[h]', 'amount_[$]', 'offer_id', 'reward_[$]'] # It tool a long time to execute the previous cell, let us do a check point transcript.to_pickle("./transcript.pkl") ###Output _____no_output_____ ###Markdown Feature engineering ###Code transcript = pd.read_pickle("./transcript.pkl") transcript ###Output _____no_output_____ ###Markdown We would like to combine all datasets to feed it to a model. The transcript dataset contains information about successful and unsuccessful offers, about the purchasing of the customers and about the rewards they have retrieved. We have two id columns, we can use them as foreign keys for the primary keys in the other two datasets to combine them. However, we cannot do that yet. We have to distill the data of the transcript data set to obtain the valuable information that will allow us to prognosticate if an offer will be accepted or not by an individual in the future. So first of all, how the ideal dataset would look like: Offer id |...offer properties...| customer id | ...customer qualities... | success/no_success| profit | Viewed/Not viewed | Received/not_received In order to get this datset, we need to assess the success of the offer. For that, we need to attach to the transcript dataset information from the portfolio: **offer duration, reward, difficulty** and type for data exploration.- Success column: an offer is successful if a user has purchased the amount of the difficulty before the offer expires. thus, we need the duration and difficulty.- Profit column: we coul dmake predictions and comparisons between groups with this column. for this we need: difficulty - reward.- Viewed column: we need the event column of transaction- Received column: we need the event column from transaction Now let us start joining the transaction and the portfolio dataset ###Code # First, let us read again the portfolio portfolio = pd.read_pickle("./portfolio.pkl") ###Output _____no_output_____ ###Markdown We will add a virtual row for an offer with id 10, menaing that the offer does not exits. This will be attached to the rows of transacript where there was no offer made, but nonetheless there was a transaction. ###Code new_row = {'reward_[$]':[0], 'difficulty_[$]':[0], 'duration_[h]':[0], 'offer_id':[10], 'offer_type_bogo':[0], 'offer_type_discount':[0], \ 'offer_type_informational':[0], 'offer_type':'none', 'channel_mobile':[0], 'channel_social':[0], 'channel_web':[0]} new_row = pd.DataFrame.from_dict(new_row) portfolio = portfolio.append(new_row) portfolio.to_pickle("./portfolio.pkl") transcript = pd.merge(transcript, portfolio, on='offer_id', how='left', sort=True, suffixes=('_trans', '_port')) transcript = transcript.drop(columns=['offer_type_bogo', 'offer_type_discount', 'offer_type_informational', 'channel_mobile', 'channel_social', 'channel_web']) ###Output _____no_output_____ ###Markdown (The offer_type attribute is only used for exploring raw data more easily, not needed to distill information) Let us check that we still have all the rows from transaction data, i.e. the left join was successful - we see it is, it contains all the infromation. ###Code transcript.shape[0] ###Output _____no_output_____ ###Markdown We create a groubby object based on customer: ###Code customer_transactions = transcript.groupby(['customer_id']) ###Output _____no_output_____ ###Markdown **Build dictionary to store the distilled values foolowing:**Offer id |...offer properties...| customer id | ...customer qualities... | success/failure/Not_applicable | profit | Viewed/Not viewed | Received/not_received | effective_time ###Code ledger = {'customer_id': [], 'offer_id': [], 'received':[], 'viewed':[], 'completed':[], 'success': [], 'profit': []} ###Output _____no_output_____ ###Markdown We will append to this ledger the values sequentially. 'success' will be categorical for now, as there could be 3 possibilities. Fearure engineering algorithm ###Code # Let us get every customer id in a list customer_ids = np.sort(transcript['customer_id'].unique()) # Let is get every offer id in a list, offer_ids = np.sort(portfolio['offer_id'].unique()) # Let us get a list of informatinoal offer ids, as they behave differently informational_offer_ids = [2, 7] # this is the id for the added offer which is not an offer non_offer_id = 10 ###Output _____no_output_____ ###Markdown We have in mind that the last offer id is a non offer. And that bogos and discounts act essenstially in the same manner. Something to note is that a customer might not spend exactly the same amount of money needed to fulfill the offer, that is interesting but unfortunately, becuase offers overlap, you cannot really assign a profit to a offer-customer pair aside from the obvious one of difficulty - reward. What we will do for the profit attribute:bogos and discount profit = difficulty- reward (Note that bogos will have a profit of 0)informational = the amount of dollars transacted in its period. We could also subtract the rewards obtained in that period, but it would only be useful if we added the other offers that were completed at the same time. This is out of scope for my questions. So the word profit for informational is not completely right.non_offer = the amount of dollars outside any offer period Further considerations:For viewed or completed to happen, at least received has had to happen.There is no complete offer event outside the limit of time (offer leaves the app)There is no viewed offer event after the limit of time (offer leaves the app)There can be a viewed event after the complete event, so the offer is failure.Offers, be them the same or different, can overlap, which makes calculating which offer was successful trickierYou can get the same offer in the same interval of time, you could get this combination: Received offer, received offer, complete offer, view offer, complete offer, view offer. You might think that at least one of the offers was successful, as view happens before complete at least once. That is in my view wrong. We assume that the same offer type comes sequentially, so the first time you see it, it belongs to the first offer you received, so that is why, in that sequence, both offers of the same type failed. We would need an identifier that says to which offer it belongs that helps you distinguish between views and completions of the same offer type.For the non-offers, we count only the gaps not influenced by an offer. Even if the offer was completed, we consider still it s influence. The algorithm to find successful offers per customer (feature engineering):1. Group by customer2. Loop through each customer (for) 3. Loop through each offer (for) 4. Bogos and discounts: distill information about success, viewed, received, effective time and profit. 1. Get the amount of received offers 2. Iterate sequentially in time and event ordered, and find viewed or completed events. Depending on what was seen before, offers will have been successful or not 5. Informational: idem, but there is no concept of success 6. Non-offer: find the gaps where no offer was active and use these gaps to add the profit *Profit is viewed at the end-customer of course, not considering how much money costs to sell the product. *Transaction periods can overlap ###Code ledger = {'customer_id': [], 'offer_id': [], 'received':[], 'viewed':[], 'completed':[], 'success': [], 'profit': []} # initialize the progress bar bar = progressbar.ProgressBar(maxval=len(customer_ids), \ widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()]) # For sorting the events later, as receive and view can happen in the same hour event_sort = {'offer received':0,'offer viewed':1,'offer completed':2} # start the loop through the customer transaction entries bar.start() for customer_id in customer_transactions.groups.keys(): # We isolate the customers customer = customer_transactions.get_group(customer_id) # We get the offers received by the customer customer_offer_ids = customer['offer_id'].unique() # Loop thorugh customer offers for customer_offer_id in customer_offer_ids: # we filter the offer currently on in the loop offers = customer.loc[(customer['offer_id'] == customer_offer_id)] # The events at the same hour are not ordered like R - V - C, so we must order them offers['name_sort'] = offers['event'].map(event_sort) offers = offers.sort_values(['time_[h]', 'name_sort'], ascending=[True, True]) # We focus in BOGOS AND DISCOUNTS if (customer_offer_id not in informational_offer_ids) and (customer_offer_id != non_offer_id): ledger_temp = {} received_offers = offers.loc[offers['event'] == 'offer received'].shape[0] for i in range(0, received_offers): ledger_temp[i] = {'received':1, 'viewed':0, 'completed':0, 'success': 0, 'profit': 0} # We loop through each row of the customer offer sub dataframe for index, row in offers.iterrows(): if (row['event'] == 'offer viewed'): for i in range(0, received_offers): if (ledger_temp[i]['viewed'] == 0): ledger_temp[i]['viewed'] = 1 break elif (row['event'] == 'offer completed'): for i in range(0, received_offers): if (ledger_temp[i]['completed'] == 0): ledger_temp[i]['completed'] = 1 # only if it was viewed before was successful if (ledger_temp[i]['viewed'] == 1): ledger_temp[i]['success'] = 1 ledger_temp[i]['profit'] = row['difficulty_[$]'] - row['reward_[$]_port'] break for i in range(0, received_offers): ledger['customer_id'].append(customer_id) ledger['offer_id'].append(customer_offer_id) ledger['received'].append(ledger_temp[i]['received']) ledger['viewed'].append(ledger_temp[i]['viewed']) ledger['completed'].append(ledger_temp[i]['completed']) ledger['success'].append(ledger_temp[i]['success']) ledger['profit'].append(ledger_temp[i]['profit']) # We focus on INFORMATIONAL elif (customer_offer_id != non_offer_id): ledger_temp = {} received_offer_counter = 0 # We loop through each row of the customer offer sub dataframe for index, row in offers.iterrows(): if (row['event'] == 'offer received'): ledger_temp[received_offer_counter] = {'received':1, 'time_received':row['time_[h]'], 'viewed':0, 'completed':0, 'success': 0, 'profit': 0} received_offer_counter += 1 if (row['event'] == 'offer viewed'): # Calculate profit for i in range(0, received_offer_counter): if ledger_temp[i]['viewed'] == 0: ledger_temp[i]['viewed'] = 1 time_of_view = row['time_[h]'] expire_offer_time = ledger_temp[i]['time_received'] + row['duration_[h]'] profit = customer.loc[(customer['time_[h]'] >= time_of_view) & \ (customer['time_[h]'] <= expire_offer_time)]['amount_[$]'].sum() ledger_temp[i]['profit'] = profit # We consider it successful if the customer bought something if profit > 0: ledger_temp[i]['success'] = 1 break for i in range(0, received_offer_counter): ledger['customer_id'].append(customer_id) ledger['offer_id'].append(customer_offer_id) ledger['received'].append(ledger_temp[i]['received']) ledger['viewed'].append(ledger_temp[i]['viewed']) ledger['completed'].append(ledger_temp[i]['completed']) ledger['success'].append(ledger_temp[i]['success']) ledger['profit'].append(ledger_temp[i]['profit']) # Order the offers properly # The events at the same hour are not ordered like R - V - C, so we must order them temp_customer = customer temp_customer['name_sort'] = temp_customer['event'].map(event_sort) temp_customer = temp_customer.sort_values(['time_[h]', 'name_sort'], ascending=[True, True]) # We get the amount spent without offer influence # We find the first and last offer received start_times = [] end_times = [] offers_received = False for index, row in temp_customer.iterrows(): if row['event'] == 'offer received': start_times.append(row['time_[h]']) end_times.append(row['time_[h]'] + row['duration_[h]']) offers_received = True if offers_received: time_gap_start = [] time_gap_start.append(0) time_gap_end = [] time_gap_end.append(start_times[0]) for index in range(0, len(start_times)-1): if end_times[index] < start_times[index+1]: time_gap_start.append(end_times[index]) time_gap_end.append(start_times[index+1]) time_gap_start.append(end_times[-1]) time_gap_end.append(temp_customer.iloc[-1]['time_[h]']) # Initialize the amount total_profit = 0 for index in range(0, len(time_gap_start)): total_profit += temp_customer.loc[(temp_customer['time_[h]'] >= time_gap_start[index]) & \ (temp_customer['time_[h]'] <= time_gap_end[index])]['amount_[$]'].sum() else: total_profit = temp_customer.loc[temp_customer['offer_id'] == non_offer_id]['amount_[$]'].sum() ledger['customer_id'].append(customer_id) ledger['offer_id'].append(non_offer_id) ledger['received'].append(0) ledger['viewed'].append(0) ledger['completed'].append(0) ledger['success'].append(0) ledger['profit'].append(total_profit) # initialize bool and total profit again offers_received = False total_profit = 0 # progress bar bar.update(customer_id+1) sleep(0.1) bar.finish() ###Output [========================================================================] 100% ###Markdown We save the ledger ###Code with open('ledger.pickle', 'wb') as handle: pickle.dump(ledger, handle, protocol=pickle.HIGHEST_PROTOCOL) Starbucks_ledger = pd.DataFrame.from_dict(ledger) Starbucks_ledger.to_pickle("./Starbucks_ledger.pkl") ###Output _____no_output_____ ###Markdown FINAL STEP: Join all three datasets, Portfolio, profile and ledger ###Code # We read the wrangled and clean datasets portfolio = pd.read_pickle("./portfolio.pkl") profile = pd.read_pickle("./profile.pkl") Starbucks_ledger = pd.read_pickle("./Starbucks_ledger.pkl") Starbucks_ledger Starbucks_final_df = pd.merge(Starbucks_ledger, profile, on='customer_id', how='left', sort=True, suffixes=('_led', '_pro')) Starbucks_final_df = pd.merge(Starbucks_final_df, portfolio, on='offer_id', how='left', sort=True, suffixes=('_led', '_port')) ###Output _____no_output_____ ###Markdown We save the FINAL dataframe as a pickle file ###Code Starbucks_final_df.to_pickle("./Starbucks_final_df.pkl") Starbucks_final_df = pd.read_pickle("./Starbucks_final_df.pkl") ###Output _____no_output_____ ###Markdown HERE IS THE BEAUTY: ###Code Starbucks_final_df Starbucks_final_df.describe() Starbucks_final_df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 93277 entries, 0 to 93276 Data columns (total 25 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 customer_id 93277 non-null int64 1 offer_id 93277 non-null int64 2 received 93277 non-null int64 3 viewed 93277 non-null int64 4 completed 93277 non-null int64 5 success 93277 non-null int64 6 profit 93277 non-null float64 7 age 93277 non-null int64 8 became_member_on_[y-m-d] 93277 non-null datetime64[ns] 9 income_[$] 93277 non-null float64 10 missing_values 93277 non-null int64 11 gender_F 93277 non-null uint8 12 gender_M 93277 non-null uint8 13 gender_O 93277 non-null uint8 14 gender 93277 non-null object 15 reward_[$] 93277 non-null int64 16 difficulty_[$] 93277 non-null int64 17 duration_[h] 93277 non-null int64 18 offer_type_bogo 93277 non-null int64 19 offer_type_discount 93277 non-null int64 20 offer_type_informational 93277 non-null int64 21 offer_type 93277 non-null object 22 channel_mobile 93277 non-null int64 23 channel_social 93277 non-null int64 24 channel_web 93277 non-null int64 dtypes: datetime64[ns](1), float64(2), int64(17), object(2), uint8(3) memory usage: 16.6+ MB ###Markdown Data wrangling We will convert some of the coluimns into categorical values for better representation and to input into the model later. We can delete the received column, as it does not provide usefiul information that we already do not know. If receive is 0, that means that there was no offer in the first, but we go that covered with offer id 10. ###Code Starbucks_final_df.drop(columns=['received'], inplace=True) ###Output _____no_output_____ ###Markdown Now we will convert age into categories and then make dummy variables:1. <25: young2. 26-50: young_adult3. 51-75: senior_adult4. 75<: senior ###Code def select_age(age): if age <= 25: return 'young' elif age <= 50: return 'young_adult' elif age <= 75: return 'senior_adult' else: return 'senior' Starbucks_final_df['age'] = Starbucks_final_df['age'].apply(lambda x: select_age(x)) # Get dummies: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html dummy_age = Starbucks_final_df['age'] Starbucks_final_df = pd.get_dummies(Starbucks_final_df, prefix=['age'], columns=['age']) Starbucks_final_df['dummy_age'] = dummy_age ###Output _____no_output_____ ###Markdown We do the same with the income (considering that the min income was 30k):1. < 50k: low2. < 75: midium_low3. < 100: medium_high4. 100<: high ###Code def select_income(income): if income <= 50000: return 'low' elif income <= 75000: return 'medium_low' elif income <= 100000: return 'medium_high' else: return 'high' Starbucks_final_df['income_[$]'] = Starbucks_final_df['income_[$]'].apply(lambda x: select_income(x)) # Get dummies: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html dummy_income = Starbucks_final_df['income_[$]'] Starbucks_final_df = pd.get_dummies(Starbucks_final_df, prefix=['income'], columns=['income_[$]']) Starbucks_final_df['dummy_income'] = dummy_income ###Output _____no_output_____ ###Markdown Now let us divide the members in groups depending on how early or late they became an app customer. ###Code earliest = Starbucks_final_df['became_member_on_[y-m-d]'].min() latest = Starbucks_final_df['became_member_on_[y-m-d]'].max() print(earliest) print(latest) time_period = Starbucks_final_df['became_member_on_[y-m-d]'].max() - Starbucks_final_df['became_member_on_[y-m-d]'].min() time_period/4 ###Output _____no_output_____ ###Markdown We will divide the customers in 4 groups:1. <455 days: early adopters2. <910 days: early majority3. <1365 days: late majority4. 1365< days: laggards ###Code def select_period(date): if date <= earliest + time_period/4: return 'early_adopter' elif date <= earliest + time_period/4*2: return 'early_majority' elif date <= earliest + time_period/4*3: return 'late_majority' else: return 'laggard' Starbucks_final_df['became_member_on_[y-m-d]'] = Starbucks_final_df['became_member_on_[y-m-d]'].apply(lambda x: select_period(x)) # Get dummies: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html dummy_period = Starbucks_final_df['became_member_on_[y-m-d]'] Starbucks_final_df = pd.get_dummies(Starbucks_final_df, prefix=['member_'], columns=['became_member_on_[y-m-d]']) Starbucks_final_df['dummy_became_member_on_[y-m-d]'] = dummy_period ###Output _____no_output_____ ###Markdown Data cleansing We will delete the dummy attributes after exploration, aside from that, there is nothing to cleanse. we will do this after the exploration. Data Exploration Here are the questions we can answer:- Which offers are preferred according to gender?- Which offers are preferred according to income?- Which offers are preferred according to age?- Which offers are preferred according to date of becoming a member?- Which are the most successful offers (most completed) between discount and bogos?- Which are the most profitable offers between discont offers?- Which are the most profitable offers between informational?- How much money was earned in total with offers Vs. without offers? Which offers are preferred according to gender? We will show a top list of successful offers per gender. Let us remember that informational offers success cannot ###Code groups_gender_offers = Starbucks_final_df[Starbucks_final_df['offer_id'] != 10].groupby(['gender', 'offer_id'])\ ['success'].sum().unstack('gender').plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown Most males and females prefer offer 6 which is a discount of 2 dollars after buying products worth 10 dollars, with the longest duration of 10 days, and it reaches thorugh all media: mobile, social and web.The second most liked is offer 5, which is also a discount. An the top 3 is 1 for males (bogo) and 8 for females (bogo).But the differnces between female and mae preferences are not that large. Here is a more summarized plot: ###Code groups_gender_offers = Starbucks_final_df[Starbucks_final_df['offer_type'] != 'none'].groupby(['gender', 'offer_type'])\ ['success'].sum().unstack('gender').plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown Which offers are preferred according to income? ###Code groups_gender_offers = Starbucks_final_df[Starbucks_final_df['offer_id'] != 10].groupby(['dummy_income', 'offer_id'])\ ['success'].sum().unstack('dummy_income').plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown There are not so many customers with high income. The target group is peoel who earn between 50 and 75k. for them, the most preffered offer ids are 5 and 6, in the table below we see they prefer discount offers. Here is amore summarized table ###Code groups_gender_offers = Starbucks_final_df[Starbucks_final_df['offer_id'] != 10].groupby(['dummy_income', 'offer_type'])\ ['success'].sum().unstack('dummy_income').plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown Which offers are preferred according to age? ###Code groups_gender_offers = Starbucks_final_df[Starbucks_final_df['offer_id'] != 10].groupby(['dummy_age', 'offer_id'])\ ['success'].sum().unstack('dummy_age').plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown Senior adults are the biggest clientele, and prefer offer ids 5 and 6, (discount type on the plotbelow) This leads me to think that most of them have also a medium low income. ###Code groups_gender_offers = Starbucks_final_df[Starbucks_final_df['offer_id'] != 10].groupby(['dummy_age', 'offer_type'])\ ['success'].sum().unstack('dummy_age').plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown Which offers are preferred according to date of becoming a member? ###Code groups_gender_offers = Starbucks_final_df[Starbucks_final_df['offer_id'] != 10].groupby(['dummy_became_member_on_[y-m-d]', 'offer_id'])\ ['success'].sum().unstack('dummy_became_member_on_[y-m-d]').plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown This is something we could have expected, each offer has the same distribution, which leads ot think that time of becoming a member does not have an effect on which offers they might prefer. ###Code groups_gender_offers = Starbucks_final_df[Starbucks_final_df['offer_id'] != 10].groupby(['dummy_became_member_on_[y-m-d]', 'offer_type'])\ ['success'].sum().unstack('dummy_became_member_on_[y-m-d]').plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown Which are the most successful offers? ###Code groups_gender_offers = Starbucks_final_df[Starbucks_final_df['offer_type'] != 'none'].groupby(['offer_type'])\ ['success'].sum()\ .plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown The most successful offer type is discount. Which are the most profitable offers? ###Code groups_gender_offers = Starbucks_final_df[Starbucks_final_df['offer_type'] != 'none'].groupby(['offer_id'])\ ['profit'].sum()\ .plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown This plot must be taken with a grain of salt. Bogos are not profitable from our considerations as you produce 0 profit. But they serve other purposed and their success is measured not based on the profit. The most profitable offer is 7 and 2, these are informational. However, informational offers' profit is based on the spending in a period time, during which there were other offers as well. We could clearly conclude that offer 6 among discounts is the most profitable one. ###Code groups_gender_offers = Starbucks_final_df[Starbucks_final_df['offer_type'] != 'none'].groupby(['offer_type'])\ ['profit'].sum()\ .plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown Which are the most profitable offers between informational? ###Code groups_gender_offers = Starbucks_final_df[(Starbucks_final_df['offer_id'] == 2) | \ (Starbucks_final_df['offer_id'] == 7)].groupby(['offer_id'])\ ['profit'].sum()\ .plot.bar(figsize = (12,8), rot=0) ###Output _____no_output_____ ###Markdown How much money was earned in total with offers Vs. without offers? ###Code offer_profit = Starbucks_final_df[Starbucks_final_df['offer_id'] != 10].groupby(['offer_id'])['profit'].sum().sum() none_offer_profit = Starbucks_final_df[Starbucks_final_df['offer_id'] == 10].groupby(['offer_id'])['profit'].sum().sum() y_values = [offer_profit, none_offer_profit] x_values = ['offers', 'no_offers'] plt.bar(x_values, y_values) ###Output _____no_output_____ ###Markdown They have made more money without the offers ###Code Starbucks_final_df.to_pickle("./Starbucks_plotting.pkl") ###Output _____no_output_____ ###Markdown Data cleansing We will transform offer_id into dummies, as it is a categorical atribute.Rewards, difficulty_[$], duration_[h] will be scaled between 0 and 1 ###Code Starbucks_final_df['reward_[$]'] = (Starbucks_final_df['reward_[$]'] - Starbucks_final_df['reward_[$]'].min())/Starbucks_final_df['reward_[$]'].max() Starbucks_final_df['difficulty_[$]'] = (Starbucks_final_df['difficulty_[$]'] - Starbucks_final_df['difficulty_[$]'].min())/Starbucks_final_df['difficulty_[$]'].max() Starbucks_final_df['duration_[h]'] = (Starbucks_final_df['duration_[h]'] - Starbucks_final_df['duration_[h]'].min())/Starbucks_final_df['duration_[h]'].max() Starbucks_final_df.shape Starbucks_final_df = pd.get_dummies(Starbucks_final_df, prefix=['offer_id'], columns=['offer_id']) ###Output _____no_output_____ ###Markdown Alright, so data has been scaled and categrical variables have been converted to dummies. But there are further considerations. We are focused on offers, so we should eliminate the rows with offer ids = 10. We will focus on the success variable, that will be our label for training.We will delete viewed and completed because we know that would directly explain success.Also we delete all dummies ###Code Starbucks_final_df = Starbucks_final_df.loc[Starbucks_final_df['offer_id_10'] != 1] Starbucks_final_df = Starbucks_final_df.drop(columns=['viewed']) Starbucks_final_df = Starbucks_final_df.drop(columns=['completed']) Starbucks_final_df = Starbucks_final_df.drop(columns=['offer_id_10']) Starbucks_final_df = Starbucks_final_df.drop(columns=['dummy_age']) Starbucks_final_df = Starbucks_final_df.drop(columns=['offer_type']) Starbucks_final_df = Starbucks_final_df.drop(columns=['dummy_became_member_on_[y-m-d]']) Starbucks_final_df = Starbucks_final_df.drop(columns=['dummy_income']) Starbucks_final_df = Starbucks_final_df.drop(columns=['gender']) ###Output _____no_output_____ ###Markdown Delete columns which in my opinion will not bring any value to the prediction. Year of becoming a member does not say nothing much about the person, perhaps that he/she was an early adopter. But I will assume that these personal feature does not impact on advertisement.Customer id does not help, it does not include any value, since we already have the demographics and know that each record is an individual.Profit could be the ground truth used to predict how much an offer will make if sent to an individual, but that is not the question at hand, ###Code Starbucks_final_df = Starbucks_final_df.drop(columns=['customer_id']) Starbucks_final_df = Starbucks_final_df.drop(columns=['profit']) ###Output _____no_output_____ ###Markdown Save the final dataset into a pickle file ###Code Starbucks_final_df.to_pickle("./Starbucks_modelling_df.pkl") ###Output _____no_output_____ ###Markdown 4. Modeling ###Code Starbucks_modelling_df = pd.read_pickle("./Starbucks_modelling_df.pkl") Starbucks_modelling_df ###Output _____no_output_____ ###Markdown Everything is ready to input our dataset into the model. ###Code labels = Starbucks_modelling_df['success'] features = Starbucks_modelling_df.drop(columns=['success'], inplace=False) # Split the 'features' and 'income' data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size = 0.3, random_state = 42) # Show the results of the split print("Training set has {} samples.".format(X_train.shape[0])) print("Testing set has {} samples.".format(X_test.shape[0])) ###Output Training set has 53393 samples. Testing set has 22884 samples. ###Markdown For classification, we will use:- SVM- Random forests- Logistic regression- Gradient Boosting ###Code from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.ensemble import GradientBoostingClassifier # REF: udavity course # TODO: Import two metrics from sklearn - fbeta_score and accuracy_score from sklearn.metrics import fbeta_score, accuracy_score def train_predict(learner, sample_size, X_train, y_train, X_test, y_test): ''' inputs: - learner: the learning algorithm to be trained and predicted on - sample_size: the size of samples (number) to be drawn from training set - X_train: features training set - y_train: income training set - X_test: features testing set - y_test: income testing set ''' results = {} # TODO: Fit the learner to the training data using slicing with 'sample_size' using .fit(training_features[:], training_labels[:]) start = time() # Get start time learner = learner.fit(X_train[:sample_size], y_train[:sample_size]) end = time() # Get end time # TODO: Calculate the training time results['train_time'] = end - start # TODO: Get the predictions on the test set(X_test), # then get predictions on the first 300 training samples(X_train) using .predict() start = time() # Get start time predictions_test = learner.predict(X_test) predictions_train = learner.predict(X_train[:300]) end = time() # Get end time # TODO: Calculate the total prediction time results['pred_time'] = end - start # TODO: Compute accuracy on the first 300 training samples which is y_train[:300] results['acc_train'] = accuracy_score(y_train[:300], predictions_train) # TODO: Compute accuracy on test set using accuracy_score() results['acc_test'] = accuracy_score(y_test, predictions_test) # TODO: Compute F-score on the the first 300 training samples using fbeta_score() results['f_train'] = fbeta_score(y_train[:300], predictions_train, beta=0.5) # TODO: Compute F-score on the test set which is y_test # I use beta = 0.5 as we are focuing on precision results['f_test'] = fbeta_score(y_test, predictions_test, beta=0.5) # Success print("{} trained on {} samples.".format(learner.__class__.__name__, sample_size)) # Return the results return results clf_A = SVC(random_state=0) clf_B = RandomForestClassifier(random_state=0) clf_C = LogisticRegression(random_state=0) clf_D = GradientBoostingClassifier(random_state=0) clfs = [clf_A, clf_B, clf_C, clf_D] # initialize the progress bar bar_1 = progressbar.ProgressBar(maxval=len(clfs), \ widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()]) # initialize the progress bar bar_2 = progressbar.ProgressBar(maxval=2, \ widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()]) # REF: udacity course # It is interesting to see how they perform with less samples samples_100 = int(len(y_train)) samples_10 = int(round(0.1 * samples_100)) # Collect results on the learners results = {} bar_1.start() clf_counter = 0 for clf in clfs: clf_name = clf.__class__.__name__ results[clf_name] = {} bar_2.start() for i, samples in enumerate([samples_10, samples_100]): results[clf_name][i] = \ train_predict(clf, samples, X_train, y_train, X_test, y_test) # progress bar bar_2.update(i+1) sleep(0.1) bar_2.finish() # progress bar clf_counter += 1 bar_1.update(clf_counter) sleep(0.1) bar_1.finish() # Run metrics visualization for the three supervised learning models chosen ALL_results = {} ALL_results = results ###Output _____no_output_____ ###Markdown Performing algorithm comparisons ###Code # We print the different metrics for all the tested algorithms. print('Training with all samples') for clf in clfs: clf_name = clf.__class__.__name__ print(clf_name) print('Training time = ', ALL_results[clf_name][1]['train_time']) print('Testing time = ', ALL_results[clf_name][1]['pred_time']) print('Test Accuracy = ', ALL_results[clf_name][1]['acc_test']) print('Test Fscore = ', ALL_results[clf_name][1]['f_test']) print('\n') ###Output Training with all samples SVC Training time = 164.17853903770447 Testing time = 33.015408754348755 Test Accuracy = 0.6959884635553225 Test Fscore = 0.582545208095869 RandomForestClassifier Training time = 0.2846059799194336 Testing time = 0.0351099967956543 Test Accuracy = 0.7047718930256948 Test Fscore = 0.5984216117772044 LogisticRegression Training time = 0.16101694107055664 Testing time = 0.0060138702392578125 Test Accuracy = 0.7007953155042824 Test Fscore = 0.5910921218455107 GradientBoostingClassifier Training time = 4.785567045211792 Testing time = 0.03660392761230469 Test Accuracy = 0.7081803880440483 Test Fscore = 0.6026470491641762 ###Markdown - Best train time: LogisticRegression- Best test time: LogisticRegression- Best Accuracy: GradientBoostingClassifier (by a hair)- Best Fscore (beta = 0.5): GradientBoostingClassifier (by a hair) ###Code # We print the different metrics for all the tested algorithms. print('Training with 10% of samples') for clf in clfs: clf_name = clf.__class__.__name__ print(clf_name) print('Training time = ', ALL_results[clf_name][0]['train_time']) print('Testing time = ', ALL_results[clf_name][0]['pred_time']) print('Test Accuracy = ', ALL_results[clf_name][0]['acc_test']) print('Test Fscore = ', ALL_results[clf_name][0]['f_test']) print('\n') ###Output Training with 10% of samples SVC Training time = 1.0258140563964844 Testing time = 3.1299290657043457 Test Accuracy = 0.6952455864359378 Test Fscore = 0.5777104623680969 RandomForestClassifier Training time = 0.0488131046295166 Testing time = 0.033370018005371094 Test Accuracy = 0.673527355357455 Test Fscore = 0.5574165715010785 LogisticRegression Training time = 0.021611928939819336 Testing time = 0.008096933364868164 Test Accuracy = 0.6955514770145079 Test Fscore = 0.5839501477428981 GradientBoostingClassifier Training time = 0.4492828845977783 Testing time = 0.0361332893371582 Test Accuracy = 0.701800384548156 Test Fscore = 0.5943984313266412 ###Markdown - Best train time: LogisticRegression- Best test time: LogisticRegression- Best Accuracy: GradientBoostingClassifier (by a hair)- Best Fscore (beta = 0.5): GradientBoostingClassifier (by a hair) ###Code # We save the model filename = 'trained_classifier.sav' pickle.dump(clf_D, open(filename, 'wb')) loaded_model = pickle.load(open(filename, 'rb')) ###Output _____no_output_____ ###Markdown The most performant classifier is GradientBoosting. We will use it and now try to optimize its parameters for getting a better accuracy and fscore. Before we do that, let us get some intuition of the guts of the model afteer training This is the feature that has the biggest impact on the classification for success ###Code best_feature_index = np.where(loaded_model.feature_importances_ == loaded_model.feature_importances_.max()) features.columns[best_feature_index] ###Output _____no_output_____ ###Markdown Grid search on best performing algorithm ###Code from sklearn.metrics import make_scorer from sklearn.model_selection import GridSearchCV loaded_model # TODO: Initialize the classifier again GradientBoostingClassifier_optimal = GradientBoostingClassifier() # Create the parameters list you wish to tune, using a dictionary if needed. def grid_search(model, scorer): # specify parameters for grid search parameters = { 'learning_rate': [0.1, 0.5, 1], 'max_depth': [3, 4], 'n_estimators': [100, 125, 150], } # create grid search object cv = GridSearchCV(model, param_grid=parameters, scoring=scorer) return cv # fbeta_score scoring object using make_scorer() scorer = make_scorer(fbeta_score, beta=0.5) # Perform grid search on the classifier using 'scorer' as the scoring method using GridSearchCV() grid_object = grid_search(GradientBoostingClassifier_optimal, scorer) # Fit the grid search object to the training data grid_fit = grid_object.fit(X_train, y_train) # Get the estimator best_clf = grid_fit.best_estimator_ # We save the model filename = 'best_trained_classifier.sav' pickle.dump(best_clf, open(filename, 'wb')) best_clf = pickle.load(open(filename, 'rb')) # Make predictions using the unoptimized and model predictions = (clf.fit(X_train, y_train)).predict(X_test) best_predictions = best_clf.predict(X_test) # Report the before-and-afterscores print("Unoptimized model\n------") print("Accuracy score on testing data: {:.4f}".format(accuracy_score(y_test, predictions))) print("F-score on testing data: {:.4f}".format(fbeta_score(y_test, predictions, beta = 0.5))) print("\nOptimized Model\n------") print("Final accuracy score on the testing data: {:.4f}".format(accuracy_score(y_test, best_predictions))) print("Final F-score on the testing data: {:.4f}".format(fbeta_score(y_test, best_predictions, beta = 0.5))) best_clf ###Output Unoptimized model ------ Accuracy score on testing data: 0.7082 F-score on testing data: 0.6026 Optimized Model ------ Final accuracy score on the testing data: 0.7105 Final F-score on the testing data: 0.6086
test/testdata/GenerateConvolutedData.ipynb
###Markdown Generate data with small beads and Poisson noise from experimental PSF ###Code import numpy as np import tifffile import napari #Create a 2d array to do FFT ashape = (256,256,256) a = np.zeros(ashape, dtype=float) #Add a few cubes in grid-like locations cubesize=2 cubespacing=60 for iz in range(int(cubespacing/2),ashape[0],cubespacing): for iy in range(int(cubespacing/2),ashape[1],cubespacing): for ix in range(int(cubespacing/2),ashape[2],cubespacing): a[iz:iz+cubesize , iy:iy+cubesize , ix:ix+cubesize] = np.ones((cubesize,cubesize,cubesize)) nview_data = napari.view_image(a, ndisplay=3) #OK #Optionally save the data tifffile.imsave('test/gendata1_raw.tif', a) ###Output _____no_output_____ ###Markdown Convolve data with the experimental 'Rosalind' Psf.Read data first ###Code psfdata=tifffile.imread('PSF_RFI_8bit.tif') type(psfdata) psfdata.dtype psfdata.shape psfdata_norm = (psfdata.astype(float) - psfdata.min() ) / (psfdata.max() - psfdata.min()) nview_psf = napari.view_image(psfdata_norm, ndisplay=3) ###Output Exception in callback BaseAsyncIOLoop._handle_events(4036, 1) handle: <Handle BaseAsyncIOLoop._handle_events(4036, 1)> Traceback (most recent call last): File "C:\Users\Luis\miniconda3\envs\dev\lib\asyncio\events.py", line 81, in _run self._context.run(self._callback, *self._args) File "C:\Users\Luis\miniconda3\envs\dev\lib\site-packages\tornado\platform\asyncio.py", line 189, in _handle_events handler_func(fileobj, events) File "C:\Users\Luis\miniconda3\envs\dev\lib\site-packages\zmq\eventloop\zmqstream.py", line 452, in _handle_events self._handle_recv() File "C:\Users\Luis\miniconda3\envs\dev\lib\site-packages\zmq\eventloop\zmqstream.py", line 481, in _handle_recv self._run_callback(callback, msg) File "C:\Users\Luis\miniconda3\envs\dev\lib\site-packages\zmq\eventloop\zmqstream.py", line 431, in _run_callback callback(*args, **kwargs) File "C:\Users\Luis\miniconda3\envs\dev\lib\site-packages\jupyter_client\threaded.py", line 121, in _handle_recv msg_list = self.ioloop._asyncio_event_loop.run_until_complete(get_msg(future_msg)) File "C:\Users\Luis\miniconda3\envs\dev\lib\asyncio\base_events.py", line 592, in run_until_complete self._check_running() File "C:\Users\Luis\miniconda3\envs\dev\lib\asyncio\base_events.py", line 554, in _check_running raise RuntimeError( RuntimeError: Cannot run the event loop while another loop is running ###Markdown Convolve ###Code import scipy.signal data_convolved = scipy.signal.convolve(a, psfdata_norm, mode='same') data_convolved.shape #normalises to 0-255 range data_convolved = (data_convolved - data_convolved.min()) / (data_convolved.max() - data_convolved.min())*255 print(data_convolved.max()) print(data_convolved.min()) nview_dataconv = napari.view_image(data_convolved,ndisplay=3) ###Output _____no_output_____ ###Markdown Add Poisson noise ###Code #data_convolved_noised = data_convolved + np.random.poisson(256 , size=ashape).astype(np.float32)/80 #This method of adding does not look right. The original intensity should be the lambda poisson parameter in the function rng = np.random.default_rng() data_convolved_noised = rng.poisson(lam = data_convolved) nview_data_noised = napari.view_image(data_convolved_noised,ndisplay=3) data_convolved_noised_uint8 = ((data_convolved_noised - data_convolved_noised.min()) / ( data_convolved_noised.max() - data_convolved_noised.min() ) *255 ).astype(np.uint8) tifffile.imsave('test/gendata_psfconv_poiss.tif', data_convolved_noised_uint8) ###Output _____no_output_____ ###Markdown Create large data ###Code import numpy as np import tifffile import napari import scipy.signal #Create a 2d array to do FFT ashape = (60,1026,1544) # Casper LM size a = np.zeros(ashape, dtype=float) #a = np.random.poisson(256 , size=(size0,size0,size0)).astype(np.float32)/2000 #Add a few cubes in grid-like locations cubesize=2 cubespacing=67 for iz in range(5,ashape[0],cubespacing): for iy in range(5,ashape[1],cubespacing): for ix in range(5,ashape[2],cubespacing): a[iz:iz+cubesize , iy:iy+cubesize , ix:ix+cubesize] = np.ones((cubesize,cubesize,cubesize)) #Read psf psfdata=tifffile.imread('PSF_RFI_8bit.tif') psfdata_norm = (psfdata.astype(float) - psfdata.min() ) / (psfdata.max() - psfdata.min()) #Convolve data_convolved = scipy.signal.convolve(a, psfdata_norm, mode='same') #Adjust max/min and intensity data_convolved = (data_convolved - data_convolved.min()) / (data_convolved.max() - data_convolved.min())*255 #Noisify with Poisson rng = np.random.default_rng() data_convolved_noised = rng.poisson(lam = data_convolved) data_convolved_noised_uint8 = ((data_convolved_noised - data_convolved_noised.min()) / ( data_convolved_noised.max() - data_convolved_noised.min() ) *255 ).astype(np.uint8) tifffile.imsave('gendata_psfconv_poiss_large.tif', data_convolved_noised_uint8) ###Output _____no_output_____ ###Markdown Create very large data ###Code import numpy as np import tifffile import napari import scipy.signal #Create a 2d array to do FFT ashape = (51,2048,2048) # Jeonyoon Choi a = np.zeros(ashape, dtype=float) #a = np.random.poisson(256 , size=(size0,size0,size0)).astype(np.float32)/2000 #Add a few cubes in grid-like locations cubesize=2 cubespacing=67 for iz in range(5,ashape[0],cubespacing): for iy in range(5,ashape[1],cubespacing): for ix in range(5,ashape[2],cubespacing): a[iz:iz+cubesize , iy:iy+cubesize , ix:ix+cubesize] = np.ones((cubesize,cubesize,cubesize)) #Read psf psfdata=tifffile.imread('PSF_RFI_8bit.tif') psfdata_norm = (psfdata.astype(float) - psfdata.min() ) / (psfdata.max() - psfdata.min()) #Convolve data_convolved = scipy.signal.convolve(a, psfdata_norm, mode='same') #Adjust max/min and intensity data_convolved = (data_convolved - data_convolved.min()) / (data_convolved.max() - data_convolved.min())*255 #Noisify with Poisson rng = np.random.default_rng() data_convolved_noised = rng.poisson(lam = data_convolved) data_convolved_noised_uint8 = ((data_convolved_noised - data_convolved_noised.min()) / ( data_convolved_noised.max() - data_convolved_noised.min() ) *255 ).astype(np.uint8) nview_data_noised = napari.view_image(data_convolved_noised_uint8,ndisplay=3) tifffile.imsave('gendata_psfconv_poiss_vlarge.tif', data_convolved_noised_uint8) ###Output _____no_output_____
classifier/notebooks/.ipynb_checkpoints/very-simple-pytorch-training-0-59-checkpoint.ipynb
###Markdown Cool Imports ###Code import pandas as pd import time import torchvision import torch.nn as nn from tqdm import tqdm_notebook as tqdm from PIL import Image, ImageFile from torch.utils.data import Dataset import torch import torch.optim as optim from torchvision import transforms from torch.optim import lr_scheduler import os device = torch.device("cuda:0") ImageFile.LOAD_TRUNCATED_IMAGES = True ###Output _____no_output_____ ###Markdown Dataset Class ###Code class RetinopathyDatasetTrain(Dataset): def __init__(self, csv_file): self.data = pd.read_csv(csv_file) def __len__(self): return len(self.data) def __getitem__(self, idx): img_name = os.path.join('../data/train_images', self.data.loc[idx, 'id_code'] + '.png') image = Image.open(img_name) image = image.resize((256, 256), resample=Image.BILINEAR) label = torch.tensor(self.data.loc[idx, 'diagnosis']) return {'image': transforms.ToTensor()(image), 'labels': label } ###Output _____no_output_____ ###Markdown Get the model ###Code model = torchvision.models.resnet101(pretrained=True) #model.load_state_dict(torch.load("../data/resnet101-5d3b4d8f.pth")) num_features = model.fc.in_features model.fc = nn.Linear(2048, 1) model = model.to(device) ###Output Downloading: "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth" to /home/ags/.cache/torch/checkpoints/resnet101-5d3b4d8f.pth 100%|██████████| 178728960/178728960 [00:55<00:00, 3221921.18it/s] ###Markdown Create dataset + optimizer ###Code train_dataset = RetinopathyDatasetTrain(csv_file='../input/aptos2019-blindness-detection/train.csv') data_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=4) plist = [ {'params': model.layer4.parameters(), 'lr': 1e-4, 'weight': 0.001}, {'params': model.fc.parameters(), 'lr': 1e-3} ] optimizer = optim.Adam(plist, lr=0.001) scheduler = lr_scheduler.StepLR(optimizer, step_size=10) ###Output _____no_output_____ ###Markdown Training Loop ###Code since = time.time() criterion = nn.MSELoss() num_epochs = 15 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) scheduler.step() model.train() running_loss = 0.0 tk0 = tqdm(data_loader, total=int(len(data_loader))) counter = 0 for bi, d in enumerate(tk0): inputs = d["image"] labels = d["labels"].view(-1, 1) inputs = inputs.to(device, dtype=torch.float) labels = labels.to(device, dtype=torch.float) optimizer.zero_grad() with torch.set_grad_enabled(True): outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) counter += 1 tk0.set_postfix(loss=(running_loss / (counter * data_loader.batch_size))) epoch_loss = running_loss / len(data_loader) print('Training Loss: {:.4f}'.format(epoch_loss)) time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) torch.save(model.state_dict(), "model.bin") ###Output Epoch 0/14 ----------
Lec11_Recurrent Neural Networks/Lec11_Many to One Classification by Stacked Bi-directional GRU with Drop out.ipynb
###Markdown CS 20 : TensorFlow for Deep Learning Research Lecture 11 : Recurrent Neural NetworksSimple example for Many to One Classification (word sentiment classification) by Stacked Bi-directional Gated Recurrent Unit with Drop out. Many to One Classification by Stacked Bi-directional GRU with Drop out- Creating the **data pipeline** with `tf.data`- Preprocessing word sequences (variable input sequence length) using `padding technique` by `user function (pad_seq)`- Using `tf.nn.embedding_lookup` for getting vector of tokens (eg. word, character)- Creating the model as **Class**- Applying **Drop out** to model by `tf.contrib.rnn.DropoutWrapper`- Applying **Stacking** and **dynamic rnn** to model by `tf.contrib.rnn.stack_bidirectional_dynamic_rnn`- Reference - https://github.com/golbin/TensorFlow-Tutorials/blob/master/10%20-%20RNN/02%20-%20Autocomplete.py - https://github.com/aisolab/TF_code_examples_for_Deep_learning/blob/master/Tutorial%20of%20implementing%20Sequence%20classification%20with%20RNN%20series.ipynb - https://pozalabs.github.io/blstm/ Setup ###Code import os, sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf import string %matplotlib inline slim = tf.contrib.slim print(tf.__version__) ###Output 1.8.0 ###Markdown Prepare example data ###Code words = ['good', 'bad', 'amazing', 'so good', 'bull shit', 'awesome'] y = [[1.,0.], [0.,1.], [1.,0.], [1., 0.],[0.,1.], [1.,0.]] # Character quantization char_space = string.ascii_lowercase char_space = char_space + ' ' + '*' char_space char_dic = {char : idx for idx, char in enumerate(char_space)} print(char_dic) ###Output {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5, 'g': 6, 'h': 7, 'i': 8, 'j': 9, 'k': 10, 'l': 11, 'm': 12, 'n': 13, 'o': 14, 'p': 15, 'q': 16, 'r': 17, 's': 18, 't': 19, 'u': 20, 'v': 21, 'w': 22, 'x': 23, 'y': 24, 'z': 25, ' ': 26, '*': 27} ###Markdown Create pad_seq function ###Code def pad_seq(sequences, max_len, dic): seq_len, seq_indices = [], [] for seq in sequences: seq_len.append(len(seq)) seq_idx = [dic.get(char) for char in seq] seq_idx += (max_len - len(seq_idx)) * [dic.get('*')] # 27 is idx of meaningless token "*" seq_indices.append(seq_idx) return seq_len, seq_indices ###Output _____no_output_____ ###Markdown Apply pad_seq function to data ###Code max_length = 10 X_length, X_indices = pad_seq(sequences = words, max_len = max_length, dic = char_dic) print(X_length) print(np.shape(X_indices)) ###Output [4, 3, 7, 7, 9, 7] (6, 10) ###Markdown Define CharStackedBiGRU class ###Code class CharStackedBiGRU: def __init__(self, X_length, X_indices, y, n_of_classes, hidden_dims, dic): # data pipeline with tf.variable_scope('input_layer'): self._X_length = X_length self._X_indices = X_indices self._y = y one_hot = tf.eye(len(dic), dtype = tf.float32) self._one_hot = tf.get_variable(name='one_hot_embedding', initializer = one_hot, trainable = False) # embedding vector training 안할 것이기 때문 self._X_batch = tf.nn.embedding_lookup(params = self._one_hot, ids = self._X_indices) self._keep_prob = tf.placeholder(dtype = tf.float32) # Stacked Bi-directional GRU with Drop out with tf.variable_scope('stacked_bi-directional_gru'): # forward gru_fw_cells = [] for hidden_dim in hidden_dims: gru_fw_cell = tf.contrib.rnn.GRUCell(num_units = hidden_dim, activation = tf.nn.tanh) gru_fw_cell = tf.contrib.rnn.DropoutWrapper(cell = gru_fw_cell, output_keep_prob = self._keep_prob) gru_fw_cells.append(gru_fw_cell) # backword gru_bw_cells = [] for hidden_dim in hidden_dims: gru_bw_cell = tf.contrib.rnn.GRUCell(num_units = hidden_dim, activation = tf.nn.tanh) gru_bw_cell = tf.contrib.rnn.DropoutWrapper(cell = gru_bw_cell, output_keep_prob = self._keep_prob) gru_bw_cells.append(gru_bw_cell) _, output_state_fw, output_state_bw = \ tf.contrib.rnn.stack_bidirectional_dynamic_rnn(cells_fw = gru_fw_cells, cells_bw = gru_bw_cells, inputs = self._X_batch, sequence_length = self._X_length, dtype = tf.float32) final_state = tf.concat([output_state_fw[-1], output_state_bw[-1]], axis = 1) with tf.variable_scope('output_layer'): self._score = slim.fully_connected(inputs = final_state, num_outputs = n_of_classes, activation_fn = None) with tf.variable_scope('loss'): self.ce_loss = tf.losses.softmax_cross_entropy(onehot_labels = self._y, logits = self._score) with tf.variable_scope('prediction'): self._prediction = tf.argmax(input = self._score, axis = -1, output_type = tf.int32) def predict(self, sess, X_length, X_indices, keep_prob = 1.): feed_prediction = {self._X_length : X_length, self._X_indices : X_indices, self._keep_prob : keep_prob} return sess.run(self._prediction, feed_dict = feed_prediction) ###Output _____no_output_____ ###Markdown Create a model of CharStackedBiGRU ###Code # hyper-parameter# lr = .003 epochs = 10 batch_size = 2 total_step = int(np.shape(X_indices)[0] / batch_size) print(total_step) ## create data pipeline with tf.data tr_dataset = tf.data.Dataset.from_tensor_slices((X_length, X_indices, y)) tr_dataset = tr_dataset.shuffle(buffer_size = 20) tr_dataset = tr_dataset.batch(batch_size = batch_size) tr_iterator = tr_dataset.make_initializable_iterator() print(tr_dataset) X_length_mb, X_indices_mb, y_mb = tr_iterator.get_next() char_stacked_bi_gru = CharStackedBiGRU(X_length = X_length_mb, X_indices = X_indices_mb, y = y_mb, n_of_classes = 2, hidden_dims = [16,16], dic = char_dic) ###Output _____no_output_____ ###Markdown Creat training op and train model ###Code ## create training op opt = tf.train.AdamOptimizer(learning_rate = lr) training_op = opt.minimize(loss = char_stacked_bi_gru.ce_loss) sess = tf.Session() sess.run(tf.global_variables_initializer()) tr_loss_hist = [] for epoch in range(epochs): avg_tr_loss = 0 tr_step = 0 sess.run(tr_iterator.initializer) try: while True: _, tr_loss = sess.run(fetches = [training_op, char_stacked_bi_gru.ce_loss], feed_dict = {char_stacked_bi_gru._keep_prob : .5}) avg_tr_loss += tr_loss tr_step += 1 except tf.errors.OutOfRangeError: pass avg_tr_loss /= tr_step tr_loss_hist.append(avg_tr_loss) print('epoch : {:3}, tr_loss : {:.3f}'.format(epoch + 1, avg_tr_loss)) plt.plot(tr_loss_hist, label = 'train') yhat = char_stacked_bi_gru.predict(sess = sess, X_length = X_length, X_indices = X_indices) print('training acc: {:.2%}'.format(np.mean(yhat == np.argmax(y, axis = -1)))) ###Output training acc: 83.33%
Week3/Day2.ipynb
###Markdown Week 3 Intro to NLP - Day 2 ###Code %matplotlib inline %pprint import nltk import matplotlib import matplotlib.pyplot as plt from nltk.corpus import gutenberg from nltk.corpus import brown nltk.corpus.gutenberg.fileids() emma = nltk.corpus.gutenberg.words('austen-emma.txt') len(emma) ###Output _____no_output_____ ###Markdown Tokenization ###Code gutenberg.fileids() for fileid in gutenberg.fileids(): print from nltk.corpus import webtext for fileid in webtext.fileids(): print(fileid, webtext.raw(fileid)[:65], '...') ###Output firefox.txt Cookie Manager: "Don't allow sites that set removed cookies to se ... grail.txt SCENE 1: [wind] [clop clop clop] KING ARTHUR: Whoa there! [clop ... overheard.txt White guy: So, do you have any plans for this evening? Asian girl ... pirates.txt PIRATES OF THE CARRIBEAN: DEAD MAN'S CHEST, by Ted Elliott & Terr ... singles.txt 25 SEXY MALE, seeks attrac older single lady, for discreet encoun ... wine.txt Lovely delicate, fragrant Rhone wine. Polished leather and strawb ... ###Markdown Brown Corpus ###Code brown brown.categories() brown.words() brown.words(categories="humor") brown.fileids() brown.sents(categories=['adventure','humor','mystery']) #sentences humor_text = brown.words(categories='humor') fdist = nltk.FreqDist(word.lower() for word in humor_text) modals = ['can','could','may','must'] for m in modals: print(m + ":" , fdist[m],end = ' ') cfd = nltk.ConditionalFreqDist( (genre,word) for genre in brown.categories() for word in brown.words(categories=genre) ) genres = ['humor','news','hobbies'] pronouns = ['she','her','hers','he','him','his','it','its','they','them','theirs'] cfd.tabulate(conditions=genres,samples=pronouns) #We create a matrix with generes in rows and words in columns ###Output she her hers he him his it its they them theirs humor 58 62 0 146 48 137 162 16 70 49 2 news 42 103 0 451 93 399 363 174 205 96 0 hobbies 21 16 0 155 49 238 476 150 177 127 0
inference_exploration/colab/tfhub_image_inference.ipynb
###Markdown ###Code %tensorflow_version 2.x import numpy as np import PIL.Image as Image import matplotlib.pylab as plt import time import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras import layers #classifier_url ="https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/2" #classifier_url ="https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/classification/4" #classifier_url ="https://tfhub.dev/google/imagenet/mobilenet_v2_130_224/classification/4" #classifier_url = "https://tfhub.dev/google/imagenet/mobilenet_v2_035_224/classification/4" classifier_url = "https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4" IMAGE_SHAPE = (224, 224) classifier = tf.keras.Sequential([ hub.KerasLayer(classifier_url, input_shape=IMAGE_SHAPE+(3,)) ]) img_file = tf.keras.utils.get_file('image1.jpg','https://storage.googleapis.com/demostration_images/2.jpg') img = Image.open(img_file).resize(IMAGE_SHAPE) img_array = np.array(img)/255.0 img_array.shape result = classifier.predict(img_array[np.newaxis, ...]) result.shape predicted_class = np.argmax(result[0], axis=-1) predicted_class labels_path = tf.keras.utils.get_file('ImageNetLabels.txt','https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt') imagenet_labels = np.array(open(labels_path).read().splitlines()) plt.imshow(img_array) plt.axis('off') predicted_class_name = imagenet_labels[predicted_class] _ = plt.title("Prediction: " + predicted_class_name.title()) start = time.time() result = classifier.predict(img_array[np.newaxis, ...]) predicted_class = np.argmax(result[0], axis=-1) predicted_class_name = imagenet_labels[predicted_class] end = time.time() print(end - start) ###Output _____no_output_____
Deep-Learning/Multiple-Class/Letter.ipynb
###Markdown کدهای پیاده سازی پروژه پایان ترم بیگ دیتا - امین زایراومالی وارد کردن کتابخانه های مورد نیاز پایتون ###Code # first neural network with keras tutorial with letter Dataset # Dataset Link : https://archive.ics.uci.edu/ml/datasets/Letter+Recognition # Powered By Amin Zayeromali - [email protected] from numpy import loadtxt import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.utils.vis_utils import plot_model import tensorflow as tf from keras.models import Model,load_model from sklearn import preprocessing import math ###Output _____no_output_____ ###Markdown بارگزاری دیتاست و توضیحات مشخصه آن ###Code # DataSet Information # Author: David J. Slate # Source: [UCI](https://archive.ics.uci.edu/ml/datasets/Letter+Recognition) - 01-01-1991 # Please cite: P. W. Frey and D. J. Slate. "Letter Recognition Using Holland-style Adaptive Classifiers". Machine Learning 6(2), 1991 # TITLE: Letter Image Recognition Data # # The objective is to identify each of a large number of black-and-white # rectangular pixel displays as one of the 26 capital letters in the English # alphabet. The character images were based on 20 different fonts and each # letter within these 20 fonts was randomly distorted to produce a file of # 20,000 unique stimuli. Each stimulus was converted into 16 primitive # numerical attributes (statistical moments and edge counts) which were then # scaled to fit into a range of integer values from 0 through 15. We # typically train on the first 16000 items and then use the resulting model # to predict the letter category for the remaining 4000. See the article # cited above for more details. # load the dataset dataset = loadtxt('dataset_6_letter.txt', dtype=str, delimiter=',') # split into input (X) and output (y) variables X = dataset[:10000,0:16] # انتخاب ۱۰۰۰۰ هزار رکورد از داده ها برای ترین X = X.astype(float) y = dataset[:10000,16] le = preprocessing.LabelEncoder() y = le.fit_transform(y).astype(int) print("Number Of Unique Label on Target :", len(set(y))) # تعداد کلاسهای یونیک مشخص می شود y = tf.keras.utils.to_categorical(y, num_classes=len(set(y))) # تبدیل داده های اینتیجر لیبل به باینری # نمایش تعداد رکوردهای دیتاست ( فیچرها و لیبلهای تارگت ) print(X.shape) print(y.shape) print(X) print(y) # لیبل بندی کلاسهای خروجی براساس تعداد اپوچ های خروجی با فرمت باینری ###Output [[0. 0. 0. ... 0. 0. 1.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] ... [0. 0. 0. ... 0. 0. 1.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.]] ###Markdown ساخت مدل برای دیتاست مذکور که به صورت چند کلاسه مرحله اول فقط دو لایه پنهان با ورودی ۱۶ تایی و خروجی ۲۶ تایی ساخته و فیت می کنیم param_number = output_channel_number * (input_channel_number + 1) ###Code # define the keras model model = Sequential() model.add(Dense(32, input_dim=16, activation='relu')) # تعداد نورون های ورودی برابر با فیچر ها ۱۶ تاست #model.add(Dense(64, activation='relu')) model.add(Dense(26, activation='sigmoid')) #تعداد نورون های خروجی نیز برابر با تعداد لیبلهای غیر تکراری کلاس تارگت گرفتیم # compile the keras model #from keral.optimizer import adam model.compile(loss='categorical_crossentropy', optimizer='RMSProp' , metrics=['accuracy'])#categorical_crossentropy or #binary_crossentropy print(model.summary()) plot_model(model, show_shapes=True, to_file='mymodel.png') ###Output Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_2 (Dense) (None, 32) 544 dense_3 (Dense) (None, 26) 858 ================================================================= Total params: 1,402 Trainable params: 1,402 Non-trainable params: 0 _________________________________________________________________ None ('You must install pydot (`pip install pydot`) and install graphviz (see instructions at https://graphviz.gitlab.io/download/) ', 'for plot_model/model_to_dot to work.') ###Markdown مدل را برای مقادیر epochs=50, batch_size=10 ساخته و فیت می کنیم ###Code # fit the keras model on the dataset history= model.fit(X, y, epochs=50, batch_size=10) import matplotlib.pyplot as plt plt.figure() plt.plot(history.history['loss']) import matplotlib.pyplot as plt plt.figure() plt.plot(history.history['accuracy']) # evaluate the keras model _, accuracy = model.evaluate(X, y) print('Accuracy: %.2f' % (accuracy*100)) predictions = model.predict(X) # summarize the first 5 cases for i in range(10): print("\n------------------------------- Case ",i+1," ---------------------------------------------------\n") print("Data is :\n", X[i].tolist(),"\nPredicted Value is :\n" , predictions[i],"\nReal Value is :\n", y[i]) ###Output ------------------------------- Case 1 --------------------------------------------------- Data is : [2.0, 4.0, 4.0, 3.0, 2.0, 7.0, 8.0, 2.0, 9.0, 11.0, 7.0, 7.0, 1.0, 8.0, 5.0, 6.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] ------------------------------- Case 2 --------------------------------------------------- Data is : [4.0, 7.0, 5.0, 5.0, 5.0, 5.0, 9.0, 6.0, 4.0, 8.0, 7.0, 9.0, 2.0, 9.0, 7.0, 10.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 3 --------------------------------------------------- Data is : [7.0, 10.0, 8.0, 7.0, 4.0, 8.0, 8.0, 5.0, 10.0, 11.0, 2.0, 8.0, 2.0, 5.0, 5.0, 10.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 4 --------------------------------------------------- Data is : [4.0, 9.0, 5.0, 7.0, 4.0, 7.0, 7.0, 13.0, 1.0, 7.0, 6.0, 8.0, 3.0, 8.0, 0.0, 8.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 5 --------------------------------------------------- Data is : [6.0, 7.0, 8.0, 5.0, 4.0, 7.0, 6.0, 3.0, 7.0, 10.0, 7.0, 9.0, 3.0, 8.0, 3.0, 7.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 6 --------------------------------------------------- Data is : [4.0, 7.0, 5.0, 5.0, 3.0, 4.0, 12.0, 2.0, 5.0, 13.0, 7.0, 5.0, 1.0, 10.0, 1.0, 7.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 7 --------------------------------------------------- Data is : [6.0, 10.0, 8.0, 8.0, 4.0, 7.0, 8.0, 2.0, 5.0, 10.0, 7.0, 8.0, 5.0, 8.0, 1.0, 8.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 8 --------------------------------------------------- Data is : [1.0, 0.0, 2.0, 0.0, 1.0, 6.0, 10.0, 7.0, 2.0, 7.0, 5.0, 8.0, 2.0, 7.0, 4.0, 9.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 9 --------------------------------------------------- Data is : [5.0, 9.0, 7.0, 6.0, 7.0, 7.0, 7.0, 2.0, 4.0, 9.0, 8.0, 9.0, 7.0, 6.0, 2.0, 8.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 10 --------------------------------------------------- Data is : [1.0, 0.0, 2.0, 1.0, 1.0, 5.0, 7.0, 8.0, 6.0, 7.0, 6.0, 6.0, 2.0, 8.0, 3.0, 8.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ###Markdown مدل را برای مقادیر epochs=100, batch_size=50 ساخته و فیت می کنیم ###Code # define the keras model model = Sequential() model.add(Dense(32, input_dim=16, activation='relu')) # تعداد نورون های ورودی برابر با فیچر ها ۱۶ تاست #model.add(Dense(64, activation='relu')) model.add(Dense(26, activation='sigmoid')) #تعداد نورون های خروجی نیز برابر با تعداد لیبلهای غیر تکراری کلاس تارگت گرفتیم # compile the keras model #from keral.optimizer import adam model.compile(loss='categorical_crossentropy', optimizer='RMSProp' , metrics=['accuracy'])#categorical_crossentropy or #binary_crossentropy print(model.summary()) plot_model(model, show_shapes=True, to_file='mymodel.png') # fit the keras model on the dataset history= model.fit(X, y, epochs=100, batch_size=50) import matplotlib.pyplot as plt plt.figure() plt.plot(history.history['loss']) import matplotlib.pyplot as plt plt.figure() plt.plot(history.history['accuracy']) # evaluate the keras model _, accuracy = model.evaluate(X, y) print('Accuracy: %.2f' % (accuracy*100)) predictions = model.predict(X) # summarize the first 5 cases for i in range(10): print("\n------------------------------- Case ",i+1," ---------------------------------------------------\n") print("Data is :\n", X[i].tolist(),"\nPredicted Value is :\n" , predictions[i],"\nReal Value is :\n", y[i]) ###Output ------------------------------- Case 1 --------------------------------------------------- Data is : [2.0, 4.0, 4.0, 3.0, 2.0, 7.0, 8.0, 2.0, 9.0, 11.0, 7.0, 7.0, 1.0, 8.0, 5.0, 6.0] Predicted Value is : [5.0791823e-12 9.4748664e-10 1.2060948e-11 5.8751726e-10 6.6218621e-07 2.9167737e-08 3.4936717e-12 4.5911338e-13 1.2157548e-07 2.5409574e-06 5.9689021e-13 4.7515596e-09 2.1567156e-20 5.1742665e-19 2.7170157e-16 2.7021717e-13 6.1899943e-13 6.1158577e-14 2.2441856e-05 1.9091628e-09 7.1929551e-16 2.6599331e-17 1.8550800e-37 1.6649376e-07 4.2550276e-11 1.7629040e-03] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] ------------------------------- Case 2 --------------------------------------------------- Data is : [4.0, 7.0, 5.0, 5.0, 5.0, 5.0, 9.0, 6.0, 4.0, 8.0, 7.0, 9.0, 2.0, 9.0, 7.0, 10.0] Predicted Value is : [5.70015226e-13 7.28875715e-09 1.03611715e-08 2.05981135e-11 1.02846037e-07 1.97222967e-08 2.32125394e-08 1.26638406e-08 5.16257349e-12 1.43038983e-10 2.23486607e-09 3.46163764e-10 2.37588117e-14 1.34143369e-12 2.55289956e-10 9.90668969e-09 1.25811128e-09 1.51890465e-08 2.61430855e-09 7.10842366e-12 1.61457727e-14 1.65369749e-11 2.36387064e-18 3.23924672e-11 1.95336748e-13 2.10108640e-15] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 3 --------------------------------------------------- Data is : [7.0, 10.0, 8.0, 7.0, 4.0, 8.0, 8.0, 5.0, 10.0, 11.0, 2.0, 8.0, 2.0, 5.0, 5.0, 10.0] Predicted Value is : [8.7941819e-17 1.5716913e-15 1.7086447e-14 1.3494807e-13 3.3105397e-11 2.0074209e-13 5.2398201e-13 8.2592031e-15 1.7060531e-13 1.4810406e-13 6.1072952e-12 5.8614158e-14 4.5985034e-21 5.6963884e-18 1.1110523e-13 5.3210964e-17 1.9942994e-14 4.6521983e-12 1.0758917e-09 4.7131179e-16 1.7413522e-20 2.5038672e-20 0.0000000e+00 9.9386211e-12 1.2857707e-22 2.5440672e-14] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 4 --------------------------------------------------- Data is : [4.0, 9.0, 5.0, 7.0, 4.0, 7.0, 7.0, 13.0, 1.0, 7.0, 6.0, 8.0, 3.0, 8.0, 0.0, 8.0] Predicted Value is : [1.02211783e-16 0.00000000e+00 9.03740056e-20 1.43331789e-17 1.98094571e-38 4.97769113e-28 3.64443823e-21 1.64161740e-11 1.42167053e-24 6.36054897e-19 1.34151325e-19 2.78852950e-19 1.23931349e-15 5.43787064e-12 1.44690087e-13 7.78477577e-22 3.28556579e-19 1.65173250e-20 9.93893301e-29 2.15342880e-26 1.08865743e-16 4.76463312e-18 2.12057072e-24 1.01803463e-26 4.09532430e-25 0.00000000e+00] Real Value is : [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 5 --------------------------------------------------- Data is : [6.0, 7.0, 8.0, 5.0, 4.0, 7.0, 6.0, 3.0, 7.0, 10.0, 7.0, 9.0, 3.0, 8.0, 3.0, 7.0] Predicted Value is : [1.1706129e-12 2.7711992e-21 8.4702449e-13 1.8940207e-12 1.9752535e-18 1.2497628e-15 8.7255671e-12 1.6998430e-09 5.7274246e-15 2.2939346e-12 1.1515475e-09 1.3189306e-11 9.1088958e-15 5.3814849e-15 1.5070153e-12 1.9413922e-17 7.9546807e-16 1.0557829e-16 6.2205899e-13 4.8565578e-15 2.1460401e-11 8.7943247e-15 1.3875023e-26 4.4869605e-10 5.1545567e-15 8.9797106e-18] Real Value is : [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 6 --------------------------------------------------- Data is : [4.0, 7.0, 5.0, 5.0, 3.0, 4.0, 12.0, 2.0, 5.0, 13.0, 7.0, 5.0, 1.0, 10.0, 1.0, 7.0] Predicted Value is : [4.67624779e-22 1.90015813e-23 4.39008468e-20 2.55727612e-21 4.72962423e-20 7.50199103e-09 9.54649819e-33 5.02205341e-21 4.18764720e-14 4.05101421e-16 6.96862831e-21 1.91938764e-26 1.24624110e-28 3.81936473e-15 1.28459150e-26 9.97044600e-15 1.13637272e-31 2.25727340e-26 3.18431737e-14 1.24017914e-11 1.34760832e-24 4.73127829e-15 1.23660755e-30 1.14864140e-16 2.12671830e-14 2.27379031e-32] Real Value is : [0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 7 --------------------------------------------------- Data is : [6.0, 10.0, 8.0, 8.0, 4.0, 7.0, 8.0, 2.0, 5.0, 10.0, 7.0, 8.0, 5.0, 8.0, 1.0, 8.0] Predicted Value is : [2.7237194e-16 5.0053619e-34 2.6539287e-20 1.6252307e-21 2.8186905e-33 1.7867945e-19 5.3766914e-27 1.1284633e-12 3.0108195e-20 8.9439890e-17 4.4030102e-11 4.2178361e-25 1.3706058e-14 6.6549759e-11 5.1205604e-20 1.2218595e-24 4.6991709e-30 3.0853253e-27 4.2553896e-20 3.9413349e-18 2.4292519e-14 8.1491124e-13 1.4974244e-17 1.8362031e-12 1.5255543e-18 4.4747886e-37] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 8 --------------------------------------------------- Data is : [1.0, 0.0, 2.0, 0.0, 1.0, 6.0, 10.0, 7.0, 2.0, 7.0, 5.0, 8.0, 2.0, 7.0, 4.0, 9.0] Predicted Value is : [7.76053267e-12 6.42372613e-12 4.64162432e-12 1.33093363e-12 1.25546830e-11 1.35013931e-10 5.14945975e-10 8.10619198e-08 1.33956075e-14 1.05922148e-13 3.18219451e-09 4.97246016e-14 5.96874841e-11 1.51634227e-09 2.20012222e-08 7.33375849e-09 2.88145757e-11 4.17596966e-05 1.30348995e-11 1.03573469e-14 3.14494927e-15 1.25454907e-11 1.10571623e-17 6.25636088e-12 1.00536207e-16 3.96807410e-22] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 9 --------------------------------------------------- Data is : [5.0, 9.0, 7.0, 6.0, 7.0, 7.0, 7.0, 2.0, 4.0, 9.0, 8.0, 9.0, 7.0, 6.0, 2.0, 8.0] Predicted Value is : [2.25077498e-13 2.95288736e-21 1.16579485e-17 7.15564897e-17 1.37176724e-25 2.92966826e-17 5.92893706e-25 6.05022889e-12 5.08465079e-19 4.58448383e-13 1.12940863e-12 2.69217660e-20 1.84450855e-08 1.29173450e-10 2.48257400e-19 3.72088749e-20 4.37024011e-25 8.45571144e-22 2.21973312e-21 2.30151705e-15 9.77987222e-12 5.86769348e-13 1.39885421e-11 5.94309087e-17 1.23471612e-17 2.29903411e-30] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 10 --------------------------------------------------- Data is : [1.0, 0.0, 2.0, 1.0, 1.0, 5.0, 7.0, 8.0, 6.0, 7.0, 6.0, 6.0, 2.0, 8.0, 3.0, 8.0] Predicted Value is : [4.48093452e-16 1.32554371e-14 3.52346659e-11 1.39929583e-07 1.16374778e-15 6.11002221e-12 1.67357156e-10 3.16687085e-08 8.73233885e-13 5.84096486e-12 9.81727026e-12 1.53747307e-10 4.26072141e-14 5.89674403e-12 1.56296469e-08 2.36489966e-10 1.02679094e-10 5.93845473e-10 9.89620712e-13 3.96246196e-11 2.49676235e-12 2.70283817e-12 5.75308685e-23 1.58805293e-12 5.41706057e-13 7.33919876e-21] Real Value is : [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ###Markdown مدل را سه لایه پنهان و برای مقادیر توینیگ شده و بهینه فیت و ترین می کنیم ###Code # define the keras model model = Sequential() model.add(Dense(32, input_dim=16, activation='relu')) # تعداد نورون های ورودی برابر با فیچر ها ۱۶ تاست model.add(Dense(64, activation='relu')) model.add(Dense(26, activation='sigmoid')) #تعداد نورون های خروجی نیز برابر با تعداد لیبلهای غیر تکراری کلاس تارگت گرفتیم # compile the keras model #from keral.optimizer import adam model.compile(loss='categorical_crossentropy', optimizer='RMSProp' , metrics=['accuracy'])#categorical_crossentropy or #binary_crossentropy print(model.summary()) plot_model(model, show_shapes=True, to_file='mymodel.png') # fit the keras model on the dataset history= model.fit(X, y, epochs=100, batch_size=50) import matplotlib.pyplot as plt plt.figure() plt.plot(history.history['loss']) import matplotlib.pyplot as plt plt.figure() plt.plot(history.history['accuracy']) # evaluate the keras model _, accuracy = model.evaluate(X, y) print('Accuracy: %.2f' % (accuracy*100)) predictions = model.predict(X) # summarize the first 5 cases for i in range(10): print("\n------------------------------- Case ",i+1," ---------------------------------------------------\n") print("Data is :\n", X[i].tolist(),"\nPredicted Value is :\n" , predictions[i],"\nReal Value is :\n", y[i]) ###Output ------------------------------- Case 1 --------------------------------------------------- Data is : [2.0, 4.0, 4.0, 3.0, 2.0, 7.0, 8.0, 2.0, 9.0, 11.0, 7.0, 7.0, 1.0, 8.0, 5.0, 6.0] Predicted Value is : [3.3699525e-27 1.7475883e-27 3.2621699e-29 3.0790030e-25 2.9524769e-17 2.4167027e-23 1.2374475e-30 7.9540427e-31 1.3211787e-19 2.0308410e-23 8.4793450e-32 4.3147547e-29 0.0000000e+00 0.0000000e+00 1.8100696e-29 7.4487800e-35 8.1395273e-32 6.3023114e-36 2.6254349e-18 2.9661869e-21 1.1971732e-28 0.0000000e+00 0.0000000e+00 1.6084132e-19 1.7477472e-28 5.1523476e-14] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] ------------------------------- Case 2 --------------------------------------------------- Data is : [4.0, 7.0, 5.0, 5.0, 5.0, 5.0, 9.0, 6.0, 4.0, 8.0, 7.0, 9.0, 2.0, 9.0, 7.0, 10.0] Predicted Value is : [9.54505350e-23 1.11601105e-14 1.19543337e-15 1.67069814e-21 9.99040125e-14 8.54327568e-13 9.47142183e-16 1.33617383e-15 6.72420600e-19 5.01013733e-19 2.41475880e-15 2.27642990e-16 1.51307245e-23 8.91949406e-24 1.52977283e-19 1.92084434e-12 3.45720223e-22 1.87472108e-15 7.90446752e-16 2.85328756e-18 2.55369909e-28 1.32631562e-17 2.84748337e-24 3.32210429e-25 1.16954199e-23 2.32232999e-23] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 3 --------------------------------------------------- Data is : [7.0, 10.0, 8.0, 7.0, 4.0, 8.0, 8.0, 5.0, 10.0, 11.0, 2.0, 8.0, 2.0, 5.0, 5.0, 10.0] Predicted Value is : [2.1290878e-26 3.9985319e-26 1.1112808e-25 1.3999086e-22 1.5544681e-19 1.1875343e-22 1.0592612e-22 1.0206702e-20 3.6537701e-18 2.6337177e-20 1.0320877e-19 9.8553101e-21 0.0000000e+00 2.1422706e-25 1.9047226e-23 2.1148409e-26 5.5063703e-23 8.6989171e-26 3.2602742e-17 9.1371560e-22 2.1224798e-25 5.6928198e-35 0.0000000e+00 1.3272158e-18 8.8345341e-31 1.8791279e-19] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 4 --------------------------------------------------- Data is : [4.0, 9.0, 5.0, 7.0, 4.0, 7.0, 7.0, 13.0, 1.0, 7.0, 6.0, 8.0, 3.0, 8.0, 0.0, 8.0] Predicted Value is : [1.4455014e-33 0.0000000e+00 4.7806239e-38 5.4463784e-36 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3159717e-28 0.0000000e+00 1.8585466e-34 0.0000000e+00 0.0000000e+00 0.0000000e+00 4.6123765e-31 9.3699672e-32 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 8.0751747e-38 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] Real Value is : [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 5 --------------------------------------------------- Data is : [6.0, 7.0, 8.0, 5.0, 4.0, 7.0, 6.0, 3.0, 7.0, 10.0, 7.0, 9.0, 3.0, 8.0, 3.0, 7.0] Predicted Value is : [5.34932541e-17 6.28375619e-28 8.98112012e-17 3.69132988e-18 1.69050320e-19 1.03454348e-19 1.22183531e-18 1.93545180e-12 5.46930399e-20 6.61115992e-16 1.01973454e-12 1.43764541e-15 3.01818738e-22 7.24759275e-18 2.35731960e-22 1.32103724e-27 1.49455923e-25 1.02293227e-25 5.37785030e-16 5.41811605e-20 3.20527458e-17 3.37730641e-24 4.38512055e-32 2.11548037e-13 2.10903395e-17 2.10566135e-21] Real Value is : [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 6 --------------------------------------------------- Data is : [4.0, 7.0, 5.0, 5.0, 3.0, 4.0, 12.0, 2.0, 5.0, 13.0, 7.0, 5.0, 1.0, 10.0, 1.0, 7.0] Predicted Value is : [9.0671031e-26 8.0128804e-31 2.9025539e-28 1.7947017e-30 6.1530646e-33 1.4984086e-15 1.3486983e-32 2.7785385e-26 3.5643770e-21 7.2633431e-25 3.2114452e-23 7.9614344e-35 1.0574570e-36 4.1997210e-27 9.6073413e-30 1.3445288e-22 0.0000000e+00 5.9205697e-34 5.0460966e-21 1.0660580e-17 2.2842275e-28 1.2684607e-23 2.8637091e-35 3.7209598e-27 1.1066486e-25 0.0000000e+00] Real Value is : [0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 7 --------------------------------------------------- Data is : [6.0, 10.0, 8.0, 8.0, 4.0, 7.0, 8.0, 2.0, 5.0, 10.0, 7.0, 8.0, 5.0, 8.0, 1.0, 8.0] Predicted Value is : [3.9831663e-21 0.0000000e+00 2.3378357e-27 1.0043137e-27 0.0000000e+00 1.3618503e-25 2.1738416e-32 2.5167530e-23 3.5469825e-24 1.5614770e-24 5.5300421e-19 1.0130400e-28 4.9534439e-21 1.1764645e-15 1.7788496e-28 5.9974934e-34 0.0000000e+00 3.1075001e-32 1.1832334e-23 2.9697315e-28 1.4812176e-22 2.9631161e-25 5.4693319e-25 8.3448398e-22 2.9078998e-25 0.0000000e+00] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 8 --------------------------------------------------- Data is : [1.0, 0.0, 2.0, 0.0, 1.0, 6.0, 10.0, 7.0, 2.0, 7.0, 5.0, 8.0, 2.0, 7.0, 4.0, 9.0] Predicted Value is : [1.95754587e-23 1.19302314e-23 1.25759736e-21 7.23955032e-26 1.11616435e-29 1.08370682e-22 4.02747098e-23 2.54101178e-18 1.30083924e-27 6.33300414e-24 9.44539344e-19 2.05195126e-24 3.57671333e-23 6.85295227e-21 1.95829034e-18 1.33112376e-20 6.21923778e-24 9.65733502e-14 3.45521577e-27 5.04173876e-32 4.22932664e-31 7.97414499e-26 9.31786499e-30 1.79296644e-27 1.65048870e-31 2.29914211e-35] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 9 --------------------------------------------------- Data is : [5.0, 9.0, 7.0, 6.0, 7.0, 7.0, 7.0, 2.0, 4.0, 9.0, 8.0, 9.0, 7.0, 6.0, 2.0, 8.0] Predicted Value is : [1.3609261e-17 3.3205230e-31 4.4220988e-22 9.7380872e-19 1.3829874e-29 9.2180227e-23 4.0151640e-25 2.1818076e-18 2.6464222e-24 1.2696219e-24 1.8455407e-18 5.0652562e-25 9.2080096e-15 1.1469233e-19 9.3476172e-25 3.6040911e-31 4.7811857e-32 5.7680954e-23 7.6299018e-28 3.8097919e-29 4.6552372e-18 2.2748831e-25 4.3599062e-22 2.6835571e-25 6.1984727e-22 2.3007214e-35] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 10 --------------------------------------------------- Data is : [1.0, 0.0, 2.0, 1.0, 1.0, 5.0, 7.0, 8.0, 6.0, 7.0, 6.0, 6.0, 2.0, 8.0, 3.0, 8.0] Predicted Value is : [3.15353049e-35 1.08060628e-30 1.23884804e-26 1.61656820e-21 1.63326308e-33 3.38937983e-28 3.17318258e-31 1.02698428e-30 8.90864043e-33 5.94773463e-34 3.88607699e-35 2.52965021e-31 0.00000000e+00 2.55096897e-31 5.22464673e-26 1.55064594e-29 1.25410910e-37 8.55607257e-29 1.80731189e-34 1.04848144e-25 2.84395065e-27 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.34057536e-33 1.68551085e-36] Real Value is : [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ###Markdown این بار مدل را برای اپوچ ۲۵۰ تایی اجرا می کنیم ###Code # define the keras model model = Sequential() model.add(Dense(32, input_dim=16, activation='relu')) # تعداد نورون های ورودی برابر با فیچر ها ۱۶ تاست model.add(Dense(64, activation='relu')) model.add(Dense(26, activation='sigmoid')) #تعداد نورون های خروجی نیز برابر با تعداد لیبلهای غیر تکراری کلاس تارگت گرفتیم # compile the keras model #from keral.optimizer import adam model.compile(loss='categorical_crossentropy', optimizer='RMSProp' , metrics=['accuracy'])#categorical_crossentropy or #binary_crossentropy print(model.summary()) plot_model(model, show_shapes=True, to_file='mymodel.png') # fit the keras model on the dataset history= model.fit(X, y, epochs=250, batch_size=50) import matplotlib.pyplot as plt plt.figure() plt.plot(history.history['loss']) import matplotlib.pyplot as plt plt.figure() plt.plot(history.history['accuracy']) # evaluate the keras model _, accuracy = model.evaluate(X, y) print('Accuracy: %.2f' % (accuracy*100)) predictions = model.predict(X) # summarize the first 5 cases for i in range(10): print("\n------------------------------- Case ",i+1," ---------------------------------------------------\n") print("Data is :\n", X[i].tolist(),"\nPredicted Value is :\n" , predictions[i],"\nReal Value is :\n", y[i]) ###Output ------------------------------- Case 1 --------------------------------------------------- Data is : [2.0, 4.0, 4.0, 3.0, 2.0, 7.0, 8.0, 2.0, 9.0, 11.0, 7.0, 7.0, 1.0, 8.0, 5.0, 6.0] Predicted Value is : [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 2.9780912e-36] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] ------------------------------- Case 2 --------------------------------------------------- Data is : [4.0, 7.0, 5.0, 5.0, 5.0, 5.0, 9.0, 6.0, 4.0, 8.0, 7.0, 9.0, 2.0, 9.0, 7.0, 10.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 3 --------------------------------------------------- Data is : [7.0, 10.0, 8.0, 7.0, 4.0, 8.0, 8.0, 5.0, 10.0, 11.0, 2.0, 8.0, 2.0, 5.0, 5.0, 10.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 4 --------------------------------------------------- Data is : [4.0, 9.0, 5.0, 7.0, 4.0, 7.0, 7.0, 13.0, 1.0, 7.0, 6.0, 8.0, 3.0, 8.0, 0.0, 8.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 5 --------------------------------------------------- Data is : [6.0, 7.0, 8.0, 5.0, 4.0, 7.0, 6.0, 3.0, 7.0, 10.0, 7.0, 9.0, 3.0, 8.0, 3.0, 7.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 6 --------------------------------------------------- Data is : [4.0, 7.0, 5.0, 5.0, 3.0, 4.0, 12.0, 2.0, 5.0, 13.0, 7.0, 5.0, 1.0, 10.0, 1.0, 7.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 7 --------------------------------------------------- Data is : [6.0, 10.0, 8.0, 8.0, 4.0, 7.0, 8.0, 2.0, 5.0, 10.0, 7.0, 8.0, 5.0, 8.0, 1.0, 8.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 8 --------------------------------------------------- Data is : [1.0, 0.0, 2.0, 0.0, 1.0, 6.0, 10.0, 7.0, 2.0, 7.0, 5.0, 8.0, 2.0, 7.0, 4.0, 9.0] Predicted Value is : [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1148285e-36 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 9 --------------------------------------------------- Data is : [5.0, 9.0, 7.0, 6.0, 7.0, 7.0, 7.0, 2.0, 4.0, 9.0, 8.0, 9.0, 7.0, 6.0, 2.0, 8.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 10 --------------------------------------------------- Data is : [1.0, 0.0, 2.0, 1.0, 1.0, 5.0, 7.0, 8.0, 6.0, 7.0, 6.0, 6.0, 2.0, 8.0, 3.0, 8.0] Predicted Value is : [0.0000000e+00 0.0000000e+00 0.0000000e+00 9.0426407e-35 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] Real Value is : [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ###Markdown ساخت مدل با ولیدیشن و استاپ لاست برای مدل بهینه تر ###Code import matplotlib.pyplot as plt from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=20) mc = ModelCheckpoint('best_model.h5', monitor='val_accuracy', mode='max', verbose=1, save_best_only=True) history=model.fit(X, y, epochs=250, batch_size=10, verbose=1, validation_split=0.2,callbacks=[mc,es]) #validation_data=[test_x, test_y] plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.legend(['loss','val_loss'], loc='upper right') plt.figure() plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.legend(['acc','val_acc'], loc='upper right') ###Output Epoch 1/250 790/800 [============================>.] - ETA: 0s - loss: 0.1239 - accuracy: 0.9580 Epoch 00001: val_accuracy improved from -inf to 0.93250, saving model to best_model.h5 800/800 [==============================] - 3s 3ms/step - loss: 0.1244 - accuracy: 0.9578 - val_loss: 0.2222 - val_accuracy: 0.9325 Epoch 2/250 781/800 [============================>.] - ETA: 0s - loss: 0.1337 - accuracy: 0.9553 Epoch 00002: val_accuracy improved from 0.93250 to 0.95800, saving model to best_model.h5 800/800 [==============================] - 2s 3ms/step - loss: 0.1336 - accuracy: 0.9550 - val_loss: 0.1394 - val_accuracy: 0.9580 Epoch 3/250 796/800 [============================>.] - ETA: 0s - loss: 0.1396 - accuracy: 0.9541 Epoch 00003: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1397 - accuracy: 0.9541 - val_loss: 0.1647 - val_accuracy: 0.9475 Epoch 4/250 795/800 [============================>.] - ETA: 0s - loss: 0.1400 - accuracy: 0.9540 Epoch 00004: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1393 - accuracy: 0.9542 - val_loss: 0.1809 - val_accuracy: 0.9445 Epoch 5/250 798/800 [============================>.] - ETA: 0s - loss: 0.1289 - accuracy: 0.9578 Epoch 00005: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1294 - accuracy: 0.9576 - val_loss: 0.1346 - val_accuracy: 0.9550 Epoch 6/250 790/800 [============================>.] - ETA: 0s - loss: 0.1407 - accuracy: 0.9542 Epoch 00006: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1409 - accuracy: 0.9540 - val_loss: 0.1633 - val_accuracy: 0.9445 Epoch 7/250 795/800 [============================>.] - ETA: 0s - loss: 0.1329 - accuracy: 0.9574 Epoch 00007: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1326 - accuracy: 0.9572 - val_loss: 0.1849 - val_accuracy: 0.9390 Epoch 8/250 780/800 [============================>.] - ETA: 0s - loss: 0.1265 - accuracy: 0.9610 Epoch 00008: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1259 - accuracy: 0.9613 - val_loss: 0.1922 - val_accuracy: 0.9470 Epoch 9/250 781/800 [============================>.] - ETA: 0s - loss: 0.1329 - accuracy: 0.9575 Epoch 00009: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1321 - accuracy: 0.9575 - val_loss: 0.1756 - val_accuracy: 0.9510 Epoch 10/250 779/800 [============================>.] - ETA: 0s - loss: 0.1335 - accuracy: 0.9573 Epoch 00010: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1329 - accuracy: 0.9575 - val_loss: 0.2220 - val_accuracy: 0.9440 Epoch 11/250 799/800 [============================>.] - ETA: 0s - loss: 0.1366 - accuracy: 0.9544 Epoch 00011: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1368 - accuracy: 0.9544 - val_loss: 0.2591 - val_accuracy: 0.9240 Epoch 12/250 796/800 [============================>.] - ETA: 0s - loss: 0.1415 - accuracy: 0.9558 Epoch 00012: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1415 - accuracy: 0.9557 - val_loss: 0.2218 - val_accuracy: 0.9400 Epoch 13/250 779/800 [============================>.] - ETA: 0s - loss: 0.1359 - accuracy: 0.9573 Epoch 00013: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1350 - accuracy: 0.9571 - val_loss: 0.2032 - val_accuracy: 0.9460 Epoch 14/250 795/800 [============================>.] - ETA: 0s - loss: 0.1405 - accuracy: 0.9566 Epoch 00014: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1418 - accuracy: 0.9564 - val_loss: 0.1947 - val_accuracy: 0.9490 Epoch 15/250 782/800 [============================>.] - ETA: 0s - loss: 0.1430 - accuracy: 0.9552 Epoch 00015: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1414 - accuracy: 0.9556 - val_loss: 0.2182 - val_accuracy: 0.9325 Epoch 16/250 799/800 [============================>.] - ETA: 0s - loss: 0.1408 - accuracy: 0.9546 Epoch 00016: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1406 - accuracy: 0.9546 - val_loss: 0.2221 - val_accuracy: 0.9385 Epoch 17/250 799/800 [============================>.] - ETA: 0s - loss: 0.1478 - accuracy: 0.9514 Epoch 00017: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1485 - accuracy: 0.9514 - val_loss: 0.2192 - val_accuracy: 0.9355 Epoch 18/250 797/800 [============================>.] - ETA: 0s - loss: 0.1343 - accuracy: 0.9576 Epoch 00018: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1350 - accuracy: 0.9574 - val_loss: 0.3035 - val_accuracy: 0.9290 Epoch 19/250 782/800 [============================>.] - ETA: 0s - loss: 0.1526 - accuracy: 0.9545 Epoch 00019: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1543 - accuracy: 0.9541 - val_loss: 0.2586 - val_accuracy: 0.9295 Epoch 20/250 795/800 [============================>.] - ETA: 0s - loss: 0.1426 - accuracy: 0.9558 Epoch 00020: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1428 - accuracy: 0.9559 - val_loss: 0.2952 - val_accuracy: 0.9290 Epoch 21/250 796/800 [============================>.] - ETA: 0s - loss: 0.1444 - accuracy: 0.9552 Epoch 00021: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1464 - accuracy: 0.9549 - val_loss: 0.2777 - val_accuracy: 0.9325 Epoch 22/250 785/800 [============================>.] - ETA: 0s - loss: 0.1484 - accuracy: 0.9550 Epoch 00022: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1497 - accuracy: 0.9550 - val_loss: 0.2827 - val_accuracy: 0.9320 Epoch 23/250 784/800 [============================>.] - ETA: 0s - loss: 0.1456 - accuracy: 0.9560 Epoch 00023: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1459 - accuracy: 0.9555 - val_loss: 0.2657 - val_accuracy: 0.9330 Epoch 24/250 797/800 [============================>.] - ETA: 0s - loss: 0.1527 - accuracy: 0.9541 Epoch 00024: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1528 - accuracy: 0.9540 - val_loss: 0.2737 - val_accuracy: 0.9370 Epoch 25/250 784/800 [============================>.] - ETA: 0s - loss: 0.1439 - accuracy: 0.9551 Epoch 00025: val_accuracy did not improve from 0.95800 800/800 [==============================] - 2s 3ms/step - loss: 0.1457 - accuracy: 0.9550 - val_loss: 0.2334 - val_accuracy: 0.9405 Epoch 00025: early stopping ###Markdown با استفاده از مدل بهینه تعداد ۵ نمونه را تست میگیریم و نتایج را مشخص می کنیم ###Code model=load_model('best_model.h5') _, accuracy = model.evaluate(X, y) print('Accuracy: %.2f' % (accuracy*100)) predictions = model.predict(X) # summarize the first 5 cases for i in range(5): print("\n------------------------------- Case ",i+1," ---------------------------------------------------\n") print("Data is :\n", X[i].tolist(),"\nPredicted Value is :\n" , predictions[i],"\nReal Value is :\n", y[i]) ###Output 313/313 [==============================] - 1s 2ms/step - loss: 0.1135 - accuracy: 0.9628 Accuracy: 96.28 ------------------------------- Case 1 --------------------------------------------------- Data is : [2.0, 4.0, 4.0, 3.0, 2.0, 7.0, 8.0, 2.0, 9.0, 11.0, 7.0, 7.0, 1.0, 8.0, 5.0, 6.0] Predicted Value is : [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3256963e-35] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] ------------------------------- Case 2 --------------------------------------------------- Data is : [4.0, 7.0, 5.0, 5.0, 5.0, 5.0, 9.0, 6.0, 4.0, 8.0, 7.0, 9.0, 2.0, 9.0, 7.0, 10.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 3 --------------------------------------------------- Data is : [7.0, 10.0, 8.0, 7.0, 4.0, 8.0, 8.0, 5.0, 10.0, 11.0, 2.0, 8.0, 2.0, 5.0, 5.0, 10.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 4 --------------------------------------------------- Data is : [4.0, 9.0, 5.0, 7.0, 4.0, 7.0, 7.0, 13.0, 1.0, 7.0, 6.0, 8.0, 3.0, 8.0, 0.0, 8.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ------------------------------- Case 5 --------------------------------------------------- Data is : [6.0, 7.0, 8.0, 5.0, 4.0, 7.0, 6.0, 3.0, 7.0, 10.0, 7.0, 9.0, 3.0, 8.0, 3.0, 7.0] Predicted Value is : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Real Value is : [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
examples/4_model-training.ipynb
###Markdown Model training This notebook aims at illustrating the way we can train simple neural network models in current framework. `Mapillary` data will be used as an illustration of this process. Some details about the [dataset labels](./1b_mapillary-label-analysis.ipynb), as well as about the [dataset creation](./1a_mapillary-dataset-presentation.ipynb), are available in previous notebooks. Moreover the model of interest here will be *semantic segmentation*. To get some more details about model handling, please refer to [model creation notebook](./3_neural-network-model-creation.ipynb). Introduction As usual, some dependencies must be loaded before to begin: ###Code import os from keras.models import Model from keras.optimizers import Adam from keras import backend, callbacks import matplotlib.pyplot as plt %matplotlib inline from deeposlandia import utils, dataset, generator, semantic_segmentation ###Output _____no_output_____ ###Markdown As in previous notebooks, a range of variables is declared to make further developments easier: ###Code DATAPATH = "../data" DATASET = "mapillary" MODEL = "semantic_segmentation" IMG_SIZE = 128 BATCH_SIZE = 10 NB_CHANNELS = 3 LR_RATE = 1e-3 LR_DECAY = 1e-5 NB_EPOCHS=10 INSTANCE_NAME = "demo" INPUT_FOLDER = utils.prepare_input_folder(DATAPATH, DATASET) INPUT_CONFIG = os.path.join(INPUT_FOLDER, "config_aggregate.json") PREPROCESS_FOLDER = utils.prepare_preprocessed_folder(DATAPATH, DATASET, IMG_SIZE, "aggregated") ###Output _____no_output_____ ###Markdown Dataset recovering Here we recover an existing dataset generated in the [dedicated notebook](./2_generator-creation.ipynb): ###Code training_dataset = dataset.MapillaryDataset(IMG_SIZE, INPUT_CONFIG) training_dataset.load(PREPROCESS_FOLDER["training_config"]) training_dataset.get_nb_images() ###Output 2018-08-22 16:29:24,115 :: INFO :: dataset :: load : The dataset has been loaded from ../data/mapillary/preprocessed/128_aggregated/training.json ###Markdown As we need the dataset two first components, *i.e.* training and validation, we still need to generate a brand new validation dataset: ###Code validation_dataset = dataset.MapillaryDataset(IMG_SIZE, INPUT_CONFIG) validation_dataset.populate(PREPROCESS_FOLDER["validation"], os.path.join(INPUT_FOLDER, "validation"), nb_images=10, aggregate=True) validation_dataset.save(PREPROCESS_FOLDER["validation_config"]) validation_dataset.get_nb_images() ###Output 2018-08-22 16:29:25,258 :: INFO :: dataset :: save : The dataset has been saved into ../data/mapillary/preprocessed/128_aggregated/validation.json ###Markdown Build on-the-fly data generator Starting from this dataset, we can build the generators that will be used during training. ###Code training_config = utils.read_config(PREPROCESS_FOLDER["training_config"]) validation_config = utils.read_config(PREPROCESS_FOLDER["validation_config"]) train_generator = generator.create_generator(DATASET, MODEL, PREPROCESS_FOLDER["training"], IMG_SIZE, BATCH_SIZE, training_config["labels"]) validation_generator = generator.create_generator(DATASET, MODEL, PREPROCESS_FOLDER["validation"], IMG_SIZE, BATCH_SIZE, validation_config["labels"]) ###Output Found 100 images belonging to 1 classes. Found 100 images belonging to 1 classes. Found 10 images belonging to 1 classes. Found 10 images belonging to 1 classes. ###Markdown Model creation From now, data are ready-to-use. We only have to initialize a neural network model. This step is described in a [dedicated notebook](./3_neural-network-model-creation.ipynb). First an instance of `SemanticSegmentationNetwork` object must be declared. ###Code nb_labels = len(validation_config['labels']) network = semantic_segmentation.SemanticSegmentationNetwork(INSTANCE_NAME, IMG_SIZE, NB_CHANNELS, nb_labels, architecture="simple") ###Output _____no_output_____ ###Markdown Then a Keras model is instanciated starting from the built architecture. The model has to be compiled with given loss function, optimizer and metrics, in order to launch any training process. ###Code model = Model(network.X, network.Y) model.compile(loss="categorical_crossentropy", optimizer=Adam(lr=LR_RATE, decay=LR_DECAY), metrics=["acc"]) ###Output _____no_output_____ ###Markdown Model training Some parameter setting are necessary before to begin training. Namely we have to define the number of training and validation steps (basically the number of image divided by the batch size, in order to define an epoch as the evaluation of every image once). ###Code steps = training_dataset.get_nb_images() // BATCH_SIZE val_steps = validation_dataset.get_nb_images() // BATCH_SIZE ###Output _____no_output_____ ###Markdown Then we define a [Keras checkpoint callbacks](https://keras.io/callbacks/) to save the result of the optimization in a place of our choice. ###Code output_folder = utils.prepare_output_folder(DATAPATH, DATASET, MODEL, INSTANCE_NAME) output_folder checkpoint_filename = os.path.join(output_folder, "checkpoint-epoch-{epoch:03d}.h5") checkpoint = callbacks.ModelCheckpoint(checkpoint_filename, monitor="val_loss", save_best_only=True, save_weights_only=False, mode='auto', period=1) ###Output _____no_output_____ ###Markdown And finally the training process itself is run with training (and optionnally validation) generator(s). ###Code hist = model.fit_generator(train_generator, epochs=NB_EPOCHS, steps_per_epoch=steps, validation_data=validation_generator, validation_steps=val_steps, callbacks=[checkpoint]) ###Output Epoch 1/10 10/10 [==============================] - 26s 3s/step - loss: 2.3551 - acc: 0.2951 - val_loss: 1.9213 - val_acc: 0.4626 Epoch 2/10 10/10 [==============================] - 25s 2s/step - loss: 1.7571 - acc: 0.5056 - val_loss: 1.4701 - val_acc: 0.6066 Epoch 3/10 10/10 [==============================] - 25s 2s/step - loss: 1.5579 - acc: 0.5450 - val_loss: 1.3500 - val_acc: 0.6595 Epoch 4/10 10/10 [==============================] - 26s 3s/step - loss: 1.4474 - acc: 0.5639 - val_loss: 1.4252 - val_acc: 0.5931 Epoch 5/10 10/10 [==============================] - 26s 3s/step - loss: 1.4562 - acc: 0.5498 - val_loss: 1.3519 - val_acc: 0.6067 Epoch 6/10 10/10 [==============================] - 25s 3s/step - loss: 1.4033 - acc: 0.5759 - val_loss: 1.2806 - val_acc: 0.6210 Epoch 7/10 10/10 [==============================] - 25s 3s/step - loss: 1.3953 - acc: 0.5688 - val_loss: 1.2571 - val_acc: 0.6322 Epoch 8/10 10/10 [==============================] - 26s 3s/step - loss: 1.3783 - acc: 0.5845 - val_loss: 1.3158 - val_acc: 0.6214 Epoch 9/10 10/10 [==============================] - 26s 3s/step - loss: 1.3812 - acc: 0.5758 - val_loss: 1.2610 - val_acc: 0.6442 Epoch 10/10 10/10 [==============================] - 26s 3s/step - loss: 1.3359 - acc: 0.5924 - val_loss: 1.1913 - val_acc: 0.6628 ###Markdown At this step, we have trained a model, and stored the corresponding checkpoints onto the file system. We may display some learning curves: ###Code f, ax = plt.subplots(1, 2, figsize=(8, 4)) ax[0].plot(hist.history['loss']) ax[0].plot(hist.history['val_loss']) ax[0].set_xlabel("Training epochs") ax[0].set_ylabel("Categorical crossentropy") ax[1].plot(hist.history['acc']) ax[1].plot(hist.history['val_acc']) ax[1].set_xlabel("Training epochs") ax[1].set_ylabel("Accuracy (%)") ax[1].legend(["Training", "Validation"]) plt.tight_layout() ###Output _____no_output_____
pandasplotcode.ipynb
###Markdown An Introduction to Data Visualization with Pandas Importing the libraries ###Code # The first line is only required if you are using a Jupyter Notebook %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Getting the data ###Code weather = pd.read_csv('https://raw.githubusercontent.com/alanjones2/dataviz/master/london2018.csv') print(weather) ###Output Year Month Tmax Tmin Rain Sun 0 2018 1 9.7 3.8 58.0 46.5 1 2018 2 6.7 0.6 29.0 92.0 2 2018 3 9.8 3.0 81.2 70.3 3 2018 4 15.5 7.9 65.2 113.4 4 2018 5 20.8 9.8 58.4 248.3 5 2018 6 24.2 13.1 0.4 234.5 6 2018 7 28.3 16.4 14.8 272.5 7 2018 8 24.5 14.5 48.2 182.1 8 2018 9 20.9 11.0 29.4 195.0 9 2018 10 16.5 8.5 61.0 137.0 10 2018 11 12.2 5.8 73.8 72.9 11 2018 12 10.7 5.2 60.6 40.3 ###Markdown A first Pandas Plot ###Code weather.plot(y='Tmax', x='Month') plt.show() ###Output _____no_output_____ ###Markdown Simple charts ###Code weather.plot(y=['Tmax','Tmin'], x='Month') plt.show() weather['Tmed'] = (weather['Tmax'] + weather['Tmin'])/2 weather.plot(y=['Tmax','Tmin','Tmed'], x='Month') plt.show() ###Output _____no_output_____ ###Markdown Bar Charts ###Code weather.plot(kind='bar', y='Rain', x='Month') plt.show() weather.plot(kind='barh', y='Rain', x='Month') plt.show() weather.plot(kind='bar', y=['Tmax','Tmin'], x='Month') plt.show() weather.plot(kind='bar', y=['Tmax','Tmed','Tmin'], x='Month') plt.show() ###Output _____no_output_____ ###Markdown Scatter Plot ###Code weather.plot(kind='scatter', x='Sun', y='Rain') plt.show() ###Output _____no_output_____ ###Markdown Pie charts ###Code weather.plot(kind='pie', y='Sun') plt.show() weather.index=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] weather.plot(kind='pie', y = 'Sun', legend=False) plt.show() ###Output _____no_output_____ ###Markdown Statistical charts and spotting unusual events ###Code more_weather = pd.read_csv('https://raw.githubusercontent.com/alanjones2/dataviz/master/londonweather.csv') print(more_weather[0:48]) print(more_weather.Rain.describe()) more_weather.plot.box(y='Rain') plt.show() ###Output _____no_output_____ ###Markdown Histograms ###Code more_weather.plot(kind='hist', y='Rain') plt.show() ###Output _____no_output_____ ###Markdown More bins ###Code more_weather.plot(kind='hist', y='Rain', bins=[0,25,50,75,100,125,150,175]) plt.show() more_weather.plot.hist(y='Rain', bins=[0,25,75,175]) plt.show() ###Output _____no_output_____ ###Markdown Pandas Plot utilities Multiple charts ###Code weather.plot(y=['Tmax', 'Tmin','Rain','Sun'], subplots=True, layout=(2,2), figsize=(10,5)) plt.show() weather.plot(kind='bar', y=['Tmax', 'Tmin','Rain','Sun'], subplots=True, layout=(2,2), figsize=(10,5)) plt.show() weather.plot(kind='pie', y=['Tmax', 'Tmin','Rain','Sun'], subplots=True, legend=False, layout=(2,2), figsize=(10,10)) plt.show() ###Output _____no_output_____ ###Markdown Saving the Charts ###Code weather.plot(kind='pie', y='Rain', legend=False) plt.show() plt.savefig("pie.png") ###Output _____no_output_____
EDA E-commerce data.ipynb
###Markdown Context of DataCompany - UK-based and registered non-store online retailProducts for selling - Mainly all-occasion giftsCustomers - Most are wholesalers (local or international)Transactions Period - 1st Dec 2010 - 9th Dec 2011 (One year) Results obtained from Exploratory Data Analysis (EDA) The customer with the highest number of orders comes from the United Kingdom (UK) The customer with the highest money spent on purchases comes from Netherlands The company receives the highest number of orders from customers in the UK (since it is a UK-based company). Therefore, the TOP 5 countries (including UK) that place the highest number of orders are as below: United Kingdom Germany France Ireland (EIRE) Spain As the company receives the highest number of orders from customers in the UK (since it is a UK-based company), customers in the UK spend the most on their purchases. Therefore, the TOP 5 countries (including UK) that spend the most money on purchases are as below: United Kingdom Netherlands Ireland (EIRE) Germany France November 2011 has the highest sales The month with the lowest sales is undetermined as the dataset consists of transactions until 9th December 2011 in December There are no transactions on Saturday between 1st Dec 2010 - 9th Dec 2011 The number of orders received by the company tends to increases from Monday to Thursday and decrese afterward The company receives the highest number of orders at 12:00pm Possibly most customers made purchases during lunch hour between 12:00pm - 2:00pm The company tends to give out FREE items for purchases occasionally each month (Except June 2011) However, it is not clear what factors contribute to giving out the FREE items to the particular customers ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline color=sns.color_palette() pd.set_option("display.max_columns",100) import warnings import datetime import gc warnings.filterwarnings("ignore") sns.set_style("whitegrid") import missingno as msno #module for Python import pandas_profiling import os os.chdir("E:\PYTHON NOTES\EDA\Ecommerce data") df=pd.read_csv("data.csv",encoding="ISO-8859-1") df.head() df.rename(index=str,columns={'InvoiceNo': 'invoice_num','StockCode' : 'stock_code','Description' : 'description','Quantity' : 'quantity','InvoiceDate' : 'invoice_date','UnitPrice' : 'unit_price','CustomerID' : 'cust_id','Country' : 'country'},inplace=True) df.head() ###Output _____no_output_____ ###Markdown Data Cleaning ###Code df.info() df.isnull().sum().sort_values(ascending=False) df.columns[df.isna().any()] # check out the rows with missing values df[df.isnull().any(axis=1)].head() # change the invoice_date format - String to Timestamp format df['invoice_date']=pd.to_datetime(df["invoice_date"],format='%m/%d/%Y %H:%M') # change description - UPPER case to LOWER case df["description"]=df["description"].str.lower() df.head() df.shape df_new=df.dropna() df_new.isnull().sum() df_new.columns[df_new.isna().any()] df_new.info() #chnage the columns type df_new["cust_id"]=df_new["cust_id"].astype("int64") df_new.describe().round(2) df_new=df_new[df_new.quantity>0] df_new.describe().round(2) ###Output _____no_output_____ ###Markdown Add the column - amount_spent ###Code df_new["amount_spent"]=df_new["quantity"]*df_new["unit_price"] # rearrange all the columns for easy reference df_new = df_new[['invoice_num','invoice_date','stock_code','description','quantity','unit_price','amount_spent','cust_id','country']] ###Output _____no_output_____ ###Markdown Add the columns - Month, Day and Hour for the invoice ###Code df_new.insert(loc=2,column="year_month",value=df_new["invoice_date"].map(lambda x:100*x.year+x.month)) df_new.insert(loc=3,column="month",value=df_new["invoice_date"].dt.month) # +1 to make Monday=1.....until Sunday=7 df_new.insert(loc=4,column="day",value=(df_new["invoice_date"].dt.dayofweek)+1) df_new.insert(loc=5, column='hour', value=df_new.invoice_date.dt.hour) df_new.head() ###Output _____no_output_____ ###Markdown Exploratory Data Analysis (EDA) How many orders made by the customers? ###Code df_new['cust_id'].value_counts().sort_values(ascending=False) df_new.groupby(["cust_id","country"],as_index=False)["invoice_num"].count().sort_values("invoice_num",ascending=False).head() orders = df_new.groupby(by=['cust_id','country'], as_index=False)['invoice_num'].count() plt.subplots(figsize=(15,6)) plt.plot(orders.cust_id, orders.invoice_num) plt.xlabel('Customers ID') plt.ylabel('Number of Orders') plt.title('Number of Orders for different Customers') plt.show() ###Output _____no_output_____ ###Markdown Check TOP 5 most number of orders ###Code orders.sort_values(by='invoice_num', ascending=False).head() ###Output _____no_output_____ ###Markdown How much money spent by the customers? ###Code money_spent=df_new.groupby(["cust_id","country"],as_index=False)["amount_spent"].sum() ###Output _____no_output_____ ###Markdown Check TOP 5 highest money spent ###Code money_spent.sort_values("amount_spent",ascending=False).head() money_spent=df_new.groupby(["cust_id","country"],as_index=False)["amount_spent"].sum() plt.subplots(figsize=(15,6)) plt.plot(money_spent.cust_id,money_spent.amount_spent) plt.xlabel("cust_id") plt.ylabel("amount_spent") plt.title("Money Spent for different Customers") plt.show() sns.palplot(color) ###Output _____no_output_____ ###Markdown How many orders (per month)? ###Code ax = df_new.groupby('invoice_num')['year_month'].unique().value_counts().sort_index().plot('bar',color=color[0],figsize=(15,6)) ax = df_new.groupby('invoice_num')['year_month'].unique().value_counts().sort_index().plot('bar',color=color[0],figsize=(15,6)) ax.set_xlabel('Month',fontsize=15) ax.set_ylabel('Number of Orders',fontsize=15) ax.set_title('Number of orders for different Months (1st Dec 2010 - 9th Dec 2011)',fontsize=15) ax.set_xticklabels(('Dec_10','Jan_11','Feb_11','Mar_11','Apr_11','May_11','Jun_11','July_11','Aug_11','Sep_11','Oct_11','Nov_11','Dec_11'), rotation='horizontal', fontsize=13) plt.show() ###Output _____no_output_____ ###Markdown How many orders (per day)? ###Code df_new.groupby("invoice_num")["day"].unique().value_counts().sort_index() ax = df_new.groupby('invoice_num')['day'].unique().value_counts().sort_index().plot('bar',color=color[0],figsize=(15,6)) ax.set_xlabel('Day',fontsize=15) ax.set_ylabel('Number of Orders',fontsize=15) ax.set_title('Number of orders for different Days',fontsize=15) ax.set_xticklabels(('Mon','Tue','Wed','Thur','Fri','Sun'), rotation='horizontal', fontsize=15) plt.show() ###Output _____no_output_____ ###Markdown How many orders (per hour)? ###Code df_new.groupby('invoice_num')['hour'].unique().value_counts().iloc[:-1].sort_index() ax = df_new.groupby('invoice_num')['hour'].unique().value_counts().iloc[:-1].sort_index().plot('bar',color=color[0],figsize=(15,6)) ax.set_xlabel('Hour',fontsize=15) ax.set_ylabel('Number of Orders',fontsize=15) ax.set_title('Number of orders for different Hours',fontsize=15) ax.set_xticklabels(range(6,21), rotation='horizontal', fontsize=15) plt.show() ###Output _____no_output_____ ###Markdown Discover patterns for Unit Price ###Code df_new.unit_price.describe() #We see that there are unit price = 0 (FREE items) #check the distribution of unit price plt.subplots(figsize=(12,6)) sns.boxplot(df_new.unit_price) plt.show() df_free=df_new[df_new["unit_price"]==0] df_free.year_month.value_counts().sort_index() ax = df_free.year_month.value_counts().sort_index().plot('bar',figsize=(12,6), color=color[0]) ax.set_xlabel('Month',fontsize=15) ax.set_ylabel('Frequency',fontsize=15) ax.set_title('Frequency for different Months (Dec 2010 - Dec 2011)',fontsize=15) ax.set_xticklabels(('Dec_10','Jan_11','Feb_11','Mar_11','Apr_11','May_11','July_11','Aug_11','Sep_11','Oct_11','Nov_11'), rotation='horizontal', fontsize=13) plt.show() ###Output _____no_output_____ ###Markdown How much money spent by each country? ###Code group_country_amount_spent = df_new.groupby('country')['amount_spent'].sum().sort_values() ###Output _____no_output_____ ###Markdown How many orders for each country? ###Code group_country_orders = df_new.groupby('country')['invoice_num'].count().sort_values() ###Output _____no_output_____
notebooks/japanese/graph_coloring.ipynb
###Markdown グラフ彩色問題グラフ$G=(V,E)$と色数$K$が与えられたとき、グラフの頂点を$K$色で塗り分ける (彩色する)。このとき、隣接する頂点 (すなわち、辺で接続されている頂点) は同色にならないという制約下での彩色方法を見つけたい。この問題はQUBOにより次のように定式化される。\begin{eqnarray*}H &=& \alpha H_{A} + H_{B} \\H_{A} &=& \sum_{i \in V} \left( 1 - \sum_{k = 1}^{K} x_{i,k}\right )^2 \\H_{B} &=& \sum_{(i, j) \in E} \sum_{k = 1}^{K} x_{i,k} x_{j,k}\end{eqnarray*}$H_{A}$は1つの頂点はただ1色に対応する制約を表す。$V$内のすべての頂点に対し、頂点が対応する$K$個のバイナリ変数のうち1個だけが1で残りがすべて0のときに$H_{A}=0$となり最小となる。$H_{B}$は隣接する頂点は別色に彩色されるという制約を表す。すべての隣接する頂点ペア (すなわち、$E$内のすべての辺) に対し、同色の隣接が存在しないときに$H_{B}=0$となり最小となる。$\alpha$は制約の強さを調整するパラメータである。 ###Code def plot_graph(N, E, colors=None): G = nx.Graph() G.add_nodes_from([n for n in range(N)]) for (i, j) in E: G.add_edge(i, j) plt.figure(figsize=(4,4)) pos = nx.circular_layout(G) colorlist = ['#e41a1c', '#377eb8', '#4daf4a', '#984ea3', '#ff7f00', '#ffff33', '#a65628', '#f781bf'] if colors: nx.draw_networkx(G, pos, node_color=[colorlist[colors[node]] for node in G.nodes], node_size=400, font_weight='bold', font_color='w') else: nx.draw_networkx(G, pos, node_color=[colorlist[0] for _ in G.nodes], node_size=400, font_weight='bold', font_color='w') plt.axis("off") plt.show() # 頂点数と色数 N = 6 K = 3 # エッジが以下のように与えられる E = {(0, 1), (0, 2), (0, 3), (1, 2), (2, 3), (3, 4)} plot_graph(N, E) ###Output _____no_output_____ ###Markdown 頂点数 $\times$ 色数 $= 6 \times 3$次元のバイナリベクトル$x$を用意。$x[i, k]=1$は頂点$i$が色$k$に彩色されていることを表現している (one-hot encoding)。 ###Code x = Array.create('x', (N, K), 'BINARY') # ある頂点iが1色のみである制約 onecolor_const = 0.0 for i in range(N): onecolor_const += Constraint((Sum(0, K, lambda j: x[i, j]) - 1)**2, label="onecolor{}".format(i)) # 隣接頂点は異色で塗り分けられるという制約 adjacent_const = 0.0 for (i, j) in E: for k in range(K): adjacent_const += Constraint(x[i, k] * x[j, k], label="adjacent({},{})".format(i, j)) # エネルギー (ハミルトニアン) を構築 alpha = Placeholder("alpha") H = alpha * onecolor_const + adjacent_const # モデルをコンパイル model = H.compile() # QUBOを作成 feed_dict = {'alpha': 1.0} qubo, offset = model.to_qubo(feed_dict=feed_dict) # 最適解を求める solution = solve_qubo(qubo) decoded_solution, broken, energy = model.decode_solution(solution, vartype="BINARY", feed_dict=feed_dict) print("number of broken constarint = {}".format(len(broken))) # 各頂点の色を取得する colors = [0 for i in range(N)] for i in range(N): for k in range(K): if decoded_solution['x'][i][k] == 1: colors[i] = k break # 彩色後のグラフを表示 plot_graph(N, E, colors) ###Output _____no_output_____
labs/lab_06 (1).ipynb
###Markdown MAT281 - Laboratorio N°06 Problema 01 El **Iris dataset** es un conjunto de datos que contine una muestras de tres especies de Iris (Iris setosa, Iris virginica e Iris versicolor). Se midió cuatro rasgos de cada muestra: el largo y ancho del sépalo y pétalo, en centímetros.Lo primero es cargar el conjunto de datos y ver las primeras filas que lo componen: ###Code # librerias import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.max_columns', 500) # Ver más columnas de los dataframes # Ver gráficos de matplotlib en jupyter notebook/lab %matplotlib inline # cargar datos df = pd.read_csv(os.path.join("iris_contaminados.csv")) df.columns = ['sepalLength', 'sepalWidth', 'petalLength', 'petalWidth', 'species'] df.head() ###Output _____no_output_____ ###Markdown Bases del experimentoLo primero es identificar las variables que influyen en el estudio y la naturaleza de esta.* **species**: * Descripción: Nombre de la especie de Iris. * Tipo de dato: *string* * Limitantes: solo existen tres tipos (setosa, virginia y versicolor).* **sepalLength**: * Descripción: largo del sépalo. * Tipo de dato: *integer*. * Limitantes: los valores se encuentran entre 4.0 y 7.0 cm.* **sepalWidth**: * Descripción: ancho del sépalo. * Tipo de dato: *integer*. * Limitantes: los valores se encuentran entre 2.0 y 4.5 cm.* **petalLength**: * Descripción: largo del pétalo. * Tipo de dato: *integer*. * Limitantes: los valores se encuentran entre 1.0 y 7.0 cm.* **petalWidth**: * Descripción: ancho del pépalo. * Tipo de dato: *integer*. * Limitantes: los valores se encuentran entre 0.1 y 2.5 cm. Su objetivo es realizar un correcto **E.D.A.**, para esto debe seguir las siguientes intrucciones: 1. Realizar un conteo de elementos de la columna **species** y corregir según su criterio. Reemplace por "default" los valores nan.. ###Code df.species.unique() df['species']=df['species'].str.lower().str.strip().fillna('default') df.species.unique() ###Output _____no_output_____ ###Markdown Lo que se hizo fue tomar por iguales los nombres con mayuscula, minuscula y con espacios 2. Realizar un gráfico de box-plot sobre el largo y ancho de los petalos y sépalos. Reemplace por **0** los valores nan. ###Code fig = plt.figure(figsize=(10, 8)) plt.boxplot([df['sepalLength'].fillna(0),df['sepalWidth'].fillna(0),df['petalLength'].fillna(0),df['petalWidth'].fillna(0)],labels=['sepalLength','sepalWidth','petalLength','petalWidth']) plt.title('Información Medidas Pétalos', size=18) plt.show() ###Output _____no_output_____ ###Markdown 3. Anteriormente se define un rango de valores válidos para los valores del largo y ancho de los petalos y sépalos. Agregue una columna denominada **label** que identifique cuál de estos valores esta fuera del rango de valores válidos. ###Code lista=[[],[],[],[],[]] label=[None]*len(df['species']) for i in range(len(df['species'])): if (df.species[i] in ['setosa','virginica', 'versicolor'])and (4<=df.sepalLength[i]<=7) and (2<=df.sepalWidth[i]<=4.5) and (1<=df.petalLength[i]<=7) and (0.1<=df.petalWidth[i]<=2.5): label[i]=True lista[0].append(df.species[i]) lista[1].append(df.sepalLength[i]) lista[2].append(df.sepalWidth[i]) lista[3].append(df.petalLength[i]) lista[4].append(df.petalWidth[i]) else: label[i]=False df['label']=label df.tail() ###Output _____no_output_____ ###Markdown 4. Realice un gráfico de *sepalLength* vs *petalLength* y otro de *sepalWidth* vs *petalWidth* categorizados por la etiqueta **label**. Concluya sus resultados. ###Code y1=df.sepalLength y2=df.petalLength x=df.label plt.figure(figsize=(10, 5)) plt.bar(x,y1,0.35,color='red') plt.bar(x,y2,0.35,color='black') plt.legend(['sepalLength','petalLength']) plt.title("Sepal Length vs Petal Length") plt.show() ###Output _____no_output_____ ###Markdown Concluimos que Petal Lenght tiene más valores admisibles ###Code y1=df.sepalWidth y2=df.petalWidth x=df.label plt.figure(figsize=(10, 5)) plt.bar(x,y1,0.35,color='red') plt.bar(x,y2,0.35,color='black') plt.legend(['sepalLength','petalLength']) plt.title("sepalWidth vs petalWidth") plt.show() ###Output _____no_output_____ ###Markdown 5. Filtre los datos válidos y realice un gráfico de *sepalLength* vs *petalLength* categorizados por la etiqueta **species**. La corrección de los datos ya se hize en la parte 3 ###Code l=['species', 'sepalLength', 'sepalWidth', 'petalLength', 'petalWidth'] for i in range(5): print('Los valores corregidos para: ', l[i], 'son', list(set(lista[i]))) print('') y1=lista[1] y2=lista[3] x=lista[0] plt.figure(figsize=(10, 5)) plt.bar(x,y1,0.35,color='red') plt.bar(x,y2,0.35,color='black') plt.legend(['sepalLength','petalLength']) plt.title("Sepal Length vs Petal Length") plt.show() ###Output _____no_output_____
Notebooks/other-attempts/spaCy/data_preparation/vectorizer.ipynb
###Markdown VectorizerThis notebook takes all preprocessings and vectorizes them, in order to be classified with the MLP. As an exploration, we used spaCy's pre-trained vectors. Note that the docuemnt vectors are obtained from the word vectors via an average. ###Code import spacy import pandas as pd import numpy as np from progressbar import ProgressBar, Bar, Percentage from os import listdir from os.path import isfile, join ###Output _____no_output_____ ###Markdown Load the big model (as per [documentation](https://spacy.io/usage/vectors-similarity) ###Code nlp = spacy.load(r"Q:\anaconda\Lib\site-packages\en_core_web_lg\en_core_web_lg-2.2.5") %%time def_str = r"Q:\\tooBigToDrive\data-mining\kaggle\data\csv" path = r"Q:\tooBigToDrive\data-mining\kaggle\data\csv" files = listdir(def_str) files = [f.replace(".csv","") for f in files if "Agg" in f] for s in files: csvPath = def_str +"\\"+ s + ".csv" npyPath = def_str +"\\"+ s +"sSub"+ ".npy" train = pd.read_csv(csvPath) train.replace(to_replace = "empty", value = "", inplace = True) train["body"].fillna("",inplace = True) # enable this to add subreddits to body train["body"] = train["subreddit"]+" "+train["body"] to_be_vectorized = train["body"].tolist() vectorsl = [] print("doing"+" "+s+".csv ...", "len(to_be_vectorized) = ",len(to_be_vectorized) ) pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=len(to_be_vectorized)).start() i = 0 # disable parser and ner pipes to have better performance with nlp.disable_pipes(): for tex in to_be_vectorized: vectorsl.append(nlp(tex).vector) i += 1 pbar.update(i) pbar.finish() vectors = np.array(vectorsl) np.save(npyPath,vectors) print("done") ###Output _____no_output_____
convolutional-neural-networks/cifar-cnn/box_conv.ipynb
###Markdown Convolutional Neural Networks---In this notebook, we train a **CNN** to classify images from the CIFAR-10 database.The images in this database are small color images that fall into one of ten classes; some example images are pictured below. Test for [CUDA](http://pytorch.org/docs/stable/cuda.html)Since these are larger (32x32x3) images, it may prove useful to speed up your training time by using a GPU. CUDA is a parallel computing platform and CUDA Tensors are the same as typical Tensors, only they utilize GPU's for computation. ###Code import torch import numpy as np # check if CUDA is available train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('CUDA is not available. Training on CPU ...') else: print('CUDA is available! Training on GPU ...') ###Output CUDA is available! Training on GPU ... ###Markdown --- Load the [Data](http://pytorch.org/docs/stable/torchvision/datasets.html)Downloading may take a minute. We load in the training and test data, split the training data into a training and validation set, then create DataLoaders for each of these sets of data. ###Code from torchvision import datasets import torchvision.transforms as transforms from torch.utils.data.sampler import SubsetRandomSampler # number of subprocesses to use for data loading num_workers = 0 # how many samples per batch to load batch_size = 20 # percentage of training set to use as validation valid_size = 0.2 # convert data to a normalized torch.FloatTensor transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # choose the training and test datasets train_data = datasets.CIFAR10('data', train=True, download=True, transform=transform) test_data = datasets.CIFAR10('data', train=False, download=True, transform=transform) # obtain training indices that will be used for validation num_train = len(train_data) indices = list(range(num_train)) np.random.shuffle(indices) split = int(np.floor(valid_size * num_train)) train_idx, valid_idx = indices[split:], indices[:split] # define samplers for obtaining training and validation batches train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) # prepare data loaders (combine dataset and sampler) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers) valid_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers) test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers) # specify the image classes classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] ###Output Files already downloaded and verified Files already downloaded and verified ###Markdown Visualize a Batch of Training Data ###Code import matplotlib.pyplot as plt %matplotlib inline # helper function to un-normalize and display an image def imshow(img): img = img / 2 + 0.5 # unnormalize plt.imshow(np.transpose(img, (1, 2, 0))) # convert from Tensor image # obtain one batch of training images dataiter = iter(train_loader) images, labels = dataiter.next() images = images.numpy() # convert images to numpy for display # plot the images in the batch, along with the corresponding labels fig = plt.figure(figsize=(25, 4)) # display 20 images for idx in np.arange(20): ax = fig.add_subplot(2, 20/2, idx+1, xticks=[], yticks=[]) imshow(images[idx]) ax.set_title(classes[labels[idx]]) ###Output _____no_output_____ ###Markdown View an Image in More DetailHere, we look at the normalized red, green, and blue (RGB) color channels as three separate, grayscale intensity images. ###Code rgb_img = np.squeeze(images[3]) channels = ['red channel', 'green channel', 'blue channel'] fig = plt.figure(figsize = (36, 36)) for idx in np.arange(rgb_img.shape[0]): ax = fig.add_subplot(1, 3, idx + 1) img = rgb_img[idx] ax.imshow(img, cmap='gray') ax.set_title(channels[idx]) width, height = img.shape thresh = img.max()/2.5 for x in range(width): for y in range(height): val = round(img[x][y],2) if img[x][y] !=0 else 0 ax.annotate(str(val), xy=(y,x), horizontalalignment='center', verticalalignment='center', size=8, color='white' if img[x][y]<thresh else 'black') ###Output _____no_output_____ ###Markdown --- Define the Network [Architecture](http://pytorch.org/docs/stable/nn.html)This time, you'll define a CNN architecture. Instead of an MLP, which used linear, fully-connected layers, you'll use the following:* [Convolutional layers](https://pytorch.org/docs/stable/nn.htmlconv2d), which can be thought of as stack of filtered images.* [Maxpooling layers](https://pytorch.org/docs/stable/nn.htmlmaxpool2d), which reduce the x-y size of an input, keeping only the most _active_ pixels from the previous layer.* The usual Linear + Dropout layers to avoid overfitting and produce a 10-dim output.A network with 2 convolutional layers is shown in the image below and in the code, and you've been given starter code with one convolutional and one maxpooling layer. TODO: Define a model with multiple convolutional layers, and define the feedforward metwork behavior.The more convolutional layers you include, the more complex patterns in color and shape a model can detect. It's suggested that your final model include 2 or 3 convolutional layers as well as linear layers + dropout in between to avoid overfitting. It's good practice to look at existing research and implementations of related models as a starting point for defining your own models. You may find it useful to look at [this PyTorch classification example](https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/cifar10_tutorial.py) or [this, more complex Keras example](https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py) to help decide on a final structure. Output volume for a convolutional layerTo compute the output size of a given convolutional layer we can perform the following calculation (taken from [Stanford's cs231n course](http://cs231n.github.io/convolutional-networks/layers)):> We can compute the spatial size of the output volume as a function of the input volume size (W), the kernel/filter size (F), the stride with which they are applied (S), and the amount of zero padding used (P) on the border. The correct formula for calculating how many neurons define the output_W is given by `(W−F+2P)/S+1`. For example for a 7x7 input and a 3x3 filter with stride 1 and pad 0 we would get a 5x5 output. With stride 2 we would get a 3x3 output. ###Code import torch.nn as nn from box_convolution import BoxConv2d import torch.nn.functional as F from torchsummary import summary class Flatten(nn.Module): def forward(self, x): return x.view(x.size()[0], -1) # define the CNN architecture class Net(nn.Module): """ [3@32x32] Input [16@32x32] CONV1 (3x3), stride 1, pad 1 [16@16x16] POOL1 (2x2) stride 2 [32@16x16] CONV2 (5x5), stride 1, pad 2 [32@8x8] POOL2 (2x2) stride 2 [64@8x8] CONV3 (5x5), stride 1, pad 2 [64@4x4] POOL3 (2x2) stride 2 [128] FC [10] FC [10] Softmax """ def __init__(self): super(Net, self).__init__() self.model = nn.Sequential( BoxConv2d(3, 16, 240, 320), nn.ReLU(), nn.MaxPool2d(2, 2), BoxConv2d(16, 32, 240, 320), nn.ReLU(), nn.MaxPool2d(2, 2), BoxConv2d(32, 64, 240, 320), nn.ReLU(), nn.MaxPool2d(2, 2), Flatten(), nn.Linear(64 * 4 * 4, 500), nn.Dropout(p=0.2), nn.Linear(500, 10), nn.LogSoftmax(dim=1) ) def forward(self, x): # add sequence of convolutional and max pooling layers x = self.model(x) return x # create a complete CNN model = Net() print(model) # move tensors to GPU if CUDA is available if train_on_gpu: model.cuda() print(summary(model, (3, 32, 32))) ###Output Net( (model): Sequential( (0): BoxConv2d() (1): ReLU() (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (3): BoxConv2d() (4): ReLU() (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (6): BoxConv2d() (7): ReLU() (8): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (9): Flatten() (10): Linear(in_features=1024, out_features=500, bias=True) (11): Dropout(p=0.2) (12): Linear(in_features=500, out_features=10, bias=True) (13): LogSoftmax() ) ) ###Markdown Specify [Loss Function](http://pytorch.org/docs/stable/nn.htmlloss-functions) and [Optimizer](http://pytorch.org/docs/stable/optim.html)Decide on a loss and optimization function that is best suited for this classification task. The linked code examples from above, may be a good starting point; [this PyTorch classification example](https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/cifar10_tutorial.py) or [this, more complex Keras example](https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py). Pay close attention to the value for **learning rate** as this value determines how your model converges to a small error. TODO: Define the loss and optimizer and see how these choices change the loss over time. ###Code import torch.optim as optim # specify loss function criterion = nn.NLLLoss() # specify optimizer optimizer = optim.SGD(model.parameters(), lr=1e-2, momentum=0.1) ###Output _____no_output_____ ###Markdown --- Train the NetworkRemember to look at how the training and validation loss decreases over time; if the validation loss ever increases it indicates possible overfitting. ###Code # number of epochs to train the model n_epochs = 30 # you may increase this number to train a final model valid_loss_min = np.Inf # track change in validation loss for epoch in range(1, n_epochs+1): # keep track of training and validation loss train_loss = 0.0 valid_loss = 0.0 ################### # train the model # ################### model.train() for data, target in train_loader: # move tensors to GPU if CUDA is available if train_on_gpu: data, target = data.cuda(), target.cuda() # clear the gradients of all optimized variables optimizer.zero_grad() # forward pass: compute predicted outputs by passing inputs to the model output = model(data) # calculate the batch loss loss = criterion(output, target) # backward pass: compute gradient of the loss with respect to model parameters loss.backward() # perform a single optimization step (parameter update) optimizer.step() # update training loss train_loss += loss.item()*data.size(0) ###################### # validate the model # ###################### model.eval() for data, target in valid_loader: # move tensors to GPU if CUDA is available if train_on_gpu: data, target = data.cuda(), target.cuda() # forward pass: compute predicted outputs by passing inputs to the model output = model(data) # calculate the batch loss loss = criterion(output, target) # update average validation loss valid_loss += loss.item()*data.size(0) # calculate average losses train_loss = train_loss/len(train_loader.dataset) valid_loss = valid_loss/len(valid_loader.dataset) # print training/validation statistics print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, train_loss, valid_loss)) # save model if validation loss has decreased if valid_loss <= valid_loss_min: print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, valid_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = valid_loss ###Output Epoch: 1 Training Loss: 1.567243 Validation Loss: 0.318992 Validation loss decreased (inf --> 0.318992). Saving model ... Epoch: 2 Training Loss: 1.173796 Validation Loss: 0.269032 Validation loss decreased (0.318992 --> 0.269032). Saving model ... Epoch: 3 Training Loss: 1.028757 Validation Loss: 0.246770 Validation loss decreased (0.269032 --> 0.246770). Saving model ... Epoch: 4 Training Loss: 0.921441 Validation Loss: 0.216404 Validation loss decreased (0.246770 --> 0.216404). Saving model ... Epoch: 5 Training Loss: 0.834351 Validation Loss: 0.207697 Validation loss decreased (0.216404 --> 0.207697). Saving model ... Epoch: 6 Training Loss: 0.760644 Validation Loss: 0.200960 Validation loss decreased (0.207697 --> 0.200960). Saving model ... Epoch: 7 Training Loss: 0.701266 Validation Loss: 0.182290 Validation loss decreased (0.200960 --> 0.182290). Saving model ... Epoch: 8 Training Loss: 0.651235 Validation Loss: 0.175738 Validation loss decreased (0.182290 --> 0.175738). Saving model ... Epoch: 9 Training Loss: 0.604201 Validation Loss: 0.179084 Epoch: 10 Training Loss: 0.563799 Validation Loss: 0.176997 Epoch: 11 Training Loss: 0.526861 Validation Loss: 0.167888 Validation loss decreased (0.175738 --> 0.167888). Saving model ... Epoch: 12 Training Loss: 0.495276 Validation Loss: 0.166380 Validation loss decreased (0.167888 --> 0.166380). Saving model ... Epoch: 13 Training Loss: 0.459740 Validation Loss: 0.167014 Epoch: 14 Training Loss: 0.431169 Validation Loss: 0.167763 Epoch: 15 Training Loss: 0.402207 Validation Loss: 0.183173 Epoch: 16 Training Loss: 0.375668 Validation Loss: 0.169221 Epoch: 17 Training Loss: 0.347971 Validation Loss: 0.188686 Epoch: 18 Training Loss: 0.326553 Validation Loss: 0.212313 Epoch: 19 Training Loss: 0.305025 Validation Loss: 0.191567 Epoch: 20 Training Loss: 0.283192 Validation Loss: 0.208092 Epoch: 21 Training Loss: 0.261318 Validation Loss: 0.212983 Epoch: 22 Training Loss: 0.242415 Validation Loss: 0.220880 Epoch: 23 Training Loss: 0.229040 Validation Loss: 0.226403 Epoch: 24 Training Loss: 0.213435 Validation Loss: 0.239513 Epoch: 25 Training Loss: 0.201142 Validation Loss: 0.265936 Epoch: 26 Training Loss: 0.185206 Validation Loss: 0.250317 Epoch: 27 Training Loss: 0.175800 Validation Loss: 0.264945 Epoch: 28 Training Loss: 0.162568 Validation Loss: 0.282741 Epoch: 29 Training Loss: 0.156265 Validation Loss: 0.284597 Epoch: 30 Training Loss: 0.147730 Validation Loss: 0.304910 Epoch: 31 Training Loss: 0.141637 Validation Loss: 0.337037 Epoch: 32 Training Loss: 0.132603 Validation Loss: 0.316942 Epoch: 33 Training Loss: 0.126549 Validation Loss: 0.339389 Epoch: 34 Training Loss: 0.126471 Validation Loss: 0.333883 ###Markdown Load the Model with the Lowest Validation Loss ###Code model.load_state_dict(torch.load('model_cifar.pt')) ###Output _____no_output_____ ###Markdown --- Test the Trained NetworkTest your trained model on previously unseen data! A "good" result will be a CNN that gets around 70% (or more, try your best!) accuracy on these test images. ###Code # track test loss test_loss = 0.0 class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) model.eval() # iterate over test data for data, target in test_loader: # move tensors to GPU if CUDA is available if train_on_gpu: data, target = data.cuda(), target.cuda() # forward pass: compute predicted outputs by passing inputs to the model output = model(data) # calculate the batch loss loss = criterion(output, target) # update test loss test_loss += loss.item()*data.size(0) # convert output probabilities to predicted class _, pred = torch.max(output, 1) # compare predictions to true label correct_tensor = pred.eq(target.data.view_as(pred)) correct = np.squeeze(correct_tensor.numpy()) if not train_on_gpu else np.squeeze(correct_tensor.cpu().numpy()) # calculate test accuracy for each object class for i in range(batch_size): label = target.data[i] class_correct[label] += correct[i].item() class_total[label] += 1 # average test loss test_loss = test_loss/len(test_loader.dataset) print('Test Loss: {:.6f}\n'.format(test_loss)) for i in range(10): if class_total[i] > 0: print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % ( classes[i], 100 * class_correct[i] / class_total[i], np.sum(class_correct[i]), np.sum(class_total[i]))) else: print('Test Accuracy of %5s: N/A (no training examples)' % (classes[i])) print('\nTest Accuracy (Overall): %2d%% (%2d/%2d)' % ( 100. * np.sum(class_correct) / np.sum(class_total), np.sum(class_correct), np.sum(class_total))) ###Output Test Loss: 0.859250 Test Accuracy of airplane: 75% (757/1000) Test Accuracy of automobile: 88% (889/1000) Test Accuracy of bird: 65% (657/1000) Test Accuracy of cat: 56% (568/1000) Test Accuracy of deer: 59% (598/1000) Test Accuracy of dog: 51% (518/1000) Test Accuracy of frog: 80% (800/1000) Test Accuracy of horse: 81% (812/1000) Test Accuracy of ship: 81% (813/1000) Test Accuracy of truck: 69% (692/1000) Test Accuracy (Overall): 71% (7104/10000) ###Markdown Question: What are your model's weaknesses and how might they be improved? **Answer**: (double-click to edit and add an answer) Visualize Sample Test Results ###Code # obtain one batch of test images dataiter = iter(test_loader) images, labels = dataiter.next() images.numpy() # move model inputs to cuda, if GPU available if train_on_gpu: images = images.cuda() # get sample outputs output = model(images) # convert output probabilities to predicted class _, preds_tensor = torch.max(output, 1) preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy()) images = images.cpu() # plot the images in the batch, along with predicted and true labels fig = plt.figure(figsize=(25, 4)) for idx in np.arange(20): ax = fig.add_subplot(2, 20/2, idx+1, xticks=[], yticks=[]) imshow(images[idx]) ax.set_title("{} ({})".format(classes[preds[idx]], classes[labels[idx]]), color=("green" if preds[idx]==labels[idx].item() else "red")) ###Output _____no_output_____
S2/RITAL/TAL/TME/TME2/UnsupervisedClustering.ipynb
###Markdown Exploration des techniques de clusteringLe but de ce tp est de faire face à la problématique: Voici XXX documents -bruts, non étiquetés-... Comment les valoriser? Les exploiter? Les comprendre? Les résumer? Nous avons vu dans les séances précédentes comment représenter les données textuelles sous forme de sacs de mots:$$X = \begin{matrix} & \textbf{t}_j \\ & \downarrow \\ \textbf{d}_i \rightarrow & \begin{pmatrix} x_{1,1} & \dots & x_{1,D} \\ \vdots & \ddots & \vdots \\ x_{N,1} & \dots & x_{N,D} \\ \end{pmatrix} \end{matrix} $$A partir de cette représentation, les questions qui se posent sont les suivantes:1. Quel algorithme de clustiering choisir? - K-means, LSA, pLSA, LDA1. Quels résultats attendre? - qualité, bruit, exploitabilité immédiate etc...1. Quelles analyses qualitatives effectuer pour comprendre les groupes?1. Comment boucler, itérer pour améliorer la qualité du processus? ###Code import numpy as np import matplotlib.pyplot as plt import codecs import re import os.path import sklearn ###Output _____no_output_____ ###Markdown Chargement des données ###Code from sklearn.datasets import fetch_20newsgroups newsgroups_train = fetch_20newsgroups(subset='train') # conversion BoW + tf-idf from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer() # TfidfVectorizer(max_features=500) vectors = vectorizer.fit_transform(newsgroups_train.data) print(vectors.shape) # mesure de la sparsité = 157 mots actif par document sur 130000 !! print(vectors.nnz / float(vectors.shape[0])) # retrouver les mots print([(i,vectorizer.get_feature_names_out()[i]) \ for i in np.random.randint(vectors.shape[1], size=10)]) # gestion des étiquettes (pour l'évaluation seulemnet en non-supervisé) Y = newsgroups_train.target print(Y[:10]) # numérique print([newsgroups_train.target_names[i] for i in Y[:10]]) # vraie classe ###Output [ 7 4 4 1 14 16 13 3 2 4] ['rec.autos', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'comp.graphics', 'sci.space', 'talk.politics.guns', 'sci.med', 'comp.sys.ibm.pc.hardware', 'comp.os.ms-windows.misc', 'comp.sys.mac.hardware'] ###Markdown Tests préliminairesCommençons par le commencement: tout problème non-supervisé (ou presque) doit être analysé en premier lieu avec les $k$-means! ###Code from sklearn.cluster import KMeans # Algo => risque de prendre du temps si le vocabulaire n'a pas été réduit !! # Note: on dirait que l'algo transforme les données en dense vector=> catastrophe pour nous !!! # => limitation du nombre d'itération arbitraire + limitation du vocabulaire from time import time t0 = time() kmeans = KMeans(n_clusters=20, random_state=0, max_iter=10).fit(vectors) print("done in %0.3fs" % (time() - t0)) from wordcloud import WordCloud # recupération des proto: print(kmeans.cluster_centers_.shape) n_class = kmeans.cluster_centers_.shape[0] # mots les plus importants par cluster => TODO # version print / version word cloud pred = kmeans.predict(vectors) features_vocab = np.array(vectorizer.get_feature_names()) print(features_vocab[52367]) for i in range(n_class): wordcloud = WordCloud(background_color='white', max_words=10).generate(????) plt.imshow(wordcloud) plt.axis("off") plt.show() ###Output (20, 130107) errands ###Markdown Limites- Limites liées à la description - trop de mots - trop de mots fréquents qui déroutent l'algorithme - ...- Limites liées à l'algorithme - distance euclidienne absurdeLes limites algorithmiques vont être résolues en changeant d'algorithme... Les limites de représentation des données seront résolues par votre capacité en ingénierie.Algorithmes à tester:- LSAhttps://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.htmlsklearn.decomposition.TruncatedSVD- LDAhttps://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html**Note:** pour des tests rapides, il est plus simple de rester dans le cadre de scikit-learn... Néanmoins, dans un milieu industriel, il faudrait exploiter des outils plus efficaces comme ceux présents dans la librairie ```gensim```. Si vous vous sentez à l'aise avec la donnée textuelles, allez directement vers ces outils:https://radimrehurek.com/gensim/models/ldamodel.html ###Code from sklearn.decomposition import LatentDirichletAllocation from sklearn.feature_extraction.text import TfidfVectorizer limit = int(0.8*len(newsgroups_train.data)) vectorizer = TfidfVectorizer() X_train, X_test = newsgroups_train.data[:limit], newsgroups_train.data[limit:] X_train_vector = vectorizer.fit_transform(X_train) X_test_vector = vectorizer.transform(X_test) lda = LatentDirichletAllocation(n_components=20) lda.fit(X_train_vector) out_lda = lda.transform(X_test_vector) pred = np.argmax(out_lda, axis=1) print(np.where(pred==Y, 1, 0).mean()) print(pred.mean()) print(Y.mean()) ###Output 1.0883782589482986 9.29299982322786
Notebook/Intro to my research.ipynb
###Markdown Different APIs for text analytics and SEMANTIC ANALYSIS using machine learning were tried including :Algorithmia - Many text analytics, NLP and entity extraction algorithms are available as part of their cloud based offering Algorithmia algorithms tried out include:Part of speech tagging using OpenNLP: http://opennlp.apache.org/ The Part of Speech Tagger marks tokens with their corresponding word type based on the token itself and the context of the token. A token might have multiple pos tags depending on the token and the context. The OpenNLP POS Tagger uses a probability model to predict the correct pos tag out of the tag set. To limit the possible tags for a token a tag dictionary can be used which increases the tagging and runtime performance of the tagger. Parts are tagged according to the conventions of the Penn Treebank Project (https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html). For example, a plural noun is denoted NNS, a singular or mass noun is NN, and a determiner (such as a/an, every, no, the,another, any, some, each, etc.) as DT.Tokenizer: https://algorithmia.com/algorithms/ApacheOpenNLP/TokenizeBySentenceAuto tagging of text: Algorithm uses a variant of nlp/LDA to extract tags / keywords - https://algorithmia.com/algorithms/nlp/AutoTagAylien - Classification by Taxonomy: https://developer.aylien.com/Use LDA to Classify Text Documents - LDA is an algorithm that can be used to generate topics to understand a document’s general theme: http://blog.algorithmia.com/lda-algorithm-classify-text-documents/MonkeyLearn: Taxonomy Classifier: https://app.monkeylearn.com/main/classifiers/cl_b7qAkDMz/tab/tree-sandbox/Output - Python Dictionary data structure inside AlgorithmiaTesseract OCR in Algorithmia: https://algorithmia.com/algorithms/tesseractocr/OCRCreate PDF using ReportLab PLUS: https://www.reportlab.com/reportlabplus/ ###Code #Text Analysis or Natural Language Processing (NLP) - Algorithmia API import Algorithmia client = Algorithmia.client('sim3x6PzEv6m2icRR+23rqTTcOo1') #from Algorithmia.acl import ReadAcl, AclType #Next create a data collection called nlp_directory: import os os.listdir(".") # Set your Data URI -- a jpg input = {"src":"data://shamitb/ocr/ai.jpg"} #setting up a client object client_algo = Algorithmia.client('sim3x6PzEv6m2icRR+23rqTTcOo1') #passing the algo name for OCR detection algo = client_algo.algo('tesseractocr/OCR/0.1.0') #applying the algorithm response = algo.pipe(input).result #input object after being processsed by algorithm is produced print(response['result']) print('\n*******************************\n TAXONOMY : \n') #classification of data takes place here into categories, by the algorithm # **************** Aylien - Taxonomy **************** from aylienapiclient import textapi client_aylien = textapi.Client("a19bb245", "2623b77754833e2711998a0b0bdad9db") #response object from requested api is made the input for algo. text = "Predicting future stock prices has become an infamous topic in the fields of finance and trading. There is a growing interest among investors, financiers, and researchers about the strong prediction of future prices so that stocks can be traded profitably. Professionals today use technical analysis along with fundamental analysis to analyse stocks for making uncanny investment choices. Fundamental analysis is the traditional approach that studies for contributing factors like the company’s revenues, expenses, market position, and annual growth rates. Technical analysis (Chen, 2014), on the other hand, is completely based on the study of market fluctuations. Technical analysts study market patterns and use price data in different mathematical computations to forecast future prices. In the prediction process described in paper, six different technical indicators i.e. relative strength index (RSI) (Wu and Diao, 2015), simple moving average (SMA) (Lauren and Harlili, 2014), average directional index (ADX) (Creighton and Zulkernine, 2017), correlation (Li et al., 2016), parabolic stop and reverse (SAR) (Putra, Permanasari and Fauziati, 2016), and the return which is the dividend paid by the stock for that particular time are used. The complete analysis is broken down into subparts of implementation. First, an unsupervised algorithm to predict the regimes is implemented, followed by the visualization of regimes, then training a support vector classifier and using it to predict the current day’s trend is performed. The standardscaler function is instantiated and created an unsupervised learning algorithm to make the regime prediction. There are four different regimes that are developed for which, stock market returns are calculated through a single Gaussian distribution particle swarm optimization (PSO) technique which is applied to these regimes for training an adaptive linear combiner to form a prediction model. The mean and covariance values are used for regime plotting. The data from data split is fed in Support Vector Machine (SVM) given by sklearn without hyper-parameters tuning for training. The prediction made by SVM is used to create prediction signals. These signals are used to calculate the returns of the strategy. The cumulative strategy returns and the cumulative market returns are used to calculate the Sharpe ratio (Hao Li, 2017) to measure performance." classifications = client_aylien.ClassifyByTaxonomy({"text": text, "taxonomy": "iab-qag"}) for category in classifications['categories']: print(category['label']) print('\n*******************************\n AUTO TAGS : \n') #tags are being generated from the result of last # ************** Algorithmia - Auto - tag ******************* input = "Predicting future stock prices has become an infamous topic in the fields of finance and trading. There is a growing interest among investors, financiers, and researchers about the strong prediction of future prices so that stocks can be traded profitably. Professionals today use technical analysis along with fundamental analysis to analyse stocks for making uncanny investment choices. Fundamental analysis is the traditional approach that studies for contributing factors like the company’s revenues, expenses, market position, and annual growth rates. Technical analysis (Chen, 2014), on the other hand, is completely based on the study of market fluctuations. Technical analysts study market patterns and use price data in different mathematical computations to forecast future prices. In the prediction process described in paper, six different technical indicators i.e. relative strength index (RSI) (Wu and Diao, 2015), simple moving average (SMA) (Lauren and Harlili, 2014), average directional index (ADX) (Creighton and Zulkernine, 2017), correlation (Li et al., 2016), parabolic stop and reverse (SAR) (Putra, Permanasari and Fauziati, 2016), and the return which is the dividend paid by the stock for that particular time are used. The complete analysis is broken down into subparts of implementation. First, an unsupervised algorithm to predict the regimes is implemented, followed by the visualization of regimes, then training a support vector classifier and using it to predict the current day’s trend is performed. The standardscaler function is instantiated and created an unsupervised learning algorithm to make the regime prediction. There are four different regimes that are developed for which, stock market returns are calculated through a single Gaussian distribution particle swarm optimization (PSO) technique which is applied to these regimes for training an adaptive linear combiner to form a prediction model. The mean and covariance values are used for regime plotting. The data from data split is fed in Support Vector Machine (SVM) given by sklearn without hyper-parameters tuning for training. The prediction made by SVM is used to create prediction signals. These signals are used to calculate the returns of the strategy. The cumulative strategy returns and the cumulative market returns are used to calculate the Sharpe ratio (Hao Li, 2017) to measure performance." #tags are created over results from the text read by ocr algo over words which occur the most algo = client.algo('nlp/AutoTag/1.0.0') response2 = algo.pipe(input) for category in response2.result: print(category) print(response2.result) print('\n*******************************\n ENTITIES : \n') # **************** Algorithmia - Entities **************** text ="Predicting future stock prices has become an infamous topic in the fields of finance and trading. There is a growing interest among investors, financiers, and researchers about the strong prediction of future prices so that stocks can be traded profitably. Professionals today use technical analysis along with fundamental analysis to analyse stocks for making uncanny investment choices. Fundamental analysis is the traditional approach that studies for contributing factors like the company’s revenues, expenses, market position, and annual growth rates. Technical analysis (Chen, 2014), on the other hand, is completely based on the study of market fluctuations. Technical analysts study market patterns and use price data in different mathematical computations to forecast future prices. In the prediction process described in paper, six different technical indicators i.e. relative strength index (RSI) (Wu and Diao, 2015), simple moving average (SMA) (Lauren and Harlili, 2014), average directional index (ADX) (Creighton and Zulkernine, 2017), correlation (Li et al., 2016), parabolic stop and reverse (SAR) (Putra, Permanasari and Fauziati, 2016), and the return which is the dividend paid by the stock for that particular time are used. The complete analysis is broken down into subparts of implementation. First, an unsupervised algorithm to predict the regimes is implemented, followed by the visualization of regimes, then training a support vector classifier and using it to predict the current day’s trend is performed. The standardscaler function is instantiated and created an unsupervised learning algorithm to make the regime prediction. There are four different regimes that are developed for which, stock market returns are calculated through a single Gaussian distribution particle swarm optimization (PSO) technique which is applied to these regimes for training an adaptive linear combiner to form a prediction model. The mean and covariance values are used for regime plotting. The data from data split is fed in Support Vector Machine (SVM) given by sklearn without hyper-parameters tuning for training. The prediction made by SVM is used to create prediction signals. These signals are used to calculate the returns of the strategy. The cumulative strategy returns and the cumulative market returns are used to calculate the Sharpe ratio (Hao Li, 2017) to measure performance." text.encode('ascii', 'ignore') #the OCR resutlt is again used to indentify entities like numbers, organizaions, date in the data by classifying them algo = client.algo('StanfordNLP/NamedEntityRecognition/0.2.0') entities = algo.pipe(text) print(entities.result) entities = entities.result print('\n*******************************\n DOCUMENT SIMILARITY : \n') # **************** Algorithmia - TextSimilarity **************** input = {"files": [["doc1", "Predicting future stock prices has become an infamous topic in the fields of finance and trading. There is a growing interest among investors, financiers, and researchers about the strong prediction of future prices so that stocks can be traded profitably. Professionals today use technical analysis along with fundamental analysis to analyse stocks for making uncanny investment choices. Fundamental analysis is the traditional approach that studies for contributing factors like the company’s revenues, expenses, market position, and annual growth rates. Technical analysis (Chen, 2014), on the other hand, is completely based on the study of market fluctuations. Technical analysts study market patterns and use price data in different mathematical computations to forecast future prices. In the prediction process described in paper, six different technical indicators i.e. relative strength index (RSI) (Wu and Diao, 2015), simple moving average (SMA) (Lauren and Harlili, 2014), average directional index (ADX) (Creighton and Zulkernine, 2017), correlation (Li et al., 2016), parabolic stop and reverse (SAR) (Putra, Permanasari and Fauziati, 2016), and the return which is the dividend paid by the stock for that particular time are used. The complete analysis is broken down into subparts of implementation. First, an unsupervised algorithm to predict the regimes is implemented, followed by the visualization of regimes, then training a support vector classifier and using it to predict the current day’s trend is performed. The standardscaler function is instantiated and created an unsupervised learning algorithm to make the regime prediction. There are four different regimes that are developed for which, stock market returns are calculated through a single Gaussian distribution particle swarm optimization (PSO) technique which is applied to these regimes for training an adaptive linear combiner to form a prediction model. The mean and covariance values are used for regime plotting. The data from data split is fed in Support Vector Machine (SVM) given by sklearn without hyper-parameters tuning for training. The prediction made by SVM is used to create prediction signals. These signals are used to calculate the returns of the strategy. The cumulative strategy returns and the cumulative market returns are used to calculate the Sharpe ratio (Hao Li, 2017) to measure performance."], ["doc2", "the movie about cars"], ["doc3", "the document about cats"]]} #print(input) #document similarity is checked from three other documents doc1, doc2, doc3 compared to files/our data algo = client.algo('PetiteProgrammer/TextSimilarity/0.1.2') print(algo.pipe(input).result) print('\n*******************************\n SENTENCE PARSING : \n') """ Parsing is a traditional grammatical exercise that involves breaking down a text into its component parts of speech with an explanation of the form, function, and syntactic relationship of each part. """ # **************** Algorithmia - SENTENCE PARSING **************** input = { "src":"Predicting future stock prices has become an infamous topic in the fields of finance and trading. There is a growing interest among investors, financiers, and researchers about the strong prediction of future prices so that stocks can be traded profitably. Professionals today use technical analysis along with fundamental analysis to analyse stocks for making uncanny investment choices. Fundamental analysis is the traditional approach that studies for contributing factors like the company’s revenues, expenses, market position, and annual growth rates. Technical analysis (Chen, 2014), on the other hand, is completely based on the study of market fluctuations. Technical analysts study market patterns and use price data in different mathematical computations to forecast future prices. In the prediction process described in paper, six different technical indicators i.e. relative strength index (RSI) (Wu and Diao, 2015), simple moving average (SMA) (Lauren and Harlili, 2014), average directional index (ADX) (Creighton and Zulkernine, 2017), correlation (Li et al., 2016), parabolic stop and reverse (SAR) (Putra, Permanasari and Fauziati, 2016), and the return which is the dividend paid by the stock for that particular time are used. The complete analysis is broken down into subparts of implementation. First, an unsupervised algorithm to predict the regimes is implemented, followed by the visualization of regimes, then training a support vector classifier and using it to predict the current day’s trend is performed. The standardscaler function is instantiated and created an unsupervised learning algorithm to make the regime prediction. There are four different regimes that are developed for which, stock market returns are calculated through a single Gaussian distribution particle swarm optimization (PSO) technique which is applied to these regimes for training an adaptive linear combiner to form a prediction model. The mean and covariance values are used for regime plotting. The data from data split is fed in Support Vector Machine (SVM) given by sklearn without hyper-parameters tuning for training. The prediction made by SVM is used to create prediction signals. These signals are used to calculate the returns of the strategy. The cumulative strategy returns and the cumulative market returns are used to calculate the Sharpe ratio (Hao Li, 2017) to measure performance.", "format":"conll", "language":"english" } #prepositions, nouns, verbs have been omitted from the text. algo = client.algo('deeplearning/Parsey/1.0.2') print(algo.pipe(input).result) print('\n*******************************\n CO-REFERENCE : \n') # ****************** CO REFERENCE ********************** algo = client.algo('StanfordNLP/DeterministicCoreferenceResolution/0.1.1') """ Classifications where references are found, meaning full details that could be used from the data are resulted by this algo {'terra Solutions lwww.entenasnlutinns.com': ['it']} """ print(algo.pipe(text).result) print('\n*******************************\n PART-OF-SPEECH (POS) TAGGER : \n') # ****************** PART-OF-SPEECH (POS) TAGGER ********************** algo = client.algo('ApacheOpenNLP/POSTagger/0.1.1') print(text) #tags part-of-speech and returns an array but throwing an error - all the inputs to be in json -- our reslut is string not getting fixes for that #text = response['result'] print(algo.pipe(text).result) print('\n*******************************\n TOKENIZE : \n') # ****************** TOKENIZE ********************** algo = client.algo('ApacheOpenNLP/TokenizeBySentence/0.1.0') print(algo.pipe(text)) print('\n*******************************\n LDA : \n') # ****************** LDA ********************** #classify text in a document to a particular topic. algo = client.algo('ApacheOpenNLP/SentenceDetection/0.1.0') sentences = algo.pipe(text) #print(sentences) algo = client.algo('nlp/LDA/1.0.0') input = { "docsList": sentences.result, "mode": "quality" } print(input) LDA = algo.pipe(input).result print(LDA) #Summary print('\n*******************************\n Summary : \n') summ_text = "Predicting future stock prices has become an infamous topic in the fields of finance and trading. There is a growing interest among investors, financiers, and researchers about the strong prediction of future prices so that stocks can be traded profitably. Professionals today use technical analysis along with fundamental analysis to analyse stocks for making uncanny investment choices. Fundamental analysis is the traditional approach that studies for contributing factors like the company’s revenues, expenses, market position, and annual growth rates. Technical analysis (Chen, 2014), on the other hand, is completely based on the study of market fluctuations. Technical analysts study market patterns and use price data in different mathematical computations to forecast future prices. In the prediction process described in paper, six different technical indicators i.e. relative strength index (RSI) (Wu and Diao, 2015), simple moving average (SMA) (Lauren and Harlili, 2014), average directional index (ADX) (Creighton and Zulkernine, 2017), correlation (Li et al., 2016), parabolic stop and reverse (SAR) (Putra, Permanasari and Fauziati, 2016), and the return which is the dividend paid by the stock for that particular time are used. The complete analysis is broken down into subparts of implementation. First, an unsupervised algorithm to predict the regimes is implemented, followed by the visualization of regimes, then training a support vector classifier and using it to predict the current day’s trend is performed. The standardscaler function is instantiated and created an unsupervised learning algorithm to make the regime prediction. There are four different regimes that are developed for which, stock market returns are calculated through a single Gaussian distribution particle swarm optimization (PSO) technique which is applied to these regimes for training an adaptive linear combiner to form a prediction model. The mean and covariance values are used for regime plotting. The data from data split is fed in Support Vector Machine (SVM) given by sklearn without hyper-parameters tuning for training. The prediction made by SVM is used to create prediction signals. These signals are used to calculate the returns of the strategy. The cumulative strategy returns and the cumulative market returns are used to calculate the Sharpe ratio (Hao Li, 2017) to measure performance." #summarizes the text - result of OCR algo = client.algo('nlp/Summarizer/0.1.8') summ = algo.pipe(summ_text).result print(algo.pipe(summ_text).result) #Sentiment Analysis print('\n*******************************\n Sentiments : \n') algo = client.algo('nlp/SentimentAnalysis/1.0.5') sentiment = [] for category in response2.result: s = algo.pipe(category).result print("Sentiment Score (",category,"): ", s) sentiment.append(s) #checking the level of sentiment import numpy sentiment = numpy.asarray(sentiment) how_much_senti = sentiment.var() #Var returns the variance of the array elements, a measure of the spread of a distribution. #The variance is computed for the flattened array by default, otherwise over the specified axis. print(how_much_senti) #this variance value can affect the result of our classification ###Output ******************************* Sentiments : Sentiment Score ( analysis ): 2 Sentiment Score ( data ): 2 Sentiment Score ( market ): 2 Sentiment Score ( prediction ): 2 Sentiment Score ( regimes ): 2 Sentiment Score ( returns ): 2 Sentiment Score ( technical ): 2 Sentiment Score ( training ): 2 0.0
doc/_build/Notebooks/2.Preprocess/2.2Mask-Copy1.ipynb
###Markdown Event definition Time selectionFor the UK, the event of interest is UK February average precipitation. Since we download monthly averages, we do not have to do any preprocessing along the time dimension her. For the Siberian heatwave, we are interested in the March-May average. Therefore we need to take the seasonal average of the monthly timeseries. Spatial selectionFrom grid to country-averaged timeseries.In this notebook we explore how to best extract areal averaged precipitation and test this for UK precipitation within SEAS5 and EOBS, as part of our UNSEEN-open [workflow](../Workflow.ipynb). The code is inspired on Matteo De Felice's [blog](http://www.matteodefelice.name/post/aggregating-gridded-data/) -- credits to him!We create a mask for all 241 countries within [Regionmask](https://regionmask.readthedocs.io/en/stable/), that has predefined countries from [Natural Earth datasets](http://www.naturalearthdata.com) (shapefiles). We use the mask to go from gridded precipitation to country-averaged timeseries. We start with UK, number 31 within the country mask. Import packagesWe need the packages regionmask for masking and xesmf for regridding. I cannot install xesmf into the UNSEEN-open environment without breaking my environment, so in this notebook I use a separate 'upscale' environment, as suggested by this [issue](https://github.com/JiaweiZhuang/xESMF/issues/47issuecomment-582421822). I use the packages esmpy=7.1.0 xesmf=0.2.1 regionmask cartopy matplotlib xarray numpy netcdf4. ###Code ##This is so variables get printed within jupyter from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" ##import packages import os import xarray as xr import numpy as np import matplotlib.pyplot as plt import cartopy import cartopy.crs as ccrs import matplotlib.ticker as mticker import regionmask # Masking import xesmf as xe # Regridding ##We want the working directory to be the UNSEEN-open directory pwd = os.getcwd() ##current working directory is UNSEEN-open/Notebooks/1.Download pwd #print the present working directory os.chdir(pwd+'/../../') # Change the working directory to UNSEEN-open os.getcwd() #print the working directory ###Output _____no_output_____ ###Markdown Load SEAS5 and EOBS From CDS, we retrieve SEAS5 in notebook [1.2 Retrieve](1.Download/1.2Retrieve.ipynb) and concatenate the retrieved files in notebook [1.3 Merge](1.Download/1.3Merge.ipynb). We create a netcdf file containing the dimensions lat, lon, time (35 years), number (25 ensembles) and leadtime (5 initialization months). ###Code SEAS5 = xr.open_dataset('../UK_example/SEAS5/SEAS5.nc') SEAS5 ###Output _____no_output_____ ###Markdown And load EOBS netcdf with only February precipitation, resulting in 71 values, one for each year within 1950 - 2020 over the European domain (25N-75N x 40W-75E). ###Code EOBS = xr.open_dataset('../UK_example/EOBS/EOBS.nc') EOBS ###Output _____no_output_____ ###Markdown MaskingHere we load the countries and create a mask for SEAS5 and for EOBS. Regionmask has predefined countries from [Natural Earth datasets](http://www.naturalearthdata.com) (shapefiles). ###Code countries = regionmask.defined_regions.natural_earth.countries_50 countries ###Output _____no_output_____ ###Markdown Now we create the mask for the SEAS5 grid. Only one timestep is needed to create the mask. This mask will lateron be used to mask all the timesteps. ###Code SEAS5_mask = countries.mask(SEAS5.sel(leadtime=2, number=0, time='1982'), lon_name='longitude', lat_name='latitude') ###Output _____no_output_____ ###Markdown And create a plot to illustrate what the mask looks like. The mask just indicates for each gridcell what country the gridcell belongs to. ###Code SEAS5_mask SEAS5_mask.plot() ###Output _____no_output_____ ###Markdown Extract spatial averageAnd now we can extract the UK averaged precipitation within SEAS5 by using the mask index of the UK: `where(SEAS5_mask == UK_index)`. So we need to find the index of one of the 241 abbreviations. In this case for the UK use 'GB'. Additionally, if you can't find a country, use `countries.regions` to get the full names of the countries. ###Code countries.abbrevs.index('GB') ###Output _____no_output_____ ###Markdown To select the UK average, we select SEAS5 precipitation (tprate), select the gridcells that are within the UK and take the mean over those gridcells. This results in a dataset of February precipitation for 35 years (1981-2016), with 5 leadtimes and 25 ensemble members. ###Code SEAS5_UK = (SEAS5['tprate'] .where(SEAS5_mask == 31) .mean(dim=['latitude', 'longitude'])) SEAS5_UK ###Output _____no_output_____ ###Markdown However, xarray does not take into account the area of the gridcells in taking the average. Therefore, we have to calculate the [area-weighted mean](http://xarray.pydata.org/en/stable/examples/area_weighted_temperature.html) of the gridcells. To calculate the area of each gridcell, I use cdo `cdo gridarea infile outfile`. Here I load the generated file: ###Code Gridarea_SEAS5 = xr.open_dataset('../UK_example/Gridarea_SEAS5.nc') Gridarea_SEAS5['cell_area'].plot() SEAS5_UK_weighted = (SEAS5['tprate'] .where(SEAS5_mask == 31) .weighted(Gridarea_SEAS5['cell_area']) .mean(dim=['latitude', 'longitude']) ) SEAS5_UK_weighted ###Output _____no_output_____ ###Markdown What is the difference between the weighted and non-weighted average?I plot the UK average for ensemble member 0 and leadtime 2 ###Code SEAS5_UK.sel(leadtime=2,number=0).plot() SEAS5_UK_weighted.sel(leadtime=2,number=0).plot() ###Output _____no_output_____ ###Markdown And a scatter plot of all ensemble members, leadtimes and years also shows little influence ###Code plt.scatter(SEAS5_UK.values.flatten(),SEAS5_UK_weighted.values.flatten()) ###Output _____no_output_____ ###Markdown EOBSSame for EOBS. Because this is a larger domain on higher resolution, there are more countries and they look more realistic. ###Code EOBS_mask = countries.mask(EOBS.sel(time='1982'), lon_name='longitude', lat_name='latitude') EOBS_mask.plot() EOBS_mask Gridarea_EOBS = xr.open_dataset('../UK_example/Gridarea_EOBS.nc') Gridarea_EOBS['cell_area'].plot() EOBS_UK_weighted = (EOBS['rr'] .where(EOBS_mask == 31) .weighted(Gridarea_EOBS['cell_area']) .mean(dim=['latitude', 'longitude']) ) EOBS_UK_weighted EOBS_UK_weighted.plot() ###Output _____no_output_____ ###Markdown Save the UK weighted average datasets ###Code SEAS5_UK_weighted.to_netcdf('Data/SEAS5_UK_weighted.nc') EOBS_UK_weighted.to_netcdf('Data/EOBS_UK_weighted.nc') ## save as netcdf EOBS_UK_weighted.to_pandas().to_csv('Data/EOBS_UK_weighted.csv') ## and save as csv. SEAS5_UK_weighted.close() EOBS_UK_weighted.close() ###Output _____no_output_____ ###Markdown Illustrate the SEAS5 and EOBS masks for the UKHere I plot the masked mean SEAS5 and EOBS precipitation. EOBS is averaged over 71 years, SEAS5 is averaged over years, leadtime and ensemble members. ###Code fig, axs = plt.subplots(1, 2, subplot_kw={'projection': ccrs.OSGB()}) SEAS5['tprate'].where(SEAS5_mask == 31).mean( dim=['time', 'leadtime', 'number']).plot( transform=ccrs.PlateCarree(), vmin=0, vmax=8, cmap=plt.cm.Blues, ax=axs[0]) EOBS['rr'].where(EOBS_mask == 31).mean(dim='time').plot( transform=ccrs.PlateCarree(), vmin=0, vmax=8, cmap=plt.cm.Blues, ax=axs[1]) for ax in axs.flat: ax.coastlines(resolution='10m') axs[0].set_title('SEAS5') axs[1].set_title('EOBS') ###Output /soge-home/users/cenv0732/.conda/envs/upscale/lib/python3.7/site-packages/xarray/core/nanops.py:142: RuntimeWarning: Mean of empty slice return np.nanmean(a, axis=axis, dtype=dtype) ###Markdown Illustrate the SEAS5 and EOBS UK averageAnd the area-weighted average UK precipitation for SEAS5 and EOBS I plot here. For SEAS5 I plot the range, both min/max and the 2.5/97.5 % percentile of all ensemble members and leadtimes for each year. ###Code ax = plt.axes() Quantiles = SEAS5_UK_weighted.quantile([0,2.5/100, 0.5, 97.5/100,1], dim=['number','leadtime']) ax.plot(Quantiles.time, Quantiles.sel(quantile=0.5), color='orange',label = 'SEAS5 median') ax.fill_between(Quantiles.time.values, Quantiles.sel(quantile=0.025), Quantiles.sel(quantile=0.975), color='orange', alpha=0.2,label = '95% / min max') ax.fill_between(Quantiles.time.values, Quantiles.sel(quantile=0), Quantiles.sel(quantile=1), color='orange', alpha=0.2) EOBS_UK_weighted.plot(ax=ax,x='time',label = 'E-OBS') # Quantiles_EOBS = EOBS['rr'].where(EOBS_mask == 143).mean(dim = ['latitude','longitude']).quantile([2.5/100, 0.5, 97.5/100], dim=['time'])#.plot() # ax.plot(EOBS.time, np.repeat(Quantiles_EOBS.sel(quantile=0.5).values,71), color='blue',linestyle = '--',linewidth = 1) # ax.plot(EOBS.time, np.repeat(Quantiles_EOBS.sel(quantile=2.5/100).values,71), color='blue',linestyle = '--',linewidth = 1) # ax.plot(EOBS.time, np.repeat(Quantiles_EOBS.sel(quantile=97.5/100).values,71), color='blue',linestyle = '--',linewidth = 1) plt.legend(loc = 'lower left', ncol=2 )#loc = (0.1, 0) upper left ###Output _____no_output_____
Clase8_Taller2.ipynb
###Markdown **Ejercicio de práctica**--- Se les pide a la analista realizar una estimación poblacional a partir de informacion descriptiva relevante sobre la pobalción de los paises de vía de desarrollo.Para ello de inicio se solicita que se cree un programa que permita ingresar como prueba 5 paises y su respectiva población e identificar que país tiene la mayor cantidad de habitantes. ###Code def poblacion(): pais=[] for i in range(5): nombre = input("ingresa el nombre del pais: ") cant= int(input("ingrese la cantidad de habitantes: ")) pais.append((nombre,cant)) return pais def view(pais): print("habitantes por país: ") for x in range(len(pais)): #para separar cada elemento de la lista print(pais[x][0], pais[x][1]) def mayor(pais): p=0 for x in range(1,len(pais)): if pais[x][1]>pais[p][1]: p=x print("el país con la más alta población registrada es: ",pais[p][0]) pais=poblacion() view(pais) mayor(pais) se=[1,10,7,9,3,15] sorted(se) #ordena los elementos de la lista ###Output _____no_output_____ ###Markdown **Taller 2**---Se solicita realizar un programa que permita identificar el nivel de cumplimiento del area de ventas de la empresa AVA. Entre los principales requerimientos se encuentran los siguientes:1. Permita ingresar la cantidad de vendedores del área de ventas.2. permita ingresar la puntuación por cada uno de ellos(escala de 1-el peor a 10-el mejor).3. el programa debe permitir identificar el vendedor con peor rendimiento y mejor rendimiento4. Obtener el promedio general del nivel de cumplimiento del area de ventas.**NOTA:** si hay empate en la puntuación para definir el primer y ultimo puesto, se define por orden alfabetico. ###Code print(" Empresa AVA") print(" ") def cantvend(): vendedor=[] n=0 c =int(input("Ingrese la cantidad de vendedores del área de venta: ")) for i in range(c): n=str(i+1) vend= input("ingrese el nombre del vendedor "+n+" es: ") puntuacion=int(input("Ingrese su puntuación (escala de 1 al 10): ")) vendedor.append((vend,puntuacion)) return vendedor def viewvend(vendedor): print(" ") print("puntuación de cada vendedor: ") print(" ") ord=sorted(vendedor, key=lambda sub:(sub[1], sub[0])) for x in range(len(ord)): print(ord[x][0], ord[x][1]) def mayormenor(vendedor): p=0 w=0 for x in range(1,len(vendedor)): if vendedor[x][1]>vendedor[p][1]: p=x if vendedor[x][1]<vendedor[w][1]: w=x print(" ") print("El vendedor con el mejor rendimiento es: ",vendedor[p][0]) print("El vendedor con el menor rendimiento es: ",vendedor[w][0]) def promedio(vendedor): suma=0 for x in range(0,len(vendedor)): suma=suma+vendedor[x][1] prom=suma/len(vendedor) print("el promedio general del nivel de cumplimiento del area de ventas es: ",prom) vendedor=cantvend() viewvend(vendedor) mayormenor(vendedor) promedio(vendedor) ###Output Empresa AVA Ingrese la cantidad de vendedores del área de venta: 5 ingrese el nombre del vendedor 1 es: Daniel Ingrese su puntuación (escala de 1 al 10): 6 ingrese el nombre del vendedor 2 es: Natalia Ingrese su puntuación (escala de 1 al 10): 8 ingrese el nombre del vendedor 3 es: Diego Ingrese su puntuación (escala de 1 al 10): 6 ingrese el nombre del vendedor 4 es: Andrea Ingrese su puntuación (escala de 1 al 10): 9 ingrese el nombre del vendedor 5 es: Fabian Ingrese su puntuación (escala de 1 al 10): 2 puntuación de cada vendedor: Fabian 2 Daniel 6 Diego 6 Natalia 8 Andrea 9 El vendedor con el mejor rendimiento es: Andrea El vendedor con el menor rendimiento es: Fabian el promedio general del nivel de cumplimiento del area de ventas es: 6.2
cifar_10/main.ipynb
###Markdown Data preprocess ###Code cli.download_data() print os.getcwd() unzip(pjoin(data_path, 'test.7z'), data_path) unzip(pjoin(data_path, 'test.7z'), data_path) unzip(pjoin(data_path, 'train.7z'), data_path) for base_path in [data_path, sample_path]: for category in ['dogs', 'cats']: for folder in ['train', 'valid']: mkdir(os.path.join(base_path, folder, category)) mkdir(pjoin(base_path, 'test', 'unknown')) cwd = os.getcwd() os.chdir('data/train/') call("find . -name 'cat.*' | xargs -J ^ mv ^ cats") call("find . -name 'dog.*' | xargs -J ^ mv ^ dogs") os.chdir(cwd) os.chdir('data/test/') call("find . -name '*.jpg' | xargs -J ^ mv ^ unknown") os.chdir(cwd) cwd = os.getcwd() os.chdir('data/') train_cats, valid_cats, train_dogs, valid_dogs = train_test_split(os.listdir('train/cats'), os.listdir('train/dogs'), test_size=0.2) # train_cats, test_cats, train_dogs, test_dogs = train_test_split(train_cats, train_dogs, test_size=0.1) # training data for d in valid_dogs: call("mv train/dogs/{} valid/dogs".format(d)) for c in valid_cats: call("mv train/cats/{} valid/cats".format(c)) # for d in test_dogs: # call("mv train/dogs/{} test/dogs".format(d)) # for c in test_cats: # call("mv train/cats/{} test/cats".format(c)) # sample data for d in train_dogs[:20]: call("cp train/dogs/{} sample/train/dogs".format(d)) for c in train_cats[:20]: call("cp train/cats/{} sample/train/cats".format(c)) for d in valid_dogs[:5]: call("cp valid/dogs/{} sample/valid/dogs".format(d)) for c in valid_cats[:5]: call("cp valid/cats/{} sample/valid/cats".format(c)) from random import sample for d in sample(os.listdir('test/unknown'), 10): call("cp test/unknown/{} sample/test/unknown/".format(d)) os.chdir(cwd) ###Output _____no_output_____ ###Markdown Fine tune VGG ###Code data_path = sample_path from utils.pretrained_models import VGG16 from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint vgg_model = VGG16.get_model(2).model train_datagen = ImageDataGenerator() valid_datagen = ImageDataGenerator() test_datagen = ImageDataGenerator() train_flow = train_datagen.flow_from_directory( os.path.join(data_path, 'train'), target_size=(224, 224), batch_size=5, class_mode='categorical') valid_flow = valid_datagen.flow_from_directory( os.path.join(data_path, 'valid'), target_size=(224, 224), batch_size=5, class_mode='categorical') test_flow = test_datagen.flow_from_directory( os.path.join(data_path, 'test'), target_size=(224, 224), batch_size=5, class_mode='categorical', shuffle=False) for l in vgg_model.layers[:-1]: l.trainable = False vgg_model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) checkpointer = ModelCheckpoint(pjoin(model_path, 'weights_best.hdf5'), save_best_only=True) vgg_model.fit_generator( train_flow, steps_per_epoch=10, epochs=1, validation_data=valid_flow, validation_steps=10, callbacks=[checkpointer]) vgg_model.load_weights(pjoin(model_path, 'weights_best.hdf5')) vgg_model.evaluate_generator(valid_flow) preds = vgg_model.predict_generator(test_flow) isdog = preds[:,1] ids = np.array([int(f.split('.')[-2].split('/')[1]) for f in test_flow.filenames]) submission = np.stack([ids, isdog], axis=1) result_path = pjoin(data_path, 'submission.csv') np.savetxt(result_path, submission, fmt='%d, %.5f', header='id,label', comments="") cli.submit_result(result_path) ###Output _____no_output_____
notebooks/introduction_to_copulas.ipynb
###Markdown Introduction to CopulasTo make our lives extremely simple with the following discusssion, we will focus on continuous random variables. This will really help facilitate subsequent discussions. Probability density functionConsider a random variable $X$ with realisation $x$. A probabilitiy density function is a special type of functions that take $x$ and maps to the likelihood that $X=x$. Example is the standard normal density distribution function. It is given as $$f(x) = \frac{1}{2\pi}\exp\{-\frac{x^2}{2}\}.$$Many people turn to confuse between a density function and an actual probability. A density function rather gives the likelihood/tendency that a random variable $X$ can take the value $x$. Note that there is an additional constraint that the integral over a density function must be one. The actual densities themselves might already be larger than one. Cummulative distribution functionAs we saw above $f(x)$ represents the probability density function of $X$ at $x$. Cummulative distribution functions on the other hand are defined as $$F(x)=\int_{-\infty}^xf(x)dx$$ Probability Integral Transform Probability integral transform is a very simple concept which is central to the copula theory. Assume that we have a random variable X that comes from a distribution with cummulative density function $F(X)$. Then, we can define a random variable $Y$ as $$Y = F(X).$$As we saw before $Y$ is an integral and $Y$ follows a uniform distribution over the interval [0,1]. Can we show that $Y$ is uniform on [0,1]?<!-- $$P(Y\leq y) = P(F(x)\leq y) = 1 \text{ if } (y>1)$$ -->$$ P(Y\leq y) =\begin{cases} P(F(x)\leq y) = 1,& \text{if } y\geq 1\\, P(F(x)\leq y) = 0, & \text{if } y\leg 0 \\, 0 , & \text{otherwise}\end{cases}$$Let's try to demonstrate this concept in code. ###Code from scipy import stats from matplotlib import pyplot as plt import plotly.express as px # Sample standard random values generated X = stats.norm.rvs(size=10000) # Compute the comulative probability of each value X_trans = stats.norm.cdf(X) # plot the results px.histogram(X,title="Original Samples") px.histogram(X_trans,title="Transformed Samples") ###Output _____no_output_____ ###Markdown Copulas Multivariate data is often hard model, the key intuition underlying copulas is that the marginal distributions can be modeled independently from the joint distribution. Let's take an example:Consider a dataset with two variables $age$ and $income$ and our goal is to model their joint distribution. Here is the data: ###Code from copulas.datasets import sample_bivariate_age_income df = sample_bivariate_age_income() df.head() ###Output _____no_output_____ ###Markdown The copula approach in modelling the their joint goes as follows:* Model age and income independently, i.e., get their univariate commulative distribution functions* Transform them into a uniform distribution using the probability integral transform explained above* Model the relationship between the transformed variables using the copula function.Now we use the term copula again without really telling you what it means. We will make things clearer as we proceed. Let's not loose track of the fact that our goal is to model the joint distribution of age and income. Let's start by looking at their marginal distributions. ###Code from copulas.visualization import hist_1d, side_by_side side_by_side(hist_1d, {'Age': df['age'], 'Income': df['income']}) ###Output _____no_output_____
examples/cgcnn_sklearn_tests_qingyanz_for-background-use_no-dropout.ipynb
###Markdown 05/06/2019 To-do list:1. Calibration curve analog for regression (edited) 2. Indicate how many points are below/above each parity line3. Plot multiple cases side by side on the same graph (e.g. test set with 50 pts & 1500 pts)4. Manipulating dropout 06/14/2019 To-do list:1. If process gets stuck on SDT transform (tqdm) step: a. Cache This document demonstrates the making, training, saving, loading, and usage of a sklearn-compliant CGCNN model. ###Code %load_ext ipycache import os import sys #Comment/add these sys.path.insert(0,'../') sys.path.insert(0,'/home/zulissi/software/adamwr/') import numpy as np import cgcnn import time #Select which GPU to use if necessary %env CUDA_DEVICE_ORDER=PCI_BUS_ID %env CUDA_VISIBLE_DEVICES=0 ###Output env: CUDA_DEVICE_ORDER=PCI_BUS_ID env: CUDA_VISIBLE_DEVICES=0 ###Markdown Load the dataset as mongo docs ###Code import random import pickle starttime = time.clock() #Load a selection of documents docs = pickle.load(open('/pylon5/ch5fq5p/zulissi/CO_docs.pkl','rb')) random.seed(42) random.shuffle(docs) docs = [doc for doc in docs if -3<doc['energy']<1.0] docs = docs[:6000] endtime = time.clock() print('This operation took', endtime - starttime, 's.') docs[0] ###Output _____no_output_____ ###Markdown Get the size of the features from the data transformer, to be used in setting up the net model ###Code # %%cache SDT_list.pkl SDT_list from torch.utils.data import Dataset, DataLoader import mongo from cgcnn.data import StructureData, ListDataset, StructureDataTransformer import numpy as np import tqdm from sklearn.preprocessing import StandardScaler SDT = StructureDataTransformer(atom_init_loc='../atom_init.json', max_num_nbr=12, step=0.2, radius=1, use_tag=False, use_fixed_info=False, use_distance=True) SDT_out = SDT.transform(docs) structures = SDT_out[0] # Settings necessary to build the model (since they are size of vectors as inputs) orig_atom_fea_len = structures[0].shape[-1] nbr_fea_len = structures[1].shape[-1] SDT_out[4] import multiprocess as mp from sklearn.model_selection import ShuffleSplit SDT_out = SDT.transform(docs) with mp.Pool(4) as pool: SDT_list = list(tqdm.tqdm(pool.imap(lambda x: SDT_out[x],range(len(SDT_out)),chunksize=40),total=len(SDT_out))) starttime = time.clock() with open('distance_all_docs.pkl','wb') as fhandle: pickle.dump(SDT_list,fhandle) endtime = time.clock() print('This step took', endtime - starttime, 's to complete.') ###Output This step took 1.0800000000000054 s to complete. ###Markdown CGCNN model with skorch to make it sklearn compliant ###Code with open('distance_all_docs.pkl','rb') as opensdtlist: SDT_list = pickle.load(opensdtlist) print(SDT_list[0]) from torch.optim import Adam, SGD from sklearn.model_selection import ShuffleSplit from skorch.callbacks import Checkpoint, LoadInitState #needs skorch 0.4.0, conda-forge version at 0.3.0 doesn't cut it from cgcnn.data import collate_pool from skorch import NeuralNetRegressor from cgcnn.model_no_dropout import CrystalGraphConvNet import torch from cgcnn.data import MergeDataset import skorch.callbacks.base cuda = torch.cuda.is_available() if cuda: device = torch.device("cuda") else: device='cpu' startime = time.clock() #Make a checkpoint to save parameters every time there is a new best for validation lost cp = Checkpoint(monitor='valid_loss_best',fn_prefix='valid_best_') #Callback to load the checkpoint with the best validation loss at the end of training class train_end_load_best_valid_loss(skorch.callbacks.base.Callback): def on_train_end(self, net, X, y): net.load_params('valid_best_params.pt') load_best_valid_loss = train_end_load_best_valid_loss() endtime = time.clock() print('This step takes', endtime - startime, 's to complete.') ###Output This step takes 0.0 s to complete. ###Markdown \color{red}{This seems to be a time consuming step.} Example converting all the documents up front ###Code starttime = time.clock() #Make the target list target_list = np.array([doc['energy'] for doc in docs]).reshape(-1,1) endtime = time.clock() print('This step takes', endtime - startime, 's to complete.') ###Output This step takes 0.020000000000003126 s to complete. ###Markdown Shuffle and Split ###Code from sklearn.model_selection import train_test_split starttime = time.clock() SDT_training, SDT_test, target_training, target_test = train_test_split(SDT_list, target_list, test_size=0.2) endtime = time.clock() print('This step takes', endtime - startime, 's to complete.') SDT_training[0] ###Output _____no_output_____ ###Markdown Fit the model ###Code from skorch.dataset import CVSplit from skorch.callbacks.lr_scheduler import WarmRestartLR, LRScheduler train_test_splitter = ShuffleSplit(test_size=0.25) # , random_state=42) LR_schedule = LRScheduler('MultiStepLR',milestones=[100],gamma=0.1) net = NeuralNetRegressor( CrystalGraphConvNet, module__orig_atom_fea_len = orig_atom_fea_len, module__nbr_fea_len = nbr_fea_len, # module__dropout = 0.2, batch_size=214, module__classification=False, lr=0.0056, max_epochs=188, # 292 module__atom_fea_len=46, module__h_fea_len=83, module__n_conv=8, module__n_h=4, optimizer=Adam, iterator_train__pin_memory=True, iterator_train__num_workers=0, iterator_train__collate_fn = collate_pool, iterator_train__shuffle=True, iterator_valid__pin_memory=True, iterator_valid__num_workers=0, iterator_valid__collate_fn = collate_pool, device=device, criterion=torch.nn.MSELoss, # criterion=torch.nn.L1Loss, dataset=MergeDataset, train_split = CVSplit(cv=train_test_splitter), callbacks=[cp, load_best_valid_loss, LR_schedule] ) import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score from sklearn.model_selection import train_test_split def plot(df_training, df_validation, df_test): f, ax = plt.subplots(figsize=(8,8)) ax.scatter(df_training['actual_value'], df_training['predicted_value'], color='orange', marker='o', alpha=0.5, label='train\nMAE=%0.2f, RMSE=%0.2f, R$^2$=%0.2f'\ %(mean_absolute_error(df_training['actual_value'], df_training['predicted_value']), np.sqrt(mean_squared_error(df_training['actual_value'], df_training['predicted_value'])), r2_score(df_training['actual_value'], df_training['predicted_value']))) ax.scatter(df_validation['actual_value'], df_validation['predicted_value'], color='blue', marker='o', alpha=0.5, label='valid\nMAE=%0.2f, RMSE=%0.2f, R$^2$=%0.2f'\ %(mean_absolute_error(df_validation['actual_value'], df_validation['predicted_value']), np.sqrt(mean_squared_error(df_validation['actual_value'], df_validation['predicted_value'])), r2_score(df_validation['actual_value'], df_validation['predicted_value']))) ax.scatter(df_test['actual_value'], df_test['predicted_value'], color='green', marker='o', alpha=0.5, label='test\nMAE=%0.2f, RMSE=%0.2f, R$^2$=%0.2f'\ %(mean_absolute_error(df_test['actual_value'], df_test['predicted_value']), np.sqrt(mean_squared_error(df_test['actual_value'], df_test['predicted_value'])), r2_score(df_test['actual_value'], df_test['predicted_value']))) ax.plot([min(df_training['actual_value']), max(df_training['actual_value'])], [min(df_training['actual_value']), max(df_training['actual_value'])], 'k--') # format graph ax.tick_params(labelsize=14) ax.set_xlabel('DFT E (eV)', fontsize=14) ax.set_ylabel('CGCNN predicted E (eV)', fontsize=14) ax.set_title('Multi-element ', fontsize=14) ax.legend(fontsize=12) plt.show() def train(SDT_training, SDT_test, target_training, target_test, net): iters = 6 tr_vl_len = len(SDT_training) # 4800 """ VERY IMPORTANT: PICK TR_VL_LEN & ITERS s.t. ITERS DIVIDE TR_VL_LEN""" batchsize = tr_vl_len // iters splitter = KFold(iters, shuffle=False) arr_training = [[] for _ in range(iters)] arr_validation = [] TrainingData = [] ValidationData = [] TestData = [] for i, (train_indices, valid_indices) in enumerate(splitter.split(SDT_training)): net.initialize() net.fit(SDT_training, target_training) subdiv = [j for j in range(iters) if i != j] arr_validation.extend(net.predict(SDT_training)[valid_indices].reshape(-1)) for k, j in enumerate(subdiv): train_segment = train_indices[(k*batchsize):((k+1)*batchsize)] arr_training[j].append(net.predict(SDT_training)[train_segment].reshape(-1)) """ validation_data = {'actual_value':np.array(target_training.reshape(-1))[valid_indices], 'predicted_value':net.predict(SDT_training)[valid_indices].reshape(-1)} dfvalidation = pd.DataFrame(validation_data) ValidationData.append(dfvalidation) """ test_data = {'actual_value':np.array(target_test).reshape(-1), 'predicted_value':net.predict(SDT_test).reshape(-1)} dftest = pd.DataFrame(test_data) TestData.append(dftest) try: crude_training_data = {'actual_value':np.array(target_training).reshape(-1)[train_indices], 'predicted_value':net.predict(SDT_training)[train_indices].reshape(-1)} crude_validation_data = {'actual_value':np.array(target_training).reshape(-1)[valid_indices], 'predicted_value':net.predict(SDT_training)[valid_indices].reshape(-1)} dfcrudetraining = pd.DataFrame(crude_training_data) dfcrudevalidation = pd.DataFrame(crude_validation_data) plot(dfcrudetraining, dfcrudevalidation, dftest) except: print("Error in plotting") print("arr_training:") print(arr_training) print("arr_validation:") print(arr_validation) """ training_data = {'actual_value':np.array(target_training.reshape(-1))[train_indices], 'predicted_value':net.predict(SDT_training)[train_indices].reshape(-1)} test_data = {'actual_value':np.array(target_test).reshape(-1), 'predicted_value':net.predict(SDT_test).reshape(-1)} validation_data = {'actual_value':np.array(target_training.reshape(-1))[valid_indices], 'predicted_value':net.predict(SDT_training)[valid_indices].reshape(-1)} """ arr_training = np.array(arr_training) arr_training = np.transpose(arr_training, (1, 0, 2)) arr_training = np.reshape(arr_training, (iters-1, tr_vl_len)) validation_data = {'actual_value':np.array(target_training).reshape(-1), 'predicted_value':arr_validation} dfvalidation = pd.DataFrame(validation_data) ValidationData.append(dfvalidation) for line in arr_training: training_data = {'actual_value':np.array(target_training).reshape(-1), 'predicted_value':line} dftraining = pd.DataFrame(training_data) TrainingData.append(dftraining) return TrainingData, ValidationData, TestData from sklearn.model_selection import KFold starttime = time.clock() TrainingData, ValidationData, TestData = train(SDT_training, SDT_test, target_training, target_test, net) TrainingData = pd.concat(TrainingData, axis=1) ValidationData = pd.concat(ValidationData, axis=1) TestData = pd.concat(TestData, axis=1) endtime = time.clock() print("Calculating the same points takes {} s.".format(endtime-starttime,)) """ from sklearn.model_selection import train_test_split TrainingData = [] ValidationData = [] TestData = [] iters = 7 starttime = time.clock() for i in range(iters): # net() net.initialize() train_test_splitter = ShuffleSplit(test_size=0.25, random_state=42) train_indices, valid_indices = next(train_test_splitter.split(SDT_training)) print("train_indices:", train_indices) print("valid_indices:", valid_indices) with open('no-dropout_log.txt', 'a') as logfile: logfile.write("Iter: %s" % (i,)) logfile.write("train_indices: %s" % (train_indices,)) logfile.write("train_indices: %s\n" % (train_indices,)) net.fit(SDT_training, target_training) dftraining, dfvalidation, dftest = plot(SDT_training, SDT_test, target_training, target_test, train_indices, valid_indices, net) print('dftraining.type', dftraining.dtype) print('dftraining.type',dftraining.size) print(dftraining) TrainingData.append(dftraining) ValidationData.append(dfvalidation) TestData.append(dftest) TrainingData = pd.concat(TrainingData, axis=1) ValidationData = pd.concat(ValidationData, axis=1) TestData = pd.concat(TestData, axis=1) endtime = time.clock() print("Calculating the same points {} times takes {} s.".format(iters, endtime-starttime)) """ """ # The d20 suffix means a droupout of 20% is applied TrainingData.to_pickle('TrData_7iters_d20.pkl') ValidationData.to_pickle('VlData_7iters_d20.pkl') TestData.to_pickle('TsData_7iters_d20.pkl') """ """ # The d30 suffix means a droupout of 30% is applied TrainingData.to_pickle('TrData_7iters_d30.pkl') ValidationData.to_pickle('VlData_7iters_d30.pkl') TestData.to_pickle('TsData_7iters_d30.pkl') """ TrainingData.to_pickle('TrData_7iters_vanilla.pkl') ValidationData.to_pickle('VlData_7iters_vanilla.pkl') TestData.to_pickle('TsData_7iters_vanilla.pkl') ###Output _____no_output_____
Chi^2 (Kai-Square) Algorithm/Feature Selection Using Chi^2 (Kai-Square).ipynb
###Markdown Select top 10 features with highest chi-squared statistics ###Code chi2_selector = SelectKBest(chi2, k=10) # K = select top 10 X_kbest = chi2_selector.fit_transform(X, y) X_kbest ###Output _____no_output_____ ###Markdown Highest chi-squared feature ranking ###Code from scipy.stats import chisquare import numpy as np result = pd.DataFrame(columns=["Features", "Chi2Weights"]) for i in range(len(X.columns)): chi2, p = chisquare(X[X.columns[i]]) result = result.append([pd.Series([X.columns[i], chi2], index = result.columns)], ignore_index=True) result = result.sort_values(by="Chi2Weights", ascending=False) result.head(10) ###Output _____no_output_____
Doc/Notebooks/GephiStreaming_UserGuide.ipynb
###Markdown Introduction NetworKit provides an easy interface to Gephi that uses the Gephi graph streaming plugin. To be able to use it, install the Graph Streaming plugin using the **Gephi plugin manager**. Afterwards, open the Streaming window by selecting **Windows/Streaming** in the menu. Workflow Once the plugin is installed in gephi, create a new project and start the **Master Server** in the Streaming tab within gephi. The running server will be indicated by a green dot. As an example, we generate a random graph... ###Code G = generators.ErdosRenyiGenerator(300, 0.2).generate() G.addEdge(0, 1) #We want to make sure this specific edge exists, for usage in an example later. ###Output _____no_output_____ ###Markdown ... and export it directly export it into the active gephi workspace. After executing the following code, the graph should be available in the first gephi workspace. **Attention**: Any graph currently contained in that workspace will be overriden. ###Code client = gephi.streaming.GephiStreamingClient() client.exportGraph(G) ###Output _____no_output_____ ###Markdown Exporting node values We now apply a community detection algorithm to the generated random graph and export the community as a node attribute to gephi. Any python list or Partition object can be exported. Please note that only the attribute itself is transfered, so make sure you called exportGraph(graph) first. ###Code communities = community.detectCommunities(G) client.exportNodeValues(G, communities, "community") ###Output _____no_output_____ ###Markdown The node attribute can now be selected and used in gephi, for partitioning or any other desired scenario. Exporting edges scores Just like node values, we can export edge values. After graph creation, each edge is assigned an integer id that is then used to access arbitrary attribute vectors, so any python list can be exported to gephi. In the following example, we assign an even number edge and export that score to gephi. ###Code edgeScore = [2*x for x in range(0, G.upperEdgeIdBound())] client.exportEdgeValues(G, edgeScore, "myEdgeScore") ###Output _____no_output_____ ###Markdown Changing the server URL By default, the streaming client in NetworKit connects to http://localhost:8080/workspace0, i.e. the first workspace of the local gephi instance. One might want to connect to a gephi instance running on a remote host or change the used port (this can be done in gephi by selecting **Settings** within the Streaming tab). To change the url in NetworKit, simply pass it upon the creation of the client object: ###Code client = gephi.streaming.GephiStreamingClient(url='http://localhost:8080/workspace0') ###Output _____no_output_____
Loan_status_prediction_v2.ipynb
###Markdown Randomforest Classifier ###Code # # Random Forest Classification from sklearn.ensemble import RandomForestClassifier random = RandomForestClassifier(n_estimators = 10, criterion = 'entropy') random.fit(X_train, y_train) y_pred = random.predict(X_test) accuracy = accuracy_score(np.array(y_test).flatten(), y_pred) print("Accuracy: %.10f%%" % (accuracy * 100.0)) accuracy_per_roc_auc = roc_auc_score(np.array(y_test).flatten(), y_pred) print("ROC-AUC: %.10f%%" % (accuracy_per_roc_auc * 100)) final_pred = pd.DataFrame(random.predict_proba(np.array(finalTest))) dfSub = pd.concat([test_member_id, final_pred.iloc[:, 1:2]], axis=1) submission_file_name = "submission_randomforest" dfSub.rename(columns={1:'loan_status'}, inplace=True) dfSub.to_csv((('%s.csv') % (submission_file_name)), index=False) ###Output _____no_output_____ ###Markdown Deep Neural Network ###Code from keras.models import Sequential from keras.layers import Dense, Activation, Dropout from keras.layers.advanced_activations import PReLU model = Sequential() model.add(Dense(units=40, input_dim=33)) model.add(Activation('relu')) model.add(Dense(units=40)) model.add(Activation('relu')) model.add(Dense(units=40)) model.add(Activation('relu')) model.add(Dense(units=40)) model.add(Activation('relu')) model.add(Dense(units=40)) model.add(Activation('relu')) model.add(Dense(units=2)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) model.fit(X_train, y_train, epochs=10, batch_size=64) ###Output _____no_output_____
training/2021_Fully3D/Week2/02_tikhonov_block_framework.ipynb
###Markdown Tikhonov regularisation using CGLS and block framework This exercise introduces Tikhonov regularisation and explains how this is implemented in the CIL framework using the so-called block framework.In a previous exercise, it was seen how CGLS could be used to determine a reconstruction based on the least squares reconstruction problem. It was seen that in case of noisy data, the least squares solution obtained by running until convergence is not desirable due to a high amount of noise. The number of iterations was seen to have a regularising effect, with the smooth, low-frequency components of the image recovered in the first iterations, while high-frequency components of the image such as edges were recovered later. Unfortunately, noise also kicks in, and one needs to pick the number of iterations that best balances the sharpness and amount of noise. As such, the regularising effect is implicitly obtained by choosing the number of iterations to run and never actually running until converged to the least squares solution.Tikhonov regularisation is more explicit in that a regularisation term is added to the least squares fitting term, specifically a squared 2-norm. This problem should now be solved to convergence instead of using the number of iterations as implicit regularising effect. Instead, a parameter, the regularisation parameter, balances the emphasis on fitting the data and enforcing the regularity and must be chosen to provide the best trade-off.Tikhonov regularisation tends to offer reduction of noise in the reconstruction, at the price of some blurring. This will be seen in what follows.To set up Tikhonov problems we need to represent block matrices and concatenate data. In CIL we can do this using BlockOperator and BlockDataContainer as demonstrated in the exercise. **Learning objectives:**1. Construct and manipulate BlockOperators and BlockDataContainer, including direct and adjoint operations and algebra.2. Use Block Framework to solve Tikhonov regularisation with CGLS algorithm.3. Apply Tikhonov regularisation to tomographic reconstruction and explain the effect of regularisation parameter and operator in regulariser. First, all imports required are carried out. This includes tools from the cil.framework and cil.optimisation modules, as well as test image generation tools in the tomophantom library and standard imports such as numpy. ###Code # CIL core components needed from cil.framework import ImageGeometry, ImageData, AcquisitionGeometry, AcquisitionData, BlockDataContainer # CIL optimisation algorithms and linear operators from cil.optimisation.algorithms import CGLS from cil.optimisation.operators import BlockOperator, GradientOperator, IdentityOperator, FiniteDifferenceOperator # CIL example synthetic test image from cil.utilities.dataexample import SHAPES # CIL display tools from cil.utilities.display import show2D, show_geometry # Forward/backprojector from CIL ASTRA plugin from cil.plugins.astra import ProjectionOperator # For shepp-logan test image in CIL tomophantom plugin import cil.plugins.TomoPhantom as TP # Third-party imports import numpy as np import matplotlib.pyplot as plt import os ###Output _____no_output_____ ###Markdown Setting up a simulated 2D dataset A 2D parallel beam case will be simulated. We start by creating a test image and will use the classic Shepp-Logan Phantom with 1024x1024 pixels on the square domain [-1,1]x[-1,1]. We set up the `ImageGeometry` to specify the dimensions and pixel size of the image: ###Code # Set up image geometry n = 256 ig = ImageGeometry(voxel_num_x=n, voxel_num_y=n, voxel_size_x=2/n, voxel_size_y=2/n) print(ig) ###Output _____no_output_____ ###Markdown Using the CIL tomophantom plugin we can create a CIL `ImageData` holding the Shepp-Logan image of the desired size: ###Code phantom2D = TP.get_ImageData(num_model=1, geometry=ig) show2D(phantom2D) ###Output _____no_output_____ ###Markdown Next, we specify the acquisition parameters and store them in an `AcquisitionGeometry` object. We use a parallel-beam geometry with 180 projections, and a detector with the same of number and size of pixels as the image: ###Code num_angles = 180 ag = AcquisitionGeometry.create_Parallel2D() \ .set_angles(np.linspace(0, 180, num_angles, endpoint=False)) \ .set_panel(n, 2/n) print(ag) ###Output _____no_output_____ ###Markdown We illustrate the geometry: ###Code show_geometry(ag) ###Output _____no_output_____ ###Markdown To simulate a sinogram we set up a ProjectionOperator using GPU-acceleration using the ASTRA plugin: ###Code device = "gpu" A = ProjectionOperator(ig, ag, device) ###Output _____no_output_____ ###Markdown The ideal noisefree sinogram is created by forward-projecting the phantom: ###Code sinogram = A.direct(phantom2D) ###Output _____no_output_____ ###Markdown The generated test image and sinogram are displayed as images: ###Code plots = [phantom2D, sinogram] titles = ["Ground truth", "sinogram"] show2D(plots, titles) ###Output _____no_output_____ ###Markdown Next, Poisson noise will be applied to this noise-free sinogram. The severity of the noise can be adjusted by changing the background_counts variable. ###Code # Incident intensity: lower counts will increase the noise background_counts = 5000 # Convert the simulated absorption sinogram to transmission values using Lambert-Beer. # Use as mean for Poisson data generation. # Convert back to absorption sinogram. counts = background_counts * np.exp(-sinogram.as_array()) noisy_counts = np.random.poisson(counts) sino_out = -np.log(noisy_counts/background_counts) # Create new AcquisitionData object with same geometry and fill with noisy data. sinogram_noisy = ag.allocate() sinogram_noisy.fill(sino_out) ###Output _____no_output_____ ###Markdown The simulated clean and noisy sinograms are displayed side by side as images: ###Code plots = [sinogram, sinogram_noisy] titles = ["sinogram", "sinogram noisy"] show2D(plots, titles) ###Output _____no_output_____ ###Markdown Reconstruct using CGLS Before describing Tikhonov regularisation, we recall the problem solved by CGLS:$$\underset{u}{\mathrm{argmin}}\begin{Vmatrix}A u - b\end{Vmatrix}^2_2$$where,- $A$ is the projection operator- $b$ is the acquired data- $u$ is the unknown image to be determinedIn the solution provided by CGLS the low frequency components tend to converge faster than the high frequency components. This means we need to control the number of iterations carefully to select the optimal solution. Set up the CGLS algorithm, including specifying its initial point to start from, and an upper bound on the number of iterations to run: ###Code x_init = ig.allocate(0) cgls_simple = CGLS(x_init=x_init, operator=A, data=sinogram_noisy) cgls_simple.max_iteration = 1000 ###Output _____no_output_____ ###Markdown Once set up, we can run the algorithm for a specified number of iterations: ###Code cgls_simple.run(5, verbose = True) ###Output _____no_output_____ ###Markdown Display the resulting image from CGLS, along with its difference image with the original ground truth image: ###Code plots = [cgls_simple.solution, cgls_simple.solution - phantom2D] titles = ["CGLS reconstruction","Difference from ground truth" ] show2D(plots, titles, fix_range=[(-0.2,1.2),(-0.2,0.2)]) ###Output _____no_output_____ ###Markdown Plot central vertical line profile of CGLS and ground truth: ###Code plt.figure(figsize=(10,5)) plt.plot(cgls_simple.solution.get_slice(horizontal_y=n/2).as_array(),label="CGLS",color='dodgerblue') plt.plot(phantom2D.get_slice(horizontal_y=n/2).as_array(),label="Ground Truth",color='black') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown **Exercise 1:** Try running fewer and more iterations to see how the image and line profile changes. Try also with noisier data, by specifying a smaller value of background_counts. Remember you can change the number of iterations to run between outputs. Also note that the algorithm will continue from the point it stopped and run more iterations from that point if `run` is called again. If you want to run from the beginning, the algorithm needs to be re-initialised. Try to stop the algorithm before the solution starts to diverge. [go to section start](section_CGLS_simple) Tikhonov regularisation using CGLS RegularisationNoisy datasets are problematic with an ill-posed problem such as tomographic reconstruction. If we try to solve these using CGLS we end up with an unstable solution. Regularisation adds information in order for us to solve the problem. Tikhonov regularisationWe can add a regularisation term to problem solved by CGLS; this gives us the minimisation problem in the following form, which is known as Tikhonov regularisation:$$\underset{u}{\mathrm{argmin}}\begin{Vmatrix}A u - b \end{Vmatrix}^2_2 + \alpha^2\|Lu\|^2_2$$where,- $A$ is the projection operator- $b$ is the acquired data- $u$ is the unknown image to be solved for- $\alpha$ is the regularisation parameter- $L$ is a regularisation operatorThe first term measures the fidelity of the solution to the data. The second term meausures the fidelity to the prior knowledge we have imposed on the system, operator $L$. $\alpha$ controls the trade-off between these terms. $L$ is often chosen to be a smoothing operator like the identity matrix, or a gradient operator **constrained to the squared L2-norm**.This can be re-written equivalently in the block matrix form:$$\underset{u}{\mathrm{argmin}}\begin{Vmatrix}\binom{A}{\alpha L} u - \binom{b}{0}\end{Vmatrix}^2_2$$With the definitions:- $\tilde{A} = \binom{A}{\alpha L}$- $\tilde{b} = \binom{b}{0}$this can now be recognised as a least squares problem:$$\underset{u}{\mathrm{argmin}}\begin{Vmatrix}\tilde{A} u - \tilde{b}\end{Vmatrix}^2_2$$and being a least squares problem, it can be solved using CGLS with $\tilde{A}$ as operator and $\tilde{b}$ as data. Introducing the block framework We can construct $\tilde{A}$ and $\tilde{b}$ using the BlockFramework in the CIL.$\tilde{A}$ is a (column) BlockOperator of size 2x1 and can be set up by`BlockOperator(op0,op1)`The right hand side $\tilde{b}$ is a BlockDataContainer and can be set up by`BlockDataContainer(DataContainer0, DataContainer1)` Reconstruct using CGLS and the identity operator The simplest form of Tikhonov uses the identity matrix as the regularisation operator. We use an identity matrix as our regularisation operator we are penalising on the magnitude of the solution $u$, which will tend to reduce the pixel values of $u$. ###Code L = IdentityOperator(ig) alpha = 0.1 operator_block = BlockOperator(A, alpha*L) ###Output _____no_output_____ ###Markdown In the formulation of Tikhonov as a least squares problem, we need to set up the right hand side vector $\tilde{b}$ holding both the $b$ and a zero-filled `ImageData` of the right size, matching the range of the regularising operator. The operator allows us to query the geometry of its range and allocate a zero-filled `ImageData` of that geometry. We combine both into a `BlockDataContainer`: ###Code zero_data = L.range.allocate(0) data_block = BlockDataContainer(sinogram_noisy, zero_data) ###Output _____no_output_____ ###Markdown Run CGLS as before, but passing the BlockOperator and BlockDataContainer ###Code #setup CGLS with the Block Operator and Block DataContainer x_init = ig.allocate(0) cgls_tikh = CGLS(x_init=x_init, operator=operator_block, data=data_block, update_objective_interval = 10) cgls_tikh.max_iteration = 1000 #run the algorithm cgls_tikh.run(100) ###Output _____no_output_____ ###Markdown Display results as images and plot central vertical line profile of the Tikhonov with Identity: ###Code plots = [cgls_tikh.solution, cgls_tikh.solution - phantom2D] titles = ["Tikhonov with Identity regularisation","Difference from ground truth" ] show2D(plots, titles, fix_range=[(-0.2,1.2),(-0.2,0.2)]) ###Output _____no_output_____ ###Markdown Let's compare the reconstructions from CGLS and Tikhonov with identity regularisation. ###Code plots = [cgls_simple.solution, cgls_tikh.solution] titles = ["CGLS", "Tikhonov with Identity regularisation" ] show2D(plots, titles, fix_range=(-0.2,1.2)) #compare the vertical line profiles plt.figure(figsize=(10,5)) plt.plot(cgls_simple.solution.get_slice(horizontal_y=n/2).as_array(),label="CGLS",color='dodgerblue') plt.plot(cgls_tikh.solution.get_slice(horizontal_y=n/2).as_array(),label="Tikhonov with Identity regularisation",color='firebrick') plt.plot(phantom2D.get_slice(horizontal_y=n/2).as_array(),label="Ground Truth",color='black') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown **Exercise 2:** Try running Tikhonov with a range of $\alpha$ values from very small to very large, display reconstruction and line profile and describe the effect of $\alpha$. Find the value of $\alpha$ that gives you the best solution. Then change how much noise you add to the data by going back here: [set noise](section_noise) and run through the notebook again. Try with `background_counts` set to 5000, 10000 and 1000 remember to find an appropriate value of alpha for each run. With Tikhonov regularisation the problem should now be solved to convergence instead of using the number of iterations as implicit regularising effect. By increasing the regularisation parameter $\alpha$ we balance the emphasis on fitting the data and enforcing the regularity. A low value of $\alpha$ will give you the CGLS solution, a higher value will reduce the noise in the reconstruction but at the cost of some blurring. Using the BlockFramework to build a gradient operator The basic Tikhonov with the identity operator provided perhaps a bit of improvement compared to just CGLS, but there was still a lot of noise in the reconstruction and the pixel values had been reduced. Using the identity as regularising operator means that we penalise pixel values that are non-zero, which may not be what we want. Instead, we want to encourage similar values of neighboring pixels to smooth out the noise. This can be achieved by using the gradient as the smoothing operator. To do that we will again need to use the BlockFramework, which is now demonstrated in a bit more detail.A discrete gradient operator (using finite differences) can be constructed using BlockOperators.The direct gradient operator $\nabla$ acts on an image $u$ and returns a BlockDataContainer $\textbf{w}$, holding finite differences in the $x$ and $y$ directions:$$ \nabla(u) = \begin{bmatrix} \nabla_x\\ \nabla_y\\\end{bmatrix}*u =\begin{bmatrix} \nabla_xu\\ \nabla_yu\\\end{bmatrix}= \begin{bmatrix}w_{x}\\w_{y}\end{bmatrix}= \textbf{w}$$The adjoint gradient operator $\nabla^*$ acts on the BlockDataContainer $\textbf{y}$ and returns an image $\rho$$$ \nabla^*(\textbf w) = \begin{bmatrix} \nabla^*_x & \nabla^*_y\end{bmatrix}*\begin{bmatrix} w_{x}\\ w_{y}\\\end{bmatrix} =\begin{bmatrix} \nabla^*_x w_x + \nabla^*_y w_y\end{bmatrix} = \rho$$ We load a test image to demonstrate how the gradient operator works: ###Code shapes = SHAPES.get() show2D(shapes, "shapes") ###Output _____no_output_____ ###Markdown The finite difference operator can be called from the framework. This returns the difference between each pair of pixels along one direction.We need to initialise it with the image geometry, the direction of the calculation and the boundary conditions to use.`FiniteDifferenceOperator(gm_domain, direction, bnd_cond='Neumann' or 'Periodic')` ###Code #define the operator FiniteDiff - needs to image geometry, the direction and the boundary conditions fdx = FiniteDifferenceOperator(shapes.geometry, direction='horizontal_x', bnd_cond='Neumann') #run it over the input image image_2D_dx = fdx.direct(shapes) #plot ths results show2D(image_2D_dx, "dx") ###Output _____no_output_____ ###Markdown Note how all vertical edges have been picked up (and their sign) applying this operator doing finite differences in the horizontal direction. To set up a gradient in both $x$ and $y$ directions, we can create a BlockOperator to contain a finite difference operator for each of the $x$ and $y$ directions. We can apply it (using its `direct` method) to the test image and visualise the result. ###Code # Define the x and y operators fdx = FiniteDifferenceOperator(shapes.geometry, direction='horizontal_x', bnd_cond='Neumann') fdy = FiniteDifferenceOperator(shapes.geometry, direction='horizontal_y', bnd_cond='Neumann') # Construct the BlockOperator combining the two operators FD = BlockOperator(fdx, fdy) #run it on the test image fd_out = FD.direct(shapes) ###Output _____no_output_____ ###Markdown Display output: ###Code plots = [fd_out.get_item(0), fd_out.get_item(1)] titles = ["dx","dy" ] show2D(plots,titles,fix_range=(-1,1)) ###Output _____no_output_____ ###Markdown To see what is going on, we take a closer look at data types.First, the input is an `ImageData` and its shape is a 2-element vector with the number of pixels in each direction: ###Code print(type(shapes)) print(shapes) ###Output _____no_output_____ ###Markdown The output however is a `BlockDataContainer`, essentially a list (with additional functionality) holding two `ImageData` elements, one for each direction we have taken finite differences. We can pick out each element of the `BlockDataContainer` and see that they indeed are `ImageData` and print their shapes (number of pixels in each direction): ###Code #output is BloackDataContainer print(type(fd_out)) print(fd_out.shape) print("\tDataContainer 0") print(type(fd_out.get_item(0))) print(fd_out.get_item(0)) print("\tDataContainer 1") print(type(fd_out.get_item(1))) print(fd_out.get_item(1)) ###Output _____no_output_____ ###Markdown The BlockFramework provides basic algebra between BlockDataContainers, numpy arrays, lists of numbers, DataContainers, subclasses and scalars providing the shape of the containers are compatible- add- subtract- multiply- divide- power- squared_norm The `BlockOperator` is a special kind of `Operator`, and being an `Operator` it should have an adjoint method. This is automatically provided from the adjoints of the operators. In the present case our `BlockOperator` will take a `BlockDataContainer` as input to its adjoint and return an `ImageData`, as visualised below: ###Code # Run the adjoint method adjoint_output = FD.adjoint(fd_out) show2D(adjoint_output, "adjoint gradient") ###Output _____no_output_____ ###Markdown A deeper look at the BlockFramework BlockDataContainer BlockDataContainer holds datacontainers as a column vector$$\textbf{x} = \begin{bmatrix}x_{1}\\ x_{2}\end{bmatrix}$$$$\textbf{y} = \begin{bmatrix}y_{1}\\ y_{2} \\ y_{3}\end{bmatrix}$$ BlockOperator: BlockOperator is a matrix of operators.$$ K = \begin{bmatrix}A_{1} & A_{2} \\A_{3} & A_{4} \\A_{5} & A_{6}\end{bmatrix}_{(3,2)} * \quad \underbrace{\begin{bmatrix}x_{1} \\x_{2} \end{bmatrix}_{(2,1)}}_{\textbf{x}} = \begin{bmatrix}A_{1}x_{1} + A_{2}x_{2}\\A_{3}x_{1} + A_{4}x_{2}\\A_{5}x_{1} + A_{6}x_{2}\\\end{bmatrix}_{(3,1)} = \begin{bmatrix}y_{1}\\y_{2}\\y_{3}\end{bmatrix}_{(3,1)} = \textbf{y}$$Column: Share the same domains $X_{1}, X_{2}$Rows: Share the same ranges $Y_{1}, Y_{2}, Y_{3}$$$ K : (X_{1}\times X_{2}) \rightarrow (Y_{1}\times Y_{2} \times Y_{3})$$$$ A_{1}, A_{3}, A_{5}: \text{share the same domain } X_{1}$$$$ A_{2}, A_{4}, A_{6}: \text{share the same domain } X_{2}$$$$A_{1}: X_{1} \rightarrow Y_{1}, \quad A_{3}: X_{1} \rightarrow Y_{2}, \quad A_{5}: X_{1} \rightarrow Y_{3}$$$$A_{2}: X_{2} \rightarrow Y_{1}, \quad A_{4}: X_{2} \rightarrow Y_{2}, \quad A_{6}: X_{2} \rightarrow Y_{3}$$ Reconstruct using Tikhonov by CGLS with the gradient operator Tikhonov regularisationNow we go back to our Tikhonov reconstruction, this time use the gradient operator in the regulariser.$${\mathrm{argmin}}\begin{Vmatrix}\binom{A}{\alpha \nabla} u - \binom{b}{0}\end{Vmatrix}^2_2$$With the definitions:- $\tilde{A} = \binom{A}{\alpha \nabla}$- $\tilde{b} = \binom{b}{0}$And solve using CGLS:$$\underset{u}{\mathrm{argmin}}\begin{Vmatrix}\tilde{A} u - \tilde{b}\end{Vmatrix}^2_2$$We'll use the framework's `Gradient()` operator - this is an optimised form of FD over the space dimensions (or even or space+channels in case of multiple channels).**Exercise 3:** Set up the BlockOperator $\tilde{A}$ and the BlockDataContainer $\tilde{b}$ as before but with the Gradient operator. Outline code to be completed is given in the next two code cells. Once set up, run the following cells to execute CGLS with these as input. Run Tikhonov reconstruction using gradient regularisation. Try a range of $\alpha$ values ranging from very small to very large, visualise the resulting image and central line profiles, and describe the effect of the regularisation parameter choice. Find the $\alpha$ that (visually) gives you the best solution. ###Code L = GradientOperator(ig) alpha = 0.01 operator_block = BlockOperator( ... ) #define the data b data_block = BlockDataContainer( ... ) #setup CGLS with the block operator and block data x_init = ig.allocate(0) cgls_tikh_g = CGLS(x_init=x_init, operator=operator_block, data=data_block, update_objective_interval = 10) cgls_tikh_g.max_iteration = 1000 #run the algorithm cgls_tikh_g.run(200, verbose = True) #plot the results plots = [cgls_tikh_g.solution, cgls_tikh_g.solution - phantom2D] titles = ["Tikhonov with gradient regularisation","Difference from ground truth" ] show2D(plots,titles,fix_range=[(-0.2,1.2),(-0.2,0.2)]) ###Output _____no_output_____ ###Markdown Central vertical line profiles of ground truth and Tikhonov with Gradient operator: ###Code #compare the vertical line profiles plt.figure(figsize=(10,5)) plt.plot(cgls_tikh_g.solution.get_slice(horizontal_y=n/2).as_array(),label="Tikhonov with Gradient regularisation",color='purple') plt.plot(phantom2D.get_slice(horizontal_y=n/2).as_array(),label="Ground Truth",color='black') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Summary Comparison of the outputs of each reconstructionTo wrap up we compare the reconstructions produced by all reconstruction methods considered in this notebook: Simple CGLS, Tikhonov with Identity regularisation and Tikhonov with Gradient regularisation, along with the ground truth image. We display images and central vertical line profiles: ###Code plots = [phantom2D, cgls_simple.solution, cgls_tikh.solution, cgls_tikh_g.solution] titles = ["Ground truth", "CGLS simple", "Tikhonov with Identity regularisation", "Tikhonov with gradient regularisation" ] show2D(plots, titles, fix_range=(-0.2,1.2), num_cols=4) plt.figure(figsize=(10,5)) plt.plot(cgls_simple.solution.get_slice(horizontal_y=n/2).as_array(),label="CGLS",color='dodgerblue') plt.plot(cgls_tikh.solution.get_slice(horizontal_y=n/2).as_array(),label="Tikhonov with Identity regularisation",color='firebrick') plt.plot(cgls_tikh_g.solution.get_slice(horizontal_y=n/2).as_array(),label="Tikhonov with Gradient regularisation",color='purple') plt.plot(phantom2D.get_slice(horizontal_y=n/2).as_array(),label="Ground Truth",color='black') plt.legend() plt.show() ###Output _____no_output_____
smart_queueing_system/Create_Job_Submission_Script.ipynb
###Markdown Step 2: Create Job Submission ScriptThe next step is to create our job submission script. In the cell below, you will need to complete the job submission script and run the cell to generate the file using the magic `%%writefile` command. Your main task is to complete the following items of the script:* Create a variable `MODEL` and assign it the value of the first argument passed to the job submission script.* Create a variable `DEVICE` and assign it the value of the second argument passed to the job submission script.* Create a variable `VIDEO` and assign it the value of the third argument passed to the job submission script.* Create a variable `PEOPLE` and assign it the value of the sixth argument passed to the job submission script. ###Code %%writefile queue_job.sh #!/bin/bash exec 1>/output/stdout.log 2>/output/stderr.log # TODO: Create MODEL variable MODEL=$1 # TODO: Create DEVICE variable DEVICE=$2 # TODO: Create VIDEO variable VIDEO=$3 QUEUE=$4 OUTPUT=$5 # TODO: Create PEOPLE variable PEOPLE=$6 mkdir -p $5 if echo "$DEVICE" | grep -q "FPGA"; then # if device passed in is FPGA, load bitstream to program FPGA #Environment variables and compilation for edge compute nodes with FPGAs export AOCL_BOARD_PACKAGE_ROOT=/opt/intel/openvino/bitstreams/a10_vision_design_sg2_bitstreams/BSP/a10_1150_sg2 source /opt/altera/aocl-pro-rte/aclrte-linux64/init_opencl.sh aocl program acl0 /opt/intel/openvino/bitstreams/a10_vision_design_sg2_bitstreams/2020-3_PL2_FP16_MobileNet_Clamp.aocx export CL_CONTEXT_COMPILER_MODE_INTELFPGA=3 fi python3 person_detect.py --model ${MODEL} \ --device ${DEVICE} \ --video ${VIDEO} \ --queue_param ${QUEUE} \ --output_path ${OUTPUT}\ --max_people ${PEOPLE} \ cd /output tar zcvf output.tgz * ###Output Overwriting queue_job.sh
Code/TensorFlow Basics/Notebook.ipynb
###Markdown TensorFlow Basics--- Importing TensorFlowTo use TensorFlow, we need to import the library. We imported it and optionally gave it the name "tf", so the modules can be accessed by tf.module-name: ###Code import tensorflow as tf ###Output _____no_output_____ ###Markdown Building a GraphAs we said before, TensorFlow works as a graph computational model. Let's create our first graph which we named as graph1. ###Code graph1 = tf.Graph() ###Output _____no_output_____ ###Markdown Now we call the TensorFlow functions that construct new tf.Operation and tf.Tensor objects and add them to the graph1. As mentioned, each tf.Operation is a node and each tf.Tensor is an edge in the graph.Lets add 2 constants to our graph. For example, calling tf.constant([2], name = 'constant_a') adds a single tf.Operation to the default graph. This operation produces the value 2, and returns a tf.Tensor that represents the value of the constant. Notice: tf.constant([2], name="constant_a") creates a new tf.Operation named "constant_a" and returns a tf.Tensor named "constant_a:0". ###Code with graph1.as_default(): a = tf.constant([2], name = 'constant_a') b = tf.constant([3], name = 'constant_b') ###Output _____no_output_____ ###Markdown Lets look at the tensor __a__. ###Code a ###Output _____no_output_____ ###Markdown As you can see, it just show the name, shape and type of the tensor in the graph. We will see it's value when we run it in a TensorFlow session. ###Code # Printing the value of a sess = tf.Session(graph = graph1) result = sess.run(a) print(result) sess.close() ###Output [2] ###Markdown After that, let's make an operation over these tensors. The function tf.add() adds two tensors (you could also use `c = a + b`). ###Code with graph1.as_default(): c = tf.add(a, b) #c = a + b is also a way to define the sum of the terms ###Output _____no_output_____ ###Markdown Then TensorFlow needs to initialize a session to run our code. Sessions are, in a way, a context for creating a graph inside TensorFlow. Let's define our session: ###Code sess = tf.Session(graph = graph1) ###Output _____no_output_____ ###Markdown Let's run the session to get the result from the previous defined 'c' operation: ###Code result = sess.run(c) print(result) ###Output [5] ###Markdown Close the session to release resources: ###Code sess.close() ###Output _____no_output_____ ###Markdown To avoid having to close sessions every time, we can define them in a with block, so after running the with block the session will close automatically: ###Code with tf.Session(graph = graph1) as sess: result = sess.run(c) print(result) ###Output [5] ###Markdown Even this silly example of adding 2 constants to reach a simple result defines the basis of TensorFlow. Define your operations (In this case our constants and _tf.add_), and start a session to build a graph. Defining multidimensional arrays using TensorFlowNow we will try to define such arrays using TensorFlow: ###Code graph2 = tf.Graph() with graph2.as_default(): Scalar = tf.constant(2) Vector = tf.constant([5,6,2]) Matrix = tf.constant([[1,2,3],[2,3,4],[3,4,5]]) Tensor = tf.constant( [ [[1,2,3],[2,3,4],[3,4,5]] , [[4,5,6],[5,6,7],[6,7,8]] , [[7,8,9],[8,9,10],[9,10,11]] ] ) with tf.Session(graph = graph2) as sess: result = sess.run(Scalar) print ("Scalar (1 entry):\n %s \n" % result) result = sess.run(Vector) print ("Vector (3 entries) :\n %s \n" % result) result = sess.run(Matrix) print ("Matrix (3x3 entries):\n %s \n" % result) result = sess.run(Tensor) print ("Tensor (3x3x3 entries) :\n %s \n" % result) ###Output Scalar (1 entry): 2 Vector (3 entries) : [5 6 2] Matrix (3x3 entries): [[1 2 3] [2 3 4] [3 4 5]] Tensor (3x3x3 entries) : [[[ 1 2 3] [ 2 3 4] [ 3 4 5]] [[ 4 5 6] [ 5 6 7] [ 6 7 8]] [[ 7 8 9] [ 8 9 10] [ 9 10 11]]] ###Markdown tf.shape returns the shape of our data structure. ###Code Scalar.shape Tensor.shape ###Output _____no_output_____ ###Markdown Now that you understand these data structures, I encourage you to play with them using some previous functions to see how they will behave, according to their structure types: ###Code graph3 = tf.Graph() with graph3.as_default(): Matrix_one = tf.constant([[1,2,3],[2,3,4],[3,4,5]]) Matrix_two = tf.constant([[2,2,2],[2,2,2],[2,2,2]]) add_1_operation = tf.add(Matrix_one, Matrix_two) add_2_operation = Matrix_one + Matrix_two with tf.Session(graph =graph3) as sess: result = sess.run(add_1_operation) print ("Defined using tensorflow function :") print(result) result = sess.run(add_2_operation) print ("Defined using normal expressions :") print(result) ###Output Defined using tensorflow function : [[3 4 5] [4 5 6] [5 6 7]] Defined using normal expressions : [[3 4 5] [4 5 6] [5 6 7]] ###Markdown With the regular symbol definition and also the TensorFlow function we were able to get an element-wise multiplication, also known as Hadamard product. But what if we want the regular matrix product?We then need to use another TensorFlow function called tf.matmul(): ###Code graph4 = tf.Graph() with graph4.as_default(): Matrix_one = tf.constant([[2,3],[3,4]]) Matrix_two = tf.constant([[2,3],[3,4]]) mul_operation = tf.matmul(Matrix_one, Matrix_two) with tf.Session(graph = graph4) as sess: result = sess.run(mul_operation) print ("Defined using tensorflow function :") print(result) ###Output Defined using tensorflow function : [[13 18] [18 25]] ###Markdown We could also define this multiplication ourselves, but there is a function that already does that, so no need to reinvent the wheel!To update the value of a variable, we simply run an assign operation that assigns a value to the variable: ###Code v = tf.Variable(0) ###Output _____no_output_____ ###Markdown Let's first create a simple counter, a variable that increases one unit at a time:To do this we use the tf.assign(reference_variable, value_to_update) command. tf.assign takes in two arguments, the reference_variable to update, and assign it to the value_to_update it by. ###Code update = tf.assign(v, v+1) ###Output _____no_output_____ ###Markdown Variables must be initialized by running an initialization operation after having launched the graph. We first have to add the initialization operation to the graph: ###Code init_op = tf.global_variables_initializer() ###Output _____no_output_____ ###Markdown We then start a session to run the graph, first initialize the variables, then print the initial value of the state variable, and then run the operation of updating the state variable and printing the result after each update: ###Code with tf.Session() as session: session.run(init_op) print(session.run(v)) for _ in range(3): session.run(update) print(session.run(v)) ###Output 0 1 2 3 ###Markdown So we create a placeholder: ###Code a = tf.placeholder(tf.float32) ###Output _____no_output_____ ###Markdown And define a simple multiplication operation: ###Code b = a * 2 ###Output _____no_output_____ ###Markdown Now we need to define and run the session, but since we created a "hole" in the model to pass the data, when we initialize the session we are obligated to pass an argument with the data, otherwise we would get an error.To pass the data into the model we call the session with an extra argument feed_dict in which we should pass a dictionary with each placeholder name followed by its respective data, just like this: ###Code with tf.Session() as sess: result = sess.run(b,feed_dict={a:3.5}) print (result) ###Output 7.0 ###Markdown Since data in TensorFlow is passed in form of multidimensional arrays we can pass any kind of tensor through the placeholders to get the answer to the simple multiplication operation: ###Code dictionary={a: [ [ [1,2,3],[4,5,6],[7,8,9],[10,11,12] ] , [ [13,14,15],[16,17,18],[19,20,21],[22,23,24] ] ] } with tf.Session() as sess: result = sess.run(b,feed_dict=dictionary) print (result) graph5 = tf.Graph() with graph5.as_default(): a = tf.constant([5]) b = tf.constant([2]) c = tf.add(a,b) d = tf.subtract(a,b) with tf.Session(graph = graph5) as sess: result = sess.run(c) print ('c =: %s' % result) result = sess.run(d) print ('d =: %s' % result) ###Output c =: [7] d =: [3]
session2/perceptron.ipynb
###Markdown Ens'IA - Session 2 - Intro to neural networks 1/2 Welcome the **second session** of Ens'IA.Today, things are gonna get interesting !We are gonna focus on **neural networks**But first, (what a surprise), neural networks are make of neurons ! So what is a neuron ? To make sure you understand what it is, we will go back in 1958 and give a look at **the perceptron**. During the oral presentation, you should have seen that a perceptron have one or more inputs and a unique output. The output is given by : \begin{equation} s = \left\{ \begin{array}{ll} 1 & \mbox{if } \sum_{i=0}^{n} a_{i} \times w_{i} + b > 0 \\ 0 & \mbox{otherwise} \end{array} \right.\end{equation}Now, it's your time to *create your own perceptron*. Perceptron implementation ###Code class Perceptron: """ Build of a perceptron weights : List of weights bias : The bias. """ def __init__(self,weights,bias): #TODO self.bias = bias self.weights = weights """ Function called when you want to get the output from the input input : List of input values. """ def forward(self,input): assert(len(input)==len(self.weights)) #TODO sum = 0 for inp,w in zip(input,self.weights): sum += inp*w if sum + self.bias > 0: return 1 else: return 0 ###Output _____no_output_____ ###Markdown Test Now, let's **test** it ! ###Code #TODO perceptron = Perceptron([1,1],-1) assert(perceptron.forward([1,1])==1) assert(perceptron.forward([1,0])==0) assert(perceptron.forward([0,1])==0) assert(perceptron.forward([0,0])==0) ###Output _____no_output_____ ###Markdown If you have no message, then it must work! Here we have created a perceptron with weights 1 and 1 and the bias is 2. Do you notice any link between the inputs and the output? Maybe something you have seen in your processor architecture class... NAND implementation Your next mission will be to create a perceptron that reproduces a NAND gate. It will have 2 inputs and a bias, but you have to find which values are the right ones ... ###Code perceptron_nand = Perceptron([-2,-2],3) assert(perceptron_nand.forward([1,1])==0) assert(perceptron_nand.forward([1,0])==1) assert(perceptron_nand.forward([0,1])==1) assert(perceptron_nand.forward([0,0])==1) #If you don't get any error messages when running this code, then you have found the right weights and bias! ###Output _____no_output_____ ###Markdown XOR implementation And if you now try to find a perceptron that reproduces an XOR gate...? ###Code #TODO #Spoil : It's impossible :p ###Output _____no_output_____
src/plotting/TATA_enrichmentold.ipynb
###Markdown Housekeeping genes have significantly fewer TATA boxes than variable genes now I need to rerun analyses using gat enrichment If binding sites you're mapping are small, need to get the mapability genome containing all regions that are uniquely mappable with reads of 24 bases. https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&g=mappabilitySee https://gat.readthedocs.io/en/latest/tutorialGenomicAnnotation.html Downloaded TATA_boxes.bed and TATA_boxes.fps (both the same, different formats) from EPDUsed the following search parameters for download: FindM Genome Assembly : A. thaliana (Feb 2011 TAIR10/araTha1)Series : EPDnew, the Arabidopsis Curated Promoter DatabaseSample : TSS from EPDnew rel 004Repeat masking: off5' border: -50 3' border: 0Search mode: forwardSelection mode : all matches In the end I didn't need these files, can use existing tatabox files for the specific genes of interest (responsive_housekeeping_TATA_box_positive.bed)Copied the chromsizes.chr to data/EPD_promoter_analysis/TATA and converted it into a BED file for the workspace. ###Code #create a bed file containing all 100 constitutive/responsive promoters with the fourth column annotating whether it's constitutive or responsive promoters_no_random = promoters.copy() #drop randCont rows promoters_no_random = promoters_filtered[~(promoters.gene_type == 'randCont')] promoters_no_random promoterbedfile = '../../data/FIMO/responsivepromoters.bed' promoters = pd.read_table(promoterbedfile, sep='\t', header=None) cols = ['chr', 'start', 'stop', 'promoter_AGI', 'score', 'strand', 'source', 'feature_name', 'dot2', 'attributes'] promoters.columns = cols merged = pd.merge(promoters,promoters_no_random, on='promoter_AGI') merged merged_reordered = merged[['chr','start','stop','gene_type', 'strand', 'source', 'attributes','promoter_AGI']] sorted_motifs = merged_reordered.sort_values(['chr','start']) bed = BedTool.from_dataframe(sorted_motifs).saveas('../../data/EPD_promoter_analysis/TATA/promoters_norandom.bed') def add_chr_linestart(input_location,output_location): """this function removes characters from the start of each line in the input file and sends modified lines to output""" output = open(output_location, 'w') #make output file with write capability #open input file with open(input_location, 'r') as infile: #iterate over lines in file for line in infile: line = line.strip() # removes hidden characters/spaces if line[0].isdigit(): line = 'chr' + line #prepend chr to the beginning of line if starts with a digit output.write(line + '\n') #output to new file output.close() add_chr_linestart('../../data/EPD_promoter_analysis/TATA/promoters_norandom.bed', '../../data/EPD_promoter_analysis/TATA/promoters_norandom_renamed.bed') # #In bash I ran this: # gat-run.py --ignore-segment-tracks --segments=../../data/EPD_promoter_analysis/responsive_housekeeping_TATA_box_positive.bed `#TATA box annotations` \ # --annotations=../../data/EPD_promoter_analysis/TATA/promoters_norandom.bed `#100 constitutive/responsive promoter annotations` \ # --workspace=../../data/EPD_promoter_analysis/TATA/chromsizes.bed `#Arabidopsis chromosome bed file` \ # --num-samples=1000 --log=../../data/EPD_promoter_analysis/TATA/gat.log > ../../data/EPD_promoter_analysis/TATA/gat_TATA.out # # note, --num-threads=7 is currently broken` # #test run # gat-run.py --ignore-segment-tracks --segments=../../data/EPD_promoter_analysis/responsive_housekeeping_TATA_box_positive.bed `#TATA box annotations` \ # --annotations=../../data/EPD_promoter_analysis/TATA/promoters_norandom_renamed.bed `#100 constitutive/responsive promoter annotations` \ # --workspace=../../data/EPD_promoter_analysis/TATA/chromsizes.bed `#Arabidopsis chromosome bed file` \ # --num-samples=1000 --log=../../data/EPD_promoter_analysis/TATA/gat.log > ../../data/EPD_promoter_analysis/TATA/gat_TATA.out ###Output _____no_output_____ ###Markdown Calculate distance of TATA box from TSS ###Code cols = ['chrTATA', 'startTATA', 'stopTATA', 'gene_IDTATA','number','strandTATA','TATA_present','promoter_AGI'] TATA.columns = cols TATA #merge TATA bed with promoters sorted_motifs TATA_distance = pd.merge(TATA,sorted_motifs, how='inner', on='promoter_AGI') TATA_distance #calculate distance between TATA and TSS TATA_distance.loc[TATA_distance.strand =='+', 'TATAdistance(bp)'] = TATA_distance.startTATA - TATA_distance.stop TATA_distance.loc[TATA_distance.strand =='-', 'TATAdistance(bp)'] = TATA_distance.start - TATA_distance.startTATA TATA_distance ###Output _____no_output_____ ###Markdown Create distribution plotNote:The y axis is a density, not a probability. The normalized histogram does not show a probability mass function, where the sum the bar heights equals 1; the normalization ensures that the sum of the bar heights times the bar widths equals 1. This is what ensures that the normalized histogram is comparable to the kernel density estimate, which is normalized so that the area under the curve is equal to 1. ###Code dist_plot = TATA_distance['TATAdistance(bp)'] #create figure with no transparency dist_plot_fig = sns.distplot(dist_plot).get_figure() dist_plot_fig.savefig('../../data/plots/TATAbox/TATA_distance_from_extracted_promoters.pdf', format='pdf') TATA_distance['TATAdistance(bp)'] #Make TATA box segment the actual size - I will set all to 15 bp TATA_15bp = TATA.copy() TATA_15bp #Make TATA box segment the actual size - I will set all to 15 bp TATA_15bp.loc[TATA_15bp.strandTATA =='+', 'stopTATA'] = TATA_15bp.stopTATA + 14 TATA_15bp.loc[TATA_15bp.strandTATA =='-', 'startTATA'] = TATA_15bp.startTATA - 14 TATA_15bp #make into bed file sorted_TATA = TATA_15bp.sort_values(['chrTATA','startTATA']) bed = BedTool.from_dataframe(sorted_TATA).saveas('../../data/EPD_promoter_analysis/TATA/TATA_15bp.bed') #extend promoter 3' end by 661 bp (to furthest registered TATA box) responsive_constitutive_promoters_extended = sorted_motifs.copy() responsive_constitutive_promoters_extended.loc[responsive_constitutive_promoters_extended.strand =='+', 'stop'] = responsive_constitutive_promoters_extended.stop + 675 responsive_constitutive_promoters_extended.loc[responsive_constitutive_promoters_extended.strand =='-', 'start'] = responsive_constitutive_promoters_extended.start - 675 sorted_proms = responsive_constitutive_promoters_extended.sort_values(['chr','start']) bed = BedTool.from_dataframe(sorted_proms).saveas('../../data/EPD_promoter_analysis/TATA/responsive_constitutive_promoters_extended.bed') #add chr to chromosome name add_chr_linestart('../../data/EPD_promoter_analysis/TATA/responsive_constitutive_promoters_extended.bed', '../../data/EPD_promoter_analysis/TATA/responsive_constitutive_promoters_extended_renamed.bed') #rerun analysis using nonbidirectional promoters nonbidirectional_proms_file = '../../data/FIMO/nonbidirectional_proms.bed' nonbidirectional_proms = pd.read_table(nonbidirectional_proms_file, sep='\t', header=None) cols3 = ['chr', 'start', 'stop','promoter_AGI','dot1', 'strand','source_bi', 'type','dot2', 'attributes'] nonbidirectional_proms.columns = cols3 nonbidir_const_var_proms = pd.merge(sorted_motifs, nonbidirectional_proms[['promoter_AGI','source_bi']], how='left', on='promoter_AGI') nonbidir_const_var_proms = nonbidir_const_var_proms[~nonbidir_const_var_proms['source_bi'].isnull()] nonbidir_const_var_proms #number of nonbidirectional housekeeping genes len(nonbidir_const_var_proms[nonbidir_const_var_proms.gene_type == 'housekeeping']) #number of nonbidirectional variable genes len(nonbidir_const_var_proms[nonbidir_const_var_proms.gene_type == 'highVar']) # gat-run.py --ignore-segment-tracks --segments=../../data/EPD_promoter_analysis/TATA/TATA_15bp.bed `#TATA box annotations` \ # --annotations=../../data/EPD_promoter_analysis/TATA/responsive_constitutive_promoters_extended_renamed.bed `#100 constitutive/responsive promoter annotations` \ # --workspace=../../data/EPD_promoter_analysis/TATA/chromsizes.bed `#Arabidopsis chromosome bed file` \ # --num-samples=1000 --log=../../data/EPD_promoter_analysis/TATA/gat.log > ../../data/EPD_promoter_analysis/TATA/gat_TATA.out #Create file with only the variable promoters extended_promoters_file = '../../data/EPD_promoter_analysis/TATA/responsive_constitutive_promoters_extended_renamed.bed' extended_promoters = pd.read_table(extended_promoters_file, sep='\t', header=None) #make a new gat workspace file with all promoters (first 3 columns) bed = BedTool.from_dataframe(extended_promoters[[0,1,2]]).saveas('../../data/EPD_promoter_analysis/TATA/responsive_constitutive_promoters_extended_workspace.bed') #select only variable promoters variable_promoters_extended = extended_promoters[extended_promoters[3] == 'highVar'] sorted_variable = variable_promoters_extended.sort_values([0,1]) bed = BedTool.from_dataframe(sorted_variable).saveas('../../data/EPD_promoter_analysis/TATA/variable_promoters_extended.bed') #make a constitutive only file for completness sake constitutive_promoters_extended = extended_promoters[extended_promoters[3] == 'housekeeping'] sorted_constitutive = constitutive_promoters_extended.sort_values([0,1]) bed = BedTool.from_dataframe(sorted_constitutive).saveas('../../data/EPD_promoter_analysis/TATA/constitutive_promoters_extended.bed') log2fold = pd.read_csv('../../data/EPD_promoter_analysis/TATA/TATAlogfold.csv', header=0) log2fold #rename log2fold.Gene_type.replace('Variable','variable', inplace=True) log2fold.Gene_type.replace('Constitutive','constitutive', inplace=True) #set style to ticks sns.set(style="ticks", color_codes=True) #bar chart, 95% confidence intervals plot = sns.barplot(x="Gene_type", y="Log2-fold", data=log2fold) plot.axhline(0, color='black') plt.xlabel("Gene type") plt.ylabel("Log2-fold enrichment over background").get_figure().savefig('../../data/plots/TATAbox/log2fold.pdf', format='pdf') ###Output _____no_output_____
深度学习/d2l-zh-1.1/chapter_convolutional-neural-networks/resnet.ipynb
###Markdown 残差网络(ResNet)让我们先思考一个问题:对神经网络模型添加新的层,充分训练后的模型是否只可能更有效地降低训练误差?理论上,原模型解的空间只是新模型解的空间的子空间。也就是说,如果我们能将新添加的层训练成恒等映射$f(x) = x$,新模型和原模型将同样有效。由于新模型可能得出更优的解来拟合训练数据集,因此添加层似乎更容易降低训练误差。然而在实践中,添加过多的层后训练误差往往不降反升。即使利用批量归一化带来的数值稳定性使训练深层模型更加容易,该问题仍然存在。针对这一问题,何恺明等人提出了残差网络(ResNet) [1]。它在2015年的ImageNet图像识别挑战赛夺魁,并深刻影响了后来的深度神经网络的设计。 残差块让我们聚焦于神经网络局部。如图5.9所示,设输入为$\boldsymbol{x}$。假设我们希望学出的理想映射为$f(\boldsymbol{x})$,从而作为图5.9上方激活函数的输入。左图虚线框中的部分需要直接拟合出该映射$f(\boldsymbol{x})$,而右图虚线框中的部分则需要拟合出有关恒等映射的残差映射$f(\boldsymbol{x})-\boldsymbol{x}$。残差映射在实际中往往更容易优化。以本节开头提到的恒等映射作为我们希望学出的理想映射$f(\boldsymbol{x})$。我们只需将图5.9中右图虚线框内上方的加权运算(如仿射)的权重和偏差参数学成0,那么$f(\boldsymbol{x})$即为恒等映射。实际中,当理想映射$f(\boldsymbol{x})$极接近于恒等映射时,残差映射也易于捕捉恒等映射的细微波动。图5.9右图也是ResNet的基础块,即残差块(residual block)。在残差块中,输入可通过跨层的数据线路更快地向前传播。![设输入为$\boldsymbol{x}$。假设图中最上方激活函数输入的理想映射为$f(\boldsymbol{x})$。左图虚线框中的部分需要直接拟合出该映射$f(\boldsymbol{x})$,而右图虚线框中的部分需要拟合出有关恒等映射的残差映射$f(\boldsymbol{x})-\boldsymbol{x}$](../img/residual-block.svg)ResNet沿用了VGG全$3\times 3$卷积层的设计。残差块里首先有2个有相同输出通道数的$3\times 3$卷积层。每个卷积层后接一个批量归一化层和ReLU激活函数。然后我们将输入跳过这2个卷积运算后直接加在最后的ReLU激活函数前。这样的设计要求2个卷积层的输出与输入形状一样,从而可以相加。如果想改变通道数,就需要引入一个额外的$1\times 1$卷积层来将输入变换成需要的形状后再做相加运算。残差块的实现如下。它可以设定输出通道数、是否使用额外的$1\times 1$卷积层来修改通道数以及卷积层的步幅。 ###Code import d2lzh as d2l from mxnet import gluon, init, nd from mxnet.gluon import nn class Residual(nn.Block): # 本类已保存在d2lzh包中方便以后使用 def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs): super(Residual, self).__init__(**kwargs) self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1, strides=strides) self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1) if use_1x1conv: self.conv3 = nn.Conv2D(num_channels, kernel_size=1, strides=strides) else: self.conv3 = None self.bn1 = nn.BatchNorm() self.bn2 = nn.BatchNorm() def forward(self, X): Y = nd.relu(self.bn1(self.conv1(X))) Y = self.bn2(self.conv2(Y)) if self.conv3: X = self.conv3(X) return nd.relu(Y + X) ###Output _____no_output_____ ###Markdown 下面我们来查看输入和输出形状一致的情况。 ###Code blk = Residual(3) blk.initialize() X = nd.random.uniform(shape=(4, 3, 6, 6)) blk(X).shape ###Output _____no_output_____ ###Markdown 我们也可以在增加输出通道数的同时减半输出的高和宽。 ###Code blk = Residual(6, use_1x1conv=True, strides=2) blk.initialize() blk(X).shape ###Output _____no_output_____ ###Markdown ResNet模型ResNet的前两层跟之前介绍的GoogLeNet中的一样:在输出通道数为64、步幅为2的$7\times 7$卷积层后接步幅为2的$3\times 3$的最大池化层。不同之处在于ResNet每个卷积层后增加的批量归一化层。 ###Code net = nn.Sequential() net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3), nn.BatchNorm(), nn.Activation('relu'), nn.MaxPool2D(pool_size=3, strides=2, padding=1)) ###Output _____no_output_____ ###Markdown GoogLeNet在后面接了4个由Inception块组成的模块。ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。第一个模块的通道数同输入通道数一致。由于之前已经使用了步幅为2的最大池化层,所以无须减小高和宽。之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。下面我们来实现这个模块。注意,这里对第一个模块做了特别处理。 ###Code def resnet_block(num_channels, num_residuals, first_block=False): blk = nn.Sequential() for i in range(num_residuals): if i == 0 and not first_block: blk.add(Residual(num_channels, use_1x1conv=True, strides=2)) else: blk.add(Residual(num_channels)) return blk ###Output _____no_output_____ ###Markdown 接着我们为ResNet加入所有残差块。这里每个模块使用2个残差块。 ###Code net.add(resnet_block(64, 2, first_block=True), resnet_block(128, 2), resnet_block(256, 2), resnet_block(512, 2)) ###Output _____no_output_____ ###Markdown 最后,与GoogLeNet一样,加入全局平均池化层后接上全连接层输出。 ###Code net.add(nn.GlobalAvgPool2D(), nn.Dense(10)) ###Output _____no_output_____ ###Markdown 这里每个模块里有4个卷积层(不计算$1\times 1$卷积层),加上最开始的卷积层和最后的全连接层,共计18层。这个模型通常也被称为ResNet-18。通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的含152层的ResNet-152。虽然ResNet的主体架构跟GoogLeNet的类似,但ResNet结构更简单,修改也更方便。这些因素都导致了ResNet迅速被广泛使用。在训练ResNet之前,我们来观察一下输入形状在ResNet不同模块之间的变化。 ###Code X = nd.random.uniform(shape=(1, 1, 224, 224)) net.initialize() for layer in net: X = layer(X) print(layer.name, 'output shape:\t', X.shape) ###Output conv5 output shape: (1, 64, 112, 112) batchnorm4 output shape: (1, 64, 112, 112) relu0 output shape: (1, 64, 112, 112) pool0 output shape: (1, 64, 56, 56) sequential1 output shape: (1, 64, 56, 56) sequential2 output shape: (1, 128, 28, 28) sequential3 output shape: (1, 256, 14, 14) sequential4 output shape: (1, 512, 7, 7) pool1 output shape: (1, 512, 1, 1) dense0 output shape: (1, 10) ###Markdown 训练模型下面我们在Fashion-MNIST数据集上训练ResNet。 ###Code lr, num_epochs, batch_size, ctx = 0.05, 5, 256, d2l.try_gpu() net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier()) trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96) d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx, num_epochs) ###Output training on gpu(0)
prediction/multitask/fine-tuning/function documentation generation/ruby/small_model.ipynb
###Markdown **Predict the documentation for ruby code using codeTrans multitask finetuning model**You can make free prediction online through this Link (When using the prediction online, you need to parse and tokenize the code first.) **1. Load necessry libraries including huggingface transformers** ###Code !pip install -q transformers sentencepiece from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline ###Output _____no_output_____ ###Markdown **2. Load the token classification pipeline and load it into the GPU if avilabile** ###Code pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_ruby_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_ruby_multitask_finetune", skip_special_tokens=True), device=0 ) ###Output /usr/local/lib/python3.6/dist-packages/transformers/models/auto/modeling_auto.py:852: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models. FutureWarning, ###Markdown **3 Give the code for summarization, parse and tokenize it** ###Code code = "def add(severity, progname, &block)\n return true if io.nil? || severity < level\n message = format_message(severity, progname, yield)\n MUTEX.synchronize { io.write(message) }\n true\n end" #@param {type:"raw"} !pip install tree_sitter !git clone https://github.com/tree-sitter/tree-sitter-ruby from tree_sitter import Language, Parser Language.build_library( 'build/my-languages.so', ['tree-sitter-ruby'] ) RUBY_LANGUAGE = Language('build/my-languages.so', 'ruby') parser = Parser() parser.set_language(RUBY_LANGUAGE) def get_string_from_code(node, lines): line_start = node.start_point[0] line_end = node.end_point[0] char_start = node.start_point[1] char_end = node.end_point[1] if line_start != line_end: code_list.append(' '.join([lines[line_start][char_start:]] + lines[line_start+1:line_end] + [lines[line_end][:char_end]])) else: code_list.append(lines[line_start][char_start:char_end]) def my_traverse(node, code_list): lines = code.split('\n') if node.child_count == 0: get_string_from_code(node, lines) elif node.type == 'string': get_string_from_code(node, lines) else: for n in node.children: my_traverse(n, code_list) return ' '.join(code_list) tree = parser.parse(bytes(code, "utf8")) code_list=[] tokenized_code = my_traverse(tree.root_node, code_list) print("Output after tokenization: " + tokenized_code) ###Output Output after tokenization: def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end ###Markdown **4. Make Prediction** ###Code pipeline([tokenized_code]) ###Output Your max_length is set to 512, but you input_length is only 57. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)
notebooks/Add_numbers_to_csv_without_missing_values_for_shiny.ipynb
###Markdown Create .csv File to Use For Shiny AppOnce the decision was made to use a rules based model, a .csv file was put together that only had the necessary information for the shiny app. When making the Shiny App it was found that missing values were causing problems. Schools with missing values in the key variables were dropped from the final .csv and app. The total of schools missing enrollment data was one, schools missing data on absenteeism 18, schools missing data on days missed due to suspensions 19, and schools without data on sports participation was 3,461. The final .csv file had 63 columns. ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline import math numbers = pd.read_csv('/Users/flatironschool/Absenteeism_Project/data/processed/combo_cleaned.csv') numbers.tail() ###Output _____no_output_____ ###Markdown Clean up graduation rates and add grad rate bins ###Code #need to keep original reported grade and need column to modify and clean data numbers['grad_slice'] = numbers['ALL_RATE_1516'] #remove "GE" and "LE" from ranges numbers['grad_slice'].replace(['GE99'], '+100', inplace=True) # need to replace with numbers['grad_slice'].replace(['GE95'], '95', inplace=True) numbers['grad_slice'].replace(['GE90'], '90', inplace=True) numbers['grad_slice'].replace(['LE10'], '10', inplace=True) numbers['grad_slice'].replace(['LE1'], '1', inplace=True) numbers['grad_slice'].replace(['LE5'], '05', inplace=True) #smallest range needs to be dealt with, has one digit before '-' numbers['grad_slice'].replace(['6-9'], '6', inplace=True) #take first two digits of rates to get rid of ranges numbers['grad_slice'] = numbers['grad_slice'].str[:2] #fix 100 numbers['grad_slice'].replace(['+1'], '100', inplace=True) #get rid of very small schools grad_num = numbers[numbers['ALL_COHORT_1516'] >= 31] #create the binned categories grad_num['grad_rate_bin'] = pd.cut(grad_num['grad_slice'].astype(int), [0, 59, 79, 89, 99, 100], labels = ['0-59%', '60-79%', '80-89%', '90-99%', '100%']) grad_num.tail() grad_num['grad_rate_bin'].value_counts() grad_num.columns.to_list() ###Output _____no_output_____ ###Markdown Create Level Up Bins ###Code #level up bins #create the binned categories grad_num['level_up_bins'] = pd.cut(grad_num['grad_slice'].astype(int), [0, 59, 79, 89, 99, 100], labels = ['60-79% Level Up Rate', '80-89% Level Up Rate', '90-99% Level Up Rate', '100% Level Up Rate', '100% Top Rate']) grad_num.head() ###Output _____no_output_____ ###Markdown Calculate Quantiles and Add to Data Frame ###Code quantile_df_25 = grad_num.groupby('grad_rate_bin')['non_cert_rate', 'sports_rate', 'chronic_absent_rate', 'suspensed_day_rate'].quantile(.25).reset_index() quantile_df_75 = grad_num.groupby('grad_rate_bin')['non_cert_rate', 'sports_rate', 'chronic_absent_rate', 'suspensed_day_rate'].quantile(.75).reset_index() quantile_df_25.head() quantile_df_75.head() grad_num = grad_num.merge(quantile_df_25, on='grad_rate_bin', suffixes=('_x', '_25th')) grad_num = grad_num.merge(quantile_df_75, on='grad_rate_bin', suffixes=('_y', '_75th')) grad_num.head() ###Output _____no_output_____ ###Markdown Change column names to final names for shiny app ###Code grad_num.rename(columns={'total_enrollment':'Total_Enrollment','total_chronic_absent':'Number_of_Chronically_Absent_Students', 'sports_part':'Number_of_Student_Athletes'},inplace=True) grad_num.rename(columns={'ALL_RATE_1516':'Graduation_Rate_2015_16'}, inplace=True) grad_num.rename(columns={'SCH_FTETEACH_NOTCERT':'Number_of_Non_Certified_Teachers'}, inplace=True) grad_num.rename(columns={'level_up_bins':'Level_Up_Graduation_Rate'}, inplace=True) grad_num.rename(columns={'STNAM':'State', 'LEANM':'District', 'SCHNAM':'High_School', 'ALL_RATE_1516':'Graduation_Rate_2015_16'},inplace=True) grad_num.rename(columns={'total_suspension_days':'Number_of_Days_Missed_to_Suspensions'}, inplace=True) grad_num.rename(columns={'SCH_FTETEACH_TOT':'Number_of_Total_Teachers'}, inplace=True) ###Output _____no_output_____ ###Markdown Calculate Middle 50% Range for App ###Code grad_num['Level_Up_25th_Percentile_Number_Chronic_Absent_Students'] = grad_num['Total_Enrollment'] * grad_num['chronic_absent_rate_25th'] grad_num['Level_Up_75th_Percentile_Number_Chronic_Absent_Students'] = round(grad_num['Total_Enrollment'] * grad_num['chronic_absent_rate_75th'],0) grad_num['Level_Up_25th_Percentile_Student_Athletes'] = round(grad_num['Total_Enrollment'] * grad_num['sports_rate_25th'],0) grad_num['Level_Up_75th_Percentile_Student_Athletes'] = round(grad_num['Total_Enrollment'] * grad_num['sports_rate_75th'],0) grad_num['Level_Up_25th_Percentile_Days_Missed_due_to_Suspension'] = round(grad_num['Total_Enrollment'] * grad_num['suspensed_day_rate_25th'],0) grad_num['Level_Up_75th_Percentile_Days_Missed_due_to_Suspension'] = round(grad_num['Total_Enrollment'] * grad_num['suspensed_day_rate_75th'],0) grad_num['Level_Up_25th_Percentile_Non_Certified_Teachers'] = round(grad_num['Total_Enrollment'] * grad_num['non_cert_rate_25th'],0) grad_num['Level_up_75th_Percentile_Non_Certified_Teachers'] = round(grad_num['Total_Enrollment'] * grad_num['non_cert_rate_75th'],0) grad_num.head() ###Output _____no_output_____ ###Markdown Add back in the Chronic Absentee Rate and Sports Participation Rate for each school ###Code grad_num['Chronic_Absent_Rate'] = grad_num['Number_of_Chronically_Absent_Students']/grad_num['Total_Enrollment'] grad_num['Sports_Participant_Rate'] = grad_num['Number_of_Student_Athletes']/grad_num['Total_Enrollment'] ###Output _____no_output_____ ###Markdown Clean up final data frame and save to csv ###Code grad_num.drop(['Unnamed: 0', 'Unnamed: 0.1'], axis=1, inplace=True) grad_num.drop(['LEA_STATE_NAME', 'SCH_NAME', 'SCH_MAGNETDETAIL','SCH_ALTFOCUS', 'TOT_GTENR_M', 'TOT_GTENR_F'], axis=1, inplace=True) grad_num.drop(grad_num.columns.to_series()['TOT_ALGENR_GS0910_M':'TOT_SATACT_F'], axis=1, inplace=True) grad_num.drop(grad_num.columns.to_series()['SCH_HBALLEGATIONS_SEX':'SCH_HBALLEGATIONS_REL'], axis=1, inplace=True) grad_num.drop(['SCH_NPE_WOFED', 'SCH_NPE_WFED', 'SCH_FTECOUNSELORS', 'SCH_FTETEACH_ABSENT'], axis=1, inplace=True) grad_num.drop(grad_num.columns.to_series()['total_ap_ib_de':'calc_rate'], axis=1, inplace=True) grad_num.drop(grad_num.columns.to_series()['harassed':'activities_funds_rate'], axis=1, inplace=True) grad_num.drop(['counselor_rate', 'absent_teacher_rate'], axis=1, inplace=True) grad_num.drop(['TOT_DUAL_M', 'TOT_DUAL_F'], axis=1, inplace=True) #delete rows no longer needed for shiny app #delete rows with NANs #no missing values grad_num.isna().sum() #delete rows with NANs in enrollment, absenteeism, sports participation, non-certified teachers, #and days missed to suspension grad_num.dropna(subset=['Total_Enrollment', 'TOT_ENR_M', 'TOT_ENR_F'], inplace=True) grad_num.dropna(subset=['Number_of_Chronically_Absent_Students','TOT_ABSENT_M', 'TOT_ABSENT_F'], inplace=True) grad_num.dropna(subset=['Number_of_Student_Athletes', 'SCH_SSPART_M', 'SCH_SSPART_F', 'TOT_SSPART'], inplace=True) grad_num.dropna(subset=['Number_of_Non_Certified_Teachers', 'non_cert_rate_x', 'Number_of_Total_Teachers'], inplace=True) grad_num.dropna(subset=['TOT_DAYSMISSED_M', 'TOT_DAYSMISSED_F', 'Number_of_Days_Missed_to_Suspensions', 'suspensed_day_rate_x'], inplace=True) ###Output _____no_output_____ ###Markdown Save the final data frame to csv for future use ###Code grad_num2 = grad_num #data frame deleting NANs grad_num2.to_csv('grad_num2.csv') grad_num2.head() grad_num2['Number_of_Days_Missed_to_Suspensions'].mean() grad_num2['Total_Enrollment'].max() sns.lmplot(data = grad_num2, x='Chronic') ###Output _____no_output_____
notebooks/03-DTW-measure.ipynb
###Markdown Dynamic Time Warping measureAfter observing the forecast in notebook `02-LSTM-experiment`, the delayed forecast can clearly be observed in the visualized storms, however, the used metrics do not show the model to give bad performance. We introduce a new measure based on dynamic time warping to detect this kind of error.__Remark: Make sure that the previous notebooks have at least ran once to ensure the necessary files exists__ ###Code import sys import pandas as pd import numpy as np sys.path.append('../') from src.dtw.dtw_measure import dtw_measure import h5py # Import the data def load_testing_sets(fname='../data/processed/datasets.h5'): with h5py.File(fname, 'r') as f: test_in = f['test_sets/test_in'][:] test_out = f['test_sets/test_out'][:] predict = f['test_sets/prediction'][:] lookup = f['test_sets/lookup'][:] return test_in, test_out, predict, lookup.astype('datetime64[s]') test_in, test_out, predict, lookup = load_testing_sets() time_forward = 6 ###Output _____no_output_____ ###Markdown An important condition for DTW is that each time series is continuous, e.g. combining independent time series into one and evaluating this will give incorrect results. In notebook `01-data-preparation`, invalid measurements were removed, breaking the test data into a set of continous time series. All of these series must first be identified. ###Code def extract_continuous_intervals(table): r'''Check lookup table for time discontinuities output: Returns list of continouos times inside the lookup table ''' lookup = pd.DataFrame(data=np.arange(table.shape[0]), index=pd.to_datetime(table[:,0])) lookup.index = pd.DatetimeIndex(lookup.index) # split = [g for n,g in lookup.groupby(pd.Grouper(freq='M')) if g.shape[0] != 0] min_size = 10 timeseries = [] #for month in split: series = lookup.index while len(series) > 0: # We can assume that the series starts from non-missing values, so the first diff gives sizes of continous intervals diff = pd.date_range(series[0], series[-1], freq='H').difference(series) if len(diff) > 0: if pd.Timedelta(diff[0] - pd.Timedelta('1h') - series[0])/pd.Timedelta('1h') > min_size: v1 = lookup.loc[series[0]][0] v2 = lookup.loc[diff[0] - pd.Timedelta('1h')][0] timeseries.append([v1, v2]) if pd.Timedelta(series[-1] - diff[-1] - pd.Timedelta('1h'))/pd.Timedelta('1h') > min_size: v1 = lookup.loc[diff[-1] + pd.Timedelta('1h')][0] v2 = lookup.loc[series[-1]][0] timeseries.append([v1, v2]) diff = pd.date_range(diff[0], diff[-1], freq='H').difference(diff) else: # Only when diff is empty v1 = lookup.loc[series[0]][0] v2 = lookup.loc[series[-1]][0] timeseries.append([v1, v2]) series = diff return np.array(timeseries) intervals = extract_continuous_intervals(lookup) ###Output _____no_output_____ ###Markdown Now that we have continous intervals, the dtw measure is applied to each interval. From the resulting path, we measure the time shift between the mapping. The total counts are summarized in a pandas DataFrame, which is then normalized with `reformat_dtw_res` over the rows to provide a percentage. ###Code bincounts = np.zeros((time_forward,7)) counter = 0 for start, stop in intervals: counter += 1 for i in range(time_forward): _, path, _ = dtw_measure(predict[start:stop, 0, i], test_out[start:stop, 0, i], time_forward) bins, counts = np.unique(abs(path[0, :] - path[1, :]), return_counts=True) bincounts[i, bins] += counts lat_res = pd.DataFrame(data=bincounts, index=np.arange(1, time_forward+1), columns=np.arange(7)) print(lat_res) def reformat_dtw_res(df, filename=None): '''Normalize the result from the dtw measure ''' res = df.div(df.sum(axis=1), axis=0) shifts = np.array(['t+{}h'.format(i+1) for i in np.arange(res.shape[0])]) res['Prediction'] = shifts.T res = res.set_index('Prediction') res.columns = ['{}h'.format(i) for i in res.columns] res = res.apply(lambda x: round(x, 3)) if filename: res.to_csv('{}reformated_{}'.format(path, filename)) return res reformat_dtw_res(lat_res) ###Output _____no_output_____
student_intervention/student_intervention_stratified.ipynb
###Markdown Project 2: Supervised Learning Building a Student Intervention System 1. Classification vs RegressionYour goal is to identify students who might need early intervention - which type of supervised machine learning problem is this, classification or regression? Why? Identifying students who might need early intervention is a *classification* problem as you are sorting students into classes (*needs intervention*, *doesn't need intervention*) rather than trying to predict a quantitative value. 2. Exploring the DataLet's go ahead and read in the student dataset first._To execute a code cell, click inside it and press **Shift+Enter**._ ###Code # Import libraries import numpy as np import pandas as pd # additional imports import matplotlib.pyplot as plot import seaborn from sklearn.cross_validation import train_test_split %matplotlib inline RANDOM_STATE = 100 REPETITIONS = 1 RUN_PLOTS = True # Read student data student_data = pd.read_csv("student-data.csv") print "Student data read successfully!" # Note: The last column 'passed' is the target/label, all other are feature columns ###Output Student data read successfully! ###Markdown Now, can you find out the following facts about the dataset?- Total number of students- Number of students who passed- Number of students who failed- Graduation rate of the class (%)- Number of features_Use the code block below to compute these values. Instructions/steps are marked using **TODO**s._ ###Code n_students = student_data.shape[0] assert n_students == student_data.passed.count() n_features = student_data.shape[1] - 1 assert n_features == len(student_data.columns[student_data.columns != 'passed']) n_passed = sum(student_data.passed.map({'no': 0, 'yes': 1})) assert n_passed == len(student_data[student_data.passed == 'yes'].passed) n_failed = n_students - n_passed grad_rate = n_passed/float(n_students) print "Total number of students: {}".format(n_students) print "Number of students who passed: {}".format(n_passed) print "Number of students who failed: {}".format(n_failed) print "Number of features: {}".format(n_features) print "Graduation rate of the class: {:.2f}%".format(100 * grad_rate) passing_rates = student_data.passed.value_counts()/student_data.passed.count() print(passing_rates) seaborn.set_style('whitegrid') axe = seaborn.barplot(x=passing_rates.index, y=passing_rates.values) title = axe.set_title("Proportion of Passing Students") ###Output _____no_output_____ ###Markdown 3. Preparing the DataIn this section, we will prepare the data for modeling, training and testing. Identify feature and target columnsIt is often the case that the data you obtain contains non-numeric features. This can be a problem, as most machine learning algorithms expect numeric data to perform computations with.Let's first separate our data into feature and target columns, and see if any features are non-numeric.**Note**: For this dataset, the last column (`'passed'`) is the target or label we are trying to predict. ###Code # Extract feature (X) and target (y) columns feature_cols = list(student_data.columns[:-1]) # all columns but last are features target_col = student_data.columns[-1] # last column is the target/label print "Feature column(s):-\n{}".format(feature_cols) print "Target column: {}".format(target_col) X_all = student_data[feature_cols] # feature values for all students y_all = student_data[target_col] # corresponding targets/labels print "\nFeature values:-" print X_all.head() # print the first 5 rows print(len(X_all.columns)) ###Output 30 ###Markdown Preprocess feature columnsAs you can see, there are several non-numeric columns that need to be converted! Many of them are simply `yes`/`no`, e.g. `internet`. These can be reasonably converted into `1`/`0` (binary) values.Other columns, like `Mjob` and `Fjob`, have more than two values, and are known as _categorical variables_. The recommended way to handle such a column is to create as many columns as possible values (e.g. `Fjob_teacher`, `Fjob_other`, `Fjob_services`, etc.), and assign a `1` to one of them and `0` to all others.These generated columns are sometimes called _dummy variables_, and we will use the [`pandas.get_dummies()`](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html?highlight=get_dummiespandas.get_dummies) function to perform this transformation. ###Code # Preprocess feature columns def preprocess_features(X): outX = pd.DataFrame(index=X.index) # output dataframe, initially empty # Check each column for col, col_data in X.iteritems(): # If data type is non-numeric, try to replace all yes/no values with 1/0 if col_data.dtype == object: col_data = col_data.replace(['yes', 'no'], [1, 0]) # Note: This should change the data type for yes/no columns to int # If still non-numeric, convert to one or more dummy variables if col_data.dtype == object: col_data = pd.get_dummies(col_data, prefix=col) # e.g. 'school' => 'school_GP', 'school_MS' outX = outX.join(col_data) # collect column(s) in output dataframe return outX X_all = preprocess_features(X_all) y_all = y_all.replace(['yes', 'no'], [1, 0]) print "Processed feature columns ({}):-\n{}".format(len(X_all.columns), list(X_all.columns)) len(X_all.columns) ###Output _____no_output_____ ###Markdown Split data into training and test setsSo far, we have converted all _categorical_ features into numeric values. In this next step, we split the data (both features and corresponding labels) into training and test sets. ###Code # First, decide how many training vs test samples you want num_all = student_data.shape[0] # same as len(student_data) num_train = 300 # about 75% of the data num_test = num_all - num_train # TODO: Then, select features (X) and corresponding labels (y) for the training and test sets # Note: Shuffle the data or randomly select samples to avoid any bias due to ordering in the dataset X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, train_size=num_train, random_state=RANDOM_STATE, stratify=y_all) assert len(y_train) == 300 assert len(y_test) == 95 print "Training set: {} samples".format(X_train.shape[0]) print "Test set: {} samples".format(X_test.shape[0]) # Note: If you need a validation set, extract it from within training data ###Output Training set: 300 samples Test set: 95 samples ###Markdown 4. Training and Evaluating ModelsChoose 3 supervised learning models that are available in scikit-learn, and appropriate for this problem. For each model:- What are the general applications of this model? What are its strengths and weaknesses?- Given what you know about the data so far, why did you choose this model to apply?- Fit this model to the training data, try to predict labels (for both training and test sets), and measure the F1 score. Repeat this process with different training set sizes (100, 200, 300), keeping test set constant.Produce a table showing training time, prediction time, F1 score on training set and F1 score on test set, for each training set size.Note: You need to produce 3 such tables - one for each model. Train a model ###Code import time def train_classifier(clf, X_train, y_train, verbose=True): if verbose: print "Training {}...".format(clf.__class__.__name__) times = [] for repetition in range(REPETITIONS): start = time.time() clf.fit(X_train, y_train) times.append(time.time() - start) if verbose: print "Done!\nTraining time (secs): {:.3f}".format(min(times)) from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier classifiers = [LogisticRegression(), RandomForestClassifier(), KNeighborsClassifier()] for clf in classifiers: # Fit model to training data train_classifier(clf, X_train, y_train) # note: using entire training set here # Predict on training set and compute F1 score from sklearn.metrics import f1_score def predict_labels(clf, features, target, verbose=True): if verbose: print "Predicting labels using {}...".format(clf.__class__.__name__) times = [] scores = [] for repetition in range(REPETITIONS): start = time.time() y_pred = clf.predict(features) times.append(time.time() - start) scores.append(f1_score(target.values, y_pred, pos_label=1)) if verbose: print "Done!\nPrediction time (secs): {:.3f}".format(min(times)) return np.median(scores) # Predict on test data for classifier in classifiers: print "F1 score for test set: {}".format(predict_labels(classifier, X_test, y_test)) class ClassifierData(object): """A Container for classifire performance data""" def __init__(self, classifier, f1_test_score, f1_train_score): """ :param: - `classifier`: classifier object (e.g. LogisticRegression()) - `f1_test_score`: score for the classifier on the test set - `f1_train_score`: score for the classifier on the training set """ self.classifier = classifier self.f1_test_score = f1_test_score self.f1_train_score = f1_train_score return from collections import defaultdict # Train and predict using different training set sizes def train_predict(clf, X_train, y_train, X_test, y_test, verbose=True): if verbose: print "------------------------------------------" print "Training set size: {}".format(len(X_train)) train_classifier(clf, X_train, y_train, verbose) f1_train_score = predict_labels(clf, X_train, y_train, verbose) f1_test_score = predict_labels(clf, X_test, y_test, verbose) if verbose: print "F1 score for training set: {}".format(f1_train_score) print "F1 score for test set: {}".format(f1_test_score) return ClassifierData(clf, f1_test_score, f1_train_score) # TODO: Run the helper function above for desired subsets of training data # Note: Keep the test set constant def train_by_size(sizes = [100, 200, 300], verbose=True): classifier_containers = {} for classifier in classifiers: name = classifier.__class__.__name__ if verbose: print(name) print("=" * len(name)) classifier_containers[name] = defaultdict(lambda: {}) for size in sizes: x_train_sub, y_train_sub = X_train[:size], y_train[:size] assert len(x_train_sub) == size assert len(y_train_sub) == size classifier_data = train_predict(classifier, x_train_sub, y_train_sub, X_test, y_test, verbose) classifier_containers[name][size] = classifier_data if verbose: print('') return classifier_containers _ = train_by_size() if RUN_PLOTS: # this takes a long time, don't run if not needed sizes = range(10, 310, 10) classifier_containers = train_by_size(sizes=sizes, verbose=False) color_map = {'LogisticRegression': 'b', 'KNeighborsClassifier': 'r', 'RandomForestClassifier': 'm'} def plot_scores(containers, which_f1='test', color_map=color_map): """ Plot the f1 scores for the models :param: - `containers`: dict of <name><size> : classifier data - `which_f1`: 'test' or 'train' - `color_map`: dict of <model name> : <color string> """ sizes = sorted(containers['LogisticRegression'].keys()) figure = plot.figure() axe = figure.gca() for model in containers: scores = [getattr(containers[model][size], 'f1_{0}_score'.format(which_f1)) for size in sizes] axe.plot(sizes, scores, label=model, color=color_map[model]) axe.legend(loc='lower right') axe.set_title("{0} Set F1 Scores by Training-Set Size".format(which_f1.capitalize())) axe.set_xlabel('Training Set Size') axe.set_ylabel('F1 Score') axe.set_ylim([0, 1.0]) if RUN_PLOTS: for f1 in 'train test'.split(): plot_scores(classifier_containers, f1) def plot_test_train(containers, model_name, color_map=color_map): """ Plot testing and training plots for each model :param: - `containers`: dict of <model name><size>: classifier data - `model_name`: class name of the model - `color_map`: dict of <model name> : color string """ sizes = sorted(containers['LogisticRegression'].keys()) figure = plot.figure() axe = figure.gca() test_scores = [containers[model][size].f1_test_score for size in sizes] train_scores = [containers[model][size].f1_train_score for size in sizes] axe.plot(sizes, test_scores, label="Test", color=color_map[model]) axe.plot(sizes, train_scores, '--', label="Train", color=color_map[model]) axe.legend(loc='lower right') axe.set_title("{0} F1 Scores by Training-Set Size".format(model)) axe.set_xlabel('Training Set Size') axe.set_ylabel('F1 Score') axe.set_ylim([0, 1.0]) return if RUN_PLOTS: for model in color_map.keys(): plot_test_train(classifier_containers, model) ###Output _____no_output_____ ###Markdown 5. Choosing the Best Model- Based on the experiments you performed earlier, in 1-2 paragraphs explain to the board of supervisors what single model you chose as the best model. Which model is generally the most appropriate based on the available data, limited resources, cost, and performance?- In 1-2 paragraphs explain to the board of supervisors in layman's terms how the final model chosen is supposed to work (for example if you chose a Decision Tree or Support Vector Machine, how does it make a prediction).- Fine-tune the model. Use Gridsearch with at least one important parameter tuned and with at least 3 settings. Use the entire training set for this.- What is the model's final F1 score? Based on the previous experiments I chose *Logistic Regression* as the classifier to use. Given the data available, all three models have comparable F1 scores (on the test data) but the Logistic Regression classifier is the fastest for both training and prediction when compared to *K-Nearest Neighbor* and *Random Forests*. In addition, the Logistic Regression classifier offers readily interpretable coefficients and L1 regression to sparsify the data, allowing us to see the most important of the variables when deciding who will pass their final exam.Logistic Regression works by estimating the probability that a student's attributes - such as their age, how often they go out, etc. - predicts that they will pass. It does this using the *logistic function* which creates an S-shaped curve which goes to 0 at negative infinity and 1 at positive infinity: ###Code %%latex P(passed=yes|x) = \frac{1}{1+e^{-weights^T \times attributes}}\\ ###Output _____no_output_____ ###Markdown Here *attributes* is a vector of student attributes and *weights* is the vector of weights that the Logistic Regression algorithm finds. To see what this function looks like I'll plot its output when there is a weight of one and a single attribute whose values are centered around 0, since this is a fictional attribute that I'm creating for plotting I'll call it *x*. ###Code x = np.linspace(-6, 7, 100) y = 1/(1 + np.exp(-x)) figure = plot.figure() axe = figure.gca() axe.plot(x, y) title = axe.set_title("Sigmoid Function") axe.set_ylabel(r"P(passed=yes|x)") label = axe.set_xlabel("x") ###Output _____no_output_____ ###Markdown To clarify the previous equation, if we only had two attributes, *age* and *school* to predict if a student passed, then it could be written as: ###Code %%latex \textit{probability student passed given age and school} = \frac{1}{1+e^{-(intercept + w_1 \times age + w_2 * school)}}\\ ###Output _____no_output_____ ###Markdown The goal of the Logistic Regression algorithm is to find the weights that most accurately predict whether a given student passes or not. In other words, it seeks to find the values for the weights so that the logistic function most accurately produces a probability greater than :math:`\frac{1}{2}` if the student passed and a probablity less than :math:`\frac{1}{2}` if the student did not pass. Set up the parameters ###Code from sklearn.metrics import f1_score, make_scorer scorer = make_scorer(f1_score) passing_ratio = (sum(y_test) + sum(y_train))/float(len(y_test) + len(y_train)) assert abs(passing_ratio - .67) < .01 model = LogisticRegression() # python standard library import warnings # third party import numpy from sklearn.grid_search import GridSearchCV parameters = {'penalty': ['l1', 'l2'], 'C': np.arange(.01, 1., .01), 'class_weight': [None, 'balanced', {1: passing_ratio, 0: 1 - passing_ratio}]} ###Output _____no_output_____ ###Markdown Grid search ###Code grid = GridSearchCV(model, param_grid=parameters, scoring=scorer, cv=10, n_jobs=-1) with warnings.catch_warnings(): warnings.simplefilter('ignore') grid.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown The best parameters ###Code grid.best_params_ ###Output _____no_output_____ ###Markdown The Coefficients ###Code def print_coefficients(grid): column_names = X_train.columns coefficients = grid.best_estimator_.coef_[0] odds = np.exp(coefficients) sorted_coefficients = sorted((column for column in coefficients), reverse=True) non_zero_coefficients = [coefficient for coefficient in sorted_coefficients if coefficient != 0] non_zero_indices = [np.where(coefficients==coefficient)[0][0] for coefficient in non_zero_coefficients] non_zero_variables = [column_names[index] for index in non_zero_indices] non_zero_odds = [odds[index] for index in non_zero_indices] for column, coefficient, odds_ in zip(non_zero_variables, non_zero_coefficients, non_zero_odds): print('{0: <10}{1: >5.2f}\t{2: >8.2f}'.format(column, coefficient, odds_)) return non_zero_variables non_zero_variables = print_coefficients(grid) feature_map = {"sex_M": "male student", "age": "student's age", "Medu": "mother's education", "traveltime": "home to school travel time", "studytime": "weekly study time", "failures": "number of past class failures", "schoolsup": "extra educational support", "famsup": "family educational support", "paid": "extra paid classes within the course subject (Math or Portuguese)", "activities": "extra-curricular activities", "nursery": "attended nursery school", "higher": "wants to take higher education", "internet": "Internet access at home", "romantic": "within a romantic relationship", "famrel": "quality of family relationships", "freetime": "free time after school", "goout": "going out with friends", "Dalc": "workday alcohol consumption", "Walc": "weekend alcohol consumption", "health": "current health status", "absences": "number of school absences", "passed": "did the student pass the final exam"} ###Output _____no_output_____ ###Markdown The plots were originally created separately for the write-up but I'm putting the code here too to show how they were made. ###Code data_all = X_all.copy() data_all['passed'] = y_all.values def plot_counts(x_name, hue='passed'): """ plot counts for a given variable :param: - `x_name`: variable name in student data - `hue`: corellating variable """ title = "{0} vs Passing".format(feature_map[x_name].title()) figure = plot.figure() axe = figure.gca() axe.set_title(title) lines = seaborn.countplot(x=x_name, hue=hue, data=data_all) count_plot_variables = [name for name in non_zero_variables if name not in ('age', 'absences')] for variable in count_plot_variables: plot_counts(variable) plot_counts('passed', 'age') axe = seaborn.kdeplot(student_data[student_data.passed=='yes'].absences, label='passed') axe.set_title('Distribution of Absences') axe.set_xlim([0, 80]) axe = seaborn.kdeplot(student_data[student_data.passed=='no'].absences, ax=axe, label="didn't pass") ###Output _____no_output_____ ###Markdown Final F1 Score ###Code with warnings.catch_warnings(): warnings.simplefilter('ignore') print("{0:.2f}".format(grid.score(X_test, y_test))) ###Output 0.79 ###Markdown Re-do with only significant columns. ###Code X_all_trimmed = X_all[non_zero_variables] grid_2 = GridSearchCV(model, param_grid=parameters, scoring=scorer, cv=10, n_jobs=-1) with warnings.catch_warnings(): warnings.simplefilter('ignore') grid_2.fit(X_train, y_train) grid_2.best_params_ print_coefficients(grid_2) with warnings.catch_warnings(): warnings.simplefilter('ignore') print("{0:.2f}".format(grid_2.score(X_test, y_test))) ###Output 0.79
005 - Softmax.ipynb
###Markdown TensorFlow softmax ###Code import tensorflow as tf logit_data = [2.0, 1.0, 0.1] logits = tf.placeholder(tf.float32) softmax = tf.nn.softmax(logits) with tf.Session() as sess: output = sess.run(softmax, feed_dict={logits : logit_data }) print(output) ###Output [ 0.65900117 0.24243298 0.09856589]
Fig 5b Data - Trials vs Coeff Error - Sys3.ipynb
###Markdown Number of Trials vs Coefficient Estimate ErrorTests the effect of Gaussian white noise on the estimated coefficients ###Code %load_ext autoreload %autoreload 2 # Import Python packages import pickle # Package Imports from sindy_bvp import SINDyBVP from sindy_bvp.differentiators import PolyInterp from sindy_bvp.library_builders import NoiseMaker # Set file to load and stem for saving load_stem = "./data/S3-P2-" save_stem = "./data/Fig5b-S3-" %%time # Set a range of noise magnitudes to test num_trials = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200] # Since the data is noisy, we'll use a Polynomial Interpolation derivative method poly = PolyInterp(diff_order=2, width=20, degree=5) # Initialize NoiseMaker, which adds 1% noise then filters noisy signal nm = NoiseMaker(noise_magnitude=0.01) # Create an empty results_list = [] print("Completed:", end=" ") for trial_count in num_trials: # Initialize SINDyBVP object sbvp = SINDyBVP(file_stem = load_stem, num_trials = trial_count, differentiator = poly, outcome_var = 'd^{2}u/dx^{2}', noisemaker = nm, known_vars = ['u', 'u^{2}', 'du/dx', 'f'], dep_var_name = 'u', ind_var_name = 'x') # Execute the optimization coeffs, plotter = sbvp.sindy_bvp() # Compute the S-L coeffs with Plotter analysis tool plotter.compute_sl_coeffs() # gather the learned coefficients and relevant metrics # And place into the results_list results_list.append({'num_trials': trial_count, 'loss': min(sbvp.groupreg.Losses), 'p': plotter.inferred_phi, 'q': plotter.inferred_q, 'coeffs': coeffs}) print(trial_count, end=" | ") ## Pickle the results pickle.dump(results_list, open(save_stem+"results.pickle", "wb")) ###Output _____no_output_____
churn-model-training-hosting.ipynb
###Markdown Train, host, and optimize 50+ XGBoost models in a multi-model endpoint for millisecond latencyThis example demonstrate hosting 51 State-wise ML models in a SageMaker Multi-Model Endpoint to predict customer churn based on account usage. The models are trained using a synthetic telecommunication customer churn dataset and SageMaker's built-in XGBoost algorithm. We will host this multi-model endpoint on two instance types: `ml.c5.xlarge` and `ml.c5.2xlarge` and compare the performance with a load test in order to find out an optimal hosting architecture. We will analyze the load testing results in Amazon CloudWatch.Instead of hosting 51 models in 51 endpoints as illustrated below,We can host 51 models in one endpoint and load models dynamically from S3.Amazon CloudWatch dashboard to show endpoint performance. This notebook is developed in SageMaker Studio using `Python 3 (Data Science)` kernel with a ml.t3.medium instance.First we install a library `sagemaker-experiment` to manage the training jobs. ###Code !pip install -q sagemaker-experiments ###Output _____no_output_____ ###Markdown Import the libraries and set up the SageMaker resources. ###Code import sagemaker import os, sys import json import boto3 import numpy as np import pandas as pd role = sagemaker.get_execution_role() sess = sagemaker.Session() region = sess.boto_region_name bucket = sess.default_bucket() prefix = 'sagemaker/reinvent21-aim408/churn-mme' ###Output _____no_output_____ ###Markdown The dataset is a customer churn dataset from a synthetic telecommunication use case. We download the data from source. ###Code sagemaker.s3.S3Downloader.download('s3://sagemaker-sample-files/datasets/tabular/synthetic/churn.txt', './') df=pd.read_csv('churn.txt') df['CustomerID']=df.index df.head() ###Output _____no_output_____ ###Markdown We perform minimal data preprocessing: 1. replacing binary columns from string type to integers (0 & 1).2. setting CustomerID as the dataframe index and move the target column to the first column for XGBoost training. ###Code binary_columns=["Int'l Plan", "VMail Plan"] df[binary_columns] = df[binary_columns].replace(to_replace=['yes', 'no'], value=[1, 0]) df['Churn?'] = df['Churn?'].replace(to_replace=['True.', 'False.'], value=[1, 0]) columns=['Churn?', 'State', 'Account Length', "Int'l Plan", 'VMail Plan', 'VMail Message', 'Day Mins', 'Day Calls', 'Day Charge', 'Eve Mins', 'Eve Calls', 'Eve Charge', 'Night Mins', 'Night Calls', 'Night Charge', 'Intl Mins', 'Intl Calls', 'Intl Charge', 'CustServ Calls'] df.index = df['CustomerID'] df_processed = df[columns] ###Output _____no_output_____ ###Markdown The processed data shown below. ###Code df_processed.head() ###Output _____no_output_____ ###Markdown We hold out 10% of data as a test set, stratified by `State`. The remaining data will be further split into train and validation set later right before training. ###Code from sklearn.model_selection import train_test_split df_train, df_test = train_test_split(df_processed, test_size=0.1, random_state=42, shuffle=True, stratify=df_processed['State']) ###Output _____no_output_____ ###Markdown Save the test data into S3 bucket. Two version of the test data are saved, one that has complete data, and the other one without target and index for inference purposes. ###Code columns_no_target=['Account Length', "Int'l Plan", 'VMail Plan', 'VMail Message', 'Day Mins', 'Day Calls', 'Day Charge', 'Eve Mins', 'Eve Calls', 'Eve Charge', 'Night Mins', 'Night Calls', 'Night Charge', 'Intl Mins', 'Intl Calls', 'Intl Charge', 'CustServ Calls'] df_test.to_csv('churn_test.csv') df_test[columns_no_target].to_csv('churn_test_no_target.csv', index=False) sagemaker.s3.S3Uploader.upload('churn_test.csv', f's3://{bucket}/{prefix}/churn_data') sagemaker.s3.S3Uploader.upload('churn_test_no_target.csv', f's3://{bucket}/{prefix}/churn_data') ###Output _____no_output_____ ###Markdown We set up an experiment in SageMaker to hold all the training job information. ###Code from sagemaker.amazon.amazon_estimator import image_uris from smexperiments.experiment import Experiment from smexperiments.trial import Trial from botocore.exceptions import ClientError import time from time import gmtime, strftime dict_estimator = {} experiment_name = 'churn-prediction' try: experiment = Experiment.create( experiment_name=experiment_name, description='Training churn prediction models based on telco churn dataset.') except ClientError as e: experiment = Experiment.load(experiment_name) print(f'{experiment_name} experiment already exists! Reusing the existing experiment.') ###Output _____no_output_____ ###Markdown For convenience, we create a function `launch_training_job()` so that later we can reuse it in a loop through the States. The training algorithm used here is SageMaker's built-in XGBoost algorithm with 20 rounds of training as the only hyperparameter we specify. ###Code image = image_uris.retrieve(region=region, framework='xgboost', version='1.3-1') train_instance_type = 'ml.m5.xlarge' train_instance_count = 1 s3_output = f's3://{bucket}/{prefix}/churn_data/training' def launch_training_job(state, train_data_s3, val_data_s3): exp_datetime = strftime('%Y-%m-%d-%H-%M-%S', gmtime()) jobname = f'churn-xgb-{state}-{exp_datetime}' # Creating a new trial for the experiment exp_trial = Trial.create(experiment_name=experiment_name, trial_name=jobname) experiment_config={'ExperimentName': experiment_name, 'TrialName': exp_trial.trial_name, 'TrialComponentDisplayName': 'Training'} xgb = sagemaker.estimator.Estimator(image, role, instance_count=train_instance_count, instance_type=train_instance_type, output_path=s3_output, enable_sagemaker_metrics=True, sagemaker_session=sess) xgb.set_hyperparameters(objective='binary:logistic', num_round=20) train_input = sagemaker.inputs.TrainingInput(s3_data=train_data_s3, content_type='csv') val_input = sagemaker.inputs.TrainingInput(s3_data=val_data_s3, content_type='csv') data_channels={'train': train_input, 'validation': val_input} xgb.fit(inputs=data_channels, job_name=jobname, experiment_config=experiment_config, wait=False) return xgb ###Output _____no_output_____ ###Markdown We isolate the data points by `State`, create train and validation sets for each `State` and train models by `State` using `launch_training_job()`. Again we hold out 10% as validation set in each `State`. We save the estimators in a dictionary `dict_estimator`. Execute the next four cells to launch the training jobs if this is the first time running the demo. There will be 51 training jobs submitted. We implemented a function `wait_for_training_quota()` to check for the current job count and limit the total training job in this experiment to `job_limit`. If the job count is at the limit, the function waits number of seconds specified in `wait` argument and check the job count again. This is to account for account level SageMaker quota that may cause error in the for loop. The default service quota for *Number of instances across training jobs* and *number of ml.m5.xlarge instances* are 4 as documented in [Service Quota page](https://docs.aws.amazon.com/general/latest/gr/sagemaker.htmllimits_sagemaker). If your account has a higher limit, you may change the `job_limit` to a higher number to allow more simultaneous training jobs (therefore faster). You can also [request a quota increase](https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html).If you already have run the training jobs from this notebook and have completed trials in SageMaker Experiments, you can proceed to [loading the existing estimators](loading-estimators). ###Code def wait_for_training_quota(dict_estimator, job_limit = 4, wait = 30): def query_jobs(dict_estimator): counter=0 for key, estimator in dict_estimator.items(): status = estimator.latest_training_job.describe()["TrainingJobStatus"] time.sleep(2) if status == "InProgress": counter+=1 return counter job_count = query_jobs(dict_estimator) if job_count < job_limit: print(f'Current total running jobs {job_count} is below {job_limit}. Proceeding...') return while job_count >= job_limit: print(f'Current total running jobs {job_count} is reaching the limit {job_limit}. Waiting {wait} seconds...') time.sleep(wait) job_count = query_jobs(dict_estimator) print(f'Current total running jobs {job_count} is below {job_limit}. Proceeding...') os.makedirs('churn_data_by_state', exist_ok=True) for state in df_processed.State.unique(): print(state) output_dir = f's3://{bucket}/{prefix}/churn_data/by_state' out_train_csv_s3 = f's3://{bucket}/{prefix}/churn_data/by_state/churn_{state}_train.csv' out_val_csv_s3 = f's3://{bucket}/{prefix}/churn_data/by_state/churn_{state}_val.csv' # create train/val split for each State df_state = df_train[df_train['State']==state].drop(labels='State', axis=1) df_state_train, df_state_val = train_test_split(df_state, test_size=0.1, random_state=42, shuffle=True, stratify=df_state['Churn?']) df_state_train.to_csv(f'churn_data_by_state/churn_{state}_train.csv', index=False) df_state_val.to_csv(f'churn_data_by_state/churn_{state}_val.csv', index=False) sagemaker.s3.S3Uploader.upload(f'churn_data_by_state/churn_{state}_train.csv', output_dir) sagemaker.s3.S3Uploader.upload(f'churn_data_by_state/churn_{state}_val.csv', output_dir) wait_for_training_quota(dict_estimator, job_limit=4, wait=30) dict_estimator[state] = launch_training_job(state, out_train_csv_s3, out_val_csv_s3) time.sleep(2) ###Output _____no_output_____ ###Markdown Wait for all jobs to complete. ###Code def wait_for_training_job_to_complete(estimator): job = estimator.latest_training_job.job_name print(f"Waiting for job: {job}") status = estimator.latest_training_job.describe()["TrainingJobStatus"] while status == "InProgress": time.sleep(45) status = estimator.latest_training_job.describe()["TrainingJobStatus"] if status == "InProgress": print(f"{job} job status: {status}") print(f"DONE. Status for {job} is {status}\n") for est in list(dict_estimator.values()): wait_for_training_job_to_complete(est) ###Output _____no_output_____ ###Markdown The code snippet below is to retrieve the estimators from the experiment trials. It is useful when you have already trained the models but somehow lost the dictionary `dict_estimator` and want to resume the work.```pythondict_estimator={}experiment = Experiment.load(experiment_name)for i, j in enumerate(experiment.list_trials()): print(i, j.trial_name) jobname=j.trial_name state=jobname.split('-')[2] print(state) try: dict_estimator[state]=sagemaker.estimator.Estimator.attach(jobname) except: pass``` ###Code ## Uncomment this part to load the estimators if you already have trained them. # dict_estimator={} # experiment = Experiment.load(experiment_name) # for i, j in enumerate(experiment.list_trials()): # print(i, j.trial_name) # jobname=j.trial_name # state=jobname.split('-')[2] # print(state) # try: # dict_estimator[state]=sagemaker.estimator.Estimator.attach(jobname) # except: # pass ###Output _____no_output_____ ###Markdown Once the training are completed, we can start hosting our multimodel endpoint. We host our State-wise multi-model endpoint in two different instances: `ml.c5.xlarge` and `ml.c5.2xlarge`. And we will be conducting load testing to profile the performance. ###Code print(len(dict_estimator)) print(dict_estimator.keys()) ###Output _____no_output_____ ###Markdown Here we designate a S3 location to hold all the model artifacts we would like to host. At any time (before or after the endpoint is created), we can dynamically add models to the designated model artifacts folder, making multi-model endpoint a flexible tool to serve models at scale. ###Code model_data_prefix = f's3://{bucket}/{prefix}/churn_data/multi_model_artifacts/' for state, est in dict_estimator.items(): artifact_path = est.model_data state_model_name = f'churn-xgb-{state}.tar.gz' print(f'Copying {state_model_name} to multi_model_artifacts folder') # This is copying over the model artifact to the S3 location for the MME. !aws s3 --quiet cp {artifact_path} {model_data_prefix}{state_model_name} ###Output _____no_output_____ ###Markdown Endpoint creation is a three-step process with the API. `create_model()`==>`create_endpoint_config()`==>`creat_endpoint()`.Create our first endpoint with `ml.c5.xlarge` instance which has 4 vCPU and 8 GB RAM. ###Code exp_datetime = strftime('%Y-%m-%d-%H-%M-%S', gmtime()) model_name = f'churn-xgb-mme-{exp_datetime}' hosting_instance_type = 'ml.c5.xlarge' hosting_instance_count = 1 endpoint_name = f'{model_name}-c5-xl' # image = image_uris.retrieve(region=region, framework='xgboost', version='1.3-1') container = {'Image': image, 'ModelDataUrl': model_data_prefix, 'Mode': 'MultiModel'} response1 = sess.sagemaker_client.create_model(ModelName = model_name, ExecutionRoleArn = role, Containers = [container]) response2 = sess.sagemaker_client.create_endpoint_config( EndpointConfigName = endpoint_name, ProductionVariants = [{'InstanceType': hosting_instance_type, 'InitialInstanceCount': hosting_instance_count, 'InitialVariantWeight': 1, 'ModelName': model_name, 'VariantName': 'AllTraffic'}]) response3 = sess.sagemaker_client.create_endpoint(EndpointName = endpoint_name, EndpointConfigName = endpoint_name) print(endpoint_name) ###Output _____no_output_____ ###Markdown We create another endpoint with `ml.c5.2xlarge` which has 8 vCPU and 16 GB RAM. ###Code hosting_instance_type = 'ml.c5.2xlarge' hosting_instance_count = 1 endpoint_name_2 = f'{model_name}-c5-2xl' response4 = sess.sagemaker_client.create_endpoint_config( EndpointConfigName = endpoint_name_2, ProductionVariants = [{'InstanceType': hosting_instance_type, 'InitialInstanceCount': hosting_instance_count, 'InitialVariantWeight': 1, 'ModelName': model_name, # re-using the model 'VariantName': 'AllTraffic'}]) response5 = sess.sagemaker_client.create_endpoint(EndpointName = endpoint_name_2, EndpointConfigName = endpoint_name_2) print(endpoint_name_2) waiter = sess.sagemaker_client.get_waiter('endpoint_in_service') print(f'Waiting for endpoint {endpoint_name} to create...') waiter.wait(EndpointName=endpoint_name) print(f'Waiting for endpoint {endpoint_name_2} to create...') waiter.wait(EndpointName=endpoint_name_2) ###Output _____no_output_____ ###Markdown Let's move our load testing to [AWS Cloud9](https://console.aws.amazon.com/cloud9/home?region=us-east-1). You could also use your local computer to run the load testing. (Optional) Enable autoscalingWe have verified the baseline single instance performance, let's apply a autoscaling policy to allow scale in/out between 2 to 5 instances for variable traffic to ensure performance. Here we use a predefined metric `SageMakerVariantInvocationsPerInstance` with a `TargetValue` 4,000 to balance the load to 4,000 requests per instance. ###Code # Common class representing Application Auto Scaling for SageMaker amongst other services client = boto3.client('application-autoscaling') # This is the format in which application autoscaling references the endpoint resource_id=f'endpoint/{endpoint_name_2}/variant/AllTraffic' response = client.register_scalable_target( ServiceNamespace='sagemaker', ResourceId=resource_id, ScalableDimension='sagemaker:variant:DesiredInstanceCount', MinCapacity=2, MaxCapacity=5 ) response = client.put_scaling_policy( PolicyName='Invocations-ScalingPolicy', ServiceNamespace='sagemaker', # The namespace of the AWS service that provides the resource. ResourceId=resource_id, # Endpoint name ScalableDimension='sagemaker:variant:DesiredInstanceCount', # SageMaker supports only Instance Count PolicyType='TargetTrackingScaling', # 'StepScaling'|'TargetTrackingScaling' TargetTrackingScalingPolicyConfiguration={ 'TargetValue': 4000, # The target value for the metric: ApproximateBacklogSizePerInstance. 'PredefinedMetricSpecification': { 'PredefinedMetricType': 'SageMakerVariantInvocationsPerInstance', }, 'ScaleInCooldown': 600, # The cooldown period helps you prevent your Auto Scaling group from launching or terminating # additional instances before the effects of previous activities are visible. # You can configure the length of time based on your instance startup time or other application needs. # ScaleInCooldown - The amount of time, in seconds, after a scale in activity completes before another scale in activity can start. 'ScaleOutCooldown': 300,# ScaleOutCooldown - The amount of time, in seconds, after a scale out activity completes before another scale out activity can start. 'DisableScaleIn': False,# Indicates whether scale in by the target tracking policy is disabled. # If the value is true , scale in is disabled and the target tracking policy won't # remove capacity from the scalable resource. } ) ###Output _____no_output_____ ###Markdown After you are done with the load-testing, uncomment and run the next cell to delete endpoints to stop incurring cost. ###Code # sess.sagemaker_client.delete_endpoint(EndpointName=endpoint_name) # sess.sagemaker_client.delete_endpoint(EndpointName=endpoint_name_2) ###Output _____no_output_____
lec1_MLP/lec1_mnist.ipynb
###Markdown ###Code from tensorflow.keras.datasets import mnist from tensorflow.keras.utils import to_categorical from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense , Activation from tensorflow.keras.optimizers import RMSprop %tensorflow_version 2.x import tensorflow as tf device_name = tf.test.gpu_device_name() if device_name != '/device:GPU:0': raise SystemError('GPU device not found') print('Found GPU at: {}'.format(device_name)) # download dataset (train_images, train_labels), (test_images,test_labels) = mnist.load_data() # Data prepor train_images = train_images.reshape(train_images.shape[0],train_images.shape[1]**2) train_images = train_images/255.0 test_images = test_images.reshape(test_images.shape[0],test_images.shape[1]**2) test_images = test_images/255.0 train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) # Model Settings print(train_images.shape[1]) model = Sequential(Dense(512,input_shape = (train_images.shape[1],))) model.add(Activation('relu')) model.add(Dense(10)) model.add(Activation('softmax')) # Optimezer Settings rms = RMSprop(lr=0.1) model.compile(loss = 'categorical_crossentropy', optimizer=rms,metrics=['accuracy'] ) def train(model): with tf.device('/device:GPU:0'): history = model.fit(train_images,train_labels, verbose = 1, batch_size = 128, epochs = 5 ) return history train(model) import matplotlib.pyplot as plt (train_images, train_labels), (test_images, test_labels) = mnist.load_data() plt.imshow(test_images [0]) test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 img = test_images [0].reshape ((1, 28*28)) print (model.predict(img)) ###Output _____no_output_____
experiments/tl_3v2/A/cores-oracle.run1.framed/trials/9/trial.ipynb
###Markdown Transfer Learning Template ###Code %load_ext autoreload %autoreload 2 %matplotlib inline import os, json, sys, time, random import numpy as np import torch from torch.optim import Adam from easydict import EasyDict import matplotlib.pyplot as plt from steves_models.steves_ptn import Steves_Prototypical_Network from steves_utils.lazy_iterable_wrapper import Lazy_Iterable_Wrapper from steves_utils.iterable_aggregator import Iterable_Aggregator from steves_utils.ptn_train_eval_test_jig import PTN_Train_Eval_Test_Jig from steves_utils.torch_sequential_builder import build_sequential from steves_utils.torch_utils import get_dataset_metrics, ptn_confusion_by_domain_over_dataloader from steves_utils.utils_v2 import (per_domain_accuracy_from_confusion, get_datasets_base_path) from steves_utils.PTN.utils import independent_accuracy_assesment from torch.utils.data import DataLoader from steves_utils.stratified_dataset.episodic_accessor import Episodic_Accessor_Factory from steves_utils.ptn_do_report import ( get_loss_curve, get_results_table, get_parameters_table, get_domain_accuracies, ) from steves_utils.transforms import get_chained_transform ###Output _____no_output_____ ###Markdown Allowed ParametersThese are allowed parameters, not defaultsEach of these values need to be present in the injected parameters (the notebook will raise an exception if they are not present)Papermill uses the cell tag "parameters" to inject the real parameters below this cell.Enable tags to see what I mean ###Code required_parameters = { "experiment_name", "lr", "device", "seed", "dataset_seed", "n_shot", "n_query", "n_way", "train_k_factor", "val_k_factor", "test_k_factor", "n_epoch", "patience", "criteria_for_best", "x_net", "datasets", "torch_default_dtype", "NUM_LOGS_PER_EPOCH", "BEST_MODEL_PATH", "x_shape", } from steves_utils.CORES.utils import ( ALL_NODES, ALL_NODES_MINIMUM_1000_EXAMPLES, ALL_DAYS ) from steves_utils.ORACLE.utils_v2 import ( ALL_DISTANCES_FEET_NARROWED, ALL_RUNS, ALL_SERIAL_NUMBERS, ) standalone_parameters = {} standalone_parameters["experiment_name"] = "STANDALONE PTN" standalone_parameters["lr"] = 0.001 standalone_parameters["device"] = "cuda" standalone_parameters["seed"] = 1337 standalone_parameters["dataset_seed"] = 1337 standalone_parameters["n_way"] = 8 standalone_parameters["n_shot"] = 3 standalone_parameters["n_query"] = 2 standalone_parameters["train_k_factor"] = 1 standalone_parameters["val_k_factor"] = 2 standalone_parameters["test_k_factor"] = 2 standalone_parameters["n_epoch"] = 50 standalone_parameters["patience"] = 10 standalone_parameters["criteria_for_best"] = "source_loss" standalone_parameters["datasets"] = [ { "labels": ALL_SERIAL_NUMBERS, "domains": ALL_DISTANCES_FEET_NARROWED, "num_examples_per_domain_per_label": 100, "pickle_path": os.path.join(get_datasets_base_path(), "oracle.Run1_framed_2000Examples_stratified_ds.2022A.pkl"), "source_or_target_dataset": "source", "x_transforms": ["unit_mag", "minus_two"], "episode_transforms": [], "domain_prefix": "ORACLE_" }, { "labels": ALL_NODES, "domains": ALL_DAYS, "num_examples_per_domain_per_label": 100, "pickle_path": os.path.join(get_datasets_base_path(), "cores.stratified_ds.2022A.pkl"), "source_or_target_dataset": "target", "x_transforms": ["unit_power", "times_zero"], "episode_transforms": [], "domain_prefix": "CORES_" } ] standalone_parameters["torch_default_dtype"] = "torch.float32" standalone_parameters["x_net"] = [ {"class": "nnReshape", "kargs": {"shape":[-1, 1, 2, 256]}}, {"class": "Conv2d", "kargs": { "in_channels":1, "out_channels":256, "kernel_size":(1,7), "bias":False, "padding":(0,3), },}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features":256}}, {"class": "Conv2d", "kargs": { "in_channels":256, "out_channels":80, "kernel_size":(2,7), "bias":True, "padding":(0,3), },}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features":80}}, {"class": "Flatten", "kargs": {}}, {"class": "Linear", "kargs": {"in_features": 80*256, "out_features": 256}}, # 80 units per IQ pair {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm1d", "kargs": {"num_features":256}}, {"class": "Linear", "kargs": {"in_features": 256, "out_features": 256}}, ] # Parameters relevant to results # These parameters will basically never need to change standalone_parameters["NUM_LOGS_PER_EPOCH"] = 10 standalone_parameters["BEST_MODEL_PATH"] = "./best_model.pth" # Parameters parameters = { "experiment_name": "tl_3Av2:cores -> oracle.run1.framed", "device": "cuda", "lr": 0.0001, "x_shape": [2, 200], "n_shot": 3, "n_query": 2, "train_k_factor": 3, "val_k_factor": 2, "test_k_factor": 2, "torch_default_dtype": "torch.float32", "n_epoch": 50, "patience": 3, "criteria_for_best": "target_accuracy", "x_net": [ {"class": "nnReshape", "kargs": {"shape": [-1, 1, 2, 200]}}, { "class": "Conv2d", "kargs": { "in_channels": 1, "out_channels": 256, "kernel_size": [1, 7], "bias": False, "padding": [0, 3], }, }, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features": 256}}, { "class": "Conv2d", "kargs": { "in_channels": 256, "out_channels": 80, "kernel_size": [2, 7], "bias": True, "padding": [0, 3], }, }, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features": 80}}, {"class": "Flatten", "kargs": {}}, {"class": "Linear", "kargs": {"in_features": 16000, "out_features": 256}}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm1d", "kargs": {"num_features": 256}}, {"class": "Linear", "kargs": {"in_features": 256, "out_features": 256}}, ], "NUM_LOGS_PER_EPOCH": 10, "BEST_MODEL_PATH": "./best_model.pth", "n_way": 16, "datasets": [ { "labels": [ "1-10.", "1-11.", "1-15.", "1-16.", "1-17.", "1-18.", "1-19.", "10-4.", "10-7.", "11-1.", "11-14.", "11-17.", "11-20.", "11-7.", "13-20.", "13-8.", "14-10.", "14-11.", "14-14.", "14-7.", "15-1.", "15-20.", "16-1.", "16-16.", "17-10.", "17-11.", "17-2.", "19-1.", "19-16.", "19-19.", "19-20.", "19-3.", "2-10.", "2-11.", "2-17.", "2-18.", "2-20.", "2-3.", "2-4.", "2-5.", "2-6.", "2-7.", "2-8.", "3-13.", "3-18.", "3-3.", "4-1.", "4-10.", "4-11.", "4-19.", "5-5.", "6-15.", "7-10.", "7-14.", "8-18.", "8-20.", "8-3.", "8-8.", ], "domains": [1, 2, 3, 4, 5], "num_examples_per_domain_per_label": -1, "pickle_path": "/mnt/wd500GB/CSC500/csc500-main/datasets/cores.stratified_ds.2022A.pkl", "source_or_target_dataset": "source", "x_transforms": ["unit_power", "take_200"], "episode_transforms": [], "domain_prefix": "C_", }, { "labels": [ "3123D52", "3123D65", "3123D79", "3123D80", "3123D54", "3123D70", "3123D7B", "3123D89", "3123D58", "3123D76", "3123D7D", "3123EFE", "3123D64", "3123D78", "3123D7E", "3124E4A", ], "domains": [32, 38, 8, 44, 14, 50, 20, 26], "num_examples_per_domain_per_label": 2000, "pickle_path": "/mnt/wd500GB/CSC500/csc500-main/datasets/oracle.Run1_framed_2000Examples_stratified_ds.2022A.pkl", "source_or_target_dataset": "target", "x_transforms": ["unit_power", "take_200", "resample_20Msps_to_25Msps"], "episode_transforms": [], "domain_prefix": "O_", }, ], "seed": 7, "dataset_seed": 7, } # Set this to True if you want to run this template directly STANDALONE = False if STANDALONE: print("parameters not injected, running with standalone_parameters") parameters = standalone_parameters if not 'parameters' in locals() and not 'parameters' in globals(): raise Exception("Parameter injection failed") #Use an easy dict for all the parameters p = EasyDict(parameters) if "x_shape" not in p: p.x_shape = [2,256] # Default to this if we dont supply x_shape supplied_keys = set(p.keys()) if supplied_keys != required_parameters: print("Parameters are incorrect") if len(supplied_keys - required_parameters)>0: print("Shouldn't have:", str(supplied_keys - required_parameters)) if len(required_parameters - supplied_keys)>0: print("Need to have:", str(required_parameters - supplied_keys)) raise RuntimeError("Parameters are incorrect") ################################### # Set the RNGs and make it all deterministic ################################### np.random.seed(p.seed) random.seed(p.seed) torch.manual_seed(p.seed) torch.use_deterministic_algorithms(True) ########################################### # The stratified datasets honor this ########################################### torch.set_default_dtype(eval(p.torch_default_dtype)) ################################### # Build the network(s) # Note: It's critical to do this AFTER setting the RNG ################################### x_net = build_sequential(p.x_net) start_time_secs = time.time() p.domains_source = [] p.domains_target = [] train_original_source = [] val_original_source = [] test_original_source = [] train_original_target = [] val_original_target = [] test_original_target = [] # global_x_transform_func = lambda x: normalize(x.to(torch.get_default_dtype()), "unit_power") # unit_power, unit_mag # global_x_transform_func = lambda x: normalize(x, "unit_power") # unit_power, unit_mag def add_dataset( labels, domains, pickle_path, x_transforms, episode_transforms, domain_prefix, num_examples_per_domain_per_label, source_or_target_dataset:str, iterator_seed=p.seed, dataset_seed=p.dataset_seed, n_shot=p.n_shot, n_way=p.n_way, n_query=p.n_query, train_val_test_k_factors=(p.train_k_factor,p.val_k_factor,p.test_k_factor), ): if x_transforms == []: x_transform = None else: x_transform = get_chained_transform(x_transforms) if episode_transforms == []: episode_transform = None else: raise Exception("episode_transforms not implemented") episode_transform = lambda tup, _prefix=domain_prefix: (_prefix + str(tup[0]), tup[1]) eaf = Episodic_Accessor_Factory( labels=labels, domains=domains, num_examples_per_domain_per_label=num_examples_per_domain_per_label, iterator_seed=iterator_seed, dataset_seed=dataset_seed, n_shot=n_shot, n_way=n_way, n_query=n_query, train_val_test_k_factors=train_val_test_k_factors, pickle_path=pickle_path, x_transform_func=x_transform, ) train, val, test = eaf.get_train(), eaf.get_val(), eaf.get_test() train = Lazy_Iterable_Wrapper(train, episode_transform) val = Lazy_Iterable_Wrapper(val, episode_transform) test = Lazy_Iterable_Wrapper(test, episode_transform) if source_or_target_dataset=="source": train_original_source.append(train) val_original_source.append(val) test_original_source.append(test) p.domains_source.extend( [domain_prefix + str(u) for u in domains] ) elif source_or_target_dataset=="target": train_original_target.append(train) val_original_target.append(val) test_original_target.append(test) p.domains_target.extend( [domain_prefix + str(u) for u in domains] ) else: raise Exception(f"invalid source_or_target_dataset: {source_or_target_dataset}") for ds in p.datasets: add_dataset(**ds) # from steves_utils.CORES.utils import ( # ALL_NODES, # ALL_NODES_MINIMUM_1000_EXAMPLES, # ALL_DAYS # ) # add_dataset( # labels=ALL_NODES, # domains = ALL_DAYS, # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "cores.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"cores_{u}" # ) # from steves_utils.ORACLE.utils_v2 import ( # ALL_DISTANCES_FEET, # ALL_RUNS, # ALL_SERIAL_NUMBERS, # ) # add_dataset( # labels=ALL_SERIAL_NUMBERS, # domains = list(set(ALL_DISTANCES_FEET) - {2,62}), # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "oracle.Run2_framed_2000Examples_stratified_ds.2022A.pkl"), # source_or_target_dataset="source", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"oracle1_{u}" # ) # from steves_utils.ORACLE.utils_v2 import ( # ALL_DISTANCES_FEET, # ALL_RUNS, # ALL_SERIAL_NUMBERS, # ) # add_dataset( # labels=ALL_SERIAL_NUMBERS, # domains = list(set(ALL_DISTANCES_FEET) - {2,62,56}), # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "oracle.Run2_framed_2000Examples_stratified_ds.2022A.pkl"), # source_or_target_dataset="source", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"oracle2_{u}" # ) # add_dataset( # labels=list(range(19)), # domains = [0,1,2], # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "metehan.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"met_{u}" # ) # # from steves_utils.wisig.utils import ( # # ALL_NODES_MINIMUM_100_EXAMPLES, # # ALL_NODES_MINIMUM_500_EXAMPLES, # # ALL_NODES_MINIMUM_1000_EXAMPLES, # # ALL_DAYS # # ) # import steves_utils.wisig.utils as wisig # add_dataset( # labels=wisig.ALL_NODES_MINIMUM_100_EXAMPLES, # domains = wisig.ALL_DAYS, # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "wisig.node3-19.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"wisig_{u}" # ) ################################### # Build the dataset ################################### train_original_source = Iterable_Aggregator(train_original_source, p.seed) val_original_source = Iterable_Aggregator(val_original_source, p.seed) test_original_source = Iterable_Aggregator(test_original_source, p.seed) train_original_target = Iterable_Aggregator(train_original_target, p.seed) val_original_target = Iterable_Aggregator(val_original_target, p.seed) test_original_target = Iterable_Aggregator(test_original_target, p.seed) # For CNN We only use X and Y. And we only train on the source. # Properly form the data using a transform lambda and Lazy_Iterable_Wrapper. Finally wrap them in a dataloader transform_lambda = lambda ex: ex[1] # Original is (<domain>, <episode>) so we strip down to episode only train_processed_source = Lazy_Iterable_Wrapper(train_original_source, transform_lambda) val_processed_source = Lazy_Iterable_Wrapper(val_original_source, transform_lambda) test_processed_source = Lazy_Iterable_Wrapper(test_original_source, transform_lambda) train_processed_target = Lazy_Iterable_Wrapper(train_original_target, transform_lambda) val_processed_target = Lazy_Iterable_Wrapper(val_original_target, transform_lambda) test_processed_target = Lazy_Iterable_Wrapper(test_original_target, transform_lambda) datasets = EasyDict({ "source": { "original": {"train":train_original_source, "val":val_original_source, "test":test_original_source}, "processed": {"train":train_processed_source, "val":val_processed_source, "test":test_processed_source} }, "target": { "original": {"train":train_original_target, "val":val_original_target, "test":test_original_target}, "processed": {"train":train_processed_target, "val":val_processed_target, "test":test_processed_target} }, }) from steves_utils.transforms import get_average_magnitude, get_average_power print(set([u for u,_ in val_original_source])) print(set([u for u,_ in val_original_target])) s_x, s_y, q_x, q_y, _ = next(iter(train_processed_source)) print(s_x) # for ds in [ # train_processed_source, # val_processed_source, # test_processed_source, # train_processed_target, # val_processed_target, # test_processed_target # ]: # for s_x, s_y, q_x, q_y, _ in ds: # for X in (s_x, q_x): # for x in X: # assert np.isclose(get_average_magnitude(x.numpy()), 1.0) # assert np.isclose(get_average_power(x.numpy()), 1.0) ################################### # Build the model ################################### # easfsl only wants a tuple for the shape model = Steves_Prototypical_Network(x_net, device=p.device, x_shape=tuple(p.x_shape)) optimizer = Adam(params=model.parameters(), lr=p.lr) ################################### # train ################################### jig = PTN_Train_Eval_Test_Jig(model, p.BEST_MODEL_PATH, p.device) jig.train( train_iterable=datasets.source.processed.train, source_val_iterable=datasets.source.processed.val, target_val_iterable=datasets.target.processed.val, num_epochs=p.n_epoch, num_logs_per_epoch=p.NUM_LOGS_PER_EPOCH, patience=p.patience, optimizer=optimizer, criteria_for_best=p.criteria_for_best, ) total_experiment_time_secs = time.time() - start_time_secs ################################### # Evaluate the model ################################### source_test_label_accuracy, source_test_label_loss = jig.test(datasets.source.processed.test) target_test_label_accuracy, target_test_label_loss = jig.test(datasets.target.processed.test) source_val_label_accuracy, source_val_label_loss = jig.test(datasets.source.processed.val) target_val_label_accuracy, target_val_label_loss = jig.test(datasets.target.processed.val) history = jig.get_history() total_epochs_trained = len(history["epoch_indices"]) val_dl = Iterable_Aggregator((datasets.source.original.val,datasets.target.original.val)) confusion = ptn_confusion_by_domain_over_dataloader(model, p.device, val_dl) per_domain_accuracy = per_domain_accuracy_from_confusion(confusion) # Add a key to per_domain_accuracy for if it was a source domain for domain, accuracy in per_domain_accuracy.items(): per_domain_accuracy[domain] = { "accuracy": accuracy, "source?": domain in p.domains_source } # Do an independent accuracy assesment JUST TO BE SURE! # _source_test_label_accuracy = independent_accuracy_assesment(model, datasets.source.processed.test, p.device) # _target_test_label_accuracy = independent_accuracy_assesment(model, datasets.target.processed.test, p.device) # _source_val_label_accuracy = independent_accuracy_assesment(model, datasets.source.processed.val, p.device) # _target_val_label_accuracy = independent_accuracy_assesment(model, datasets.target.processed.val, p.device) # assert(_source_test_label_accuracy == source_test_label_accuracy) # assert(_target_test_label_accuracy == target_test_label_accuracy) # assert(_source_val_label_accuracy == source_val_label_accuracy) # assert(_target_val_label_accuracy == target_val_label_accuracy) experiment = { "experiment_name": p.experiment_name, "parameters": dict(p), "results": { "source_test_label_accuracy": source_test_label_accuracy, "source_test_label_loss": source_test_label_loss, "target_test_label_accuracy": target_test_label_accuracy, "target_test_label_loss": target_test_label_loss, "source_val_label_accuracy": source_val_label_accuracy, "source_val_label_loss": source_val_label_loss, "target_val_label_accuracy": target_val_label_accuracy, "target_val_label_loss": target_val_label_loss, "total_epochs_trained": total_epochs_trained, "total_experiment_time_secs": total_experiment_time_secs, "confusion": confusion, "per_domain_accuracy": per_domain_accuracy, }, "history": history, "dataset_metrics": get_dataset_metrics(datasets, "ptn"), } ax = get_loss_curve(experiment) plt.show() get_results_table(experiment) get_domain_accuracies(experiment) print("Source Test Label Accuracy:", experiment["results"]["source_test_label_accuracy"], "Target Test Label Accuracy:", experiment["results"]["target_test_label_accuracy"]) print("Source Val Label Accuracy:", experiment["results"]["source_val_label_accuracy"], "Target Val Label Accuracy:", experiment["results"]["target_val_label_accuracy"]) json.dumps(experiment) ###Output _____no_output_____
altair/preprocess00/uncompressed_py3.ipynb
###Markdown --- ###Code notutf8_rdd_success = j_rdd.filter(is_not_utf8) notutf8_rdd_error = j_rdd.filter(is_utf8) notutf8_rdd_success.saveAsTextFile("hdfs://namenode/datasets/github/uncompressed/01_notutf8/success") notutf8_rdd_error.saveAsTextFile("hdfs://namenode/datasets/github/uncompressed/01_notutf8/error") ###Output _____no_output_____ ###Markdown --- ###Code syntax_rdd_success = notutf8_rdd_success.filter(is_valid_syntax) syntax_rdd_error = notutf8_rdd_success.filter(is_invalid_syntax) syntax_rdd_success.saveAsTextFile("hdfs://namenode/datasets/github/uncompressed/02_syntax/success") syntax_rdd_error.saveAsTextFile("hdfs://namenode/datasets/github/uncompressed/02_syntax/error") syntax_rdd_success.count() # should be 4023537 j_rdd.count() # should be 5267543 ###Output _____no_output_____ ###Markdown --- ###Code from lib2to3.refactor import RefactoringTool, get_fixers_from_package def convert_python3(x): try: fixers = get_fixers_from_package('lib2to3.fixes') refactoring_tool = RefactoringTool(fixer_names=fixers) node3 = refactoring_tool.refactor_string(x["content"], 'script') py3_str = str(node3) x["content"] = py3_str return (True, x) except: return (False, x) def is_success(x): return x[0] # Key is True if success py3_rdd = syntax_rdd_success.map(convert_python3) py3_rdd_success = py3_rdd.filter(is_success) py3_rdd_success = py3_rdd_success.map(lambda x: x[1]) py3_rdd_success.map(dump_json).saveAsTextFile("hdfs://namenode/datasets/github/uncompressed/03_py3/success") py3_rdd_error = py3_rdd.map(to_json_string).subtract(py3_rdd_success.map(to_json_string)).map(convert_json) py3_rdd_error.map(dump_json).saveAsTextFile("hdfs://namenode/datasets/github/uncompressed/03_py3/errors") ###Output _____no_output_____
Bronze/classical-systems/CS16_Probabilistic_States.ipynb
###Markdown $ \newcommand{\bra}[1]{\langle 1|} $$ \newcommand{\ket}[1]{|1\rangle} $$ \newcommand{\braket}[2]{\langle 1|2\rangle} $$ \newcommand{\dot}[2]{ 1 \cdot 2} $$ \newcommand{\biginner}[2]{\left\langle 1,2\right\rangle} $$ \newcommand{\mymatrix}[2]{\left( \begin{array}{1} 2\end{array} \right)} $$ \newcommand{\myvector}[1]{\mymatrix{c}{1}} $$ \newcommand{\myrvector}[1]{\mymatrix{r}{1}} $$ \newcommand{\mypar}[1]{\left( 1 \right)} $$ \newcommand{\mybigpar}[1]{ \Big( 1 \Big)} $$ \newcommand{\sqrttwo}{\frac{1}{\sqrt{2}}} $$ \newcommand{\dsqrttwo}{\dfrac{1}{\sqrt{2}}} $$ \newcommand{\onehalf}{\frac{1}{2}} $$ \newcommand{\donehalf}{\dfrac{1}{2}} $$ \newcommand{\hadamard}{ \mymatrix{rr}{ \sqrttwo & \sqrttwo \\ \sqrttwo & -\sqrttwo }} $$ \newcommand{\vzero}{\myvector{1\\0}} $$ \newcommand{\vone}{\myvector{0\\1}} $$ \newcommand{\stateplus}{\myvector{ \sqrttwo \\ \sqrttwo } } $$ \newcommand{\stateminus}{ \myrvector{ \sqrttwo \\ -\sqrttwo } } $$ \newcommand{\myarray}[2]{ \begin{array}{1}2\end{array}} $$ \newcommand{\X}{ \mymatrix{cc}{0 & 1 \\ 1 & 0} } $$ \newcommand{\I}{ \mymatrix{rr}{1 & 0 \\ 0 & 1} } $$ \newcommand{\Z}{ \mymatrix{rr}{1 & 0 \\ 0 & -1} } $$ \newcommand{\Htwo}{ \mymatrix{rrrr}{ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} } } $$ \newcommand{\CNOT}{ \mymatrix{cccc}{1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0} } $$ \newcommand{\norm}[1]{ \left\lVert 1 \right\rVert } $$ \newcommand{\pstate}[1]{ \lceil \mspace{-1mu} 1 \mspace{-1.5mu} \rfloor } $$ \newcommand{\greenbit}[1] {\mathbf{{\color{green}1}}} $$ \newcommand{\bluebit}[1] {\mathbf{{\color{blue}1}}} $$ \newcommand{\redbit}[1] {\mathbf{{\color{red}1}}} $$ \newcommand{\brownbit}[1] {\mathbf{{\color{brown}1}}} $$ \newcommand{\blackbit}[1] {\mathbf{{\color{black}1}}} $ Probabilistic States _prepared by Abuzer Yakaryilmaz_[](https://youtu.be/tJjrF7WgT1g) Suppose that Asja tosses a fair coin secretly.As we do not see the result, our information about the outcome will be probabilistic:$\rightarrow$ The outcome is heads with probability $0.5$ and the outcome will be tails with probability $0.5$.If the coin has a bias $ \dfrac{Pr(Head)}{Pr(Tail)} = \dfrac{3}{1}$, then our information about the outcome will be as follows:$\rightarrow$ The outcome will be heads with probability $ 0.75 $ and the outcome will be tails with probability $ 0.25 $. Explanation: The probability of getting heads is three times of the probability of getting tails. The total probability is 1. We divide the whole probability 1 into four parts (three parts are for heads and one part is for tail), one part is $ \dfrac{1}{4} = 0.25$, and then give three parts for heads ($0.75$) and one part for tails ($0.25$). Listing probabilities as a column We have two different outcomes: heads (0) and tails (1).We use a column of size 2 to show the probabilities of getting heads and getting tails.For the fair coin, our information after the coin-flip will be $ \myvector{0.5 \\ 0.5} $. For the biased coin, it will be $ \myvector{0.75 \\ 0.25} $.The first entry shows the probability of getting heads, and the second entry shows the probability of getting tails. $ \myvector{0.5 \\ 0.5} $ and $ \myvector{0.75 \\ 0.25} $ are two examples of 2-dimensional (column) vectors. Task 1 Suppose that Balvis secretly flips a coin having the bias $ \dfrac{Pr(Heads)}{Pr(Tails)} = \dfrac{1}{4}$.Represent your information about the outcome as a column vector. Task 2 Suppose that Fyodor secretly rolls a loaded (tricky) dice with the bias $$ Pr(1):Pr(2):Pr(3):Pr(4):Pr(5):Pr(6) = 7:5:4:2:6:1 . $$Represent your information about the result as a column vector. Remark that the size of your column vector should be 6.You may use python for your calculations. ###Code # # your code is here # ###Output _____no_output_____ ###Markdown click for our solution Vector representation Suppose that we have a system with 4 distiguishable states: $ s_1 $, $s_2 $, $s_3$, and $s_4$. We expect the system to be in one of them at any moment. By speaking with probabilities, we say that the system is in one of the states with probability 1, and in any other state with probability 0. By using our column representation, we can show each state as a column vector (by using the vectors in standard basis of $ \mathbb{R}^4 $):$ e_1 = \myvector{1\\ 0 \\ 0 \\ 0}, e_2 = \myvector{0 \\ 1 \\ 0 \\ 0}, e_3 = \myvector{0 \\ 0 \\ 1 \\ 0}, \mbox{ and } e_4 = \myvector{0 \\ 0 \\ 0 \\ 1}.$ This representation helps us to represent our information on a system when it is in more than one state with certain probabilities. Remember the case in which the coins are tossed secretly. For example, suppose that the system is in states $ s_1 $, $ s_2 $, $ s_3 $, and $ s_4 $ with probabilities $ 0.20 $, $ 0.25 $, $ 0.40 $, and $ 0.15 $, respectively. (The total probability must be 1, i.e., $ 0.20+0.25+0.40+0.15 = 1.00 $)Then, we can say that the system is in the following probabilistic state:$ 0.20 \cdot e_1 + 0.25 \cdot e2 + 0.40 \cdot e_3 + 0.15 \cdot e4 $$ = 0.20 \cdot \myvector{1\\ 0 \\ 0 \\ 0} + 0.25 \cdot \myvector{0\\ 1 \\ 0 \\ 0} + 0.40 \cdot \myvector{0\\ 0 \\ 1 \\ 0} + 0.15 \cdot \myvector{0\\ 0 \\ 0 \\ 1} $$ = \myvector{0.20\\ 0 \\ 0 \\ 0} + \myvector{0\\ 0.25 \\ 0 \\ 0} + \myvector{0\\ 0 \\0.40 \\ 0} + \myvector{0\\ 0 \\ 0 \\ 0.15 } = \myvector{ 0.20 \\ 0.25 \\ 0.40 \\ 0.15 }, $where the summation of entries must be 1. Probabilistic state A probabilistic state is a linear combination of the vectors in the standard basis. Here coefficients (scalars) must satisfy certain properties: Each coefficient is non-negative The summation of coefficients is 1 Alternatively, we can say that a probabilistic state is a probability distribution over deterministic states.We can show all information as a single mathematical object, which is called as a stochastic vector. Remark that the state of any linear system is a linear combination of the vectors in the basis. Task 3 For a system with 4 states, randomly create a probabilistic state, and print its entries, e.g., $ 0.16~~0.17~~0.02~~0.65 $.Hint: You may pick your random numbers between 0 and 100 (or 1000), and then normalize each value by dividing the summation of all numbers. ###Code # # your solution is here # ###Output _____no_output_____ ###Markdown click for our solution Task 4 [extra] As given in the hint for Task 3, you may pick your random numbers between 0 and $ 10^k $. For better precision, you may take bigger values of $ k $.Write a function that randomly creates a probabilisitic state of size $ n $ with a precision up to $ k $ digits. Test your function. ###Code # # your solution is here # ###Output _____no_output_____
deep_learning_v2_pytorch/autoencoder/convolutional-autoencoder/Upsampling_Solution.ipynb
###Markdown Convolutional AutoencoderSticking with the MNIST dataset, let's improve our autoencoder's performance using convolutional layers. We'll build a convolutional autoencoder to compress the MNIST dataset. >The encoder portion will be made of convolutional and pooling layers and the decoder will be made of **upsampling and convolutional layers**. Compressed RepresentationA compressed representation can be great for saving and sharing any kind of data in a way that is more efficient than storing raw data. In practice, the compressed representation often holds key information about an input image and we can use it for denoising images or oher kinds of reconstruction and transformation!Let's get started by importing our libraries and getting the dataset. ###Code import torch import numpy as np from torchvision import datasets import torchvision.transforms as transforms # convert data to torch.FloatTensor transform = transforms.ToTensor() # load the training and test datasets train_data = datasets.MNIST(root="data", train=True, download=True, transform=transform) test_data = datasets.MNIST(root="data", train=False, download=True, transform=transform) # Create training and test dataloaders num_workers = 0 # how many samples per batch to load batch_size = 20 # prepare data loaders train_loader = torch.utils.data.DataLoader( train_data, batch_size=batch_size, num_workers=num_workers ) test_loader = torch.utils.data.DataLoader( test_data, batch_size=batch_size, num_workers=num_workers ) ###Output _____no_output_____ ###Markdown Visualize the Data ###Code import matplotlib.pyplot as plt %matplotlib inline # obtain one batch of training images dataiter = iter(train_loader) images, labels = dataiter.next() images = images.numpy() # get one image from the batch img = np.squeeze(images[0]) fig = plt.figure(figsize=(5, 5)) ax = fig.add_subplot(111) ax.imshow(img, cmap="gray") ###Output _____no_output_____ ###Markdown --- Convolutional AutoencoderThe encoder part of the network will be a typical convolutional pyramid. Each convolutional layer will be followed by a max-pooling layer to reduce the dimensions of the layers. The decoder though might be something new to you. The decoder needs to convert from a narrow representation to a wide reconstructed image. For example, the representation could be a 4x4x8 max-pool layer. This is the output of the encoder, but also the input to the decoder. We want to get a 28x28x1 image out from the decoder so we need to work our way back up from the narrow decoder input layer. A schematic of the network is shown below. Upsampling + Convolutions, DecoderThis decoder uses a combination of nearest-neighbor **upsampling and normal convolutional layers** to increase the width and height of the input layers.It is important to note that transpose convolution layers can lead to artifacts in the final images, such as checkerboard patterns. This is due to overlap in the kernels which can be avoided by setting the stride and kernel size equal. In [this Distill article](http://distill.pub/2016/deconv-checkerboard/) from Augustus Odena, *et al*, the authors show that these checkerboard artifacts can be avoided by resizing the layers using nearest neighbor or bilinear interpolation (upsampling) followed by a convolutional layer. This is the approach we take, here. TODO: Build the network shown above. > Build the encoder out of a series of convolutional and pooling layers. > When building the decoder, use a combination of upsampling and normal, convolutional layers. ###Code import torch.nn as nn import torch.nn.functional as F # define the NN architecture class ConvAutoencoder(nn.Module): def __init__(self): super(ConvAutoencoder, self).__init__() ## encoder layers ## # conv layer (depth from 1 --> 16), 3x3 kernels self.conv1 = nn.Conv2d(1, 16, 3, padding=1) # conv layer (depth from 16 --> 8), 3x3 kernels self.conv2 = nn.Conv2d(16, 4, 3, padding=1) # pooling layer to reduce x-y dims by two; kernel and stride of 2 self.pool = nn.MaxPool2d(2, 2) ## decoder layers ## self.conv4 = nn.Conv2d(4, 16, 3, padding=1) self.conv5 = nn.Conv2d(16, 1, 3, padding=1) def forward(self, x): # add layer, with relu activation function # and maxpooling after x = F.relu(self.conv1(x)) x = self.pool(x) # add hidden layer, with relu activation function x = F.relu(self.conv2(x)) x = self.pool(x) # compressed representation ## decoder # upsample, followed by a conv layer, with relu activation function # this function is called `interpolate` in some PyTorch versions x = F.upsample(x, scale_factor=2, mode="nearest") x = F.relu(self.conv4(x)) # upsample again, output should have a sigmoid applied x = F.upsample(x, scale_factor=2, mode="nearest") x = F.sigmoid(self.conv5(x)) return x # initialize the NN model = ConvAutoencoder() print(model) ###Output ConvAutoencoder( (conv1): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (conv2): Conv2d(16, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv4): Conv2d(4, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (conv5): Conv2d(16, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) ###Markdown --- TrainingHere I'll write a bit of code to train the network. I'm not too interested in validation here, so I'll just monitor the training loss and the test loss afterwards. We are not concerned with labels in this case, just images, which we can get from the `train_loader`. Because we're comparing pixel values in input and output images, it will be best to use a loss that is meant for a regression task. Regression is all about comparing quantities rather than probabilistic values. So, in this case, I'll use `MSELoss`. And compare output images and input images as follows:```loss = criterion(outputs, images)```Otherwise, this is pretty straightfoward training with PyTorch. We flatten our images, pass them into the autoencoder, and record the training loss as we go. ###Code # specify loss function criterion = nn.MSELoss() # specify loss function optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # number of epochs to train the model n_epochs = 30 for epoch in range(1, n_epochs + 1): # monitor training loss train_loss = 0.0 ################### # train the model # ################### for data in train_loader: # _ stands in for labels, here # no need to flatten images images, _ = data # clear the gradients of all optimized variables optimizer.zero_grad() # forward pass: compute predicted outputs by passing inputs to the model outputs = model(images) # calculate the loss loss = criterion(outputs, images) # backward pass: compute gradient of the loss with respect to model parameters loss.backward() # perform a single optimization step (parameter update) optimizer.step() # update running training loss train_loss += loss.item() * images.size(0) # print avg training statistics train_loss = train_loss / len(train_loader) print("Epoch: {} \tTraining Loss: {:.6f}".format(epoch, train_loss)) ###Output Epoch: 1 Training Loss: 0.323222 Epoch: 2 Training Loss: 0.167930 Epoch: 3 Training Loss: 0.150233 Epoch: 4 Training Loss: 0.141811 Epoch: 5 Training Loss: 0.136143 Epoch: 6 Training Loss: 0.131509 Epoch: 7 Training Loss: 0.126820 Epoch: 8 Training Loss: 0.122914 Epoch: 9 Training Loss: 0.119928 Epoch: 10 Training Loss: 0.117524 Epoch: 11 Training Loss: 0.115594 Epoch: 12 Training Loss: 0.114085 Epoch: 13 Training Loss: 0.112878 Epoch: 14 Training Loss: 0.111946 Epoch: 15 Training Loss: 0.111153 Epoch: 16 Training Loss: 0.110411 Epoch: 17 Training Loss: 0.109753 Epoch: 18 Training Loss: 0.109152 Epoch: 19 Training Loss: 0.108625 Epoch: 20 Training Loss: 0.108119 Epoch: 21 Training Loss: 0.107637 Epoch: 22 Training Loss: 0.107156 Epoch: 23 Training Loss: 0.106703 Epoch: 24 Training Loss: 0.106221 Epoch: 25 Training Loss: 0.105719 Epoch: 26 Training Loss: 0.105286 Epoch: 27 Training Loss: 0.104917 Epoch: 28 Training Loss: 0.104582 Epoch: 29 Training Loss: 0.104284 Epoch: 30 Training Loss: 0.104016 ###Markdown Checking out the resultsBelow I've plotted some of the test images along with their reconstructions. For the most part these look pretty good except for some blurriness in some parts. ###Code # obtain one batch of test images dataiter = iter(test_loader) images, labels = dataiter.next() # get sample outputs output = model(images) # prep images for display images = images.numpy() # output is resized into a batch of iages output = output.view(batch_size, 1, 28, 28) # use detach when it's an output that requires_grad output = output.detach().numpy() # plot the first ten input images and then reconstructed images fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(25, 4)) # input images on top row, reconstructions on bottom for images, row in zip([images, output], axes): for img, ax in zip(images, row): ax.imshow(np.squeeze(img), cmap="gray") ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ###Output _____no_output_____
.ipynb_checkpoints/cnt_tda-checkpoint.ipynb
###Markdown CNT orientation detection using TDA The following shows scanning electron microscopy (SEM) images of carbon nanotube (CNT) samples of different alignment degree. Samples with high alignment degree usually have stronger physical properties. ###Code ![Kernel & front-end diagram](SEM/20.PNG) ###Output '[Kernel' is not recognized as an internal or external command, operable program or batch file. 'front-end' is not recognized as an internal or external command, operable program or batch file. ###Markdown Preprocess of SEM imagesBefore we applying TDA, we can preprocess the SEM images using Canny edge detection: ###Code import scipy.io import matplotlib.pyplot as plt import cv2 # mentioning path of the image img_path = "SEM\\40.PNG" # read/load an SEM image image = cv2.imread(img_path) # detection of the edges img_edge = cv2.Canny(image, 100, 200, apertureSize = 7) plt.imshow(img_edge, cmap=plt.cm.gray) ###Output _____no_output_____ ###Markdown Derive the variation function We define variation function $V(X;\theta)$ as follows to measure the total length of extension for $X$ in direction $\theta$. Let the band containing $X$ andorthogonal to direction $\theta$ be bounded by the lines $x = m$ and $x = M$, $m < M$:$$V(X;\theta):=\sum_{i=1}^m l(I_i)+\sum_{j=1}^n l(J_j)-b_0(X)(M-m),$$where $J_i$ and $J_j$ are the intervals comprising the barcodes for the sub-level and super-level set filtrations of $X$ along the direction $0\leq \theta\leq \pi$. ###Code import numpy as np import gudhi as gd from math import cos from math import sin from math import sqrt from numpy import inf from numpy import NaN def variation(BW,slices): theta = np.linspace(0, 2*np.pi, 2*slices+1) # divide [0,2*pi] evenly into 2*slices slices BW = np.float_(BW) [r,c] = np.shape(BW) M = np.ceil(1/2*sqrt(r**2+c**2)) f = np.zeros(len(theta)-1) # since 0 and 2*pi represent the same direction, we dont need to calculate 2*pi # Now calculate the 0-th Betti number cc = gd.CubicalComplex(dimensions=[c,r], top_dimensional_cells = -BW.reshape((-1,))) p = cc.persistence() pers = cc.persistence_intervals_in_dimension(0) bars = np.array(pers) betti = np.shape(bars)[0] for i in range(len(f)): x = np.ones((r,1)) * cos(theta[i]) * (np.arange(c).reshape([1,c])-1/2*(c-1)) y = np.ones((1,c)) * sin(theta[i]) * (np.arange(r).reshape([r,1])-1/2*(r-1)) dist = (x+y)*BW # the distance of coordinates to center of BW dist[BW==0] = M cc = gd.CubicalComplex(dimensions=[c,r], top_dimensional_cells = dist.reshape((-1,)))# be carefull about dim p = cc.persistence() pers = cc.persistence_intervals_in_dimension(0) bars = np.array(pers) bars[bars == inf] = M f[i] = np.sum(bars[:,1]-bars[:,0]) variation = f[0:slices]+f[slices:2*slices]-betti*np.ones(slices)*2*M return variation slices = 20 bw = img_edge/np.amax(img_edge) v = variation(bw, slices) ### Plot the variation function using polar coordinates and the mark the maximum direction/angle # function - the array of variation function values # center - the coordinates of center # lienwidth - the linewidth of graph curve def polarplot(function, center, linewidth): v0 = np.append(np.concatenate((function,function)),function[0]) t0 = np.linspace(0,2*np.pi,2*len(function)+1) x = v0*np.cos(t0) + center[0] y = v0*np.sin(t0) + center[1] plt.plot(x,y, linewidth=linewidth) ind_of_max = np.argmax(function) xval = v0[ind_of_max]*np.cos(t0[ind_of_max]) + center[0] yval = v0[ind_of_max]*np.sin(t0[ind_of_max]) + center[1] plt.plot([center[0], xval], [center[1], yval], linewidth = linewidth) vec = v/max(v) # Normalize variation function plt.imshow(img_edge, cmap=plt.cm.gray) [r,c] = np.shape(img_edge) polarplot(min(r/2,c/2)*vec, [c/2,r/2], 3) plt.axis('equal') plt.show() ###Output _____no_output_____ ###Markdown Alignment degreeThe idea to derive the alignment degree is that: if the CNT fibers are well aligned along a direction $\theta$,$V(X;\theta)$ should be large and $V(X;\theta^\perp)$ small, where $\theta^\perp$ is the direction orthogonal to $\theta$. Let $\theta_{max}$ be the direction that maximizes $V(X;\theta)$.Then, we define the alignment degree as the ratio$$\zeta:=\frac{V(X;\theta_{max})-V(X;\theta_{max}^\perp)}{V(X;\theta_{max})}\approx \frac{\max V - \min V}{\max V}.$$ ###Code ali_degree = (max(v) - min(v))/max(v) print(ali_degree) ###Output 0.7417307611482369
Feature-Engineering/Outliers.ipynb
###Markdown Discussion Related With Outliers And Impact On Machine Learning!! Which Machine LEarning Models Are Sensitive To Outliers?1. Naivye Bayes Classifier--- Not Sensitive To Outliers2. SVM-------- Not Sensitive To Outliers 3. Linear Regression---------- Sensitive To Outliers4. Logistic Regression------- Sensitive To Outliers5. Decision Tree Regressor or Classifier---- Not Sensitive6. Ensemble(RF,XGboost,GB)------- Not Sensitive7. KNN--------------------------- Not Sensitive 8. Kmeans------------------------ Sensitive9. Hierarichal------------------- Sensitive 10. PCA-------------------------- Sensitive 11. Neural Networks-------------- Sensitive ###Code import pandas as pd df=pd.read_csv('titanic.csv') df.head() df['Age'].isnull().sum() import seaborn as sns sns.distplot(df['Age'].dropna()) sns.distplot(df['Age'].fillna(100)) ###Output _____no_output_____ ###Markdown Gaussian Distributed ###Code figure=df.Age.hist(bins=50) figure.set_title('Age') figure.set_xlabel('Age') figure.set_ylabel('No of passenger') figure=df.boxplot(column="Age") df['Age'].describe() ###Output _____no_output_____ ###Markdown If The Data Is Normally Distributed We use this ###Code ##### Assuming Age follows A Gaussian Distribution we will calculate the boundaries which differentiates the outliers uppper_boundary=df['Age'].mean() + 3* df['Age'].std() lower_boundary=df['Age'].mean() - 3* df['Age'].std() print(lower_boundary), print(uppper_boundary),print(df['Age'].mean()) ###Output -13.880374349943303 73.27860964406094 29.69911764705882 ###Markdown If Features Are Skewed We Use the below Technique ###Code figure=df.Fare.hist(bins=50) figure.set_title('Fare') figure.set_xlabel('Fare') figure.set_ylabel('No of passenger') df.boxplot(column="Fare") df['Fare'].describe() #### Lets compute the Interquantile range to calculate the boundaries IQR=df.Fare.quantile(0.75)-df.Fare.quantile(0.25) lower_bridge=df['Fare'].quantile(0.25)-(IQR*1.5) upper_bridge=df['Fare'].quantile(0.75)+(IQR*1.5) print(lower_bridge), print(upper_bridge) #### Extreme outliers lower_bridge=df['Fare'].quantile(0.25)-(IQR*3) upper_bridge=df['Fare'].quantile(0.75)+(IQR*3) print(lower_bridge), print(upper_bridge) data=df.copy() data.loc[data['Age']>=73,'Age']=73 data.loc[data['Fare']>=100,'Fare']=100 figure=data.Age.hist(bins=50) figure.set_title('Fare') figure.set_xlabel('Fare') figure.set_ylabel('No of passenger') figure=data.Fare.hist(bins=50) figure.set_title('Fare') figure.set_xlabel('Fare') figure.set_ylabel('No of passenger') from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(data[['Age','Fare']].fillna(0),data['Survived'],test_size=0.3) ### Logistic Regression from sklearn.linear_model import LogisticRegression classifier=LogisticRegression() classifier.fit(X_train,y_train) y_pred=classifier.predict(X_test) y_pred1=classifier.predict_proba(X_test) from sklearn.metrics import accuracy_score,roc_auc_score print("Accuracy_score: {}".format(accuracy_score(y_test,y_pred))) print("roc_auc_score: {}".format(roc_auc_score(y_test,y_pred1[:,1]))) ###Output Accuracy_score: 0.6716417910447762 roc_auc_score: 0.7115520907158045
data-science/metrics/MetricsARIMA_PvA.ipynb
###Markdown ###Code # Imports import pandas as pd import numpy as np # Load the raw data w1_results_df = pd.read_csv('https://raw.githubusercontent.com/JimKing100/NFL-Live/master/data-science/data/arima-combined/predictions-week1.csv') #### The week 1 predictions # week1-cur = 2018 total points # week1-pred = predicted points for the season # week1-act = actual points for the season # weekn-cur = week (n-1) actual points # weekn-pred = predicted points for the rest of the season (n-17) # weekn-act = actual points for the rest of the season (n-17) w1_results_df.head() # Calculate the metrics for ARIMA vs Baseline Average column_names = ['week', 'avg-total', 'avg-pct', 'arima-total', 'arima-pct', 'ab-correct'] metric_df = pd.DataFrame(columns = column_names) for i in range(1, 18): filename = 'https://raw.githubusercontent.com/JimKing100/NFL-Live/master/data-science/data/arima-combined/predictions-week' + str(i) + '.csv' # Column names week_cur = 'week' + str(i) + '-cur' week_pred = 'week' + str(i) + '-pred' week_act = 'week' + str(i) + '-act' # Weekly predictions results_df = pd.read_csv(filename) # Create the current points list using 2018 points in week 1 and average points going forward if i == 1: week_current = results_df['week1-cur'].tolist() else: # for each player (element) calculate the average points (element/(i-1)) and multiply by remaining games (17-(i-1)) # the 17th week is 0 and represents the bye week (17 weeks and 16 games) week_list = results_df[week_cur].tolist() week_current = [((element / (i -1)) * (17 - (i -1))) for element in week_list] # Create the prediction and actual lists week_pred = results_df[week_pred].tolist() week_act = results_df[week_act].tolist() # Calulate prediction vs. actual for average cur_total_correct = 0 num_players = len(week_current) for j in range(0, num_players): cur_count = 0 act_count = 0 for k in range(0, num_players): if j != k: if week_current[j] < week_current[k]: cur_count = cur_count + 1 if week_act[j] < week_act[k]: act_count = act_count + 1 cur_total_correct = cur_total_correct + (num_players - abs(act_count - cur_count)) # print(cur_count, act_count, num_players, '# correct predictions = ', (num_players - abs(act_count - cur_count)), cur_total_correct) print('Total correct and % correct - Baseline Average', cur_total_correct, cur_total_correct/(653 * 652)) # Calulate prediction vs. actual for ARIMA pred_total_correct = 0 num_players = len(week_pred) for j in range(0, num_players): pred_count = 0 act_count = 0 for k in range(0, num_players): if j != k: if week_pred[j] < week_pred[k]: pred_count = pred_count + 1 if week_act[j] < week_act[k]: act_count = act_count + 1 pred_total_correct = pred_total_correct + (num_players - abs(act_count - pred_count)) # print(pred_count, act_count, num_players, '# correct predictions = ', (num_players - abs(act_count - pred_count)), pred_total_correct) print('Total correct and % correct - ARIMA', pred_total_correct, pred_total_correct/(653 * 652)) print('Total additional correct using ARIMA = ', pred_total_correct - cur_total_correct) metric_df = metric_df.append({'week': i, 'avg-total': cur_total_correct, 'avg-pct': cur_total_correct/(653 * 652), 'arima-total': pred_total_correct, 'arima-pct': pred_total_correct/(653 * 652), 'ab-correct': pred_total_correct - cur_total_correct}, ignore_index=True) file_name = '/content/ab_metrics.csv' metric_df.to_csv(file_name, index=False) ###Output Total correct and % correct - Baseline Average 350701 0.8237135824274937 Total correct and % correct - ARIMA 353497 0.8302807241706517 Total additional correct using ARIMA = 2796 Total correct and % correct - Baseline Average 341356 0.8017643908717669 Total correct and % correct - ARIMA 357868 0.8405471678614042 Total additional correct using ARIMA = 16512 Total correct and % correct - Baseline Average 350501 0.8232438297992277 Total correct and % correct - ARIMA 358132 0.8411672413307153 Total additional correct using ARIMA = 7631 Total correct and % correct - Baseline Average 355994 0.8361455857345522 Total correct and % correct - ARIMA 357600 0.8399176993395278 Total additional correct using ARIMA = 1606 Total correct and % correct - Baseline Average 357082 0.8387010400323189 Total correct and % correct - ARIMA 357377 0.8393939251590112 Total additional correct using ARIMA = 295 Total correct and % correct - Baseline Average 357546 0.839790866129896 Total correct and % correct - ARIMA 357995 0.840845460780353 Total additional correct using ARIMA = 449 Total correct and % correct - Baseline Average 360267 0.8461818506374543 Total correct and % correct - ARIMA 357893 0.8406058869399374 Total additional correct using ARIMA = -2374 Total correct and % correct - Baseline Average 360363 0.846407331899022 Total correct and % correct - ARIMA 357398 0.8394432491849791 Total additional correct using ARIMA = -2965 Total correct and % correct - Baseline Average 360401 0.8464965848983925 Total correct and % correct - ARIMA 358692 0.84248254868986 Total additional correct using ARIMA = -1709 Total correct and % correct - Baseline Average 360028 0.8456204962466765 Total correct and % correct - ARIMA 360060 0.845695656667199 Total additional correct using ARIMA = 32 Total correct and % correct - Baseline Average 359741 0.8449464012251149 Total correct and % correct - ARIMA 360623 0.8470180103157677 Total additional correct using ARIMA = 882 Total correct and % correct - Baseline Average 358688 0.8424731536372946 Total correct and % correct - ARIMA 361371 0.8487748851454824 Total additional correct using ARIMA = 2683 Total correct and % correct - Baseline Average 357439 0.8395395484737737 Total correct and % correct - ARIMA 362309 0.8509780249720498 Total additional correct using ARIMA = 4870 Total correct and % correct - Baseline Average 356793 0.8380222474844746 Total correct and % correct - ARIMA 364171 0.8553514219412057 Total additional correct using ARIMA = 7378 Total correct and % correct - Baseline Average 352646 0.8282819267373801 Total correct and % correct - ARIMA 365714 0.8589755634682776 Total additional correct using ARIMA = 13068 Total correct and % correct - Baseline Average 347005 0.8150325538571388 Total correct and % correct - ARIMA 367992 0.8643260459042268 Total additional correct using ARIMA = 20987 Total correct and % correct - Baseline Average 333462 0.7832232546341097 Total correct and % correct - ARIMA 373364 0.8769436014994504 Total additional correct using ARIMA = 39902
Learn/Fundamental/Exploratory Data Analysis with Python for Beginner.ipynb
###Markdown Exploratory Data Analysis dengan Pandas Membaca file dari csv ###Code import pandas as pd order_df = pd.read_csv('../../Dataset/order.csv') ###Output _____no_output_____ ###Markdown Inspeksi struktur data frameSetelah melakukan proses loading dataframe ke dalam Python. Hal selanjutnya sebelum memulai analisis tentunya mengerti struktur dataset tersebut. Melihat struktur kolom dan baris dari data frameHal pertama dalam mengerti struktur dari dataframe adalah informasi mengenai berapa size dari dataframe yang akan digunakan termasuk berapa jumlah kolom dan jumlah baris data frame tersebut. ###Code order_df.shape ###Output _____no_output_____ ###Markdown Melihat preview data dari data frameSelanjutnya, untuk mendapatkan gambaran dari konten dataframe tersebut. Kita dapat menggunakan function head dan tail,` ###Code order_df.head() ###Output _____no_output_____ ###Markdown Statistik Deskriptif dari Data Frame ###Code # Statistik deskriptif atau summary dalam Python - Pandas order_df.describe() # Secara umum function describe() akan secara otomatis mengabaikan kolom category dan hanya memberikan summary statistik untuk kolom berjenis numerik. # argument bernama include = "all" untuk mendapatkan summary statistik atau statistik deskriptif dari kolom numerik dan karakter. order_df.describe(include='all') # Jika ingin mendapatkan summary statistik dari kolom yang tidak bernilai angka, maka aku dapat menambahkan command include=["object"] order_df.describe(include=['object']) # untuk mencari rataan dari suatu data dari dataframe, dapat menggunakan syntax mean, median, dan mode dari Pandas. print(order_df.loc[:, 'price'].mean()) print(order_df.loc[:, 'freight_value'].median()) ###Output 2607783.9156783135 104000.0 ###Markdown Mengenal dan Membuat Distribusi Data dengan HistogramHistogram merupakan salah satu cara untuk mengidentifikasi sebaran distribusi dari data. Histogram adalah grafik yang berisi ringkasan dari sebaran (dispersi atau variasi) suatu data. Pada histogram, tidak ada jarak antar batang/bar dari grafik. Hal ini dikarenakan bahwa titik data kelas bisa muncul dimana saja di daerah cakupan grafik. Sedangkan ketinggian bar sesuai dengan frekuensi atau frekuensi relatif jumlah data di kelas. Semakin tinggi bar, semakin tinggi frekuensi data. Semakin rendah bar, semakin rendah frekuensi data. **Syntax umum:**![image.png](attachment:image.png)1. bins = jumlah_bins dalam histogram yang akan digunakan. Jika tidak didefinisikan jumlah_bins, maka function akan secara default menentukan jumlah_bins sebanyak 10.2. by = nama kolom di DataFrame untuk di group by. (valuenya berupa nama column di dataframe tersebut).3. alpha = nilai_alpha untuk menentukan opacity dari plot di histogram. (value berupa range 0.0 - 1.0, dimana semakin kecil akan semakin kecil opacity nya)4. figsize = tuple_ukuran_gambar yang digunakan untuk menentukan ukuran dari plot histogram. Contoh: figsize=(10,12) ###Code import pandas as pd import matplotlib.pyplot as plt order_df = pd.read_csv('../../Dataset/order.csv') # plot histogram kolom: price order_df[['price']].hist(figsize=(4, 5), bins=10, xlabelsize=8, ylabelsize=8) plt.show() # Untuk menampilkan histogram plot ###Output _____no_output_____ ###Markdown Standar Deviasi dan Varians pada PandasVarians dan standar deviasi juga merupakan suatu ukuran dispersi atau variasi. Standar deviasi merupakan ukuran dispersi yang paling banyak dipakai. Hal ini mungkin karena standar deviasi mempunyai satuan ukuran yang sama dengan satuan ukuran data asalnya. Sedangkan varians memiliki satuan kuadrat dari data asalnya (misalnya cm^2). ###Code print(order_df.loc[:, 'price'].std()) print(order_df.loc[:, 'freight_value'].var()) ###Output 1388311.591031153 3044815290.0703516 ###Markdown Menemukan Outliers Menggunakan PandasSebelum menuju ke step by step dalam menemukan **outliers**, sedikit intermezo dahulu mengenai definisi dari **outliers**.**Outliers** merupakan data observasi yang muncul dengan nilai-nilai ekstrim. Yang dimaksud dengan nilai-nilai ekstrim dalam observasi adalah nilai yang jauh atau beda sama sekali dengan sebagian besar nilai lain dalam kelompoknya. image.pngPada umumnya, outliers dapat ditentukan dengan metric IQR (interquartile range).Rumus dasar dari IQR: Q3 - Q1. Dan data suatu observasi dapat dikatakan outliers jika memenuhi kedua syarat dibawah ini:1. data < Q1 - 1.5 * IQR2. data > Q3 + 1.5 * IQR ###Code # Hitung quartile 1 Q1 = order_df[['product_weight_gram']].quantile(0.25) # Hitung quartile 3 Q3 = order_df[['product_weight_gram']].quantile(0.75) # Hitung inter quartile range dan cetak ke console IQR = Q3 - Q1 print(IQR) ###Output product_weight_gram 1550.0 dtype: float64 ###Markdown Rename Kolom Data FrameMengganti nama kolom pada Pandas dapat dilakukan dengan 2 cara:1. Menggunakan nama kolom.2. Menggunakan indeks kolom. ###Code order_df.rename(columns={'freight_value': 'shipping_cost'}, inplace=True) order_df.head() ###Output _____no_output_____ ###Markdown .groupby menggunakan PandasKegunaan .groupby adalah mencari summary dari data frame dengan menggunakan aggregate dari kolom tertentu. ###Code # Hitung rata rata dari price per payment_type rata_rata = order_df['price'].groupby(order_df['payment_type']).mean() ###Output _____no_output_____ ###Markdown Sorting Menggunakan Pandas**Sorting** adalah sebuah metode mengurutkan data berdasarkan syarat kolom tertentu dan biasanya digunakan untuk melihat nilai maksimum dan minimum dari dataset. Library Pandas sendiri menyediakan fungsi sorting sebagai fundamental dari exploratory data analysis.![image.png](attachment:image.png)Function tersebut akan secara default mengurutkan secara ascending (dimulai dari nilai terkecil), untuk dapat mengurutkan secara descending (nilai terbesar lebih dahulu), dapat menggunakan properti tambahan:![image-2.png](attachment:image-2.png)Fungsi sorting di Pandas juga dapat dilakukan menggunakan lebih dari satu kolom sebagai syarat. Contohnya pada skenario di bawah, akan mencoba mengaplikasikan fungsi sorting menggunakan Age dan Score sekaligus:![image-3.png](attachment:image-3.png) ###Code sort_harga = order_df.sort_values(by='price', ascending=False) sort_harga.head() ###Output _____no_output_____ ###Markdown Mini Project ###Code import pandas as pd import matplotlib.pyplot as plt order_df = pd.read_csv('../../Dataset/order.csv') # Median price yang dibayar customer dari masing-masing metode pembayaran. median_price = order_df['price'].groupby(order_df['payment_type']).median() median_price.head() # Ubah freight_value menjadi shipping_cost dan cari shipping_cost # termahal dari data penjualan tersebut menggunakan sort. order_df.rename(columns={"freight_value": "shipping_cost"}, inplace=True) sort_value = order_df.sort_values(by="shipping_cost", ascending=0) sort_value.head() # Untuk product_category_name, berapa rata-rata weight produk tersebut # dan standar deviasi mana yang terkecil dari weight tersebut, mean_value = order_df["product_weight_gram"].groupby(order_df["product_category_name"]).mean() print(mean_value.sort_values()) std_value = order_df["product_weight_gram"].groupby(order_df["product_category_name"]).std() print(std_value.sort_values()) # Buat histogram quantity penjualan dari dataset tersebutuntuk melihat persebaran quantity # penjualan tersebut dengan bins = 5 dan figsize= (4,5) order_df[["quantity"]].hist(figsize=(4, 5), bins=5) plt.show() ###Output _____no_output_____
src/Transformada de Gabor - Haralick.ipynb
###Markdown **1.Conectamos Colab con Drive** ###Code from google.colab import drive drive.mount('/content/drive') import os PATH_ORIGEN = "/content/drive/MyDrive/Proyectos-independientes/Proyecto-MINSA/Dataset/Clasificacion/HGG-LGG" os.chdir(PATH_ORIGEN) %matplotlib inline import cv2 import os import numpy as np import keras import matplotlib.pyplot as plt from random import shuffle from tensorflow.keras.applications import VGG16 from tensorflow.keras import backend as K from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Input from tensorflow.keras.layers import LSTM from tensorflow.keras.layers import Dense, Activation import sys import h5py import utils import math from fractions import Fraction from tqdm.auto import tqdm from skimage.feature import greycomatrix, greycoprops import pandas as pd import time import torch sys.path.append(os.path.abspath(PATH_ORIGEN)) !nvidia-smi device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) # Frame size img_size = 224 img_size_touple = (img_size, img_size) # Number of channels (RGB) num_channels = 3 # Flat frame size img_size_flat = img_size * img_size * num_channels # Number of classes for classification (HGG-LGG) num_classes = 2 # Number of files to train _num_files_train = 1 # Number of frames per video _images_per_file = 155 # Number of frames per training set _num_images_train = _num_files_train * _images_per_file # Video extension video_exts = ".mp4" in_dir = "/content/drive/MyDrive/Proyectos-independientes/Proyecto-MINSA/Dataset/Clasificacion/HGG-LGG/AVI" ###Output _____no_output_____ ###Markdown **2.Llamando funciones de Utils.py** ###Code names, labels = utils.label_video_names(in_dir) print(names[0]) print(len(names)) print(labels[0]) print(len(labels)) frames = utils.get_frames(in_dir, names[12]) print(frames.shape) visible_frame = (frames*255).astype('uint8') img = visible_frame[80][:,:,2] plt.figure(1,figsize = (10,10)) plt.imshow(img,cmap = 'gray') plt.show() ###Output _____no_output_____ ###Markdown **2.1.Preprocesamiento** ###Code # P1: Filtro LoG blur = cv2.GaussianBlur(img,(3,3),0) laplacian = cv2.Laplacian(blur,cv2.CV_8UC1) #laplacian1 = laplacian/laplacian.max() plt.figure(1,figsize = (10,10)) plt.imshow(laplacian,cmap = 'gray') plt.show() # P2: Umbralizacion aux = np.zeros((img.shape[0],img.shape[1]),dtype= np.uint8) for i in range(img.shape[0]): for j in range(img.shape[1]): if img[i,j] != 0: aux[i,j] = 1 else: aux[i,j] = 0 plt.figure(1,figsize = (10,10)) plt.imshow(aux,cmap = 'gray') plt.show() # Contorno más grande cnts,_ = cv2.findContours(laplacian,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) #cnts,_ = cv2.findContours(aux,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) contour_sizes = [(cv2.contourArea(cnt), cnt) for cnt in cnts] biggest_contour = max(contour_sizes, key=lambda x: x[0])[1] # Coordenadas que encierran al contorno más grande x,y,w,h = cv2.boundingRect(biggest_contour) print("Coordenadas: " + " \n x1: " + str(x) ," \n x2:" , str(x + w) , "\n y1: ", str(y) , "\n y2:", str(y + h)) # Cropped --> LoG crop = img[y:y+h,x:x+w] plt.figure(1,figsize = (10,10)) plt.imshow(crop,cmap = "gray") plt.show() print(crop.shape) # Cropped --> Umbralizacion crop = img[y:y+h,x:x+w] plt.figure(1,figsize = (10,10)) plt.imshow(crop,cmap = "gray") plt.show() print(crop.shape) def LoG(image): blur = cv2.GaussianBlur(image,(3,3),0) laplacian = cv2.Laplacian(blur,cv2.CV_8UC1) cnts,_ = cv2.findContours(laplacian,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) contour_sizes = [(cv2.contourArea(cnt), cnt) for cnt in cnts] biggest_contour = max(contour_sizes, key=lambda x: x[0])[1] x,y,w,h = cv2.boundingRect(biggest_contour) crop = image[y:y+h,x:x+w] return crop def cropped(image): aux = np.zeros((img.shape[0],img.shape[1]),dtype= np.uint8) for i in range(img.shape[0]): for j in range(img.shape[1]): if img[i,j] != 0: aux[i,j] = 1 else: aux[i,j] = 0 cnts,_ = cv2.findContours(aux,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) contour_sizes = [(cv2.contourArea(cnt), cnt) for cnt in cnts] if len(contour_sizes) > 0: biggest_contour = max(contour_sizes, key=lambda x: x[0])[1] x,y,w,h = cv2.boundingRect(biggest_contour) crop = image[y:y+h,x:x+w] return crop len(crop.shape) ###Output _____no_output_____ ###Markdown **3. Feature Extraction** **3.1.Transformada de Gabor** ###Code # Diccionario de parámetros thetas = np.arange(0, np.pi, np.pi/4) # range of theta lambds = np.array([ 2 * pow(math.sqrt(2), i + 1) for i in range(5)], dtype = 'float32') # range of lambda sigmas = np.array([1.5,2.5]) # range de desviacion estandar gamma = 1 psis = np.array([0,np.pi/2], dtype = 'float32') ## Creacion de banco de gabor gaborFilterBank0 = [] gaborFilterBank90 = [] gaborParams0 = [] gaborParams90 = [] ## Agregando valores al banco de gabor for theta in thetas: for lambd in lambds: for sigma in sigmas: gaborParam0 = {'ksize':(20, 20),'sigma':sigma,'theta':theta, 'lambd':lambd,'gamma':gamma,'psi':0,'ktype':cv2.CV_32F} gaborParam90 = {'ksize':(20, 20),'sigma':sigma,'theta':theta, 'lambd':lambd,'gamma':gamma,'psi':90,'ktype':cv2.CV_32F} Gabor0 = cv2.getGaborKernel(**gaborParam0) Gabor90 = cv2.getGaborKernel(**gaborParam90) gaborFilterBank0.append(Gabor0) gaborFilterBank90.append(Gabor90) gaborParams0.append(gaborParam0) gaborParams90.append(gaborParam90) # Plot print("Banco de funciones de Gabor para distintos angulos con psi = 0") fig = plt.figure(1,figsize=(20,20)) n0 = len(gaborFilterBank0) for i in range(n0): ang= gaborParams0[i]['theta'] / np.pi a = Fraction(ang) plt.subplot(4,n0//4, i+1) plt.title("{} $\pi$".format(a)) plt.axis('off') plt.imshow(gaborFilterBank0[i],cmap='gray') plt.show() # Plot print("Banco de funciones de Gabor para distintos angulos con psi = 90") fig = plt.figure(1,figsize=(20,20)) n90 = len(gaborFilterBank90) for i in range(n90): ang= gaborParams90[i]['theta'] / np.pi a = Fraction(ang) plt.subplot(4,n90//4, i+1) plt.title("{} $\pi$".format(a)) plt.axis('off') plt.imshow(gaborFilterBank90[i],cmap='gray') plt.show() def EuclideanDistanceMatrix(M1,M2): shape = np.dot(M1,M2.T).shape result = np.zeros(shape,dtype = np.float32) for i in range(M1.shape[0]): for j in range(M2.shape[0]): a = M1[i,:] # vector fila b = M2[j,:] # Vector fila dist = np.linalg.norm(a-b) #dist = torch.norm(a - b) # escalar result[i,j] = dist return result def gabor_features(image,gaborFilterBank0,gaborFilterBank90): GaborFeatures = np.zeros((1,40),dtype = np.float32) for count,(mask0,mask90) in enumerate(zip(gaborFilterBank0,gaborFilterBank90)): #count = count + 1 g0 = cv2.filter2D(image,-1,mask0) # convertir a tensor #g0_ = torch.from_numpy(g0).float().to(device) #g0 = pow(g0,2) g90 = cv2.filter2D(image,-1,mask90) # convertir a tensor #g90_ = torch.from_numpy(g90).float().to(device) #g90 = pow(g90,2) #g_T = math.sqrt(g0 + g90) ### Distancia euclidiana entre 2 matrices g_T = EuclideanDistanceMatrix(g0,g90) ### Valor de Gabor suma = np.sum(g_T,axis = 0) suma = np.sum(suma) GaborFeatures[0,count] = suma #count = count + 1 return GaborFeatures def glcm_features(image): GLCMFeatures = np.zeros((1,6),dtype = np.float32) dst = [1] ang = [np.pi/2] # (np.pi/2 --> (dx =0 y dy = dst)) ## Matriz GLCM nivel 1 co_matriz_1 = greycomatrix(image, dst, ang).astype('uint8') co_matriz_1 = co_matriz_1[:,:,0,0] #print("O.o:",co_matriz_1.shape) ## Matriz GLCM nivel 2 co_matriz_2 = greycomatrix(co_matriz_1, dst, ang).astype('uint8') #co_matriz_2 = co_matriz_2[:,:,0,0] # Indicadores properties = ['ASM', 'correlation','contrast','dissimilarity','energy','homogeneity'] ## Indicadores """glcm = greycomatrix(co_matriz_2, distances = dst, angles = ang, symmetric = True,normed = True)""" for i,prop in enumerate(properties): GLCMFeatures[0,i] = greycoprops(co_matriz_2, prop) #print(GLCMFeatures.shape) #GLCMFeatures[] = np.hstack([greycoprops(co_matriz_2, prop).ravel() for prop in properties]) return GLCMFeatures help(greycoprops) !ls # Contenedores K = 369 N = 155 gab = 40 glc = 6 Xgab = np.zeros((K*N,gab + glc)) # K x N muestras (filas), y Gab características (columnas) y = np.zeros((K*N),dtype ='int') t = 0 columns_gab = [ 'GAB' + str(i + 1) for i in range(gab)] columns_glc = [ 'GLC' + str(i + 1) for i in range(glc)] X = [] X.extend(columns_gab) X.extend(columns_glc) df = pd.DataFrame(Xgab, columns = X) dfy = pd.DataFrame(y,columns = ['clase']) df = pd.concat([df, dfy], axis=1) df.head() df.shape # Proceso en batch for i in tqdm(range(len(names))): frames = utils.get_frames(in_dir, names[i]) visible_frame = (frames*255).astype('uint8') for j in range(50, 130 + 1): img = visible_frame[j][:,:,2] img = cropped(img) #print(img.shape) example_gab = gabor_features(img,gaborFilterBank0,gaborFilterBank90) example_glc = glcm_features(img) if len(example_glc.shape) == 2: df.iloc[t,0:40] = [i for i in example_gab[0]] df.iloc[t,40:46] = [i for i in example_glc[0]] df.iloc[t,46] = labels[i][0] df.to_csv('./features_total.csv', index=False) #Xgab[t,:] = example t = t + 1 else: df.iloc[t,0:40] = [0 for i in range(40)] df.iloc[t,40:46] = [0 for i in range(6)] df.iloc[t,46] = labels[i][0] df.to_csv('./features_total.csv', index=False) t = t + 1 ###Output _____no_output_____ ###Markdown **3.2.GLCM** ###Code ## Matriz GLCM nivel 1 dst = [1] ang = [np.pi/2] # (np.pi/2 --> (dx =0 y dy = dst)) co_matrices = greycomatrix(crop, dst, ang).astype('float') print("Matriz GLCM: \n", co_matrices[:,:,0,0]) print(crop.shape) ## Matriz GLCM nivel 2 ## Indicadores dissimilarity = greycoprops(co_matrices, 'dissimilarity')[0][0] correlation = greycoprops(co_matrices, 'correlation')[0][0] print("Disimilaridad: ",dissimilarity) print("Correlacion:", correlation) angular_moment = greycoprops(co_matriz_2, 'ASM')[0][0] correlation = greycoprops(co_matriz_2, 'correlation')[0][0] contrast = greycoprops(co_matriz_2, 'contrast')[0][0] entropy = greycoprops(co_matriz_2, '')[0][0] energy = greycoprops(co_matriz_2, 'energy')[0][0] homogeneity = greycoprops(co_matriz_2, 'homogeneity')[0][0] ###Output _____no_output_____ ###Markdown **4.Train / Test** ###Code # Training training_set = int(len(names)*0.8) names_training = names[0:training_set] labels_training = labels[0:training_set] # Test test_set = int(len(names)*0.2) names_test = names[training_set:] labels_test = labels[training_set:] # Generando Prueba.h5 utils.make_files(training_set, names_training, in_dir, labels_training,transfer_values_size,image_model_transfer) # # Generando Pruebavalidation.h5 utils.make_files_test(test_set, names_test, in_dir, labels_test, transfer_values_size, image_model_transfer) data, target = utils.process_alldata_training() print(data[0].shape) print(target[0].shape) print(len(data)) print(len(target)) data_test, target_test = utils.process_alldata_test() print(data_test[0].shape) print(target_test[0].shape) print(len(data_test)) print(len(target_test)) ###Output 73 73 ###Markdown **5.Arquitectura LSTM** ###Code chunk_size = 4096 n_chunks = 155 rnn_size = 512 #### 100 neuronas model = Sequential() model.add(LSTM(rnn_size, input_shape=(n_chunks, chunk_size))) # RNN,GRU model.add(Dense(1024)) model.add(Activation('relu')) model.add(Dense(50)) model.add(Activation('sigmoid')) model.add(Dense(2)) model.add(Activation('softmax')) model.compile(loss = 'categorical_crossentropy', optimizer = 'adam',metrics = ['accuracy']) model.summary() # Dividimos prueba.h5 como train y validacion print(len(data)) print(len(target)) print(data[0].shape) print(data[1].shape) print(len(data[0:5])) # 5 registros de resonancia magnética print(len(data[0:5][0])) # tamaño de uno de estos registsros print(len(data[0:])) # numero total de registros de resonancia magnética en Prueba.h5 # Numero de registros en Pruebavalidation.h5 total_train = len(data[0:]) train = int(total_train*0.8) print("Numero de registros totales en Prueba.h5",total_train) print("Numero de registros para entrenamiento",train) print("Numero de registros totales en validation",total_train - train ) # Entrenando epoch = 20 batchS = 50 history = model.fit(np.array(data[0:train]), np.array(target[0:train]), epochs=epoch, validation_data=(np.array(data[train:]), np.array(target[train:])), batch_size=batchS, verbose=1) ###Output Epoch 1/20 5/5 [==============================] - 5s 522ms/step - loss: 0.5460 - accuracy: 0.7966 - val_loss: 0.5121 - val_accuracy: 0.7966 Epoch 2/20 5/5 [==============================] - 2s 383ms/step - loss: 0.5154 - accuracy: 0.7966 - val_loss: 0.5220 - val_accuracy: 0.7966 Epoch 3/20 5/5 [==============================] - 2s 380ms/step - loss: 0.5218 - accuracy: 0.7966 - val_loss: 0.5051 - val_accuracy: 0.7966 Epoch 4/20 5/5 [==============================] - 2s 374ms/step - loss: 0.5060 - accuracy: 0.7966 - val_loss: 0.5052 - val_accuracy: 0.7966 Epoch 5/20 5/5 [==============================] - 2s 384ms/step - loss: 0.5071 - accuracy: 0.7966 - val_loss: 0.5051 - val_accuracy: 0.7966 Epoch 6/20 5/5 [==============================] - 2s 379ms/step - loss: 0.5066 - accuracy: 0.7966 - val_loss: 0.5051 - val_accuracy: 0.7966 Epoch 7/20 5/5 [==============================] - 2s 376ms/step - loss: 0.5138 - accuracy: 0.7966 - val_loss: 0.5055 - val_accuracy: 0.7966 Epoch 8/20 5/5 [==============================] - 2s 378ms/step - loss: 0.5091 - accuracy: 0.7966 - val_loss: 0.5062 - val_accuracy: 0.7966 Epoch 9/20 5/5 [==============================] - 2s 382ms/step - loss: 0.5161 - accuracy: 0.7966 - val_loss: 0.5076 - val_accuracy: 0.7966 Epoch 10/20 5/5 [==============================] - 2s 378ms/step - loss: 0.5144 - accuracy: 0.7966 - val_loss: 0.5111 - val_accuracy: 0.7966 Epoch 11/20 5/5 [==============================] - 2s 379ms/step - loss: 0.5075 - accuracy: 0.7966 - val_loss: 0.5056 - val_accuracy: 0.7966 Epoch 12/20 5/5 [==============================] - 2s 378ms/step - loss: 0.5066 - accuracy: 0.7966 - val_loss: 0.5081 - val_accuracy: 0.7966 Epoch 13/20 5/5 [==============================] - 2s 377ms/step - loss: 0.5083 - accuracy: 0.7966 - val_loss: 0.5051 - val_accuracy: 0.7966 Epoch 14/20 5/5 [==============================] - 2s 378ms/step - loss: 0.5094 - accuracy: 0.7966 - val_loss: 0.5057 - val_accuracy: 0.7966 Epoch 15/20 5/5 [==============================] - 2s 384ms/step - loss: 0.5059 - accuracy: 0.7966 - val_loss: 0.5053 - val_accuracy: 0.7966 Epoch 16/20 5/5 [==============================] - 2s 377ms/step - loss: 0.5071 - accuracy: 0.7966 - val_loss: 0.5053 - val_accuracy: 0.7966 Epoch 17/20 5/5 [==============================] - 2s 376ms/step - loss: 0.5059 - accuracy: 0.7966 - val_loss: 0.5060 - val_accuracy: 0.7966 Epoch 18/20 5/5 [==============================] - 2s 371ms/step - loss: 0.5076 - accuracy: 0.7966 - val_loss: 0.5052 - val_accuracy: 0.7966 Epoch 19/20 5/5 [==============================] - 2s 378ms/step - loss: 0.5069 - accuracy: 0.7966 - val_loss: 0.5053 - val_accuracy: 0.7966 Epoch 20/20 5/5 [==============================] - 2s 380ms/step - loss: 0.5050 - accuracy: 0.7966 - val_loss: 0.5053 - val_accuracy: 0.7966 ###Markdown **5.Métricas** ###Code result = model.evaluate(np.array(data_test), np.array(target_test)) for name, value in zip(model.metrics_names, result): print(name, value) plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.savefig('destination_path.eps', format='eps', dpi=1000) plt.show() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.savefig('destination_path1.eps', format='eps', dpi=1000) plt.show() ###Output _____no_output_____
progs/.ipynb_checkpoints/global-spin-of-crf-from-bootstrap-checkpoint.ipynb
###Markdown In this notebook, I used the bootstrap resampling method to give a robust estimate of the global spin of the VLBI CRF. ###Code import matplotlib.pyplot as plt # from matplotlib.ticker import MultipleLocator import numpy as np np.random.seed(28) # Used for ECDF estimate import statsmodels.api as sm from astropy.table import Table, join from astropy.stats import bootstrap from tool_func import vsh_fit_for_pm ###Output _____no_output_____ ###Markdown Load the table for fitted APM and convert the unit of APM. ###Code apm_tab = Table.read("../data/ts_nju_pm_fit_3sigma-10step.dat", format="ascii.csv") # convert mas/yr into muas/yr apm_tab["pmra"] = apm_tab["pmra"] * 1e3 apm_tab["pmra_err"] = apm_tab["pmra_err"] * 1e3 apm_tab["pmdec"] = apm_tab["pmdec"] * 1e3 apm_tab["pmdec_err"] = apm_tab["pmdec_err"] * 1e3 ###Output _____no_output_____ ###Markdown ICRF3 defining source table. ###Code icrf3_def = Table.read("../data/icrf3sx-def-sou.txt", format="ascii") ###Output _____no_output_____ ###Markdown Remove sources without apparant proper motion estimate. ###Code mask = apm_tab["num_cln"] >= 5 apm_tab = apm_tab[mask] apm_def = join(icrf3_def, apm_tab, keys="iers_name") ###Output _____no_output_____ ###Markdown Generate an array of index for the bootstrap resampling. ###Code idx = np.arange(len(apm_def), dtype=int) ###Output _____no_output_____ ###Markdown Create 100 arrays of index for resampled data. ###Code sample_num = 1000 resample_idx = bootstrap(idx, sample_num) ###Output _____no_output_____ ###Markdown Create empty arrays for store the results. ###Code resample_wx = np.zeros(sample_num) resample_wy = np.zeros(sample_num) resample_wz = np.zeros(sample_num) resample_w = np.zeros(sample_num) resample_ra = np.zeros(sample_num) resample_dec = np.zeros(sample_num) ###Output _____no_output_____ ###Markdown Do the LSQ fit. ###Code for i, new_idx in enumerate(resample_idx): new_table = apm_def[np.array(new_idx, dtype=int)] pmt, sig, output = vsh_fit_for_pm(new_table) resample_wx[i] = pmt[0] resample_wy[i] = pmt[1] resample_wz[i] = pmt[2] resample_w[i] = pmt[3] resample_ra[i] = output["R_ra"] resample_dec[i] = output["R_dec"] ###Output _____no_output_____ ###Markdown Assume that $\omega_x$, $\omega_y$, $\omega_z$, and $\omega$ follows a Gaussian distribution, I estimate the mean and sigma. ###Code from scipy.stats import norm mu_wx, std_wx = norm.fit(resample_wx) mu_wy, std_wy = norm.fit(resample_wy) mu_wz, std_wz = norm.fit(resample_wz) mu_w, std_w = norm.fit(resample_w) mu_ra, std_ra = norm.fit(resample_ra) mu_dec, std_dec = norm.fit(resample_dec) # Distribution rvs_wx = norm(mu_wx, std_wx) rvs_wy = norm(mu_wy, std_wy) rvs_wz = norm(mu_wz, std_wz) rvs_w = norm(mu_w, std_w) rvs_ra = norm(mu_ra, std_ra) rvs_dec = norm(mu_dec, std_dec) ###Output _____no_output_____ ###Markdown Plot the distribution of $\omega_x$, $\omega_y$, $\omega_z$, and $\omega$. ###Code bin_size = 0.1 bin_array = np.arange(-2.5, 1.5, bin_size) fig, ax = plt.subplots() ax.hist(resample_wx, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_wx.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(-2.5, 55, "$\mu={:+.2f}$".format(mu_wx), fontsize=15) ax.text(-2.5, 45, "$\sigma={:.2f}$".format(std_wx), fontsize=15) ax.set_xlabel("$\\omega_{\\rm x}$ ($\\mu$as$\,$yr$^{-1}$)", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout plt.savefig("../plots/spin-x-from-resampled-apm.eps") bin_size = 0.1 bin_array = np.arange(-2.0, 2.0, bin_size) fig, ax = plt.subplots() ax.hist(resample_wy, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_wy.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(-2., 50, "$\mu={:+.2f}$".format(mu_wy), fontsize=15) ax.text(-2., 40, "$\sigma={:.2f}$".format(std_wy), fontsize=15) ax.set_xlabel("$\\omega_{\\rm y}$ ($\\mu$as$\,$yr$^{-1}$)", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout() plt.savefig("../plots/spin-y-from-resampled-apm.eps") bin_size = 0.1 bin_array = np.arange(-2.0, 2.0, bin_size) fig, ax = plt.subplots() ax.hist(resample_wz, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_wz.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(-2., 55, "$\mu={:+.2f}$".format(mu_wz), fontsize=15) ax.text(-2., 45, "$\sigma={:.2f}$".format(std_wz), fontsize=15) ax.set_xlabel("$\\omega_{\\rm z}$ ($\\mu$as$\,$yr$^{-1}$)", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout() plt.savefig("../plots/spin-z-from-resampled-apm.eps") bin_size = 0.1 bin_array = np.arange(0, 4.1, bin_size) fig, ax = plt.subplots() ax.hist(resample_w, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_w.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(0.1, 65, "$\mu={:.2f}$".format(mu_w), fontsize=15) ax.text(0.1, 55, "$\sigma={:.2f}$".format(std_w), fontsize=15) ax.set_xlabel("$\\omega$ ($\\mu$as$\,$yr$^{-1}$)", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout() bin_size = 10 bin_array = np.arange(0, 361, bin_size) fig, ax = plt.subplots() ax.hist(resample_ra, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_ra.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(0, 75, "$\mu={:.0f}$".format(mu_ra), fontsize=15) ax.text(0, 65, "$\sigma={:.0f}$".format(std_ra), fontsize=15) ax.set_xlabel("$\\alpha_{\\rm apex}$ (degree))", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout() bin_size = 5 bin_array = np.arange(-90, 91, bin_size) fig, ax = plt.subplots() ax.hist(resample_dec, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_dec.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(-80, 85, "$\mu={:-.0f}$".format(mu_dec), fontsize=15) ax.text(-80, 75, "$\sigma={:.0f}$".format(std_dec), fontsize=15) ax.set_xlabel("$\\delta_{\\rm apex}$ (degree))", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout() ###Output _____no_output_____ ###Markdown All these is done for the ICRF3 defining source subset. And I repeat this procedure to the all sources with the APM estimates.Generate an array of index for the bootstrap resampling. ###Code idx = np.arange(len(apm_tab), dtype=int) ###Output _____no_output_____ ###Markdown Create 100 arrays of index for resampled data. ###Code sample_num = 1000 resample_idx = bootstrap(idx, sample_num) ###Output _____no_output_____ ###Markdown Create empty arrays for store the results. ###Code resample_wx = np.zeros(sample_num) resample_wy = np.zeros(sample_num) resample_wz = np.zeros(sample_num) resample_w = np.zeros(sample_num) resample_ra = np.zeros(sample_num) resample_dec = np.zeros(sample_num) ###Output _____no_output_____ ###Markdown Do the LSQ fit. ###Code for i, new_idx in enumerate(resample_idx): new_table = apm_tab[np.array(new_idx, dtype=int)] pmt, sig, output = vsh_fit_for_pm(new_table) resample_wx[i] = pmt[0] resample_wy[i] = pmt[1] resample_wz[i] = pmt[2] resample_w[i] = pmt[3] resample_ra[i] = output["R_ra"] resample_dec[i] = output["R_dec"] ###Output _____no_output_____ ###Markdown Assume that $\omega_x$, $\omega_y$, $\omega_z$, and $\omega$ follows a Gaussian distribution, I estimate the mean and sigma. ###Code mu_wx, std_wx = norm.fit(resample_wx) mu_wy, std_wy = norm.fit(resample_wy) mu_wz, std_wz = norm.fit(resample_wz) mu_w, std_w = norm.fit(resample_w) mu_ra, std_ra = norm.fit(resample_ra) mu_dec, std_dec = norm.fit(resample_dec) # Distribution rvs_wx = norm(mu_wx, std_wx) rvs_wy = norm(mu_wy, std_wy) rvs_wz = norm(mu_wz, std_wz) rvs_w = norm(mu_w, std_w) rvs_ra = norm(mu_ra, std_ra) rvs_dec = norm(mu_dec, std_dec) ###Output _____no_output_____ ###Markdown Plot the distribution of $\omega_x$, $\omega_y$, $\omega_z$, and $\omega$. ###Code bin_size = 0.1 bin_array = np.arange(-2., 2, bin_size) fig, ax = plt.subplots() ax.hist(resample_wx, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_wx.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(-2., 55, "$\mu={:+.2f}$".format(mu_wx), fontsize=15) ax.text(-2., 45, "$\sigma={:.2f}$".format(std_wx), fontsize=15) ax.set_xlabel("$\\omega_{\\rm x}$ ($\\mu$as$\,$yr$^{-1}$)", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout() bin_size = 0.1 bin_array = np.arange(-2.0, 2.0, bin_size) fig, ax = plt.subplots() ax.hist(resample_wy, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_wy.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(-2., 70, "$\mu={:+.2f}$".format(mu_wy), fontsize=15) ax.text(-2., 60, "$\sigma={:.2f}$".format(std_wy), fontsize=15) ax.set_xlabel("$\\omega_{\\rm y}$ ($\\mu$as$\,$yr$^{-1}$)", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout() bin_size = 0.1 bin_array = np.arange(-2.0, 2.0, bin_size) fig, ax = plt.subplots() ax.hist(resample_wz, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_wz.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(-2., 70, "$\mu={:+.2f}$".format(mu_wz), fontsize=15) ax.text(-2., 60, "$\sigma={:.2f}$".format(std_wz), fontsize=15) ax.set_xlabel("$\\omega_{\\rm z}$ ($\\mu$as$\,$yr$^{-1}$)", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout() bin_size = 0.1 bin_array = np.arange(0, 2.1, bin_size) fig, ax = plt.subplots() ax.hist(resample_w, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_w.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(0.1, 90, "$\mu={:.2f}$".format(mu_w), fontsize=15) ax.text(0.1, 80, "$\sigma={:.2f}$".format(std_w), fontsize=15) ax.set_xlabel("$\\omega$ ($\\mu$as$\,$yr$^{-1}$)", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout() bin_size = 10 bin_array = np.arange(0, 361, bin_size) fig, ax = plt.subplots() ax.hist(resample_ra, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_ra.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(0, 40, "$\mu={:.0f}$".format(mu_ra), fontsize=15) ax.text(0, 30, "$\sigma={:.0f}$".format(std_ra), fontsize=15) ax.set_xlabel("$\\alpha_{\\rm apex}$ (degree))", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout() bin_size = 5 bin_array = np.arange(-90, 91, bin_size) fig, ax = plt.subplots() ax.hist(resample_dec, bins=bin_array, color="grey", fill=False, label="All") ax.plot(bin_array, rvs_dec.pdf(bin_array)*sample_num*bin_size, "r--") ax.text(-80, 60, "$\mu={:-.0f}$".format(mu_dec), fontsize=15) ax.text(-80, 50, "$\sigma={:.0f}$".format(std_dec), fontsize=15) ax.set_xlabel("$\\delta_{\\rm apex}$ (degree))", fontsize=15) ax.set_ylabel("Nb sources in bins", fontsize=15) plt.tight_layout() ###Output _____no_output_____
eu_lstm.model_train.ipynb
###Markdown Model Train ###Code lstm_history = lstm.fit(X_train, y_train, epochs=5, batch_size=batch_size, shuffle=True, validation_data=(X_val, y_val)) lr_model = pipeline.fit(mlr_train) ###Output _____no_output_____
Model/RandomForest.ipynb
###Markdown Importing libraries ###Code import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from collections import Counter from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.preprocessing import LabelEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score ###Output _____no_output_____ ###Markdown Reading dataset ###Code df = pd.read_csv('./cleaned_tweets.csv') df.head() ###Output _____no_output_____ ###Markdown Drop text ###Code df = df[['sentiment', 'Snowball_Stem']] df.head() ###Output _____no_output_____ ###Markdown Removing rows with nan ###Code df.isna().sum() df = df.dropna() df.isna().sum() ###Output _____no_output_____ ###Markdown Splitting into test and train ###Code y= df.iloc[:,0:1].values x = df.iloc[:,1].values x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=0) ###Output _____no_output_____ ###Markdown Reducing dataframe size ###Code reduced_df = pd.concat([df[df.sentiment != 0][:50000], df[df.sentiment == 0][:50000]]) reduced_df.shape x=reduced_df['Snowball_Stem'] y=reduced_df['sentiment'] x_train,x_test,y_train,y_test = train_test_split(x, y) x_train.shape, x_test.shape,y_train.shape,y_test.shape ###Output _____no_output_____ ###Markdown Tf-Idf unigram ###Code v1 = TfidfVectorizer() v1.fit(x) x1_train = v1.transform(x_train) x1_test = v1.transform(x_test) ###Output _____no_output_____ ###Markdown Tfd-Idf bigram ###Code v2 = TfidfVectorizer(ngram_range = (2, 2)) v2.fit(x) x2_train = v2.transform(x_train) x2_test = v2.transform(x_test) ###Output _____no_output_____ ###Markdown Tf-Idf unigram+bigram ###Code X = df["Snowball_Stem"] len(X) v3 = TfidfVectorizer(ngram_range = (1, 2)) v3.fit(X) x3_train = v3.transform(x_train) x3_test = v3.transform(x_test) ###Output _____no_output_____ ###Markdown Encoding labels ###Code Encoder = LabelEncoder() y_train = Encoder.fit_transform(y_train) y_test = Encoder.fit_transform(y_test) x3_test rfc=RandomForestClassifier(n_estimators=10,random_state=0) rfc.fit(x3_train,y_train) rfc_pred=rfc.predict(x3_test) accuracy_score(rfc_pred,y_test) ###Output _____no_output_____ ###Markdown Saving model ###Code import pickle RFC_model_path = "./RFC_UnigramBigram_72.pickle" vectorizer_path ="./UnigramBigram_vectorizer2.pickle" pickle.dump(rfc, open(RFC_model_path, 'wb')) ###Output _____no_output_____
ProblemSet3.ipynb
###Markdown Problem Set 3 ###Code NUM_CASES = 2000 #Setup import warnings; warnings.simplefilter('ignore') import matplotlib.pyplot as plt %matplotlib inline import pandas as pd import os import numpy as np df1 = pd.read_csv('data/cases_metadata.csv')[['caseid','case_reversed','judge_id','year','x_republican','log_cites']] df1.dropna(subset=['x_republican'], inplace=True) df1.dropna(subset=['log_cites'],inplace=True) print(df1.isnull().sum()) from random import shuffle keep = [True] * NUM_CASES + [False] * (len(df1) - NUM_CASES) shuffle(keep) df1 = df1[keep] print('Number of rows: ',len(df1)) df1.head() # load text documents tmp=[] for i in range(len(df1)): caseid=df1.iloc[i][0] caseid=caseid+'.txt' txt_file = [f for f in os.listdir('data/cases/') if f.endswith(caseid)] path='data/cases/'+txt_file[0] txt = open(path, 'r').read() # open a document tmp.append(txt) df1['text']=tmp df1.head() # Capitalization def capitalization(doc): return doc.lower() df1['doc'] = df1['text'].apply(capitalization) # go to lower-case ##### # Punctuation ##### # recipe for fast punctuation removal from string import punctuation def remove_punctuation(doc): translator = str.maketrans('','',punctuation) return doc.translate(translator) df1['doc'] = df1['doc'].apply(remove_punctuation) # Tokens def tokenize(doc): return doc.split() df1['doc'] = df1['doc'].apply(tokenize) # remove numbers (keep if not a digit) def remove_numbers(doc): return [t for t in doc if not t.isdigit()] df1['doc'] = df1['doc'].apply(remove_numbers) df1.head() # Stopwords from nltk.corpus import stopwords stoplist = stopwords.words('english') def remove_stopwords(doc): return [t for t in doc if t not in stoplist] df1['doc'] = df1['doc'].apply(remove_stopwords) # Stemming from nltk.stem import SnowballStemmer stemmer = SnowballStemmer('english') # snowball stemmer, english def stemming(doc): return [stemmer.stem(t) for t in doc] df1['doc'] = df1['doc'].apply(stemming) # Lemmatizing #import nltk #from nltk.stem import WordNetLemmatizer #nltk.download('wordnet') #wnl = WordNetLemmatizer() #def lemmatizing(doc): # return [wnl.lemmatize(t) for t in doc] #wnl.lemmatize('corporation'), wnl.lemmatize('corporations') #df1['doc'] = df1['doc'].apply(lemmatizing) # remove tokens def remove_tokens(doc): return " ".join(doc) df1['doc'] = df1['doc'].apply(remove_tokens) df1.head() ###Output _____no_output_____ ###Markdown 1) Train a word embedding (Word2Vec, GloVe, ELMo, BERT, etc) on your corpus, once with a small window (e.g. 2) and again with a long window (e.g. 16). What do you expect to change for the different window sizes? Pick a sample of 100 words and visualize them in two dimensions, to demonstrate the difference between the models. ###Code ### # Word2Vec in gensim (short window) ### # word2vec requires sentences as input from txt_utils import get_sentences sentences = [] for doc in df1['doc']: sentences += get_sentences(doc) from random import shuffle shuffle(sentences) # stream in sentences in random order # train the model from gensim.models import Word2Vec w2v_short = Word2Vec(sentences, # list of tokenized sentences workers = 8, # Number of threads to run in parallel size=300, # Word vector dimensionality min_count = 20, # Minimum word count window = 2, # Context window size sample = 1e-3, # Downsample setting for frequent words ) # done training, so delete context vectors w2v_short.init_sims(replace=True) w2v_short.save('w2v-vectors-short_window.pkl') #w2v.wv['judg'] # vector for "judge" ### # Word2Vec in gensim (long window) ### # word2vec requires sentences as input from txt_utils import get_sentences sentences = [] for doc in df1['doc']: sentences += get_sentences(doc) from random import shuffle shuffle(sentences) # stream in sentences in random order # train the model from gensim.models import Word2Vec w2v_long = Word2Vec(sentences, # list of tokenized sentences workers = 8, # Number of threads to run in parallel size=300, # Word vector dimensionality min_count = 20, # Minimum word count window = 16, # Context window size sample = 1e-3, # Downsample setting for frequent words ) # done training, so delete context vectors w2v_long.init_sims(replace=True) w2v_long.save('w2v-vectors-long_window.pkl') #w2v.wv['judg'] # vector for "judge" w2v_short.wv.most_similar('judg') # most similar words w2v_long.wv.most_similar('judg') # most similar words from sklearn.manifold import TSNE import re vocab_long = list(dict(list(w2v_long.wv.vocab.items())[:100]))#select just 100 words #w2v_long.wv.vocab X = w2v_long[vocab_long] tsne = TSNE(n_components=2) X_tsne = tsne.fit_transform(X) df_long = pd.DataFrame(X_tsne, columns=['x', 'y']) df_long['word']=vocab_long df_long.head() vocab_short = list(dict(list(w2v_long.wv.vocab.items())[:100]))#select just 100 words #w2v_long.wv.vocab X = w2v_short[vocab_short] tsne = TSNE(n_components=2) X_tsne = tsne.fit_transform(X) df_short = pd.DataFrame(X_tsne, columns=['x', 'y']) df_short['word']=vocab_short df_short.head() import ggplot as gg chart = gg.ggplot( df_long, gg.aes(x='x', y='y', label='word') ) \ + gg.geom_text(size=10, alpha=.8, label='word') chart.show() chart = gg.ggplot( df_short, gg.aes(x='x', y='y', label='word') ) \ + gg.geom_text(size=10, alpha=.8, label='word') chart.show() ###Output _____no_output_____ ###Markdown In the model with smaller window vectors which are similar like 'base' and 'ground' are more closer to each other, because a window size of 2 considers only the neighbouring words in a sentence. With a bigger winow size, the words are analyzed in a larger context, which is why words like 'reject' and 'regard' are closer to 'base' in a model with windowsize = 16 2) Train separate word embeddings for Republican and Democrat judges. Use your word embeddings to list the adjectives most associated with a social group or concept of your choice, and analyze differences by judge party. ###Code df_rep=df1[df1['x_republican']==1] print(len(df_rep)) df_rep.head() df_dem=df1[df1['x_republican']==0] print(len(df_dem)) df_dem.head() ### # Word2Vec in gensim for republican ### # word2vec requires sentences as input from txt_utils import get_sentences sentences = [] for doc in df_rep['doc']: sentences += get_sentences(doc) from random import shuffle shuffle(sentences) # stream in sentences in random order # train the model from gensim.models import Word2Vec w2v_rep = Word2Vec(sentences, # list of tokenized sentences workers = 8, # Number of threads to run in parallel size=300, # Word vector dimensionality min_count = 20, # Minimum word count window = 6, # Context window size sample = 1e-3, # Downsample setting for frequent words ) # done training, so delete context vectors w2v_rep.init_sims(replace=True) w2v_rep.save('w2v-vectors-republican.pkl') #w2v.wv['judg'] # vector for "judge" ### # Word2Vec in gensim for democrats ### # word2vec requires sentences as input from txt_utils import get_sentences sentences = [] for doc in df_dem['doc']: sentences += get_sentences(doc) from random import shuffle shuffle(sentences) # stream in sentences in random order # train the model from gensim.models import Word2Vec w2v_dem = Word2Vec(sentences, # list of tokenized sentences workers = 8, # Number of threads to run in parallel size=300, # Word vector dimensionality min_count = 20, # Minimum word count window = 6, # Context window size sample = 1e-3, # Downsample setting for frequent words ) # done training, so delete context vectors w2v_dem.init_sims(replace=True) w2v_dem.save('w2v-vectors-democrats.pkl') #w2v.wv['judg'] # vector for "judge" w2v_rep.wv.most_similar('judg') # most similar words import spacy nlp = spacy.load('en_core_web_sm') i=0 republican=[] for tmp in w2v_rep.wv.most_similar(stemmer.stem('negro'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: republican.append(tmp[0]) i=i+1 i=0 democrat=[] for tmp in w2v_dem.wv.most_similar(stemmer.stem('negro'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: democrat.append(tmp[0]) i=i+1 print('adjectives most associated with the word','\033[1m','negro','\033[0m','\n') print('republican: democrats: \n') for i in range(len(democrat)): print("%-20s %-20s" % (republican[i], democrat[i])) i=0 republican=[] for tmp in w2v_rep.wv.most_similar(stemmer.stem('communist'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: republican.append(tmp[0]) i=i+1 i=0 democrat=[] for tmp in w2v_dem.wv.most_similar(stemmer.stem('communist'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: democrat.append(tmp[0]) i=i+1 print('adjectives most associated with the word','\033[1m','communist','\033[0m','\n') print('republican: democrats: \n') for i in range(len(democrat)): print("%-20s %-20s" % (republican[i], democrat[i])) i=0 republican=[] for tmp in w2v_rep.wv.most_similar(stemmer.stem('poor'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: republican.append(tmp[0]) i=i+1 i=0 democrat=[] for tmp in w2v_dem.wv.most_similar(stemmer.stem('poor'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: democrat.append(tmp[0]) i=i+1 print('adjectives most associated with the word','\033[1m','poor','\033[0m','\n') print('republican: democrats: \n') for i in range(len(democrat)): print("%-20s %-20s" % (republican[i], democrat[i])) i=0 republican=[] for tmp in w2v_rep.wv.most_similar(stemmer.stem('christian'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: republican.append(tmp[0]) i=i+1 i=0 democrat=[] for tmp in w2v_dem.wv.most_similar(stemmer.stem('christian'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: democrat.append(tmp[0]) i=i+1 print('adjectives most associated with the word','\033[1m','christian','\033[0m','\n') print('republican: democrats: \n') for i in range(len(democrat)): print("%-20s %-20s" % (republican[i], democrat[i])) i=0 republican=[] for tmp in w2v_rep.wv.most_similar(stemmer.stem('indian'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: republican.append(tmp[0]) i=i+1 i=0 democrat=[] for tmp in w2v_dem.wv.most_similar(stemmer.stem('indian'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: democrat.append(tmp[0]) i=i+1 print('adjectives most associated with the word','\033[1m','indian','\033[0m','\n') print('republican: democrats: \n') for i in range(len(democrat)): print("%-20s %-20s" % (republican[i], democrat[i])) i=0 republican=[] for tmp in w2v_rep.wv.most_similar(stemmer.stem('american'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: republican.append(tmp[0]) i=i+1 i=0 democrat=[] for tmp in w2v_dem.wv.most_similar(stemmer.stem('american'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: democrat.append(tmp[0]) i=i+1 print('adjectives most associated with the word','\033[1m','american','\033[0m','\n') print('republican: democrats: \n') for i in range(len(democrat)): print("%-20s %-20s" % (republican[i], democrat[i])) i=0 republican=[] for tmp in w2v_rep.wv.most_similar(stemmer.stem('banker'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: republican.append(tmp[0]) i=i+1 i=0 democrat=[] for tmp in w2v_dem.wv.most_similar(stemmer.stem('banker'),topn=100)[:][:]: doc = nlp(tmp[0]) if doc[0].pos_=='ADJ' and i < 15: democrat.append(tmp[0]) i=i+1 print('adjectives most associated with the word','\033[1m','banker','\033[0m','\n') print('republican: democrats: \n') for i in range(len(democrat)): print("%-20s %-20s" % (republican[i], democrat[i])) ###Output adjectives most associated with the word  banker  republican: democrats: louisvil manhattan kan reynold lincoln louisvil cas vend lawrenc midwest southwest wet columbus red nashvil sidney lloyd syndic vincent theatr canadian bondhold reynold roy bros lawrenc stuart reinsur aerospac plumb
.ipynb_checkpoints/01_gsw_tools-checkpoint.ipynb
###Markdown 01_gsw_tools.ipynb---This notebook uses the Gibbs-SeaWater (GSW) Oceanographic Toolbox containing the TEOS-10 subroutines for evaluating the thermodynamic properties of seawater. Specifically we are going to calculate: **1.** Absolute Salinity ($S_A$) from Argo practical salinity **2.** Conservative Temperature ($\theta$) from Argo in-situ temperature **3.** Potential Density Anomaly ($\sigma_t$) with reference pressure of 0 dbar using the calculated $S_A$ and $\theta$Anomalies in $S_A$, $\theta$, and $\sigma_t$ are computed by removing the long-term (January 2004 – December 2020) monthly mean at each space and pressure point. Roemmich and Gilson Argo ClimatologyThe data we are using is from the updated **[Roemmich and Gilson (RG) Argo Climatology](http://sio-argo.ucsd.edu/RG_Climatology.html)** from the Scripps Instition of Oceanography. This data contains monthly ocean temperature and salinity on 58 levels from 2.5 to 2000 dbars from January 2004 through present. The RG climatology has a regular global 1 degree grid and is available as NetCDF only. It contains only data from Argo floats using optimal interpolation. This data product is described in further detail in [Roemmich and Gilson (2009)](https://www.sciencedirect.com/science/article/abs/pii/S0079661109000160?via%3Dihub) ###Code import xarray as xr import dask import gsw import numpy as np import numpy.matlib import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") %%time # Import the netCDF files that are downloaded when running 01_get_data.sh from the command line data_path = '/glade/scratch/scanh/RG-argo-climatology/*' dask.config.set({"array.slicing.split_large_chunks": False}) ds = xr.open_mfdataset(data_path, decode_times=False) dyr = ds.TIME dates = np.arange('2004-01', '2021-01', dtype='datetime64[M]') ds = ds.assign(TIME = dates) def monthly_anomaly_noseason(time, t_anom, t_mean, s_anom, s_mean): t_tot = t_anom + t_mean s_tot = s_anom + s_mean t_clim = t_tot.groupby('TIME.month').mean() s_clim = s_tot.groupby('TIME.month').mean() t_anom_noseason = np.empty(t_tot.shape) t_anom_noseason[:] = np.nan for i in enumerate(t_clim.month.values): I = np.where(time.dt.month == i[1])[0] t_anom_noseason[I,:,:,:] = t_tot[I,:,:,:] - t_clim[i[0],:,:,:] t_anom_noseason = xr.DataArray(t_anom_noseason, dims=t_tot.dims, coords=t_tot.coords) s_anom_noseason = np.empty(s_tot.shape) s_anom_noseason[:] = np.nan for i in enumerate(s_clim.month.values): I = np.where(time.dt.month == i[1])[0] s_anom_noseason[I] = s_tot[I,:,:,:] - s_clim[i[0],:,:,:] s_anom_noseason = xr.DataArray(s_anom_noseason, dims=s_tot.dims, coords=s_tot.coords) return t_tot, s_tot, t_anom_noseason, s_anom_noseason %%time t_tot, s_tot, t_anom_noseason, s_anom_noseason = monthly_anomaly_noseason(ds.TIME, ds.ARGO_TEMPERATURE_ANOMALY, ds.ARGO_TEMPERATURE_MEAN, ds.ARGO_SALINITY_ANOMALY, ds.ARGO_SALINITY_MEAN) blob1 = t_anom_noseason.sel(TIME='2019-12-01') plt.pcolormesh(blob1.LONGITUDE, blob1.LATITUDE, blob1[0,:,:], vmin=-3, vmax=3, cmap='RdBu_r'); plt.colorbar() plt.plot(215.5, 45.5,'k*',ms=12) blob1_ts = t_anom_noseason.sel(LONGITUDE=215.5, LATITUDE=45.5) plt.plot(t_anom_noseason.TIME,blob1_ts[:,0]) s_tot.load(); ds.load(); ###Output _____no_output_____ ###Markdown --- **1**. Absolute Salinity ($S_A$) from Practical Salinity. gsw.SA_from_SP(SP, p, lon, lat) Calculates Absolute Salinity from Practical Salinity. Since SP is non-negative by definition, this function changes any negative input values of SP to be zero.**Parameters**:- *SP* array-like Practical Salinity (PSS-78), unitless- $p$ array-like Sea pressure (absolute pressure minus 10.1325 dbar), dbar- $lon$ array-like Longitude, -360 to 360 degrees- $lat$ array-like Latitude, -90 to 90 degrees**Returns**:- Absolute Salinity ($S_A$) array-like, g/kg Absolute Salinity ###Code %%time SA_tot = np.empty(s_tot.shape) SA_tot[:] = np.nan # Compute Absolute Salinity for la in np.arange(0, ds.LATITUDE.shape[0]): for lo in np.arange(0, ds.LONGITUDE.shape[0]): SA_tot[:,:,la,lo] = gsw.SA_from_SP(s_tot[:,:,la,lo].values, ds.PRESSURE[:].values, 360-ds.LONGITUDE[lo].values, ds.LATITUDE[la].values) ###Output CPU times: user 2min, sys: 1.04 s, total: 2min 1s Wall time: 2min 2s ###Markdown --- **2**. Conservative Temperature ($\Theta$) from in-situ temperature. gsw.CT_from_t(SA, t, p)Calculates Conservative Temperature of seawater from in-situ temperature.**Parameters**: - $S_A$ array-like Absolute Salinity, g/kg- $t$ array-like In-situ temperature (ITS-90), degrees C- $p$ array-like Sea pressure (absolute pressure minus 10.1325 dbar), dbar**Returns**:- Conservative Temperature ($\Theta$) array-like, deg C Conservative Temperature (ITS-90) ###Code t_tot.load(); %%time CT_tot = np.empty(t_tot.shape) CT_tot[:] = np.nan for p in np.arange(0, ds.PRESSURE.shape[0]): CT_tot[:,p,:,:] = gsw.CT_from_t(SA_tot[:,p,:,:], t_tot[:,p,:,:].values, ds.PRESSURE[p].values) ###Output CPU times: user 1min 10s, sys: 3.14 s, total: 1min 13s Wall time: 1min 13s ###Markdown --- **3**. Potential Density Anomaly ($\sigma_t$) from absolute salinity and conservative temperature gsw.density.sigma0(SA, CT)Calculates potential density anomaly with reference pressure of 0 dbar, this being this particular potential density minus 1000 kg/m^3. This function has inputs of Absolute Salinity and Conservative Temperature. This function uses the computationally-efficient expression for specific volume in terms of SA, CT and p (Roquet et al., 2015).**Parameters**:- $S_A$ array-like Absolute Salinity, g/kg- $CT$ array-like Conservative Temperature (ITS-90), degrees C**Returns**:- Potential Density Anomaly ($\sigma_t$) array-like, kg/m$^{3}$ potential density anomaly with respect to a reference pressure of 0 dbar, that is, this potential density - 1000 kg/m$^{3}$. ###Code %%time sigmaT_tot = np.empty(t_tot.shape) sigmaT_tot[:] = np.nan for p in np.arange(0, ds.PRESSURE.shape[0]): sigmaT_tot[:,p,:,:] = gsw.density.sigma0(SA_tot[:,p,:,:], CT_tot[:,p,:,:]) ###Output CPU times: user 11 s, sys: 2.08 s, total: 13.1 s Wall time: 13.1 s ###Markdown ---**Compute anomalies in $S_A$, $\theta$, and $\sigma_t$** by removing the long-term (January 2004 – December 2020) monthly mean at each space and pressure point. ###Code # Initialize numpy matrices SA_anom = np.empty(s_tot.shape) SA_anom[:] = np.nan CT_anom = np.empty(t_tot.shape) CT_anom[:] = np.nan sigmaT_anom = np.empty(t_tot.shape) sigmaT_anom[:] = np.nan for i in np.arange(1,13): I = np.where(ds.TIME.dt.month==i)[0] CT_mn = CT_tot[I,:,:,:].mean(axis=0) CT_anom[I,:,:,:] = CT_tot[I,:,:,:] - CT_mn SA_mn = SA_tot[I,:,:,:].mean(axis=0) SA_anom[I,:,:,:] = SA_tot[I,:,:,:] - SA_mn sigt_mn = sigmaT_tot[I,:,:,:].mean(axis=0) sigmaT_anom[I,:,:,:] = sigmaT_tot[I,:,:,:] - sigt_mn ###Output _____no_output_____ ###Markdown ---**Save** the total and anomaly fields of $S_A$, $\theta$, and $\sigma_t$ to zarr ###Code RG_GSW_anoms = xr.Dataset({'SA_tot': (('TIME', 'PRESSURE', 'LATITUDE', 'LONGITUDE'), SA_tot), 'CT_tot': (('TIME', 'PRESSURE', 'LATITUDE', 'LONGITUDE'), CT_tot), 'sigmaT_tot': (('TIME','PRESSURE', 'LATITUDE', 'LONGITUDE'), sigmaT_tot), 'SA_anom': (('TIME', 'PRESSURE', 'LATITUDE', 'LONGITUDE'), SA_anom), 'CT_anom': (('TIME', 'PRESSURE', 'LATITUDE', 'LONGITUDE'), CT_anom), 'sigmaT_anom': (('TIME','PRESSURE', 'LATITUDE', 'LONGITUDE'), sigmaT_anom), 'mask': (('PRESSURE', 'LATITUDE', 'LONGITUDE'), ds.MAPPING_MASK.values)}, coords={'TIME': ds.TIME, 'PRESSURE': ds.PRESSURE, 'LATITUDE': ds.LATITUDE, 'LONGITUDE': ds.LONGITUDE}) RG_GSW_anoms.to_netcdf("/glade/scratch/scanh/climate2020/CT_SA_sigmaT_RG09_d18_m01_y2021.nc") ###Output _____no_output_____
cry101.ipynb
###Markdown Let's try some code1. Install stuff here- panda- sqlalchemy- request ###Code #!pip install python-binance import pandas as pd import sqlalchemy from binance.client import Client from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager #install Binance key from addons import binance_keys client = Client(api_key, api_secret) bsm = BinanceSocketManager(client) socket = bsm.trade_socket('BTCUSDT') await socket.__aenter__() msg = await socket.recv() print(msg) ###Output _____no_output_____
LSTM-testing.ipynb
###Markdown Let's start by downloading the data: ###Code ## Note: Linux bash commands start with a "!" inside those "ipython notebook" cells # DATA_PATH = "data/" # #!pwd && ls #os.chdir(DATA_PATH) #!pwd && ls # #!python download_dataset.py # #!pwd && ls #os.chdir("..") #!pwd && ls # DATASET_PATH = DATA_PATH + "UCI HAR Dataset/" print("\n" + "Dataset is now located at: " + DATASET_PATH) # ###Output Dataset is now located at: data/UCI HAR Dataset/ ###Markdown Preparing dataset: ###Code TRAIN = "train/" TEST = "test/" X_train_signals_paths = [DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES] ''' ['data/UCI HAR Dataset/train/Inertial Signals/body_acc_x_train.txt', 'data/UCI HAR Dataset/train/Inertial Signals/body_acc_y_train.txt', 'data/UCI HAR Dataset/train/Inertial Signals/body_acc_z_train.txt', 'data/UCI HAR Dataset/train/Inertial Signals/body_gyro_x_train.txt', 'data/UCI HAR Dataset/train/Inertial Signals/body_gyro_y_train.txt', 'data/UCI HAR Dataset/train/Inertial Signals/body_gyro_z_train.txt', 'data/UCI HAR Dataset/train/Inertial Signals/total_acc_x_train.txt', 'data/UCI HAR Dataset/train/Inertial Signals/total_acc_y_train.txt', 'data/UCI HAR Dataset/train/Inertial Signals/total_acc_z_train.txt'] ''' X_test_signals_paths = [DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES] ''' ['data/UCI HAR Dataset/test/Inertial Signals/body_acc_x_test.txt', 'data/UCI HAR Dataset/test/Inertial Signals/body_acc_y_test.txt', 'data/UCI HAR Dataset/test/Inertial Signals/body_acc_z_test.txt', 'data/UCI HAR Dataset/test/Inertial Signals/body_gyro_x_test.txt', 'data/UCI HAR Dataset/test/Inertial Signals/body_gyro_y_test.txt', 'data/UCI HAR Dataset/test/Inertial Signals/body_gyro_z_test.txt', 'data/UCI HAR Dataset/test/Inertial Signals/total_acc_x_test.txt', 'data/UCI HAR Dataset/test/Inertial Signals/total_acc_y_test.txt', 'data/UCI HAR Dataset/test/Inertial Signals/total_acc_z_test.txt'] ''' ################################################## # Load "X" (the neural network's training and testing inputs) ################################################## def load_X(X_signals_paths): X_signals = [] for signal_type_path in X_signals_paths: file = open(signal_type_path, 'r') # Read dataset from disk, dealing with text files' syntax X_signals.append([np.array(serie, dtype=np.float32) for serie in [ row.replace(' ', ' ').strip().split(' ') for row in file]]) file.close() return np.transpose(np.array(X_signals), (1, 2, 0)) X_train = load_X(X_train_signals_paths) # (7352, 128, 9) X_test = load_X(X_test_signals_paths) # (2947, 128, 9) ################################################## # Load "y" (the neural network's training and testing outputs) ################################################## def load_y(y_path): file = open(y_path, 'r') # Read dataset from disk, dealing with text file's syntax y_ = np.array([elem for elem in [row.replace(' ', ' ').strip().split(' ') for row in file]], dtype=np.int32) file.close() # Substract 1 to each output class for friendly 0-based indexing return y_ - 1 y_train_path = DATASET_PATH + TRAIN + "y_train.txt" ''' data/UCI HAR Dataset/train/y_train.txt ''' y_test_path = DATASET_PATH + TEST + "y_test.txt" ''' data/UCI HAR Dataset/test/y_test.txt ''' y_train = load_y(y_train_path) # (7352, 1) y_test = load_y(y_test_path) # (2947, 1) ###Output _____no_output_____ ###Markdown Additionnal Parameters:Here are some core parameter definitions for the training. For example, the whole neural network's structure could be summarised by enumerating those parameters and the fact that two LSTM are used one on top of another (stacked) output-to-input as hidden layers through time steps. ###Code # Input Data training_data_count = len(X_train) # 7352 training series (with 50% overlap between each serie) test_data_count = len(X_test) # 2947 testing series n_steps = len(X_train[0]) # 128 timesteps per series n_input = len(X_train[0][0]) # 9 input parameters per timestep # LSTM Neural Network's internal structure n_hidden = 32 # Hidden layer num of features n_classes = 6 # Total classes (should go up, or should go down) # Training learning_rate = 0.0025 lambda_loss_amount = 0.0015 training_iters = training_data_count * 300 # Loop 300 times on the dataset batch_size = 1500 display_iter = 30000 # To show test set accuracy during training # Some debugging info print("Some useful info to get an insight on dataset's shape and normalisation:") print("(X shape, y shape, every X's mean, every X's standard deviation)") print(X_test.shape, y_test.shape, np.mean(X_test), np.std(X_test)) print("The dataset is therefore properly normalised, as expected, but not yet one-hot encoded.") print(('X_train: {}').format(X_train.shape)) print(('X_test: {}').format(X_test.shape)) print(('y_train: {}').format(y_train.shape)) print(('y_test: {}').format(y_test.shape)) ##128: readings/window ##[acc_x", "acc_y", "acc_z", "gyro_x", "gyro_y", "gyro_z", "total_acc_x", "total_acc_y" , "total_acc_z"] ## ##["WALKING", "WALKING_UPSTAIRS", "WALKING_DOWNSTAIRS", "SITTING", "STANDING", "LAYING"] X_train[0][0] X_train[0][1] X_train[0][0] ###Output _____no_output_____ ###Markdown Utility functions for training: ###Code def LSTM_RNN(_X, _weights, _biases): # Function returns a tensorflow LSTM (RNN) artificial neural network from given parameters. # Moreover, two LSTM cells are stacked which adds deepness to the neural network. # Note, some code of this notebook is inspired from an slightly different # RNN architecture used on another dataset, some of the credits goes to # "aymericdamien" under the MIT license. # (NOTE: This step could be greatly optimised by shaping the dataset once # input shape: (batch_size, n_steps, n_input) _X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size # Reshape to prepare input to hidden activation _X = tf.reshape(_X, [-1, n_input]) # new shape: (n_steps*batch_size, n_input) # ReLU activation, thanks to Yu Zhao for adding this improvement here: _X = tf.nn.relu(tf.matmul(_X, _weights['hidden']) + _biases['hidden']) # Split data because rnn cell needs a list of inputs for the RNN inner loop _X = tf.split(_X, n_steps, 0) # new shape: n_steps * (batch_size, n_hidden) # Define two stacked LSTM cells (two recurrent layers deep) with tensorflow lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True) lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True) lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True) # Get LSTM cell output outputs, states = tf.contrib.rnn.static_rnn(lstm_cells, _X, dtype=tf.float32) # Get last time step's output feature for a "many-to-one" style classifier, # as in the image describing RNNs at the top of this page lstm_last_output = outputs[-1] # Linear activation return tf.matmul(lstm_last_output, _weights['out']) + _biases['out'] def extract_batch_size(_train, step, batch_size): # Function to fetch a "batch_size" amount of data from "(X|y)_train" data. shape = list(_train.shape) shape[0] = batch_size batch_s = np.empty(shape) for i in range(batch_size): # Loop index index = ((step-1)*batch_size + i) % len(_train) batch_s[i] = _train[index] return batch_s # (1500, 128, 9) def one_hot(y_, n_classes=n_classes): # Function to encode neural one-hot output labels from number indexes # e.g.: # one_hot(y_=[[5], [0], [3]], n_classes=6): # return [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]] y_ = y_.reshape(len(y_)) return np.eye(n_classes)[np.array(y_, dtype=np.int32)] # Returns FLOATS ###Output _____no_output_____ ###Markdown Let's get serious and build the neural network: ###Code ################ # n_steps: 128 readings / window # n_input: 9 [acc_x", "acc_y", "acc_z", "gyro_x", "gyro_y", "gyro_z", "total_acc_x", "total_acc_y" , "total_acc_z"] # n_classes: 6 ["WALKING", "WALKING_UPSTAIRS", "WALKING_DOWNSTAIRS", "SITTING", "STANDING", "LAYING"] # n_hidden: 32 #training_data_count: 7352 #test_data_count: 2947 #learning_rate: 0.0025 #lambda_loss_amount: 0.0015 # training_iters: 2205600 #batch_size: 1500 #display_iter: 30000 ################ # Graph input/output x = tf.placeholder(tf.float32, [None, n_steps, n_input]) y = tf.placeholder(tf.float32, [None, n_classes]) # Graph weights weights = { 'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights 'out': tf.Variable(tf.random_normal([n_hidden, n_classes], mean=1.0)) } biases = { 'hidden': tf.Variable(tf.random_normal([n_hidden])), 'out': tf.Variable(tf.random_normal([n_classes])) } weights # prediction pred = LSTM_RNN(x, weights, biases) # Loss, optimizer and evaluation: ################################# # L2 loss prevents this overkill neural network to overfit the data l2 = lambda_loss_amount * sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()) # Softmax loss cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=pred)) + l2 # Adam Optimizer optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) step = 1 batch_xs = extract_batch_size(X_train, step, batch_size) batch_ys = one_hot(extract_batch_size(y_train, step, batch_size)) # extract_batch_size(X_train, 1, 1500) >>>>> shape of output: (7352, 128, 9) # extract_batch_size(y_train, 1, 1500) >>>>> shape of output: (1500, 1) # one_hot(extract_batch_size(y_train, 1, 1500)) >>>>> shape of output: (1500, 6) print(X_train.shape) # (7352, 128, 9) print(y_train.shape) # (7352, 1) print(batch_size) # 1500 print(batch_xs.shape) # (1500, 128, 9) print(batch_ys.shape) # (1500, 6) print(extract_batch_size(y_train, step, batch_size).shape) ###Output (7352, 128, 9) (7352, 1) 1500 (1500, 128, 9) (1500, 6) (1500, 1)
notebooks/test_active_learning_deepweeds_entropy_no_dropout.ipynb
###Markdown ###Code !git clone --single-branch --branch cassava-deepweeds https://github.com/ravindrabharathi/fsdl-active-learning2.git %cd fsdl-active-learning2 from google.colab import drive drive.mount('/gdrive') !mkdir './data/deepweeds/' !cp '/gdrive/MyDrive/LiveAI/AgriAI/images.zip' './data/deepweeds/' !unzip -q './data/deepweeds/images.zip' -d './data/deepweeds/images' !cp '/gdrive/MyDrive/LiveAI/AgriAI/labels_deep_weeds.csv' './data/deepweeds/' # alternative way: if you cloned the repository to your GDrive account, you can mount it here #from google.colab import drive #drive.mount('/content/drive', force_remount=True) #%cd /content/drive/MyDrive/fsdl-active-learning !pip3 install PyYAML==5.3.1 !pip3 install boltons wandb pytorch_lightning==1.2.8 !pip3 install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 torchtext==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html # general lab / pytorch installs !pip3 install modAL tensorflow # active learning project !pip install hdbscan %env PYTHONPATH=.:$PYTHONPATH #!python training/run_experiment.py --wandb --gpus=1 --max_epochs=1 --num_workers=4 --data_class=DroughtWatch --model_class=ResnetClassifier --batch_size=32 --sampling_method="random" !python training/run_experiment.py --gpus=1 --max_epochs=10 --num_workers=4 --data_class=DeepweedsDataModule --model_class=ResnetClassifier3 --sampling_method="entropy" --batch_size=128 ###Output 2021-05-14 11:03:11.719403: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0 INIT SETUP CALLED!! ___________________ wandb: (1) Create a W&B account wandb: (2) Use an existing W&B account wandb: (3) Don't visualize my results wandb: Enter your choice: 2 wandb: You chose 'Use an existing W&B account' wandb: You can find your API key in your browser here: https://wandb.ai/authorize wandb: Paste an API key from your profile and hit enter: wandb: Appending key for api.wandb.ai to your netrc file: /root/.netrc 2021-05-14 11:04:35.042771: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0 wandb: Tracking run with wandb version 0.10.30 wandb: Syncing run fsdl-active-learning_DeepweedsDataModule_entropy_multi-class_all-channels wandb: ⭐️ View project at https://wandb.ai/ravindra/fsdl-active-learning2-training wandb: 🚀 View run at https://wandb.ai/ravindra/fsdl-active-learning2-training/runs/686kvaz6 wandb: Run data is saved locally in /content/fsdl-active-learning2/wandb/run-20210514_110433-686kvaz6 wandb: Run `wandb offline` to turn off syncing. Initializing model for active learning iteration 0 setting n_channels to 3 Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth" to /root/.cache/torch/hub/checkpoints/resnet50-19c8e357.pth 100%|███████████████████████████████████████| 97.8M/97.8M [00:00<00:00, 171MB/s] GPU available: True, used: True TPU available: False, using: 0 TPU cores LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Epoch 0: 0%| | 0/39 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric Accuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) /usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric F1_Score was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) Epoch 0: 51%|█████████████████▍ | 20/39 [00:04<00:04, 4.55it/s] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.14it/s] Epoch 0: 100%|███████████| 39/39 [00:12<00:00, 3.06it/s, loss=1.37, v_num=vaz6] Epoch 1: 51%|█████▋ | 20/39 [00:03<00:03, 5.04it/s, loss=1.37, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.34it/s] Epoch 1: 100%|██████████| 39/39 [00:11<00:00, 3.33it/s, loss=0.771, v_num=vaz6] Epoch 2: 51%|█████▏ | 20/39 [00:03<00:03, 5.15it/s, loss=0.771, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.43it/s] Epoch 2: 100%|███████████| 39/39 [00:11<00:00, 3.38it/s, loss=0.31, v_num=vaz6] Epoch 3: 51%|█████▋ | 20/39 [00:03<00:03, 5.19it/s, loss=0.31, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.32it/s] Epoch 3: 100%|███████████| 39/39 [00:11<00:00, 3.38it/s, loss=0.18, v_num=vaz6] Epoch 4: 51%|█████▋ | 20/39 [00:03<00:03, 5.09it/s, loss=0.18, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.35it/s] Epoch 4: 100%|██████████| 39/39 [00:11<00:00, 3.37it/s, loss=0.104, v_num=vaz6] Epoch 5: 51%|█████▏ | 20/39 [00:03<00:03, 5.16it/s, loss=0.104, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.32it/s] Epoch 5: 100%|█████████| 39/39 [00:11<00:00, 3.37it/s, loss=0.0574, v_num=vaz6] Epoch 6: 51%|████▌ | 20/39 [00:03<00:03, 5.08it/s, loss=0.0574, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.29it/s] Epoch 6: 100%|██████████| 39/39 [00:11<00:00, 3.34it/s, loss=0.034, v_num=vaz6] Epoch 7: 51%|█████▏ | 20/39 [00:03<00:03, 5.25it/s, loss=0.034, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.33it/s] Epoch 7: 100%|█████████| 39/39 [00:11<00:00, 3.40it/s, loss=0.0225, v_num=vaz6] Epoch 8: 51%|████▌ | 20/39 [00:03<00:03, 5.17it/s, loss=0.0225, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.26it/s] Epoch 8: 100%|█████████| 39/39 [00:11<00:00, 3.34it/s, loss=0.0169, v_num=vaz6] Epoch 9: 51%|████▌ | 20/39 [00:03<00:03, 5.20it/s, loss=0.0169, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.43it/s] Epoch 9: 100%|█████████| 39/39 [00:11<00:00, 3.42it/s, loss=0.0137, v_num=vaz6] Epoch 9: 100%|█████████| 39/39 [00:11<00:00, 3.42it/s, loss=0.0137, v_num=vaz6] Total Unlabelled Pool Size 12607 Query Sample size 2000 Resetting Predictions LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Testing: 100%|██████████████████████████████████| 99/99 [00:26<00:00, 3.72it/s] -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.7720314264297485, 'test_f1': 0.6901328563690186, 'train_size': 1400.0} -------------------------------------------------------------------------------- Indices selected for labelling via method "entropy": ----------------- [12092 8400 1402 ... 5471 5148 2938] ----------------- New train set size 3400 New unlabelled pool size 10607 Initializing model for active learning iteration 1 setting n_channels to 3 GPU available: True, used: True TPU available: False, using: 0 TPU cores LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Epoch 0: 36%|████ | 20/55 [00:06<00:11, 3.06it/s, loss=1.47, v_num=vaz6]/usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric Accuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) /usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric F1_Score was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) Epoch 0: 73%|████████ | 40/55 [00:08<00:03, 4.92it/s, loss=1.47, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.46it/s] Epoch 0: 100%|███████████| 55/55 [00:15<00:00, 3.51it/s, loss=1.21, v_num=vaz6] Epoch 1: 73%|███████▎ | 40/55 [00:08<00:03, 4.99it/s, loss=0.622, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.41it/s] Epoch 1: 100%|██████████| 55/55 [00:15<00:00, 3.52it/s, loss=0.616, v_num=vaz6] Epoch 2: 73%|████████ | 40/55 [00:08<00:03, 4.91it/s, loss=0.37, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.29it/s] Epoch 2: 100%|██████████| 55/55 [00:15<00:00, 3.46it/s, loss=0.368, v_num=vaz6] Epoch 3: 73%|███████▎ | 40/55 [00:08<00:03, 4.99it/s, loss=0.209, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.42it/s] Epoch 3: 100%|██████████| 55/55 [00:15<00:00, 3.51it/s, loss=0.215, v_num=vaz6] Epoch 4: 73%|████████ | 40/55 [00:07<00:02, 5.04it/s, loss=0.13, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.21it/s] Epoch 4: 100%|██████████| 55/55 [00:15<00:00, 3.47it/s, loss=0.134, v_num=vaz6] Epoch 5: 73%|██████▌ | 40/55 [00:08<00:03, 4.93it/s, loss=0.0956, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.35it/s] Epoch 5: 100%|█████████| 55/55 [00:15<00:00, 3.48it/s, loss=0.0953, v_num=vaz6] Epoch 6: 73%|███████▎ | 40/55 [00:08<00:03, 4.98it/s, loss=0.054, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.43it/s] Epoch 6: 100%|█████████| 55/55 [00:15<00:00, 3.50it/s, loss=0.0597, v_num=vaz6] Epoch 7: 73%|██████▌ | 40/55 [00:08<00:03, 4.91it/s, loss=0.0417, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.31it/s] Epoch 7: 100%|█████████| 55/55 [00:15<00:00, 3.46it/s, loss=0.0451, v_num=vaz6] Epoch 8: 73%|██████▌ | 40/55 [00:08<00:03, 4.96it/s, loss=0.0267, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.33it/s] Epoch 8: 100%|██████████| 55/55 [00:15<00:00, 3.49it/s, loss=0.029, v_num=vaz6] Epoch 9: 73%|███████▎ | 40/55 [00:07<00:02, 5.02it/s, loss=0.019, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.35it/s] Epoch 9: 100%|█████████| 55/55 [00:15<00:00, 3.52it/s, loss=0.0187, v_num=vaz6] Epoch 9: 100%|█████████| 55/55 [00:15<00:00, 3.52it/s, loss=0.0187, v_num=vaz6] Total Unlabelled Pool Size 10607 Query Sample size 2000 LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Resetting Predictions Testing: 100%|██████████████████████████████████| 83/83 [00:21<00:00, 3.94it/s] -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.8643348813056946, 'test_f1': 0.8090488314628601, 'train_size': 3400.0} -------------------------------------------------------------------------------- Indices selected for labelling via method "entropy": ----------------- [ 1418 383 6289 ... 8266 9274 10214] ----------------- New train set size 5400 New unlabelled pool size 8607 Initializing model for active learning iteration 2 setting n_channels to 3 GPU available: True, used: True TPU available: False, using: 0 TPU cores LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Epoch 0: 56%|██████▏ | 40/71 [00:11<00:08, 3.50it/s, loss=1.05, v_num=vaz6]/usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric Accuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) /usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric F1_Score was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) Epoch 0: 85%|█████████▎ | 60/71 [00:12<00:02, 4.98it/s, loss=1.05, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.29it/s] Epoch 0: 100%|███████████| 71/71 [00:19<00:00, 3.59it/s, loss=1.03, v_num=vaz6] Epoch 1: 85%|████████▍ | 60/71 [00:12<00:02, 4.94it/s, loss=0.629, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.36it/s] Epoch 1: 100%|██████████| 71/71 [00:19<00:00, 3.59it/s, loss=0.642, v_num=vaz6] Epoch 2: 85%|████████▍ | 60/71 [00:12<00:02, 4.92it/s, loss=0.431, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.33it/s] Epoch 2: 100%|███████████| 71/71 [00:19<00:00, 3.56it/s, loss=0.45, v_num=vaz6] Epoch 3: 85%|████████▍ | 60/71 [00:11<00:02, 5.01it/s, loss=0.311, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.33it/s] Epoch 3: 100%|███████████| 71/71 [00:19<00:00, 3.61it/s, loss=0.32, v_num=vaz6] Epoch 4: 85%|████████▍ | 60/71 [00:12<00:02, 4.96it/s, loss=0.231, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.38it/s] Epoch 4: 100%|██████████| 71/71 [00:19<00:00, 3.60it/s, loss=0.261, v_num=vaz6] Epoch 5: 85%|████████▍ | 60/71 [00:12<00:02, 4.96it/s, loss=0.167, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.41it/s] Epoch 5: 100%|██████████| 71/71 [00:19<00:00, 3.62it/s, loss=0.182, v_num=vaz6] Epoch 6: 85%|████████▍ | 60/71 [00:12<00:02, 4.99it/s, loss=0.119, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.31it/s] Epoch 6: 100%|██████████| 71/71 [00:19<00:00, 3.59it/s, loss=0.131, v_num=vaz6] Epoch 7: 85%|████████▍ | 60/71 [00:12<00:02, 4.94it/s, loss=0.087, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.31it/s] Epoch 7: 100%|█████████| 71/71 [00:19<00:00, 3.57it/s, loss=0.0868, v_num=vaz6] Epoch 8: 85%|███████▌ | 60/71 [00:12<00:02, 4.88it/s, loss=0.0506, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.39it/s] Epoch 8: 100%|█████████| 71/71 [00:19<00:00, 3.57it/s, loss=0.0544, v_num=vaz6] Epoch 9: 85%|███████▌ | 60/71 [00:12<00:02, 4.94it/s, loss=0.0438, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.31it/s] Epoch 9: 100%|█████████| 71/71 [00:19<00:00, 3.57it/s, loss=0.0464, v_num=vaz6] Epoch 9: 100%|█████████| 71/71 [00:19<00:00, 3.56it/s, loss=0.0464, v_num=vaz6] Total Unlabelled Pool Size 8607 Query Sample size 2000 Resetting Predictions LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Testing: 100%|██████████████████████████████████| 68/68 [00:17<00:00, 3.89it/s] -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.9172766208648682, 'test_f1': 0.8816561698913574, 'train_size': 5400.0} -------------------------------------------------------------------------------- Indices selected for labelling via method "entropy": ----------------- [3721 5540 5793 ... 2830 6010 6984] ----------------- New train set size 7400 New unlabelled pool size 6607 Initializing model for active learning iteration 3 setting n_channels to 3 GPU available: True, used: True TPU available: False, using: 0 TPU cores LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Epoch 0: 47%|█████ | 40/86 [00:11<00:13, 3.42it/s, loss=0.99, v_num=vaz6]/usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric Accuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) /usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric F1_Score was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) Epoch 0: 70%|███████▋ | 60/86 [00:16<00:06, 3.73it/s, loss=0.99, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 0: 93%|██████████▏| 80/86 [00:22<00:01, 3.61it/s, loss=0.99, v_num=vaz6] Epoch 0: 100%|██████████| 86/86 [00:23<00:00, 3.61it/s, loss=0.881, v_num=vaz6] Epoch 1: 70%|██████▉ | 60/86 [00:16<00:07, 3.65it/s, loss=0.579, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 1: 93%|█████████▎| 80/86 [00:22<00:01, 3.53it/s, loss=0.579, v_num=vaz6] Epoch 1: 100%|██████████| 86/86 [00:24<00:00, 3.52it/s, loss=0.595, v_num=vaz6] Epoch 2: 70%|██████▉ | 60/86 [00:16<00:07, 3.70it/s, loss=0.405, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 2: 93%|█████████▎| 80/86 [00:22<00:01, 3.63it/s, loss=0.405, v_num=vaz6] Epoch 2: 100%|██████████| 86/86 [00:23<00:00, 3.60it/s, loss=0.411, v_num=vaz6] Epoch 3: 70%|██████▉ | 60/86 [00:16<00:07, 3.68it/s, loss=0.265, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 3: 93%|█████████▎| 80/86 [00:22<00:01, 3.59it/s, loss=0.265, v_num=vaz6] Epoch 3: 100%|███████████| 86/86 [00:24<00:00, 3.57it/s, loss=0.29, v_num=vaz6] Epoch 4: 70%|██████▉ | 60/86 [00:16<00:06, 3.72it/s, loss=0.201, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 4: 93%|█████████▎| 80/86 [00:22<00:01, 3.63it/s, loss=0.201, v_num=vaz6] Epoch 4: 100%|██████████| 86/86 [00:23<00:00, 3.62it/s, loss=0.222, v_num=vaz6] Epoch 5: 70%|██████▉ | 60/86 [00:16<00:07, 3.71it/s, loss=0.127, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 5: 93%|█████████▎| 80/86 [00:22<00:01, 3.60it/s, loss=0.127, v_num=vaz6] Epoch 5: 100%|██████████| 86/86 [00:23<00:00, 3.60it/s, loss=0.144, v_num=vaz6] Epoch 6: 70%|██████▎ | 60/86 [00:16<00:06, 3.72it/s, loss=0.0808, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 6: 93%|████████▎| 80/86 [00:22<00:01, 3.61it/s, loss=0.0808, v_num=vaz6] Epoch 6: 100%|███████████| 86/86 [00:23<00:00, 3.61it/s, loss=0.11, v_num=vaz6] Epoch 7: 70%|██████▎ | 60/86 [00:15<00:06, 3.76it/s, loss=0.0734, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 7: 93%|████████▎| 80/86 [00:22<00:01, 3.63it/s, loss=0.0734, v_num=vaz6] Epoch 7: 100%|█████████| 86/86 [00:23<00:00, 3.63it/s, loss=0.0802, v_num=vaz6] Epoch 8: 70%|██████▎ | 60/86 [00:16<00:06, 3.74it/s, loss=0.0546, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 8: 93%|████████▎| 80/86 [00:22<00:01, 3.61it/s, loss=0.0546, v_num=vaz6] Epoch 8: 100%|█████████| 86/86 [00:23<00:00, 3.61it/s, loss=0.0574, v_num=vaz6] Epoch 9: 70%|██████▉ | 60/86 [00:16<00:06, 3.73it/s, loss=0.041, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 9: 93%|█████████▎| 80/86 [00:22<00:01, 3.61it/s, loss=0.041, v_num=vaz6] Epoch 9: 100%|█████████| 86/86 [00:23<00:00, 3.60it/s, loss=0.0393, v_num=vaz6] Epoch 9: 100%|█████████| 86/86 [00:23<00:00, 3.60it/s, loss=0.0393, v_num=vaz6] Total Unlabelled Pool Size 6607 LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Query Sample size 2000 Resetting Predictions Testing: 100%|██████████████████████████████████| 52/52 [00:13<00:00, 3.78it/s] -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.9667019844055176, 'test_f1': 0.9525201916694641, 'train_size': 7400.0} -------------------------------------------------------------------------------- Indices selected for labelling via method "entropy": ----------------- [3797 3648 3632 ... 5571 3813 3475] ----------------- New train set size 9400 New unlabelled pool size 4607 Initializing model for active learning iteration 4 setting n_channels to 3 GPU available: True, used: True TPU available: False, using: 0 TPU cores LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Epoch 0: 59%|█████▎ | 60/102 [00:16<00:11, 3.58it/s, loss=0.808, v_num=vaz6]/usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric Accuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) /usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric F1_Score was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) Epoch 0: 78%|███████ | 80/102 [00:20<00:05, 3.98it/s, loss=0.808, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 0: 98%|███████▊| 100/102 [00:26<00:00, 3.83it/s, loss=0.808, v_num=vaz6] Epoch 0: 100%|████████| 102/102 [00:27<00:00, 3.64it/s, loss=0.749, v_num=vaz6] Epoch 1: 78%|███████ | 80/102 [00:20<00:05, 3.97it/s, loss=0.519, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 1: 98%|███████▊| 100/102 [00:26<00:00, 3.84it/s, loss=0.519, v_num=vaz6] Epoch 1: 100%|████████| 102/102 [00:27<00:00, 3.68it/s, loss=0.519, v_num=vaz6] Epoch 2: 78%|███████ | 80/102 [00:20<00:05, 3.97it/s, loss=0.357, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 2: 98%|███████▊| 100/102 [00:26<00:00, 3.83it/s, loss=0.357, v_num=vaz6] Epoch 2: 100%|████████| 102/102 [00:27<00:00, 3.66it/s, loss=0.387, v_num=vaz6] Epoch 3: 78%|███████ | 80/102 [00:20<00:05, 3.96it/s, loss=0.245, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 3: 98%|███████▊| 100/102 [00:26<00:00, 3.80it/s, loss=0.245, v_num=vaz6] Epoch 3: 100%|████████| 102/102 [00:27<00:00, 3.64it/s, loss=0.274, v_num=vaz6] Epoch 4: 78%|███████ | 80/102 [00:20<00:05, 3.95it/s, loss=0.193, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 4: 98%|███████▊| 100/102 [00:26<00:00, 3.79it/s, loss=0.193, v_num=vaz6] Epoch 4: 100%|████████| 102/102 [00:28<00:00, 3.63it/s, loss=0.202, v_num=vaz6] Epoch 5: 78%|███████ | 80/102 [00:20<00:05, 3.96it/s, loss=0.133, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 5: 98%|███████▊| 100/102 [00:26<00:00, 3.81it/s, loss=0.133, v_num=vaz6] Epoch 5: 100%|████████| 102/102 [00:27<00:00, 3.65it/s, loss=0.134, v_num=vaz6] Epoch 6: 78%|██████▎ | 80/102 [00:20<00:05, 3.97it/s, loss=0.0807, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 6: 98%|██████▊| 100/102 [00:26<00:00, 3.83it/s, loss=0.0807, v_num=vaz6] Epoch 6: 100%|███████| 102/102 [00:27<00:00, 3.65it/s, loss=0.0905, v_num=vaz6] Epoch 7: 78%|██████▎ | 80/102 [00:20<00:05, 3.96it/s, loss=0.0692, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 7: 98%|██████▊| 100/102 [00:26<00:00, 3.82it/s, loss=0.0692, v_num=vaz6] Epoch 7: 100%|███████| 102/102 [00:27<00:00, 3.65it/s, loss=0.0771, v_num=vaz6] Epoch 8: 78%|██████▎ | 80/102 [00:20<00:05, 3.97it/s, loss=0.0602, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 8: 98%|██████▊| 100/102 [00:26<00:00, 3.79it/s, loss=0.0602, v_num=vaz6] Epoch 8: 100%|███████| 102/102 [00:28<00:00, 3.64it/s, loss=0.0607, v_num=vaz6] Epoch 9: 78%|██████▎ | 80/102 [00:20<00:05, 3.99it/s, loss=0.0329, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Epoch 9: 98%|██████▊| 100/102 [00:26<00:00, 3.82it/s, loss=0.0329, v_num=vaz6] Epoch 9: 100%|███████| 102/102 [00:27<00:00, 3.66it/s, loss=0.0317, v_num=vaz6] Epoch 9: 100%|███████| 102/102 [00:27<00:00, 3.66it/s, loss=0.0317, v_num=vaz6] Total Unlabelled Pool Size 4607 Query Sample size 2000 LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Resetting Predictions Testing: 100%|██████████████████████████████████| 36/36 [00:09<00:00, 3.69it/s] -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.9924028515815735, 'test_f1': 0.9859451651573181, 'train_size': 9400.0} -------------------------------------------------------------------------------- Indices selected for labelling via method "entropy": ----------------- [ 866 3659 4577 ... 4042 1930 3785] ----------------- New train set size 11400 New unlabelled pool size 2607 Initializing model for active learning iteration 5 setting n_channels to 3 GPU available: True, used: True TPU available: False, using: 0 TPU cores LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Epoch 0: 68%|██████▊ | 80/118 [00:22<00:10, 3.63it/s, loss=0.68, v_num=vaz6]/usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric Accuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) /usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric F1_Score was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) Epoch 0: 85%|███████▋ | 100/118 [00:24<00:04, 4.12it/s, loss=0.68, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.35it/s] Epoch 0: 100%|████████| 118/118 [00:31<00:00, 3.69it/s, loss=0.666, v_num=vaz6] Epoch 1: 85%|██████▊ | 100/118 [00:24<00:04, 4.13it/s, loss=0.464, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.28it/s] Epoch 1: 100%|████████| 118/118 [00:32<00:00, 3.68it/s, loss=0.444, v_num=vaz6] Epoch 2: 85%|██████▊ | 100/118 [00:24<00:04, 4.12it/s, loss=0.329, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.37it/s] Epoch 2: 100%|████████| 118/118 [00:31<00:00, 3.70it/s, loss=0.347, v_num=vaz6] Epoch 3: 85%|██████▊ | 100/118 [00:24<00:04, 4.16it/s, loss=0.246, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.30it/s] Epoch 3: 100%|████████| 118/118 [00:31<00:00, 3.71it/s, loss=0.251, v_num=vaz6] Epoch 4: 85%|██████▊ | 100/118 [00:24<00:04, 4.13it/s, loss=0.167, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.32it/s] Epoch 4: 100%|████████| 118/118 [00:32<00:00, 3.68it/s, loss=0.162, v_num=vaz6] Epoch 5: 85%|█████▉ | 100/118 [00:24<00:04, 4.12it/s, loss=0.0928, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.32it/s] Epoch 5: 100%|████████| 118/118 [00:32<00:00, 3.68it/s, loss=0.141, v_num=vaz6] Epoch 6: 85%|██████▊ | 100/118 [00:24<00:04, 4.15it/s, loss=0.103, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.37it/s] Epoch 6: 100%|█████████| 118/118 [00:31<00:00, 3.72it/s, loss=0.12, v_num=vaz6] Epoch 7: 85%|██████▊ | 100/118 [00:24<00:04, 4.14it/s, loss=0.088, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.37it/s] Epoch 7: 100%|████████| 118/118 [00:31<00:00, 3.70it/s, loss=0.114, v_num=vaz6] Epoch 8: 85%|█████▉ | 100/118 [00:24<00:04, 4.13it/s, loss=0.0809, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.38it/s] Epoch 8: 100%|███████| 118/118 [00:31<00:00, 3.71it/s, loss=0.0844, v_num=vaz6] Epoch 9: 85%|██████▊ | 100/118 [00:24<00:04, 4.14it/s, loss=0.052, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.39it/s] Epoch 9: 100%|████████| 118/118 [00:31<00:00, 3.71it/s, loss=0.142, v_num=vaz6] Epoch 9: 100%|████████| 118/118 [00:31<00:00, 3.71it/s, loss=0.142, v_num=vaz6] Total Unlabelled Pool Size 2607 Query Sample size 2000 Resetting Predictions LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Testing: 100%|██████████████████████████████████| 21/21 [00:06<00:00, 3.43it/s] -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.9980821013450623, 'test_f1': 0.9953089952468872, 'train_size': 11400.0} -------------------------------------------------------------------------------- Indices selected for labelling via method "entropy": ----------------- [2560 2228 2283 ... 1809 112 350] ----------------- New train set size 13400 New unlabelled pool size 607 Initializing model for active learning iteration 6 setting n_channels to 3 GPU available: True, used: True TPU available: False, using: 0 TPU cores LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Epoch 0: 75%|██████ | 100/133 [00:27<00:08, 3.70it/s, loss=0.515, v_num=vaz6]/usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric Accuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) /usr/local/lib/python3.7/dist-packages/torchmetrics/utilities/prints.py:36: UserWarning: The ``compute`` method of metric F1_Score was called before the ``update`` method which may lead to errors, as metric states have not yet been updated. warnings.warn(*args, **kwargs) Epoch 0: 90%|███████▏| 120/133 [00:28<00:03, 4.25it/s, loss=0.515, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.26it/s] Epoch 0: 100%|████████| 133/133 [00:36<00:00, 3.69it/s, loss=0.513, v_num=vaz6] Epoch 1: 90%|███████▏| 120/133 [00:28<00:03, 4.25it/s, loss=0.347, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.32it/s] Epoch 1: 100%|████████| 133/133 [00:35<00:00, 3.70it/s, loss=0.363, v_num=vaz6] Epoch 2: 90%|███████▏| 120/133 [00:28<00:03, 4.25it/s, loss=0.282, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.34it/s] Epoch 2: 100%|████████| 133/133 [00:35<00:00, 3.70it/s, loss=0.292, v_num=vaz6] Epoch 3: 90%|███████▏| 120/133 [00:28<00:03, 4.26it/s, loss=0.184, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.30it/s] Epoch 3: 100%|████████| 133/133 [00:35<00:00, 3.70it/s, loss=0.183, v_num=vaz6] Epoch 4: 90%|███████▏| 120/133 [00:28<00:03, 4.26it/s, loss=0.121, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.41it/s] Epoch 4: 100%|████████| 133/133 [00:35<00:00, 3.71it/s, loss=0.122, v_num=vaz6] Epoch 5: 90%|██████▎| 120/133 [00:28<00:03, 4.28it/s, loss=0.0946, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.31it/s] Epoch 5: 100%|███████| 133/133 [00:35<00:00, 3.71it/s, loss=0.0924, v_num=vaz6] Epoch 6: 90%|██████▎| 120/133 [00:27<00:03, 4.29it/s, loss=0.0632, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:05<00:02, 3.39it/s] Epoch 6: 100%|███████| 133/133 [00:35<00:00, 3.74it/s, loss=0.0738, v_num=vaz6] Epoch 7: 90%|██████▎| 120/133 [00:28<00:03, 4.28it/s, loss=0.0512, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.27it/s] Epoch 7: 100%|███████| 133/133 [00:35<00:00, 3.71it/s, loss=0.0534, v_num=vaz6] Epoch 8: 90%|██████▎| 120/133 [00:27<00:03, 4.30it/s, loss=0.0397, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.31it/s] Epoch 8: 100%|█████████| 133/133 [00:35<00:00, 3.73it/s, loss=0.04, v_num=vaz6] Epoch 9: 90%|██████▎| 120/133 [00:28<00:03, 4.27it/s, loss=0.0352, v_num=vaz6] Validating: 0it [00:00, ?it/s] Validating: 0%| | 0/28 [00:00<?, ?it/s] Validating: 71%|██████████████████████▏ | 20/28 [00:06<00:02, 3.25it/s] Epoch 9: 100%|███████| 133/133 [00:35<00:00, 3.70it/s, loss=0.0328, v_num=vaz6] Epoch 9: 100%|███████| 133/133 [00:36<00:00, 3.69it/s, loss=0.0328, v_num=vaz6] LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Total Unlabelled Pool Size 607 Query Sample size 607 Resetting Predictions Testing: 100%|████████████████████████████████████| 5/5 [00:02<00:00, 2.36it/s] -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 1.0, 'test_f1': 1.0, 'train_size': 13400.0} -------------------------------------------------------------------------------- Indices selected for labelling via method "entropy": ----------------- [ 56 280 217 326 536 123 7 94 358 42 365 593 218 363 426 447 16 197 381 525 183 163 188 463 1 418 568 127 322 371 581 288 38 589 396 318 155 430 553 19 399 182 266 331 578 158 539 113 383 408 85 62 25 362 235 293 268 439 427 521 292 180 343 369 453 547 23 392 312 492 353 529 348 227 238 380 240 440 54 39 71 464 213 57 565 387 438 448 395 151 606 340 273 313 420 150 187 588 115 398 255 96 520 117 254 513 220 360 282 459 111 272 122 130 504 590 496 499 269 141 306 535 26 462 579 334 284 320 178 37 530 281 548 489 73 324 277 307 485 70 524 149 466 415 58 159 274 295 507 214 17 556 55 384 186 84 207 443 165 20 354 79 47 15 323 510 119 59 140 172 24 97 75 145 146 72 364 316 299 558 6 379 388 410 407 591 199 181 596 236 102 116 400 421 251 341 500 222 243 92 270 486 484 557 69 431 495 184 406 373 78 82 10 560 262 533 265 416 541 531 107 471 594 574 247 329 605 342 48 545 602 460 245 368 193 419 223 441 278 361 356 564 475 283 257 244 546 366 162 391 423 567 481 176 494 83 576 586 385 509 230 60 126 100 287 442 394 195 357 35 36 29 435 538 397 4 276 249 411 95 14 200 203 580 61 351 519 237 8 167 139 5 157 2 493 68 518 135 376 315 461 192 201 87 497 540 66 143 478 12 132 455 216 386 101 291 206 52 477 208 34 550 600 98 328 359 204 261 528 144 337 483 467 93 498 333 286 479 129 597 304 50 570 44 598 215 103 413 482 175 134 446 30 142 503 229 563 577 604 506 451 148 166 372 221 336 32 480 317 309 45 319 508 429 552 452 11 154 89 402 585 425 502 0 414 248 434 253 109 511 587 382 263 250 260 345 105 314 231 344 527 46 173 378 544 9 120 465 559 233 285 41 86 210 573 370 110 562 432 405 428 76 224 136 575 133 583 271 234 124 33 512 437 279 472 347 31 202 275 543 501 99 514 335 205 160 584 532 412 436 569 296 241 566 298 297 338 444 375 63 252 603 108 445 239 232 302 374 458 377 152 476 300 90 246 303 571 77 106 161 349 259 321 582 74 112 22 212 174 264 118 267 401 487 450 537 169 551 417 3 65 209 104 599 473 131 332 390 121 43 403 190 505 515 80 219 468 526 422 367 389 138 49 114 449 488 424 301 13 469 168 327 289 555 595 53 194 196 454 185 308 456 18 310 28 156 393 27 128 350 164 542 179 125 177 330 601 91 21 491 51 290 549 470 81 211 517 554 242 534 67 523 171 325 346 64 490 409 88 404 352 592 198 225 522 305 170 137 516 294 189 339 311 228 433 474 256 561 191 457 355 40 153 147 258 226 572] ----------------- New train set size 14007 New unlabelled pool size 0 Initializing model for active learning iteration 7 setting n_channels to 3 GPU available: True, used: True TPU available: False, using: 0 TPU cores wandb: Waiting for W&B process to finish, PID 506 wandb: Program ended successfully. wandb: wandb: Find user logs for this run at: /content/fsdl-active-learning2/wandb/run-20210514_110433-686kvaz6/logs/debug.log wandb: Find internal logs for this run at: /content/fsdl-active-learning2/wandb/run-20210514_110433-686kvaz6/logs/debug-internal.log wandb: Run summary: wandb: train_loss 0.03116 wandb: train_acc 0.99224 wandb: train_f1 0.99031 wandb: train_size 13400.0 wandb: epoch 9 wandb: trainer/global_step 1050 wandb: _runtime 1818 wandb: _timestamp 1620992091 wandb: _step 153 wandb: val_loss 0.4695 wandb: val_acc 0.87179 wandb: val_f1 0.82956 wandb: train_acc_max 0.99224 wandb: val_acc_max 0.87179 wandb: train_f1_max 0.99031 wandb: val_f1_max 0.82956 wandb: train_acc_best 0.99224 wandb: val_acc_best 0.87179 wandb: train_f1_best 0.99031 wandb: val_f1_best 0.82956 wandb: test_acc 1.0 wandb: test_f1 1.0 wandb: Run history: wandb: train_loss █▃▂▁▁▁█▃▂▁▁▁▄▂▂▂▁▇▄▂▂▁▁▆▃▂▁▁▁▃▂▂▂▂▅▃▂▁▁▁ wandb: train_acc ▂▆████▁▆████▄▇▇▇█▂▅▇▇██▃▆▇███▆▇▇▇▇▅▆▇███ wandb: train_f1 ▁▆████▁▇████▅▇▇██▂▅▇▇██▃▆▇███▆▇▇▇▇▄▆▇███ wandb: train_size ▁▁▁▁▁▁▂▂▂▂▂▂▃▃▃▃▃▅▅▅▅▅▅▆▆▆▆▆▆▇▇▇▇▇██████ wandb: epoch ▁▂▃▅▆█▂▃▄▆▇█▂▃▄▆▇▁▃▄▅▆█▁▃▄▆▆█▂▃▅▆▇█▂▃▅▆█ wandb: trainer/global_step ▁▁▁▁▂▂▁▁▂▂▃▃▂▂▃▃▄▁▂▃▃▄▅▁▂▃▄▅▆▂▃▅▆▇▂▃▄▆▇█ wandb: _runtime ▁▁▁▁▁▁▂▂▂▂▂▂▂▃▃▃▃▃▃▄▄▄▄▄▄▅▅▅▅▆▆▆▆▇▇▇▇███ wandb: _timestamp ▁▁▁▁▁▁▂▂▂▂▂▂▂▃▃▃▃▃▃▄▄▄▄▄▄▅▅▅▅▆▆▆▆▇▇▇▇███ wandb: _step ▁▁▁▁▂▂▂▂▂▃▃▃▃▃▃▄▄▄▄▄▅▅▅▅▅▅▆▆▆▆▆▇▇▇▇▇▇███ wandb: val_loss █▆▅▅▅▅▄▃▄▄▂▃▂▂▂▃▂▃▂▂▁▂▂▂▂▂▁▃▁▂▁▃▃▂▂▃▁▂▂▂ wandb: val_acc ▁▃▄▅▅▅▅▆▆▆▆▆▆▇▆▇▇▆▆▇██▇▆▇▇█▇█▇▇▇▇█▆▆▇▇██ wandb: val_f1 ▁▃▄▅▅▅▅▆▆▆▇▇▆▇▆▇█▆▆▆█▇█▆▇▇█▇█▇▇▆▆█▆▆▇███ wandb: train_acc_max ▂▆████▁▆████▄▇▇▇█▂▅▇▇██▃▆▇███▆▇▇██▅▆▇███ wandb: val_acc_max ▁▃▄▅▅▅▅▆▆▆▆▇▆▇▇▇▇▆▆▇███▆▇▇███▇▇▇▇█▆▆▇▇██ wandb: train_f1_max ▁▆████▁▇████▅▇▇██▂▅▇▇██▃▆▇███▆▇▇██▄▆▇███ wandb: val_f1_max ▁▃▄▅▅▅▅▆▆▆▇▇▆▇▇▇█▆▆▇███▆▇▇███▇▇▇▇█▆▆▇███ wandb: train_acc_best ██▅▅▄▁▄ wandb: val_acc_best ▁▅▇▇█▇█ wandb: train_f1_best ██▅▄▄▁▄ wandb: val_f1_best ▁▅▇▇█▇█ wandb: test_acc ▁▄▅▇███ wandb: test_f1 ▁▄▅▇███ wandb: wandb: Synced 5 W&B file(s), 7 media file(s), 0 artifact file(s) and 1 other file(s) wandb: wandb: Synced fsdl-active-learning_DeepweedsDataModule_entropy_multi-class_all-channels: https://wandb.ai/ravindra/fsdl-active-learning2-training/runs/686kvaz6
code/201801_jupyter_pandas_tutorial.ipynb
###Markdown Genome data analysis in Python A brief tutorial on the use of *jupyter notebooks* and the python data analysis library *pandas* for genomic data analysis. Workshop on Population and Speciation Genomics, Český Krumlov, January 2018. By Hannes Svardal () This is a jupyter notebook running a Python 2 kernel. The Jupyter Notebook App (formerly IPython Notebook) is an application running inside the browser. Jupyter notebooks can run different kernels: Python 2/3, R, Julia, bash, ... Further resources about jupyter notebooks can be found here: - https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/ - https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook Jupyter notebooks can run locally or on a server. You access them in your browser. To start the jupyter server - Log into your amazon cloud instance: ```ssh [email protected]``` (replace my-ip-here with your instance's address) - Navigate into the tutorial directory: ```cd ~/workshop_materials/03a_jupyter_notebooks/``` - Start the notebook server: ```jupyter notebook --no-browser --port=7000 --ip=0.0.0.0``` - In your local browser, navigate to the web address: http://my-ip-here.compute-1.amazonaws.com:7000 - On the web page, type in the password *evomics2018* Now you should have this notebook in front of you. - At the top of the webpage, the notebook environment has a **header** and a **toolbar**, which can be used to change settings, formatting, and interrupt or restart the kernel that interprets the notebook cells. - The body of the notebook is built up of cells of two has two major types: markdown cells and code cells. You can set the type for each cell either using the toolbar or with keyboard commands. The right-most button in the toolbar shows all keyboard shortcuts. - **Markdown cells** (this cell and all above) contain text that can be formatted using html-like syntax http://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html Double-klick into a markdown cell (like this one) to get into *edit mode* - **Code cells** contain computer code (in our case written in python 2). Code cells have an **intput field** in which you type code. Cells are evaluated by pressing *shift + return* with the cursor being in the cell. This produces an **output field** with the result of the evaluation that would be returned to std-out in a normal python (or R) session. Below are a few examples of input cells and the output. Note that by default only the result of the last operation will be output, and that only if it is not asigned to a variable, but all lines will be evaluated. Here are some very basic operations. Evaluate the cells below and check the results. ###Code # This is a code cell. # Evaluate it by moving the cursor in the cell an pressing <shift + return>. 1+1 # This is anoter code cell. # There is no output because the last operation is assigned to a variable. # However, the operations are performed and c is now assigned a value. # Evaluate this cell! a = 5 b = 3 c = a * b # The variables should now be assigned. Evaluate. print 'a is', a print 'b is', b print 'c is a*b, which is', c ###Output a is 5 b is 3 c is a*b, which is 15 ###Markdown Try to create more cells using either the "plus" button in the toolbar above or the keyboard combination (Ctrl + M) + B (First Ctrl + M together, then B). Try to define variables and do calculations in these cells. Python basics This is very basic python stuff. People who are farmiliar with python can skip this part. loading modules ###Code # Load some packages that we will need below # by evaluating this cell import pandas as pd import numpy as np import matplotlib.pyplot as plt # Refer to objects (e.g. functions) from these packages by with module.object print np.sqrt(10) print np.pi ###Output 3.16227766017 3.14159265359 ###Markdown lists, list comprehension, and numpy arrays Lists are a very basic data type in python. Elements can be accessed by index. **Attention:** Different from R, Python data structures are generally zero indexed. The first element has index 0. ###Code list0 = [1, 2, 3, 4] print list0 print list0[1] # the last element print list0[-1] # elements 2 to 3 print list0[1:3] ###Output 4 [2, 3] ###Markdown *List comprehensions* are a very useful feature in Python. It is an in-line way of iteratin through a list. ###Code # This is the syntax of a so-called list comprehension. # A very useful feature to create a new list by iterating through other list(s). squares = [i*i for i in list0] print squares # Doing this in conventional syntax would be more verbose: squares = [] for i in list0: squares.append(i*i) print squares ###Output [1, 4, 9, 16] [1, 4, 9, 16] ###Markdown A numpy array is a vector-like object of arbitrary dimensions. Operations on numpy arrays are generally faster than iterating through lists. ###Code array0 = np.array(list0) print array0 # Operations on an array are usually element-wise. # Square the array elements. print array0**2 # Instantiate array 0 .. 19 x = np.arange(20) print x # 2D array array2d = np.array( [[1,2,3], [4,5,6]] ) print array2d print array2d*2 print 'number of rows and columns:', array2d.shape ###Output [[1 2 3] [4 5 6]] [[ 2 4 6] [ 8 10 12]] number of rows and columns: (2, 3) ###Markdown anonymous (lambda) function A lambda function is a function that is not bound to a name at creation time. ###Code # This is a regular function def square(x): """ This is a regular function definition. Defined in evomics2018. This function takes a number (int or float) and returns the square of it. """ return x*x print 'This is a regular function:', square print square(5) # A lambda function is defined in-line; here it is bound to a name, # but that is not necessary square2 = lambda x: x*x print 'This is an anonymous function:', square2 print square2(5) ###Output This is an anonymous function: <function <lambda> at 0x7f451adc60c8> 25 ###Markdown The advantage of an anonymous function is that you can define it on the go. ###Code #For this you must pre-define the function 'square' map(square, list0) #Here the same but defining the function on the go. #This is very useful when we apply functions to data frames below map(lambda x:x*x, list0) ###Output _____no_output_____ ###Markdown Ipython Ipython is an interactive interface for python. Jupyter notebooks that run a python kernel use Ipython. It basically is a wrapper around python that adds some useful features and commands. A tutorial can be found here: https://ipython.org/ipython-doc/3/interactive/tutorial.html The four most helpful commands (type in a code cell and evaluate)|command| description||------|------||?| Introduction and overview of IPython’s features.||%quickref| Quick reference.||help| Python’s own help system.||object?| Details about ‘object’, use ‘object??’ for extra details.| ###Code # Evaluate this to get the documentation of the function **map** as a popup below. map? # Get the docstring of your own function defined above. square? ###Output _____no_output_____ ###Markdown Ipython magic IPython *magic commands*, are tools that simplify various tasks. They are prefixed by the % character. Magic commands come in two flavors: line magics, which are denoted by a single % prefix and operate on a single line of input, and cell magics, which are denoted by a double %% prefix and operate on multiple lines of input. Examples ###Code # Time a command with %timeit %timeit 1+1 %%timeit #Time a cell operation x = range(10000) max(x) # This is a very useful magic that allows us to create plots inside the jupyter notebook # EVALUATE THIS CELL!!! %matplotlib inline # Make a basic plot plt.plot(np.random.randn(10)) ###Output _____no_output_____ ###Markdown running shell commands You can use ipython magic to run a command using the system shell and return the output. Simply prepend a command with "!" or start a cell with %%bash for a multi line command. ###Code !ls files = !ls print files !msmc2 %%bash cd ~ ls echo ---------------- echo $PATH ###Output bin Desktop dlang Downloads miniconda3 R software workshop_materials ---------------- /usr/local/bin:/home/wpsg/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/usr/lib/jvm/java-8-oracle/bin:/usr/lib/jvm/java-8-oracle/db/bin:/usr/lib/jvm/java-8-oracle/jre/bin:/home/wpsg/miniconda3/bin:/home/wpsg/software/hmmer-3.1b2-linux-intel-x86_64/binaries/:/home/wpsg/software/partitionfinder-2.1.1/:/home/wpsg/software/.source/jmodeltest-2.1.10:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/usr/lib/jvm/java-8-oracle/bin:/usr/lib/jvm/java-8-oracle/db/bin:/usr/lib/jvm/java-8-oracle/jre/bin:/home/wpsg/software/EIG-6.1.3/bin:/home/wpsg/software/plink:/home/wpsg/software/SLiM/bin:/home/wpsg/software/msms/bin:/home/wpsg/software/WFABC_v1.1/binaries/Linux:/home/wpsg/software/beast/bin:/home/wpsg/software/.source/pcangsd:/home/wpsg/software/msmc2/build/release:/home/wpsg/software/msmc-tools:/home/wpsg/software/LFMM_CL_v1.5/bin ###Markdown Pandas https://pandas.pydata.org/ *pandas* is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. List of tutorials - https://pandas.pydata.org/pandas-docs/stable/tutorials.html 10 minutes quick start guide - https://pandas.pydata.org/pandas-docs/stable/10min.html Installation (just like other python modules) ```pip install pandas``` ###Code import pandas as pd ###Output _____no_output_____ ###Markdown The two most important data structures in pandas are **Series** and **DataFrames**. pandas Series A Series is a 1D-array-like object where each element has an index. ###Code s = pd.Series([1, 3, 5, np.nan, 6, 8]) ###Output _____no_output_____ ###Markdown In this case the index of s are integers 0,1,... but it could be strings, floats, ... ###Code s # for operations like addtions, elements are matched by index s + s # elements are matched by index, even if they arein a different order) s1 = pd.Series([1, 3, 5, np.nan, 6, 8],index=['F','E','D','C','B','A']) s2 = pd.Series([1, 3, 5, np.nan, 6, 8], index=['A','B','C','D','E','F']) print s1 print '-------------' print s2 # what do you expect the result of this to be? s1 + s2 ###Output _____no_output_____ ###Markdown Do you understand the result above? ###Code # Access an element using the index s.loc[2] # Access an element using the psition s.iloc[2] ###Output _____no_output_____ ###Markdown In the above case, the two are trivially the same, but for s1 and s2 it is very different. Try both ways of accessing elements on s1 and s2. pandas DataFrame Pandas data frames are similar to R data frames. A DataFrame is a 2D-array-like object where each element has a row index and a column index. The row index is called 'index', the column index is called 'columns'. In the following, create a simple data frame and inspect its elements. Try to modify the code in this section. ###Code df = pd.DataFrame([[1,2,3], [4,5,6]], index=[100,200], columns=['A','B','C']) df df.index df.columns df.index.values # access by position df.iloc[1, 2] # access an element by index df.loc[200, 'C'] #access a row df.loc[200,:] #access a column df.loc[:,'C'] #logical indexing df.loc[df['A']>2,] df.loc[:, df.loc[200]>4] df + df # mean of rows print df.mean() # mean of columns print df.mean(axis=1) # If a function on a data frame returns a 1D object, the results is a pd.Series print type(df.loc[100,:]) ###Output <class 'pandas.core.series.Series'> ###Markdown Apply operations Data Frames have many handy methods built in. For applying functions, grouping elements, plotting. We will see several of them below. Here The simples apply opperations. ###Code df.apply(square) # apply along rows (column-wise) df.apply(np.sum, axis=0) # apply along columns (row-wise) df.apply(np.sum, axis=1) ###Output _____no_output_____ ###Markdown For the above there exists a shortcut. You can directly use df.sum(axis=...) ###Code # apply element-wise df.applymap(lambda i:'ABCDEFGHIJKLMN'[i]) ###Output _____no_output_____ ###Markdown What does the above code cell do? Play around with it to understand what is happening. Tipp: It helps to look at each of the part in turn. ###Code 'ABCDEFGHIJKLMN'[2] df.applymap? ###Output _____no_output_____ ###Markdown Working with SNP calls Here it gets interesting. How can we use pandas to analyse genome data. Note that some of the below is a bit simplified and you would do things slightly differently in a production pipeline. The combination of jupyter notebooks and pandas is great for quick exploration of data. But using ipython parallel one can also handle demaning analyses. We will be using a cichlid fish VCF file with bi-allelic SNP calls. ###Code #check which files are in the folder !ls vcf_fn = 'cichlid_data_outgroup.vcf.gz' # Use bash magic to take a look at the file contents %%bash gzip -dc "cichlid_data_outgroup.vcf.gz" | head -n 18 ###Output ##fileformat=VCFv4.1 ##FILTER=<ID=PASS,Description="All filters passed"> ##fileDate=13092017_10h46m48s ##source=SHAPEIT2.v837 ##log_file=shapeit_13092017_10h46m48s_a225583f-ce12-4530-881d-63b6e20bb1ee.log ##FORMAT=<ID=GT,Number=1,Type=String,Description="Phased Genotype"> ##contig=<ID=Contig237> ##contig=<ID=Contig262> ##contig=<ID=Contig263> ##bcftools_concatVersion=1.3.1+htslib-1.3.1 ##bcftools_concatCommand=concat -O z -o /lustre/scratch113/projects/cichlid/analyses/20170704_variant_calling_malombe/_data/cichlid_data_outgroup.vcf.gz /lustre/scratch113/projects/cichlid/analyses/20170704_variant_calling_malombe/_data/cichlid_data_Contig237_phased_outgroup.vcf.gz /lustre/scratch113/projects/cichlid/analyses/20170704_variant_calling_malombe/_data/cichlid_data_Contig262_phased_outgroup.vcf.gz /lustre/scratch113/projects/cichlid/analyses/20170704_variant_calling_malombe/_data/cichlid_data_Contig263_phased_outgroup.vcf.gz #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT VirSWA1 VirSWA2 VirSWA3 VirSWA4 VirSWA5 VirSWA6 VirSWA7 VirSWA8 VirSWA9 VirSWA10 VirSWA11 VirSWA12 VirSWA13 VirSWA14 VirSWA15 VirSWA16 VirSWA17 VirSWA18 VirSWA19 VirSWA20 VirSWA21 VirSWA22 VirSWA23 VirSWA24 VirSWA25 VirSWA26 VirSWA27 VirMAL1 VirMAL2 VirMAL3 VirMAL4 VirMAL5 VirMAL6 VirMAL7 VirMAL8 VirMAL9 VirMAL10 VirMAL11 VirMAL12 VirMAL13 VirMAL14 VirMAL15 VirMAL16 VirMAL17 VirMAL18 VirMAL19 VirMAL20 VirMAL21 VirMAL22 VirMAL23 VirMAL24 VirSEA1 VirSEA2 VirSEA3 VirSEA4 VirSEA5 VirSEA6 VirSEA7 VirSEA8 VirSEA9 VirSEA10 VirSEA11 VirSEA12 VirSEA13 VirSEA14 VirSEA15 VirSEA16 VirSEA17 VirSEA18 VirSEA19 VirSEA20 VirSEA21 VirSEA22 VirSEA23 VirSEA24 OreSqu1 Contig237 3190 . G A . PASS . GT 0|0 0|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 Contig237 3203 . T C . PASS . GT 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 0|1 1|1 1|1 1|1 1|1 1|1 1|1 0|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 0|1 1|1 1|1 0|1 1|1 0|1 1|1 0|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 0|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 Contig237 3230 . A G . PASS . GT 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|0 0|0 0|0 0|0 0|0 0|0 0|0 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|0 0|0 0|0 1|0 0|0 1|0 0|0 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 Contig237 3310 . G T . PASS . GT 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|1 0|1 0|0 0|0 0|0 0|0 Contig237 3311 . G T . PASS . GT 0|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 Contig237 3313 . C T . PASS . GT 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 ###Markdown Parse in the header line of the file ###Code ## parse the header line starting with "#CHROM" import gzip with gzip.open(vcf_fn) as f: for line in f: if line[:6] == '#CHROM': vcf_header = line.strip().split('\t') vcf_header[0] = vcf_header[0][1:] break #The vcf print vcf_header[:20] # Read a tsv, csv, into a data frame pd.read_csv? # Here we read in the vcf file, which basically is tab-separated value file. gen_df = pd.read_csv(vcf_fn, sep='\t', comment='#', header=None, names=vcf_header, index_col=['CHROM','POS']) gen_df.head() # Convert the GT=string into data frames with integer for first and second haplotype first_haplotype = gen_df.iloc[:, 9:].applymap(lambda s: int(s.split('|')[0])) second_haplotype = gen_df.iloc[:, 9:].applymap(lambda s: int(s.split('|')[1])) first_haplotype.head() # Create a second level in the column index that specifies the haplotype first_haplotype.columns = pd.MultiIndex.from_product([first_haplotype.columns, [0]]) second_haplotype.columns = pd.MultiIndex.from_product([second_haplotype.columns, [1]]) first_haplotype.head() # Creat a haplotype dataframe with all the data hap_df = pd.concat([first_haplotype, second_haplotype], axis=1).sort_index(axis=1) hap_df.head() import subprocess def read_hap_df(vcf_fn, chrom=None, start=None, end=None, samples=None, **kwa): """ A slightly more advanced vcf parser. Reads in haplotypes from a vcf file. Basically does the same as done in the cells above, but allows the used to specify the range of the genome that should be read in. Also allows to specify which samples should be used. Parameters: vcf_fn : file path of the VCF to be read chrom : specify which chromosome (or scaffold) to read from the file (only works on bgzipped, tabix-indexed files) default ... read whole file start: specify the start nucleotide position (only works if chrom given on bgzipped, tabix-indexed files); default=1 end: specify the ebd nucleotide position (only works if chrom given on bgzipped, tabix-indexed files); default=chrom_end samples: list of sample names to read; default ... all samples returns: Pandas dataframe of index (chrom, pos) and columns (sample, haplotype). Values are 0 for first and 1 for second allele. """ # parse header with gzip.open(vcf_fn) as f: for line in f: if line[:6] == '#CHROM': vcf_header = line.strip().split('\t') vcf_header[0] = vcf_header[0][1:] break # determine genomic region to read in if chrom is not None: assert vcf_fn[-3:] == ".gz", "Only supply chrom if vcf is bgzipped and tabix indexed" region = chrom if end is not None and start is None: start = 0 if start is not None: region += ':' + str(start) if end is not None: region += '-' + str(end) else: region = None # If no specific samples given, use all samples in the VCF if samples is None: samples = vcf_header[9:] # Either use regional input or input whole VCF if region is None: stdin = vcf_fn else: tabix_stream = subprocess.Popen(['tabix', vcf_fn, region], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdin = tabix_stream.stdout gen_df = pd.read_csv(stdin, sep='\t', comment='#', names=vcf_header, usecols=['CHROM','POS']+samples, index_col=['CHROM','POS'], **kwa) first_haplotype = gen_df.applymap(lambda s: int(s.split('|')[0])) second_haplotype = gen_df.applymap(lambda s: int(s.split('|')[1])) first_haplotype.columns = pd.MultiIndex.from_product([first_haplotype.columns, [0]]) second_haplotype.columns = pd.MultiIndex.from_product([second_haplotype.columns, [1]]) hap_df = pd.concat([first_haplotype, second_haplotype], axis=1).sort_index(axis=1) return hap_df small_hap_df = read_hap_df(vcf_fn, chrom='Contig237', start=3000, end=5000, samples=['VirSWA1', 'VirSWA2', 'VirSWA3', 'VirSWA4', 'VirSWA5', 'VirSWA6']) small_hap_df ###Output _____no_output_____ ###Markdown indexing ###Code # access a cell by index # gt_df.loc['row index', 'column index'] print 'Get the second haplotye of individual', print 'VirSWA6 for position 3203 on Contig237:', print hap_df.loc[('Contig237', 3203), ('VirSWA6', 1)] hap_df.loc['Contig237'].loc[ 3000:3400, 'VirSWA6'] ###Output _____no_output_____ ###Markdown investigate haplotype data frame ###Code # get the number of SNPs and number of samples hap_df.shape # get the name of sequenced in this data frame hap_df.index.droplevel(1).unique() ###Output _____no_output_____ ###Markdown load sample metadata ###Code meta_df = pd.read_csv('cichlid_sample_metadata.csv', index_col=0) meta_df.head() ###Output _____no_output_____ ###Markdown Group a data frame using groupby Groupby groups a data frame into sub data frames. You can group on values in a specific column (or row) or by applying a function or dictionary to column or row indices. This is very handy. ###Code # group individuals by sampling location place_groups = meta_df.groupby('place') # iterate through groups for group_name, group_df in place_groups: print group_name print group_df print '-----------------------------------------' ###Output Malembo genus species place fishing_pressure id OreSqu1 Oreochromis squamipinnis Malembo NaN ----------------------------------------- Malombe genus species place fishing_pressure id VirMAL1 Copadichromis virginalis Malombe 4.0 VirMAL2 Copadichromis virginalis Malombe 4.0 VirMAL3 Copadichromis virginalis Malombe 4.0 VirMAL4 Copadichromis virginalis Malombe 4.0 VirMAL5 Copadichromis virginalis Malombe 4.0 VirMAL6 Copadichromis virginalis Malombe 4.0 VirMAL7 Copadichromis virginalis Malombe 4.0 VirMAL8 Copadichromis virginalis Malombe 4.0 VirMAL9 Copadichromis virginalis Malombe 4.0 VirMAL10 Copadichromis virginalis Malombe 4.0 VirMAL11 Copadichromis virginalis Malombe 4.0 VirMAL12 Copadichromis virginalis Malombe 4.0 VirMAL13 Copadichromis virginalis Malombe 4.0 VirMAL14 Copadichromis virginalis Malombe 4.0 VirMAL15 Copadichromis virginalis Malombe 4.0 VirMAL16 Copadichromis virginalis Malombe 4.0 VirMAL17 Copadichromis virginalis Malombe 4.0 VirMAL18 Copadichromis virginalis Malombe 4.0 VirMAL19 Copadichromis virginalis Malombe 4.0 VirMAL20 Copadichromis virginalis Malombe 4.0 VirMAL21 Copadichromis virginalis Malombe 4.0 VirMAL22 Copadichromis virginalis Malombe 4.0 VirMAL23 Copadichromis virginalis Malombe 4.0 VirMAL24 Copadichromis virginalis Malombe 4.0 ----------------------------------------- South East Arm genus species place fishing_pressure id VirSEA1 Copadichromis virginalis South East Arm 2.0 VirSEA2 Copadichromis virginalis South East Arm 2.0 VirSEA3 Copadichromis virginalis South East Arm 2.0 VirSEA4 Copadichromis virginalis South East Arm 2.0 VirSEA5 Copadichromis virginalis South East Arm 2.0 VirSEA6 Copadichromis virginalis South East Arm 2.0 VirSEA7 Copadichromis virginalis South East Arm 2.0 VirSEA8 Copadichromis virginalis South East Arm 2.0 VirSEA9 Copadichromis virginalis South East Arm 2.0 VirSEA10 Copadichromis virginalis South East Arm 2.0 VirSEA11 Copadichromis virginalis South East Arm 2.0 VirSEA12 Copadichromis virginalis South East Arm 2.0 VirSEA13 Copadichromis virginalis South East Arm 2.0 VirSEA14 Copadichromis virginalis South East Arm 2.0 VirSEA15 Copadichromis virginalis South East Arm 2.0 VirSEA16 Copadichromis virginalis South East Arm 2.0 VirSEA17 Copadichromis virginalis South East Arm 2.0 VirSEA18 Copadichromis virginalis South East Arm 2.0 VirSEA19 Copadichromis virginalis South East Arm 2.0 VirSEA20 Copadichromis virginalis South East Arm 2.0 VirSEA21 Copadichromis virginalis South East Arm 2.0 VirSEA22 Copadichromis virginalis South East Arm 2.0 VirSEA23 Copadichromis virginalis South East Arm 2.0 VirSEA24 Copadichromis virginalis South East Arm 2.0 ----------------------------------------- South West Arm genus species place fishing_pressure id VirSWA3 Copadichromis virginalis South West Arm 1.0 VirSWA4 Copadichromis virginalis South West Arm 1.0 VirSWA5 Copadichromis virginalis South West Arm 1.0 VirSWA6 Copadichromis virginalis South West Arm 1.0 VirSWA7 Copadichromis virginalis South West Arm 1.0 VirSWA8 Copadichromis virginalis South West Arm 1.0 VirSWA9 Copadichromis virginalis South West Arm 1.0 VirSWA10 Copadichromis virginalis South West Arm 1.0 VirSWA11 Copadichromis virginalis South West Arm 1.0 VirSWA12 Copadichromis virginalis South West Arm 1.0 VirSWA13 Copadichromis virginalis South West Arm 1.0 VirSWA14 Copadichromis virginalis South West Arm 1.0 VirSWA15 Copadichromis virginalis South West Arm 1.0 VirSWA16 Copadichromis virginalis South West Arm 1.0 VirSWA17 Copadichromis virginalis South West Arm 1.0 VirSWA18 Copadichromis virginalis South West Arm 1.0 VirSWA19 Copadichromis virginalis South West Arm 1.0 VirSWA20 Copadichromis virginalis South West Arm 1.0 VirSWA21 Copadichromis virginalis South West Arm 1.0 VirSWA22 Copadichromis virginalis South West Arm 1.0 VirSWA23 Copadichromis virginalis South West Arm 1.0 VirSWA24 Copadichromis virginalis South West Arm 1.0 VirSWA25 Copadichromis virginalis South West Arm 1.0 VirSWA26 Copadichromis virginalis South West Arm 1.0 VirSWA27 Copadichromis virginalis South West Arm 1.0 ----------------------------------------- ###Markdown You can apply functions to the groups. These are applied to each group data frame. Pandas will try to give a series or data frame as result where the index contains the group names. ###Code place_groups.apply(len) # here individuals are grouped by the columns genus and species meta_df.groupby(['genus', 'species']).apply(len) # This is a Series with the same index as meta_df. # The values are True/False depending on whether the species name is virginalis. is_virginalis = (meta_df['species']=='virginalis') ###Output _____no_output_____ ###Markdown What length do you expect is_virginalis to be? How many True and False entries? The above can be used for logical indexing. ###Code # Logical indexing. Select viriginalis samples only. meta_df[is_virginalis].groupby('place').apply(len) ###Output _____no_output_____ ###Markdown apply operations Apply functions to our haplotype data frame. ###Code allele_frequency = hap_df.mean(axis=1) allele_frequency.head() ###Output _____no_output_____ ###Markdown Plot the site frequency spectrum. ###Code allele_frequency.hist(bins=20) ###Output _____no_output_____ ###Markdown What is on the x and y axis? Does this spectrum look neutral to you? restrict to samples of species Copadichromis virginalis ###Code virginalis_samples = meta_df[meta_df['species']=='virginalis'].index.values # only virginalis samples hap_df_vir = hap_df.loc[:, list(virginalis_samples)] # the list conversion above is not needed in newer pandas versions af_virginalis = hap_df_vir.mean(axis=1) af_virginalis_variable = af_virginalis[(af_virginalis>0)&(af_virginalis<1)] ###Output _____no_output_____ ###Markdown What does the above line of code do? ###Code # restrict haplotype data frame to alleles variable in virginalis hap_df_vir = hap_df_vir.loc[af_virginalis_variable.index, :] # or equivalently #hap_df_vir = hap_df_vir[(af_virginalis>0)&(af_virginalis<1)] ###Output _____no_output_____ ###Markdown Check how the number of SNPs was reduced by removing non-variable sites ###Code print af_virginalis.shape print af_virginalis_variable.shape af_virginalis_variable.hist(bins=20) ###Output _____no_output_____ ###Markdown remove low frequency variants ###Code allele_count = hap_df.sum(axis=1) # This is the number of non-missing entries per row. # our data has no missing values, so it is just the row length n_alleles = hap_df.notnull().sum(axis=1) min_allele_count = 4 hap_min_ac = hap_df[(allele_count >= min_allele_count) & (allele_count <= n_alleles - min_allele_count)] print hap_df.shape print hap_min_ac.shape (hap_min_ac.mean(axis=1)).hist(bins=20) ###Output _____no_output_____ ###Markdown grouping by sample ###Code # grouping can be done by a dictionary that is applied to index or columns sample_groups = {'VirMAL1':'Malombe', 'VirMAL2':'Malombe', 'VirMAL3':'Malombe', 'VirSWA1':'South West Arm', 'VirSWA2':'South West Arm', 'VirSWA3':'South West Arm'} sample_groups0 = hap_df_vir.groupby(sample_groups, axis=1, level=0) sample_groups0.mean() # group using a function def get_location(sample_id): return meta_df.loc[sample_id, 'place'] location_groups = hap_df_vir.groupby(get_location, axis=1, level=0) # equivalent to above but using a lambda function location_groups = hap_df_vir.groupby(lambda id: meta_df.loc[id, 'place'], axis=1, level=0) ###Output _____no_output_____ ###Markdown Calculate the allele frequency for each local population. ###Code population_af = location_groups.mean() fig = plt.figure(figsize=(16,10)) ax = plt.gca() axes = population_af.hist(bins=20, ax=ax) ###Output /home/wpsg/.local/lib/python2.7/site-packages/IPython/core/interactiveshell.py:2869: UserWarning: To output multiple subplots, the figure containing the passed axes is being cleared exec(code_obj, self.user_global_ns, self.user_ns) ###Markdown Do the allele frequency spectra look different in the different populations? Calculate nucleotide diversity $\pi$ and divergence $d_{xy}$ ###Code # pi = 2p(1-p) # dxy = pq # apply a function in rolling windows of 100 SNPs window_size = 100 rolling_window_df = population_af.loc['Contig237', 'Malombe'].rolling(window_size, center=True, axis=0) pi_rolling = rolling_window_df.apply(lambda s:(2*s*(1-s)).mean()) pi_rolling.plot(style='.') def get_dxy(af): """ Get dxy between Malombe and South East Arm """ dxy = af['Malombe']*(1-af['South East Arm']) + (1-af['Malombe'])*af['South East Arm'] return dxy.mean() # apply function in non-overlapping 100 bp windows window_size = 100 dxy = population_af.loc['Contig237'].groupby(lambda ix: ix // window_size).apply(get_dxy) dxy.plot(style='.') ###Output _____no_output_____ ###Markdown Vary the parameters of the above functions. Try to plot pi for the different chromosomes and the different populations. A more general function to calculate dxy across muliple populations ###Code def get_divergence(af): """ Takes a allele frequency df returns nucleotide diversity (diagonal) and dxy (off-diagonal). Attention! The estimator for pi is biased because it does not take resampling of the same allele into account. For small populations pi will be downward biased. """ # This looks complicated. If basically # uses tensor muliplication to efficiently # calculate all pairwise comparisons. divergence = np.einsum('ij,ik->jk',af, 1-af) \ + np.einsum('ij,ik->jk',1-af, af) # the above results in a numpy array # put it into a data frame divergence = pd.DataFrame(divergence, index=af.columns, columns=af.columns) return divergence get_divergence(population_af) individual_af = hap_df_vir.groupby(axis=1, level=0).mean() individual_dxy = get_divergence(individual_af) #Be aware of the biased single-individual pi estimated on the diagonal. individual_dxy ###Output _____no_output_____ ###Markdown The above could be used to construct a neighbour-joining tree. Ipython parallel Ipython parallel is very handy to use multiple local or remote cores to do calculations. It is surprisingly easy to set up, even on a compute cluster. (However, the ipyparallel package is not installed for python 2.7 on this amazon cloud instance and I realised it too late to fix it.) Here are more resource for the parallel setup: - - A minimal example (that would work for me): In a terminal execute ```ipcluster start -n 4``` to start a ipython cluster with 4 engines ###Code from ipyparallel import Client rc = Client(profile="default") lv = rc.load_balanced_view() map_obj = lv.map_async(lambda x: x*x, range(20)) ###Output _____no_output_____ ###Markdown The above is the parallel equivalent of ```map(lambda x: x*x, range(20))``` but using the 4 engines started above. ###Code # retrieve the result result = map_obj.result() ###Output _____no_output_____
NoteBook/.ipynb_checkpoints/Model-checkpoint.ipynb
###Markdown NoteBook de modeloEn este notebook se explica a teoria detras del apilamiento de modelos, una forma de enssemble de hombre pobre. Es una técnica avanzada que mejora los resultados de modelos tradicionales.Para este ejemplo se definira una estrategia de validación, se definira los modelos base para hacerlos robustos a valores atipicos y se optimizara la rata de aprendizaje para optimizar sus resultados ###Code #Importando librerias nesesarias from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.kernel_ridge import KernelRidge from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone from sklearn.model_selection import KFold, cross_val_score, train_test_split from sklearn.metrics import mean_squared_error from sklearn.model_selection import GridSearchCV import xgboost as xgb import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown Estrategia de validaciónLa estrategia de validación es fundamental para determinar la validez del ajuste de los algoritmos utilizados. Para este caso se usara cross validation, agregando una línea de codigo que garantize la mezcla de los datos para mejores resultados.Al ser un problema de regressión se usara como metrica de scoring NMSE (Negative Mean Squared Error), para los problemas de clasificación se puede utilizar r2 o BCE (Binary Cross Entropy) ###Code n_folds = 5 def rmsle_cv(model): kf = KFold(n_folds, shuffle=True, random_state=42).get_n_splits(train.values) rmse= np.sqrt(-cross_val_score(model, train.values, target, scoring="neg_mean_squared_error", cv = kf)) return(rmse) def rmsle(y, y_pred): return np.sqrt(mean_squared_error(y, y_pred)) ###Output _____no_output_____ ###Markdown Importando datos con pandas ###Code train = pd.read_csv('../csv/clean_train.csv') test = pd.read_csv('../csv/clean_test.csv') target = pd.read_csv('../csv/target.csv') print(train.shape) print(test.shape) print(target.shape) test_id = test['Id'] test.drop('Id', axis=1, inplace=True) ###Output _____no_output_____ ###Markdown Modelos baseLos modelos base seran los cuales se apilaran, para este caso se puede trabajar solo con el modelo stacked o promediarlo con otros modelos tipo Boosting como XGB o LightGB. Para este notebook se promedia con XGB.----- LassoEste modelo es muy sensible a valores atipicos, así que para hacerlo más robusto se hara un pipeline con la librería RobustScaler() de Scikit Learn. Refrescando conceptos, un pipeline permite combinar dos metodos para lograr un solo resultado, es increiblemente util en ML dominar este concepto, más información aquí:https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html ElasticNetAl igual que Lasso este modelo es suseptible a valores atipicos así que se hace neseario hacer pipeline con RobustScaler() KernelRidgeRegressionEste metodo de por sí ya es robusto a valores atipicos, es una conbinación de Ridge con Kernel PCA. En este caso no se nesecita RobustScaler() Gradient Boost RegressorCuando se tiene valores atipicos, Gradient Boost Regressorse recomienda trabajar con una función de perdida tipo Huber. Modelos de apoyoEstos modelos le agregan un peso por si solos al modelo de ensamble, tienen voto por fuera del stacking. Para estecaso se usaran solo XGBoost, peor LightGB es otra buena opción.---- XGBoostUna variante de Gradient Boost Regresor, se enfoca en combinar diferentes arquitecturas de arboles de desiciones. ###Code class Models: def __init__(self): self.reg = { 'ELASTIC_NET': ElasticNet(l1_ratio=.9, random_state=3), 'GRADIENT': GradientBoostingRegressor(n_estimators=3000, max_depth=4, max_features='sqrt', min_samples_leaf=15, min_samples_split=10, loss='huber', random_state =5), 'LASSO': Lasso(random_state=1), 'KERNEL_RIDGE': KernelRidge(kernel='polynomial', degree=2, coef0=2.5), 'XGB': xgb.XGBRegressor(colsample_bytree=0.4603, gamma=0.0468, max_depth=3, min_child_weight=1.7817, n_estimators=2200, reg_alpha=0.4640, reg_lambda=0.8571, subsample=0.5213, silent=1, random_state =7, nthread = -1) } self.params = { 'ELASTIC_NET': { 'alpha': [0.0005, 0.005, 1] }, 'GRADIENT': { 'learning_rate': [0.01, 0.05, 0.1] }, 'LASSO': { 'alpha': [0.0005, 0.005, 1] }, 'KERNEL_RIDGE': { 'alpha': [0.1, 0.5, 0.6] }, 'XGB': { 'learning_rate': [0.05, 0.06, 0.07] } } def grid_training(self, X, y, name): best_model = None reg_dic = self.reg[name] grid_reg = GridSearchCV(reg_dic, self.params[name], cv=3) grid_reg.fit(X, y.values.ravel()) #Modelos base más robustos a valores atipicos, usando robust scaler: Lasso y ElasticNet. if name == 'ELASTIC_NET' or name == 'LASSO': best_model = make_pipeline(RobustScaler(), grid_reg.best_estimator_) else: best_model = grid_reg.best_estimator_ return best_model models = ['ELASTIC_NET', 'GRADIENT', 'LASSO', 'KERNEL_RIDGE', 'XGB'] base_models = [] for model in models: base_model = Models().grid_training(train,target,model) base_models.append(base_model) ###Output _____no_output_____ ###Markdown Embedding con modelos apiladosEl paso a paso detras de esta técncia es la siguiente: * Dividir el trainig set en dos partes. Train y holdout. Para esto se clonan los modelos* Entrenar estos modelos en la primera parte* Probar estos modelos en la segunda parte* Usar la predicciones con la metodologia fold como las entradas y las respuestas correctas (La variable objetivo) como la salida de alto nivel![image.png](attachment:image.png)Imagen tomada de https://www.kaggle.com/getting-started/18153post103381Este metodo se puede hacer más robusto agregando meta modelos en el ultimo paso, agregando un loop que repita los ultimos tres de forma iterativa y luego hacer un promedio de los modelos base sobre la data de prueba y usar estas como meta features en los meta modelos. Dado que con la primera opción se obtiene un resultado del 90% de presición, no implatare el meta modelo en la solución, sin embargo dejare la estructura de la clase por si alguien está interesado en hacerlo. ###Code class AveragingModels(BaseEstimator, RegressorMixin, TransformerMixin): def __init__(self, models): self.models = models # Definiendo clones de los modelos base para entrenar la data def fit(self, X, y): self.models_ = [clone(x) for x in self.models] # Entrenando los modelos base clonados for model in self.models_: model.fit(X, y) return self #Prediciendo los modelos base y promediandolos def predict(self, X): predictions = np.column_stack([ model.predict(X) for model in self.models_ ]) return np.mean(predictions, axis=1) averaged_models = AveragingModels(models = (base_models[0], base_models[1], base_models[2], base_models[3])) score = rmsle_cv(averaged_models) print(" Averaged base models score: {:.4f} ({:.4f})\n".format(score.mean(), score.std())) averaged_models.fit(train, target) pred = averaged_models.predict(test) xgb = base_models[4] xgb.fit(train, target) xgb_pred_train = xgb.predict(train) xgb_pred = xgb.predict(test) rmsle(target, xgb_pred_train) enssemble = pred*0.6 + xgb_pred*0.3 sub = pd.DataFrame() sub['Id'] = test_id sub['SalePrice'] = np.expm1(enssemble) print(sub.head()) ###Output Id SalePrice 0 1461 37096.338440 1 1462 49087.601088 2 1463 54685.353372 3 1464 57276.752902 4 1465 56916.214770 ###Markdown Bonus: Clase con meta modelos ###Code class StackingAveragedModels(BaseEstimator, RegressorMixin, TransformerMixin): def __init__(self, base_models, meta_model, n_folds=5): self.base_models = base_models self.meta_model = meta_model self.n_folds = n_folds # Nuevamente entrenamos los clones def fit(self, X, y): self.base_models_ = [list() for x in self.base_models] self.meta_model_ = clone(self.meta_model) kfold = KFold(n_splits=self.n_folds, shuffle=True, random_state=156) # Entrenamos clones y creamos predicciones flod # que se nesecitan para entrenar los meta-modelos out_of_fold_predictions = np.zeros((X.shape[0], len(self.base_models))) for i, model in enumerate(self.base_models): for train_index, holdout_index in kfold.split(X, y): instance = clone(model) self.base_models_[i].append(instance) instance.fit(X[train_index], y[train_index]) y_pred = instance.predict(X[holdout_index]) out_of_fold_predictions[holdout_index, i] = y_pred # Ahora entrenamos los meta-modelos clonados usando prediciones out-of-fold como nueva caracteristica self.meta_model_.fit(out_of_fold_predictions, y) return self #Hacemos las predcciones de todos los modelos base con la data de prueba y usamos las predicciones promedio como #meta-caracteristicas para la predicción final la cual es hecha por el meta-modelo def predict(self, X): meta_features = np.column_stack([ np.column_stack([model.predict(X) for model in base_models]).mean(axis=1) for base_models in self.base_models_ ]) return self.meta_model_.predict(meta_features) ###Output _____no_output_____
.ipynb_checkpoints/Building+your+Deep+Neural+Network+-+Step+by+Step+v3-checkpoint.ipynb
###Markdown Building your Deep Neural Network: Step by StepWelcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!- In this notebook, you will implement all the functions required to build a deep neural network.- In the next assignment, you will use these functions to build a deep neural network for image classification.**After this assignment you will be able to:**- Use non-linear units like ReLU to improve your model- Build a deeper neural network (with more than 1 hidden layer)- Implement an easy-to-use neural network class**Notation**:- Superscript $[l]$ denotes a quantity associated with the $l^{th}$ layer. - Example: $a^{[L]}$ is the $L^{th}$ layer activation. $W^{[L]}$ and $b^{[L]}$ are the $L^{th}$ layer parameters.- Superscript $(i)$ denotes a quantity associated with the $i^{th}$ example. - Example: $x^{(i)}$ is the $i^{th}$ training example.- Lowerscript $i$ denotes the $i^{th}$ entry of a vector. - Example: $a^{[l]}_i$ denotes the $i^{th}$ entry of the $l^{th}$ layer's activations).Let's get started! 1 - PackagesLet's first import all the packages that you will need during this assignment. - [numpy](www.numpy.org) is the main package for scientific computing with Python.- [matplotlib](http://matplotlib.org) is a library to plot graphs in Python.- dnn_utils provides some necessary functions for this notebook.- testCases provides some test cases to assess the correctness of your functions- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don't change the seed. ###Code import numpy as np import h5py import matplotlib.pyplot as plt from testCases_v2 import * from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward %matplotlib inline plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' %load_ext autoreload %autoreload 2 np.random.seed(1) ###Output /opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment. warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.') /opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment. warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.') ###Markdown 2 - Outline of the AssignmentTo build your neural network, you will be implementing several "helper functions". These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:- Initialize the parameters for a two-layer network and for an $L$-layer neural network.- Implement the forward propagation module (shown in purple in the figure below). - Complete the LINEAR part of a layer's forward propagation step (resulting in $Z^{[l]}$). - We give you the ACTIVATION function (relu/sigmoid). - Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function. - Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer $L$). This gives you a new L_model_forward function.- Compute the loss.- Implement the backward propagation module (denoted in red in the figure below). - Complete the LINEAR part of a layer's backward propagation step. - We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward) - Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function. - Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function- Finally update the parameters. **Figure 1****Note** that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps. 3 - InitializationYou will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to $L$ layers. 3.1 - 2-layer Neural Network**Exercise**: Create and initialize the parameters of the 2-layer neural network.**Instructions**:- The model's structure is: *LINEAR -> RELU -> LINEAR -> SIGMOID*. - Use random initialization for the weight matrices. Use `np.random.randn(shape)*0.01` with the correct shape.- Use zero initialization for the biases. Use `np.zeros(shape)`. ###Code # GRADED FUNCTION: initialize_parameters def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: parameters -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(1) ### START CODE HERE ### (≈ 4 lines of code) W1 = np.random.randn(n_h, n_x)*0.01 b1 = np.zeros((n_h, 1)) W2 = np.random.randn(n_y, n_h)*0.01 b2 = np.zeros((n_y, 1)) ### END CODE HERE ### assert(W1.shape == (n_h, n_x)) assert(b1.shape == (n_h, 1)) assert(W2.shape == (n_y, n_h)) assert(b2.shape == (n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters parameters = initialize_parameters(2,2,1) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0.01624345 -0.00611756] [-0.00528172 -0.01072969]] b1 = [[ 0.] [ 0.]] W2 = [[ 0.00865408 -0.02301539]] b2 = [[ 0.]] ###Markdown **Expected output**: **W1** [[ 0.01624345 -0.00611756] [-0.00528172 -0.01072969]] **b1** [[ 0.] [ 0.]] **W2** [[ 0.00865408 -0.02301539]] **b2** [[ 0.]] 3.2 - L-layer Neural NetworkThe initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the `initialize_parameters_deep`, you should make sure that your dimensions match between each layer. Recall that $n^{[l]}$ is the number of units in layer $l$. Thus for example if the size of our input $X$ is $(12288, 209)$ (with $m=209$ examples) then: **Shape of W** **Shape of b** **Activation** **Shape of Activation** **Layer 1** $(n^{[1]},12288)$ $(n^{[1]},1)$ $Z^{[1]} = W^{[1]} X + b^{[1]} $ $(n^{[1]},209)$ **Layer 2** $(n^{[2]}, n^{[1]})$ $(n^{[2]},1)$ $Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]}$ $(n^{[2]}, 209)$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ **Layer L-1** $(n^{[L-1]}, n^{[L-2]})$ $(n^{[L-1]}, 1)$ $Z^{[L-1]} = W^{[L-1]} A^{[L-2]} + b^{[L-1]}$ $(n^{[L-1]}, 209)$ **Layer L** $(n^{[L]}, n^{[L-1]})$ $(n^{[L]}, 1)$ $Z^{[L]} = W^{[L]} A^{[L-1]} + b^{[L]}$ $(n^{[L]}, 209)$ Remember that when we compute $W X + b$ in python, it carries out broadcasting. For example, if: $$ W = \begin{bmatrix} j & k & l\\ m & n & o \\ p & q & r \end{bmatrix}\;\;\; X = \begin{bmatrix} a & b & c\\ d & e & f \\ g & h & i \end{bmatrix} \;\;\; b =\begin{bmatrix} s \\ t \\ u\end{bmatrix}\tag{2}$$Then $WX + b$ will be:$$ WX + b = \begin{bmatrix} (ja + kd + lg) + s & (jb + ke + lh) + s & (jc + kf + li)+ s\\ (ma + nd + og) + t & (mb + ne + oh) + t & (mc + nf + oi) + t\\ (pa + qd + rg) + u & (pb + qe + rh) + u & (pc + qf + ri)+ u\end{bmatrix}\tag{3} $$ **Exercise**: Implement initialization for an L-layer Neural Network. **Instructions**:- The model's structure is *[LINEAR -> RELU] $ \times$ (L-1) -> LINEAR -> SIGMOID*. I.e., it has $L-1$ layers using a ReLU activation function followed by an output layer with a sigmoid activation function.- Use random initialization for the weight matrices. Use `np.random.rand(shape) * 0.01`.- Use zeros initialization for the biases. Use `np.zeros(shape)`.- We will store $n^{[l]}$, the number of units in different layers, in a variable `layer_dims`. For example, the `layer_dims` for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means `W1`'s shape was (4,2), `b1` was (4,1), `W2` was (1,4) and `b2` was (1,1). Now you will generalize this to $L$ layers! - Here is the implementation for $L=1$ (one layer neural network). It should inspire you to implement the general case (L-layer neural network).```python if L == 1: parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01 parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))``` ###Code # GRADED FUNCTION: initialize_parameters_deep def initialize_parameters_deep(layer_dims): """ Arguments: layer_dims -- python array (list) containing the dimensions of each layer in our network Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1]) bl -- bias vector of shape (layer_dims[l], 1) """ np.random.seed(3) parameters = {} L = len(layer_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])* 0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) ### END CODE HERE ### assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))*0.01 assert(parameters['b' + str(l)].shape == (layer_dims[l], 1)) return parameters parameters = initialize_parameters_deep([5,4,3]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]] b2 = [[ 0.] [ 0.] [ 0.]] ###Markdown **Expected output**: **W1** [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]] **b2** [[ 0.] [ 0.] [ 0.]] 4 - Forward propagation module 4.1 - Linear Forward Now that you have initialized your parameters, you will do the forward propagation module. You will start by implementing some basic functions that you will use later when implementing the model. You will complete three functions in this order:- LINEAR- LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid. - [LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID (whole model)The linear forward module (vectorized over all the examples) computes the following equations:$$Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}\tag{4}$$where $A^{[0]} = X$. **Exercise**: Build the linear part of forward propagation.**Reminder**:The mathematical representation of this unit is $Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}$. You may also find `np.dot()` useful. If your dimensions don't match, printing `W.shape` may help. ###Code # GRADED FUNCTION: linear_forward def linear_forward(A, W, b): """ Implement the linear part of a layer's forward propagation. Arguments: A -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) Returns: Z -- the input of the activation function, also called pre-activation parameter cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently """ ### START CODE HERE ### (≈ 1 line of code) Z = W.dot(A)+b ### END CODE HERE ### assert(Z.shape == (W.shape[0], A.shape[1])) cache = (A, W, b) return Z, cache A, W, b = linear_forward_test_case() Z, linear_cache = linear_forward(A, W, b) print("Z = " + str(Z)) ###Output Z = [[ 3.26295337 -1.23429987]] ###Markdown **Expected output**: **Z** [[ 3.26295337 -1.23429987]] 4.2 - Linear-Activation ForwardIn this notebook, you will use two activation functions:- **Sigmoid**: $\sigma(Z) = \sigma(W A + b) = \frac{1}{ 1 + e^{-(W A + b)}}$. We have provided you with the `sigmoid` function. This function returns **two** items: the activation value "`a`" and a "`cache`" that contains "`Z`" (it's what we will feed in to the corresponding backward function). To use it you could just call: ``` pythonA, activation_cache = sigmoid(Z)```- **ReLU**: The mathematical formula for ReLu is $A = RELU(Z) = max(0, Z)$. We have provided you with the `relu` function. This function returns **two** items: the activation value "`A`" and a "`cache`" that contains "`Z`" (it's what we will feed in to the corresponding backward function). To use it you could just call:``` pythonA, activation_cache = relu(Z)``` For more convenience, you are going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you will implement a function that does the LINEAR forward step followed by an ACTIVATION forward step.**Exercise**: Implement the forward propagation of the *LINEAR->ACTIVATION* layer. Mathematical relation is: $A^{[l]} = g(Z^{[l]}) = g(W^{[l]}A^{[l-1]} +b^{[l]})$ where the activation "g" can be sigmoid() or relu(). Use linear_forward() and the correct activation function. ###Code # GRADED FUNCTION: linear_activation_forward def linear_activation_forward(A_prev, W, b, activation): """ Implement the forward propagation for the LINEAR->ACTIVATION layer Arguments: A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: A -- the output of the activation function, also called the post-activation value cache -- a python dictionary containing "linear_cache" and "activation_cache"; stored for computing the backward pass efficiently """ if activation == "sigmoid": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". ### START CODE HERE ### (≈ 2 lines of code) Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = sigmoid(Z) ### END CODE HERE ### elif activation == "relu": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". ### START CODE HERE ### (≈ 2 lines of code) Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = relu(Z) ### END CODE HERE ### assert (A.shape == (W.shape[0], A_prev.shape[1])) cache = (linear_cache, activation_cache) return A, cache A_prev, W, b = linear_activation_forward_test_case() A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid") print("With sigmoid: A = " + str(A)) A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu") print("With ReLU: A = " + str(A)) ###Output With sigmoid: A = [[ 0.96890023 0.11013289]] With ReLU: A = [[ 3.43896131 0. ]] ###Markdown **Expected output**: **With sigmoid: A ** [[ 0.96890023 0.11013289]] **With ReLU: A ** [[ 3.43896131 0. ]] **Note**: In deep learning, the "[LINEAR->ACTIVATION]" computation is counted as a single layer in the neural network, not two layers. d) L-Layer Model For even more convenience when implementing the $L$-layer Neural Net, you will need a function that replicates the previous one (`linear_activation_forward` with RELU) $L-1$ times, then follows that with one `linear_activation_forward` with SIGMOID. **Figure 2** : *[LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID* model**Exercise**: Implement the forward propagation of the above model.**Instruction**: In the code below, the variable `AL` will denote $A^{[L]} = \sigma(Z^{[L]}) = \sigma(W^{[L]} A^{[L-1]} + b^{[L]})$. (This is sometimes also called `Yhat`, i.e., this is $\hat{Y}$.) **Tips**:- Use the functions you had previously written - Use a for loop to replicate [LINEAR->RELU] (L-1) times- Don't forget to keep track of the caches in the "caches" list. To add a new value `c` to a `list`, you can use `list.append(c)`. ###Code # GRADED FUNCTION: L_model_forward def L_model_forward(X, parameters): """ Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation Arguments: X -- data, numpy array of shape (input size, number of examples) parameters -- output of initialize_parameters_deep() Returns: AL -- last post-activation value caches -- list of caches containing: every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2) the cache of linear_sigmoid_forward() (there is one, indexed L-1) """ caches = [] A = X L = len(parameters) // 2 # number of layers in the neural network # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list. for l in range(1, L): A_prev = A ### START CODE HERE ### (≈ 2 lines of code) A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], "relu") caches.append(cache) ### END CODE HERE ### # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list. ### START CODE HERE ### (≈ 2 lines of code) AL, cache = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], "sigmoid") caches.append(cache) ### END CODE HERE ### assert(AL.shape == (1,X.shape[1])) return AL, caches X, parameters = L_model_forward_test_case() AL, caches = L_model_forward(X, parameters) print("AL = " + str(AL)) print("Length of caches list = " + str(len(caches))) ###Output AL = [[ 0.17007265 0.2524272 ]] Length of caches list = 2 ###Markdown **AL** [[ 0.17007265 0.2524272 ]] **Length of caches list ** 2 Great! Now you have a full forward propagation that takes the input X and outputs a row vector $A^{[L]}$ containing your predictions. It also records all intermediate values in "caches". Using $A^{[L]}$, you can compute the cost of your predictions. 5 - Cost functionNow you will implement forward and backward propagation. You need to compute the cost, because you want to check if your model is actually learning.**Exercise**: Compute the cross-entropy cost $J$, using the following formula: $$-\frac{1}{m} \sum\limits_{i = 1}^{m} (y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right)) \tag{7}$$ ###Code # GRADED FUNCTION: compute_cost def compute_cost(AL, Y): """ Implement the cost function defined by equation (7). Arguments: AL -- probability vector corresponding to your label predictions, shape (1, number of examples) Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples) Returns: cost -- cross-entropy cost """ m = Y.shape[1] # Compute loss from aL and y. ### START CODE HERE ### (≈ 1 lines of code) cost = -np.sum(np.multiply(Y, np.log(AL)) + np.multiply(1-Y, np.log(1-AL)))/m # , axis=1 or not ### END CODE HERE ### cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17). assert(cost.shape == ()) return cost Y, AL = compute_cost_test_case() print("cost = " + str(compute_cost(AL, Y))) ###Output cost = 0.414931599615 ###Markdown **Expected Output**: **cost** 0.41493159961539694 6 - Backward propagation moduleJust like with forward propagation, you will implement helper functions for backpropagation. Remember that back propagation is used to calculate the gradient of the loss function with respect to the parameters. **Reminder**: **Figure 3** : Forward and Backward propagation for *LINEAR->RELU->LINEAR->SIGMOID* *The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.* <!-- For those of you who are expert in calculus (you don't need to be to do this assignment), the chain rule of calculus can be used to derive the derivative of the loss $\mathcal{L}$ with respect to $z^{[1]}$ in a 2-layer network as follows:$$\frac{d \mathcal{L}(a^{[2]},y)}{{dz^{[1]}}} = \frac{d\mathcal{L}(a^{[2]},y)}{{da^{[2]}}}\frac{{da^{[2]}}}{{dz^{[2]}}}\frac{{dz^{[2]}}}{{da^{[1]}}}\frac{{da^{[1]}}}{{dz^{[1]}}} \tag{8} $$In order to calculate the gradient $dW^{[1]} = \frac{\partial L}{\partial W^{[1]}}$, you use the previous chain rule and you do $dW^{[1]} = dz^{[1]} \times \frac{\partial z^{[1]} }{\partial W^{[1]}}$. During the backpropagation, at each step you multiply your current gradient by the gradient corresponding to the specific layer to get the gradient you wanted.Equivalently, in order to calculate the gradient $db^{[1]} = \frac{\partial L}{\partial b^{[1]}}$, you use the previous chain rule and you do $db^{[1]} = dz^{[1]} \times \frac{\partial z^{[1]} }{\partial b^{[1]}}$.This is why we talk about **backpropagation**.!-->Now, similar to forward propagation, you are going to build the backward propagation in three steps:- LINEAR backward- LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation- [LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID backward (whole model) 6.1 - Linear backwardFor layer $l$, the linear part is: $Z^{[l]} = W^{[l]} A^{[l-1]} + b^{[l]}$ (followed by an activation).Suppose you have already calculated the derivative $dZ^{[l]} = \frac{\partial \mathcal{L} }{\partial Z^{[l]}}$. You want to get $(dW^{[l]}, db^{[l]} dA^{[l-1]})$. **Figure 4** The three outputs $(dW^{[l]}, db^{[l]}, dA^{[l]})$ are computed using the input $dZ^{[l]}$.Here are the formulas you need:$$ dW^{[l]} = \frac{\partial \mathcal{L} }{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1] T} \tag{8}$$$$ db^{[l]} = \frac{\partial \mathcal{L} }{\partial b^{[l]}} = \frac{1}{m} \sum_{i = 1}^{m} dZ^{[l](i)}\tag{9}$$$$ dA^{[l-1]} = \frac{\partial \mathcal{L} }{\partial A^{[l-1]}} = W^{[l] T} dZ^{[l]} \tag{10}$$ **Exercise**: Use the 3 formulas above to implement linear_backward(). ###Code # GRADED FUNCTION: linear_backward def linear_backward(dZ, cache): """ Implement the linear portion of backward propagation for a single layer (layer l) Arguments: dZ -- Gradient of the cost with respect to the linear output (of current layer l) cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ A_prev, W, b = cache m = A_prev.shape[1] ### START CODE HERE ### (≈ 3 lines of code) dW = dZ.dot(A_prev.T)/m db = dZ.sum(axis=1, keepdims=True)/m dA_prev = W.T.dot(dZ) ### END CODE HERE ### assert (dA_prev.shape == A_prev.shape) assert (dW.shape == W.shape) assert (db.shape == b.shape) return dA_prev, dW, db # Set up some test inputs dZ, linear_cache = linear_backward_test_case() dA_prev, dW, db = linear_backward(dZ, linear_cache) print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db)) ###Output dA_prev = [[ 0.51822968 -0.19517421] [-0.40506361 0.15255393] [ 2.37496825 -0.89445391]] dW = [[-0.10076895 1.40685096 1.64992505]] db = [[ 0.50629448]] ###Markdown **Expected Output**: **dA_prev** [[ 0.51822968 -0.19517421] [-0.40506361 0.15255393] [ 2.37496825 -0.89445391]] **dW** [[-0.10076895 1.40685096 1.64992505]] **db** [[ 0.50629448]] 6.2 - Linear-Activation backwardNext, you will create a function that merges the two helper functions: **`linear_backward`** and the backward step for the activation **`linear_activation_backward`**. To help you implement `linear_activation_backward`, we provided two backward functions:- **`sigmoid_backward`**: Implements the backward propagation for SIGMOID unit. You can call it as follows:```pythondZ = sigmoid_backward(dA, activation_cache)```- **`relu_backward`**: Implements the backward propagation for RELU unit. You can call it as follows:```pythondZ = relu_backward(dA, activation_cache)```If $g(.)$ is the activation function, `sigmoid_backward` and `relu_backward` compute $$dZ^{[l]} = dA^{[l]} * g'(Z^{[l]}) \tag{11}$$. **Exercise**: Implement the backpropagation for the *LINEAR->ACTIVATION* layer. ###Code # GRADED FUNCTION: linear_activation_backward def linear_activation_backward(dA, cache, activation): """ Implement the backward propagation for the LINEAR->ACTIVATION layer. Arguments: dA -- post-activation gradient for current layer l cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ linear_cache, activation_cache = cache if activation == "relu": ### START CODE HERE ### (≈ 2 lines of code) # A_p, W, b = linear_cache # Z = W.dot(A_p)+b # g_prime = np.zeros_like(Z) # g_prime[Z>=0]=1 # print(g_prime) dZ = relu_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) ### END CODE HERE ### elif activation == "sigmoid": ### START CODE HERE ### (≈ 2 lines of code) # print(np.multiply(activation_cache, 1-activation_cache)) # dZ = np.multiply(dA, np.multiply(activation_cache, 1-activation_cache)) dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) ### END CODE HERE ### return dA_prev, dW, db AL, linear_activation_cache = linear_activation_backward_test_case() dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid") print ("sigmoid:") print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db) + "\n") dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu") print ("relu:") print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db)) ###Output sigmoid: dA_prev = [[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]] dW = [[ 0.10266786 0.09778551 -0.01968084]] db = [[-0.05729622]] relu: dA_prev = [[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]] dW = [[ 0.44513824 0.37371418 -0.10478989]] db = [[-0.20837892]] ###Markdown **Expected output with sigmoid:** dA_prev [[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]] dW [[ 0.10266786 0.09778551 -0.01968084]] db [[-0.05729622]] **Expected output with relu** dA_prev [[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]] dW [[ 0.44513824 0.37371418 -0.10478989]] db [[-0.20837892]] 6.3 - L-Model Backward Now you will implement the backward function for the whole network. Recall that when you implemented the `L_model_forward` function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you will use those variables to compute the gradients. Therefore, in the `L_model_backward` function, you will iterate through all the hidden layers backward, starting from layer $L$. On each step, you will use the cached values for layer $l$ to backpropagate through layer $l$. Figure 5 below shows the backward pass. **Figure 5** : Backward pass ** Initializing backpropagation**:To backpropagate through this network, we know that the output is, $A^{[L]} = \sigma(Z^{[L]})$. Your code thus needs to compute `dAL` $= \frac{\partial \mathcal{L}}{\partial A^{[L]}}$.To do so, use this formula (derived using calculus which you don't need in-depth knowledge of):```pythondAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) derivative of cost with respect to AL```You can then use this post-activation gradient `dAL` to keep going backward. As seen in Figure 5, you can now feed in `dAL` into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L_model_forward function). After that, you will have to use a `for` loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula : $$grads["dW" + str(l)] = dW^{[l]}\tag{15} $$For example, for $l=3$ this would store $dW^{[l]}$ in `grads["dW3"]`.**Exercise**: Implement backpropagation for the *[LINEAR->RELU] $\times$ (L-1) -> LINEAR -> SIGMOID* model. ###Code # GRADED FUNCTION: L_model_backward def L_model_backward(AL, Y, caches): """ Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group Arguments: AL -- probability vector, output of the forward propagation (L_model_forward()) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) caches -- list of caches containing: every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2) the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1]) Returns: grads -- A dictionary with the gradients grads["dA" + str(l)] = ... grads["dW" + str(l)] = ... grads["db" + str(l)] = ... """ grads = {} L = len(caches) # the number of layers m = AL.shape[1] Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL # Initializing the backpropagation ### START CODE HERE ### (1 line of code) dAL = np.divide((1-Y), 1-AL)-np.divide(Y, AL) ### END CODE HERE ### # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"] ### START CODE HERE ### (approx. 2 lines) # print(len(caches[0][0])) current_cache = caches[L-1] grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid") #dAL, np.dot(AL-Y, current_cache[0][0].T), AL-Y #linear_activation_backward() ### END CODE HERE ### for l in reversed(range(L-1)): # lth layer: (RELU -> LINEAR) gradients. # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] ### START CODE HERE ### (approx. 5 lines) current_cache = caches[l] dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l+2)], current_cache, "relu") grads["dA" + str(l + 1)] = dA_prev_temp grads["dW" + str(l + 1)] = dW_temp grads["db" + str(l + 1)] = db_temp ### END CODE HERE ### return grads AL, Y_assess, caches = L_model_backward_test_case() grads = L_model_backward(AL, Y_assess, caches) print ("dW1 = "+ str(grads["dW1"])) print ("db1 = "+ str(grads["db1"])) print ("dA1 = "+ str(grads["dA1"])) ###Output dW1 = [[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]] db1 = [[-0.22007063] [ 0. ] [-0.02835349]] dA1 = [[ 0. 0.52257901] [ 0. -0.3269206 ] [ 0. -0.32070404] [ 0. -0.74079187]] ###Markdown **Expected Output** dW1 [[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]] db1 [[-0.22007063] [ 0. ] [-0.02835349]] dA1 [[ 0. 0.52257901] [ 0. -0.3269206 ] [ 0. -0.32070404] [ 0. -0.74079187]] 6.4 - Update ParametersIn this section you will update the parameters of the model, using gradient descent: $$ W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]} \tag{16}$$$$ b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]} \tag{17}$$where $\alpha$ is the learning rate. After computing the updated parameters, store them in the parameters dictionary. **Exercise**: Implement `update_parameters()` to update your parameters using gradient descent.**Instructions**:Update parameters using gradient descent on every $W^{[l]}$ and $b^{[l]}$ for $l = 1, 2, ..., L$. ###Code # GRADED FUNCTION: update_parameters def update_parameters(parameters, grads, learning_rate): """ Update parameters using gradient descent Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of L_model_backward Returns: parameters -- python dictionary containing your updated parameters parameters["W" + str(l)] = ... parameters["b" + str(l)] = ... """ L = len(parameters) // 2 # number of layers in the neural network # Update rule for each parameter. Use a for loop. ### START CODE HERE ### (≈ 3 lines of code) for l in range(L): parameters["W" + str(l+1)] -= np.multiply(learning_rate,grads["dW" + str(l+1)]) parameters["b" + str(l+1)] -= np.multiply(learning_rate,grads["db" + str(l+1)]) ### END CODE HERE ### return parameters parameters, grads = update_parameters_test_case() parameters = update_parameters(parameters, grads, 0.1) print ("W1 = "+ str(parameters["W1"])) print ("b1 = "+ str(parameters["b1"])) print ("W2 = "+ str(parameters["W2"])) print ("b2 = "+ str(parameters["b2"])) ###Output W1 = [[-0.59562069 -0.09991781 -2.14584584 1.82662008] [-1.76569676 -0.80627147 0.51115557 -1.18258802] [-1.0535704 -0.86128581 0.68284052 2.20374577]] b1 = [[-0.04659241] [-1.28888275] [ 0.53405496]] W2 = [[-0.55569196 0.0354055 1.32964895]] b2 = [[-0.84610769]]
Fase 2 - Manejo de datos y optimizacion/Tema 04 - Colecciones de datos/Apuntes/Leccion 1 plantilla- Tuplas.ipynb
###Markdown Las TuplasSon unas colecciones parecidas a las listas, con la peculiaridad de que son inmutables. ###Code tupla = (100,"Hola",[1,2,3],-50) tupla ###Output _____no_output_____ ###Markdown Indexación y slicing ###Code tupla[0] tupla[-1] tupla[2:] tupla[2][-1] ###Output _____no_output_____ ###Markdown Inmutabilidad ###Code tupla[0] = 50 ###Output _____no_output_____ ###Markdown Función len() ###Code len(tupla) len(tupla[2]) ###Output _____no_output_____ ###Markdown Métodos integrados index()Sirve para buscar un elemento y saber su posición en la tupla. Da error si no se encuentra. ###Code tupla.index(100) tupla tupla.index('Hola') tupla.index('Otro') ###Output _____no_output_____ ###Markdown count()Sirve para contar cuantas veces aparece un elemento en una tupla. ###Code tupla.count(100) tupla.count('Algo') tupla = (100,100,100,50,10) tupla.count(100) ###Output _____no_output_____ ###Markdown append() ?Al ser inmutables, las tuplas __no disponen__ de métodos para modificar su contenido. ###Code tupla.append(10) ###Output _____no_output_____
meshnet_v17.ipynb
###Markdown MeshNet architecture based on https://arxiv.org/pdf/1612.00940.pdf"End-to-end learning of brain tissue segmentationfrom imperfect labeling"Jun 2017Alex Fedorov∗†, Jeremy Johnson‡, Eswar Damaraju∗†, Alexei Ozerin§, Vince Calhoun∗†, Sergey Plis∗† Libraries and Global Parameters ###Code import os import cv2 import pandas as pd import matplotlib.pyplot as plt import numpy as np from skimage.io import imread, imshow, imread_collection, concatenate_images from skimage.util import img_as_bool, img_as_uint, img_as_ubyte, img_as_int from skimage.transform import resize from skimage.morphology import label import random from random import randint from keras import regularizers from keras.models import Model, load_model from keras.optimizers import Adam, SGD, RMSprop from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Activation, Dense, \ UpSampling2D, BatchNormalization, add, Dropout, Flatten from keras.layers.core import Lambda from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, LearningRateScheduler from keras import backend as K from keras.losses import binary_crossentropy, sparse_categorical_crossentropy ####### UPDATE THIS ######### ############################# model_num = 17 ############################# ############################# model_checkpoint_file= 'meshnet_v' + str(model_num) +'.h5' submission_filename = 'meshnet_v' + str(model_num) +'_mesh_pred.csv' # Root folders for test and training data train_root = "./stage1_train" test_root = "./stage1_test" # Size we resize all images to #image_size = (128,128) img_height = 128 img_width = 128 img_channels = 1 # 1 for B&W, 3 for RGB import warnings warnings.filterwarnings('ignore', category=UserWarning, module='skimage') #warnings.resetwarnings() ###Output Using TensorFlow backend. ###Markdown Preparing the Data ###Code # Import images (either test or training) # Decolorize, resize, store in array, and save filenames, etc. def import_images(root): dirs = os.listdir(root) filenames=[os.path.join(root,file_id) + "/images/"+file_id+".png" for file_id in dirs] images=[imread(imagefile,as_grey=True) for imagefile in filenames] resized_images = [ resize(image,(img_width,img_height)) for image in images] Array = np.reshape(np.array(resized_images), (len(resized_images),img_height,img_width,img_channels)) #Array = np.reshape(np.array(img_as_ubyte(resized_images),dtype=np.uint8).astype(np.uint8), # (len(resized_images),img_height,img_width,img_channels)) print(Array.mean()) print(Array.std()) # Normalize inputs Array = ((Array - Array.mean())/Array.std()) print(Array.mean()) print(Array.std()) print(images[0].dtype) print(resized_images[0].dtype) print(Array[0,0,0,0].dtype) return Array, resized_images, images, filenames, dirs train_X, resized_train_images, \ train_images, train_filenames, train_dirs = import_images(train_root) ## Import Training Masks # this takes longer than the training images because we have to # combine a lot of mask files # This function creates a single combined mask image # when given a list of masks # Probably a computationally faster way to do this... def collapse_masks(mask_list): for i, mask_file in enumerate(mask_list): if i != 0: # combine mask with previous mask in list mask = np.maximum(mask, imread(os.path.join(train_root,mask_file))) else: # read first mask in mask = imread(os.path.join(train_root,mask_file)) return mask # Import all the masks train_mask_dirs = [ os.path.join(path, 'masks') for path in os.listdir(train_root) ] train_mask_files = [ [os.path.join(dir,file) for file in os.listdir(os.path.join(train_root,dir)) ] for dir in train_mask_dirs] train_masks = [ collapse_masks(mask_files) for mask_files in train_mask_files ] resized_train_masks = [ img_as_bool(resize(image,(img_width,img_height))) for image in train_masks] train_Y = np.reshape(np.array(resized_train_masks),(len(resized_train_masks),img_height,img_width,img_channels)) # Plot images side by side for a list of datasets def plot_side_by_side(ds_list,image_num,size=(15,10)): print('Image #: ' + str(image_num)) fig = plt.figure(figsize=size) for i in range(len(ds_list)): ax1 = fig.add_subplot(1,len(ds_list),i+1) ax1.imshow(ds_list[i][image_num]) plt.show() # Plots random corresponding images and masks def plot_check(ds_list,rand_imgs=None,img_nums=None,size=(15,10)): if rand_imgs != None: for i in range(rand_imgs): plot_side_by_side(ds_list, randint(0,len(ds_list[0])-1),size=size) if img_nums != None: for i in range(len(img_nums)): plot_side_by_side(ds_list,img_nums[i],size=size) plot_check([train_images,train_masks],rand_imgs=1,size=(10,7)) # Check size of arrays we are inputting to model # This is important! We need the datasets to be as # small as possible to reduce computation time # Check physical size print(train_X.shape) print(train_Y.shape) # Check memory size print(train_X.nbytes) print(train_Y.nbytes) # Check datatypes print(train_X.dtype) print(train_Y.dtype) plot_check([resized_train_images,np.squeeze(train_X,axis=3)],rand_imgs=1,size=(10,7)) ###Output Image #: 403 ###Markdown Now Let's Build the Model ###Code # Loss and metric functions for the neural net def dice_coef(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred = K.cast(y_pred, 'float32') y_pred_f = K.cast(K.greater(K.flatten(y_pred), 0.5), 'float32') intersection = y_true_f * y_pred_f score = 2. * K.sum(intersection) / (K.sum(y_true_f) + K.sum(y_pred_f)) return score def dice_loss(y_true, y_pred): smooth = 1. y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = y_true_f * y_pred_f score = (2. * K.sum(intersection) + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) return 1. - score def bce_dice_loss(y_true, y_pred): return binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred) def create_block(x, filters=21, filter_size=(3, 3), activation='relu',dil_rate=1,dropout_rate=0.25): x = Conv2D(filters, filter_size, padding='same', activation=activation, dilation_rate = dil_rate) (x) # x = BatchNormalization() (x) x = Dropout(dropout_rate) (x) return x ## master function for creating a net def get_net( input_shape=(img_height, img_width,img_channels), loss=binary_crossentropy, lr=0.001, n_class=1, nb_filters=21, dropout=0.2 ): inputs = Input(input_shape) # Create layers net_body = create_block(inputs,filters=nb_filters,dropout_rate=dropout) net_body = create_block(net_body,filters=nb_filters,dropout_rate=dropout) net_body = create_block(net_body,filters=nb_filters,dropout_rate=dropout) net_body = create_block(net_body,filters=nb_filters,dropout_rate=dropout) net_body = create_block(net_body,filters=nb_filters,dropout_rate=dropout,dil_rate=2) net_body = create_block(net_body,filters=nb_filters,dropout_rate=dropout,dil_rate=4) net_body = create_block(net_body,filters=nb_filters,dropout_rate=dropout,dil_rate=8) net_body = create_block(net_body,filters=nb_filters,dropout_rate=dropout) classify = Conv2D(n_class,(1,1),activation='sigmoid') (net_body) model = Model(inputs=inputs, outputs=classify) model.compile(optimizer=Adam(lr), loss=loss, metrics=[bce_dice_loss, dice_coef]) return model #### CREATE MODEL ########################################################## my_model = get_net(nb_filters=21,dropout=0.1,loss=binary_crossentropy) ############################################################################ print(my_model.summary()) # Fit model earlystopper = EarlyStopping(patience=10, verbose=1) checkpointer = ModelCheckpoint(model_checkpoint_file, verbose=1, save_best_only=True) reduce_plateau = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=4, verbose=1, # min_lr=0.00001, epsilon=0.001, mode='auto') results = my_model.fit(train_X, train_Y, validation_split=0.1, batch_size=20, epochs=100, verbose=1, shuffle=True, callbacks=[ earlystopper, checkpointer, reduce_plateau]) for val_loss in results.history['val_loss']: print(round(val_loss,3)) #print(results.history) ## Import Test Data and Make Predictions with Model # Import images (either test or training) # Decolorize, resize, store in array, and save filenames, etc. test_X, resized_test_images, \ test_images, test_filenames, test_dirs = import_images(test_root) # Load model and make predictions on test data final_model = load_model(model_checkpoint_file, custom_objects={'dice_coef': dice_coef, 'bce_dice_loss':bce_dice_loss}) preds_test = final_model.predict(test_X, verbose=1) preds_test_t = (preds_test > 0.5) # Create list of upsampled test masks preds_test_upsampled = [] for i in range(len(preds_test)): preds_test_upsampled.append(resize(np.squeeze(preds_test[i]), (test_images[i].shape[0], test_images[i].shape[1]), mode='constant', preserve_range=True)) preds_test_upsampled_bool = [ (mask > 0.5).astype(bool) for mask in preds_test_upsampled ] plot_check([test_images,preds_test_upsampled,preds_test_upsampled_bool],rand_imgs=2) # Run-length encoding stolen from https://www.kaggle.com/rakhlin/fast-run-length-encoding-python def rle_encoding(x): dots = np.where(x.T.flatten() == 1)[0] run_lengths = [] prev = -2 for b in dots: if (b>prev+1): run_lengths.extend((b + 1, 0)) run_lengths[-1] += 1 prev = b return run_lengths def prob_to_rles(x, cutoff=0.5): lab_img = label(x > cutoff) for i in range(1, lab_img.max() + 1): yield rle_encoding(lab_img == i) def generate_prediction_file(image_names,predictions,filename): new_test_ids = [] rles = [] for n, id_ in enumerate(image_names): rle = list(prob_to_rles(predictions[n])) rles.extend(rle) new_test_ids.extend([id_] * len(rle)) sub = pd.DataFrame() sub['ImageId'] = new_test_ids sub['EncodedPixels'] = pd.Series(rles).apply(lambda x: ' '.join(str(y) for y in x)) sub.to_csv(filename, index=False) generate_prediction_file(test_dirs,preds_test_upsampled_bool,submission_filename) ###Output _____no_output_____
docs/_static/notebooks/tutorial3.ipynb
###Markdown Tutorial 3 Plotting Red Noise Spectra ###Code import la_forge.core as co import la_forge.rednoise as rn import matplotlib.pyplot as plt %matplotlib inline %config InlineBackend.figure_format = 'retina' import numpy as np coredir = '/Users/hazboun/software_development/la_forge/tests/data/cores/' c0 = co.Core(corepath=coredir+'J1713+0747_plaw_dmx.core', label='NG12.5yr Noise Run: Power Law Red Noise') c1 = co.Core(corepath=coredir+'J1713+0747_fs_dmx.core', label='NG12.5yr Noise Run: Free Spectral Red Noise') rn.plot_rednoise_spectrum('J1713+0747', [c0,c1], rn_types=['_red_noise','_red_noise']) rn.plot_rednoise_spectrum('J1713+0747', [c0,c1], free_spec_ul=True, rn_types=['_red_noise','_red_noise'], Colors=['C0','C1'], n_plaw_realizations=100) rn.plot_rednoise_spectrum('J1713+0747', [c0,c1], rn_types=['_red_noise','_red_noise'], free_spec_violin=True, Colors=['C0','C1']) ###Output Plotting Powerlaw RN Params:Tspan = 12.4 yrs, 1/Tspan = 2.6e-09 Red noise parameters: log10_A = -13.97, gamma = 1.02 Plotting Free Spectral RN Params:Tspan = 12.4 yrs f_min = 2.6e-09
Python Data Science Toolbox -Part 1/Lambda functions and error-handling/01.Writing a lambda function you already know.ipynb
###Markdown Some function definitions are simple enough that they can be converted to a lambda function. By doing this, you write less lines of code, which is pretty awesome and will come in handy, especially when you're writing and maintaining big programs. In this exercise, you will use what you know about lambda functions to convert a function that does a simple task into a lambda function. Take a look at this function definition:>def echo_word(word1, echo): """Concatenate echo copies of word1.""" words = word1 * echo return words The function echo_word takes 2 parameters: a string value, word1 and an integer value, echo. It returns a string that is a concatenation of echo copies of word1. Your task is to convert this simple function into a lambda function. Define the lambda function echo_word using the variables word1 and echo. Replicate what the original function definition for echo_word() does above. Call echo_word() with the string argument 'hey' and the value 5, in that order. Assign the call to result. ###Code # Define echo_word as a lambda function: echo_word echo_word = (lambda word1,echo: word1*echo) # Call echo_word: result result = echo_word('hey',5) # Print result print(result) ###Output heyheyheyheyhey
solutions by participants/ex2/ex2-ashishar-8cnot.ipynb
###Markdown Exercise 2 - Shor's algorithm Historical backgroundIn computing, we often measure the performance of an algorithm by how it grows with the size of the input problem. For example, addition has an algorithm that grows linearly with the size of the numbers we're adding. There are some computing problems for which the best algorithms we have grow _exponentially_ with the size of the input, and this means inputs with a relatively modest size are too big to solve using any computer on earth. We're so sure of this, much of the internet's security depends on certain problems being unsolvable.In 1994, Peter Shor showed that it’s possible to factor a number into its primes efficiently on a quantum computer.[1] This is big news, as the best classical algorithm we know of is one of these algorithms that grows exponentially. And in fact, [RSA encryption](https://en.wikipedia.org/wiki/RSA_(cryptosystem)) relies on factoring large enough numbers being infeasible. To factor integers that are too big for our current classical computers will require millions of qubits and gates, and these circuits are far too big to run on today’s quantum computers successfully.So how did Lieven M.K. Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S. Yannoni, Mark H. Sherwood and Isaac L. Chuang manage to factor 15 on a quantum computer, all the way back in 2001?![2]The difficulty in creating circuits for Shor’s algorithm is creating the circuit that computes a controlled $ay \bmod N$. While we know how to create these circuits using a polynomial number of gates, these are still too large for today’s computers. Fortunately, if we know some information about the problem a priori, then we can sometimes ‘cheat’ and create more efficient circuits.To run this circuit on the hardware available to them, the authors of the above paper found a very simple circuit that performed $7y \bmod 15$. This made the circuit small enough to run on their hardware. By the end of this exercise, you will have created a circuit for $35y \bmod N$ that can be used in Shor’s algorithm and can run on `ibmq_santiago`.If you want to understand what's going on in this exercise, you should check out the [Qiskit Textbook page on Shor's algorithm](https://qiskit.org/textbook/ch-algorithms/shor.html), but if this is too involved for you, you can complete the exercise without this. References1. Shor, Peter W. "Algorithms for quantum computation: discrete logarithms and factoring." Proceedings 35th annual symposium on foundations of computer science. Ieee, 1994.1. Vandersypen, Lieven MK, et al. "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance." Nature 414.6866 (2001): 883-887. tl;dr: Shor’s algorithmThere is an algorithm called [_quantum phase estimation_](https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html) that tells us the phase a gate introduces to a certain type of state. For example, inputs to phase estimation algorithm could be the state $|1\rangle$ and the gate $Z$. If the $Z$-gate acts on the state $|1\rangle$, we get back the same state with an added global phase of $\pi$:$$Z|1\rangle = -|1\rangle = e^{i\pi} |1\rangle$$And the quantum phase estimation algorithm could work this out for us. You can see another example [here](https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html2.-Example:-T-gate-).Shor showed that if we do phase estimation on a gate, $U$, that has the behavior $U|y\rangle = |a y\bmod N\rangle$, we can quickly get some information about $N$’s factors. The problemIn this exercise, we will factor 35 by doing phase estimation on a circuit that implements $13y \bmod 35$. The exercise is to create a circuit that does this, and is also small enough to run on `ibmq_santiago`! This is not an easy task, so the first thing we’re going to do is cheat.A detail of Shor’s algorithm is that our circuit only needs to work on states we can reach through applying $U$ to the starting state $|1\rangle$. I.e. we can use _any_ circuit that has the behavior: $$\begin{aligned}U|1\rangle &= |13\rangle \\UU|1\rangle &= |29\rangle \\UUU|1\rangle &= |27\rangle \\UUUU|1\rangle &= |1\rangle \\\end{aligned}$$So how can we make this easier for us? Since we only need to correctly transform 4 different states, we can encode these onto two qubits. For this exercise, we will choose to map the 2-qubit computational basis states to the numbers like so:$$\begin{aligned}|1\rangle &\rightarrow |00\rangle \\|13\rangle &\rightarrow |01\rangle \\|29\rangle &\rightarrow |10\rangle \\|27\rangle &\rightarrow |11\rangle \\\end{aligned}$$Why is this “cheating”? Well, to take advantage of this optimization, we need to know all the states $U$ is going to affect, which means we have to compute $ay \bmod N$ until we get back to 1 again, and that means we know the period of $a^x \bmod N$ and can therefore get the factors of $N$. Any optimization like this, in which we use information that would tell us the value $r$, is obviously not going to scale to problems that classical computers can’t solve. But the purpose of this exercise is just to verify that Shor’s algorithm does in fact work as intended, and we’re not going to worry about the fact that we cheated to get a circuit for $U$.**Exercise 2a:** Create a circuit ($U$) that performs the transformation:$$\begin{aligned}U|00\rangle &= |01\rangle \\U|01\rangle &= |10\rangle \\U|10\rangle &= |11\rangle \\U|11\rangle &= |00\rangle \\\end{aligned}$$and is controlled by another qubit. The circuit will act on a 2-qubit target register named 'target', and be controlled by another single-qubit register named 'control'. You should assign your finished circuit to the variable '`cu`'. ###Code from qiskit import QuantumCircuit from qiskit import QuantumRegister, QuantumCircuit from qiskit import transpile c = QuantumRegister(1, 'control') t = QuantumRegister(2, 'target') cu = QuantumCircuit(c, t, name="Controlled 13^x mod 35") # WRITE YOUR CODE BETWEEN THESE LINES - START initial_state = [0,1] # Define initial_state as |1> # cu.initialize(initial_state, 0) # Apply initialisation operation to the 0th qubit #qc.initialize([1,0], 1) # Apply initialisation operation to the 0th qubit dummy=QuantumRegister(1,'dummy') cu.cx(0,1) cu.x(1) cu.ccx(0,1,2) cu.x(1) # cu=transpile(cu, basis_gates=['cx','rz', 'sx','x']) # WRITE YOUR CODE BETWEEN THESE LINES - END cu.draw('mpl') ###Output _____no_output_____ ###Markdown And run the cell below to check your answer: ###Code # Check your answer using following code from qc_grader import grade_ex2a grade_ex2a(cu) ###Output Grading your answer for ex2/part1. Please wait... Congratulations 🎉! Your answer is correct. ###Markdown Congratulations! You’ve completed the hard part. We read the output of the phase estimation algorithm by measuring qubits, so we will need to make sure our 'counting' register contains enough qubits to read off $r$. In our case, $r = 4$, which means we only need $\log_2(4) = 2$ qubits (cheating again because we know $r$ beforehand), but since Santiago has 5 qubits, and we've only used 2 for the 'target' register, we'll use all remaining 3 qubits as our counting register.To do phase estimation on $U$, we need to create circuits that perform $U^{2^x}$ ($U$ repeated $2^x$ times) for each qubit (with index $x$) in our register of $n$ counting qubits. In our case this means we need three circuits that implement:$$ U, \; U^2, \; \text{and} \; U^4 $$So the next step is to create a circuit that performs $U^2$ (i.e. a circuit equivalent to applying $U$ twice).**Exercise 2b:** Create a circuit ($U^2$) that performs the transformation:$$\begin{aligned}U|00\rangle &= |10\rangle \\U|01\rangle &= |11\rangle \\U|10\rangle &= |00\rangle \\U|11\rangle &= |01\rangle \\\end{aligned}$$and is controlled by another qubit. The circuit will act on a 2-qubit target register named 'target', and be controlled by another single-qubit register named 'control'. You should assign your finished circuit to the variable '`cu2`'. ###Code c = QuantumRegister(1, 'control') t = QuantumRegister(2, 'target') cu2 = QuantumCircuit(c, t) # WRITE YOUR CODE BETWEEN THESE LINES - START cu2.cx(0,2) # WRITE YOUR CODE BETWEEN THESE LINES - END cu2.draw('mpl') ###Output _____no_output_____ ###Markdown And you can check your answer below: ###Code # Check your answer using following code from qc_grader import grade_ex2b grade_ex2b(cu2) ###Output Grading your answer for ex2/part2. Please wait... Congratulations 🎉! Your answer is correct. ###Markdown Finally, we also need a circuit that is equivalent to applying $U$ four times (i.e. we need the circuit $U^4$). **Exercise 2c:** Create a circuit ($U^4$) that performs the transformation:$$\begin{aligned}U|00\rangle &= |00\rangle \\U|01\rangle &= |01\rangle \\U|10\rangle &= |10\rangle \\U|11\rangle &= |11\rangle \\\end{aligned}$$and is controlled by another qubit. The circuit will act on a 2-qubit target register named 'target', and be controlled by another single-qubit register named 'control'. You should assign your finished circuit to the variable '`cu4`'. _Hint: The best solution is very simple._ ###Code c = QuantumRegister(1, 'control') t = QuantumRegister(2, 'target') cu4 = QuantumCircuit(c, t) # WRITE YOUR CODE BETWEEN THESE LINES - START # WRITE YOUR CODE BETWEEN THESE LINES - END cu4.draw('mpl') ###Output _____no_output_____ ###Markdown You can check your answer using the code below: ###Code # Check your answer using following code from qc_grader import grade_ex2c grade_ex2c(cu4) ###Output Grading your answer for ex2/part3. Please wait... Congratulations 🎉! Your answer is correct. ###Markdown **Exercise 2 final:** Now we have controlled $U$, $U^2$ and $U^4$, we can combine this into a circuit that carries out the quantum part of Shor’s algorithm.The initialization part is easy: we need to put the counting register into the state $|{+}{+}{+}\rangle$ (which we can do with three H-gates) and we need the target register to be in the state $|1\rangle$ (which we mapped to the computational basis state $|00\rangle$, so we don’t need to do anything here). We'll do all this for you._Your_ task is to create a circuit that carries out the controlled-$U$s, that will be used in-between the initialization and the inverse quantum Fourier transform. More formally, we want a circuit:$$CU_{c_0 t}CU^2_{c_1 t}CU^4_{c_2 t}$$Where $c_0$, $c_1$ and $c_2$ are the three qubits in the ‘counting’ register, $t$ is the ‘target’ register, and $U$ is as defined in the first part of this exercise. In this notation, $CU_{a b}$ means $CU$ is controlled by $a$ and acts on $b$. An easy solution to this is to simply combine the circuits `cu`, `cu2` and `cu4` that you created above, but you will most likely find a more efficient circuit that has the same behavior! Your circuit can only contain [CNOTs](https://qiskit.org/documentation/stubs/qiskit.circuit.library.CXGate.html) and single qubit [U-gates](https://qiskit.org/documentation/stubs/qiskit.circuit.library.UGate.html). Your score will be the number of CNOTs you use (less is better), as multi-qubit gates are usually much more difficult to carry out on hardware than single-qubit gates. If you're struggling with this requirement, we've included a line of code next to the submission that will convert your circuit to this form, although you're likely to do better by hand. ###Code # Code to combine your previous solutions into your final submission from qiskit import transpile cqr = QuantumRegister(3, 'control') tqr = QuantumRegister(2, 'target') cux = QuantumCircuit(cqr, tqr) solutions = [cu, cu2, cu4] for i in range(3): cux = cux.compose(solutions[i], [cqr[i], tqr[0], tqr[1]]) cux=transpile(cux, basis_gates=['cx','u']) cux.draw('mpl') # Check your answer using following code from qc_grader import grade_ex2_final # Uncomment the two lines below if you need to convert your circuit to CNOTs and single-qubit gates from qiskit import transpile cux = transpile(cux, basis_gates=['cx','u']) grade_ex2_final(cux) ###Output Grading your answer for ex2/part4. Please wait... Congratulations 🎉! Your answer is correct. Your cost is 8. Feel free to submit your answer. ###Markdown Once you're happy with the circuit, you can submit it below: ###Code # Submit your answer. You can re-submit at any time. from qc_grader import submit_ex2_final submit_ex2_final(cux) ###Output Submitting your answer for ex2/part4. Please wait... Success 🎉! Your answer has been submitted. ###Markdown Congratulations! You've finished the exercise. Read on to see your circuit used to factor 35, and see how it performs . Using your circuit to factorize 35The code cell below takes your submission for the exercise and uses it to create a circuit that will give us $\tfrac{s}{r}$, where $s$ is a random integer between $0$ and $r-1$, and $r$ is the period of the function $f(x) = 13^x \bmod 35$. ###Code from qiskit.circuit.library import QFT from qiskit import ClassicalRegister # Create the circuit object cr = ClassicalRegister(3) shor_circuit = QuantumCircuit(cqr, tqr, cr) # Initialise the qubits shor_circuit.h(cqr) # Add your circuit shor_circuit = shor_circuit.compose(cux) # Perform the inverse QFT and extract the output shor_circuit.append(QFT(3, inverse=True), cqr) shor_circuit.measure(cqr, cr) shor_circuit.draw('mpl') ###Output _____no_output_____ ###Markdown Let's transpile this circuit and see how large it is, and how many CNOTs it uses: ###Code from qiskit import Aer, transpile from qiskit.visualization import plot_histogram qasm_sim = Aer.get_backend('aer_simulator') tqc = transpile(shor_circuit, basis_gates=['u', 'cx'], optimization_level=3) print(f"circuit depth: {tqc.depth()}") print(f"circuit contains {tqc.count_ops()['cx']} CNOTs") ###Output circuit depth: 30 circuit contains 17 CNOTs ###Markdown And let's see what we get: ###Code counts = qasm_sim.run(tqc).result().get_counts() plot_histogram(counts) ###Output _____no_output_____ ###Markdown Assuming everything has worked correctly, we should see equal probability of measuring the numbers $0$, $2$, $4$ and $8$. This is because phase estimation gives us $2^n \cdot \tfrac{s}{r}$, where $n$ is the number of qubits in our counting register (here $n = 3$, $s$ is a random integer between $0$ and $r-1$, and $r$ is the number we're trying to calculate). Let's convert these to fractions that tell us $s/r$ (this is something we can easily calculate classically): ###Code from fractions import Fraction n = 3 # n is number of qubits in our 'counting' register # Cycle through each measurement string for measurement in counts.keys(): # Convert the binary string to an 'int', and divide by 2^n decimal = int(measurement, 2)/2**n # Use the continued fractions algorithm to convert to form a/b print(Fraction(decimal).limit_denominator(35)) ###Output 1/2 3/4 0 1/4 ###Markdown We can see the denominator of some of the results will tell us the correct answer $r = 4$. We can verify $r=4$ quickly: ###Code 13**4 % 35 ###Output _____no_output_____ ###Markdown So how do we get the factors from this? There is then a high probability that the greatest common divisor of $N$ and either $a^{r/2}-1$ or $a^{r/2}+1$ is a factor of $N$, and the greatest common divisor is also something we can easily calculate classically. ###Code from math import gcd # Greatest common divisor for x in [-1, 1]: print(f"Guessed factor: {gcd(13**(4//2)+x, 35)}") ###Output Guessed factor: 7 Guessed factor: 5 ###Markdown We only need to find one factor, and can use it to divide $N$ to find the other factor. But in this case, _both_ $a^{r/2}-1$ or $a^{r/2}+1$ give us $35$'s factors. We can again verify this is correct: ###Code 7*5 ###Output _____no_output_____ ###Markdown Running on `ibmq_santiago`We promised this would run on Santiago, so here we will show you how to do that. In this example we will use a simulated Santiago device for convenience, but you can switch this out for the real device if you want: ###Code from qiskit.test.mock import FakeSantiago from qiskit import assemble from qiskit.visualization import plot_histogram santiago = FakeSantiago() real_device = False ## Uncomment this code block to run on the real device #from qiskit import IBMQ #IBMQ.load_account() #provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') #santiago = provider.get_backend('ibmq_santiago') #real_device = True # We need to transpile for Santiago tqc = transpile(shor_circuit, santiago, optimization_level=3) if not real_device: tqc = assemble(tqc) # Run the circuit and print the counts counts = santiago.run(tqc).result().get_counts() plot_histogram(counts) ###Output _____no_output_____
Diversos/Final Capstone week3.ipynb
###Markdown Segmenting and Clustering Neighborhoods in Toronto First Part ###Code #downloading all the dependencies needed import numpy as np # library to handle data in a vectorized manner import pandas as pd # library for data analsysis import json # library to handle JSON files !conda install -c conda-forge geopy --yes from geopy.geocoders import Nominatim # convert an address into latitude and longitude values import requests # library to handle requests from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe # import k-means from clustering stage from sklearn.cluster import KMeans !conda install -c conda-forge folium=0.5.0 --yes import folium # map rendering library print('Libraries imported.') #Using the pandas to extract the table of postal codes of the Wikpedia page. url = "https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M" df_list = pd.read_html(url) #readind the html file. df = df_list[0] # defining a dataframe #Ignoring cells with a borough that is Not assigned. df = df[df.Borough != 'Not assigned'].reset_index(drop=True) df = df.rename(columns={"Postcode": "Postcode","Borough":"Borough","Neighbourhood":"Neighborhood"}) #treating the cells that do not have a linked Neighborhood to a Borough. df["Neighborhood"] = df.apply(lambda row: row.Neighborhood if row.Neighborhood !="Not assigned" else row.Borough, axis=1) #gathering the neighborhoods with the same postal code in a Borough. df = df.groupby(['Postcode', 'Borough'])['Neighborhood'].apply(', '.join).reset_index() df df.shape ###Output _____no_output_____ ###Markdown Second Part ###Code #Using the Geocoder package or the csv file to create the new dataframe: url1 = "https://cocl.us/Geospatial_data" df_postal = pd.read_csv(url1) df_postal = df_postal.rename(columns={"Postal Code": "Postcode","Latitude":"Latitude","Longitude":"Longitude"}) df_toronto = pd.merge(df, df_postal, on='Postcode', how='left') df_toronto df_toronto.shape ###Output _____no_output_____ ###Markdown Third Part ###Code #Getting the latitude and longitude values of toronto address = 'Toronto, CA' geolocator = Nominatim(user_agent="CA_explorer") location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The geograpical coordinate of Toronto are {}, {}.'.format(latitude, longitude)) # create map of Toronto latitude and longitude values map_toronto = folium.Map(location=[latitude, longitude], zoom_start=10) # add markers to map for lat, lng, neighborhood in zip(df_toronto['Latitude'], df_toronto['Longitude'], df_toronto['Neighborhood']): label = '{}'.format(neighborhood) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_toronto) map_toronto ##worrking only with boroughs how contain toronto in name. df_filtered = df_toronto[df_toronto['Borough'].str.contains("Toronto")] df_filtered.head(15) df_filtered.shape #Analyzing East Toronto Borough to replicate required analysis east_toronto = df_filtered[df_filtered['Borough'] == 'East Toronto'].reset_index(drop=True) east_toronto ###Output _____no_output_____ ###Markdown Let's get the geographical coordinates of East Toronto. ###Code address = 'East Toronto, Toronto CA' geolocator = Nominatim(user_agent="ca_explorer") location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The geograpical coordinate of East Toronto are {}, {}.'.format(latitude, longitude)) # create map of East Toronto using latitude and longitude values map_eastToronto = folium.Map(location=[latitude, longitude], zoom_start=11) # add markers to map for lat, lng, neighborhood in zip(east_toronto['Latitude'], east_toronto['Longitude'], east_toronto['Neighborhood']): label = '{}'.format(neighborhood) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='red', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_eastToronto) map_eastToronto #Utilizing the Foursquare API to explore the neighborhoods and segment them. #Define Foursquare Credentials and Version CLIENT_ID = 'T1F14ZSMPK4DKKGTZASK3MLJU0RMKYNKQXTIYYW3SSTJHY4W' # your Foursquare ID CLIENT_SECRET = 'EBLGELR3FEVXWRSTVI3EGAFDZFTEY5CG32ARFEIO4V14W1FL' # your Foursquare Secret VERSION = '20180605' # Foursquare API version print('Your credentails:') print('CLIENT_ID: ' + CLIENT_ID) print('CLIENT_SECRET:' + CLIENT_SECRET) #Let's explore the first neighborhood in our dataframe. #Get the neighborhood's name. east_toronto.loc[0, 'Neighborhood'] #Get the neighborhood's latitude and longitude values. neighborhood_latitude = east_toronto.loc[0, 'Latitude'] # neighborhood latitude value neighborhood_longitude = east_toronto.loc[0, 'Longitude'] # neighborhood longitude value neighborhood_name = east_toronto.loc[0, 'Neighborhood'] # neighborhood name print('Latitude and longitude values of {} are {}, {}.'.format(neighborhood_name, neighborhood_latitude, neighborhood_longitude)) #Now, let's get the top venues that are in The Beachs within a radius of 500 meters. #First, let's create the GET request URL. Name your URL url. LIMIT = 100 radius = 500 url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, neighborhood_latitude, neighborhood_longitude, radius, LIMIT) url #Send the GET request and examine the resutls results = requests.get(url).json() results # function that extracts the category of the venue def get_category_type(row): try: categories_list = row['categories'] except: categories_list = row['venue.categories'] if len(categories_list) == 0: return None else: return categories_list[0]['name'] #Now we are ready to clean the json and structure it into a pandas dataframe venues = results['response']['groups'][0]['items'] nearby_venues = json_normalize(venues) # flatten JSON # filter columns filtered_columns = ['venue.name', 'venue.categories', 'venue.location.lat', 'venue.location.lng'] nearby_venues =nearby_venues.loc[:, filtered_columns] # filter the category for each row nearby_venues['venue.categories'] = nearby_venues.apply(get_category_type, axis=1) # clean columns nearby_venues.columns = [col.split(".")[-1] for col in nearby_venues.columns] nearby_venues.head() #And how many venues were returned by Foursquare? print('{} venues were returned by Foursquare.'.format(nearby_venues.shape[0])) # 2. Explore Neighborhoods in East Toronto #Let's create a function to repeat the same process to all the neighborhoods in East Toronto def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) eastToronto_venues = getNearbyVenues(names=east_toronto['Neighborhood'], latitudes=east_toronto['Latitude'], longitudes=east_toronto['Longitude'] ) #Let's check the size of the resulting dataframe print(eastToronto_venues.shape) eastToronto_venues.head() #Let's check how many venues were returned for each neighborhood eastToronto_venues.groupby('Neighborhood').count() #Let's find out how many unique categories can be curated from all the returned venues print('There are {} uniques categories.'.format(len(eastToronto_venues['Venue Category'].unique()))) #3. Analyze Each Neighborhood # one hot encoding eastToronto_onehot = pd.get_dummies(eastToronto_venues[['Venue Category']], prefix="", prefix_sep="") eastToronto_onehot.head(10) # add neighborhood column back to dataframe eastToronto_onehot['Neighborhood'] = eastToronto_venues['Neighborhood'] eastToronto_onehot.head(5) # move neighborhood column to the first column fixed_columns = [eastToronto_onehot.columns[-19]] + list(eastToronto_onehot.columns[:-19]) eastToronto_onehot = eastToronto_onehot[fixed_columns] eastToronto_onehot.head() eastToronto_onehot.shape #Next, let's group rows by neighborhood and by taking the mean of the frequency of occurrence of each category eastToronto_grouped = eastToronto_onehot.groupby('Neighborhood').mean().reset_index() eastToronto_grouped eastToronto_grouped.shape #Let's print each neighborhood along with the top 5 most common venues num_top_venues = 5 for hood in eastToronto_grouped['Neighborhood']: print("----"+hood+"----") temp = eastToronto_grouped[eastToronto_grouped['Neighborhood'] == hood].T.reset_index() temp.columns = ['venue','freq'] temp = temp.iloc[1:] temp['freq'] = temp['freq'].astype(float) temp = temp.round({'freq': 2}) print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues)) print('\n') #Let's put that into a pandas dataframe #First, let's write a function to sort the venues in descending order. def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] #Now let's create the new dataframe and display the top 10 venues for each neighborhood. num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighborhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighborhood'] = eastToronto_grouped['Neighborhood'] for ind in np.arange(eastToronto_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(eastToronto_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted.head() #4. Cluster Neighborhoods #Run k-means to cluster the neighborhood into 3 clusters. # set number of clusters kclusters = 3 eastToronto_grouped_clustering = eastToronto_grouped.drop('Neighborhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(eastToronto_grouped_clustering) # check cluster labels generated for each row in the dataframe kmeans.labels_[0:5] #Let's create a new Dataframe #that includes the cluster as well as the top 10 venues for each neighborhood. # add clustering labels neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_) eastToronto_merged = east_toronto # merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood eastToronto_merged = eastToronto_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighborhood') eastToronto_merged.head() # check the last columns! #Finally, let's visualize the resulting clusters # create map map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11) # set color scheme for the clusters x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(eastToronto_merged['Latitude'], eastToronto_merged['Longitude'], eastToronto_merged['Neighborhood'], eastToronto_merged['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[cluster-1], fill=True, fill_color=rainbow[cluster-1], fill_opacity=0.7).add_to(map_clusters) map_clusters #5. Examine Clusters #Now, you can examine each cluster and determine the discriminating venue categories that distinguish each cluster. Based on the defining categories, you can then assign a name to each cluster. I will leave this exercise to you. #Cluster 1 eastToronto_merged.loc[eastToronto_merged['Cluster Labels'] == 0, eastToronto_merged.columns[[1] + list(range(5, eastToronto_merged.shape[1]))]] #Cluster 2 eastToronto_merged.loc[eastToronto_merged['Cluster Labels'] == 1, eastToronto_merged.columns[[1] + list(range(5, eastToronto_merged.shape[1]))]] #Cluster 3 eastToronto_merged.loc[eastToronto_merged['Cluster Labels'] == 2, eastToronto_merged.columns[[1] + list(range(5, eastToronto_merged.shape[1]))]] ###Output _____no_output_____
HI_70/notebook2/flo_test/3. augmentation flo.ipynb
###Markdown Move to **'model flo emission'** notebook to optimize model for augmenting emission ###Code # adding column 'abs_nm' to input input_col.append('abs_nm') input_col_2 = input_col.copy() print(input_col_2) input_col.remove('abs_nm') # Now, the dataset only has 'None' values in the 'emission_nm' column df_emi = pd.read_csv('dataset_augmented_abs.csv') # Load ML model for predicting emission loaded_rf_emi = joblib.load('model_aug_emission_DecisionTree.joblib') # # Replace 'None' entries in 'emission_nm' column by predicted values. a = 0 for index, row in df_emi.iterrows(): if row['emission_nm'] == 'None': X = df_emi.loc[index, input_col_2].to_numpy() df_emi.loc[index, 'emission_nm'] = loaded_rf_emi.predict(X.reshape(1, -1))[0] a += 1 # # # Save the dataset where all 'None' values are replaced. # # # Ready to use for other analysis. df_emi.to_csv('dataset_augmented_abs_emission.csv') ###Output _____no_output_____ ###Markdown Aldjust dataset_augmented_abs_emission.csv to dataset_augmented_abs_emission_adjusted.csv ###Code # adding column 'emission_nm' to input input_col_2.append('emission_nm') input_col_3 = input_col_2.copy() print(input_col_3) input_col_2.remove('emission_nm') df_second_aug = pd.read_csv('dataset_augmented_abs_emission_adjusted.csv') #Saves the row indexes to drop for diameter modelling into a list total_row_num = len(df_second_aug) drop_list_dia =[] for row_i in range(total_row_num): if df_second_aug['diameter_nm'].values[row_i] == 'None': drop_list_dia.append(row_i) len(drop_list_dia) #Drops the appropriate rows df_dia_scaled_encoded = df_second_aug.drop(drop_list_dia) #Saves the data for absorbance modelling to CSV df_dia_scaled_encoded.to_csv('dataset_scaled_diameter.csv') ###Output _____no_output_____ ###Markdown Move to **'model hao diameter'** notebook to optimize model for augmenting emission. ###Code # Load ML model for predicting diameters df_dia = pd.read_csv('dataset_augmented_abs_emission_adjusted.csv') loaded_rf_dia = joblib.load('model_aug_diameter_ExtraTrees.joblib') # Replace 'None' entries in 'diameter_nm' column by predicted values. a = 0 for index, row in df_dia.iterrows(): if row['diameter_nm'] == 'None': X = df_dia.loc[index, input_col_3].to_numpy() df_dia.loc[index, 'diameter_nm'] = loaded_rf_dia.predict(X.reshape(1, -1))[0] a += 1 # Save the dataset where all 'None' values in 'diameter_nm' column are replaced. df_dia.to_csv('flo_dataset_augmented.csv') ###Output _____no_output_____
notebooks/protocol_neb_example.ipynb
###Markdown Climbing image NEB example - Lammps ###Code # headers # general modules import numpy as np import matplotlib.pyplot as plt # pyiron modules from pyiron_atomistics import Project import pyiron_contrib # define project pr = Project('neb_example') pr.remove_jobs(recursive=True) # check the git head of the repos that this notebook worked on when this notebook was written pr.get_repository_status() # inputs # structure specific element = 'Al' supercell = 3 vac_id_initial = 0 vac_id_final = 1 cubic = True # job specific potential = '2008--Mendelev-M-I--Al--LAMMPS--ipr1' # NEB specific n_images = 9 neb_steps = 200 gamma0 = 0.01 climbing_image = True # create base structure box = pr.create_ase_bulk(name=element, cubic=cubic).repeat(supercell) # template minimization job template_job = pr.create_job(job_type=pr.job_type.Lammps, job_name='template') template_job.potential = potential # vacancy @ atom id 0 minimization vac_0_struct = box.copy() # copy box vac_0_struct.pop(vac_id_initial) # create vacancy vac_0 = template_job.copy_template(project=pr, new_job_name='vac_0') vac_0.structure = vac_0_struct vac_0.calc_minimize(pressure=0.) vac_0.run() # vacancy @ atom id 1 minimization vac_1_struct = box.copy() # copy box vac_1_struct.pop(vac_id_final) # create vacancy vac_1 = template_job.copy_template(project=pr, new_job_name='vac_1') vac_1.structure = vac_1_struct vac_1.calc_minimize(pressure=0.) vac_1.run() # create and run the NEB job pr_neb = pr.create_group('neb') # create a new folder neb_ref = pr_neb.create_job(job_type=pr.job_type.Lammps, job_name='ref_neb') neb_ref.structure = vac_0.get_structure() neb_ref.potential = potential neb_ref.save() # Don't forget this step! neb_job = pr_neb.create_job(job_type=pr.job_type.ProtoNEBSer, job_name='neb_job') neb_job.input.ref_job_full_path = neb_ref.path neb_job.input.structure_initial = vac_0.get_structure() neb_job.input.structure_final = vac_1.get_structure() neb_job.input.n_images = n_images neb_job.input.n_steps = neb_steps neb_job.input.gamma0 = gamma0 neb_job.input.use_climbing_image = climbing_image # set_output_whitelist sets how often an output of a particular vertex is stored in the archive. # for example, here, the output 'energy_pot' of vertex 'calc_static' is saved every 20 steps in the archive. neb_job.set_output_whitelist(**{'calc_static': {'energy_pot': 20}}) neb_job.run() # lets check the archive for the output - 1 neb_job['graph/vertices/calc_static/archive/output/energy_pot'] # here we see in 'nodes' that the output is stored every 20 steps # note: unfortunately, this is the only way to access the archive quantitites at the moment! # note: all outputs of the other nodes will only be saved for the final step! # lets check the archive for the output - 2 # the final image energies? neb_job['graph/vertices/calc_static/archive/output/energy_pot/t_80'] # lets plot the final barrier neb_job.plot_elastic_band(frame=-1) # lets get the migration barrier over different archived iterations e_mig = [neb_job.get_barrier(frame=i) for i in range(int(neb_steps/20))] # final migration barrier after 200 steps print('final migration barrier = {}'.format(e_mig[-1])) ###Output final migration barrier = 0.6524359464470422 ###Markdown Notes: At the moment, there is no convergence criterion implemented for this NEB protocol. So it runs for all of the steps that have been provided as an input. ###Code # plot the iterations plt.plot(e_mig, marker='o') plt.xlabel('archived iterations') plt.ylabel('migration_barrier [eV]') plt.show() # other output saved by the job can be obtained only for the final step! neb_job.output.keys() ###Output _____no_output_____
05_pythonic_ways.ipynb
###Markdown Tuple unpackingfrom http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-1-Introduction-to-Python-Programming.ipynbTuples are like lists, except that they cannot be modified once created, that is they are immutable.In Python, tuples are created using the syntax (..., ..., ...) ###Code point = (10, 20) print(point, type(point)) ###Output (10, 20) <class 'tuple'> ###Markdown We can unpack a tuple by assigning it to a comma-separated list of variables: ###Code x, y = point print("x =", x) print("y =", y) ###Output x = 10 y = 20 ###Markdown Enumeratefrom http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-1-Introduction-to-Python-Programming.ipynbSometimes it is useful to have access to the indices of the values when iterating over a list. We can use the enumerate function for this: ###Code my_list = list(range(-3,3)) print(my_list) for idx, x in enumerate(my_list): print(idx, x) ###Output [-3, -2, -1, 0, 1, 2] 0 -3 1 -2 2 -1 3 0 4 1 5 2 ###Markdown Unnamed functions (lambda functions)from http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-1-Introduction-to-Python-Programming.ipynbIn Python we can also create unnamed functions, using the lambda keyword: ###Code f1 = lambda x: x**2 # is equivalent to def f2(x): return x**2 f1(2), f2(2) ###Output _____no_output_____
Lab 5: Explore the Data Set.ipynb
###Markdown **Survey Dataset Exploration Lab** Estimated time needed: **30** minutes Objectives After completing this lab you will be able to: * Load the dataset that will used thru the capstone project.* Explore the dataset.* Get familier with the data types. Load the dataset Import the required libraries. ###Code import pandas as pd ###Output _____no_output_____ ###Markdown The dataset is available on the IBM Cloud at the below url. ###Code dataset_url = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DA0321EN-SkillsNetwork/LargeData/m1_survey_data.csv" ###Output _____no_output_____ ###Markdown Load the data available at dataset_url into a dataframe. ###Code # your code goes here df = pd.read_csv(dataset_url) ###Output _____no_output_____ ###Markdown Explore the data set It is a good idea to print the top 5 rows of the dataset to get a feel of how the dataset will look. Display the top 5 rows and columns from your dataset. ###Code # your code goes here df.head() ###Output _____no_output_____ ###Markdown Find out the number of rows and columns Start by exploring the numbers of rows and columns of data in the dataset. Print the number of rows in the dataset. ###Code # your code goes here df.shape[1] ###Output _____no_output_____ ###Markdown Print the number of columns in the dataset. ###Code # your code goes here df.shape[0] ###Output _____no_output_____ ###Markdown Identify the data types of each column Explore the dataset and identify the data types of each column. Print the datatype of all columns. ###Code # your code goes here df.dtypes ###Output _____no_output_____ ###Markdown Print the mean age of the survey participants. ###Code # your code goes here df.Age.mean() ###Output _____no_output_____ ###Markdown The dataset is the result of a world wide survey. Print how many unique countries are there in the Country column. ###Code # your code goes here len(df.Country.unique()) ###Output _____no_output_____
web_scrapping/alternative_solution_to_scrapping_150_python_job_from_indeed.ipynb
###Markdown Possible Solution: Build A Pipeline- Combine Your Knowledge of the Website, `requests` and `bs4`- Automate Your Scraping Process Across Multiple Pages- Generalize Your Code For Varying Searches- Target & Save Specific Information You Want Your Tasks:- Scrape the first 100 available search results- Generalize your code to allow searching for different locations/jobs- Pick out information about the URL, job title, and job location- Save the results to a file ###Code import requests from bs4 import BeautifulSoup ###Output _____no_output_____ ###Markdown --- Part 1: Inspect- How do the URLs change when you navigate to the next results page?- How do the URLs change when you use a different location and/or job title search?- Which HTML elements contain the link, title, and location of each job? **Next Page**: The `start=` parameter gets added and incremented by the value of `10` for each additional page. This is because each results page displays 10 job results.E.g.: **Different Location/Job Title**: The values for the query parameters `q` (for job title) and `l` (for location) change accordingly. ###Code page = requests.get('https://www.indeed.com/jobs?q=python&l=new+york') ###Output _____no_output_____ ###Markdown **HTML Elements**: A single job posting lives inside of a `div` element with the class name `result`. Inside there are other elements. You can find the specific info you're looking for here:- **Link**: In the `href` attribute of the `` Element that is a child of the title `` element- **Title**: The text of the link in the `` element which also contains the link URL mentioned above- **Location**: A `` element with the telling class name `location` --- Part 2: Scrape- Build the code to fetch the first 100 search results. This means you will need to automatically navigate to multiple results pages- Write functions that allow you to specify the job title, location, and amount of results as arguments ###Code page_2 = requests.get('https://www.indeed.com/jobs?q=python&l=new+york&start=20') ###Output _____no_output_____ ###Markdown Every 10 results means you're on a new page. Let's make that an argument to a function: ###Code def get_jobs(page=1): """Fetches the HTML from a search for Python jobs in New York on Indeed.com from a specified page.""" base_url_indeed = 'https://www.indeed.com/jobs?q=python&l=new+york&start=' results_start_num = page*10 url = f'{base_url_indeed}{results_start_num}' page = requests.get(url) return page get_jobs(3) get_jobs(4) ###Output _____no_output_____ ###Markdown Great! Let's customize this function some more to allow for different search queries and search locations: ###Code def get_jobs(title, location, page=1): """Fetches the HTML from a search for Python jobs in New York on Indeed.com from a specified page.""" loc = location.replace(' ', '+') # for multi-part locations base_url_indeed = f'https://www.indeed.com/jobs?q={title}&l={loc}&start=' results_start_num = page*10 url = f'{base_url_indeed}{results_start_num}' page = requests.get(url) return page get_jobs('python', 'new york', 3) ###Output _____no_output_____ ###Markdown With a generalized way of scraping the page done, you can move on to picking out the information you need by parsing the HTML. --- Part 3: Parse- Sieve through your HTML soup to pick out only the job title, link, and location- Format the results in a readable format (e.g. JSON)- Save the results to a file Let's start by getting access to all interesting search results for one page: ###Code site = get_jobs('python', 'new york') soup = BeautifulSoup(site.content) results = soup.find(id='resultsCol') jobs = results.find_all('div', class_='result') ###Output _____no_output_____ ###Markdown **Job Titles** can be found like this: ###Code job_titles = [job.find('h2').find('a').text.strip() for job in jobs] job_titles ###Output _____no_output_____ ###Markdown **Link URLs** need to be assembled, and can be found like this: ###Code base_url = 'https://www.indeed.com' job_links = [base_url + job.find('h2').find('a')['href'] for job in jobs] job_links ###Output _____no_output_____ ###Markdown **Locations** can be picked out of the soup by their class name: ###Code job_locations = [job.find(class_='location').text for job in jobs] job_locations ###Output _____no_output_____ ###Markdown Let's assemble all this info into a function, so you can pick out the pieces and save them to a useful data structure: ###Code def parse_info(soup): """ Parses HTML containing job postings and picks out job title, location, and link. args: soup (BeautifulSoup object): A parsed bs4.BeautifulSoup object of a search results page on indeed.com returns: job_list (list): A list of dictionaries containing the title, link, and location of each job posting """ results = soup.find(id='resultsCol') jobs = results.find_all('div', class_='result') base_url = 'https://www.indeed.com' job_list = list() for job in jobs: title = job.find('h2').find('a').text.strip() link = base_url + job.find('h2').find('a')['href'] location = job.find(class_='location').text job_list.append({'title': title, 'link': link, 'location': location}) return job_list ###Output _____no_output_____ ###Markdown Let's give it a try: ###Code page = get_jobs('python', 'new_york') soup = BeautifulSoup(page.content) results = parse_info(soup) results ###Output _____no_output_____ ###Markdown And let's add a final step of generalization: ###Code def get_job_listings(title, location, amount=100): results = list() for page in range(amount//10): site = get_jobs(title, location, page=page) soup = BeautifulSoup(site.content) page_results = parse_info(soup) results += page_results return results r = get_job_listings('python', 'new york', 100) len(r) r[42] ###Output _____no_output_____
assignments/assignment1_Scripting/Assignment1_word_counts_au617836.ipynb
###Markdown Portfolio Assignment 1: Basic Scripting with Python Using the corpus called 100-english-novels found on the cds-language GitHub repo, write a Python programme which does the following:1. Calculate the total word count for each novel2. Calculate the total number of unique words for each novel3. Save result as a single file consisting of three columns: filename, total_words, unique_words __TASK 1: CALCULATE THE TOTAL WORD COUNT FOR EACH NOVEL__ ###Code # First I want to import the novels from the 100-english-novels corpus and for this I need the Path module # Importing Path module and the os module from pathlib import Path import os # Specifying the data path data_path = os.path.join("..", "data", "100_english_novels", "corpus") # Importing all files (all novels) ending with ".txt" using the glob() function. I then split each novel into tokens (words) using the split() function and then I count the number of tokens/words for each novel using the len() function. for filename in Path(data_path).glob("*.txt"): with open (filename, "r", encoding = "utf-8") as file: novel = file.read() split_novel = novel.split() # splitting the novel into tokens/words print(f"{filename} has a word count of {len(split_novel)}") # counting the number of words in each novel ###Output ../data/100_english_novels/corpus/Cbronte_Villette_1853.txt has a word count of 196557 ../data/100_english_novels/corpus/Forster_Angels_1905.txt has a word count of 50477 ../data/100_english_novels/corpus/Woolf_Lighthouse_1927.txt has a word count of 70185 ../data/100_english_novels/corpus/Meredith_Richmond_1871.txt has a word count of 214985 ../data/100_english_novels/corpus/Stevenson_Treasure_1883.txt has a word count of 68448 ../data/100_english_novels/corpus/Forster_Howards_1910.txt has a word count of 111057 ../data/100_english_novels/corpus/Wcollins_Basil_1852.txt has a word count of 118088 ../data/100_english_novels/corpus/Schreiner_Undine_1929.txt has a word count of 90672 ../data/100_english_novels/corpus/Galsworthy_Man_1906.txt has a word count of 110455 ../data/100_english_novels/corpus/Corelli_Innocent_1914.txt has a word count of 121950 ../data/100_english_novels/corpus/Kipling_Light_1891.txt has a word count of 72479 ../data/100_english_novels/corpus/Conrad_Nostromo_1904.txt has a word count of 172276 ../data/100_english_novels/corpus/Stevenson_Arrow_1888.txt has a word count of 80291 ../data/100_english_novels/corpus/Hardy_Tess_1891.txt has a word count of 151197 ../data/100_english_novels/corpus/Thackeray_Esmond_1852.txt has a word count of 187049 ../data/100_english_novels/corpus/Doyle_Lost_1912.txt has a word count of 76281 ../data/100_english_novels/corpus/Trollope_Angel_1881.txt has a word count of 217694 ../data/100_english_novels/corpus/Gissing_Warburton_1903.txt has a word count of 85093 ../data/100_english_novels/corpus/Barclay_Rosary_1909.txt has a word count of 105920 ../data/100_english_novels/corpus/Eliot_Daniel_1876.txt has a word count of 311335 ../data/100_english_novels/corpus/James_Tragic_1890.txt has a word count of 210553 ../data/100_english_novels/corpus/Doyle_Micah_1889.txt has a word count of 177917 ../data/100_english_novels/corpus/Dickens_Bleak_1853.txt has a word count of 357936 ../data/100_english_novels/corpus/Woolf_Night_1919.txt has a word count of 167075 ../data/100_english_novels/corpus/Braddon_Audley_1862.txt has a word count of 148763 ../data/100_english_novels/corpus/Bennet_Babylon_1902.txt has a word count of 68397 ../data/100_english_novels/corpus/Kipling_Kim_1901.txt has a word count of 107663 ../data/100_english_novels/corpus/Lytton_What_1858.txt has a word count of 338512 ../data/100_english_novels/corpus/Meredith_Marriage_1895.txt has a word count of 156151 ../data/100_english_novels/corpus/Corelli_Satan_1895.txt has a word count of 169571 ../data/100_english_novels/corpus/Haggard_Mines_1885.txt has a word count of 82948 ../data/100_english_novels/corpus/Stevenson_Catriona_1893.txt has a word count of 102106 ../data/100_english_novels/corpus/Doyle_Hound_1902.txt has a word count of 59639 ../data/100_english_novels/corpus/Chesterton_Innocence_1911.txt has a word count of 79361 ../data/100_english_novels/corpus/Blackmore_Lorna_1869.txt has a word count of 273259 ../data/100_english_novels/corpus/Haggard_Sheallan_1921.txt has a word count of 121506 ../data/100_english_novels/corpus/Gaskell_Wives_1865.txt has a word count of 270014 ../data/100_english_novels/corpus/Cbronte_Jane_1847.txt has a word count of 189103 ../data/100_english_novels/corpus/Wcollins_Legacy_1889.txt has a word count of 120704 ../data/100_english_novels/corpus/Morris_Roots_1890.txt has a word count of 154305 ../data/100_english_novels/corpus/Burnett_Garden_1911.txt has a word count of 81043 ../data/100_english_novels/corpus/Ford_Post_1926.txt has a word count of 72055 ../data/100_english_novels/corpus/Thackeray_Pendennis_1850.txt has a word count of 359496 ../data/100_english_novels/corpus/James_Roderick_1875.txt has a word count of 132759 ../data/100_english_novels/corpus/Haggard_She_1887.txt has a word count of 113770 ../data/100_english_novels/corpus/Galsworthy_River_1933.txt has a word count of 89871 ../data/100_english_novels/corpus/Morris_Wood_1894.txt has a word count of 49983 ../data/100_english_novels/corpus/Barclay_Postern_1911.txt has a word count of 40015 ../data/100_english_novels/corpus/Conrad_Almayer_1895.txt has a word count of 63257 ../data/100_english_novels/corpus/Thackeray_Virginians_1859.txt has a word count of 356604 ../data/100_english_novels/corpus/Bennet_Helen_1910.txt has a word count of 52644 ../data/100_english_novels/corpus/Lee_Brown_1884.txt has a word count of 48242 ../data/100_english_novels/corpus/Lawrence_Women_1920.txt has a word count of 183180 ../data/100_english_novels/corpus/Schreiner_Farm_1883.txt has a word count of 100645 ../data/100_english_novels/corpus/Lytton_Novel_1853.txt has a word count of 456592 ../data/100_english_novels/corpus/Lawrence_Peacock_1911.txt has a word count of 124497 ../data/100_english_novels/corpus/Schreiner_Trooper_1897.txt has a word count of 24612 ../data/100_english_novels/corpus/Cbronte_Shirley_1849.txt has a word count of 218572 ../data/100_english_novels/corpus/James_Ambassadors_1903.txt has a word count of 167555 ../data/100_english_novels/corpus/Lawrence_Serpent_1926.txt has a word count of 172356 ../data/100_english_novels/corpus/Braddon_Quest_1871.txt has a word count of 174199 ../data/100_english_novels/corpus/Dickens_Oliver_1839.txt has a word count of 159489 ../data/100_english_novels/corpus/Trollope_Warden_1855.txt has a word count of 72102 ../data/100_english_novels/corpus/Barclay_Ladies_1917.txt has a word count of 122382 ../data/100_english_novels/corpus/Ward_Harvest_1920.txt has a word count of 75043 ../data/100_english_novels/corpus/Blackmore_Erema_1877.txt has a word count of 167016 ../data/100_english_novels/corpus/Wcollins_Woman_1860.txt has a word count of 247078 ../data/100_english_novels/corpus/Hardy_Madding_1874.txt has a word count of 138440 ../data/100_english_novels/corpus/Lee_Penelope_1903.txt has a word count of 21840 ../data/100_english_novels/corpus/Eliot_Adam_1859.txt has a word count of 216651 ../data/100_english_novels/corpus/Gaskell_Lovers_1863.txt has a word count of 191037 ../data/100_english_novels/corpus/Corelli_Romance_1886.txt has a word count of 100526 ../data/100_english_novels/corpus/Conrad_Rover_1923.txt has a word count of 88101 ../data/100_english_novels/corpus/Gissing_Women_1893.txt has a word count of 139234 ../data/100_english_novels/corpus/Woolf_Years_1937.txt has a word count of 130903 ../data/100_english_novels/corpus/Trollope_Phineas_1869.txt has a word count of 266634 ../data/100_english_novels/corpus/Lytton_Kenelm_1873.txt has a word count of 193074 ../data/100_english_novels/corpus/Blackmore_Springhaven_1887.txt has a word count of 202113 ../data/100_english_novels/corpus/Forster_View_1908.txt has a word count of 67930 ../data/100_english_novels/corpus/Eliot_Felix_1866.txt has a word count of 182816 ../data/100_english_novels/corpus/Chesterton_Napoleon_1904.txt has a word count of 54920 ../data/100_english_novels/corpus/Bennet_Imperial_1930.txt has a word count of 255975 ../data/100_english_novels/corpus/Burnett_Princess_1905.txt has a word count of 66877 ../data/100_english_novels/corpus/Ward_Milly_1881.txt has a word count of 47588 ../data/100_english_novels/corpus/Ford_Girl_1907.txt has a word count of 35708 ../data/100_english_novels/corpus/Meredith_Feverel_1859.txt has a word count of 168781 ../data/100_english_novels/corpus/Lee_Albany_1884.txt has a word count of 62913 ../data/100_english_novels/corpus/Ford_Soldier_1915.txt has a word count of 76750 ../data/100_english_novels/corpus/Ward_Ashe_1905.txt has a word count of 141832 ../data/100_english_novels/corpus/Morris_Water_1897.txt has a word count of 147737 ../data/100_english_novels/corpus/Galsworthy_Saints_1919.txt has a word count of 95156 ../data/100_english_novels/corpus/Gissing_Unclassed_1884.txt has a word count of 124877 ../data/100_english_novels/corpus/Anon_Clara_1864.txt has a word count of 197620 ../data/100_english_novels/corpus/Hardy_Jude_1895.txt has a word count of 147273 ../data/100_english_novels/corpus/Dickens_Expectations_1861.txt has a word count of 186804 ../data/100_english_novels/corpus/Chesterton_Thursday_1908.txt has a word count of 58299 ../data/100_english_novels/corpus/Burnett_Lord_1886.txt has a word count of 58698 ../data/100_english_novels/corpus/Braddon_Phantom_1883.txt has a word count of 180676 ../data/100_english_novels/corpus/Gaskell_Ruth_1855.txt has a word count of 161797 ../data/100_english_novels/corpus/Kipling_Captains_1896.txt has a word count of 53467 ###Markdown __TASK 2: CALCULATE THE TOTAL NUMBER OF UNIQUE WORDS FOR EACH NOVEL__ ###Code # For this task I am going to use the set() function that removes duplicates of words which allows me to find the unique words for each novel. I then use the len() function to count the number of unique words, i.e. words that do not occur more than once, as identified by the set() function. for filename in Path(data_path).glob("*.txt"): with open (filename, "r", encoding = "utf-8") as file: novel = file.read() split_novel = novel.split() # splitting the novel into words unique_words = set(split_novel) # removing duplicate words print(f"{filename} contains {len(unique_words)} unique words") # counting the number of unique words for each novel ###Output ../data/100_english_novels/corpus/Cbronte_Villette_1853.txt contains 29084 unique words ../data/100_english_novels/corpus/Forster_Angels_1905.txt contains 9464 unique words ../data/100_english_novels/corpus/Woolf_Lighthouse_1927.txt contains 11157 unique words ../data/100_english_novels/corpus/Meredith_Richmond_1871.txt contains 28892 unique words ../data/100_english_novels/corpus/Stevenson_Treasure_1883.txt contains 10831 unique words ../data/100_english_novels/corpus/Forster_Howards_1910.txt contains 17065 unique words ../data/100_english_novels/corpus/Wcollins_Basil_1852.txt contains 14586 unique words ../data/100_english_novels/corpus/Schreiner_Undine_1929.txt contains 11744 unique words ../data/100_english_novels/corpus/Galsworthy_Man_1906.txt contains 16713 unique words ../data/100_english_novels/corpus/Corelli_Innocent_1914.txt contains 19627 unique words ../data/100_english_novels/corpus/Kipling_Light_1891.txt contains 12493 unique words ../data/100_english_novels/corpus/Conrad_Nostromo_1904.txt contains 21884 unique words ../data/100_english_novels/corpus/Stevenson_Arrow_1888.txt contains 13168 unique words ../data/100_english_novels/corpus/Hardy_Tess_1891.txt contains 20955 unique words ../data/100_english_novels/corpus/Thackeray_Esmond_1852.txt contains 21375 unique words ../data/100_english_novels/corpus/Doyle_Lost_1912.txt contains 12621 unique words ../data/100_english_novels/corpus/Trollope_Angel_1881.txt contains 18023 unique words ../data/100_english_novels/corpus/Gissing_Warburton_1903.txt contains 12864 unique words ../data/100_english_novels/corpus/Barclay_Rosary_1909.txt contains 15223 unique words ../data/100_english_novels/corpus/Eliot_Daniel_1876.txt contains 28606 unique words ../data/100_english_novels/corpus/James_Tragic_1890.txt contains 21589 unique words ../data/100_english_novels/corpus/Doyle_Micah_1889.txt contains 23564 unique words ../data/100_english_novels/corpus/Dickens_Bleak_1853.txt contains 30797 unique words ../data/100_english_novels/corpus/Woolf_Night_1919.txt contains 19055 unique words ../data/100_english_novels/corpus/Braddon_Audley_1862.txt contains 18055 unique words ../data/100_english_novels/corpus/Bennet_Babylon_1902.txt contains 11529 unique words ../data/100_english_novels/corpus/Kipling_Kim_1901.txt contains 17998 unique words ../data/100_english_novels/corpus/Lytton_What_1858.txt contains 38658 unique words ../data/100_english_novels/corpus/Meredith_Marriage_1895.txt contains 24931 unique words ../data/100_english_novels/corpus/Corelli_Satan_1895.txt contains 22058 unique words ../data/100_english_novels/corpus/Haggard_Mines_1885.txt contains 12373 unique words ../data/100_english_novels/corpus/Stevenson_Catriona_1893.txt contains 13816 unique words ../data/100_english_novels/corpus/Doyle_Hound_1902.txt contains 9393 unique words ../data/100_english_novels/corpus/Chesterton_Innocence_1911.txt contains 13458 unique words ../data/100_english_novels/corpus/Blackmore_Lorna_1869.txt contains 25408 unique words ../data/100_english_novels/corpus/Haggard_Sheallan_1921.txt contains 13669 unique words ../data/100_english_novels/corpus/Gaskell_Wives_1865.txt contains 23203 unique words ../data/100_english_novels/corpus/Cbronte_Jane_1847.txt contains 25762 unique words ../data/100_english_novels/corpus/Wcollins_Legacy_1889.txt contains 13383 unique words ../data/100_english_novels/corpus/Morris_Roots_1890.txt contains 14085 unique words ../data/100_english_novels/corpus/Burnett_Garden_1911.txt contains 8939 unique words ../data/100_english_novels/corpus/Ford_Post_1926.txt contains 12728 unique words ../data/100_english_novels/corpus/Thackeray_Pendennis_1850.txt contains 34188 unique words ../data/100_english_novels/corpus/James_Roderick_1875.txt contains 17715 unique words ../data/100_english_novels/corpus/Haggard_She_1887.txt contains 15269 unique words ../data/100_english_novels/corpus/Galsworthy_River_1933.txt contains 13114 unique words ../data/100_english_novels/corpus/Morris_Wood_1894.txt contains 6890 unique words ../data/100_english_novels/corpus/Barclay_Postern_1911.txt contains 7921 unique words ../data/100_english_novels/corpus/Conrad_Almayer_1895.txt contains 10344 unique words ../data/100_english_novels/corpus/Thackeray_Virginians_1859.txt contains 34367 unique words ../data/100_english_novels/corpus/Bennet_Helen_1910.txt contains 10251 unique words ../data/100_english_novels/corpus/Lee_Brown_1884.txt contains 9369 unique words ../data/100_english_novels/corpus/Lawrence_Women_1920.txt contains 22055 unique words ../data/100_english_novels/corpus/Schreiner_Farm_1883.txt contains 13501 unique words ../data/100_english_novels/corpus/Lytton_Novel_1853.txt contains 42679 unique words ../data/100_english_novels/corpus/Lawrence_Peacock_1911.txt contains 18254 unique words ../data/100_english_novels/corpus/Schreiner_Trooper_1897.txt contains 4832 unique words ../data/100_english_novels/corpus/Cbronte_Shirley_1849.txt contains 29500 unique words ../data/100_english_novels/corpus/James_Ambassadors_1903.txt contains 17390 unique words ../data/100_english_novels/corpus/Lawrence_Serpent_1926.txt contains 21246 unique words ../data/100_english_novels/corpus/Braddon_Quest_1871.txt contains 17608 unique words ../data/100_english_novels/corpus/Dickens_Oliver_1839.txt contains 20367 unique words ../data/100_english_novels/corpus/Trollope_Warden_1855.txt contains 11464 unique words ../data/100_english_novels/corpus/Barclay_Ladies_1917.txt contains 15657 unique words ../data/100_english_novels/corpus/Ward_Harvest_1920.txt contains 13264 unique words ../data/100_english_novels/corpus/Blackmore_Erema_1877.txt contains 18885 unique words ../data/100_english_novels/corpus/Wcollins_Woman_1860.txt contains 19959 unique words ../data/100_english_novels/corpus/Hardy_Madding_1874.txt contains 20378 unique words ../data/100_english_novels/corpus/Lee_Penelope_1903.txt contains 5325 unique words ../data/100_english_novels/corpus/Eliot_Adam_1859.txt contains 21482 unique words ../data/100_english_novels/corpus/Gaskell_Lovers_1863.txt contains 21087 unique words ../data/100_english_novels/corpus/Corelli_Romance_1886.txt contains 15923 unique words ../data/100_english_novels/corpus/Conrad_Rover_1923.txt contains 11978 unique words ../data/100_english_novels/corpus/Gissing_Women_1893.txt contains 16912 unique words ../data/100_english_novels/corpus/Woolf_Years_1937.txt contains 16701 unique words ../data/100_english_novels/corpus/Trollope_Phineas_1869.txt contains 19592 unique words ../data/100_english_novels/corpus/Lytton_Kenelm_1873.txt contains 24678 unique words ../data/100_english_novels/corpus/Blackmore_Springhaven_1887.txt contains 23115 unique words ../data/100_english_novels/corpus/Forster_View_1908.txt contains 12114 unique words ../data/100_english_novels/corpus/Eliot_Felix_1866.txt contains 22340 unique words ../data/100_english_novels/corpus/Chesterton_Napoleon_1904.txt contains 10847 unique words ../data/100_english_novels/corpus/Bennet_Imperial_1930.txt contains 29278 unique words ../data/100_english_novels/corpus/Burnett_Princess_1905.txt contains 9037 unique words ../data/100_english_novels/corpus/Ward_Milly_1881.txt contains 6688 unique words ../data/100_english_novels/corpus/Ford_Girl_1907.txt contains 7092 unique words ../data/100_english_novels/corpus/Meredith_Feverel_1859.txt contains 24576 unique words ../data/100_english_novels/corpus/Lee_Albany_1884.txt contains 11628 unique words ../data/100_english_novels/corpus/Ford_Soldier_1915.txt contains 10626 unique words ../data/100_english_novels/corpus/Ward_Ashe_1905.txt contains 21292 unique words ../data/100_english_novels/corpus/Morris_Water_1897.txt contains 12079 unique words ../data/100_english_novels/corpus/Galsworthy_Saints_1919.txt contains 14582 unique words ../data/100_english_novels/corpus/Gissing_Unclassed_1884.txt contains 15769 unique words ../data/100_english_novels/corpus/Anon_Clara_1864.txt contains 24797 unique words ../data/100_english_novels/corpus/Hardy_Jude_1895.txt contains 19237 unique words ../data/100_english_novels/corpus/Dickens_Expectations_1861.txt contains 20536 unique words ../data/100_english_novels/corpus/Chesterton_Thursday_1908.txt contains 10385 unique words ../data/100_english_novels/corpus/Burnett_Lord_1886.txt contains 8131 unique words ../data/100_english_novels/corpus/Braddon_Phantom_1883.txt contains 22474 unique words ###Markdown __TASK 3: SAVE THE RESULT AS A SINGLE FILE WITH COLUMNS FILENAME, TOTAL_WORDS, UNIQUE_WORDS__ ###Code # For this task I am going to use the Pandas module to create a dataframe and then convert it into a CSV-file using the module CSV. import pandas as pd import csv # Creating an empty list that will be used later in the loop data = {'filename': [], 'height': [], 'width': []} # Creating an empty dataframe with Pandas that will be used later in the loop dataframe = pd.DataFrame(info, columns = ['filename', 'total_words', 'unique_words']) # Creating a loop that loops through each txt-file and appends the dataframe with the information (filename, total words, unique words) for filename in Path(data_path).glob("*.txt"): with open (filename, "r", encoding = "utf-8") as file: novel = file.read() split_novel = novel.split() unique_words = set(split_novel) data = {'filename': [filename], 'total_words': [len(split_novel)], 'unique_words': [len(unique_words)]} dataframe = dataframe.append(pd.DataFrame(data, columns = ['filename', 'total_words', 'unique_words'])) print(dataframe) # making sure that the dataframe looks right csv_file = dataframe.to_csv(r'../data/100_english_novels/novel_info.csv', index = False) # converting the dataframe to a csv-file # Now I have a single CSV-file called "novel_info.csv" that contains all the relevant columns and is located in the specified directory. ###Output filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 0 ../data/100_english_novels/corpus/Stevenson_Tr... 68448 10831 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 0 ../data/100_english_novels/corpus/Stevenson_Tr... 68448 10831 0 ../data/100_english_novels/corpus/Forster_Howa... 111057 17065 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 0 ../data/100_english_novels/corpus/Stevenson_Tr... 68448 10831 0 ../data/100_english_novels/corpus/Forster_Howa... 111057 17065 0 ../data/100_english_novels/corpus/Wcollins_Bas... 118088 14586 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 0 ../data/100_english_novels/corpus/Stevenson_Tr... 68448 10831 0 ../data/100_english_novels/corpus/Forster_Howa... 111057 17065 0 ../data/100_english_novels/corpus/Wcollins_Bas... 118088 14586 0 ../data/100_english_novels/corpus/Schreiner_Un... 90672 11744 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 0 ../data/100_english_novels/corpus/Stevenson_Tr... 68448 10831 0 ../data/100_english_novels/corpus/Forster_Howa... 111057 17065 0 ../data/100_english_novels/corpus/Wcollins_Bas... 118088 14586 0 ../data/100_english_novels/corpus/Schreiner_Un... 90672 11744 0 ../data/100_english_novels/corpus/Galsworthy_M... 110455 16713 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 0 ../data/100_english_novels/corpus/Stevenson_Tr... 68448 10831 0 ../data/100_english_novels/corpus/Forster_Howa... 111057 17065 0 ../data/100_english_novels/corpus/Wcollins_Bas... 118088 14586 0 ../data/100_english_novels/corpus/Schreiner_Un... 90672 11744 0 ../data/100_english_novels/corpus/Galsworthy_M... 110455 16713 0 ../data/100_english_novels/corpus/Corelli_Inno... 121950 19627 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 0 ../data/100_english_novels/corpus/Stevenson_Tr... 68448 10831 0 ../data/100_english_novels/corpus/Forster_Howa... 111057 17065 0 ../data/100_english_novels/corpus/Wcollins_Bas... 118088 14586 0 ../data/100_english_novels/corpus/Schreiner_Un... 90672 11744 0 ../data/100_english_novels/corpus/Galsworthy_M... 110455 16713 0 ../data/100_english_novels/corpus/Corelli_Inno... 121950 19627 0 ../data/100_english_novels/corpus/Kipling_Ligh... 72479 12493 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 0 ../data/100_english_novels/corpus/Stevenson_Tr... 68448 10831 0 ../data/100_english_novels/corpus/Forster_Howa... 111057 17065 0 ../data/100_english_novels/corpus/Wcollins_Bas... 118088 14586 0 ../data/100_english_novels/corpus/Schreiner_Un... 90672 11744 0 ../data/100_english_novels/corpus/Galsworthy_M... 110455 16713 0 ../data/100_english_novels/corpus/Corelli_Inno... 121950 19627 0 ../data/100_english_novels/corpus/Kipling_Ligh... 72479 12493 0 ../data/100_english_novels/corpus/Conrad_Nostr... 172276 21884 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 0 ../data/100_english_novels/corpus/Stevenson_Tr... 68448 10831 0 ../data/100_english_novels/corpus/Forster_Howa... 111057 17065 0 ../data/100_english_novels/corpus/Wcollins_Bas... 118088 14586 0 ../data/100_english_novels/corpus/Schreiner_Un... 90672 11744 0 ../data/100_english_novels/corpus/Galsworthy_M... 110455 16713 0 ../data/100_english_novels/corpus/Corelli_Inno... 121950 19627 0 ../data/100_english_novels/corpus/Kipling_Ligh... 72479 12493 0 ../data/100_english_novels/corpus/Conrad_Nostr... 172276 21884 0 ../data/100_english_novels/corpus/Stevenson_Ar... 80291 13168 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 0 ../data/100_english_novels/corpus/Stevenson_Tr... 68448 10831 0 ../data/100_english_novels/corpus/Forster_Howa... 111057 17065 0 ../data/100_english_novels/corpus/Wcollins_Bas... 118088 14586 0 ../data/100_english_novels/corpus/Schreiner_Un... 90672 11744 0 ../data/100_english_novels/corpus/Galsworthy_M... 110455 16713 0 ../data/100_english_novels/corpus/Corelli_Inno... 121950 19627 0 ../data/100_english_novels/corpus/Kipling_Ligh... 72479 12493 0 ../data/100_english_novels/corpus/Conrad_Nostr... 172276 21884 0 ../data/100_english_novels/corpus/Stevenson_Ar... 80291 13168 0 ../data/100_english_novels/corpus/Hardy_Tess_1... 151197 20955 filename total_words unique_words 0 ../data/100_english_novels/corpus/Cbronte_Vill... 196557 29084 0 ../data/100_english_novels/corpus/Forster_Ange... 50477 9464 0 ../data/100_english_novels/corpus/Woolf_Lighth... 70185 11157 0 ../data/100_english_novels/corpus/Meredith_Ric... 214985 28892 0 ../data/100_english_novels/corpus/Stevenson_Tr... 68448 10831 0 ../data/100_english_novels/corpus/Forster_Howa... 111057 17065 0 ../data/100_english_novels/corpus/Wcollins_Bas... 118088 14586 0 ../data/100_english_novels/corpus/Schreiner_Un... 90672 11744 0 ../data/100_english_novels/corpus/Galsworthy_M... 110455 16713 0 ../data/100_english_novels/corpus/Corelli_Inno... 121950 19627 0 ../data/100_english_novels/corpus/Kipling_Ligh... 72479 12493 0 ../data/100_english_novels/corpus/Conrad_Nostr... 172276 21884 0 ../data/100_english_novels/corpus/Stevenson_Ar... 80291 13168 0 ../data/100_english_novels/corpus/Hardy_Tess_1... 151197 20955 0 ../data/100_english_novels/corpus/Thackeray_Es... 187049 21375
tf-keras/sm_tf_keras_example_updated/sagemaker-keras-text-classification-updated.ipynb
###Markdown Text Classification Using Keras & TensorFlow on Amazon SageMaker Download Data Download and unzip the dataset ###Code ! wget -q https://archive.ics.uci.edu/ml/machine-learning-databases/00359/NewsAggregatorDataset.zip && unzip -o NewsAggregatorDataset.zip -d data ###Output Archive: NewsAggregatorDataset.zip inflating: data/2pageSessions.csv creating: data/__MACOSX/ inflating: data/__MACOSX/._2pageSessions.csv inflating: data/newsCorpora.csv inflating: data/__MACOSX/._newsCorpora.csv inflating: data/readme.txt inflating: data/__MACOSX/._readme.txt ###Markdown Now lets also download and unzip the pre-trained glove embedding files ###Code ! wget -q --no-check-certificate https://nlp.stanford.edu/data/glove.6B.zip && unzip -o glove.6B.zip -d data !rm data/2pageSessions.csv data/glove.6B.200d.txt data/glove.6B.50d.txt data/glove.6B.300d.txt glove.6B.zip data/readme.txt NewsAggregatorDataset.zip && rm -rf data/__MACOSX/ !ls data ###Output glove.6B.100d.txt newsCorpora.csv ###Markdown Data Exploration ###Code import pandas as pd import tensorflow as tf import re import numpy as np import os from tensorflow.python.keras.preprocessing.text import Tokenizer from tensorflow.python.keras.preprocessing.sequence import pad_sequences from tensorflow.python.keras.utils import to_categorical column_names = ["TITLE", "URL", "PUBLISHER", "CATEGORY", "STORY", "HOSTNAME", "TIMESTAMP"] news_dataset = pd.read_csv('data/newsCorpora.csv', names=column_names, header=None, delimiter='\t') news_dataset.head() ###Output _____no_output_____ ###Markdown Here we first import the necessary libraries and tools such as TensorFlow, pandas and numpy. An open-source high performance data analysis library, pandas is an essential tool used in almost every Python-based data science experiment. NumPy is another Python library that provides data structures to hold multi-dimensional array data and provides many utility functions to transform that data. TensorFlow is a widely used deep learning framework that also includes the higher-level deep learning Python library called Keras. We will be using Keras to build and iterate our text classification model.Next we define the list of columns contained in this dataset (the format is usually described as part of the dataset as it is here). Finally, we use the ‘read_csv()’ method of the pandas library to read the dataset into memory and look at the first few lines using the ‘head()’ method.Remember, our goal is to accurately predict the category of any news article. So, ‘Category’ is our label or target column. For this example, we will only use the information contained in the ‘Title’ to predict the category. When should I build my own algorithm container?You may not need to create a container to bring your own code to Amazon SageMaker. When you are using a framework such as Apache MXNet or TensorFlow that has direct support in SageMaker, you can simply supply the Python code that implements your algorithm using the SDK entry points for that framework. This set of supported frameworks is regularly added to, so you should check the current list to determine whether your algorithm is written in one of these common machine learning environments.Even if there is direct SDK support for your environment or framework, you may find it more effective to build your own container. If the code that implements your algorithm is quite complex or you need special additions to the framework, building your own container may be the right choice.Some of the reasons to build an already supported framework container are:A specific version isn't supported.Configure and install your dependencies and environment.Use a different training/hosting solution than provided.This walkthrough shows that it is quite straightforward to build your own container. So you can still use SageMaker even if your use case is not covered by the deep learning containers that we've built for you. The DockerfileThe Dockerfile describes the image that we want to build. You can think of it as describing the complete operating system installation of the system that you want to run. A Docker container running is quite a bit lighter than a full operating system, however, because it takes advantage of Linux on the host machine for the basic operations.For the Python science stack, we start from an official TensorFlow docker image and run the normal tools to install TensorFlow Serving. Then we add the code that implements our specific algorithm to the container and set up the right environment for it to run under.Let's look at the Dockerfile for this example. ###Code !cat container/Dockerfile %%sh # The name of our algorithm algorithm_name=sagemaker-keras-text-classification cd container chmod +x sagemaker_keras_text_classification/train chmod +x sagemaker_keras_text_classification/serve account=$(aws sts get-caller-identity --query Account --output text) # Get the region defined in the current configuration (default to us-west-2 if none defined) region=$(aws configure get region) region=${region:-us-west-2} fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm_name}:latest" # If the repository doesn't exist in ECR, create it. aws ecr describe-repositories --repository-names "${algorithm_name}" > /dev/null 2>&1 if [ $? -ne 0 ] then aws ecr create-repository --repository-name "${algorithm_name}" > /dev/null fi # Get the login command from ECR and execute it directly $(aws ecr get-login --region ${region} --no-include-email) # Build the docker image locally with the image name and then push it to ECR # with the full name. docker build -t ${algorithm_name} . docker tag ${algorithm_name} ${fullname} docker push ${fullname} ###Output Login Succeeded Sending build context to Docker daemon 25.09kB Step 1/8 : FROM tensorflow/tensorflow:1.8.0-py3 ---> a83a3dd79ff9 Step 2/8 : RUN apt-get update && apt-get install -y --no-install-recommends nginx curl ---> Using cache ---> b2c6ee34bd63 Step 3/8 : RUN echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | tee /etc/apt/sources.list.d/tensorflow-serving.list ---> Using cache ---> a6abb67693c2 Step 4/8 : RUN curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | apt-key add - ---> Using cache ---> 191bced6e844 Step 5/8 : RUN apt-get update && apt-get install tensorflow-model-server ---> Using cache ---> 6a5c372c80ac Step 6/8 : ENV PATH="/opt/ml/code:${PATH}" ---> Using cache ---> fafb737091f1 Step 7/8 : COPY /sagemaker_keras_text_classification /opt/ml/code ---> Using cache ---> 322614cc2708 Step 8/8 : WORKDIR /opt/ml/code ---> Using cache ---> d65bd0ecc164 Successfully built d65bd0ecc164 Successfully tagged sagemaker-keras-text-classification:latest The push refers to repository [325928439752.dkr.ecr.us-east-1.amazonaws.com/sagemaker-keras-text-classification] ad70d2db6a48: Preparing 23799f216cf7: Preparing 2aed47ce3a8e: Preparing b8ae7b672121: Preparing 9f68233145ee: Preparing e0c4197104f9: Preparing 1fb2bc13bdda: Preparing 9136ffbbf4aa: Preparing b3a9262c451e: Preparing ce70cf3f2428: Preparing 2faed3426aa2: Preparing fee4cef4c353: Preparing dc657e1d2f27: Preparing 588d3e4e8828: Preparing bf3d982208f5: Preparing cd7b4cc1c2dd: Preparing 3a0404adc8bd: Preparing 82718dbf791d: Preparing c8aa3ff3c3d3: Preparing 2faed3426aa2: Waiting fee4cef4c353: Waiting dc657e1d2f27: Waiting 588d3e4e8828: Waiting bf3d982208f5: Waiting cd7b4cc1c2dd: Waiting 3a0404adc8bd: Waiting 82718dbf791d: Waiting c8aa3ff3c3d3: Waiting 1fb2bc13bdda: Waiting 9136ffbbf4aa: Waiting b3a9262c451e: Waiting ce70cf3f2428: Waiting e0c4197104f9: Waiting ad70d2db6a48: Layer already exists 23799f216cf7: Layer already exists 9f68233145ee: Layer already exists 2aed47ce3a8e: Layer already exists b8ae7b672121: Layer already exists e0c4197104f9: Layer already exists 1fb2bc13bdda: Layer already exists 9136ffbbf4aa: Layer already exists b3a9262c451e: Layer already exists ce70cf3f2428: Layer already exists fee4cef4c353: Layer already exists 2faed3426aa2: Layer already exists bf3d982208f5: Layer already exists dc657e1d2f27: Layer already exists 588d3e4e8828: Layer already exists cd7b4cc1c2dd: Layer already exists 82718dbf791d: Layer already exists 3a0404adc8bd: Layer already exists c8aa3ff3c3d3: Layer already exists latest: digest: sha256:a7a7e1aa7f110ffe8fcc653ddb50f908808ffd5e89cb2b9e8f838d04550f7e5b size: 4297 ###Markdown Once you have your container packaged, you can use it to train and serve models. Let's do that with the algorithm we made above. Set up the environmentHere we specify a bucket to use and the role that will be used for working with SageMaker. ###Code # S3 prefix prefix = 'sagemaker-keras-text-classification' # Define IAM role import boto3 import re import os import numpy as np import pandas as pd from sagemaker import get_execution_role role = get_execution_role() ###Output _____no_output_____ ###Markdown Create the sessionThe session remembers our connection parameters to SageMaker. We'll use it to perform all of our SageMaker operations. ###Code import sagemaker as sage from time import gmtime, strftime sess = sage.Session() ###Output _____no_output_____ ###Markdown Upload the data for trainingWhen training large models with huge amounts of data, you'll typically use big data tools, like Amazon Athena, AWS Glue, or Amazon EMR, to create your data in S3. We can use use the tools provided by the SageMaker Python SDK to upload the data to a default bucket. ###Code WORK_DIRECTORY = 'data' data_location = sess.upload_data(WORK_DIRECTORY, key_prefix=prefix) ###Output _____no_output_____ ###Markdown Create an estimator and fit the modelIn order to use SageMaker to fit our algorithm, we'll create an `Estimator` that defines how to use the container to to train. This includes the configuration we need to invoke SageMaker training:* The __container name__. This is constucted as in the shell commands above.* The __role__. As defined above.* The __instance count__ which is the number of machines to use for training.* The __instance type__ which is the type of machine to use for training.* The __output path__ determines where the model artifact will be written.* The __session__ is the SageMaker session object that we defined above.Then we use fit() on the estimator to train against the data that we uploaded above. ###Code account = sess.boto_session.client('sts').get_caller_identity()['Account'] region = sess.boto_session.region_name image = '{}.dkr.ecr.{}.amazonaws.com/sagemaker-keras-text-classification'.format(account, region) tree = sage.estimator.Estimator(image, role, 1, 'ml.c5.2xlarge', output_path="s3://{}/output".format(sess.default_bucket()), sagemaker_session=sess) tree.fit(data_location) ###Output 2019-10-09 17:51:04 Starting - Starting the training job... 2019-10-09 17:51:06 Starting - Launching requested ML instances.... ###Markdown Deploy the modelDeploying the model to SageMaker hosting just requires a `deploy` call on the fitted model. This call takes an instance count, instance type, and optionally serializer and deserializer functions. These are used when the resulting predictor is created on the endpoint. ###Code from sagemaker.predictor import json_serializer predictor = tree.deploy(1, 'ml.m5.xlarge', serializer=json_serializer) #request = { "input": "‘Deadpool 2’ Has More Swearing, Slicing and Dicing from Ryan Reynolds"} #print(predictor.predict(request).decode('utf-8')) ###Output _____no_output_____ ###Markdown Clean Up ###Code sess.delete_endpoint(predictor.endpoint) ###Output _____no_output_____
Classifiction/Logistic_Regression.ipynb
###Markdown Logistic Regression Importing the libraries ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd ###Output _____no_output_____ ###Markdown Importing the dataset ###Code dataset = pd.read_csv('Social_Network_Ads.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, -1].values ###Output _____no_output_____ ###Markdown Splitting the dataset into the Training set and Test set ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) print(X_train) print(y_train) print(X_test) print(y_test) ###Output _____no_output_____ ###Markdown Feature Scaling ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) print(X_train) print(X_test) ###Output _____no_output_____ ###Markdown Training the Logistic Regression model on the Training set ###Code from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state = 0) classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Predicting a new result ###Code print(classifier.predict(sc.transform([[30,87000]]))) ###Output [0] ###Markdown Predicting the Test set results ###Code y_pred = classifier.predict(X_test) print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1)) ###Output _____no_output_____ ###Markdown Making the Confusion Matrix ###Code from sklearn.metrics import accuracy_score, confusion_matrix cm = confusion_matrix(y_test, y_pred) print(cm) accuracy_score(y_test, y_pred) ###Output [[65 3] [ 8 24]] ###Markdown In this 65 is the number of correct predicted results for class 0 which means that we predicted that the person won't buy the SUV and he didn't buy it. The 8 is the number of persons who didn't buy the suv which is class 0 but we predicted that they will buy it. The 24 is the number of people who will buy the SUV and we correctly predicted it. The 3 is the wrongly predicted people who we predicted will not buy it but bought it. Visualising the Training set results ###Code from matplotlib.colors import ListedColormap X_set, y_set = sc.inverse_transform(X_train), y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25), np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25)) plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('Logistic Regression (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show() ###Output 'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points. 'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points. ###Markdown Visualising the Test set results ###Code from matplotlib.colors import ListedColormap X_set, y_set = sc.inverse_transform(X_test), y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25), np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25)) plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('Logistic Regression (Test set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show() ###Output 'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points. 'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.
colab/dataprep.ipynb
###Markdown DescriptionThis script takes a set of audio files and prepares them to be used as training data for MP3net. UsageThe script below assumes you store the program code on Google Drive and audio data on gs:// To use this notebook, check the cells below for capitalized tags which you will need to personalize. ###Code # check location of backend import subprocess import json proc=subprocess.Popen('curl ipinfo.io', shell=True, stdout=subprocess.PIPE, ) ip_data = json.loads(proc.communicate()[0]) server_country = ip_data['country'] print(f"Server location: {ip_data['city']} ({ip_data['region']}), {server_country}\n") project_id = 'YOUR_PROJECT_ID' !gcloud config set project {project_id} # connect to gs:// from google.colab import auth auth.authenticate_user() # Connect to Google Drive # The program code is assumed to be on Google Drive from google.colab import drive drive.mount('/content/gdrive') # Set environment variable so service accounts gets access to bucket (needed for gspath) # (for more info see: https://cloud.google.com/docs/authentication/getting-started) import os os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="/content/gdrive/JSON_WITH_SERVICE_ACCOUNT_PRIVATE_KEYS" ### ======================== RUN PARAMETERS ======================= ### ### ### # dict with bucket-region pairs # script will pick bucket in same region as backend to avoid expensive e-gress charges # when training on TPUs YOUR_BUCKET_REGION should be US since all Colab TPUs are the US region BUCKETS = {'gs://YOUR_BUCKET_NAME/': ['YOUR_BUCKET_REGION']} # Location and type of source files (on gs://...) REMOTE_INPUT_FILEPATH = 'FILEPATH_TO_INPUT_FILES' # don't preface with gs://YOUR_BUCKET_NAME INPUT_FILE_EXTENSION = 'mp4' INPUT_BATCH_SIZE = 42 # number of input files to be batched into one .tfrecord file (target 400MiB .tfrecord file) # Destination where .tfrecord files will be written (on gs://...) DATA_DIR = 'FILEPATH_OF_TFRECORD_FILES' # don't preface with gs://YOUR_BUCKET_NAME # Local directory on backend (probably needs a High-RAM runtime type) LOCAL_INPUT_FILES = 'local/' ### ### ### =============================================================== ### %tensorflow_version 2.x import tensorflow as tf print(f"TensorFlow v{tf.__version__}") import re # select target bucket, based on country of backend (avoid e-gress!!!) target_bucket = None for bucket, country_lst in BUCKETS.items(): if server_country in country_lst: target_bucket = bucket break if target_bucket is None: raise ValueError(f'No target-bucket found for {server_country}') print(f"Target-bucket: {target_bucket}") # add target-bucket to directories DATA_DIR = target_bucket + DATA_DIR REMOTE_INPUT_FILEPATH = target_bucket + REMOTE_INPUT_FILEPATH # install modules used by the code !pip install tensorboardx !pip install soundfile !pip install tensorflow_addons !pip install pytube # Make sure python finds the imports import sys sys.path.append('/content/gdrive/PATH_TO/audiocodec') sys.path.append('/content/gdrive/PATH_TO/mp4net') sys.path.append('/content/gdrive/PATH_TO/preprocessing') # local install of audiocodec (only needs to be executed once) !pip install -e /content/gdrive/PATH_TO/audiocodec # Copy input data -> local server # (only do this when data is not already on local server) !mkdir ./{LOCAL_INPUT_FILES} !gsutil -m cp {REMOTE_INPUT_FILEPATH}/* ./{LOCAL_INPUT_FILES} # ######### # # DATA PREP # # ######### # # import datetime from utils import gspath from utils import audio_utils from model import mp4net import dataprep in_filepath = LOCAL_INPUT_FILES input_file_extension = INPUT_FILE_EXTENSION out_filepath = DATA_DIR model = mp4net.MP4netFactory() temp_filepath = 'local_process/' !mkdir {temp_filepath} !rm {temp_filepath}*.* # group input files in batches file_pattern = gspath.join(in_filepath, f"*.{input_file_extension}") audio_file_paths = gspath.findall(file_pattern) audio_file_paths.sort() input_batch_size = INPUT_BATCH_SIZE input_files_batched = [audio_file_paths[i:i + input_batch_size] for i in range(0, len(audio_file_paths), input_batch_size)] # loop over batches for batch_no, batch in enumerate(input_files_batched): print() print(f'batch {batch_no}') tf_output_filename = gspath.join(out_filepath, f'yt-{batch_no:04d}' + f'_sr{model.sample_rate}_Nx{model.freq_n}x{model.channels_n}.tfrecord') if gspath.findall(tf_output_filename): # skip if output file already exists (maybe from earlier run that crashed) print(f' Output file {tf_output_filename} already exists...') else: # loop over all songs in batch temp_wavs = [] for song_no, song_filename in enumerate(batch): # convert and resample to WAV temp_wavfile = temp_filepath + f'yt-{batch_no:04d}-{song_no:02d}.wav' temp_wavs.append(temp_wavfile) print(f' resampling to {model.sample_rate}Hz: {song_filename} -> {temp_wavfile}') !ffmpeg -loglevel quiet -i {song_filename} -ar {model.sample_rate} {temp_wavfile} # loop over all songs in batch print(f" {datetime.datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')}: {tf_output_filename} <-- {temp_wavs}") # convert to tf-record dataprep.audio2tfrecord(temp_wavs, tf_output_filename, model) !rm {temp_filepath}*.* ###Output _____no_output_____
Examples/2-Content/2.11-Estimates/EX-2.11.01-Estimates-Summary.ipynb
###Markdown ---- Data Library for Python---- Content layer - Estimates - SummaryThis notebook demonstrates how to retrieve Estimates.I/B/E/S (Institutional Brokers' Estimate System) delivers a complete suite of Estimates content with a global view and is the largest contributor base in the industry. RDP I/B/E/S Estimates API provides information about consensus and aggregates data(26 generic measures, 23 KPI measures), company guidance data and advanced analytics. With over 40 years of collection experience and extensive quality controls that include thousands of automated error checks and stringent manual analysis, RDP I/B/E/S gives the clients the content they need for superior insight, research and investment decision making.The I/B/E/S database currently covers over 56,000 companies in 100 markets.More than 900 firms contribute data to I/B/E/S, from the largest global houses to regional and local brokers, with US data back to 1976 and international data back to 1987. Learn moreTo learn more about the Refinitiv Data Library for Python please join the Refinitiv Developer Community. By [registering](https://developers.refinitiv.com/iam/register) and [logging](https://developers.refinitiv.com/content/devportal/en_us/initCookie.html) into the Refinitiv Developer Community portal you will have free access to a number of learning materials like [Quick Start guides](https://developers.refinitiv.com/en/api-catalog/refinitiv-data-platform/refinitiv-data-library-for-python/quick-start), [Tutorials](https://developers.refinitiv.com/en/api-catalog/refinitiv-data-platform/refinitiv-data-library-for-python/learning), [Documentation](https://developers.refinitiv.com/en/api-catalog/refinitiv-data-platform/refinitiv-data-library-for-python/docs) and much more. Getting Help and SupportIf you have any questions regarding using the API, please post them on the [Refinitiv Data Q&A Forum](https://community.developers.refinitiv.com/spaces/321/index.html). The Refinitiv Developer Community will be happy to help. ---- Set the configuration file locationFor a better ease of use, you have the option to set initialization parameters of the Refinitiv Data Library in the _refinitiv-data.config.json_ configuration file. This file must be located beside your notebook, in your user folder or in a folder defined by the _RD_LIB_CONFIG_PATH_ environment variable. The _RD_LIB_CONFIG_PATH_ environment variable is the option used by this series of examples. The following code sets this environment variable. ###Code import os os.environ["RD_LIB_CONFIG_PATH"] = "../../../Configuration" ###Output _____no_output_____ ###Markdown Some Imports to start with ###Code import refinitiv.data as rd from refinitiv.data.content import estimates from refinitiv.data.content.estimates import Package ###Output _____no_output_____ ###Markdown Open the data sessionThe open_session() function creates and open sessions based on the information contained in the refinitiv-data.config.json configuration file. Please edit this file to set the session type and other parameters required for the session you want to open. ###Code rd.open_session("platform.rdp") ###Output _____no_output_____ ###Markdown Retrieve Data Summary - Annual ###Code response = estimates.view_summary.annual.Definition("BNPP.PA", Package.BASIC).get_data() response.data.df ###Output _____no_output_____ ###Markdown Summary - Historical snapshots non-periodic measures ###Code response = estimates.view_summary.historical_snapshots_non_periodic_measures.Definition("BNPP.PA", Package.BASIC).get_data() response.data.df ###Output _____no_output_____ ###Markdown Summary - Historical snapshots periodic measures annual ###Code response = estimates.view_summary.historical_snapshots_periodic_measures_annual.Definition("BNPP.PA", Package.BASIC).get_data() response.data.df ###Output _____no_output_____ ###Markdown Summary - Historical snapshots periodic measures interim ###Code response = estimates.view_summary.historical_snapshots_periodic_measures_interim.Definition("BNPP.PA", Package.BASIC).get_data() response.data.df ###Output _____no_output_____ ###Markdown Summary - Historical snapshots recommendations ###Code response = estimates.view_summary.historical_snapshots_recommendations.Definition("BNPP.PA", Package.BASIC).get_data() response.data.df ###Output _____no_output_____ ###Markdown Summary - Interim ###Code response = estimates.view_summary.interim.Definition("BNPP.PA", Package.BASIC).get_data() response.data.df ###Output _____no_output_____ ###Markdown Summary - Non-periodic measures ###Code response = estimates.view_summary.non_periodic_measures.Definition("BNPP.PA", Package.BASIC).get_data() response.data.df ###Output _____no_output_____ ###Markdown Summary - Recommendations ###Code response = estimates.view_summary.recommendations.Definition("BNPP.PA", Package.BASIC).get_data() response.data.df ###Output _____no_output_____ ###Markdown Close the session ###Code rd.close_session() ###Output _____no_output_____
code/processing/2021-02-15_21-59-19/_run_jnb/2021-02-15_21-59-19_Or179_Or177_overnight-output (3).ipynb
###Markdown Get each bird's recording, and their microphone channels ###Code # This needs to be less repetitive if 'Or177' in data_path: # Whole recording from the hard drive recording = se.BinDatRecordingExtractor(OE_data_path,30000,40, dtype='int16') # Note I am adding relevant ADC channels # First bird Or179_recording = se.SubRecordingExtractor( recording, channel_ids=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,15, 32]) # Second bird Or177_recording = se.SubRecordingExtractor( recording, channel_ids=[16, 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31, 33]) # Bandpass fiter microphone recoridngs mic_recording = st.preprocessing.bandpass_filter( se.SubRecordingExtractor(recording,channel_ids=[32,33]), freq_min=500, freq_max=14000 ) else: # Whole recording from the hard drive recording = se.BinDatRecordingExtractor(OE_data_path, 30000, 24, dtype='int16') # Note I am adding relevant ADC channels # First bird Or179_recording = se.SubRecordingExtractor( recording, channel_ids=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,15,16]) # Bandpass fiter microphone recoridngs mic_recording = st.preprocessing.bandpass_filter( se.SubRecordingExtractor(recording,channel_ids=[16]), freq_min=500, freq_max=1400 ) # Get wav files wav_names = [file_name for file_name in os.listdir(data_path) if file_name.endswith('.wav')] wav_paths = [os.path.join(data_path,wav_name) for wav_name in wav_names] # Get tranges for wav files in the actual recording # OE_data_path actually contains the path all the way to the .bin. We just need the parent directory # with the timestamp. # Split up the path OE_data_path_split= OE_data_path.split(os.sep) # Take only the first three. os.path is weird so we manually add the separator after the # drive name. OE_parent_path = os.path.join(OE_data_path_split[0] + os.sep, *OE_data_path_split[1:3]) # Get all time ranges given the custom offset. dateparts = os.path.normpath(data_path).split(os.sep)[-1].split('-') exp_date = datetime.datetime( year=int(dateparts[0]), month=int(dateparts[1]), day=int(dateparts[2][:2]), minute=int(dateparts[2][3:]), second=int(dateparts[3][:2]) ) dateparts = os.path.normpath(data_path).split(os.sep)[-1].split('-') exp_date = datetime.datetime( year=int(dateparts[0]), month=int(dateparts[1]), day=int(dateparts[2][:2]), minute=int(dateparts[2][3:]), second=int(dateparts[3][:2]) ) # We synchronized the computer on Feb 2 if exp_date < datetime.datetime(2021, 2, 21,11,0): # Use the default offset. tranges=np.array([ get_trange(OE_parent_path, path, duration=3) for path in wav_paths]) else: tranges=np.array([ get_trange(OE_parent_path, path, offset=datetime.timedelta(seconds=0), duration=3) for path in wav_paths]) wav_df = pd.DataFrame({'wav_paths':wav_paths, 'wav_names':wav_names, 'trange0':tranges[:, 0], 'trange1':tranges[:, 1]}) wav_df.head() # Set up widgets wav_selector = pnw.Select(options=[(i, name) for i, name in enumerate(wav_df.wav_names.values)], name="Select song file") window_radius_selector = pnw.Select(options=[0,1,2,3,4,5,6,7,8, 10,20,30,40,60], value=8, name="Select window radius") spect_chan_selector = pnw.Select(options=list(range(16)), name="Spectrogram channel") spect_freq_lo = pnw.Select(options=np.linspace(0,130,14).tolist(), value=20, name="Low frequency for spectrogram (Hz)") spect_freq_hi = pnw.Select(options=np.linspace(130,0,14).tolist(), value=40, name="Hi frequency for spectrogram (Hz)") log_nfft_selector = pnw.Select(options=np.linspace(10,16,7).tolist(), value=14, name="magnitude of nfft (starts at 256)") @pn.depends( wav_selector=wav_selector.param.value, window_radius=window_radius_selector.param.value, spect_chan=spect_chan_selector.param.value, spect_freq_lo=spect_freq_lo.param.value, spect_freq_hi=spect_freq_hi.param.value, log_nfft=log_nfft_selector.param.value ) def create_figure(wav_selector, window_radius, spect_chan, spect_freq_lo, spect_freq_hi, log_nfft): # Each column in each row to a tuple that we unpack wav_file_path, wav_file_name, tr0, tr1 = wav_df.loc[wav_selector[0],:] # Set up figure fig,axes = plt.subplots(4,1, figsize=(16,12)) # Get wav file numpy recording object wav_recording = get_wav_recording(wav_file_path) # Apply offset and apply window radius tr0 = tr0 - window_radius # Add duration of wav file tr1 = tr1 + window_radius +wav_recording.get_num_frames()/wav_recording.get_sampling_frequency() '''Plot sound spectrogram (Hi fi mic)''' sw.plot_spectrogram(wav_recording, channel=0, freqrange=[300,14000],ax=axes[0],cmap='magma') axes[0].set_title('Hi fi mic spectrogram') '''Plot sound spectrogram (Lo fi mic)''' if 'Or179' in wav_file_name: LFP_recording = Or179_recording elif 'Or177' in wav_file_name: LFP_recording = Or177_recording mic_channel = LFP_recording.get_channel_ids()[-1] sw.plot_spectrogram( mic_recording, mic_channel, trange=[tr0, tr1], freqrange=[600,14000], ax=axes[1],cmap='magma' ) axes[1].set_title('Lo fi mic spectrogram') '''Plot LFP timeseries (smoothed)''' chan_ids = np.array([LFP_recording.get_channel_ids()]).flatten() sw.plot_timeseries( st.preprocessing.bandpass_filter( se.SubRecordingExtractor(LFP_recording), freq_min=25, freq_max=45 ), channel_ids=[chan_ids[spect_chan]], trange=[tr0, tr1], ax=axes[2] ) axes[2].set_title('Raw LFP') # Clean lines for line in plt.gca().lines: line.set_linewidth(0.1) '''Plot LFP spectrogram''' sw.plot_spectrogram( LFP_recording, channel=chan_ids[spect_chan], freqrange=[spect_freq_lo,spect_freq_hi], trange=[tr0, tr1], ax=axes[3], nfft=int(2**log_nfft) ) axes[3].set_title('LFP') for i, ax in enumerate(axes): ax.set_yticks([ax.get_ylim()[1]]) ax.set_yticklabels([ax.get_ylim()[1]]) ax.set_xlabel('') ax.xaxis.set_major_formatter(FormatStrFormatter('%.2f')) # Show 30 Hz axes[3].set_yticks([30, axes[3].get_ylim()[1]]) axes[3].set_yticklabels([30, axes[3].get_ylim()[1]]) return fig dash = pn.Column( pn.Row(wav_selector, window_radius_selector,spect_chan_selector), pn.Row(spect_freq_lo,spect_freq_hi,log_nfft_selector), create_figure ); ###Output _____no_output_____ ###Markdown Deep dive into a single channel ###Code dash ###Output _____no_output_____ ###Markdown Looking at all channels at once ###Code # Make chanmap chanmap=np.array([[3, 7, 11, 15],[2, 4, 10, 14],[4, 8, 12, 16],[1, 5, 9, 13]]) # Set up widgets wav_selector = pnw.Select(options=[(i, name) for i, name in enumerate(wav_df.wav_names.values)], name="Select song file") window_radius_selector = pnw.Select(options=[10,20,30,40,60], name="Select window radius") spect_freq_lo = pnw.Select(options=np.linspace(0,130,14).tolist(), name="Low frequency for spectrogram (Hz)") spect_freq_hi = pnw.Select(options=np.linspace(130,0,14).tolist(), name="Hi frequency for spectrogram (Hz)") log_nfft_selector = pnw.Select(options=np.linspace(10,16,7).tolist(),value=14, name="magnitude of nfft (starts at 256)") def housekeeping(wav_selector, window_radius): # Each column in each row to a tuple that we unpack wav_file_path, wav_file_name, tr0, tr1 = wav_df.loc[wav_selector[0],:] # Get wav file numpy recording object wav_recording = get_wav_recording(wav_file_path) # Apply offset and apply window radius offset = 0 tr0 = tr0+ offset-window_radius # Add duration of wav file tr1 = tr1+ offset+window_radius+wav_recording.get_num_frames()/wav_recording.get_sampling_frequency() return wav_recording, wav_file_name, tr0, tr1 @pn.depends( wav_selector=wav_selector.param.value, window_radius=window_radius_selector.param.value) def create_sound_figure(wav_selector, window_radius): # Housekeeping wav_recording, wav_file_name, tr0, tr1 = housekeeping(wav_selector, window_radius) # Set up figure for sound fig,axes = plt.subplots(1,2, figsize=(16,2)) '''Plot sound spectrogram (Hi fi mic)''' sw.plot_spectrogram(wav_recording, channel=0, freqrange=[300,14000], ax=axes[0],cmap='magma') axes[0].set_title('Hi fi mic spectrogram') '''Plot sound spectrogram (Lo fi mic)''' if 'Or179' in wav_file_name: LFP_recording = Or179_recording elif 'Or177' in wav_file_name: LFP_recording = Or177_recording mic_channel = LFP_recording.get_channel_ids()[-1] sw.plot_spectrogram( mic_recording, mic_channel, trange=[tr0, tr1], freqrange=[600,4000], ax=axes[1],cmap='magma' ) axes[1].set_title('Lo fi mic spectrogram') for ax in axes: ax.axis('off') return fig @pn.depends( wav_selector=wav_selector.param.value, window_radius=window_radius_selector.param.value, spect_freq_lo=spect_freq_lo.param.value, spect_freq_hi=spect_freq_hi.param.value, log_nfft=log_nfft_selector.param.value ) def create_LFP_figure(wav_selector, window_radius, spect_freq_lo, spect_freq_hi, log_nfft): # Housekeeping wav_recording, wav_file_name, tr0, tr1 = housekeeping(wav_selector, window_radius) fig,axes=plt.subplots(4,4,figsize=(16,8)) '''Plot LFP''' for i in range(axes.shape[0]): for j in range(axes.shape[1]): ax = axes[i][j] sw.plot_spectrogram(recording, chanmap[i][j], trange=[tr0, tr1], freqrange=[spect_freq_lo,spect_freq_hi], nfft=int(2**log_nfft), ax=ax,cmap='magma') ax.axis('off') # Set channel as title ax.set_title(chanmap[i][j]) # Clean up for i in range(axes.shape[0]): for j in range(axes.shape[1]): ax=axes[i][j] ax.set_yticks([ax.get_ylim()[1]]) ax.set_yticklabels([ax.get_ylim()[1]]) ax.set_xlabel('') # Show 30 Hz ax.set_yticks([30, ax.get_ylim()[1]]) ax.set_yticklabels([30, ax.get_ylim()[1]]) return fig dash = pn.Column( pn.Row(wav_selector,window_radius_selector), pn.Row(spect_freq_lo,spect_freq_hi,log_nfft_selector), create_sound_figure, create_LFP_figure ); dash ###Output _____no_output_____ ###Markdown Sleep data analysis ###Code csvs = [os.path.normpath(os.path.join(data_path,file)) for file in os.listdir(data_path) if file.endswith('.csv')] csvs csv = csvs[0] df = pd.read_csv(csv) del df['Unnamed: 0'] df.head() csv_name = csv.split(os.sep)[-1] rec=None if 'Or179' in csv_name: rec = st.preprocessing.resample(Or179_recording, 500) elif 'Or177' in csv_name: rec = st.preprocessing.resample(Or177_recording, 500) # Get second to last element in split channel = int(csv_name.split('_')[-2]) window_slider = pn.widgets.DiscreteSlider( name='window size', options=[*range(1,1000)], value=1 ) window_slider_raw = pn.widgets.DiscreteSlider( name='window size (raw timeseries)', options=[*range(1,1000)], value=1 ) freq_slider_1 = pn.widgets.DiscreteSlider( name='f (Hz)', options=[*range(1,200)], value=30 ) freq_slider_2 = pn.widgets.DiscreteSlider( name='f (Hz)', options=[*range(1,200)], value=10 ) freq_slider_3 = pn.widgets.DiscreteSlider( name='f (Hz)', options=[*range(1,200)], value=4 ) range_slider = pn.widgets.RangeSlider( start=0, end=df.t.max(), step=10, value=(0, 500), name="Time range", value_throttled=(0,500) ) @pn.depends(window=window_slider.param.value, freq_1=freq_slider_1.param.value, freq_2=freq_slider_2.param.value, freq_3=freq_slider_3.param.value, rang=range_slider.param.value_throttled) def plot_ts(window, freq_1, freq_2, freq_3, rang): subdf = df.loc[ ((df['f']==freq_1)|(df['f']==freq_2)|(df['f']==freq_3)) & ((df['t'] > rang[0]) & (df['t'] < rang[1])),:] return hv.operation.timeseries.rolling( hv.Curve( data = subdf, kdims=["t", "f"], vdims="logpower" ).groupby("f").overlay().opts(width=1200, height=300), rolling_window=window ) @pn.depends(window=window_slider_raw.param.value, rang=range_slider.param.value_throttled) def plot_raw_ts(window, rang): sr = rec.get_sampling_frequency() return hv.operation.datashader.datashade( hv.operation.timeseries.rolling( hv.Curve( rec.get_traces(channel_ids=[channel], start_frame=sr*rang[0], end_frame=sr*rang[1]).flatten() ), rolling_window=window ), aggregator="any" ).opts(width=1200, height=300) pn.Column( window_slider,window_slider_raw,freq_slider_1, freq_slider_2, freq_slider_3,range_slider, plot_ts, plot_raw_ts ) ###Output _____no_output_____
2020_week_3/pendulum_animation_notebook_v1-Copy1.ipynb
###Markdown Basic pendulum animations: using %matplotlib notebookUse Pendulum class to generate basic pendulum animations. Uses the `%matplotlib notebook` backend for Jupyter notebooks to display the animation as real-time updates with `animation.FuncAnimation` (as opposed to making a movie, see the pendulum_animation_notebook_inline versions for an alternative).* v1: Created 25-Jan-2019. Last revised 27-Jan-2019 by Dick Furnstahl ([email protected]). ###Code #%matplotlib inline %matplotlib notebook import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt from matplotlib import animation, rc from IPython.display import HTML import numpy as np import matplotlib.pyplot as plt from scipy.integrate import solve_ivp plt.rcParams['figure.dpi'] = 100. # this is the default ###Output _____no_output_____ ###Markdown Pendulum class and utility functions ###Code class Pendulum(): """ Pendulum class implements the parameters and differential equation for a pendulum using the notation from Taylor. The class will now have the solve_ode method removed...everything else will remain the same. Parameters ---------- omega_0 : float natural frequency of the pendulum (\sqrt{g/l} where l is the pendulum length) beta : float coefficient of friction gamma_ext : float amplitude of external force is gamma * omega_0**2 omega_ext : float frequency of external force phi_ext : float phase angle for external force Methods ------- dy_dt(y, t) Returns the right side of the differential equation in vector y, given time t and the corresponding value of y. driving_force(t) Returns the value of the external driving force at time t. """ def __init__(self, omega_0=1., beta=0.2, gamma_ext=0.2, omega_ext=0.689, phi_ext=0. ): self.omega_0 = omega_0 self.beta = beta self.gamma_ext = gamma_ext self.omega_ext = omega_ext self.phi_ext = phi_ext def dy_dt(self, y, t): """ This function returns the right-hand side of the diffeq: [dphi/dt d^2phi/dt^2] Parameters ---------- y : float A 2-component vector with y[0] = phi(t) and y[1] = dphi/dt t : float time Returns ------- """ F_ext = self.driving_force(t) return [y[1], -self.omega_0**2 * np.sin(y[0]) - 2.*self.beta * y[1] \ + F_ext] def driving_force(self, t): """ This function returns the value of the driving force at time t. """ return self.gamma_ext * self.omega_0**2 \ * np.cos(self.omega_ext*t + self.phi_ext) v_0 = np.array([10.0]) abserr = 1.e-8 relerr = 1.e-8 t_start = 0. t_end = 10. t_pts = np.linspace(t_start, t_end, 20) solution = solve_ivp(dy_dt, (t_start, t_end), v_0, t_eval=t_pts, rtol=relerr, atol=abserr) def plot_y_vs_x(x, y, axis_labels=None, label=None, title=None, color=None, linestyle=None, semilogy=False, loglog=False, ax=None): """ Generic plotting function: return a figure axis with a plot of y vs. x, with line color and style, title, axis labels, and line label """ if ax is None: # if the axis object doesn't exist, make one ax = plt.gca() if (semilogy): line, = ax.semilogy(x, y, label=label, color=color, linestyle=linestyle) elif (loglog): line, = ax.loglog(x, y, label=label, color=color, linestyle=linestyle) else: line, = ax.plot(x, y, label=label, color=color, linestyle=linestyle) if label is not None: # if a label if passed, show the legend ax.legend() if title is not None: # set a title if one if passed ax.set_title(title) if axis_labels is not None: # set x-axis and y-axis labels if passed ax.set_xlabel(axis_labels[0]) ax.set_ylabel(axis_labels[1]) return ax, line def start_stop_indices(t_pts, plot_start, plot_stop): """Given an array (e.g., of times) and desired starting and stop values, return the array indices that are closest to those values. """ start_index = (np.fabs(t_pts-plot_start)).argmin() # index in t_pts array stop_index = (np.fabs(t_pts-plot_stop)).argmin() # index in t_pts array return start_index, stop_index ###Output _____no_output_____ ###Markdown Plots to animate ###Code # Labels for individual plot axes phi_vs_time_labels = (r'$t$', r'$\phi(t)$') phi_dot_vs_time_labels = (r'$t$', r'$d\phi/dt(t)$') state_space_labels = (r'$\phi$', r'$d\phi/dt$') # Common plotting time (generate the full time then use slices) t_start = 0. t_end = 100. delta_t = 0.01 t_pts = np.arange(t_start, t_end+delta_t, delta_t) # Common pendulum parameters gamma_ext = 1.077 omega_ext = 2.*np.pi phi_ext = 0. omega_0 = 1.5*omega_ext beta = omega_0/4. # Instantiate a pendulum p1 = Pendulum(omega_0=omega_0, beta=beta, gamma_ext=gamma_ext, omega_ext=omega_ext, phi_ext=phi_ext) # calculate the driving force for t_pts driving = p1.driving_force(t_pts) ###Output _____no_output_____ ###Markdown Demo animation ###Code # initial conditions specified phi_0 = 0.0 # -np.pi / 2. phi_dot_0 = 0.0 phi_1, phi_dot_1 = p1.solve_ode(phi_0, phi_dot_0) # Change the common font size font_size = 10 plt.rcParams.update({'font.size': font_size}) # start the plot! overall_title = 'Parameters: ' + \ rf' $\omega = {omega_ext:.2f},$' + \ rf' $\gamma = {gamma_ext:.3f},$' + \ rf' $\omega_0 = {omega_0:.2f},$' + \ rf' $\beta = {beta:.2f},$' + \ rf' $\phi_0 = {phi_0:.2f},$' + \ rf' $\dot\phi_0 = {phi_dot_0:.2f}$' + \ '\n' # \n means a new line (adds some space here) fig = plt.figure(figsize=(10,3.3), num='Pendulum Plots') fig.suptitle(overall_title, va='top') # first plot: plot from t=0 to t=10 ax_a = fig.add_subplot(1,3,1) start, stop = start_stop_indices(t_pts, 0., 10.) plot_y_vs_x(t_pts[start : stop], phi_1[start : stop], axis_labels=phi_vs_time_labels, color='blue', label=None, title='Figure 12.2', ax=ax_a) # second plot: state space plot from t=0 to t=10 ax_b = fig.add_subplot(1,3,2) start, stop = start_stop_indices(t_pts, 0., 10.) plot_y_vs_x(phi_1[start : stop], phi_dot_1[start : stop], axis_labels=state_space_labels, color='blue', label=None, title=rf'$0 \leq t \leq 10$', ax=ax_b) # third plot: state space plot from t=5 to t=12 ax_c = fig.add_subplot(1,3,3) start, stop = start_stop_indices(t_pts, 5., 12.) plot_y_vs_x(phi_1[start : stop], phi_dot_1[start : stop], axis_labels=state_space_labels, color='blue', label=None, title=rf'$5 \leq t \leq 12$', ax=ax_c) fig.tight_layout() fig.subplots_adjust(top=0.8) fig.savefig('Figure_Pendulum_plots.png', bbox_inches='tight') # always bbox_inches='tight' def animate_pendulum(i, t_pts, phi_1, phi_dot_1): pt_1.set_data(t_pts[i], phi_1[i]) line_2.set_data([phi_1[i], phi_1[i]], [0.,length]) pt_2.set_data(phi_1[i], length) phi_string = rf'$\phi = {phi_1[i]:.1f}$' phi_text.set_text(phi_string) pt_3.set_data(phi_1[i], phi_dot_1[i]) return pt_1, pt_2, phi_text, pt_3 #%%capture start, stop = start_stop_indices(t_pts, 10., 30.) fig_new = plt.figure(figsize=(10, 3.3), num='Pendulum animation') ax_1 = fig_new.add_subplot(1,3,1) line_1, = ax_1.plot(t_pts[start : stop], phi_1[start : stop], color='blue') pt_1, = ax_1.plot(t_pts[start], phi_1[start], 'o', color='red') ax_1.set_xlabel(r'$t$') ax_1.set_ylabel(r'$\phi(t)$') ax_2 = fig_new.add_subplot(1,3,2, projection='polar') ax_2.set_aspect(1) # aspect ratio 1 subplot ax_2.set_rorigin(0.) # origin in the middle ax_2.set_theta_zero_location('S') # phi=0 at the bottom ax_2.set_ylim(-1.,1.) # r goes from 0 to 1 ax_2.grid(False) # no longitude/lattitude lines ax_2.set_xticklabels([]) # turn off angle labels ax_2.set_yticklabels([]) # turn off radial labels ax_2.spines['polar'].set_visible(False) # no circular border length = 0.8 ax_2.plot(0, 0, color='black', marker='o', markersize=5) line_2, = ax_2.plot([phi_1[start], phi_1[start]], [0.,length], color='blue', lw=3) pt_2, = ax_2.plot(phi_1[start], length, marker='o', markersize=15, color='red') phi_string = rf'$\phi = {phi_1[start]:.1f}$' phi_text = ax_2.text(np.pi, 1., phi_string, horizontalalignment='center') ax_3 = fig_new.add_subplot(1,3,3) line_3, = ax_3.plot(phi_1[start : stop], phi_dot_1[start : stop], color='blue') pt_3, = ax_3.plot(phi_1[start], phi_dot_1[start], 'o', color='red') ax_3.set_xlabel(r'$\phi$') ax_3.set_ylabel(r'$\dot\phi$') fig_new.tight_layout() #plt.rcParams["animation.embed_limit"] = 50.0 # max size of animation in MB skip = 2 # skip between points in t_pts array interval = 25 # time between frames in milliseconds anim = animation.FuncAnimation(fig_new, animate_pendulum, fargs=(t_pts[start:stop:skip], phi_1[start:stop:skip], phi_dot_1[start:stop:skip]), init_func=None, frames=len(t_pts[start:stop:skip]), interval=interval, blit=True, repeat=False, save_count=0) #HTML(anim.to_jshtml()) fig_new.show() ###Output _____no_output_____
sklearn/CV_API.ipynb
###Markdown Scikit Learn API Experimentation StratifiedKFold, KFold, shuffle What does StratifiedKFold do that's different from KFold? What does shuffle=True do that's different than shuffle=False? Cross Validation ResourcesGood resources for understanding cross validation and overfiting in Python:* [Train/Test Split and Cross Validation](https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6)* [Learning Curves](https://www.dataquest.io/blog/learning-curves-machine-learning/)Good resources for understanding cross validation and overfitting in general:* chapter 5.1 of [ISL](http://www-bcf.usc.edu/~gareth/ISL/)* The first 3 videos for Chapter 5 [ISL Videos](http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/) ###Code # Load Titanic Data %cd -q ../projects/titanic %run LoadTitanicData.py %cd -q - # X: features # y: target variable print('X Shape: ', X.shape) print('y Shape: ', y.shape) print('X columns:\n', X.columns.values) print('y name:',y.name) ###Output X Shape: (891, 11) y Shape: (891,) X columns: ['PassengerId' 'Pclass' 'Name' 'Sex' 'Age' 'SibSp' 'Parch' 'Ticket' 'Fare' 'Cabin' 'Embarked'] y name: Survived ###Markdown ExperiementEach train/test split from crossvalidation.split() generates two numpy array of indexes. The first array picks out the records in the training set and the second array picks out the data in the test set. ###Code from sklearn.model_selection import StratifiedKFold, KFold k_folds = 10 random_seed = 5 crossvalidation = StratifiedKFold(n_splits=k_folds, shuffle=False) # get train and test sets for crossvaldiation train_test_sets = [(train_idx, test_idx) for train_idx, test_idx in crossvalidation.split(X,y)] # in Python, looking at data types helps understanding print(f'List Len: {len(train_test_sets)}') print(f'1st Element Type: {type(train_test_sets[0])}') print(f'1st Element Len: {len(train_test_sets[0])}') print(f'1st Element 1st Tuple Type: {type(train_test_sets[0][0])}') print(f'1st Element 1st Tuple Len: {len(train_test_sets[0][0])}') print(f'1st Element 2nd Tuple Type: {type(train_test_sets[0][1])}') print(f'1st Element 2nd Tuple Len: {len(train_test_sets[0][1])}') print(f'Data Length: {len(X)}') ###Output List Len: 10 1st Element Type: <class 'tuple'> 1st Element Len: 2 1st Element 1st Tuple Type: <class 'numpy.ndarray'> 1st Element 1st Tuple Len: 801 1st Element 2nd Tuple Type: <class 'numpy.ndarray'> 1st Element 2nd Tuple Len: 90 Data Length: 891 ###Markdown Describing the above in words:* The train_test_sets list is of length 10 (10 CV folds).* Each element in the list is a tuple which consists of 2 numpy arrays.* The first array in the tuple are the indexes used to created the training data. It is of length 801.* The second array in the tuple are the indexes used to created the test data. It is of length 90.* The total length of all data is 891 records. ###Code # Experiement: KFold with shuffle=False crossvalidation = KFold(n_splits=k_folds, shuffle=False) train_test_sets = [(train_idx, test_idx) for train_idx, test_idx in crossvalidation.split(X,y)] # Check: for contiguous blocks of records in the test set # if the records are contiguous, each index differs by 1 for i in range(10): print((np.diff(train_test_sets[i][1]) == 1).all(), end=' ') # print one fold of test set indexes train_test_sets[0][1] ###Output _____no_output_____ ###Markdown So KFold with shuffle=False means we are using test sets that represent blocks of contiguous records.A contiguous block of records for the test set means that the training set is as contiguous as possible. ###Code # Experiement: KFold with shuffle=True crossvalidation = KFold(n_splits=k_folds, shuffle=True, random_state=random_seed) train_test_sets = [(train_idx, test_idx) for train_idx, test_idx in crossvalidation.split(X,y)] # Check: for contiguous blocks of records in the test set # if the records are contiguous, each index differs by 1 for i in range(10): print((np.diff(train_test_sets[i][1]) == 1).all(), end=' ') # print one fold of test set indexes train_test_sets[0][1] ###Output _____no_output_____ ###Markdown So shuffle=True caused non-consecutive indexes to be used for determining the test datasets.This implies that non-consecutive indexes are also used for the train datasets.In other words, we are no longer using blocks of records from the original dataset for our train and test sets. ###Code # Experiement: KFold with shuffle=True crossvalidation = KFold(n_splits=k_folds, shuffle=True, random_state=random_seed) train_test_sets = [(train_idx, test_idx) for train_idx, test_idx in crossvalidation.split(X,y)] # Check: for frequency of class labels # Note: y only has values of 0 or 1, so y.mean() is the frequency of 1 values print('y: ', np.round(y.mean(), 2)) # print frequency of survival in the 10 train and 10 test sets for i in range(10): for j in range(2): print(np.round(y[train_test_sets[i][j]].mean(), 2), end=' ') ###Output y: 0.38 0.38 0.4 0.39 0.36 0.39 0.37 0.39 0.33 0.38 0.45 0.38 0.39 0.38 0.39 0.38 0.4 0.39 0.36 0.38 0.38 ###Markdown So KFold did *not* keep the percentage of survivors the same in each dataset. Values as low as 33% and as high as 45% are seen. ###Code # Experiement: StratifiedKFold with shuffle=True crossvalidation = StratifiedKFold(n_splits=k_folds, shuffle=True, random_state=random_seed) train_test_sets = [(train_idx, test_idx) for train_idx, test_idx in crossvalidation.split(X,y)] # Check: for frequency of class labels # Note: y only has values of 0 or 1, so y.mean() is the frequency of 1 values print('y: ', np.round(y.mean(), 2)) # print frequency of survival in the 10 train and 10 test sets for i in range(10): for j in range(2): print(np.round(y[train_test_sets[i][j]].mean(), 2), end=' ') ###Output y: 0.38 0.38 0.39 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.39 ###Markdown So StratifiedKFold caused about the same percentage of survivors to occur in each training and test dataset. Summary of StratifedKFold and KFoldFor classification, you want each train/test subset to have (about) the same frequency of class values as is represented in the entire target array, so you normally **choose StratifiedKFold instead of KFold**.The original dataset may have an inherent ordering. This ordering could bias your train/test splits. To avoid this, you normally choose **shuffle=True**. **NOTE** shuffle=True does **not** cause the test sets to overlap. It is not like SuffleSplit. ###Code # Show: test sets do not overlap when suffle=True crossvalidation = StratifiedKFold(n_splits=k_folds, shuffle=True, random_state=random_seed) train_test_sets = [(train_idx, test_idx) for train_idx, test_idx in crossvalidation.split(X,y)] # In this example, there are 10 disjoint test sets. # This is equivalent to saying that each check for intersection between # each pair of test sets, has a length of 0 # Intersection is commutative, so we only need to check half of the possible # pairs of test sets and we don't check a test set with itself for i in range(10): for j in range(i+1, 10): print(len(np.intersect1d(train_test_sets[i][1],train_test_sets[j][1])), end=' ') ###Output 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ###Markdown We see that the test sets are disjoint. shuffle=True in this context does not cause test set overlap. ###Code # Show: train set is disjoint from its respective test set crossvalidation = StratifiedKFold(n_splits=k_folds, shuffle=True, random_state=random_seed) train_test_sets = [(train_idx, test_idx) for train_idx, test_idx in crossvalidation.split(X,y)] for i in range(10): print(len(np.intersect1d(train_test_sets[i][0],train_test_sets[i][1])), end=' ') ###Output 0 0 0 0 0 0 0 0 0 0
module_5/ds_mod5_lecture4.ipynb
###Markdown ###Code import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.dummy import DummyClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.metrics import plot_confusion_matrix from sklearn.metrics import roc_auc_score import matplotlib.pyplot as plt dados = pd.read_excel('https://github.com/willianrocha/bootcamp-datascience-alura/blob/main/files/Kaggle_Sirio_Libanes_ICU_Prediction.xlsx?raw=true') dados.head() def preenche_tabela(dados): features_continuas_colunas = dados.iloc[:, 13:-2].columns features_continuas = dados.groupby("PATIENT_VISIT_IDENTIFIER", as_index=False)[features_continuas_colunas].fillna(method='bfill').fillna(method='ffill') features_categoricas = dados.iloc[:, :13] saida = dados.iloc[:, -2:] dados_finais = pd.concat([features_categoricas, features_continuas, saida], ignore_index=True,axis=1) dados_finais.columns = dados.columns return dados_finais def prepare_window(rows): if(np.any(rows["ICU"])): rows.loc[rows["WINDOW"]=="0-2", "ICU"] = 1 return rows.loc[rows["WINDOW"] == "0-2"] dados_limpos = preenche_tabela(dados) a_remover = dados_limpos.query("WINDOW=='0-2' and ICU==1")['PATIENT_VISIT_IDENTIFIER'].values dados_limpos = dados_limpos.query("PATIENT_VISIT_IDENTIFIER not in @a_remover") dados_limpos = dados_limpos.dropna() # dados_limpos.describe() dados_limpos = dados_limpos.groupby("PATIENT_VISIT_IDENTIFIER").apply(prepare_window) dados_limpos.AGE_PERCENTIL = dados_limpos.AGE_PERCENTIL.astype("category").cat.codes dados_limpos.head() np.random.seed(73246) x_columns = dados_limpos.columns y = dados_limpos["ICU"] x = dados_limpos[x_columns].drop(["ICU","WINDOW"], axis=1) x_train, x_test, y_train, y_test = train_test_split(x, y, stratify=y) modelo = DummyClassifier() modelo.fit(x_train, y_train) y_prediction = modelo.predict(x_test) accuracy_score(y_test, y_prediction) modelo = LogisticRegression(max_iter=10000) modelo.fit(x_train, y_train) y_prediction = modelo.predict(x_test) accuracy_score(y_test, y_prediction) modelo_arvore = DecisionTreeClassifier() modelo_arvore.fit(x_train, y_train) predicao_arvore = modelo_arvore.predict(x_test) accuracy_score(y_test, predicao_arvore) prob_arvore = modelo_arvore.predict_proba(x_test) auc = roc_auc_score(y_test, prob_arvore[:,1]) print(classification_report(y_test, predicao_arvore)) auc def roda_n_modelo(modelo, dados, n): # np.random.seed(73246) x_columns = dados.columns y = dados['ICU'] x = dados[x_columns].drop(['ICU', 'WINDOW'], axis=1) auc_lista = [] for _ in range(n): x_train, x_test, y_train, y_test = train_test_split(x, y, stratify=y) modelo.fit(x_train, y_train) # predicao = modelo.predict(x_test) prob_predict = modelo.predict_proba(x_test) auc = roc_auc_score(y_test, prob_predict[:,1]) auc_lista.append(auc) auc_medio = np.mean(auc_lista) auc_std = np.std(auc_lista) print(f'AUC: {auc_medio}') print(f'AUC STD: {auc_std}') print(f'Intervalo: {auc_medio + 2*auc_std} - {auc_medio - 2*auc_std}') # print('\nClassification Report') # print(classification_report(y_test, predicao)) roda_n_modelo(modelo_arvore, dados_limpos, 50) from sklearn.model_selection import cross_validate from sklearn.model_selection import StratifiedKFold cv = StratifiedKFold(n_splits=5, shuffle=True) cross_validate(modelo, x, y, cv=cv) from sklearn.model_selection import RepeatedStratifiedKFold #StratifiedKFold cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=10) cross_validate(modelo, x, y, cv=cv) def roda_modelo_cv(modelo, dados, n_splits, n_repeat): np.random.seed(73246) dados = dados.sample(frac=1).reset_index(drop=True) x_columns = dados.columns y = dados['ICU'] x = dados[x_columns].drop(['ICU', 'WINDOW'], axis=1) cv = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeat) resultados = cross_validate(modelo, x, y, cv=cv, scoring='roc_auc') auc_medio = np.mean(resultados['test_score']) auc_std = np.std(resultados['test_score']) print(f'AUC: {auc_medio}') print(f'AUC STD: {auc_std}') print(f'Intervalo: {auc_medio + 2*auc_std} - {auc_medio - 2*auc_std}') roda_modelo_cv(modelo, dados_limpos, 5, 10) ###Output AUC: 0.7598762877710246 AUC STD: 0.052242437531309194 Intervalo: 0.864361162833643 - 0.6553914127084062 ###Markdown Desafio Desafio 08: Testar outros splitter classes e observar as diferenças. ###Code from sklearn.model_selection import StratifiedShuffleSplit def roda_modelo_cv(modelo, dados, n_splits, n_repeat): np.random.seed(73246) dados = dados.sample(frac=1).reset_index(drop=True) x_columns = dados.columns y = dados['ICU'] x = dados[x_columns].drop(['ICU', 'WINDOW'], axis=1) cv = StratifiedShuffleSplit(n_splits=n_splits, test_size=0.5, random_state=0) resultados = cross_validate(modelo, x, y, cv=cv, scoring='roc_auc') print(resultados) auc_medio = np.mean(resultados['test_score']) auc_std = np.std(resultados['test_score']) print(f'AUC: {auc_medio}') print(f'AUC STD: {auc_std}') print(f'Intervalo: {auc_medio + 2*auc_std} - {auc_medio - 2*auc_std}') roda_modelo_cv(modelo, dados_limpos, 50, 10) # vc_sss = (n_splits=5, test_size=0.5, random_state=0) ###Output {'fit_time': array([0.4400425 , 0.49129319, 0.46734667, 0.52816415, 0.20942664, 0.39971232, 0.17572188, 0.19282627, 0.38223052, 0.44871068, 0.46178412, 0.10449028, 0.38825321, 0.42320776, 0.16983891, 0.17552757, 0.43969274, 0.15288806, 0.40396142, 0.41381073, 0.17393422, 0.43180776, 0.37222171, 0.44072151, 0.14946365, 0.41182065, 0.37824798, 0.19410563, 0.1457119 , 0.46420622, 0.1833117 , 0.48322821, 0.15869236, 0.43909144, 0.1680932 , 0.4308939 , 0.35957551, 0.17447543, 0.21677923, 0.43977046, 0.45221162, 0.36344552, 0.52062368, 0.44790149, 0.41742492, 0.17615771, 0.44234443, 0.15960169, 0.15685368, 0.11736894]), 'score_time': array([0.00376391, 0.00383472, 0.00367761, 0.00363779, 0.00367737, 0.00381088, 0.00366569, 0.00372934, 0.00365996, 0.0040884 , 0.00372672, 0.0037291 , 0.00374341, 0.00370193, 0.0037396 , 0.003865 , 0.00369143, 0.00368977, 0.00370264, 0.00371385, 0.00368595, 0.00439286, 0.00389314, 0.00368643, 0.00371671, 0.00368214, 0.00371194, 0.00368786, 0.00371027, 0.00373983, 0.00384402, 0.00369334, 0.0036788 , 0.00379682, 0.00370431, 0.00366139, 0.00366545, 0.003757 , 0.00371838, 0.00375366, 0.00378275, 0.00373721, 0.00375175, 0.00370646, 0.00377893, 0.00369406, 0.00796723, 0.00377393, 0.00366068, 0.00364184]), 'test_score': array([0.78362573, 0.75 , 0.75311365, 0.77361923, 0.76920083, 0.70537104, 0.76427089, 0.69733593, 0.75272444, 0.75635703, 0.76231319, 0.72696556, 0.76309292, 0.71812865, 0.71159834, 0.74052932, 0.72586923, 0.7672548 , 0.78580695, 0.72358674, 0.74801819, 0.73398311, 0.77192982, 0.73879142, 0.73021442, 0.77218474, 0.75869227, 0.75282651, 0.76997924, 0.75880442, 0.75531915, 0.75061728, 0.75607537, 0.76608718, 0.74701609, 0.69434698, 0.72029061, 0.73320338, 0.79190451, 0.75285418, 0.75984405, 0.78256357, 0.77790773, 0.73866147, 0.74688635, 0.77841204, 0.77465887, 0.72911261, 0.7907369 , 0.74312403])} AUC: 0.7511162199353734 AUC STD: 0.023502367239373503 Intervalo: 0.7981209544141203 - 0.7041114854566264 ###Markdown STD AUC foi menor, dando um intervalo de confiança melhor ###Code ###Output _____no_output_____
Trading_Strategies/Momentum/momentum.ipynb
###Markdown 读取数据 ###Code #%%original data N = 6 data = pd.read_csv('/Users/jianboxue/Documents/Research_Projects/Momentum/index_shanghai.csv',index_col = 'date',parse_dates = 'date') #features owned by the day for predicting(include open) data['month'] = data.index.month data['week'] = data.index.week data['weekofyear'] = data.index.weekofyear data['day'] = data.index.day data['dayofweek'] = data.index.dayofweek data['dayofyear'] = data.index.dayofyear donchian_channel_max = np.array([max(data['high'][max(i,20)-20:max(i,20)]) for i in range(len(data))])#the highest price in last n days donchian_channel_min = np.array([min(data['low'][max(i,20)-20:max(i,20)]) for i in range(len(data))]) data['dcmaxod'] = (data['open']-donchian_channel_max)/donchian_channel_max data['dcminod'] = (data['open']-donchian_channel_min)/donchian_channel_min num_all = data.shape[1] #features owned only by previous data(include close,high,low,vol) data['price_change'] = (data['close']-data['open']) /data['open'] data['vol_change'] = 0 data['vol_change'][1:] = (data['vol'][1:].values-data['vol'][:-1].values) /data['vol'][:-1].values data['ibs'] = (data['close']-data['low']) /(data['high']-data['low']) data['dcmaxcd'] = (data['close']-donchian_channel_max)/donchian_channel_max data['dcmincd'] = (data['close']-donchian_channel_min)/donchian_channel_min #data['macd'] = MACD(data).macd #data['macdsignal'] = MACD(data).macdsignal #data['macdhist'] = MACD(data).macdhist data['%R'] = (np.array([max(data['high'][max(i,14)-14:max(i,14)]) for i in range(len(data))])-data.close.values)/((np.array([max(data['high'][max(i,14)-14:max(i,14)]) for i in range(len(data))])-np.array([min(data['low'][max(i,14)-14:max(i,14)]) for i in range(len(data))])))#Williams %R is a momentum indicator The default setting for Williams %R is 14 periods, which can be days, weeks, months or an intraday timeframe. ###Output /Applications/anaconda/lib/python3.4/site-packages/ipykernel/__main__.py:24: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy ###Markdown Y is the target series to predict ###Code y = [1 if data['close'][i]>data['open'][i] else 0 for i in range(len(data))] y = y[N-1:] n_windows = data.shape[0]-N+1 windows = range(n_windows) #%% features of open,high,low,close,vol d = np.array(data.ix[:,:5]) d = np.array([d[w:w+N].ravel() for w in windows]) #generated features for all days that can be used in training d_na = np.array(data.ix[:,5:num_all]) d_na = np.array([d_na[w:w+N].ravel() for w in windows]) d_n = np.array(data.ix[:,num_all:]) d_n = np.array([d_n[w:w+N-1].ravel() for w in windows]) nday = 1500 d = d[len(data)- nday:] d_na = d_na[len(data)- nday:] d_n = d_n[len(data)- nday:] y = np.array(y[len(data)- nday:]) #%% def normalizeNday(stocks,N): def process_column(i): #Replaces all high/low/vol data with 0, and divides all stock data by the opening price on the first day if operator.mod(i, 5) == 1: return stocks[i] * 0 if operator.mod(i, 5) == 2: return stocks[i] * 0 if operator.mod(i, 5) == 4: return stocks[i] * 0 #return np.log(stocks[:,i] + 1) else: return stocks[i] / stocks[0] #n = stocks.shape[0] stocks_dat = np.array([ process_column(i) for i in range(N*5-4)]).transpose() #stocks_movingavgO9O10 = np.array([int(i > j) for i,j in zip(stocks_dat[:,45], stocks_dat[:,40])]).reshape((n, 1)) #stocks_movingavgC9O10 = np.array([int(i > j) for i,j in zip(stocks_dat[:,45], stocks_dat[:,43])]).reshape((n, 1)) #return np.hstack((stocks_dat, stocks_movingavgO9O10, stocks_movingavgC9O10)) return stocks_dat #%% d_normalized = pd.DataFrame(np.hstack((np.array([normalizeNday(w,N) for w in d]),d_n,d_na))) #remove constants nunique = pd.Series([len(d_normalized[col].unique()) for col in d_normalized.columns], index = d_normalized.columns) constants = nunique[nunique<2].index.tolist() for col in constants: del d_normalized[col] d_normalized = np.array(d_normalized) train = d_normalized[:int(len(d)*2/3.)] train_y = y[:int(len(d)*2/3.)] test = d_normalized[int(len(d)*2/3.):] test_y = y[int(len(d)*2/3.):] plt.scatter(d[:, (N-1)*5] / d[:, (N-1)*5-2], d[:, (N-1)*5+3] / d[:, (N-1)*5]) plt.xlim((.8,1.2)); plt.ylim((.8,1.2)) plt.xlabel("Opening N / Closing N-1"); plt.ylabel("Closing N / Opening N-1") plt.title("Correlation between interday and intraday stock movement") plt.show() d = np.array(data.ix[:,:5]) d = np.array([d[w:w+N].ravel() for w in windows]) _96 %magic ###Output _____no_output_____