path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
model_interactive_race.ipynb
###Markdown Boucher et al., 2007 Interactive Race Model ###Code import numpy import random import matplotlib.pyplot as plt import pandas %matplotlib inline params={'mugo':.2, 'mustop':.8, 'threshold':60, 'nondecisiongo':50, 'nondecisionstop':50, 'inhibitionParam':1, 'ssds':[1,50,100,150, 200,250, 300, 350, 400, 450, 500,3000], 'nreps':1000, 'maxtime':1000} def interactiverace(params): stopaccumsave = [] meanrtgo = numpy.zeros(len(params['ssds'])) presp = numpy.zeros(len(params['ssds'])); for irep in range(params['nreps']): for j,ssd in enumerate(params['ssds']): stopsignaldelay = ssd goaccumulator = 0 stopaccumulator = 0 rtgo = 0 itime = 0 while itime < params['maxtime'] and rtgo == 0: # single trial itime = itime + 1 if itime < stopsignaldelay + params['nondecisionstop']: inhibition = 0 else: inhibition = params['inhibitionParam'] stopaccumulator = stopaccumulator + params['mustop'] + numpy.random.normal(loc=0, scale=1) if stopaccumulator <= 0: stopaccumulator = 0; stopaccumsave.append(stopaccumulator) if itime >= params['nondecisiongo']: goaccumulator = goaccumulator + params['mugo'] - inhibition*stopaccumulator + numpy.random.normal(loc=0, scale=1) if goaccumulator <= 0: goaccumulator = 0; if goaccumulator > params['threshold']: if rtgo == 0: rtgo = itime; meanrtgo[j] += rtgo; if rtgo > 0: presp[j] += 1; for ssd in range(len(params['ssds'])): if presp[ssd] > 0: meanrtgo[ssd] = meanrtgo[ssd]/presp[ssd]; presp[ssd] = presp[ssd]/params['nreps']; return(meanrtgo,presp,stopaccumsave) meanrtgo,presp,stopaccumsave=interactiverace(params) print(meanrtgo) print(presp) plt.figure(figsize=(10,5)) plt.subplot(1,2,1) plt.plot(params['ssds'][:11],meanrtgo[:11] - meanrtgo[11]) plt.plot([params['ssds'][0],params['ssds'][10]],[0,0],'k:') plt.xlabel('Stop signal delay') plt.ylabel('Violation (Stop Failure RT - No-Stop RT)') plt.subplot(1,2,2) plt.plot(params['ssds'][:11],presp[:11]) plt.xlabel('Stop signal delay') plt.ylabel('Probability of responding') plt.axis([params['ssds'][0],params['ssds'][10],0,1]) plt.figure(figsize=(10,5)) plt.subplot(1,2,1) plt.plot(params['ssds'][:5],meanrtgo[:5] - 350) plt.plot([params['ssds'][0],params['ssds'][4]],[0,0],'k:') plt.xlabel('Stop signal delay') plt.ylabel('Violation (Stop Failure RT - No-Stop RT)') plt.subplot(1,2,2) plt.plot(params['ssds'][:5],presp[:5]) plt.xlabel('Stop signal delay') plt.ylabel('Probability of responding') plt.axis([params['ssds'][0],params['ssds'][4],0,1]) ###Output _____no_output_____
.ipynb_checkpoints/Emails-checkpoint.ipynb
###Markdown Emails ###Code import smtplib, ssl from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart import pandas as pd import numpy as np friends = pd.read_csv('friends.csv') couples_casual = pd.read_csv('relationshipandcasual.csv') couples_casual data = np.array(couples_casual) ###Output _____no_output_____
sm_bert_log_reg.ipynb
###Markdown Logistic Regression with small Bert encodings ###Code import numpy as np import pandas as pd # for model: from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.multiclass import OneVsRestClassifier from sklearn.model_selection import train_test_split # for scoring: from sklearn import metrics from sklearn.metrics import f1_score # requires toxic-tr x = np.loadtxt("toxic_bert_matrix_small.out", delimiter=",") df = pd.read_csv('toxic-train-clean-small.csv') y = df.iloc[:, 2:8] X_train, X_test, y_train, y_test = train_test_split(x, y, test_size= 0.2) X_train.shape, X_test.shape, y_train.shape, y_test.shape pipe = make_pipeline(OneVsRestClassifier(LogisticRegression(max_iter=500, class_weight='balanced'))) param_grid = {'onevsrestclassifier__estimator__solver': ['liblinear']} grid = GridSearchCV(pipe, param_grid, cv=15, scoring='roc_auc', verbose=3) grid3 = grid.fit(X_train, y_train) grid3.best_score_ predicted_y_test = grid3.predict(X_test) predicted_y_test[:1] y_pred_prob = grid3.predict_proba(X_test) y_pred_prob[:1] auc_score = metrics.roc_auc_score(y_test, y_pred_prob) auc_score f1_score(y_test, predicted_y_test, average='micro') ###Output _____no_output_____
gobgob_ipynb_v0_3.ipynb
###Markdown Pythonでごぶの探索設計図: https://docs.google.com/presentation/d/1wmV3fb-fx1qQahOk2ZkiEcQjAm2EgGZrNFMwcBmwSnc/edit?usp=sharing Stateに必要な関数群 stateの引数 id ###Code from typing import List import itertools # idは134bitの文字列 # stateの引数からidを作成 def create_id(is_first: bool, is_choise: bool ,choise_board: List[List[bool]], choise_hand: List[bool] ,board: List[List[bool]], hand: List[bool]): big_list = [int(is_first)] + [int(is_choise)] \ + list(itertools.chain.from_iterable(choise_board)) + choise_hand \ + list(itertools.chain.from_iterable(board)) + hand; id = "".join(map(str, big_list)) return id; # idからstateの引数を作成 def id2is_first(id: str): return id[0]; def id2is_choise(id: str): return id[1]; def id2choise_board(id: str): choise_board = [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] for i, str_bit in enumerate(id[2:2+54]): choise_board[i//9][i%9] = int(str_bit) return choise_board; def id2choise_hand(id: str): choise_hand = [0,0,0,0,0,0,0,0,0,0,0,0] for i, str_bit in enumerate(id[56:56+12]): choise_hand[i] = int(str_bit) return choise_hand; def id2board(id: str): board = [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] for i, str_bit in enumerate(id[68:68+54]): board[i//9][i%9] = int(str_bit) return board; def id2hand(id: str): hand = [0,0,0,0,0,0,0,0,0,0,0,0] for i, str_bit in enumerate(id[122:122+12]): hand[i] = int(str_bit) return hand; ###Output _____no_output_____ ###Markdown 正規化 ###Code # 正規化 def create_normalization_board(board): board = board # 候補 # 変換表を一つずつためし、cand_boardと比較して小さい方を残す convert_tables = [[6,3,0,7,4,1,8,5,2],[8,7,6,5,4,3,2,1,0],[2,5,8,1,4,7,0,3,6], [2,1,0,5,4,3,8,7,6],[6,7,8,3,4,5,0,1,2],[0,3,6,1,4,7,2,5,8],[8,5,2,7,4,1,6,3,0]] for convert_table in convert_tables: cand_board = [ [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]; for i in range(6): for j, num in enumerate(convert_table): cand_board[i][j] = board[i][num] # cand_pieces と temp_cand_pieces を比較 if board > cand_board: board = cand_board return board def create_normalization_hand(hand): hand = hand # 候補 # "1,0" を "0,1"にするだけ。 for i in range(6): if hand[2*i] == 1 and hand[2*i+1] == 0: hand[2*i] = 0 hand[2*i+1] = 1 return hand ###Output _____no_output_____ ###Markdown 合法手 ###Code # 合法手の作成 import copy def create_legal_actions(is_first, is_choise, choise_board, choise_hand, board, hand): if is_choise == True: # stateはchoise、ここではchoiseした駒を置く行動を絞り込む # 1. 一旦すべての行動を禁止する。 actions = [ [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]], [0,0,0,0,0,0,0,0,0,0,0,0]] choise_piece_size = 0 # 0~5 # 2. choiseした駒が手駒なら、 if choise_hand != [0,0,0,0,0,0,0,0,0,0,0,0]: # 2-1. 選択した駒と同じtypeすべての盤面の行動を許可する for i, piece in enumerate(choise_hand): if piece == 1: choise_piece_size = i//2 # 0~11 -> 0~5 actions[0][choise_piece_size] = [1,1,1,1,1,1,1,1,1] break; # 3. choiseした駒が盤面の駒なら、 else: # 3-1. 選択した駒と同じtypeすべての盤面の行動を許可する for i in range(6): if choise_board[i] != [0,0,0,0,0,0,0,0,0]: choise_piece_size = i actions[0][choise_piece_size] = [1,1,1,1,1,1,1,1,1] break; # 3-2. 選択した駒がもとあった位置の盤面の行動を禁止する for place, is_exist in enumerate(choise_board[choise_piece_size]): if is_exist == 1: actions[0][choise_piece_size][place] = 0 break; # 3-3. 選択した駒と同じ大きさ以上の駒が盤面にあるなら、 # if board[選択した駒と同じ大きさ以上のtype][place] == 1: # actions[0][type][place] = 0 check_piece_sizes = [[0,3], [0,1,3,4], [0,1,2,3,4,5]] for check_piece_size in check_piece_sizes[(choise_piece_size) % 3]: for place, is_exist in enumerate(board[check_piece_size]): if is_exist == 1: # 3-3-1.その場所にはおけない actions[0][choise_piece_size][place] = 0 else: # is_choise == False: # stateはput、ここではchoiseする駒を選べる行動を絞り込む # 1. 配置されている駒はすべて許可する actions = [copy.deepcopy(board), copy.deepcopy(hand)] # 2. 現在の手番プレイヤーの駒の行動を禁止する(手番が交代するから) if is_first == 1: # 先手の駒を行動不可にする for i in [0,1,2]: actions[0][i] = [0,0,0,0,0,0,0,0,0] # 2-1. ボードの行動の禁止 for i in [0,1,2,3,4,5]: # 2-2. 手駒の行動の禁止 actions[1][i] = 0 else: # 後手の駒を行動不可にする for i in [3,4,5]: actions[0][i] = [0,0,0,0,0,0,0,0,0] # 2-1. ボードの行動の禁止 for i in [6,7,8,9,10,11]: # 2-2. 手駒の行動の禁止 actions[1][i] = 0 # 3. ボード上の駒を調べ、LがあるplaceのM,Sを行動不可, MがあるplaceのSを行動不可にする。 piece_sizes = {"M, S": [1,2,4,5],"S": [2,5]} for place in range(9): # 3-1. ボードにL駒が配置されているなら if board[0][place] == 1 or board[3][place] == 1: # 3-1-1. 同じ場所のM,Sの行動を禁止する for piece_size in piece_sizes["M, S"]: actions[0][piece_size][place] = 0 # 3.2 ボードにM駒が配置されているなら elif board[1][place] == 1 or board[4][place] == 1: # 3-2-1. 同じ場所のSの行動を禁止する for piece_size in piece_sizes["S"]: actions[0][piece_size][place] = 0 return actions ###Output _____no_output_____ ###Markdown 次の状態 ###Code # 次の状態の作成 def create_next_states(is_first, is_choise, choise_board, choise_hand, board, hand, actions): next_states = [] next_is_choise = int(not is_choise) next_is_first = int(not is_first) if next_is_choise == 1 else is_first # 次がchoiseなら反転 # 現在is_choise== 1 なら、actionにはchoiseした駒をおける場所が入っている。 # action[1]にビットが立っていることはない. # action[0][type][place]== 1のとき、 board[type][place] = 1にする。 if is_choise == 1: # 手番を継続, 次はセット, actionをboard, handに反映する # print("create_next_states : setなステートを作成する") next_choise_board = [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]; next_choise_hand = [0,0,0,0,0,0,0,0,0,0,0,0] for piece_type_num, piece_type in enumerate(actions[0]): for place_num, place in enumerate(piece_type): # print("place_num = {}, place = {}".format(place_num, place)) if place == 1: # 行動可能ならその箇所を1にする next_board = copy.deepcopy(board) next_board[piece_type_num][place_num] = 1 state = State(next_is_first, next_is_choise, next_choise_board, next_choise_hand, next_board, copy.deepcopy(hand)) next_states.append(state) # 現在is_choise== 0 なら、actionにはchoiseできる駒の位置が入っている。 # action[0][place]== 1のとき、 hand[place] = 0、choise_hand[place] = 1にする。 # action[0][type][place]== 1のとき、 board[type][place] = 0、choise_board[place] = 1にする。 else: # is_choise == 0: # 手番を交代、次はチョイス, actionをchise_board, chise_handに反映する print("create_next_states : choiseなステートを作成する") # 盤面からchoiseする for piece_type_num, piece_type in enumerate(actions[0]): for place_num, place in enumerate(piece_type): if place == 1: # 行動可能ならその箇所のchoise_boardを1にして、その箇所のboardを0にする next_choise_board = [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]; next_board = copy.deepcopy(board) next_choise_board[piece_type_num][place_num] = 1 next_board[piece_type_num][place_num] = 0 state = State(next_is_first, next_is_choise, next_choise_board, [0,0,0,0,0,0,0,0,0,0,0,0], next_board, hand) next_states.append(state) # ハンドからchoiseする for place_num, place in enumerate(actions[1]): if place == 1: # 行動可能ならその箇所のchoise_handを1にして、その箇所のhandを0にする next_choise_hand = [0,0,0,0,0,0,0,0,0,0,0,0] next_hand = copy.deepcopy(hand) next_choise_hand[place_num] = 1 next_hand[place_num] = 0 state = State(next_is_first, next_is_choise, [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]], next_choise_hand, board, next_hand) next_states.append(state) return next_states ###Output _____no_output_____ ###Markdown 結果 ###Code # 勝敗の有無 def is_win(single_surface): s = single_surface # 横, 縦, 左斜め, 右斜めのラインを調べる check_lines = [[0,1,2], [3,4,5], [6,7,8], [0,3,6], [1,4,7], [2,5,8], [0,4,8], [2,4,6]] for check_line in check_lines: if s[check_line[0]] and s[check_line[1]] and s[check_line[2]]: return True; return False; # 表面の駒だけbitが立つboardを作成する def create_surface(board): board_surface = [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]; # S駒を反映させる board_surface[2] = board[2] board_surface[5] = board[5] # このとき、おいた場所により小さい駒があったら、その駒を0にする # 1マスずつ見ていく for place in range(9): # M駒を反映させる if board[1][place] == 1 or board[4][place] == 1: if board[1][place] == 1: board_surface[1][place] = 1 if board[4][place] == 1: board_surface[4][place] = 1 board_surface[2][place] = 0 # S駒を0にする board_surface[5][place] = 0 # L駒を反映させる if board[0][place] == 1 or board[3][place] == 1: if board[0][place] == 1: board_surface[0][place] = 1 if board[3][place] == 1: board_surface[3][place] = 1 board_surface[1][place] = 0 # M駒を0にする board_surface[4][place] = 0 board_surface[2][place] = 0 # S駒を0にする board_surface[5][place] = 0 return board_surface #勝敗の有無、勝者を確認する def check_result(board): board_surface = create_surface(board) is_done = 0 # 決着がついているなら1を返す winner = 0 # 先手は0, 後手は1 # 内部でboard_surface[0,1,2]とboard_surface[3,4,5]を合成 single_surfaces = [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]; for i in range(9): if board_surface[0][i] == 1 or board_surface[1][i] == 1 or board_surface[2][i] == 1: single_surfaces[0][i] = 1 elif board_surface[3][i] == 1 or board_surface[4][i] == 1 or board_surface[5][i] == 1: single_surfaces[1][i] = 1 is_done = is_win(single_surfaces[0]) == 1 or is_win(single_surfaces[1]) == 1 winner = 1 if is_win(single_surfaces[1]) == 1 else 0 return [is_done, winner] ###Output _____no_output_____ ###Markdown Stateクラス ###Code # stateクラス class State(): def __init__(self, is_first, is_choise, choise_board, choise_hand, board, hand): self.is_first = is_first self.is_choise = is_choise self.choise_board = choise_board self.choise_hand = choise_hand self.board = board self.hand = hand self.id = create_id(self.is_first, self.is_choise, self.choise_board, self.choise_hand, self.board, self.hand) self.normalized_id = create_id( self.is_first, self.is_choise, create_normalization_board(self.choise_board), create_normalization_hand(self.choise_hand), create_normalization_board(self.board), create_normalization_hand(self.hand)) self.legal_actions = create_legal_actions( self.is_first, self.is_choise, self.choise_board, self.choise_hand, self.board, self.hand) self.is_done, self.winner = check_result(self.board) # 次の状態の作成 def next_states(self): states = create_next_states( self.is_first, self.is_choise, self.choise_board, self.choise_hand, self.board, self.hand, self.legal_actions) return states ###Output _____no_output_____ ###Markdown Stateクラスのテスト ###Code # テスト # 初期(setステート) is_first = False is_choise = False choise_board = [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] choise_hand = [0,0,0,0,0,0,0,0,0,0,0,0] board = [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] hand = [1,1,1,1,1,1,1,1,1,1,1,1] legal_actions = [ [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]], [1,1,1,1,1,1,0,0,0,0,0,0]] # # 1手目代表(choiseステート) # is_first = True # is_choise = True # choise_board = [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] # choise_hand = [1,0,0,0,0,0,0,0,0,0,0,0] # board = [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] # hand = [0,1,1,1,1,1,1,1,1,1,1,1] # legal_actions = [ # [[1,1,1,1,1,1,1,1,1],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]], # [0,0,0,0,0,0,0,0,0,0,0,0]] # # 1手目代表(setステート) # is_first = True # is_choise = False # choise_board = [[1,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] # choise_hand = [0,0,0,0,0,0,0,0,0,0,0,0] # board = [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] # hand = [0,1,1,1,1,1,1,1,1,1,1,1] # legal_actions = [ # [[1,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]], # [0,1,1,1,1,1,1,1,1,1,1,1]] id = create_id(is_first, is_choise,choise_board,choise_hand,board,hand) state = State(is_first, is_choise,choise_board,choise_hand,board,hand) # # idのテスト  # print("id = {}".format(id)) # print("is_first = {}".format(id2is_first(id))) # print("is_choise = {}".format(id2is_choise(id))) # print("choise_board = {}".format(id2choise_board(id))) # print("choise_hand = {}".format(id2choise_hand(id))) # print("board = {}".format(id2board(id))) # print("hand = {}".format(id2hand(id))) # stateのテスト  print("state = {}".format(state)) print("is_first = {}".format(state.is_first)) print("is_choise = {}".format(state.is_choise)) print("choise_board = {}".format(state.choise_board)) print("choise_hand = {}".format(state.choise_hand)) print("board = {}".format(state.board)) print("hand = {}".format(state.hand)) print("legal_actions = {}".format(state.legal_actions)) print("next_statesの数 = {}".format(len(state.next_states()))) # 正規化テスト # hand: List[bool] = [1,0,1,0,1,1,0,1,0,1,0,1] # print("hand = {}".format(hand)) # print("nrm_hand = {}".format(create_normalization_hand(hand))) # board = [ # [1,0,1,0,1,0,1,0,1],[1,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]; # print("board = {}".format(board)) # print("nrm_board = {}".format(create_normalization_board(board))) # 初期(setステート) is_first: bool = False is_choise: bool = False choise_board: List[List[bool]] =[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] choise_hand: List[bool] = [0,0,0,0,0,0,0,0,0,0,0,0] board: List[List[bool]] =[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] hand: List[bool] = [1,1,1,1,1,1,1,1,1,1,1,1] # 回答 # legal_actions: List[List]= [ # [[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]], # [1,1,1,1,1,1,0,0,0,0,0,0]] id = create_id(is_first, is_choise,choise_board,choise_hand,board,hand) state = State(is_first, is_choise,choise_board,choise_hand,board,hand) # stateのテスト print("id = {}".format(id)) print("type(id) = {}".format(type(id))) print("state = {}".format(state)) print("state.is_first = {}".format(state.is_first)) print("state.is_choise = {}".format(state.is_choise)) print("state.choise_board = {}".format(state.choise_board)) print("state.choise_hand = {}".format(state.choise_hand)) print("state.board = {}".format(state.board)) print("state.hand = {}".format(state.hand)) print("state.legal_actions = {}".format(state.legal_actions)) print("state.next_states = {}".format(state.next_states())) print("self.is_done = {}".format(state.is_done)) print("self.winner = {}".format(state.winner)) ###Output id = 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111 type(id) = <class 'str'> state = <__main__.State object at 0x7f99320395c0> state.is_first = False state.is_choise = False state.choise_board = [[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]] state.choise_hand = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] state.board = [[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]] state.hand = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] state.legal_actions = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]], [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]] create_next_states : choiseなステートを作成する state.next_states = [<__main__.State object at 0x7f9932039588>, <__main__.State object at 0x7f9932039630>, <__main__.State object at 0x7f9932039668>, <__main__.State object at 0x7f99320396a0>, <__main__.State object at 0x7f99320396d8>, <__main__.State object at 0x7f9932039710>] self.is_done = False self.winner = 0 ###Markdown 実装 ###Code import networkx as nx from google.colab import files # csvの読み込むためのモジュール import pandas as pd from pandas import DataFrame import numpy as np from tabulate import tabulate # pandasのdfをきれいに出力するためのモジュール # uploaded = files.upload() # for fn in uploaded.keys(): # print("hogehoge") # G = nx.readwrite.gml.read_gml(fn) # nx.draw_spring(G, node_size=200, node_color="red", with_labels=True) ### BFSでゲーム木を作成するプログラム ### ### 設定ここから ### printFlag = False ### 設定ここまで ### ###mainここから # unsolvedDf, solvedDfの初期化 if printFlag: print("===") print("プログラム開始") print("===") print() print("データを初期化します") cols = ["PREVIOUS_STATES", "STATE", "NEXT_STATES", "RESULT"] #[前の状態list, 状態, 次の状態list] df = pd.DataFrame(index=[], columns=cols) df.set_index("STATE") unsolvedDf = df solvedDf = df if printFlag: print("データを初期化しました") print() # 初期状態"※1"をunsolvedに追加する。unsolvedに積まれているノードは未訪問. if printFlag: print("===") print("BFSの準備") print("===") print() print("初期状態をセットします") # 初期(setステート) is_first: bool = False is_choise: bool = False choise_board: List[List[bool]] =[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] choise_hand: List[bool] = [0,0,0,0,0,0,0,0,0,0,0,0] board: List[List[bool]] =[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]] hand: List[bool] = [1,1,1,1,1,1,1,1,1,1,1,1] state = State(is_first, is_choise,choise_board,choise_hand,board,hand) init_state = state.normalized_id previous_state = "" unsolvedDf = unsolvedDf.append(pd.Series([[previous_state], init_state, "unsolved", ""], index=df.columns, name=init_state)) if printFlag: print("初期状態をセットしました") # 確認 print("確認[UNSOLVED_DF]:") # 確認 print(unsolvedDf) # 確認 print() # 確認 # unsolvedが空になるまで以下を行う. BFS開始 if printFlag: print("===") print("BFSを開始します") print("===") print() for _ in range(10): # while len(unsolvedDf) > 0: # 開発のためにfor文にしている。 # unsolvedDfから先頭のノードをpopする。 if len(unsolvedDf) <= 0: break; current_node = unsolvedDf.iloc[0] # 先頭のノード(current_node)を抽出。 unsolvedDf.drop(unsolvedDf.index[0], inplace=True) # 抽出したノードをunsolvedから削除。 # stateの作成 id = current_node.STATE state = State(id2is_first(id), id2is_choise(id),id2choise_board(id), id2choise_hand(id),id2board(id),id2hand(id)) # 勝敗の確認 result = state.winner # 勝敗確定盤面なら if state.is_done: current_node.RESULT = state.winner current_node.NEXT_STATES = [] else: # 勝敗確定盤面でないなら # 先頭のノード(current_node)から次のノード(next_nodes)を探索する。 next_states = state.next_states() # 次のノードの探索結果 next_state_ids = [] for next_state in next_states: next_state_ids.append(next_state.normalized_id) current_node.NEXT_STATES = next_state_ids # current_nodeのNEXT_STATESに探索結果を反映 # 探索した全ての状態について、以下を行う。 if printFlag: print("unsolvedDfからpopされたノード'{}'の探索を行います".format(current_node.STATE)) if len(next_state_ids) <= 0: if printFlag: print(" 探索結果: このノードは末端です") for next_state in next_state_ids: # もし、next_nodeが未発見ならば # unsolved, solvedのいずれにもnext_nodeが存在しない if (next_state not in unsolvedDf.STATE.values) and (next_state not in solvedDf.STATE.values): if next_state == current_node.STATE: # 次のノードが自身と同一 if printFlag: print("探索結果: 自身のノード'{}'と同一です".format(next_state)) continue; else: if printFlag: print(" 探索結果: 未発見のノード'{}'です".format(next_state)) # T)そのノードを未訪問にする。 # unsolvedに追加 previous_state = [current_node.STATE] next_node = pd.Series([previous_state, next_state, "unsolved", ""], index=df.columns, name=next_state) # next_nodeの作成 unsolvedDf = unsolvedDf.append(next_node) else: # F)そうではなく、発見済みならば if printFlag: print(" 探索結果: 発見済みのノード'{}'です".format(next_state)) #これを既に登録されていたノードのprevious_stateに追加する。 previous_state = [current_node.STATE] if next_state in unsolvedDf.STATE.values: # unsolvedDfに存在 if printFlag: print(" これはunsolvedに存在しています") # unsolvedDf[unsolvedDf.STATE.values == next_state])にprevious_stateを追加する tmp = unsolvedDf.loc[next_state, "PREVIOUS_STATES"] tmp.append(previous_state[0]) unsolvedDf.loc[next_state, "PREVIOUS_STATES"] = tmp elif next_state in solvedDf.STATE.values:# solveDfに存在 if printFlag: print(" これはsolvedに存在しています") # solvedDf[solvedDf.STATE.values == next_state])にprevious_stateを追加する tmp = solvedDf.loc[next_state, "PREVIOUS_STATES"] tmp.append(previous_state[0]) solvedDf.loc[next_state, "PREVIOUS_STATES"] = tmp else: # 何らかの理由で漏れた状態 print(" エラー") # 現在のノード(current_node)をsolvedDfに追加する。solvedDfのノードは既訪問。 solvedDf = solvedDf.append(current_node) if printFlag: print() print("BFSが終了しました") print() # 結果確認 print("===") print("結果確認") print("===") print() print("確認[unsolvedDf]:") print() print(tabulate(unsolvedDf, unsolvedDf.columns,tablefmt='github', showindex=True)) print() print("確認[solvedDf]:") print() print(tabulate(solvedDf, solvedDf.columns,tablefmt='github', showindex=True)) print() ### mainここまで ###Output create_next_states : choiseなステートを作成する create_next_states : choiseなステートを作成する create_next_states : choiseなステートを作成する create_next_states : choiseなステートを作成する create_next_states : choiseなステートを作成する create_next_states : choiseなステートを作成する create_next_states : choiseなステートを作成する create_next_states : choiseなステートを作成する create_next_states : choiseなステートを作成する create_next_states : choiseなステートを作成する === 結果確認 === 確認[unsolvedDf]: | | PREVIOUS_STATES | STATE | NEXT_STATES | RESULT | |----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------|----------| | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011101111111 | ['00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111101111111'] | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011101111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110101111111 | ['00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111101111111'] | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110101111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111100111111 | ['00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111101111111'] | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111100111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000111111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000001111111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000001111111111'] | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000111111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000001101111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000001111111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000001111111111'] | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000001101111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000111111111 | ['00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010111111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010111111111'] | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000111111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010011111111 | ['00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010111111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010111111111'] | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010011111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000010101111111 | ['00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010111111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010111111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010111111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010111111111'] | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000010101111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000001101111111 | ['00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000011101111111'] | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000001101111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010101111111 | ['00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000011101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000011101111111'] | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010101111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000011100111111 | ['00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000011101111111'] | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000011100111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010011111111 | ['00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110011111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110011111111'] | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010011111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110001111111 | ['00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110011111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110011111111'] | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110001111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010101111111 | ['00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110101111111'] | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010101111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110001111111 | ['00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110101111111'] | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110001111111 | unsolved | | | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110100111111 | ['00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110101111111'] | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110100111111 | unsolved | | 確認[solvedDf]: | | PREVIOUS_STATES | STATE | NEXT_STATES | RESULT | |----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------| | 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111 | [''] | 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011111111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011111111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110111111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110111111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111101111111'] | | | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011111111111 | ['00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111'] | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011111111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000001111111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010111111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010111111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000011101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000011101111111'] | | | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110111111111 | ['00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111'] | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110111111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010111111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010111111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110011111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110101111111'] | | | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111101111111 | ['00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111'] | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111101111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011101111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011101111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110101111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000111100111111'] | | | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000001111111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011111111111'] | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000001111111111 | ['00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000111111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000111111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000001101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000001101111111'] | | | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010111111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011111111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011111111111'] | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010111111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000111111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010011111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000010101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000010101111111'] | | | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000011101111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011111111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000011111111111'] | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000011101111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000001101111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010101111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000011100111111'] | | | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010111111111 | ['00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110111111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110111111111'] | 00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010111111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000111111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000010011111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000010101111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000010101111111'] | | | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110011111111 | ['00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110111111111'] | 00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110011111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010011111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010011111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110001111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110001111111'] | | | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110101111111 | ['00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110111111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110111111111'] | 00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110101111111 | ['00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010101111111', '00000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000010101111111', '00000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000110001111111', '00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000110100111111'] | | ###Markdown 出力 ###Code # ドライブのマウント from google.colab import drive drive.mount('/content/drive') # 出力 # solvedDfをox_outputという名前で書き出し solvedDf.to_csv('/content/drive/My Drive/ox/workspace/ox_output.csv') # ox_outputの確認 solvedDf = pd.read_csv( "/content/drive/My Drive/ox/workspace/ox_output.csv", index_col=0, # 最初の1行はデータ名。 encoding="cp932" # windowsの追加文字に対応。おまじないだと思えば良い。 ) print(solvedDf) ###Output _____no_output_____
Time Series ANN & LSTM VIX.ipynb
###Markdown NN ###Code nn_model = Sequential() nn_model.add(Dense(12, input_dim=1, activation='relu')) nn_model.add(Dense(1)) nn_model.compile(loss='mean_squared_error', optimizer='adam') early_stop = EarlyStopping(monitor='loss', patience=2, verbose=1) history = nn_model.fit(X_train, y_train, epochs=100, batch_size=1, verbose=1, callbacks=[early_stop], shuffle=False) y_pred_test_nn = nn_model.predict(X_test) y_train_pred_nn = nn_model.predict(X_train) print("The R2 score on the Train set is:\t{:0.3f}".format(r2_score(y_train, y_train_pred_nn))) print("The R2 score on the Test set is:\t{:0.3f}".format(r2_score(y_test, y_pred_test_nn))) ###Output The R2 score on the Train set is: 0.897 The R2 score on the Test set is: 0.789 ###Markdown LSTM ###Code train_sc_df = pd.DataFrame(train_sc, columns=['Y'], index=train.index) test_sc_df = pd.DataFrame(test_sc, columns=['Y'], index=test.index) for s in range(1,2): train_sc_df['X_{}'.format(s)] = train_sc_df['Y'].shift(s) test_sc_df['X_{}'.format(s)] = test_sc_df['Y'].shift(s) X_train = train_sc_df.dropna().drop('Y', axis=1) y_train = train_sc_df.dropna().drop('X_1', axis=1) X_test = test_sc_df.dropna().drop('Y', axis=1) y_test = test_sc_df.dropna().drop('X_1', axis=1) X_train = X_train.as_matrix() y_train = y_train.as_matrix() X_test = X_test.as_matrix() y_test = y_test.as_matrix() X_train_lmse = X_train.reshape(X_train.shape[0], X_train.shape[1], 1) X_test_lmse = X_test.reshape(X_test.shape[0], X_test.shape[1], 1) print('Train shape: ', X_train_lmse.shape) print('Test shape: ', X_test_lmse.shape) lstm_model = Sequential() lstm_model.add(LSTM(7, input_shape=(1, X_train_lmse.shape[1]), activation='relu', kernel_initializer='lecun_uniform', return_sequences=False)) lstm_model.add(Dense(1)) lstm_model.compile(loss='mean_squared_error', optimizer='adam') early_stop = EarlyStopping(monitor='loss', patience=2, verbose=1) history_lstm_model = lstm_model.fit(X_train_lmse, y_train, epochs=100, batch_size=1, verbose=1, shuffle=False, callbacks=[early_stop]) y_pred_test_lstm = lstm_model.predict(X_test_lmse) y_train_pred_lstm = lstm_model.predict(X_train_lmse) print("The R2 score on the Train set is:\t{:0.3f}".format(r2_score(y_train, y_train_pred_lstm))) print("The R2 score on the Test set is:\t{:0.3f}".format(r2_score(y_test, y_pred_test_lstm))) nn_test_mse = nn_model.evaluate(X_test, y_test, batch_size=1) lstm_test_mse = lstm_model.evaluate(X_test_lmse, y_test, batch_size=1) print('NN: %f'%nn_test_mse) print('LSTM: %f'%lstm_test_mse) nn_y_pred_test = nn_model.predict(X_test) lstm_y_pred_test = lstm_model.predict(X_test_lmse) plt.figure(figsize=(10, 6)) plt.plot(y_test, label='True') plt.plot(y_pred_test_nn, label='NN') plt.title("ANN's Prediction") plt.xlabel('Observation') plt.ylabel('Adj Close Scaled') plt.legend() plt.show(); plt.figure(figsize=(10, 6)) plt.plot(y_test, label='True') plt.plot(y_pred_test_lstm, label='LSTM') plt.title("LSTM's Prediction") plt.xlabel('Observation') plt.ylabel('Adj Close scaled') plt.legend() plt.show(); ###Output _____no_output_____
notebooks/old/Prorotype.ipynb
###Markdown int parse_document(char *line, WORD *words, double *label, long *queryid, long *slackid, double *costfactor, long int *numwords, long int max_words_doc, char **comment){ register long wpos,pos; long wnum; double weight; char featurepair[1000],junk[1000]; (*queryid)=0; (*slackid)=0; (*costfactor)=1; pos=0; (*comment)=NULL; while(line[pos] ) { /* cut off comments */ if((line[pos] == '') && (!(*comment))) { line[pos]=0; (*comment)=&(line[pos+1]); } if(line[pos] == '\n') { /* strip the CR */ line[pos]=0; } pos++; } if(!(*comment)) (*comment)=&(line[pos]); /* printf("Comment: '%s'\n",(*comment)); */ wpos=0; /* check, that line starts with target value or zero, but not with feature pair */ if(sscanf(line,"%s",featurepair) == EOF) return(0); pos=0; while((featurepair[pos] != ':') && featurepair[pos]) pos++; if(featurepair[pos] == ':') { perror ("Line must start with label or 0!!!\n"); printf("LINE: %s\n",line); exit (1); } /* read the target value */ if(sscanf(line,"%lf",label) == EOF) return(0); pos=0; while(space_or_null((int)line[pos])) pos++; while((!space_or_null((int)line[pos])) && line[pos]) pos++; while((pos+=read_word(line+pos,featurepair)) && (featurepair[0]) && (wpos<max_words_doc)) { /* printf("%s\n",featurepair); */ if(sscanf(featurepair,"qid:%ld%s",&wnum,junk)==1) { /* it is the query id */ (*queryid)=(long)wnum; } else if(sscanf(featurepair,"sid:%ld%s",&wnum,junk)==1) { /* it is the slack id */ if(wnum > 0) (*slackid)=(long)wnum; else { perror ("Slack-id must be greater or equal to 1!!!\n"); printf("LINE: %s\n",line); exit (1); } } else if(sscanf(featurepair,"cost:%lf%s",&weight,junk)==1) { /* it is the example-dependent cost factor */ (*costfactor)=(double)weight; } else if(sscanf(featurepair,"%ld:%lf%s",&wnum,&weight,junk)==2) { /* it is a regular feature */ if(wnum<=0) { perror ("Feature numbers must be larger or equal to 1!!!\n"); printf("LINE: %s\n",line); exit (1); } if((wpos>0) && ((words[wpos-1]).wnum >= wnum)) { perror ("Features must be in increasing order!!!\n"); printf("LINE: %s\n",line); exit (1); } (words[wpos]).wnum=wnum; (words[wpos]).weight=(FVAL)weight; wpos++; } else { perror ("Cannot parse feature/value pair!!!\n"); printf("'%s' in LINE: %s\n",featurepair,line); exit (1); } } (words[wpos]).wnum=0; (*numwords)=wpos+1; return(1);} if((wpos>0) && ((words[wpos-1]).wnum >= wnum)) { perror ("Features must be in increasing order!!!\n"); printf("LINE: %s\n",line); exit (1); } ###Code # Okay, so this is where we're falling down.. # The position is the pointer on the current line for parseing the file.. # and wpos is the word position.. # so the conditional we're failing @ is: if the word position is > 0 and the value (struct, I assume) at some # memory location (representing the final word)s wnum value is >= wnum, then we exit.. # now.. what's wnum..? # I'm half tempted to just remove this conditional and recompile, lol # it looks like wnum is the (temporarily) binary property that we're using to say that this feature is present # within this data point, it's weird because each word has a wnum value and there appears to be some kind of # global wnum.. # I believe.. We can just remove this 'naughtily' remove this conditional form the source code and recompile.. # because I really don't see what I'm doing wrong. # jesus, now features have to start from 1, not zero, kill me lord training_dict_of_tokens # okay, so if I re-introduce the conditional into the source code for the SVM, it doesn't run # I believe it's because the feature values (on the left hand side) are not increaseing from 1 to 14 # so... let's make some changes and see if modifying that increases the accuracy from ~61% training_set_compart with codecs.open("./feats.train", "r", "UTF-8") as file: with codecs.open("./feats.train.ordered", "w", "UTF-8") as write_file: for line in sorted(file.readlines(), key=lambda line: int(line.split()[0])): if len(line) > 1: write_file.write(line) 'newest' in training_dict_of_tokens.values() training_set_compart_pre ###Output _____no_output_____
examples/neural_network_inference/Neural_network_control_flow_power_iteration.ipynb
###Markdown In CoreML Neural Network Specification version 4 (which is available from iOS 13 and MacOS 10.15), several "control-flow" layers have been added. CoreML spec is described in the protobuf format and for a list of all supported layer types and documentation, see [here](https://github.com/apple/coremltools/blob/master/mlmodel/format/NeuralNetwork.proto).In this notebook, we build a neural network that uses a few of the new control flow layers. We will write a simple python program to compute the largest eigenvalue of a given matrix and then show how a neural network can be built to replicate that program in an mlmodel.We choose the [power iteration method](https://en.wikipedia.org/wiki/Power_iteration). It is a simple iterative algorithm. Given a square matrix, $A$ of dimensions $n\times n$, it computes the largest eigenvalue (by magnitude) and the corresponding eigenvector (the algorithm can be adapted to compute all the eigenvalues, however we do not implement that here). Here is how the algorithm works. Pick a normalized random vector to start with, $x$, of dimension $n$. Repetitively, multiply it by the matrix and normalize it, i.e., $x\leftarrow Ax$ and $x\leftarrow \frac{x}{\left \| x \right \|}$. Gradually the vector converges to the largest eigenvector. Simple as that! There are a few conditions that the matrix should satisfy for this to happen, but let us not worry about it for this example. For now we will assume that the matrix is real and symmetric, this guarantees the eigenvalues to be real. After we have the normalized eigenvector, the corresponding eigenvalue can be computed by the formula $x^TAx$ Let's code this up in Python using Numpy! ###Code import numpy as np import copy np.random.seed(8) # try different seeds to play with the number of iterations it takes for convergence! ''' Use power method to compute the largest eigenvalue of a real symmetric matrix ''' convergence_tolerance = 1e-6 # decrease/increase to trade off precision number_of_iterations = 100 # decrease/increase to trade off precision def power_iteration(matrix, starting_vector): x = copy.deepcopy(starting_vector) for i in range(number_of_iterations): y = np.matmul(A,x) #normalize y = y / np.sqrt(np.sum(y**2)) # compute the diff to check for convergence # we use cosine difference as both vectors are normalized and can get # rotated by 180 degrees between iterations diff = 1-abs(np.dot(x,y)) # update x x = y print('{}: diff: {}'.format(i, diff)) if diff < convergence_tolerance: break x_t = np.transpose(x) eigen_value = np.matmul(x_t, np.matmul(A,x)) return eigen_value, x # define the symmetric real matrix for which we need the eigenvalue. A = np.array([[4,-5], [-5,3]], dtype=np.float) # a random starting vector starting_vector = np.random.rand(2) starting_vector = starting_vector / np.sqrt(np.sum(starting_vector**2)) ## normalize it eigen_value, eigen_vector = power_iteration(A, starting_vector) print('Largest eigenvalue: %.4f ' % eigen_value) print('Corresponding eigenvector: ', eigen_vector) ###Output 0: diff: 6.69187030143e-05 1: diff: 0.00208718410489 2: diff: 0.0614522880272 3: diff: 0.771617699317 4: diff: 0.193129218664 5: diff: 0.0075077446807 6: diff: 0.000241962094403 7: diff: 7.74407193072e-06 8: diff: 2.47796068775e-07 Largest eigenvalue: 8.5249 ('Corresponding eigenvector: ', array([-0.74152421, 0.67092611])) ###Markdown We see that in this case, the algorithm converged, given our specified toelrance, in 9 iterations. To confirm whether the eigenvalue is correct, lets use the "linalg" sub-package of numpy. ###Code from numpy import linalg as LA e, v = LA.eig(A) idx = np.argmax(abs(e)) print('numpy linalg: largest eigenvalue: %.4f ' % e[idx]) print('numpy linalg: first eigenvector: ', v[:,idx]) ###Output numpy linalg: largest eigenvalue: 8.5249 ('numpy linalg: first eigenvector: ', array([ 0.74145253, -0.67100532])) ###Markdown Indeed we see that the eigenvalue matches with our power iteration code. The eigenvector is rotated by 180 degrees, but that is fine.Now, lets build an mlmodel to do the same. We use the builder API provided by coremltools to write out the protobuf messages. ###Code import coremltools import coremltools.models.datatypes as datatypes from coremltools.models.neural_network import NeuralNetworkBuilder input_features = [('matrix', datatypes.Array(*(2,2))), ('starting_vector', datatypes.Array(*(2,)))] output_features = [('maximum_eigen_value', datatypes.Array(*(1,))), ('eigen_vector', None), ('iteration_count', datatypes.Array(*(1,)))] builder = NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) # convert the starting_vector which has shape (2,) to shape (2,1) # so that it can be used by the Batched-MatMul layer builder.add_expand_dims('expand_dims', 'starting_vector', 'x', axes=[-1]) builder.add_load_constant_nd('iteration_count', 'iteration_count', constant_value=np.zeros((1,)), shape=(1,)) # start building the loop loop_layer = builder.add_loop('loop', max_iterations=number_of_iterations) # get the builder object for the "body" of the loop loop_body_builder = NeuralNetworkBuilder(nn_spec=loop_layer.loop.bodyNetwork) # matrix multiply # input shapes: (n,n),(n,1) # output shape: (n,1) loop_body_builder.add_batched_mat_mul('bmm.1', input_names=['matrix','x'], output_name='y') # normalize the vector loop_body_builder.add_reduce_l2('reduce', input_name='y', output_name='norm', axes = [0]) loop_body_builder.add_divide_broadcastable('divide', ['y','norm'], 'y_normalized') # find difference with previous, which is computed as (1 - abs(cosine diff)) loop_body_builder.add_batched_mat_mul('cosine', ['y_normalized', 'x'], 'cosine_diff', transpose_a=True) loop_body_builder.add_unary('abs_cosine','cosine_diff','abs_cosine_diff', mode='abs') loop_body_builder.add_activation('diff', non_linearity='LINEAR', input_name='abs_cosine_diff', output_name='diff', params=[-1,1]) # update iteration count loop_body_builder.add_activation('iteration_count_add', non_linearity='LINEAR', input_name='iteration_count', output_name='iteration_count_plus_1', params=[1,1]) loop_body_builder.add_copy('iteration_count_update', 'iteration_count_plus_1', 'iteration_count') # update 'x' loop_body_builder.add_copy('update_x', 'y_normalized', 'x') # add condition to break from the loop, if convergence criterion is met loop_body_builder.add_less_than('cond', ['diff'], 'cond', alpha=convergence_tolerance) branch_layer = loop_body_builder.add_branch('branch_layer', 'cond') builder_ifbranch = NeuralNetworkBuilder(nn_spec=branch_layer.branch.ifBranch) builder_ifbranch.add_loop_break('break') # now we are out of the loop, compute the eigenvalue builder.add_batched_mat_mul('bmm.2', input_names=['matrix','x'], output_name='x_right') builder.add_batched_mat_mul('bmm.3', input_names=['x','x_right'], output_name='maximum_eigen_value', transpose_a=True) builder.add_squeeze('squeeze', 'x', 'eigen_vector', squeeze_all=True) spec = builder.spec model = coremltools.models.MLModel(spec) ###Output _____no_output_____ ###Markdown Okay, so now we have the mlmodel spec. Before we call predict on it, lets print it out to check whether everything looks okay. We use the utility called "print_network_spec" ###Code from coremltools.models.neural_network.printer import print_network_spec print_network_spec(spec, style='coding') # call predict on CoreML model input_dict = {} input_dict['starting_vector'] = starting_vector input_dict['matrix'] = A.astype(np.float) output = model.predict(input_dict) coreml_eigen_value = output['maximum_eigen_value'] coreml_eigen_vector = output['eigen_vector'] print('CoreML computed eigenvalue: %.4f' % coreml_eigen_value) print('CoreML computed eigenvector: ', coreml_eigen_vector, coreml_eigen_vector.shape) print('CoreML iteration count: %d' % output['iteration_count']) ###Output CoreML computed eigenvalue: 8.5249 ('CoreML computed eigenvector: ', array([-0.74152416, 0.67092603]), (2,)) CoreML iteration count: 9 ###Markdown Indeed the output matches with our python program. Although, we do not do it here, the parameters "convergence_tolerance" and "number_of_iterations" can be made as network inputs, so that their value can be modifed at runtime. Currently, the input shapes to the Core ML model are fixed, $(2, 2)$ for the matrix and $(2,)$ for the starting vector. However, we can add shape flexibility so that the same mlmodel can be run on different input sizes. There are two ways to specify shape flexibility, either through "ranges" or via a list of "enumerated" shapes. Here we specify the latter. ###Code from coremltools.models.neural_network import flexible_shape_utils # (2,2) has already been provided as the default shape for "matrix" # during initialization of the builder, # here we add two more shapes that will be allowed at runtime flexible_shape_utils.add_multiarray_ndshape_enumeration(spec, feature_name='matrix', enumerated_shapes=[(3,3), (4,4)]) # (2,) has already been provided as the default shape for "matrix" # during initialization of the builder, # here we add two more shapes that will be allowed at runtime flexible_shape_utils.add_multiarray_ndshape_enumeration(spec, feature_name='starting_vector', enumerated_shapes=[(3,), (4,)]) model = coremltools.models.MLModel(spec) # lets run the model with a (3,3) matrix A = np.array([[1, -6, 8], [-6, 1, 5], [8, 5, 1]], dtype=np.float) starting_vector = np.random.rand(3) starting_vector = starting_vector / np.sqrt(np.sum(starting_vector**2)) ## normalize it eigen_value, eigen_vector = power_iteration(A, starting_vector) print('python code: largest eigenvalue: %.4f ' % eigen_value) print('python code: corresponding eigenvector: ', eigen_vector) from numpy import linalg as LA e, v = LA.eig(A) idx = np.argmax(abs(e)) print('numpy linalg: largest eigenvalue: %.4f ' % e[idx]) print('numpy linalg: first eigenvector: ', v[:,idx]) input_dict['starting_vector'] = starting_vector input_dict['matrix'] = A.astype(np.float) output = model.predict(input_dict) coreml_eigen_value = output['maximum_eigen_value'] coreml_eigen_vector = output['eigen_vector'] print('CoreML computed eigenvalue: %.4f' % coreml_eigen_value) print('CoreML computed eigenvector: ', coreml_eigen_vector, coreml_eigen_vector.shape) print('CoreML iteration count: %d' % output['iteration_count']) ###Output CoreML computed eigenvalue: -11.7530 ('CoreML computed eigenvector: ', array([ 0.61622757, 0.52125645, -0.59038568]), (3,)) CoreML iteration count: 30
MaPeCode_Notebooks/21. Arbol regresion.ipynb
###Markdown Árboles de Regresión ###Code import pandas as pd from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import KFold, cross_val_score import numpy as np data = pd.read_csv("../datasets/boston/Boston.csv") data.head() data.shape colnames = data.columns.values.tolist() predictors = colnames[:13] target = colnames[13] X = data[predictors] Y = data[target] regtree = DecisionTreeRegressor(min_samples_split=30, min_samples_leaf=10, max_depth=5, random_state=0) regtree.fit(X,Y) data["preds"] = regtree.predict(data[predictors]) data[["preds", "medv"]] ###Output _____no_output_____
Interview Preparation Kit/7. Search/Pairs.ipynb
###Markdown Pairs![image](https://user-images.githubusercontent.com/50367487/83125927-1bbc5780-a113-11ea-9668-d011eaf8e212.png) ###Code #!/bin/python3 import math import os import random import re import sys # Complete the pairs function below. def pairs(k, arr): d= dict() for i in arr: d[i] = d.get(i, 0) + 1 res = 0 for i in range(n): val = k + arr[i] if d.get(val): res += 1 return res if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') nk = input().split() n = int(nk[0]) k = int(nk[1]) arr = list(map(int, input().rstrip().split())) result = pairs(k, arr) fptr.write(str(result) + '\n') fptr.close() ###Output _____no_output_____
salomon_exp/Finetuning_1.ipynb
###Markdown Test Time Augmentation TTA ###Code # !pip install git+https://github.com/qubvel/ttach import ttach as tta transforms = tta.Compose( [ tta.HorizontalFlip(), tta.Rotate90(angles=[0, 180]), # tta.Scale(scales=[1, 2, 4]), # tta.Multiply(factors=[0.9, 1, 1.1]), ] ) tta_model = tta.ClassificationTTAWrapper(model, transforms) loss_val, acc_val = validate(valid_loader, tta_model, criterion, optimizer, 5) # # #--------------------------------------------- # lr = 2e-4 # 0.001 # criterion = nn.CrossEntropyLoss() # optimizer = optim.Adam(model.parameters(), lr=lr) # epoch_num = 5 # best_val_acc = 0.88 # total_loss_val, total_acc_val = [],[] # for epoch in range(1, epoch_num+1): # loss_train, acc_train = train(train_loader, tta_model, criterion, optimizer, epoch) # loss_val, acc_val = validate(valid_loader, tta_model, criterion, optimizer, epoch) # total_loss_val.append(loss_val) # total_acc_val.append(acc_val) # if acc_val > best_val_acc: # best_val_acc = acc_val # torch.save(model.state_dict(), model_name+'freeze_'+str(best_val_acc)[:4]+'.ckpt') # print('*****************************************************') # print('best record: [epoch %d], [val loss %.5f], [val acc %.5f]' % (epoch, loss_val, acc_val)) # print('*****************************************************') # # tta_model = tta.ClassificationTTAWrapper(model, tta.aliases.five_crop_transform()) # tta_model loss_val, acc_val = validate(train_loader, tta_model, criterion, optimizer, epoch) ###Output _____no_output_____ ###Markdown Pseudo Labelling ###Code T1 = 100 T2 = 700 af = 3 def alpha_weight(epoch): if epoch < T1: return 0.0 elif epoch > T2: return af else: return ((epoch-T1) / (T2-T1))*af best_val_acc total_loss_train, total_acc_train = [],[] def semi_superv_train(train_loader, model, criterion, optimizer, unlabeled_loader, valid_loader, epoch): model.eval() val_loss = AverageMeter() val_acc = AverageMeter() with torch.no_grad(): for i, data in enumerate(unlabeled_loader): images, _ = data N = images.size(0) images = Variable(images).to(device) labels = Variable(labels).to(device) outputs = model(images) prediction = outputs.max(1, keepdim=True)[1] val_acc.update(prediction.eq(labels.view_as(prediction)).sum().item()/N) val_loss.update(criterion(outputs, labels).item()) print('------------------------------------------------------------') print('[epoch %d], [val loss %.5f], [val acc %.5f]' % (epoch, val_loss.avg, val_acc.avg)) print('------------------------------------------------------------') return val_loss.avg, val_acc.avg model.train() train_loss = AverageMeter() train_acc = AverageMeter() curr_iter = (epoch - 1) * len(train_loader) for i, data in enumerate(unlabeled_loader): images, labels = data N = images.size(0) # print('image shape:',images.size(0), 'label shape',labels.size(0)) images = Variable(images).to(device) # labels = Variable(labels).to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() prediction = outputs.max(1, keepdim=True)[1] train_acc.update(prediction.eq(labels.view_as(prediction)).sum().item()/N) train_loss.update(loss.item()) curr_iter += 1 if (i + 1) % 100 == 0: print('[epoch %d], [iter %d / %d], [train loss %.5f], [train acc %.5f]' % ( epoch, i + 1, len(train_loader), train_loss.avg, train_acc.avg)) total_loss_train.append(train_loss.avg) total_acc_train.append(train_acc.avg) return train_loss.avg, train_acc.avg # Concept from : https://github.com/peimengsui/semi_supervised_mnist from tqdm.notebook import tqdm acc_scores = [] unlabel = [] pseudo_label = [] alpha_log = [] test_acc_log = [] test_loss_log = [] best_val_acc = 0.87 def semisup_train(train_loader, model, criterion, optimizer, unlabeled_loader, valid_loader, epoch): # optimizer = torch.optim.SGD(model.parameters(), lr = 0.1) # EPOCHS = 5 # Instead of using current epoch we use a "step" variable to calculate alpha_weight # This helps the model converge faster step = 100 model.train() # for epoch in tqdm(range(EPOCHS)): for epoch in range(epoch): # for batch_idx, x_unlabeled in enumerate(unlabeled_loader): for i, x_unlabeled in enumerate(unlabeled_loader): # Forward Pass to get the pseudo labels x_unlabeled = x_unlabeled[0].to(device) model.eval() with torch.no_grad(): output_unlabeled = model(x_unlabeled) pseudo_labeled = output_unlabeled.max(1, keepdim=True)[1] model.train() # Now calculate the unlabeled loss using the pseudo label output = model(x_unlabeled) pseudo_labeled = Variable(pseudo_labeled).to(device) output = Variable(output).to(device) unlabeled_loss = alpha_weight(step) * F.nll_loss(output, pseudo_labeled).tem() # Backpropogate optimizer.zero_grad() unlabeled_loss.backward() optimizer.step() # For every 50 batches train one epoch on labeled data if i % 50 == 0: # Normal training procedure for batch_idx, (X_batch, y_batch) in enumerate(train_loader): X_batch = Variable(X_batch).to(device) y_batch = Variable(y_batch).to(device) output = model(X_batch) labeled_loss = F.nll_loss(output, y_batch) optimizer.zero_grad() labeled_loss.backward() optimizer.step() # Now we increment step by 1 step += 1 loss_val, acc_va = validate(val_loader, model, criterion, optimizer, epoch) # evaluate(model, test_loader) print('Epoch: {} : Alpha Weight : {:.5f} | Test Acc : {:.5f} | Test Loss : {:.3f} '.format(epoch, alpha_weight(step), test_acc, test_loss)) if acc_va > best_val_acc: best_val_acc = acc_val torch.save(model.state_dict(), model_name+'freeze_'+str(best_val_acc)[:4]+'.ckpt') print('*****************************************************') print('best record: [epoch %d], [val loss %.5f], [val acc %.5f]' % (epoch, loss_val, acc_val)) print('*****************************************************') # """ LOGGING VALUES """ # alpha_log.append(alpha_weight(step)) # test_acc_log.append(test_acc/100) # test_loss_log.append(test_loss) # """ ************** """ model.train() semisup_train(train_loader, model, criterion, optimizer, unlabeled_loader, valid_loader, 5) # Concept from : https://github.com/peimengsui/semi_supervised_mnist from tqdm.notebook import tqdm acc_scores = [] unlabel = [] pseudo_label = [] alpha_log = [] test_acc_log = [] test_loss_log = [] best_val_acc = 0.87 def semisup_train(model, train_loader, unlabeled_loader, val_loader): # optimizer = torch.optim.SGD(model.parameters(), lr = 0.1) EPOCHS = 5 # Instead of using current epoch we use a "step" variable to calculate alpha_weight # This helps the model converge faster step = 100 model.train() # for epoch in tqdm(range(EPOCHS)): for epoch in range(EPOCHS): for batch_idx, x_unlabeled in enumerate(unlabeled_loader): # Forward Pass to get the pseudo labels x_unlabeled = x_unlabeled[0].to(device) model.eval() output_unlabeled = model(x_unlabeled) _, pseudo_labeled = torch.max(output_unlabeled, 1) model.train() """ ONLY FOR VISUALIZATION""" if (batch_idx < 3) and (epoch % 10 == 0): unlabel.append(x_unlabeled.cpu()) pseudo_label.append(pseudo_labeled.cpu()) """ ********************** """ # Now calculate the unlabeled loss using the pseudo label output = model(x_unlabeled) unlabeled_loss = alpha_weight(step) * criterion(output, pseudo_labeled) # Backpropogate optimizer.zero_grad() unlabeled_loss.backward() optimizer.step() # For every 2 batches train one epoch on labeled data if batch_idx % 2 == 0: # Normal training procedure for batch_idx, (X_batch, y_batch) in enumerate(train_loader): X_batch = X_batch.to(device) y_batch = y_batch.to(device) output = model(X_batch) labeled_loss = criterion(output, y_batch) optimizer.zero_grad() labeled_loss.backward() optimizer.step() # Now we increment step by 1 step += 1 loss_val, acc_va = validate(val_loader, model, criterion, optimizer, epoch) # evaluate(model, test_loader) print('Epoch: {} : Alpha Weight : {:.5f} | Test Acc : {:.5f} | Test Loss : {:.3f} '.format(epoch, alpha_weight(step), test_acc, test_loss)) if acc_va > best_val_acc: best_val_acc = acc_val torch.save(model.state_dict(), model_name+'freeze_'+str(best_val_acc)[:4]+'.ckpt') print('*****************************************************') print('best record: [epoch %d], [val loss %.5f], [val acc %.5f]' % (epoch, loss_val, acc_val)) print('*****************************************************') """ LOGGING VALUES """ alpha_log.append(alpha_weight(step)) test_acc_log.append(test_acc/100) test_loss_log.append(test_loss) """ ************** """ model.train() semisup_train(model, train_loader, unlabeled_loader, valid_loader) total_loss_train, total_acc_train = [],[] def train(train_loader, model, criterion, optimizer, unlabeled_loader, valid_loader, epoch): model.train() train_loss = AverageMeter() train_acc = AverageMeter() curr_iter = (epoch - 1) * len(train_loader) for i, data in enumerate(train_loader): images, labels = data N = images.size(0) # print('image shape:',images.size(0), 'label shape',labels.size(0)) images = Variable(images).to(device) labels = Variable(labels).to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() prediction = outputs.max(1, keepdim=True)[1] train_acc.update(prediction.eq(labels.view_as(prediction)).sum().item()/N) train_loss.update(loss.item()) curr_iter += 1 if (i + 1) % 100 == 0: print('[epoch %d], [iter %d / %d], [train loss %.5f], [train acc %.5f]' % ( epoch, i + 1, len(train_loader), train_loss.avg, train_acc.avg)) total_loss_train.append(train_loss.avg) total_acc_train.append(train_acc.avg) return train_loss.avg, train_acc.avg for _,label in ###Output _____no_output_____ ###Markdown Sumission ###Code class_names = {0:'cbsd', 1: 'cgm', 2: 'cbb', 3: 'healthy', 4: 'cmd'} def process_image(image_dir): # Process a PIL image for use in a PyTorch model # tensor.numpy().transpose(1, 2, 0) image = Image.open(image_dir) preprocess = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std)]) image = preprocess(image) # Convert 2D image to 1D vector image = np.expand_dims(image, 0) image = torch.from_numpy(image) inputs = image.to(device) return inputs # Using our model to predict the label def predict(image, model): # Pass the image through our model output = model(image) # Reverse the log function in our output output = torch.exp(output) # Get the top predicted class, and the output percentage for # that class probs, classes = output.topk(1, dim=1) return probs.item(), classes.item() test_directory = "./data/test/test/0" predictions, test_image_fileName = [], [] try: test_images = listdir(test_directory) for images in test_images: test_image_fileName.append(images) image = process_image(f'{test_directory}/{images}') top_prob, top_class = predict(image, model) predictions.append(class_names[top_class]) except Exception as e: print(e) print("[INFO] Creating pandas dataframe") submission_data = {"Category":predictions,"Id":test_image_fileName,} submission_data_frame = pd.DataFrame(submission_data) submission_data_frame.head() submission_data_frame.to_csv('submission'+model_name+'_freeze_86_flip.csv', header=True, index=False) ###Output _____no_output_____
experiments/spamClassifier.ipynb
###Markdown Only reading in one email for now ###Code enroncsv = "../experiments/data/enron.csv" metadataHeaders = '../experiments/data/metadataHeaders.csv' spam = '../experiments/data/spam.csv' spamSubjects = '../experiments/data/spamWords.csv' import pandas as pd columns = pd.read_csv(metadataHeaders, sep=',').columns.tolist() df = pd.read_csv(enroncsv, names=columns, sep='|', low_memory=False) print("-- DONE --") removableColumns = pd.read_csv('data/removableColumns.csv', sep=',').columns.tolist() df.drop(removableColumns, axis=1) print('-- DONE --') listOfEmailsForBagOfWords = df.loc[df['Directory'].str.contains('inbox')] print('-- DONE --') wordsPerEmail = df[pd.notnull(df['Subject'])] nonSpamSubjects = wordsPerEmail['Subject'] wordsPerEmail = nonSpamSubjects.str.split(' ') len(wordsPerEmail) import string printable = set(string.printable) def isEnglish(s): for x in s: if x not in printable: return False return True def addToBagOfWords(dictionary, arr): for word in arr: word = word.lower() if '=' in word: continue if '/' in word: continue if '\\' in word: continue if '_' in word: continue if '-' in word: continue if ':' in word: continue if '@' in word: continue if '#' in word: continue if '$' in word: word = '$' word = word.replace('.', '') word = word.replace(')', '') word = word.replace('(', '') word = word.replace('&', '') word = word.replace('\'', '') word = word.replace('\"', '') word = word.replace(',', '') word = word.replace('[', '') word = word.replace(']', '') word = word.replace('{', '') word = word.replace('}', '') word = word.replace(';', '') if word == '': continue if word in dictionary: dictionary[word] = dictionary[word] + 1 else: dictionary[word] = 1 return dictionary def addToDictionary(dictionary, arr): for index, subject in arr.iteritems(): dictionary = addToBagOfWords(dictionary, subject) return dictionary dictionary = {} dictionary = addToDictionary(dictionary, wordsPerEmail) len(dictionary) spamSubjects = pd.read_csv(spam, names=['Subject'], sep=',') wordsPerEmail = spamSubjects['Subject'].str.split(' ') dictionary = addToDictionary(dictionary, wordsPerEmail) len(dictionary) dictionaryList = [] for key in dictionary: dictionaryList.append([key, dictionary[key]]) dictionaryList = pd.DataFrame(dictionaryList, columns=["Word", "Occurances"]) len(dictionaryList) ###Output _____no_output_____ ###Markdown We will only use words that occurred more than 30 times in our bag of words as other words would almost never match up anyway ###Code dictionaryList = dictionaryList.loc[dictionaryList['Occurances'] > 30].reset_index(drop=True) len(dictionaryList) def addBagToInputOutput(inputItems, outputItems, arr): for index, subject in inputItems.iteritems(): posBagOfWords = {} posBagOfWords = addToBagOfWords(posBagOfWords, subject) listOfIn = [] for key in posBagOfWords: listOfIn.append(key) inputBag = dictionaryList['Word'].isin(listOfIn).values.tolist() arr.append([np.array(inputBag), np.array(outputItems)]) return arr ###Output _____no_output_____ ###Markdown Create training data ###Code import matplotlib.pyplot as plt import numpy as np training = [] NON_SPAM_SAMPLES = 5000 SPAM_SAMPLES = 5000 trainingPos = df[pd.notnull(df['Subject'])] trainingPos = trainingPos.sample(NON_SPAM_SAMPLES) trainingPos = trainingPos['Subject'] trainingPosSplit = trainingPos.str.split(' ') training = addBagToInputOutput(trainingPosSplit, [0], training) trainingNeg = spamSubjects.sample(SPAM_SAMPLES) trainingNeg = trainingNeg['Subject'] trainingNegSplit = trainingNeg.str.split(' ') training = addBagToInputOutput(trainingNegSplit, [1], training) training = np.array(training) np.random.shuffle(training) len(training) ###Output _____no_output_____ ###Markdown Lets set up a neuarl network with neurons on each layer input - 5558 + bias hidden layer 1 - 200 + bias hidden layer 2 - 20 + bias output - 1 The learing rate is set to 0.001The netword is bound to (-2, 2) ###Code from mlpy.numberGenerator.bounds import Bounds from mlpy.neuralNetwork.feedForwardNeuralNetwork import NeuralNetwork from mlpy.neuralNetwork.structure.layer import Layer l_rate = 0.001 bounds = Bounds(-2, 2) inputLayer = Layer(bounds, size = len(training[0][0]), prev = None, l_rate = l_rate, bias = True, label = "Input layer") hiddenLayer = Layer(bounds, size = 300, prev = inputLayer, l_rate = l_rate, bias = True, label = "Hidden layer") hiddenLayer2 = Layer(bounds, size = 30, prev = hiddenLayer, l_rate = l_rate, bias = True, label = "Hidden layer 2") outputLayer = Layer(bounds, size = len(training[0][1]), prev = hiddenLayer2, l_rate = l_rate, bias = False, label = "Output layer") fnn = NeuralNetwork() fnn.appendLayer(inputLayer) fnn.appendLayer(hiddenLayer) fnn.appendLayer(hiddenLayer2) fnn.appendLayer(outputLayer) group_training = np.array([input[0] for input in training]) group_target = np.array([output[1] for output in training]) errors = [] ###Output _____no_output_____ ###Markdown We will run training over 4000 iterations and output the mean error every 200 iterations. ###Code ITERATIONS = 8000 print("Starting..") for i in range(ITERATIONS): mod = i % len(training) in_out = training[mod] result = fnn.fire(group_training) error = fnn.backPropagation(group_target) if i % 50 == 0: print(str(np.round(i/ITERATIONS*100)) + '%\t', error.mean()) print("-- DONE --") ###Output Starting.. 0.0% -0.12995725726515203 1.0% -0.21724487662987976 1.0% -0.18667304135646745 2.0% -0.154810128458398 2.0% -0.13319424540570068 3.0% -0.11482310680891214 4.0% -0.10200137026296527 4.0% -0.09131738005633179 5.0% -0.08177446592544309 6.0% -0.07356384744998444 6.0% -0.06472169480361051 7.0% -0.056788084025721296 8.0% -0.05390726930064169 8.0% -0.05214460293985674 9.0% -0.04926056579967013 9.0% -0.046819271107435896 10.0% -0.04360912417521026 11.0% -0.03953216966816548 11.0% -0.034343089128355986 12.0% -0.028134008620796118 12.0% -0.022479422292637174 13.0% -0.018752070351201765 14.0% -0.014828378816415114 14.0% -0.009150373463211663 15.0% -0.004839548813960415 16.0% -0.003110097369714201 16.0% -0.002767333887769694 17.0% -0.002777686060159787 18.0% -0.002862039866603216 18.0% -0.0029086166534290085 19.0% -0.0028686689112518357 19.0% -0.0027967610791959138 20.0% -0.0027035285623649334 21.0% -0.002669235427740258 21.0% -0.002716969116087496 22.0% -0.0028705231707788813 22.0% -0.002823455610468195 23.0% -0.00279034224904821 24.0% -0.0027777263149955226 24.0% -0.0028138742234375537 25.0% -0.0029494982141474997 26.0% -0.0031635396069228045 26.0% -0.003272504248318063 27.0% -0.003248178515255792 28.0% -0.0031899507723966466 28.0% -0.0031347994504770846 29.0% -0.003166854035949554 29.0% -0.0032252218254010044 30.0% -0.0032827878026197013 31.0% -0.0033388730774651125 31.0% -0.0033859723955635035 32.0% -0.003427195709314436 32.0% -0.0034454593846064752 33.0% -0.0034172965857931573 34.0% -0.0034839070461295477 34.0% -0.003567664395593532 35.0% -0.003655396827364685 36.0% -0.003755592805128952 36.0% -0.0038682923938287346 37.0% -0.004000206091561236 38.0% -0.004108928511617719 38.0% -0.004126024113292501 39.0% -0.004124974148298702 39.0% -0.004154021838255315 40.0% -0.004200461355393985 41.0% -0.004194888264219212 41.0% -0.004183185783848195 42.0% -0.004222115502592257 42.0% -0.004254361909348518 43.0% -0.00425940449945379 44.0% -0.004264702526397921 44.0% -0.004403401831741533 45.0% -0.004425979505792481 46.0% -0.004375594626558757 46.0% -0.0043368406266972625 47.0% -0.0044111837348234095 48.0% -0.004491819342457434 48.0% -0.00455920602990423 49.0% -0.004568583439620395 49.0% -0.004598076987781548 50.0% -0.004643328483229581 51.0% -0.004715507254854109 51.0% -0.004841374948858609 52.0% -0.005006680064098336 52.0% -0.004983604023061282 53.0% -0.004926676299501488 54.0% -0.004888368021476618 54.0% -0.004860570328943323 55.0% -0.004830731052195825 56.0% -0.004787079716947177 56.0% -0.004725144749739807 57.0% -0.0046994414852798315 57.0% -0.004723233766614949 58.0% -0.004760997306724776 59.0% -0.004780624818512833 59.0% -0.004763968059501063 60.0% -0.00474393543866398 61.0% -0.00472669053701639 61.0% -0.004705515517139774 62.0% -0.004669793253409783 62.0% -0.004609309090833115 63.0% -0.004593819537091224 64.0% -0.004620532813222186 64.0% -0.004629592268684322 65.0% -0.004629476225383548 66.0% -0.004641419707323327 66.0% -0.004670627190246738 67.0% -0.0047106929917137864 68.0% -0.004759278118927859 68.0% -0.004779553317507377 69.0% -0.004731523953287008 69.0% -0.004640584401409143 70.0% -0.00469507743304905 71.0% -0.00471212985843715 71.0% -0.004720097736077684 72.0% -0.0047357845182810256 72.0% -0.004765637129127012 73.0% -0.00480940188287139 74.0% -0.00486223679469922 74.0% -0.004922963888478532 75.0% -0.0049731251866059 76.0% -0.00496719984727518 76.0% -0.0021382446188515417 77.0% -0.0021957828314472716 78.0% -0.00214754414728875 78.0% -0.002352515657152761 79.0% -0.002424745678361645 79.0% -0.0024741641370942353 80.0% -0.002493361287073093 81.0% -0.00249084647627102 81.0% -0.0024691809287224887 82.0% -0.002433859666036953 82.0% -0.002394277055050933 83.0% -0.0023568908865243417 84.0% -0.0023218844189309175 84.0% -0.0022858766720460643 85.0% -0.0022428357992942223 86.0% -0.002182751549752209 86.0% -0.002087199367170067 87.0% -0.0019202433456739208 88.0% -0.001660165640411973 88.0% -0.0015930724997442064 89.0% -0.0018462253297201444 89.0% -0.002018390478420803 90.0% -0.0020868873699028062 91.0% -0.0020957746496549114 91.0% -0.0020601682142609573 92.0% -0.0019670977929095806 92.0% -0.0017917800432042344 93.0% -0.0017850568119192076 94.0% -0.0019547558108213153 94.0% -0.002030454694460856 95.0% -0.002059503171589354 96.0% -0.002073873914388648 96.0% -0.002086006084592534 97.0% -0.002099461303314075 98.0% -0.0021142203179992216 98.0% -0.0021268926907029146 99.0% -0.00212100866762783 99.0% -0.002112834030166159 -- DONE -- ###Markdown Create testing data ###Code testing = [] TEST_NON_SPAM_SAMPLES = 5000 TEST_SPAM_SAMPLES = 5000 trainingPos = df[pd.notnull(df['Subject'])] trainingPos = trainingPos.sample(TEST_NON_SPAM_SAMPLES) trainingPos = trainingPos['Subject'] trainingPosSplit = trainingPos.str.split(' ') testing = addBagToInputOutput(trainingPosSplit, [0], testing) trainingNeg = spamSubjects.sample(TEST_SPAM_SAMPLES) trainingNeg = trainingNeg['Subject'] trainingNegSplit = trainingNeg.str.split(' ') testing = addBagToInputOutput(trainingNegSplit, [1], testing) testing = np.array(testing) np.random.shuffle(testing) len(testing) ###Output _____no_output_____ ###Markdown Testing the model we will take the test data and use it as an measure of performace. The following will be output:1. The Classification Accuracy2. The Non-spam Classsification accuracy3. The Spam Classification accuracy ###Code correct = 0 spamCorrect = 0 nonSpamCorrect = 0 for i in range(len(testing)): in_out = testing[i] result = fnn.fire(np.array([in_out[0]])) target = in_out[1][0] result = np.round(result[0][0]) if result == target: correct += 1 if target == 1: spamCorrect += 1 else: nonSpamCorrect += 1 print("Classification accuracy: ", correct / len(testing)) print("Non spam classification accuracy: ", nonSpamCorrect / TEST_NON_SPAM_SAMPLES) print("Spam classification accuracy: ", spamCorrect / TEST_SPAM_SAMPLES) ###Output Classification accuracy: 0.8731 Non spam classification accuracy: 0.8638 Spam classification accuracy: 0.8824 ###Markdown Profiling: Lets apply the classifier to a subset of the data to see what it classifies as spam ###Code dfClassify = df.drop(['Filename', 'Person', 'Directory', 'Message-ID', 'Content-Transfer-Encoding', 'Content-Type', 'Date', 'X-FileName', 'X-To', 'X-bcc', 'Cc', 'X-cc', 'X-Folder', 'X-Origin', 'Time', 'Bcc', 'X-From', 'Attendees', 'Re', 'Mime-Version'], axis=1) dfClassify = dfClassify[pd.notnull(df['Subject'])] dfClassify = dfClassify.sample(len(dfClassify)) def classify(arr): classifySplit = arr.split(' ') posBagOfWords = {} posBagOfWords = addToBagOfWords(posBagOfWords, classifySplit) listOfIn = [] for key in posBagOfWords: listOfIn.append(key) inputBag = dictionaryList['Word'].isin(listOfIn).values.tolist() result = fnn.fire(np.array([np.array(inputBag)]))[0][0] return result dfClassify['Classification'] = dfClassify['Subject'].apply(classify) dfClassify.sort_values(['Classification'], ascending=[0]) dfClassify[dfClassify['From'] == "[email protected]"] ###Output _____no_output_____ ###Markdown Lets group by the sender and see which mailing address sent the most spam ###Code groupedClassify = dfClassify[dfClassify['Classification'] > 0.90] groupedClassify = groupedClassify.loc[groupedClassify['From'].str.contains('enron.com', regex=True) == False] groupedClassify = groupedClassify.groupby(['From']).agg(['count', 'mean']) groupedClassify = groupedClassify.reset_index() groupedClassify.sort_values([('Classification', 'count')], ascending=[0]).head() ###Output _____no_output_____
exercises/exercism.org/Basics/Guidos_Gorgeous_Lasagna.ipynb
###Markdown AufgabeQuelle: https://exercism.org/tracks/python/exercises/guidos-gorgeous-lasagna/Sie werden einen Code schreiben, der Ihnen hilft, eine wunderschöne Lasagne aus Ihrem Lieblingskochbuch zu kochen.Sie haben fünf Aufgaben, die sich alle auf das Kochen Ihres Rezepts beziehen. Definieren Sie die erwartete Backzeit in MinutenDefinieren Sie eine EXPECTED_BAKE_TIME-Konstante, die angibt, wie viele Minuten die Lasagne im Ofen backen soll. Laut Kochbuch sollte die Lasagne 40 Minuten im Ofen sein: Berechnen Sie die verbleibende Backzeit in MinutenImplementieren Sie die bake_time_remaining()-Funktion, die die tatsächlichen Minuten, die die Lasagne im Ofen war, als Argument annimmt und zurückgibt, wie viele Minuten die Lasagne basierend auf der EXPECTED_BAKE_TIME noch backen muss. Berechnen Sie die Vorbereitungszeit in MinutenImplementieren Sie die preparation_time_in_minutes()-Funktion, die die Anzahl der Schichten, die Sie der Lasagne hinzufügen möchten, als Argument verwendet und zurückgibt, wie viele Minuten Sie damit verbringen würden, sie zu machen. Angenommen, jede Schicht dauert 2 Minuten, um sich vorzubereiten. Berechnen Sie die gesamte verstrichene Garzeit (Vorbereiten + Backen) in MinutenImplementieren Sie die elapsed_time_in_minutes()-Funktion mit zwei Parametern: number_of_layers(die Anzahl der Schichten, die der Lasagne hinzugefügt werden) und elapsed_bake_time(die Anzahl der Minuten, die die Lasagne im Ofen gebacken hat). Diese Funktion sollte die Gesamtzahl der Minuten, die Sie bisher gekocht haben (als Summe Ihrer Vorbereitungszeit und der Zeit, die die Lasagne bereits im Ofen gebacken hat), zurückgeben. Aktualisieren Sie den Code, so dass jede Funktion korrekt dokumentiert ist.Gehen Sie den Code durch und fügen Sie Notizen und Dokumentation hinzu, so wie es bspw. bei der Funktionen bake_time_remaining() gezeigt ist. Konzepte- Variablen und Konstanten- Funktionen- Addition, Subtraktion und Multiplikation- Dokumentation von Funktionen Automatische Überprüfung ###Code nachricht = "Ihre Implementierung von {} ist {}" true_or_false = bake_time_remaining(10) == 30 print(nachricht.format("bake_time_remaining()", true_or_false)) true_or_false = preparation_time_in_minutes(12) == 24 print(nachricht.format("preparation_time_in_minutes()", true_or_false)) true_or_false = elapsed_time_in_minutes(10, 20) == 40 print(nachricht.format("elapsed_time_in_minutes()", true_or_false)) ###Output Ihre Implementierung von bake_time_remaining() ist True Ihre Implementierung von preparation_time_in_minutes() ist True Ihre Implementierung von elapsed_time_in_minutes() ist True ###Markdown Ihre Lösung ###Code EXPECTED_BAKE_TIME = 40 PREPARATION_TIME = 2 # TODO: Definiere die Funktion 'bake_time_remaining()' def bake_time_remaining(elapsed_bake_time): """Berechnen Sie die verbleibende Backzeit. :param elapsed_bake_time: int Backzeit bereits abgelaufen. :return: int verbleibende Backzeit abgeleitet von 'EXPECTED_BAKE_TIME'. Funktion, sterben die tatsächlichen Minuten benötigt, in denen die sterben im Ofen war, als ein Argument und gibt zurück, wie viele Minuten die Lasagne noch braucht, um zu backen basierend auf der `EXPECTED_BAKE_TIME`. """ pass # TODO: Definiere die Funktion 'preparation_time_in_minutes()' # TODO: Definiere die Funktion 'elapsed_time_in_minutes()' bake_time_remaining() ###Output _____no_output_____
nbs/indexers.FaceClusteringIndexer.Models.ipynb
###Markdown FaceClustering Model This module contains functionality to cluster faces on images by person. It uses the `FaceEmbeddingModel` to extract faces from photos, crop them and create embeddings for each face. These are embeddings are used as input for this module to cluster them based on network topology generated by the the graph of all embeddings. ###Code # export class FaceClusteringModel(): model_fname = "pretrained_gcn_v_ms1m.pth" model_path = MODEL_DIR / model_fname model_s3_url = f"{MEMRI_S3}/{model_fname}" def __init__(self, tau=0.4, *args, **kwargs): # tau used in the paper=0.65 self.tau=tau self.rec_model = FaceEmbeddingModel() self.clustering_model = GCN_V(feature_dim=256, nhid=512, nclass=1, dropout=0.0) download_file(self.model_s3_url, self.model_path) load_checkpoint(self.clustering_model, str(self.model_path), map_location="cpu", strict=True); self.clustering_model.eval() def get_cluster_labels(self, features): dataset = GCNVDataset(features) features = torch.FloatTensor(dataset.features) adj = sparse_mx_to_torch_sparse_tensor(dataset.adj) confidences = self.clustering_model((features, adj)).detach().numpy() clusters = confidence2clusters(confidences, dists=dataset.dists, nbrs=dataset.nbrs, tau=self.tau) return clusters def run(self, photos): crop_photos = self.rec_model.get_crops(photos) for c in progress_bar(crop_photos): c.embedding = self.rec_model.get_embedding(c) crop_embeddings = np.stack([x.embedding[256:] for x in crop_photos]) cluster_labels = self.get_cluster_labels(crop_embeddings) return crop_photos, cluster_labels ###Output _____no_output_____ ###Markdown Running the model on a toy dataset You can test the model on your favorite images, we use 2 images from the modern family tv show as input. ###Code data_dir = PYI_TESTDATA / "photos" / "faceclustering" photos = [IPhoto.from_path(path=x, size=640) for x in data_dir.ls() if str(x).endswith("jpg")] show_images(photos) ###Output _____no_output_____ ###Markdown You can initialize the model and run it on your data with a few very simple function calls ###Code model = FaceClusteringModel() crops, crop_cluster_labels = model.run(photos) ###Output _____no_output_____ ###Markdown Visualize results You can group the photos from a cluster using the `group_clusters` functions, and easily visualize the results. ###Code for i, photos in enumerate(group_clusters(crops, crop_cluster_labels)[:3]): print(f"Cluster {i}") show_images(photos) ###Output Cluster 0 ###Markdown Export - ###Code # hide from nbdev.export import * notebook2script() ###Output Converted basic.ipynb. Converted importers.EmailImporter.ipynb. Converted importers.Importer.ipynb. Converted importers.util.ipynb. Converted index.ipynb. Converted indexers.FaceClusteringIndexer.Models.ipynb. Converted indexers.FaceClusteringIndexer.Utils.ipynb. Converted indexers.FaceClusteringIndexer.indexer.ipynb. Converted indexers.FaceRecognitionModel.ipynb. Converted indexers.FacerecognitionIndexer.Photo.ipynb. Converted indexers.GeoIndexer.ipynb. Converted indexers.NoteListIndexer.NoteList.ipynb. Converted indexers.NoteListIndexer.Parser.ipynb. Converted indexers.NoteListIndexer.ipynb. Converted indexers.NoteListIndexer.util.ipynb. Converted indexers.indexer.ipynb. Converted itembase.ipynb. Converted pod.client.ipynb.
project3/.Trash-0/files/project_3_starter 6.ipynb
###Markdown Project 3: Smart Beta Portfolio and Portfolio Optimization InstructionsEach problem consists of a function to implement and instructions on how to implement the function. The parts of the function that need to be implemented are marked with a ` TODO` comment. After implementing the function, run the cell to test it against the unit tests we've provided. For each problem, we provide one or more unit tests from our `project_tests` package. These unit tests won't tell you if your answer is correct, but will warn you of any major errors. Your code will be checked for the correct solution when you submit it Udacity. PackagesWhen you implement the functions, you'll only need to use the [Pandas](https://pandas.pydata.org/) and [Numpy](http://www.numpy.org/) packages. Don't import any other packages, otherwise the grader willn't be able to run your code.The other packages that we're importing is `helper`, `project_helper`, and `project_tests`. These are custom packages built to help you solve the problems. The `helper` and `project_helper` module contains utility functions and graph functions. The `project_tests` contains the unit tests for all the problems. Install Packages ###Code import sys !{sys.executable} -m pip install -r requirements.txt ###Output _____no_output_____ ###Markdown Load Packages ###Code import pandas as pd import numpy as np import helper import project_helper import project_tests ###Output _____no_output_____ ###Markdown Market DataThe data source we'll be using is the [Wiki End of Day data](https://www.quandl.com/databases/WIKIP) hosted at [Quandl](https://www.quandl.com). This contains data for many stocks, but we'll just be looking at the S&P 500 stocks. We'll also make things a little easier to solve by narrowing our range of time from 2007-06-30 to 2017-09-30. Set API KeySet the `quandl_api_key` variable to your Quandl api key. You can find your Quandl api key [here](https://www.quandl.com/account/api). ###Code # TODO: Add your Quandl API Key quandl_api_key = '' ###Output _____no_output_____ ###Markdown Download Data ###Code import os snp500_file_path = 'data/tickers_SnP500.txt' wiki_file_path = 'data/WIKI_PRICES.csv' start_date, end_date = '2013-07-01', '2017-06-30' use_columns = ['date', 'ticker', 'adj_close', 'adj_volume', 'ex-dividend'] if not os.path.exists(wiki_file_path): with open(snp500_file_path) as f: tickers = f.read().split() helper.download_quandl_dataset(quandl_api_key, 'WIKI', 'PRICES', wiki_file_path, use_columns, tickers, start_date, end_date) else: print('Data already downloaded') ###Output _____no_output_____ ###Markdown Load Data ###Code df = pd.read_csv(wiki_file_path) ###Output _____no_output_____ ###Markdown Create the UniverseWe'll be selecting dollar volume stocks for our stock universe. This universe is similar to large market cap stocks, because they are the highly liquid. ###Code percent_top_dollar = 0.2 high_volume_symbols = project_helper.large_dollar_volume_stocks(df, 'adj_close', 'adj_volume', percent_top_dollar) df = df[df['ticker'].isin(high_volume_symbols)] ###Output _____no_output_____ ###Markdown 2-D MatricesIn the previous projects, we used a [multiindex](https://pandas.pydata.org/pandas-docs/stable/advanced.html) to store all the data in a single dataframe. As you work with larger datasets, it come infeasable to store all the data in memory. Starting with this project, we'll be storing all our data as 2-D matrices to match what you'll be expecting in the real world. ###Code close = df.reset_index().pivot(index='ticker', columns='date', values='adj_close') volume = df.reset_index().pivot(index='ticker', columns='date', values='adj_volume') ex_dividend = df.reset_index().pivot(index='ticker', columns='date', values='ex-dividend') ###Output _____no_output_____ ###Markdown View DataTo see what one of these 2-d matrices looks like, let's take a look at the closing prices matrix. ###Code project_helper.print_dataframe(close) ###Output _____no_output_____ ###Markdown Part 1: Smart Beta PortfolioIn Part 1 of this project, you'll build a smart beta portfolio using dividend yield. To see how well it performs, you'll compare this portfolio to an index. Index WeightsAfter building the smart beta portfolio, should compare it to a similar strategy or index.Implement `generate_dollar_volume_weights` to generate the weights for this index. For each date, generate the weights based on dollar volume traded for that date. For example, assume the following is dollar volume traded data:| | 10/02/2010 | 10/03/2010 ||----------|------------|------------|| **AAPL** | 2 | 2 || **BBC** | 5 | 6 || **GGL** | 1 | 2 || **ZGB** | 6 | 5 |The weights should be the following:| | 10/02/2010 | 10/03/2010 ||----------|------------|------------|| **AAPL** | 0.142 | 0.133 || **BBC** | 0.357 | 0.400 || **GGL** | 0.071 | 0.133 || **ZGB** | 0.428 | 0.333 | ###Code def generate_dollar_volume_weights(close, volume): """ Generate dollar volume weights. Parameters ---------- close : DataFrame Close price for each ticker and date volume : str Volume for each ticker and date Returns ------- dollar_volume_weights : DataFrame The dollar volume weights for each ticker and date """ assert close.index.equals(volume.index) assert close.columns.equals(volume.columns) #TODO: Implement function return None project_tests.test_generate_dollar_volume_weights(generate_dollar_volume_weights) ###Output _____no_output_____ ###Markdown View DataLet's generate the index weights using `generate_dollar_volume_weights` and view them using a heatmap. ###Code index_weights = generate_dollar_volume_weights(close, volume) project_helper.plot_weights(index_weights, 'Index Weights') ###Output _____no_output_____ ###Markdown ETF WeightsNow that we have the index weights, it's time to build the weights for the smart beta ETF. Let's build an ETF portfolio that is based on dividends. This is a common factor used to build portfolios. Unlike most portfolios, we'll be using a single factor for simplicity.Implement `calculate_dividend_weights` to returns the weights for each stock based on its total dividend yield over time. This is similar to generating the weight for the index, but it's dividend data instead. ###Code def calculate_dividend_weights(ex_dividend): """ Calculate dividend weights. Parameters ---------- ex_dividend : DataFrame Ex-dividend for each stock and date Returns ------- dividend_weights : DataFrame Weights for each stock and date """ #TODO: Implement function return None project_tests.test_calculate_dividend_weights(calculate_dividend_weights) ###Output _____no_output_____ ###Markdown View DataLet's generate the ETF weights using `calculate_dividend_weights` and view them using a heatmap. ###Code etf_weights = calculate_dividend_weights(ex_dividend) project_helper.plot_weights(etf_weights, 'ETF Weights') ###Output _____no_output_____ ###Markdown ReturnsImplement `generate_returns` to generate the returns. Note this isn't log returns. Since we're not dealing with volatility, we don't have to use log returns. ###Code def generate_returns(close): """ Generate returns for ticker and date. Parameters ---------- close : DataFrame Close price for each ticker and date Returns ------- returns : Dataframe The returns for each ticker and date """ #TODO: Implement function return None project_tests.test_generate_returns(generate_returns) ###Output _____no_output_____ ###Markdown View DataLet's generate the closing returns using `generate_returns` and view them using a heatmap. ###Code returns = generate_returns(close) project_helper.plot_returns(returns, 'Close Returns') ###Output _____no_output_____ ###Markdown Weighted ReturnsWith the returns of each stock computed, we can use it to compute the returns for for an index or ETF. Implement `generate_weighted_returns` to create weighted returns using returns and weights for an Index or ETF. ###Code def generate_weighted_returns(returns, weights): """ Generate weighted returns. Parameters ---------- returns : DataFrame Returns for each ticker and date weights : DataFrame Weights for each ticker and date Returns ------- weighted_returns : DataFrame Weighted returns for each ticker and date """ assert returns.index.equals(weights.index) assert returns.columns.equals(weights.columns) #TODO: Implement function return None project_tests.test_generate_weighted_returns(generate_weighted_returns) ###Output _____no_output_____ ###Markdown View DataLet's generate the etf and index returns using `generate_weighted_returns` and view them using a heatmap. ###Code index_weighted_returns = generate_weighted_returns(returns, index_weights) etf_weighted_returns = generate_weighted_returns(returns, etf_weights) project_helper.plot_returns(index_weighted_returns, 'Index Returns') project_helper.plot_returns(etf_weighted_returns, 'ETF Returns') ###Output _____no_output_____ ###Markdown Cumulative ReturnsImplement `calculate_cumulative_returns` to calculate the cumulative returns over time. ###Code def calculate_cumulative_returns(returns): """ Calculate cumulative returns. Parameters ---------- returns : DataFrame Returns for each ticker and date Returns ------- cumulative_returns : Pandas Series Cumulative returns for each date """ #TODO: Implement function return None project_tests.test_calculate_cumulative_returns(calculate_cumulative_returns) ###Output _____no_output_____ ###Markdown View DataLet's generate the etf and index cumulative returns using `calculate_cumulative_returns` and compare the two. ###Code index_weighted_cumulative_returns = calculate_cumulative_returns(index_weighted_returns) etf_weighted_cumulative_returns = calculate_cumulative_returns(etf_weighted_returns) project_helper.plot_benchmark_returns(index_weighted_cumulative_returns, etf_weighted_cumulative_returns, 'Smart Beta ETF vs Index') ###Output _____no_output_____ ###Markdown Tracking ErrorIn order to check the performance of the smart beta portfolio, we can compare it against the index. Let's generate the tracking error using the helper function's `tracking_error` and graph it over time. ###Code smart_beta_tracking_error = project_helper.tracking_error(index_weighted_cumulative_returns, etf_weighted_cumulative_returns) project_helper.plot_tracking_error(smart_beta_tracking_error, 'Smart Beta Tracking Error') ###Output _____no_output_____ ###Markdown Part 2: Portfolio OptimizationIn Part 2, you'll optimize the index you created in part 1. You'll use `cvxopt` to optimize the convex problem of finding the optimal weights for the portfolio. Just like before, we'll compare these results to the index. CovarianceImplement `get_covariance` to calculate the covariance of `returns` and `weighted_index_returns`. We'll use this to feed into our convex optimization function. By using covariance, we can prevent the optimizer from going all in on a few stocks. ###Code def get_covariance(returns, weighted_index_returns): """ Calculate covariance matrices. Parameters ---------- returns : DataFrame Returns for each ticker and date weighted_index_returns : DataFrame Weighted index returns for each ticker and date Returns ------- xtx, xty : (2 dimensional Ndarray, 1 dimensional Ndarray) """ assert returns.index.equals(weighted_index_returns.index) assert returns.columns.equals(weighted_index_returns.columns) #TODO: Implement function return None, None project_tests.test_get_covariance(get_covariance) ###Output _____no_output_____ ###Markdown View DataLet's look the the covariance generated from `get_covariance`. ###Code xtx, xty = get_covariance(returns, index_weighted_returns) xtx = pd.DataFrame(xtx, returns.index, returns.index) xty = pd.Series(xty, returns.index) project_helper.plot_covariance(xty, xtx) ###Output _____no_output_____ ###Markdown Quadratic ProgrammingNow that you have the covariance, we can use this to optimize the weights. Run the following cell to generate optimal weights using helper function's `solve_qp`. ###Code raw_optim_etf_weights = project_helper.solve_qp(xtx.values, xty.values) raw_optim_etf_weights_per_date = np.tile(raw_optim_etf_weights, (len(returns.columns), 1)) optim_etf_weights = pd.DataFrame(raw_optim_etf_weights_per_date.T, returns.index, returns.columns) ###Output _____no_output_____ ###Markdown Optimized PortfolioWith our optimized etf weights built using quadratic programming, let's compare it to the index. Run the next cell to calculate the optimized etf returns and compare the returns to the index returns. ###Code optim_etf_returns = generate_weighted_returns(returns, optim_etf_weights) optim_etf_cumulative_returns = calculate_cumulative_returns(optim_etf_returns) project_helper.plot_benchmark_returns(index_weighted_cumulative_returns, optim_etf_cumulative_returns, 'Optimized ETF vs Index') optim_etf_tracking_error = project_helper.tracking_error(index_weighted_cumulative_returns, optim_etf_cumulative_returns) project_helper.plot_tracking_error(optim_etf_tracking_error, 'Optimized ETF Tracking Error') ###Output _____no_output_____ ###Markdown Rebalance PortfolioThe optimized etf portfolio used different weights for each day. After calculating in transaction fees, this amount of turnover to the portfolio can reduce the total returns. Let's find the optimal times to rebalance the portfolio instead of doing it every day.Implement `rebalance_portfolio` to rebalance a portfolio. ###Code def rebalance_portfolio(returns, weighted_index_returns, shift_size, chunk_size): """ Get weights for each rebalancing of the portfolio. Parameters ---------- returns : DataFrame Returns for each ticker and date weighted_index_returns : DataFrame Weighted index returns for each ticker and date shift_size : int The number of days between each rebalance chunk_size : int The number of days to look in the past for rebalancing Returns ------- all_rebalance_weights : list of Ndarrays The etf weights for each point they are rebalanced """ assert returns.index.equals(weighted_index_returns.index) assert returns.columns.equals(weighted_index_returns.columns) assert shift_size > 0 assert chunk_size >= 0 #TODO: Implement function return None project_tests.test_rebalance_portfolio(rebalance_portfolio) ###Output _____no_output_____ ###Markdown Run the following cell to rebalance the portfolio using `rebalance_portfolio`. ###Code chunk_size = 250 shift_size = 5 all_rebalance_weights = rebalance_portfolio(returns, index_weighted_returns, shift_size, chunk_size) ###Output _____no_output_____ ###Markdown Portfolio Rebalance CostWith the portfolio rebalanced, we need to use a metric to measure the cost of rebalancing the portfolio. Implement `get_rebalance_cost` to calculate the rebalance cost. ###Code def get_rebalance_cost(all_rebalance_weights, shift_size, rebalance_count): """ Get the cost of all the rebalancing. Parameters ---------- all_rebalance_weights : list of Ndarrays ETF Returns for each ticker and date shift_size : int The number of days between each rebalance rebalance_count : int Number of times the portfolio was rebalanced Returns ------- rebalancing_cost : float The cost of all the rebalancing """ assert shift_size > 0 assert rebalance_count > 0 #TODO: Implement function return None project_tests.test_get_rebalance_cost(get_rebalance_cost) ###Output _____no_output_____ ###Markdown Run the following cell to get the rebalance cost from `get_rebalance_cost`. ###Code unconstrained_costs = get_rebalance_cost(all_rebalance_weights, shift_size, returns.shape[1]) print(unconstrained_costs) ###Output _____no_output_____
src/linear_regression_using_scikit_learn.ipynb
###Markdown ImportsNumpy import for array processing, python doesn’t have built in array support. The feature of working with native arrays can be used in python with the help of numpy library.Pandas is a library of python used for working with tables, on importing the data, mostly data will be of table format, for ease manipulation of tables pandas library is importedMatplotlib is a library of python used to plot graphs, for the purpose of visualizing the results we would be plotting the results with the help of matplotlib library. ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Reading the dataset from dataIn this line of code using the read_excel method of pandas library, the dataset has been imported from data folder and stored in dataset variable. ###Code dataset = pd.read_csv(r'..\\data\\prices.csv') ###Output _____no_output_____ ###Markdown On viewing the dataset, it contains of two columns X and Y where X is dependent variable and Y is Independent Variable. ###Code dataset.head() ###Output _____no_output_____ ###Markdown Creating Dependent and Independent variablesThe X Column from the dataset is extracted into an X variable of type numpy, similarly the y variableX is an independent variable Y is dependent variable Inference ###Code X = dataset['X'].values y = dataset['Y'].values ###Output _____no_output_____ ###Markdown On execution of first line would result in a pandas Series ObjectOn using values attribute it would result in an numpy array ###Code print(type(dataset['X'])) print(type(dataset['X'].values)) ###Output <class 'pandas.core.series.Series'> <class 'numpy.ndarray'> ###Markdown Visualizing the data The step is to just see how the dataset is On visualization the data would appear something like thisThe X and Y attributes would vary based on dataset.Each point on the plot is a data point showing the respective list price on x-axis and Best Price on y-axis ###Code title='Linear Regression on Prices Dataset' x_axis_label = 'List Price' y_axis_label = 'Best Price' plt.scatter(X,y) plt.title(title) plt.xlabel(x_axis_label) plt.ylabel(y_axis_label) plt.show() ###Output _____no_output_____ ###Markdown Splitting the data into training set and test setWe are splitting the whole dataset into training and test set where training set is used for fitting the line to data and test set is used to check how good the line if for the data. ###Code from sklearn.model_selection import train_test_split X_test,X_train,y_test,y_train = train_test_split(X,y, test_size = 0.8) ###Output _____no_output_____ ###Markdown Reshaping the numpy arrays since the scikit learn model expects 2-D array in further codeIn further the scikit learn model would be expecting a 2-D array of shape (length,1). ###Code X_train = np.reshape(X_train,newshape = (-1,1)) y_train = np.reshape(y_train,newshape = (-1,1)) X_test = np.reshape(X_test,newshape = (-1,1)) y_test = np.reshape(y_test,newshape = (-1,1)) ###Output _____no_output_____ ###Markdown The code was just to convert a single dimensional array into a 2-D array where each element is an array. ###Code print('Before Reshaping',np.shape(X)) print('After Reshaping',np.shape(X_train)) ###Output Before Reshaping (23,) After Reshaping (19, 1) ###Markdown Importing the linear model from sklearn frameworkFrom scikit learn Library LinearRegression is imported. Lr is an object of LinearRegression.The process of training is done in the fit method, our dependent and independent variable are fed into to the fit method in which it would try to fit a line to the data provided. ###Code from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X = X_train, y = y_train) ###Output _____no_output_____ ###Markdown Predicting the ResultsBy the trained linear regression model we are trying to predict the values of test data. Y_pred variable contains all the predicted y-values of the test x-values. ###Code y_pred = lr.predict(X_test) ###Output _____no_output_____ ###Markdown Visualizing the ResultsAs we have predicted the y-values for a set of x-values we are visualizing the results to check how good did our line fit for our predictions.The plot shows the red points are the data points are actual values where the blue line is the predictions. ###Code plt.scatter(X_test,y_test,c='red') plt.plot(X_test,y_pred) plt.title(title) plt.xlabel(x_axis_label) plt.ylabel(y_axis_label) plt.show() ###Output _____no_output_____
3d_data_stacker,_extractor,_and_viewer.ipynb
###Markdown ###Code from google.colab import drive drive.mount('/content/drive') !ls "/content/drive/My Drive" import glob import numpy as np import matplotlib.pyplot as plt import skimage as sk import tifffile as tifffile import os as os import numpy as np from skimage import filters, transform, io from skimage import filters, io, img_as_ubyte from skimage.data import camera import numpy as np import matplotlib.pyplot as plt import skimage as sk from skimage import filters, io from skimage.data import camera from skimage import data, io,img_as_float64, img_as_float32, exposure from skimage.exposure import histogram from scipy import ndimage as ndi import skimage as sk from skimage.external import tifffile from matplotlib import cm from matplotlib import pyplot as plt from skimage import img_as_float64, img_as_int from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection import numpy as np from scipy import ndimage as ndi from skimage import (exposure, feature, filters, io, measure, morphology, restoration, segmentation, transform, util) #name your new tiff stack here with tifffile.TiffWriter('drive/My Drive/filepath/stackname.tiff', bigtiff=True) as stack: #put the file path to the folder of images you want to stack here dir_name = 'drive/My Drive/filepath/' filenames = os.listdir(dir_name) #remove extranious file info from the images here by splitting before and after the image #; this will make sure the images are ordered properly in the stack sort_idx = np.argsort([int(filename.split('ed')[1].split('.png')[0]) for filename in filenames]) for i in sort_idx: filename = dir_name + filenames[i] # image=np.array(filename, dtype='ubyte') # image=np.array(filename) stack.save(io.imread(filename)) # %matplotlib inline #***************************load tiff stack here data = io.imread('drive/My Drive/filepath/stackname.tiff') #data=np.array(data, dtype=int) #data=img_as_int(data) print("shape: {}".format(data.shape)) print("dtype: {}".format(data.dtype)) print("range: ({}, {})".format(data.min(), data.max())) #io.imsave('data.tiff', data) #io.imshow('data.tiff', cmap='binary') print(data.shape[1]) print() #i'm leaving this in because we might be able to use it to alter the spacing of your images. #The microscope reports the following spacing original_spacing = np.array([1.4, 1.4, 1.4]) # We downsampled each slice 4x to make the data smaller rescaled_spacing = original_spacing * [1, 4, 4] # Normalize the spacing so that pixels are a distance of 1 apart spacing = rescaled_spacing / rescaled_spacing print("microscope spacing: {}\n".format(original_spacing)) print("after rescaling images: {}\n".format(rescaled_spacing)) print("normalized spacing: {}\n".format(spacing)) def show_plane(ax, plane, cmap="gray", title=None): ax.imshow(plane, cmap=cmap) ax.set_xticks([]) ax.set_yticks([]) if title: ax.set_title(title) def slice_in_3D(ax, i): # From: # https://stackoverflow.com/questions/44881885/python-draw-3d-cube import numpy as np from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection Z = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1]]) Z = Z * data.shape r = [-1,1] X, Y = np.meshgrid(r, r) # plot vertices ax.scatter3D(Z[:,0], Z[:,1], Z[:,2]) # list of sides' polygons of figure verts = [[Z[0], Z[1], Z[2], Z[3]], [Z[4], Z[5], Z[6], Z[7]], [Z[0], Z[1], Z[5], Z[4]], [Z[2], Z[3], Z[7], Z[6]], [Z[1], Z[2], Z[6], Z[5]], [Z[4], Z[7], Z[3], Z[0]], [Z[2], Z[3], Z[7], Z[6]]] # plot sides ax.add_collection3d( Poly3DCollection(verts, facecolors=(0, 1, 1, 0.25), linewidths=1, edgecolors='darkblue') ) verts = np.array([[[0, 0, 0], [0, 0, 1], [0, 1, 1], [0, 1, 0]]]) verts = verts * (data.shape[0], data.shape[1], data.shape[2]) verts += [i, 0, 0] ax.add_collection3d(Poly3DCollection(verts, facecolors='magenta', linewidths=1, edgecolors='black')) ax.set_xlabel('plane') ax.set_ylabel('col') ax.set_zlabel('row') # Auto-scale plot axes scaling = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) ax.auto_scale_xyz(*[[np.min(scaling), np.max(scaling)]] * 3) #plt.show() from ipywidgets import interact def slice_explorer(data, cmap='gray'): N = len(data) @interact(plane=(0, N - 1)) def display_slice(plane=6): fig, ax = plt.subplots(figsize=(20, 5)) ax_3D = fig.add_subplot(133, projection='3d') show_plane(ax, data[plane], title="Plane {}".format(plane), cmap=cmap) slice_in_3D(ax_3D, plane) plt.show() return display_slice slice_explorer(data); print("original aka data") def plot_hist(ax, data, title=None): ax.hist(data.ravel(), bins=256) ax.ticklabel_format(axis="y", style="scientific", scilimits=(0, 0)) if title: ax.set_title(title) # I included this code for histogram normalization because it might help you process the images initially? #feel free not to use equalized = exposure.equalize_hist(data) # # i used the equalized image because the scale is from 0-1 and the region properties command seems to work best with it. # feel free to try using the orginal file labled 'data' interior_label = equalized print("interior label: {}".format(np.unique(interior_label))) interior_label=img_as_int(interior_label) relabeled, _, _ = segmentation.relabel_sequential(interior_label) print("relabeled labels: {}".format(np.unique(relabeled))) regionprops = measure.regionprops(relabeled) supported = [] unsupported = [] for prop in regionprops[0]: try: regionprops[0][prop] supported.append(prop) except NotImplementedError: unsupported.append(prop) print("Supported properties:") print(" " + "\n ".join(supported)) print() print("Unsupported properties:") print(" " + "\n ".join(unsupported)) #check this parameter, make sure computer measured the correct number of regions print() print("measured regions: {}".format(np.unique(relabeled))) #get volumes in pixels volumes = [regionprop.area for regionprop in regionprops] print("total pixels: {}".format(volumes)) max_volume = np.max(volumes) mean_volume = np.mean(volumes) min_volume = np.min(volumes) sd_volume = np.std(volumes) total_volume = np.sum(volumes) print("Volume statistics") print("total: {}".format(total_volume)) print("min: {}".format(min_volume)) print("max: {}".format(max_volume)) print("mean: {:0.2f}".format(mean_volume)) print("standard deviation: {:0.2f}".format(sd_volume)) print() #3d image generator. It will run out of ram really fast, can only handle small image stacks (20x500x988 @ 25 gigs of ram) #select region you want to visualize selected_cell = 2 print('region') print(selected_cell) # skimage.measure.marching_cubes expects ordering (row, col, pln) volume = (relabeled == regionprops[selected_cell].label).transpose(1, 2, 0) verts_px, faces_px, _, _ = measure.marching_cubes_lewiner(volume, level=0) surface_area_pixels = measure.mesh_surface_area(verts_px, faces_px) verts, faces, _, _ = measure.marching_cubes_lewiner(volume, level=0) surface_area_actual = measure.mesh_surface_area(verts, faces) print("surface area (total pixels): {:0.2f}".format(surface_area_pixels)) print("surface area (actual): {:0.2f}".format(surface_area_actual)) fig = plt.figure(figsize=(22, 8)) ax = fig.add_subplot(111, projection="3d") mesh = Poly3DCollection(verts_px[faces_px]) mesh.set_edgecolor("b") ax.add_collection3d(mesh) ax.set_xlabel("col") ax.set_ylabel("row") ax.set_zlabel("pln") min_pln, min_row, min_col, max_pln, max_row, max_col = regionprops[selected_cell].bbox ax.set_xlim(min_row, max_row) ax.set_ylim(min_col, max_col) ax.set_zlim(min_pln, max_pln) for angle in range(0, 360): ax.view_init(elev=90,azim=0) plt.tight_layout() plt.show() print('finished') ###Output _____no_output_____
00_Data_Preparation.ipynb
###Markdown Dataset PreparationDownload __database.sqlite__ from [here](https://www.kaggle.com/hugomathien/soccer) ###Code # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import sqlite3 import matplotlib.pyplot as plt import xml.etree.ElementTree as ET # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory path = "datasets/" #Insert path here database = path + 'database.sqlite' # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory # import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output\ conn = sqlite3.connect(database) tables = pd.read_sql("""SELECT * FROM sqlite_master WHERE type='table';""", conn) type(tables) tables team_t = pd.read_sql("""SELECT * FROM Team""", conn) team_t match_t = pd.read_sql("""SELECT * FROM Match""", conn) match_t m_master = team_t.set_index('team_api_id')['team_long_name'].to_dict() h_master = match_t.filter(like='home_team_api_id') match_t[h_master.columns] = h_master.replace(m_master) a_master = match_t.filter(like='away_team_api_id') match_t[a_master.columns] = a_master.replace(m_master) match_t league_t = pd.read_sql("""SELECT * FROM League""", conn) league_t selected_leagues = pd.read_sql("""SELECT * FROM League WHERE id IN(1729, 21518);""", conn) selected_leagues matches = pd.read_sql("""SELECT * FROM Match WHERE league_id IN(1729, 21518);""", conn) matches # Replace team_api_id with team_long_name #m = team_t.set_index('team_api_id')['team_long_name'].to_dict() #h = matches.filter(like='home_team_api_id') #matches[h.columns] = h.replace(m) #a = matches.filter(like='away_team_api_id') #matches[a.columns] = a.replace(m) df = matches[matches.columns.drop(list(matches.filter(regex='player|BW|IW|LB|PS|WH|SJ|VC|GB|BS')))] df_EPL = df[df['league_id'] == 1729] len(df_EPL) df_LaLiga = df[df['league_id'] == 21518] df_LaLiga.reset_index(drop=True, inplace=True) df_LaLiga # count shotonm shotoff, foulcommut # for i in range(len(df_EPL['shoton'])): # root = ET.fromstring(df_EPL['shoton'][i]) # count = len(root.getchildren()) # df_EPL.at[i,'shoton'] = count # for i in range(len(df_EPL['shotoff'])): # root = ET.fromstring(df_EPL['shotoff'][i]) # count = len(root.getchildren()) # df_EPL.at[i,'shotoff'] = count # for i in range(len(df_EPL['foulcommit'])): # root = ET.fromstring(df_EPL['foulcommit'][i]) # count = len(root.getchildren()) # df_EPL.at[i,'foulcommit'] = count #add home cway yellow and red cards stat # Unsportsmanlike Condduct data has no card_type, treat it as a yellow card # reference: https://en.wikipedia.org/wiki/Fouls_and_misconduct_(association_football)#Red_card_(dismissal) # if no team record for card data, omit card row #EPL home_y_card =[] away_y_card =[] home_r_card =[] away_r_card = [] NoneType = type(None) for i in range(len(df_EPL['card'])): root = ET.fromstring(df_EPL['card'][i]) home_y_card_count = 0 away_y_card_count = 0 home_r_card_count = 0 away_r_card_count = 0 for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_EPL['home_team_api_id'][i]): if type(child.find('card_type')) != NoneType: if "y" in child.find('card_type').text: home_y_card_count +=1 else: home_r_card_count +=1 else: home_y_card_count +=1 else: if type(child.find('card_type')) != NoneType: if "y" in child.find('card_type').text: away_y_card_count +=1 else: away_r_card_count +=1 else: away_y_card_count +=1 home_y_card.append(home_y_card_count) home_r_card.append(home_r_card_count) away_y_card.append(away_y_card_count) away_r_card.append(away_r_card_count) df_EPL.loc[:,"home_y_card"] = home_y_card df_EPL.loc[:,"home_r_card"] = home_r_card df_EPL.loc[:,"away_y_card"] = away_y_card df_EPL.loc[:,"away_r_card"] = away_r_card #LALIGA home_y_card =[] away_y_card =[] home_r_card =[] away_r_card = [] NoneType = type(None) for i in range(len(df_LaLiga['card'])): home_y_card_count = 0 away_y_card_count = 0 home_r_card_count = 0 away_r_card_count = 0 if type(df_LaLiga['card'][i])!= NoneType: root = ET.fromstring(df_LaLiga['card'][i]) for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_LaLiga['home_team_api_id'][i]): if type(child.find('card_type')) != NoneType: if "y" in child.find('card_type').text: home_y_card_count +=1 else: home_r_card_count +=1 else: home_y_card_count +=1 else: if type(child.find('card_type')) != NoneType: if "y" in child.find('card_type').text: away_y_card_count +=1 else: away_r_card_count +=1 else: away_y_card_count +=1 home_y_card.append(home_y_card_count) home_r_card.append(home_r_card_count) away_y_card.append(away_y_card_count) away_r_card.append(away_r_card_count) df_LaLiga.loc[:,"home_y_card"] = home_y_card df_LaLiga.loc[:,"home_r_card"] = home_r_card df_LaLiga.loc[:,"away_y_card"] = away_y_card df_LaLiga.loc[:,"away_r_card"] = away_r_card df_LaLiga.shoton[3039] #LALIGA home_shoton =[] away_shoton =[] NoneType = type(None) for i in range(len(df_LaLiga)): home_shoton_count = 0 away_shoton_count = 0 if type(df_LaLiga['shoton'][i])!= NoneType: root = ET.fromstring(df_LaLiga['shoton'][i]) for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_LaLiga['home_team_api_id'][i]): print(i, child.find('team').text) home_shoton_count +=1 else: away_shoton_count +=1 home_shoton.append(home_shoton_count) away_shoton.append(away_shoton_count) df_LaLiga.loc[:,"home_shoton"] = home_shoton df_LaLiga.loc[:,"away_shoton"] = away_shoton home_shoton[3039] #extract shoton stat for home and away team from cross column #EPL home_shoton =[] away_shoton =[] NoneType = type(None) for i in range(len(df_EPL)): root = ET.fromstring(df_EPL['shoton'][i]) home_shoton_count = 0 away_shoton_count = 0 for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_EPL['home_team_api_id'][i]): home_shoton_count +=1 else: away_shoton_count +=1 home_shoton.append(home_shoton_count) away_shoton.append(away_shoton_count) df_EPL.loc[:,"home_shoton"] = home_shoton df_EPL.loc[:,"away_shoton"] = away_shoton #LALIGA home_shoton =[] away_shoton =[] NoneType = type(None) for i in range(len(df_LaLiga)): home_shoton_count = 0 away_shoton_count = 0 if type(df_LaLiga['shoton'][i])!= NoneType: root = ET.fromstring(df_LaLiga['shoton'][i]) for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_LaLiga['home_team_api_id'][i]): home_shoton_count +=1 else: away_shoton_count +=1 home_shoton.append(home_shoton_count) away_shoton.append(away_shoton_count) df_LaLiga.loc[:,"home_shoton"] = home_shoton df_LaLiga.loc[:,"away_shoton"] = away_shoton #extract shotoff stat for home and away team from cross column #EPL home_shotoff =[] away_shotoff =[] NoneType = type(None) for i in range(len(df_EPL)): root = ET.fromstring(df_EPL['shotoff'][i]) home_shotoff_count = 0 away_shotoff_count = 0 for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_EPL['home_team_api_id'][i]): home_shotoff_count +=1 else: away_shotoff_count +=1 home_shotoff.append(home_shotoff_count) away_shotoff.append(away_shotoff_count) df_EPL.loc[:,"home_shotoff"] = home_shotoff df_EPL.loc[:,"away_shotoff"] = away_shotoff #LALIGA home_shotoff =[] away_shotoff =[] NoneType = type(None) for i in range(len(df_LaLiga)): home_shotoff_count = 0 away_shotoff_count = 0 if type(df_LaLiga['shotoff'][i])!= NoneType: root = ET.fromstring(df_LaLiga['shotoff'][i]) for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_LaLiga['home_team_api_id'][i]): home_shotoff_count +=1 else: away_shotoff_count +=1 home_shotoff.append(home_shotoff_count) away_shotoff.append(away_shotoff_count) df_LaLiga.loc[:,"home_shotoff"] = home_shotoff df_LaLiga.loc[:,"away_shotoff"] = away_shotoff #extract foulcommit stat for home and away team from cross column #EPL home_foulcommit =[] away_foulcommit =[] NoneType = type(None) for i in range(len(df_EPL)): root = ET.fromstring(df_EPL['foulcommit'][i]) home_foulcommit_count = 0 away_foulcommit_count = 0 for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_EPL['home_team_api_id'][i]): home_foulcommit_count +=1 else: away_foulcommit_count +=1 home_foulcommit.append(home_foulcommit_count) away_foulcommit.append(away_foulcommit_count) df_EPL.loc[:,"home_foulcommit"] = home_foulcommit df_EPL.loc[:,"away_foulcommit"] = away_foulcommit #LALIGA home_foulcommit =[] away_foulcommit =[] NoneType = type(None) for i in range(len(df_LaLiga)): home_foulcommit_count = 0 away_foulcommit_count = 0 if type(df_LaLiga['foulcommit'][i])!= NoneType: root = ET.fromstring(df_LaLiga['foulcommit'][i]) for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_LaLiga['home_team_api_id'][i]): home_foulcommit_count +=1 else: away_foulcommit_count +=1 home_foulcommit.append(home_foulcommit_count) away_foulcommit.append(away_foulcommit_count) df_LaLiga.loc[:,"home_foulcommit"] = home_foulcommit df_LaLiga.loc[:,"away_foulcommit"] = away_foulcommit #extract cross stat for home and away team from cross column #EPL home_cross =[] away_cross =[] NoneType = type(None) for i in range(len(df_EPL)): root = ET.fromstring(df_EPL['cross'][i]) home_cross_count = 0 away_cross_count = 0 for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_EPL['home_team_api_id'][i]): home_cross_count +=1 else: away_cross_count +=1 home_cross.append(home_cross_count) away_cross.append(away_cross_count) df_EPL.loc[:,"home_cross"] = home_cross df_EPL.loc[:,"away_cross"] = away_cross #LALIGA home_cross =[] away_cross =[] NoneType = type(None) for i in range(len(df_LaLiga)): home_cross_count = 0 away_cross_count = 0 if type(df_LaLiga['cross'][i])!= NoneType: root = ET.fromstring(df_LaLiga['cross'][i]) for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_LaLiga['home_team_api_id'][i]): home_cross_count +=1 else: away_cross_count +=1 home_cross.append(home_cross_count) away_cross.append(away_cross_count) df_LaLiga.loc[:,"home_cross"] = home_cross df_LaLiga.loc[:,"away_cross"] = away_cross #extract corner stat for home and away team from corner column #EPL home_corner =[] away_corner =[] NoneType = type(None) for i in range(len(df_EPL)): root = ET.fromstring(df_EPL['corner'][i]) home_corner_count = 0 away_corner_count = 0 for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_EPL['home_team_api_id'][i]): home_corner_count +=1 else: away_corner_count +=1 home_corner.append(home_corner_count) away_corner.append(away_corner_count) df_EPL.loc[:,"home_corner"] = home_corner df_EPL.loc[:,"away_corner"] = away_corner #LALIGA home_corner =[] away_corner =[] NoneType = type(None) for i in range(len(df_LaLiga)): home_corner_count = 0 away_corner_count = 0 if type(df_LaLiga['corner'][i])!= NoneType: root = ET.fromstring(df_LaLiga['corner'][i]) for child in root: if type(child.find('team')) != NoneType: if child.find('team').text == str(df_LaLiga['home_team_api_id'][i]): home_corner_count +=1 else: away_corner_count +=1 home_corner.append(home_corner_count) away_corner.append(away_corner_count) df_LaLiga.loc[:,"home_corner"] = home_corner df_LaLiga.loc[:,"away_corner"] = away_corner # extract full game possession for home and away team from possession column # few data rows do not have 90 minutes data but only 80+ mins, so we set the fulltime possession threshold to 80 mins up. #EPL home_possession =[] away_possession =[] NoneType = type(None) for i in range(len(df_EPL)): root = ET.fromstring(df_EPL['possession'][i]) for child in root: if type(child.find('elapsed')) != NoneType: if int(child.find('elapsed').text) > 80: if type(child.find('homepos')) != NoneType: home_pos = child.find('homepos').text if type(child.find('awaypos')) != NoneType: away_pos = child.find('awaypos').text home_possession.append(home_pos) away_possession.append(away_pos) df_EPL.loc[:,"home_possession"] = home_possession df_EPL.loc[:,"away_possession"] = away_possession #LALIGA home_possession =[] away_possession =[] NoneType = type(None) for i in range(len(df_LaLiga)): if type(df_LaLiga['possession'][i])!= NoneType: root = ET.fromstring(df_LaLiga['possession'][i]) for child in root: if type(child.find('elapsed')) != NoneType: if int(child.find('elapsed').text) > 80: if type(child.find('homepos')) != NoneType: home_pos = child.find('homepos').text if type(child.find('awaypos')) != NoneType: away_pos = child.find('awaypos').text else: home_pos = str(50) away_pos = str(50) home_possession.append(home_pos) away_possession.append(away_pos) df_LaLiga.loc[:,"home_possession"] = home_possession df_LaLiga.loc[:,"away_possession"] = away_possession h = df_LaLiga.filter(like='home_team_api_id') df_LaLiga[h.columns] = h.replace(m_master) a = df_LaLiga.filter(like='away_team_api_id') df_LaLiga[a.columns] = a.replace(m_master) h = df_EPL.filter(like='home_team_api_id') df_EPL[h.columns] = h.replace(m_master) a = df_EPL.filter(like='away_team_api_id') df_EPL[a.columns] = a.replace(m_master) pd.set_option('display.max_columns', None) df_EPL_sort = df_EPL[df_EPL.columns.drop(list(matches.filter(regex='country_id|league_id|card|^goal$|^foulcommit$|^shoton$|^shotoff$|cross|corner|possession')))] df_EPL_sort.sort_values(by=['date','home_team_api_id'], inplace=True, ascending=True) df_EPL_sort df_LaLiga.home_team_api_id.unique() pd.set_option('display.max_columns', None) df_LaLiga_sort = df_LaLiga[df_LaLiga.columns.drop(list(matches.filter(regex='country_id|league_id|card|^goal$|^foulcommit$|^shoton$|^shotoff$|cross|corner|possession')))] df_LaLiga_sort.sort_values(by=['date','home_team_api_id'], inplace=True, ascending=True) df_LaLiga_sort df_EPL.to_csv(path + "EPL.csv") df_LaLiga.to_csv(path + "LaLiga.csv") df_epl_stat = pd.read_csv(path + 'epl_stats.csv') df_epl_stat len(df_epl_stat) df_LaLiga_stat = pd.read_csv(path + 'la_liga_stats.csv') dict1 = ['Espanol', 'Valencia', 'Ath Bilbao', 'Ath Madrid', 'Betis', 'La Coruna', 'Numancia', 'Osasuna', 'Santander', 'Sp Gijon', 'Barcelona', 'Valladolid', 'Almeria', 'Getafe', 'Malaga', 'Mallorca', 'Real Madrid', 'Recreativo', 'Sevilla', 'Villarreal', 'Zaragoza', 'Tenerife', 'Xerez', 'Hercules', 'Levante', 'Sociedad', 'Granada', 'Vallecano', 'Celta', 'Elche', 'Eibar', 'Cordoba', 'Las Palmas'] dict2 = ['RCD Espanyol','Valencia CF','Athletic Club de Bilbao','Atlético Madrid','Real Betis Balompié', 'RC Deportivo de La Coruña','CD Numancia','CA Osasuna','Racing Santander', 'Real Sporting de Gijón', 'FC Barcelona','Real Valladolid','UD Almería','Getafe CF','Málaga CF', 'RCD Mallorca','Real Madrid CF', 'RC Recreativo', 'Sevilla FC','Villarreal CF', 'Real Zaragoza', 'CD Tenerife', 'Xerez Club Deportivo', 'Hércules Club de Fútbol', 'Levante UD', 'Real Sociedad', 'Granada CF', 'Rayo Vallecano', 'RC Celta de Vigo', 'Elche CF', 'SD Eibar', 'Córdoba CF', 'UD Las Palmas'] dict3 = ['Valencia CF', 'CA Osasuna', 'RC Deportivo de La Coruña', 'CD Numancia', 'Racing Santander', 'Real Sporting de Gijón', 'Real Betis Balompié', 'RCD Espanyol', 'Athletic Club de Bilbao', 'Atlético Madrid', 'Sevilla FC', 'Villarreal CF', 'Real Madrid CF', 'FC Barcelona', 'Getafe CF', 'RCD Mallorca', 'UD Almería', 'Málaga CF', 'Real Valladolid', 'RC Recreativo', 'Real Zaragoza', 'CD Tenerife', 'Xerez Club Deportivo', 'Hércules Club de Fútbol', 'Levante UD', 'Real Sociedad', 'Rayo Vallecano', 'Granada CF', 'RC Celta de Vigo', 'Elche CF', 'SD Eibar', 'Córdoba CF', 'UD Las Palmas'] m = dict(zip(dict1, dict2)) h = df_LaLiga_stat.filter(like='HomeTeam') df_LaLiga_stat[h.columns] = h.replace(m) a = df_LaLiga_stat.filter(like='AwayTeam') df_LaLiga_stat[a.columns] = a.replace(m) df_LaLiga_stat len(df_epl_stat) len(df_LaLiga_stat) df_epl_stat = df_epl_stat.iloc[-3040:] df_epl_stat.tail(10) df_LaLiga_stat = df_LaLiga_stat.iloc[-3040:] df_LaLiga_stat['Date'] = pd.to_datetime(df_LaLiga_stat['Date'], format='%m/%d/%Y') df_LaLiga_stat.sort_values(by=['Date','HomeTeam'], inplace=True, ascending=True) df_EPL_sort.loc[:,"HTP"] = df_epl_stat['HTP'].values.tolist() df_EPL_sort.loc[:,"ATP"] = df_epl_stat['ATP'].values.tolist() df_EPL_sort.loc[:,"Result"] = df_epl_stat['FTR'].values.tolist() df_EPL_sort.head() df_EPL_sort.to_csv(path + "EPL_sort.csv") df_LaLiga_sort.loc[:,"HTP"] = df_LaLiga_stat['HTP'].values.tolist() df_LaLiga_sort.loc[:,"ATP"] = df_LaLiga_stat['ATP'].values.tolist() df_LaLiga_sort.loc[:,"Result"] = df_LaLiga_stat['FTR'].values.tolist() df_LaLiga_sort.tail(10) df_LaLiga.head() df_LaLiga_sort.to_csv(path + "LaLiga_sort.csv") ###Output _____no_output_____
Sparkify_AWS_EMR.ipynb
###Markdown Churn predictive modelling using Apache Spark (PySpark) with Sparkify datasetThis project sets to create a predictive model for churn prediction of a music streaming service: Sparkify. Two dataset are made available, a tiny set of 128Mb and a full dataset of 12Gb. The project will train the tiny dataset on a local machine to get a sense of the sample data before deciding the components necessary to model on the full dataset. Aside from data ecxploration, the local modelling work will find out how to preprocess the data, what features to select and the suitable learning algorithm to adopt. Doing so will make the modelling work more time and computationally efficient. For modelling work on the large dataset, AWS EMR cluster will be adopted to do the final training and modelling work. We will also compare to see if full dataset behaves simialrly as well as descriptively similar to the tiny dataset. As such our choice for training features and learning algorithm are wise. ###Code from pyspark.sql.functions import skewness, kurtosis # import libraries # Starter code from pyspark.sql import SparkSession from pyspark.sql import Window from pyspark.sql.functions import avg, col, count, desc, stddev, udf, isnan, when, isnull, mean, min, max, skewness, kurtosis from pyspark.sql.types import IntegerType, BooleanType from pyspark.sql.functions import max as max_fn from pyspark.sql.functions import min as min_fn from pyspark.ml.feature import StandardScaler, VectorAssembler from pyspark.ml.evaluation import MulticlassClassificationEvaluator from pyspark.ml.classification import GBTClassifier from pyspark.ml.classification import GBTClassificationModel from pyspark.ml.tuning import CrossValidator, ParamGridBuilder #import seaborn as sns import datetime import pandas as pd from time import time # create a Spark session spark = SparkSession \ .builder \ .appName("Sparkify") \ .getOrCreate() ###Output _____no_output_____ ###Markdown Load and Clean DatasetThe full dataset 12Gb is loaded from an AWS S3 bucket ###Code # Read in full sparkify dataset event_data = "s3a://udacity-dsnd/sparkify/sparkify_event_data.json" df = spark.read.json(event_data) df.head() df.printSchema() type(df) ###Output <class 'pyspark.sql.dataframe.DataFrame'> ###Markdown Number of data points in the dataset ###Code df.count() ###Output 26259199 ###Markdown A brief description of the dataset ###Code df.describe().show() df.select("page").distinct().sort("page").show(50) ###Output +--------------------+ | page| +--------------------+ | About| | Add Friend| | Add to Playlist| | Cancel| |Cancellation Conf...| | Downgrade| | Error| | Help| | Home| | Login| | Logout| | NextSong| | Register| | Roll Advert| | Save Settings| | Settings| | Submit Downgrade| | Submit Registration| | Submit Upgrade| | Thumbs Down| | Thumbs Up| | Upgrade| +--------------------+ ###Markdown Missing Values ###Code for col in df.columns: missing_count = df.filter((isnan(df[col])) | (df[col].isNull()) | (df[col] == "")).count() if missing_count > 0: print("{}: {}".format(col, missing_count)) ###Output artist: 5408927 firstName: 778479 gender: 778479 lastName: 778479 length: 5408927 location: 778479 registration: 778479 song: 5408927 userAgent: 778479 ###Markdown Remove rows with missing values in userId and sessionId ###Code print("Number of rows in the Pyspark dataframe: {}".format(df.count())) df_cleaned = df.dropna(how = "any", subset = ["userId", "sessionId"]) df_cleaned = df_cleaned.filter(df["userId"] != "") # `userId` should not be empty string print("Number of rows after clearning: {}".format(df_cleaned.count())) if df.count() == df_cleaned.count(): print("There is no missing values in userId and sessionId") else: print("{} rows removed.".format(df.count() - df_cleaned.count())) ###Output There is no missing values in userId and sessionId ###Markdown Exploratory Data AnalysisWhen you're working with the full dataset, perform EDA by loading a small subset of the data and doing basic manipulations within Spark. In this workspace, you are already provided a small subset of data you can explore. Define ChurnOnce you've done some preliminary analysis, create a column `Churn` to use as the label for your model. I suggest using the `Cancellation Confirmation` events to define your churn, which happen for both paid and free users. As a bonus task, you can also look into the `Downgrade` events. Explore DataOnce you've defined churn, perform some exploratory data analysis to observe the behavior for users who stayed vs users who churned. You can start by exploring aggregates on these two groups of users, observing how much of a specific action they experienced per a certain time unit or number of songs played. ###Code numerical_cols = [] categorical_cols = [] for s in df_cleaned.schema: data_type = str(s.dataType) if data_type == "StringType": categorical_cols.append(s.name) if data_type == "LongType" or data_type == "DoubleType": numerical_cols.append(s.name) ###Output _____no_output_____ ###Markdown Investigate categorical columns ###Code for c in categorical_cols: print("{} count: {}".format(c, df_cleaned.select(c).count())) ###Output artist count: 26259199 auth count: 26259199 firstName count: 26259199 gender count: 26259199 lastName count: 26259199 level count: 26259199 location count: 26259199 method count: 26259199 page count: 26259199 song count: 26259199 userAgent count: 26259199 userId count: 26259199 ###Markdown Investigate numerical columns ###Code for n in numerical_cols: print("{} count: {}".format(n, df_cleaned.select(n).count())) df_cleaned.select([mean(n), min(n), max(n), stddev(n)]).show() ###Output itemInSession count: 26259199 +------------------+------------------+------------------+--------------------------+ |avg(itemInSession)|min(itemInSession)|max(itemInSession)|stddev_samp(itemInSession)| +------------------+------------------+------------------+--------------------------+ |106.56267561702853| 0| 1428| 117.65812617523798| +------------------+------------------+------------------+--------------------------+ length count: 26259199 +------------------+-----------+-----------+-------------------+ | avg(length)|min(length)|max(length)|stddev_samp(length)| +------------------+-----------+-----------+-------------------+ |248.72543296748836| 0.522| 3024.66567| 97.28710387078071| +------------------+-----------+-----------+-------------------+ registration count: 26259199 +--------------------+-----------------+-----------------+-------------------------+ | avg(registration)|min(registration)|max(registration)|stddev_samp(registration)| +--------------------+-----------------+-----------------+-------------------------+ |1.535220665260512...| 1508018725000| 1543821822000| 3.2402990978250685E9| +--------------------+-----------------+-----------------+-------------------------+ sessionId count: 26259199 +------------------+--------------+--------------+----------------------+ | avg(sessionId)|min(sessionId)|max(sessionId)|stddev_samp(sessionId)| +------------------+--------------+--------------+----------------------+ |100577.99253503505| 1| 240381| 71909.21077875949| +------------------+--------------+--------------+----------------------+ status count: 26259199 +------------------+-----------+-----------+-------------------+ | avg(status)|min(status)|max(status)|stddev_samp(status)| +------------------+-----------+-----------+-------------------+ |210.06768953615074| 200| 404| 31.550728788197617| +------------------+-----------+-----------+-------------------+ ts count: 26259199 +--------------------+-------------+-------------+--------------------+ | avg(ts)| min(ts)| max(ts)| stddev_samp(ts)| +--------------------+-------------+-------------+--------------------+ |1.540905636113773E12|1538352001000|1543622402000|1.5158105552719693E9| +--------------------+-------------+-------------+--------------------+ ###Markdown Investigate every column ###Code df_cleaned.select("artist").distinct().count() df_cleaned.select("auth").distinct().show() df_cleaned.select("firstName").distinct().count() df_cleaned.select("gender").distinct().show() df_cleaned.select("itemInSession").distinct().count() df_cleaned.select("lastName").distinct().count() df_cleaned.select("length").distinct().count() df_cleaned.select("level").distinct().show() df_cleaned.select("location").distinct().count() df_cleaned.select("location").distinct().show(20) df_cleaned.select("method").distinct().show() df_cleaned.select("page").distinct().show() df_cleaned.select("registration").distinct().count() df_cleaned.select("sessionId").distinct().count() df_cleaned.select("song").distinct().count() df_cleaned.select("status").distinct().show() df_cleaned.select("userAgent").distinct().show(10, truncate=False) df_cleaned.select("userId").distinct().count() ###Output 22278 ###Markdown Define Churn Number of cancellations: ###Code df_cleaned.filter(df_cleaned.page=="Cancellation Confirmation").select("userId").dropDuplicates().count() churn_list = df_cleaned.filter(df_cleaned.page=="Cancellation Confirmation" ).select("userId").dropDuplicates() churned_users = [(row['userId']) for row in churn_list.collect()] df_churn = df_cleaned.withColumn("churn", df_cleaned.userId.isin(churned_users)) df_churn.dropDuplicates(["userId", "gender"]).groupby(["churn", "gender"]).count().sort("churn").show() churn_events = udf(lambda x: 1 if x == "Cancellation Confirmation" else 0, IntegerType()) df_cleaned = df_cleaned.withColumn("churn_flag", churn_events("page")) # Calculate percentage of users who churned churn_flag = df_cleaned.groupBy('userId').agg({'churn_flag': 'sum'})\ .select(avg('sum(churn_flag)')).collect()[0]['avg(sum(churn_flag))'] print("{} % of users have churned by cancelling subscription.".format(round(churn_flag*100, 3))) ###Output 22.457 % of users have churned by cancelling subscription. ###Markdown User churn percentage of 22.457 % is very close to those of the tiny dataset of 22.098%. We can at least assume that label skewness is likely similar. Number of upgrades ###Code df_cleaned.filter(df_cleaned.page=="Submit Upgrade").select("userId").dropDuplicates().count() upgrade_list = df_cleaned.filter(df_cleaned.page=="Submit Upgrade" ).select("userId").distinct() upgraded_users = [(row['userId']) for row in upgrade_list.collect()] df_upgrade = df_cleaned.withColumn("upgrade", df_cleaned.userId.isin(upgraded_users)) df_upgrade.dropDuplicates(["userId", "gender"]).groupby(["upgrade", "gender"]).count().sort("upgrade").show() ###Output +-------+------+-----+ |upgrade|gender|count| +-------+------+-----+ | false| F| 4894| | false| M| 5301| | false| null| 1| | true| M| 6350| | true| F| 5732| +-------+------+-----+ ###Markdown Number of downgrades: ###Code df_cleaned.filter(df_cleaned.page=="Submit Downgrade").select("userId").dropDuplicates().count() downgrade_list = df_cleaned.filter(df_cleaned.page=="Submit Downgrade" ).select("userId").distinct() downgraded_users = [(row['userId']) for row in downgrade_list.collect()] df_downgrade = df_cleaned.withColumn("downgrade", df_cleaned.userId.isin(downgraded_users)) df_downgrade.dropDuplicates(["userId", "gender"]).groupby(["downgrade", "gender"]).count().sort("downgrade").show() ###Output +---------+------+-----+ |downgrade|gender|count| +---------+------+-----+ | false| M| 9036| | false| F| 8138| | false| null| 1| | true| M| 2615| | true| F| 2488| +---------+------+-----+ ###Markdown Feature EngineeringOnce you've familiarized yourself with the data, build out the features you find promising to train your model on. To work with the full dataset, you can follow the following steps.- Write a script to extract the necessary features from the smaller subset of data- Ensure that your script is scalable, using the best practices discussed in Lesson 3- Try your script on the full data set, debugging your script if necessaryIf you are working in the classroom workspace, you can just extract features based on the small subset of data contained here. Be sure to transfer over this work to the larger dataset when you work on your Spark cluster. Gender (binary) ###Code # Latest level fn_gender = udf(lambda x: 1 if x=="F" else 0, IntegerType()) feat_gender = df_cleaned.select(['userId', 'gender'])\ .dropDuplicates(['userId'])\ .select(['userId', 'gender'])\ .withColumn('gender', fn_gender('gender').cast(IntegerType())) feat_gender.describe().show(5) feat_gender.select(skewness("gender"), kurtosis("gender")).show() ###Output +-------------------+-------------------+ | skewness(gender)| kurtosis(gender)| +-------------------+-------------------+ |0.09220664431939639|-1.9914979347433575| +-------------------+-------------------+ ###Markdown Paid or Free (binary) ###Code # Latest level fn_level = udf(lambda x: 1 if x=="paid" else 0, IntegerType()) feat_level = df_cleaned.select(['userId', 'level', 'ts'])\ .orderBy(desc('ts'))\ .dropDuplicates(['userId'])\ .select(['userId', 'level'])\ .withColumn('level', fn_level('level').cast(IntegerType())) feat_level.describe().show(5) feat_level.select(skewness("level"), kurtosis("level")).show() ###Output +-------------------+-------------------+ | skewness(level)| kurtosis(level)| +-------------------+-------------------+ |-0.4025645802550173|-1.8379417587241018| +-------------------+-------------------+ ###Markdown Total number of songs listened ###Code feat_song = df_cleaned \ .select(["userId","song"]) \ .groupby("userID") \ .count()\ .withColumnRenamed("count", "num_song") \ .orderBy("userId") feat_song.describe().show(5) feat_song.select(skewness("num_song"), kurtosis("num_song")).show() ###Output +------------------+------------------+ |skewness(num_song)|kurtosis(num_song)| +------------------+------------------+ |135.95349045633083|19660.671563405533| +------------------+------------------+ ###Markdown Total number of artist listened ###Code # Number of artists listened feat_artist = df_cleaned \ .filter(df_cleaned.page=="NextSong") \ .select("userId", "artist") \ .dropDuplicates() \ .groupby("userId") \ .count() \ .withColumnRenamed("count", "num_artist") \ .orderBy("userId") feat_artist.describe().show() feat_artist.select(skewness("num_artist"), kurtosis("num_artist")).show() ###Output +--------------------+--------------------+ |skewness(num_artist)|kurtosis(num_artist)| +--------------------+--------------------+ | 1.5260667285754526| 2.656182841474317| +--------------------+--------------------+ ###Markdown Number of songs in playlist(s) ###Code feat_playlist = df_cleaned \ .select('userID','page') \ .where(df_cleaned.page == 'Add to Playlist') \ .groupBy('userID') \ .count() \ .withColumnRenamed('count', 'num_playlist_song') \ .orderBy("userId") feat_playlist.describe().show() feat_playlist.select(skewness("num_playlist_song"), kurtosis("num_playlist_song")).show() ###Output +---------------------------+---------------------------+ |skewness(num_playlist_song)|kurtosis(num_playlist_song)| +---------------------------+---------------------------+ | 2.3914875986095625| 8.073009618134558| +---------------------------+---------------------------+ ###Markdown Number of friends ###Code feat_friends = df_cleaned \ .select('userID','page') \ .where(df_cleaned.page == 'Add Friend') \ .groupBy('userID') \ .count() \ .withColumnRenamed('count', 'num_friend') \ .orderBy("userId") feat_friends.describe().show() feat_friends.select(skewness("num_friend"), kurtosis("num_friend")).show() ###Output +--------------------+--------------------+ |skewness(num_friend)|kurtosis(num_friend)| +--------------------+--------------------+ | 2.3834675795984976| 8.182711524378096| +--------------------+--------------------+ ###Markdown Total length of listening ###Code # Total length of listening feat_listentime = df_cleaned \ .select('userID','length') \ .groupBy('userID') \ .sum() \ .withColumnRenamed('sum(length)', 'time_listen') \ .orderBy("userId") feat_listentime.describe().show() feat_listentime.select(skewness("time_listen"), kurtosis("time_listen")).show() ###Output +---------------------+---------------------+ |skewness(time_listen)|kurtosis(time_listen)| +---------------------+---------------------+ | 2.439989611449916| 8.466901311178267| +---------------------+---------------------+ ###Markdown Average number of songs per session ###Code feat_avgsongs = df_cleaned.filter(df_cleaned.page =="NextSong") \ .groupBy(["userId", "sessionId"]) \ .count() \ .groupby(['userId']) \ .agg({'count':'avg'}) \ .withColumnRenamed('avg(count)', 'avg_songs') \ .orderBy("userId") feat_avgsongs.describe().show() feat_avgsongs.select(skewness("avg_songs"), kurtosis("avg_songs")).show() ###Output +-------------------+-------------------+ |skewness(avg_songs)|kurtosis(avg_songs)| +-------------------+-------------------+ | 1.736381217684329| 8.096277081017185| +-------------------+-------------------+ ###Markdown Average time per session ###Code feat_sesstime = df_cleaned.groupBy(["userId", "sessionId"]) \ .agg(((max_fn(df_cleaned.ts)-min_fn(df_cleaned.ts))/(1000*60)) .alias("sessTime")) feat_avgtime = feat_sesstime.groupby("userId") \ .agg(avg(feat_sesstime.sessTime).alias("avgSessTime")) \ .orderBy("userId") feat_avgtime.describe().show() feat_avgtime.select(skewness("avgSessTime"), kurtosis("avgSessTime")).show() feat_avgtime.show(5) ###Output +-------+------------------+ | userId| avgSessTime| +-------+------------------+ |1000025| 404.793137254902| |1000035| 235.9363636363636| |1000083|186.10454545454547| |1000103| 68.93333333333334| |1000164|218.88981481481483| +-------+------------------+ only showing top 5 rows ###Markdown Number of session per user ###Code feat_session.describe().show() feat_session = df_cleaned.select("userId", "sessionId") \ .dropDuplicates() \ .groupby("userId") \ .count() \ .withColumnRenamed('count', 'session') \ .orderBy("userId") feat_session.select(skewness("session"), kurtosis("session")).show() ###Output +------------------+-----------------+ | skewness(session)|kurtosis(session)| +------------------+-----------------+ |149.21426452603328|22266.26341038374| +------------------+-----------------+ ###Markdown Label (churn) ###Code # label user who churned using the churn_flag defined earlier. user_partitions = Window.partitionBy('userId') df_cleaned = df_cleaned.withColumn('churn', max('churn_flag').over(user_partitions)) label = df_cleaned \ .select(['userId', 'churn']) \ .dropDuplicates() \ .withColumnRenamed("churn", "label") \ .orderBy("userId") label.describe().show() label.select(skewness("label"), kurtosis("label")).show() ###Output +------------------+--------------------+ | skewness(label)| kurtosis(label)| +------------------+--------------------+ |1.3200520841972045|-0.25746249500661467| +------------------+--------------------+ ###Markdown Construct dataset ###Code dataset = feat_gender.join(feat_level,'userID','outer') \ .join(feat_song,'userID','outer') \ .join(feat_artist,'userID','outer') \ .join(feat_playlist,'userID','outer') \ .join(feat_friends,'userID','outer') \ .join(feat_listentime,'userID','outer') \ .join(feat_avgsongs,'userID','outer') \ .join(feat_avgtime,'userID','outer') \ .join(feat_session,'userID','outer') \ .join(label,'userID','outer') \ .drop('userID') \ .fillna(0) dataset.show(5) dataset.head() ###Output Row(gender=0, level=0, num_song=1317, num_artist=767, num_playlist_song=25, num_friend=14, time_listen=259349.89726000009, avg_songs=48.666666666666664, avgSessTime=194.9060606060606, session=22, label=1) ###Markdown ModelingSplit the full dataset into train, test, and validation sets. Test out several of the machine learning methods you learned. Evaluate the accuracy of the various models, tuning parameters as necessary. Determine your winning model based on test accuracy and report results on the validation set. Since the churned users are a fairly small subset, I suggest using F1 score as the metric to optimize. Features ###Code dataset.printSchema() ###Output root |-- gender: integer (nullable = true) |-- level: integer (nullable = true) |-- num_song: long (nullable = true) |-- num_artist: long (nullable = true) |-- num_playlist_song: long (nullable = true) |-- num_friend: long (nullable = true) |-- time_listen: double (nullable = false) |-- avg_songs: double (nullable = false) |-- avgSessTime: double (nullable = false) |-- session: long (nullable = true) |-- label: integer (nullable = true) ###Markdown Labels ###Code dataset.groupby('label').count().show() ###Output +-----+-----+ |label|count| +-----+-----+ | 1| 5003| | 0|17275| +-----+-----+ ###Markdown Vector assembler ###Code cols = dataset.columns[:-1] assembler = VectorAssembler(inputCols=cols, outputCol="NumericFeatures") data = assembler.transform(dataset) data ###Output DataFrame[gender: int, level: int, num_song: bigint, num_artist: bigint, num_playlist_song: bigint, num_friend: bigint, time_listen: double, avg_songs: double, avgSessTime: double, session: bigint, label: int, NumericFeatures: vector] ###Markdown Standard scaler ###Code std_scaler = StandardScaler(inputCol="NumericFeatures", outputCol="features", withStd=True) scalerModel = std_scaler.fit(data) data = scalerModel.transform(data) # Train test split train, test = data.randomSplit([0.8, 0.2], seed=36) def train_model(train, estimator, paramGrid, folds=3): """ Fit an estimator with training data and tune it with the defined parameter grid using 3-folds cross validation """ crossval = CrossValidator(estimator=estimator, estimatorParamMaps=paramGrid, evaluator=MulticlassClassificationEvaluator(), numFolds=folds) model = crossval.fit(train) return model def eval_model(model, data): """ Evaluate a learned model given an unseen dataset """ pred = model.transform(data) evaluator = MulticlassClassificationEvaluator() evalMetrics = {} evalMetrics["precision"] = evaluator.evaluate(pred, {evaluator.metricName: "weightedPrecision"}) evalMetrics["recall"] = evaluator.evaluate(pred, {evaluator.metricName: "weightedRecall"}) evalMetrics["f1"] = evaluator.evaluate(pred, {evaluator.metricName: "f1"}) evalMetrics["accuracy"] = evaluator.evaluate(pred, {evaluator.metricName: "accuracy"}) # Build a Spark dataframe from the metrics metrics_to_display = { k:round(v, 4) for k,v in evalMetrics.items() if ('confusion_matrix' not in k) } summary = spark.createDataFrame(pd.DataFrame([metrics_to_display], columns=metrics_to_display.keys())) return summary gbt = GBTClassifier(labelCol="label", featuresCol="features") paramGrid_gbt = ParamGridBuilder()\ .addGrid(gbt.maxIter,[30])\ .addGrid(gbt.maxBins, [40])\ .addGrid(gbt.maxDepth,[8]) \ .build() start = time() print("Training & tuning GBTClassifier model >") model = train_model(train, gbt, paramGrid_gbt) end = time() print('Training time {} minutes'.format(round((end - start)/60,2))) summary = eval_model(model, test) print("Evaluation result:") summary.show() ###Output Evaluation result: +------+------+---------+--------+ | f1|recall|precision|accuracy| +------+------+---------+--------+ |0.7254|0.7868| 0.7444| 0.7908| +------+------+---------+--------+ ###Markdown Using the same classifier and the same parameters to learn from the full dataset, the evaluation shows less promising results. Save the trained model ###Code model.bestModel.write().overwrite().save('GBTClassifier') ###Output _____no_output_____ ###Markdown Load a trained model ###Code best_model = GBTClassificationModel.load('GBTClassifier') ###Output _____no_output_____
1_Data_Aquisition_&_Preparation.ipynb
###Markdown ###Code %%capture %cd .. %load_ext autoreload %autoreload 2 from pathlib import Path import pandas as pd import numpy as np import json ###Output _____no_output_____ ###Markdown Data Acquisition and Preparation ###Code RAW_DATA_FOLDER = Path('data/raw/') INTERMEDIATE_DATA_FOLDER = Path('data/interim/') REFERENCE_FOLDER = Path('references/') ###Output _____no_output_____ ###Markdown Downloading Data ###Code # TODO: Data Acquisition ###Output _____no_output_____ ###Markdown Preparing Dataset ###Code FAKE_DATA_FOLDER = RAW_DATA_FOLDER / 'fake' TRUE_DATA_FOLDER = RAW_DATA_FOLDER / 'true' FAKE_META_FOLDER = RAW_DATA_FOLDER / 'fake-meta-information' TRUE_META_FOLDER = RAW_DATA_FOLDER / 'true-meta-information' ###Output _____no_output_____ ###Markdown Text datasets ###Code def create_text_dataframe(folder): df_dict = {} for filepath in folder.glob("*.txt"): with open(filepath, 'r', encoding='utf-8') as f: df_dict[filepath.stem] = f.read() return pd.DataFrame.from_dict(df_dict, orient='index', columns=['text']) fake_text_df = create_text_dataframe(FAKE_DATA_FOLDER) true_text_df = create_text_dataframe(TRUE_DATA_FOLDER) ###Output _____no_output_____ ###Markdown Metadata Datasets ###Code def create_metadata_datasets(folder, metadata_columns, metadata_dtypes): df_dict = {} df_dict = {k:[] for k in metadata_columns} df_dict["index"] = [] for filepath in list(folder.glob("*.txt")): with open(filepath, 'r') as f: df_dict["index"].append(filepath.stem.split("-")[0]) for col, value in zip(metadata_columns, f.readlines()): df_dict[col].append(value[0:-1]) df = pd.DataFrame(df_dict) df = df.replace("None", np.nan) df = df.astype(metadata_dtypes, errors='ignore').set_index("index", drop=True) df.index.name = None return df metadata_columns = [ "author", "link", "category", "date_of_publication", "tokens", "words_no_punctuation", "types", "links_inside", "upper_words", "verbs", "subjuntive_imperative_verbs", "nouns", "adjectives", "adverbs", "modal_verbs", "singular_first_second_personal_pronouns", "plural_first_personal_pronouns", "pronouns", "pausality", "characters", "average_sentence_length", "average_word_lenght", "percentage_spelling_errors", "emotiveness", "diversity" ] metadata_translate = [ "author", "link", "category", "date of publication", "number of tokens", "number of words without punctuation", "number of types", "number of links inside the news", "number of words in upper case", "number of verbs", "number of subjuntive and imperative verbs", "number of nouns", "number of adjectives", "number of adverbs", "number of modal verbs (mainly auxiliary verbs)", "number of singular first and second personal pronouns", "number of plural first personal pronouns", "number of pronouns", "pausality", "number of characters", "average sentence length", "average word length", "percentage of news with speeling errors", "emotiveness", "diversity" ] metadata_dtypes = { "author": "string", "link": "string", "category": "string", "date_of_publication": "datetime64[ns]", "tokens": "float", "words_no_punctuation": "float", "types": "float","links_inside": "float", "upper_words": "float", "verbs": "float", "subjuntive_imperative_verbs": "float", "nouns": "float", "adjectives": "float", "adverbs": "float","modal_verbs": "float", "singular_first_second_personal_pronouns": "float", "plural_first_personal_pronouns": "float", "pronouns": "float","characters": "float", "pausality": "float", "average_sentence_length": "float", "average_word_lenght": "float", "percentage_spelling_errors": "float", "emotiveness": "float", "diversity": "float" } fake_metadata_df = create_metadata_datasets(FAKE_META_FOLDER, metadata_columns, metadata_dtypes) true_metadata_df = create_metadata_datasets(TRUE_META_FOLDER, metadata_columns, metadata_dtypes) fake_metadata_df.links_inside.unique() fake_metadata_df.links_inside.isna().sum() true_metadata_df.loc[["69", "61"]] true_text_df.loc[['68']].text ###Output _____no_output_____ ###Markdown Merging Created Datasets Fake Dataset ###Code fake_df = pd.concat([fake_text_df, fake_metadata_df], axis=1, sort=False) fake_df.index = fake_df.index.astype(int) fake_df = fake_df.sort_index() fake_df = fake_df.reset_index(drop=True) ###Output _____no_output_____ ###Markdown True Dataset ###Code true_df = pd.concat([true_text_df, true_metadata_df], axis=1, sort=False) true_df.index = true_df.index.astype(int) true_df = true_df.sort_index() true_df = true_df.reset_index(drop=True) ###Output _____no_output_____ ###Markdown Merge All Datasets ###Code result = pd.concat([true_df, fake_df], keys=['True', 'Fake']) result = result.reset_index(level=0).rename(columns={"level_0": "class"}) result.to_csv(INTERMEDIATE_DATA_FOLDER/"fake_true_news.csv", index=False) ###Output _____no_output_____ ###Markdown Columns Information ###Code columns_info ={} columns_info['text'] = 'Text extracted from the news' for var, desc in zip(metadata_columns, metadata_translate): columns_info[var] = desc with open(REFERENCE_FOLDER / "news_data_dictionary.json","w") as f: f.write(json.dumps(columns_info)) f.close() ###Output _____no_output_____
Fintech_deteccion_de_fraude.ipynb
###Markdown Deteccion de Fraude El objetivo de este proyecto es comparar varios modelos de clasificacion en la deteccion de fraude en transacciones. Definicion del Problema Utilizaremos los datos de Kaggle: https://www.kaggle.com/mlg-ulb/creditcardfraud Para nuestro proyecto definiremos con valor 1 ($y=1$) cuando la transaccion fue fraudulenta, y 0 ($y=0$) en otro caso. LOs datos contienen transacciones de tarjetas de credito de Septiembre 2013, todas de personas que viven en Europa. En total tenemos acceso a 2 dias de transacciones, donde hubo un total de 284k transacciones con 492 fraudes. Los fraudes solo representan el **.172%** del total de transacciones. El task es predecir el fraude. La variable `Class` es nuestro target ($y$). Las variables ya han sido preprocesadas con PCA para mantener anonimato, por lo que es algo dificil de interpretarlas directamnte. Librerias ###Code # Load libraries import numpy as np import pandas as pd from matplotlib import pyplot from pandas import read_csv, set_option from pandas.plotting import scatter_matrix import seaborn as sns from sklearn.model_selection import train_test_split, KFold, cross_val_score, GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.linear_model import ElasticNet from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.pipeline import Pipeline from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier, RandomForestClassifier, ExtraTreesClassifier from sklearn.metrics import classification_report, confusion_matrix, accuracy_score #Libraries for Deep Learning Models from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from tensorflow.keras.optimizers import SGD #Libraries for Saving the Model from pickle import dump from pickle import load from pprint import pprint import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown ETL Carguemos la funcion de pandas[pd.read_csv](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html) ###Code df= read_csv('https://github.com/uumami/workshop_riskmathics/blob/main/creditcard.csv.zip?raw=true', compression='zip') df.head() ###Output _____no_output_____ ###Markdown Veamos su dimension ###Code df.shape ###Output _____no_output_____ ###Markdown Veamos su informacion general ###Code df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 284807 entries, 0 to 284806 Data columns (total 31 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Time 284807 non-null float64 1 V1 284807 non-null float64 2 V2 284807 non-null float64 3 V3 284807 non-null float64 4 V4 284807 non-null float64 5 V5 284807 non-null float64 6 V6 284807 non-null float64 7 V7 284807 non-null float64 8 V8 284807 non-null float64 9 V9 284807 non-null float64 10 V10 284807 non-null float64 11 V11 284807 non-null float64 12 V12 284807 non-null float64 13 V13 284807 non-null float64 14 V14 284807 non-null float64 15 V15 284807 non-null float64 16 V16 284807 non-null float64 17 V17 284807 non-null float64 18 V18 284807 non-null float64 19 V19 284807 non-null float64 20 V20 284807 non-null float64 21 V21 284807 non-null float64 22 V22 284807 non-null float64 23 V23 284807 non-null float64 24 V24 284807 non-null float64 25 V25 284807 non-null float64 26 V26 284807 non-null float64 27 V27 284807 non-null float64 28 V28 284807 non-null float64 29 Amount 284807 non-null float64 30 Class 284807 non-null int64 dtypes: float64(30), int64(1) memory usage: 67.4 MB ###Markdown En este caso no tuvimos muchos problemas, pues la informacion ha sido pre-procesada previamente con PCA que es una tecnica de reduccion de dimensionalidad. Exploratory Data Analysis ###Code df.head() df.describe() ###Output _____no_output_____ ###Markdown **Balanceo de Y** ###Code class_names = {0:'Not Fraud', 1:'Fraud'} print(df.Class.value_counts().rename(index = class_names)) ###Output Not Fraud 284315 Fraud 492 Name: Class, dtype: int64 ###Markdown Podemos observar como nuestras clases estan extremadamente desbalanceadas, la mayoria no son fraude. Descripciones Visuales y Graficas ###Code # histograms df.hist(sharex=False, sharey=False, xlabelsize=1, ylabelsize=1, figsize=(12,12)) pyplot.show() ###Output _____no_output_____ ###Markdown Podemos observar que la distribucion de los datos esta sesgada. Pero, dado que no conocemos el significado de cada variable, es dificil tener una interpretacion. ###Code df[['Time', 'Amount']].describe() ###Output _____no_output_____ ###Markdown La variable de `Time` parece ser altamente variable y tomar valores muy grandes. La variable `Amount` parece comportarse mejor y no variar tanto, aunque parece tener valores extremos. Observemos el percentil 75 y el max. ###Code sns.histplot(x=df['Time']) df['Time'].unique().shape ###Output _____no_output_____ ###Markdown La variable `Time` contiene los segundos que pasaron entre la transaccion actual, y la primera transaccion del set de datos. ###Code # se grafica la distribución como raiz cuarta para apreciarla mejor, por un gran outlier sns.displot(x=(np.power(df['Amount'], .25))) ###Output _____no_output_____ ###Markdown Preparacion de Datos ###Code print('Null Values =',df.isnull().values.any()) ###Output Null Values = False ###Markdown Por suerte no hay valores nulos en los datos! Split de datos ###Code Y = df["Class"] X = df.loc[:, df.columns != 'Class'] test_size = 0.2 seed = 7 # Split train y test X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=test_size, random_state=seed) # Split para validacion X_train, X_val, Y_train, Y_val = train_test_split( X_train, Y_train, test_size=test_size, random_state=seed) print(f'Numero de fraudes en test: {Y_test.value_counts()}') print(f'Numero de fraudes en train: {Y_train.value_counts()}') print(f'Numero de fraudes en validacion: {Y_val.value_counts()}') ###Output Numero de fraudes en test: 0 56862 1 100 Name: Class, dtype: int64 Numero de fraudes en train: 0 181967 1 309 Name: Class, dtype: int64 Numero de fraudes en validacion: 0 45486 1 83 Name: Class, dtype: int64 ###Markdown Parece que los datos de fraude $y=1$ estan balanceados entre train y test. Sin embargo el total de datos esta desbalanceado. Por ahora, ignoraremos esto, y probaremos varios modelos. Despues ataqueremos este problema directamente, y compararemos resultados. Seleccion de Variables Notebook de seleccion de variables: https://github.com/IEXE-Tec/aprendizaje-maquina-2/blob/master/01_seleccion_de_variables.ipynb Existen muchas tecnicas de estadistica clasica para Feature Selection ya sea tablas ANOVA, ANCOVA o diferentes tipos de correlacion para diferentes tipos de datos. Post de [Feature Selection](https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/) ![image.png]() En nuestro caso nos saltaremos el **Feature Selection** para concentrarnos en los algoritmos y regularizacion. El siguiente snippet contiene codigo de Kaggle para feature selection, utilizando Chi2. Aunque, esto no es del todo correcto, pues nuestras variables no son categoricas. Sin embargo, nos da una idea de la flexibilidad del ML. ###Code # ## No ejecutar # from sklearn.feature_selection import SelectKBest # from sklearn.feature_selection import chi2 # bestfeatures = SelectKBest( k=10) # bestfeatures # Y_train = df["Class"] # X_train = df.loc[:, df.columns != 'Class'] # fit = bestfeatures.fit(X_train,Y_train) # dfscores = pd.DataFrame(fit.scores_) # dfcolumns = pd.DataFrame(X_train.columns) # #concat two dataframes for better visualization # featureScores = pd.concat([dfcolumns,dfscores],axis=1) # featureScores.columns = ['Specs','Score'] #naming the dataframe columns # print(featureScores.nlargest(10,'Score')) #print 10 best features ###Output _____no_output_____ ###Markdown Tarea: Analisis de Time **Tarea**Propon una metrica para evaluar la importancia de la variable `Time`! Parece tomar muchos valores, y no necesariamente aportar mucho al modelaje. ###Code #Time es una variable numérica, y la variable a predecir es una variable categórica Class con dos posibles valores (fraude o no fraude), #de acuerdo al esquema de selección de variables de arriba, se podría verificar la correlación entre Time y Class con un análisis #ANOVA from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_classif # La implemenatación de ANOVA de scikitlearn está en la función f_classif() fs = SelectKBest(score_func=f_classif, k='all') y_train_fs = df["Class"] X_train_fs = df.loc[:, df.columns != 'Class'] fit = fs.fit(X_train_fs, y_train_fs) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(X_train_fs.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['feature','Score'] #naming the dataframe columns featureScores.sort_values(by="Score", ascending = False) #Efectivamente, la variable Time aporta muy poco a la detección de fraude, sin embargo no es la que aporta menos. ###Output _____no_output_____ ###Markdown Feature engineering Escalemos las variables numericas. Las otras variables no necesitan escalamiento, pues dado que fueron sometidas a PCA fueron escaladas previamente. **Nota**: En estricto sentido el escalamiento o normalizacion deberia hacerse en sobre el train set, y despues aplicarse al test set. Sin embargo, es muy comun aplicar el escalamiento a todo el data set, pensando que no producira **data leakage**. + Para la variable **time** utilizaremos [MinMaxScaler](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html). Ahora la variable se encuentrara entre 0 y 1. Dado que **no parece tener outliers**, y distribuirse mas o menos uniforme.+ Para **Amount** utilizaremos [RobustScaler](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html). La variable es escalda con los rangos intercuantiles. Lo elegimos por el tipo de distribucion que que **tiene outliers**. ![image.png]() ###Code from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import RobustScaler # ##Time time_scaler = MinMaxScaler().fit(X_train['Time'].values.reshape(-1,1)) # Entrenamos con train X_train['time_scaled'] = time_scaler.transform(X_train['Time'].values.reshape(-1,1)) # Escalamos el test X_test['time_scaled'] = time_scaler.transform(X_test['Time'].values.reshape(-1,1)) # Val X_val['time_scaled'] = time_scaler.transform(X_val['Time'].values.reshape(-1,1)) # ##Amount amount_scaler = RobustScaler().fit(X_train['Amount'].values.reshape(-1,1)) # Entrenamos con train X_train['amount_scaled'] = amount_scaler.transform(X_train['Amount'].values.reshape(-1,1)) # Escalamos el test X_test['amount_scaled'] = amount_scaler.transform(X_test['Amount'].values.reshape(-1,1)) # Val X_val['amount_scaled'] = amount_scaler.transform(X_val['Amount'].values.reshape(-1,1)) X_train[['time_scaled', 'amount_scaled']].describe() sns.pairplot(data=X_train[['time_scaled', 'amount_scaled']]) X_val[['time_scaled', 'amount_scaled']].describe() X_train.drop(['Time', 'Amount'], axis=1, inplace=True) X_test.drop(['Time', 'Amount'], axis=1, inplace=True) X_val.drop(['Time', 'Amount'], axis=1, inplace=True) ###Output _____no_output_____ ###Markdown Modelaje Evaluacion de Modelos Usaremos Cross Validation para elegir modelos. Una vez elegidos los modelos, utilizaremos CV de nuevo para tuneo de hiperparametros del modelo que elegimos. Elijamos los Folds y los Modelos a utilizar ###Code # Opciones de Evaluacion de Modelos num_folds = 5 seed = 7 # scoring ='f1' scoring = 'accuracy' # Modelos models = [] models.append(('LR', LogisticRegression())) #models.append(('RF', RandomForestClassifier())) models.append(('LDA', LinearDiscriminantAnalysis())) models.append(('KNN', KNeighborsClassifier())) models.append(('CART', DecisionTreeClassifier())) ###Output _____no_output_____ ###Markdown CV sobre diferentes modelos ###Code results = [] names = [] for name, model in models: kfold = KFold(n_splits=num_folds, random_state=seed, shuffle=True) cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring, n_jobs=-1) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) ###Output LR: 0.999210 (0.000122) LDA: 0.999386 (0.000158) KNN: 0.999462 (0.000102) CART: 0.999161 (0.000191) ###Markdown Evaluacion de LDA [LDA doc](https://scikit-learn.org/0.16/modules/generated/sklearn.lda.LDA.html) ###Code # Llamar al Modelo model = LinearDiscriminantAnalysis() model.fit(X_train, Y_train) rescaledValidationX = X_train predictions = model.predict(rescaledValidationX) print(accuracy_score(Y_train, predictions)) print(confusion_matrix(Y_train, predictions)) print(classification_report(Y_train, predictions)) df_cm = pd.DataFrame(confusion_matrix(Y_train, predictions), columns=np.unique(Y_train), index = np.unique(Y_train)) df_cm.index.name = 'Actual' df_cm.columns.name = 'Predicted' sns.heatmap(df_cm, cmap="Blues", annot=True,annot_kws={"size": 16})# font size ###Output _____no_output_____ ###Markdown LDA Validacion ###Code predictions = model.predict(X_val) df_cm = pd.DataFrame(confusion_matrix(Y_val, predictions), columns=np.unique(Y_val), index = np.unique(Y_val)) df_cm.index.name = 'Actual' df_cm.columns.name = 'Predicted' sns.heatmap(df_cm, cmap="Blues", annot=True,annot_kws={"size": 16})# font size ###Output _____no_output_____ ###Markdown Logistic Regression **Tarea**: Agregar `l1_ratio` al gridsearch. ###Code # Numero de Arboles en el Bosque penalty = ['l1', 'l2', 'elasticnet', 'none'] # l1_ratio l1_ratio =[0,1] # Inverso de la Regularizacion C = np.logspace(-4, 4, 20) # Crea diccionario de busqueda random_grid = {'penalty': penalty, 'C': C, 'l1_ratio':l1_ratio } pprint(random_grid) # Construyamos el algoritmo lr = LogisticRegression() # Tuneo de Hyperparametros con CV lr_random = GridSearchCV(estimator = lr, param_grid = random_grid, scoring = 'accuracy', cv = 5, verbose=2, n_jobs = -1) # Entrenar lr_random.fit(X_train, Y_train) print(f'Mejores parametros: {lr_random.best_params_}') print(f'Mejor Desempeño: {lr_random.best_score_}') lr_opt = LogisticRegression(**lr_random.best_params_) lr_opt.fit(X_train, Y_train) # Estimar Test predictions = lr_opt.predict(X_train) df_cm = pd.DataFrame(confusion_matrix(Y_train, predictions), columns=np.unique(Y_train), index = np.unique(Y_train)) df_cm.index.name = 'Actual' df_cm.columns.name = 'Predicted' sns.heatmap(df_cm, cmap="Blues", annot=True,annot_kws={"size": 16})# font size ###Output _____no_output_____ ###Markdown Logistic Regression Validacion ###Code lr_opt = LogisticRegression(**lr_random.best_params_) lr_opt.fit(X_train, Y_train) # Estimar Test predictions = lr_opt.predict(X_val) print(accuracy_score(Y_val, predictions)) print(confusion_matrix(Y_val, predictions)) print(classification_report(Y_val, predictions)) df_cm = pd.DataFrame(confusion_matrix(Y_val, predictions), columns=np.unique(Y_val), index = np.unique(Y_val)) df_cm.index.name = 'Actual' df_cm.columns.name = 'Predicted' sns.heatmap(df_cm, cmap="Blues", annot=True,annot_kws={"size": 16}) ###Output 0.9990344313019817 [[45478 8] [ 36 47]] precision recall f1-score support 0 1.00 1.00 1.00 45486 1 0.85 0.57 0.68 83 accuracy 1.00 45569 macro avg 0.93 0.78 0.84 45569 weighted avg 1.00 1.00 1.00 45569 ###Markdown Modelaje con Undersampling Balanceo con Undersampling Ahora entrenaremos modelos usando el metodo de **Random Under Sampling**. Consiste en remover datos aleatoriamente de la clase que tiene mas valores. De esta manera, nuestros modelos no van a sobreajustar a la clase dominante. Pasos:1. Determinar que tan imbalaceada estan nuestras clases (usar value counts)2. Despues balancemos las clases sampleando de manera aleatoria la que tiene mas numeros. Normalmente se busca tener algo cercano al 50/50.3. Entrenar y Evaluar con las clases balanceadas. El principal riesgo de esta tecnica es que podemos perder muchos datos, lo cual puede afectar el desempeño de nuestros modelos. Por ejemplo, pasamos de 280,315 datos de no fraude a 492. Rebalanceo en el train ###Code df_train = pd.concat([X_train, Y_train], axis=1) fraud_df = df_train.loc[df_train['Class'] == 1] non_fraud_df = df_train.loc[df_train['Class'] == 0][:fraud_df.shape[0]] normal_distributed_df = pd.concat([fraud_df, non_fraud_df]) # Shuffle de datos de nuevo df_new = normal_distributed_df.sample(frac=1, random_state=42) # split out validation dataset for the end Y_train_new= df_new["Class"] X_train_new = df_new.loc[:, df.columns != 'Class'] print('Distribucion de las Clases en el Data Set') print(df_new['Class'].value_counts()/len(df_new)) sns.countplot('Class', data=df_new) pyplot.title('Clases balanceadas', fontsize=14) pyplot.show() class_names = {0:'Not Fraud', 1:'Fraud'} print(df_new.Class.value_counts().rename(index = class_names)) ###Output Fraud 309 Not Fraud 309 Name: Class, dtype: int64 ###Markdown Evaluacion de modelos Undersampling ###Code # Opciones de Evaluacion de Modelos num_folds = 10 seed = 7 # scoring ='f1' scoring = 'accuracy' # ### Modelos models = [] models.append(('LR', LogisticRegression())) models.append(('LDA', LinearDiscriminantAnalysis())) models.append(('KNN', KNeighborsClassifier())) models.append(('CART', DecisionTreeClassifier())) models.append(('NB', GaussianNB())) models.append(('SVM', SVC())) #Neural Network models.append(('NN', MLPClassifier())) # #Ensable Models # Boosting methods models.append(('AB', AdaBoostClassifier())) models.append(('GBM', GradientBoostingClassifier())) # Bagging methods models.append(('RF', RandomForestClassifier())) models.append(('ET', ExtraTreesClassifier())) ###Output _____no_output_____ ###Markdown **Red Neuronal Profunda con Keras** ###Code # Modelo de red Neuronal # Si deseas entrenarlo pon el flag=1 EnableDLModelsFlag = 1 if EnableDLModelsFlag == 1 : # Creacion del modelo con Keras def create_model(neurons=12, activation='relu', learn_rate = 0.01, momentum=0): # create model model = Sequential() model.add(Dense(X_train.shape[1], input_dim=X_train.shape[1], activation=activation)) model.add(Dense(32, activation=activation)) model.add(Dense(1, activation='sigmoid')) # Compilar Modelo optimizer = SGD(lr=learn_rate, momentum=momentum) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model models.append(('DNN', KerasClassifier(build_fn=create_model, epochs=50, batch_size=10, verbose=0))) results = [] names = [] for name, model in models: kfold = KFold(n_splits=num_folds, random_state=seed, shuffle=True) cv_results = cross_val_score(model, X_train_new, Y_train_new, cv=kfold, scoring=scoring, n_jobs=-1) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) # compare algorithms fig = pyplot.figure() fig.suptitle('Comparar Algoritmos') ax = fig.add_subplot(111) pyplot.boxplot(results) ax.set_xticklabels(names) fig.set_size_inches(8,4) pyplot.show() ###Output _____no_output_____ ###Markdown Logistic Regression Documentacion [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) Logistic Regression Training **Tarea**Gridsearch con `l1_ratio`. ###Code # Numero de Arboles en el Bosque penalty = ['l1', 'l2', 'elasticnet', 'none'] # Inverso de la Regularizacion C = np.logspace(-4, 4, 20) l1_ratio = [0,.5,1] # Crea diccionario de busqueda random_grid = {'penalty': penalty, 'C': C, 'l1_ratio': l1_ratio} pprint(random_grid) # Construyamos el algoritmo lr = LogisticRegression() # Tuneo de Hyperparametros con CV lr_random = GridSearchCV(estimator = lr, param_grid = random_grid, scoring = 'accuracy', cv = 5, verbose=2, n_jobs = -1) # Entrenar lr_random.fit(X_train_new, Y_train_new) print(f'Mejores parametros: {lr_random.best_params_}') print(f'Mejor Desempeño: {lr_random.best_score_}') lr_opt = LogisticRegression(**lr_random.best_params_) lr_opt.fit(X_train_new, Y_train_new) # Estimar Test predictions = lr_opt.predict(X_train_new) print(accuracy_score(Y_train_new, predictions)) print(confusion_matrix(Y_train_new, predictions)) print(classification_report(Y_train_new, predictions)) df_cm = pd.DataFrame(confusion_matrix(Y_train_new, predictions), columns=np.unique(Y_train_new), index = np.unique(Y_train_new)) df_cm.index.name = 'Actual' df_cm.columns.name = 'Predicted' sns.heatmap(df_cm, cmap="Blues", annot=True,annot_kws={"size": 16}) ###Output 0.9611650485436893 [[303 6] [ 18 291]] precision recall f1-score support 0 0.94 0.98 0.96 309 1 0.98 0.94 0.96 309 accuracy 0.96 618 macro avg 0.96 0.96 0.96 618 weighted avg 0.96 0.96 0.96 618 ###Markdown Logistic Regression Val ###Code lr_opt = LogisticRegression(**lr_random.best_params_) lr_opt.fit(X_train_new, Y_train_new) # Estimar Test predictions = lr_opt.predict(X_val) print(accuracy_score(Y_val, predictions)) print(confusion_matrix(Y_val, predictions)) print(classification_report(Y_val, predictions)) df_cm = pd.DataFrame(confusion_matrix(Y_val, predictions), columns=np.unique(Y_val), index = np.unique(Y_val)) df_cm.index.name = 'Actual' df_cm.columns.name = 'Predicted' sns.heatmap(df_cm, cmap="Blues", annot=True,annot_kws={"size": 16}) ###Output 0.9603677938949725 [[43690 1796] [ 10 73]] precision recall f1-score support 0 1.00 0.96 0.98 45486 1 0.04 0.88 0.07 83 accuracy 0.96 45569 macro avg 0.52 0.92 0.53 45569 weighted avg 1.00 0.96 0.98 45569 ###Markdown Random Forest Tuneo de Random Forest Documentacion a [RandomForestClassifer](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html) ###Code rf = RandomForestClassifier(random_state = 42) print('Parameters currently in use:\n') pprint(rf.get_params()) ###Output Parameters currently in use: {'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False} ###Markdown Son muchos parametros, concentremonos en los mas importantes: ![image.png]() Parametros a buscar con Random Forest ###Code # Numero de Arboles en el Bosque n_estimators = [int(x) for x in np.linspace(start = 100, stop = 1000, num = 5)] # Numero de Variables por split, tecnica max_features = ['auto'] # Profundidad del Arbol max_depth = [int(x) for x in np.linspace(10, 110, num = 11)] max_depth.append(None) # Numero minimo de observaciones para hacer el Split min_samples_split = [2, 5, 10] # Minimo numero de observaciones en las hojas min_samples_leaf = [1, 2, 4] # Metodo para elegir las observaciones en cada paso bootstrap = [True] # Crea el grid de busqueda random_grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} pprint(random_grid) ###Output {'bootstrap': [True], 'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None], 'max_features': ['auto'], 'min_samples_leaf': [1, 2, 4], 'min_samples_split': [2, 5, 10], 'n_estimators': [100, 325, 550, 775, 1000]} ###Markdown Accuracy Tiempo 45 mins ###Code rf = RandomForestClassifier(random_state = 42) # Tuneo de Hyperparametros con CV rf_under = GridSearchCV(estimator = rf, param_grid = random_grid, scoring = 'accuracy', cv = 5, verbose=2, n_jobs = -1) # Entrenar rf_under.fit(X_train_new, Y_train_new) ###Output Fitting 5 folds for each of 540 candidates, totalling 2700 fits ###Markdown Mejores Parametros ###Code print(f'Mejores parametros: {rf_under.best_params_}') print(f'Mejor Desempeño: {rf_under.best_score_}') ###Output Mejores parametros: {'bootstrap': True, 'max_depth': 10, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_split': 10, 'n_estimators': 325} Mejor Desempeño: 0.940112772095463 ###Markdown F1 Score ###Code # Numero de Arboles en el Bosque n_estimators = [int(x) for x in np.linspace(start = 300, stop = 500, num = 3)] # Numero de Variables por split, tecnica max_features = ['auto'] # Profundidad del Arbol max_depth = [int(x) for x in np.linspace(8, 12, num = 3)] max_depth.append(None) # Numero minimo de observaciones para hacer el Split min_samples_split = [ 8, 10, 12] # Minimo numero de observaciones en las hojas min_samples_leaf = [3, 4] # Metodo para elegir las observaciones en cada paso bootstrap = [True] # Crea el grid de busqueda random_grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} pprint(random_grid) # Construyamos el algoritmo rf = RandomForestClassifier(random_state = 42) # Tuneo de Hyperparametros con CV rf_under_f1 = GridSearchCV(estimator = rf, param_grid = random_grid, scoring = 'f1', cv = 5, verbose=2, n_jobs = -1) # Entrenar rf_under_f1.fit(X_train_new, Y_train_new) print('Anterior') print(f'Mejores parametros: {rf_under.best_params_}') print(f'Mejor Desempeño: {rf_under.best_score_}') print('F1 score') print(f'Mejores parametros f1: {rf_under_f1.best_params_}') print(f'Mejor Desempeño f1: {rf_under_f1.best_score_}') ###Output Anterior Mejores parametros: {'bootstrap': True, 'max_depth': 10, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_split': 10, 'n_estimators': 325} Mejor Desempeño: 0.940112772095463 F1 score Mejores parametros f1: {'bootstrap': True, 'max_depth': 10, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_split': 10, 'n_estimators': 300} Mejor Desempeño f1: 0.9369254492519727 ###Markdown En ambos casos parece que mas estimadores `n_estimators` mejora la prediccion. Tuneomos un poco mas este hyperparametro. Random Search RF V2 ###Code # Numero de Arboles en el Bosque n_estimators = [int(x) for x in np.linspace(start = 280, stop = 330, num = 5)] # Numero de Variables por split, tecnica max_features = ['auto'] # Profundidad del Arbol max_depth = [10] max_depth.append(None) # Numero minimo de observaciones para hacer el Split min_samples_split = [9,10,11,12] # Minimo numero de observaciones en las hojas min_samples_leaf = [1] # Metodo para elegir las observaciones en cada paso bootstrap = [True] # Crea el grid de busqueda random_grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} pprint(random_grid) # Construyamos el algoritmo rf = RandomForestClassifier(random_state = 42) # Tuneo de Hyperparametros con CV rf_random2 = GridSearchCV(estimator = rf, param_grid = random_grid, scoring = 'accuracy', cv = 5, verbose=2, n_jobs = -1) # Entrenar rf_random2.fit(X_train_new, Y_train_new) print('Ultimo RF') print(f'Mejores parametros: {rf_random2.best_params_}') print(f'Mejor Desempeño 2: {rf_random2.best_score_}') print('\n RF optimo anteriro') print(f'Mejor Desempeño 1: {rf_under.best_score_}') print(f'Mejores parametros: {rf_under.best_params_}') rf_cv = pd.DataFrame(rf_random2.cv_results_) rf_cv[['mean_test_score', 'std_test_score', 'params']].sort_values('mean_test_score' , ascending=False).head(20) rf_cv = pd.DataFrame(rf_under.cv_results_) rf_cv[['mean_test_score', 'std_test_score', 'params']].sort_values('mean_test_score' , ascending=False).head(20) ###Output _____no_output_____ ###Markdown Parece que el desempeño es marginalmente mejor con mas estimadores, sin embargo, usemos el modelo parsimonioso. Feature Importance Ejecutar `feature_importance` con el mejor modelo de Random Forest (training) ###Code rf_fi= RandomForestClassifier(**rf_under.best_params_, random_state=9847156) rf_fi.fit(X_train_new, Y_train_new) rf_fi.feature_importances_ rf_fi.feature_names_in_ feature_importances = pd.DataFrame({'name': rf_fi.feature_names_in_, 'importance': rf_fi.feature_importances_ }) feature_importances.sort_values(by='importance', ascending=False) ###Output _____no_output_____ ###Markdown Random Forest Validacion ###Code rf_opt = RandomForestClassifier(**rf_under.best_params_) rf_opt.fit(X_train_new, Y_train_new) # Estimar Test predictions = rf_opt.predict(X_val) print(accuracy_score(Y_val, predictions)) print(confusion_matrix(Y_val, predictions)) print(classification_report(Y_val, predictions)) df_cm = pd.DataFrame(confusion_matrix(Y_val, predictions), columns=np.unique(Y_val), index = np.unique(Y_val)) df_cm.index.name = 'Actual' df_cm.columns.name = 'Predicted' sns.heatmap(df_cm, cmap="Blues", annot=True,annot_kws={"size": 16}) rf_opt = RandomForestClassifier(**rf_random2.best_params_) rf_opt.fit(X_train_new, Y_train_new) # Estimar Test predictions = rf_opt.predict(X_val) print(accuracy_score(Y_val, predictions)) print(confusion_matrix(Y_val, predictions)) print(classification_report(Y_val, predictions)) df_cm = pd.DataFrame(confusion_matrix(Y_val, predictions), columns=np.unique(Y_val), index = np.unique(Y_val)) df_cm.index.name = 'Actual' df_cm.columns.name = 'Predicted' sns.heatmap(df_cm, cmap="Blues", annot=True,annot_kws={"size": 16}) ###Output 0.9742368715574184 [[44323 1163] [ 11 72]] precision recall f1-score support 0 1.00 0.97 0.99 45486 1 0.06 0.87 0.11 83 accuracy 0.97 45569 macro avg 0.53 0.92 0.55 45569 weighted avg 1.00 0.97 0.99 45569 ###Markdown Mejor modelo + Piensa cual seria el mejor modelo si el costo de los falsos positivos es casi el mismo que el de los falsos negativos? + Que pasa esi el costo de los falsos positivos es mucho mayor? ###Code rf_opt = RandomForestClassifier(**rf_random2.best_params_, random_state=35) rf_opt.fit(X_train_new, Y_train_new) # Estimar Test predictions = rf_opt.predict(X_test) print(accuracy_score(Y_test, predictions)) print(confusion_matrix(Y_test, predictions)) print(classification_report(Y_test, predictions)) df_cm = pd.DataFrame(confusion_matrix(Y_test, predictions), columns=np.unique(Y_test), index = np.unique(Y_test)) df_cm.index.name = 'Actual' df_cm.columns.name = 'Predicted' df_cm ###Output 0.9742635441171307 [[55405 1457] [ 9 91]] precision recall f1-score support 0 1.00 0.97 0.99 56862 1 0.06 0.91 0.11 100 accuracy 0.97 56962 macro avg 0.53 0.94 0.55 56962 weighted avg 1.00 0.97 0.99 56962
Model backlog/ResNet50/19 - ResNet50 - Brightness range.ipynb
###Markdown Dependencies ###Code import os import random import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.utils import class_weight from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, cohen_kappa_score from keras import backend as K from keras.models import Model from keras import optimizers, applications from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import EarlyStopping, ReduceLROnPlateau, Callback from keras.layers import Dense, Dropout, GlobalAveragePooling2D, Input # Set seeds to make the experiment more reproducible. from tensorflow import set_random_seed def seed_everything(seed=0): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) set_random_seed(0) seed_everything() %matplotlib inline sns.set(style="whitegrid") warnings.filterwarnings("ignore") ###Output Using TensorFlow backend. ###Markdown Load data ###Code train = pd.read_csv('../input/aptos2019-blindness-detection/train.csv') test = pd.read_csv('../input/aptos2019-blindness-detection/test.csv') print('Number of train samples: ', train.shape[0]) print('Number of test samples: ', test.shape[0]) # Preprocecss data train["id_code"] = train["id_code"].apply(lambda x: x + ".png") test["id_code"] = test["id_code"].apply(lambda x: x + ".png") train['diagnosis'] = train['diagnosis'].astype('str') display(train.head()) ###Output Number of train samples: 3662 Number of test samples: 1928 ###Markdown Model parameters ###Code # Model parameters BATCH_SIZE = 8 EPOCHS = 30 WARMUP_EPOCHS = 2 LEARNING_RATE = 1e-4 WARMUP_LEARNING_RATE = 1e-3 HEIGHT = 512 WIDTH = 512 CANAL = 3 N_CLASSES = train['diagnosis'].nunique() ES_PATIENCE = 5 RLROP_PATIENCE = 3 DECAY_DROP = 0.5 def kappa(y_true, y_pred, n_classes=5): y_trues = K.cast(K.argmax(y_true), K.floatx()) y_preds = K.cast(K.argmax(y_pred), K.floatx()) n_samples = K.cast(K.shape(y_true)[0], K.floatx()) distance = K.sum(K.abs(y_trues - y_preds)) max_distance = n_classes - 1 kappa_score = 1 - ((distance**2) / (n_samples * (max_distance**2))) return kappa_score ###Output _____no_output_____ ###Markdown Train test split ###Code X_train, X_val = train_test_split(train, test_size=0.25, random_state=0) ###Output _____no_output_____ ###Markdown Data generator ###Code train_datagen=ImageDataGenerator(rescale=1./255, brightness_range=[0.5, 1.5], fill_mode='reflect', horizontal_flip=True, vertical_flip=True) train_generator=train_datagen.flow_from_dataframe( dataframe=X_train, directory="../input/aptos2019-blindness-detection/train_images/", x_col="id_code", y_col="diagnosis", batch_size=BATCH_SIZE, class_mode="categorical", target_size=(HEIGHT, WIDTH)) valid_generator=train_datagen.flow_from_dataframe( dataframe=X_val, directory="../input/aptos2019-blindness-detection/train_images/", x_col="id_code", y_col="diagnosis", batch_size=BATCH_SIZE, class_mode="categorical", target_size=(HEIGHT, WIDTH)) test_datagen = ImageDataGenerator(rescale=1./255) test_generator = test_datagen.flow_from_dataframe( dataframe=test, directory = "../input/aptos2019-blindness-detection/test_images/", x_col="id_code", target_size=(HEIGHT, WIDTH), batch_size=1, shuffle=False, class_mode=None) ###Output Found 2746 validated image filenames belonging to 5 classes. Found 916 validated image filenames belonging to 5 classes. Found 1928 validated image filenames. ###Markdown Model ###Code def create_model(input_shape, n_out): input_tensor = Input(shape=input_shape) base_model = applications.ResNet50(weights=None, include_top=False, input_tensor=input_tensor) base_model.load_weights('../input/resnet50/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5') x = GlobalAveragePooling2D()(base_model.output) x = Dropout(0.5)(x) x = Dense(2048, activation='relu')(x) x = Dropout(0.5)(x) final_output = Dense(n_out, activation='softmax', name='final_output')(x) model = Model(input_tensor, final_output) return model model = create_model(input_shape=(HEIGHT, WIDTH, CANAL), n_out=N_CLASSES) for layer in model.layers: layer.trainable = False for i in range(-5, 0): model.layers[i].trainable = True class_weights = class_weight.compute_class_weight('balanced', np.unique(train['diagnosis'].astype('int').values), train['diagnosis'].astype('int').values) metric_list = ["accuracy", kappa] optimizer = optimizers.Adam(lr=WARMUP_LEARNING_RATE) model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=metric_list) model.summary() ###Output __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) (None, 512, 512, 3) 0 __________________________________________________________________________________________________ conv1_pad (ZeroPadding2D) (None, 518, 518, 3) 0 input_1[0][0] __________________________________________________________________________________________________ conv1 (Conv2D) (None, 256, 256, 64) 9472 conv1_pad[0][0] __________________________________________________________________________________________________ bn_conv1 (BatchNormalization) (None, 256, 256, 64) 256 conv1[0][0] __________________________________________________________________________________________________ activation_1 (Activation) (None, 256, 256, 64) 0 bn_conv1[0][0] __________________________________________________________________________________________________ pool1_pad (ZeroPadding2D) (None, 258, 258, 64) 0 activation_1[0][0] __________________________________________________________________________________________________ max_pooling2d_1 (MaxPooling2D) (None, 128, 128, 64) 0 pool1_pad[0][0] __________________________________________________________________________________________________ res2a_branch2a (Conv2D) (None, 128, 128, 64) 4160 max_pooling2d_1[0][0] __________________________________________________________________________________________________ bn2a_branch2a (BatchNormalizati (None, 128, 128, 64) 256 res2a_branch2a[0][0] __________________________________________________________________________________________________ activation_2 (Activation) (None, 128, 128, 64) 0 bn2a_branch2a[0][0] __________________________________________________________________________________________________ res2a_branch2b (Conv2D) (None, 128, 128, 64) 36928 activation_2[0][0] __________________________________________________________________________________________________ bn2a_branch2b (BatchNormalizati (None, 128, 128, 64) 256 res2a_branch2b[0][0] __________________________________________________________________________________________________ activation_3 (Activation) (None, 128, 128, 64) 0 bn2a_branch2b[0][0] __________________________________________________________________________________________________ res2a_branch2c (Conv2D) (None, 128, 128, 256 16640 activation_3[0][0] __________________________________________________________________________________________________ res2a_branch1 (Conv2D) (None, 128, 128, 256 16640 max_pooling2d_1[0][0] __________________________________________________________________________________________________ bn2a_branch2c (BatchNormalizati (None, 128, 128, 256 1024 res2a_branch2c[0][0] __________________________________________________________________________________________________ bn2a_branch1 (BatchNormalizatio (None, 128, 128, 256 1024 res2a_branch1[0][0] __________________________________________________________________________________________________ add_1 (Add) (None, 128, 128, 256 0 bn2a_branch2c[0][0] bn2a_branch1[0][0] __________________________________________________________________________________________________ activation_4 (Activation) (None, 128, 128, 256 0 add_1[0][0] __________________________________________________________________________________________________ res2b_branch2a (Conv2D) (None, 128, 128, 64) 16448 activation_4[0][0] __________________________________________________________________________________________________ bn2b_branch2a (BatchNormalizati (None, 128, 128, 64) 256 res2b_branch2a[0][0] __________________________________________________________________________________________________ activation_5 (Activation) (None, 128, 128, 64) 0 bn2b_branch2a[0][0] __________________________________________________________________________________________________ res2b_branch2b (Conv2D) (None, 128, 128, 64) 36928 activation_5[0][0] __________________________________________________________________________________________________ bn2b_branch2b (BatchNormalizati (None, 128, 128, 64) 256 res2b_branch2b[0][0] __________________________________________________________________________________________________ activation_6 (Activation) (None, 128, 128, 64) 0 bn2b_branch2b[0][0] __________________________________________________________________________________________________ res2b_branch2c (Conv2D) (None, 128, 128, 256 16640 activation_6[0][0] __________________________________________________________________________________________________ bn2b_branch2c (BatchNormalizati (None, 128, 128, 256 1024 res2b_branch2c[0][0] __________________________________________________________________________________________________ add_2 (Add) (None, 128, 128, 256 0 bn2b_branch2c[0][0] activation_4[0][0] __________________________________________________________________________________________________ activation_7 (Activation) (None, 128, 128, 256 0 add_2[0][0] __________________________________________________________________________________________________ res2c_branch2a (Conv2D) (None, 128, 128, 64) 16448 activation_7[0][0] __________________________________________________________________________________________________ bn2c_branch2a (BatchNormalizati (None, 128, 128, 64) 256 res2c_branch2a[0][0] __________________________________________________________________________________________________ activation_8 (Activation) (None, 128, 128, 64) 0 bn2c_branch2a[0][0] __________________________________________________________________________________________________ res2c_branch2b (Conv2D) (None, 128, 128, 64) 36928 activation_8[0][0] __________________________________________________________________________________________________ bn2c_branch2b (BatchNormalizati (None, 128, 128, 64) 256 res2c_branch2b[0][0] __________________________________________________________________________________________________ activation_9 (Activation) (None, 128, 128, 64) 0 bn2c_branch2b[0][0] __________________________________________________________________________________________________ res2c_branch2c (Conv2D) (None, 128, 128, 256 16640 activation_9[0][0] __________________________________________________________________________________________________ bn2c_branch2c (BatchNormalizati (None, 128, 128, 256 1024 res2c_branch2c[0][0] __________________________________________________________________________________________________ add_3 (Add) (None, 128, 128, 256 0 bn2c_branch2c[0][0] activation_7[0][0] __________________________________________________________________________________________________ activation_10 (Activation) (None, 128, 128, 256 0 add_3[0][0] __________________________________________________________________________________________________ res3a_branch2a (Conv2D) (None, 64, 64, 128) 32896 activation_10[0][0] __________________________________________________________________________________________________ bn3a_branch2a (BatchNormalizati (None, 64, 64, 128) 512 res3a_branch2a[0][0] __________________________________________________________________________________________________ activation_11 (Activation) (None, 64, 64, 128) 0 bn3a_branch2a[0][0] __________________________________________________________________________________________________ res3a_branch2b (Conv2D) (None, 64, 64, 128) 147584 activation_11[0][0] __________________________________________________________________________________________________ bn3a_branch2b (BatchNormalizati (None, 64, 64, 128) 512 res3a_branch2b[0][0] __________________________________________________________________________________________________ activation_12 (Activation) (None, 64, 64, 128) 0 bn3a_branch2b[0][0] __________________________________________________________________________________________________ res3a_branch2c (Conv2D) (None, 64, 64, 512) 66048 activation_12[0][0] __________________________________________________________________________________________________ res3a_branch1 (Conv2D) (None, 64, 64, 512) 131584 activation_10[0][0] __________________________________________________________________________________________________ bn3a_branch2c (BatchNormalizati (None, 64, 64, 512) 2048 res3a_branch2c[0][0] __________________________________________________________________________________________________ bn3a_branch1 (BatchNormalizatio (None, 64, 64, 512) 2048 res3a_branch1[0][0] __________________________________________________________________________________________________ add_4 (Add) (None, 64, 64, 512) 0 bn3a_branch2c[0][0] bn3a_branch1[0][0] __________________________________________________________________________________________________ activation_13 (Activation) (None, 64, 64, 512) 0 add_4[0][0] __________________________________________________________________________________________________ res3b_branch2a (Conv2D) (None, 64, 64, 128) 65664 activation_13[0][0] __________________________________________________________________________________________________ bn3b_branch2a (BatchNormalizati (None, 64, 64, 128) 512 res3b_branch2a[0][0] __________________________________________________________________________________________________ activation_14 (Activation) (None, 64, 64, 128) 0 bn3b_branch2a[0][0] __________________________________________________________________________________________________ res3b_branch2b (Conv2D) (None, 64, 64, 128) 147584 activation_14[0][0] __________________________________________________________________________________________________ bn3b_branch2b (BatchNormalizati (None, 64, 64, 128) 512 res3b_branch2b[0][0] __________________________________________________________________________________________________ activation_15 (Activation) (None, 64, 64, 128) 0 bn3b_branch2b[0][0] __________________________________________________________________________________________________ res3b_branch2c (Conv2D) (None, 64, 64, 512) 66048 activation_15[0][0] __________________________________________________________________________________________________ bn3b_branch2c (BatchNormalizati (None, 64, 64, 512) 2048 res3b_branch2c[0][0] __________________________________________________________________________________________________ add_5 (Add) (None, 64, 64, 512) 0 bn3b_branch2c[0][0] activation_13[0][0] __________________________________________________________________________________________________ activation_16 (Activation) (None, 64, 64, 512) 0 add_5[0][0] __________________________________________________________________________________________________ res3c_branch2a (Conv2D) (None, 64, 64, 128) 65664 activation_16[0][0] __________________________________________________________________________________________________ bn3c_branch2a (BatchNormalizati (None, 64, 64, 128) 512 res3c_branch2a[0][0] __________________________________________________________________________________________________ activation_17 (Activation) (None, 64, 64, 128) 0 bn3c_branch2a[0][0] __________________________________________________________________________________________________ res3c_branch2b (Conv2D) (None, 64, 64, 128) 147584 activation_17[0][0] __________________________________________________________________________________________________ bn3c_branch2b (BatchNormalizati (None, 64, 64, 128) 512 res3c_branch2b[0][0] __________________________________________________________________________________________________ activation_18 (Activation) (None, 64, 64, 128) 0 bn3c_branch2b[0][0] __________________________________________________________________________________________________ res3c_branch2c (Conv2D) (None, 64, 64, 512) 66048 activation_18[0][0] __________________________________________________________________________________________________ bn3c_branch2c (BatchNormalizati (None, 64, 64, 512) 2048 res3c_branch2c[0][0] __________________________________________________________________________________________________ add_6 (Add) (None, 64, 64, 512) 0 bn3c_branch2c[0][0] activation_16[0][0] __________________________________________________________________________________________________ activation_19 (Activation) (None, 64, 64, 512) 0 add_6[0][0] __________________________________________________________________________________________________ res3d_branch2a (Conv2D) (None, 64, 64, 128) 65664 activation_19[0][0] __________________________________________________________________________________________________ bn3d_branch2a (BatchNormalizati (None, 64, 64, 128) 512 res3d_branch2a[0][0] __________________________________________________________________________________________________ activation_20 (Activation) (None, 64, 64, 128) 0 bn3d_branch2a[0][0] __________________________________________________________________________________________________ res3d_branch2b (Conv2D) (None, 64, 64, 128) 147584 activation_20[0][0] __________________________________________________________________________________________________ bn3d_branch2b (BatchNormalizati (None, 64, 64, 128) 512 res3d_branch2b[0][0] __________________________________________________________________________________________________ activation_21 (Activation) (None, 64, 64, 128) 0 bn3d_branch2b[0][0] __________________________________________________________________________________________________ res3d_branch2c (Conv2D) (None, 64, 64, 512) 66048 activation_21[0][0] __________________________________________________________________________________________________ bn3d_branch2c (BatchNormalizati (None, 64, 64, 512) 2048 res3d_branch2c[0][0] __________________________________________________________________________________________________ add_7 (Add) (None, 64, 64, 512) 0 bn3d_branch2c[0][0] activation_19[0][0] __________________________________________________________________________________________________ activation_22 (Activation) (None, 64, 64, 512) 0 add_7[0][0] __________________________________________________________________________________________________ res4a_branch2a (Conv2D) (None, 32, 32, 256) 131328 activation_22[0][0] __________________________________________________________________________________________________ bn4a_branch2a (BatchNormalizati (None, 32, 32, 256) 1024 res4a_branch2a[0][0] __________________________________________________________________________________________________ activation_23 (Activation) (None, 32, 32, 256) 0 bn4a_branch2a[0][0] __________________________________________________________________________________________________ res4a_branch2b (Conv2D) (None, 32, 32, 256) 590080 activation_23[0][0] __________________________________________________________________________________________________ bn4a_branch2b (BatchNormalizati (None, 32, 32, 256) 1024 res4a_branch2b[0][0] __________________________________________________________________________________________________ activation_24 (Activation) (None, 32, 32, 256) 0 bn4a_branch2b[0][0] __________________________________________________________________________________________________ res4a_branch2c (Conv2D) (None, 32, 32, 1024) 263168 activation_24[0][0] __________________________________________________________________________________________________ res4a_branch1 (Conv2D) (None, 32, 32, 1024) 525312 activation_22[0][0] __________________________________________________________________________________________________ bn4a_branch2c (BatchNormalizati (None, 32, 32, 1024) 4096 res4a_branch2c[0][0] __________________________________________________________________________________________________ bn4a_branch1 (BatchNormalizatio (None, 32, 32, 1024) 4096 res4a_branch1[0][0] __________________________________________________________________________________________________ add_8 (Add) (None, 32, 32, 1024) 0 bn4a_branch2c[0][0] bn4a_branch1[0][0] __________________________________________________________________________________________________ activation_25 (Activation) (None, 32, 32, 1024) 0 add_8[0][0] __________________________________________________________________________________________________ res4b_branch2a (Conv2D) (None, 32, 32, 256) 262400 activation_25[0][0] __________________________________________________________________________________________________ bn4b_branch2a (BatchNormalizati (None, 32, 32, 256) 1024 res4b_branch2a[0][0] __________________________________________________________________________________________________ activation_26 (Activation) (None, 32, 32, 256) 0 bn4b_branch2a[0][0] __________________________________________________________________________________________________ res4b_branch2b (Conv2D) (None, 32, 32, 256) 590080 activation_26[0][0] __________________________________________________________________________________________________ bn4b_branch2b (BatchNormalizati (None, 32, 32, 256) 1024 res4b_branch2b[0][0] __________________________________________________________________________________________________ activation_27 (Activation) (None, 32, 32, 256) 0 bn4b_branch2b[0][0] __________________________________________________________________________________________________ res4b_branch2c (Conv2D) (None, 32, 32, 1024) 263168 activation_27[0][0] __________________________________________________________________________________________________ bn4b_branch2c (BatchNormalizati (None, 32, 32, 1024) 4096 res4b_branch2c[0][0] __________________________________________________________________________________________________ add_9 (Add) (None, 32, 32, 1024) 0 bn4b_branch2c[0][0] activation_25[0][0] __________________________________________________________________________________________________ activation_28 (Activation) (None, 32, 32, 1024) 0 add_9[0][0] __________________________________________________________________________________________________ res4c_branch2a (Conv2D) (None, 32, 32, 256) 262400 activation_28[0][0] __________________________________________________________________________________________________ bn4c_branch2a (BatchNormalizati (None, 32, 32, 256) 1024 res4c_branch2a[0][0] __________________________________________________________________________________________________ activation_29 (Activation) (None, 32, 32, 256) 0 bn4c_branch2a[0][0] __________________________________________________________________________________________________ res4c_branch2b (Conv2D) (None, 32, 32, 256) 590080 activation_29[0][0] __________________________________________________________________________________________________ bn4c_branch2b (BatchNormalizati (None, 32, 32, 256) 1024 res4c_branch2b[0][0] __________________________________________________________________________________________________ activation_30 (Activation) (None, 32, 32, 256) 0 bn4c_branch2b[0][0] __________________________________________________________________________________________________ res4c_branch2c (Conv2D) (None, 32, 32, 1024) 263168 activation_30[0][0] __________________________________________________________________________________________________ bn4c_branch2c (BatchNormalizati (None, 32, 32, 1024) 4096 res4c_branch2c[0][0] __________________________________________________________________________________________________ add_10 (Add) (None, 32, 32, 1024) 0 bn4c_branch2c[0][0] activation_28[0][0] __________________________________________________________________________________________________ activation_31 (Activation) (None, 32, 32, 1024) 0 add_10[0][0] __________________________________________________________________________________________________ res4d_branch2a (Conv2D) (None, 32, 32, 256) 262400 activation_31[0][0] __________________________________________________________________________________________________ bn4d_branch2a (BatchNormalizati (None, 32, 32, 256) 1024 res4d_branch2a[0][0] __________________________________________________________________________________________________ activation_32 (Activation) (None, 32, 32, 256) 0 bn4d_branch2a[0][0] __________________________________________________________________________________________________ res4d_branch2b (Conv2D) (None, 32, 32, 256) 590080 activation_32[0][0] __________________________________________________________________________________________________ bn4d_branch2b (BatchNormalizati (None, 32, 32, 256) 1024 res4d_branch2b[0][0] __________________________________________________________________________________________________ activation_33 (Activation) (None, 32, 32, 256) 0 bn4d_branch2b[0][0] __________________________________________________________________________________________________ res4d_branch2c (Conv2D) (None, 32, 32, 1024) 263168 activation_33[0][0] __________________________________________________________________________________________________ bn4d_branch2c (BatchNormalizati (None, 32, 32, 1024) 4096 res4d_branch2c[0][0] __________________________________________________________________________________________________ add_11 (Add) (None, 32, 32, 1024) 0 bn4d_branch2c[0][0] activation_31[0][0] __________________________________________________________________________________________________ activation_34 (Activation) (None, 32, 32, 1024) 0 add_11[0][0] __________________________________________________________________________________________________ res4e_branch2a (Conv2D) (None, 32, 32, 256) 262400 activation_34[0][0] __________________________________________________________________________________________________ bn4e_branch2a (BatchNormalizati (None, 32, 32, 256) 1024 res4e_branch2a[0][0] __________________________________________________________________________________________________ activation_35 (Activation) (None, 32, 32, 256) 0 bn4e_branch2a[0][0] __________________________________________________________________________________________________ res4e_branch2b (Conv2D) (None, 32, 32, 256) 590080 activation_35[0][0] __________________________________________________________________________________________________ bn4e_branch2b (BatchNormalizati (None, 32, 32, 256) 1024 res4e_branch2b[0][0] __________________________________________________________________________________________________ activation_36 (Activation) (None, 32, 32, 256) 0 bn4e_branch2b[0][0] __________________________________________________________________________________________________ res4e_branch2c (Conv2D) (None, 32, 32, 1024) 263168 activation_36[0][0] __________________________________________________________________________________________________ bn4e_branch2c (BatchNormalizati (None, 32, 32, 1024) 4096 res4e_branch2c[0][0] __________________________________________________________________________________________________ add_12 (Add) (None, 32, 32, 1024) 0 bn4e_branch2c[0][0] activation_34[0][0] __________________________________________________________________________________________________ activation_37 (Activation) (None, 32, 32, 1024) 0 add_12[0][0] __________________________________________________________________________________________________ res4f_branch2a (Conv2D) (None, 32, 32, 256) 262400 activation_37[0][0] __________________________________________________________________________________________________ bn4f_branch2a (BatchNormalizati (None, 32, 32, 256) 1024 res4f_branch2a[0][0] __________________________________________________________________________________________________ activation_38 (Activation) (None, 32, 32, 256) 0 bn4f_branch2a[0][0] __________________________________________________________________________________________________ res4f_branch2b (Conv2D) (None, 32, 32, 256) 590080 activation_38[0][0] __________________________________________________________________________________________________ bn4f_branch2b (BatchNormalizati (None, 32, 32, 256) 1024 res4f_branch2b[0][0] __________________________________________________________________________________________________ activation_39 (Activation) (None, 32, 32, 256) 0 bn4f_branch2b[0][0] __________________________________________________________________________________________________ res4f_branch2c (Conv2D) (None, 32, 32, 1024) 263168 activation_39[0][0] __________________________________________________________________________________________________ bn4f_branch2c (BatchNormalizati (None, 32, 32, 1024) 4096 res4f_branch2c[0][0] __________________________________________________________________________________________________ add_13 (Add) (None, 32, 32, 1024) 0 bn4f_branch2c[0][0] activation_37[0][0] __________________________________________________________________________________________________ activation_40 (Activation) (None, 32, 32, 1024) 0 add_13[0][0] __________________________________________________________________________________________________ res5a_branch2a (Conv2D) (None, 16, 16, 512) 524800 activation_40[0][0] __________________________________________________________________________________________________ bn5a_branch2a (BatchNormalizati (None, 16, 16, 512) 2048 res5a_branch2a[0][0] __________________________________________________________________________________________________ activation_41 (Activation) (None, 16, 16, 512) 0 bn5a_branch2a[0][0] __________________________________________________________________________________________________ res5a_branch2b (Conv2D) (None, 16, 16, 512) 2359808 activation_41[0][0] __________________________________________________________________________________________________ bn5a_branch2b (BatchNormalizati (None, 16, 16, 512) 2048 res5a_branch2b[0][0] __________________________________________________________________________________________________ activation_42 (Activation) (None, 16, 16, 512) 0 bn5a_branch2b[0][0] __________________________________________________________________________________________________ res5a_branch2c (Conv2D) (None, 16, 16, 2048) 1050624 activation_42[0][0] __________________________________________________________________________________________________ res5a_branch1 (Conv2D) (None, 16, 16, 2048) 2099200 activation_40[0][0] __________________________________________________________________________________________________ bn5a_branch2c (BatchNormalizati (None, 16, 16, 2048) 8192 res5a_branch2c[0][0] __________________________________________________________________________________________________ bn5a_branch1 (BatchNormalizatio (None, 16, 16, 2048) 8192 res5a_branch1[0][0] __________________________________________________________________________________________________ add_14 (Add) (None, 16, 16, 2048) 0 bn5a_branch2c[0][0] bn5a_branch1[0][0] __________________________________________________________________________________________________ activation_43 (Activation) (None, 16, 16, 2048) 0 add_14[0][0] __________________________________________________________________________________________________ res5b_branch2a (Conv2D) (None, 16, 16, 512) 1049088 activation_43[0][0] __________________________________________________________________________________________________ bn5b_branch2a (BatchNormalizati (None, 16, 16, 512) 2048 res5b_branch2a[0][0] __________________________________________________________________________________________________ activation_44 (Activation) (None, 16, 16, 512) 0 bn5b_branch2a[0][0] __________________________________________________________________________________________________ res5b_branch2b (Conv2D) (None, 16, 16, 512) 2359808 activation_44[0][0] __________________________________________________________________________________________________ bn5b_branch2b (BatchNormalizati (None, 16, 16, 512) 2048 res5b_branch2b[0][0] __________________________________________________________________________________________________ activation_45 (Activation) (None, 16, 16, 512) 0 bn5b_branch2b[0][0] __________________________________________________________________________________________________ res5b_branch2c (Conv2D) (None, 16, 16, 2048) 1050624 activation_45[0][0] __________________________________________________________________________________________________ bn5b_branch2c (BatchNormalizati (None, 16, 16, 2048) 8192 res5b_branch2c[0][0] __________________________________________________________________________________________________ add_15 (Add) (None, 16, 16, 2048) 0 bn5b_branch2c[0][0] activation_43[0][0] __________________________________________________________________________________________________ activation_46 (Activation) (None, 16, 16, 2048) 0 add_15[0][0] __________________________________________________________________________________________________ res5c_branch2a (Conv2D) (None, 16, 16, 512) 1049088 activation_46[0][0] __________________________________________________________________________________________________ bn5c_branch2a (BatchNormalizati (None, 16, 16, 512) 2048 res5c_branch2a[0][0] __________________________________________________________________________________________________ activation_47 (Activation) (None, 16, 16, 512) 0 bn5c_branch2a[0][0] __________________________________________________________________________________________________ res5c_branch2b (Conv2D) (None, 16, 16, 512) 2359808 activation_47[0][0] __________________________________________________________________________________________________ bn5c_branch2b (BatchNormalizati (None, 16, 16, 512) 2048 res5c_branch2b[0][0] __________________________________________________________________________________________________ activation_48 (Activation) (None, 16, 16, 512) 0 bn5c_branch2b[0][0] __________________________________________________________________________________________________ res5c_branch2c (Conv2D) (None, 16, 16, 2048) 1050624 activation_48[0][0] __________________________________________________________________________________________________ bn5c_branch2c (BatchNormalizati (None, 16, 16, 2048) 8192 res5c_branch2c[0][0] __________________________________________________________________________________________________ add_16 (Add) (None, 16, 16, 2048) 0 bn5c_branch2c[0][0] activation_46[0][0] __________________________________________________________________________________________________ activation_49 (Activation) (None, 16, 16, 2048) 0 add_16[0][0] __________________________________________________________________________________________________ global_average_pooling2d_1 (Glo (None, 2048) 0 activation_49[0][0] __________________________________________________________________________________________________ dropout_1 (Dropout) (None, 2048) 0 global_average_pooling2d_1[0][0] __________________________________________________________________________________________________ dense_1 (Dense) (None, 2048) 4196352 dropout_1[0][0] __________________________________________________________________________________________________ dropout_2 (Dropout) (None, 2048) 0 dense_1[0][0] __________________________________________________________________________________________________ final_output (Dense) (None, 5) 10245 dropout_2[0][0] ================================================================================================== Total params: 27,794,309 Trainable params: 4,206,597 Non-trainable params: 23,587,712 __________________________________________________________________________________________________ ###Markdown Train top layers ###Code STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size STEP_SIZE_VALID = valid_generator.n//valid_generator.batch_size history_warmup = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, epochs=WARMUP_EPOCHS, class_weight=class_weights, verbose=1).history ###Output Epoch 1/2 343/343 [==============================] - 461s 1s/step - loss: 1.3821 - acc: 0.6301 - kappa: 0.7207 - val_loss: 2.6848 - val_acc: 0.4890 - val_kappa: 0.2442 Epoch 2/2 343/343 [==============================] - 439s 1s/step - loss: 0.8302 - acc: 0.7095 - kappa: 0.8470 - val_loss: 3.7802 - val_acc: 0.4912 - val_kappa: 0.2589 ###Markdown Fine-tune the complete model ###Code for layer in model.layers: layer.trainable = True es = EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1) rlrop = ReduceLROnPlateau(monitor='val_loss', mode='min', patience=RLROP_PATIENCE, factor=DECAY_DROP, min_lr=1e-6, verbose=1) callback_list = [es, rlrop] optimizer = optimizers.Adam(lr=LEARNING_RATE) model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=metric_list) model.summary() history_finetunning = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, epochs=EPOCHS, callbacks=callback_list, class_weight=class_weights, verbose=1).history ###Output Epoch 1/30 343/343 [==============================] - 474s 1s/step - loss: 0.6763 - acc: 0.7474 - kappa: 0.9081 - val_loss: 0.5887 - val_acc: 0.7841 - val_kappa: 0.9221 Epoch 2/30 343/343 [==============================] - 452s 1s/step - loss: 0.5715 - acc: 0.7912 - kappa: 0.9296 - val_loss: 0.5435 - val_acc: 0.7885 - val_kappa: 0.9439 Epoch 3/30 343/343 [==============================] - 453s 1s/step - loss: 0.5040 - acc: 0.8101 - kappa: 0.9399 - val_loss: 0.6270 - val_acc: 0.7852 - val_kappa: 0.9235 Epoch 4/30 343/343 [==============================] - 451s 1s/step - loss: 0.4829 - acc: 0.8098 - kappa: 0.9494 - val_loss: 0.5634 - val_acc: 0.7985 - val_kappa: 0.9365 Epoch 5/30 343/343 [==============================] - 447s 1s/step - loss: 0.4501 - acc: 0.8364 - kappa: 0.9601 - val_loss: 0.5185 - val_acc: 0.8194 - val_kappa: 0.9442 Epoch 6/30 343/343 [==============================] - 452s 1s/step - loss: 0.4429 - acc: 0.8294 - kappa: 0.9568 - val_loss: 0.5558 - val_acc: 0.8051 - val_kappa: 0.9396 Epoch 7/30 343/343 [==============================] - 448s 1s/step - loss: 0.4160 - acc: 0.8455 - kappa: 0.9623 - val_loss: 0.4607 - val_acc: 0.8370 - val_kappa: 0.9535 Epoch 8/30 343/343 [==============================] - 453s 1s/step - loss: 0.3647 - acc: 0.8684 - kappa: 0.9719 - val_loss: 0.4658 - val_acc: 0.8447 - val_kappa: 0.9567 Epoch 9/30 343/343 [==============================] - 451s 1s/step - loss: 0.3481 - acc: 0.8637 - kappa: 0.9687 - val_loss: 0.5907 - val_acc: 0.8084 - val_kappa: 0.9548 Epoch 10/30 343/343 [==============================] - 451s 1s/step - loss: 0.3487 - acc: 0.8630 - kappa: 0.9722 - val_loss: 0.5212 - val_acc: 0.8249 - val_kappa: 0.9457 Epoch 00010: ReduceLROnPlateau reducing learning rate to 4.999999873689376e-05. Epoch 11/30 343/343 [==============================] - 448s 1s/step - loss: 0.2794 - acc: 0.8965 - kappa: 0.9796 - val_loss: 0.4810 - val_acc: 0.8491 - val_kappa: 0.9551 Epoch 12/30 343/343 [==============================] - 450s 1s/step - loss: 0.2610 - acc: 0.9045 - kappa: 0.9848 - val_loss: 0.4461 - val_acc: 0.8579 - val_kappa: 0.9673 Epoch 13/30 343/343 [==============================] - 454s 1s/step - loss: 0.2200 - acc: 0.9169 - kappa: 0.9852 - val_loss: 0.4263 - val_acc: 0.8612 - val_kappa: 0.9623 Epoch 14/30 343/343 [==============================] - 456s 1s/step - loss: 0.2127 - acc: 0.9209 - kappa: 0.9864 - val_loss: 0.4674 - val_acc: 0.8524 - val_kappa: 0.9613 Epoch 15/30 343/343 [==============================] - 452s 1s/step - loss: 0.1870 - acc: 0.9322 - kappa: 0.9889 - val_loss: 0.5328 - val_acc: 0.8425 - val_kappa: 0.9596 Epoch 16/30 109/343 [========>.....................] - ETA: 3:44 - loss: 0.2042 - acc: 0.9358 - kappa: 0.9904 ###Markdown Model loss graph ###Code history = {'loss': history_warmup['loss'] + history_finetunning['loss'], 'val_loss': history_warmup['val_loss'] + history_finetunning['val_loss'], 'acc': history_warmup['acc'] + history_finetunning['acc'], 'val_acc': history_warmup['val_acc'] + history_finetunning['val_acc'], 'kappa': history_warmup['kappa'] + history_finetunning['kappa'], 'val_kappa': history_warmup['val_kappa'] + history_finetunning['val_kappa']} sns.set_style("whitegrid") fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex='col', figsize=(20, 18)) ax1.plot(history['loss'], label='Train loss') ax1.plot(history['val_loss'], label='Validation loss') ax1.legend(loc='best') ax1.set_title('Loss') ax2.plot(history['acc'], label='Train accuracy') ax2.plot(history['val_acc'], label='Validation accuracy') ax2.legend(loc='best') ax2.set_title('Accuracy') ax3.plot(history['kappa'], label='Train kappa') ax3.plot(history['val_kappa'], label='Validation kappa') ax3.legend(loc='best') ax3.set_title('Kappa') plt.xlabel('Epochs') sns.despine() plt.show() ###Output _____no_output_____ ###Markdown Model Evaluation ###Code lastFullTrainPred = np.empty((0, N_CLASSES)) lastFullTrainLabels = np.empty((0, N_CLASSES)) lastFullValPred = np.empty((0, N_CLASSES)) lastFullValLabels = np.empty((0, N_CLASSES)) for i in range(STEP_SIZE_TRAIN+1): im, lbl = next(train_generator) scores = model.predict(im, batch_size=train_generator.batch_size) lastFullTrainPred = np.append(lastFullTrainPred, scores, axis=0) lastFullTrainLabels = np.append(lastFullTrainLabels, lbl, axis=0) for i in range(STEP_SIZE_VALID+1): im, lbl = next(valid_generator) scores = model.predict(im, batch_size=valid_generator.batch_size) lastFullValPred = np.append(lastFullValPred, scores, axis=0) lastFullValLabels = np.append(lastFullValLabels, lbl, axis=0) ###Output _____no_output_____ ###Markdown Threshold optimization ###Code def find_best_fixed_threshold(preds, targs, do_plot=True): best_thr_list = [0 for i in range(preds.shape[1])] for index in reversed(range(1, preds.shape[1])): score = [] thrs = np.arange(0, 1, 0.01) for thr in thrs: preds_thr = [index if x[index] > thr else np.argmax(x) for x in preds] score.append(cohen_kappa_score(targs, preds_thr)) score = np.array(score) pm = score.argmax() best_thr, best_score = thrs[pm], score[pm].item() best_thr_list[index] = best_thr print(f'thr={best_thr:.3f}', f'F2={best_score:.3f}') if do_plot: plt.plot(thrs, score) plt.vlines(x=best_thr, ymin=score.min(), ymax=score.max()) plt.text(best_thr+0.03, best_score-0.01, ('Kappa[%s]=%.3f'%(index, best_score)), fontsize=14); plt.show() return best_thr_list lastFullComPred = np.concatenate((lastFullTrainPred, lastFullValPred)) lastFullComLabels = np.concatenate((lastFullTrainLabels, lastFullValLabels)) complete_labels = [np.argmax(label) for label in lastFullComLabels] threshold_list = find_best_fixed_threshold(lastFullComPred, complete_labels, do_plot=True) threshold_list[0] = 0 # In last instance assign label 0 train_preds = [np.argmax(pred) for pred in lastFullTrainPred] train_labels = [np.argmax(label) for label in lastFullTrainLabels] validation_preds = [np.argmax(pred) for pred in lastFullValPred] validation_labels = [np.argmax(label) for label in lastFullValLabels] train_preds_opt = [0 for i in range(lastFullTrainPred.shape[0])] for idx, thr in enumerate(threshold_list): for idx2, pred in enumerate(lastFullTrainPred): if pred[idx] > thr: train_preds_opt[idx2] = idx validation_preds_opt = [0 for i in range(lastFullValPred.shape[0])] for idx, thr in enumerate(threshold_list): for idx2, pred in enumerate(lastFullValPred): if pred[idx] > thr: validation_preds_opt[idx2] = idx ###Output thr=0.480 F2=0.884 ###Markdown Confusion Matrix ###Code fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', figsize=(24, 7)) labels = ['0 - No DR', '1 - Mild', '2 - Moderate', '3 - Severe', '4 - Proliferative DR'] train_cnf_matrix = confusion_matrix(train_labels, train_preds) validation_cnf_matrix = confusion_matrix(validation_labels, validation_preds) train_cnf_matrix_norm = train_cnf_matrix.astype('float') / train_cnf_matrix.sum(axis=1)[:, np.newaxis] validation_cnf_matrix_norm = validation_cnf_matrix.astype('float') / validation_cnf_matrix.sum(axis=1)[:, np.newaxis] train_df_cm = pd.DataFrame(train_cnf_matrix_norm, index=labels, columns=labels) validation_df_cm = pd.DataFrame(validation_cnf_matrix_norm, index=labels, columns=labels) sns.heatmap(train_df_cm, annot=True, fmt='.2f', cmap="Blues",ax=ax1).set_title('Train') sns.heatmap(validation_df_cm, annot=True, fmt='.2f', cmap="Blues",ax=ax2).set_title('Validation') plt.show() fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', figsize=(24, 7)) labels = ['0 - No DR', '1 - Mild', '2 - Moderate', '3 - Severe', '4 - Proliferative DR'] train_cnf_matrix = confusion_matrix(train_labels, train_preds_opt) validation_cnf_matrix = confusion_matrix(validation_labels, validation_preds_opt) train_cnf_matrix_norm = train_cnf_matrix.astype('float') / train_cnf_matrix.sum(axis=1)[:, np.newaxis] validation_cnf_matrix_norm = validation_cnf_matrix.astype('float') / validation_cnf_matrix.sum(axis=1)[:, np.newaxis] train_df_cm = pd.DataFrame(train_cnf_matrix_norm, index=labels, columns=labels) validation_df_cm = pd.DataFrame(validation_cnf_matrix_norm, index=labels, columns=labels) sns.heatmap(train_df_cm, annot=True, fmt='.2f', cmap="Blues",ax=ax1).set_title('Train optimized') sns.heatmap(validation_df_cm, annot=True, fmt='.2f', cmap="Blues",ax=ax2).set_title('Validation optimized') plt.show() ###Output _____no_output_____ ###Markdown Quadratic Weighted Kappa ###Code print("Train Cohen Kappa score: %.3f" % cohen_kappa_score(train_preds, train_labels, weights='quadratic')) print("Validation Cohen Kappa score: %.3f" % cohen_kappa_score(validation_preds, validation_labels, weights='quadratic')) print("Complete set Cohen Kappa score: %.3f" % cohen_kappa_score(train_preds+validation_preds, train_labels+validation_labels, weights='quadratic')) print("Train optimized Cohen Kappa score: %.3f" % cohen_kappa_score(train_preds_opt, train_labels, weights='quadratic')) print("Validation optimized Cohen Kappa score: %.3f" % cohen_kappa_score(validation_preds_opt, validation_labels, weights='quadratic')) print("Complete optimized set Cohen Kappa score: %.3f" % cohen_kappa_score(train_preds_opt+validation_preds_opt, train_labels+validation_labels, weights='quadratic')) ###Output Train Cohen Kappa score: 0.968 Validation Cohen Kappa score: 0.888 Complete set Cohen Kappa score: 0.948 Train optimized Cohen Kappa score: 0.939 Validation optimized Cohen Kappa score: 0.871 Complete optimized set Cohen Kappa score: 0.923 ###Markdown Apply model to test set and output predictions ###Code test_generator.reset() STEP_SIZE_TEST = test_generator.n//test_generator.batch_size preds = model.predict_generator(test_generator, steps=STEP_SIZE_TEST) predictions = [np.argmax(pred) for pred in preds] predictions_opt = [0 for i in range(preds.shape[0])] for idx, thr in enumerate(threshold_list): for idx2, pred in enumerate(preds): if pred[idx] > thr: predictions_opt[idx2] = idx filenames = test_generator.filenames results = pd.DataFrame({'id_code':filenames, 'diagnosis':predictions}) results['id_code'] = results['id_code'].map(lambda x: str(x)[:-4]) results_opt = pd.DataFrame({'id_code':filenames, 'diagnosis':predictions_opt}) results_opt['id_code'] = results_opt['id_code'].map(lambda x: str(x)[:-4]) ###Output _____no_output_____ ###Markdown Predictions class distribution ###Code fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', figsize=(24, 8.7)) sns.countplot(x="diagnosis", data=results, palette="GnBu_d", ax=ax1) sns.countplot(x="diagnosis", data=results_opt, palette="GnBu_d", ax=ax2) sns.despine() plt.show() val_kappa = cohen_kappa_score(validation_preds, validation_labels, weights='quadratic') val_opt_kappa = cohen_kappa_score(validation_preds_opt, validation_labels, weights='quadratic') if val_kappa > val_opt_kappa: results_name = 'submission.csv' results_opt_name = 'submission_opt.csv' else: results_name = 'submission_norm.csv' results_opt_name = 'submission.csv' results.to_csv(results_name, index=False) results.head(10) results_opt.to_csv(results_opt_name, index=False) results_opt.head(10) ###Output _____no_output_____
HSE Lab (linear regression).ipynb
###Markdown HSE Lab Linear regression This project was part of my Linear Algebra university course and that is why mathematical introduction, explanations and conclusions are written in Russian.In code blocks, my variables may have meaningless names. I intentionally did it to match the same variables in formulas above. Least squares methodРассмотрим систему уравнений $Xa = y$, в которой $a$ --- столбец неизвестных. Её можно переписать в векторном виде$$x_1 a_1 + x_2 a_2 + \ldots + x_k a_k = y,$$где $x_1,\ldots,x_n$ --- столбцы матрицы $X$. Таким образом, решить исходную систему означает найти линейную комбинацию векторов $x_1,\ldots,x_n$, равную правой части. Но что делать, если такой линейной комбинации не существует? Геометрически это означает, что вектор $y$ не лежит в подпространстве $U = \langle x_1,\ldots, x_k\rangle$. В этом случае мы можем найти *псевдорешение*: вектор коэффициентов $\hat{a}$, для которого линейная комбинация $x_1 \hat{a}_1 + x_2 \hat{a}_2 + \ldots + x_k \hat{a}_k$ хоть и не равна в точности $y$, но является наилучшим приближением --- то есть ближайшей к $y$ точкой $\hat{y}$ подпространства $U$ (иными словами, ортогональной проекцией $y$ на это подпростанство). Итак, цель наших исканий можно сформулировать двумя эквивалентными способами:1. Найти вектор $\hat{a}$, для которого длина разности $|X\hat{a} - y|$ минимальна (отсюда название "метод наименьших квадратов");2. Найти ортогональную проекцию $\hat{y}$ вектора $y$ на подпространство $U$ и представить её в виде $X\hat{a}$.Далее мы будем предполагать, что векторы $x_1,\ldots,x_n$ линейно независимы (если нет, то сначала имеет смысл выделить максимальную линейно независимую подсистему).На лекциях было показано, что проекция вектора $y$ на подпространство $U = \langle x_1,\ldots, x_k\rangle$, записывается в виде$$\hat{y} = X\left(X^TX\right)^{-1}X^Ty,$$и, соответственно, искомый вектор $\hat{a}$ равен$$\hat{a} = \left(X^TX\right)^{-1}X^Ty.$$ Linear regression problemНачнём с примера. Допустим, вы хотите найти зависимость среднего балла S студента ФКН от его роста H, веса W, длины волос L и N - количества часов, которые он ежедневно посвящает учёбе. Представьте, что мы измерили все эти параметры для $n$ студентов и получили наборы значений: $S_1,\ldots, S_n$, $H_1,\ldots, H_n$ и так далее.Тут можно подбирать много разных умных моделей, но начать имеет смысл с самой простой, линейной:$$S = a_1H + a_2W + a_3L + a_4N + a_5.$$Конечно, строгой линейной зависимости нет (иначе можно было бы радостно упразднить экзамены), но мы можем попробовать подобрать коэффициенты $a_1, a_2, a_3, a_4, a_5$, для которых отклонение правой части от наблюдаемых было бы наименьшим:$$\sum_{i=1}^n\left(S_i - ( a_1H_i + a_2W_i + a_3L_i + a_4N_i + a_5)\right)^2 \longrightarrow \min$$И сразу видно, что мы получили задачу на метод наименьших квадратов! А именно, у нас$$X =\begin{pmatrix}H_1 & W_1 & L_1 & N_1 & 1\\H_2 & W_2 & L_2 & N_2 & 1\\\dots & \dots & \dots & \dots & \dots \\H_n & W_n & L_n & N_n & 1\end{pmatrix},\qquad y=\begin{pmatrix}S_1\\ S_2\\ \vdots \\ S_n\end{pmatrix}$$Решая эту задачу с помощью уже известных формул, получаем оценки коэффициентов $\hat{a}_i$ ($i = 1\ldots,5$). Теперь проговорим общую постановку задачи линейной регрессии. У нас есть $k$ переменных $x_1,\ldots,x_k$ ("регрессоров"), через которые мы хотим выразить "объясняемую переменную" $y$:$$y = a_1x_1 + a_2x_2 + \ldots + a_kx_k$$Значения всех переменных мы измерили $n$ раз (у $n$ различных объектов, в $n$ различных моментов времени - это зависит от задачи). Подставим эти данные в предыдущее равенство:$$\begin{pmatrix}y_1\\ y_2 \\ \vdots \\ y_n\end{pmatrix} = a_1\begin{pmatrix}x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix} + a_2\begin{pmatrix}x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix} + \ldots + a_k\begin{pmatrix}x_{1k} \\ x_{2k} \\ \vdots \\ x_{nk} \end{pmatrix}$$(здесь $x_{ij}$ - это значение $j$-го признака на $i$-м измерении). Это удобно переписать в матричном виде:$$\begin{pmatrix}x_{11} & x_{12} & \ldots & x_{1k}\\x_{21} & x_{22} & \ldots & x_{2k}\\\dots & \dots & \dots & \dots\\x_{n1} & x_{n2} & \ldots & x_{nk}\end{pmatrix} \cdot\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_k\end{pmatrix} = \begin{pmatrix}y_1 \\ y_2 \\ \vdots \\ y_n\end{pmatrix}$$или коротко $Xa = y$. Поскольку на практике эта система уравнений зачастую не имеет решения (ибо зависимости в жизни редко бывают действительно линейными), методом наименьших квадратов ищется псевдорешение. Quality estimation. Training and testingПосле того, как вы построили регрессию и получили какую-то зависимость объясняемой переменной от регрессоров, настаёт время оценить качество регрессии. Есть много разных функционалов качества; мы пока будем говорить только о самом простом и очевидном из них: о среднеквадратичной ошибке (mean square error). Она равна$$\frac1{n}|X\hat{a} - y|^2 = \frac1{n}\sum_{i=1}^n\left(\hat{a}_1x_{i1} + \hat{a}_2x_{i2} + \ldots + \hat{a}_kx_{ik} - y_i\right)^2$$В целом, хочется искать модели с наименьшей mean square error на имеющихся данных. Однако слишком фанатичная гонка за минимизацией ошибки может привести к печальным последствиям. Например, если мы приближаем функцию одной переменной по значениям в $n$ точках, то наилучшей с точки зрения этой ошибки моделью будет многочлен $(n-1)$-й степени, для которого эта ошибка будет равна нулю. Тем не менее, вряд ли истинная зависимость имеет вид многочлена большой степени. Более того, значения вам скорее всего даны с погрешностью, то есть вы подогнали вашу модель под свои зашумлённые данные, но на любых других данных (то есть в других точках) точность, скорее всего, окажется совсем не такой хорошей. Этот эффект называют **overfitting**; говорят также, что **обобщающая способность** модели оказалась скверной.Чтобы не попадать в эту ловушку, данные обычно делят на обучающие (по которым строят модель и оценивают коэффициенты) и тестовые. Лучшей стоит счесть ту модель, для которой значение функционала качества будет меньше. Task 1. Least squares method Скачайте файлы ``train.txt`` и ``test.txt``. В первом из них находится обучающая выборка, а во втором - тестовая. Каждый из файлов содержит два столбца чисел, разделённых пробелами: в первом - $n$ точек (значения аргумента $x$), во втором - значения некоторой функции $y = f(x)$ в этих точках, искажённые случайным шумом. Ваша задача - по обучающей выборке подобрать функцию $y = g(x)$, пристойно приближающую неизвестную вам зависимость. Загрузим обучающие и тестовые данные (не забудьте ввести правильный путь!). ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd import math import copy from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, SGDRegressor from sklearn.metrics import mean_squared_error data_train = np.loadtxt('train.txt', delimiter=',') data_test = np.loadtxt('test.txt', delimiter=',') ###Output _____no_output_____ ###Markdown Разделим значения $x$ и $y$ ###Code X_train = np.matrix(data_train[:, 0]) y_train = np.matrix(data_train[:, 1]).T # Do the same for test data: X_test = np.matrix(data_test[:, 0]) y_test = np.matrix(data_test[:, 1]).T ###Output _____no_output_____ ###Markdown Найдите с помощью метода наименьших квадратов линейную функцию ($y = kx + b$), наилучшим образом приближающую неизвестную зависимость. Полезные функции: ``numpy.ones(n)`` для создания массива из единиц длины $n$ и ``numpy.concatenate((А, В), axis=1)`` для слияния двух матриц по столбцам (пара ``А`` и ``В`` превращается в матрицу ``[A B]``). ###Code k = np.matrix((np.ones(X_train.shape[1]))) X = np.array(np.concatenate((X_train.T, k.T), axis=1)) a = np.matmul(np.matmul(np.linalg.inv(np.matmul(X.T, X)), X.T), y_train) ###Output _____no_output_____ ###Markdown Нарисуйте на плоскости точки $(x_i, y_i)$ и полученную линейную функцию. Глядя на данные, подумайте, многочленом какой степени можно было бы лучше всего приблизить эту функцию. Найдите этот многочлен и нарисуйте его график. ###Code xv = np.linspace(-0.5, 1.2, 2) print(a.item([0][0]), "x + ", a.item([1][0]), sep="") myline = a.item([0][0]) * xv + a.item([1][0]) pointsx = [X_train.item([x][0]) for x in range(X_train.shape[1])] pointsy = [y_train.item([y][0]) for y in range(y_train.shape[0])] plt.plot(pointsx, pointsy, 'ro', label='train points') plt.plot(xv, myline, label = 'Approximation function') plt.legend(loc='lower right') plt.show() ###Output 2.279134498051949x + 4.433230905064934 ###Markdown Для $k = 1,2,3,\ldots,10$ найдите многочлен $\hat{f}_k$ степени $k$, наилучшим образом приближающий неизвестную зависимость. Для каждого из них найдите среднеквадратическую ошибку на обучающих данных и на тестовых данных: $\frac1{n}\sum_{i=1}^n\left( \hat{f}_k(x_i) - y_i \right)^2$ (в первом случае сумма ведётся по парам $(x_i, y_i)$ из обучающих данных, а во втором - по парам из тестовых данных).Для $k = 1,2,3,4,6$ напечатайте коэффициенты полученных многочленов и нарисуйте их графики на одном чертеже вместе с точками $(x_i, y_i)$ (возможно, график стоит сделать побольше; это делается командой `plt.figure(figsize=(width, height))`). ###Code def f(p, x): res = 0 for i in range(p.shape[0]): res = p.item([i][0]) + res * x # Horner's method return res tmp = data_train[:, 0] Xi = np.matrix((np.ones(X_train.shape[1]))).T for i in range(1, 11): tt = np.array([tmp ** i]) Xi = np.array(np.concatenate((tt.T, Xi), axis=1)) ai = np.matmul(np.matmul(np.linalg.inv(np.matmul(Xi.T, Xi)), Xi.T), y_train) # Calculating MSE (Mean squared error) mse_train = 0 for j in range(X_train.shape[1]): mse_train += (f(ai, X_train.item([j][0])) - y_train.item([j][0])) ** 2 mse_train *= 1/(X_train.shape[1]) mse_test = 0 for j in range(X_test.shape[1]): mse_test += (f(ai, X_test.item([j][0])) - y_test.item([j][0])) ** 2 mse_test *= 1/(X_test.shape[1]) print("k =", i, "\t mse_train =", mse_train, "\t mse_test =", mse_test, " \t diff =", mse_test - mse_train) if i <= 6: print("Coefficients from lowest to higher:") print(ai.T) pl_x = np.linspace(-0.3, 1.15, 100) pl_y = f(ai, pl_x) plt.figure(figsize=(8, 8)) plt.plot(pl_x, pl_y, label=('Approximation function of degree: ', i)) pointsx = [X_train.item([x][0]) for x in range(X_train.shape[1])] pointsy = [y_train.item([y][0]) for y in range(y_train.shape[0])] plt.plot(pointsx, pointsy, 'ro', label='train points') plt.legend(loc='lower right') plt.show() ###Output k = 1 mse_train = 0.2968966332625196 mse_test = 0.43512020040488775 diff = 0.13822356714236816 Coefficients from lowest to higher: [[2.2791345 4.43323091]] ###Markdown Что происходит с ошибкой при росте степени многочлена? Казалось бы, чем больше степень, тем более сложным будет многочлен и тем лучше он будет приближать нашу функцию. Подтверждают ли это ваши наблюдения? Как вам кажется, чем объясняется поведение ошибки на тестовых данных при $k = 10$? **Ответ:** с ростом степени многочлена величина ошибки растет, поскольку многочлен подстаривается под тренировочный набор и все менее точно отражает настоящую зависимость нашего набора данных. Таким образом, при $k = 10$, ошибка на тренировочном наборе становится минимальной (0.1531661099), а на тестовых, напротив, максимальной (14.63202521).Наименьшая же разница ошибок на тренировочных и тестовых данных наблюдается при $k = 3$. Наименьшая ошибка на тестовых данных так же при $k = 3$. Task 2. Linear regression Скачайте файлы ``flats_moscow_mod.txt`` и ``flats_moscow_description.txt``. В первом из них содержатся данные о квартирах в Москве. Каждая строка содержит шесть характеристик некоторой квартиры, разделённые знаками табуляции; в первой строке записаны кодовые названия характеристик. Во втором файле приведены краткие описания признаков. Вашей задачей будет построить с помощью метода наименьших квадратов (линейную) зависимость между ценой квартиры и остальными доступными параметрами.С помощью известных вам формул найдите регрессионные коэффициенты. Какой смысл имеют их знаки? Согласуются ли они с вашими представлениями о жизни?Оцените качество приближения, вычислив среднеквадратическую ошибку. ###Code flats_data_train = np.loadtxt('flats_moscow_mod.txt', delimiter='\t') y = flats_data_train[:, 0] # 'price' x = flats_data_train[:, 1:] # everything else X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42) k = np.matrix((np.ones(X_train.shape[0]))) X = np.array(np.concatenate((X_train, k.T), axis=1)) a = np.matmul(np.matmul(np.linalg.inv(np.matmul(X.T, X)), X.T), y_train.T) X_t = np.array(np.concatenate((X_test, np.matrix((np.ones(X_test.shape[0]))).T), axis=1)) print(a) ###Output [ 1.50592246 1.32591493 2.07801758 -3.45754795 -1.30314818 -13.56375539] ###Markdown Получившаяся зависимость имеет вид $1.505 totsp + 1.325 livesp + 2.078 kitsp -3.457 dist -1.303 metrdist -13.563$. Больше всего (смотрим по абсолютному значению) цена квартиры зависит от расстояния до центра и площади кухни (еда превыше всего, конечно). Меньше всего - от расстояния до метро (ну в принципе 15 минут пешочком утром пережить можно да и полезно, чтобы взбодриться и сжечь калории, набранные на кухне, так что будем рассматривать этот фактор в последнюю очередь). Положительный знак перед признаком означает, что чем больше значение признака, тем выше цена кваритиры, отрицательный знак - наоборот: чем меньше значение признака, тем выше цена квартиры. Все вполне согласуется с реальностью, как мне кажется ###Code def my_mean_squared_error(a, y, X): mse = 0 for i in range(X.shape[0]): val = 0 for j in range(a.shape[0]): val += a[j] * X[i][j] mse += (val - y[i]) ** 2 mse *= 1/(X.shape[0]) return mse mse_train = my_mean_squared_error(a, y_train, X) mse_test = my_mean_squared_error(a, y_test, X_t) print("mse_train =", mse_train, " \t mse_test =", mse_test) ###Output mse_train = 863.1784099407217 mse_test = 1059.913530999778 ###Markdown Improving the model Конечно, никто не гарантирует, что объясняемая переменная (цена квартиры) зависит от остальных характеристик именно линейно. Зависимость может быть, например, квадратичной или логарифмической; больше того, могут быть важны не только отдельные признаки, но и их комбинации. Это можно учитывать, добавляя в качестве дополнительных признаков разные функции от уже имеющихся характеристик: их квадраты, логарифмы, попарные произведения.В этом задании вам нужно постараться улучшить качество модели, добавляя дополнительные признаки, являющиеся функциями от уже имеющихся. Но будьте осторожны: чрезмерное усложнение модели будет приводить к переобучению. **Model comparison**Когда вы построите новую модель, вам захочется понять, лучше она или хуже, чем изначальная. Проверять это на той же выборке, на которой вы обучались, бессмысленно и даже вредно (вспомните пример с многочленами: как прекрасно падала ошибка на обучающей выборке с ростом степени!). Поэтому вам нужно будет разделить выборку на обучающую и тестовую. Делать это лучше случайным образом (ведь вы не знаете, как создатели датасета упорядочили объекты); рекомендуем вам для этого функцию `sklearn.model_selection.train_test_split`. ###Code # Feature and coefficients playground # sp = np.matrix((X_train[:, 0] + X_train[:, 1] + 2 * X_train[:, 2]) ** 3) # (totsp + livesp + 2*kitsp)**3 logdist = np.matrix((X_train[:, 3] + X_train[:, 4]) ** 0.5) # (dist + metrdist) ** 0.5 nm = np.matrix(X_train[:, 3] * X_train[:, 4]) # (dist * metrdist) mm = np.matrix(X_train[:, 2] * X_train[:, 0]) # (kitsp * totsp) new_X = np.array(np.concatenate((X_train, sp.T, logdist.T, nm.T, mm.T), axis=1)) new_X = np.array(np.concatenate((new_X, np.matrix((np.ones(X_train.shape[0]))).T), axis=1)) new_a = np.matmul(np.matmul(np.linalg.inv(np.matmul(new_X.T, new_X)), new_X.T), y_train.T) sp_t = np.matrix((X_test[:, 0] + X_test[:, 1] + 2 * X_test[:, 2]) ** 3) logdist_t = np.matrix((X_test[:, 3] + X_test[:, 4]) ** 0.5) nm_t = np.matrix(X_test[:, 3] * X_test[:, 4]) mm_t = np.matrix(X_test[:, 2] * X_test[:, 0]) newX_t = np.array(np.concatenate((X_test, sp_t.T, logdist_t.T, nm_t.T, mm_t.T), axis=1)) newX_t = np.array(np.concatenate((newX_t, np.matrix((np.ones(X_test.shape[0]))).T), axis=1)) clf3 = LinearRegression(fit_intercept=False).fit(X, y_train) clf4 = LinearRegression(fit_intercept=False).fit(new_X, y_train) print(clf3.coef_) print(clf4.coef_) print('Sklearn Train_Before MSE:', mean_squared_error(y_train, clf3.predict(X))) print('Sklearn Test_Before MSE:', mean_squared_error(y_test, clf3.predict(X_t))) print('Sklearn Train_After MSE:', mean_squared_error(y_train, clf4.predict(new_X))) print('Sklearn Test_After MSE:', mean_squared_error(y_test, clf4.predict(newX_t))) print('My Train_After MSE:', my_mean_squared_error(new_a, y_train, new_X)) print('My Test_After MSE:', my_mean_squared_error(new_a, y_test, newX_t)) ###Output Sklearn Train_Before MSE: 863.1784099407236 Sklearn Test_Before MSE: 1059.9135309997778 Sklearn Train_After MSE: 810.7519736572178 Sklearn Test_After MSE: 895.2356375823234 My Train_After MSE: 810.7519736572181 My Test_After MSE: 895.2356375831185 ###Markdown Добавлю следующие признаки:$(totsp + livesp + 2kitsp)^{3} \\(dist + metrdist)^{0.5} \\ (dist \cdot metrdist) \\(kitsp \cdot totsp) \\(livesp)^{4}$Наибольшее улучшение модели произошло благодаря последним двум признакам.Интересно, а нам разрешено было удалять исходные признаки? А вообще грустно, что нам обновили только файл с описанием данных, а сами данные не обновили :(( Играться с признаками было бы веселее ###Code # Testing new model and estimating improvement # res_train = [] res_test = [] n = 1000 for i in range(n): X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33) k = np.matrix((np.ones(X_train.shape[0]))) X = np.array(np.concatenate((X_train, k.T), axis=1)) sp = np.matrix((X_train[:, 0] + X_train[:, 1] + 2 * X_train[:, 2]) ** 3) logdist = np.matrix((X_train[:, 3] + X_train[:, 4]) ** 0.5) nm = np.matrix(X_train[:, 3] * X_train[:, 4]) mm = np.matrix(X_train[:, 2] * X_train[:, 0]) xd = np.matrix((X_train[:, 1]) ** 4) new_X = np.array(np.concatenate((X_train, sp.T, logdist.T, nm.T, mm.T, xd.T), axis=1)) new_X = np.array(np.concatenate((new_X, np.matrix((np.ones(X_train.shape[0]))).T), axis=1)) new_a = np.matmul(np.matmul(np.linalg.inv(np.matmul(new_X.T, new_X)), new_X.T), y_train.T) sp_t = np.matrix((X_test[:, 0] + X_test[:, 1] + 2 * X_test[:, 2]) ** 3) logdist_t = np.matrix((X_test[:, 3] + X_test[:, 4]) ** 0.5) nm_t = np.matrix(X_test[:, 3] * X_test[:, 4]) mm_t = np.matrix(X_test[:, 2] * X_test[:, 0]) xd_t = np.matrix((X_test[:, 1]) ** 4) newX_t = np.array(np.concatenate((X_test, sp_t.T, logdist_t.T, nm_t.T, mm_t.T, xd_t.T), axis=1)) newX_t = np.array(np.concatenate((newX_t, np.matrix((np.ones(X_test.shape[0]))).T), axis=1)) res_train.append(my_mean_squared_error(new_a, y_train, new_X)) res_test.append(my_mean_squared_error(new_a, y_test, newX_t)) print("train_before:", mse_train, "\t test_before:", mse_test) print("\n \t After 1000 iterations we have: \n") print("train_avg:", sum(res_train)/n, "\t train_max:", max(res_train), "\t train_min:", min(res_train)) print("%improve_train_avg:", (1 - (sum(res_train)/n)/mse_train) * 100, " \t %best_improve:", (1 - min(res_train)/mse_train) * 100) print() print("test_avg:", sum(res_test)/n, " \t test_max:", max(res_test), " \t test_min:", min(res_test)) print("%improve_test_avg:", (1 - (sum(res_test)/n)/mse_test) * 100, " \t %best_improve:", (1 - min(res_test)/mse_test) * 100) print() print("%improve_other_avg:", (1 - (sum(res_train)/n)/924) * 100, ",", (1 - (sum(res_test)/n)/924) * 100) ###Output train_before: 863.1784099407217 test_before: 1059.913530999778 After 1000 iterations we have: train_avg: 753.8231102423669 train_max: 861.6581632055196 train_min: 607.055315219035 %improve_train_avg: 12.668910440642833 %best_improve: 29.67209232437542 test_avg: 806.102567879204 test_max: 1239.3376980084108 test_min: 579.7911226118063 %improve_test_avg: 23.94638389804905 %best_improve: 45.298262013420064 %improve_other_avg: 18.41741231143216 , 12.759462350735495 ###Markdown In average new model gives about 12% improvement on train data set and 24% improvement on test data set. Task 3. Regularization. Вспомним, что задача линейной регрессии формулируется как задача нахождения проекции вектора значений объясняемой переменной $y$ на линейную оболочку $\langle x_1,\ldots,x_k\rangle$ векторов значений регрессоров. Если векторы $x_1,\ldots,x_k$ линейно зависимы, то матрица $X^TX$ вырожденна и задача не будет решаться (то есть будет, но не с помощью приведённой выше формулы). В жизни, по счастью, различные признаки редко бывают *в точности* линейно зависимы, однако во многих ситуациях они скоррелированы и становятся "почти" линейно зависимыми. Таковы, к примеру, зарплата человека, его уровень образования, цена машины и суммарная площадь недвижимости, которой он владеет. В этом случае матрица $X^TX$ будет близка к вырожденной, и это приводит к численной неустойчивости и плохому качеству решений; как следствие, будет иметь место переобучение. Один из симптомов этой проблемы - необычно большие по модулю компоненты вектора $a$.Есть много способов борьбы с этим злом. Один из них - регуляризация. Сейчас мы рассмотрим одну из её разновидностей --- **L2-regularization**. Идея в том, чтобы подправить матрицу $X^TX$, сделав её "получше". Например, это можно сделать, заменив её на $(X^TX + \lambda E)$, где $\lambda$ --- некоторый скаляр. Пожертвовав точностью на обучающей выборке, мы тем не менее получаем численно более стабильное псевдорешение $a = (X^TX + \lambda E)^{-1}X^Ty$ и снижаем эффект переобучения. Параметр $\lambda$ нужно подбирать, и каких-то универсальных способов это делать нет, но зачастую можно его подобрать таким, чтобы ошибка на тестовой выборке падала. Теперь давайте вспомним первую задачу. Если вы её сделали, то помните, что ошибка аппроксимации многочленом шестой степени довольно высокая. Убедитесь, что, используя регуляризацию с хорошо подобранным коэффициентом $\lambda$, ошибку на тестовой выборке можно сделать не больше, чем для многочлена оптимальной степени в модели без регрессии. Для этого $\lambda$ сравните $\det(X^TX)$ и $\det(X^TX + \lambda E)$. ###Code X_train = np.matrix(data_train[:, 0]) y_train = np.matrix(data_train[:, 1]).T X_test = np.matrix(data_test[:, 0]) y_test = np.matrix(data_test[:, 1]).T ans = [] t = -1 print("Coefficient =", t) print() tmp_2 = data_train[:, 0] Xi_2 = np.matrix((np.ones(X_train.shape[1]))).T det_before = 0 det_after = 0 for i in range(1, 11): tt_2 = np.array([tmp_2 ** i]) Xi_2 = np.array(np.concatenate((tt_2.T, Xi_2), axis=1)) xtx = np.matmul(Xi_2.T, Xi_2) ai_2_no = np.matmul(np.matmul(np.linalg.inv(xtx), Xi_2.T), y_train) ai_2 = np.matmul(np.matmul(np.linalg.inv(xtx - t * np.eye(xtx.shape[0])), Xi_2.T), y_train) mse_train_2 = 0 for j in range(X_train.shape[1]): mse_train_2 += (f(ai_2, X_train.item([j][0])) - y_train.item([j][0])) ** 2 mse_train_2 *= 1/(X_train.shape[1]) mse_test_2 = 0 for j in range(X_test.shape[1]): mse_test_2 += (f(ai_2, X_test.item([j][0])) - y_test.item([j][0])) ** 2 mse_test_2 *= 1/(X_test.shape[1]) print("k =", i, "\t mse_train_2 =", mse_train_2, "\t mse_test_2 =", mse_test_2, " \t diff =", mse_test_2 - mse_train_2) if i == 6: det_before = np.linalg.det(xtx) det_after = np.linalg.det(xtx - t * np.eye(xtx.shape[0])) pl_x_2 = np.linspace(-0.3, 1.15, 100) pl_y_2 = f(ai_2, pl_x_2) pl_y_2_no = f(ai_2_no, pl_x_2) print() print("det without regularization", det_before, " \t det with regularization", det_after) ###Output Coefficient = -1 k = 1 mse_train_2 = 0.3415526305150493 mse_test_2 = 0.404287009194863 diff = 0.06273437867981368 k = 2 mse_train_2 = 0.31222705028447084 mse_test_2 = 0.3027033800584491 diff = -0.009523670226021741 k = 3 mse_train_2 = 0.3144711960793258 mse_test_2 = 0.293324829447128 diff = -0.021146366632197766 k = 4 mse_train_2 = 0.3173082949716485 mse_test_2 = 0.2974359267709365 diff = -0.019872368200711976 k = 5 mse_train_2 = 0.31886405344795055 mse_test_2 = 0.30331263904372946 diff = -0.015551414404221087 k = 6 mse_train_2 = 0.3196110739903543 mse_test_2 = 0.308219923571227 diff = -0.011391150419127305 k = 7 mse_train_2 = 0.3199495546048587 mse_test_2 = 0.3117636451760249 diff = -0.008185909428833793 k = 8 mse_train_2 = 0.3200922473541476 mse_test_2 = 0.3140132325023869 diff = -0.006079014851760711 k = 9 mse_train_2 = 0.32014174166237686 mse_test_2 = 0.315128510461803 diff = -0.005013231200573842 k = 10 mse_train_2 = 0.3201464462599162 mse_test_2 = 0.3152719355314195 diff = -0.0048745107284966505 det without regularization 9.08286483934784e-12 det with regularization 509.21645079421813 ###Markdown На тестовой выборке среднеквадратическая ошибка для многочлена 6 степени (да и почти всех остальных) в модели с регуляризацией меньше среднеквадратической ошибки для многочлена 3 степени (0.35534645) в модели без регуляризации. А $\det(X^TX + \lambda E)$ больше $\det(X^TX)$ примерно в $10^{13}$ раз и довольно далёк от нуля. Нарисуйте на одном чертеже графики многочленов шестой степени, приближающих неизвестную функцию, для модели с регуляризацией и без. Чем первый из них выгодно отличается от второго? ###Code plt.figure(figsize=(8, 8)) plt.plot(pl_x_2, pl_y_2, label="with regularization") plt.plot(pl_x_2, pl_y_2_no, label="without regularization") plt.plot(X_train[0], y_train.T[0], 'ro') plt.legend(loc='lower right') plt.show() ###Output _____no_output_____
GloVeRNN.ipynb
###Markdown Load Data ###Code train = pd.read_csv('data/train.csv') test = pd.read_csv('data/test.csv') output_names = ['toxic','severe_toxic','obscene','threat','insult','identity_hate'] tok=text.Tokenizer(filters = '!"#$%&()*+,-./:;<=>?@[\\]^_\'`{|}~\t\n', lower=True) tok.fit_on_texts(np.concatenate((train.comment_text.values, test.comment_text.values))) ###Output _____no_output_____ ###Markdown Load GloVe ###Code f = open('data/glove.42B.300d.txt', 'r', encoding = 'utf-8') all_unique_tokens = tok.word_index.keys() embeddings = {} for line in f: values = line.split() word = values[0] # Whole GloVe embeddings doesn't fit in my GPU memory, so only take words which appear in data for now. # Can always swap weights for embedding layer after model training if word in all_unique_tokens: coefs = np.array(values[1:], dtype = 'float32') embeddings[word] = coefs for i in list(tok.word_index.keys()): if i not in embeddings.keys(): del tok.word_index[i] for counter, i in enumerate(tok.word_index.keys()): tok.word_index[i] = counter+1 idx2word = {b:a for a,b in tok.word_index.items()} idx2word[0] = '<UNK>' word2idx = defaultdict(lambda x: '<UNK>', tok.word_index) embeddings['<UNK>'] = np.zeros((300,)) ###Output _____no_output_____ ###Markdown Data Processing ###Code train['toks'] = tok.texts_to_sequences(train.comment_text.values) test['toks'] = tok.texts_to_sequences(test.comment_text.values) vocab_size = len(embeddings) max_len = 300 n_factors = 300 def create_emb(): emb = np.zeros((vocab_size+1,n_factors), dtype = 'float32') for i in range(0, vocab_size): word = idx2word[i] emb[i,:] = embeddings[word] #each row is a word return emb emb = create_emb() emb.shape # train val split np.random.seed(10) indexTrain = np.random.choice(range(train.shape[0]), size = int(0.9*train.shape[0]), replace = False) indexVal = list(set(range(train.shape[0])) - set(indexTrain)) traindf = train.loc[indexTrain] valdf = train.loc[indexVal] dataInputTrain=sequence.pad_sequences(traindf.toks,maxlen=max_len) dataInputVal=sequence.pad_sequences(valdf.toks,maxlen=max_len) dataInputTest=sequence.pad_sequences(test.toks,maxlen=max_len) ' '.join([idx2word[i] for i in dataInputTrain[10,:]]) def makeModel(counter, denseNodes, convFilters, dropOut): sequence_input = Input(shape=(max_len, )) x = Embedding(vocab_size+1, n_factors, input_length=max_len, weights=[emb],trainable = False)(sequence_input) x = Bidirectional(LSTM(128, return_sequences=True,dropout=0.15,recurrent_dropout=0.15))(x) x = Conv1D(convFilters, kernel_size = 3, padding = "valid", kernel_initializer = "glorot_uniform")(x) avg_pool = GlobalAveragePooling1D()(x) max_pool = GlobalMaxPooling1D()(x) x = Concatenate()([avg_pool, max_pool]) x = Dense(denseNodes, activation = 'relu')(x) x = BatchNormalization(axis = -1)(x) x = Dropout(dropOut)(x) preds = Dense(6, activation="sigmoid")(x) model = Model(sequence_input, preds) model.compile(loss='binary_crossentropy',optimizer=Adam(lr=1e-3)) earlyStopping = EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='min') mcp_save = ModelCheckpoint('weights/lstm_mdl' + str(counter), save_best_only=True, monitor='val_loss', mode='min') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1, epsilon=1e-4, mode='min') roc_callback = ROCCallBack(validation_data = [dataInputVal, valdf[output_names].values]) model.fit(x = dataInputTrain, y = traindf[output_names].values, batch_size = 64, epochs = 200, validation_data = [dataInputVal, valdf[output_names].values], callbacks=[earlyStopping, mcp_save, reduce_lr_loss, roc_callback]) pred = model.predict(dataInputTest, verbose = 1) for c,i in enumerate(output_names): test[i] = pred[:,c] test[['id'] + output_names].to_csv('data/answers/lstm' + str(counter) + '.csv', index = False) return model params = [ {'denseNodes': 128, 'convFilters': 128, 'dropOut': 0.4}, {'denseNodes': 256, 'convFilters': 128, 'dropOut': 0.5}, {'denseNodes': 512, 'convFilters': 128, 'dropOut': 0.55}, ] models = [makeModel(counter, **i) for counter, i in enumerate(params)] ###Output Train on 143613 samples, validate on 15958 samples Epoch 1/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0841 roc-auc_val: 0.9801 143613/143613 [==============================] - 1716s 12ms/step - loss: 0.0841 - val_loss: 0.3135 Epoch 2/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0488 roc-auc_val: 0.9877 143613/143613 [==============================] - 1699s 12ms/step - loss: 0.0488 - val_loss: 0.0426 Epoch 3/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0451 roc-auc_val: 0.9851 143613/143613 [==============================] - 1698s 12ms/step - loss: 0.0451 - val_loss: 0.0663 Epoch 4/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0422 roc-auc_val: 0.989 143613/143613 [==============================] - 1698s 12ms/step - loss: 0.0422 - val_loss: 0.0404 Epoch 5/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0395 roc-auc_val: 0.9892 143613/143613 [==============================] - 1698s 12ms/step - loss: 0.0395 - val_loss: 0.0456 Epoch 6/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0370 roc-auc_val: 0.989 143613/143613 [==============================] - 1699s 12ms/step - loss: 0.0370 - val_loss: 0.0405 Epoch 7/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0350 roc-auc_val: 0.9891 143613/143613 [==============================] - 1699s 12ms/step - loss: 0.0350 - val_loss: 0.0456 Epoch 8/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0346 Epoch 00008: reducing learning rate to 0.00010000000474974513. roc-auc_val: 0.9882 143613/143613 [==============================] - 1698s 12ms/step - loss: 0.0346 - val_loss: 0.0442 Epoch 9/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0284 roc-auc_val: 0.9884 143613/143613 [==============================] - 1698s 12ms/step - loss: 0.0284 - val_loss: 0.0439 153164/153164 [==============================] - 906s 6ms/step Train on 143613 samples, validate on 15958 samples Epoch 1/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0812 roc-auc_val: 0.9857 143613/143613 [==============================] - 1703s 12ms/step - loss: 0.0812 - val_loss: 0.0465 Epoch 2/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0481 roc-auc_val: 0.9879 143613/143613 [==============================] - 1702s 12ms/step - loss: 0.0481 - val_loss: 0.0444 Epoch 3/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0448 roc-auc_val: 0.9891 143613/143613 [==============================] - 1702s 12ms/step - loss: 0.0448 - val_loss: 0.0443 Epoch 4/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0423 roc-auc_val: 0.9893 143613/143613 [==============================] - 1702s 12ms/step - loss: 0.0423 - val_loss: 0.0418 Epoch 5/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0396 roc-auc_val: 0.9892 143613/143613 [==============================] - 1704s 12ms/step - loss: 0.0396 - val_loss: 0.0400 Epoch 6/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0372 roc-auc_val: 0.9886 143613/143613 [==============================] - 1702s 12ms/step - loss: 0.0372 - val_loss: 0.0445 Epoch 7/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0347 roc-auc_val: 0.9886 143613/143613 [==============================] - 1702s 12ms/step - loss: 0.0347 - val_loss: 0.0422 Epoch 8/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0317 roc-auc_val: 0.9881 143613/143613 [==============================] - 1701s 12ms/step - loss: 0.0317 - val_loss: 0.0439 Epoch 9/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0305 Epoch 00009: reducing learning rate to 0.00010000000474974513. roc-auc_val: 0.9877 143613/143613 [==============================] - 1705s 12ms/step - loss: 0.0305 - val_loss: 0.0432 Epoch 10/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0249 roc-auc_val: 0.9876 143613/143613 [==============================] - 1706s 12ms/step - loss: 0.0249 - val_loss: 0.0465 153164/153164 [==============================] - 908s 6ms/step Train on 143613 samples, validate on 15958 samples Epoch 1/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0754 roc-auc_val: 0.9847 143613/143613 [==============================] - 1716s 12ms/step - loss: 0.0754 - val_loss: 0.0451 Epoch 2/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0487 roc-auc_val: 0.984 143613/143613 [==============================] - 1713s 12ms/step - loss: 0.0487 - val_loss: 0.1674 Epoch 3/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0448 roc-auc_val: 0.9887 143613/143613 [==============================] - 1713s 12ms/step - loss: 0.0448 - val_loss: 0.0407 Epoch 4/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0418 roc-auc_val: 0.9885 143613/143613 [==============================] - 1713s 12ms/step - loss: 0.0418 - val_loss: 0.0427 Epoch 5/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0395 roc-auc_val: 0.9888 143613/143613 [==============================] - 1712s 12ms/step - loss: 0.0395 - val_loss: 0.0422 Epoch 6/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0373 roc-auc_val: 0.9893 143613/143613 [==============================] - 1713s 12ms/step - loss: 0.0373 - val_loss: 0.0414 Epoch 7/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0347 Epoch 00007: reducing learning rate to 0.00010000000474974513. roc-auc_val: 0.9886 143613/143613 [==============================] - 1713s 12ms/step - loss: 0.0347 - val_loss: 0.0431 Epoch 8/200 143552/143613 [============================>.] - ETA: 0s - loss: 0.0288 roc-auc_val: 0.9888 143613/143613 [==============================] - 1712s 12ms/step - loss: 0.0288 - val_loss: 0.0426 153164/153164 [==============================] - 906s 6ms/step
Personal_Loan_Campaign_Modelling_SALINAS.ipynb
###Markdown Personal Loan Campaign Modelling Project*by: Garey Salinas* Description Background and ContextAllLife Bank is a US bank that has a growing customer base. The majority of these customers are liability customers (depositors) with varying sizes of deposits. The number of customers who are also borrowers (asset customers) is quite small, and the bank is interested in expanding this base rapidly to bring in more loan business and in the process, earn more through the interest on loans. In particular, the management wants to explore ways of converting its liability customers to personal loan customers (while retaining them as depositors).A campaign that the bank ran last year for liability customers showed a healthy conversion rate of over 9% success. This has encouraged the retail marketing department to devise campaigns with better target marketing to increase the success ratio.You as a Data scientist at AllLife bank have to build a model that will help the marketing department to identify the potential customers who have a higher probability of purchasing the loan. Objective1. To predict whether a liability customer will buy a personal loan or not.2. Which variables are most significant.3. Which segment of customers should be targeted more. Data DictionaryLABELS | DESCRIPTION-------|:------------ID | Customer IDAge | Customer’s age in completed yearsExperience | years of professional experienceIncome | Annual income of the customer (in thousand dollars)ZIP Code | Home Address ZIP code.Family | the Family size of the customerCCAvg | Average spending on credit cards per month (in thousand dollars)Education | Education Level. 1: Undergrad; 2: Graduate;3: Advanced/ProfessionalMortgage | Value of house mortgage if any. (in thousand dollars)Personal_Loan | Did this customer accept the personal loan offered in the last campaign?Securities_Account | Does the customer have securities account with the bank?CD_Account | Does the customer have a certificate of deposit (CD) account with the bank?Online | Do customers use internet banking facilities?CreditCard | Does the customer use a credit card issued by any other Bank (excluding All life Bank)? Import libraries and load dataset Import libraries ###Code import pandas as pd import numpy as np import math import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as stats from sklearn import metrics, tree from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import (confusion_matrix, classification_report, accuracy_score, precision_score, recall_score, f1_score) import warnings warnings.filterwarnings("ignore") # ignore warnings %matplotlib inline sns.set() ###Output _____no_output_____ ###Markdown Read Dataset ###Code data = pd.read_csv("Loan_Modelling.csv") df = data.copy() print(f"There is {df.shape[0]} rows and {df.shape[1]} columns in this dataset.") ###Output _____no_output_____ ###Markdown Overview of Dataset ###Code pd.concat([df.head(10), df.tail(10)]) df.columns ###Output _____no_output_____ ###Markdown Edit column names ###Code df.columns = df.columns.str.lower() df.columns = df.columns.str.replace("creditcard", "credit_card") df.columns df.info() ###Output _____no_output_____ ###Markdown **Observation**- All column names are lowercase- There are 5000 observations in this dataset.- All values are of a numerical type (int, float).- There are zero missing values in all columns. We will confirm. Check for duplicates ###Code df[df.duplicated()].count() ###Output _____no_output_____ ###Markdown Describe dataset ###Code df.nunique() ###Output _____no_output_____ ###Markdown **Observations**- `id` has 5000 unique values. We can drop this column.- We can change `family, education` to categorical. ###Code df.drop(['id'], axis=1, inplace=True) df.head() ###Output _____no_output_____ ###Markdown Change dtypes ###Code cat_features = ['family', 'education'] for feature in cat_features: df[feature] = pd.Categorical(df[feature]) df.info() df.describe(include='all').T ###Output _____no_output_____ ###Markdown **Observations**- All columns have a count of 5000, meaning there are zero missing values in these columns.- There are 4 unique values in `family` and 3 unique values in the `education` column.- There are only 2 unique values in the `personal_loan, securities_account, cd_account, online and credit_card` columns.- `age` has a mean of 45 and a standard deviation of about 11.4. The min `age` is 23 and the max is 67. - `experience` has a mean of 20 and a standard deviation of 11.5. The min is -3 and the max is 43 years. We will inspect the negative value further.-`income` has a mean of 74K and a standard deviation of 46K. The values range from 8K to 224K.- `ccavg` has a mean of 1.93 and a standard deviation of 1.7. The values range from 0.0 to 10.0.- `mortgage` has a mean of 56.5K and a standard deviation of 101K. The standard deviation is greater than the mean. We will investigate further.- There are zero values in the `mortgage` column. We will inspect. ###Code df.isnull().sum().sort_values(ascending=False) df.isnull().values.any() # If there are any null values in data set ###Output _____no_output_____ ###Markdown **Observations**- Confirming dtype changed to categorical variables for the columns mentioned previously.- Confirming there are zero missing values. Not to be confused with values that are zero. We have alot of those in the `mortgage` column. Also, we will investigate the outliers. ###Code numerical_feature_df = df.select_dtypes(include=['int64','float64']) numerical_feature_df.skew() ###Output _____no_output_____ ###Markdown **Observations**- `income`, `ccavg` and `mortgage` are heavily skewed. We will investigate further. Exploratory Data Analysis Univariate Analysis ###Code def histogram_boxplot(feature, figsize=(15, 7), bins=None): """ Boxplot and histogram combined feature: 1-d feature array figsize: size of fig (default (15,10)) bins: number of bins (default None / auto) """ f2, (ax_box2, ax_hist2) = plt.subplots(nrows = 2, # Number of rows of the subplot grid= 2 sharex = True, # x-axis will be shared among all subplots gridspec_kw = {"height_ratios": (.25, .75)}, figsize = figsize ) # creating the 2 subplots sns.boxplot(feature, ax=ax_box2, showmeans=True, color='yellow') # boxplot will be created and a star will indicate the mean value of the column sns.distplot(feature, kde=True, ax=ax_hist2, bins=bins) if bins else sns.distplot(feature, kde=True, ax=ax_hist2) # For histogram ax_hist2.axvline(np.mean(feature), color='green', linestyle='--') # Add mean to the histogram ax_hist2.axvline(np.median(feature), color='blue', linestyle='-');# Add median to the histogram def create_outliers(feature: str, data=df): """ Returns dataframe object of feature outliers. feature: 1-d feature array data: pandas dataframe (default is df) """ Q1 = data[feature].quantile(0.25) Q3 = data[feature].quantile(0.75) IQR = Q3 - Q1 #print(((df.Mileage < (Q1 - 1.5 * IQR)) | (df.Mileage > (Q3 + 1.5 * IQR))).sum()) return data[((data[feature] < (Q1 - 1.5 * IQR)) | (data[feature] > (Q3 + 1.5 * IQR)))] ###Output _____no_output_____ ###Markdown Observations on `age` ###Code histogram_boxplot(df.age) ###Output _____no_output_____ ###Markdown **Observations**- No outliers in the `age` column. The mean is near the median.- Average `age` is about 45 years old.- The `age` column distribution is uniform. Observations on `income` ###Code histogram_boxplot(df.income) ###Output _____no_output_____ ###Markdown **Observations**- The average `income` is about 60K, with a median value of about 70K.- `income` column is right skewed and has many outliers to the upside. Observations on `income` outliers ###Code outliers = create_outliers('income') outliers.sort_values(by='income', ascending=False).head(20) print(f"There are {outliers.shape[0]} outliers.") ###Output _____no_output_____ ###Markdown Observations on `ccavg` ###Code histogram_boxplot(df.ccavg) ###Output _____no_output_____ ###Markdown **Observations**- `ccavg` has an average of about 1.5 and a median of about 2.- `ccavg` column is right skewed and has many outliers to the upside. Observations on `ccavg` outliers ###Code outliers = create_outliers('ccavg') outliers.sort_values(by='ccavg', ascending=False).head(20) print(f"There are {outliers.shape[0]} outliers.") ###Output _____no_output_____ ###Markdown Observations on `mortgage` ###Code histogram_boxplot(df.mortgage) ###Output _____no_output_____ ###Markdown **Observations**- `mortgage` has many values that aren't null but are equal to zero. We will dissect further.- `mortgage` column has many outliers to the upside. Observations on `mortgage` outliers ###Code outliers = create_outliers('mortgage') outliers.sort_values(by='mortgage', ascending=False) print(f"There are {outliers.shape[0]} outliers in the outlier column.") ###Output _____no_output_____ ###Markdown Check zero values in `mortgage` column ###Code print(f'There are {df[df.mortgage==0].shape[0]} rows where mortgage equals to ZERO!') ###Output _____no_output_____ ###Markdown Check `zipcodes` frequency where `mortgage` equals zero. ###Code plt.figure(figsize=(15, 10)) sns.countplot(y=df[df.mortgage==0]['zipcode'], data=df, order=df[df.mortgage==0]['zipcode'].value_counts().index[:40]); ###Output _____no_output_____ ###Markdown **Observations**- The `zipcode` 94720 has the most frequent number of mortgages that equal zero with over 120 values.- The second highest number of zero values is 94305, and the third highest is 95616. Observations on `experience` ###Code histogram_boxplot(df.experience) ###Output _____no_output_____ ###Markdown **Observations**- The `experience` column is uniform and has no outliers.- The average and median `experience` is about 20 years.- `experience` column is uniformly distributed. The mean is close to the median. ###Code plt.figure(figsize=(15, 10)) sns.countplot(y=df.experience, data=df, order=df.experience.value_counts().index[:]); ###Output _____no_output_____ ###Markdown **Observations**- 32 years is the greatest number of `experience` years observed with about 150 observations.- The plot shows negative values. ###Code print(f"There are {df[df.experience<0].shape[0]} rows that have professional experience less than zero.") df[df.experience<0].sort_values(by='experience', ascending=True).head() ###Output _____no_output_____ ###Markdown Countplot for `experience` less than zero vs. `age`. ###Code plt.figure(figsize=(10, 4)) sns.countplot(y=df[df.experience<0]['age'], data=df, order=df[df.experience<0]['age'].value_counts().index[:]); ###Output _____no_output_____ ###Markdown **Observations**- Most of the negative values are from the 25 year old `age` group with over 17.- This is a error in the data entry. You can't have negative years of `experience` so we will take the absolute value of the `experience`. Taking absolute values of the `experience` column ###Code df['abs_experience'] = np.abs(df.experience) df.sort_values(by='experience', ascending=True).head(10) histogram_boxplot(df.abs_experience) ###Output _____no_output_____ ###Markdown **Observations**- It didn't change the distribution that much. ###Code plt.figure(figsize=(15, 10)) sns.countplot(y=df.abs_experience, data=df, order=df.abs_experience.value_counts().index[:]); ###Output _____no_output_____ ###Markdown - There are no more negative `experience` values. Overview on distributions of numerical columns. ###Code # lets plot histogram of all plots features = ['age', 'experience', 'income', 'ccavg', 'mortgage', 'zipcode', 'abs_experience'] n_rows = math.ceil(len(features)/3) plt.figure(figsize=(15, n_rows*3.5)) for i, feature in enumerate(list(features)): plt.subplot(n_rows, 3, i+1) plt.hist(df[feature]) plt.tight_layout() plt.title(feature, fontsize=15); ###Output _____no_output_____ ###Markdown Overview on the dispersion of numerical columns. ###Code # outlier detection using boxplot plt.figure(figsize=(15, n_rows*4)) for i, feature in enumerate(features): plt.subplot(n_rows, 3, i+1) plt.boxplot(df[feature], whis=1.5) plt.tight_layout() plt.title(feature, fontsize=15); ###Output _____no_output_____ ###Markdown Display value counts from categorical columns ###Code # looking at value counts for non-numeric features num_to_display = 10 # defining this up here so it's easy to change later if I want for colname in df.dtypes[df.dtypes=='category'].index: val_counts = df[colname].value_counts(dropna=False) # i want to see NA counts print(f"Column: {colname}") print("="*40) print(val_counts[:num_to_display]) if len(val_counts) > num_to_display: print(f"Only displaying first {num_to_display} of {len(val_counts)} values.") print("\n") # just for more space between ###Output _____no_output_____ ###Markdown Observations on `zipcode` ###Code plt.figure(figsize=(15, 10)) sns.countplot(y="zipcode", data=df, order=df.zipcode.value_counts().index[0:50]); ###Output _____no_output_____ ###Markdown **Observations**- Most of the values come from the `zipcode` 94720 with over 160. ###Code def perc_on_bar(plot, feature): """ Shows the percentage on the top of bar in plot. feature: categorical feature The function won't work if a column is passed in hue parameter """ total = len(feature) # length of the column for p in ax.patches: # percentage = '{:.1f}%'.format(100 * p.get_height()/total) # percentage of each class of the category percentage = 100 * p.get_height()/total percentage_label = f"{percentage:.1f}%" x = p.get_x() + p.get_width() / 2 - 0.05 # width of the plot y = p.get_y() + p.get_height() # hieght of the plot ax.annotate(percentage_label, (x, y), size = 12) # annotate the percantage plt.show() # show the plot ###Output _____no_output_____ ###Markdown Observations on `family` ###Code plt.figure(figsize=(15, 7)) ax = sns.countplot(df.family, palette='mako') perc_on_bar(ax, df.family) ###Output _____no_output_____ ###Markdown **Observations**- The largest category of the `family` column is 1 with a percentage of 29.4%.- The second largest category of the `family` column is a size of 2, then 4. A size of 3 is the smallest portion in our dataset. Observations on `education` ###Code plt.figure(figsize=(15, 7)) ax = sns.countplot(df.education, palette='mako') perc_on_bar(ax, df.education) ###Output _____no_output_____ ###Markdown **Observations**- The `education` column has 3 categories.- Category 1 (undergrad) hold the greatest proportion with 41.9%.- Category 3 holds the second highest with 30%.- Category 2 holds the third highest proportion with 28.1%. Oberservations on `personal_loan` ###Code plt.figure(figsize=(15, 7)) ax = sns.countplot(df.personal_loan, palette='mako') perc_on_bar(ax, df.personal_loan) ###Output _____no_output_____ ###Markdown **Observations**- Those that didn't accept a `personal_loan` from the last campaign make up the greatest percentage with 90.4%. Observations on `securities_account` ###Code plt.figure(figsize=(15,7)) ax = sns.countplot(df.securities_account, palette='mako') perc_on_bar(ax, df.securities_account) ###Output _____no_output_____ ###Markdown **Observations**- Those customers without a `securities_account` make up the greatest proportion with 89.6%. Observations on `cd_account` ###Code plt.figure(figsize=(15, 7)) ax = sns.countplot(df.cd_account, palette='mako') perc_on_bar(ax, df.cd_account) ###Output _____no_output_____ ###Markdown **Observations**- Those customers without a `cd_account` make up the greatest percentage with 94% Observations on `online` ###Code plt.figure(figsize=(15, 7)) ax = sns.countplot(df.online, palette='mako') perc_on_bar(ax, df.online) ###Output _____no_output_____ ###Markdown **Observations**- Those customers that use `online` banking facilities makes up the majority with 59.7%. Observations on `credit_card` ###Code plt.figure(figsize=(15, 7)) ax = sns.countplot(df.credit_card, palette='mako') perc_on_bar(ax, df.credit_card) ###Output _____no_output_____ ###Markdown **Observations**- Those customers that don't use `credit_cards` issued by other banks makes up the majority with 70.6%. Bivariate Analysis ###Code ## Function to plot stacked bar chart def stacked_plot(x, y): """ Shows stacked plot from x and y pandas data series x: pandas data series y: pandas data series """ info = pd.crosstab(x, y, margins=True) info['% - 0'] = round(info[0]/info['All']*100, 2) info['% - 1'] = round(info[1]/info['All']*100, 2) print(info) print('='*80) visual = pd.crosstab(x, y, normalize='index') visual.plot(kind='bar', stacked=True, figsize=(10,5)); def show_boxplots(cols: list, feature: str, show_fliers=True, data=df): #method call to show bloxplots n_rows = math.ceil(len(cols)/2) plt.figure(figsize=(15, n_rows*5)) for i, variable in enumerate(cols): plt.subplot(n_rows, 2, i+1) if show_fliers: sns.boxplot(data[feature], data[variable], palette="mako", showfliers=True) else: sns.boxplot(data[feature], data[variable], palette="mako", showfliers=False) plt.tight_layout() plt.title(variable, fontsize=12) plt.show() ###Output _____no_output_____ ###Markdown Correlation and heatmap ###Code plt.figure(figsize=(12, 7)) sns.heatmap(df.corr(), annot=True, cmap="coolwarm"); ###Output _____no_output_____ ###Markdown **Observations**- `age` and `experience` are heavily positively correlated.- `ccavg` and `income` are positively correlated. ###Code sns.pairplot(data=df[['age','income','zipcode','ccavg', 'mortgage','abs_experience','personal_loan']], hue='personal_loan'); ###Output _____no_output_____ ###Markdown **Observations**- Plot show that income is higher among those customers with personal loans.- ccavg is higher among those customers with personal loans. we will investigate. ###Code cols = ['age','income','ccavg','mortgage','abs_experience'] show_boxplots(cols, 'personal_loan') ###Output _____no_output_____ ###Markdown Show without outliers in boxplots ###Code show_boxplots(cols, 'personal_loan', show_fliers=False); ###Output _____no_output_____ ###Markdown **Observations**- On average, those customers with higher incomes have personal loans.- On average, those customers with higher credit card usage have personal loans.- 75% of those customers with personal loans have a mortgage payments of 500K or less. `personal_loan` vs `family` ###Code stacked_plot(df.family, df.personal_loan) ###Output _____no_output_____ ###Markdown **Observations** - Those customers with a `family` of 4 have more `personal loans`. - A family of 3 have the second most personal loans followed by a family of 1 and 2. `personal_loan` vs `education` ###Code stacked_plot(df.education, df.personal_loan) ###Output _____no_output_____ ###Markdown **Observations**- Those customers with an education of '2' and '3' hold a greater percentage of personal loans that those customer with an education of '1'. `personal_loan` vs `secuities_account` ###Code stacked_plot(df.securities_account, df.personal_loan) ###Output _____no_output_____ ###Markdown **Observations**- There is not much difference in securities account versus personal loans `personal_loan` vs `cd_account` ###Code stacked_plot(df.cd_account, df.personal_loan) ###Output _____no_output_____ ###Markdown **Observations**- Those customers with cd accounts. have a greater percentage of personal loans than those customer without a cd account. `personal_loan` vs `online` ###Code stacked_plot(df.online, df.personal_loan) ###Output _____no_output_____ ###Markdown **Observations**- There isnt much difference between customers who use online facilities and those who don't versus personal loans. `personal_loan` vs `credit_card` ###Code stacked_plot(df.credit_card, df.personal_loan) ###Output _____no_output_____ ###Markdown **Observations**- There isn't much difference between those who have credit cards from other banks versus personal loans. `cd_account` vs `family` ###Code stacked_plot(df.family, df.cd_account) ###Output _____no_output_____ ###Markdown **Observations**- A family of 3 has the greatest percentage(8.12) of customers with cd accounts. `cd_account` vs `education` ###Code stacked_plot(df.education, df.cd_account) ###Output _____no_output_____ ###Markdown **Observations**- There isnt much of a difference between education categories. **Observations** `cd_account` vs `securities_account` ###Code stacked_plot(df.securities_account, df.cd_account) ###Output _____no_output_____ ###Markdown **Observations**- A greater percentage of those customers with security accounts also have cd accounts versus those customer that dont have security accounts. `cd_account` vs `online` ###Code stacked_plot(df.online, df.cd_account) ###Output _____no_output_____ ###Markdown **Observations**- Customers who use the online facilities have a greater percentage cd accounts than those customer who don't use online facilities. `cd_account` vs `credit_card` ###Code stacked_plot(df.credit_card, df.cd_account) ###Output _____no_output_____ ###Markdown **Observations**- A greater percentage of those customers who have credit cards with other bank institutions have personal cd accounts than those customers who dont have credit cards from other institutions. Let us check which of these differences are statistically significant.The Chi-Square test is a statistical method to determine if two categorical variables have a significant correlation between them. **$H_0$:** There is no association between the two variables. **$H_a$:** There is an association between two variables. ###Code def check_significance(feature1: str, feature2: str, data=df): """ Checks the significance of feature1 agaisnt feature2 feature1: column name feature2: column name data: pandas dataframe object (defaults to df) """ crosstab = pd.crosstab(data[feature1], data[feature2]) # Contingency table of region and smoker attributes chi, p_value, dof, expected = stats.chi2_contingency(crosstab) Ho = f"{feature1} has no effect on {feature2}" # Stating the Null Hypothesis Ha = f"{feature1} has an effect on {feature2}" # Stating the Alternate Hypothesis if p_value < 0.05: # Setting our significance level at 5% print(f'{Ha.upper()} as the p_value ({p_value.round(3)}) < 0.05') else: print(f'{Ho} as the p_value ({p_value.round(3)}) > 0.05') def show_significance(features: list, data=df): """ Prints out the significance of all the list of features passed. features: list of column names data: pandas dataframe object (defaults to df) """ for feature in features: print("="*30, feature, "="*(50-len(feature))) for col in list(data.columns): if col != feature: check_significance(col , feature) show_significance(['personal_loan', 'cd_account']) ###Output _____no_output_____ ###Markdown Key Observations - * `cd_account`, `family` and `education` seem to be strong indicators of customers received a personal loan.* `securities_account`, `online` and `credit_card` seem to be strong indicators of customers who have cd accounts.* Other factors appear to be not very good indicators of those customers that have cd accounts. Build Model, Train and Evaluate1. Data preparation2. Partition the data into train and test set.3. Build a CART model on the train data.4. Tune the model and prune the tree, if required.5. Test the data on test set. ###Code try: df.drop(['experience'], axis=1, inplace=True) except KeyError: print(f"Column experience must already be dropped.") df.head() df_dummies = pd.get_dummies(df, columns=['education', 'family'], drop_first=True) df_dummies.head() df_dummies.info() ###Output _____no_output_____ ###Markdown Partition Data ###Code X = df_dummies.drop(['personal_loan'], axis=1) X.head(10) y = df_dummies['personal_loan'] y.head(10) # Splitting data into training and test set: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) print("The shape of X_train: ", X_train.shape) print("The shape of X_test: ", X_test.shape) ###Output _____no_output_____ ###Markdown Build Initial Decision Tree Model* We will build our model using the DecisionTreeClassifier function. Using default 'gini' criteria to split. * If the frequency of class A is 10% and the frequency of class B is 90%, then class B will become the dominant class and the decision tree will become biased toward the dominant classes.* In this case, we can pass a dictionary {0:0.15,1:0.85} to the model to specify the weight of each class and the decision tree will give more weightage to class 1.* class_weight is a hyperparameter for the decision tree classifier. ###Code model = DecisionTreeClassifier(criterion='gini', class_weight={0:0.15, 1:0.85}, random_state=1) model.fit(X_train, y_train) ## Function to create confusion matrix def make_confusion_matrix(model, y_actual, labels=[1, 0], xtest=X_test): """ model : classifier to predict values of X y_actual : ground truth """ y_predict = model.predict(xtest) cm = metrics.confusion_matrix(y_actual, y_predict, labels=[0, 1]) df_cm = pd.DataFrame(cm, index=["Actual - No","Actual - Yes"], columns=['Predicted - No','Predicted - Yes']) #print(df_cm) #print("="*80) group_counts = [f"{value:0.0f}" for value in cm.flatten()] group_percentages = [f"{value:.2%}" for value in cm.flatten()/np.sum(cm)] labels = [f"{gc}\n{gp}" for gc, gp in zip(group_counts, group_percentages)] labels = np.asarray(labels).reshape(2,2) plt.figure(figsize = (10, 7)) sns.heatmap(df_cm, annot=labels, fmt='') plt.ylabel('True label', fontsize=14) plt.xlabel('Predicted label', fontsize=14); make_confusion_matrix(model, y_test) y_train.value_counts(normalize=True) ###Output _____no_output_____ ###Markdown **Observations**- We only have ~10% of positive classes, so if our model marks each sample as negative, then also we'll get 90% accuracy, hence accuracy is not a good metric to evaluate here. ###Code ## Function to calculate recall score def get_recall_score(model): ''' Prints the recall score from model model : classifier to predict values of X ''' pred_train = model.predict(X_train) pred_test = model.predict(X_test) print("Recall on training set : ", metrics.recall_score(y_train, pred_train)) print("Recall on test set : ", metrics.recall_score(y_test, pred_test)) ###Output _____no_output_____ ###Markdown Recall score from baseline model. ###Code # Recall on train and test get_recall_score(model) ###Output _____no_output_____ ###Markdown Visualizing the decision tree from baseline model ###Code feature_names = list(X.columns) print(feature_names) plt.figure(figsize=(20, 30)) out = tree.plot_tree(model, feature_names=feature_names, filled=True, fontsize=9, node_ids=False, class_names=None,) #below code will add arrows to the decision tree split if they are missing for o in out: arrow = o.arrow_patch if arrow is not None: arrow.set_edgecolor('black') arrow.set_linewidth(1) plt.show() # Text report showing the rules of a decision tree - print(tree.export_text(model,feature_names=feature_names,show_weights=True)) ###Output _____no_output_____ ###Markdown Feature importance from baseline model ###Code def importance_plot(model): """ Displays feature importance barplot model: decision tree classifier """ importances = model.feature_importances_ indices = np.argsort(importances) size = len(indices)//2 # to help scale the plot. plt.figure(figsize=(10, size)) plt.title("Feature Importances", fontsize=14) plt.barh(range(len(indices)), importances[indices], color='blue', align='center') plt.yticks(range(len(indices)), [feature_names[i] for i in indices]) plt.xlabel("Relative Importance", fontsize=12); importance_plot(model=model) # importance of features in the tree building ( The importance of a feature is computed as the #(normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance ) pd.DataFrame(model.feature_importances_, columns=["Imp"], index=X_train.columns).sort_values(by='Imp', ascending=False) ###Output _____no_output_____ ###Markdown Using GridSearch for hyperparameter tuning of our tree model. ###Code # Choose the type of classifier. estimator = DecisionTreeClassifier(random_state=1, class_weight={0:.15,1:.85}) # Grid of parameters to choose from parameters = {'max_depth': np.arange(1,10), 'criterion': ['entropy','gini'], 'splitter': ['best','random'], 'min_impurity_decrease': [0.000001,0.00001,0.0001], 'max_features': ['log2','sqrt']} # Type of scoring used to compare parameter combinations scorer = metrics.make_scorer(metrics.recall_score) # Run the grid search grid_obj = GridSearchCV(estimator, param_grid=parameters, scoring=scorer, cv=5) grid_obj = grid_obj.fit(X_train, y_train) # Set the clf to the best combination of parameters estimator = grid_obj.best_estimator_ # Fit the best algorithm to the data. estimator.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Confusion matrix using GridSearchCV ###Code make_confusion_matrix(estimator, y_test) ###Output _____no_output_____ ###Markdown Recall score using GridSearchCV ###Code get_recall_score(estimator) ###Output _____no_output_____ ###Markdown Visualizing the decision tree from the best fit estimator using GridSearchCV ###Code plt.figure(figsize=(15, 10)) out = tree.plot_tree(estimator, feature_names=feature_names, filled=True, fontsize=10, node_ids=True, class_names=None) for o in out: arrow = o.arrow_patch if arrow is not None: arrow.set_edgecolor('black') arrow.set_linewidth(1) plt.show() # Text report showing the rules of a decision tree - print(tree.export_text(estimator, feature_names=feature_names, show_weights=True)) ###Output _____no_output_____ ###Markdown Feature importance using GridSearchCV ###Code # importance of features in the tree building ( The importance of a feature is computed as the #(normalized) total reduction of the 'criterion' brought by that feature. It is also known as the Gini importance ) pd.DataFrame(estimator.feature_importances_, columns=["Imp"], index=X_train.columns).sort_values(by='Imp', ascending=False) #Here we will see that importance of features has increased importance_plot(model=estimator) ###Output _____no_output_____ ###Markdown Cost Complexity PruningThe `DecisionTreeClassifier` provides parameters such as``min_samples_leaf`` and ``max_depth`` to prevent a tree from overfiting. Costcomplexity pruning provides another option to control the size of a tree. In`DecisionTreeClassifier`, this pruning technique is parameterized by thecost complexity parameter, ``ccp_alpha``. Greater values of ``ccp_alpha``increase the number of nodes pruned. Here we only show the effect of``ccp_alpha`` on regularizing the trees and how to choose a ``ccp_alpha``based on validation scores. Total impurity of leaves vs effective alphas of pruned treeMinimal cost complexity pruning recursively finds the node with the "weakestlink". The weakest link is characterized by an effective alpha, where thenodes with the smallest effective alpha are pruned first. To get an idea ofwhat values of ``ccp_alpha`` could be appropriate, scikit-learn provides`DecisionTreeClassifier.cost_complexity_pruning_path` that returns theeffective alphas and the corresponding total leaf impurities at each step ofthe pruning process. As alpha increases, more of the tree is pruned, whichincreases the total impurity of its leaves. ###Code clf = DecisionTreeClassifier(random_state=1, class_weight = {0:0.15, 1:0.85}) path = clf.cost_complexity_pruning_path(X_train, y_train) ccp_alphas, impurities = path.ccp_alphas, path.impurities pd.DataFrame(path) fig, ax = plt.subplots(figsize=(15, 7)) ax.plot(ccp_alphas[:-1], impurities[:-1], marker='o', drawstyle="steps-post") ax.set_xlabel("Effective alpha") ax.set_ylabel("Total impurity of leaves") ax.set_title("Total Impurity vs effective alpha for training set") plt.show() clfs = [] for ccp_alpha in ccp_alphas: clf = DecisionTreeClassifier(random_state=1, ccp_alpha=ccp_alpha, class_weight = {0:0.15,1:0.85}) clf.fit(X_train, y_train) clfs.append(clf) print(f"Number of nodes in the last tree is: {clfs[-1].tree_.node_count} with ccp_alpha: {ccp_alphas[-1]}") clfs = clfs[:-1] ccp_alphas = ccp_alphas[:-1] node_counts = [clf.tree_.node_count for clf in clfs] depth = [clf.tree_.max_depth for clf in clfs] fig, ax = plt.subplots(2, 1, figsize=(15, 10), sharex=True) ax[0].plot(ccp_alphas, node_counts, marker='o', drawstyle="steps-post") ax[0].set_ylabel("Number of nodes") ax[0].set_title("Number of nodes vs alpha") ax[1].plot(ccp_alphas, depth, marker='o', drawstyle="steps-post") ax[1].set_xlabel("alpha") ax[1].set_ylabel("depth of tree") ax[1].set_title("Depth vs alpha") fig.tight_layout() recall_train = [] for clf in clfs: pred_train3 = clf.predict(X_train) values_train = metrics.recall_score(y_train, pred_train3) recall_train.append(values_train) recall_test = [] for clf in clfs: pred_test3 = clf.predict(X_test) values_test = metrics.recall_score(y_test, pred_test3) recall_test.append(values_test) train_scores = [clf.score(X_train, y_train) for clf in clfs] test_scores = [clf.score(X_test, y_test) for clf in clfs] fig, ax = plt.subplots(figsize=(15, 7)) ax.set_xlabel("alpha") ax.set_ylabel("Recall") ax.set_title("Recall vs alpha for training and testing sets") ax.plot(ccp_alphas, recall_train, marker='o', label="train", drawstyle="steps-post",) ax.plot(ccp_alphas, recall_test, marker='o', label="test", drawstyle="steps-post") ax.legend() plt.show() # creating the model where we get highest train and test recall index_best_model = np.argmax(recall_test) best_model = clfs[index_best_model] print(best_model) best_model.fit(X_train, y_train) make_confusion_matrix(best_model, y_test) get_recall_score(best_model) ###Output _____no_output_____ ###Markdown Visualizing the Decision Tree ###Code plt.figure(figsize=(20, 8)) out = tree.plot_tree(best_model, feature_names=feature_names, filled=True, fontsize=12, node_ids=True, class_names=None) for o in out: arrow = o.arrow_patch if arrow is not None: arrow.set_edgecolor('black') arrow.set_linewidth(1) plt.show() # Text report showing the rules of a decision tree - print(tree.export_text(best_model, feature_names=feature_names, show_weights=True)) importance_plot(model=best_model) best_model2 = DecisionTreeClassifier(ccp_alpha=0.01, class_weight={0: 0.15, 1: 0.85}, random_state=1) best_model2.fit(X_train, y_train) make_confusion_matrix(best_model2, y_test) get_recall_score(best_model2) plt.figure(figsize=(20, 8)) out = tree.plot_tree(best_model2, feature_names=feature_names, filled=True, fontsize=12, node_ids=True, class_names=None) for o in out: arrow = o.arrow_patch if arrow is not None: arrow.set_edgecolor('black') arrow.set_linewidth(1) plt.show() print(tree.export_text(best_model2, feature_names=feature_names, show_weights=True)) importance_plot(model=best_model2) comparison_frame = pd.DataFrame({'Model':['Initial decision tree model','Decision treee with hyperparameter tuning', 'Decision tree with post-pruning'], 'Train_Recall':[1, 0.95, 0.99], 'Test_Recall':[0.91, 0.91, 0.98]}) comparison_frame ###Output _____no_output_____
1_image_classification/Implementaion1.ipynb
###Markdown 1. 学習済みのVGGモデルを使用する方法学習済みのVGGモデルを流用して少量のデータからでもディープラーニングモデルが構築できる**転移学習**や**fine tuning**について学習する.達成目標1. PyTorchでImageNetデータセットでの学習済みモデルをロードできるようになる2. VGGモデルについて理解する3. 入力画像のサイズや色を変換できるようになる 準備 ライブラリのインポート ###Code import numpy as np import json from PIL import Image import matplotlib.pyplot as plt %matplotlib inline import torch import torchvision from torchvision import models, transforms import os path = 'drive/MyDrive/pytorch_deeplearning/pytorch_advanced/1_image_classification/' !ls drive/MyDrive/pytorch_deeplearning/pytorch_advanced/ print(torch.__version__) print(torchvision.__version__) ###Output 1.10.0+cu111 0.11.1+cu111 ###Markdown 学習済みのVGGモデルを読み込む学習済みのVGG-16モデルを用いてゴールデンレトリバーの画像を分類する ###Code # 学習済みVGG-16モデルをロード net = models.vgg16(pretrained=True) net.eval() # 推論モードに設定 print(net) # ネットワークの構造を出力 ###Output Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /root/.cache/torch/hub/checkpoints/vgg16-397923af.pth ###Markdown VGG-16モデルのネットワーク構成はfeaturesとclassifierという2つのモジュールに分かれている.そしてそれぞれのモジュールの中に畳み込層(Conv2d)と全結合層(Linear)が含まれている.featuresでは特徴量抽出、classifierでは分類(クラス予測)を行っている. 入力画像の前処理クラスを作成VGGモデルに画像を入力するための前処理部分を作成する.VGGモデルへ入力する画像は前処理を行う必要がある.前処理1. 画像サイズを$224\times224$にリサイズ 2. 色情報の規格化2ではRGBに対して平均(0.485, 0.456, 0.406)、標準偏差(0.229, 0.224, 0.225)の条件で標準化を行う.この規格化条件はILSVRC2012データセットの教師データから求まる値である.VGG-16モデルはこの規格化を行って学習を行っているので同様の規格化を行う必要がある.実装の注意点は,PyTorchとPillowで画像の要素の順番が異なっている点である.- PyTorchでは(色チャネル, 高さ, 幅)- PILでは(高さ, 幅, 色チャネル)で画像を処理している.そのためにnumpy.transposeにより軸の順番を入れ替えて対応する. ###Code # 入力画像の前処理のクラス class BaseTransform(): '''画像をリサイズし,色を標準化する esize the image and standardize the colors Attributes ------------------------ resize: int リサイズ先の画像の大きさ The size of the image to be resized mean: (R,G,B) tupple 各色チャネルの平均値 Mean for each color channel std: (R,G,B) tupple Standard deviation for each color channel 各色チャネルの標準偏差 ''' def __init__(self, resize, mean, std): self.base_transform = transforms.Compose(transforms=[ transforms.Resize(resize), # 短い辺の長さがresizeの大きさになる transforms.CenterCrop(resize), # 画像中央をresize×resizeで切り取り transforms.ToTensor(), # Torchテンソルに変換 transforms.Normalize(mean, std) # 標準化 ]) def __call__(self, img): # インスタンス名で実行すると__call__が実行されるメソッド名を記述する手間が省ける return self.base_transform(img) # 前処理の動作確認 # 1. 読み込み image_file_path = path+'data/goldenretriever-3724972_640.jpg' img = Image.open(image_file_path) # 2. 元画像の表示 plt.imshow(img) plt.show() # 3. 画像の前処理と処理済み画像の表示 resize = 224 mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) transform = BaseTransform(resize, mean, std) img_transformed = transform(img) # torch.size([3, 224, 224]) # (color, height, width) to (height, width, color) and Normalize to 0,1 img_transformed = img_transformed.numpy().transpose((1,2,0)) img_transformed = np.clip(img_transformed, 0, 1) # normalization plt.imshow(img_transformed) plt.show() ###Output _____no_output_____ ###Markdown 出力結果からラベルを予測する後処理クラスを作成VGG-16モデルの1000次元の出力をラベル名へと変換するクラスILSVRCPredictorを作成する.ILSVRCのラベル目については,事前準備したJSONファイル「imagenet_class_index.json」を使用VGGモデルから出力される値はtorch.size([1,1000])のテンソル型となっている.これをNumpy型に変換する.そしてnp.argmaxで確率が最大となるインデックスを取得. ###Code os.listdir(path+'data/') # ILSVRCラベル情報をロード ILSVRC_class_index = json.load(open(path+'data/imagenet_class_index.json', 'r')) ILSVRC_class_index class ILSVRCPredictor(): '''ILSVRデータに対するモデルの出力からラベルを求める Attributes ---------------- class_index: dictionary クラスindexとラベル名を対応させた辞書 ''' def __init__(self, class_index): self.class_index = class_index def predict_max(self, out): '''確率最大のILSVRCラベル名を取得する Parameters ----------------- out: tourch.Size([1, 1000]) Returns ---------------- predicted_label_name: str 最も予測確率が高いラベルの名前 ''' maxid = np.argmax(out.detach().numpy()) # detach()でネットワークから出力を切り離す predicted_label_name = self.class_index[str(maxid)][1] return predicted_label_name ###Output _____no_output_____ ###Markdown 学習済みVGGモデルで手元の画像を予測予測過程のフロー入力画像→BaseTransform(前処理)→VGGモデル(予測)→ILSVRCPredictor(予測確率が最も高いラベルを取得) ###Code # ILSVRラベル情報をロードし辞書が多変数を生成 ILSVRC_class_index = json.load(open(path+'data/imagenet_class_index.json', 'r')) # ILSVRPredictorのインスタンスを生成 predictor = ILSVRCPredictor(ILSVRC_class_index) # 入力画像を読み込む image_file_path = path + 'data/goldenretriever-3724972_640.jpg' img = Image.open(image_file_path) # 前処理+バッチサイズの次元を追加 transform = BaseTransform(resize, mean, std) img_transformed = transform(img) inputs = img_transformed.unsqueeze_(0) # モデルに入力し、モデル出力をラベルに変換する out = net(inputs) result = predictor.predict_max(out) # 予測結果を出力 print(f'出力画像の予測結果: {result}') ###Output 出力画像の予測結果: golden_retriever ###Markdown このように学習済みモデルをそのまま使用し,ILSVRCの1000種類のクラスから未知の画像のクラスラベルを予測できる. 2. PyTorchによるディープラーニング実装の流れ実務では,予測したい画像のラベルはILSVRCで用意された1000クラスとは異なるのが当然である.そのため自分のデータを使用して,ディープラーニングモデルを学習しなおす必要がある.本節では,PyTorchを使用したディープランニング実装の流れを学習する.次節以降では,自分のデータでニューラルネットワークを学習し直す手法を学ぶ.本節の達成目標は1. PyTorchのDatasetとDatasetLoaderについて理解する2. PyTorchでディープラーニングを実装する流れを理解する ###Code # ライブラリインポート import numpy as np import json from PIL import Image import matplotlib.pyplot as plt %matplotlib inline import torch import torchvision from torchvision import models, transforms import os par_path = 'drive/MyDrive/pytorch_deeplearning/pytorch_advanced/' path = par_path+'1_image_classification/' orig_path = os.path.abspath('/content/') os.chdir(orig_path+'/'+path) cur_path = os.path.abspath(os.curdir) print(orig_path) print(cur_path) from flowchart import flowchart from IPython.display import SVG g = flowchart(fontsize=20, dpi=4, figsize=(3,1)) SVG(g) import warnings warnings.filterwarnings('ignore') nodes = [ {'name': 0, 'shape':'box', 'description':'Check pre-processing, \npost-processing, and network model I / O'}, {'name': 1, 'shape':'terminal', 'description':'create Dataset'}, {'name': 2, 'shape':'terminal', 'description':'create DataLoader'}, {'name': 3, 'shape':'terminal', 'description':'create Network model'}, {'name': 4, 'shape':'terminal', 'description':'def foward'}, {'name': 5, 'shape':'terminal', 'description':'def loss'}, {'name': 6, 'shape':'terminal', 'description':'setting opt method'}, {'name': 7, 'shape':'terminal', 'description':'train and eval'}, {'name': 8, 'shape':'terminal', 'description':'inference using test data'} ] edges = [ {'start':(0,'S'),'end':(1,'N')}, {'start':(1,'S'),'end':(2,'N')}, {'start':(2,'S'),'end':(3,'N')}, {'start':(3,'S'),'end':(4,'N')}, {'start':(4,'S'),'end':(5,'N')}, {'start':(5,'S'),'end':(6,'N')}, {'start':(6,'S'),'end':(7,'N')}, {'start':(7,'S'),'end':(8,'N')}, ] g = flowchart(nodes,edges, fontsize=10, dpi=4, figsize=(4,8)) SVG(g) ###Output _____no_output_____ ###Markdown 1. **前処理、後処理、ネットワークモデルの入出力を確認**2. **Datasetの作成** Datasetとは入力とラベルをペアとして保持したクラスである.Datasetを学習用データと検証用データそれぞれに対して作成する.3. **DataLoaderの作成** DataLoaderはDatasetからどのようにデータを出すのかを設定するクラス.ディープランニングではミニバッチ学習を行い、複数のデータを同時にDatasetから取り出してネットワークを学習する.この際にミニバッチを取り出しやすくするのがDataLoaderである.4. **ネットワークモデルの作成**- ゼロからすべて自分で作成するケース- 学習済みモデルをロードして使用するケース- 学習済みモデルをベースに自分で改変するケース5. **順伝播fowardの定義** モデルが単純な場合はモデルを構築している層を前から後ろへ伝播するだけであるが、ディープラーニングの応用手法はモデルが複雑な場合が多く,例えばネットワークが分岐したりする.複雑なネットワークの順伝播を計算するためにforwardをしっかり定義する.6. **損失関数の定義**- 誤差逆伝播を計算するために損失関数を定義- 単純なネットワークでは2乗誤差など- 複雑なネットワークでは損失関数も複雑になる7. **最適化手法の設定**- 結合パラメータを学習する際の最適化手法を選択- 誤差逆伝播によって結合パラメータの誤差に対する勾配が求まる- 最適化手法としてMomentum SGDなどがある8. **学習・検証の実施**- epochごとに訓練データの性能と検証データでの性能を確認- 検証データの性能が向上しなかったら学習をストップ(過学習防止のため)- 途中で学習ストップさせることをearly stoppingという9. **テストデータで推論** 3. 転移学習の実装手元にある少量のデータでオリジナルの画像分類用ディープラーニングモデルを構築する手法を学ぶ達成目標1. 画像データからDatasetを作成できるようにする2. DatasetからDataLoaderを作成できるようにする3. 学習済みモデルの出力増を任意の形に変更できるようにする4. 出力層の結合パラメータのみを学習させて転移学習が実装できるようになる 転移学習(Transfer Learning)**転移学習**とは学習済みモデルをベースに、最終の出力層を付け加えて学習する手法である.付け替えた出力層への結合パラメータを手元にある少量のデータで学習しなおす.入力層に使い部分の結合パラメータは学習済みモデルのまま使用する転移学習は学習済みモデルをベースとするので手元にあるデータが少量でも性能の良いディープラーニングを実現しやすいというメリットがある.入力層に近い層の結合パラメータも学習済みの値から更新させる場合は、**ファインチューニング(FineTuning)**という. ###Code # forループの経過時間と残りの時間を計測するtqdmをインストール !pip install tqdm # ライブラリのインポート import glob import os.path as osp import random import numpy as np import json from PIL import Image from tqdm import tqdm import matplotlib.pyplot as plt %matplotlib inline import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as data import torchvision from torchvision import models, transforms # 乱数シードを設定 torch.manual_seed(1234) np.random.seed(1234) random.seed(1234) MEAN = (0.485, 0.456, 0.406) STD = (0.229, 0.224, 0.225) ###Output _____no_output_____ ###Markdown Datasetを作成1. 画像の前処理クラスImageTransformを作成2. 画像へのファイルパスをリスト型変数に格納する関数make_datapath_listを作成3. DatasetクラスHymenopteraDatasetを作成本節のように単純な画像分類タスクいおいてDatasetを作成する場合,torchvision.datasets.ImageFolderクラスを使用してDatasetを作成する方法が簡単です.今回はより一般的なケースでも通用するように自前でDatasetクラスを作成する方法を学ぶ.1. 前処理クラスImageTransformの作成- 訓練時と推論時で異なる前処理を行うようにする- 訓練時にはDataAugmentationを実施する - DataAugmentationとはechoごとに異なる画像変換を適用し、データを水増しする手法- 訓練時の前処理にはRandomResizedCropとRandomHorizontalFlipを使用 ###Code # 入力画像の前処理を行うクラス # 訓練時と推論時で処理が異なる class ImageTransform(): ''' 画像の前処理クラス 訓練時、検証時で異なる動作をする 画像のサイズをリサイズし、色を標準化する 訓練時はRandomResizedCropとRandomHorizontakFlipでデータ拡張を行う Attributes -------------------- resize: int リサイズ先の画像の大きさ mean: (R, G, B) 各色チャネルの平均値 std: (R, G, B) 各色チャネルの標準偏差 ''' def __init__(self, resize, mean, std): self.data_transform = { 'train': transforms.Compose([ # for training transforms.RandomResizedCrop( resize, scale=(0.5, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean, std) ]), 'val': transforms.Compose([ # for validation transforms.Resize(resize), # リサイズ transforms.CenterCrop(resize), # 画像中央をresize×resizeで切り取る transforms.ToTensor(), transforms.Normalize(mean, std) ]) } def __call__(self, img, phase='train'): ''' Parameters --------------- phase: 'train' or 'val' 前処理のモードを指定 ''' return self.data_transform[phase](img) os.listdir(path+'data/') # ImageTransformの動作確認 # 実行するたびに処理結果の画像が変化する # read path of file image_file_path = path+'data/goldenretriever-3724972_640.jpg' img = Image.open(image_file_path) # show original image plt.imshow(img) plt.show() # show resized image size = 224 mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) # rsize transform = ImageTransform(size, mean, std) img_transformed = transform(img, 'train') img_transformed = img_transformed.numpy().transpose((1,2,0)) # height, width, channel img_transformed = np.clip(img_transformed, 0, 1) # normalize plt.imshow(img_transformed) plt.show() print([p for p in glob.glob(path+'data/hymenoptera_data/**', recursive=True) if os.path.isfile(p)]) # アリとハチの画像へのファイルパスへのリストを作成 import os def make_detapath_list(phase='train'): ''' データのパスを格納したリストを作成 Parameters -------------------------- phase: 'train' or 'val' 訓練モードか検証モードか Returns -------------------------- path_list: list データへのパスを格納したリスト ''' rootpath ='/content/drive/MyDrive/pytorch_deeplearning/pytorch_advanced/1_image_classification/data/hymenoptera_data/' target_path = os.path.join(rootpath + phase + '/**/*.jpg') print(target_path) path_list = [] # サブディレクトリまでファイルを取得 for path in glob.glob(target_path): path_list.append(path) return path_list train_list = make_detapath_list('train') val_list = make_detapath_list('val') train_list len(train_list[0]) print(train_list[0][30:34]) ['ants' if 'ants' in path else 'bees' for path in train_list] ###Output _____no_output_____ ###Markdown Datasetの作成label=1: 画像がアリの場合 label=0: 画像がハチの場合以下の関数を実装する- \__getitem__(): Datasetから1つのデータを取り出す- \__len__(): Datasetのファイル数を返す ###Code # アリとハチのDatasetを作成 class HymenopteraDataseet(data.Dataset): ''' アリとハチの画像のDatasetクラス PyTorchのDatasetクラスを継承 Attributes -------------------------- file_list: list 画像のパスを格納したリスト transform: object 前処理クラスのインスタンス phase: 'train' or 'val' training or validation ''' def __init__(self, file_list, transform=None, phase='train'): self.file_list = file_list self.transform = transform self.phase = phase def __len__(self): '''Datasetのファイル数を作成''' return len(self.file_list) def __getitem__(self, index): ''' 前処理した画像のTensor形式のデータとラベルを取得 ''' # index番目の画像をロード img_path = self.file_list[index] img = Image.open(img_path) # height, width, channel # 画像の前処理を実施 img_transformed = self.transform(img, self.phase) # channel, height, width # 画像のラベルをファイル名から抜き出す label = 'ants' if 'ants' in img_path else 'bees' # ラベルを数値に変換 if label == 'ants': label=0 elif label == 'bees': label=1 return img_transformed, label size = 224 mean = MEAN std = STD train_dataset = HymenopteraDataseet(file_list=train_list, transform=ImageTransform(size, mean, std), phase='train') val_dataset = HymenopteraDataseet(file_list=val_list, transform=ImageTransform(size, mean, std), phase='val') index = 0 print(train_dataset.__getitem__(index)[0].size()) # データ print(train_dataset.__getitem__(index)[1]) # ラベル ###Output torch.Size([3, 224, 224]) 0 ###Markdown DataLoaderの作成- torch.utils.data.DataLoaderクラスをそのまま使用- 訓練用と検証用の2つのDataLoaderを作成する- 訓練用のDataLoaderはshuffle=Trueとして画像がランダムになるようにする ###Code # ミニバッチのサイズを指定 batch_size = 32 # DataLoaderを作成 train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True ) val_dataloader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=False ) # 辞書型変数にまとめる dataloaders_dict = {'train': train_dataloader, 'val': val_dataloader} # 動作確認 batch_iterator = iter(dataloaders_dict['train']) # イテレータに変換 inputs, labels = next(batch_iterator) print(inputs.size()) print(labels) print(len(labels)) ###Output torch.Size([32, 3, 224, 224]) tensor([0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1]) 32 ###Markdown ネットワークモデルの作成VGG-16モデルをロードしてモデルを作成する今回は出力ユニット数が1000種類ではなく2種類なので,VGGモデルのclassifierモジュールの最後に全結合層を付け替える. ###Code models.vgg16(True).classifier # 学習済みのVGG-16モデルをロード # VGGモデルのインスタンスを作成 use_pretrained = True net = models.vgg16(use_pretrained) # VGG16モデルの最後の出力層の出力ユニットをアリとハチの2つに付け替える net.classifier[6] = nn.Linear(in_features=4096, out_features=2) # 訓練モードに設定 net.train() print('Network settign has completed !') ###Output Network settign has completed ! ###Markdown 損失関数を定義今回の画像分類タスクは通常のクラス分類でのため,クロスエントロピー誤差を使用する.クロスエントロピー誤差関数は全結合層からの出力に対して,ソフトマックス関数を適用した後,クラス分類の損失関数であるthe negative log likelihood lossを計算する. ###Code criterion = nn.CrossEntropyLoss() ###Output _____no_output_____ ###Markdown 最適化手法を設定- 転移学習において学習または変化させるパラメータを設定- ネットワークモデルのパラメータに対してrequired_grad=Trueとすると誤差逆伝播計算によって勾配が計算され,パラメータが更新される- required_grad=Falseとするとパラメータは更新されない.検証時や推論時に設定する ###Code list(net.named_parameters()) net.classifier.named_parameters() # 学習で更新するパラメータを格納 params_to_update = [] # 学習させるパラメータ名 update_params_names = ['classifier.6.weight', 'classifier.6.bias'] for name, param in net.named_parameters(): if name in update_params_names: param.requires_grad = True params_to_update.append(param) print(name) else: param.requires_grad = False print('----------------------') print(params_to_update) # 最適化手法の設定 optimizer = optim.SGD(params=params_to_update, lr=0.001, momentum=0.9) ###Output _____no_output_____ ###Markdown 学習・検証- train_model モデルを訓練させる関数 - 学習と検証をepochごとに繰り返す - 学習時はnetをtrainモードに検証時はvalモード lossにはミニバッチの損失の平均値が記録される 損失の合計を計算するにはミニバッチサイズで掛ける必要がある ###Code # モデルを訓練させる関数 def train_model(net, dataloaders_dict, criterion, optimizer, num_epochs): # epochのループ for epoch in range(num_epochs): print(f'{epoch+1}/{num_epochs}') print('-----------------------') for phase in ['train', 'val']: if phase == 'train': net.train() else: net.eval() epoch_loss = 0.0 # epochの損失和 epoch_corrects = 0 # epochの正解数 # 未学習時の検証性能をたしかめるためepoch=0の訓練は省略 if (epoch==0) and (phase=='train'): continue # Dataloaderからミニバッチを取りだす for inputs, labels in tqdm(dataloaders_dict[phase]): # optimizerを初期化 optimizer.zero_grad() # 順伝播 with torch.set_grad_enabled(phase=='train'): outputs = net(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) # ラベル torch.maxは最大値と最大インデックスのタプルを返す # 訓練時はbachpropagation if phase == 'train': loss.backward() optimizer.step() # イテレーション結果の確認 # lossの合計を更新 epoch_loss += loss.item() * inputs.size(0) # ミニバッチ分足す loss.item()はミニバッチの平均値になっている epoch_corrects += torch.sum(preds==labels.data) # ミニバッチごとに足す # epochごとにlossと正解率を表示 epoch_loss = epoch_loss / len(dataloaders_dict[phase].dataset) epoch_acc = epoch_corrects.double() / len(dataloaders_dict[phase].dataset) print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}') # 学習・検証を実施 num_epochs = 2 train_model(net, dataloaders_dict, criterion=criterion, optimizer=optimizer, num_epochs=num_epochs) len(dataloaders_dict['train'].dataset) n = torch.rand(4,5) n _, index = torch.max(n, 1) index m = torch.tensor([0,1,4,2]) index == m ###Output _____no_output_____ ###Markdown 4. ファインチューニングの実装ファインチューニングを使用し,手元にある少量のデータを学習させて,オリジナルのが画像分類モデルを構築する方法を学習する.達成目標- PyTorchでGPUを使用する実装ができるようになる- 最適化手法の設定において,層ごとに異なる学習率を設定したファインチューニングを実装できるようになる- 学習したネットワークを保存・ロードできるようにする ファインチューニング**`ファインチューニング`**学習済みのモデルをベースに出力層などを変更したモデルを構築し,自前のデータでニューラルネットワークモデルの結合パラメータを学習させる方法初期値には学習済みモデルのパラメータを使用する**`ファインチューニング`**は転移学習とはことなり、出力層及び出力層に近い部分だけでなく、**すべての層**のパラメータを再学習する。ただし、入力層に近い部分のパラメータは学習率を小さくしたり、パラメータを再学習しないように設定し、出力層に近い部分んはパラメータを大きく設定することが一般的である。転移学習と同じく自前のデータが少量でも性能の良いモデルを実現できるという利点がある。 DatasetとDataLoaderの作成転移学習と同様 ###Code import os os.chdir('/content/drive/MyDrive/pytorch_deeplearning/pytorch_advanced/1_image_classification') !pwd from utils.dataloader_image_classification import ImageTransform, make_datapath_list, HymenopteraDataset # アリとハチの画像へのファイルパスのリストを作成 train_list = make_datapath_list(phase='train') val_list = make_datapath_list(phase='val') # Datasetを作成 size = 224 mean = MEAN std = STD train_dataset = HymenopteraDataset(train_list, transform=ImageTransform(size, mean, std), phase='train') val_dataset = HymenopteraDataset(val_list, transform=ImageTransform(size, mean, std), phase='val') # DataLoaderを作成 batch_size=32 train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False) dataloaders_dict = {'train':train_dataloader, 'val':val_dataloader} # ネットワークモデルを作成 use_pretrained = True net = models.vgg16(use_pretrained) net.classifier[6] = nn.Linear(4096, 2) net.train() print('Network setting has completed !') # 損失関数の設定 criterion = nn.CrossEntropyLoss() ###Output _____no_output_____ ###Markdown 最適化手法の設定ファインチューニングでは最適化手法の設定が転移学習とは異なる。すべての層のパラメータを学習できるように設定する。- update_param_names_1: featuresモジュールのパラメータ- updata_param_names_2: classifierモジュールのうち最初の2つの全結合層のパラメータ- updata_param_names_3: classifierモジュールのうち最後の全結合層のパラメータそれぞれ学習率を変えて学習できるようにする。 ###Code net [list(net.named_parameters())[i][0] for i in range(len(list(net.named_parameters())))] # ファインチューニングで学習するパラメータを設定 params_to_update_1 = [] params_to_update_2 = [] params_to_update_3 = [] # 学習させる層のパラメータを設定 update_param_name_1 = ['features'] # featuresすべて update_param_name_2 = ['classifier.0.weights', 'classifier.0.bias', 'classifier.3.weight', 'classifier.3.bias'] # classifierの全結合層 update_param_name_3 = ['classifier.6.weight', 'classifier.6.bias'] # classifierの出力層 for name, param in net.named_parameters(): if update_param_name_1[0] in name: param.requires_grad = True params_to_update_1.append(param) elif name in update_param_name_2: param.requires_grad = True params_to_update_2.append(param) elif name in update_param_name_3: param.requires_grad = True params_to_update_3.append(param) else: param.requires_grad = False # 学習率を設定 optimizer = optim.SGD([ {'params': params_to_update_1, 'lr': 1e-4}, {'params': params_to_update_2, 'lr': 5e-4}, {'params': params_to_update_3, 'lr': 1e-3} ], momentum=0.9) ###Output _____no_output_____ ###Markdown 学習・検証を実施GPUを使用するようにtrain_modelを定義する。`device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')`でGPUが使用できるようになる。ネットワークモデルや変数に対して.to(device)とすることでGPUの計算に切り替えられる。PyTorchではイテレーションごとのニューラルネットワークの順伝播および誤差関数の計算手法がある程度共通であれば、`torch.backends.cudnn.benchmark = True`とすることでGPUでの計算が高速化される。 ###Code # モデルを学習させる関数を作成 def train_model(net, dataloaders_dict, criterion, optimizer, num_epochs): # 初期設定 # GPUの設定 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('using device: ', device) # ネットワークをGPUへ net.to(device) # GPUでの計算を高速化させる(epochごとの処理がある程度共通の場合) torch.backends.cudnn.benchmark = True for epoch in range(num_epochs): print(f'Epoch: {epoch+1}/{num_epochs}') print('-----------------------------') for phase in ['train', 'val']: if phase == 'train': net.train() # 訓練モード else: net.eval() # 検証モード epoch_loss = 0.0 epoch_corrects = 0 # 未学習時は損失を計算しない if (epoch==0) and (phase=='train'): continue # DataLoaderからミニバッチを取り出す for inputs, labels in tqdm(dataloaders_dict[phase]): # GPU設定 inputs = inputs.to(device) labels = labels.to(device) # optimizerを初期化 optimizer.zero_grad() # 順伝播 # 訓練モードの場合は勾配を保持 with torch.set_grad_enabled(phase=='train'): outputs = net(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) # 訓練時はバックプロパゲーション if phase =='train': loss.backward() # 勾配計算 optimizer.step() # パラメータ更新 epoch_loss += loss.item() * inputs.size(0) # ミニバッチ全体の損失を計算 epoch_corrects += torch.sum(preds == labels) # epochごとの損失と正解率を表示 epoch_loss /= len(dataloaders_dict[phase].dataset) epoch_acc = epoch_corrects.double() / len(dataloaders_dict[phase].dataset) print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}') # dataloader labelの中身 .dataをつけるとどうなるか data, labels = next(iter(dataloaders_dict['train'])) print(labels) print(labels.data) # dataloaderとdatasetの違い # datasetをdataloaderはミニバッチに分けてシャッフルして取り出したもの print(dataloaders_dict['train'].dataset) print(dataloaders_dict['train']) print(len(dataloaders_dict['train'].dataset)) print(len(dataloaders_dict['train'])) # 学習・検証を実施 num_epochs = 5 train_model(net, dataloaders_dict, criterion, optimizer, num_epochs=num_epochs) ###Output using device: cuda:0 Epoch: 1/5 ----------------------------- ###Markdown 学習したネットワークを保存・ロード- 保存する場合 ネットワークモデルnetに対して.state_dict()でパラメータを辞書変数で取り出し、torch.save()で保存する- ロードする場合 torch.load()で辞書型オブジェクトをロードし、ネットワークに対して、load_state_dict()で格納するGPU上で保存されたファイルをCPU上でロードする場合はmap_locationを使用する。 ###Code # パラメータの保存 save_path = './weights_fine_tuning.pth' torch.save(net.state_dict(), save_path) os.listdir(os.curdir) # 保存したパラメータをロード load_path = './weights_fine_tuning.pth' load_weights = torch.load(load_path) net.load_state_dict(load_weights) print(next(iter(net.parameters()))) # GPU上で保存された重みをcpu上でロードする場合 '''load_weights = torch.load(load_path, map_loccation={'cuda:0': 'cpu'}) net.load_state_dict(load_weights) print(next(iter(net.parameters())))''' ###Output _____no_output_____
analysis/01__mpra/09__cis_trans_effects/09__cis_trans_effects.ipynb
###Markdown 09__cis_trans_effectsin this notebook, i investigate the co-occurrence of cis and trans effects ###Code import warnings warnings.filterwarnings('ignore') import itertools import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import sys from itertools import combinations from scipy.integrate import cumtrapz from scipy.stats import linregress from scipy.stats import spearmanr from scipy.stats import pearsonr #from sklearn.preprocessing import StandardScaler #from sklearn.neighbors import NearestNeighbors # import utils sys.path.append("../../../utils") from plotting_utils import * %matplotlib inline %config InlineBackend.figure_format = 'svg' mpl.rcParams['figure.autolayout'] = False sns.set(**PAPER_PRESET) fontsize = PAPER_FONTSIZE np.random.seed(2019) QUANT_ALPHA = 0.05 ###Output _____no_output_____ ###Markdown functions ###Code def cis_trans_status(row): if row.cis_status_one == "significant cis effect": if row.trans_status_one == "significant trans effect": if "higher in human" in row.cis_status_det_one: if "higher in human" in row.trans_status_det_one: return "cis/trans directional" else: return "cis/trans compensatory" else: if "higher in human" in row.trans_status_det_one: return "cis/trans compensatory" else: return "cis/trans directional" else: return "cis effect only" else: if row.trans_status_one == "significant trans effect": return "trans effect only" else: return "no cis or trans effects" ###Output _____no_output_____ ###Markdown variables ###Code data_f = "../../../data/02__mpra/03__results/all_processed_results.txt" ###Output _____no_output_____ ###Markdown 1. import data ###Code data = pd.read_table(data_f, sep="\t") data.head() data["cis_trans_status"] = data.apply(cis_trans_status, axis=1) ###Output _____no_output_____ ###Markdown 2. filter data ###Code data = data[~pd.isnull(data["minimal_biotype_hg19"])] len(data) data_filt = data[((data["HUES64_padj_hg19"] < QUANT_ALPHA) | (data["mESC_padj_mm9"] < QUANT_ALPHA))] len(data_filt) data_filt_sp = data_filt.drop("orig_species", axis=1) data_filt_sp.drop_duplicates(inplace=True) len(data_filt_sp) data_filt_sp.cis_trans_status.value_counts() ###Output _____no_output_____ ###Markdown 3. count cis trans effects ###Code # fisher's exact to see if cis/trans effects are enriched cis_trans = len(data_filt_sp[data_filt_sp["cis_trans_status"].isin(["cis/trans directional", "cis/trans compensatory"])]) cis_no_trans = len(data_filt_sp[data_filt_sp["cis_trans_status"] == "cis effect only"]) trans_no_cis = len(data_filt_sp[data_filt_sp["cis_trans_status"] == "trans effect only"]) n_no_cis_trans = len(data_filt_sp[data_filt_sp["cis_trans_status"] == "no cis or trans effects"]) # fisher's exact test arr = np.zeros((2, 2)) arr[0, 0] = cis_trans arr[0, 1] = cis_no_trans arr[1, 0] = trans_no_cis arr[1, 1] = n_no_cis_trans print(arr) odds, p = stats.fisher_exact(arr) print(odds) print(p) stats.binom_test(95, 159) cis_trans = data_filt_sp[data_filt_sp["cis_trans_status"].isin(["cis/trans directional", "cis/trans compensatory"])] tmp = cis_trans[((cis_trans["minimal_biotype_hg19"] == "mRNA") & (cis_trans["minimal_biotype_mm9"] == "mRNA"))] tmp.cis_trans_status.value_counts() tmp = cis_trans[((cis_trans["minimal_biotype_hg19"] == "lncRNA") & (cis_trans["minimal_biotype_mm9"] == "lncRNA"))] tmp.cis_trans_status.value_counts() ###Output _____no_output_____ ###Markdown 4. look at directionality of cis/trans ###Code min_switch_order = ["CAGE turnover - eRNA", "CAGE turnover - lncRNA", "CAGE turnover - mRNA", "eRNA", "lncRNA", "mRNA"] min_switch_pal = {"CAGE turnover - eRNA": sns.color_palette("Set2")[2], "CAGE turnover - lncRNA": sns.color_palette("Set2")[2], "CAGE turnover - mRNA": sns.color_palette("Set2")[2], "eRNA": sns.color_palette("Set2")[7], "lncRNA": sns.color_palette("Set2")[7], "mRNA": sns.color_palette("Set2")[7]} def cage_status(row): if "CAGE turnover" in row.biotype_switch_minimal: return "turnover" else: return "conserved" def one_biotype(row): if row.minimal_biotype_hg19 == "no CAGE activity": return row.minimal_biotype_mm9 elif row.biotype_switch_minimal == "biotype switch": return "biotype switch" else: return row.minimal_biotype_hg19 pal = {"conserved": sns.color_palette("Set2")[7], "turnover": sns.color_palette("Set2")[2]} df = data_filt_sp res = {} cis_trans = df[(df["cis_status_one"] == "significant cis effect") & (df["trans_status_one"] == "significant trans effect")] tots = len(cis_trans) print(tots) res["total"] = [tots] direc = cis_trans[((cis_trans["cis_status_det_one"].str.contains("higher in human") & cis_trans["trans_status_det_one"].str.contains("higher in human")) | (cis_trans["cis_status_det_one"].str.contains("higher in mouse") & cis_trans["trans_status_det_one"].str.contains("higher in mouse")))] direc = len(direc) res["directional"] = [direc] comp = cis_trans[((cis_trans["cis_status_det_one"].str.contains("higher in human") & cis_trans["trans_status_det_one"].str.contains("higher in mouse")) | (cis_trans["cis_status_det_one"].str.contains("higher in mouse") & cis_trans["trans_status_det_one"].str.contains("higher in human")))] comp = len(comp) res["compensatory"] = [comp] res = pd.DataFrame.from_dict(res, orient="index").reset_index() res["perc"] = (res[0]/tots)*100 res["tmp"] = "tmp" print(res) fig, ax = plt.subplots(figsize=(0.5, 1.5), nrows=1, ncols=1) sns.barplot(data=res[res["index"] == "total"], x="tmp", y="perc", color=sns.color_palette("Set2")[7], ax=ax) sns.barplot(data=res[res["index"] == "directional"], x="tmp", y="perc", color=sns.color_palette("Set2")[2], ax=ax) ax.set_xlabel("") ax.set_ylabel("% of sequence pairs") ax.set_xticklabels(["all pairs"], rotation=50, ha="right", va="top") ax.annotate(str(tots), xy=(0, 5), xycoords="data", xytext=(0, 0), textcoords="offset pixels", ha='center', va='bottom', color="white", size=fontsize) # fig.savefig("direc_v_comp.pdf", dpi="figure", bbox_inches="tight") cis_trans = df[(df["cis_status_one"] == "significant cis effect") & (df["trans_status_one"] == "significant trans effect")] tots = cis_trans.groupby("biotype_switch_minimal")["hg19_id"].agg("count").reset_index() direc = cis_trans[((cis_trans["cis_status_det_one"].str.contains("higher in human") & cis_trans["trans_status_det_one"].str.contains("higher in human")) | (cis_trans["cis_status_det_one"].str.contains("higher in mouse") & cis_trans["trans_status_det_one"].str.contains("higher in mouse")))] sig = direc.groupby("biotype_switch_minimal")["hg19_id"].agg("count").reset_index() clean_sig = tots.merge(sig, on="biotype_switch_minimal", how="left").fillna(0) clean_sig["percent_sig"] = (clean_sig["hg19_id_y"]/clean_sig["hg19_id_x"])*100 clean_sig["percent_tot"] = (clean_sig["hg19_id_x"]/clean_sig["hg19_id_x"])*100 fig = plt.figure(figsize=(2.5, 1.5)) ax = sns.barplot(data=clean_sig, x="biotype_switch_minimal", y="percent_tot", order=min_switch_order, color=sns.color_palette("Set2")[7]) sns.barplot(data=clean_sig, x="biotype_switch_minimal", y="percent_sig", order=min_switch_order, color=sns.color_palette("Set2")[2]) ax.set_xticklabels(["eRNA", "lncRNA", "mRNA", "eRNA", "lncRNA", "mRNA"], rotation=50, ha='right', va='top') ax.set_xlabel("") ax.set_ylabel("percentage") ax.axvline(x=2.5, linestyle="dashed", color="black") for i, l in enumerate(min_switch_order): sub = clean_sig[clean_sig["biotype_switch_minimal"] == l] print("%s perc sig: %s | (# sig: %s)" % (l, sub["percent_sig"].iloc[0], sub["hg19_id_y"].iloc[0])) n = sub["hg19_id_x"].iloc[0] ax.annotate(str(n), xy=(i, 5), xycoords="data", xytext=(0, 0), textcoords="offset pixels", ha='center', va='bottom', color="white", size=fontsize) plt.show() fig.savefig("Fig6C.pdf", dpi="figure", bbox_inches="tight") plt.close() sub cis_trans_order = ["cis/trans compensatory", "cis/trans directional"] cis_trans_pal = {"cis/trans compensatory": sns.color_palette("Set2")[7], "cis/trans directional": sns.color_palette("Set2")[2]} df["abs_logFC_native"] = np.abs(df["logFC_native"]) fig = plt.figure(figsize=(1, 1.75)) ax = sns.boxplot(data=df, x="cis_trans_status", y="abs_logFC_native", flierprops = dict(marker='o', markersize=5), order=cis_trans_order, palette=cis_trans_pal) mimic_r_boxplot(ax) ax.set_xticklabels(["compensatory", "directional"], rotation=50, ha='right', va='top') ax.set_xlabel("") ax.set_ylabel(r'$\vert$ native effect size $\vert$') for i, l in enumerate(cis_trans_order): sub = df[df["cis_trans_status"] == l] n = len(sub) color = cis_trans_pal[l] ax.annotate(str(n), xy=(i, -0.7), xycoords="data", xytext=(0, 0), textcoords="offset pixels", ha='center', va='bottom', color=color, size=fontsize) sub1 = df[df["cis_trans_status"] == "cis/trans compensatory"] sub2 = df[df["cis_trans_status"] == "cis/trans directional"] vals1 = np.asarray(sub1["abs_logFC_native"]) vals2 = np.asarray(sub2["abs_logFC_native"]) vals1 = vals1[~np.isnan(vals1)] vals2 = vals2[~np.isnan(vals2)] u, pval = stats.mannwhitneyu(vals1, vals2, alternative="less", use_continuity=False) annotate_pval(ax, 0, 1, 5, 0, 5, pval, fontsize-1) ax.set_ylim((-0.8, 6)) fig.savefig("Fig6F.pdf", dpi="figure", bbox_inches="tight") fig, ax = plt.subplots(figsize=(1.75, 1.75), nrows=1, ncols=1) ax.scatter(df["logFC_cis_one"], df["logFC_trans_one"], s=12, alpha=1, color="black", linewidths=0.5, edgecolors="white") plt.xlabel("cis effect size") plt.ylabel("trans effect size") ax.axhline(y=0, color="black", linestyle="dashed") ax.axvline(x=0, color="black", linestyle="dashed") ax.set_xlim((-6, 6)) ax.set_ylim((-3, 3)) # annotate corr no_nan = df[(~pd.isnull(df["logFC_cis_one"])) & (~pd.isnull(df["logFC_trans_one"]))] r, p = spearmanr(no_nan["logFC_cis_one"], no_nan["logFC_trans_one"]) print(p) ax.text(0.05, 0.97, "r = {:.2f}".format(r), ha="left", va="top", fontsize=fontsize, transform=ax.transAxes) ax.text(0.05, 0.90, "n = %s" % (len(no_nan)), ha="left", va="top", fontsize=fontsize, transform=ax.transAxes) plt.show() fig.savefig("Fig_S12.pdf", dpi="figure", bbox_inches="tight") plt.close() ###Output 3.0063833411683962e-06 ###Markdown 5. plot some examples compensatory ###Code ex = df[df["hg19_id"] == "h.1433"] ex = ex[["hg19_id", "mm9_id", "minimal_biotype_hg19", "minimal_biotype_mm9", "HUES64_hg19", "HUES64_mm9", "mESC_hg19", "mESC_mm9", "trans_human_status_det", "fdr_trans_human", "trans_mouse_status_det", "fdr_trans_mouse", "cis_HUES64_status_det", "fdr_cis_HUES64", "cis_mESC_status_det", "fdr_cis_mESC", "logFC_trans_human", "logFC_trans_mouse", "logFC_cis_HUES64", "logFC_cis_mESC"]] ex ex = pd.melt(ex, id_vars=["hg19_id", "mm9_id", "minimal_biotype_hg19", "minimal_biotype_mm9"]) ex = ex[ex["variable"].isin(["HUES64_hg19", "HUES64_mm9", "mESC_hg19", "mESC_mm9", "fdr_cis_HUES64", "fdr_cis_mESC", "fdr_trans_human", "fdr_trans_mouse", "logFC_cis_HUES64", "logFC_cis_mESC", "logFC_trans_human", "logFC_trans_mouse"])] ex["cell"] = ex["variable"].str.split("_", expand=True)[0] ex["seq"] = ex["variable"].str.split("_", expand=True)[1] ex.head() order = ["HUES64", "mESC"] hue_order = ["hg19", "mm9"] pal = {"hg19": sns.color_palette("Set2")[1], "mm9": sns.color_palette("Set2")[0]} fig = plt.figure(figsize=(1.5, 1.5)) sub = ex[ex["cell"].isin(["HUES64", "mESC"])] ax = sns.barplot(data=sub, x="cell", y="value", hue="seq", order=order, hue_order=hue_order, palette=pal) ax.set_xticklabels(["hESCs", "mESCs"], rotation=50, va="top", ha="right") ax.set_ylabel("MPRA activity") ax.set_xlabel("") ax.get_legend().remove() ax.set_ylim((0, 14)) annotate_pval(ax, -0.25, 0.25, 9.5, 0, 9.5, ex[ex["variable"] == "fdr_cis_HUES64"]["value"].iloc[0], fontsize-1) annotate_pval(ax, 0.75, 1.25, 8.25, 0, 8.25, ex[ex["variable"] == "fdr_cis_mESC"]["value"].iloc[0], fontsize-1) annotate_pval(ax, -0.25, 0.75, 11.5, 0, 11.5, ex[ex["variable"] == "fdr_trans_human"]["value"].iloc[0], fontsize-1) annotate_pval(ax, 0.25, 1.25, 12.75, 0, 12.75, ex[ex["variable"] == "fdr_trans_mouse"]["value"].iloc[0], fontsize-1) # fig.savefig("compensatory_example_barplot.pdf", dpi="figure", bbox_inches="tight") ex_sub = ex[ex["variable"].str.contains("logFC")] ex_sub["sp"] = ex_sub["variable"].str.split("_", expand=True)[2] ex_sub = ex_sub.sort_values(by=["seq", "sp"]) ex_sub def sp(row): if row.sp in ["HUES64", "human"]: return "human" else: return "mouse" ex_sub["sp"] = ex_sub.apply(sp, axis=1) ex_sub order = ["cis", "trans"] fig, axarr = plt.subplots(figsize=(1.5, 1.5), nrows=1, ncols=2, sharey=True) human_ax = axarr[0] mouse_ax = axarr[1] sub = ex_sub[ex_sub["sp"] == "human"] sns.barplot(data=sub, x="seq", y="value", ax=human_ax, color=sns.color_palette("Set2")[7]) human_ax.set_xticklabels(order, rotation=50, va="top", ha="right") human_ax.set_ylabel("effect size") human_ax.set_xlabel("") human_ax.axhline(y=0, linestyle="dashed", color="black") sub = ex_sub[ex_sub["sp"] == "mouse"] sns.barplot(data=sub, x="seq", y="value", ax=mouse_ax, color=sns.color_palette("Set2")[7]) mouse_ax.set_xticklabels(order, rotation=50, va="top", ha="right") mouse_ax.set_ylabel("") mouse_ax.set_xlabel("") mouse_ax.axhline(y=0, linestyle="dashed", color="black") fig.savefig("Fig6A.pdf", dpi="figure", bbox_inches="tight") ###Output _____no_output_____ ###Markdown directional ###Code ex = df[df["hg19_id"] == "h.1389"] ex = ex[["hg19_id", "mm9_id", "minimal_biotype_hg19", "minimal_biotype_mm9", "HUES64_hg19", "HUES64_mm9", "mESC_hg19", "mESC_mm9", "trans_human_status_det", "fdr_trans_human", "trans_mouse_status_det", "fdr_trans_mouse", "cis_HUES64_status_det", "fdr_cis_HUES64", "cis_mESC_status_det", "fdr_cis_mESC", "logFC_trans_human", "logFC_trans_mouse", "logFC_cis_HUES64", "logFC_cis_mESC"]] ex ex = pd.melt(ex, id_vars=["hg19_id", "mm9_id", "minimal_biotype_hg19", "minimal_biotype_mm9"]) ex = ex[ex["variable"].isin(["HUES64_hg19", "HUES64_mm9", "mESC_hg19", "mESC_mm9", "fdr_cis_HUES64", "fdr_cis_mESC", "fdr_trans_human", "fdr_trans_mouse", "logFC_cis_HUES64", "logFC_cis_mESC", "logFC_trans_human", "logFC_trans_mouse"])] ex["cell"] = ex["variable"].str.split("_", expand=True)[0] ex["seq"] = ex["variable"].str.split("_", expand=True)[1] ex.head() order = ["HUES64", "mESC"] hue_order = ["hg19", "mm9"] pal = {"hg19": sns.color_palette("Set2")[1], "mm9": sns.color_palette("Set2")[0]} fig = plt.figure(figsize=(1.5, 1.5)) sub = ex[ex["cell"].isin(["HUES64", "mESC"])] ax = sns.barplot(data=sub, x="cell", y="value", hue="seq", order=order, hue_order=hue_order, palette=pal) ax.set_xticklabels(["hESCs", "mESCs"], rotation=50, va="top", ha="right") ax.set_ylabel("MPRA activity") ax.set_xlabel("") ax.get_legend().remove() ax.set_ylim((0, 7)) annotate_pval(ax, -0.25, 0.25, 5, 0, 5, ex[ex["variable"] == "fdr_cis_HUES64"]["value"].iloc[0], fontsize-1) annotate_pval(ax, 0.75, 1.25, 2.25, 0, 2.25, ex[ex["variable"] == "fdr_cis_mESC"]["value"].iloc[0], fontsize-1) annotate_pval(ax, -0.25, 0.75, 6.15, 0, 6.15, ex[ex["variable"] == "fdr_trans_human"]["value"].iloc[0], fontsize-1) annotate_pval(ax, 0.25, 1.25, 3.25, 0, 3.25, ex[ex["variable"] == "fdr_trans_mouse"]["value"].iloc[0], fontsize-1) # fig.savefig("directional_example_barplot.pdf", dpi="figure", bbox_inches="tight") ex_sub = ex[ex["variable"].str.contains("logFC")] ex_sub["sp"] = ex_sub["variable"].str.split("_", expand=True)[2] ex_sub = ex_sub.sort_values(by=["seq", "sp"]) ex_sub["sp"] = ex_sub.apply(sp, axis=1) ex_sub order = ["cis", "trans"] fig, axarr = plt.subplots(figsize=(1.5, 1.5), nrows=1, ncols=2, sharey=True) human_ax = axarr[0] mouse_ax = axarr[1] sub = ex_sub[ex_sub["sp"] == "human"] sns.barplot(data=sub, x="seq", y="value", ax=human_ax, color=sns.color_palette("Set2")[2]) human_ax.set_xticklabels(order, rotation=50, va="top", ha="right") human_ax.set_ylabel("effect size") human_ax.set_xlabel("") human_ax.axhline(y=0, linestyle="dashed", color="black") sub = ex_sub[ex_sub["sp"] == "mouse"] sns.barplot(data=sub, x="seq", y="value", ax=mouse_ax, color=sns.color_palette("Set2")[2]) mouse_ax.set_xticklabels(order, rotation=50, va="top", ha="right") mouse_ax.set_ylabel("") mouse_ax.set_xlabel("") mouse_ax.axhline(y=0, linestyle="dashed", color="black") fig.savefig("Fig6B.pdf", dpi="figure", bbox_inches="tight") ###Output _____no_output_____
VNN/notebooks/network_experiments/kinematics/shapes.ipynb
###Markdown S(X,X,X) ###Code model_fun = lambda: get_scalar_model(dataset_shapes, hidden_layer_units=[6,5,3], activation='relu', output_activation=None, \ kernel_initializer='random_normal', bias_initializer='random_normal', \ optimizer=keras.optimizers.Adam(), loss=keras.losses.MeanSquaredError(), metrics=[keras.metrics.MeanSquaredError()]) test_model(model_fun(), train_dataset, test_dataset, epochs=1, loss_name="mean_squared_error", measure_name="val_mean_squared_error", \ print_summary=True) ###Output _____no_output_____ ###Markdown V1(X):U(2) ###Code model_fun = lambda: get_vector_model(dataset_shapes, fractal_depth=1, hidden_layer_units=(4,), inner_hidden_layer_units=(2,), \ activation='relu', output_activation=None, \ weight_type="unique", weight_initializer='random_normal', \ optimizer=keras.optimizers.Adam(), loss=keras.losses.MeanSquaredError(), metrics=[keras.metrics.MeanSquaredError()]) test_model(model_fun(), train_dataset, test_dataset, epochs=1, loss_name="mean_squared_error", measure_name="val_mean_squared_error", \ print_summary=True) ###Output _____no_output_____ ###Markdown V1(X):U(3) ###Code model_fun = lambda: get_vector_model(dataset_shapes, fractal_depth=1, hidden_layer_units=(3,), inner_hidden_layer_units=(3,), \ activation='relu', output_activation=None, \ weight_type="unique", weight_initializer='random_normal', \ optimizer=keras.optimizers.Adam(), loss=keras.losses.MeanSquaredError(), metrics=[keras.metrics.MeanSquaredError()]) test_model(model_fun(), train_dataset, test_dataset, epochs=1, loss_name="mean_squared_error", measure_name="val_mean_squared_error", \ print_summary=True) ###Output _____no_output_____
Examples/Jupyter Notebook Examples/Examples of batch,pfr.ipynb
###Markdown Examples of pfr UsageThere are 3 types of estimation that can be performed in the batch/pfr module: maximum a posteriori (MAP), Markov chain Monte Carlo (MCMC), and variational inference (VI). Below, we demonstrate all of these types on the same dataset. Please view the referenced Excel input file to see how the data should be input. ###Code %matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt import pandas as pd import arviz import seaborn as sns import matplotlib.patches as mpatches from ckbit import pfr from scipy.stats.kde import gaussian_kde from scipy.integrate import solve_ivp ###Output _____no_output_____ ###Markdown First, we generate the PFR data with experimental noise added to the concentrations. The smooth lines are the unperturbed data, and the data points are the noisy measurements we use as our data points. ###Code #Seed 5 was standalone np.random.seed(5) HMFinit = 1 LFinit = 0.5 Huinit = 0.2 numPoints = 6 taus = np.linspace (0,60,numPoints) Hconc = 0.1 T = [413,423] R = 8.31446261815324*(1/1000) #units of kJ/(mol*K) #True params sigma = HMFinit*0.05 A0HLF = 11.31 A0HHu = 16.69 EaHLF = 94.72 EaHHu = 141.94 try: del cHMF0,cHMF1,cLF0,cLF1,cHu0,cHu1 except: pass size0 = len(taus) cHMF0 = np.linspace(10,20,size0) cHMF1 = np.linspace(10,20,size0) cLF0 = np.linspace(10,20,size0) cLF1 = np.linspace(10,20,size0) cHu0 = np.linspace(10,20,size0) cHu1 = np.linspace(10,20,size0) total0 = np.linspace(10,20,size0) total1 = np.linspace(10,20,size0) def d0(t,y): dHMF = -(y[0]*Hconc)*(kHLF0+kHHu0) dLF = kHLF0*y[0]*Hconc dHu = kHHu0*y[0]*Hconc return [dHMF, dLF, dHu] def d1(t,y): dHMF = -(y[0]*Hconc)*(kHLF1+kHHu1) dLF = kHLF1*y[0]*Hconc dHu = kHHu1*y[0]*Hconc return [dHMF, dLF, dHu] kHLF0 = (10**A0HLF)*np.exp(-EaHLF/(R*T[0])) kHLF1 = (10**A0HLF)*np.exp(-EaHLF/(R*T[1])) kHHu0 = (10**A0HHu)*np.exp(-EaHHu/(R*T[0])) kHHu1 = (10**A0HHu)*np.exp(-EaHHu/(R*T[1])) tspan = [min(taus),max(taus)] #clean data c0 = solve_ivp(d0, tspan, [HMFinit, LFinit, Huinit], method='BDF', t_eval=taus).y c1 = solve_ivp(d1, tspan, [HMFinit, LFinit, Huinit], method='BDF', t_eval=taus).y cHMF0 = c0[0] cLF0 = c0[1] cHu0 = c0[2] cHMF1 = c1[0] cLF1 = c1[1] cHu1 = c1[2] f, ax = plt.subplots(1) ax.plot(taus,cHMF0, label='HMF, 140°C') ax.plot(taus,cHMF1, label='HMF, 150°C') ax.plot(taus,cLF0, label='LA+FA, 140°C') ax.plot(taus,cLF1, label='LA+FA, 150°C') ax.plot(taus,cHu0, label='Humins, 140°C') ax.plot(taus,cHu1, label='Humins, 150°C') #noisy data for i in range(size0): cHMF0[i] = cHMF0[i]+np.random.normal(0,sigma,1) cHMF1[i] = cHMF1[i]+np.random.normal(0,sigma,1) cLF0[i] = cLF0[i]+np.random.normal(0,sigma,1) cLF1[i] = cLF1[i]+np.random.normal(0,sigma,1) cHu0[i] = cHu0[i]+np.random.normal(0,sigma,1) cHu1[i] = cHu1[i]+np.random.normal(0,sigma,1) total0[i] = cHMF0[i]+cLF0[i]+cHu0[i] total1[i] = cHMF1[i]+cLF1[i]+cHu1[i] cHMF0[0] = HMFinit cHMF1[0] = HMFinit cLF0[0] = LFinit cLF1[0] = LFinit cHu0[0] = Huinit cHu1[0] = Huinit for i in range (len(cHMF0)): cHMF0[i] = max(0,cHMF0[i]) cHMF1[i] = max(0,cHMF1[i]) cLF0[i] = max(0,cLF0[i]) cLF1[i] = max(0,cLF1[i]) cHu0[i] = max(0,cHu0[i]) cHu1[i] = max(0,cHu1[i]) #Plot the data ax.scatter(taus,cHMF0) ax.scatter(taus,cHMF1) ax.scatter(taus,cLF0) ax.scatter(taus,cLF1) ax.scatter(taus,cHu0) ax.scatter(taus,cHu1) ax.set_xlabel('Time [min]') ax.set_ylabel('Concentration [mol/L]') #ax.set_title('Simulated Data with 5% Noise Addition') ax.legend(bbox_to_anchor = (1,0.8)) plt.show() ###Output _____no_output_____ ###Markdown We write this data into the appropriate format in an Excel file (see the Excel file named PFR_Data in this folder). Then we can use this data to obtain our estimates.First, the MAP estimation. This yields point estimates of the modes of the posterior. These estimates are the values that fit the model best given the data and priors. ###Code #Import data file = './PFR_Data.xlsx' #Run MAP estimation with standard priors map1 = pfr.MAP(filename=file, pH=True, rel_tol=5E-6, abs_tol=5E-6, max_num_steps=1000) ###Output INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_82e6a9b54a623ac5604ef005a61f1bc0 NOW. ###Markdown Now, the MCMC estimation. This yields estimates of the posterior distributions of each parameter being estimated. ###Code #Run MCMC estimation with standard priors m1, m2 = pfr.MCMC(filename=file, pH=True) ###Output INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_1ae81a4b787362df01df8087f4bc0be3 NOW. ###Markdown There are convergence checks to ensure that these samples can be relied upon. These checks are discussed in detail in the published article. This run passes all those checks, and offers a successful inference we can trust.It is important to visualize the correlation that exists between the samples of the parameters, which we can accomplish with a pair plot. ###Code #Generate pairplot arviz.plot_pair(m1) plt.show() ###Output _____no_output_____ ###Markdown Now, the VI estimation. This yields estimates of the posterior distributions of each parameter being estimated, but using the VI technique instead of the MCMC. VI is better than MCMC at generating a large number of samples, but is a less robust technique. It is still in its experimental implementation phase, and it does not iteract well with the PFR estimation module. We demonstrate this below. ###Code #Run VI estimation with standard priors v1, v2 = pfr.VI(filename=file, pH=True) ###Output Using cached StanModel ###Markdown We can also specify prior distributions and run inference with them. The following example is for a prior distribution for the Ea term of rxn 1 that is normally distributed with a mean of 100 and standard deviation of 5 and a prior distribution for the A0 term of rxn 1 that is normally distributed with a mean of 10 and standard deviation of 5. All prior distribution specification must follow Stan's implementation forms: https://mc-stan.org/docs/2_23/functions-reference/unbounded-continuous-distributions.html ###Code #Run MCMC estimation with specified priors p1, p2 = pfr.MCMC(filename=file, pH=True, priors = ['A0[1] ~ normal(10,5)', 'Ea[1] ~ normal(100,5)']) ###Output _____no_output_____ ###Markdown Finally, we demonstrate how to construct visually appealing distribution plots. ###Code #Process datasets data1 = m2['Ea'][:,0] datalabel1 = 'MCMC Without Prior' data1mean = np.mean(data1) kdedata1 = gaussian_kde(data1) data1x = np.linspace(min(data1), max(data1), 100) data2 = p2['Ea'][:,0] datalabel2 = 'MCMC With Prior' data2mean = np.mean(data2) kdedata2 = gaussian_kde(data2) data2x = np.linspace(min(data2), max(data2), 100) #Generate probability distribution graphs sns.set(color_codes=True) sns.set(style="white", font_scale=1.3) f, ax = plt.subplots(1) ax = sns.kdeplot(data1, gridsize=10000, shade=True, color='r') ax = sns.kdeplot(data2, gridsize=10000, shade=True, color='b') ax.axvline(data1mean, linestyle = "--", color = 'r') ax.axvline(data2mean, linestyle = "--", color = 'b') ax.set_title('Comparison of Inference Techniques') ax.set_xlabel('$E_a [kJ/mol]$') ax.set_ylabel('Probability Density') ax.axes.get_yaxis().set_ticks([]) ax.axes.get_yaxis().set_ticklabels([]) ax.axes.set_xlim([50,125]) red_line = mpatches.Patch(color='red', label=datalabel1) blue_line = mpatches.Patch(color='blue', label=datalabel2) ax.legend(handles=[red_line, blue_line]) plt.show() ###Output _____no_output_____
Hager Ashour WT-21-098/11.ipynb
###Markdown Exercise Notebook (DS) ###Code # this code conceals irrelevant warning messages import warnings warnings.simplefilter('ignore', FutureWarning) import numpy as np ###Output _____no_output_____ ###Markdown Numpy 2D Array ###Code a = np.array([[1,2,3],[3,4,5]]) print(a) # Base Ball Player's Heights AS a in 2D a = np.array([[1,2,3], [4,1,5]]) print (a) # Addition a+3 # Multiplication a*2 # Subtraction a-2 # Division a/3 ###Output _____no_output_____ ###Markdown **Subsetting 2D NumPy Arrays** ###Code a[0] a[0][0] # Accessing the first element from the first array a[1][0] # Accessing the first element from the second array a[0][1:2] # Accessing from index 1 to 2 elements from the first array a[1][1:2] # Accessing from index 1 to 2 elements from the second array ###Output _____no_output_____ ###Markdown **2D Arithmetic** ###Code # Addition a+3 # Multiplication a*2 # Subtraction a-2 # Division a/3 ###Output _____no_output_____ ###Markdown Task 1. Write a NumPy program to test whether two arrays are element-wise equal within a tolerance. ###Code print(np.allclose([2e10,5e-8], [2.0001e10,5e-9])) print(np.allclose([10.0, np.nan], [7.0, np.nan], equal_nan=True)) print(np.allclose([8.0, np.nan], [8.0, np.nan], equal_nan=True)) ###Output False False True ###Markdown 2. Write a NumPy program to create an element-wise comparison (greater, greater_equal, less and less_equal) of two given arrays. ###Code a = np.array([10,5]) b = np.array([10,8]) print(np.greater(a, b)) print(np.greater_equal(a, b)) print(np.less(a, b)) print(np.less_equal(a, b)) ###Output [False False] [ True False] [False True] [ True True]
Coursera NLP Specialization/Course 1/Week 4/Machine Translation.ipynb
###Markdown Assignment 4 - Naive Machine Translation and LSHYou will now implement your first machine translation system and then youwill see how locality sensitive hashing works. Let's get started by importingthe required functions!If you are running this notebook in your local computer, don't forget todownload the twitter samples and stopwords from nltk.```nltk.download('stopwords')nltk.download('twitter_samples')``` **NOTE**: The `Exercise xx` numbers in this assignment **_are inconsistent_** with the `UNQ_Cx` numbers. This assignment covers the folowing topics:- [1. The word embeddings data for English and French words](1) - [1.1 Generate embedding and transform matrices](1-1) - [Exercise 1](ex-01)- [2. Translations](2) - [2.1 Translation as linear transformation of embeddings](2-1) - [Exercise 2](ex-02) - [Exercise 3](ex-03) - [Exercise 4](ex-04) - [2.2 Testing the translation](2-2) - [Exercise 5](ex-05) - [Exercise 6](ex-06) - [3. LSH and document search](3) - [3.1 Getting the document embeddings](3-1) - [Exercise 7](ex-07) - [Exercise 8](ex-08) - [3.2 Looking up the tweets](3-2) - [3.3 Finding the most similar tweets with LSH](3-3) - [3.4 Getting the hash number for a vector](3-4) - [Exercise 9](ex-09) - [3.5 Creating a hash table](3-5) - [Exercise 10](ex-10) - [3.6 Creating all hash tables](3-6) - [Exercise 11](ex-11) ###Code import pdb import pickle import string import time import gensim import matplotlib.pyplot as plt import nltk import numpy as np import scipy import sklearn from gensim.models import KeyedVectors from nltk.corpus import stopwords, twitter_samples from nltk.tokenize import TweetTokenizer from utils import (cosine_similarity, get_dict, process_tweet) from os import getcwd # add folder, tmp2, from our local workspace containing pre-downloaded corpora files to nltk's data path filePath = f"{getcwd()}/../tmp2/" nltk.data.path.append(filePath) ###Output _____no_output_____ ###Markdown 1. The word embeddings data for English and French wordsWrite a program that translates English to French. The dataThe full dataset for English embeddings is about 3.64 gigabytes, and the Frenchembeddings are about 629 megabytes. To prevent the Coursera workspace fromcrashing, we've extracted a subset of the embeddings for the words that you'lluse in this assignment.If you want to run this on your local computer and use the full dataset,you can download the* English embeddings from Google code archive word2vec[look for GoogleNews-vectors-negative300.bin.gz](https://code.google.com/archive/p/word2vec/) * You'll need to unzip the file first.* and the French embeddings from[cross_lingual_text_classification](https://github.com/vjstark/crosslingual_text_classification). * in the terminal, type (in one line) `curl -o ./wiki.multi.fr.vec https://dl.fbaipublicfiles.com/arrival/vectors/wiki.multi.fr.vec`Then copy-paste the code below and run it. ```python Use this code to download and process the full dataset on your local computerfrom gensim.models import KeyedVectorsen_embeddings = KeyedVectors.load_word2vec_format('./GoogleNews-vectors-negative300.bin', binary = True)fr_embeddings = KeyedVectors.load_word2vec_format('./wiki.multi.fr.vec') loading the english to french dictionariesen_fr_train = get_dict('en-fr.train.txt')print('The length of the english to french training dictionary is', len(en_fr_train))en_fr_test = get_dict('en-fr.test.txt')print('The length of the english to french test dictionary is', len(en_fr_train))english_set = set(en_embeddings.vocab)french_set = set(fr_embeddings.vocab)en_embeddings_subset = {}fr_embeddings_subset = {}french_words = set(en_fr_train.values())for en_word in en_fr_train.keys(): fr_word = en_fr_train[en_word] if fr_word in french_set and en_word in english_set: en_embeddings_subset[en_word] = en_embeddings[en_word] fr_embeddings_subset[fr_word] = fr_embeddings[fr_word]for en_word in en_fr_test.keys(): fr_word = en_fr_test[en_word] if fr_word in french_set and en_word in english_set: en_embeddings_subset[en_word] = en_embeddings[en_word] fr_embeddings_subset[fr_word] = fr_embeddings[fr_word]pickle.dump( en_embeddings_subset, open( "en_embeddings.p", "wb" ) )pickle.dump( fr_embeddings_subset, open( "fr_embeddings.p", "wb" ) )``` The subset of dataTo do the assignment on the Coursera workspace, we'll use the subset of word embeddings. ###Code en_embeddings_subset = pickle.load(open("en_embeddings.p", "rb")) fr_embeddings_subset = pickle.load(open("fr_embeddings.p", "rb")) ###Output _____no_output_____ ###Markdown Look at the data* en_embeddings_subset: the key is an English word, and the vaule is a300 dimensional array, which is the embedding for that word.```'the': array([ 0.08007812, 0.10498047, 0.04980469, 0.0534668 , -0.06738281, ....```* fr_embeddings_subset: the key is an French word, and the vaule is a 300dimensional array, which is the embedding for that word.```'la': array([-6.18250e-03, -9.43867e-04, -8.82648e-03, 3.24623e-02,...``` Load two dictionaries mapping the English to French words* A training dictionary* and a testing dictionary. ###Code # loading the english to french dictionaries en_fr_train = get_dict('en-fr.train.txt') print('The length of the English to French training dictionary is', len(en_fr_train)) en_fr_test = get_dict('en-fr.test.txt') print('The length of the English to French test dictionary is', len(en_fr_train)) ###Output The length of the English to French training dictionary is 5000 The length of the English to French test dictionary is 5000 ###Markdown Looking at the English French dictionary* `en_fr_train` is a dictionary where the key is the English word and the valueis the French translation of that English word.```{'the': 'la', 'and': 'et', 'was': 'était', 'for': 'pour',```* `en_fr_test` is similar to `en_fr_train`, but is a test set. We won't look at ituntil we get to testing. 1.1 Generate embedding and transform matrices Exercise 01: Translating English dictionary to French by using embeddingsYou will now implement a function `get_matrices`, which takes the loaded dataand returns matrices `X` and `Y`.Inputs:- `en_fr` : English to French dictionary- `en_embeddings` : English to embeddings dictionary- `fr_embeddings` : French to embeddings dictionaryReturns:- Matrix `X` and matrix `Y`, where each row in X is the word embedding for anenglish word, and the same row in Y is the word embedding for the Frenchversion of that English word. Figure 2 Use the `en_fr` dictionary to ensure that the ith row in the `X` matrixcorresponds to the ith row in the `Y` matrix. **Instructions**: Complete the function `get_matrices()`:* Iterate over English words in `en_fr` dictionary.* Check if the word have both English and French embedding. Hints Sets are useful data structures that can be used to check if an item is a member of a group. You can get words which are embedded into the language by using keys method. Keep vectors in `X` and `Y` sorted in list. You can use np.vstack() to merge them into the numpy matrix. numpy.vstack stacks the items in a list as rows in a matrix. ###Code # UNQ_C1 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def get_matrices(en_fr, french_vecs, english_vecs): """ Input: en_fr: English to French dictionary french_vecs: French words to their corresponding word embeddings. english_vecs: English words to their corresponding word embeddings. Output: X: a matrix where the columns are the English embeddings. Y: a matrix where the columns correspong to the French embeddings. R: the projection matrix that minimizes the F norm ||X R -Y||^2. """ ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # X_l and Y_l are lists of the english and french word embeddings X_l = list() Y_l = list() # get the english words (the keys in the dictionary) and store in a set() english_set = set(english_vecs.keys()) # get the french words (keys in the dictionary) and store in a set() french_set = set(french_vecs.keys()) # store the french words that are part of the english-french dictionary (these are the values of the dictionary) french_words = set(en_fr.values()) # loop through all english, french word pairs in the english french dictionary for en_word, fr_word in en_fr.items(): # check that the french word has an embedding and that the english word has an embedding if fr_word in french_set and en_word in english_set: # get the english embedding en_vec = english_vecs[en_word] # get the french embedding fr_vec = french_vecs[fr_word] # add the english embedding to the list X_l.append(en_vec) # add the french embedding to the list Y_l.append(fr_vec) # stack the vectors of X_l into a matrix X X = np.vstack(X_l) # stack the vectors of Y_l into a matrix Y Y = np.vstack(Y_l) ### END CODE HERE ### return X, Y ###Output _____no_output_____ ###Markdown Now we will use function `get_matrices()` to obtain sets `X_train` and `Y_train`of English and French word embeddings into the corresponding vector space models. ###Code # UNQ_C2 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # getting the training set: X_train, Y_train = get_matrices( en_fr_train, fr_embeddings_subset, en_embeddings_subset) ###Output _____no_output_____ ###Markdown 2. Translations Figure 1 Write a program that translates English words to French words using word embeddings and vector space models. 2.1 Translation as linear transformation of embeddingsGiven dictionaries of English and French word embeddings you will create a transformation matrix `R`* Given an English word embedding, $\mathbf{e}$, you can multiply $\mathbf{eR}$ to get a new word embedding $\mathbf{f}$. * Both $\mathbf{e}$ and $\mathbf{f}$ are [row vectors](https://en.wikipedia.org/wiki/Row_and_column_vectors).* You can then compute the nearest neighbors to `f` in the french embeddings and recommend the word that is most similar to the transformed word embedding. Describing translation as the minimization problemFind a matrix `R` that minimizes the following equation. $$\arg \min _{\mathbf{R}}\| \mathbf{X R} - \mathbf{Y}\|_{F}\tag{1} $$ Frobenius normThe Frobenius norm of a matrix $A$ (assuming it is of dimension $m,n$) is defined as the square root of the sum of the absolute squares of its elements:$$\|\mathbf{A}\|_{F} \equiv \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}\tag{2}$$ Actual loss functionIn the real world applications, the Frobenius norm loss:$$\| \mathbf{XR} - \mathbf{Y}\|_{F}$$is often replaced by it's squared value divided by $m$:$$ \frac{1}{m} \| \mathbf{X R} - \mathbf{Y} \|_{F}^{2}$$where $m$ is the number of examples (rows in $\mathbf{X}$).* The same R is found when using this loss function versus the original Frobenius norm.* The reason for taking the square is that it's easier to compute the gradient of the squared Frobenius.* The reason for dividing by $m$ is that we're more interested in the average loss per embedding than the loss for the entire training set. * The loss for all training set increases with more words (training examples), so taking the average helps us to track the average loss regardless of the size of the training set. [Optional] Detailed explanation why we use norm squared instead of the norm: Click for optional details The norm is always nonnegative (we're summing up absolute values), and so is the square. When we take the square of all non-negative (positive or zero) numbers, the order of the data is preserved. For example, if 3 > 2, 3^2 > 2^2 Using the norm or squared norm in gradient descent results in the same location of the minimum. Squaring cancels the square root in the Frobenius norm formula. Because of the chain rule, we would have to do more calculations if we had a square root in our expression for summation. Dividing the function value by the positive number doesn't change the optimum of the function, for the same reason as described above. We're interested in transforming English embedding into the French. Thus, it is more important to measure average loss per embedding than the loss for the entire dictionary (which increases as the number of words in the dictionary increases). Exercise 02: Implementing translation mechanism described in this section. Step 1: Computing the loss* The loss function will be squared Frobenoius norm of the difference betweenmatrix and its approximation, divided by the number of training examples $m$.* Its formula is:$$ L(X, Y, R)=\frac{1}{m}\sum_{i=1}^{m} \sum_{j=1}^{n}\left( a_{i j} \right)^{2}$$where $a_{i j}$ is value in $i$th row and $j$th column of the matrix $\mathbf{XR}-\mathbf{Y}$. Instructions: complete the `compute_loss()` function* Compute the approximation of `Y` by matrix multiplying `X` and `R`* Compute difference `XR - Y`* Compute the squared Frobenius norm of the difference and divide it by $m$. Hints Useful functions: Numpy dot , Numpy sum, Numpy square, Numpy norm Be careful about which operation is elementwise and which operation is a matrix multiplication. Try to use matrix operations instead of the numpy norm function. If you choose to use norm function, take care of extra arguments and that it's returning loss squared, and not the loss itself. ###Code # UNQ_C3 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def compute_loss(X, Y, R): ''' Inputs: X: a matrix of dimension (m,n) where the columns are the English embeddings. Y: a matrix of dimension (m,n) where the columns correspong to the French embeddings. R: a matrix of dimension (n,n) - transformation matrix from English to French vector space embeddings. Outputs: L: a matrix of dimension (m,n) - the value of the loss function for given X, Y and R. ''' ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # m is the number of rows in X m = X.shape[0] # diff is XR - Y diff = np.dot(X,R)-Y # diff_squared is the element-wise square of the difference diff_squared = diff**2 # sum_diff_squared is the sum of the squared elements sum_diff_squared = np.sum(diff_squared) # loss i the sum_diff_squard divided by the number of examples (m) loss = sum_diff_squared/m ### END CODE HERE ### return loss ###Output _____no_output_____ ###Markdown Exercise 03 Step 2: Computing the gradient of loss in respect to transform matrix R* Calculate the gradient of the loss with respect to transform matrix `R`.* The gradient is a matrix that encodes how much a small change in `R`affect the change in the loss function.* The gradient gives us the direction in which we should decrease `R`to minimize the loss.* $m$ is the number of training examples (number of rows in $X$).* The formula for the gradient of the loss function $𝐿(𝑋,𝑌,𝑅)$ is:$$\frac{d}{dR}𝐿(𝑋,𝑌,𝑅)=\frac{d}{dR}\Big(\frac{1}{m}\| X R -Y\|_{F}^{2}\Big) = \frac{2}{m}X^{T} (X R - Y)$$**Instructions**: Complete the `compute_gradient` function below. Hints Transposing in numpy Finding out the dimensions of matrices in numpy Remember to use numpy.dot for matrix multiplication ###Code # UNQ_C4 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def compute_gradient(X, Y, R): ''' Inputs: X: a matrix of dimension (m,n) where the columns are the English embeddings. Y: a matrix of dimension (m,n) where the columns correspong to the French embeddings. R: a matrix of dimension (n,n) - transformation matrix from English to French vector space embeddings. Outputs: g: a matrix of dimension (n,n) - gradient of the loss function L for given X, Y and R. ''' ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # m is the number of rows in X m = X.shape[0] # gradient is X^T(XR - Y) * 2/m gradient = np.dot(X.transpose(),np.dot(X,R)-Y)*(2/m) ### END CODE HERE ### return gradient ###Output _____no_output_____ ###Markdown Step 3: Finding the optimal R with gradient descent algorithm Gradient descent[Gradient descent](https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html) is an iterative algorithm which is used in searching for the optimum of the function. * Earlier, we've mentioned that the gradient of the loss with respect to the matrix encodes how much a tiny change in some coordinate of that matrix affect the change of loss function.* Gradient descent uses that information to iteratively change matrix `R` until we reach a point where the loss is minimized. Training with a fixed number of iterationsMost of the time we iterate for a fixed number of training steps rather than iterating until the loss falls below a threshold. OPTIONAL: explanation for fixed number of iterations click here for detailed discussion You cannot rely on training loss getting low -- what you really want is the validation loss to go down, or validation accuracy to go up. And indeed - in some cases people train until validation accuracy reaches a threshold, or -- commonly known as "early stopping" -- until the validation accuracy starts to go down, which is a sign of over-fitting. Why not always do "early stopping"? Well, mostly because well-regularized models on larger data-sets never stop improving. Especially in NLP, you can often continue training for months and the model will continue getting slightly and slightly better. This is also the reason why it's hard to just stop at a threshold -- unless there's an external customer setting the threshold, why stop, where do you put the threshold? Stopping after a certain number of steps has the advantage that you know how long your training will take - so you can keep some sanity and not train for months. You can then try to get the best performance within this time budget. Another advantage is that you can fix your learning rate schedule -- e.g., lower the learning rate at 10% before finish, and then again more at 1% before finishing. Such learning rate schedules help a lot, but are harder to do if you don't know how long you're training. Pseudocode:1. Calculate gradient $g$ of the loss with respect to the matrix $R$.2. Update $R$ with the formula:$$R_{\text{new}}= R_{\text{old}}-\alpha g$$Where $\alpha$ is the learning rate, which is a scalar. Learning rate* The learning rate or "step size" $\alpha$ is a coefficient which decides how much we want to change $R$ in each step.* If we change $R$ too much, we could skip the optimum by taking too large of a step.* If we make only small changes to $R$, we will need many steps to reach the optimum.* Learning rate $\alpha$ is used to control those changes.* Values of $\alpha$ are chosen depending on the problem, and we'll use `learning_rate`$=0.0003$ as the default value for our algorithm. Exercise 04 Instructions: Implement `align_embeddings()` Hints Use the 'compute_gradient()' function to get the gradient in each step ###Code # UNQ_C5 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def align_embeddings(X, Y, train_steps=100, learning_rate=0.0003): ''' Inputs: X: a matrix of dimension (m,n) where the columns are the English embeddings. Y: a matrix of dimension (m,n) where the columns correspong to the French embeddings. train_steps: positive int - describes how many steps will gradient descent algorithm do. learning_rate: positive float - describes how big steps will gradient descent algorithm do. Outputs: R: a matrix of dimension (n,n) - the projection matrix that minimizes the F norm ||X R -Y||^2 ''' np.random.seed(129) # the number of columns in X is the number of dimensions for a word vector (e.g. 300) # R is a square matrix with length equal to the number of dimensions in th word embedding R = np.random.rand(X.shape[1], X.shape[1]) for i in range(train_steps): if i % 25 == 0: print(f"loss at iteration {i} is: {compute_loss(X, Y, R):.4f}") ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # use the function that you defined to compute the gradient gradient = compute_gradient(X,Y,R) # update R by subtracting the learning rate times gradient R -= learning_rate*gradient ### END CODE HERE ### return R # UNQ_C6 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # Testing your implementation. np.random.seed(129) m = 10 n = 5 X = np.random.rand(m, n) Y = np.random.rand(m, n) * .1 R = align_embeddings(X, Y) ###Output loss at iteration 0 is: 3.7242 loss at iteration 25 is: 3.6283 loss at iteration 50 is: 3.5350 loss at iteration 75 is: 3.4442 ###Markdown **Expected Output:**```loss at iteration 0 is: 3.7242loss at iteration 25 is: 3.6283loss at iteration 50 is: 3.5350loss at iteration 75 is: 3.4442``` Calculate transformation matrix RUsing those the training set, find the transformation matrix $\mathbf{R}$ by calling the function `align_embeddings()`.**NOTE:** The code cell below will take a few minutes to fully execute (~3 mins) ###Code # UNQ_C7 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything R_train = align_embeddings(X_train, Y_train, train_steps=400, learning_rate=0.8) ###Output loss at iteration 0 is: 963.0146 loss at iteration 25 is: 97.8292 loss at iteration 50 is: 26.8329 loss at iteration 75 is: 9.7893 loss at iteration 100 is: 4.3776 loss at iteration 125 is: 2.3281 loss at iteration 150 is: 1.4480 loss at iteration 175 is: 1.0338 loss at iteration 200 is: 0.8251 loss at iteration 225 is: 0.7145 loss at iteration 250 is: 0.6534 loss at iteration 275 is: 0.6185 loss at iteration 300 is: 0.5981 loss at iteration 325 is: 0.5858 loss at iteration 350 is: 0.5782 loss at iteration 375 is: 0.5735 ###Markdown Expected Output```loss at iteration 0 is: 963.0146loss at iteration 25 is: 97.8292loss at iteration 50 is: 26.8329loss at iteration 75 is: 9.7893loss at iteration 100 is: 4.3776loss at iteration 125 is: 2.3281loss at iteration 150 is: 1.4480loss at iteration 175 is: 1.0338loss at iteration 200 is: 0.8251loss at iteration 225 is: 0.7145loss at iteration 250 is: 0.6534loss at iteration 275 is: 0.6185loss at iteration 300 is: 0.5981loss at iteration 325 is: 0.5858loss at iteration 350 is: 0.5782loss at iteration 375 is: 0.5735``` 2.2 Testing the translation k-Nearest neighbors algorithm[k-Nearest neighbors algorithm](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) * k-NN is a method which takes a vector as input and finds the other vectors in the dataset that are closest to it. * The 'k' is the number of "nearest neighbors" to find (e.g. k=2 finds the closest two neighbors). Searching for the translation embeddingSince we're approximating the translation function from English to French embeddings by a linear transformation matrix $\mathbf{R}$, most of the time we won't get the exact embedding of a French word when we transform embedding $\mathbf{e}$ of some particular English word into the French embedding space. * This is where $k$-NN becomes really useful! By using $1$-NN with $\mathbf{eR}$ as input, we can search for an embedding $\mathbf{f}$ (as a row) in the matrix $\mathbf{Y}$ which is the closest to the transformed vector $\mathbf{eR}$ Cosine similarityCosine similarity between vectors $u$ and $v$ calculated as the cosine of the angle between them.The formula is $$\cos(u,v)=\frac{u\cdot v}{\left\|u\right\|\left\|v\right\|}$$* $\cos(u,v)$ = $1$ when $u$ and $v$ lie on the same line and have the same direction.* $\cos(u,v)$ is $-1$ when they have exactly opposite directions.* $\cos(u,v)$ is $0$ when the vectors are orthogonal (perpendicular) to each other. Note: Distance and similarity are pretty much opposite things.* We can obtain distance metric from cosine similarity, but the cosine similarity can't be used directly as the distance metric. * When the cosine similarity increases (towards $1$), the "distance" between the two vectors decreases (towards $0$). * We can define the cosine distance between $u$ and $v$ as$$d_{\text{cos}}(u,v)=1-\cos(u,v)$$ **Exercise 05**: Complete the function `nearest_neighbor()`Inputs:* Vector `v`,* A set of possible nearest neighbors `candidates`* `k` nearest neighbors to find.* The distance metric should be based on cosine similarity.* `cosine_similarity` function is already implemented and imported for you. It's arguments are two vectors and it returns the cosine of the angle between them.* Iterate over rows in `candidates`, and save the result of similarities between current row and vector `v` in a python list. Take care that similarities are in the same order as row vectors of `candidates`.* Now you can use [numpy argsort]( https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.htmlnumpy.argsort) to sort the indices for the rows of `candidates`. Hints numpy.argsort sorts values from most negative to most positive (smallest to largest) The candidates that are nearest to 'v' should have the highest cosine similarity To get the last element of a list 'tmp', the notation is tmp[-1:] ###Code # UNQ_C8 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def nearest_neighbor(v, candidates, k=1): """ Input: - v, the vector you are going find the nearest neighbor for - candidates: a set of vectors where we will find the neighbors - k: top k nearest neighbors to find Output: - k_idx: the indices of the top k closest vectors in sorted form """ ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### similarity_l = [] # for each candidate vector... for row in candidates: # get the cosine similarity cos_similarity = cosine_similarity(v,row) # append the similarity to the list similarity_l.append(cos_similarity) # sort the similarity list and get the indices of the sorted list sorted_ids = np.argsort(similarity_l) # get the indices of the k most similar candidate vectors k_idx = sorted_ids[-k:] ### END CODE HERE ### return k_idx # UNQ_C9 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # Test your implementation: v = np.array([1, 0, 1]) candidates = np.array([[1, 0, 5], [-2, 5, 3], [2, 0, 1], [6, -9, 5], [9, 9, 9]]) print(candidates[nearest_neighbor(v, candidates, 3)]) ###Output [[9 9 9] [1 0 5] [2 0 1]] ###Markdown **Expected Output**:`[[9 9 9] [1 0 5] [2 0 1]]` Test your translation and compute its accuracy**Exercise 06**:Complete the function `test_vocabulary` which takes in Englishembedding matrix $X$, French embedding matrix $Y$ and the $R$matrix and returns the accuracy of translations from $X$ to $Y$ by $R$.* Iterate over transformed English word embeddings and check if theclosest French word vector belongs to French word that is the actualtranslation.* Obtain an index of the closest French embedding by using`nearest_neighbor` (with argument `k=1`), and compare it to the indexof the English embedding you have just transformed.* Keep track of the number of times you get the correct translation.* Calculate accuracy as $$\text{accuracy}=\frac{\(\text{correct predictions})}{\(\text{total predictions})}$$ ###Code # UNQ_C10 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def test_vocabulary(X, Y, R): ''' Input: X: a matrix where the columns are the English embeddings. Y: a matrix where the columns correspong to the French embeddings. R: the transform matrix which translates word embeddings from English to French word vector space. Output: accuracy: for the English to French capitals ''' ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # The prediction is X times R pred = np.dot(X,R) # initialize the number correct to zero num_correct = 0 # loop through each row in pred (each transformed embedding) for i in range(len(pred)): # get the index of the nearest neighbor of pred at row 'i'; also pass in the candidates in Y pred_idx = nearest_neighbor(pred[i],Y) # if the index of the nearest neighbor equals the row of i... \ if pred_idx == i: # increment the number correct by 1. num_correct += 1 # accuracy is the number correct divided by the number of rows in 'pred' (also number of rows in X) accuracy = num_correct/len(pred) ### END CODE HERE ### return accuracy ###Output _____no_output_____ ###Markdown Let's see how is your translation mechanism working on the unseen data: ###Code X_val, Y_val = get_matrices(en_fr_test, fr_embeddings_subset, en_embeddings_subset) # UNQ_C11 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything acc = test_vocabulary(X_val, Y_val, R_train) # this might take a minute or two print(f"accuracy on test set is {acc:.3f}") ###Output accuracy on test set is 0.557 ###Markdown **Expected Output**:```0.557```You managed to translate words from one language to another languagewithout ever seing them with almost 56% accuracy by using some basiclinear algebra and learning a mapping of words from one language to another! 3. LSH and document searchIn this part of the assignment, you will implement a more efficient versionof k-nearest neighbors using locality sensitive hashing.You will then apply this to document search.* Process the tweets and represent each tweet as a vector (represent adocument with a vector embedding).* Use locality sensitive hashing and k nearest neighbors to find tweetsthat are similar to a given tweet. ###Code # get the positive and negative tweets all_positive_tweets = twitter_samples.strings('positive_tweets.json') all_negative_tweets = twitter_samples.strings('negative_tweets.json') all_tweets = all_positive_tweets + all_negative_tweets ###Output _____no_output_____ ###Markdown 3.1 Getting the document embeddings Bag-of-words (BOW) document modelsText documents are sequences of words.* The ordering of words makes a difference. For example, sentences "Apple pie isbetter than pepperoni pizza." and "Pepperoni pizza is better than apple pie"have opposite meanings due to the word ordering.* However, for some applications, ignoring the order of words can allowus to train an efficient and still effective model.* This approach is called Bag-of-words document model. Document embeddings* Document embedding is created by summing up the embeddings of all wordsin the document.* If we don't know the embedding of some word, we can ignore that word. **Exercise 07**:Complete the `get_document_embedding()` function.* The function `get_document_embedding()` encodes entire document as a "document" embedding.* It takes in a docoument (as a string) and a dictionary, `en_embeddings`* It processes the document, and looks up the corresponding embedding of each word.* It then sums them up and returns the sum of all word vectors of that processed tweet. Hints You can handle missing words easier by using the `get()` method of the python dictionary instead of the bracket notation (i.e. "[ ]"). See more about it here The default value for missing word should be the zero vector. Numpy will broadcast simple 0 scalar into a vector of zeros during the summation. Alternatively, skip the addition if a word is not in the dictonary. You can use your `process_tweet()` function which allows you to process the tweet. The function just takes in a tweet and returns a list of words. ###Code # UNQ_C12 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def get_document_embedding(tweet, en_embeddings): ''' Input: - tweet: a string - en_embeddings: a dictionary of word embeddings Output: - doc_embedding: sum of all word embeddings in the tweet ''' doc_embedding = np.zeros(300) ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # process the document into a list of words (process the tweet) processed_doc = process_tweet(tweet) for word in processed_doc: # add the word embedding to the running total for the document embedding doc_embedding += en_embeddings.get(word,0) ### END CODE HERE ### return doc_embedding # UNQ_C13 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # testing your function custom_tweet = "RT @Twitter @chapagain Hello There! Have a great day. :) #good #morning http://chapagain.com.np" tweet_embedding = get_document_embedding(custom_tweet, en_embeddings_subset) tweet_embedding[-5:] ###Output _____no_output_____ ###Markdown **Expected output**:```array([-0.00268555, -0.15378189, -0.55761719, -0.07216644, -0.32263184])``` Exercise 08 Store all document vectors into a dictionaryNow, let's store all the tweet embeddings into a dictionary.Implement `get_document_vecs()` ###Code # UNQ_C14 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def get_document_vecs(all_docs, en_embeddings): ''' Input: - all_docs: list of strings - all tweets in our dataset. - en_embeddings: dictionary with words as the keys and their embeddings as the values. Output: - document_vec_matrix: matrix of tweet embeddings. - ind2Doc_dict: dictionary with indices of tweets in vecs as keys and their embeddings as the values. ''' # the dictionary's key is an index (integer) that identifies a specific tweet # the value is the document embedding for that document ind2Doc_dict = {} # this is list that will store the document vectors document_vec_l = [] for i, doc in enumerate(all_docs): ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # get the document embedding of the tweet doc_embedding = get_document_embedding(doc, en_embeddings) # save the document embedding into the ind2Tweet dictionary at index i ind2Doc_dict[i] = doc_embedding # append the document embedding to the list of document vectors document_vec_l.append(doc_embedding) ### END CODE HERE ### # convert the list of document vectors into a 2D array (each row is a document vector) document_vec_matrix = np.vstack(document_vec_l) return document_vec_matrix, ind2Doc_dict document_vecs, ind2Tweet = get_document_vecs(all_tweets, en_embeddings_subset) # UNQ_C15 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything print(f"length of dictionary {len(ind2Tweet)}") print(f"shape of document_vecs {document_vecs.shape}") ###Output length of dictionary 10000 shape of document_vecs (10000, 300) ###Markdown Expected Output```length of dictionary 10000shape of document_vecs (10000, 300)``` 3.2 Looking up the tweetsNow you have a vector of dimension (m,d) where `m` is the number of tweets(10,000) and `d` is the dimension of the embeddings (300). Now youwill input a tweet, and use cosine similarity to see which tweet in ourcorpus is similar to your tweet. ###Code my_tweet = 'i am sad' process_tweet(my_tweet) tweet_embedding = get_document_embedding(my_tweet, en_embeddings_subset) # UNQ_C16 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # this gives you a similar tweet as your input. # this implementation is vectorized... idx = np.argmax(cosine_similarity(document_vecs, tweet_embedding)) print(all_tweets[idx]) ###Output @zoeeylim sad sad sad kid :( it's ok I help you watch the match HAHAHAHAHA ###Markdown Expected Output```@zoeeylim sad sad sad kid :( it's ok I help you watch the match HAHAHAHAHA``` 3.3 Finding the most similar tweets with LSHYou will now implement locality sensitive hashing (LSH) to identify the most similar tweet.* Instead of looking at all 10,000 vectors, you can just search a subset to findits nearest neighbors.Let's say your data points are plotted like this: Figure 3 You can divide the vector space into regions and search within one region for nearest neighbors of a given vector. Figure 4 ###Code N_VECS = len(all_tweets) # This many vectors. N_DIMS = len(ind2Tweet[1]) # Vector dimensionality. print(f"Number of vectors is {N_VECS} and each has {N_DIMS} dimensions.") ###Output Number of vectors is 10000 and each has 300 dimensions. ###Markdown Choosing the number of planes* Each plane divides the space to $2$ parts.* So $n$ planes divide the space into $2^{n}$ hash buckets.* We want to organize 10,000 document vectors into buckets so that every bucket has about $~16$ vectors.* For that we need $\frac{10000}{16}=625$ buckets.* We're interested in $n$, number of planes, so that $2^{n}= 625$. Now, we can calculate $n=\log_{2}625 = 9.29 \approx 10$. ###Code # The number of planes. We use log2(625) to have ~16 vectors/bucket. N_PLANES = 10 # Number of times to repeat the hashing to improve the search. N_UNIVERSES = 25 ###Output _____no_output_____ ###Markdown 3.4 Getting the hash number for a vectorFor each vector, we need to get a unique number associated to that vector in order to assign it to a "hash bucket". Hyperlanes in vector spaces* In $3$-dimensional vector space, the hyperplane is a regular plane. In $2$ dimensional vector space, the hyperplane is a line.* Generally, the hyperplane is subspace which has dimension $1$ lower than the original vector space has.* A hyperplane is uniquely defined by its normal vector.* Normal vector $n$ of the plane $\pi$ is the vector to which all vectors in the plane $\pi$ are orthogonal (perpendicular in $3$ dimensional case). Using Hyperplanes to split the vector spaceWe can use a hyperplane to split the vector space into $2$ parts.* All vectors whose dot product with a plane's normal vector is positive are on one side of the plane.* All vectors whose dot product with the plane's normal vector is negative are on the other side of the plane. Encoding hash buckets* For a vector, we can take its dot product with all the planes, then encode this information to assign the vector to a single hash bucket.* When the vector is pointing to the opposite side of the hyperplane than normal, encode it by 0.* Otherwise, if the vector is on the same side as the normal vector, encode it by 1.* If you calculate the dot product with each plane in the same order for every vector, you've encoded each vector's unique hash ID as a binary number, like [0, 1, 1, ... 0]. Exercise 09: Implementing hash bucketsWe've initialized hash table `hashes` for you. It is list of `N_UNIVERSES` matrices, each describes its own hash table. Each matrix has `N_DIMS` rows and `N_PLANES` columns. Every column of that matrix is a `N_DIMS`-dimensional normal vector for each of `N_PLANES` hyperplanes which are used for creating buckets of the particular hash table.*Exercise*: Your task is to complete the function `hash_value_of_vector` which places vector `v` in the correct hash bucket.* First multiply your vector `v`, with a corresponding plane. This will give you a vector of dimension $(1,\text{N_planes})$.* You will then convert every element in that vector to 0 or 1.* You create a hash vector by doing the following: if the element is negative, it becomes a 0, otherwise you change it to a 1.* You then compute the unique number for the vector by iterating over `N_PLANES`* Then you multiply $2^i$ times the corresponding bit (0 or 1).* You will then store that sum in the variable `hash_value`.**Intructions:** Create a hash for the vector in the function below.Use this formula:$$ hash = \sum_{i=0}^{N-1} \left( 2^{i} \times h_{i} \right) $$ Create the sets of planes* Create multiple (25) sets of planes (the planes that divide up the region).* You can think of these as 25 separate ways of dividing up the vector space with a different set of planes.* Each element of this list contains a matrix with 300 rows (the word vector have 300 dimensions), and 10 columns (there are 10 planes in each "universe"). ###Code np.random.seed(0) planes_l = [np.random.normal(size=(N_DIMS, N_PLANES)) for _ in range(N_UNIVERSES)] ###Output _____no_output_____ ###Markdown Hints numpy.squeeze() removes unused dimensions from an array; for instance, it converts a (10,1) 2D array into a (10,) 1D array ###Code # UNQ_C17 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def hash_value_of_vector(v, planes): """Create a hash for a vector; hash_id says which random hash to use. Input: - v: vector of tweet. It's dimension is (1, N_DIMS) - planes: matrix of dimension (N_DIMS, N_PLANES) - the set of planes that divide up the region Output: - res: a number which is used as a hash for your vector """ ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # for the set of planes, # calculate the dot product between the vector and the matrix containing the planes # remember that planes has shape (300, 10) # The dot product will have the shape (1,10) dot_product = np.dot(v,planes) # get the sign of the dot product (1,10) shaped vector sign_of_dot_product = np.sign(dot_product) # set h to be false (eqivalent to 0 when used in operations) if the sign is negative, # and true (equivalent to 1) if the sign is positive (1,10) shaped vector h = sign_of_dot_product>=0 # remove extra un-used dimensions (convert this from a 2D to a 1D array) h = np.squeeze(h) # initialize the hash value to 0 hash_value = 0 n_planes = planes.shape[1] for i in range(n_planes): # increment the hash value by 2^i * h_i hash_value += np.power(2,i) * h[i] ### END CODE HERE ### # cast hash_value as an integer hash_value = int(hash_value) return hash_value # UNQ_C18 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything np.random.seed(0) idx = 0 planes = planes_l[idx] # get one 'universe' of planes to test the function vec = np.random.rand(1, 300) print(f" The hash value for this vector,", f"and the set of planes at index {idx},", f"is {hash_value_of_vector(vec, planes)}") ###Output The hash value for this vector, and the set of planes at index 0, is 768 ###Markdown Expected Output```The hash value for this vector, and the set of planes at index 0, is 768``` 3.5 Creating a hash table Exercise 10Given that you have a unique number for each vector (or tweet), You now want to create a hash table. You need a hash table, so that given a hash_id, you can quickly look up the corresponding vectors. This allows you to reduce your search by a significant amount of time. We have given you the `make_hash_table` function, which maps the tweet vectors to a bucket and stores the vector there. It returns the `hash_table` and the `id_table`. The `id_table` allows you know which vector in a certain bucket corresponds to what tweet. Hints a dictionary comprehension, similar to a list comprehension, looks like this: `{i:0 for i in range(10)}`, where the key is 'i' and the value is zero for all key-value pairs. ###Code # UNQ_C19 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # This is the code used to create a hash table: feel free to read over it def make_hash_table(vecs, planes): """ Input: - vecs: list of vectors to be hashed. - planes: the matrix of planes in a single "universe", with shape (embedding dimensions, number of planes). Output: - hash_table: dictionary - keys are hashes, values are lists of vectors (hash buckets) - id_table: dictionary - keys are hashes, values are list of vectors id's (it's used to know which tweet corresponds to the hashed vector) """ ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # number of planes is the number of columns in the planes matrix num_of_planes = planes.shape[1] # number of buckets is 2^(number of planes) num_buckets = np.power(2,num_of_planes) # create the hash table as a dictionary. # Keys are integers (0,1,2.. number of buckets) # Values are empty lists hash_table = {i:[] for i in range(num_buckets)} # create the id table as a dictionary. # Keys are integers (0,1,2... number of buckets) # Values are empty lists id_table = {i:[] for i in range(num_buckets)} # for each vector in 'vecs' for i, v in enumerate(vecs): # calculate the hash value for the vector h = hash_value_of_vector(v, planes) # store the vector into hash_table at key h, # by appending the vector v to the list at key h hash_table[h].append(v) # store the vector's index 'i' (each document is given a unique integer 0,1,2...) # the key is the h, and the 'i' is appended to the list at key h id_table[h].append(i) ### END CODE HERE ### return hash_table, id_table # UNQ_C20 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything np.random.seed(0) planes = planes_l[0] # get one 'universe' of planes to test the function vec = np.random.rand(1, 300) tmp_hash_table, tmp_id_table = make_hash_table(document_vecs, planes) print(f"The hash table at key 0 has {len(tmp_hash_table[0])} document vectors") print(f"The id table at key 0 has {len(tmp_id_table[0])}") print(f"The first 5 document indices stored at key 0 of are {tmp_id_table[0][0:5]}") ###Output The hash table at key 0 has 3 document vectors The id table at key 0 has 3 The first 5 document indices stored at key 0 of are [3276, 3281, 3282] ###Markdown Expected output```The hash table at key 0 has 3 document vectorsThe id table at key 0 has 3The first 5 document indices stored at key 0 of are [3276, 3281, 3282]``` 3.6 Creating all hash tablesYou can now hash your vectors and store them in a hash table thatwould allow you to quickly look up and search for similar vectors.Run the cell below to create the hashes. By doing so, you end up havingseveral tables which have all the vectors. Given a vector, you thenidentify the buckets in all the tables. You can then iterate over thebuckets and consider much fewer vectors. The more buckets you use, themore accurate your lookup will be, but also the longer it will take. ###Code # Creating the hashtables hash_tables = [] id_tables = [] for universe_id in range(N_UNIVERSES): # there are 25 hashes print('working on hash universe #:', universe_id) planes = planes_l[universe_id] hash_table, id_table = make_hash_table(document_vecs, planes) hash_tables.append(hash_table) id_tables.append(id_table) ###Output working on hash universe #: 0 working on hash universe #: 1 working on hash universe #: 2 working on hash universe #: 3 working on hash universe #: 4 working on hash universe #: 5 working on hash universe #: 6 working on hash universe #: 7 working on hash universe #: 8 working on hash universe #: 9 working on hash universe #: 10 working on hash universe #: 11 working on hash universe #: 12 working on hash universe #: 13 working on hash universe #: 14 working on hash universe #: 15 working on hash universe #: 16 working on hash universe #: 17 working on hash universe #: 18 working on hash universe #: 19 working on hash universe #: 20 working on hash universe #: 21 working on hash universe #: 22 working on hash universe #: 23 working on hash universe #: 24 ###Markdown Approximate K-NN Exercise 11Implement approximate K nearest neighbors using locality sensitive hashing,to search for documents that are similar to a given document at theindex `doc_id`. Inputs* `doc_id` is the index into the document list `all_tweets`.* `v` is the document vector for the tweet in `all_tweets` at index `doc_id`.* `planes_l` is the list of planes (the global variable created earlier).* `k` is the number of nearest neighbors to search for.* `num_universes_to_use`: to save time, we can use fewer than the totalnumber of available universes. By default, it's set to `N_UNIVERSES`,which is $25$ for this assignment.The `approximate_knn` function finds a subset of candidate vectors thatare in the same "hash bucket" as the input vector 'v'. Then it performsthe usual k-nearest neighbors search on this subset (instead of searchingthrough all 10,000 tweets). Hints There are many dictionaries used in this function. Try to print out planes_l, hash_tables, id_tables to understand how they are structured, what the keys represent, and what the values contain. To remove an item from a list, use `.remove()` To append to a list, use `.append()` To add to a set, use `.add()` ###Code # UNQ_C21 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # This is the code used to do the fast nearest neighbor search. Feel free to go over it def approximate_knn(doc_id, v, planes_l, k=1, num_universes_to_use=N_UNIVERSES): """Search for k-NN using hashes.""" assert num_universes_to_use <= N_UNIVERSES # Vectors that will be checked as possible nearest neighbor vecs_to_consider_l = list() # list of document IDs ids_to_consider_l = list() # create a set for ids to consider, for faster checking if a document ID already exists in the set ids_to_consider_set = set() # loop through the universes of planes for universe_id in range(num_universes_to_use): # get the set of planes from the planes_l list, for this particular universe_id planes = planes_l[universe_id] # get the hash value of the vector for this set of planes hash_value = hash_value_of_vector(v, planes) # get the hash table for this particular universe_id hash_table = hash_tables[universe_id] # get the list of document vectors for this hash table, where the key is the hash_value document_vectors_l = hash_table[hash_value] # get the id_table for this particular universe_id id_table = id_tables[universe_id] # get the subset of documents to consider as nearest neighbors from this id_table dictionary new_ids_to_consider = id_table[hash_value] ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # remove the id of the document that we're searching if doc_id in new_ids_to_consider: new_ids_to_consider.remove(doc_id) print(f"removed doc_id {doc_id} of input vector from new_ids_to_search") # loop through the subset of document vectors to consider for i, new_id in enumerate(new_ids_to_consider): # if the document ID is not yet in the set ids_to_consider... if new_id not in ids_to_consider_set: # access document_vectors_l list at index i to get the embedding # then append it to the list of vectors to consider as possible nearest neighbors document_vector_at_i = document_vectors_l[i] # append the new_id (the index for the document) to the list of ids to consider ids_to_consider_l.append(document_vector_at_i) # also add the new_id to the set of ids to consider # (use this to check if new_id is not already in the IDs to consider) ids_to_consider_set.add(new_id) ### END CODE HERE ### # Now run k-NN on the smaller set of vecs-to-consider. print("Fast considering %d vecs" % len(vecs_to_consider_l)) # convert the vecs to consider set to a list, then to a numpy array vecs_to_consider_arr = np.array(vecs_to_consider_l) # call nearest neighbors on the reduced list of candidate vectors nearest_neighbor_idx_l = nearest_neighbor(v, vecs_to_consider_arr, k=k) # Use the nearest neighbor index list as indices into the ids to consider # create a list of nearest neighbors by the document ids nearest_neighbor_ids = [ids_to_consider_l[idx] for idx in nearest_neighbor_idx_l] return nearest_neighbor_ids #document_vecs, ind2Tweet doc_id = 0 doc_to_search = all_tweets[doc_id] vec_to_search = document_vecs[doc_id] # UNQ_C22 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # Sample nearest_neighbor_ids = approximate_knn( doc_id, vec_to_search, planes_l, k=3, num_universes_to_use=5) print(f"Nearest neighbors for document {doc_id}") print(f"Document contents: {doc_to_search}") print("") for neighbor_id in nearest_neighbor_ids: print(f"Nearest neighbor at document id {neighbor_id}") print(f"document contents: {all_tweets[neighbor_id]}") ###Output Nearest neighbors for document 0 Document contents: #FollowFriday @France_Inte @PKuchly57 @Milipol_Paris for being top engaged members in my community this week :)
4. Deep Learning/politifact_binarized_augmented/Fine_Tuning_RoBERTa_for_Truth_Classification.ipynb
###Markdown Install Transformers Library ###Code !pip install transformers==3.0.2 import numpy as np import pandas as pd import torch import torch.nn as nn from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import transformers from transformers import AutoModel, BertTokenizerFast, RobertaTokenizer # specify GPU device = torch.device("cuda") ###Output _____no_output_____ ###Markdown Load Dataset ###Code from google.colab import drive drive.mount('/content/gdrive') df=pd.read_csv('gdrive/My Drive/Licenta/Data/politifact_clean_binarized.csv') # df=pd.read_csv('gdrive/My Drive/Licenta/Data/mafiascum_label_text.csv') # df=pd.read_csv('gdrive/My Drive/Licenta/Data/mafiascum_label_words.csv') df.head() print(df[:50]) df.shape # check class distribution df['veracity'].value_counts(normalize = True) ###Output _____no_output_____ ###Markdown Split train dataset into train, validation and test sets ###Code train_text, temp_text, train_labels, temp_labels = train_test_split(df['statement'], df['veracity'], random_state=2018, test_size=0.3, stratify=df['veracity']) # we will use temp_text and temp_labels to create validation and test set val_text, test_text, val_labels, test_labels = train_test_split(temp_text, temp_labels, random_state=2018, test_size=0.5, stratify=temp_labels) ###Output _____no_output_____ ###Markdown Import BERT Model and BERT Tokenizer ###Code # import BERT-base pretrained model bert = AutoModel.from_pretrained('roberta-base') # Load the BERT tokenizer tokenizer = RobertaTokenizer.from_pretrained('roberta-base') # sample data text = ["this is a bert model tutorial", "we will fine-tune a bert model"] # encode text sent_id = tokenizer.batch_encode_plus(text, padding=True, return_token_type_ids=False) # output print(sent_id) ###Output {'input_ids': [[0, 9226, 16, 10, 741, 2399, 1421, 35950, 2, 1, 1, 1], [0, 1694, 40, 2051, 12, 90, 4438, 10, 741, 2399, 1421, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} ###Markdown Tokenization ###Code # get length of all the messages in the train set seq_len = [len(i.split()) for i in train_text] pd.Series(seq_len).hist(bins = 30) max_seq_len = 50 # tokenize and encode sequences in the training set tokens_train = tokenizer.batch_encode_plus( train_text.tolist(), max_length = max_seq_len, pad_to_max_length=True, truncation=True, return_token_type_ids=False ) # tokenize and encode sequences in the validation set tokens_val = tokenizer.batch_encode_plus( val_text.tolist(), max_length = max_seq_len, pad_to_max_length=True, truncation=True, return_token_type_ids=False ) # tokenize and encode sequences in the test set tokens_test = tokenizer.batch_encode_plus( test_text.tolist(), max_length = max_seq_len, pad_to_max_length=True, truncation=True, return_token_type_ids=False ) ###Output _____no_output_____ ###Markdown Convert Integer Sequences to Tensors ###Code # for train set train_seq = torch.tensor(tokens_train['input_ids']) train_mask = torch.tensor(tokens_train['attention_mask']) train_y = torch.tensor(train_labels.tolist()) # for validation set val_seq = torch.tensor(tokens_val['input_ids']) val_mask = torch.tensor(tokens_val['attention_mask']) val_y = torch.tensor(val_labels.tolist()) # for test set test_seq = torch.tensor(tokens_test['input_ids']) test_mask = torch.tensor(tokens_test['attention_mask']) test_y = torch.tensor(test_labels.tolist()) ###Output _____no_output_____ ###Markdown Create DataLoaders ###Code from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler #define a batch size batch_size = 48 # wrap tensors train_data = TensorDataset(train_seq, train_mask, train_y) # sampler for sampling the data during training train_sampler = RandomSampler(train_data) # dataLoader for train set train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size) # wrap tensors val_data = TensorDataset(val_seq, val_mask, val_y) # sampler for sampling the data during training val_sampler = SequentialSampler(val_data) # dataLoader for validation set val_dataloader = DataLoader(val_data, sampler = val_sampler, batch_size=batch_size) ###Output _____no_output_____ ###Markdown Freeze BERT Parameters ###Code # freeze all the parameters for param in bert.parameters(): param.requires_grad = False ###Output _____no_output_____ ###Markdown Define Model Architecture ###Code class BERT_Arch(nn.Module): def __init__(self, bert): super(BERT_Arch, self).__init__() self.bert = bert # dropout layer self.dropout = nn.Dropout(0.1) # relu activation function self.relu = nn.ReLU() # dense layer 1 self.fc1 = nn.Linear(768,512) # dense layer 2 (Output layer) self.fc2 = nn.Linear(512,2) #softmax activation function self.softmax = nn.LogSoftmax(dim=1) #define the forward pass def forward(self, sent_id, mask): #pass the inputs to the model _, cls_hs = self.bert(sent_id, attention_mask=mask) x = self.fc1(cls_hs) x = self.relu(x) x = self.dropout(x) # output layer x = self.fc2(x) # apply softmax activation x = self.softmax(x) return x # pass the pre-trained BERT to our define architecture model = BERT_Arch(bert) # push the model to GPU model = model.to(device) # optimizer from hugging face transformers from transformers import AdamW # define the optimizer optimizer = AdamW(model.parameters(), lr = 4e-5) ###Output _____no_output_____ ###Markdown Find Class Weights ###Code from sklearn.utils.class_weight import compute_class_weight #compute the class weights class_wts = compute_class_weight('balanced', np.unique(train_labels), train_labels) print(class_wts) # convert class weights to tensor weights= torch.tensor(class_wts,dtype=torch.float) weights = weights.to(device) # loss function cross_entropy = nn.NLLLoss(weight=weights) # number of training epochs epochs = 30 ###Output _____no_output_____ ###Markdown Fine-Tune BERT ###Code # function to train the model def train(): model.train() total_loss, total_accuracy = 0, 0 # empty list to save model predictions total_preds=[] # iterate over batches for step,batch in enumerate(train_dataloader): # progress update after every 50 batches. if step % 50 == 0 and not step == 0: print(' Batch {:>5,} of {:>5,}.'.format(step, len(train_dataloader))) # push the batch to gpu batch = [r.to(device) for r in batch] sent_id, mask, labels = batch # clear previously calculated gradients model.zero_grad() # get model predictions for the current batch preds = model(sent_id, mask) # compute the loss between actual and predicted values loss = cross_entropy(preds, labels) # add on to the total loss total_loss = total_loss + loss.item() # backward pass to calculate the gradients loss.backward() # clip the the gradients to 1.0. It helps in preventing the exploding gradient problem torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) # update parameters optimizer.step() # model predictions are stored on GPU. So, push it to CPU preds=preds.detach().cpu().numpy() # append the model predictions total_preds.append(preds) # compute the training loss of the epoch avg_loss = total_loss / len(train_dataloader) # predictions are in the form of (no. of batches, size of batch, no. of classes). # reshape the predictions in form of (number of samples, no. of classes) total_preds = np.concatenate(total_preds, axis=0) #returns the loss and predictions return avg_loss, total_preds # function for evaluating the model def evaluate(): print("\nEvaluating...") # deactivate dropout layers model.eval() total_loss, total_accuracy = 0, 0 # empty list to save the model predictions total_preds = [] # iterate over batches for step,batch in enumerate(val_dataloader): # Progress update every 50 batches. if step % 50 == 0 and not step == 0: # Calculate elapsed time in minutes. # elapsed = format_time(time.time() - t0) # Report progress. print(' Batch {:>5,} of {:>5,}.'.format(step, len(val_dataloader))) # push the batch to gpu batch = [t.to(device) for t in batch] sent_id, mask, labels = batch # deactivate autograd with torch.no_grad(): # model predictions preds = model(sent_id, mask) # compute the validation loss between actual and predicted values loss = cross_entropy(preds,labels) total_loss = total_loss + loss.item() preds = preds.detach().cpu().numpy() total_preds.append(preds) # compute the validation loss of the epoch avg_loss = total_loss / len(val_dataloader) # reshape the predictions in form of (number of samples, no. of classes) total_preds = np.concatenate(total_preds, axis=0) return avg_loss, total_preds ###Output _____no_output_____ ###Markdown Start Model Training ###Code # set initial loss to infinite best_valid_loss = float('inf') # empty lists to store training and validation loss of each epoch train_losses=[] valid_losses=[] #for each epoch for epoch in range(epochs): print('\n Epoch {:} / {:}'.format(epoch + 1, epochs)) #train model train_loss, _ = train() #evaluate model valid_loss, _ = evaluate() #save the best model if valid_loss < best_valid_loss: best_valid_loss = valid_loss torch.save(model.state_dict(), 'saved_weights.pt') # append training and validation loss train_losses.append(train_loss) valid_losses.append(valid_loss) print(f'\nTraining Loss: {train_loss:.3f}') print(f'Validation Loss: {valid_loss:.3f}') ###Output Epoch 1 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.694 Validation Loss: 0.693 Epoch 2 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.693 Validation Loss: 0.693 Epoch 3 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.693 Validation Loss: 0.692 Epoch 4 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.693 Validation Loss: 0.691 Epoch 5 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.692 Validation Loss: 0.691 Epoch 6 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.691 Validation Loss: 0.692 Epoch 7 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.691 Validation Loss: 0.691 Epoch 8 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.691 Validation Loss: 0.692 Epoch 9 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.690 Validation Loss: 0.689 Epoch 10 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.690 Validation Loss: 0.689 Epoch 11 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.689 Validation Loss: 0.693 Epoch 12 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.689 Validation Loss: 0.688 Epoch 13 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.688 Validation Loss: 0.687 Epoch 14 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.688 Validation Loss: 0.687 Epoch 15 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.687 Validation Loss: 0.687 Epoch 16 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.686 Validation Loss: 0.686 Epoch 17 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.684 Validation Loss: 0.688 Epoch 18 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.685 Validation Loss: 0.685 Epoch 19 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.684 Validation Loss: 0.691 Epoch 20 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.684 Validation Loss: 0.683 Epoch 21 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.682 Validation Loss: 0.682 Epoch 22 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.683 Validation Loss: 0.682 Epoch 23 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.682 Validation Loss: 0.682 Epoch 24 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.680 Validation Loss: 0.680 Epoch 25 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.681 Validation Loss: 0.680 Epoch 26 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.680 Validation Loss: 0.680 Epoch 27 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.679 Validation Loss: 0.679 Epoch 28 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.678 Validation Loss: 0.678 Epoch 29 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.678 Validation Loss: 0.683 Epoch 30 / 30 Batch 50 of 164. Batch 100 of 164. Batch 150 of 164. Evaluating... Training Loss: 0.677 Validation Loss: 0.677 ###Markdown Load Saved Model ###Code #load weights of best model path = 'saved_weights.pt' model.load_state_dict(torch.load(path)) ###Output _____no_output_____ ###Markdown Get Predictions for Test Data ###Code # get predictions for test data with torch.no_grad(): preds = model(test_seq.to(device), test_mask.to(device)) preds = preds.detach().cpu().numpy() # model's performance preds = np.argmax(preds, axis = 1) print(classification_report(test_y, preds)) # confusion matrix pd.crosstab(test_y, preds) ###Output _____no_output_____
module2-random-forests/DS1_Tree_Ensembles_Assignment.ipynb
###Markdown ###Code !pip install kaggle from google.colab import drive drive.mount('/content/drive') %env KAGGLE_CONFIG_DIR=/content/drive/My Drive/ # You also have to join the Titanic competition to have access to the data !kaggle competitions download -c ds1-tree-ensembles #!unzip train_features.csv.zip #!unzip test_features.csv.zip !pip install category_encoders # Generic imports import pandas as pd import numpy as np import matplotlib.pyplot as plt X_train = pd.read_csv("train_features.csv") y_train = pd.read_csv("train_labels.csv")['charged_off'] print(X_train.shape) print(y_train.shape) pd.set_option('display.max_columns', None) # Unlimited columns pd.set_option('display.max_rows', None) # Unlimited rows X_train.isnull().sum() X_train.head() """ member_id 37745 emp_title 3565 emp_length 3277 url 37745 desc 37745 dti 92 mths_since_last_delinq 20881 mths_since_last_record 32170 revol_util 53 mths_since_last_major_derog 28640 annual_inc_joint 33007 dti_joint 33007 mths_since_rcnt_il 1234 il_util 6255 all_util 13 avg_cur_bal 3 bc_open_to_buy 643 bc_util 667 mo_sin_old_il_acct 1234 mths_since_recent_bc 597 mths_since_recent_bc_dlq 29995 mths_since_recent_inq 3146 mths_since_recent_revol_delinq 26574 num_tl_120dpd_2m 1010 pct_tl_nvr_dlq 1 percent_bc_gt_75 643 revol_bal_joint 33007 sec_app_earliest_cr_line 33007 sec_app_inq_last_6mths 33007 sec_app_mort_acc 33007 sec_app_open_acc 33007 sec_app_revol_util 33106 sec_app_open_act_il 33007 sec_app_num_rev_accts 33007 sec_app_chargeoff_within_12_mths 33007 sec_app_collections_12_mths_ex_med 33007 sec_app_mths_since_last_major_derog 36077 """ # Feature Engineering def feature_engineering(df_input): df = df_input.copy() df.drop(columns=['id', 'member_id', 'url', 'desc', 'mths_since_last_delinq', 'mths_since_last_record', 'mths_since_last_major_derog', 'annual_inc_joint', 'dti_joint', 'il_util', 'mths_since_recent_bc_dlq', 'mths_since_recent_revol_delinq', 'revol_bal_joint', 'sec_app_earliest_cr_line', 'sec_app_inq_last_6mths', 'sec_app_mort_acc', 'sec_app_open_acc', 'sec_app_revol_util', 'sec_app_open_act_il', 'sec_app_num_rev_accts', 'sec_app_chargeoff_within_12_mths', 'sec_app_collections_12_mths_ex_med', 'sec_app_mths_since_last_major_derog', 'num_tl_120dpd_2m', # No variance 'emp_title', # 16270 unique values #'zip_code', # 855 unique values #'earliest_cr_line', # 596 unique values ], inplace=True) # term - Convert to int def term_to_int(term_str): return int(term_str.replace(" months","")) df['term'] = df['term'].apply(term_to_int) # int_rate - Convert to float def int_rate_to_float(int_rate_str): return float(int_rate_str.replace("%","")) df['int_rate'] = df['int_rate'].apply(int_rate_to_float) # emp_length - Fill NA as Unknown and use encoding df['emp_length'].fillna("Unknown", inplace=True) # dti - Fill NA as 0.00 df['dti'].fillna(0.00, inplace=True) # revol_util - Convert to float df['revol_util'].fillna("0.00%", inplace=True) def revol_util_to_float(revol_util_str): return float(revol_util_str.replace("%","")) df['revol_util'] = df['revol_util'].apply(revol_util_to_float) # mths_since_rcnt_il - Fill NA with mean df['mths_since_rcnt_il'].fillna(df['mths_since_rcnt_il'].mean(), inplace=True) # all_util - Fill NA with mean df['all_util'].fillna(df['all_util'].mean(), inplace=True) # bc_open_to_buy - Fill NA with mean df['bc_open_to_buy'].fillna(df['bc_open_to_buy'].median(), inplace=True) # bc_util - Fill NA with mean df['bc_util'].fillna(df['bc_util'].mean(), inplace=True) # mo_sin_old_il_acct - Fill NA with mean df['mo_sin_old_il_acct'].fillna(df['mo_sin_old_il_acct'].mean(), inplace=True) # mths_since_recent_bc - Fill NA with mean df['mths_since_recent_bc'].fillna(df['mths_since_recent_bc'].mean(), inplace=True) # mths_since_recent_inq - Fill NA with mean df['mths_since_recent_inq'].fillna(df['mths_since_recent_inq'].mean(), inplace=True) # avg_cur_bal - Fill NA with mean df['avg_cur_bal'].fillna(df['avg_cur_bal'].mean(), inplace=True) # pct_tl_nvr_dlq - Fill NA with mean df['pct_tl_nvr_dlq'].fillna(df['pct_tl_nvr_dlq'].mean(), inplace=True) # percent_bc_gt_75 - Fill NA with mean df['percent_bc_gt_75'].fillna(df['percent_bc_gt_75'].mean(), inplace=True) return df X_train = feature_engineering(X_train) import category_encoders as ce from sklearn.model_selection import cross_val_predict from sklearn.pipeline import make_pipeline from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier """pipeline = make_pipeline( ce.BinaryEncoder(), DecisionTreeClassifier(max_depth=5) )""" pipeline = make_pipeline( ce.BinaryEncoder(), RandomForestClassifier( n_estimators=100, class_weight='balanced', min_samples_leaf=0.005, oob_score=True, n_jobs=-1) ) pipeline.fit(X_train, y_train) # Out-of-Bag estimated score from sklearn.metrics import roc_auc_score y_pred_proba = pipeline.named_steps['randomforestclassifier'].oob_decision_function_[:, 1] print('ROC AUC, Out-of-Bag estimate:', roc_auc_score(y_train, y_pred_proba)) X_test = pd.read_csv("test_features.csv") X_test = feature_engineering(X_test) # Use GridSearch CV for hyper parameter tuning from sklearn.model_selection import GridSearchCV param_grid = { 'randomforestclassifier__n_estimators': [400, 500, 600], 'randomforestclassifier__min_samples_leaf': [0.001, 0.002, 0.005] } gridsearch = GridSearchCV(pipeline, param_grid=param_grid, cv=3, scoring='roc_auc', verbose=10) gridsearch.fit(X_train, y_train) # Best cross validation score print('Cross Validation Score:', gridsearch.best_score_) # Best parameters which resulted in the best score print('Best Parameters:', gridsearch.best_params_) sample_submission = pd.read_csv('sample_submission.csv') submission = sample_submission.copy() submission['charged_off'] = gridsearch.predict_proba(X_test)[:, 1] submission.to_csv('submission-007.csv', index=False) !pip install eli5 import eli5 from eli5.sklearn import PermutationImportance encoder = ce.BinaryEncoder() X_train_transformed = encoder.fit_transform(X_train) model = RandomForestClassifier( n_estimators=600, class_weight='balanced', min_samples_leaf=0.001, n_jobs=-1) model.fit(X_train_transformed, y_train) permuter = PermutationImportance(model, scoring='roc_auc', n_iter=3, cv='prefit') permuter.fit(X_train_transformed, y_train) eli5.show_weights(permuter, top=None, feature_names=X_train_transformed.columns.tolist()) ###Output _____no_output_____
10. Kernel_Methods/Kernel_Methods_Subramani_Balaji_798924.ipynb
###Markdown Name : **Balaji Subramani** Matriculation Number : **798924** Kernel Methods (Primal vs. Dual View)In this lab we explore how kernel methods can be used on structured data as long as a kernel function can be defined on pairs of objects of data. Specifically, we will use the dynamic time-warping (DTW) kernel to perform learning on sequences. We then proceed to train a kernelized SVM with the DTW kernel on a sequence data set. ###Code import numpy as np import matplotlib.pyplot as plt %matplotlib inline import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown 1. DTW KernelGiven a metric $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ on the input space $X$, the family of *DTW Kernels* is given as:$$ k_{\text{DTW}}(x, x') = e^{- \lambda d_{\text{DTW}}(x, x'; d)}, $$for sequences $x, x' \in X^+ := \bigcup_{n \geq 1}{X^n}$ of lengths $|x|$ and $|x'|$. The *DTW distance metric* $d_{\text{DTW}}$ is then given by $\gamma(|x|, |x'|)$, where the helper function $\gamma$ is defined recursively via:$$ \gamma(i, j) = \begin{cases} d(x_i, x_j') + \min\left(\gamma(i-1, j-1), \gamma(i-1, j), \gamma(i, j-1)\right) & (1 \leq i \leq |x|, \, 1 \leq j \leq |x'|), \\ \infty & i = 0 \vee j = 0, \\0 & (i, j) = (0, 0). \end{cases}$$The intuition is that $\gamma(i, j)$ is the minimum squared distance up to time $i$ and $j$. $i = |x|$ and $j = |x'|$ are edge cases in the sense that the if a sequence has ended it cannot be matched anymore (and thus the value are infinite or the result value as both have been matched).To compute $d_{\text{DTW}}$ the technique of Dynamic Programming is being used, where you store $\gamma$ in a $(|x|+1) \times (|x'|+1)$ grid.Exercise 1:Implement the function *d_DTW(x, x2, dist)*. The inputs x and x2 are the sequences to be compared and the parameter dist is a function on a pairs of points of the input space $X$ that outputs a real number (the distance between the pairs of points). Some code is given to help you dealing with the edge cases. The function is supposed to return the value of $d_{\text{DTW}}$ with the specified parameters, *not* the $k_{\text{DTW}}$. ###Code #https://en.wikipedia.org/wiki/Dynamic_time_warping def d_DTW(x, x2, dist): t1, t2 = len(x), len(x2) if x == [] and x2 == []: return 0.0 elif (x == []) or (x2 == []): return np.infty dp = np.empty((t1+1, t2+1)) dp[0, 0] = 0 for i in range(1, t1+1): dp[i, 0] = np.infty for j in range(1, t2+1): dp[0, j] = np.infty # WRITE YOU CODE HERE for i in range(1, t1+1): for j in range(1, t2+1): cost = dist(x[i-1], x2[j-1]) dp[i, j] = cost + np.min([dp[i-1, j ], dp[i , j-1], dp[i-1, j-1]]) return dp[t1, t2] d_DTW([1, 2, 3, 3], [1, 2, 2], d1) ###Output _____no_output_____ ###Markdown Check your solution: ###Code try: assert d_DTW([1, 2, 3, 3], [1, 2, 3], lambda x, y: 1 if x != y else 0) == 0.0 assert d_DTW([1, 2, 3, 4], [1, 2, 3], lambda x, y: 1 if x != y else 0) == 1.0 assert d_DTW([1, 2, 3, 2], [1, 2], lambda x, y: 1 if x != y else 0) == 1.0 assert d_DTW([], [1, 2], lambda x, y: 1 if x != y else 0) == np.infty assert d_DTW([], [], lambda x, y: 1 if x != y else 0) == 0.0 print ("There is no error in your function!") except AssertionError: print ("There is an error in your function!") ###Output There is no error in your function! ###Markdown We define three distance functions on two values $x, x' \in X$:$d_1(x_2, x_2) = \mathbb{1}[x_1 != x_2]$,$d_2(x_1, x_2) = (x_1 - x_2)^2$,$d_3(x_1, x_2) = |x_1 - x_2|$,Optional: $d_4(\Delta x_i, \Delta x'_i) = (\Delta x_i - \Delta x'_i)^2$, with$$ \Delta x_i = \frac{1}{2}\left( x_i - x_{i-1} + \frac{x_{i+1} - x_{i-1}}{2}\right) $$as *approximate derivates of order 2*. Note that the edge cases are $\Delta x_1 = 0$ and $\Delta x_{|x|} = x_{|x|} - x_{|x|-1}$. *Hint*: It's best to map the sequences $x = (x_1, \dots, x_{|x|})$ to $\Delta x = \left(\Delta x_1, \dots, \Delta x_{|x|}\right)$ and then apply $d_2$.Exercise 2:Implement the missing distance metrics. ###Code d1(np.array([0,1,2]),np.array([1,1,2])) def d1(x, x2): return np.dot(np.ones(len(x)),np.equal(x,x2)) #dist=lambda x, x2: 1 if x != x2 else 0 #return dist(x,x2) def d2(x, x2): # WRITE YOU CODE HERE return np.square(x-x2) def d3(x, x2): # WRITE YOU CODE HERE return np.abs(x-x2) ###Output _____no_output_____ ###Markdown The following code lifts the distance metrics to maps that map a given hyperparameter $\lambda$ return the corresponding kernel function $k_{\text{DTW}}$. ###Code k1_hyp, k2_hyp, k3_hyp = [lambda lmbd: (lambda x, x2: np.exp(-lmbd * d_DTW(x, x2, d))) for d in [d1, d2, d3]] k1 = k1_hyp(2.0) k2 = k2_hyp(2.0) k3 = k3_hyp(2.0) ###Output _____no_output_____ ###Markdown The following code computes the Gram matrix $K$ with respect to the kernel $k$ (a parameter) and the data $xs$ (another parameter), see slide 28 and 29 in Kernel Methods lecture. ###Code def build_dtw_gram_matrix(xs, x2s, k): """ xs: collection of sequences (vectors of possibly varying length) x2s: the same, needed for prediction k: a kernel function that maps two sequences of possibly different length to a real The function returns the Gram matrix with respect to k of the data xs. """ t1, t2 = len(xs), len(x2s) K = np.empty((t1, t2)) for i in range(t1): for j in range(i, t2): K[i, j] = k(xs[i], x2s[j]) if i < t2 and j < t1: K[j, i] = K[i, j] return K build_dtw_gram_matrix([[1, 2], [2, 3]], [[1, 2, 3], [4]], k2) ###Output _____no_output_____ ###Markdown 2. Kernel SVMNow we implement the training algorithm for kernel SVMs. We adjust the ERM learning algorithm from the linear classification lab. First we are reusing the code for the $\mathcal{L}_2$-regularizer and the hinge loss. ###Code def L2_reg(w, lbda): return 0.5 * lbda * (np.dot(w.T, w)), lbda*w def hinge_loss(h, y): n = len(h) l = np.maximum(0, np.ones(n) - y*h) g = -y * (h > 0) return l, g ###Output _____no_output_____ ###Markdown Exercise 3:Adjust the old code (Lab 06) to actually learn the kernel linear regression. Note that there is a new parameter $k$ that encodes the kernel function. Note that lbda is not the $\lambda$ used in the definition of $k$, but the regularization coefficient (as before). Note also that the learning rate $\alpha$ has been renamed to $\eta$, because $\alpha$ coincides with the dual coefficients (see lecture).Also make sure to return the Gram matrix $K$ together with the weight vector $w$ (or $\alpha$), as it is costly to compute and needed for the inference. ###Code def learn_reg_kernel_ERM(X, y, lbda, k, loss=hinge_loss, reg=L2_reg, max_iter=200, tol=0.001, eta=1., verbose=False): """Kernel Linear Regression (default: kernelized L_2 SVM) X -- data, each row = instance y -- vector of labels, n_rows(X) == y.shape[0] lbda -- regularization coefficient lambda k -- the kernel function loss -- loss function, returns vector of losses (for each instance) AND the gradient reg -- regularization function, returns reg-loss and gradient max_iter -- max. number of iterations of gradient descent tol -- stop if norm(gradient) < tol eta -- learning rate """ num_features = X.shape[1] g_old = None K = build_dtw_gram_matrix(X, X, k) # MODIFY; fill in; hint: use gram matrix defined above w = np.random.randn(K.shape[0]) # modify; hint: w has as many entries as training examples (K.shape[0]) for _ in range(max_iter): h = np.dot(K, w) # MODIFY; hint: see slide 20,21, and 35 (primal vs. dual view) l,lg = loss(h, y) if verbose: print('training loss: ' + str(np.mean(l))) print('eta: ' + str(eta)) r,rg = reg(w, lbda) g = lg + rg if g_old is not None: #eta = eta*(np.dot(g_old.T,g_old))/(np.dot((g_old - g).T, g_old)) # MODIFY eta = eta*(np.dot(np.dot(g_old.T,K),g_old))/(np.dot((g_old - g).T, g_old)) # hint: gram matrix K changes scalar product from <x, x'> = x^T x to x^T K x w = w - eta*g if (np.linalg.norm(eta*g)<tol): break g_old = g return w, K ###Output _____no_output_____ ###Markdown The adjusted inference function is given as (for binary classification): ###Code def predict(alpha, X, X_train, k): K = build_dtw_gram_matrix(X_train, X, k) y_pred = np.dot(K, alpha) y_pred[y_pred >= 0] = 1 y_pred[y_pred < 0] = -1 return y_pred ###Output _____no_output_____ ###Markdown 3. DTW Kernel SVM in ActionNow we put our results from section $1$ and $2$ together to use a kernelized SVM for a classification task on sequence data. ###Code import os from scipy.io import loadmat # for matlab *.mat format, for modern once need to install hdf5 file_path = "laser_small.mat" # file path for multi os support mat = loadmat(file_path) X = mat['X'] y = mat['Y'].reshape(50) print (X.shape, y.shape) ###Output (50, 60) (50,) ###Markdown We have only 50 training instances and thus only go for a simple train-test-split (we cannot afford a simple train-val-test-split). If we try several kernels, we are actually tuning a hyperparameter and thus are fitting on the test set. The solution to this problem would be the nested cross-validation procedure, which we learn in the evaluation lecture. ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) print (X_train.shape, X_test.shape) alpha, K = learn_reg_kernel_ERM(X_train, y_train, lbda=1, k=k2, max_iter=20000, eta=1, tol=1e-3, verbose=True) ###Output training loss: 1.2790708942897533 eta: 1 training loss: 0.42424242424242425 eta: 1 training loss: 0.5390841027436225 eta: 0.7579550781079082 training loss: 0.5757575757575758 eta: 1.0 training loss: 0.4134603356701362 eta: 0.29754494016030597 training loss: 0.45067732993010673 eta: 0.22931378401702648 training loss: 0.5757575757575758 eta: 1.0000000000000002 training loss: 0.474009553849984 eta: 0.18653804016391834 training loss: 0.4900055657389712 eta: 0.1572120183674418 training loss: 0.5757575757575758 eta: 0.9999999999999994 ###Markdown And evaluation of the model. ###Code y_pred = predict(alpha, X_train, X_train, k2) print ("Training Accuracy: {}".format(np.mean(y_train == y_pred))) print ("Test Accuracy: {}".format(np.mean(y_test == predict(alpha,X_train, X_test, k2)))) print ("Shape of alpha {}".format(alpha.shape)) ###Output Training Accuracy: 0.9696969696969697 Test Accuracy: 0.7647058823529411 Shape of alpha (33,) ###Markdown We see that the training accuracy is far better than the test accuracy. This *could* - but does not have to - mean that we are overfitting. Vary the choices of the kernel functions, regularization parameters and kernel smoothing parameters (the $\lambda$ in the definition of $k_{\text{DTW}}$). In the rest of the notebook you learn how you can draw learning curves we have discussed in the tutorial. To be able to use the helper function, the estimator needs to be wrapped in a scikit-learn conform way. You can find and use the example class KernelEstimator. ###Code #from sklearn.learning_curve import learning_curve from sklearn.model_selection import learning_curve def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=10, # list of floats that describe ratio of test data sets tried # OR an int = # how many trials scoring=None): if type(train_sizes) == int: train_sizes=np.linspace(.1, 1.0, train_sizes) plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes, scoring=scoring) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") if cv is not None: plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") if cv is not None: plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt from sklearn.base import BaseEstimator class KernelEstimator(BaseEstimator): def __init__(self, k, lbda): self.k = k self.lbda = lbda def fit(self, X, y): self._X_train = X self._alpha, _ = learn_reg_kernel_ERM(X, y, lbda=self.lbda, k=self.k, max_iter=20000, eta=1, tol=1e-3) return self def predict(self, X): return predict(self._alpha, self._X_train, X, self.k) def score(self, X, y): y_pred = self.predict(X) return np.mean(y == y_pred) ###Output _____no_output_____ ###Markdown Exercise 4:Vary the choices of the kernel functions, regularization parameters and kernel smoothing parameters (the $\lambda$ in the definition of $k_{\text{DTW}}$). ###Code estimator = KernelEstimator(k2,2) # MODIFY estimator.fit(X_train, y_train) print("Accuracy {}".format(estimator.score(X_train, y_train))) #plot_learning_curve(KernelEstimator(k2, 2.0), 'Euclidean distance DTW, lambda = 1.0', X_train, y_train, cv=None, scoring="accuracy")#, train_sizes=[0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) estimator1 = KernelEstimator(k1,1.0) # MODIFY estimator.fit(X_train, y_train) print("Accuracy {}".format(estimator.score(X_test, y_test))) estimator2 = KernelEstimator(k3,1.5) # MODIFY estimator.fit(X_train, y_train) print("Train Accuracy {}".format(estimator.score(X_train, y_train))) print("Test Accuracy {}".format(estimator.score(X_test, y_test))) ###Output Train Accuracy 0.42424242424242425 Test Accuracy 0.4117647058823529
handon-ml2/plot_ols_in_class_05.2020.ipynb
###Markdown Linear Regression ExampleThis example uses the only the first feature of the `diabetes` dataset, inorder to illustrate a two-dimensional plot of this regression technique. Thestraight line can be seen in the plot, showing how linear regression attemptsto draw a straight line that will best minimize the residual sum of squaresbetween the observed responses in the dataset, and the responses predicted bythe linear approximation.The coefficients, the residual sum of squares and the variance score are alsocalculated. ###Code from sklearn import linear_model reg = linear_model.LinearRegression() regLasso = linear_model.Lasso() import random X = [[n] for n in range(20)] # for sci-kit we need even 1-d data to be inside a list(or ndarray) X y_truth = [3.4*el[0]+5.2 for el in X] y = [3.4*el[0]+5.2-3+6*random.random() for el in X] # so our function should be f(x) = 3.4x+5.2 + plus some noise y import matplotlib.pyplot as plt plt.scatter(range(20),y) reg.fit(X,y) regLasso.fit(X,y) regLasso.intercept_,regLasso.coef_ # we can compare our R2 score for different algorithms and choose the one with better fit r2_score(y_truth, regLasso.predict(X)) r2_score(y_truth, reg.predict(X)) reg.intercept_ reg.coef_ plt.scatter(range(20),y) plt.plot(range(20),[x*reg.coef_+reg.intercept_ for x in range(20)], color = "red" ) plt.show() # we did not have to calculate the results, we could have used predict plt.scatter(range(20),y) plt.plot(range(20),reg.predict(X), color = "red" ) plt.show() reg.predict([[100]]) import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score datasets. #many popular datasets included irises, wine, housing, diabetes # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] #i get third column len(diabetes_X), diabetes_X[:5] print(diabetes.DESCR) sum(diabetes_X) # normalized min(diabetes_X), max(diabetes_X) # this is our y the measurement we are trying to predict diabetes.target[:10] diabetes.data.shape diabetes.data[:10] diabetes_X.shape print(diabetes.DESCR) type(diabetes) diabetes.feature_names import pandas as pd df = pd.DataFrame(diabetes.data, columns = diabetes.feature_names) df.head() df['progress'] = diabetes.target df.head() df['sex'].unique() df['sex'].sum() df['age'].sum() df.sum() (df**2).sum() len(df['age'].unique()) df['age'].sum() diabetes.data[:10] print(diabetes.DESCR) diabetes_X[:5] diList = list(diabetes_X) diList[:5] diList2 = [el[0] for el in diabetes_X] diList2[:5] diX = pd.Series(diList2) diX.head() diX.describe() diabetes_X.mean() diabetes_X.std() diabetes_X.max(),diabetes_X.min() # Exercise load https://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt df = pd.read_csv('https://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt', sep='\t') df.head() df.Y.describe() df.BMI.describe() df['BMI'].describe() df['BMI'][:-20] # Split the data into training/testing sets diabetes_X_train = df['BMI'][:-20] diabetes_X_test = df['BMI'][-20:] # Split the targets into training/testing sets diabetes_y_train = df['Y'][:-20] diabetes_y_test = df['Y'][-20:] type(diabetes_X_train) diabetes_X_train[:5] # for small data sets we could use regular python list of lists myX = [] for x in diabetes_X_train: myX.append([x]) myX[:5] [[x] for x in diabetes_X_train] # might be more readable to use line comprehension type(diabetes_X_train.values) diabetes_X_train.values[:5] # just a regular 1D array but we need 2d array! # for larger data sets we stick with numpy ndarray because of efficiency (speed and space) # remember for single feature /column we need to add [[],[],[]] X = diabetes_X_train.values.reshape(-1,1) X[:5] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(X, diabetes_y_train) regr.intercept_ regr.coef_ # thus or fitting formula is 10.112x - 113.804 ... # for testing we also need to reshape our answers X_test = diabetes_X_test.values.reshape(-1,1) X_test[:5] # Make predictions using the testing set # we make our model prove its worth here! so rubber meets the road here :) diabetes_y_pred = regr.predict(X_test) # The coefficients #ax + b # a == regr.coef_ print('Coefficients: ', regr.coef_) #ax + b # b == regr.intercept_ regr.intercept_ type(r2_score) print("Mean squared error: %.2f" % mean_squared_error(diabetes_y_test, diabetes_y_pred)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred)) type(diabetes_y_test) # Plot outputs plt.scatter(X_test, diabetes_y_test, color='blue') plt.plot(X_test, diabetes_y_pred, color='red', linewidth=3) # plt.xticks(()) plt.xlabel("BMI") # plt.yticks(()) plt.ylabel("Progress after year") plt.show() print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # Make predictions using the testing set diabetes_y_pred = regr.predict(diabetes_X_test) # The coefficients print('Coefficients: \n', regr.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(diabetes_y_test, diabetes_y_pred)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3) # plt.xticks(()) # plt.yticks(()) plt.show() print(max(X)) def plotit(X,y_test,y_pred): plt.scatter(X, y_test, color='black') plt.plot(X, y_pred, color='blue', linewidth=2) xstep = np.around((max(X)-min(X))/10,decimals=0) ystep = np.around((max(y_test)-min(y_test))/10,decimals=-1) print(xstep,ystep) plt.xticks(np.arange(np.around(min(X), decimals=-1), max(X)+10, xstep)) plt.yticks(np.arange(np.around(min(y_test), decimals=-1), max(y_test), ystep)) plt.show() plotit(diabetes_X_test, diabetes_y_test, diabetes_y_pred) plotit(X_test, diabetes_y_test, diabetes_y_pred) bmi_y_pred = diabetes_y_pred plotit(X_test, diabetes_y_test, bmi_y_pred) df.columns BP_train = df['BP'].values[:-20] BP_train = BP_train.reshape(-1,1) BP_train[:5] BP_test = df['BP'].values[-20:] BP_test = BP_test.reshape(-1,1) BP_test[:5] regrBP = linear_model.LinearRegression() type(regrBP) regrBP.fit(BP_train, diabetes_y_train) diabetes_X_test[:5] type(diabetes.data) predictBP = regrBP.predict(BP_test) len(predictBP) plotit(BP_test, diabetes_y_test, predictBP) X_test X_train = df[['BMI', 'BP']][:-20] X_train.head(),len(X_train) type(X_train) X_train.head() X_test = df[['BMI', 'BP']][-20:] len(X_test) # Train the model using the training sets regr.fit(X_train, diabetes_y_train) y_pred = regr.predict(X_test) # The coefficients print('Coefficients: \n', regr.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(diabetes_y_test, y_pred)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % r2_score(diabetes_y_test, y_pred)) df['BP'].describe() df['BMI'].describe() from sklearn.model_selection import train_test_split # d_train, d_test = train_test_split(diab, test_size=0.2, random_state=42) # if i want a specific column(s) only X_train, X_test, y_train, y_test = train_test_split(diabetes.data[:,2:4], diabetes.target, test_size=0.2, random_state=42) X_train[:5], y_train regr.fit(X_train, y_train) y_predict = regr.predict(X_test) X_test[:5] single_predict = regr.predict([[5, 27]]) single_predict r2_score(y_test, y_predict) mean_squared_error(y_test, y_predict) type(split) split diabetes.data.shape df.head() df.corr() corrdf = df.corr() print(diabetes.DESCR) corrdf.sort_values(['Y'],ascending=False) # our X inputs = df[['BMI','S5','BP','S4']] X_train, X_test, y_train, y_test = train_test_split(inputs, df['Y'], test_size=0.2, random_state=42) regr.fit(X_train,y_train) y_predict = regr.predict(X_test) r2_score(y_test, y_predict), mean_squared_error(y_test, y_predict) def getScore(regr, X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) regr.fit(X_train,y_train) y_predict = regr.predict(X_test) return r2_score(y_test, y_predict), mean_squared_error(y_test, y_predict) getScore(regr, inputs, df["Y"]) print(regr ) X = inputs y = df["Y"] ridge = linear_model.Ridge(alpha=.5) getScore(ridge, X, y) reglist = [ linear_model.LinearRegression(), linear_model.Ridge(alpha=.5), linear_model.Lasso(alpha=0.1), linear_model.LassoLars(alpha=.1) ] for reg in reglist: print(reg) print(getScore(reg, X, y)) print('*'*40) dfc = df.drop(['SEX'], axis=1) dfc.head() dfc_X = dfc.drop(['Y'], axis=1).values dfc_X[:5] # alternative to filter for all columns except one dfc_Xb = dfc[[col for col in dfc.columns if col != "Y"]].values dfc_Xb[:5] # I avoided doing reshape(-1,1) dfc_y = dfc[['Y']].values dfc_y[:5] # https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.htmldfc dfc_X_train, dfc_X_test, dfc_y_train, dfc_y_test = train_test_split(dfc_X, dfc_y, test_size=0.2, random_state=42) dfc_X_train.shape dfc_y_test.shape regressor = linear_model.LinearRegression() regressor.fit(dfc_X_train, dfc_y_train) regressor.coef_ regressor.intercept_ dfc_predict = regressor.predict(dfc_X_test) mean_squared_error(dfc_y_test, dfc_predict) # # Explained variance score: 1 is perfect prediction # print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred)) print(f"Variance score: {r2_score(dfc_y_test, dfc_predict)} ") # we could test multiple regressor models with this function def getScore(X, y, regressor=linear_model.LinearRegression(), random_state=43): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) regressor.fit(X_train, y_train) predictions = regressor.predict(X_test) mse = mean_squared_error(y_test, predictions) variance = r2_score(y_test, predictions) return mse, variance getScore(dfc_X, dfc_y) getScore(dfc_X, dfc_y, regressor=linear_model.LassoCV()) getScore(dfc_X, dfc_y, regressor=linear_model.LassoLars(alpha=.1)) ###Output _____no_output_____
_notebooks/2018-05-24-who-needs-loss-functions.ipynb
###Markdown "Who Needs Loss Functions? Mixing Manual and Automatic Differentiation"> "Exploring mixing manual and automatic differentiation"- toc: true- branch: master- badges: false- comments: false- categories: [deep learning, pytorch]- hide: false- search_exclude: false- image: images/blog_posts/who_needs_loss_functions.png- redirect_from: blog/who_needs The purpose of this post is to demonstrate that sometimes while using modern deep learning frameworks such as PyTorch or Tensorflow it's useful to not rely wholly on automatic differentiation.The example application I'll use is regression where the labels/targets, conditional on the input, are sampled from an exponential family distribution, and where we train the network by minimizing the negative log-likelihood of the data. I.e., we'll deal with non-linear Generalized Linear Models (GLMs), or GLMs with learned representations. This encompasses regression with squared loss, Poisson regression, and classification with cross-entropy loss, the three examples I'll use in this post.I'll show that by doing part of the backpropagation manually, we can avoid explicitly specifying a loss function, and the only thing we'll have to do to switch between label distributions is change the activation function used on the final layer. I'll use PyTorch, but the following can be achieved in TensorFlow. Setting up Synthetic DatasetsFirst we need some data. Inputs will be scalar. For regression with squared loss, we'll fit a simple sin wave (with Gaussian noise). For binary classification and Poisson regression we'll fit appropriate transformations of the same data with appropriate error distributions. (Don't worry too much about the code in this block; you can skip right ahead to the plots of the data immediately below.) ###Code #collapse-show import numpy as np import matplotlib.pyplot as plt import torch %matplotlib inline num_examples = 400 X = np.random.random(num_examples) X1 = torch.unsqueeze(torch.tensor(X, dtype=torch.float32), 1) y = np.sin(10 * X) # Labels for regression with Gaussian noise gaussian_regression_y = np.random.normal(loc=y, scale=0.2) # Labels for binary classification (Categorical noise) class_1_probabilities = 1 / (1 + np.exp(-3.5 * y)) classification_y = np.random.binomial(1, p=class_1_probabilities) classification_y_one_hot = np.zeros((num_examples, 2)) classification_y_one_hot[np.arange(num_examples), classification_y] = 1 # Labels for Poisson regression lambdas = 2 * np.exp(y) poisson_regression_y = np.random.poisson(lam=lambdas) from collections import OrderedDict datasets = OrderedDict() datasets['Gaussian regression'] = {'data': torch.unsqueeze(torch.tensor(gaussian_regression_y, dtype=torch.float32), 1), 'plotting_data': gaussian_regression_y} datasets['Classification'] = {'data': torch.tensor(classification_y_one_hot, dtype=torch.float32), 'plotting_data': classification_y} datasets['Poisson regression'] = {'data': torch.unsqueeze(torch.tensor(poisson_regression_y, dtype=torch.float32), 1), 'plotting_data': poisson_regression_y} def plot_data(regression_type, X, y, predictions=None): plt.scatter(X, y, s=80, label="True labels", alpha=0.2) if predictions is not None: if regression_type == "Classification": predictions = np.argmax(predictions, axis=1) plt.scatter(X, predictions, s=10, label="Predictions") plt.xlabel("x") plt.ylabel("y") plt.title("{} data".format(regression_type)) plt.legend() fig = plt.figure(figsize=(17,4.4)) for data_i, dataset_key in enumerate(datasets.keys()): data = datasets[dataset_key]['plotting_data'] fig.add_subplot(1, 3, data_i + 1) plot_data(dataset_key, X, data) ###Output _____no_output_____ ###Markdown Defining the NetworkNow we'll define a simple, small feed-forward neural network with dense connectivity and ReLU activation functions. We'll use the same neural network for each of our regression problem types. ###Code import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self, output_dim=1): super(Net, self).__init__() self.fc1 = nn.Linear(1, 30) self.fc2 = nn.Linear(30, 20) self.fc3 = nn.Linear(20, output_dim) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ###Output _____no_output_____ ###Markdown A Useful Property of Natural Exponential Family DistributionsThe Gaussian, Categorical, and Poisson distributions are all instances of the natural exponential family (a subset of the exponential family) of distributions. This means that their probability functions can be expressed as$$q(y) = h(y) \exp{(\eta \cdot y - A(\eta))} \quad ,$$where $\eta$ is called the *natural parameter* of the distribution and $A$, the *log-partition function*, simply normalizes the probability function such that it sums/integrates to $1$. For each function in the exponential family, there exists a *canonical link function* $f$ which gives the relationship between the natural parameter $\eta$ and the mean of the distribution:$$\mathbb{E}_q[y] = \sum y \cdot q(y) = f^{-1}(\eta) \quad .$$For example, for labels following a Gaussian distribution, the inverse link function is the identity function. For the Categorical distribution, it's the softmax function (in which case $\eta$ is the vector of logits). For the Poisson distribution, it's the exponential function.For each of the regression problems dealt with in this post (Gaussian, Categorical, Poisson), the label $y$ is, *conditional on the input* $x$, sampled from a natural exponential family distribution. I.e., there is some function $\eta(x)$ such that the label $y$ for input $x$ has probability function$$q(y \mid \eta(x)) \quad .$$ Often, what we want to estimate is, conditional on the input $x$, the expected value of the label $\mathbb{E}_q[y]$. Call this estimate $\hat{y}(x)$. This will be the (post-activation) output of our neural network. Suppose we use the inverse link function $f^{-1}$ as the activation function of the final layer of the network. In this case, the pre-activation final layer will be an estimate of the natural parameter, which we'll call $\hat{\eta}(x)$. (I.e., we're talking about fitting Generalised Linear Models, but where the natural parameter estimate $\hat{\eta}$ is a *nonlinear* function of the inputs.) Suppose we use the negative log-likelihood of the true labels as a loss function $L$. For a single example with input $x$ and label $y$:$$L = - \ln q(y \mid \hat{\eta}(x)) = - \ln h(y) - \hat{\eta}(x) \cdot y + A(\hat{\eta}(x)) \quad .$$ In order to do parameter updates by gradient descent, we need the derivatives of the loss with respect to the network parameters, which can be decomposed by the chain rule:$$\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial \hat{\eta}} \frac{\partial \hat{\eta}}{\partial \theta} \quad, $$where $\theta$ is a particular network parameter. For every natural exponential family label distribution, the derivative of this loss with respect to the natural parameter is the same: $$\frac{\partial L}{\partial \hat{\eta}} = \mathbb{E}_\hat{\eta}[y] - y = \hat{y} - y \quad . $$ The upshot of this is that instead of explicitly defining the loss function $L$ to be the negative log-likelihood function for the relevant label distribution and doing backpropagation from the loss, we can instead define $\partial L / \partial \hat{\eta} = \hat{y} - y$ (implicitly defining the loss by our choice of activation function on the final layer) and start backpropagation from the natural parameter estimate layer. Essentially we're doing one step of the backpropagation manually, and relying on auto-differentation for the rest. An Example with Gaussian Distributed LabelsIn the following code, we fit the Gaussian distributed data by explicitly specifying and minimising a mean-squared error loss function (equivalent up to irrelevant constants to the negative log-likelihood for a Gaussian target distribution). We won't worry about evaluating on a validation set. ###Code import torch.optim as optim torch.manual_seed(500) net = Net() y = datasets['Gaussian regression']['data'] optimizer = optim.SGD(net.parameters(), lr=0.2) loss_function = nn.MSELoss() for i in range(5000): optimizer.zero_grad() eta_hat = net(X1) y_hat = eta_hat loss = 0.5 * loss_function(y_hat, y) loss.backward() optimizer.step() if i % 500 == 0: print("Epoch: {}\tLoss: {}".format(i, loss.item())) plot_data("Gaussian regression", X, y, y_hat.detach()) ###Output Epoch: 0 Loss: 0.23857589066028595 Epoch: 500 Loss: 0.13250748813152313 Epoch: 1000 Loss: 0.07796521484851837 Epoch: 1500 Loss: 0.047447897493839264 Epoch: 2000 Loss: 0.032297104597091675 Epoch: 2500 Loss: 0.02540348283946514 Epoch: 3000 Loss: 0.02224355936050415 Epoch: 3500 Loss: 0.02245643362402916 Epoch: 4000 Loss: 0.022122113034129143 Epoch: 4500 Loss: 0.01919456571340561 ###Markdown Compare the above to the result of running the following code, in which instead of doing backpropagation from the loss, we do backpropagation from the natural parameter prediction $\hat{\eta}$ ($\texttt{eta}$ in the code), while setting the accumulated backprop gradient explicitly to$$\frac{1}{\text{batch_size}} * (\hat{y} - y) \quad.$$Note that we don't need to specify a loss function at all in the following, and we do so only so that the loss can be reported. For optimisation purposes, the loss function has been **implicitly** set to the negative log-likelihood for the Gaussian distribution by choosing the appropriate inverse link function (the identity function, in this case). ###Code torch.manual_seed(500) net = Net() optimizer = optim.SGD(net.parameters(), lr=0.2) loss_function = nn.MSELoss() for i in range(5000): optimizer.zero_grad() eta_hat = net(X1) y_hat = eta_hat # Specifying the loss function is not strictly necessary; it's done here so that the value can be reported loss = 0.5 * loss_function(y_hat, y) eta_hat.backward(1.0/num_examples * (y_hat - y)) optimizer.step() if i % 500 == 0: print("Epoch: {}\tLoss: {}".format(i, loss.item())) plot_data("Gaussian regression", X, y, y_hat.detach()) ###Output Epoch: 0 Loss: 0.23857589066028595 Epoch: 500 Loss: 0.13250748813152313 Epoch: 1000 Loss: 0.07796521484851837 Epoch: 1500 Loss: 0.047447897493839264 Epoch: 2000 Loss: 0.032297104597091675 Epoch: 2500 Loss: 0.02540348283946514 Epoch: 3000 Loss: 0.02224355936050415 Epoch: 3500 Loss: 0.02245643362402916 Epoch: 4000 Loss: 0.022122113034129143 Epoch: 4500 Loss: 0.01919456571340561 ###Markdown We achieve exactly the same results as when explicitly specifying the loss function. The General CaseThe following code demonstrates how easy it is to switch between different types of regression in this way. We pass through the main loop three times, once for regression with Gaussian distributed labels, once for classification, and once for regression with Poisson distributed labels. The only differences between these cases (marked "\ \*\*\*" in the code) are:- Loading the appropriate data- Setting the network output dimension (2 for binary classification, 1 for the regression examples)- Setting the final layer activation function to be the appropriate inverse canonical link function, which implicitly sets the loss to be minimised to be the negative log-likelihood for the corresponding distribution ###Code datasets['Gaussian regression'].update({'final layer activation': lambda x: x, 'output_dim': 1}) datasets['Classification'].update({'final layer activation': nn.Softmax(dim=1), 'output_dim': 2}) datasets['Poisson regression'].update({'final layer activation': torch.exp, 'output_dim': 1}) fig = plt.figure(figsize=(17,4.4)) for regression_type_i, regression_type in enumerate(datasets.keys()): # *** Difference 1: data loading y = datasets[regression_type]['data'] plotting_y = datasets[regression_type]['plotting_data'] # *** Difference 2: setting the network output dimension net = Net(output_dim = datasets[regression_type]['output_dim']) optimizer = optim.SGD(net.parameters(), lr=0.2) for i in range(5000): optimizer.zero_grad() eta_hat = net(X1) # *** Difference 3: The inverse of the canonical link function for the # label distribution is used as the final layer activation function. y_hat = datasets[regression_type]['final layer activation'](eta_hat) # Using the appropriate activation above means that the following results in # implicitly minimizing the negative log-likelihood of the true labels eta_hat.backward(1.0/num_examples * (y_hat - y)) optimizer.step() fig.add_subplot(1, 3, regression_type_i + 1) plot_data(regression_type, X, plotting_y, y_hat.detach()) ###Output _____no_output_____
AIDA2_Files/Lab Activities/58090_LabNo06_Wagler.ipynb
###Markdown Topic 05.2: Perceptrons, Gradient Descent, and Backpropagation$_{\text{©D.J. Lopez | 2021 | Fundamentals of Machine Learning}}$ Laboratory Activity1. For the laboratory activity, obtain a dataset of your liking from a data source. Explain the purpose of the dataset and mention any publication if it is obtained from the source. Provide a needs statement and significance for the dataset.2. Identify an algorithm or method in performing a single or multiple variable classification using the Perceptron alogrithm. 3. You must re-create your Perceptron algorithm with Gradient Descent and Backpropagation using your own code in a separate Google Colab. However, you are required to observe the following:>* Enforce object-oriented programming by implementing at least two of the pillars of OOP in the entirety of the solution.* Dedicated functions for training, predicting, and evaluating the solution.* A DataFrame of the metrics of the solution* A visualization of the solution’s results. NOTES: https://github.com/dyjdlopez/fund-of-aiml/blob/main/activities/05%20-%20Classification/fund_aiml_05v1_lec2_2021.ipynb **Purpose of the Dataset** The dataset uploaded by Caner Dabakoglu in Kaggle in 2019 aims to classify if patients have heart disease or not according to the features presented on the dataset. The purpose of this dataset is to try to predict if a patient has heart disease or not **Needs statement** There are many factors to that come into play when knowing if patients have heart disease or not. Some risk factors cannot be controlled such as the age and family history. But there are also factors that can increase the likelihood of getting a heart disease e.g. High Blood Pressure and High Cholesterol. Knowing these conditions will help them know if they have a high chance of getting one. Predicting the likelihood of it happening can help them take the necessary steps in lowering the risks by changing certain factors that can be controlled in their lifestyle. **Significance** The significance of this dataset is to know if a person has heart disease or not. Knowing early on if a patient is prone to heart disease can help with stopping or mitigating the problems that the heart disease can cause. Heart disease is rampant in Americans wherein almost half of the population (47%) have at least 1 risk factors for heart disease such as high cholesterol, high blood pressure, and smoking. ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import math from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import os heartDisease = pd.read_csv("/content/heart_disease.csv") y = heartDisease.target.values x_data = heartDisease.drop(['target'], axis = 1) x = (x_data - np.min(x_data)) / (np.max(x_data) - np.min(x_data)).values x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.2,random_state=0) x_train,y_train = x_train.T,y_train.T x_test,y_test = x_test.T,y_test.T def initialize(dimension): weight = np.full((dimension,1),0.01) bias = 0.0 return weight,bias def sigmoid(z): sig = 1/(1+ np.exp(-z)) return sig def propagation(weight,bias,x_train,y_train): # FORWARD PROPAGATION sig = sigmoid(np.dot(weight.T,x_train) + bias) loss = -(y_train*np.log(sig) + (1-y_train)*np.log(1-sig)) cost = np.sum(loss) / x_train.shape[1] # BACKWARD PROPAGATION dw = np.dot(x_train,((sig-y_train).T))/x_train.shape[1] db = np.sum(sig-y_train)/x_train.shape[1] grads = {"Derivative Weight" : dw, "Derivative Bias" : db} return cost,grads def optimize(weight,bias,x_train,y_train,learningRate,iteration, print_cost = True) : costs = [] index = [] for i in range(iteration): # Cost and gradient calculation cost,grads = propagation(weight,bias,x_train,y_train) # Retrieve derivatives from grads weight = weight - learningRate * grads["Derivative Weight"] bias = bias - learningRate * grads["Derivative Bias"] costs.append(cost) index.append(i) if print_cost and i % 10 == 0: print ("Cost after iteration %i: %f" %(i, cost)) parameters = {"weight": weight,"bias": bias} print("iteration:",iteration) print("cost:",cost) plt.plot(index,costs) plt.xlabel("Number of Iteration") plt.ylabel("Cost") plt.show() return parameters, grads def predict(weight,bias,x_test): z = np.dot(weight.T,x_test) + bias sig = sigmoid(z) preds = np.zeros((1,x_test.shape[1])) for i in range(sig.shape[1]): if sig[0,i] <= 0.5: preds[0,i] = 0 else: preds[0,i] = 1 return preds def model(x_train,y_train,x_test,y_test,learningRate,iteration): dimension = x_train.shape[0] weight,bias = initialize(dimension) parameters, gradients = optimize(weight,bias,x_train,y_train,learningRate,iteration) predsTrain = predict(parameters["weight"],parameters["bias"],x_train) predsTest = predict(parameters["weight"],parameters["bias"],x_test) print(" Train Accuracy: {:.2f}%".format((100 - np.mean(np.abs(predsTrain - y_train))*100))) print(" Test Accuracy: {:.2f}%".format((100 - np.mean(np.abs(predsTest - y_test))*100))) neuronModel = model(x_train,y_train,x_test,y_test,1,300) logiReg = LogisticRegression() logiReg.fit(x_train.T,y_train.T) sigmoid_lr = logiReg.predict(x_test.T) c_matrix = confusion_matrix(y_test,sigmoid_lr) sns.heatmap(c_matrix,annot=True,cmap="inferno") plt.xlabel("Ground Truths") plt.ylabel("Predicted") plt.title("Confusion Matrix") ###Output _____no_output_____
workspace/realtime.ipynb
###Markdown Official documentation:http://powietrze.gios.gov.pl/pjp/content/api ###Code %matplotlib inline import requests from pandas.io.json import json_normalize import pandas as pd import numpy as np ###Output _____no_output_____ ###Markdown Getting all stations: ###Code r = requests.get('http://api.gios.gov.pl/pjp-api/rest/station/findAll') allStations = json_normalize(r.json()) print(allStations[allStations["city.name"] == u"Gdańsk"]) ###Output addressStreet city city.commune.communeName \ 27 ul. Powstańców Warszawskich NaN Gdańsk 46 ul. Leczkowa NaN Gdańsk 47 ul. Ostrzycka NaN Gdańsk 120 ul. Kaczeńce NaN Gdańsk 143 ul. Wyzwolenia NaN Gdańsk city.commune.districtName city.commune.provinceName city.id city.name \ 27 Gdańsk POMORSKIE 218.0 Gdańsk 46 Gdańsk POMORSKIE 218.0 Gdańsk 47 Gdańsk POMORSKIE 218.0 Gdańsk 120 Gdańsk POMORSKIE 218.0 Gdańsk 143 Gdańsk POMORSKIE 218.0 Gdańsk dateEnd dateStart gegrLat gegrLon id \ 27 None 1996-10-01 00:00:00 54.353336 18.635283 729 46 None 1998-10-01 00:00:00 54.380279 18.620274 736 47 None 1998-05-01 00:00:00 54.328336 18.557781 733 120 None 1996-10-01 00:00:00 54.367778 18.701111 730 143 None 1998-09-01 00:00:00 54.400833 18.657497 731 stationName 27 AM1 Gdańsk Śródmieście 46 AM8 Gdańsk Wrzeszcz 47 AM5 Gdańsk Szadółki 120 AM2 Gdańsk Stogi 143 AM3 Gdańsk Nowy Port ###Markdown Lets see what we have in "AM5 Gdańsk Szadółki" which has id: 733 ###Code stationId = 733 r = requests.get('http://api.gios.gov.pl/pjp-api/rest/station/sensors/' + str(stationId)) sensors = json_normalize(r.json()) print(sensors) ###Output id param.idParam param.paramCode param.paramFormula \ 0 4720 8 CO CO 1 4727 3 PM10 PM10 2 4723 6 NO2 NO2 3 4725 5 O3 O3 4 4730 1 SO2 SO2 param.paramName sensorDateEnd sensorDateStart stationId 0 tlenek węgla None 1998-05-01 00:00:00 733 1 pył zawieszony PM10 None 1998-05-01 00:00:00 733 2 dwutlenek azotu None 1998-05-01 00:00:00 733 3 ozon None 1998-05-01 00:00:00 733 4 dwutlenek siarki None 1998-05-01 00:00:00 733 ###Markdown Lets now see data about O3 concentration - sensorId = 4725 ###Code sensorId = 4725 r = requests.get('http://api.gios.gov.pl/pjp-api/rest/data/getData/' + str(sensorId)) concentration = json_normalize(r.json()) concentrationFrame = pd.DataFrame() concentrationFrame["dates"] = [d[u'date'] for d in concentration["values"].values.item()] concentrationFrame["values"] = [d[u'value'] for d in concentration["values"].values.item()] concentrationFrame.set_index(["dates"], inplace=True) #concentrationFrame.sort_index(inplace=True) # We cannot sort index, because it is not unique. There is 12 hours notation used, but without AM/PM distinction ;( # But we can just reverse it until API will be fixed concentrationFrame = concentrationFrame.iloc[::-1] print(concentrationFrame) concentrationFrame.plot(figsize=(15,5), grid=True) ###Output _____no_output_____ ###Markdown And overall air quality index for the same station ###Code r = requests.get('http://api.gios.gov.pl/pjp-api/rest/aqindex/getIndex/' + str(stationId)) r.json() allStations stationsId = allStations["id"] sid = list(stationsId) allsensors = pd.DataFrame() for station in sid: print(station) sensorlist = json_normalize(requests.get('http://api.gios.gov.pl/pjp-api/rest/station/sensors/' + str(station)).json()) print(sensorlist) print("--------------------------") allsensors = allsensors.append(sensorlist) #if station == 9000: # break allsensors allStations[["id", "gegrLat", "gegrLon"]] finalData = pd.merge(allsensors, allStations[["id", "gegrLat", "gegrLon"]], how='inner', left_on="stationId", right_on="id") def get_latest_measurement(sensorId): concentration = json_normalize(requests.get('http://api.gios.gov.pl/pjp-api/rest/data/getData/' + str(sensorId)).json()) concentrationFrame = pd.DataFrame() concentrationFrame["dates"] = [d[u'date'] for d in concentration["values"].values.item()] concentrationFrame["values"] = [d[u'value'] for d in concentration["values"].values.item()] concentrationFrame["dates"] = pd.to_datetime(concentrationFrame["dates"]) #print(concentrationFrame[concentrationFrame["dates"] == previousHourStr]["values"]) try: return_value = concentrationFrame[concentrationFrame["dates"] == previousHourStr]["values"].item() except ValueError: return_value = np.NaN #print(return_value) return return_value get_latest_measurement(sensorId=sensorId) import datetime previousHour = datetime.datetime.now() - datetime.timedelta(hours = 1) previousHourStr = previousHour.strftime('%Y-%m-%d %H:00:00') sdfasd[sdfasd["dates"] == previousHourStr]["values"].item() from tqdm import tqdm, tqdm_pandas tqdm_pandas(tqdm()) finalData["value"] = finalData["id_x"].progress_map(get_latest_measurement) finalData ###Output _____no_output_____
MovieLensDataExploration/MovieLens Project Questions.ipynb
###Markdown `Project - MovieLens Data Analysis`The GroupLens Research Project is a research group in the Department of Computer Science and Engineering at the University of Minnesota. The data is widely used for collaborative filtering and other filtering solutions. However, we will be using this data to act as a means to demonstrate our skill in using Python to “play” with data. `Objective:`- To implement the techniques learnt as a part of the course. `Learning Outcomes:`- Exploratory Data Analysis- Visualization using Python- Pandas – groupby, merging `Domain` - Internet and Entertainment**Note that the project will need you to apply the concepts of groupby and merging extensively.** `Datasets Information:`*rating.csv:* It contains information on ratings given by the users to a particular movie.- user id: id assigned to every user- movie id: id assigned to every movie- rating: rating given by the user- timestamp: Time recorded when the user gave a rating*movie.csv:* File contains information related to the movies and their genre.- movie id: id assigned to every movie- movie title: Title of the movie- release date: Date of release of the movie- Action: Genre containing binary values (1 - for action 0 - not action)- Adventure: Genre containing binary values (1 - for adventure 0 - not adventure)- Animation: Genre containing binary values (1 - for animation 0 - not animation)- Children’s: Genre containing binary values (1 - for children's 0 - not children's)- Comedy: Genre containing binary values (1 - for comedy 0 - not comedy)- Crime: Genre containing binary values (1 - for crime 0 - not crime)- Documentary: Genre containing binary values (1 - for documentary 0 - not documentary)- Drama: Genre containing binary values (1 - for drama 0 - not drama)- Fantasy: Genre containing binary values (1 - for fantasy 0 - not fantasy)- Film-Noir: Genre containing binary values (1 - for film-noir 0 - not film-noir)- Horror: Genre containing binary values (1 - for horror 0 - not horror)- Musical: Genre containing binary values (1 - for musical 0 - not musical)- Mystery: Genre containing binary values (1 - for mystery 0 - not mystery)- Romance: Genre containing binary values (1 - for romance 0 - not romance)- Sci-Fi: Genre containing binary values (1 - for sci-fi 0 - not sci-fi)- Thriller: Genre containing binary values (1 - for thriller 0 - not thriller)- War: Genre containing binary values (1 - for war 0 - not war)- Western: Genre containing binary values (1 - for western - not western)*user.csv:* It contains information of the users who have rated the movies.- user id: id assigned to every user- age: Age of the user- gender: Gender of the user- occupation: Occupation of the user- zip code: Zip code of the use**`Please provide you insights wherever necessary.`** 1. Import the necessary packages - 2.5 marks ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown 2. Read the 3 datasets into dataframes - 2.5 marks ###Code data = pd.read_csv('Data.csv') item_data = pd.read_csv('item.csv') user_data = pd.read_csv('user.csv') ###Output _____no_output_____ ###Markdown 3. Apply info, shape, describe, and find the number of missing values in the data - 5 marks - Note that you will need to do it for all the three datasets seperately ###Code print('Info of data is: ') data.info() print('\n') print('Shape of data is: ') print(data.shape) print('\n') print('Description of data is: ') print(data.describe()) print('\n') print('No. of missing values in each column in the data is: ') print(data.isnull().sum()) print('\n') print('No. of missing values in all columns: ') print(sum(data.isnull().sum())) print('\n') print('Info of item_data is: ') item_data.info() print('\n') print('Shape of item_data is: ') print(item_data.shape) print('\n') print('Description of item_data is: ') print(item_data.describe()) print('\n') print('No. of missing values in each column in the item_data is: ') print(item_data.isnull().sum()) print('\n') print('No. of missing values in all columns: ') print(sum(item_data.isnull().sum())) print('\n') print('Info of user_data is: ') user_data.info() print('\n') print('Shape of user_data is: ') print(user_data.shape) print('\n') print('Description of user_data is: ') print(user_data.describe()) print('\n') print('No. of missing values in each column in the user_data is: ') print(user_data.isnull().sum()) print('\n') print('No. of missing values in all columns: ') print(sum(user_data.isnull().sum())) print('\n') ###Output Info of data is: <class 'pandas.core.frame.DataFrame'> RangeIndex: 100000 entries, 0 to 99999 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 user id 100000 non-null int64 1 movie id 100000 non-null int64 2 rating 100000 non-null int64 3 timestamp 100000 non-null int64 dtypes: int64(4) memory usage: 3.1 MB Shape of data is: (100000, 4) Description of data is: user id movie id rating timestamp count 100000.00000 100000.000000 100000.000000 1.000000e+05 mean 462.48475 425.530130 3.529860 8.835289e+08 std 266.61442 330.798356 1.125674 5.343856e+06 min 1.00000 1.000000 1.000000 8.747247e+08 25% 254.00000 175.000000 3.000000 8.794487e+08 50% 447.00000 322.000000 4.000000 8.828269e+08 75% 682.00000 631.000000 4.000000 8.882600e+08 max 943.00000 1682.000000 5.000000 8.932866e+08 No. of missing values in each column in the data is: user id 0 movie id 0 rating 0 timestamp 0 dtype: int64 No. of missing values in all columns: 0 Info of item_data is: <class 'pandas.core.frame.DataFrame'> RangeIndex: 1681 entries, 0 to 1680 Data columns (total 22 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 movie id 1681 non-null int64 1 movie title 1681 non-null object 2 release date 1681 non-null object 3 unknown 1681 non-null int64 4 Action 1681 non-null int64 5 Adventure 1681 non-null int64 6 Animation 1681 non-null int64 7 Childrens 1681 non-null int64 8 Comedy 1681 non-null int64 9 Crime 1681 non-null int64 10 Documentary 1681 non-null int64 11 Drama 1681 non-null int64 12 Fantasy 1681 non-null int64 13 Film-Noir 1681 non-null int64 14 Horror 1681 non-null int64 15 Musical 1681 non-null int64 16 Mystery 1681 non-null int64 17 Romance 1681 non-null int64 18 Sci-Fi 1681 non-null int64 19 Thriller 1681 non-null int64 20 War 1681 non-null int64 21 Western 1681 non-null int64 dtypes: int64(20), object(2) memory usage: 289.0+ KB Shape of item_data is: (1681, 22) Description of item_data is: movie id unknown Action Adventure Animation \ count 1681.000000 1681.000000 1681.000000 1681.000000 1681.000000 mean 841.841761 0.000595 0.149316 0.080309 0.024985 std 485.638077 0.024390 0.356506 0.271852 0.156126 min 1.000000 0.000000 0.000000 0.000000 0.000000 25% 422.000000 0.000000 0.000000 0.000000 0.000000 50% 842.000000 0.000000 0.000000 0.000000 0.000000 75% 1262.000000 0.000000 0.000000 0.000000 0.000000 max 1682.000000 1.000000 1.000000 1.000000 1.000000 Childrens Comedy Crime Documentary Drama \ count 1681.000000 1681.000000 1681.000000 1681.000000 1681.000000 mean 0.072576 0.300416 0.064842 0.029744 0.431291 std 0.259516 0.458576 0.246321 0.169931 0.495404 min 0.000000 0.000000 0.000000 0.000000 0.000000 25% 0.000000 0.000000 0.000000 0.000000 0.000000 50% 0.000000 0.000000 0.000000 0.000000 0.000000 75% 0.000000 1.000000 0.000000 0.000000 1.000000 max 1.000000 1.000000 1.000000 1.000000 1.000000 Fantasy Film-Noir Horror Musical Mystery \ count 1681.000000 1681.000000 1681.000000 1681.000000 1681.000000 mean 0.013087 0.014277 0.054729 0.033314 0.036288 std 0.113683 0.118667 0.227519 0.179507 0.187061 min 0.000000 0.000000 0.000000 0.000000 0.000000 25% 0.000000 0.000000 0.000000 0.000000 0.000000 50% 0.000000 0.000000 0.000000 0.000000 0.000000 75% 0.000000 0.000000 0.000000 0.000000 0.000000 max 1.000000 1.000000 1.000000 1.000000 1.000000 Romance Sci-Fi Thriller War Western count 1681.000000 1681.000000 1681.000000 1681.000000 1681.000000 mean 0.146936 0.060083 0.149316 0.042237 0.016062 std 0.354148 0.237712 0.356506 0.201189 0.125751 min 0.000000 0.000000 0.000000 0.000000 0.000000 25% 0.000000 0.000000 0.000000 0.000000 0.000000 50% 0.000000 0.000000 0.000000 0.000000 0.000000 75% 0.000000 0.000000 0.000000 0.000000 0.000000 max 1.000000 1.000000 1.000000 1.000000 1.000000 No. of missing values in each column in the item_data is: movie id 0 movie title 0 release date 0 unknown 0 Action 0 Adventure 0 Animation 0 Childrens 0 Comedy 0 Crime 0 Documentary 0 Drama 0 Fantasy 0 Film-Noir 0 Horror 0 Musical 0 Mystery 0 Romance 0 Sci-Fi 0 Thriller 0 War 0 Western 0 dtype: int64 No. of missing values in all columns: 0 Info of user_data is: <class 'pandas.core.frame.DataFrame'> RangeIndex: 943 entries, 0 to 942 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 user id 943 non-null int64 1 age 943 non-null int64 2 gender 943 non-null object 3 occupation 943 non-null object 4 zip code 943 non-null object dtypes: int64(2), object(3) memory usage: 37.0+ KB Shape of user_data is: (943, 5) Description of user_data is: user id age count 943.000000 943.000000 mean 472.000000 34.051962 std 272.364951 12.192740 min 1.000000 7.000000 25% 236.500000 25.000000 50% 472.000000 31.000000 75% 707.500000 43.000000 max 943.000000 73.000000 No. of missing values in each column in the user_data is: user id 0 age 0 gender 0 occupation 0 zip code 0 dtype: int64 No. of missing values in all columns: 0 ###Markdown 4. Find the number of movies per genre using the item data - 2.5 marks ###Code for genre in item_data.columns[3:]: print('The no. of movies under ', genre, ' is: ', item_data[genre].sum()) ###Output The no. of movies under unknown is: 1 The no. of movies under Action is: 251 The no. of movies under Adventure is: 135 The no. of movies under Animation is: 42 The no. of movies under Childrens is: 122 The no. of movies under Comedy is: 505 The no. of movies under Crime is: 109 The no. of movies under Documentary is: 50 The no. of movies under Drama is: 725 The no. of movies under Fantasy is: 22 The no. of movies under Film-Noir is: 24 The no. of movies under Horror is: 92 The no. of movies under Musical is: 56 The no. of movies under Mystery is: 61 The no. of movies under Romance is: 247 The no. of movies under Sci-Fi is: 101 The no. of movies under Thriller is: 251 The no. of movies under War is: 71 The no. of movies under Western is: 27 ###Markdown 5. Drop the movie where the genre is unknown - 2.5 marks ###Code df5 = item_data.drop(item_data[item_data['unknown'] == 1].index, inplace = False) print('Length of original data: ', len(item_data), ' and length data after deleting unknown genres is: ', len(df5)) ###Output Length of original data: 1681 and length data after deleting unknown genres is: 1680 ###Markdown 6. Find the movies that have more than one genre - 5 markshint: use sum on the axis = 1Display movie name, number of genres for the movie in dataframeand also print(total number of movies which have more than one genres) ###Code movie_count = len(item_data) movie_multiple_genres = 0 for movie_index in range(movie_count): movie_genre_count = item_data.iloc[movie_index:movie_index+1, 3:].sum(axis=1).array[0] if movie_genre_count > 1: movie_multiple_genres = movie_multiple_genres + 1 print('The movie ', item_data['movie title'][movie_index], 'has ', movie_genre_count , ' genres') print('No of movies with one or more genres: ', movie_multiple_genres) ###Output The movie Toy Story has 3 genres The movie GoldenEye has 3 genres The movie Four Rooms has 1 genres The movie Get Shorty has 3 genres The movie Copycat has 3 genres The movie Shanghai Triad (Yao a yao yao dao waipo qiao) has 1 genres The movie Twelve Monkeys has 2 genres The movie Babe has 3 genres The movie Dead Man Walking has 1 genres The movie Richard III has 2 genres The movie Seven (Se7en) has 2 genres The movie Usual Suspects, The has 2 genres The movie Mighty Aphrodite has 1 genres The movie Postino, Il has 2 genres The movie Mr. Holland's Opus has 1 genres The movie French Twist (Gazon maudit) has 2 genres The movie From Dusk Till Dawn has 5 genres The movie White Balloon, The has 1 genres The movie Antonia's Line has 1 genres The movie Angels and Insects has 2 genres The movie Muppet Treasure Island has 5 genres The movie Braveheart has 3 genres The movie Taxi Driver has 2 genres The movie Rumble in the Bronx has 3 genres The movie Birdcage, The has 1 genres The movie Brothers McMullen, The has 1 genres The movie Bad Boys has 1 genres The movie Apollo 13 has 3 genres The movie Batman Forever has 4 genres The movie Belle de jour has 1 genres The movie Crimson Tide has 3 genres The movie Crumb has 1 genres The movie Desperado has 3 genres The movie Doom Generation, The has 2 genres The movie Free Willy 2: The Adventure Home has 3 genres The movie Mad Love has 2 genres The movie Nadja has 1 genres The movie Net, The has 2 genres The movie Strange Days has 3 genres The movie To Wong Foo, Thanks for Everything! Julie Newmar has 1 genres The movie Billy Madison has 1 genres The movie Clerks has 1 genres The movie Disclosure has 2 genres The movie Dolores Claiborne has 2 genres The movie Eat Drink Man Woman has 2 genres The movie Exotica has 1 genres The movie Ed Wood has 2 genres The movie Hoop Dreams has 1 genres The movie I.Q. has 2 genres The movie Star Wars has 5 genres The movie Legends of the Fall has 4 genres The movie Madness of King George, The has 1 genres The movie Natural Born Killers has 2 genres The movie Outbreak has 3 genres The movie Professional, The has 4 genres The movie Pulp Fiction has 2 genres The movie Priest has 1 genres The movie Quiz Show has 1 genres The movie Three Colors: Red has 1 genres The movie Three Colors: Blue has 1 genres The movie Three Colors: White has 1 genres The movie Stargate has 3 genres The movie Santa Clause, The has 2 genres The movie Shawshank Redemption, The has 1 genres The movie What's Eating Gilbert Grape has 2 genres The movie While You Were Sleeping has 2 genres The movie Ace Ventura: Pet Detective has 1 genres The movie Crow, The has 3 genres The movie Forrest Gump has 3 genres The movie Four Weddings and a Funeral has 2 genres The movie Lion King, The has 3 genres The movie Mask, The has 3 genres The movie Maverick has 3 genres The movie Faster Pussycat! Kill! Kill! has 3 genres The movie Brother Minister: The Assassination of Malcolm X has 1 genres The movie Carlito's Way has 2 genres The movie Firm, The has 2 genres The movie Free Willy has 3 genres The movie Fugitive, The has 2 genres The movie Hot Shots! Part Deux has 3 genres The movie Hudsucker Proxy, The has 2 genres The movie Jurassic Park has 3 genres The movie Much Ado About Nothing has 2 genres The movie Robert A. Heinlein's The Puppet Masters has 2 genres The movie Ref, The has 1 genres The movie Remains of the Day, The has 1 genres The movie Searching for Bobby Fischer has 1 genres The movie Sleepless in Seattle has 2 genres The movie Blade Runner has 2 genres The movie So I Married an Axe Murderer has 3 genres The movie Nightmare Before Christmas, The has 3 genres The movie True Romance has 3 genres The movie Welcome to the Dollhouse has 2 genres The movie Home Alone has 2 genres The movie Aladdin has 4 genres The movie Terminator 2: Judgment Day has 3 genres The movie Dances with Wolves has 3 genres The movie Silence of the Lambs, The has 2 genres The movie Snow White and the Seven Dwarfs has 3 genres The movie Fargo has 3 genres The movie Heavy Metal has 5 genres The movie Aristocats, The has 2 genres The movie All Dogs Go to Heaven 2 has 3 genres The movie Theodore Rex has 1 genres The movie Sgt. Bilko has 1 genres The movie Diabolique has 2 genres The movie Moll Flanders has 1 genres The movie Kids in the Hall: Brain Candy has 1 genres The movie Mystery Science Theater 3000: The Movie has 2 genres The movie Operation Dumbo Drop has 4 genres The movie Truth About Cats & Dogs, The has 2 genres The movie Flipper has 2 genres The movie Horseman on the Roof, The (Hussard sur le toit, Le) has 1 genres The movie Wallace & Gromit: The Best of Aardman Animation has 1 genres The movie Haunted World of Edward D. Wood Jr., The has 1 genres The movie Cold Comfort Farm has 1 genres The movie Rock, The has 3 genres The movie Twister has 3 genres The movie Maya Lin: A Strong Clear Vision has 1 genres The movie Striptease has 2 genres The movie Independence Day (ID4) has 3 genres The movie Cable Guy, The has 1 genres The movie Frighteners, The has 2 genres The movie Lone Star has 2 genres The movie Phenomenon has 2 genres The movie Spitfire Grill, The has 1 genres The movie Godfather, The has 3 genres The movie Supercop has 2 genres The movie Bound has 4 genres The movie Kansas City has 1 genres The movie Breakfast at Tiffany's has 2 genres The movie Wizard of Oz, The has 4 genres The movie Gone with the Wind has 3 genres The movie Citizen Kane has 1 genres The movie 2001: A Space Odyssey has 4 genres The movie Mr. Smith Goes to Washington has 1 genres The movie Big Night has 1 genres The movie D3: The Mighty Ducks has 2 genres The movie Love Bug, The has 2 genres The movie Homeward Bound: The Incredible Journey has 2 genres The movie 20,000 Leagues Under the Sea has 4 genres The movie Bedknobs and Broomsticks has 3 genres The movie Sound of Music, The has 1 genres The movie Die Hard has 2 genres The movie Lawnmower Man, The has 3 genres The movie Unhook the Stars has 1 genres The movie Long Kiss Goodnight, The has 2 genres The movie Ghost and the Darkness, The has 2 genres The movie Jude has 1 genres The movie Swingers has 2 genres The movie Willy Wonka and the Chocolate Factory has 3 genres The movie Sleeper has 2 genres The movie Fish Called Wanda, A has 1 genres The movie Monty Python's Life of Brian has 1 genres The movie Dirty Dancing has 2 genres The movie Reservoir Dogs has 2 genres The movie Platoon has 2 genres The movie Weekend at Bernie's has 1 genres The movie Basic Instinct has 2 genres The movie Glengarry Glen Ross has 1 genres The movie Top Gun has 2 genres The movie On Golden Pond has 1 genres The movie Return of the Pink Panther, The has 1 genres The movie Abyss, The has 4 genres The movie Jean de Florette has 1 genres The movie Manon of the Spring (Manon des sources) has 1 genres The movie Private Benjamin has 1 genres The movie Monty Python and the Holy Grail has 1 genres The movie Wrong Trousers, The has 2 genres The movie Cinema Paradiso has 3 genres The movie Delicatessen has 2 genres The movie Empire Strikes Back, The has 6 genres The movie Princess Bride, The has 4 genres The movie Raiders of the Lost Ark has 2 genres The movie Brazil has 1 genres The movie Aliens has 4 genres The movie Good, The Bad and The Ugly, The has 2 genres The movie 12 Angry Men has 1 genres The movie Clockwork Orange, A has 1 genres The movie Apocalypse Now has 2 genres The movie Return of the Jedi has 5 genres The movie GoodFellas has 2 genres The movie Alien has 4 genres The movie Army of Darkness has 5 genres The movie Psycho has 3 genres The movie Blues Brothers, The has 3 genres The movie Godfather: Part II, The has 3 genres The movie Full Metal Jacket has 3 genres The movie Grand Day Out, A has 2 genres The movie Henry V has 2 genres The movie Amadeus has 2 genres The movie Raging Bull has 1 genres The movie Right Stuff, The has 1 genres The movie Sting, The has 2 genres The movie Terminator, The has 3 genres The movie Dead Poets Society has 1 genres The movie Graduate, The has 2 genres The movie Nikita (La Femme Nikita) has 1 genres The movie Bridge on the River Kwai, The has 2 genres The movie Shining, The has 1 genres The movie Evil Dead II has 4 genres The movie Groundhog Day has 2 genres The movie Unforgiven has 1 genres The movie Back to the Future has 2 genres The movie Patton has 2 genres The movie Akira has 4 genres The movie Cyrano de Bergerac has 3 genres The movie Young Frankenstein has 2 genres The movie This Is Spinal Tap has 3 genres The movie Indiana Jones and the Last Crusade has 2 genres The movie M*A*S*H has 2 genres The movie Unbearable Lightness of Being, The has 1 genres The movie Room with a View, A has 2 genres The movie Pink Floyd - The Wall has 3 genres The movie Field of Dreams has 1 genres The movie When Harry Met Sally... has 2 genres The movie Bram Stoker's Dracula has 2 genres The movie Cape Fear has 1 genres The movie Nightmare on Elm Street, A has 1 genres The movie Mirror Has Two Faces, The has 2 genres The movie Breaking the Waves has 1 genres The movie Star Trek: First Contact has 3 genres The movie Sling Blade has 2 genres The movie Ridicule has 1 genres The movie 101 Dalmatians has 2 genres The movie Die Hard 2 has 2 genres The movie Star Trek VI: The Undiscovered Country has 3 genres The movie Star Trek: The Wrath of Khan has 3 genres The movie Star Trek III: The Search for Spock has 3 genres The movie Star Trek IV: The Voyage Home has 3 genres The movie Batman Returns has 4 genres The movie Young Guns has 3 genres The movie Under Siege has 1 genres The movie Jaws has 2 genres The movie Mars Attacks! has 4 genres The movie Citizen Ruth has 2 genres The movie Jerry Maguire has 2 genres The movie Raising Arizona has 1 genres The movie Sneakers has 3 genres The movie Beavis and Butt-head Do America has 2 genres The movie Last of the Mohicans, The has 3 genres The movie Kolya has 1 genres The movie Jungle2Jungle has 2 genres The movie Smilla's Sense of Snow has 3 genres The movie Devil's Own, The has 4 genres The movie Chasing Amy has 2 genres The movie Turbo: A Power Rangers Movie has 3 genres The movie Grosse Pointe Blank has 2 genres The movie Austin Powers: International Man of Mystery has 1 genres The movie Fifth Element, The has 2 genres The movie Shall We Dance? has 1 genres The movie Lost World: Jurassic Park, The has 4 genres The movie Pillow Book, The has 2 genres The movie Batman & Robin has 3 genres The movie My Best Friend's Wedding has 2 genres The movie When the Cats Away (Chacun cherche son chat) has 2 genres The movie Men in Black has 4 genres The movie Contact has 2 genres The movie George of the Jungle has 2 genres The movie Event Horizon has 4 genres The movie Air Bud has 2 genres The movie In the Company of Men has 1 genres The movie Steel has 1 genres The movie Mimic has 2 genres The movie Hunt for Red October, The has 2 genres The movie Kull the Conqueror has 2 genres ###Markdown 7. Univariate plots of columns: 'rating', 'Age', 'release year', 'Gender' and 'Occupation' - 10 marks*HINT: Use distplot for age. Use lineplot or countplot for release year.**HINT: Plot percentages in y-axis and categories in x-axis for ratings, gender and occupation**HINT: Please refer to the below snippet to understand how to get to release year from release date. You can use str.split() as depicted below or you could convert it to pandas datetime format and extract year (.dt.year)* ###Code a = 'My*cat*is*brown' print(a.split('*')[3]) #similarly, the release year needs to be taken out from release date #also you can simply slice existing string to get the desired data, if we want to take out the colour of the cat print(a[10:]) print(a[-5:]) #distplot for age sns.distplot(user_data['age']); #Count plot for release date release_date_clone = item_data['release date'] df7_release_year = release_date_clone.to_frame() #df1 = df1.apply(pd.to_datetime) df7_release_year['year'] = df7_release_year['release date'].apply(lambda x: pd.to_numeric(x.split('-')[2])) plt.figure(figsize=(30,10)) sns.countplot(x='year', data=df7_release_year); #Percentages in y-axis and ratings in x-axis total_ratings = data['rating'].count() df_ratings = data.groupby('rating').agg({'rating': 'count'}) df_ratings.rename(columns={'rating': 'rating_count'}, inplace=True) df_ratings.reset_index(inplace=True) df_ratings['p'] = df_ratings['rating_count'] df_ratings['p'] = df_ratings['p'].apply(lambda n: (n/total_ratings) * 100) df_ratings sns.lineplot(data=df_ratings, x="rating", y="p"); #Percentages in y-axis and gender in x-axis total_users = user_data['gender'].count() df_gender = user_data.groupby('gender').agg({'gender': 'count'}) df_gender.rename(columns={'gender': 'gender_count'}, inplace=True) df_gender.reset_index(inplace=True) df_gender['p'] = df_gender['gender_count'] df_gender['p'] = df_gender['p'].apply(lambda n: (n/total_users) * 100) sns.lineplot(data=df_gender, x="gender", y="p"); #Percentages in y-axis and occupation in x-axis total_users = user_data['occupation'].count() df_occu = user_data.groupby('occupation').agg({'occupation': 'count'}) df_occu.rename(columns={'occupation': 'occupation_count'}, inplace=True) df_occu.reset_index(inplace=True) df_occu['p'] = df_occu['occupation_count'] df_occu['p'] = df_occu['p'].apply(lambda n: (n/total_users) * 100) plt.figure(figsize=(20,10)) sns.lineplot(data=df_occu, x="occupation", y="p"); ###Output _____no_output_____ ###Markdown 8. Visualize how popularity of genres has changed over the years - 10 marksNote that you need to use the **percent of number of releases in a year** as a parameter of popularity of a genreHint 1: You need to reach to a data frame where the release year is the index and the genre is the column names (one cell shows the number of release in a year in one genre) or vice versa. (Drop unnecessary column if there are any)Hint 2: Find the total number of movies release in a year(use `sum(axis=1)` store that value in a new column as 'total'). Now divide the value of each genre in that year by total to get percentage number of release in a particular year.`(df.div(df['total'], axis= 0) * 100)`Once that is achieved, you can either use univariate plots or can use the heatmap to visualise all the changes over the years in one go. Hint 3: Use groupby on the relevant column and use sum() on the same to find out the number of releases in a year/genre. ###Code df8 = item_data.copy() #clone the original item data df8.drop(df8[df8['unknown'] == 1].index, inplace = True) #cleanse the unknown data df8.reset_index(inplace=True) df8.set_index('index', inplace=True) #new column with year df8['year'] = df8['release date'].apply(lambda x: pd.to_numeric(x.split('-')[2])) df8_pivot = df8.groupby('year').sum() #group by year and sum all columns del df8_pivot['movie id'] #delete the movie id because it does not provide useful info after sum df8_pivot #Calculate total movies per year and add it to df8_pivot df8_totalMovies = df8.groupby('year').agg({'movie title': 'count'}) df8_totalMovies.rename(columns={'movie title': 'Total'}, inplace=True) df8_pivot = pd.concat([df8_pivot,df8_totalMovies], axis = 1) df8_pivot #Calculate percentage number of release in a particular year df8_pivot_perc = (df8_pivot.div(df8_pivot['Total'], axis= 0) * 100) del df8_pivot_perc['Total'] # remove total columns because it does not provide useful data after calc percentage df8_pivot_perc #Draw heatmap plt.figure(figsize=(20, 10)) sns.heatmap(df8_pivot_perc); ###Output _____no_output_____ ###Markdown 9. Find the top 25 movies according to average ratings such that each movie has number of ratings more than 100 - 10 marksHints : 1. Find the count of ratings and average ratings for every movie.2. Slice the movies which have ratings more than 100.3. Sort values according to average rating such that movie which highest rating is on top.4. Select top 25 movies.5. You will have to use the .merge() function to get the movie titles.Note: This question will need you to research about groupby and apply your findings. You can find more on groupby on https://realpython.com/pandas-groupby/. ###Code #Clone copy of orginal data df9 = data.copy() #Calculate count of ratings for every movie df9_rating_count = df9.groupby('movie id').agg({'rating': 'count'}) df9_rating_count.rename(columns={'rating': 'rating_count'}, inplace=True) #Calculate average ratings for every movie df9_rating_mean = df9.groupby('movie id').mean() df9_rating_mean.rename(columns={'rating': 'rating_avg'}, inplace=True) del df9_rating_mean['user id'] del df9_rating_mean['timestamp'] df9_pivot = pd.concat([df9_rating_count, df9_rating_mean], axis = 1) df9_pivot #Slice the movies which have ratings more than 100. filtered = df9_pivot[df9_pivot['rating_count'] > 100] #Sort values according to average rating such that movie which highest rating is on top. sort = filtered.sort_values('rating_avg',ascending=False) #Select top 25 movies. top_25 = sort.head(25) #You will have to use the .merge() function to get the movie titles. df9_item = item_data.copy() merged = pd.merge(df9_item, top_25, how="inner", on = 'movie id') merged[['movie id', 'movie title', 'rating_count', 'rating_avg']] ###Output _____no_output_____ ###Markdown 10. See gender distribution across different genres check for the validity of the below statements - 10 marks* Men watch more drama than women* Women watch more Sci-Fi than men* Men watch more Romance than women**compare the percentages** 1. Merge all the datasets2. There is no need to conduct statistical tests around this. Just **compare the percentages** and comment on the validity of the above statements.3. you might want ot use the .sum(), .div() function here.4. Use number of ratings to validate the numbers. For example, if out of 4000 ratings received by women, 3000 are for drama, we will assume that 75% of the women watch drama. ###Code #Copy orginal data into a new data frame df10_item = item_data.copy() df10_data = data.copy() df10_user = user_data.copy() #Merge items from user with items from data df10_user_data = pd.merge(df10_user, df10_data, how="inner", on='user id') df10_user_data #Merge all data df10_all = pd.merge(df10_user_data, df10_item, how="inner", on='movie id') df10_all def get_gender_with_high_rating(merged_df, genre): temp = merged_df.groupby([genre, 'gender']).sum() temp.reset_index(inplace=True) filterMale = temp['gender'] == 'M' filterGenre = temp[genre] == 1 filterFemale = temp['gender'] == 'F' total_rating = temp[filterGenre]['rating'].sum() male_rating = temp[filterMale & filterGenre]['rating'].sum() female_rating = temp[filterFemale & filterGenre]['rating'].sum() ret_val = 'F' print('Men rated ', (male_rating/total_rating) * 100, ' % and women rated ', female_rating / total_rating * 100, '% for the genre ', genre) if (male_rating/total_rating) * 100 > (female_rating / total_rating) * 100: ret_val = 'M' return ret_val print('The statement "Men watch more drama than women" is', get_gender_with_high_rating(df10_all, 'Drama') == 'M') print('The statement "Women watch more Sci-Fi than men" is', get_gender_with_high_rating(df10_all, 'Sci-Fi') == 'F') print('The statement "Men watch more Romance than women"', get_gender_with_high_rating(df10_all, 'Romance') == 'M') ###Output Men rated 69.61635594903663 % and women rated 30.383644050963365 % for the genre Romance The statement "Men watch more Romance than women" True
mlxtend/docs/sources/user_guide/frequent_patterns/fpmax.ipynb
###Markdown Maximal Itemsets via the FP-Max Algorithm Function implementing FP-Max to extract maximal itemsets for association rule mining > from mlxtend.frequent_patterns import fpmax Overview The [Apriori algorithm](./apriori.md) is among the first and most popular algorithms for frequent itemset generation (frequent itemsets are then used for association rule mining). However, the runtime of Apriori can be quite small, especially for datasets with a large number of unique items, as the runtime grows exponentially depending on the number of unique items. In contrast to Apriori, [FP-Growth](./fpgrowth.md) is a frequent pattern generation algorithm that inserts items into a pattern search tree, which allows it to have a linear increase in runtime with respect to the number of unique items or entries.FP-Max is a variant of FP-Growth, which focuses on obtaining maximal itemsets.**An itemset X is said to maximal if X is frequent and there exists no frequent super-pattern containing X.** In other words, a frequent pattern X cannot be sub-pattern of larger frequent pattern to qualify for the definition *maximal itemset*. References- [1] Grahne, G., & Zhu, J. (2003, November). Efficiently using prefix-trees in mining frequent itemsets. In FIMI (Vol. 90). Related- [FP-Growth](./fpgrowth.md)- [Apriori](./apriori.md) Example 1 -- Maximal Itemsets The `fpmax` function expects data in a one-hot encoded pandas DataFrame.Suppose we have the following transaction data: ###Code dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'], ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'], ['Milk', 'Apple', 'Kidney Beans', 'Eggs'], ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'], ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']] ###Output _____no_output_____ ###Markdown We can transform it into the right format via the `TransactionEncoder` as follows: ###Code import pandas as pd from mlxtend.preprocessing import TransactionEncoder te = TransactionEncoder() te_ary = te.fit(dataset).transform(dataset) df = pd.DataFrame(te_ary, columns=te.columns_) df ###Output _____no_output_____ ###Markdown Now, let us return the items and itemsets with at least 60% support: ###Code from mlxtend.frequent_patterns import fpmax fpmax(df, min_support=0.6) ###Output _____no_output_____ ###Markdown By default, `fpmax` returns the column indices of the items, which may be useful in downstream operations such as association rule mining. For better readability, we can set `use_colnames=True` to convert these integer values into the respective item names: ###Code fpmax(df, min_support=0.6, use_colnames=True) ###Output _____no_output_____ ###Markdown More Examples Please note that since the `fpmax` function is a drop-in replacement for `fpgrowth` and `apriori`, it comes with the same set of function arguments and return arguments. Thus, for more examples, please see the [`apriori`](./apriori.md) documentation. API ###Code with open('../../api_modules/mlxtend.frequent_patterns/fpmax.md', 'r') as f: print(f.read()) ###Output ## fpmax *fpmax(df, min_support=0.5, use_colnames=False, max_len=None, verbose=0)* Get maximal frequent itemsets from a one-hot DataFrame **Parameters** - `df` : pandas DataFrame pandas DataFrame the encoded format. Also supports DataFrames with sparse data; for more info, please see (https://pandas.pydata.org/pandas-docs/stable/ user_guide/sparse.html#sparse-data-structures) Please note that the old pandas SparseDataFrame format is no longer supported in mlxtend >= 0.17.2. The allowed values are either 0/1 or True/False. For example, ``` Apple Bananas Beer Chicken Milk Rice 0 True False True True False True 1 True False True False False True 2 True False True False False False 3 True True False False False False 4 False False True True True True 5 False False True False True True 6 False False True False True False 7 True True False False False False ``` - `min_support` : float (default: 0.5) A float between 0 and 1 for minimum support of the itemsets returned. The support is computed as the fraction transactions_where_item(s)_occur / total_transactions. - `use_colnames` : bool (default: False) If true, uses the DataFrames' column names in the returned DataFrame instead of column indices. - `max_len` : int (default: None) Given the set of all maximal itemsets, return those that are less than `max_len`. If `None` (default) all possible itemsets lengths are evaluated. - `verbose` : int (default: 0) Shows the stages of conditional tree generation. **Returns** pandas DataFrame with columns ['support', 'itemsets'] of all maximal itemsets that are >= `min_support` and < than `max_len` (if `max_len` is not None). Each itemset in the 'itemsets' column is of type `frozenset`, which is a Python built-in type that behaves similarly to sets except that it is immutable (For more info, see https://docs.python.org/3.6/library/stdtypes.html#frozenset).
FreeCodeCamp Machine Learning/Scikit Learn/scikit_learn_freecodecamp.ipynb
###Markdown ###Code from sklearn import datasets import numpy as np iris = datasets.load_iris() #split it in features and labels X = iris.data y = iris.target print(X.shape) print(y.shape) print("----------------") from sklearn.model_selection import train_test_split #Split the data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) print("Training set shape") print(X_train.shape) print(y_train.shape) print("-----------------") print("Testing set shape") print(X_test.shape) print(y_test.shape) #K Nearest Neighbor import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn import neighbors, metrics, svm import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from google.colab import files uploaded = files.upload() import io #iris = pd.read_csv(io.BytesIO(uploaded['iris.csv'])) data= pd.read_csv(io.BytesIO(uploaded['car.data'])) print(data.head()) print("-----------------------") X = data[['buying', 'maint', 'safety']].values y = data[['class']] print(X, y) print("-----------------------") #conversion Le = LabelEncoder() for i in range(len(X[0])): X[:,i] = Le.fit_transform(X[:, i]) print(X) print("-------------------------") #conversion y label_mapping = { 'unacc':0, 'acc':1, 'good':2, 'vgood':3 } y['class'] = y['class'].map(label_mapping) y = np.array(y) print(y) print("----------------------") #Create a model # Knn Classifier knn = neighbors.KNeighborsClassifier(n_neighbors=25, weights='uniform') #Split the data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) knn.fit(X_train, y_train) prediction = knn.predict(X_test) accuracy = metrics.accuracy_score(y_test, prediction) print("prediction: ", prediction) print("accuracy: ", accuracy) print("---------------------------") print("Actual value: ", y[20]) print("predicted value: ", knn.predict(X)[20]) #Support Vector Machine from sklearn import datasets import numpy as np from sklearn.model_selection import train_test_split from sklearn import svm from sklearn.metrics import accuracy_score iris = datasets.load_iris() X = iris.data y = iris.target classes = ['Iris Setosa', 'Iris Versicolor', 'Iris Virginica'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = svm.SVC() model.fit(X_train, y_train) print(model) predictions = model.predict(X_test) accuracy = accuracy_score(y_test, predictions) print("Predictions: ", predictions) print("Actual: ", y_test) print("Accuracy: ", accuracy) for i in range(len(predictions)): print(classes[predictions[i]]) #Linear Regression from sklearn import datasets import numpy as np from sklearn.model_selection import train_test_split #from sklearn import svm from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt from sklearn import linear_model boston = datasets.load_boston() #Features / labels X = boston.data y = boston.target # Algorithm l_reg = linear_model.LinearRegression() plt.scatter(X.T[5], y) plt.show() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = l_reg.fit(X_train, y_train) predictions = model.predict(X_test) print("Predictions: ", predictions) #print("Actual: ", y_test) print("R ^ 2 value: ", l_reg.score(X, y)) print("coedd: ", l_reg.coef_) print('intercept: ', l_reg.intercept_) from sklearn.datasets import load_breast_cancer from sklearn.cluster import KMeans from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.preprocessing import scale import pandas as pd bc = load_breast_cancer() #print(bc) X = scale(bc.data) #print(X) y = bc.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = KMeans(n_clusters=2, random_state=0) model.fit(X_train) predictions = model.predict(X_test) labels = model.labels_ print("labels: ", labels) print("Predictions: ", predictions) print("accuracy: ", accuracy_score(y_test, predictions)) print("Actual: ", y_test) print(pd.crosstab(y_train, labels)) ###Output _____no_output_____
machine_learning/hw_training_01.ipynb
###Markdown Heatwave Training 01 + Train on images to predict Heatwave + add day of the year to input Imports and Initial Variables ###Code from hw_training_prep import load_images, normalize_images, build_CNN_model, download_dataset_of_images from hw_training_01 import Heatwave_Model_Training, LayerDetails import numpy as np from azureml.core import Experiment from azureml.core import Environment from azureml.core import Workspace, Datastore, Dataset, Run from azureml.core.compute import ComputeTarget, AmlCompute from azureml.core.compute_target import ComputeTargetException from azureml.core.dataset import Dataset from matplotlib import pyplot as plt %matplotlib inline ws = Workspace.from_config() print('workspace:\n', ws) sub_folder_name = 'aoi_107_2021_11_11' datastore_name = 'workspaceblobstore' ###Output workspace: Workspace.create(name='hes', subscription_id='0e150cbb-ad2f-47a1-849c-c5d0527afd2b', resource_group='hes-nasa-msft') ###Markdown Download images from Dataset -- if the parent folder does not already exist locally ###Code dataset_prefix = 'aoi_107_2021_11_11' download_dataset_of_images(dataset_prefix) ###Output The folder aoi_107_2021_11_11 already exists. Will not proceed with the download. ###Markdown Load images using Heatwave Model Training class ###Code hmt = Heatwave_Model_Training(images_folder_name=dataset_prefix) hmt.load_subsets_shuffle_and_normalize(limit=0) hmt.print_dataset_summary() ###Output label folder aoi_107_2021_11_11/train/0 label folder aoi_107_2021_11_11/train/1 label folder aoi_107_2021_11_11/validate/0 label folder aoi_107_2021_11_11/validate/1 label folder aoi_107_2021_11_11/test/0 label folder aoi_107_2021_11_11/test/1 Count of images = 6568 Label 0 -- count 4655 Label 1 -- count 1913 len(train_X) 6568 len(train_Y) 6568 len(train_X_names) 6568 (231, 349, 3) 1 Img_hw_area_pct_30__1983__d_228__var_tasmax.png (231, 349, 3) 0 Img_hw_area_pct_30__2029__d_250__var_tasmax.png len(validate_X) 1406 len(test_X) 1410 ###Markdown Prepare a CNN model using Heatwave Model Training, LayerDetails classes ###Code print('Preparing model for training 01 -- images only...') # layers build_with_layers = [] build_with_layers.append(LayerDetails(layerType='C', filters=16, kernel_size= (3,3), pool_size=None, strides=None)) build_with_layers.append(LayerDetails(layerType='M', filters=None, kernel_size= None, pool_size=(2,2), strides=(2,2))) build_with_layers.append(LayerDetails(layerType='C', filters=32, kernel_size= (3,3), pool_size=None, strides=None)) model = hmt.prepare_model(build_with_layers) learning_rate = 0.01 epochs = 35 patience=5 print(model, '\n') hmt.train_binary_classification_model(model, learning_rate, epochs, patience) ###Output Preparing model for training 01 -- images only... Preparing model for training... Creating model... input_shape = [231, 349, 3] num_classes = 1 Model: "model_1639037569" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 231, 349, 3)] 0 _________________________________________________________________ conv2d (Conv2D) (None, 231, 349, 16) 448 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 115, 174, 16) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 115, 174, 32) 4640 _________________________________________________________________ flatten (Flatten) (None, 640320) 0 _________________________________________________________________ dense (Dense) (None, 1) 640321 ================================================================= Total params: 645,409 Trainable params: 645,409 Non-trainable params: 0 _________________________________________________________________ None <tensorflow.python.keras.engine.training.Model object at 0x7fc665b7c978> Train on 6568 samples, validate on 1406 samples Epoch 1/35 6568/6568 [==============================] - 96s 15ms/sample - loss: 0.5362 - accuracy: 0.7782 - val_loss: 0.3965 - val_accuracy: 0.8222 Epoch 2/35 6568/6568 [==============================] - 96s 15ms/sample - loss: 0.4053 - accuracy: 0.8182 - val_loss: 0.3608 - val_accuracy: 0.8478 Epoch 3/35 6568/6568 [==============================] - 96s 15ms/sample - loss: 0.3778 - accuracy: 0.8331 - val_loss: 0.3281 - val_accuracy: 0.8642 Epoch 4/35 6568/6568 [==============================] - 97s 15ms/sample - loss: 0.3822 - accuracy: 0.8283 - val_loss: 0.3461 - val_accuracy: 0.8563 Epoch 5/35 6568/6568 [==============================] - 95s 15ms/sample - loss: 0.3596 - accuracy: 0.8386 - val_loss: 0.3380 - val_accuracy: 0.8400 Epoch 6/35 6568/6568 [==============================] - 95s 14ms/sample - loss: 0.3493 - accuracy: 0.8436 - val_loss: 0.3209 - val_accuracy: 0.8535 Epoch 7/35 6568/6568 [==============================] - 96s 15ms/sample - loss: 0.3328 - accuracy: 0.8502 - val_loss: 0.3149 - val_accuracy: 0.8585 Epoch 8/35 6568/6568 [==============================] - 97s 15ms/sample - loss: 0.3377 - accuracy: 0.8452 - val_loss: 0.5242 - val_accuracy: 0.7788 Epoch 9/35 6568/6568 [==============================] - 95s 15ms/sample - loss: 0.3238 - accuracy: 0.8555 - val_loss: 0.2921 - val_accuracy: 0.8642 Epoch 10/35 6568/6568 [==============================] - 96s 15ms/sample - loss: 0.3226 - accuracy: 0.8576 - val_loss: 0.4198 - val_accuracy: 0.8414 Epoch 11/35 6568/6568 [==============================] - 95s 15ms/sample - loss: 0.3178 - accuracy: 0.8607 - val_loss: 0.5134 - val_accuracy: 0.7603 Epoch 12/35 6568/6568 [==============================] - 96s 15ms/sample - loss: 0.3180 - accuracy: 0.8589 - val_loss: 0.3410 - val_accuracy: 0.8492 Epoch 13/35 6568/6568 [==============================] - 95s 15ms/sample - loss: 0.3146 - accuracy: 0.8595 - val_loss: 0.3866 - val_accuracy: 0.8421 Epoch 14/35 6568/6568 [==============================] - 96s 15ms/sample - loss: 0.3066 - accuracy: 0.8618 - val_loss: 0.2991 - val_accuracy: 0.8748 Epoch 00014: early stopping Training execution time (mins) 22.46 1410/1410 [==============================] - 6s 4ms/sample - loss: 0.3207 - accuracy: 0.8638 test loss = 0.32, test acc = 0.8600000143051147
zero-to-mastery-ml-master/section-2-appendix-video-code/introduction-to-numpy.ipynb
###Markdown A Quick Introduction to Numerical Data Manipulation with Python and NumPy What is NumPy?[NumPy](https://docs.scipy.org/doc/numpy/index.html) stands for numerical Python. It's the backbone of all kinds of scientific and numerical computing in Python.And since machine learning is all about turning data into numbers and then figuring out the patterns, NumPy often comes into play. Why NumPy?You can do numerical calculations using pure Python. In the beginning, you might think Python is fast but once your data gets large, you'll start to notice slow downs.One of the main reasons you use NumPy is because it's fast. Behind the scenes, the code has been optimized to run using C. Which is another programming language, which can do things much faster than Python.The benefit of this being behind the scenes is you don't need to know any C to take advantage of it. You can write your numerical computations in Python using NumPy and get the added speed benefits.If your curious as to what causes this speed benefit, it's a process called vectorization. [Vectorization](https://en.wikipedia.org/wiki/Vectorization) aims to do calculations by avoiding loops as loops can create potential bottlenecks.NumPy achieves vectorization through a process called [broadcasting](https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlmodule-numpy.doc.broadcasting). What does this notebook cover?The NumPy library is very capable. However, learning everything off by heart isn't necessary. Instead, this notebook focuses on the main concepts of NumPy and the `ndarray` datatype.You can think of the `ndarray` datatype as a very flexible array of numbers.More specifically, we'll look at:* NumPy datatypes & attributes* Creating arrays* Viewing arrays & matrices (indexing)* Manipulating & comparing arrays* Sorting arrays* Use cases (examples of turning things into numbers)After going through it, you'll have the base knolwedge of NumPy you need to keep moving forward. Where can I get help?If you get stuck or think of something you'd like to do which this notebook doesn't cover, don't fear!The recommended steps you take are:1. **Try it** - Since NumPy is very friendly, your first step should be to use what you know and try figure out the answer to your own question (getting it wrong is part of the process). If in doubt, run your code.2. **Search for it** - If trying it on your own doesn't work, since someone else has probably tried to do something similar, try searching for your problem. You'll likely end up in 1 of 2 places: * [NumPy documentation](https://docs.scipy.org/doc/numpy/index.html) - the ground truth for everything NumPy, this resource covers all of the NumPy functionality. * [Stack Overflow](https://stackoverflow.com/) - this is the developers Q&A hub, it's full of questions and answers of different problems across a wide range of software development topics and chances are, there's one related to your problem. An example of searching for a NumPy function might be:> "how to find unique elements in a numpy array"Searching this on Google leads to the NumPy documentation for the `np.uniquie()` function: https://docs.scipy.org/doc/numpy/reference/generated/numpy.unique.htmlThe next steps here are to read through the documentation, check the examples and see if they line up to the problem you're trying to solve. If they do, **rewrite the code** to suit your needs, run it, and see what the outcomes are.3. **Ask for help** - If you've been through the above 2 steps and you're still stuck, you might want to ask your question on [Stack Overflow](https://www.stackoverflow.com). Be as specific as possible and provide details on what you've tried.Remember, you don't have to learn all of the functions off by heart to begin with. What's most important is continually asking yourself, "what am I trying to do with the data?".Start by answering that question and then practicing finding the code which does it.Let's get started. 0. Importing NumPyTo get started using NumPy, the first step is to import it. The most common way (and method you should use) is to import NumPy as the abbreviation `np`.If you see the letters `np` used anywhere in machine learning or data science, it's probably referring to the NumPy library. ###Code import numpy as np ###Output _____no_output_____ ###Markdown 1. DataTypes and attributes**NOTE:** Important to remember the main type in NumPy is `ndarray`, even seemingly different kinds of arrays are still `ndarray`'s. This means an operation you do on one array, will work on another. ###Code # 1-dimensonal array, also referred to as a vector a1 = np.array([1, 2, 3]) # 2-dimensional array, also referred to as matrix a2 = np.array([[1, 2.0, 3.3], [4, 5, 6.5]]) # 3-dimensional array, also referred to as a matrix a3 = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]]]) a1.shape, a1.ndim, a1.dtype, a1.size, type(a1) a2.shape, a2.ndim, a2.dtype, a2.size, type(a2) a3.shape, a3.ndim, a3.dtype, a3.size, type(a3) a1 a2 a3 ###Output _____no_output_____ ###Markdown Anatomy of an arrayKey terms:* **Array** - A list of numbers, can be multi-dimensional.* **Scalar** - A single number (e.g. `7`).* **Vector** - A list of numbers with 1-dimesion (e.g. `np.array([1, 2, 3])`).* **Matrix** - A (usually) multi-deminsional list of numbers (e.g. `np.array([[1, 2, 3], [4, 5, 6]])`). pandas DataFrame out of NumPy arraysThis is to examplify how NumPy is the backbone of many other libraries. ###Code import pandas as pd df = pd.DataFrame(np.random.randint(10, size=(5, 3)), columns=['a', 'b', 'c']) df a2 df2 = pd.DataFrame(a2) df2 ###Output _____no_output_____ ###Markdown 2. Creating arrays* `np.array()`* `np.ones()`* `np.zeros()`* `np.random.rand(5, 3)`* `np.random.randint(10, size=5)`* `np.random.seed()` - pseudo random numbers* Searching the documentation example (finding `np.unique()` and using it) ###Code # Create a simple array simple_array = np.array([1, 2, 3]) simple_array simple_array = np.array((1, 2, 3)) simple_array, simple_array.dtype # Create an array of ones ones = np.ones((10, 2)) ones # The default datatype is 'float64' ones.dtype # You can change the datatype with .astype() ones.astype(int) # Create an array of zeros zeros = np.zeros((5, 3, 3)) zeros zeros.dtype # Create an array within a range of values range_array = np.arange(0, 10, 2) range_array # Random array random_array = np.random.randint(10, size=(5, 3)) random_array # Random array of floats (between 0 & 1) np.random.random((5, 3)) np.random.random((5, 3)) # Random 5x3 array of floats (between 0 & 1), similar to above np.random.rand(5, 3) np.random.rand(5, 3) ###Output _____no_output_____ ###Markdown NumPy uses pseudo-random numbers, which means, the numbers look random but aren't really, they're predetermined.For consistency, you might want to keep the random numbers you generate similar throughout experiments.To do this, you can use [`np.random.seed()`](https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.random.seed.html).What this does is it tells NumPy, "Hey, I want you to create random numbers but keep them aligned with the seed."Let's see it. ###Code # Set random seed to 0 np.random.seed(0) # Make 'random' numbers np.random.randint(10, size=(5, 3)) ###Output _____no_output_____ ###Markdown With `np.random.seed()` set, every time you run the cell above, the same random numbers will be generated.What if `np.random.seed()` wasn't set?Every time you run the cell below, a new set of numbers will appear. ###Code # Make more random numbers np.random.randint(10, size=(5, 3)) ###Output _____no_output_____ ###Markdown Let's see it in action again, we'll stay consistent and set the random seed to 0. ###Code # Set random seed to same number as above np.random.seed(0) # The same random numbers come out np.random.randint(10, size=(5, 3)) ###Output _____no_output_____ ###Markdown Because `np.random.seed()` is set to 0, the random numbers are the same as the cell with `np.random.seed()` set to 0 as well.Setting `np.random.seed()` is not 100% necessary but it's helpful to keep numbers the same throughout your experiments.For example, say you wanted to split your data randomly into training and test sets.Every time you randomly split, you might get different rows in each set.If you shared your work with someone else, they'd get different rows in each set too.Setting `np.random.seed()` ensures there's still randomness, it just makes the randomness repeatable. Hence the 'pseudo-random' numbers. ###Code np.random.seed(0) df = pd.DataFrame(np.random.randint(10, size=(5, 3))) df ###Output _____no_output_____ ###Markdown What unique values are in the array a3?Now you've seen a few different ways to create arrays, as an exercise, try find out what NumPy function you could use to find the unique values are within the `a3` array.You might want to search some like, "how to find the unqiue values in a numpy array". ###Code # Your code here ###Output _____no_output_____ ###Markdown 3. Viewing arrays and matrices (indexing)Remember, because arrays and matrices are both `ndarray`'s, they can be viewed in similar ways.Let's check out our 3 arrays again. ###Code a1 a2 a3 ###Output _____no_output_____ ###Markdown Array shapes are always listed in the format `(row, column, n, n, n...)` where `n` is optional extra dimensions. ###Code a1[0] a2[0] a3[0] # Get 2nd row (index 1) of a2 a2[1] # Get the first 2 values of the first 2 rows of both arrays a3[:2, :2, :2] ###Output _____no_output_____ ###Markdown This takes a bit of practice, especially when the dimensions get higher. Usually, it takes me a little trial and error of trying to get certain values, viewing the output in the notebook and trying again.NumPy arrays get printed from outside to inside. This means the number at the end of the shape comes first, and the number at the start of the shape comes last. ###Code a4 = np.random.randint(10, size=(2, 3, 4, 5)) a4 a4.shape # Get only the first 4 numbers of each single vector a4[:, :, :, :4] ###Output _____no_output_____ ###Markdown `a4`'s shape is (2, 3, 4, 5), this means it gets displayed like so:* Inner most array = size 5* Next array = size 4* Next array = size 3* Outer most array = size 2 4. Manipulating and comparying arrays* Arithmetic * `+`, `-`, `*`, `/`, `//`, `**`, `%` * `np.exp()` * `np.log()` * [Dot product](https://www.mathsisfun.com/algebra/matrix-multiplying.html) - `np.dot()` * Broadcasting* Aggregation * `np.sum()` - faster than `.sum()`, make demo, np is really fast * `np.mean()` * `np.std()` * `np.var()` * `np.min()` * `np.max()` * `np.argmin()` - find index of minimum value * `np.argmax()` - find index of maximum value * These work on all `ndarray`'s * `a4.min(axis=0)` -- you can use axis as well* Reshaping * `np.reshape()`* Transposing * `a3.T` * Comparison operators * `>` * `<` * `<=` * `>=` * `x != 3` * `x == 3` * `np.sum(x > 3)` Arithmetic ###Code a1 ones = np.ones(3) ones # Add two arrays a1 + ones # Subtract two arrays a1 - ones # Multiply two arrays a1 * ones # Multiply two arrays a1 * a2 a1.shape, a2.shape a2 * a3 a3 ###Output _____no_output_____ ###Markdown Broadcasting- What is broadcasting? - Broadcasting is a feature of NumPy which performs an operation across multiple dimensions of data without replicating the data. This saves time and space. For example, if you have a 3x3 array (A) and want to add a 1x3 array (B), NumPy will add the row of (B) to every row of (A).- Rules of Broadcasting 1. If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is padded with ones on its leading (left) side. 2. If the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in that dimension is stretched to match the other shape. 3. If in any dimension the sizes disagree and neither is equal to 1, an error is raised. **The broadcasting rule:**In order to broadcast, the size of the trailing axes for both arrays in an operation must be either the same size or one of them must be one. ###Code a1 a1.shape a2.shape a2 a1 + a2 a2 + 2 # Raises an error because there's a shape mismatch a2 + a3 # Divide two arrays a1 / ones # Divide using floor division a2 // a1 # Take an array to a power a1 ** 2 # You can also use np.square() np.square(a1) # Modulus divide (what's the remainder) a1 % 2 ###Output _____no_output_____ ###Markdown You can also find the log or exponential of an array using `np.log()` and `np.exp()`. ###Code # Find the log of an array np.log(a1) # Find the exponential of an array np.exp(a1) ###Output _____no_output_____ ###Markdown AggregationAggregation - bringing things together, doing a similar thing on a number of things. ###Code sum(a1) np.sum(a1) ###Output _____no_output_____ ###Markdown Use NumPy's `np.sum()` on NumPy arrays and Python's `sum()` on Python lists. ###Code massive_array = np.random.random(100000) massive_array.size %timeit sum(massive_array) # Python sum() %timeit np.sum(massive_array) # NumPy np.sum() import random massive_list = [random.randint(0, 10) for i in range(100000)] len(massive_list) massive_list[:10] %timeit sum(massive_list) %timeit np.sum(massive_list) a2 # Find the mean np.mean(a2) # Find the max np.max(a2) # Find the min np.min(a2) # Find the standard deviation np.std(a2) # Find the variance np.var(a2) # The standard deviation is the square root of the variance np.sqrt(np.var(a2)) ###Output _____no_output_____ ###Markdown **What's mean?**Mean is the same as average. You can find the average of a set of numbers by adding them up and dividing them by how many there are.**What's standard deviation?**[Standard deviation](https://www.mathsisfun.com/data/standard-deviation.html) is a measure of how spread out numbers are.**What's variance?**The [variance](https://www.mathsisfun.com/data/standard-deviation.html) is the averaged squared differences of the mean.To work it out, you:1. Work out the mean2. For each number, subtract the mean and square the result3. Find the average of the squared differences ###Code # Demo of variance high_var_array = np.array([1, 100, 200, 300, 4000, 5000]) low_var_array = np.array([2, 4, 6, 8, 10]) np.var(high_var_array), np.var(low_var_array) np.std(high_var_array), np.std(low_var_array) # The standard deviation is the square root of the variance np.sqrt(np.var(high_var_array)) %matplotlib inline import matplotlib.pyplot as plt plt.hist(high_var_array) plt.show() plt.hist(low_var_array) plt.show() ###Output _____no_output_____ ###Markdown Reshaping ###Code a2 a2.shape a2 + a3 a2.reshape(2, 3, 1) a2.reshape(2, 3, 1) + a3 ###Output _____no_output_____ ###Markdown Transpose ###Code a2.shape a2.T a2.T.shape matrix = np.random.random(size=(5,3,3)) matrix matrix.shape matrix.T matrix.T.shape ###Output _____no_output_____ ###Markdown Dot* TODO - create graphic for dot versus element-wise also known as Hadamard product* TODO - why would someone use dot versus element-wise?* A dot product models real world problems well, it's a method of finding patterns between data ###Code np.random.seed(0) mat1 = np.random.randint(10, size=(3, 3)) mat2 = np.random.randint(10, size=(3, 2)) mat1.shape, mat2.shape mat1 mat2 np.dot(mat1, mat2) np.random.seed(0) mat3 = np.random.randint(10, size=(4,3)) mat4 = np.random.randint(10, size=(4,3)) mat3 mat4 np.dot(mat3, mat4) mat3.T.shape # Dot product np.dot(mat3.T, mat4) # Element-wise multiplication, also known as Hadamard product mat3 * mat4 ###Output _____no_output_____ ###Markdown Dot product practical example, nut butter sales ###Code np.random.seed(0) sales_amounts = np.random.randint(20, size=(5, 3)) sales_amounts weekly_sales = pd.DataFrame(sales_amounts, index=["Mon", "Tues", "Wed", "Thurs", "Fri"], columns=["Almond butter", "Peanut butter", "Cashew butter"]) weekly_sales prices = np.array([10, 8, 12]) prices butter_prices = pd.DataFrame(prices.reshape(1, 3), index=["Price"], columns=["Almond butter", "Peanut butter", "Cashew butter"]) butter_prices.shape weekly_sales.shape # Find the total amount of sales for a whole day total_sales = prices.dot(sales_amounts) total_sales ###Output _____no_output_____ ###Markdown The shapes aren't aligned, we need the middle two numbers to be the same. ###Code prices sales_amounts.T.shape # To make the middle numbers the same, we can transpose total_sales = prices.dot(sales_amounts.T) total_sales butter_prices.shape, weekly_sales.shape daily_sales = butter_prices.dot(weekly_sales.T) daily_sales # Need to transpose again weekly_sales["Total"] = daily_sales.T weekly_sales ###Output _____no_output_____ ###Markdown Comparison operators ###Code a1 a2 a1 > a2 a1 >= a2 a1 > 5 a1 == a1 a1 == a2 ###Output _____no_output_____ ###Markdown 5. Sorting arrays* `np.sort()`* `np.argsort()`* `np.argmax()`* `np.argmin()` ###Code random_array np.sort(random_array) np.argsort(random_array) a1 # Return the indices that would sort an array np.argsort(a1) # No axis np.argmin(a1) random_array # Down the vertical np.argmax(random_array, axis=1) # Across the horizontal np.argmin(random_array, axis=0) ###Output _____no_output_____ ###Markdown 6. Use caseTurning an image of a panda into numbers. ###Code from matplotlib.image import imread panda = imread('../images/numpy-panda.png') print(type(panda)) panda.shape panda ###Output _____no_output_____ ###Markdown ###Code car = imread("../images/numpy-car-photo.png") car.shape car[:,:,:3].shape ###Output _____no_output_____ ###Markdown ###Code dog = imread("../images/numpy-dog-photo.png") dog.shape dog ###Output _____no_output_____
BloodData.ipynb
###Markdown Random Forest Classifier ###Code #Use RandomForestClassifier to predict Clinical x = df_final_select y = train["Clinical"] # y = np.array(y,dtype=int) X_train,X_test,y_train,y_test = train_test_split(x,y,test_size=0.1,random_state=0) #RandomForest rfc = RandomForestClassifier() #rfc=RandomForestClassifier(n_estimators=100,n_jobs = -1,random_state =50, min_samples_leaf = 10) rfc.fit(X_train,y_train) y_predict = rfc.predict(X_train) score_rfc = rfc.score(X_test,y_test) print("Random Forest Accuracy = ",score_rfc*100," %") from sklearn.model_selection import KFold x = df_final_select y = train["Clinical"] kf = KFold(n_splits=5) best_accuracy = 0 for train_index , test_index in kf.split(x): X_train, X_test, y_train, y_test = x.iloc[train_index], x.iloc[test_index], y.iloc[train_index], y.iloc[test_index] rfc = RandomForestClassifier() rfc.fit(X_train,y_train) y_predict = rfc.predict(X_train) accuracy = rfc.score(X_test,y_test) print("Random Forest Accuracy = ",accuracy*100,"%") if accuracy > best_accuracy: best_accuracy = accuracy best_rfc = rfc print("Best Accuracy = ",best_accuracy*100,"%") #random forest final accuracy x_train_new = x y_train_new = train["Clinical"] y_train_new = y_train_new.reset_index(drop=True) y_pred = best_rfc.predict(x_train_new) count = 0 for i in range(y_pred.shape[0]): if y_pred[i] != y_train_new[i]: count += 1 print(y_pred[i],y_train_new[i]) rfc_accuracy = 1-count/y_pred.shape[0] print("Random Forest Accuracy = ",rfc_accuracy*100,"%") ###Output dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 control control dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 control control dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 control control dep_M3 dep_M3 dep_M0 dep_M0 control control control control control control dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 control control dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control dep_M3 dep_M3 dep_M3 dep_M0 dep_M3 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M0 dep_M0 dep_M0 dep_M3 dep_M0 dep_M0 control control dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 control control dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 control control control control dep_M3 dep_M3 dep_M0 dep_M0 control control dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 control control dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 control control dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 control control dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 dep_M3 dep_M3 dep_M0 dep_M0 control control control control control control Random Forest Accuracy = 97.61904761904762 % ###Markdown SVM ###Code from sklearn import svm #Use SVM to predict Clinical x = df_final_select y = train["Clinical"] # y = np.array(y,dtype=int) X_train,X_test,y_train,y_test = train_test_split(x,y,test_size=0.1,random_state=0) clf = svm.SVC() clf.fit(X_train,y_train) y_predict = clf.predict(X_train) score_clf = clf.score(X_test,y_test) print("SVM Accuracy = ",score_clf*100," %") from sklearn.model_selection import KFold x = df_final_select y = train["Clinical"] kf = KFold(n_splits=5) best_accuracy = 0 for train_index , test_index in kf.split(x): X_train, X_test, y_train, y_test = x.iloc[train_index], x.iloc[test_index], y.iloc[train_index], y.iloc[test_index] clf = svm.SVC() clf.fit(X_train,y_train) y_predict = clf.predict(X_train) accuracy = clf.score(X_test,y_test) print("SVM Accuracy = ",accuracy*100,"%") if accuracy > best_accuracy: best_accuracy = accuracy best_clf = clf print("Best Accuracy = ",best_accuracy*100,"%") #SVM final accuracy x_train_new = x y_train_new = train["Clinical"] y_train_new = y_train_new.reset_index(drop=True) y_pred = best_clf.predict(x_train_new) count = 0 for i in range(y_pred.shape[0]): print(y_pred[i],y_train_new[i]) if y_pred[i] != y_train_new[i]: count += 1 clf_accuracy = 1-count/y_pred.shape[0] print("SVM Accuracy = ",clf_accuracy*100,"%") ###Output control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 dep_M0 dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control control control control control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control control control dep_M0 control dep_M3 control dep_M0 control dep_M3 dep_M0 dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control control control control control control control control dep_M0 control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control dep_M0 control control control control control control control control control control control control control control control control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 dep_M0 dep_M3 control dep_M0 control control control dep_M3 control dep_M0 dep_M0 dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 dep_M0 dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control control control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 dep_M0 dep_M0 control dep_M3 dep_M0 dep_M0 dep_M0 dep_M3 dep_M0 dep_M0 control dep_M3 dep_M0 dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control control control control SVM Accuracy = 35.71428571428571 % ###Markdown Neural network MLPClassifier ###Code from sklearn.neural_network import MLPClassifier #Use Neural Network MLPClassifier to predict Clinical x = df_final_select y = train["Clinical"] # y = np.array(y,dtype=int) X_train,X_test,y_train,y_test = train_test_split(x,y,test_size=0.1,random_state=0) nnclf = MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(50, 30), random_state=1, max_iter=2000) nnclf.fit(X_train,y_train) y_predict = nnclf.predict(X_train) score_nnclf = nnclf.score(X_test,y_test) print("Neural Network Accuracy = ",score_nnclf*100," %") from sklearn.model_selection import KFold x = df_final_select y = train["Clinical"] kf = KFold(n_splits=5) best_accuracy = 0 for train_index , test_index in kf.split(x): X_train, X_test, y_train, y_test = x.iloc[train_index], x.iloc[test_index], y.iloc[train_index], y.iloc[test_index] nnclf = MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(50, 30), random_state=1, max_iter=2000) nnclf.fit(X_train,y_train) y_predict = nnclf.predict(X_train) accuracy = nnclf.score(X_test,y_test) print("NN Accuracy = ",accuracy*100,"%") if accuracy > best_accuracy: best_accuracy = accuracy best_nnclf = nnclf print("NN Accuracy = ",best_accuracy*100,"%") #NN final accuracy x_train_new = x y_train_new = train["Clinical"] y_train_new = y_train_new.reset_index(drop=True) y_pred = best_nnclf.predict(x_train_new) count = 0 for i in range(y_pred.shape[0]): print(y_pred[i],y_train_new[i]) if y_pred[i] != y_train_new[i]: count += 1 nnclf_accuracy = 1-count/y_pred.shape[0] print("NN Accuracy = ",nnclf_accuracy*100,"%") ###Output control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control control control control control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control control control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control control control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 dep_M3 dep_M0 control dep_M3 dep_M3 dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control dep_M3 control dep_M0 control control control control control control NN Accuracy = 33.333333333333336 % ###Markdown Logistic Regression ###Code from sklearn.linear_model import LogisticRegression #Use Logistic Regression to predict Clinical x = df_final_select y = train["Clinical"] # y = np.array(y,dtype=int) X_train,X_test,y_train,y_test = train_test_split(x,y,test_size=0.1,random_state=0) logclf = LogisticRegression(random_state=0).fit(X_train,y_train) logclf.predict(X_train) logclf.predict_proba(X_train) score_logclf = logclf.score(X_test,y_test) print("Logistic Regression Accuracy = ",score_logclf*100," %") from sklearn.model_selection import KFold x = df_final_select y = train["Clinical"] kf = KFold(n_splits=5) best_accuracy = 0 for train_index , test_index in kf.split(x): X_train, X_test, y_train, y_test = x.iloc[train_index], x.iloc[test_index], y.iloc[train_index], y.iloc[test_index] logclf = LogisticRegression(random_state=0).fit(X_train,y_train) y_predict = logclf.predict(X_train) accuracy = logclf.score(X_test,y_test) print("Logistic Regression Accuracy = ",accuracy*100,"%") if accuracy > best_accuracy: best_accuracy = accuracy best_logclf = logclf print("Logistic Regression Accuracy = ",best_accuracy*100,"%") #Logistic final accuracy x_train_new = x y_train_new = train["Clinical"] y_train_new = y_train_new.reset_index(drop=True) y_pred = best_logclf.predict(x_train_new) count = 0 for i in range(y_pred.shape[0]): print(y_pred[i],y_train_new[i]) if y_pred[i] != y_train_new[i]: count += 1 logclf_accuracy = 1-count/y_pred.shape[0] print("Logistic Regression Accuracy = ",logclf_accuracy*100,"%") print(X_train.shape,y_train.shape) print(X_test.shape,y_test.shape) ###Output (151, 186) (151,) (17, 186) (17,)
3 - Core Learning Algorithms/3-Core_Learning_Algorithms.ipynb
###Markdown TensorFlow Core Learning AlgorithmsIn this notebook we will walk through 4 fundemental machine learning algorithms. We will apply each of these algorithms to unique problems and datasets before highlighting the use cases of each.The algorithms we will focus on include:- Linear Regression- Classification- Clustering- Hidden Markov ModelsIt is worth noting that there are many tools within TensorFlow that could be used to solve the problems we will see below. I have chosen the tools that I belive give the most variety and are easiest to use. Linear RegressionLinear regression is one of the most basic forms of machine learning and is used to predict numeric values. In this tutorial we will use a linear model to predict the survival rate of passangers from the titanic dataset.*This section is based on the following documentation: https://www.tensorflow.org/tutorials/estimator/linear* How it WorksBefore we dive in, I will provide a very surface level explination of the linear regression algorithm.Linear regression follows a very simple concept. If data points are related linearly, we can generate a line of best fit for these points and use it to predict future values.Let's take an example of a data set with one feature and one label. ###Code import matplotlib.pyplot as plt import numpy as np x = [1, 2, 2.5, 3, 4] y = [1, 4, 7, 9, 15] plt.plot(x, y, 'ro') plt.axis([0, 6, 0, 20]) ###Output _____no_output_____ ###Markdown We can see that this data has a linear coorespondence. When the x value increases, so does the y. Because of this relation we can create a line of best fit for this dataset. In this example our line will only use one input variable, as we are working with two dimensions. In larger datasets with more features our line will have more features and inputs."Line of best fit refers to a line through a scatter plot of data points that best expresses the relationship between those points." (https://www.investopedia.com/terms/l/line-of-best-fit.asp)Here's a refresher on the equation of a line in 2D.$ y = mx + b $Here's an example of a line of best fit for this graph. ###Code plt.plot(x, y, 'ro') plt.axis([0, 6, 0, 20]) plt.plot(np.unique(x), np.poly1d(np.polyfit(x, y, 1))(np.unique(x))) plt.show() ###Output _____no_output_____ ###Markdown Once we've generated this line for our dataset, we can use its equation to predict future values. We just pass the features of the data point we would like to predict into the equation of the line and use the output as our prediction. Setup and ImportsBefore we get started we must install *sklearn* and import the following modules. ###Code !pip install -q sklearn %tensorflow_version 2.x # this line is not required unless you are in a notebook from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import pandas as pd import matplotlib.pyplot as plt from IPython.display import clear_output from six.moves import urllib import tensorflow.compat.v2.feature_column as fc import tensorflow as tf ###Output _____no_output_____ ###Markdown DataSo, if you haven't realized by now a major part of machine learning is data! In fact, it's so important that most of what we do in this tutorial will focus on exploring, cleaning and selecting appropriate data.The dataset we will be focusing on here is the titanic dataset. It has tons of information about each passanger on the ship. Our first step is always to understand the data and explore it. So, let's do that!**Below we will load a dataset and learn how we can explore it using some built-in tools. ** ###Code # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') # training data dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') # testing data y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') ###Output _____no_output_____ ###Markdown The ```pd.read_csv()``` method will return to us a new pandas *dataframe*. You can think of a dataframe like a table. In fact, we can actually have a look at the table representation.We've decided to pop the "survived" column from our dataset and store it in a new variable. This column simply tells us if the person survived our not.To look at the data we'll use the ```.head()``` method from pandas. This will show us the first 5 items in our dataframe. ###Code dftrain.head() ###Output _____no_output_____ ###Markdown And if we want a more statistical analysis of our data we can use the ```.describe()``` method. ###Code dftrain.describe() ###Output _____no_output_____ ###Markdown And since we talked so much about shapes in the previous tutorial let's have a look at that too! ###Code dftrain.shape ###Output _____no_output_____ ###Markdown So have have 627 entries and 9 features, nice!Now let's have a look at our survival information. ###Code y_train.head() ###Output _____no_output_____ ###Markdown Notice that each entry is either a 0 or 1. Can you guess which stands for survival? **And now because visuals are always valuable let's generate a few graphs of the data.** ###Code dftrain.age.hist(bins=20) dftrain.sex.value_counts().plot(kind='barh') dftrain['class'].value_counts().plot(kind='barh') pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive') ###Output _____no_output_____ ###Markdown After analyzing this information, we should notice the following:- Most passengers are in their 20's or 30's - Most passengers are male- Most passengers are in "Third" class- Females have a much higher chance of survival Training vs Testing DataYou may have noticed that we loaded **two different datasets** above. This is because when we train models, we need two sets of data: **training and testing**. The **training** data is what we feed to the model so that it can develop and learn. It is usually a much larger size than the testing data.The **testing** data is what we use to evaulate the model and see how well it is performing. We must use a seperate set of data that the model has not been trained on to evaluate it. Can you think of why this is?Well, the point of our model is to be able to make predictions on NEW data, data that we have never seen before. If we simply test the model on the data that it has already seen we cannot measure its accuracy accuratly. We can't be sure that the model hasn't simply memorized our training data. This is why we need our testing and training data to be seperate. Feature ColumnsIn our dataset we have two different kinds of information: **Categorical and Numeric**Our **categorical data** is anything that is not numeric! For example, the sex column does not use numbers, it uses the words "male" and "female".Before we continue and create/train a model we must convet our categorical data into numeric data. We can do this by encoding each category with an integer (ex. male = 1, female = 2). Fortunately for us TensorFlow has some tools to help! ###Code CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: vocabulary = dftrain[feature_name].unique() # gets a list of all unique values from given feature column feature_columns.append(tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) print(feature_columns) ###Output [VocabularyListCategoricalColumn(key='sex', vocabulary_list=('male', 'female'), dtype=tf.string, default_value=-1, num_oov_buckets=0), VocabularyListCategoricalColumn(key='n_siblings_spouses', vocabulary_list=(1, 0, 3, 4, 2, 5, 8), dtype=tf.int64, default_value=-1, num_oov_buckets=0), VocabularyListCategoricalColumn(key='parch', vocabulary_list=(0, 1, 2, 5, 3, 4), dtype=tf.int64, default_value=-1, num_oov_buckets=0), VocabularyListCategoricalColumn(key='class', vocabulary_list=('Third', 'First', 'Second'), dtype=tf.string, default_value=-1, num_oov_buckets=0), VocabularyListCategoricalColumn(key='deck', vocabulary_list=('unknown', 'C', 'G', 'A', 'B', 'D', 'F', 'E'), dtype=tf.string, default_value=-1, num_oov_buckets=0), VocabularyListCategoricalColumn(key='embark_town', vocabulary_list=('Southampton', 'Cherbourg', 'Queenstown', 'unknown'), dtype=tf.string, default_value=-1, num_oov_buckets=0), VocabularyListCategoricalColumn(key='alone', vocabulary_list=('n', 'y'), dtype=tf.string, default_value=-1, num_oov_buckets=0), NumericColumn(key='age', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), NumericColumn(key='fare', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None)] ###Markdown Let's break this code down a little bit...Essentially what we are doing here is creating a list of features that are used in our dataset. The cryptic lines of code inside the ```append()``` create an object that our model can use to map string values like "male" and "female" to integers. This allows us to avoid manually having to encode our dataframes.*And here is some relevant documentation*https://www.tensorflow.org/api_docs/python/tf/feature_column/categorical_column_with_vocabulary_list?version=stable The Training ProcessSo, we are almost done preparing our dataset and I feel as though it's a good time to explain how our model is trained. Specifically, how input data is fed to our model. For this specific model data is going to be streamed into it in small batches of 32. This means we will not feed the entire dataset to our model at once, but simply small batches of entries. We will feed these batches to our model multiple times according to the number of **epochs**. An **epoch** is simply one stream of our entire dataset. The number of epochs we define is the amount of times our model will see the entire dataset. We use multiple epochs in hope that after seeing the same data multiple times the model will better determine how to estimate it.Ex. if we have 10 ephocs, our model will see the same dataset 10 times. Since we need to feed our data in batches and multiple times, we need to create something called an **input function**. The input function simply defines how our dataset will be converted into batches at each epoch. Input FunctionThe TensorFlow model we are going to use requires that the data we pass it comes in as a ```tf.data.Dataset``` object. This means we must create a *input function* that can convert our current pandas dataframe into that object. Below you'll see a seemingly complicated input function, this is straight from the TensorFlow documentation (https://www.tensorflow.org/tutorials/estimator/linear). I've commented as much as I can to make it understandable, but you may want to refer to the documentation for a detailed explanation of each method. ###Code def make_input_fn(data_df, label_df, num_epochs=10, shuffle=True, batch_size=32): def input_function(): # inner function, this will be returned ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df)) # create tf.data.Dataset object with data and its label if shuffle: ds = ds.shuffle(1000) # randomize order of data ds = ds.batch(batch_size).repeat(num_epochs) # split dataset into batches of 32 and repeat process for number of epochs return ds # return a batch of the dataset return input_function # return the function above to use it outside train_input_fn = make_input_fn(dftrain, y_train) # here we will call the input_function that was returned to us to get a dataset object we can feed to the model eval_input_fn = make_input_fn(dfeval, y_eval, num_epochs=1, shuffle=False) ###Output _____no_output_____ ###Markdown Creating the ModelIn this tutorial we are going to use a linear estimator to utilize the linear regression algorithm. Creating one is pretty easy! Have a look below. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns) # We create a linear estimtor by passing the feature columns we created earlier ###Output INFO:tensorflow:Using default config. WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp948t2b_4 INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp948t2b_4', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} ###Markdown Training the ModelTraining the model is as easy as passing the input functions that we created earlier. ###Code linear_est.train(train_input_fn) # train result = linear_est.evaluate(eval_input_fn) # get model metrics/stats by testing on test data clear_output() # clears console output print(str(round(result['accuracy'] * 100, 2)) + "% accuracy") # the result variable is simply a dict of stats about our model ###Output 74.24% accuracy ###Markdown And we now have a model with a 74% accuracy (this will change each time)! Not crazy impressive but decent for our first try.Now let's see how we can actually use this model to make predicitons.We can use the ```.predict()``` method to get survival probabilities from the model. This method will return a list of dicts that store a predicition for each of the entries in our testing data set. Below we've used some pandas magic to plot a nice graph of the predictions.As you can see the survival rate is not very high :/ ###Code pred_dicts = list(linear_est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities') ###Output INFO:tensorflow:Calling model_fn. WARNING:tensorflow:Layer linear/linear_model is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2. The layer has dtype float32 because its dtype defaults to floatx. If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2. To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmp948t2b_4/model.ckpt-200 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. ###Markdown Here is some more fiddling around with the prediction data: ###Code result_predictions = list(linear_est.predict(eval_input_fn)) # store a list of the predictions by the model for the evaluation data person_index = 5 # we can choose any person index to see if the model was right const_did_survive = 1 # we represented that a person survived with a 1 clear_output() # clears console output print("Person data:") print(dfeval.loc[person_index]) # show the data for a certain person, like sex, age, etc. print() print("Model estimated chances of survival:") print(str(round(result_predictions[person_index]["probabilities"][const_did_survive] * 100, 2)) + "% chance of survival") # show the model prediction print() print("This person DID " + ("NOT " if not y_eval.loc[person_index] else "") + "survive.") # show the expected result (did the person really survive?) ###Output Person data: sex female age 15 n_siblings_spouses 0 parch 0 fare 8.0292 class Third deck unknown embark_town Queenstown alone y Name: 5, dtype: object Model estimated chances of survival: 79.03% chance of survival This person DID survive. ###Markdown In this case, the model thinks the person has a 81% chance of survival and the person did survive! :) That's it for linear regression! Now onto classification. ClassificationNow that we've covered linear regression it is time to talk about classification. Where regression was used to predict a numeric value, classification is used to seperate data points into classes of different labels. In this example we will use a TensorFlow estimator to classify flowers.Since we've touched on how estimators work earlier, I'll go a bit quicker through this example. This section is based on the following guide from the TensorFlow website.https://www.tensorflow.org/tutorials/estimator/premade Imports and Setup ###Code %tensorflow_version 2.x # this line is not required unless you are in a notebook from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import pandas as pd ###Output _____no_output_____ ###Markdown DatasetThis specific dataset seperates flowers into 3 different classes of species.- Setosa- Versicolor- VirginicaThe information about each flower is the following.- sepal length- sepal width- petal length- petal width ###Code CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species'] SPECIES = ['Setosa', 'Versicolor', 'Virginica'] # Lets define some constants to help us later on train_path = tf.keras.utils.get_file( "iris_training.csv", "https://storage.googleapis.com/download.tensorflow.org/data/iris_training.csv") test_path = tf.keras.utils.get_file( "iris_test.csv", "https://storage.googleapis.com/download.tensorflow.org/data/iris_test.csv") train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0) test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0) # Here we use keras (a module inside of TensorFlow) to grab our datasets and read them into a pandas dataframe ###Output Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/iris_training.csv 8192/2194 [================================================================================================================] - 0s 0us/step Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/iris_test.csv 8192/573 [============================================================================================================================================================================================================================================================================================================================================================================================================================================] - 0s 0us/step ###Markdown Let's have a look at our data. ###Code train.head() ###Output _____no_output_____ ###Markdown Now we can pop the species column off and use that as our label. ###Code train_y = train.pop('Species') test_y = test.pop('Species') train.head() # the species column is now gone train.shape # we have 120 entries with 4 features ###Output _____no_output_____ ###Markdown Input FunctionRemember that nasty input function we created earlier. Well we need to make another one here! Fortunately for us this one is a little easier to digest. ###Code def input_fn(features, labels, training=True, batch_size=256): # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels)) # Shuffle and repeat if you are in training mode. if training: dataset = dataset.shuffle(1000).repeat() return dataset.batch(batch_size) ###Output _____no_output_____ ###Markdown Feature ColumnsAnd you didn't think we forgot about the feature columns, did you? ###Code # Feature columns describe how to use the input. my_feature_columns = [] for key in train.keys(): my_feature_columns.append(tf.feature_column.numeric_column(key=key)) print(my_feature_columns) # This time we don't need to find unique values, since they are already encoded for us in this dataset. ###Output [NumericColumn(key='SepalLength', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), NumericColumn(key='SepalWidth', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), NumericColumn(key='PetalLength', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), NumericColumn(key='PetalWidth', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None)] ###Markdown Building the ModelAnd now we are ready to choose a model. For classification tasks there are variety of different estimators/models that we can pick from. Some options are listed below.- ```DNNClassifier``` (Deep Neural Network)- ```LinearClassifier```We can choose either model but the DNN seems to be the best choice. This is because we may not be able to find a linear coorespondence in our data. So let's build a model! ###Code # Build a DNN with 2 hidden layers with 30 and 10 hidden nodes each. classifier = tf.estimator.DNNClassifier( # tf.estimator contains a variety of models ready to train. feature_columns=my_feature_columns, # Two hidden layers of 30 and 10 nodes respectively. hidden_units=[30, 10], # The model must choose between 3 classes. n_classes=3) ###Output INFO:tensorflow:Using default config. WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp5k5hhxfj INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp5k5hhxfj', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} ###Markdown What we've just done is created a deep neural network that has two hidden layers. These layers have 30 and 10 neurons respectively. This is the number of neurons the TensorFlow official tutorial uses so we'll stick with it. However, it is worth mentioning that the number of hidden neurons is an arbitrary number and many experiments and tests are usually done to determine the best choice for these values. Try playing around with the number of hidden neurons and see if your results change. TrainingNow it's time to train the model! ###Code # We include a lambda to avoid creating an inner function previously classifier.train( input_fn=lambda: input_fn(train, train_y, training=True), steps=5000) # Steps are similar to epoch, but instead of specifying how many times to look at the data, # we just specify the number of elements to be looked at in the training. ###Output INFO:tensorflow:Calling model_fn. WARNING:tensorflow:Layer dnn is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2. The layer has dtype float32 because its dtype defaults to floatx. If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2. To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmp5k5hhxfj/model.ckpt-5000 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/saver.py:1077: get_checkpoint_mtimes (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file utilities to get mtimes. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5000... INFO:tensorflow:Saving checkpoints for 5000 into /tmp/tmp5k5hhxfj/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5000... INFO:tensorflow:loss = 0.6217097, step = 5000 INFO:tensorflow:global_step/sec: 447.462 INFO:tensorflow:loss = 0.6055616, step = 5100 (0.227 sec) INFO:tensorflow:global_step/sec: 621.449 INFO:tensorflow:loss = 0.6096381, step = 5200 (0.159 sec) INFO:tensorflow:global_step/sec: 616.389 INFO:tensorflow:loss = 0.60297173, step = 5300 (0.163 sec) INFO:tensorflow:global_step/sec: 600.222 INFO:tensorflow:loss = 0.596534, step = 5400 (0.167 sec) INFO:tensorflow:global_step/sec: 563.882 INFO:tensorflow:loss = 0.5977715, step = 5500 (0.177 sec) INFO:tensorflow:global_step/sec: 563.23 INFO:tensorflow:loss = 0.587742, step = 5600 (0.177 sec) INFO:tensorflow:global_step/sec: 588.229 INFO:tensorflow:loss = 0.5938575, step = 5700 (0.173 sec) INFO:tensorflow:global_step/sec: 590.042 INFO:tensorflow:loss = 0.5843288, step = 5800 (0.167 sec) INFO:tensorflow:global_step/sec: 596.197 INFO:tensorflow:loss = 0.57950556, step = 5900 (0.167 sec) INFO:tensorflow:global_step/sec: 558.41 INFO:tensorflow:loss = 0.58131254, step = 6000 (0.183 sec) WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 6067 vs previous value: 6067. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. INFO:tensorflow:global_step/sec: 538.261 INFO:tensorflow:loss = 0.57366914, step = 6100 (0.182 sec) INFO:tensorflow:global_step/sec: 544.382 INFO:tensorflow:loss = 0.5637631, step = 6200 (0.187 sec) INFO:tensorflow:global_step/sec: 563.782 INFO:tensorflow:loss = 0.56694406, step = 6300 (0.178 sec) INFO:tensorflow:global_step/sec: 580.514 INFO:tensorflow:loss = 0.5670054, step = 6400 (0.169 sec) INFO:tensorflow:global_step/sec: 578.964 INFO:tensorflow:loss = 0.55458224, step = 6500 (0.175 sec) INFO:tensorflow:global_step/sec: 574.592 INFO:tensorflow:loss = 0.54680526, step = 6600 (0.171 sec) INFO:tensorflow:global_step/sec: 491.422 INFO:tensorflow:loss = 0.5486492, step = 6700 (0.207 sec) INFO:tensorflow:global_step/sec: 569.601 INFO:tensorflow:loss = 0.54900765, step = 6800 (0.175 sec) INFO:tensorflow:global_step/sec: 503.669 INFO:tensorflow:loss = 0.5337447, step = 6900 (0.196 sec) INFO:tensorflow:global_step/sec: 497.073 INFO:tensorflow:loss = 0.53282267, step = 7000 (0.202 sec) INFO:tensorflow:global_step/sec: 488.161 INFO:tensorflow:loss = 0.53346014, step = 7100 (0.205 sec) INFO:tensorflow:global_step/sec: 531.804 INFO:tensorflow:loss = 0.5290585, step = 7200 (0.190 sec) INFO:tensorflow:global_step/sec: 557.273 INFO:tensorflow:loss = 0.533105, step = 7300 (0.180 sec) INFO:tensorflow:global_step/sec: 548.274 INFO:tensorflow:loss = 0.5212065, step = 7400 (0.179 sec) INFO:tensorflow:global_step/sec: 602.054 INFO:tensorflow:loss = 0.52324986, step = 7500 (0.169 sec) INFO:tensorflow:global_step/sec: 552.763 INFO:tensorflow:loss = 0.5164593, step = 7600 (0.181 sec) INFO:tensorflow:global_step/sec: 543.238 INFO:tensorflow:loss = 0.5083279, step = 7700 (0.181 sec) INFO:tensorflow:global_step/sec: 582.673 INFO:tensorflow:loss = 0.5085105, step = 7800 (0.174 sec) INFO:tensorflow:global_step/sec: 475.231 INFO:tensorflow:loss = 0.50720966, step = 7900 (0.211 sec) INFO:tensorflow:global_step/sec: 567.593 INFO:tensorflow:loss = 0.5043426, step = 8000 (0.173 sec) INFO:tensorflow:global_step/sec: 536.309 INFO:tensorflow:loss = 0.4963996, step = 8100 (0.186 sec) INFO:tensorflow:global_step/sec: 536.08 INFO:tensorflow:loss = 0.49940473, step = 8200 (0.187 sec) INFO:tensorflow:global_step/sec: 557.507 INFO:tensorflow:loss = 0.49950457, step = 8300 (0.183 sec) INFO:tensorflow:global_step/sec: 507.683 INFO:tensorflow:loss = 0.5037663, step = 8400 (0.194 sec) INFO:tensorflow:global_step/sec: 568.523 INFO:tensorflow:loss = 0.5007417, step = 8500 (0.175 sec) INFO:tensorflow:global_step/sec: 553.176 INFO:tensorflow:loss = 0.48826316, step = 8600 (0.184 sec) INFO:tensorflow:global_step/sec: 619.357 INFO:tensorflow:loss = 0.482177, step = 8700 (0.162 sec) INFO:tensorflow:global_step/sec: 521.854 INFO:tensorflow:loss = 0.4848107, step = 8800 (0.188 sec) INFO:tensorflow:global_step/sec: 629.14 INFO:tensorflow:loss = 0.47875693, step = 8900 (0.159 sec) INFO:tensorflow:global_step/sec: 601.835 INFO:tensorflow:loss = 0.5038421, step = 9000 (0.166 sec) INFO:tensorflow:global_step/sec: 542.922 INFO:tensorflow:loss = 0.47670552, step = 9100 (0.184 sec) INFO:tensorflow:global_step/sec: 628.124 INFO:tensorflow:loss = 0.47172242, step = 9200 (0.159 sec) INFO:tensorflow:global_step/sec: 538.124 INFO:tensorflow:loss = 0.46971238, step = 9300 (0.189 sec) INFO:tensorflow:global_step/sec: 574.384 INFO:tensorflow:loss = 0.47382265, step = 9400 (0.172 sec) INFO:tensorflow:global_step/sec: 593.273 INFO:tensorflow:loss = 0.466937, step = 9500 (0.168 sec) INFO:tensorflow:global_step/sec: 592.101 INFO:tensorflow:loss = 0.44865286, step = 9600 (0.172 sec) INFO:tensorflow:global_step/sec: 583.18 INFO:tensorflow:loss = 0.46331257, step = 9700 (0.169 sec) INFO:tensorflow:global_step/sec: 587.609 INFO:tensorflow:loss = 0.46025106, step = 9800 (0.172 sec) INFO:tensorflow:global_step/sec: 612.517 INFO:tensorflow:loss = 0.44838548, step = 9900 (0.163 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10000... INFO:tensorflow:Saving checkpoints for 10000 into /tmp/tmp5k5hhxfj/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10000... INFO:tensorflow:Loss for final step: 0.45682693. ###Markdown The only thing to explain here is the **steps** argument. This simply tells the classifier to run for 5000 steps. Try modifiying this and seeing if your results change. Keep in mind that more is not always better. EvaluationNow let's see how this trained model does! ###Code eval_result = classifier.evaluate( input_fn=lambda: input_fn(test, test_y, training=False)) print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result)) ###Output INFO:tensorflow:Calling model_fn. WARNING:tensorflow:Layer dnn is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2. The layer has dtype float32 because its dtype defaults to floatx. If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2. To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2020-12-14T20:50:40Z INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmp5k5hhxfj/model.ckpt-10000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Inference Time : 0.22641s INFO:tensorflow:Finished evaluation at 2020-12-14-20:50:40 INFO:tensorflow:Saving dict for global step 10000: accuracy = 0.8, average_loss = 0.5315775, global_step = 10000, loss = 0.5315775 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10000: /tmp/tmp5k5hhxfj/model.ckpt-10000 Test set accuracy: 0.800 ###Markdown Notice this time we didn't specify the number of steps. This is because during evaluation the model will only look at the testing data one time. PredictionsNow that we have a trained model it's time to use it to make predictions. I've written a little script below that allows you to type the features of a flower and see a prediction for its class. ###Code def input_fn(features, batch_size=256): # Convert the inputs to a Dataset without labels. return tf.data.Dataset.from_tensor_slices(dict(features)).batch(batch_size) features = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth'] predict = {} print("Please type numeric values as prompted.") for feature in features: valid = True while valid: val = input(feature + ": ") if not val.isdigit(): valid = False predict[feature] = [float(val)] predictions = classifier.predict(input_fn=lambda: input_fn(predict)) # Predict is usually a list, not just a single element. for pred_dict in predictions: # The predictions variable contains the predictions made. Each prediction is a dictionary. class_id = pred_dict['class_ids'][0] # The key "class_ids" contains the elements the model thinks are the correct ones, it is a list. probability = pred_dict['probabilities'][class_id] # The key "probabilities" contains the probabilities for each species in a list. print('Prediction is "{}" ({:.1f}%)'.format( SPECIES[class_id], 100 * probability)) # Here is some example input and expected classes you can try above expected = ['Setosa', 'Versicolor', 'Virginica'] predict_x = { 'SepalLength': [5.1, 5.9, 6.9], 'SepalWidth': [3.3, 3.0, 3.1], 'PetalLength': [1.7, 4.2, 5.4], 'PetalWidth': [0.5, 1.5, 2.1], } ###Output _____no_output_____ ###Markdown And that's pretty much it for classification! ClusteringNow that we've covered regression and classification it's time to talk about clustering data! Clustering is a Machine Learning technique that involves the grouping of data points. In theory, data points that are in the same group should have similar properties and/or features, while data points in different groups should have highly dissimilar properties and/or features. (https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68)Unfortunalty there are issues with the current version of TensorFlow and the implementation for KMeans. This means we cannot use KMeans without writing the algorithm from scratch. We aren't quite at that level yet, so we'll just explain the basics of clustering for now.Basic Algorithm for K-Means.- Step 1: Randomly pick K points to place K centroids- Step 2: Assign all the data points to the centroids by distance. The closest centroid to a point is the one it is assigned to.- Step 3: Average all the points belonging to each centroid to find the middle of those clusters (center of mass). Place the corresponding centroids into that position.- Step 4: Reassign every point once again to the closest centroid.- Step 5: Repeat steps 3-4 until no point changes which centroid it belongs to.*Please refer to the video for an explanation of KMeans clustering.* Hidden Markov Models"The Hidden Markov Model is a finite set of states, each of which is associated with a (generally multidimensional) probability distribution []. Transitions among the states are governed by a set of probabilities called transition probabilities." (http://jedlik.phy.bme.hu/~gerjanos/HMM/node4.html)A hidden markov model works with probabilities to predict future events or states. In this section we will learn how to create a hidden markov model that can predict the weather.*This section is based on the following TensorFlow tutorial.* https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/HiddenMarkovModel DataLet's start by discussing the type of data we use when we work with a hidden markov model. In the previous sections we worked with large datasets of 100's of different entries. For a markov model we are only interested in probability distributions that have to do with states. We can find these probabilities from large datasets or may already have these values. We'll run through an example in a second that should clear some things up, but let's discuss the components of a markov model.**States:** In each markov model we have a finite set of states. These states could be something like "warm" and "cold" or "high" and "low" or even "red", "green" and "blue". These states are "hidden" within the model, which means we do not direcly observe them.**Observations:** Each state has a particular outcome or observation associated with it based on a probability distribution. An example of this is the following: *On a hot day Tim has a 80% chance of being happy and a 20% chance of being sad.***Transitions:** Each state will have a probability defining the likelyhood of transitioning to a different state. An example is the following: *a cold day has a 30% chance of being followed by a hot day and a 70% chance of being follwed by another cold day.*To create a hidden markov model we need.- States- Observation Distribution- Transition DistributionFor our purpose we will assume we already have this information available as we attempt to predict the weather on a given day. Imports and Setup ###Code %tensorflow_version 2.x # this line is not required unless you are in a notebook ###Output `%tensorflow_version` only switches the major version: 1.x or 2.x. You set: `2.x # this line is not required unless you are in a notebook`. This will be interpreted as: `2.x`. TensorFlow 2.x selected. ###Markdown Due to a version mismatch with tensorflow v2 and tensorflow_probability we need to install the most recent version of tensorflow_probability (see below). ###Code !pip install tensorflow_probability==0.8.0rc0 --user --upgrade import tensorflow_probability as tfp # We are using a different module from tensorflow this time import tensorflow as tf ###Output _____no_output_____ ###Markdown Weather ModelTaken direclty from the TensorFlow documentation (https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/HiddenMarkovModel). We will model a simple weather system and try to predict the temperature on each day given the following information.1. Cold days are encoded by a 0 and hot days are encoded by a 1.2. The first day in our sequence has an 80% chance of being cold.3. A cold day has a 30% chance of being followed by a hot day.4. A hot day has a 20% chance of being followed by a cold day.5. On each day the temperature is normally distributed with mean and standard deviation 0 and 5 on a cold day and mean and standard deviation 15 and 10 on a hot day.If you're unfamiliar with **standard deviation** it can be put simply as the range of expected values. In this example, on a hot day the average temperature is 15 and ranges from 5 to 25.To model this in TensorFlow we will do the following. ###Code tfd = tfp.distributions # making a shortcut for later on initial_distribution = tfd.Categorical(probs=[0.2, 0.8]) # Refer to point 2 above transition_distribution = tfd.Categorical(probs=[[0.5, 0.5], [0.2, 0.8]]) # refer to points 3 and 4 above observation_distribution = tfd.Normal(loc=[0., 15.], scale=[5., 10.]) # refer to point 5 above # the loc argument represents the mean and the scale is the standard devitation ###Output _____no_output_____ ###Markdown We've now created distribution variables to model our system and it's time to create the hidden markov model. ###Code model = tfd.HiddenMarkovModel( initial_distribution=initial_distribution, transition_distribution=transition_distribution, observation_distribution=observation_distribution, num_steps=7) ###Output _____no_output_____ ###Markdown The number of steps represents the number of days that we would like to predict information for. In this case we've chosen 7, an entire week.To get the **expected temperatures** on each day we can do the following. ###Code mean = model.mean() # due to the way TensorFlow works on a lower level we need to evaluate part of the graph # from within a session to see the value of this tensor # in the new version of tensorflow we need to use tf.compat.v1.Session() rather than just tf.Session() with tf.compat.v1.Session() as sess: print(mean.numpy()) ###Output [12. 11.1 10.83 10.748999 10.724699 10.71741 10.715222]
mongodb_csv_hashtag_location.ipynb
###Markdown 1. connect to database ###Code # connect to database and get collections' names db_twitter = client["Twitter"] collections_twitter = db_twitter.collection_names() # get current year and current week number current_timestamp = int(time.time() * 1000) current_year = int(datetime.datetime.now().year) print("current year : " + str(current_year)) current_week = int((current_timestamp - 1546214400000)/1000/604800)+1 print("current week : " + str(current_week)) # list all collection and the number of records in each collection dic_collection = {} for i in collections_twitter: if i.startswith("20") and contain_string in i: year = i[0:4] week = re.search('_(.+?)_', i).group(1)[1:] if int(year) < current_year: dic_collection[i] = "{:}".format(db_twitter[i].find({}).count()) else: try: if int(week) < current_week: dic_collection[i] = "{:}".format(db_twitter[i].find({}).count()) except: pass for key in sorted(dic_collection): print("%s: %s" % (key, dic_collection[key])) ###Output 2019_W1_Twitter_Australia: 40880 ###Markdown 2. create csv for each collection based on hashtag and user location ###Code # write into csv file def write_csv(file_name,hashtag,user_location): # avoid user location splitted by comma try: user_location = ''.join(user_location.split(',')) except: pass row = "{},{}\n".format(hashtag,user_location) with open(file_name, 'a') as f: f.write(row) # calculate running time def calculate_time(start_time, t): current_time = time.time() duration = current_time - start_time if (duration/60) >= (t+10): t += 10 print("The program is still running, already run for about "+ str(t) + " minutes.") return t # create foler if not exist def create_folder(): folder = "output/hashtag_user_location/" if not os.path.exists(folder): os.makedirs(folder) return folder # delete existed collection from the list dic_collection def delete_collection(folder,dic_collection): for input_file in glob.glob(os.path.join(folder,'*.csv')): collection_name = re.search('_location/(.+?)_hashtag', input_file).group(1) print("Existed collection: " + collection_name) if collection_name in dic_collection: del dic_collection[collection_name] return dic_collection #create folder if not exist folder = create_folder() dic_collection = delete_collection(folder,dic_collection) for collection in sorted(dic_collection): print("-----------------------") print("processing on collection " + str(collection)) start = time. time() t =0 file_name = folder + str(collection) + "_hashtag_user_location.csv" with open(file_name, 'a') as f: f.write('hashtag,user_location\n') for document in db_twitter[collection].find(): # twitter_id = document['id'] user_location = document['user']['location'] if len(document['entities']['hashtags']) == 0: hashtag = None write_csv(file_name,hashtag,user_location) t = calculate_time(start, t) elif len(document['entities']['hashtags']) == 1: hashtag = document['entities']['hashtags'][0]['text'] write_csv(file_name,hashtag,user_location) t = calculate_time(start, t) else: for i in range(len(document['entities']['hashtags'])): hashtag = document['entities']['hashtags'][i]['text'] write_csv(file_name,hashtag,user_location) t = calculate_time(start, t) print("csv file for collection " + collection + " is done.") print("-----------------------") ###Output Existed collection: 2019_W1_Twitter_Australia
airport/ABCP por meses.ipynb
###Markdown ABCP Cluster Por Meses ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from matplotlib import pyplot as plt from sklearn.ensemble import RandomForestRegressor # Leemos los csv por mes j = 3 # Mes frames = [] for i in range(1,32): day = str(i) month = str(j) if (i<10): day = '0' + str(i) if (j<10): month = '0' + str(j) file_name = 'D:\\Usuarios\\mdbrenes\\Documents\\Projects\\airport\\Documentos TT\\Datos de entrada\\ABPC\\abpc_2018-' + month + '-' + day + '.csv' abpc_ = pd.read_csv(file_name, delimiter=';', names=['UPDATE','ID','FLIGHTID','LECTOR ID','CHECK DATE','STATUS','REASON','CHECKIN SEQUENCE NUMBER','PNR','DEPARTURE FLIGHT DESTINATION AIRPORT IATA CODE','DEPARTURE FLIGHT AIRLINE IATA CODE','DEPARTURE FLIGHT NUMBER','DEPARTURE FLIGHT SOBT','EXTRA 1','EXTRA 2']) abpc_2 = abpc_.drop([0],axis=0) frames.append(abpc_2) abpc = pd.concat(frames) cols = ['ID','FLIGHTID','LECTOR ID','CHECK DATE','STATUS','REASON','CHECKIN SEQUENCE NUMBER','PNR','DEPARTURE FLIGHT DESTINATION AIRPORT IATA CODE','DEPARTURE FLIGHT AIRLINE IATA CODE','DEPARTURE FLIGHT NUMBER','DEPARTURE FLIGHT SOBT','UPDATE','EXTRA 1','EXTRA 2'] abpc = abpc[cols] abpc.reset_index(inplace=True,drop=True) abpc.info() abpc.head() abpc['STATUS'].unique() for reason in abpc['STATUS'].unique(): num = abpc['ID'].loc[abpc['STATUS']==reason].count() print('Num passengers, STATUS:',reason) print(num) abpc = abpc.loc[abpc['STATUS']=='PASSED'] abpc.info() # Puede haber alguna fila que tenga un campo de más por error abpc.loc[pd.isnull(abpc['EXTRA 1'])!=True] # Puede haber alguna fila que tenga un campo de más por error abpc.loc[pd.isnull(abpc['EXTRA 2'])!=True] abpc.loc[(pd.isnull(abpc['EXTRA 1'])!=True)&(pd.isnull(abpc['EXTRA 2'])!=True)] # Eliminamos las filas intratables (muchos campos erroneos y no comprensibles) for index in abpc.loc[(pd.isnull(abpc['EXTRA 1'])!=True)&(pd.isnull(abpc['EXTRA 2'])!=True)].index.values: abpc = abpc.drop([index],axis=0) abpc.reset_index(inplace=True,drop=True) for index in abpc.loc[pd.isnull(abpc['EXTRA 1'])!=True].index.values: reason_1 = abpc['REASON'].iloc[index] reason_2 = abpc['CHECKIN SEQUENCE NUMBER'].iloc[index] if ((reason_1 != None)&(reason_2 != None)): reason = [reason_1 + '_&_' + reason_2] new_row = list(abpc.iloc[index,0:5].values) + reason + list(abpc.iloc[index,7:12].values) + [abpc.iloc[index,13]] + [abpc.iloc[index,12]] + [None,None] abpc.iloc[index,:] = new_row abpc.reset_index(inplace=True,drop=True) abpc.loc[pd.isnull(abpc['EXTRA 1'])!=True] abpc.loc[pd.isnull(abpc['EXTRA 2'])!=True] ###Output _____no_output_____ ###Markdown Añadimos el campo LOCAL (Vuelo internacional o local) ###Code file_name = 'D:\\Usuarios\\mdbrenes\\Documents\\Projects\\airport\\Documentos TT\\DIC_AIRP_Athenas.csv' ap = pd.read_csv(file_name,delimiter=';',header=0) ap_sheng = ap.loc[(ap['SWITCH_SCHENGEN']==1)] ap_sheng_loc = ap_sheng.loc[ap_sheng['SWITCH_LOCAL']==1] ap_sheng_int = ap_sheng.loc[ap_sheng['SWITCH_LOCAL']==0] abpc['LOCAL'] = list(map(lambda x: x in ap_sheng_loc['CODE'].values,abpc['DEPARTURE FLIGHT DESTINATION AIRPORT IATA CODE'])) abpc['SCHENGEN'] = list(map(lambda x: x in ap_sheng['CODE'].values,abpc['DEPARTURE FLIGHT DESTINATION AIRPORT IATA CODE'])) abpc['LOCAL'].sum() abpc['SCHENGEN'].sum() ###Output _____no_output_____ ###Markdown Preprocesamiento de datos ###Code # Encode Categorycal Variables # STATUS labelencoder_X = LabelEncoder() abpc['STATUS'] = labelencoder_X.fit_transform(abpc['STATUS']) # 0 PASSED # 1 NOT PASSED abpc.head() # Hay algun nulo en las fechas? nulls_sobt = abpc['DEPARTURE FLIGHT SOBT'].isnull().sum() nulls_check = abpc['CHECK DATE'].isnull().sum() abpc.reset_index(inplace=True,drop=True) to_drop_ds = [] if (nulls_sobt!=0): for ind in range(0,len(abpc['DEPARTURE FLIGHT SOBT'].values)): date = abpc['DEPARTURE FLIGHT SOBT'].iloc[ind] if (pd.isnull(date)): print('DEPARTURE FLIGHT SOBT:',date,'---') to_drop_ds.append(ind) to_drop_cd = [] if (nulls_check!=0): for ind in range(0,len(abpc['CHECK DATE'].values)): date = abpc['CHECK DATE'].iloc[ind] if (pd.isnull(date)): print('CHECK DATE:',date,'---') to_drop_cd.append(ind) to_drop = list(set(to_drop_ds) | set(to_drop_cd)) to_drop_ds to_drop_cd to_drop abpc.drop(to_drop,inplace=True) # Solo una vez!! abpc.reset_index(inplace=True,drop=True) # Dates to Datetime abpc.reset_index(inplace=True,drop=True) # Check-Date date_check = pd.to_datetime(abpc['CHECK DATE'],format = '%d/%m/%Y %H:%M') # Departure Date date_dep = pd.to_datetime(abpc['DEPARTURE FLIGHT SOBT'],format = '%d/%m/%Y %H:%M') # Vemos si hay alguna fecha que no se haya convertido bien o es nula nulls_check_ = date_check.isnull().sum() nulls_sobt_ = date_dep.isnull().sum() if (nulls_check_!=0): for ind in range(0,len(date_check)): if (pd.isnull(date_check[ind])): print(ind) print('CHECK DATE:',date_check[ind],'---') if (nulls_sobt_!=0): for ind in range(0,len(date_dep)): if (pd.isnull(date_dep[ind])): print(ind) print('DEPARTURE FLIGHT SOBT:',date_dep[ind],'---') # Dates to String Format %Y-%m-%d %H:%M:%S abpc['CHECK DATE']=date_check.map(lambda x: x.strftime('%Y-%m-%d %H:%M:%S')) abpc['DEPARTURE FLIGHT SOBT']=date_dep.map(lambda x: x.strftime('%Y-%m-%d %H:%M:%S')) abpc.head() # Adding a variable: Dwell Time (Check - Departure) # Dwell Time dwell_time = date_dep - date_check abpc['DWELL TIME'] = dwell_time.map(lambda x: x.total_seconds()/3600) # Adding a variable: DEPARTURE SOBT HOUR , DEPARTURE SOBT WEEKDAY abpc['DEPARTURE SOBT HOUR'] = date_dep.map(lambda x: x.hour) abpc['DEPARTURE SOBT WEEKDAY'] = date_dep.map(lambda x: x.weekday()) abpc.head() # DEPARTURE SOBT CLUSTER uno = [13,14,15,16,17,18,19] # Good Cluster tres = [10,11,12] # Good cluster dos = [2,4,5,6,7] # Good Cluster # Faltan las horas sueltas: 20,21,22,23,0,1,3 (un cluster por cada una) def clust_day_zone(x): if (x in uno): return 'A' elif (x in tres): return 'MD' elif (x in dos): return 'NM' else: return str(x) abpc['DEPARTURE SOBT CLUSTER'] = abpc['DEPARTURE SOBT HOUR'].map(lambda x: clust_day_zone(x)) ###Output _____no_output_____ ###Markdown Representamos curvas patron ###Code abpc.reset_index(inplace=True,drop='True') def clust_wd_sobt(wd,sobt,local): dw_t_h = abpc['DWELL TIME'].loc[(abpc['DEPARTURE SOBT CLUSTER']==sobt)&(abpc['DEPARTURE SOBT WEEKDAY']==wd)&(abpc['LOCAL']==local)] return dw_t_h cluster_prueba = clust_wd_sobt(2,'A',False) fig = plt.figure(num=4, figsize=(14, 9), dpi=80, facecolor='w', edgecolor='k') plt.hist(cluster_prueba,30,range=(0,4),density=True,histtype='stepfilled', alpha=0.4) ###Output _____no_output_____ ###Markdown Predicciones ###Code data_X = cluster_prueba num_train = int(data_X.count()/5*4) data_X_train_ = data_X[0:num_train] #Train data_X_test_ = data_X[num_train:] #Test n_train_, bins_train, patchs_train = plt.hist(data_X_train_,30,range=[0,4],alpha=0.8) n_test_, bins_test, patchs_test = plt.hist(data_X_test_,30,range=[0,4],alpha=0.8) tot_train = sum(n_train_) n_train = list(map(lambda x: x/tot_train,n_train_)) tot_test = sum(n_test_) n_test = list(map(lambda x: x/tot_test,n_test_)) bins_train_ = [] for i in range(0,len(bins_train)-1): bins_train_.append((bins_train[i]+bins_train[i+1])/2) bins_test_ = [] for i in range(0,len(bins_test)-1): bins_test_.append((bins_test[i]+bins_test[i+1])/2) plt.bar(bins_train_,n_train,width=0.15,color='m',alpha=0.5) plt.bar(bins_test_,n_test,width=0.15,color='c',alpha=0.5) bins_train_M = np.array([bins_train_]).transpose() regressor = RandomForestRegressor(n_estimators=150) regressor.fit(bins_train_M,n_train) bins_test_M = np.array([bins_test_]).transpose() plt.scatter(bins_test_M,regressor.predict(bins_test_M),color='m',zorder=5) plt.bar(bins_test_,n_test,width=0.15,color='b',alpha=0.5) plt.bar(bins_train_,n_train,width=0.15,color='c',alpha=0.5) regressor.score(bins_test_M,n_test) ###Output _____no_output_____
013-Python 直播课/Class_02_20200325_Python基础.ipynb
###Markdown 一个 Python 基础的小例子 ###Code import pandas as pd import pandas a = [1, 2, 3, 8, 'javascript', 'julia', 'perl', 'php', 'python', 'ruby'] a.pop(0) a.remove(2) a ###Output _____no_output_____
2021/sem2/lecture_1_warmup/lecture.ipynb
###Markdown Разминка Рассказать про материал второго курса, домашние задания и систему выставления оценок. План на лекцию: освежить в памяти основы из 1-й части курса. **Разминка 1**: обсудить код программы по выводу top-n слов песни "Yellow Submarine" ```c++// обсудить: что это и как оно работаетinclude include include include include include include include include include include // обсудить:// * что это// * что значит const// * что значит static// * где живут данные// * когда объект создаётся и когда уничтожаетсяstatic const std::string song = "\ Yellow Submarine\n\ \n\ In the town where I was born\n\ Lived a man who sailed to sea\n\ And he told us of his life\n\ In the land of submarines\n\ So we sailed up to the sun\n\ Till we found a sea of green\n\ And we lived beneath the waves\n\ in our yellow submarine\n\ \n\ We all live in a yellow submarine\n\ Yellow submarine, yellow submarine\n\ We all live in a yellow submarine\n\ Yellow submarine, yellow submarine\n\ \n\ And our friends are all aboard\n\ Many more of them live next door\n\ And the band begins to play\n\ \n\ We all live in a yellow submarine\n\ Yellow submarine, yellow submarine\n\ We all live in a yellow submarine\n\ Yellow submarine, yellow submarine\n\ \n\ (Full speed ahead Mr. Parker, full speed ahead\n\ Full speed ahead it is, Sergeant\n\ Action station, action station\n\ Aye, aye, sir, fire\n\ Captain, captain)\n\ \n\ As we live a life of ease\n\ Every one of us has all we need\n\ Sky of blue and sea of green\n\ In our yellow submarine\n\ \n\ We all live in a yellow submarine\n\ Yellow submarine, yellow submarine\n\ We all live in a yellow submarine\n\ Yellow submarine, yellow submarine\n\ We all live in a yellow submarine\n\ Yellow submarine, yellow submarine";// обсудить:// * что это// * какой код ассемблера генерирует эта строчка// * что такое unordered_map, внутреннее устройство, разница с std::mapusing WordsCounter = std::unordered_map;// обсудить:// * что значит static// * что значит &static void to_lower_inplace(std::string& s){ for (char& c : s) c = static_cast(std::tolower(static_cast(c)));}// обсудить:// * зачем erasestatic void remove_non_alpha_inplace(std::string& s){ s.erase( std::remove_if( s.begin(), s.end(), [](unsigned char c) { return !std::isalpha(c); }), s.end());}// обсудить:// * что значит nodiscard// * почему const&? правила передачи аргументов// * что даёт наличие return только от одной локальной переменной в функции// * как устроен в памяти std::vector. если сложно - рисовать// * какие ещё есть контейнеры-последовательности кроме std::vector, как они устроены[[nodiscard]] static std::vector split_by_words(const std::string& text){ std::vector words; std::istringstream ss{text}; std::for_each( std::istream_iterator(ss), std::istream_iterator(), [&](std::string s){ remove_non_alpha_inplace(s); to_lower_inplace(s); if (!s.empty()) words.emplace_back(std::move(s)); }); return words;}[[nodiscard]] static WordsCounter make_words_counter(const std::string& text){ const std::vector words = split_by_words(text); WordsCounter counter; for (const std::string& word : words) counter[word] += 1; return counter;}// обсудить:// * почему namespace// * почему struct// * разница class/structnamespace {struct CountAndWord{ int count; std::string word;};} // namespace// обсудить:// * reserve// * partial_sort (+begin/end)// * lambda (+captures)static void print_top_n_words(const WordsCounter& counter, const int topn){ if (topn <= 0) return; std::vector caws; caws.reserve(counter.size()); for (const auto& [word, count] : counter) caws.emplace_back(CountAndWord{ count, word }); const int top_ix = std::min(topn, caws.size()); std::partial_sort( caws.begin(), caws.begin() + top_ix, caws.end(), [](const CountAndWord& l, const CountAndWord& r) { return std::tie(r.count, r.word) < std::tie(l.count, l.word); }); for (int i = 0; i < top_ix; ++i) std::cout " << caws[i].count << '\n';}// обсудить:// * что такое main// * что такое argc, argvint main(int argc, char **argv){ // обсудить: // * почему 2 // * что в argv[0] // * что такое endl // * почему return 1 if (argc != 2) { std::cout << "Usage: " << argv[0] << " top_n" << std::endl; return 1; } // обсудить: // * что такое try-catch try { const int top_n = std::stoi(argv[1]); const WordsCounter words_counter = make_words_counter(song); print_top_n_words(words_counter, top_n); } catch (const std::exception& e) { // обсудить: // * что такое cerr // * почему return 1 // * что такое std::exception и почему он здесь std::cerr << "ERROR: failed to find top n words: " << e.what() << std::endl; return 1; } // просмотреть всю программу, где могут быть брошены исключения return 0;}``` **Разминка 2**: обсудить класс `RoundRobinQueue` ```c++include include include include include include // обсудить:// * шаблоны (что такое, зачем, как)// * шаблонные параметрыtemplateclass RoundRobinQueue{private: // обсудить: инварианты std::array, N> data; int start_ix = 0; // индекс первого элемента в очереди int final_ix = 0; // индекс следующего за последним элементом в очереди public: // обсудить: // * конструкторы, деструкторы, когда вызываются // * какие есть ещё спец. методы // * какие есть правила RoundRobinQueue() = default; RoundRobinQueue(std::initializer_list lst) { for (const T& t : lst) push(t); } RoundRobinQueue(const RoundRobinQueue&) = default; RoundRobinQueue& operator=(const RoundRobinQueue&) = default; // обсудить: // * что это такое // * что делает std::move // * зачем присваивать rhs // * зачем noexcept RoundRobinQueue(RoundRobinQueue&& rhs) noexcept : data(std::move(rhs.data)) , start_ix(rhs.start_ix) , final_ix(rhs.final_ix) { rhs = RoundRobinQueue(); } // обсудить: // * зачем это нужно если есть move-конструктор // * зачем проверка на this RoundRobinQueue& operator=(RoundRobinQueue&& rhs) noexcept { if (this != &rhs) { data = std::move(rhs); start_ix = rhs.start_ix; final_ix = rhs.final_ix; rhs = RoundRobinQueue(); } return *this; } // обсудить: // * что это и что здесь происходит ~RoundRobinQueue() = default; // обсудить: почему const bool empty() const { return start_ix == final_ix && !data[start_ix].has_value(); } bool full() const { return start_ix == final_ix && data[start_ix].has_value(); } T pop() { if (empty()) throw std::runtime_error("pop from empty queue"); T res = std::move(data[start_ix].value()); data[start_ix].reset(); start_ix = next_ix(start_ix); return res; } void push(T item) { if (full()) throw std::runtime_error("push to full queue"); data[final_ix].emplace(std::move(item)); final_ix = next_ix(final_ix); }private: // обсудить: // * что значит static static int next_ix(const int ix) { return (ix + 1) % N; }};int main(){ try { RoundRobinQueue q; q.push("alesha"); q.push("dobrynia"); q.push("ilya"); while (true) std::cout << q.pop() << std::endl; } catch (const std::exception& e) { std::cout << e.what() << std::endl; } // обсудить: // * что будет выведено // * будет ли скомпилирован конструктор RoundRobinQueue(std::initializer_list lst) // * сколько классов RoundRobinQueue будет скомпилировано // * как будут линковаться несколько RoundRobinQueue, если они компилируются // в разных cpp-файлах return 0;}``` **Разминка 3**: обсудить программу, печатающую животных в зоопарке ```c++include include include include include include include using namespace std;namespace {// замечание://// организуем животных в иерархию://// Animal// |// Turtle// |// NinjaTurtle class Animal{ public: Animal(const string& name, int age) : name_(name) , age_(age) {} // обсудить: // * что это такое // * зачем так делают virtual ~Animal() = default; // обсудить: // * что это такое // * = 0 virtual string greeting() const = 0; const string& name() const { return name_; } int age() const { return age_; } private: string name_; int age_;};class Turtle : public Animal{public: Turtle(const string& name, int age) : Animal(name, age) {} // обсудить: // * override // * final string greeting() const override { return "hello"; }};// обсудить:// * порядок вызова конструкторов-деструкторов// * layout класса (не трогаем что это non-standard layout)// * sizeof класса// * alignmentclass NinjaTurtle : public Turtle{public: NinjaTurtle(const string& name, const string& short_name) : Turtle(name, 12) , short_name_(short_name) {} string greeting() const override { return "camabanga!"; } private: string short_name_;};} // namespace// обсудить:// * что такое unique_ptr и что вы про него знаете// * какие ещё есть умные указатели, внутреннее устройство// * зачем нужен make_unique// * зачем нужен make_shared[[nodiscard]]static vector> make_zoo(){ vector> rv; rv.reserve(7); rv.emplace_back(make_unique("Tortilla", 100)); rv.emplace_back(make_unique("Big Turtle", 100)); rv.emplace_back(make_unique("Aunt Motya", 200)); rv.emplace_back(make_unique("Donatello")); rv.emplace_back(make_unique("Rafael")); return move(rv);}// обсудить:// * где в коде main происходит вызов виртуальных функций (подсказка: 2 места)//int main(){ for (const unique_ptr& a : make_zoo()) { printf("I'm %10s. My age is %3i. %s\n", a->name().c_str(), a->age(), a->greeting().c_str()); } return 0;}``` Forward declaration: традиционный пример с iostream Рассмотрим компиляцию cpp-файла: ```c++// example_fwd_declaration_1.cppinclude extern int read_int(std::istream& is);extern int read_float(std::istream& is);struct Person{ int age; float weight;};Person read_person(std::istream& is){ Person p; p.age = read_int(is); p.weight = read_float(is); return p;}``` ###Code # скомпилируем, замерим время !time --format "real time %E\nuser time %U\nsys time %S" clang++-8 -c example_fwd_declaration_1.cpp ###Output real time 0:00.24 user time 0.20 sys time 0.02 ###Markdown Заметим, что при компиляции `example_fwd_declaration_1.cpp` компилятору нет необходимости видеть реализацию класса `std::istream`, т.к. в рамках этого файла:* ни один из методов класса не вызывается* не нужно знать размер класса, т.к. передаётся только указатель на объект, а размер указателя известен_(пройтись ещё раз по коду, показать где и как используется класс `std::istream`)_Компилятору достаточно знать, что такой класс существует.Применим приём **forward declaration** - заменим definition класса на declaration.Класс `std::istream` - шаблонный, поэтому forward declaration будет выглядеть страшненько: ```c++// forward-declare std::istreamnamespace std { template struct char_traits; template> class basic_istream; using istream = basic_istream;}extern int read_int(std::istream& is);extern int read_float(std::istream& is);struct Person{ int age; float weight;};Person read_person(std::istream& is){ Person p; p.age = read_int(is); p.weight = read_float(is); return p;}``` ###Code # скомпилируем, замерим время !time --format "real time %E\nuser time %U\nsys time %S" clang++-8 -c example_fwd_declaration_2.cpp ###Output real time 0:00.02 user time 0.01 sys time 0.00 ###Markdown **Мы ускорили компиляцию в ~10 раз**_(объяснить, почему возникает такой эффект)_ Forward declaration: iosfwd Т.к. проблема времени компиляции для заголовочного файла `iostream` известна, для него давно в стандарт ввели `include ` - forward declaration для объектов из `iostream`https://en.cppreference.com/w/cpp/header/iosfwdПоэтому наш пример можно упростить: ```c++include extern int read_int(std::istream& is);extern int read_float(std::istream& is);struct Person{ int age; float weight;};Person read_person(std::istream& is){ Person p; p.age = read_int(is); p.weight = read_float(is); return p;}``` ###Code # скомпилируем, замерим время !time --format "real time %E\nuser time %U\nsys time %S" clang++-8 -c example_fwd_declaration_3.cpp ###Output real time 0:00.03 user time 0.02 sys time 0.00
supervised_learning/Classification .ipynb
###Markdown The Iris dataset in scikit-learn ###Code dir (datasets) #loading the iris data set using the sickit learn library df = datasets.load_iris() type(df) df.keys() print(df.DESCR) print (df.data) print (df.target) print (df.feature_names) print (df.target_names) type (df.data) type (df.target) df.data.shape df.target_names.shape ###Output _____no_output_____ ###Markdown Exploratory data analysis (EDA) ###Code x= iris.data y= iris.target iris = pd.DataFrame (x, columns= iris.feature_names) iris.head () ###Output _____no_output_____ ###Markdown Visual EDA with Scatter_matrix ###Code _ = pd.plotting.scatter_matrix(iris, c = y, figsize = [8, 8], s=150, marker = 'D') ###Output _____no_output_____ ###Markdown Using scikit-learn to fit a classifier ###Code from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=6) knn.fit(df['data'], df['target']) df['data'].shape df['target'].shape ###Output _____no_output_____ ###Markdown Predicting on unlabeled data ###Code X_new = np.array([[5.6, 2.8, 3.9, 1.1], [5.7, 2.6, 3.8, 1.3], [4.7, 3.2, 1.3, 0.2]]) prediction = knn.predict(X_new) X_new.shape print('Prediction: {}'.format(prediction)) ###Output Prediction: [1 1 0] ###Markdown Train/testsplit ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=21, stratify=y) knn = KNeighborsClassifier(n_neighbors=8) knn.fit(X_train, y_train) y_pred = knn.predict(X_test) knn.score(X_test, y_test) ###Output _____no_output_____
TensorFlow_10.ipynb
###Markdown [묹제]x값이 [[1,11,7,9], [1,3,4,3], [1,1,0,1]] 일때, 분류 결과를 출력하시오.x, y = placeholder클래스 개수 = 3w, b = 변수 (랜덤값 초기화)learning_rate = 0.1트레이닝 횟수 = 2001 ###Code import numpy as np import tensorflow as tf import math x_data = [[1, 2, 1, 1], [2, 1, 3, 2], [3, 1, 3, 4], [4, 1, 5, 5], [1, 7, 5, 5], [1, 2, 5, 6], [1, 6, 6, 6], [1, 7, 7, 7]] y_data = [[0, 0, 1],#2 [0, 0, 1],#2 [0, 0, 1],#2 [0, 1, 0],#1 [0, 1, 0],#1 [0, 1, 0],#1 [1, 0, 0],#0 [1, 0, 0]]#0 tf.set_random_seed(777) x = tf.placeholder(tf.float32) y = tf.placeholder(tf.float32) w = tf.Variable(tf.random_normal([4,3])) b = tf.Variable(tf.random_normal([1])) z = tf.matmul(x,w)+b hf = tf.nn.softmax(z) cost = tf.reduce_mean(tf.reduce_sum(y*-tf.log(hf), axis = 1 )) optimizer = tf.train.GradientDescentOptimizer(0.1) train = optimizer.minimize(cost) sess = tf.Session() sess.run(tf.global_variables_initializer()) for i in range(2001) : sess.run(train, feed_dict = {x:x_data, y:y_data}) if i % 200 == 0 : print(i, sess.run(cost, feed_dict = {x:x_data, y:y_data})) yhat = sess.run(hf, feed_dict = {x:[[1,11,7,9], [1,3,4,3], [1,1,0,1]]}) print("\nyhat\n",yhat) yhat2 = sess.run(tf.argmax(yhat, axis = 1)) print("예측값 : ", yhat2) y2 = sess.run(tf.argmax(y_data, axis = 1)) print("실제값 : ",y2) ###Output 예측값 : [1 0 2] 실제값 : [2 2 2 1 1 1 0 0] ###Markdown * * * 동물 분류 ###Code xy = np.loadtxt('DataSet/zoo.csv', delimiter = ',', dtype = np.float32) xdata = xy[:, 0:-1] ydata = xy[:, [-1]] print(xdata.shape, ydata.shape) nb_classes = 7 x = tf.placeholder(tf.float32, [None, 16]) y = tf.placeholder(tf.int32, [None, 1]) #y에는 0~6 사이의 임의의 수 저장(원 핫 인코딩 필요) y_one_hot = tf.one_hot(y, nb_classes) # 0 -> 100000, 3 -> 0001000 print("one hot 상태 : ", y_one_hot) ''' 원 핫 인코딩을 수행하면 차원이 1 증가(y : (None,1) -> (None,1,7)) reshape필요 -> (None, 7) ''' y_one_hot = tf.reshape(y_one_hot, [-1, nb_classes]) print("reshape 결과 : ", y_one_hot) w = tf.Variable(tf.random_normal([16,nb_classes])) b = tf.Variable(tf.random_normal([nb_classes])) logits = tf.matmul(x,w) + b hf = tf.nn.softmax(logits) cost_i = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=y_one_hot) cost = tf.reduce_mean(cost_i) optimizer = tf.train.GradientDescentOptimizer(0.1).minimize(cost) prediction = tf.argmax(hf, 1) # axis = 1 correct_prediction = tf.equal(prediction, tf.argmax(y_one_hot,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess : sess.run(tf.global_variables_initializer()) for step in range(2001): sess.run(optimizer, feed_dict={x:xdata, y:ydata}) if step%200==0: cv, av = sess.run([cost, accuracy], feed_dict={x:xdata, y:ydata}) print(step, cv, av) print("예측 동물 : ", sess.run(prediction, feed_dict={x:[[0.,0.,1.,0.,0., 1.,1.,1.,1.,0., 0.,1.,0.,1.,0.,0.]]})) ###Output 0 10.077507 0.02970297 200 0.5486735 0.8910891 400 0.2960701 0.9009901 600 0.18900605 0.980198 800 0.13623165 0.990099 1000 0.106259316 1.0 1200 0.08720473 1.0 1400 0.07406866 1.0 1600 0.06447227 1.0 1800 0.05715497 1.0 2000 0.051389027 1.0 예측 동물 : [3]
projects/python/Predicting Credit Card Approvals/notebook.ipynb
###Markdown 1. Credit card applicationsCommercial banks receive a lot of applications for credit cards. Many of them get rejected for many reasons, like high loan balances, low income levels, or too many inquiries on an individual's credit report, for example. Manually analyzing these applications is mundane, error-prone, and time-consuming (and time is money!). Luckily, this task can be automated with the power of machine learning and pretty much every commercial bank does so nowadays. In this notebook, we will build an automatic credit card approval predictor using machine learning techniques, just like the real banks do.We'll use the Credit Card Approval dataset from the UCI Machine Learning Repository. The structure of this notebook is as follows:First, we will start off by loading and viewing the dataset.We will see that the dataset has a mixture of both numerical and non-numerical features, that it contains values from different ranges, plus that it contains a number of missing entries.We will have to preprocess the dataset to ensure the machine learning model we choose can make good predictions.After our data is in good shape, we will do some exploratory data analysis to build our intuitions.Finally, we will build a machine learning model that can predict if an individual's application for a credit card will be accepted.First, loading and viewing the dataset. We find that since this data is confidential, the contributor of the dataset has anonymized the feature names. ###Code # Import pandas import pandas as pd # Load dataset cc_apps = pd.read_csv('datasets/cc_approvals.data', header = None) # Inspect data cc_apps.head() ###Output _____no_output_____ ###Markdown 2. Inspecting the applicationsThe output may appear a bit confusing at its first sight, but let's try to figure out the most important features of a credit card application. The features of this dataset have been anonymized to protect the privacy, but this blog gives us a pretty good overview of the probable features. The probable features in a typical credit card application are Gender, Age, Debt, Married, BankCustomer, EducationLevel, Ethnicity, YearsEmployed, PriorDefault, Employed, CreditScore, DriversLicense, Citizen, ZipCode, Income and finally the ApprovalStatus. This gives us a pretty good starting point, and we can map these features with respect to the columns in the output. As we can see from our first glance at the data, the dataset has a mixture of numerical and non-numerical features. This can be fixed with some preprocessing, but before we do that, let's learn about the dataset a bit more to see if there are other dataset issues that need to be fixed. ###Code # Print summary statistics cc_apps_description = cc_apps.describe() print(cc_apps_description) print("\n") # Print DataFrame information cc_apps_info = cc_apps.info() print(cc_apps_info) print("\n") # Inspect missing values in the dataset cc_apps.tail(17) ###Output 2 7 10 14 count 690.000000 690.000000 690.00000 690.000000 mean 4.758725 2.223406 2.40000 1017.385507 std 4.978163 3.346513 4.86294 5210.102598 min 0.000000 0.000000 0.00000 0.000000 25% 1.000000 0.165000 0.00000 0.000000 50% 2.750000 1.000000 0.00000 5.000000 75% 7.207500 2.625000 3.00000 395.500000 max 28.000000 28.500000 67.00000 100000.000000 <class 'pandas.core.frame.DataFrame'> RangeIndex: 690 entries, 0 to 689 Data columns (total 16 columns): 0 690 non-null object 1 690 non-null object 2 690 non-null float64 3 690 non-null object 4 690 non-null object 5 690 non-null object 6 690 non-null object 7 690 non-null float64 8 690 non-null object 9 690 non-null object 10 690 non-null int64 11 690 non-null object 12 690 non-null object 13 690 non-null object 14 690 non-null int64 15 690 non-null object dtypes: float64(2), int64(2), object(12) memory usage: 86.3+ KB None ###Markdown 3. Handling the missing values (part i)We've uncovered some issues that will affect the performance of our machine learning model(s) if they go unchanged:Our dataset contains both numeric and non-numeric data (specifically data that are of float64, int64 and object types). Specifically, the features 2, 7, 10 and 14 contain numeric values (of types float64, float64, int64 and int64 respectively) and all the other features contain non-numeric values.The dataset also contains values from several ranges. Some features have a value range of 0 - 28, some have a range of 2 - 67, and some have a range of 1017 - 100000. Apart from these, we can get useful statistical information (like mean, max, and min) about the features that have numerical values. Finally, the dataset has missing values, which we'll take care of in this task. The missing values in the dataset are labeled with '?', which can be seen in the last cell's output.Now, let's temporarily replace these missing value question marks with NaN. ###Code # Import numpy import numpy as np # Inspect missing values in the dataset print(cc_apps.tail(17)) # Replace the '?'s with NaN cc_apps = cc_apps.replace('?', np.nan) # Inspect the missing values again print(cc_apps.tail(17)) ###Output 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 673 ? 29.50 2.000 y p e h 2.000 f f 0 f g 00256 17 - 674 a 37.33 2.500 u g i h 0.210 f f 0 f g 00260 246 - 675 a 41.58 1.040 u g aa v 0.665 f f 0 f g 00240 237 - 676 a 30.58 10.665 u g q h 0.085 f t 12 t g 00129 3 - 677 b 19.42 7.250 u g m v 0.040 f t 1 f g 00100 1 - 678 a 17.92 10.210 u g ff ff 0.000 f f 0 f g 00000 50 - 679 a 20.08 1.250 u g c v 0.000 f f 0 f g 00000 0 - 680 b 19.50 0.290 u g k v 0.290 f f 0 f g 00280 364 - 681 b 27.83 1.000 y p d h 3.000 f f 0 f g 00176 537 - 682 b 17.08 3.290 u g i v 0.335 f f 0 t g 00140 2 - 683 b 36.42 0.750 y p d v 0.585 f f 0 f g 00240 3 - 684 b 40.58 3.290 u g m v 3.500 f f 0 t s 00400 0 - 685 b 21.08 10.085 y p e h 1.250 f f 0 f g 00260 0 - 686 a 22.67 0.750 u g c v 2.000 f t 2 t g 00200 394 - 687 a 25.25 13.500 y p ff ff 2.000 f t 1 t g 00200 1 - 688 b 17.92 0.205 u g aa v 0.040 f f 0 f g 00280 750 - 689 b 35.00 3.375 u g c h 8.290 f f 0 t g 00000 0 - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 673 NaN 29.50 2.000 y p e h 2.000 f f 0 f g 00256 17 - 674 a 37.33 2.500 u g i h 0.210 f f 0 f g 00260 246 - 675 a 41.58 1.040 u g aa v 0.665 f f 0 f g 00240 237 - 676 a 30.58 10.665 u g q h 0.085 f t 12 t g 00129 3 - 677 b 19.42 7.250 u g m v 0.040 f t 1 f g 00100 1 - 678 a 17.92 10.210 u g ff ff 0.000 f f 0 f g 00000 50 - 679 a 20.08 1.250 u g c v 0.000 f f 0 f g 00000 0 - 680 b 19.50 0.290 u g k v 0.290 f f 0 f g 00280 364 - 681 b 27.83 1.000 y p d h 3.000 f f 0 f g 00176 537 - 682 b 17.08 3.290 u g i v 0.335 f f 0 t g 00140 2 - 683 b 36.42 0.750 y p d v 0.585 f f 0 f g 00240 3 - 684 b 40.58 3.290 u g m v 3.500 f f 0 t s 00400 0 - 685 b 21.08 10.085 y p e h 1.250 f f 0 f g 00260 0 - 686 a 22.67 0.750 u g c v 2.000 f t 2 t g 00200 394 - 687 a 25.25 13.500 y p ff ff 2.000 f t 1 t g 00200 1 - 688 b 17.92 0.205 u g aa v 0.040 f f 0 f g 00280 750 - 689 b 35.00 3.375 u g c h 8.290 f f 0 t g 00000 0 - ###Markdown 4. Handling the missing values (part ii)We replaced all the question marks with NaNs. This is going to help us in the next missing value treatment that we are going to perform.An important question that gets raised here is why are we giving so much importance to missing values? Can't they be just ignored? Ignoring missing values can affect the performance of a machine learning model heavily. While ignoring the missing values our machine learning model may miss out on information about the dataset that may be useful for its training. Then, there are many models which cannot handle missing values implicitly such as LDA. So, to avoid this problem, we are going to impute the missing values with a strategy called mean imputation. ###Code # Impute the missing values with mean imputation cc_apps.fillna(cc_apps.mean(), inplace=True) # Count the number of NaNs in the dataset to verify print(cc_apps.isnull().sum()) ###Output 0 12 1 12 2 0 3 6 4 6 5 9 6 9 7 0 8 0 9 0 10 0 11 0 12 0 13 13 14 0 15 0 dtype: int64 ###Markdown 5. Handling the missing values (part iii)We have successfully taken care of the missing values present in the numeric columns. There are still some missing values to be imputed for columns 0, 1, 3, 4, 5, 6 and 13. All of these columns contain non-numeric data and this why the mean imputation strategy would not work here. This needs a different treatment. We are going to impute these missing values with the most frequent values as present in the respective columns. This is good practice when it comes to imputing missing values for categorical data in general. ###Code # Iterate over each column of cc_apps for col in cc_apps.columns: # Check if the column is of object type if cc_apps[col].dtypes == 'object': # Impute with the most frequent value cc_apps = cc_apps.fillna(cc_apps[col].value_counts().index[0]) # Count the number of NaNs in the dataset and print the counts to verify cc_apps.isnull().sum() ###Output _____no_output_____ ###Markdown 6. Preprocessing the data (part i)The missing values are now successfully handled.There is still some minor but essential data preprocessing needed before we proceed towards building our machine learning model. We are going to divide these remaining preprocessing steps into three main tasks:Convert the non-numeric data into numeric.Split the data into train and test sets. Scale the feature values to a uniform range.First, we will be converting all the non-numeric values into numeric ones. We do this because not only it results in a faster computation but also many machine learning models (like XGBoost) (and especially the ones developed using scikit-learn) require the data to be in a strictly numeric format. We will do this by using a technique called label encoding. ###Code # Import LabelEncoder from sklearn.preprocessing import LabelEncoder # Instantiate LabelEncoder le = LabelEncoder() # Iterate over all the values of each column and extract their dtypes for col in cc_apps.columns: # Compare if the dtype is object if cc_apps[col].dtypes == 'object': # Use LabelEncoder to do the numeric transformation cc_apps[col] = le.fit_transform(cc_apps[col].values) ###Output _____no_output_____ ###Markdown 7. Splitting the dataset into train and test setsWe have successfully converted all the non-numeric values to numeric ones.Now, we will split our data into train set and test set to prepare our data for two different phases of machine learning modeling: training and testing. Ideally, no information from the test data should be used to scale the training data or should be used to direct the training process of a machine learning model. Hence, we first split the data and then apply the scaling.Also, features like DriversLicense and ZipCode are not as important as the other features in the dataset for predicting credit card approvals. We should drop them to design our machine learning model with the best set of features. In Data Science literature, this is often referred to as feature selection. ###Code # Import train_test_split from sklearn.model_selection import train_test_split # Drop the features 11 and 13 and convert the DataFrame to a NumPy array cc_apps = cc_apps.drop([11, 13], axis=1) cc_apps = cc_apps.values # Segregate features and labels into separate variables X,y = cc_apps[:,0:13] , cc_apps[:,13] # Split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state = 42) ###Output _____no_output_____ ###Markdown 8. Preprocessing the data (part ii)The data is now split into two separate sets - train and test sets respectively. We are only left with one final preprocessing step of scaling before we can fit a machine learning model to the data. Now, let's try to understand what these scaled values mean in the real world. Let's use CreditScore as an example. The credit score of a person is their creditworthiness based on their credit history. The higher this number, the more financially trustworthy a person is considered to be. So, a CreditScore of 1 is the highest since we're rescaling all the values to the range of 0-1. ###Code # Import MinMaxScaler from sklearn.preprocessing import MinMaxScaler # Instantiate MinMaxScaler and use it to rescale X_train and X_test scaler = MinMaxScaler(feature_range=((0,1))) rescaledX_train = scaler.fit_transform(X_train) rescaledX_test = scaler.fit_transform(X_test) ###Output _____no_output_____ ###Markdown 9. Fitting a logistic regression model to the train setEssentially, predicting if a credit card application will be approved or not is a classification task. According to UCI, our dataset contains more instances that correspond to "Denied" status than instances corresponding to "Approved" status. Specifically, out of 690 instances, there are 383 (55.5%) applications that got denied and 307 (44.5%) applications that got approved. This gives us a benchmark. A good machine learning model should be able to accurately predict the status of the applications with respect to these statistics.Which model should we pick? A question to ask is: are the features that affect the credit card approval decision process correlated with each other? Although we can measure correlation, that is outside the scope of this notebook, so we'll rely on our intuition that they indeed are correlated for now. Because of this correlation, we'll take advantage of the fact that generalized linear models perform well in these cases. Let's start our machine learning modeling with a Logistic Regression model (a generalized linear model). ###Code # Import LogisticRegression from sklearn.linear_model import LogisticRegression # Instantiate a LogisticRegression classifier with default parameter values logreg = LogisticRegression() # Fit logreg to the train set logreg.fit(rescaledX_train, y_train) ###Output _____no_output_____ ###Markdown 10. Making predictions and evaluating performanceBut how well does our model perform? We will now evaluate our model on the test set with respect to classification accuracy. But we will also take a look the model's confusion matrix. In the case of predicting credit card applications, it is equally important to see if our machine learning model is able to predict the approval status of the applications as denied that originally got denied. If our model is not performing well in this aspect, then it might end up approving the application that should have been approved. The confusion matrix helps us to view our model's performance from these aspects. ###Code # Import confusion_matrix from sklearn.metrics import confusion_matrix # Use logreg to predict instances from the test set and store it y_pred = logreg.predict(rescaledX_test) # Get the accuracy score of logreg model and print it print("Accuracy of logistic regression classifier: ", logreg.score(rescaledX_test, y_test)) # Print the confusion matrix of the logreg model print(confusion_matrix(y_test, y_pred)) ###Output Accuracy of logistic regression classifier: 0.8377192982456141 [[92 11] [26 99]] ###Markdown 11. Grid searching and making the model perform betterOur model was pretty good! It was able to yield an accuracy score of almost 84%.For the confusion matrix, the first element of the of the first row of the confusion matrix denotes the true negatives meaning the number of negative instances (denied applications) predicted by the model correctly. And the last element of the second row of the confusion matrix denotes the true positives meaning the number of positive instances (approved applications) predicted by the model correctly.Let's see if we can do better. We can perform a grid search of the model parameters to improve the model's ability to predict credit card approvals.scikit-learn's implementation of logistic regression consists of different hyperparameters but we will grid search over the following two:tolmax_iter ###Code # Import GridSearchCV from sklearn.model_selection import GridSearchCV # Define the grid of values for tol and max_iter tol = [0.01, 0.001, 0.0001] max_iter = [100, 150, 200] # Create a dictionary where tol and max_iter are keys and the lists of their values are corresponding values param_grid = dict(tol = tol, max_iter = max_iter) ###Output _____no_output_____ ###Markdown 12. Finding the best performing modelWe have defined the grid of hyperparameter values and converted them into a single dictionary format which GridSearchCV() expects as one of its parameters. Now, we will begin the grid search to see which values perform best.We will instantiate GridSearchCV() with our earlier logreg model with all the data we have. Instead of passing train and test sets separately, we will supply X (scaled version) and y. We will also instruct GridSearchCV() to perform a cross-validation of five folds.We'll end the notebook by storing the best-achieved score and the respective best parameters.While building this credit card predictor, we tackled some of the most widely-known preprocessing steps such as scaling, label encoding, and missing value imputation. We finished with some machine learning to predict if a person's application for a credit card would get approved or not given some information about that person. ###Code # Instantiate GridSearchCV with the required parameters grid_model = GridSearchCV(estimator = logreg, param_grid = param_grid, cv=5) # Use scaler to rescale X and assign it to rescaledX rescaledX = scaler.fit_transform(X) # Fit data to grid_model grid_model_result = grid_model.fit(rescaledX, y) # Summarize results best_score, best_params = grid_model_result.best_score_, grid_model_result.best_params_ print("Best: %f using %s" % (best_score, best_params)) ###Output Best: 0.853623 using {'tol': 0.01, 'max_iter': 100}
covid19-internazionale.ipynb
###Markdown Dati Coronavirus Internazionali ###Code import pandas as pd import numpy as np from datetime import datetime,timedelta from dateutil import relativedelta from IPython.display import Markdown import plotly.express as px import plotly.io as pio import dateutil.relativedelta pio.renderers.default = 'notebook_connected' pio.templates.default = "simple_white+gridon" plt_config = {'scrollZoom':False} who_url = "https://covid19.who.int/WHO-COVID-19-global-data.csv" who = pd.read_csv(who_url, parse_dates=['Date_reported'], index_col='Date_reported') who = who.rename(columns={'Country_code':'country_code', 'Country':'country', 'WHO_region':'region', 'New_cases':'new_cases', 'Cumulative_cases':'cases', 'New_deaths':'new_deaths', 'Cumulative_deaths':'deaths'}) updated_at = who.index.max() display(Markdown(f"### *Aggiornamento al {updated_at:%d/%m/%Y}*")) cases = who.new_cases.resample('D').sum() deaths = who.new_deaths.resample('D').sum() display(Markdown(f""" *Casi totali*: **{cases.sum():,d}**, *Decessi totali*: **{deaths.sum():,d}** """)) totals = pd.DataFrame(data={'cases': cases, 'deaths': deaths}) fig = px.bar(totals, title="andamento totale casi e decessi") fig.update_xaxes(rangeslider_visible=True, title='Data') fig.update_yaxes(title='Numero persone') fig.show(config = plt_config) cases_by_country = who.groupby("country").last().nlargest(20, columns=['cases']).cases deaths_by_country = who.groupby("country").last().nlargest(20, columns=['deaths']).deaths fig = px.bar(cases_by_country, title='casi per nazione') fig.update_layout(showlegend=False, yaxis_fixedrange = True ) fig.update_xaxes(title='Nazione') fig.update_yaxes(title='Numero casi') fig.show(config=plt_config) fig = px.bar(deaths_by_country, title='decessi per nazione') fig.update_layout(showlegend=False, yaxis_fixedrange = True ) fig.update_xaxes(title='Nazione') fig.update_yaxes(title='Numero decessi') fig.show(config = plt_config) today = datetime.now() last_month = today - dateutil.relativedelta.relativedelta(months=1) last = who[who.index > last_month].query('new_cases>1000').sort_values('new_cases', ascending=False) fig = px.bar(last, x=last.index, y=last.new_cases, color='country', title='casi > 1.000 per giorno (ultimo mese)') fig.update_xaxes(title='Data') fig.update_yaxes(title='Numero casi') fig.show(config = plt_config) last = who[who.index > last_month].query('new_deaths>300').sort_values('new_deaths', ascending=False) fig = px.bar(last, x=last.index, y=last.new_deaths, color='country', title='decessi > 300 per giorno (ultimo mese)') fig.update_xaxes(title='Data') fig.update_yaxes(title='Numero decessi') fig.show(config = plt_config) ###Output _____no_output_____
001-Jupyter/001-Tutorials/002-IPython-Cookbook/chapter04_optimization/04_memprof.ipynb
###Markdown 4.4. Profiling the memory usage of your code with memory_profiler ###Code %load_ext memory_profiler %%writefile memscript.py def my_func(): a = [1] * 1000000 b = [2] * 9000000 del b return a from memscript import my_func %mprun -T mprof0 -f my_func my_func() print(open('mprof0', 'r').read()) %%memit import numpy as np np.random.randn(1000000) ###Output _____no_output_____ ###Markdown Cleanup ###Code !rm -f memscript.py !rm -f mprof0 ###Output _____no_output_____
RNN_Lab_GPU.ipynb
###Markdown ###Code from google.colab import drive drive.mount('/content/drive') ###Output Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly Enter your authorization code: ·········· Mounted at /content/drive ###Markdown Part-of-Speech Tagging with Recurrent Neural Networks Your task in this assignment is to implement a simple part-of-speech tagger based on recurrent neural networks. Get a graphics card ###Code import os import warnings # Ignore FutureWarning from numpy warnings.simplefilter(action='ignore', category=FutureWarning) import keras.backend as K import tensorflow as tf os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"; # The GPU id to use, usually either "0" or "1"; os.environ["CUDA_VISIBLE_DEVICES"]="0"; # Allow growth of GPU memory, otherwise it will always look like all the memory is being used physical_devices = tf.config.experimental.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0], True) ###Output Using TensorFlow backend. ###Markdown Problem specification Your task in this assignment is1. to build a part-of-speech tagger based on a recurrent neural network architecture2. to train this tagger on the provided training data and identify a good model2. to evaluate the performance of this model on the provided test dataTo identify a good model, you can use the provided development (validation) data. Part-of-speech tagging Part-of-speech (POS) tagging is the task of labelling words (tokens) with [parts of speech](https://en.wikipedia.org/wiki/Part_of_speech). To give an example, consider the sentence *Parker hates parsnips*. In this sentence, the word *Parker* should be labelled as a proper noun (a noun that is the name of a person), *hates* should be labelled as a verb, and *parsnips* should be labelled as a (common) noun. Part-of-speech tagging is an essential ingredient of many state-of-the-art natural language understanding systems.Part-of-speech tagging can be cast as a supervised machine learning problem where the gold-standard data consists of sentences whose words have been manually annotated with parts of speech. For the present assignment you will be using a corpus built over the source material of the [English Web Treebank](https://catalog.ldc.upenn.edu/ldc2012t13), consisting of approximately 16,000&nbsp;sentences with 254,000&nbsp;tokens. The corpus has been released by the [Universal Dependencies Project](http://universaldependencies.org).To make it easier to compare systems, the gold-standard data has been split into three parts: training, development (validation), and test. The following cell provides a function that can be used to load the data. ###Code def read_data(path): with open(path, encoding='utf-8') as fp: result = [] for line in fp: line = line.rstrip() if len(line) == 0: yield result result = [] elif not line.startswith('#'): columns = line.split() if columns[0].isdigit(): result.append((columns[1], columns[3])) ###Output _____no_output_____ ###Markdown The next cell loads the data: ###Code train_data = list(read_data('/content/drive/My Drive/Colab Notebooks/RNN/en_ewt-ud-train.conllu')) print('Number of sentences in the training data: {}'.format(len(train_data))) dev_data = list(read_data('/content/drive/My Drive/Colab Notebooks/RNN/en_ewt-ud-dev.conllu')) print('Number of sentences in the development data: {}'.format(len(dev_data))) test_data = list(read_data('/content/drive/My Drive/Colab Notebooks/RNN/en_ewt-ud-test.conllu')) print('Number of sentences in the test data: {}'.format(len(test_data))) ###Output Number of sentences in the training data: 12543 Number of sentences in the development data: 2002 Number of sentences in the test data: 2077 ###Markdown From a Python perspective, each of the data sets is a list of what we shall refer to as *tagged sentences*. A tagged sentence, in turn, is a list of pairs $(w,t)$, where $w$ is a word token and $t$ is the word&rsquo;s POS tag. Here is an example from the training data to show you how this looks like: ###Code train_data[42] ###Output _____no_output_____ ###Markdown You will see part-of-speech tags such as `VERB` for verb, `NOUN` for noun, and `ADV` for adverb. If you are interested in learning more about the tag set used in the gold-standard data, you can have a look at the documentation of the [Universal POS tags](http://universaldependencies.org/u/pos/all.html). However, you do not need to understand the meaning of the POS tags to solve this assignment; you can simply treat them as labels drawn from a finite set of alternatives. Network architecture The proposed network architecture for your tagger is a sequential model with three layers, illustrated below: an embedding, a bidirectional LSTM, and a softmax layer. The embedding turns word indexes (integers representing words) into fixed-size dense vectors which are then fed into the bidirectional LSTM. The output of the LSTM at each position of the sentence is passed to a softmax layer which predicts the POS tag for the word at that position.![architecture.png](attachment:architecture.png)To implement the network architecture, you will use [Keras](https://keras.io/). Keras comes with an extensive online documentation, and reading the relevant parts of this documentation will be essential when working on this assignment. We suggest to start with the tutorial [Getting started with the Keras Sequential model](https://keras.io/getting-started/sequential-model-guide/). After that, you should have a look at some of the examples mentioned in that tutorial, and in particular the [Bidirectional LSTM](https://keras.io/examples/imdb_bidirectional_lstm/) example. Evaluation The most widely-used evaluation measure for part-of-speech tagging is per-word accuracy, which is the percentage of words to which the tagger assigns the correct tag (according to the gold standard). This is one of the default metrics in Keras.One problem that you will encounter during evaluation is that the evaluation data contains words that you did not see (and did not add to your index) during training. The simplest solution to this problem is to introduce a special &lsquo;word&rsquo; `` and replace each unknown word with this pseudoword. Part 1: Pre-process the data Before you can start to implement the network architecture as such, you will have to bring the tagged sentences from the gold-standard data into a form that can be used with the network. One important step in this is to map the words and tags (strings) to integers. Here is code that illustrates the idea: ###Code word_to_index = {} for tagged_sentence in train_data: for word, tag in tagged_sentence: if word not in word_to_index: word_to_index[word] = len(word_to_index) print('Number of unique words in the training data: {}'.format(len(word_to_index))) print('Index of the word "hates": {}'.format(word_to_index['hates'])) ###Output Number of unique words in the training data: 19672 Index of the word "hates": 4579 ###Markdown Once you have indexes for the words and the tags, you can construct the input and the gold-standard output tensor required to train the network. Constructing the input tensorThe input tensor should be of shape $(N, n)$ where $N$ is the total number of sentences in the training data and $n$ is the length of the longest sentence. Note that Keras requires all sequences in an input tensor to have the same length, which means that you will have to pad all sequences to that length. You can use the helper function [`pad_sequences`](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/sequence/pad_sequences) for this, which by default will front-pad sequences with the value&nbsp;0. It is essential then that you do not use this special padding value as the index of actual words. Constructing the target output tensorThe target output tensor should be of shape $(N, n, T)$ where $T$ is the number of unique tags in the training data, plus one to cater for the special padding value. The additional dimension corresponds to the fact that the softmax layer of the network will output one $T$-dimensional vector for each position of an input sentence. To construct this vector, you can use the helper function [`to_categorical`](https://www.tensorflow.org/api_docs/python/tf/keras/utils/to_categorical). ###Code # Define a help function to build index from a list of words or tags, each word / tag will have a unique number def build_index(strings, init=[]): string_to_index = {s: i for i, s in enumerate(init)} # Loop over strings in 'strings' for string in strings: # Check if string exists in variable 'string_to_index', # if string does not exist, add a new element to 'string_to_index': the current length of 'string_to_index' if string not in string_to_index: string_to_index[string]=len(string_to_index) return string_to_index # Convert all words and tags in train_data to lists, start with empty lists and use '.append()' # to add one word / tag at a time, similar to the cell below 'pre-process the data' words, tags = [], [] for tagged_sentence in train_data: for word,tag in tagged_sentence: words.append(word) tags.append(tag) # Call the help function you made, to build an index for words (word_to_index), and one index for tags (tag_to_index) word_to_index=build_index(words,['<pad>','<unk>']) tag_to_index=build_index(tags,['<pad>']) # Check number of words and tags num_words = len(word_to_index) num_tags = len(tag_to_index) print(f'Number of unique words in the training data: {num_words}') print(f'Number of unique tags in the training_data: {num_tags}') from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.utils import to_categorical # Make a function that converts the tagged sentences, word indices and tag indices to # X and Y, that can be used when training the RNN def encode(tagged_sentences, word_to_index, tag_to_index): # Start with empty lists that will contain all training examples and corresponding output X, Y = [], [] # Loop over tagged sentences for current_tagged_sentence in tagged_sentences: Xcurrent, Ycurrent = [], [] for word,tag in current_tagged_sentence:# Loop over words and tags in current sentence if word not in word_to_index: Xcurrent.append(word_to_index.get('<unk>'))#adding an unkown word index else: Xcurrent.append(word_to_index.get(word))#adding the index of the word if tag not in tag_to_index: Ycurrent.append(tag_to_index.get('<unk>'))#adding an unkown tag index else: Ycurrent.append(tag_to_index.get(tag))#adding the index of an exitsing tag # Append X with Xcurrent, and Y with Ycurrent X.append(Xcurrent) Y.append(Ycurrent) # Pad the sequences, so that all have the same length X=pad_sequences(sequences=X,padding='post') Y=pad_sequences(sequences=Y,padding='post') # Convert labels to categorical, as you did in the CNN lab Y=to_categorical(Y,num_classes=num_tags,dtype= 'float32') return X, Y # Use your 'encode' function to create X and Y from train_data, word_to_index, tag_to_index X,Y=encode(train_data,word_to_index,tag_to_index) # Print the shape of X and Y print('Shape of X:',X.shape) print('Shape of Y:',Y.shape) ###Output Shape of X: (12543, 159) Shape of Y: (12543, 159, 18) ###Markdown Part 2: Construct the model To implement the network architecture, you need to find and instantiate the relevant building blocks from the Keras library. Note that Keras layers support a large number of optional parameters; use the default values unless you have a good reason not to. Two mandatory parameters that you will have to specify are the dimensionality of the embedding and the dimensionality of the output of the LSTM layer. The following values are reasonable starting points, but do try a number of different settings.* dimensionality of the embedding: 100* dimensionality of the output of the bidirectional LSTM layer: 100You will also have to choose an appropriate loss function. For training we recommend the Adam optimiser. ###Code # Import necessary layers from keras import Sequential from keras.layers import Dense, Dropout, Embedding, LSTM, Bidirectional from keras.optimizers import Adam from keras.losses import categorical_crossentropy embedding_dim = 150 hidden_dim = 150 model = Sequential() model.add(Embedding(input_dim=num_words,output_dim=embedding_dim,mask_zero=True)) model.add(Bidirectional(LSTM(units=hidden_dim,return_sequences=True))) model.add(Dropout(0.5)) model.add(Dense(num_tags, activation='softmax')) # Compile model model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) # Print a summary of the model model.summary() ###Output Model: "sequential_16" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding_16 (Embedding) (None, None, 150) 2951100 _________________________________________________________________ bidirectional_16 (Bidirectio (None, None, 90) 70560 _________________________________________________________________ dropout_3 (Dropout) (None, None, 90) 0 _________________________________________________________________ dense_16 (Dense) (None, None, 18) 1638 ================================================================= Total params: 3,023,298 Trainable params: 3,023,298 Non-trainable params: 0 _________________________________________________________________ ###Markdown Part 3: Train the network The next step is to train the network. Use the following parameters:* number of epochs: 10* batch size: 32Training will print the average running loss on the training data after each minibatch. In addition to that, we ask you to also print the loss and accuracy on the development data after each epoch. You can do so by providing the `validation_data` argument to the `fit` method.Note that the `fit` method returns a [`History`](https://keras.io/callbacks/history) object that contains useful information about the training. We will use that information in the next step. ###Code # Encode the development (validation data) using the 'encode' function you created before batch_size=128 epochs=10 #splitting the dev data into Xval and Yval to train the network Xval,Yval=encode(dev_data,word_to_index,tag_to_index) # Train the model and save the history, as you did in the DNN and CNN labs, provide validation data history=model.fit(X,Y,validation_data = (Xval, Yval),batch_size = batch_size, epochs = epochs) ###Output /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/indexed_slices.py:434: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory. "Converting sparse IndexedSlices to a dense Tensor of unknown shape. " ###Markdown Part 4: Identify a good model The following code will plot the loss on the training data and the loss on the validation data after each epoch: ###Code # Lets define a help function for plotting the training results import matplotlib.pyplot as plt def plot_results(history): val_loss = history.history['val_loss'] acc = history.history['accuracy'] loss = history.history['loss'] val_acc = history.history['val_accuracy'] plt.figure(figsize=(10,4)) plt.xlabel('Epochs') plt.ylabel('Loss') plt.plot(loss) plt.plot(val_loss) plt.legend(['Training','Validation']) plt.figure(figsize=(10,4)) plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.plot(acc) plt.plot(val_acc) plt.legend(['Training','Validation']) plt.show() plot_results(history) ###Output _____no_output_____ ###Markdown Look at the plot and determine the epoch after which the model starts to overfit. Then, re-train your model using that many epochs and compute the accuracy of the tagger on the test data. ###Code # Encode the test_data using the 'encode' function you created before Xtest,Ytest = encode(test_data, word_to_index, tag_to_index) # Evaluate the model on test data, as you did in the DNN and CNN lab score = model.evaluate(Xtest, Ytest) print('Test loss: %.4f' % score[0]) print('Test accuracy: %.4f' % score[1]) ###Output 2077/2077 [==============================] - 3s 2ms/step Test loss: 0.0477 Test accuracy: 0.9083 ###Markdown Part-of-Speech Tagging with Recurrent Neural Networks Your task in this assignment is to implement a simple part-of-speech tagger based on recurrent neural networks. Get a graphics card ###Code import os import warnings # Ignore FutureWarning from numpy warnings.simplefilter(action='ignore', category=FutureWarning) import keras.backend as K import tensorflow as tf os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"; # The GPU id to use, usually either "0" or "1"; os.environ["CUDA_VISIBLE_DEVICES"]="0"; # Allow growth of GPU memory, otherwise it will always look like all the memory is being used physical_devices = tf.config.experimental.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0], True) ###Output Using TensorFlow backend. ###Markdown Problem specification Your task in this assignment is1. to build a part-of-speech tagger based on a recurrent neural network architecture2. to train this tagger on the provided training data and identify a good model2. to evaluate the performance of this model on the provided test dataTo identify a good model, you can use the provided development (validation) data. Part-of-speech tagging Part-of-speech (POS) tagging is the task of labelling words (tokens) with [parts of speech](https://en.wikipedia.org/wiki/Part_of_speech). To give an example, consider the sentence *Parker hates parsnips*. In this sentence, the word *Parker* should be labelled as a proper noun (a noun that is the name of a person), *hates* should be labelled as a verb, and *parsnips* should be labelled as a (common) noun. Part-of-speech tagging is an essential ingredient of many state-of-the-art natural language understanding systems.Part-of-speech tagging can be cast as a supervised machine learning problem where the gold-standard data consists of sentences whose words have been manually annotated with parts of speech. For the present assignment you will be using a corpus built over the source material of the [English Web Treebank](https://catalog.ldc.upenn.edu/ldc2012t13), consisting of approximately 16,000&nbsp;sentences with 254,000&nbsp;tokens. The corpus has been released by the [Universal Dependencies Project](http://universaldependencies.org).To make it easier to compare systems, the gold-standard data has been split into three parts: training, development (validation), and test. The following cell provides a function that can be used to load the data. ###Code def read_data(path): with open(path, encoding='utf-8') as fp: result = [] for line in fp: line = line.rstrip() if len(line) == 0: yield result result = [] elif not line.startswith('#'): columns = line.split() if columns[0].isdigit(): result.append((columns[1], columns[3])) ###Output _____no_output_____ ###Markdown The next cell loads the data: ###Code train_data = list(read_data('en_ewt-ud-train.conllu')) print('Number of sentences in the training data: {}'.format(len(train_data))) dev_data = list(read_data('en_ewt-ud-dev.conllu')) print('Number of sentences in the development data: {}'.format(len(dev_data))) test_data = list(read_data('en_ewt-ud-test.conllu')) print('Number of sentences in the test data: {}'.format(len(test_data))) ###Output Number of sentences in the training data: 9897 Number of sentences in the development data: 2002 Number of sentences in the test data: 2077 ###Markdown From a Python perspective, each of the data sets is a list of what we shall refer to as *tagged sentences*. A tagged sentence, in turn, is a list of pairs $(w,t)$, where $w$ is a word token and $t$ is the word&rsquo;s POS tag. Here is an example from the training data to show you how this looks like: ###Code train_data[42] ###Output _____no_output_____ ###Markdown You will see part-of-speech tags such as `VERB` for verb, `NOUN` for noun, and `ADV` for adverb. If you are interested in learning more about the tag set used in the gold-standard data, you can have a look at the documentation of the [Universal POS tags](http://universaldependencies.org/u/pos/all.html). However, you do not need to understand the meaning of the POS tags to solve this assignment; you can simply treat them as labels drawn from a finite set of alternatives. Network architecture The proposed network architecture for your tagger is a sequential model with three layers, illustrated below: an embedding, a bidirectional LSTM, and a softmax layer. The embedding turns word indexes (integers representing words) into fixed-size dense vectors which are then fed into the bidirectional LSTM. The output of the LSTM at each position of the sentence is passed to a softmax layer which predicts the POS tag for the word at that position.![architecture.png](attachment:architecture.png)To implement the network architecture, you will use [Keras](https://keras.io/). Keras comes with an extensive online documentation, and reading the relevant parts of this documentation will be essential when working on this assignment. We suggest to start with the tutorial [Getting started with the Keras Sequential model](https://keras.io/getting-started/sequential-model-guide/). After that, you should have a look at some of the examples mentioned in that tutorial, and in particular the [Bidirectional LSTM](https://keras.io/examples/imdb_bidirectional_lstm/) example. Evaluation The most widely-used evaluation measure for part-of-speech tagging is per-word accuracy, which is the percentage of words to which the tagger assigns the correct tag (according to the gold standard). This is one of the default metrics in Keras.One problem that you will encounter during evaluation is that the evaluation data contains words that you did not see (and did not add to your index) during training. The simplest solution to this problem is to introduce a special &lsquo;word&rsquo; `` and replace each unknown word with this pseudoword. Part 1: Pre-process the data Before you can start to implement the network architecture as such, you will have to bring the tagged sentences from the gold-standard data into a form that can be used with the network. One important step in this is to map the words and tags (strings) to integers. Here is code that illustrates the idea: ###Code word_to_index = {} for tagged_sentence in train_data: for word, tag in tagged_sentence: if word not in word_to_index: word_to_index[word] = len(word_to_index) print('Number of unique words in the training data: {}'.format(len(word_to_index))) print('Index of the word "hates": {}'.format(word_to_index['hates'])) ###Output Number of unique words in the training data: 17231 Index of the word "hates": 4579 ###Markdown Once you have indexes for the words and the tags, you can construct the input and the gold-standard output tensor required to train the network. Constructing the input tensorThe input tensor should be of shape $(N, n)$ where $N$ is the total number of sentences in the training data and $n$ is the length of the longest sentence. Note that Keras requires all sequences in an input tensor to have the same length, which means that you will have to pad all sequences to that length. You can use the helper function [`pad_sequences`](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/sequence/pad_sequences) for this, which by default will front-pad sequences with the value&nbsp;0. It is essential then that you do not use this special padding value as the index of actual words. Constructing the target output tensorThe target output tensor should be of shape $(N, n, T)$ where $T$ is the number of unique tags in the training data, plus one to cater for the special padding value. The additional dimension corresponds to the fact that the softmax layer of the network will output one $T$-dimensional vector for each position of an input sentence. To construct this vector, you can use the helper function [`to_categorical`](https://www.tensorflow.org/api_docs/python/tf/keras/utils/to_categorical). ###Code # Define a help function to build index from a list of words or tags, each word / tag will have a unique number def build_index(strings, init=[]): string_to_index = {s: i for i, s in enumerate(init)} for word_tag in strings: if word_tag not in string_to_index.keys(): string_to_index[word_tag] = len(string_to_index) return string_to_index words, tags = [], [] for tagged_sentence in train_data: for word, tag in tagged_sentence: words.append(word) tags.append(tag) # Call the help function you made, to build an index for words (word_to_index), and one index for tags (tag_to_index) word_to_index = build_index(strings = words , init=["<unk>"]) tag_to_index = build_index(strings = tags , init=["<unk>"] ) # Check number of words and tags num_words = len(word_to_index) num_tags = len(tag_to_index) print(f'Number of unique words in the training data: {num_words}') print(f'Number of unique tags in the training_data: {num_tags}') from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.utils import to_categorical # Make a function that converts the tagged sentences, word indices and tag indices to # X and Y, that can be used when training the RNN def encode(tagged_sentences, word_to_index, tag_to_index): # Start with empty lists that will contain all training examples and corresponding output X, Y = [], [] for tagSent in tagged_sentences: Xcurrent, Ycurrent = [], [] for currWord , currTag in tagSent: #Word if word_to_index.get(currWord) is None: Xcurrent.append(word_to_index.get("<unk>")) else: Xcurrent.append(word_to_index.get(currWord)) #Tags if tag_to_index.get(currTag) is None: #Ycurrent.append("<unk>") Ycurrent.append(tag_to_index.get("<unk>")) else: Ycurrent.append(tag_to_index.get(currTag)) #End of Inner for loop X.append(Xcurrent) Y.append(Ycurrent) #End of outer for loop X = pad_sequences(X) Y = pad_sequences(Y) Y = to_categorical(Y , num_classes=len(tag_to_index.keys()) , dtype= 'float32') return X, Y X,Y = encode(train_data, word_to_index, tag_to_index) # Print the shape of X and Y print("\n") print(f"Shape of X is : {X.shape}") print("\n") print(f"Shape of Y is : {Y.shape}") #Xval , Yval = encode(dev_data, word_to_index, tag_to_index) ###Output _____no_output_____ ###Markdown Part 2: Construct the model To implement the network architecture, you need to find and instantiate the relevant building blocks from the Keras library. Note that Keras layers support a large number of optional parameters; use the default values unless you have a good reason not to. Two mandatory parameters that you will have to specify are the dimensionality of the embedding and the dimensionality of the output of the LSTM layer. The following values are reasonable starting points, but do try a number of different settings.* dimensionality of the embedding: 100* dimensionality of the output of the bidirectional LSTM layer: 100You will also have to choose an appropriate loss function. For training we recommend the Adam optimiser. ###Code from tensorflow.keras import Sequential # Import necessary layers from tensorflow.keras.layers import Dense, Dropout, Embedding, LSTM, Bidirectional from keras.optimizers import Adam from keras.losses import categorical_crossentropy #from keras.losses import binary_crossentropy embedding_dim = 100 hidden_dim = 100 maxFeatures = len(word_to_index.keys()) maxSequence = max(word_to_index.values()) #Model Creation model = Sequential() # The model should have an embedding layer, a bidirectional LSTM, and a dense softmax layer model.add(Embedding(maxFeatures , embedding_dim)) model.add(Bidirectional(LSTM(hidden_dim , return_sequences=True))) model.add(Dropout(0.5)) #model.add(Dense(units = len(Y) , activation = 'softmax')) model.add(Dense(18 , activation = 'softmax')) # (see the network architecture image) # Compile model model.compile(loss = categorical_crossentropy , optimizer = "Adam", metrics=['accuracy'] ) #model.compile(loss = binary_crossentropy , optimizer = "Adam", metrics=['accuracy'] ) # Print a summary of the model print(model.summary()) ###Output Model: "sequential_2" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding_2 (Embedding) (None, None, 100) 1723200 _________________________________________________________________ bidirectional_2 (Bidirection (None, None, 200) 160800 _________________________________________________________________ dropout_2 (Dropout) (None, None, 200) 0 _________________________________________________________________ dense_2 (Dense) (None, None, 18) 3618 ================================================================= Total params: 1,887,618 Trainable params: 1,887,618 Non-trainable params: 0 _________________________________________________________________ None ###Markdown Part 3: Train the network The next step is to train the network. Use the following parameters:* number of epochs: 10* batch size: 32Training will print the average running loss on the training data after each minibatch. In addition to that, we ask you to also print the loss and accuracy on the development data after each epoch. You can do so by providing the `validation_data` argument to the `fit` method.Note that the `fit` method returns a [`History`](https://keras.io/callbacks/history) object that contains useful information about the training. We will use that information in the next step. ###Code # Encode the development (validation data) using the 'encode' function you created before Xval , Yval = encode(dev_data , word_to_index , tag_to_index ) # Train the model and save the history, as you did in the DNN and CNN labs, provide validation data history = model.fit(X, Y , batch_size = 32 , epochs = 10 , verbose = 1 , validation_data = (Xval,Yval)) ###Output Epoch 1/10 310/310 [==============================] - 11s 36ms/step - loss: 0.3409 - accuracy: 0.9119 - val_loss: 0.3688 - val_accuracy: 0.8979 Epoch 2/10 310/310 [==============================] - 10s 34ms/step - loss: 0.1182 - accuracy: 0.9658 - val_loss: 0.1293 - val_accuracy: 0.9657 Epoch 3/10 310/310 [==============================] - 10s 34ms/step - loss: 0.0406 - accuracy: 0.9890 - val_loss: 0.1022 - val_accuracy: 0.9739 Epoch 4/10 310/310 [==============================] - 10s 33ms/step - loss: 0.0232 - accuracy: 0.9938 - val_loss: 0.1061 - val_accuracy: 0.9742 Epoch 5/10 310/310 [==============================] - 11s 34ms/step - loss: 0.0170 - accuracy: 0.9953 - val_loss: 0.1080 - val_accuracy: 0.9745 Epoch 6/10 310/310 [==============================] - 10s 33ms/step - loss: 0.0137 - accuracy: 0.9961 - val_loss: 0.1163 - val_accuracy: 0.9730 Epoch 7/10 310/310 [==============================] - 10s 34ms/step - loss: 0.0116 - accuracy: 0.9967 - val_loss: 0.1198 - val_accuracy: 0.9733 Epoch 8/10 310/310 [==============================] - 10s 34ms/step - loss: 0.0098 - accuracy: 0.9971 - val_loss: 0.1192 - val_accuracy: 0.9736 Epoch 9/10 310/310 [==============================] - 10s 33ms/step - loss: 0.0083 - accuracy: 0.9976 - val_loss: 0.1315 - val_accuracy: 0.9716 Epoch 10/10 310/310 [==============================] - 10s 34ms/step - loss: 0.0072 - accuracy: 0.9979 - val_loss: 0.1295 - val_accuracy: 0.9726 ###Markdown Part 4: Identify a good model The following code will plot the loss on the training data and the loss on the validation data after each epoch: ###Code # Lets define a help function for plotting the training results import matplotlib.pyplot as plt def plot_results(history): val_loss = history.history['val_loss'] acc = history.history['accuracy'] loss = history.history['loss'] val_acc = history.history['val_accuracy'] plt.figure(figsize=(10,4)) plt.xlabel('Epochs') plt.ylabel('Loss') plt.plot(loss) plt.plot(val_loss) plt.legend(['Training','Validation']) plt.figure(figsize=(10,4)) plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.plot(acc) plt.plot(val_acc) plt.legend(['Training','Validation']) plt.show() plot_results(history) ###Output _____no_output_____ ###Markdown Look at the plot and determine the epoch after which the model starts to overfit. Then, re-train your model using that many epochs and compute the accuracy of the tagger on the test data. ###Code # Encode the test_data using the 'encode' function you created before Xtest , Ytest = encode(test_data , word_to_index , tag_to_index ) # Evaluate the model on test data, as you did in the DNN and CNN lab score = model.evaluate(Xtest , Ytest , verbose = 1) print('Test loss: %.4f' % score[0]) print('Test accuracy: %.4f' % score[1]) ###Output 65/65 [==============================] - 0s 6ms/step - loss: 0.1219 - accuracy: 0.9752 Test loss: 0.1219 Test accuracy: 0.9752
Coca_Rating_Ensemble.ipynb
###Markdown **Bagging** ###Code df['Cocoa_Percent'] = df['Cocoa_Percent'] *100 df['Cocoa_Percent'] = df['Cocoa_Percent'].astype(int) df['Cocoa_Percent'] # Input and Output Split predictors =df.loc[:, df.columns!='Cocoa_Percent'] type(predictors) target = df['Cocoa_Percent'] type(target) # Train Test partition of the data from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(predictors, target, test_size = 0.2, random_state=0) from sklearn import tree clftree = tree.DecisionTreeClassifier() from sklearn.ensemble import BaggingClassifier bag_clf = BaggingClassifier(base_estimator = clftree, n_estimators = 500, bootstrap = True, n_jobs = 1, random_state = 42) bag_clf.fit(x_train, y_train) from sklearn.metrics import accuracy_score, confusion_matrix # Evaluation on Testing Data confusion_matrix(y_test, bag_clf.predict(x_test)) acc_test = accuracy_score(y_test, bag_clf.predict(x_test)) # Evaluation on Training Data acc_train = accuracy_score(y_train, bag_clf.predict(x_train)) confusion_matrix(y_train, bag_clf.predict(x_train)) results = pd.DataFrame([['BaggingClassifier', acc_train,acc_test]],columns = ['Model', 'Accuracy test','Accuracy train']) results ###Output _____no_output_____ ###Markdown **Gradient Boosting** ###Code from sklearn.ensemble import GradientBoostingClassifier boost_clf = GradientBoostingClassifier() boost_clf.fit(x_train, y_train) confusion_matrix(y_test, boost_clf.predict(x_test)) accuracy_score(y_test, boost_clf.predict(x_test)) # Hyperparameters boost_clf2 = GradientBoostingClassifier(learning_rate = 0.02, n_estimators = 1000, max_depth = 1) boost_clf2.fit(x_train, y_train) # Evaluation on Testing Data confusion_matrix(y_test, boost_clf2.predict(x_test)) acc_test =accuracy_score(y_test, boost_clf2.predict(x_test)) # Evaluation on Training Data acc_train = accuracy_score(y_train, boost_clf2.predict(x_train)) model_results = pd.DataFrame([['"GradientBoostingClassifier', acc_test,acc_train]], columns = ['Model', 'Accuracy test','Accuracy train']) results = results.append(model_results, ignore_index = True) results ###Output _____no_output_____ ###Markdown **XGBoosting** ###Code import xgboost as xgb xgb_clf = xgb.XGBClassifier(max_depths = 5, n_estimators = 10000, learning_rate = 0.3, n_jobs = -1) xgb_clf.fit(x_train, y_train) # Evaluation on Testing Data confusion_matrix(y_test, xgb_clf.predict(x_test)) accuracy_score(y_test, xgb_clf.predict(x_test)) xgb.plot_importance(xgb_clf) ###Output _____no_output_____ ###Markdown **Adaboosting** ###Code from sklearn.ensemble import AdaBoostClassifier ada_clf = AdaBoostClassifier(learning_rate = 0.02, n_estimators = 5000) ada_clf.fit(x_train, y_train) # Evaluation on Testing Data confusion_matrix(y_test, ada_clf.predict(x_test)) acc_test = accuracy_score(y_test, ada_clf.predict(x_test)) # Evaluation on Training Data acc_train = accuracy_score(y_train, ada_clf.predict(x_train)) model_results1 = pd.DataFrame([['Adaboosting', acc_test,acc_train]], columns = ['Model', 'Accuracy test','Accuracy train']) results = results.append(model_results1, ignore_index = True) results ###Output _____no_output_____
elitedatascience/python-seaborn-tutorial/python-seaborn-tutorial.ipynb
###Markdown The Ultimate Python Seaborn TutorialThis code was developed following the tutorial [The Ultimate Python Seaborn Tutorial](https://elitedatascience.com/python-seaborn-tutorial), with slightly modifications. All work must be credited to [EliteDataScience](https://elitedatascience.com) team. Step 1: Installation Seaborn If you are reading this notebook in a Jupyter notebook environment, probably you already have all the tools you need to follow this tutorial. Otherwise, the [Anaconda suite](https://anaconda.org/) is the recomended way to install all these libraries, including the Python programming language. Step 2: Importing libraries and dataset. ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline df = pd.read_csv('Pokemon.csv', index_col=0) df.head() ###Output _____no_output_____ ###Markdown Step 3: Seaborn's plotting functions. ###Code # recommended way' _ = sns.lmplot(data=df, x='Attack', y='Defense') # alternative way #sns.lmplot(x=df.Attack, y=df.Defense) ###Output _____no_output_____ ###Markdown Step 4: Customizing with Matplotlib. ###Code sns.lmplot(data=df, x='Attack', y='Defense', fit_reg=False, hue='Stage') _ = plt.xlim(0, None) _ = plt.ylim(0, None) ###Output _____no_output_____ ###Markdown Step 5: The role of Pandas. ###Code _ = sns.boxplot(data=df) stats_df = df.drop(columns=['Total', 'Stage', 'Legendary']) _ = sns.boxplot(data=stats_df) ###Output _____no_output_____ ###Markdown Step 6: Seaborn themes ###Code # set theme sns.set_style('whitegrid') # violin plot fig = plt.figure(figsize=(10, 10)) _ = sns.violinplot(x='Type 1' , y='Attack', data=df) ###Output _____no_output_____ ###Markdown Step 7: Color palletes ###Code pkmn_type_colors = ['#78C850', # Grass '#F08030', # Fire '#6890F0', # Water '#A8B820', # Bug '#A8A878', # Normal '#A040A0', # Poison '#F8D030', # Electric '#E0C068', # Ground '#EE99AC', # Fairy '#C03028', # Fighting '#F85888', # Psychic '#B8A038', # Rock '#705898', # Ghost '#98D8D8', # Ice '#7038F8', # Dragon ] fig = plt.figure(figsize=(10, 10)) _ = sns.violinplot(x='Type 1' , y='Attack', data=df, palette=pkmn_type_colors) # Swarm plot with Pokémon color pallete fig = plt.figure(figsize=(10, 6)) _ = sns.swarmplot(x='Type 1', y='Attack', data=df, palette=pkmn_type_colors) ###Output _____no_output_____ ###Markdown Step 8: Overlaying plots ###Code # Set figure size with matplotlib plt.figure(figsize=(10, 6)) # create plot sns.violinplot(x='Type 1', y='Attack', data=df, inner=None, palette=pkmn_type_colors) sns.swarmplot(x='Type 1', y='Attack', data=df, color='k', alpha=0.7) # Set title with matplotlib _ = plt.title('Attack by type') ###Output _____no_output_____ ###Markdown Step 9: Putting all together ###Code stats_df.head() melted_df = pd.melt(stats_df, id_vars=['Name', 'Type 1', 'Type 2'], var_name='Stats') melted_df.head() # Swarmplot with melted_df _ = sns.swarmplot(data=melted_df, x='Stats', y='value', hue='Type 1') ###Output _____no_output_____ ###Markdown Next, we are going to apply some tweaks to make our plot more readable: ###Code # 1. Enlarge the plot plt.figure(figsize=(10, 6)) sns.swarmplot(data=melted_df, x='Stats', y='value', hue='Type 1', # 2. Separate point by hue palette=pkmn_type_colors) # 3. Use Pokémon pallete # 4. Adjust the y-axis plt.ylim(0, 260) # 5. Place the legend to the right _ = plt.legend(bbox_to_anchor=(1, 1), loc='upper left') ###Output _____no_output_____ ###Markdown Step 10: Pokédex (mini-gallery) 10.1 - Heatmap ###Code # Calculate the correlation matrix corr = stats_df.corr() # Heatmap sns.set_style('whitegrid') _ = sns.heatmap(corr) ###Output _____no_output_____ ###Markdown 10.2 Histograms ###Code # Distribution plot (a.k.a Histogram) _ = sns.distplot(df.Attack) ###Output C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been " ###Markdown 10.3 Bar Plot ###Code # Count plot (a.k.a Bar Plot) _ = plt.figure(figsize=(10, 6)) _ = sns.countplot(data=df, x='Type 1', palette=pkmn_type_colors) # Rotate x-labels _ = plt.xticks(rotation=-45) ###Output _____no_output_____ ###Markdown 10.4 Factor plotFactor plots make it easy separate plots by categorical values ###Code # Factor plot g = sns.factorplot(data=df, x='Type 1', y='Attack', hue='Stage', # color by stage col='Stage', # Separate plot by stage kind='swarm') # Swarmplot # Rotate x-axis labels _ = g.set_xticklabels(rotation=-45) # Doesn't work because only rotates last plot # plt.xticks(rotation=-45) ###Output _____no_output_____ ###Markdown 10.5 Density plot ###Code # Density plot plt.figure(figsize=(8, 8)) _ = sns.kdeplot(df['Attack'], df['Defense']) ###Output _____no_output_____ ###Markdown 10.6: Joint Distribution plot ###Code # Joint Distribution plot sns.jointplot(data=df, x='Attack', y='Defense') ###Output C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been " C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been "
FinMath/Models and Pricing of Financial Derivatives/Pro/Pro_Volatility Smile_final.ipynb
###Markdown $$c = S_0\mathcal N(d_1) - Ke^{-rT}\mathcal N(d_2)\\d_{1,2} = \frac{1}{\sigma\sqrt{T}}\left( \log\left(\frac{S_0}{K}\right) + \left(r\pm\frac{1}{2}\sigma^2\right)T \right)\\{\large\nu} = \frac{\partial c}{\partial \sigma} = S_0 \sqrt T \mathcal N'(d_1)>0$$ ###Code import math import numpy as np import pandas as pd import datetime as dt import scipy.stats as scs import matplotlib.pyplot as plt import sys import time # data available at Tonghuashun # data retrived at 2018-06-19 # 上证50ETF购9月 raw_data = pd.read_csv('rrawData.csv') raw_data # calculate T end_date = dt.date(2018,9,26) start_date = dt.date(2018,6,19) T = start_date - end_date T = -T.days/365 # S_0, the close price of 上证50ETF, available at Tonghuashun S_0 = 2.612 # r, the interest rate of 3-year bond, available at # http://www.cmbchina.com/CmbWebPubInfo/SaveBondInfo.aspx?chnl=savebond&keyword=&page=6 r = 0.04 print('T (in years):\t\t',T) print('S_0 (initial price):\t',S_0) print('r (interest rate):\t',r) call_price = raw_data['currentPrice'] K = raw_data['K'] def get_c(t,S_t,T,K,r,sigma): d_1 = (math.log(S_t/K) + (r+0.5*sigma**2)*(T-t))/(sigma*math.sqrt(T-t)) d_2 = (math.log(S_t/K) + (r-0.5*sigma**2)*(T-t))/(sigma*math.sqrt(T-t)) c = S_t*scs.norm.cdf(d_1)-K*math.exp(-r*T)*scs.norm.cdf(d_2) return c imp_vol = [] delta = 0.000001 for i in range(len(raw_data)): sigma_up = 4.0001 sigma_down = 0.0001 while True: sigma_mid = (sigma_up + sigma_down)/2 c_mid = c_down = get_c(0,S_0,T,K[i],r,sigma_mid) c_price = call_price[i] if c_price <= c_mid: sigma_up = sigma_mid else: sigma_down = sigma_mid d = c_mid - c_price if abs(d)<delta: imp_vol.append(sigma_mid) print('impVol at K=:'+ str(K[i]) + '\t' ,sigma_mid) break fig = plt.figure() fig.set_size_inches(10,5) ax = fig.add_subplot(111) A = ax.plot(K,imp_vol,label='calculted') B = ax.plot(K,raw_data['impVola'],label='given') ax.legend() ax.set_xlabel('K') ax.set_ylabel('sigma_vol') ###Output _____no_output_____
Chapter13/74_Image_super_resolution_using_SRGAN.ipynb
###Markdown ###Code import os if not os.path.exists('srgan.pth.tar'): !pip install -q torch_snippets !wget -q https://raw.githubusercontent.com/sizhky/a-PyTorch-Tutorial-to-Super-Resolution/master/models.py -O models.py from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive from google.colab import auth from oauth2client.client import GoogleCredentials auth.authenticate_user() gauth = GoogleAuth() gauth.credentials = GoogleCredentials.get_application_default() drive = GoogleDrive(gauth) downloaded = drive.CreateFile({'id': '1_PJ1Uimbr0xrPjE8U3Q_bG7XycGgsbVo'}) downloaded.GetContentFile('srgan.pth.tar') from torch_snippets import * device = 'cuda' if torch.cuda.is_available() else 'cpu' model = torch.load('srgan.pth.tar', map_location='cpu')['generator'].to(device) model.eval() !wget https://www.dropbox.com/s/nmzwu68nrl9j0lf/Hema6.JPG preprocess = T.Compose([ T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), T.Lambda(lambda x: x.to(device)) ]) postprocess = T.Compose([ T.Lambda(lambda x: (x.cpu().detach()+1)/2), T.ToPILImage() ]) image = readPIL('Hema6.JPG') image.size # (260,181) image = image.resize((130,90)) im = preprocess(image) sr = model(im[None])[0] sr = postprocess(sr) subplots([image, sr], nc=2, figsize=(10,10), titles=['Original image','High resolution image']) ###Output _____no_output_____
scripts/python_scripts/Ophio_cflo_orthologs.ipynb
###Markdown Find orthologThis script is witten to bla bla bla.. something orthologsMajor clock genes in N. crassa with Ophio_kim orthologs* frq = Ophio5|6064* wc-1 = Ophio5|4975* wc-2 = Ophio5|889* vvd = Ophio5|6595* nik-2 = Ophio5|6786* dcc-1 = Ophio5|7010* luxQ = Ophio5|7293* phy-1 = Ophio5|4324 ###Code ### Housekeeping import pandas as pd import sqlite3 import numpy as np path = '/Users/roos_brouns/Dropbox/Ant-fungus/02_scripts/Git_Das_folder2/Das_et_al_2022a' species = 'ophio_cflo' # load in file with ophio cflo and kim orthologs orthos = pd.read_csv(f'{path}/data/will_et_al_2020/FullBlast_EC05_RNAseq_orignal_copy_26Aug19.csv') ### Get the orthologs of clock genes in ophio_cflo orthos_genes = 'Ophio5|6064 Ophio5|4975 Ophio5|889 Ophio5|6595 Ophio5|6786 Ophio5|7010 Ophio5|7293 Ophio5|4324' list_w_orthos = orthos_genes.split() df = orthos.loc[orthos['sc16a_gene'] == list_w_orthos[0]] for no in range(1,len(list_w_orthos)): df_line = orthos.loc[orthos['sc16a_gene'] == list_w_orthos[no]] # print(df_line) df = df.append(df_line, ignore_index=True) kim_cflo = df[['arb2_gene','sc16a_gene']].drop_duplicates() kim_cflo.reset_index(inplace=True, drop=True) list(kim_cflo['arb2_gene']) ### Are these orthologs also rhythmic? species='ophio_cflo' # put orthologs of clock genes in a list cflo_orhts = df['arb2_gene'] cflo_orhts = list(cflo_orhts) cflo_orhts[0] # load in data with info if gene is rhytmic or not # # load in data with info if gene is rhytmic or not # # Load in the whole csv data = pd.read_csv(f'{path}/data/{species}_TC6_data.csv') # select the expression values # data.columndata.column's rhytmic_genes = data.filter(['gene_ID_ncbi','gene_ID_robin', 'rhythmic_24h', 'GammaP_24h']) ## make df with the genes that are rhytmic rhy_df = rhytmic_genes.loc[rhytmic_genes['gene_ID_robin'] == cflo_orhts[0]] for i in range(1,len(cflo_orhts)): rhy_df2 = rhytmic_genes.loc[rhytmic_genes['gene_ID_robin'] == cflo_orhts[i]] rhy_df = rhy_df.append(rhy_df2, ignore_index = True) rhy_df ### Are these orthologs also rhythmic in Beau? species='beau' # put orthologs of clock genes in a list orhts = ['BBA_01528', 'BBA_10271', 'BBA_01403', 'BBA_02876', 'BBA_08737', 'BBA_00328', 'BBA_07925', 'BBA_02816'] # load in data with info if gene is rhytmic or not # # Load in the whole csv data = pd.read_csv(f'{path}/data/{species}_TC6_data.csv') # select the expression values # data.columndata.column's b_rhytmic_genes = data.filter(['gene_ID_ncbi', 'rhythmic_24h', 'GammaP_24h']) ## make df with the genes that are rhytmic b_rhy_df = b_rhytmic_genes.loc[b_rhytmic_genes['gene_ID_ncbi'] == orhts[0]] for i in range(1,len(orhts)): b_rhy_df2 = b_rhytmic_genes.loc[b_rhytmic_genes['gene_ID_ncbi'] == orhts[i]] b_rhy_df = b_rhy_df.append(b_rhy_df2, ignore_index = True) b_rhydf ### Rename columns and make df pretty rhy_df.drop_duplicates(inplace=True) rhy_df.reset_index(inplace=True, drop=True) rhy_df.columns = ['ophio_cflo_ncbi','ophio_cflo_robin_ID', 'rhythmic_cflo', 'GammaP_cflo'] # Add ophio_kim orthologs n_df = pd.concat([rhy_df, kim_cflo], join='outer', axis=1) # Ad beau orthologs n_df = pd.concat([n_df, b_rhy_df], join='outer', axis=1) # Ad N crassa orthologs n_df['N_crassa_ortho']= ['frq','wc-1','wc-2','vvd','nik-2','dcc-1','luxQ','phy-1'] ## Rename columns and make df pretty n_df.drop('arb2_gene', axis=1, inplace=True) n_df.columns = ['ophio_cflo_ncbi','ophio_cflo_robin_ID', 'rhythmic_cflo', 'GammaP_cflo', 'ophio_kim_ortho', 'beau_ortho','rhythmic_beau', 'GammaP_beau', 'N_crassa_ortho'] # round decimals n_df.round(3) # Ad N crassa orthologs n_df['N_crassa_ortho']= ['frq','wc-1','wc-2','vvd','nik-2','dcc-1','luxQ','phy-1'] n_df = n_df.round(2) n_df n_df.to_excel('orthos_table.xlsx') n_df.columns = ['ophio_cflo_ncbi','ophio_cflo_robin_ID', 'rhythmic_cflo', 'GammaP_cflo', 'ophio_kim_ortho'] n_df['Beau_ortho']=['BBA_01528', 'BBA_10271', 'BBA_01403', 'BBA_02876', 'BBA_08737', 'BBA_00328', 'BBA_07925', 'BBA_02816'] n_df.round(2) ###Output _____no_output_____ ###Markdown Are my genes rhythmic? ###Code ### CBD genes in Beauveria # B. bas genes ID_input = ['BBA_04942', 'BBA_07544', 'BBA_00300', 'BBA_06126'] # = ['fluG','brlA','abaA', 'wetA'] # Ophio_cflo orthos # ??? ### Rhythmic in Ophio_kim # Ophio_cflo orthos ID_input = # name_input = # Beau orthos # ??? ### Are these orthologs also rhythmic in Beau? species='beau' gene_ID = 'gene_ID_ncbi' # input list of genes you want to test orhts = ID_input # load in data with info if gene is rhytmic or not # # Load in the whole csv data = pd.read_csv(f'{path}/data/{species}_TC6_data.csv') # select the expression values # data.columndata.column's t_rhytmic_genes = data.filter([gene_ID, 'rhythmic_24h', 'GammaP_24h']) ## make df with the genes that are rhytmic t_rhy_df = t_rhytmic_genes.loc[t_rhytmic_genes[gene_ID] == orhts[0]] for i in range(1,len(orhts)): t_rhy_df2 = t_rhytmic_genes.loc[t_rhytmic_genes[gene_ID] == orhts[i]] t_rhy_df = t_rhy_df.append(t_rhy_df2, ignore_index = True) # ad gene names # t_rhy_df['gene_name']= name_input t_rhy_df ###Output _____no_output_____
Diabetes Dataset/Improvements/Features Improvements with Mean/10_Pregnancies, Glucose, BloodPressure, SkinThickness, BMI and Age.ipynb
###Markdown We can infer that even though we do not have NaN values, there are a lot of wrong values present in our data, like:- Glucose Level cannot be above 150 or below 70- Blood Pressure cannot be below 55- Skin thickness cannot be 0- BMI index cannot be 0 ###Code # Data Cleaning df_improv = diabetesDF.copy() # Taking mean of valid data in the dataset mean_Glucose = diabetesDF.loc[(diabetesDF.Glucose > 70) & (diabetesDF.Glucose < 150), 'Glucose'].mean() mean_BloodPressure = diabetesDF.loc[diabetesDF.BloodPressure > 55, 'BloodPressure'].mean() mean_SkinThickness = diabetesDF.loc[diabetesDF.SkinThickness != 0, 'SkinThickness'].mean() mean_Insulin = diabetesDF.loc[(diabetesDF.Insulin > 35) & (diabetesDF.Insulin < 150), 'Insulin'].mean() mean_BMI = diabetesDF.loc[diabetesDF.BMI != 0, 'BMI'].mean() df_improv.head() df_improv.describe() # Replacing all the wrong values # df_improv.loc[(diabetesDF.Glucose < 70) | (df_improv.Glucose > 150), 'Glucose'] = np.ceil(np.random.rand() + mean_Glucose) df_improv.Glucose.replace(0, np.ceil(np.random.rand() + mean_Glucose), inplace = True) # df_improv.loc[df_improv.BloodPressure < 55, 'BloodPressure'] = np.ceil(np.random.rand() + mean_BloodPressure) df_improv.BloodPressure.replace(0, np.ceil(np.random.rand() + mean_BloodPressure), inplace = True) df_improv.SkinThickness.replace(0, np.ceil(np.random.rand() + mean_SkinThickness), inplace = True) df_improv.Insulin.replace(0, np.ceil(np.random.rand() + mean_Insulin), inplace = True) df_improv.BMI.replace(0, np.ceil(np.random.rand() + mean_BMI), inplace = True) df_improv.head() df_improv.describe() df_improv.drop([ 'Insulin', 'DiabetesPedigreeFunction'], axis=1, inplace=True) df_improv.head() # Total 768 patients record # Using 650 data for training # Using 100 data for testing # Using 18 data for validation dfTrain = df_improv[:650] dfTest = df_improv[650:750] dfCheck = df_improv[750:] # Separating label and features and converting to numpy array to feed into our model trainLabel = np.asarray(dfTrain['Outcome']) trainData = np.asarray(dfTrain.drop('Outcome',1)) testLabel = np.asarray(dfTest['Outcome']) testData = np.asarray(dfTest.drop('Outcome',1)) # Normalize the data means = np.mean(trainData, axis=0) stds = np.std(trainData, axis=0) trainData = (trainData - means)/stds testData = (testData - means)/stds # models target t as sigmoid(w0 + w1*x1 + w2*x2 + ... + wd*xd) diabetesCheck = LogisticRegression() diabetesCheck.fit(trainData,trainLabel) accuracy = diabetesCheck.score(testData,testLabel) print("accuracy = ",accuracy * 100,"%") ###Output accuracy = 78.0 %
Day_011_Regular_Expression_HW.ipynb
###Markdown 正規表達式練習 在網路爬蟲當中,正規表達式常常用來過濾以及搜尋特定的pattern字串。 今天要來練習過濾IP address,以及URL。 ###Code import re #載入re模組 # 定義一個函數,用來測試是否能匹配正規表達式 def RegexMatchingTest(regex, input_text): #將正規表達式轉換成pattern pattern = re.compile(regex) print('ppppp',pattern) # 使轉換後的pattern,來測試是否匹配 result = re.search(pattern, input_text) if result: # 匹配完的結果會儲存在group()的屬性中,我們可以把匹配的結果列印出來 print("Matched: %s" % (result.group())) if result.lastindex is not None: # group(0)代表整個字串,group(1)、group(2)...代表分組中,匹配的內容 for i in range(0, result.lastindex+1): print(" group(%d): %s" % (i, result.group(i))) else: print("Not matched.") ###Output _____no_output_____ ###Markdown 用正規表達式過濾IP address。 一個合法的網路IP address,其格式為:X.X.X.X, 其中X是0~255的數字。我們可以用一個regex,來表達IP address的內容。 ###Code test_string = "Google IP address is 216.58.200.227" # 過濾IP address的regex pattern regex = '(\d{1,3}).(\d{1,3}).(\d{1,3}).(\d{1,3})' RegexMatchingTest(regex, test_string) ###Output ppppp re.compile('(\\d{1,3}).(\\d{1,3}).(\\d{1,3}).(\\d{1,3})') Matched: 216.58.200.227 group(0): 216.58.200.227 group(1): 216 group(2): 58 group(3): 200 group(4): 227 ###Markdown 以上是最簡單的regex寫法。但深入思考,上面的regex也能夠匹配444.555.666.777這種無效的IP address。 我們必須再雕琢regex,只接受[0~255].[0~255].[0~255].[0~255]這種合法的IP address,而過濾不合法的IP。 ###Code ''' Your code here. hint: 把IP可能出現的數字範圍,分開來思考 1. 000 ~ 199 2. 200 ~ 249 3. 250 ~ 255 ([01]\d\d)|(2[01234]\d)|(25[012345]) ''' regex = '([01]?\d?\d|2[0-4]\d|25[0-5])\.([01]?\d?\d|2[0-4]\d|25[0-5])\.([01]?\d?\d|2[0-4]\d|25[0-5])\.([01]?\d?\d|2[0-4]\d|25[0-5])' test_string1 = "Test IP 216.58.200.227" RegexMatchingTest(regex, test_string1) #測試表達式是否會匹配此合法IP test_string2 = "Test IP 999.888.777.666" RegexMatchingTest(regex, test_string2) #測試表達式是否會匹配此不合法IP ###Output ppppp re.compile('([01]?\\d?\\d|2[0-4]\\d|25[0-5])\\.([01]?\\d?\\d|2[0-4]\\d|25[0-5])\\.([01]?\\d?\\d|2[0-4]\\d|25[0-5])\\.([01]?\\d?\\d|2[0-4]\\d|25[0-5])') Matched: 216.58.200.22 group(0): 216.58.200.22 group(1): 216 group(2): 58 group(3): 200 group(4): 22 ppppp re.compile('([01]?\\d?\\d|2[0-4]\\d|25[0-5])\\.([01]?\\d?\\d|2[0-4]\\d|25[0-5])\\.([01]?\\d?\\d|2[0-4]\\d|25[0-5])\\.([01]?\\d?\\d|2[0-4]\\d|25[0-5])') Not matched. ###Markdown 用正規表達式過濾URL。 在網頁爬蟲中,常常會有外部連結的A tag,例如: 時刻表 我們要把"href="之後的URL擷取出來,用來做後續處理。 ###Code html_a_tag = "<a href=https://movies.yahoo.com.tw/movietime_result.html/id=9467> 時刻表 </a>" ''' Your code here. 過濾URL的regex pattern ''' regex = '((http|https|ftp):\/\/)([a-z0-9]\.|[a-z0-9][-a-z0-9]*[a-z0-9]\.)+(tw|cn|com|edu|gov|net|org|biz|info|name)[-a-z0-9_:@&?=+,.!\/~*\'%$]*' RegexMatchingTest(regex, html_a_tag) ###Output ppppp re.compile("((http|https|ftp):\\/\\/)([a-z0-9]\\.|[a-z0-9][-a-z0-9]*[a-z0-9]\\.)+(tw|cn|com|edu|gov|net|org|biz|info|name)[-a-z0-9_:@&?=+,.!\\/~*'%$]*") Matched: https://movies.yahoo.com.tw/movietime_result.html/id=9467 group(0): https://movies.yahoo.com.tw/movietime_result.html/id=9467 group(1): https:// group(2): https group(3): com. group(4): tw
Deep Learning Specialisation/Sequence Models/Building a Recurrent Neural Network Step by Step.ipynb
###Markdown Building your Recurrent Neural Network - Step by StepWelcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy.Recurrent Neural Networks (RNN) are very effective for Natural Language Processing and other sequence tasks because they have "memory". They can read inputs $x^{\langle t \rangle}$ (such as words) one at a time, and remember some information/context through the hidden layer activations that get passed from one time-step to the next. This allows a uni-directional RNN to take information from the past to process later inputs. A bidirection RNN can take context from both the past and the future. **Notation**:- Superscript $[l]$ denotes an object associated with the $l^{th}$ layer. - Example: $a^{[4]}$ is the $4^{th}$ layer activation. $W^{[5]}$ and $b^{[5]}$ are the $5^{th}$ layer parameters.- Superscript $(i)$ denotes an object associated with the $i^{th}$ example. - Example: $x^{(i)}$ is the $i^{th}$ training example input.- Superscript $\langle t \rangle$ denotes an object at the $t^{th}$ time-step. - Example: $x^{\langle t \rangle}$ is the input x at the $t^{th}$ time-step. $x^{(i)\langle t \rangle}$ is the input at the $t^{th}$ timestep of example $i$. - Lowerscript $i$ denotes the $i^{th}$ entry of a vector. - Example: $a^{[l]}_i$ denotes the $i^{th}$ entry of the activations in layer $l$.We assume that you are already familiar with `numpy` and/or have completed the previous courses of the specialization. Let's get started! Let's first import all the packages that you will need during this assignment. ###Code import numpy as np from rnn_utils import * ###Output _____no_output_____ ###Markdown 1 - Forward propagation for the basic Recurrent Neural NetworkLater this week, you will generate music using an RNN. The basic RNN that you will implement has the structure below. In this example, $T_x = T_y$. **Figure 1**: Basic RNN model Here's how you can implement an RNN: **Steps**:1. Implement the calculations needed for one time-step of the RNN.2. Implement a loop over $T_x$ time-steps in order to process all the inputs, one at a time. Let's go! 1.1 - RNN cellA Recurrent neural network can be seen as the repetition of a single cell. You are first going to implement the computations for a single time-step. The following figure describes the operations for a single time-step of an RNN cell. **Figure 2**: Basic RNN cell. Takes as input $x^{\langle t \rangle}$ (current input) and $a^{\langle t - 1\rangle}$ (previous hidden state containing information from the past), and outputs $a^{\langle t \rangle}$ which is given to the next RNN cell and also used to predict $y^{\langle t \rangle}$ **Exercise**: Implement the RNN-cell described in Figure (2).**Instructions**:1. Compute the hidden state with tanh activation: $a^{\langle t \rangle} = \tanh(W_{aa} a^{\langle t-1 \rangle} + W_{ax} x^{\langle t \rangle} + b_a)$.2. Using your new hidden state $a^{\langle t \rangle}$, compute the prediction $\hat{y}^{\langle t \rangle} = softmax(W_{ya} a^{\langle t \rangle} + b_y)$. We provided you a function: `softmax`.3. Store $(a^{\langle t \rangle}, a^{\langle t-1 \rangle}, x^{\langle t \rangle}, parameters)$ in cache4. Return $a^{\langle t \rangle}$ , $y^{\langle t \rangle}$ and cacheWe will vectorize over $m$ examples. Thus, $x^{\langle t \rangle}$ will have dimension $(n_x,m)$, and $a^{\langle t \rangle}$ will have dimension $(n_a,m)$. ###Code # GRADED FUNCTION: rnn_cell_forward def rnn_cell_forward(xt, a_prev, parameters): """ Implements a single forward step of the RNN-cell as described in Figure (2) Arguments: xt -- your input data at timestep "t", numpy array of shape (n_x, m). a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m) parameters -- python dictionary containing: Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x) Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a) Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) ba -- Bias, numpy array of shape (n_a, 1) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a_next -- next hidden state, of shape (n_a, m) yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m) cache -- tuple of values needed for the backward pass, contains (a_next, a_prev, xt, parameters) """ # Retrieve parameters from "parameters" Wax = parameters["Wax"] Waa = parameters["Waa"] Wya = parameters["Wya"] ba = parameters["ba"] by = parameters["by"] ### START CODE HERE ### (≈2 lines) # compute next activation state using the formula given above a_next = np.tanh(np.dot(Waa,a_prev) + np.dot(Wax,xt) + ba) # compute output of the current cell using the formula given above yt_pred = softmax(np.dot(Wya,a_next) + by) ### END CODE HERE ### # store values you need for backward propagation in cache cache = (a_next, a_prev, xt, parameters) return a_next, yt_pred, cache np.random.seed(1) xt = np.random.randn(3,10) a_prev = np.random.randn(5,10) Waa = np.random.randn(5,5) Wax = np.random.randn(5,3) Wya = np.random.randn(2,5) ba = np.random.randn(5,1) by = np.random.randn(2,1) parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by} a_next, yt_pred, cache = rnn_cell_forward(xt, a_prev, parameters) print("a_next[4] = ", a_next[4]) print("a_next.shape = ", a_next.shape) print("yt_pred[1] =", yt_pred[1]) print("yt_pred.shape = ", yt_pred.shape) ###Output a_next[4] = [ 0.59584544 0.18141802 0.61311866 0.99808218 0.85016201 0.99980978 -0.18887155 0.99815551 0.6531151 0.82872037] a_next.shape = (5, 10) yt_pred[1] = [ 0.9888161 0.01682021 0.21140899 0.36817467 0.98988387 0.88945212 0.36920224 0.9966312 0.9982559 0.17746526] yt_pred.shape = (2, 10) ###Markdown **Expected Output**: **a_next[4]**: [ 0.59584544 0.18141802 0.61311866 0.99808218 0.85016201 0.99980978 -0.18887155 0.99815551 0.6531151 0.82872037] **a_next.shape**: (5, 10) **yt[1]**: [ 0.9888161 0.01682021 0.21140899 0.36817467 0.98988387 0.88945212 0.36920224 0.9966312 0.9982559 0.17746526] **yt.shape**: (2, 10) 1.2 - RNN forward pass You can see an RNN as the repetition of the cell you've just built. If your input sequence of data is carried over 10 time steps, then you will copy the RNN cell 10 times. Each cell takes as input the hidden state from the previous cell ($a^{\langle t-1 \rangle}$) and the current time-step's input data ($x^{\langle t \rangle}$). It outputs a hidden state ($a^{\langle t \rangle}$) and a prediction ($y^{\langle t \rangle}$) for this time-step. **Figure 3**: Basic RNN. The input sequence $x = (x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, ..., x^{\langle T_x \rangle})$ is carried over $T_x$ time steps. The network outputs $y = (y^{\langle 1 \rangle}, y^{\langle 2 \rangle}, ..., y^{\langle T_x \rangle})$. **Exercise**: Code the forward propagation of the RNN described in Figure (3).**Instructions**:1. Create a vector of zeros ($a$) that will store all the hidden states computed by the RNN.2. Initialize the "next" hidden state as $a_0$ (initial hidden state).3. Start looping over each time step, your incremental index is $t$ : - Update the "next" hidden state and the cache by running `rnn_cell_forward` - Store the "next" hidden state in $a$ ($t^{th}$ position) - Store the prediction in y - Add the cache to the list of caches4. Return $a$, $y$ and caches ###Code # GRADED FUNCTION: rnn_forward def rnn_forward(x, a0, parameters): """ Implement the forward propagation of the recurrent neural network described in Figure (3). Arguments: x -- Input data for every time-step, of shape (n_x, m, T_x). a0 -- Initial hidden state, of shape (n_a, m) parameters -- python dictionary containing: Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a) Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x) Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) ba -- Bias numpy array of shape (n_a, 1) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x) y_pred -- Predictions for every time-step, numpy array of shape (n_y, m, T_x) caches -- tuple of values needed for the backward pass, contains (list of caches, x) """ # Initialize "caches" which will contain the list of all caches caches = [] # Retrieve dimensions from shapes of x and parameters["Wya"] n_x, m, T_x = x.shape n_y, n_a = parameters["Wya"].shape ### START CODE HERE ### # initialize "a" and "y" with zeros (≈2 lines) a = np.zeros((n_a,m,T_x)) y_pred = np.zeros((n_y,m,T_x)) # Initialize a_next (≈1 line) a_next = a0 # loop over all time-steps for t in range(T_x): # Update next hidden state, compute the prediction, get the cache (≈1 line) a_next, yt_pred, cache = rnn_cell_forward(x[:,:,t],a_next,parameters) # Save the value of the new "next" hidden state in a (≈1 line) a[:,:,t] = a_next # Save the value of the prediction in y (≈1 line) y_pred[:,:,t] = yt_pred # Append "cache" to "caches" (≈1 line) caches.append(cache) ### END CODE HERE ### # store values needed for backward propagation in cache caches = (caches, x) return a, y_pred, caches np.random.seed(1) x = np.random.randn(3,10,4) a0 = np.random.randn(5,10) Waa = np.random.randn(5,5) Wax = np.random.randn(5,3) Wya = np.random.randn(2,5) ba = np.random.randn(5,1) by = np.random.randn(2,1) parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by} a, y_pred, caches = rnn_forward(x, a0, parameters) print("a[4][1] = ", a[4][1]) print("a.shape = ", a.shape) print("y_pred[1][3] =", y_pred[1][3]) print("y_pred.shape = ", y_pred.shape) print("caches[1][1][3] =", caches[1][1][3]) print("len(caches) = ", len(caches)) ###Output a[4][1] = [-0.99999375 0.77911235 -0.99861469 -0.99833267] a.shape = (5, 10, 4) y_pred[1][3] = [ 0.79560373 0.86224861 0.11118257 0.81515947] y_pred.shape = (2, 10, 4) caches[1][1][3] = [-1.1425182 -0.34934272 -0.20889423 0.58662319] len(caches) = 2 ###Markdown **Expected Output**: **a[4][1]**: [-0.99999375 0.77911235 -0.99861469 -0.99833267] **a.shape**: (5, 10, 4) **y[1][3]**: [ 0.79560373 0.86224861 0.11118257 0.81515947] **y.shape**: (2, 10, 4) **cache[1][1][3]**: [-1.1425182 -0.34934272 -0.20889423 0.58662319] **len(cache)**: 2 Congratulations! You've successfully built the forward propagation of a recurrent neural network from scratch. This will work well enough for some applications, but it suffers from vanishing gradient problems. So it works best when each output $y^{\langle t \rangle}$ can be estimated using mainly "local" context (meaning information from inputs $x^{\langle t' \rangle}$ where $t'$ is not too far from $t$). In the next part, you will build a more complex LSTM model, which is better at addressing vanishing gradients. The LSTM will be better able to remember a piece of information and keep it saved for many timesteps. 2 - Long Short-Term Memory (LSTM) networkThis following figure shows the operations of an LSTM-cell. **Figure 4**: LSTM-cell. This tracks and updates a "cell state" or memory variable $c^{\langle t \rangle}$ at every time-step, which can be different from $a^{\langle t \rangle}$. Similar to the RNN example above, you will start by implementing the LSTM cell for a single time-step. Then you can iteratively call it from inside a for-loop to have it process an input with $T_x$ time-steps. About the gates - Forget gateFor the sake of this illustration, lets assume we are reading words in a piece of text, and want use an LSTM to keep track of grammatical structures, such as whether the subject is singular or plural. If the subject changes from a singular word to a plural word, we need to find a way to get rid of our previously stored memory value of the singular/plural state. In an LSTM, the forget gate lets us do this: $$\Gamma_f^{\langle t \rangle} = \sigma(W_f[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_f)\tag{1} $$Here, $W_f$ are weights that govern the forget gate's behavior. We concatenate $[a^{\langle t-1 \rangle}, x^{\langle t \rangle}]$ and multiply by $W_f$. The equation above results in a vector $\Gamma_f^{\langle t \rangle}$ with values between 0 and 1. This forget gate vector will be multiplied element-wise by the previous cell state $c^{\langle t-1 \rangle}$. So if one of the values of $\Gamma_f^{\langle t \rangle}$ is 0 (or close to 0) then it means that the LSTM should remove that piece of information (e.g. the singular subject) in the corresponding component of $c^{\langle t-1 \rangle}$. If one of the values is 1, then it will keep the information. - Update gateOnce we forget that the subject being discussed is singular, we need to find a way to update it to reflect that the new subject is now plural. Here is the formulat for the update gate: $$\Gamma_u^{\langle t \rangle} = \sigma(W_u[a^{\langle t-1 \rangle}, x^{\{t\}}] + b_u)\tag{2} $$ Similar to the forget gate, here $\Gamma_u^{\langle t \rangle}$ is again a vector of values between 0 and 1. This will be multiplied element-wise with $\tilde{c}^{\langle t \rangle}$, in order to compute $c^{\langle t \rangle}$. - Updating the cell To update the new subject we need to create a new vector of numbers that we can add to our previous cell state. The equation we use is: $$ \tilde{c}^{\langle t \rangle} = \tanh(W_c[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_c)\tag{3} $$Finally, the new cell state is: $$ c^{\langle t \rangle} = \Gamma_f^{\langle t \rangle}* c^{\langle t-1 \rangle} + \Gamma_u^{\langle t \rangle} *\tilde{c}^{\langle t \rangle} \tag{4} $$ - Output gateTo decide which outputs we will use, we will use the following two formulas: $$ \Gamma_o^{\langle t \rangle}= \sigma(W_o[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_o)\tag{5}$$ $$ a^{\langle t \rangle} = \Gamma_o^{\langle t \rangle}* \tanh(c^{\langle t \rangle})\tag{6} $$Where in equation 5 you decide what to output using a sigmoid function and in equation 6 you multiply that by the $\tanh$ of the previous state. 2.1 - LSTM cell**Exercise**: Implement the LSTM cell described in the Figure (3).**Instructions**:1. Concatenate $a^{\langle t-1 \rangle}$ and $x^{\langle t \rangle}$ in a single matrix: $concat = \begin{bmatrix} a^{\langle t-1 \rangle} \\ x^{\langle t \rangle} \end{bmatrix}$2. Compute all the formulas 1-6. You can use `sigmoid()` (provided) and `np.tanh()`.3. Compute the prediction $y^{\langle t \rangle}$. You can use `softmax()` (provided). ###Code # GRADED FUNCTION: lstm_cell_forward def lstm_cell_forward(xt, a_prev, c_prev, parameters): """ Implement a single forward step of the LSTM-cell as described in Figure (4) Arguments: xt -- your input data at timestep "t", numpy array of shape (n_x, m). a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m) c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m) parameters -- python dictionary containing: Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) bf -- Bias of the forget gate, numpy array of shape (n_a, 1) Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) bi -- Bias of the update gate, numpy array of shape (n_a, 1) Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x) bc -- Bias of the first "tanh", numpy array of shape (n_a, 1) Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x) bo -- Bias of the output gate, numpy array of shape (n_a, 1) Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a_next -- next hidden state, of shape (n_a, m) c_next -- next memory state, of shape (n_a, m) yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m) cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters) Note: ft/it/ot stand for the forget/update/output gates, cct stands for the candidate value (c tilde), c stands for the memory value """ # Retrieve parameters from "parameters" Wf = parameters["Wf"] bf = parameters["bf"] Wi = parameters["Wi"] bi = parameters["bi"] Wc = parameters["Wc"] bc = parameters["bc"] Wo = parameters["Wo"] bo = parameters["bo"] Wy = parameters["Wy"] by = parameters["by"] # Retrieve dimensions from shapes of xt and Wy n_x, m = xt.shape n_y, n_a = Wy.shape ### START CODE HERE ### # Concatenate a_prev and xt (≈3 lines) concat = np.zeros(((n_a + n_x),m)) concat[: n_a, :] = a_prev concat[n_a :, :] = xt # Compute values for ft, it, cct, c_next, ot, a_next using the formulas given figure (4) (≈6 lines) ft = sigmoid((np.dot(Wf,concat)) + bf) it = sigmoid((np.dot(Wi,concat))+ bi) cct = np.tanh((np.dot(Wc,concat)) + bc) c_next = np.multiply(ft,c_prev) + np.multiply(it, cct) ot = sigmoid((np.dot(Wo,concat)) + bo) a_next = np.multiply(ot,np.tanh(c_next)) # Compute prediction of the LSTM cell (≈1 line) yt_pred = softmax(np.dot(Wy, a_next) + by) ### END CODE HERE ### # store values needed for backward propagation in cache cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) return a_next, c_next, yt_pred, cache np.random.seed(1) xt = np.random.randn(3,10) a_prev = np.random.randn(5,10) c_prev = np.random.randn(5,10) Wf = np.random.randn(5, 5+3) bf = np.random.randn(5,1) Wi = np.random.randn(5, 5+3) bi = np.random.randn(5,1) Wo = np.random.randn(5, 5+3) bo = np.random.randn(5,1) Wc = np.random.randn(5, 5+3) bc = np.random.randn(5,1) Wy = np.random.randn(2,5) by = np.random.randn(2,1) parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by} a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters) print("a_next[4] = ", a_next[4]) print("a_next.shape = ", c_next.shape) print("c_next[2] = ", c_next[2]) print("c_next.shape = ", c_next.shape) print("yt[1] =", yt[1]) print("yt.shape = ", yt.shape) print("cache[1][3] =", cache[1][3]) print("len(cache) = ", len(cache)) ###Output a_next[4] = [-0.66408471 0.0036921 0.02088357 0.22834167 -0.85575339 0.00138482 0.76566531 0.34631421 -0.00215674 0.43827275] a_next.shape = (5, 10) c_next[2] = [ 0.63267805 1.00570849 0.35504474 0.20690913 -1.64566718 0.11832942 0.76449811 -0.0981561 -0.74348425 -0.26810932] c_next.shape = (5, 10) yt[1] = [ 0.79913913 0.15986619 0.22412122 0.15606108 0.97057211 0.31146381 0.00943007 0.12666353 0.39380172 0.07828381] yt.shape = (2, 10) cache[1][3] = [-0.16263996 1.03729328 0.72938082 -0.54101719 0.02752074 -0.30821874 0.07651101 -1.03752894 1.41219977 -0.37647422] len(cache) = 10 ###Markdown **Expected Output**: **a_next[4]**: [-0.66408471 0.0036921 0.02088357 0.22834167 -0.85575339 0.00138482 0.76566531 0.34631421 -0.00215674 0.43827275] **a_next.shape**: (5, 10) **c_next[2]**: [ 0.63267805 1.00570849 0.35504474 0.20690913 -1.64566718 0.11832942 0.76449811 -0.0981561 -0.74348425 -0.26810932] **c_next.shape**: (5, 10) **yt[1]**: [ 0.79913913 0.15986619 0.22412122 0.15606108 0.97057211 0.31146381 0.00943007 0.12666353 0.39380172 0.07828381] **yt.shape**: (2, 10) **cache[1][3]**: [-0.16263996 1.03729328 0.72938082 -0.54101719 0.02752074 -0.30821874 0.07651101 -1.03752894 1.41219977 -0.37647422] **len(cache)**: 10 2.2 - Forward pass for LSTMNow that you have implemented one step of an LSTM, you can now iterate this over this using a for-loop to process a sequence of $T_x$ inputs. **Figure 4**: LSTM over multiple time-steps. **Exercise:** Implement `lstm_forward()` to run an LSTM over $T_x$ time-steps. **Note**: $c^{\langle 0 \rangle}$ is initialized with zeros. ###Code # GRADED FUNCTION: lstm_forward def lstm_forward(x, a0, parameters): """ Implement the forward propagation of the recurrent neural network using an LSTM-cell described in Figure (3). Arguments: x -- Input data for every time-step, of shape (n_x, m, T_x). a0 -- Initial hidden state, of shape (n_a, m) parameters -- python dictionary containing: Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) bf -- Bias of the forget gate, numpy array of shape (n_a, 1) Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) bi -- Bias of the update gate, numpy array of shape (n_a, 1) Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x) bc -- Bias of the first "tanh", numpy array of shape (n_a, 1) Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x) bo -- Bias of the output gate, numpy array of shape (n_a, 1) Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x) y -- Predictions for every time-step, numpy array of shape (n_y, m, T_x) caches -- tuple of values needed for the backward pass, contains (list of all the caches, x) """ # Initialize "caches", which will track the list of all the caches caches = [] ### START CODE HERE ### # Retrieve dimensions from shapes of x and parameters['Wy'] (≈2 lines) n_x, m, T_x = x.shape n_y, n_a = parameters["Wy"].shape # initialize "a", "c" and "y" with zeros (≈3 lines) a = np.zeros((n_a, m, T_x)) c = a y = np.zeros((n_y, m, T_x)) # Initialize a_next and c_next (≈2 lines) a_next = a0 c_next = np.zeros(a_next.shape) # loop over all time-steps for t in range(T_x): # Update next hidden state, next memory state, compute the prediction, get the cache (≈1 line) a_next, c_next, yt, cache = lstm_cell_forward(x[:,:,t], a_next, c_next, parameters) # Save the value of the new "next" hidden state in a (≈1 line) a[:,:,t] = a_next # Save the value of the prediction in y (≈1 line) y[:,:,t] = yt # Save the value of the next cell state (≈1 line) c[:,:,t] = c_next # Append the cache into caches (≈1 line) caches.append(cache) ### END CODE HERE ### # store values needed for backward propagation in cache caches = (caches, x) return a, y, c, caches np.random.seed(1) x = np.random.randn(3,10,7) a0 = np.random.randn(5,10) Wf = np.random.randn(5, 5+3) bf = np.random.randn(5,1) Wi = np.random.randn(5, 5+3) bi = np.random.randn(5,1) Wo = np.random.randn(5, 5+3) bo = np.random.randn(5,1) Wc = np.random.randn(5, 5+3) bc = np.random.randn(5,1) Wy = np.random.randn(2,5) by = np.random.randn(2,1) parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by} a, y, c, caches = lstm_forward(x, a0, parameters) print("a[4][3][6] = ", a[4][3][6]) print("a.shape = ", a.shape) print("y[1][4][3] =", y[1][4][3]) print("y.shape = ", y.shape) print("caches[1][1[1]] =", caches[1][1][1]) print("c[1][2][1]", c[1][2][1]) print("len(caches) = ", len(caches)) ###Output a[4][3][6] = 0.73162451027 a.shape = (5, 10, 7) y[1][4][3] = 0.95087346185 y.shape = (2, 10, 7) caches[1][1[1]] = [ 0.82797464 0.23009474 0.76201118 -0.22232814 -0.20075807 0.18656139 0.41005165] c[1][2][1] -0.855544916718 len(caches) = 2 ###Markdown **Expected Output**: **a[4][3][6]** = 0.172117767533 **a.shape** = (5, 10, 7) **y[1][4][3]** = 0.95087346185 **y.shape** = (2, 10, 7) **caches[1][1][1]** = [ 0.82797464 0.23009474 0.76201118 -0.22232814 -0.20075807 0.18656139 0.41005165] **c[1][2][1]** = -0.855544916718 **len(caches)** = 2 Congratulations! You have now implemented the forward passes for the basic RNN and the LSTM. When using a deep learning framework, implementing the forward pass is sufficient to build systems that achieve great performance. The rest of this notebook is optional, and will not be graded. 3 - Backpropagation in recurrent neural networks (OPTIONAL / UNGRADED)In modern deep learning frameworks, you only have to implement the forward pass, and the framework takes care of the backward pass, so most deep learning engineers do not need to bother with the details of the backward pass. If however you are an expert in calculus and want to see the details of backprop in RNNs, you can work through this optional portion of the notebook. When in an earlier course you implemented a simple (fully connected) neural network, you used backpropagation to compute the derivatives with respect to the cost to update the parameters. Similarly, in recurrent neural networks you can to calculate the derivatives with respect to the cost in order to update the parameters. The backprop equations are quite complicated and we did not derive them in lecture. However, we will briefly present them below. 3.1 - Basic RNN backward passWe will start by computing the backward pass for the basic RNN-cell. **Figure 5**: RNN-cell's backward pass. Just like in a fully-connected neural network, the derivative of the cost function $J$ backpropagates through the RNN by following the chain-rule from calculas. The chain-rule is also used to calculate $(\frac{\partial J}{\partial W_{ax}},\frac{\partial J}{\partial W_{aa}},\frac{\partial J}{\partial b})$ to update the parameters $(W_{ax}, W_{aa}, b_a)$. Deriving the one step backward functions: To compute the `rnn_cell_backward` you need to compute the following equations. It is a good exercise to derive them by hand. The derivative of $\tanh$ is $1-\tanh(x)^2$. You can find the complete proof [here](https://www.wyzant.com/resources/lessons/math/calculus/derivative_proofs/tanx). Note that: $ \text{sech}(x)^2 = 1 - \tanh(x)^2$Similarly for $\frac{ \partial a^{\langle t \rangle} } {\partial W_{ax}}, \frac{ \partial a^{\langle t \rangle} } {\partial W_{aa}}, \frac{ \partial a^{\langle t \rangle} } {\partial b}$, the derivative of $\tanh(u)$ is $(1-\tanh(u)^2)du$. The final two equations also follow same rule and are derived using the $\tanh$ derivative. Note that the arrangement is done in a way to get the same dimensions to match. ###Code def rnn_cell_backward(da_next, cache): """ Implements the backward pass for the RNN-cell (single time-step). Arguments: da_next -- Gradient of loss with respect to next hidden state cache -- python dictionary containing useful values (output of rnn_cell_forward()) Returns: gradients -- python dictionary containing: dx -- Gradients of input data, of shape (n_x, m) da_prev -- Gradients of previous hidden state, of shape (n_a, m) dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x) dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a) dba -- Gradients of bias vector, of shape (n_a, 1) """ # Retrieve values from cache (a_next, a_prev, xt, parameters) = cache # Retrieve values from parameters Wax = parameters["Wax"] Waa = parameters["Waa"] Wya = parameters["Wya"] ba = parameters["ba"] by = parameters["by"] ### START CODE HERE ### # compute the gradient of tanh with respect to a_next (≈1 line) dtanh = None # compute the gradient of the loss with respect to Wax (≈2 lines) dxt = None dWax = None # compute the gradient with respect to Waa (≈2 lines) da_prev = None dWaa = None # compute the gradient with respect to b (≈1 line) dba = None ### END CODE HERE ### # Store the gradients in a python dictionary gradients = {"dxt": dxt, "da_prev": da_prev, "dWax": dWax, "dWaa": dWaa, "dba": dba} return gradients np.random.seed(1) xt = np.random.randn(3,10) a_prev = np.random.randn(5,10) Wax = np.random.randn(5,3) Waa = np.random.randn(5,5) Wya = np.random.randn(2,5) b = np.random.randn(5,1) by = np.random.randn(2,1) parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by} a_next, yt, cache = rnn_cell_forward(xt, a_prev, parameters) da_next = np.random.randn(5,10) gradients = rnn_cell_backward(da_next, cache) print("gradients[\"dxt\"][1][2] =", gradients["dxt"][1][2]) print("gradients[\"dxt\"].shape =", gradients["dxt"].shape) print("gradients[\"da_prev\"][2][3] =", gradients["da_prev"][2][3]) print("gradients[\"da_prev\"].shape =", gradients["da_prev"].shape) print("gradients[\"dWax\"][3][1] =", gradients["dWax"][3][1]) print("gradients[\"dWax\"].shape =", gradients["dWax"].shape) print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2]) print("gradients[\"dWaa\"].shape =", gradients["dWaa"].shape) print("gradients[\"dba\"][4] =", gradients["dba"][4]) print("gradients[\"dba\"].shape =", gradients["dba"].shape) ###Output _____no_output_____ ###Markdown **Expected Output**: **gradients["dxt"][1][2]** = -0.460564103059 **gradients["dxt"].shape** = (3, 10) **gradients["da_prev"][2][3]** = 0.0842968653807 **gradients["da_prev"].shape** = (5, 10) **gradients["dWax"][3][1]** = 0.393081873922 **gradients["dWax"].shape** = (5, 3) **gradients["dWaa"][1][2]** = -0.28483955787 **gradients["dWaa"].shape** = (5, 5) **gradients["dba"][4]** = [ 0.80517166] **gradients["dba"].shape** = (5, 1) Backward pass through the RNNComputing the gradients of the cost with respect to $a^{\langle t \rangle}$ at every time-step $t$ is useful because it is what helps the gradient backpropagate to the previous RNN-cell. To do so, you need to iterate through all the time steps starting at the end, and at each step, you increment the overall $db_a$, $dW_{aa}$, $dW_{ax}$ and you store $dx$.**Instructions**:Implement the `rnn_backward` function. Initialize the return variables with zeros first and then loop through all the time steps while calling the `rnn_cell_backward` at each time timestep, update the other variables accordingly. ###Code def rnn_backward(da, caches): """ Implement the backward pass for a RNN over an entire sequence of input data. Arguments: da -- Upstream gradients of all hidden states, of shape (n_a, m, T_x) caches -- tuple containing information from the forward pass (rnn_forward) Returns: gradients -- python dictionary containing: dx -- Gradient w.r.t. the input data, numpy-array of shape (n_x, m, T_x) da0 -- Gradient w.r.t the initial hidden state, numpy-array of shape (n_a, m) dWax -- Gradient w.r.t the input's weight matrix, numpy-array of shape (n_a, n_x) dWaa -- Gradient w.r.t the hidden state's weight matrix, numpy-arrayof shape (n_a, n_a) dba -- Gradient w.r.t the bias, of shape (n_a, 1) """ ### START CODE HERE ### # Retrieve values from the first cache (t=1) of caches (≈2 lines) (caches, x) = None (a1, a0, x1, parameters) = None # Retrieve dimensions from da's and x1's shapes (≈2 lines) n_a, m, T_x = None n_x, m = None # initialize the gradients with the right sizes (≈6 lines) dx = None dWax = None dWaa = None dba = None da0 = None da_prevt = None # Loop through all the time steps for t in reversed(range(None)): # Compute gradients at time step t. Choose wisely the "da_next" and the "cache" to use in the backward propagation step. (≈1 line) gradients = None # Retrieve derivatives from gradients (≈ 1 line) dxt, da_prevt, dWaxt, dWaat, dbat = gradients["dxt"], gradients["da_prev"], gradients["dWax"], gradients["dWaa"], gradients["dba"] # Increment global derivatives w.r.t parameters by adding their derivative at time-step t (≈4 lines) dx[:, :, t] = None dWax += None dWaa += None dba += None # Set da0 to the gradient of a which has been backpropagated through all time-steps (≈1 line) da0 = None ### END CODE HERE ### # Store the gradients in a python dictionary gradients = {"dx": dx, "da0": da0, "dWax": dWax, "dWaa": dWaa,"dba": dba} return gradients np.random.seed(1) x = np.random.randn(3,10,4) a0 = np.random.randn(5,10) Wax = np.random.randn(5,3) Waa = np.random.randn(5,5) Wya = np.random.randn(2,5) ba = np.random.randn(5,1) by = np.random.randn(2,1) parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by} a, y, caches = rnn_forward(x, a0, parameters) da = np.random.randn(5, 10, 4) gradients = rnn_backward(da, caches) print("gradients[\"dx\"][1][2] =", gradients["dx"][1][2]) print("gradients[\"dx\"].shape =", gradients["dx"].shape) print("gradients[\"da0\"][2][3] =", gradients["da0"][2][3]) print("gradients[\"da0\"].shape =", gradients["da0"].shape) print("gradients[\"dWax\"][3][1] =", gradients["dWax"][3][1]) print("gradients[\"dWax\"].shape =", gradients["dWax"].shape) print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2]) print("gradients[\"dWaa\"].shape =", gradients["dWaa"].shape) print("gradients[\"dba\"][4] =", gradients["dba"][4]) print("gradients[\"dba\"].shape =", gradients["dba"].shape) ###Output _____no_output_____ ###Markdown **Expected Output**: **gradients["dx"][1][2]** = [-2.07101689 -0.59255627 0.02466855 0.01483317] **gradients["dx"].shape** = (3, 10, 4) **gradients["da0"][2][3]** = -0.314942375127 **gradients["da0"].shape** = (5, 10) **gradients["dWax"][3][1]** = 11.2641044965 **gradients["dWax"].shape** = (5, 3) **gradients["dWaa"][1][2]** = 2.30333312658 **gradients["dWaa"].shape** = (5, 5) **gradients["dba"][4]** = [-0.74747722] **gradients["dba"].shape** = (5, 1) 3.2 - LSTM backward pass 3.2.1 One Step backwardThe LSTM backward pass is slighltly more complicated than the forward one. We have provided you with all the equations for the LSTM backward pass below. (If you enjoy calculus exercises feel free to try deriving these from scratch yourself.) 3.2.2 gate derivatives$$d \Gamma_o^{\langle t \rangle} = da_{next}*\tanh(c_{next}) * \Gamma_o^{\langle t \rangle}*(1-\Gamma_o^{\langle t \rangle})\tag{7}$$$$d\tilde c^{\langle t \rangle} = dc_{next}*\Gamma_u^{\langle t \rangle}+ \Gamma_o^{\langle t \rangle} (1-\tanh(c_{next})^2) * i_t * da_{next} * \tilde c^{\langle t \rangle} * (1-\tanh(\tilde c)^2) \tag{8}$$$$d\Gamma_u^{\langle t \rangle} = dc_{next}*\tilde c^{\langle t \rangle} + \Gamma_o^{\langle t \rangle} (1-\tanh(c_{next})^2) * \tilde c^{\langle t \rangle} * da_{next}*\Gamma_u^{\langle t \rangle}*(1-\Gamma_u^{\langle t \rangle})\tag{9}$$$$d\Gamma_f^{\langle t \rangle} = dc_{next}*\tilde c_{prev} + \Gamma_o^{\langle t \rangle} (1-\tanh(c_{next})^2) * c_{prev} * da_{next}*\Gamma_f^{\langle t \rangle}*(1-\Gamma_f^{\langle t \rangle})\tag{10}$$ 3.2.3 parameter derivatives $$ dW_f = d\Gamma_f^{\langle t \rangle} * \begin{pmatrix} a_{prev} \\ x_t\end{pmatrix}^T \tag{11} $$$$ dW_u = d\Gamma_u^{\langle t \rangle} * \begin{pmatrix} a_{prev} \\ x_t\end{pmatrix}^T \tag{12} $$$$ dW_c = d\tilde c^{\langle t \rangle} * \begin{pmatrix} a_{prev} \\ x_t\end{pmatrix}^T \tag{13} $$$$ dW_o = d\Gamma_o^{\langle t \rangle} * \begin{pmatrix} a_{prev} \\ x_t\end{pmatrix}^T \tag{14}$$To calculate $db_f, db_u, db_c, db_o$ you just need to sum across the horizontal (axis= 1) axis on $d\Gamma_f^{\langle t \rangle}, d\Gamma_u^{\langle t \rangle}, d\tilde c^{\langle t \rangle}, d\Gamma_o^{\langle t \rangle}$ respectively. Note that you should have the `keep_dims = True` option.Finally, you will compute the derivative with respect to the previous hidden state, previous memory state, and input.$$ da_{prev} = W_f^T*d\Gamma_f^{\langle t \rangle} + W_u^T * d\Gamma_u^{\langle t \rangle}+ W_c^T * d\tilde c^{\langle t \rangle} + W_o^T * d\Gamma_o^{\langle t \rangle} \tag{15}$$Here, the weights for equations 13 are the first n_a, (i.e. $W_f = W_f[:n_a,:]$ etc...)$$ dc_{prev} = dc_{next}\Gamma_f^{\langle t \rangle} + \Gamma_o^{\langle t \rangle} * (1- \tanh(c_{next})^2)*\Gamma_f^{\langle t \rangle}*da_{next} \tag{16}$$$$ dx^{\langle t \rangle} = W_f^T*d\Gamma_f^{\langle t \rangle} + W_u^T * d\Gamma_u^{\langle t \rangle}+ W_c^T * d\tilde c_t + W_o^T * d\Gamma_o^{\langle t \rangle}\tag{17} $$where the weights for equation 15 are from n_a to the end, (i.e. $W_f = W_f[n_a:,:]$ etc...)**Exercise:** Implement `lstm_cell_backward` by implementing equations $7-17$ below. Good luck! :) ###Code def lstm_cell_backward(da_next, dc_next, cache): """ Implement the backward pass for the LSTM-cell (single time-step). Arguments: da_next -- Gradients of next hidden state, of shape (n_a, m) dc_next -- Gradients of next cell state, of shape (n_a, m) cache -- cache storing information from the forward pass Returns: gradients -- python dictionary containing: dxt -- Gradient of input data at time-step t, of shape (n_x, m) da_prev -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m) dc_prev -- Gradient w.r.t. the previous memory state, of shape (n_a, m, T_x) dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) dWi -- Gradient w.r.t. the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x) dWo -- Gradient w.r.t. the weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x) dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1) dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1) dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1) dbo -- Gradient w.r.t. biases of the output gate, of shape (n_a, 1) """ # Retrieve information from "cache" (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) = cache ### START CODE HERE ### # Retrieve dimensions from xt's and a_next's shape (≈2 lines) n_x, m = None n_a, m = None # Compute gates related derivatives, you can find their values can be found by looking carefully at equations (7) to (10) (≈4 lines) dot = None dcct = None dit = None dft = None # Code equations (7) to (10) (≈4 lines) dit = None dft = None dot = None dcct = None # Compute parameters related derivatives. Use equations (11)-(14) (≈8 lines) dWf = None dWi = None dWc = None dWo = None dbf = None dbi = None dbc = None dbo = None # Compute derivatives w.r.t previous hidden state, previous memory state and input. Use equations (15)-(17). (≈3 lines) da_prev = None dc_prev = None dxt = None ### END CODE HERE ### # Save gradients in dictionary gradients = {"dxt": dxt, "da_prev": da_prev, "dc_prev": dc_prev, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi, "dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo} return gradients np.random.seed(1) xt = np.random.randn(3,10) a_prev = np.random.randn(5,10) c_prev = np.random.randn(5,10) Wf = np.random.randn(5, 5+3) bf = np.random.randn(5,1) Wi = np.random.randn(5, 5+3) bi = np.random.randn(5,1) Wo = np.random.randn(5, 5+3) bo = np.random.randn(5,1) Wc = np.random.randn(5, 5+3) bc = np.random.randn(5,1) Wy = np.random.randn(2,5) by = np.random.randn(2,1) parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by} a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters) da_next = np.random.randn(5,10) dc_next = np.random.randn(5,10) gradients = lstm_cell_backward(da_next, dc_next, cache) print("gradients[\"dxt\"][1][2] =", gradients["dxt"][1][2]) print("gradients[\"dxt\"].shape =", gradients["dxt"].shape) print("gradients[\"da_prev\"][2][3] =", gradients["da_prev"][2][3]) print("gradients[\"da_prev\"].shape =", gradients["da_prev"].shape) print("gradients[\"dc_prev\"][2][3] =", gradients["dc_prev"][2][3]) print("gradients[\"dc_prev\"].shape =", gradients["dc_prev"].shape) print("gradients[\"dWf\"][3][1] =", gradients["dWf"][3][1]) print("gradients[\"dWf\"].shape =", gradients["dWf"].shape) print("gradients[\"dWi\"][1][2] =", gradients["dWi"][1][2]) print("gradients[\"dWi\"].shape =", gradients["dWi"].shape) print("gradients[\"dWc\"][3][1] =", gradients["dWc"][3][1]) print("gradients[\"dWc\"].shape =", gradients["dWc"].shape) print("gradients[\"dWo\"][1][2] =", gradients["dWo"][1][2]) print("gradients[\"dWo\"].shape =", gradients["dWo"].shape) print("gradients[\"dbf\"][4] =", gradients["dbf"][4]) print("gradients[\"dbf\"].shape =", gradients["dbf"].shape) print("gradients[\"dbi\"][4] =", gradients["dbi"][4]) print("gradients[\"dbi\"].shape =", gradients["dbi"].shape) print("gradients[\"dbc\"][4] =", gradients["dbc"][4]) print("gradients[\"dbc\"].shape =", gradients["dbc"].shape) print("gradients[\"dbo\"][4] =", gradients["dbo"][4]) print("gradients[\"dbo\"].shape =", gradients["dbo"].shape) ###Output _____no_output_____ ###Markdown **Expected Output**: **gradients["dxt"][1][2]** = 3.23055911511 **gradients["dxt"].shape** = (3, 10) **gradients["da_prev"][2][3]** = -0.0639621419711 **gradients["da_prev"].shape** = (5, 10) **gradients["dc_prev"][2][3]** = 0.797522038797 **gradients["dc_prev"].shape** = (5, 10) **gradients["dWf"][3][1]** = -0.147954838164 **gradients["dWf"].shape** = (5, 8) **gradients["dWi"][1][2]** = 1.05749805523 **gradients["dWi"].shape** = (5, 8) **gradients["dWc"][3][1]** = 2.30456216369 **gradients["dWc"].shape** = (5, 8) **gradients["dWo"][1][2]** = 0.331311595289 **gradients["dWo"].shape** = (5, 8) **gradients["dbf"][4]** = [ 0.18864637] **gradients["dbf"].shape** = (5, 1) **gradients["dbi"][4]** = [-0.40142491] **gradients["dbi"].shape** = (5, 1) **gradients["dbc"][4]** = [ 0.25587763] **gradients["dbc"].shape** = (5, 1) **gradients["dbo"][4]** = [ 0.13893342] **gradients["dbo"].shape** = (5, 1) 3.3 Backward pass through the LSTM RNNThis part is very similar to the `rnn_backward` function you implemented above. You will first create variables of the same dimension as your return variables. You will then iterate over all the time steps starting from the end and call the one step function you implemented for LSTM at each iteration. You will then update the parameters by summing them individually. Finally return a dictionary with the new gradients. **Instructions**: Implement the `lstm_backward` function. Create a for loop starting from $T_x$ and going backward. For each step call `lstm_cell_backward` and update the your old gradients by adding the new gradients to them. Note that `dxt` is not updated but is stored. ###Code def lstm_backward(da, caches): """ Implement the backward pass for the RNN with LSTM-cell (over a whole sequence). Arguments: da -- Gradients w.r.t the hidden states, numpy-array of shape (n_a, m, T_x) dc -- Gradients w.r.t the memory states, numpy-array of shape (n_a, m, T_x) caches -- cache storing information from the forward pass (lstm_forward) Returns: gradients -- python dictionary containing: dx -- Gradient of inputs, of shape (n_x, m, T_x) da0 -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m) dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) dWi -- Gradient w.r.t. the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x) dWo -- Gradient w.r.t. the weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x) dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1) dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1) dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1) dbo -- Gradient w.r.t. biases of the save gate, of shape (n_a, 1) """ # Retrieve values from the first cache (t=1) of caches. (caches, x) = caches (a1, c1, a0, c0, f1, i1, cc1, o1, x1, parameters) = caches[0] ### START CODE HERE ### # Retrieve dimensions from da's and x1's shapes (≈2 lines) n_a, m, T_x = None n_x, m = None # initialize the gradients with the right sizes (≈12 lines) dx = None da0 = None da_prevt = None dc_prevt = None dWf = None dWi = None dWc = None dWo = None dbf = None dbi = None dbc = None dbo = None # loop back over the whole sequence for t in reversed(range(None)): # Compute all gradients using lstm_cell_backward gradients = None # Store or add the gradient to the parameters' previous step's gradient dx[:,:,t] = None dWf = None dWi = None dWc = None dWo = None dbf = None dbi = None dbc = None dbo = None # Set the first activation's gradient to the backpropagated gradient da_prev. da0 = None ### END CODE HERE ### # Store the gradients in a python dictionary gradients = {"dx": dx, "da0": da0, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi, "dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo} return gradients np.random.seed(1) x = np.random.randn(3,10,7) a0 = np.random.randn(5,10) Wf = np.random.randn(5, 5+3) bf = np.random.randn(5,1) Wi = np.random.randn(5, 5+3) bi = np.random.randn(5,1) Wo = np.random.randn(5, 5+3) bo = np.random.randn(5,1) Wc = np.random.randn(5, 5+3) bc = np.random.randn(5,1) parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by} a, y, c, caches = lstm_forward(x, a0, parameters) da = np.random.randn(5, 10, 4) gradients = lstm_backward(da, caches) print("gradients[\"dx\"][1][2] =", gradients["dx"][1][2]) print("gradients[\"dx\"].shape =", gradients["dx"].shape) print("gradients[\"da0\"][2][3] =", gradients["da0"][2][3]) print("gradients[\"da0\"].shape =", gradients["da0"].shape) print("gradients[\"dWf\"][3][1] =", gradients["dWf"][3][1]) print("gradients[\"dWf\"].shape =", gradients["dWf"].shape) print("gradients[\"dWi\"][1][2] =", gradients["dWi"][1][2]) print("gradients[\"dWi\"].shape =", gradients["dWi"].shape) print("gradients[\"dWc\"][3][1] =", gradients["dWc"][3][1]) print("gradients[\"dWc\"].shape =", gradients["dWc"].shape) print("gradients[\"dWo\"][1][2] =", gradients["dWo"][1][2]) print("gradients[\"dWo\"].shape =", gradients["dWo"].shape) print("gradients[\"dbf\"][4] =", gradients["dbf"][4]) print("gradients[\"dbf\"].shape =", gradients["dbf"].shape) print("gradients[\"dbi\"][4] =", gradients["dbi"][4]) print("gradients[\"dbi\"].shape =", gradients["dbi"].shape) print("gradients[\"dbc\"][4] =", gradients["dbc"][4]) print("gradients[\"dbc\"].shape =", gradients["dbc"].shape) print("gradients[\"dbo\"][4] =", gradients["dbo"][4]) print("gradients[\"dbo\"].shape =", gradients["dbo"].shape) ###Output _____no_output_____
CH2 Basic Plotting.ipynb
###Markdown Plots type What were the different sports in the first olympics? Plot them using different graphs ###Code fo = oo[oo.Edition == 1896] fo.head() fo.Sport.value_counts() ###Output _____no_output_____ ###Markdown Line Plot ###Code fo.Sport.value_counts().plot(kind="line") ###Output _____no_output_____ ###Markdown Bar Plot ###Code fo.Sport.value_counts().plot(kind="bar") ###Output _____no_output_____ ###Markdown Horizontal Bar Plot ###Code fo.Sport.value_counts().plot(kind="barh") ###Output _____no_output_____ ###Markdown Pie Chart ###Code fo.Sport.value_counts().plot(kind="pie") ###Output _____no_output_____ ###Markdown Plot Color ###Code fo.Sport.value_counts().plot(kind="line", color="red") fo.Sport.value_counts().plot(kind="bar", color="plum") ###Output _____no_output_____ ###Markdown Figsize() ###Code fo.Sport.value_counts().plot(kind="line", color="red", figsize=(10,3)) ###Output _____no_output_____ ###Markdown Colormaps Sequential: representing information that has order, there is change in lightness often over a single hue. Diverging: is used when the information being plotted deviates around a middle value. Qualitative: representing information which does not have ordering or relationships. ###Code fo.Sport.value_counts().plot(kind="pie", colormap="Reds") ###Output _____no_output_____ ###Markdown Seaborn basic plotting Why Seaborn Attractive statistical plots A complement and not a substitute to Matplotlib Integrates well with pandas ###Code import seaborn as sns ###Output _____no_output_____ ###Markdown How many medals have been won by men and women in the history of the Olympics. How many gold, silver and bronze medals were won by both gender ###Code sns.countplot(x='Medal', data=oo, hue="Gender") ###Output _____no_output_____
Chapter03/SortingRanking.ipynb
###Markdown Managing Your Data by Sorting and Ranking Working with pandas*Curtis Miller*We will see methods for sorting and ranking data.Let's first go through initialization steps. ###Code import numpy as np import pandas as pd from pandas import Series, DataFrame df = DataFrame(np.round(np.random.randn(7, 3) * 10), columns=["AAA", "BBB", "CCC"], index=list("defcabg")) df ###Output _____no_output_____ ###Markdown Here I sort the index. ###Code df.sort_index() df.sort_index(axis=1, ascending=False) # Sorting columns by # index, opposite # order ###Output _____no_output_____ ###Markdown Now I sort according to the values of the `DataFrame`. ###Code df.sort_values(by='AAA') # According to contents of AAA df.sort_values(by=['BBB', 'CCC']) # Arrange first by BBB, # breaking ties with CCC ###Output _____no_output_____ ###Markdown Ranking isn't much different from sorting. ###Code df.rank() df.rank(method="max") ###Output _____no_output_____
part2/day4/cifar10_GPU.ipynb
###Markdown ###Code """import bibliotek""" from keras.datasets import cifar10 from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.utils import to_categorical import numpy as np np.random.seed(2018) import matplotlib.pyplot as plt %matplotlib inline """wczytanie zbioru danych cifar10""" (X_train, y_train), (X_test,y_test) = cifar10.load_data() #zbior train / test #50 000 / 10 000zdjęć #32 #32 #3 kanal zdjecia kolorowe X_train.shape, X_test.shape plt.figure(figsize=(10,10)) for idx in range(25): plt.subplot(5,5, idx+1) plt.imshow(X_train[idx], cmap ='gray') plt.title('Class : {}'.format(y_train[idx])) plt.tight_layout() img_rows, img_cols = X_train.shape[1],X_train.shape[2] num_channels = 3 #kanal 3 zdjecia kolorowe RGB X_train = X_train.reshape(-1,img_rows,img_cols,num_channels) X_test = X_test.reshape(-1,img_rows,img_cols,num_channels) #rozmiar input + kanał input_shape = (img_rows, img_cols,num_channels) X_train.shape,X_test.shape #normalizacja if np.max(X_train)>1: X_train = X_train /255 if np.max(X_test)>1: X_test = X_test /255 #weryfikacja normazlizaji dla: # train # test X_train.max(),X_train.min(),X_test.max(),X_test.min() if len(y_train.shape) == 2: y_train = y_train.reshape(-1) y_test = y_test.reshape(-1) if len(y_train.shape) == 1: num_classes = len(set(y_train)) y_train = to_categorical(y_train ,num_classes) y_test = to_categorical(y_test ,num_classes) """weryfikacja rozmiarow""" #train 50 000 elementów 10 class #test 10 000 elementow, 10 class #num_classes 10 class y_train.shape,y_test.shape,num_classes """ architektura modelu """ model = Sequential([ Conv2D(filters = 32, kernel_size= (3,3),input_shape = input_shape), MaxPool2D(pool_size = (2,2)), Dropout(0.25), Conv2D(filters = 64, kernel_size= (3,3)), MaxPool2D(pool_size = (2,2)), Dropout(0.25), Flatten(), Dense(512,activation = 'relu'), Dropout(0.5), Dense(num_classes,activation = 'softmax') ]) model.summary() """ kompilacja modelu""" # optymalizator adam, # metryka accuracy, # loss = klasyfikacja birnana w keras model.compile(loss = 'categorical_crossentropy',optimizer='adam', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Trenowanie ###Code model.fit( X_train,y_train, batch_size = 256, epochs = 2,verbose=2, validation_data=(X_test,y_test) ) model.evaluate(X_test,y_test) ###Output 10000/10000 [==============================] - 1s 86us/step ###Markdown Jedna epoka liczyła się ponad 5 sek , val_acc: 0.5933 Zmieniono TYLKO na GPU ###Code """ architektura modelu """ model = Sequential([ Conv2D(filters = 32, kernel_size= (3,3),input_shape = input_shape), Conv2D(filters = 32, kernel_size= (3,3)), MaxPool2D(pool_size = (2,2)), Dropout(0.25), Conv2D(filters = 64, kernel_size= (3,3)), Conv2D(filters = 64, kernel_size= (3,3)), MaxPool2D(pool_size = (2,2)), Dropout(0.25), Conv2D(filters = 128, kernel_size= (3,3)), MaxPool2D(pool_size = (2,2)), Dropout(0.25), Flatten(), Dense(512,activation = 'relu'), Dropout(0.5), Dense(num_classes,activation = 'softmax') ]) model.summary() """ kompilacja modelu""" # optymalizator adam, # metryka accuracy, # loss = klasyfikacja birnana w keras model.compile(loss = 'categorical_crossentropy',optimizer='adam', metrics=['accuracy']) model.fit( X_train,y_train, batch_size = 256, epochs = 20,verbose=2, validation_data=(X_test,y_test) ) ###Output Train on 50000 samples, validate on 10000 samples Epoch 1/20 - 6s - loss: 1.7711 - acc: 0.3467 - val_loss: 1.4823 - val_acc: 0.4604 Epoch 2/20 - 5s - loss: 1.4387 - acc: 0.4834 - val_loss: 1.2984 - val_acc: 0.5344 Epoch 3/20 - 5s - loss: 1.3053 - acc: 0.5373 - val_loss: 1.1839 - val_acc: 0.5805 Epoch 4/20 - 5s - loss: 1.2323 - acc: 0.5631 - val_loss: 1.1350 - val_acc: 0.5972 Epoch 5/20 - 5s - loss: 1.1824 - acc: 0.5848 - val_loss: 1.0918 - val_acc: 0.6150 Epoch 6/20 - 5s - loss: 1.1397 - acc: 0.6020 - val_loss: 1.0595 - val_acc: 0.6301 Epoch 7/20 - 5s - loss: 1.1161 - acc: 0.6102 - val_loss: 1.1454 - val_acc: 0.5976 Epoch 8/20 - 5s - loss: 1.0849 - acc: 0.6227 - val_loss: 1.0216 - val_acc: 0.6463 Epoch 9/20 - 5s - loss: 1.0618 - acc: 0.6310 - val_loss: 1.0010 - val_acc: 0.6526 Epoch 10/20 - 5s - loss: 1.0423 - acc: 0.6374 - val_loss: 0.9572 - val_acc: 0.6664 Epoch 11/20 - 5s - loss: 1.0358 - acc: 0.6372 - val_loss: 0.9507 - val_acc: 0.6695 Epoch 12/20 - 5s - loss: 1.0168 - acc: 0.6465 - val_loss: 0.9405 - val_acc: 0.6774 Epoch 13/20 - 5s - loss: 1.0044 - acc: 0.6505 - val_loss: 0.9375 - val_acc: 0.6750 Epoch 14/20 - 5s - loss: 0.9936 - acc: 0.6564 - val_loss: 0.9018 - val_acc: 0.6901 Epoch 15/20 - 5s - loss: 0.9767 - acc: 0.6617 - val_loss: 0.9475 - val_acc: 0.6731 Epoch 16/20 - 5s - loss: 0.9759 - acc: 0.6614 - val_loss: 0.9202 - val_acc: 0.6880 Epoch 17/20 - 5s - loss: 0.9629 - acc: 0.6630 - val_loss: 0.8985 - val_acc: 0.6895 Epoch 18/20 - 5s - loss: 0.9476 - acc: 0.6720 - val_loss: 0.9071 - val_acc: 0.6880 Epoch 19/20 - 5s - loss: 0.9432 - acc: 0.6727 - val_loss: 0.8832 - val_acc: 0.6958 Epoch 20/20 - 5s - loss: 0.9356 - acc: 0.6747 - val_loss: 0.9163 - val_acc: 0.6911 ###Markdown Wykorzystano GPU szybko sie liczylo kolo 5 sek dla jednej epoki Skomplikowano architekturę i uzyto 20 epok val_acc = 0,6911 ###Code model.evaluate(X_test,y_test) ###Output 10000/10000 [==============================] - 1s 96us/step
projects/Data_Science_in_Telco_Data_Cleansing.ipynb
###Markdown ---Title: "Data Science in Telco: Data Cleansing"Author: "Joseph Armando Carvallo"Date: "21/03/2021"--- DQLab Telco is a Telco company that already has many branches spread everywhere. Since its establishment in 2019, DQLab Telco has been consistent in paying attention to its customer experience so that customers will not leave it. Even though it's only a little over 1 year old company, DQLab Telco already has many customers who have switched subscriptions to competitors. The management wants to reduce the number of churn customers by using machine learning.Therefore, the Data Scientist team was asked to prepare the data as well as to make the right prediction model to determine whether a customer will churn or not. As a Data Scientist, I was asked to prepare the data before doing the modeling.I will do Data Preprocessing (Data Cleansing) last month, which is June 2020. The steps to be taken are,1. Looking for a valid customer ID or telphone number2. Handling data that is still empty or missing values3. Handling outlier values from each variable4. Standardizing values of variablesThe Python package that I will be using in doing the analysis are* Pandas (Python for Data Analysis) is a Python library that focuses on data analysis processes such as data manipulation, data preparation, and data cleaning.* Matplotlib is a Python library that focuses on data visualization such as plotting graphs. Matplotlib can be used in Python scripts, Python and IPython shells, web application servers, and several other graphical user interface (GUI) toolkits.* Seaborn builds on Matplotlib and introduces additional plot types. It also makes your traditional Matplotlib plots look attractive.For the dataset used, it is provided in csv format, it can be downloaded at https://storage.googleapis.com/dqlab-dataset/dqlab_telco.csv The detailed data are as follows:`UpdatedAt` is the period of data taken`customerID` is phone number of customer`gender` is gender of customer, the values in format male or female`SeniorCitizen` is seniority status of customer, the values in format 1 (yes) or 0 (no)`Partner` is marital status of customer, the values in format Yes or No`Dependents` is dependents of customer, the values in format Yes or No`tenure` is number of months customer has stayed with the company`PhoneService`is whether customer has phone service or not, the values in format Yes or No`MultipleLines` is whether customer has multiple lines or not, the values in format Yes, No, or No phone service`InternetService` is internet service provider of customer, the values in format DSL, Fiber optic, or No`OnlineSecurity`is whether customer has online security or not, the values in format Yes, No, or No internet service`OnlineBackup` is whether customer has online backup or not, the values in format Yes, No, or No internet service`DeviceProtection` is whhether customer has device protection or not, the values in format Yes, No, or No internet service`TechSupport` is whether customer has tech support or not, the values in format Yes, No, or No internet service`StreamingTV` is whether customer has streaming TV or not, the values in format Yes, No, or No internet service`StreamingMovies` is whether customer has streaming movies or not, the values in format Yes, No, or No internet service`Contract` is the contract term of customer, the values in format Month-to-month, One year, or Two year`PaperlessBilling` is whether the customer has paperless billing or not, the values in format Yes or No`PaymentMethod` is the payment method of customer, the values in format Electronic check, Mailed check, Bank transfer (automatic), or Credit card (automatic)`MonthlyCharges` is the amount charged to the customer monthly`TotalCharges` is the total amount charged to the customer`Churn` is whether the customer churned or not, the values in format Yes or No **Import Libraries and Datasets**Based on the explanation of the libraries and datasets that will be used, now the first thing I am going to do is to import the libraries and datasets into the workspace. After the dataset is imported into the workspace, I am displaying the number of columns and rows of the data set using `.shape` and print the first five rows using `.head()` and I am finding out how many unique customerID values are using `.nunique()` ###Code import pandas as pd # Facilitate the appearance of row data pd.options.display.max_columns = 50 # Importing Data Source df_load = pd.read_csv('https://storage.googleapis.com/dqlab-dataset/dqlab_telco.csv') print("Size of dataset", df_load.shape) df_load.head(5) print(df_load.customerID.nunique()) ###Output 7017 ###Markdown **Filtering `customerID` with certain formats**Look for the correct `customerID` (customer phone number) format, with the following criteria:* character length is 11 to 12,* consists of numbers only, no characters other than numbers are allowed,* checkers start with the number 45 which is the first two digits.I am using `.count()` function to count the number of `Customer ID` rows, `.str.match()` and `regex` to match the criteria above, and `astype()` to change the data type to numeric. ###Code df_load['valid_id'] = df_load['customerID'].astype(str).str.match(r'(45\d{9,10})') df_load = (df_load[df_load['valid_id'] == True]).drop('valid_id', axis = 1) print('The result of the filtered number of Customer IDs is',df_load['customerID'].count()) ###Output The result of the filtered number of Customer IDs is 7006 ###Markdown **Filtering Duplicate `CustomerID`**I will make sure that there are no duplicate values of `customer_ID`. Usually, the type of duplicate `CustomerID` are* duplication due to inserting more than once with the same value for each column* duplication due to inserting different data retrieval periodI am using the result of processing in the previous step to be processed in this step. I am also using `drop_duplicates()` function to remove duplicate rows, and `sort_values()` to check the last recorded data. ###Code # Drop Duplicate Rows df_load.drop_duplicates() # Drop duplicate ID sorted by Periode df_load = df_load.sort_values('UpdatedAt', ascending=False).drop_duplicates(['customerID']) print('The number of `CustomerID` that has been removed (distinct) are',df_load['customerID'].count()) ###Output The number of `CustomerID` that has been removed (distinct) are 6993 ###Markdown The validity of `CustomerID` is needed to ensure that the data I retrieve is correct. Based on those results, there are differences in the number of `CustomerID` from the first data loaded to the final result. The number of rows of data when it was first loaded was 7113 rows and 22 columns with 7017 unique `CustomerID` numbers. Then after checking the validity of `CustomerID`, the remaining 6993 rows of data. **Handle missing values by deleting rows**The next step, I am deleting rows from data that is not detected whether the customer churned or not. It is assumed that the data modeller only accepts data that has churn flag or not. I am using `isnull()` to detect missing values and `dropna()` to remove missing values ###Code print('Total missing values data from the Churn column are',df_load['Churn'].isnull().sum()) # Dropping all Rows with spesific column df_load.dropna(subset=['Churn'],inplace=True) print('Total rows and columns of the data after missing values deleted are',df_load.shape) ###Output Total missing values data from the Churn column are 43 Total rows and columns of the data after missing values deleted are (6950, 22) ###Markdown **Handle missing values by filling in certain values**In addition to removing rows from the data, handling missing values can use certain values. It is assumed that the data modeler requires filling in the missing values with the following criterias:* `tenure` of data modeller requires that each row that has missing values for the length of the subscription be filled with 11,* and the other numeric variables are filled with the median of each variables. ###Code print('Status of Missing Values is',df_load.isnull().values.any()) print('\nThe number of missing values for each column is') print(df_load.isnull().sum().sort_values(ascending=False)) # Handling missing values Tenure fill with 11 df_load['tenure'].fillna(11, inplace=True) # Handling missing values num vars (except Tenure) for col_name in list(['MonthlyCharges','TotalCharges']): median = df_load[col_name].median() df_load[col_name].fillna(median, inplace=True) print('\nThe number of missing values after imputering the data is') print(df_load.isnull().sum().sort_values(ascending=False)) ###Output Status of Missing Values is False The number of missing values for each column is Churn 0 TotalCharges 0 customerID 0 gender 0 SeniorCitizen 0 Partner 0 Dependents 0 tenure 0 PhoneService 0 MultipleLines 0 InternetService 0 OnlineSecurity 0 OnlineBackup 0 DeviceProtection 0 TechSupport 0 StreamingTV 0 StreamingMovies 0 Contract 0 PaperlessBilling 0 PaymentMethod 0 MonthlyCharges 0 UpdatedAt 0 dtype: int64 The number of missing values after imputering the data is Churn 0 TotalCharges 0 customerID 0 gender 0 SeniorCitizen 0 Partner 0 Dependents 0 tenure 0 PhoneService 0 MultipleLines 0 InternetService 0 OnlineSecurity 0 OnlineBackup 0 DeviceProtection 0 TechSupport 0 StreamingTV 0 StreamingMovies 0 Contract 0 PaperlessBilling 0 PaymentMethod 0 MonthlyCharges 0 UpdatedAt 0 dtype: int64 ###Markdown After further analysis, it turns out that there were missing values from the data that I had validated for `CustomerID`. Missing values were found in the `Churn`, `tenure`, `MonthlyCharges` and `TotalCharges` columns. Then after I handled them by deleting rows and filling rows with certain values, they were proven no more missing values in the data, as evidenced by the number of missing values for each variable which is worth 0. **Boxplot: detect outliers**One way to detect outliers from a value is to look at the plot of the data using a boxplot which is a summary of the sample distribution presented graphically that can describe the shape of the data distribution (skewness), a measure of central tendency, and a measure of the spread (variety) of observational data.I am using matplotlib and seaborn packages to visualize boxplot of data. `describe()` function is used to view the data description. ###Code print('Distribution of data before outliers are handled') print(df_load[['tenure','MonthlyCharges','TotalCharges']].describe()) # Creating Box Plot import matplotlib.pyplot as plt import seaborn as sns # Insert variable plt.figure() # make a new figure sns.boxplot(x=df_load['tenure']) plt.show() plt.figure() # make a new figure sns.boxplot(x=df_load['MonthlyCharges']) plt.show() plt.figure() # make a new figure sns.boxplot(x=df_load['TotalCharges']) plt.show() ###Output Distribution of data before outliers are handled tenure MonthlyCharges TotalCharges count 6950.000000 6950.000000 6950.000000 mean 32.477266 65.783741 2305.083460 std 25.188910 50.457871 2578.651143 min 0.000000 0.000000 19.000000 25% 9.000000 36.462500 406.975000 50% 29.000000 70.450000 1400.850000 75% 55.000000 89.850000 3799.837500 max 500.000000 2311.000000 80000.000000 ###Markdown **Handle outliers**After knowing which variables have outliers, then I am handling the outliers using the interquartile range (IQR) method.I am using the result of processing in the previous step to be processed in this step. I also use the `quantile()` function to see a specific quantile and `mask()` to replace the values. ###Code # Handle with IQR Q1 = (df_load[['tenure','MonthlyCharges','TotalCharges']]).quantile(0.25) Q3 = (df_load[['tenure','MonthlyCharges','TotalCharges']]).quantile(0.75) IQR = Q3 - Q1 maximum = Q3 + (1.5*IQR) print('The maximum value of each variable') print(maximum) minimum = Q1 - (1.5*IQR) print('\nThe minimum value of each variable') print(minimum) more_than = (df_load > maximum) lower_than = (df_load < minimum) df_load = df_load.mask(more_than, maximum, axis=1) df_load = df_load.mask(lower_than, minimum, axis=1) print('\nDistribution of data after outliers handled') print(df_load[['tenure','MonthlyCharges','TotalCharges']].describe()) ###Output The maximum value of each variable tenure 124.00000 MonthlyCharges 169.93125 TotalCharges 8889.13125 dtype: float64 The minimum value of each variable tenure -60.00000 MonthlyCharges -43.61875 TotalCharges -4682.31875 dtype: float64 Distribution of data after outliers handled tenure MonthlyCharges TotalCharges count 6950.000000 6950.000000 6950.000000 mean 32.423165 64.992201 2286.058750 std 24.581073 30.032040 2265.702553 min 0.000000 0.000000 19.000000 25% 9.000000 36.462500 406.975000 50% 29.000000 70.450000 1400.850000 75% 55.000000 89.850000 3799.837500 max 124.000000 169.931250 8889.131250 ###Markdown From the three boxplots of `tenure`, `MonthlyCharges`, and `TotalCharges` clearly indicated there were outliers. This can be identified from the points that are far from the boxplot image. Then if I look at the distribution of the data from the `max` column, there is also a very high value of max.Then the outlier values are handled by changing its value to the maximum and minimum values of the interquartile range (IQR). After handling the outliers, and looking at the spread of the data, it appears that there are no more outlier values. **Detect non-standard values**Detects whether there are values of non-standard in categorical variables. This usually occurs due to errors in data input. The difference in terms used is one of the factors that often occur, for that I need standardization of the data that has been inputted. I am using the `value_counts()` function to see the number of unique values per variables. ###Code # Input variables for col_name in list(['gender','SeniorCitizen','Partner','Dependents','PhoneService','MultipleLines','InternetService','OnlineSecurity','OnlineBackup','DeviceProtection','TechSupport','StreamingTV','StreamingMovies','Contract','PaperlessBilling','PaymentMethod','Churn']): print('\nUnique Values Count \033[1m' + 'Before Standardized \033[0m Variable',col_name) print(df_load[col_name].value_counts()) ###Output Unique Values Count Before Standardized  Variable gender Male 3499 Female 3431 Wanita 14 Laki-Laki 6 Name: gender, dtype: int64 Unique Values Count Before Standardized  Variable SeniorCitizen 0 5822 1 1128 Name: SeniorCitizen, dtype: int64 Unique Values Count Before Standardized  Variable Partner No 3591 Yes 3359 Name: Partner, dtype: int64 Unique Values Count Before Standardized  Variable Dependents No 4870 Yes 2060 Iya 20 Name: Dependents, dtype: int64 Unique Values Count Before Standardized  Variable PhoneService Yes 6281 No 669 Name: PhoneService, dtype: int64 Unique Values Count Before Standardized  Variable MultipleLines No 3346 Yes 2935 No phone service 669 Name: MultipleLines, dtype: int64 Unique Values Count Before Standardized  Variable InternetService Fiber optic 3057 DSL 2388 No 1505 Name: InternetService, dtype: int64 Unique Values Count Before Standardized  Variable OnlineSecurity No 3454 Yes 1991 No internet service 1505 Name: OnlineSecurity, dtype: int64 Unique Values Count Before Standardized  Variable OnlineBackup No 3045 Yes 2400 No internet service 1505 Name: OnlineBackup, dtype: int64 Unique Values Count Before Standardized  Variable DeviceProtection No 3054 Yes 2391 No internet service 1505 Name: DeviceProtection, dtype: int64 Unique Values Count Before Standardized  Variable TechSupport No 3431 Yes 2014 No internet service 1505 Name: TechSupport, dtype: int64 Unique Values Count Before Standardized  Variable StreamingTV No 2774 Yes 2671 No internet service 1505 Name: StreamingTV, dtype: int64 Unique Values Count Before Standardized  Variable StreamingMovies No 2747 Yes 2698 No internet service 1505 Name: StreamingMovies, dtype: int64 Unique Values Count Before Standardized  Variable Contract Month-to-month 3823 Two year 1670 One year 1457 Name: Contract, dtype: int64 Unique Values Count Before Standardized  Variable PaperlessBilling Yes 4114 No 2836 Name: PaperlessBilling, dtype: int64 Unique Values Count Before Standardized  Variable PaymentMethod Electronic check 2337 Mailed check 1594 Bank transfer (automatic) 1519 Credit card (automatic) 1500 Name: PaymentMethod, dtype: int64 Unique Values Count Before Standardized  Variable Churn No 5114 Yes 1827 Churn 9 Name: Churn, dtype: int64 ###Markdown Standardize categorical variablesAfter I knew which variables have non-standard values, then I am standardizing them with the most patterns, provided that they don't change their meaning. Example: Yes -> YesThen I looked back at the unique values of each variable that had been changed. I am using `replace()` function to standardize the values. ###Code df_load = df_load.replace(['Wanita','Laki-Laki','Churn','Iya'],['Female','Male','Yes','Yes']) # Input variable for col_name in list(['gender','Dependents','Churn']): print('\nUnique Values Count \033[1m' + 'After Standardized \033[0mVariable',col_name) print(df_load[col_name].value_counts()) ###Output Unique Values Count After Standardized Variable gender Male 3505 Female 3445 Name: gender, dtype: int64 Unique Values Count After Standardized Variable Dependents No 4870 Yes 2080 Name: Dependents, dtype: int64 Unique Values Count After Standardized Variable Churn No 5114 Yes 1836 Name: Churn, dtype: int64
notebooks/01_basic_training.ipynb
###Markdown This notebook was put together by [Jake Vanderplas](http://www.vanderplas.com) for UW's [Astro 599](http://www.astro.washington.edu/users/vanderplas/Astr599_2014/) course. Source and licensing info is on [GitHub](https://github.com/jakevdp/2014_fall_ASTR599/). ###Code %run talktools.py ###Output _____no_output_____ ###Markdown Basic Training=============Much of this material thanks to http://www.pythonbootcamp.info/ Outline- Python is easy! Hello world revisited- Calculator / basic math- Strings- Variables- Basic control statements (indentation!) Hello World!We saw before how easy a hello world script is to create in Python: ###Code print("Hello World!") ###Output Hello World! ###Markdown Some other languages...[http://www.roesler-ac.de/wolfram/hello.htm](http://www.roesler-ac.de/wolfram/hello.htm) Pythonfile: ``hello.py`````print "Hello World!"``````[~]> python hello.py``` Javafile: ``hello.java`````class HelloWorld { static public void main( String args[] ) { System.out.println( "Hello World!" ); }}``````[~]> javac hello.java[~]> java HelloWorldHello World!``` C++file: ``hello.cpp`````include int main(){ std::cout << "Hello World!" << std::endl;}``````[~]> g++ -o hello hello.cpp[~]> ./helloHello World!``` Fortranfile: ``hello.f````` PROGRAM HELLO WRITE (*,100) STOP100 FORMAT (' Hello World! ' /) END``````[~]> g77 -o hello hello.f[~]> ./helloHello World!``` Two Points- Python provides interaction in both development and execution- Executing interactively is basically the same thing as executing a script, line-by-line Types and Operations: Python as a Calculator We'll talk about a few types here:- ``int``: integer- ``float``: floating point (decimal)- ``long``: long integer- ``complex``: complex number (decimal, not integer) We'll also introduce the basic arithmetic operations- ``+`` : addition- ``-``: subtraction- ``/``: division- ``*``: multiplication- ``%``: modulus (remainder)- ``**``: exponentiationAs we go through this, note carefully how these operations interact with various types ###Code print(2 + 2) 2 + 2 print(2.1 + 2) ###Output 4.1 ###Markdown Careful: floats are limited by their 16-bit representation (same as in other languages) ###Code print(4.0999999999999995) 2.1 + 2 == 4.0999999999999995 4 * 2 4 / 2 5 / 2 # Note this is different in Python 2.x!! 5 // 2 ###Output _____no_output_____ ###Markdown Integer operations result in integers in Python 2.x, but floats in Python 3.x. ###Code 5 % 2 # modulus (remainder after division) 5 ** 2 # or you can use the pow() function pow(5, 2) ###Output _____no_output_____ ###Markdown Indentation Matters! ###Code print(2 + 2) 3 + 3 ###Output _____no_output_____ ###Markdown Use ```` for comments- Everything after the ```` will be ignored ###Code print(1 + 1) # easy arithmetic ###Output 2 ###Markdown Complex types ###Code complex(1,2) 1+2j 1 + 2j - 2j (3.0*10.0 - 25.0)/5.0 print(3.085e18 * 1e6) # this is a Megaparsec in units of cm! ###Output 3.085e+24 ###Markdown Assigning variables ###Code t = 1.0 # declare a variable t (time) accel = 9.8 # acceleration in units of m/s^2 # distance travelled in time t seconds is 1/2 a*t**2 dist = 0.5 * accel * t * t print(dist) # this is the distance in meters dist1 = accel * (t**2)/2 print(dist1) dist2 = 0.5 * accel * pow(t,2) print(dist2) ###Output 4.9 ###Markdown A nice trick that other languages can't do: ###Code x, y = 4, 50 print(x) print(y) x, y = y, x # easy swap! print(x) print(y) ###Output 50 4 ###Markdown Each operator has an operate-and-assign version ###Code x = 4 x += 8 # same as x = x + 8 print(x) x *= 0.2 # x is upgraded to a float! print(x) x %= 1 print(x) ###Output 0.40000000000000036 ###Markdown Bitwise OperatorsYou might also come across bitwise operators:- ``&``: bitwise and- ``|``: bitwise or- ``^``: bitwise xor- ``<<``: bit-shift left- ``>>``: bit-shift rightAll these make more sense if you think about binary representations: ###Code bin(14) # print binary representation bin(13) 14 & 13 bin(14 & 13) 14 | 13 bin(14 | 13) ###Output _____no_output_____ ###Markdown Comparison operators- ``==``, ``!=``: equal, not equal- ``<``, ``<=``: less than, less than or equal- ``>``, ``>=``: greater than, greater than or equal ###Code 2 < 4 3 >= 3 5 == 4 5 != 4 5 < 2 + 4j ###Output _____no_output_____ ###Markdown Comparisons can also be strung together and behave as expected: ###Code x = 4 y = 6 print(2 < x <= 4) print(2 < y <= 4) # This allows strange/confusion expressions # don't do things like this! 8 > x <= 5 ###Output _____no_output_____ ###Markdown Warning about Floating Point EqualityPrecision issues can lead to seemingly strange results (again, this is the same in any modern programming language) ###Code 0.1 + 0.2 == 0.3 # this is a string formatting command (we'll cover this later) # it says to print 20 places after the decimal print("{0:.20f}".format(0.1 + 0.2)) print("{0:.20f}".format(0.3)) ###Output 0.30000000000000004441 0.29999999999999998890 ###Markdown Moral of the story: in any language you use, be careful using equality comparisons on floating point! Boolean variables and logical operationsPython has two built-in boolean values, ``True`` and ``False`` which we've seen above.There are also built-in logical operations to test these- ``A or B`` : ``True`` if either ``A`` or ``B`` or both are ``True``- ``A and B`` : ``True`` only if both ``A`` and ``B`` are ``True``- ``not A``: ``True`` only if ``A`` is ``False`` ###Code x = 4 (x > 2) and (x < 10) (x <= 4) or not (x > 10) ###Output _____no_output_____ ###Markdown Built-in types can be coerced to booleans. ###Code 0 == False not False not 0 not -1 ###Output _____no_output_____ ###Markdown zero is evaluated to ``False``, every other number to ``True`` ###Code print(None) # None is a special object print(None == True) print(None == False) print(None == None) print(bool(None)) ###Output False False True False ###Markdown Special comparators: ``is`` and ``is not`` ###Code x = 1 y = 1 x is y x = 1111 y = 1111 print(x is y) ###Output False ###Markdown Takeaway: "``is``" and "``is not``" refer to the *memory* being used by the object.If ``x`` and ``y`` point to the same location in memory, then ``x is y`` will be True.Probably their most common use is in comparisons to ``None``. All variables equal to ``None``are guaranteed to point to the same memory location (i.e. it acts as a Singleton). ###Code x = None print(x is None) ###Output True ###Markdown You don't need to fully understand this, but just be aware that the ``is`` and ``is not`` operators should generally not be used unless you do! More on Variables & Types ###Code print(type(1)) x = 2 print(type(x)) type(2) == type(1) print(type(True)) print(type(None)) print(type(type(1))) print(type(pow)) ###Output <class 'builtin_function_or_method'> ###Markdown we can test whether something is a certain type with `isinstance()` ###Code print(isinstance(1, int)) print(isinstance("spam", str)) print(isinstance(1.212, int)) ###Output True True False ###Markdown builtin-types: `int`, `bool`, `str`, `float`, `complex`, `long`.... Strings ###Code x = "spam" type(x) print("hello!\n...my sire.") "hello!\n...my sire." "wah?!" == 'wah?!' print("'wah?!' said the student") print("\"wah?!\" said the student") ###Output "wah?!" said the student ###Markdown backslashes (`\`) start special (escape) characters: \n = newline (\r = return) \t = tab \a = bellstring literals are defined with double quotes or quotes.the outermost quote type cannot be used inside the string (unless it's escaped with a backslash) ###Code # raw strings (marked with r) don't escape characters print(r'This is a raw string...newlines \r\n are ignored.') # Triple quotes are real useful for multiple line strings y = """For score and seven minutes ago, you folks all learned some basic mathy stuff with Python and boy were you blown away!""" print(y) ###Output For score and seven minutes ago, you folks all learned some basic mathy stuff with Python and boy were you blown away! ###Markdown * prepending `r` makes that string "raw"* triple quotes allow you to compose long strings* prepending `u` makes that string "unicode"http://docs.python.org/reference/lexical_analysis.htmlstring-literals Arithmetic with Strings ###Code s = "spam" e = "eggs" print(s + e) print(s + " and " + e) print("green " + e + " and\n " + s) print(3*s + e) print("*" * 50) print("spam" == "good") print("spam" == "spam") "spam" < "zoo" "s" < "spam" ###Output _____no_output_____ ###Markdown * you can concatenate strings with `+` sign* you can do multiple concatenations with the `*` sign* strings can be compared But you can't add strings and integers: ###Code print('I want' + 3 + ' eggs and no ' + s) print('I want ' + str(3) + ' eggs and no ' + s) pi = 3.14159 print('I want ' + str(pi) + ' eggs and no ' + s) print(str(True) + ":" + ' I want ' + str(pi) + ' eggs and no ' + s) ###Output True: I want 3.14159 eggs and no spam ###Markdown you must concatenate only strings, coercing ("casting") other variable types to `str` Getting input from the user ###Code # Note that raw_input does not work in IPython notebook version < 1.0 # You can always do this from a file or from the command line, though faren = input("enter a temperature (in Fahrenheit): ") print(faren) ###Output enter a temperature (in Fahrenheit): 280 280 ###Markdown (Note that in Python 2.x you should use ``raw_input`` rather than ``input``Remember that the input comes as a string: ###Code cent = (faren - 32) / 1.8 cent = (float(faren) - 32) / 1.8 print(cent) # Or in one line: faren = float(input("enter a temperature (in Fahrenheit): ")) (faren - 32) / 1.8 ###Output enter a temperature (in Fahrenheit): 232 ###Markdown Strings as arrays We can think of strings as arrays(although, unlike in C you never really need to deal with directly addressing character locations in memory) ###Code s = 'spam' len(s) len("eggs\n") len("") ###Output _____no_output_____ ###Markdown Indexing in Python is zero-based ###Code print(s[0]) print(s[-1]) s[0:1] s[1:4] s[-2:] s[0:100] # if the slice goes past the end, no complaints! s[0:4:2] s[::2] s[::-1] ###Output _____no_output_____ ###Markdown * `len()` gives us the length of an array* strings are zero indexed* can also count backwards Flow control: conditionals and loops ###Code x = 1 if x > 0: print("yo") else: print("dude") ###Output yo ###Markdown One liners ###Code "yo" if x > 0 else "dude" x = 1 y = 0 while y < 10: print("yo" if x > 0 else "dude") x *= -1 y += 1 # Could also do this with a break statement x = 1 y = 0 while True: print("yo" if x > 0 else "dude") x *= -1 y += 1 if y >= 10: break ###Output yo dude yo dude yo dude yo dude yo dude ###Markdown case statements can be constructed with just a bunch of `if`, `elif`,...`else` ###Code if x < 1: print("t") elif x > 100: print("yo") elif x == 42: print("bingo") else: print("dude") ###Output dude ###Markdown Note: ordering matters. The first block of `True` in an if/elif gets executed then everything else does not. Blocks cannot be empty! ###Code x = "fried goldfish" if x == "spam for dinner": print("I will destroy the universe") else: # I'm fine with that. I'll do nothing x = "fried goldfish" if x == "spam for dinner": print("I will destroy the universe") else: # I'm fine with that. I'll do nothing pass ###Output _____no_output_____ ###Markdown `pass` is a "do nothing"/NOP statement Example: putting it all together ###Code %%file number_game.py # The above "magic" command saves the contents # of the current cell to file. We'll see more of these later x = 0 max_tries = 10 count = 0 while True: x_new = int(input("Enter a new number: ")) if x_new > x: print(" -> it's bigger than the last!") elif x_new < x: print(" -> it's smaller than the last!") else: print(" -> no change! I'll exit now") break x = x_new count += 1 if count > max_tries: print("too many tries...") break %run number_game.py # this magic command runs the given file ###Output Enter a new number: 200 -> it's bigger than the last! Enter a new number: 200 -> no change! I'll exit now
1.Relational.Databases/postgreSQL_RelationalDataModel.ipynb
###Markdown POSTGRESQL - DATA MODEL First Excercise of PostgreSQL TopicDuring this excercise we will create a data model using PostgreSQL database and create a normalized data model from Udacity - Data Engineer Course.Resources Used:- PostgreSQL Database:https://www.postgresql.org/- PG Admin . PostgreSQL GUIhttps://www.pgadmin.org/- Library of Python Psycopg2https://pypi.org/project/psycopg2/ ###Code # Installing library in Python console --> pip install psycopg2 import psycopg2 try: conn = psycopg2.connect( host="localhost", user="dantencv", database="postgres", password="20Masa20" ) except psycopg2.Error as e: print("Error could not make connection to postgres database") print(e) try: cur= conn.cursor() except psycopg2.Error as e: print("Error could not get curser to postgres database") print(e) conn.set_session(autocommit=True) ###Output _____no_output_____ ###Markdown Following code will create a new table in database/schema --> postgres.public: ###Code try: cur.execute("CREATE TABLE IF NOT EXISTS music_library (album_id int, \ albun_name varchar, artist_name varchar,\ year int, songs text[]);") except psycopg2.Error as e: print("Error Issue creating a table") print(e) try: cur.execute("INSERT INTO music_library (album_id , \ albun_name , artist_name ,\ year , songs) VALUES (%s,%s,%s,%s,%s)", (1, "Rubber Soul", "The Beatles", 1965, ["Michelle", "Think Yourself", "In my life"])) except psycopg2.Error as e: print("Error Inserting rows") print(e) try: cur.execute("INSERT INTO music_library (album_id , \ albun_name , artist_name ,\ year , songs) VALUES (%s,%s,%s,%s,%s)", (2, "Let it be", "The Beatles", 1970, ["Let it be", "Across the universe"])) except psycopg2.Error as e: print("Error Inserting rows") print(e) try: cur.execute("SELECT * FROM music_library;") except psycopg2.Error as e: print("Error reading rows") print(e) row = cur. fetchone() while row: print(row) row=cur.fetchone() ###Output (1, 'Rubber Soul', 'The Beatles', 1965, ['Michelle', 'Think Yourself', 'In my life']) (2, 'Let it be', 'The Beatles', 1970, ['Let it be', 'Across the universe']) ###Markdown Moving to 1st Normal FormData is not normalized, first we need to remove any collecitons or list of data (songs column), we need to break up the list of songs into individual rows ###Code try: cur.execute("CREATE TABLE IF NOT EXISTS music_library2 (album_id int, \ albun_name varchar, artist_name varchar,\ year int, songs varchar);") except psycopg2.Error as e: print("Error Issue creating a table") print(e) # 1st Album try: cur.execute("INSERT INTO music_library2 (album_id , \ albun_name , artist_name ,\ year , songs) VALUES (%s,%s,%s,%s,%s)", (1, "Rubber Soul", "The Beatles", 1965, "Michelle")) cur.execute("INSERT INTO music_library2 (album_id , \ albun_name , artist_name ,\ year , songs) VALUES (%s,%s,%s,%s,%s)", (1, "Rubber Soul", "The Beatles", 1965, "Think Yourself")) cur.execute("INSERT INTO music_library2 (album_id , \ albun_name , artist_name ,\ year , songs) VALUES (%s,%s,%s,%s,%s)", (1, "Rubber Soul", "The Beatles", 1965, "In my life")) except psycopg2.Error as e: print("Error Inserting rows") print(e) # 2nd Album try: cur.execute("INSERT INTO music_library2 (album_id , \ albun_name , artist_name ,\ year , songs) VALUES (%s,%s,%s,%s,%s)", (2, "Let it be", "The Beatles", 1970, "Let it be")) cur.execute("INSERT INTO music_library2 (album_id , \ albun_name , artist_name ,\ year , songs) VALUES (%s,%s,%s,%s,%s)", (2, "Let it be", "The Beatles", 1970, "Across the universe")) except psycopg2.Error as e: print("Error Inserting rows") print(e) try: cur.execute("SELECT * FROM music_library2;") except psycopg2.Error as e: print("Error reading rows") print(e) row = cur. fetchone() while row: print(row) row=cur.fetchone() ###Output (1, 'Rubber Soul', 'The Beatles', 1965, 'Michelle') (1, 'Rubber Soul', 'The Beatles', 1965, 'Think Yourself') (1, 'Rubber Soul', 'The Beatles', 1965, 'In my life') (2, 'Let it be', 'The Beatles', 1970, 'Let it be') (2, 'Let it be', 'The Beatles', 1970, 'Across the universe') ###Markdown Moving to 2nd Normal FormWe haved moved our data to 1NF, while records are unique in 1NF,, our primary key (album id) is not unique. We need to break up into two tables, album library and song library ###Code try: cur.execute("CREATE TABLE IF NOT EXISTS album_library (album_id int, \ albun_name varchar, artist_name varchar,\ year int);") except psycopg2.Error as e: print("Error Issue creating a table") print(e) # 1st Album try: cur.execute("INSERT INTO album_library (album_id , \ albun_name , artist_name ,\ year ) VALUES (%s,%s,%s,%s)", (1, "Rubber Soul", "The Beatles", 1965)) except psycopg2.Error as e: print("Error Inserting rows") print(e) # 2nd Album try: cur.execute("INSERT INTO album_library (album_id , \ albun_name , artist_name ,\ year ) VALUES (%s,%s,%s,%s)", (2, "Let it be", "The Beatles", 1970)) except psycopg2.Error as e: print("Error Inserting rows") print(e) try: cur.execute("CREATE TABLE IF NOT EXISTS song_library (album_id int, \ song varchar);") except psycopg2.Error as e: print("Error Issue creating a table") print(e) try: cur.execute("INSERT INTO song_library (album_id , \ song) VALUES (%s,%s)", (1, "Michelle")) cur.execute("INSERT INTO song_library (album_id , \ song) VALUES (%s,%s)", (1,"Think Yourself")) cur.execute("INSERT INTO song_library (album_id , \ song) VALUES (%s,%s)", (1,"In my life")) except psycopg2.Error as e: print("Error Inserting rows") print(e) # 2nd Album try: cur.execute("INSERT INTO song_library (album_id , \ song) VALUES (%s,%s)", (2,"Let it be")) cur.execute("INSERT INTO song_library (album_id , \ song) VALUES (%s,%s)", (2,"Across the universe")) except psycopg2.Error as e: print("Error Inserting rows") print(e) try: cur.execute("SELECT * FROM album_library as a join song_library as s on s.album_id=a.album_id;") except psycopg2.Error as e: print("Error reading rows") print(e) row = cur. fetchone() while row: print(row) row=cur.fetchone() ###Output (1, 'Rubber Soul', 'The Beatles', 1965, 1, 'Michelle') (1, 'Rubber Soul', 'The Beatles', 1965, 1, 'Think Yourself') (1, 'Rubber Soul', 'The Beatles', 1965, 1, 'In my life') (2, 'Let it be', 'The Beatles', 1970, 2, 'Let it be') (2, 'Let it be', 'The Beatles', 1970, 2, 'Across the universe') ###Markdown Moving to 3rd Normal Form (NF)Check our transitive dependencies between fields. Album library can move artist name to its own table, called artist will leave us with 3 tables ###Code ##TBD ###Output _____no_output_____ ###Markdown Dropping all tables ###Code cur.execute("DROP table music_library") cur.execute("DROP table music_library2") cur.execute("DROP table song_library") cur.execute("DROP table album_library") cur.close() conn.close() ###Output _____no_output_____
15-Decision-Trees-and-Random-Forests/01-Decision Trees and Random Forests in Python.ipynb
###Markdown ___ ___ Decision Trees and Random Forests in Python This is the code for the lecture video which goes over tree methods in Python. Reference the video lecture for the full explanation of the code!I also wrote a [blog post](https://medium.com/@josemarcialportilla/enchanted-random-forest-b08d418cb411.hh7n1co54) explaining the general logic of decision trees and random forests which you can check out. Import Libraries ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline ###Output _____no_output_____ ###Markdown Get the Data ###Code df = pd.read_csv('kyphosis.csv') df.head() ###Output _____no_output_____ ###Markdown EDAWe'll just check out a simple pairplot for this small dataset. ###Code sns.pairplot(df,hue='Kyphosis',palette='Set1') ###Output _____no_output_____ ###Markdown Train Test SplitLet's split up the data into a training set and a test set! ###Code from sklearn.model_selection import train_test_split X = df.drop('Kyphosis',axis=1) y = df['Kyphosis'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30) ###Output _____no_output_____ ###Markdown Decision TreesWe'll start just by training a single decision tree. ###Code from sklearn.tree import DecisionTreeClassifier dtree = DecisionTreeClassifier() dtree.fit(X_train,y_train) ###Output _____no_output_____ ###Markdown Prediction and Evaluation Let's evaluate our decision tree. ###Code predictions = dtree.predict(X_test) from sklearn.metrics import classification_report,confusion_matrix print(classification_report(y_test,predictions)) print(confusion_matrix(y_test,predictions)) ###Output [[17 3] [ 3 2]] ###Markdown Tree VisualizationScikit learn actually has some built-in visualization capabilities for decision trees, you won't use this often and it requires you to install the pydot library, but here is an example of what it looks like and the code to execute this: ###Code from IPython.display import Image from sklearn.externals.six import StringIO from sklearn.tree import export_graphviz import pydot features = list(df.columns[1:]) features dot_data = StringIO() export_graphviz(dtree, out_file=dot_data,feature_names=features,filled=True,rounded=True) graph = pydot.graph_from_dot_data(dot_data.getvalue()) Image(graph[0].create_png()) ###Output _____no_output_____ ###Markdown Random ForestsNow let's compare the decision tree model to a random forest. ###Code from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=100) rfc.fit(X_train, y_train) rfc_pred = rfc.predict(X_test) print(confusion_matrix(y_test,rfc_pred)) print(classification_report(y_test,rfc_pred)) ###Output precision recall f1-score support absent 0.86 0.90 0.88 20 present 0.50 0.40 0.44 5 avg / total 0.79 0.80 0.79 25
ARIMAX-Addition of a new variable + SARIMAX.ipynb
###Markdown Kwiatkowski-Phillips-Schmidt-Shin (KPSS) TestThe Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test figures out if a time series is stationary around a mean or linear trend, or is non-stationary due to a unit root. A stationary time series is one where statistical properties — like the mean and variance — are constant over time.For KPSS test,The Null Hypothesis : The series is stationary when p-value >0.05 Alternate Hypothesis: The series is not stationary when p-value <= 0.5 ###Code #loading kpss from statsmodel from statsmodels.tsa.stattools import kpss result = kpss(data['meantemp']) print(f'KPSS Statistic: {result[0]}') print(f'p-value: {result[1]}') print(f'num lags: {result[2]}') print('Critial Values:') for key, value in result[3].items(): print('Critial Values:') print(f' {key}, {value}') #Loading and plotting acf from statsmodels.graphics.tsaplots import plot_acf plot_acf(data['meantemp'], ax=plt.gca(), lags=10) plt.show() ###Output _____no_output_____ ###Markdown Partial correlation function ###Code #Loading and plottin pacf from statsmodels.graphics.tsaplots import plot_pacf plot_pacf(data['meantemp'], ax=plt.gca(), lags=30) plt.show() length_train = 1046 train = data.iloc[:length_train,:] test=data.iloc[length_train:,: ] train.head() ###Output _____no_output_____ ###Markdown ARIMAX model ###Code from statsmodels.tsa.arima_model import ARIMA model = ARIMA(train['meantemp'], order=(1,0,3), exog= train['humidity']) model_fit = model.fit() print(model_fit.params) y_arimax = data.copy() y_arimax['arimax_forecast'] = model_fit.predict(test['meantemp'].index.min(), test['meantemp'].index.max(), exog= test['humidity']) plot_smoothing(title = 'Auto regressive Integrated Moving Average with external variable model', data = y_arimax['arimax_forecast'][test['meantemp'].index.min():], label_value = 'ARiMAX model') from statsmodels.tsa.arima_model import ARIMA model = ARIMA(train['meantemp'], order=(1,0,3), exog= train['wind_speed']) model_fit = model.fit() print(model_fit.params) y_arimax = data.copy() y_arimax['arimax_forecast'] = model_fit.predict(test['meantemp'].index.min(), test['meantemp'].index.max(), exog= test['wind_speed']) plot_smoothing(title = 'Auto regressive Integrated Moving Average with external variable model', data = y_arimax['arimax_forecast'][test['meantemp'].index.min():], label_value = 'ARiMAX model') from statsmodels.tsa.arima_model import ARIMA model = ARIMA(train['meantemp'], order=(1,1,2), exog= train['meanpressure']) model_fit = model.fit() print(model_fit.params) y_arimax = data.copy() y_arimax['arimax_forecast'] = model_fit.predict(test['meantemp'].index.min(), test['meantemp'].index.max(), exog= test['meanpressure']) plot_smoothing(title = 'Auto regressive Integrated Moving Average with external variable model', data = y_arimax['arimax_forecast'][test['meantemp'].index.min():], label_value = 'ARiMAX model') ###Output C:\Users\parve\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred frequency D will be used. warnings.warn('No frequency information was' C:\Users\parve\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred frequency D will be used. warnings.warn('No frequency information was' ###Markdown SARIMAX ###Code from statsmodels.tsa.statespace.sarimax import SARIMAX model = SARIMAX(train['meantemp'], order=(7,0,3), seasonal_order=(2,1,1,12), exog =train['humidity']) model_fit = model.fit() print(model_fit.params) y_sarimax = data.copy() y_sarimax['sarimax_forecast'] = model_fit.predict(test['meantemp'].index.min(), test['meantemp'].index.max(), exog= test['humidity']) plot_smoothing(title = 'Seasonal Auto regressive Integrated Moving Average with external variable model', data = y_sarimax['sarimax_forecast'][test['meantemp'].index.min():], label_value = 'SARIMAX model') ###Output C:\Users\parve\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred frequency D will be used. warnings.warn('No frequency information was' C:\Users\parve\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred frequency D will be used. warnings.warn('No frequency information was' C:\Users\parve\anaconda3\lib\site-packages\statsmodels\base\model.py:566: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals warnings.warn("Maximum Likelihood optimization failed to "
Daily/Linked List Question.ipynb
###Markdown Merge Linked ListsGiven k sorted singly linked lists -- write a function that merges all the lists into one sorted singly linked list. ###Code # sort of a hack # you gather all the values of the linked list into a large array # then you sort that array # then you recreate a linked list def merge(lists): arr = [] for head in lists: current = head while current: arr.append(current.val) current = current.next new_head = current = Node(-1) # dummy head for val in sorted(arr): current.next = Node(val) current = current.next return new_head.next ###Output _____no_output_____
pandas/Plotting and Visualization.ipynb
###Markdown Lecture 11 - Plotting and Visualization 1. A Brief matplotlib API Primer ###Code import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown 1.1 Figures and Subplots ###Code fig = plt.figure() ax1 = plt.subplot(2, 2, 1) ax2 = plt.subplot(2, 2, 2) ax3 = plt.subplot(2, 2, 3) from numpy.random import randn plt.plot(randn(50).cumsum(), 'k--') plt.show() ax1 = plt.subplot(2, 2, 1) ax2 = plt.subplot(2, 2, 2) ax3 = plt.subplot(2, 2, 3) from numpy.random import randn ax2.plot(randn(50).cumsum(), 'k--') _ = ax1.hist(randn(100), bins=20, color='k', alpha=0.3) ax1 = plt.subplot(2, 2, 1) ax2 = plt.subplot(2, 2, 2) ax3 = plt.subplot(2, 2, 3) import numpy as np from numpy.random import randn plt.plot(randn(50).cumsum(), 'k--') ax2.scatter(np.arange(30), np.arange(30) + 3*randn(30)) fig, axes = plt.subplots(2, 3) ###Output _____no_output_____ ###Markdown 1.2 Color, Markers, and Line Styles ###Code plt.plot(randn(30).cumsum(), 'r*-') data = randn(30).cumsum() plt.plot(data, 'r-', label='Default') plt.plot(data, 'b.', drawstyle='steps-post', label='steps-post') plt.legend(loc='best') ###Output _____no_output_____ ###Markdown 1.3 Ticks, Labels, and Legends ###Code fig = plt.figure() ax = plt.subplot(2, 1, 1) plt.plot(randn(1000).cumsum()) ticks = ax.set_xticks([0, 250, 500, 750, 1000]) labels = ax.set_xticklabels(['one', 'two', 'three', 'four', 'five'], rotation=30, fontsize='small') ax.set_title('My first matplotlib plot') ax.set_xlabel('Stages') ###Output _____no_output_____ ###Markdown 1.4 Annotations and Drawing on a Subplot ###Code from datetime import datetime ax = plt.subplot(1, 1, 1) ###Output _____no_output_____ ###Markdown 2. Plotting Functions in pandas 2.1 Line Plots ###Code import numpy as np from pandas import Series s = Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10)) s.plot() from pandas import DataFrame df = DataFrame(np.random.randn(10, 4).cumsum(0), columns=['A', 'B', 'C', 'D'], index=np.arange(0, 100, 10)) df.plot() A = np.arange(10) A A.sum() A.cumsum() ###Output _____no_output_____ ###Markdown 2.2 Bar Plot ###Code fig, axes = plt.subplots(2, 1) data = Series(np.random.rand(16), index=list('abcdefghijklmnop')) print(data) data.plot(kind='bar', ax=axes[0], color='k', alpha=0.7) data.plot(kind='barh', ax=axes[1], color='k', alpha=0.7) import pandas as pd tips = pd.read_csv('tips.csv') party_counts = pd.crosstab(tips.day, tips.size) party_counts party_counts = party_counts.ix[:, 2:5] party_pcts = party_counts.div(party_counts.sum(1).astype(float), axis=0) party_pcts party_pcts.plot(kind='bar', stacked=True) ###Output _____no_output_____ ###Markdown 2.3 Histograms and Density Plots ###Code tips['tip_pct'] = tips['tip'] / tips['total_bill'] tips['tip_pct'].hist(bins=50) tips['tip_pct'].plot(kind='kde') comp1 = np.random.normal(0, 1, size=200) comp2 = np.random.normal(10, 3, size=200) values = Series(np.concatenate([comp1, comp2])) values values.hist(bins=100, alpha=0.3, color='k', normed=True) values.plot(kind='kde', style='k--') ###Output _____no_output_____ ###Markdown 2.4 Scatter Plots ###Code macro = pd.read_csv('macrodata.csv') data = macro[['cpi', 'm1', 'tbilrate', 'unemp']] trans_data = np.log(data).diff().dropna() trans_data[-5:] A = arange(10) A A = [0, 1] np.log(A) plt.scatter(trans_data['m1'], trans_data['unemp']) plt.title('Changes in log %s vs. log %s' % ('m1', 'unemp')) pd.scatter_matrix(trans_data, diagonal='kde', color='r', alpha=0.3) ###Output _____no_output_____ ###Markdown 3. Exercise ###Code import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as dates import numpy as np from scipy.stats import norm T = 1.0 N = 252 dt = T / N delta = 0.25 x = 0.0 pos = [x] for k in range(N-1): x = x + norm.rvs(scale=delta**2*dt) pos.append(x) t = np.linspace(0.0, N*dt, N) # Plot the Time Series with Dates 2014-01-01 to 2014-12-31 # Use: pd.date_range(start='2014-01-01', periods=252, freq='D') dates = pd.date_range(start='2014-01-01', periods=252, freq='D') plt.plot(dates, pos) !type rw.py ###Output (np.abs(walk) >= 10).argmax()
2016/tutorial_final/188/R_ggplot.ipynb
###Markdown Introduction: R vs PythonBoth Python and R are popular programming languages for statistics. While R’s functionality is developed with statisticians in mind (such as R's strong data visualization capabilities), Python is often praised for its easy-to-understand syntax.The purpose of R was to develop a language that focused on delivering a better and more user-friendly way to do data analysis, statistics and graphical models. The main difference for R and Python is that you will find R only in a data science environment; As a general purpose language, Python, on the other hand, is widely used in many fields, such as web development. When to use R?R is mainly used when the data analysis task requires standalone computing or analysis on individual servers. It’s great for exploratory work, and it's handy for almost any type of data analysis because of the huge number of packages and readily usable tests that often provide you with the necessary tools to get up and running quickly. R can even be part of a big data solution. When to use Python?You can use Python when your data analysis tasks need to be integrated with web apps or if statistics code needs to be incorporated into a production database. Being a fully fledged programming language, it’s a great tool to implement algorithms for production use.(Cited from http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html) Tutorial Content- [R essentials](R-essentials)- [Data visualization with R and ggplot 2](Data-visualization-with-R-and-ggplot-2)- [Example Application: R and ggplot based on land-data](Example-Application:-R-and-ggplot-based-on-land-data) - [GGplot Structures and Syntax](GGplot-Structures-and-Syntax) - [Comparison of R essentials and ggplot on graphs generation](Comparison-of-R-essentials-and-ggplot-on-graphs-generation)- [Example Application: Geo-spatial analysis based on R libraries](Example-Application:-Geo-spatial-analysis-based-on-R-libraries) R essentials “R Essentials” setupThe Anaconda team has created an “R Essentials” bundle with the IRKernel and over 80 of the most used R packages for data science, including dplyr, shiny, ggplot2, tidyr,caret and nnet.Downloading “R Essentials” requires conda. Once you have conda, you may install “R Essentials” into the current environment: conda install -c r r-essentialsThen you could create a new environment just for “R essentials”: conda create -n my-r-env -c r r-essentialsOpen a shell and run this command to start the Jupyter notebook interface in your browser: jupyter notebook Start a new R notebook by selecting new: new R notebook at the right side of the interface. Check if the R essentials are installed correctly.- Run the dplyr library.- Run the native dataset of R: iris ###Code library(dplyr) head(iris) ###Output _____no_output_____ ###Markdown Data processing experiments with basic RUse groupby, summarise, arrange, mean to do some simple aggregation on the data by R. ###Code iris %>% group_by(Species) %>% summarise(Sepal.Width.Avg = mean(Sepal.Width),Sepal.Length.Avg = mean(Sepal.Length)) %>% arrange(Sepal.Width.Avg,Sepal.Length.Avg) iris %>% group_by(Species) %>% summarise(Petal.Width.Max = max(Petal.Width),Petal.Length.Max = max(Petal.Length)) %>% arrange(Petal.Width.Max,Petal.Length.Max) ###Output _____no_output_____ ###Markdown Data visualization with R and ggplot 2![](images/Economist1.png)the graphic from the Economist Why use ggplot2?- consistent underlying `grammar of graphics` (Wilkinson, 2005)- plot specification at a high level of abstraction- very flexible- theme system for polishing plot appearance- mature and complete graphics system- many users, active mailing listThat said, there are some things you cannot (or should not) do With ggplot2:- 3-dimensional graphics (see the rgl package)- Graph-theory type graphs (nodes/edges layout; see the igraph package)- Interactive graphics (see the ggvis package)(Cited from: http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html) ###Code library(ggplot2) ###Output _____no_output_____ ###Markdown Simply plot the Petal.Width vs. Petal.Length ###Code ggplot(data=iris, aes(x=Petal.Length, y=Petal.Width, color=Species)) + geom_point(size=3) ###Output _____no_output_____ ###Markdown Using native diamonds library to make some simple graphs ###Code head(diamonds) ggplot(data=diamonds, aes(x=carat, y=price)) + geom_point() + ggtitle("Simple diamonds ggplot") ###Output _____no_output_____ ###Markdown Color the points by a factor variable: 'depth' ###Code # color by a factor variable ggplot(data = diamonds, aes(x = carat, y = price, colour = depth)) + geom_point() ###Output _____no_output_____ ###Markdown Color the points by a factor variable: 'clarity' ###Code ggplot(data = diamonds, aes(x = carat, y = price, colour = clarity)) + geom_point() ###Output _____no_output_____ ###Markdown Example Application: R and ggplot based on land-data Start to use some more complex and real dataset(Data from https://www.lincolninst.edu/subcenters/land-values/land-prices-by-state.asp) ###Code housing <- read.csv("dataSets/landdata-states.csv") head(housing) ###Output _____no_output_____ ###Markdown Comparison of R essentials and ggplot on graphs generation ###Code # Generate simple histogram by R hist(housing$Structure.Cost) #Generate simple histogram by ggplot2 library(ggplot2) ggplot(housing, aes(x = Structure.Cost)) + geom_histogram() #Easily change the binwidth param library(ggplot2) ggplot(housing, aes(x = Structure.Cost) ) + geom_histogram(binwidth=4000) ###Output `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. ###Markdown Compare base R and ggplot on a more complex graph with legends ###Code # Generate annotated scatter points graph by R plot(Structure.Cost ~ Date, col="blue", data=subset(housing, State == "PA")) points(Structure.Cost ~ Date, col="red", data=subset(housing, State == "WI")) legend(x = 'topleft', c("WI", "PA"), title="State", col=c("red", "blue"), pch=c(1, 1)) # Generate annotated scatter points graph by ggplot ggplot(subset(housing, State %in% c("WI", "PA")), aes(x=Date, y=Structure.Cost, color=State))+ geom_point() ###Output _____no_output_____ ###Markdown GGplot Structures and Syntax GGplot Aesthetic attributeIn ggplot `aesthetic` means the visual attributes. Such as:- position (coordinates)- color (border)- fill- shape (of points)- linetype- size Geometric Objects`geom` objects are the actual marks we put on a plot. Such as:- points (`geom_point`, for scatter plots, dot plots, etc)- lines (`geom_line`, for time series, trend lines, etc)- boxplot (`geom_boxplot`, for, well, boxplots!) Combining geometric and aesthetic attribute together to make a graphA plot must have at least one geom; there is no upper limit. You can add a geom to a plot using the `+` operator Scatter points with geom_point() attributegeom_point requires mappings for x and y, all others are optional. ###Code h20101 <- subset(housing, Date == 20101) ggplot(h20101, aes(x = Structure.Cost, y = Home.Value)) + geom_point() ###Output _____no_output_____ ###Markdown Lines A plot constructed with `ggplot` can have more than one geom. In that case the mappings established in the `ggplot()` call are plot defaults that can be added to or overridden. Our plot could use a regression line: Simple line connecting all the scatter points ###Code p1 <- ggplot(h20101, aes(x = Structure.Cost, y = Home.Value)) p1 + geom_point(aes(color = Structure.Cost)) + geom_line(aes(y = Home.Value)) ###Output _____no_output_____ ###Markdown Predict the line trend (smoother version than simply connecting all the points, using predict method) ###Code p1 <- ggplot(h20101, aes(x = Structure.Cost, y = Home.Value)) h20101$pred.HV <- predict(lm(Home.Value ~ Structure.Cost, data = h20101)) p1 + geom_point(aes(color = 'red'))+ geom_line(aes(y = pred.HV )) ###Output _____no_output_____ ###Markdown Another way to do simple linear regression, with better visuals: geom_smooth ###Code p1 + geom_point(aes(color = Structure.Cost)) + geom_smooth(method='lm') ###Output _____no_output_____ ###Markdown Text labels: geom_textLike all the `geom` objects that accept a certain series of mappings, `geom_text()` takes in the mapping as a `labels` .All the points would be map to that label given the certain mapping. (Usually mapped to its id, 'State' is the id here in my dataset. Sometimes mapped to its category, 'region' is the category here in my dataset. ) ###Code p1 + geom_text(aes(label=State), size = 3) p1 + geom_text(aes(label=region), size = 3) ###Output _____no_output_____ ###Markdown Mapping the points to a shape instead of a text label(i.e. circle, triangle, etc) ###Code p1 + geom_point(aes(color=Home.Value, shape = region)) ###Output Warning message: "Removed 1 rows containing missing values (geom_point)." ###Markdown Example Application: Geo-spatial analysis based on R libraries Installing relevant libraries and Loading Data - Run the following commands.- Or download the packages from http://cran.us.r-project.org, unzip and move to /library folder of your R directory. ###Code x <- c("ggmap", "rgdal", "rgeos", "maptools", "dplyr", "tidyr", "tmap") install.packages("tmap",repos='http://cran.cnr.berkeley.edu/') # warning: this may take a number of minutes lapply("tmap", library, character.only = TRUE) # load the required packages ###Output package 'tmap' successfully unpacked and MD5 sums checked The downloaded binary packages are in C:\Users\Yao\AppData\Local\Temp\RtmpMfBCDx\downloaded_packages ###Markdown Loading Datasets in .shape fileThe files beginning london_sport in the data/ directory contain the population of London Boroughs in 2001 and the percentage of the population participating in sporting activities. This data originates from the Active People Survey. The boundary data is from the Ordnance Survey. (Cited from cran.r-project.org)readOGR takes in dsn and layer as parameters: - dsn which stands for “data source name” and specifies the location where the file is stored- layer which specifies the file name. ###Code library(rgdal) lnd <- readOGR(dsn = "dataSets", layer = "london_sport") ###Output Loading required package: sp rgdal: version: 1.1-10, (SVN revision 622) Geospatial Data Abstraction Library extensions to R successfully loaded Loaded GDAL runtime: GDAL 2.0.1, released 2015/09/15 Path to GDAL shared files: C:/Users/Yao/Anaconda2/R/library/rgdal/gdal Loaded PROJ.4 runtime: Rel. 4.9.2, 08 September 2015, [PJ_VERSION: 492] Path to PROJ.4 shared files: C:/Users/Yao/Anaconda2/R/library/rgdal/proj Linking to sp version: 1.2-3 ###Markdown The structure of spatial data in R Spatial objects are made up of a number of different slots, the key ones being @data and @polygons (or @lines for line data) geometry data. @data is just a table of some relevant geographical attributes like following. ###Code head(lnd@data, n = 2) mean(lnd$Partic_Per) ###Output _____no_output_____ ###Markdown To inspect the @polygon slot, selects the first polygon of lnd and then selects the first Polygon within this spatial unit (there is usually only one) and then returns the coordinates of this. The plot shows a region circled by these selected coordinates. ###Code head(lnd@polygons[[3]]@Polygons[[1]]@coords, 3) plot(lnd@polygons[[3]]@Polygons[[1]]@coords) ###Output _____no_output_____ ###Markdown Plot the geographical map using lnd spatial object ###Code plot(lnd) ###Output _____no_output_____ ###Markdown Queries and Analysis based on the spatial data Select rows of lnd@data where sports participation is less than 15 ###Code lnd@data[lnd$Partic_Per < 15, ] ###Output _____no_output_____ ###Markdown Select zones where sports participation is between 10% and 20% and plot these zones in a map. ###Code sel <- lnd$Partic_Per > 10 & lnd$Partic_Per < 20 # head output of previous selection, a bunch of booleans head(sel) # output plot shown below plot(lnd[sel, ]) ###Output _____no_output_____ ###Markdown Plotting the selected regions with the whole map ###Code # plot the london_sport object, with color lightgrey plot(lnd, col = "grey") # select zones where sports participation is greater than 25%. sel <- lnd$Partic_Per > 20 # add selected zones to map, with color red plot(lnd[ sel, ], col = "red", add = TRUE) ###Output _____no_output_____ ###Markdown More complex selection: the center of the map 1) Select the center of the city using rgeos library ###Code library(rgeos) plot(lnd, col = "grey") # find the geographic center of London cent_lnd <- gCentroid(lnd[lnd$name == "City of London",]) points(cent_lnd, cex = 4) ###Output _____no_output_____ ###Markdown 2) Select the regions that have some part within 10km from the center.Creating a gBuffer of coordinates within 10km from the calculated center.Selects the regions both in the buffer and in the whole map data set and plot. ###Code plot(lnd, col = "grey") # set 10 km buffer lnd_buffer <- gBuffer(spgeom = cent_lnd, width = 10000) # select the indexes in both lnd_buffer and lnd lnd_central <- lnd[lnd_buffer,] # plot the selected regions as red plot(lnd_central, col = "red",border = "grey", add = T) # plot the margin of the buffer, the circle that is 10km from the center plot(lnd_buffer, add = T) # add text labels to the plot text(coordinates(cent_lnd), "Central\nLondon") ###Output _____no_output_____ ###Markdown 3) Another way of selection: select only the regions whose centers are within 10km ###Code plot(lnd, col = "grey") # selects only points within the buffer # create spatialpoints (centers) of all the regions lnd_cents <- SpatialPoints(coordinates(lnd), proj4string = CRS(proj4string(lnd))) # select the points inside the buffer (within 10km) sel <- lnd_cents[lnd_buffer,] # show where the points are located points(sel) plot(lnd, col = "grey") # select regions intersecting with sel from above lnd_central <- lnd[sel,] plot(lnd_central, add = T, col = "red", border = "grey") plot(lnd_buffer, add = T, border = "black", lwd = 3) # add text labels to the plot text(coordinates(cent_lnd), "Central\nLondon") ###Output _____no_output_____ ###Markdown Adding attributes to tables and joining tables The non-spatial data we are going to join to the lnd object contains records of crimes in London. This is stored in a comma separated values (.csv) file called “mps-recordedcrime-borough”. ###Code library(rgdal) # Create new object called "lnd" from "london_sport" shapefile lnd <- readOGR(dsn = "dataSets", "london_sport") crime_data <- read.csv("dataSets/mps-recordedcrime-borough.csv", stringsAsFactors = FALSE) ###Output OGR data source with driver: ESRI Shapefile Source: "dataSets", layer: "london_sport" with 33 features It has 4 fields ###Markdown We are going to use a function called aggregate to aggregate the crimes at the borough level, ready to join to our spatial lnd dataset. A new object called crime_data is created to store this data. ###Code head(crime_data, 5) # display first 5 lines head(crime_data$CrimeType) # information about crime type ###Output _____no_output_____ ###Markdown Select the CrimeType "Theft & Handling" ###Code # Filter out "Theft & Handling" crimes and save to crime_theft crime_theft <- crime_data[crime_data$CrimeType == "Theft & Handling", ] head(crime_theft, 5) # take a look at the result (replace 2 with 10 to see more rows) ###Output _____no_output_____ ###Markdown Calculate CrimeCount of each region ###Code # Calculate the sum of the crime count for each district, save result crime_ag <- aggregate(CrimeCount ~ Borough, FUN = sum, data = crime_theft) # Show the first two rows of the aggregated crime data head(crime_ag, 5) ###Output _____no_output_____ ###Markdown Join the attribute CrimeCount to the lnd table ###Code # dataset to add the attribute CrimeCount to head(lnd$name) # the attribute to join head(crime_ag$Borough) crime_ag <- rename(crime_ag, name = Borough) # rename the 'Borough' heading to 'name' # head(left_join(lnd@data, crime_ag,by = "name")) lnd@data <- left_join(lnd@data, crime_ag) ###Output _____no_output_____ ###Markdown Plot different levels of CrimeCount with different shades of Color ###Code plot(lnd, col = "grey") # select zones where sports participation is greater than 25%. sel <- lnd$CrimeCount > 15000 head(na.omit(sel)) # add selected zones to map, with color red plot(lnd[ na.omit(sel), ], col = "coral2", add = TRUE) sel <- lnd$CrimeCount > 20000 head(na.omit(sel)) # add selected zones to map, with color red plot(lnd[ na.omit(sel), ], col = "coral3", add = TRUE) sel <- lnd$CrimeCount > 25000 head(na.omit(sel)) # add selected zones to map, with color red plot(lnd[ na.omit(sel), ], col = "coral4", add = TRUE) ###Output _____no_output_____
demo/example_portreat_diagram.ipynb
###Markdown Generating a Portraet diagram The GlecklerPlot class provides functionality to generate a Portraet diagram as introduced by [Gleckler et al. (2008)](http://onlinelibrary.wiley.com/doi/10.1029/2007JD008972/abstract). The class is very usefull if you want to vizualize e.g. different statistical results. Single variable ###Code %matplotlib inline from pycmbs.plots import GlecklerPlot G = GlecklerPlot() #register first models (these fill become the rows in the plot) G.add_model('echam5') G.add_model('mpi-esm-LR') G.add_model('mpi-esm-MR') #then register variables (these become the columns in the plot) G.add_variable('ta') #after that you can add values to be plotted; pos=1 mean that result is plotted in upper triangle # you can specify up to 4 positions # assign values you want to plot G.add_data('ta','echam5',0.2,pos=1) G.add_data('ta','mpi-esm-LR',0.5,pos=1) G.add_data('ta','mpi-esm-MR',1.3,pos=1) # do the plot G.plot() # save figure to file #G.fig.savefig('filename.png') ###Output /usr/local/lib/python2.7/dist-packages/matplotlib-1.3.1-py2.7-linux-x86_64.egg/matplotlib/__init__.py:1155: UserWarning: This call to matplotlib.use() has no effect because the backend has already been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot, or matplotlib.backends is imported for the first time. warnings.warn(_use_error_msg) ###Markdown Note that two figures might be plotted here. This is just a problem with the ipython notebook used and not a problem with the actual GlecklerPlot! Multiple variables ###Code del G G = GlecklerPlot() #register first models (these fill become the rows in the plot) G.add_model('echam5') G.add_model('mpi-esm-LR') G.add_model('mpi-esm-MR') #then register variables (these become the columns in the plot) G.add_variable('ta') G.add_variable('P') G.add_variable('sea_ice') #after that you can add values to be plotted; pos=1 mean that result is plotted in upper triangle # you can specify up to 4 positions G.add_data('ta','echam5',0.5,pos=1) G.add_data('ta','mpi-esm-LR',0.3,pos=1) G.add_data('P','echam5',0.25,pos=1) G.add_data('P','mpi-esm-MR',-0.25,pos=2) G.add_data('P','mpi-esm-MR',1.3,pos=1) G.add_data('P','mpi-esm-LR',0.3,pos=1) G.add_data('P','mpi-esm-LR',0.6,pos=2) # random numbers are generated here using numpy import numpy as np G.add_data('sea_ice','echam5',np.random.random(1),pos=1) G.add_data('sea_ice','echam5',np.random.random(1),pos=2) G.add_data('sea_ice','echam5',np.random.random(1),pos=3) G.add_data('sea_ice','echam5',np.random.random(1),pos=4) G.add_data('sea_ice','mpi-esm-MR',np.random.random(1),pos=1) G.add_data('sea_ice','mpi-esm-MR',np.random.random(1),pos=2) G.add_data('sea_ice','mpi-esm-MR',np.random.random(1),pos=3) G.add_data('sea_ice','mpi-esm-MR',np.random.random(1),pos=4) G.add_data('sea_ice','mpi-esm-LR',np.random.random(1),pos=1) G.add_data('sea_ice','mpi-esm-LR',np.random.random(1),pos=2) G.add_data('sea_ice','mpi-esm-LR',np.random.random(1),pos=3) G.add_data('sea_ice','mpi-esm-LR',np.random.random(1),pos=4) G.plot() #do plot ###Output /usr/local/lib/python2.7/dist-packages/numpy/core/_methods.py:59: RuntimeWarning: Mean of empty slice. warnings.warn("Mean of empty slice.", RuntimeWarning) /usr/local/lib/python2.7/dist-packages/numpy/core/_methods.py:71: RuntimeWarning: invalid value encountered in double_scalars ret = ret.dtype.type(ret / rcount)
010_files.ipynb
###Markdown 010_files[Source](https://github.com/iArunava/Python-TheNoTheoryGuide/) ###Code # Opening a file ''' Make sure you have a file in your directory before running this code. If you have a file but still getting errors, then make sure the path is correct. ''' # Be sure to close a file after use file = open ("./others/test.txt") print (file.read()) file.close() # Modes to open a file file = open ("./others/test.txt", 'r') # Opens in read mode file = open ("./others/test.txt", 'w') # Opens in write mode file = open ("./others/test.txt", 'a') # Opens in append mode file = open ("./others/test.txt", 'r+') # Allows to read and write file.close() # Reading the entire file at once # 'with' keeps the file open as long as its needed then closes it with open ("./others/test.txt") as file: content = file.read() print (content) # Reading the file line by line with open ("./others/test.txt") as file: i = 0 for line in file: i += 1 print ("Line " + str(i) + " : " + str(line)) # Writing to an empty file # When opening a file in 'w' mode, if the files contains something it will get erased # To retain the contents of the file open in 'a' mode, namely append mode with open("./others/test.txt", 'w') as file: file.write ("Python is Love!") file.write ("This is a second line.") file.write ("Python doesn't add new lines on its own.") file.write ("\nSo lets provide some new lines.\n") file.write ("\nBy the way, you just wrote multiple lines to a file :)") file.write ("\nAnd just remember 'with' closes the opened file.") file.write (" So you do not have to close it yourself. When opened a file with 'with' :P") # Appending to a file with open("./others/test.txt", 'a') as file: file.write ("\nWell now the text in the opened file is retained.") file.write ("\nAnd you are appending text to already present text.") file.write ("\nCool!") ###Output _____no_output_____
quantum_hello_world.ipynb
###Markdown Queremos gerar e medir o seguinte estado:$$\vert \psi \rangle = \frac{\vert 00 \rangle + \vert 11 \rangle}{\sqrt{2}}$$Começamos importando o qiskit e em seguida criamos o circuito. ###Code from qiskit import* nQ = 2 # <−− NUMERO DE QUBITS nC = 2 # <−− NUMERO DE BITS CLASSICOS Qr = QuantumRegister(nQ) Cr = ClassicalRegister(nC) circuit = QuantumCircuit(Qr , Cr ) circuit.h(0) # <−− Porta Hadamard aplicada ao primeiro qubit circuit.cx(0 , 1) # <−− Porta CNOT: a ordem eh controle , alvo circuit.measure([ 0 , 1 ] , [ 0 , 1 ]) # <−− Os qubits [ 0 , 1 ] sao medidos e # os resultados sao armazenados em bits classicos [ 0 , 1 ] nesta ordem circuit.draw(output='mpl') # <−− Desenha o circuito ###Output _____no_output_____ ###Markdown Simulação na máquina local ###Code simulator = Aer.get_backend('qasm_simulator') result = execute( circuit , backend = simulator, shots = 8192 ).result( ) from qiskit.visualization import plot_histogram plot_histogram( result.get_counts(circuit) ) ###Output _____no_output_____ ###Markdown Registrando-se na IBM Quantum Computing ###Code # Obs. : esta linha de codigo deve ser executada uma unica vez . # Caso precise executa−la novamente RESTARTE o KERNEL. from qiskit import IBMQ #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− # Você pode obter o seu token em: # https://quantum-computing.ibm.com/ QX_TOKEN = "Cole seu token aqui" QX_URL = "https://quantumexperience.ng.bluemix.net/api" #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− try : IBMQ.save_account(QX_TOKEN); print('Registado com sucesso!') except : print('Algo deu errado. \nVocê inseriu o token correto?') ###Output configrc.store_credentials:WARNING:2021-09-01 13:00:30,253: Credentials already present. Set overwrite=True to overwrite. ###Markdown Agora vem a parte divertida, que é executar o circuito que construímos em um computador quântico. Existem varios dispositivos quânticos que a IBM disponibiliza o acesso via nuvem. Para usar esses dispositivos, primeiro teremos que carregar uma conta IBMQ. ###Code IBMQ.load_account() ###Output _____no_output_____ ###Markdown Verificando as máquinas disponíveis: ###Code from qiskit.tools.monitor import backend_overview backend_overview() ###Output ibmq_manila ibmq_quito ibmq_belem ----------- ---------- ---------- Num. Qubits: 5 Num. Qubits: 5 Num. Qubits: 5 Pending Jobs: 1 Pending Jobs: 6 Pending Jobs: 6 Least busy: True Least busy: False Least busy: False Operational: True Operational: True Operational: True Avg. T1: 129.9 Avg. T1: 88.8 Avg. T1: 94.2 Avg. T2: 62.7 Avg. T2: 104.0 Avg. T2: 122.4 ibmq_lima ibmq_bogota ibmq_santiago --------- ----------- ------------- Num. Qubits: 5 Num. Qubits: 5 Num. Qubits: 5 Pending Jobs: 58 Pending Jobs: 1402 Pending Jobs: 20 Least busy: False Least busy: False Least busy: False Operational: True Operational: True Operational: True Avg. T1: 74.2 Avg. T1: 92.1 Avg. T1: 76.1 Avg. T2: 84.0 Avg. T2: 127.6 Avg. T2: 97.0 ibmq_armonk ----------- Num. Qubits: 1 Pending Jobs: 27 Least busy: False Operational: True Avg. T1: 172.4 Avg. T2: 260.9 ###Markdown A seguir, teremos que fornecer detalhes do provedor IBMQ e do computador quântico que escolhemos para executar nosso circuito. ###Code provider=IBMQ.get_provider('ibm-q') quantum_computer=provider.get_backend('ibmq_belem') ###Output _____no_output_____ ###Markdown Usamos a função execute() para executar nosso circuito quântico usando ibmq_belem como nosso back-end: ###Code execute_circuit=execute(circuit,backend=quantum_computer) ###Output _____no_output_____ ###Markdown Para ver os resultados, basta executar o seguinte comando: ###Code result=execute_circuit.result() ###Output _____no_output_____ ###Markdown Para visualizar os resultados, execute o seguinte comando: ###Code plot_histogram(result.get_counts(circuit)) import qiskit.tools.jupyter %qiskit_version_table ###Output C:\Users\warle\anaconda3\lib\site-packages\qiskit\aqua\__init__.py:86: DeprecationWarning: The package qiskit.aqua is deprecated. It was moved/refactored to qiskit-terra For more information see <https://github.com/Qiskit/qiskit-aqua/blob/main/README.md#migration-guide> warn_package('aqua', 'qiskit-terra')
code/chap23-Mine.ipynb
###Markdown Modeling and Simulation in PythonChapter 23Copyright 2017 Allen DowneyLicense: [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0) ###Code # Configure Jupyter so figures appear in the notebook %matplotlib inline # Configure Jupyter to display the assigned value after an assignment %config InteractiveShell.ast_node_interactivity='last_expr_or_assign' # import functions from the modsim.py module from modsim import * ###Output _____no_output_____ ###Markdown Code from the previous chapter ###Code m = UNITS.meter s = UNITS.second kg = UNITS.kilogram degree = UNITS.degree params = Params(x = 0 * m, y = 1 * m, g = 9.8 * m/s**2, mass = 145e-3 * kg, diameter = 73e-3 * m, rho = 1.2 * kg/m**3, C_d = 0.3, angle = 45 * degree, velocity = 40 * m / s, t_end = 20 * s) def make_system(params): """Make a system object. params: Params object with angle, velocity, x, y, diameter, duration, g, mass, rho, and C_d returns: System object """ unpack(params) # convert angle to degrees theta = np.deg2rad(angle) # compute x and y components of velocity vx, vy = pol2cart(theta, velocity) # make the initial state init = State(x=x, y=y, vx=vx, vy=vy) # compute area from diameter area = np.pi * (diameter/2)**2 return System(params, init=init, area=area) def drag_force(V, system): """Computes drag force in the opposite direction of `V`. V: velocity system: System object with rho, C_d, area returns: Vector drag force """ unpack(system) mag = -rho * V.mag**2 * C_d * area / 2 direction = V.hat() f_drag = mag * direction return f_drag def slope_func(state, t, system): """Computes derivatives of the state variables. state: State (x, y, x velocity, y velocity) t: time system: System object with g, rho, C_d, area, mass returns: sequence (vx, vy, ax, ay) """ x, y, vx, vy = state unpack(system) V = Vector(vx, vy) a_drag = drag_force(V, system) / mass a_grav = Vector(0, -g) a = a_grav + a_drag return vx, vy, a.x, a.y def event_func(state, t, system): """Stop when the y coordinate is 0. state: State object t: time system: System object returns: y coordinate """ x, y, vx, vy = state return y ###Output _____no_output_____ ###Markdown Optimal launch angleTo find the launch angle that maximizes distance from home plate, we need a function that takes launch angle and returns range. ###Code def range_func(angle, params): """Computes range for a given launch angle. angle: launch angle in degrees params: Params object returns: distance in meters """ params = Params(params, angle=angle) system = make_system(params) results, details = run_ode_solver(system, slope_func, events=event_func) x_dist = get_last_value(results.x) * m print(angle) return x_dist ###Output _____no_output_____ ###Markdown Let's test `range_func`. ###Code %time range_func(45, params) ###Output 45 Wall time: 147 ms ###Markdown And sweep through a range of angles. ###Code angles = linspace(20, 80, 21) sweep = SweepSeries() for angle in angles: x_dist = range_func(angle, params) print(angle, x_dist) sweep[angle] = x_dist ###Output 20.0 20.0 79.96823513701818 meter 23.0 23.0 86.2962864918857 meter 26.0 26.0 91.59647908800756 meter 29.0 29.0 95.89089380357947 meter 32.0 32.0 99.20335822576214 meter 35.0 35.0 101.55668007973463 meter 38.0 38.0 102.97173880917646 meter 41.0 41.0 103.46740813177843 meter 44.0 44.0 103.060922479178 meter 47.0 47.0 101.7684506860653 meter 50.0 50.0 99.60572853320414 meter 53.0 53.0 96.58867331645769 meter 56.0 56.0 92.7339915489422 meter 59.0 59.0 88.05990483905572 meter 62.0 62.0 82.58716276454999 meter 65.0 65.0 76.34016117578483 meter 68.0 68.0 69.34714056465755 meter 71.0 71.0 61.63878192638946 meter 74.0 74.0 53.256101549629825 meter 77.0 77.0 44.246680677829886 meter 80.0 80.0 34.6702130194327 meter ###Markdown Plotting the `Sweep` object, it looks like the peak is between 40 and 45 degrees. ###Code plot(sweep, color='C2') decorate(xlabel='Launch angle (degree)', ylabel='Range (m)', title='Range as a function of launch angle', legend=False) savefig('figs/chap10-fig03.pdf') ###Output Saving figure to file figs/chap10-fig03.pdf ###Markdown We can use `max_bounded` to search for the peak efficiently. ###Code %time res = max_bounded(range_func, [0, 90], params) ###Output 34.37694101250946 55.62305898749054 21.246117974981075 41.405491236206636 41.23748723573612 41.141723142200014 41.139142795614596 41.13947673914003 41.13880885208916 Wall time: 919 ms ###Markdown `res` is an `ModSimSeries` object with detailed results: ###Code res ###Output _____no_output_____ ###Markdown `x` is the optimal angle and `fun` the optional range. ###Code optimal_angle = res.x * degree max_x_dist = res.fun ###Output _____no_output_____ ###Markdown Under the hoodRead the source code for `max_bounded` and `min_bounded`, below.Add a print statement to `range_func` that prints `angle`. Then run `max_bounded` again so you can see how many times it calls `range_func` and what the arguments are. ###Code %psource max_bounded %psource min_bounded ###Output _____no_output_____ ###Markdown The Manny Ramirez problemFinally, let's solve the Manny Ramirez problem:*What is the minimum effort required to hit a home run in Fenway Park?*Fenway Park is a baseball stadium in Boston, Massachusetts. One of its most famous features is the "Green Monster", which is a wall in left field that is unusually close to home plate, only 310 feet along the left field line. To compensate for the short distance, the wall is unusually high, at 37 feet.Although the problem asks for a minimum, it is not an optimization problem. Rather, we want to solve for the initial velocity that just barely gets the ball to the top of the wall, given that it is launched at the optimal angle.And we have to be careful about what we mean by "optimal". For this problem, we don't want the longest range, we want the maximum height at the point where it reaches the wall.If you are ready to solve the problem on your own, go ahead. Otherwise I will walk you through the process with an outline and some starter code.As a first step, write a function called `height_func` that takes a launch angle and a params as parameters, simulates the flights of a baseball, and returns the height of the baseball when it reaches a point 94.5 meters (310 feet) from home plate. ###Code # Solution goes here def event_func(state, t, system): """Stop when the x coordinate is 94.5. state: State object t: time system: System object returns: y coordinate """ x, y, vx, vy = state return x - 94.488 * m ###Output _____no_output_____ ###Markdown Always test the slope function with the initial conditions. ###Code # Solution goes here system = make_system(params) event_func(system.init, 0, system) # Solution goes here def height_func(angle, params): """Computes range for a given launch angle. angle: launch angle in degrees params: Params object returns: distance in meters """ params = Params(params, angle=angle) system = make_system(params) results, details = run_ode_solver(system, slope_func, events=event_func) height = get_last_value(results.y) * m return height ###Output _____no_output_____ ###Markdown Test your function with a launch angle of 45 degrees: ###Code # Solution goes here height_func(45 * degree, params) ###Output _____no_output_____ ###Markdown Now use `max_bounded` to find the optimal angle. Is it higher or lower than the angle that maximizes range? ###Code # Solution goes here res = max_bounded(height_func, [0, 90], params) # Solution goes here optimal_angle = res.x * degree # Solution goes here optimal_height = res.fun height_func(optimal_angle, params) ###Output _____no_output_____ ###Markdown With initial velocity 40 m/s and an optimal launch angle, the ball clears the Green Monster with a little room to spare.Which means we can get over the wall with a lower initial velocity. Finding the minimum velocityEven though we are finding the "minimum" velocity, we are not really solving a minimization problem. Rather, we want to find the velocity that makes the height at the wall exactly 11 m, given given that it's launched at the optimal angle. And that's a job for `fsolve`.Write an error function that takes a velocity and a `Params` object as parameters. It should use `max_bounded` to find the highest possible height of the ball at the wall, for the given velocity. Then it should return the difference between that optimal height and 11 meters. ###Code # Solution goes here def error_func(velocity, params): params = Params(params, velocity=velocity) res = max_bounded(height_func, [0, 90], params) return res.fun - 11.2276 * m ###Output _____no_output_____ ###Markdown Test your error function before you call `fsolve`. ###Code # Solution goes here error_func(40 * m/s, params) ###Output _____no_output_____ ###Markdown Then use `fsolve` to find the answer to the problem, the minimum velocity that gets the ball out of the park. ###Code # Solution goes here res = fsolve(error_func, 40 * m/s, params) # Solution goes here min_velocity = res[0] * m/s ###Output _____no_output_____ ###Markdown And just to check, run `error_func` with the value you found. ###Code # Solution goes here error_func(min_velocity, params) ###Output _____no_output_____
{{cookiecutter.project_slug}}/00.02-use-eeg-data.ipynb
###Markdown Using the EEG data you downloadedTo use the data you just downloaded, simply import it in the same way you import anything else in python. Check out the `data` folder to find out how the data is structured - it works in a hierarchical way.For example, to use your EEG data, you can import it in the following way: ###Code from data.eeg.preprocessed.resting_state import raws ###Output _____no_output_____ ###Markdown The imported object is a __generator__ that you can loop over. Whenever the next value is requested (i.e. on each loop iteration), the `raws` function loads the next raw dataset, and produces an `MNE-python` raw data structure that you can then proceed to use.Just to show what that's like, you can try out the following, which just produces 1 iteration: ###Code next(raws()) ###Output Creating RawArray with float64 data, n_channels=111, n_times=175062 Range : 0 ... 175061 = 0.000 ... 350.122 secs Ready. ###Markdown You can equally get the data in `mne.Epochs`, so divided based on the input. You can pass any keyword arguments you want to the `epochs()` generator, which will pass them on to `mne.Epochs`, so you can still specifiy baselines or other stuff if you want.The way this deals with tasks split across multiple recordings is it will concatenate them all for you.An example where this would be appropriate is the surround-suppression paradigm: ###Code from data.eeg.preprocessed.surround_suppression import epochs epoch = next(epochs(tmin=-0.2, tmax=0.5, baseline=(-0.2, 0))) epoch.average().plot(spatial_colors=True); ###Output Creating RawArray with float64 data, n_channels=111, n_times=144564 Range : 0 ... 144563 = 0.000 ... 289.126 secs Ready. Creating RawArray with float64 data, n_channels=111, n_times=144564 Range : 0 ... 144563 = 0.000 ... 289.126 secs Ready. 64 matching events found 0 projection items activated 64 matching events found 0 projection items activated NDARCX221CWA Loading data for 64 events and 351 original time points ... 0 bad epochs dropped Loading data for 64 events and 351 original time points ... 0 bad epochs dropped 128 matching events found 0 bad epochs dropped
tutorials/creating_a_heating_network.ipynb
###Markdown Creation of a pandapipes Heating Network There are several aspects to consider when constructing a heating network. To get a basic introduction to creating a pandapipes network, please see the tutorial ["Creating pandapipes Networks"](https://github.com/e2nIEE/pandapipes/blob/master/tutorials/creating_a_simple_network.ipynb) first. For the pipes, additional parameters must be specified: The heat transfer coefficient (`alpha_w_per_m2k`), which determines how well or poorly the pipe insulates and the number of internal pipe sections (`sections`). Likewise the ambient temperature of the pipe (`text_k`) can be changed, which is 293 K by default. In this case the variable `ambient_temperature` in the [`pipeflow` function](https://pandapipes.readthedocs.io/en/latest/pipeflow.html) should be set to the same value. In addition, for an external grid the variable `type` should be set to "pt" or "t" and a constant temperature value for `t_k` should be defined. Furthermore, start values for the temperatures at the junctions (`tfluid_k`) should be specified.Please note that only incompressible media can be used for the heating network calculation and the [`mode`](https://pandapipes.readthedocs.io/en/latest/pipeflow/calculation_modes.htmltemperature-calculations-pipeflow-option-mode-all-or-mode-heat) in the `pipeflow` function has to be set to "all" or "heat". In case `mode` equals "heat", the user must manually specify a solution vector for the hydraulic calculations. It should also be noted that the temperature calculations are currently still sequential. This means that the calculated temperature values do not influence the hydraulic properties of the medium. Therefore, the calculations are only valid if the properties are not very temperature-dependent or if there are minor changes in temperature. In the following a simple example for the creation and calculation of a network is presented. Here water is used as fluid and the mode "all" is selected. ###Code import pandapipes from pandapipes.component_models import Pipe # create empty network net = pandapipes.create_empty_network("net", add_stdtypes=False) # create fluid pandapipes.create_fluid_from_lib(net, "water", overwrite=True) # create junctions junction1 = pandapipes.create_junction(net, pn_bar=3, tfluid_k=290, name="Junction 1", geodata=(0, 0)) junction2 = pandapipes.create_junction(net, pn_bar=3, tfluid_k=290, name="Junction 2", geodata=(2, 0)) junction3 = pandapipes.create_junction(net, pn_bar=3, tfluid_k=290, name="Junction 3", geodata=(4, 0)) junction4 = pandapipes.create_junction(net, pn_bar=3, tfluid_k=290, name="Junction 4", geodata=(2, 2)) # create external grid pandapipes.create_ext_grid(net, junction=junction1, p_bar=6, t_k=363.15, name="External Grid", type="pt") # creat sinks pandapipes.create_sink(net, junction=junction3, mdot_kg_per_s=1, name="Sink 1") pandapipes.create_sink(net, junction=junction4, mdot_kg_per_s=2, name="Sink 2") # create pipes pandapipes.create_pipe_from_parameters(net, from_junction=junction1, to_junction=junction2, length_km=0.1, diameter_m=0.075, k_mm=0.025, sections=5, alpha_w_per_m2k=100, text_k=298.15, name="Pipe 1", geodata=[(0, 0), (2, 0)]) pandapipes.create_pipe_from_parameters(net, from_junction=junction2, to_junction=junction3, length_km=2, diameter_m=0.05, k_mm=0.025, sections=4, alpha_w_per_m2k=100, text_k=298.15, name="Pipe 2", geodata=[(2, 0), (4, 0)]) pandapipes.create_pipe_from_parameters(net, from_junction=junction2, to_junction=junction4, length_km=1, diameter_m=0.1, k_mm=0.025, sections=8, alpha_w_per_m2k=50, text_k=298.15, name="Pipe 3", geodata=[(2, 0), (2, 2)]) # run pipeflow pandapipes.pipeflow(net, stop_condition="tol", iter=3, friction_model="colebrook", mode="all", transient=False, nonlinear_method="automatic", tol_p=1e-4, tol_v=1e-4, ambient_temperature=298.15) ###Output _____no_output_____ ###Markdown The general results for the junctions and pipes can still be accessed as follows: ###Code net.res_junction net.res_pipe ###Output _____no_output_____ ###Markdown To get the internal results regarding the division of the pipes into sections, use the following function: ###Code pipe_1_results = Pipe.get_internal_results(net, [0]) ###Output _____no_output_____ ###Markdown Here the results of Pipe 1 (`[0]`) are accessed. In general these include three matrices with the values of `PINIT`, `VINIT` and `TINIT`.The internal results of the pipe can also be accessed separately, as shown here for Pipe 1: ###Code pipe_1_results["PINIT"] pipe_1_results["TINIT"] pipe_1_results["VINIT"] ###Output _____no_output_____
MIDOSS/Diesel.ipynb
###Markdown NetCDF Thickness:disappears after it = 12 ###Code fig, axs = plt.subplots(1, 2, figsize=(15, 5)) it = 12 ds.Thickness_2D[it, 460:500 , 230:270].plot(ax=axs[0], cmap='copper') axs[1].plot(ds.time[0:24], ds.Thickness_2D[0:24].max(axis=1).max(axis=1)); ###Output _____no_output_____ ###Markdown NetCDF 2D Concentration:Very similar response, also disappears after it = 12 ###Code fig, axs = plt.subplots(1, 2, figsize=(15, 5)) it = 5 ds.OilConcentration_2D[it, 460:500 , 230:270].plot(ax=axs[0], cmap='copper') axs[1].plot(ds.time[0:24], ds.OilConcentration_2D[0:24].max(axis=1).max(axis=1)); axs[1].plot(ds.time[0:24], ds.OilConcentration_2D[0:24].sum(axis=1).sum(axis=1), 'o-'); ###Output _____no_output_____ ###Markdown NetCDF 3D Oil Concentration ###Code fig, axs = plt.subplots(1, 2, figsize=(15, 5)) it = 5 ds.OilConcentration_3D[it, :, 460:500 , 230:270].sum(axis=0).plot(ax=axs[0], cmap='copper') axs[1].plot(ds.time[0:24], ds.OilConcentration_3D[0:24].sum(axis=1).max(axis=1).max(axis=1)); axs[1].plot(ds.time[0:24], ds.OilConcentration_3D[0:24].sum(axis=1).sum(axis=1).sum(axis=1), 'o-'); fig, ax = plt.subplots(1, 1) for i in range(465, 475): ax.plot(ds.OilConcentration_3D[it, :, i, 250], -mesh.gdepw_1d[0, ::-1], 'o-', label=str(i)); ax.legend(); ###Output _____no_output_____ ###Markdown HDF5 File Considering the Particles ###Code hdf['Grid']['VerticalZ']['Vertical_00010'] imin, imax = 470, 485 jmin, jmax = 230, 255 plt.pcolormesh(hdf['Grid']['VerticalZ']['Vertical_00001'][39].transpose(), cmap='bwr') plt.plot([240, 241], [480, 478], 'rx'); plt.xlim((jmin,jmax)) plt.ylim((imin, imax)); plt.colorbar(); hdf['Time']['Time_00019'][:] hdf['Results']['Number']['Number_00010'] imin, imax = 470, 485 jmin, jmax = 230, 255 plt.pcolormesh(hdf['Results']['Number']['Number_00012'][38].transpose(), cmap=cm.speed) plt.plot([240, 241], [480, 478], 'rx'); plt.xlim((jmin,jmax)) plt.ylim((imin, imax)); plt.colorbar(); hdf['Results']['Percentage Contaminated']['Percentage Contaminated_00012'] imin, imax = 470, 485 jmin, jmax = 230, 255 plt.pcolormesh(hdf['Results']['Percentage Contaminated']['Percentage Contaminated_00014'][39].transpose(), cmap=cm.speed) plt.plot([240, 241], [480, 478], 'rx'); plt.xlim((jmin,jmax)) plt.ylim((imin, imax)); plt.colorbar(); fig, ax = plt.subplots(1, 1, figsize = (10, 10)) imin, imax = 470, 485 jmin, jmax = 230, 255 colour = ax.pcolormesh(hdf['Grid']['Longitude'][:], hdf['Grid']['Latitude'][:], hdf['Grid']['Bathymetry'][:], cmap=cm.deep) fig.colorbar(colour) for i in range (2000): if hdf['Results']['OilSpill']['Beached']['Beached_00190'][i] > 1: # print (i, hdf['Results']['OilSpill']['Longitude']['Longitude_00190'][i], # hdf['Results']['OilSpill']['Latitude']['Latitude_00190'][i]) ax.plot(hdf['Results']['OilSpill']['Longitude']['Longitude_00190'][i], hdf['Results']['OilSpill']['Latitude']['Latitude_00190'][i], 'rx') ax.set_xlim((-125, -123.5)) ax.set_ylim((49.2, 49.7)); diffy = (hdf['Results']['Group_1']['Data_1D']['Beached']['Beached_00010'][:] - hdf['Results']['OilSpill']['Beached']['Beached_00010'][:]) diffy.max() hdf['Results']['OilSpill']['Data_2D'].keys() hdf['Results']['OilSpill']['Data_3D'].keys() hdf['Results']['OilSpill']['Data_2D']['Beaching Volume']['Beaching Volume_00190'][:].min() for i in range(9): vstring = f'Volume_0000{i+1}' print (i+1, hdf['Results']['OilSpill']['Volume'][vstring][:].max()) for i in range(10): vstring = f'Volume_0001{i}' print (i+10, hdf['Results']['OilSpill']['Volume'][vstring][:].max()) summit =np.zeros((40, 396, 896)) for i in range(9): vstring = f'OilConcentration_3D_0000{i+1}' print (i+1, hdf['Results']['OilSpill']['Data_3D']['OilConcentration_3D'][vstring][:].max()) summit = summit + hdf['Results']['OilSpill']['Data_3D']['OilConcentration_3D'][vstring][:] for i in range(10): vstring = f'OilConcentration_3D_0001{i}' print (i+10, hdf['Results']['OilSpill']['Data_3D']['OilConcentration_3D'][vstring][:].max()) summit = summit + hdf['Results']['OilSpill']['Data_3D']['OilConcentration_3D'][vstring][:] plt.pcolormesh(summit[39].transpose()) plt.colorbar() imin, imax = 470, 485 jmin, jmax = 230, 255 plt.xlim((jmin, jmax)); plt.ylim((imin-19, imax)); OilSpill = hdf['Results']['OilSpill'] Xpos, Ypos, Zpos = OilSpill['X Pos'], OilSpill['Y Pos'], OilSpill['Z Pos'] fig, ax = plt.subplots(1, 1) for i in range(9): xstring = f'X Position_0000{i+1}' ystring = f'Y Position_0000{i+1}' ax.plot(Xpos[xstring][0] - Xpos[f'X Position_00001'][0], Ypos[ystring][0] - Ypos[f'Y Position_00001'][0], 'o', color='tab:blue') ax.plot(Xpos[xstring][10] - Xpos[f'X Position_00001'][0], Ypos[ystring][10] - Ypos[f'Y Position_00001'][0], 'o', color='tab:orange') ax.plot(Xpos[xstring][20] - Xpos[f'X Position_00001'][0], Ypos[ystring][20] - Ypos[f'Y Position_00001'][0], 'o', color='tab:green') ax.plot(Xpos[xstring][50] - Xpos[f'X Position_00001'][0], Ypos[ystring][50] - Ypos[f'Y Position_00001'][0], 'o', color='tab:pink') for i in range(10): xstring = f'X Position_0001{i}' ystring = f'Y Position_0001{i}' ax.plot(Xpos[xstring][0] - Xpos[f'X Position_00001'][0], Ypos[ystring][0] - Ypos[f'Y Position_00001'][0], 'x', color='tab:blue') ax.plot(Xpos[xstring][10] - Xpos[f'X Position_00001'][0], Ypos[ystring][10] - Ypos[f'Y Position_00001'][0], 'x', color='tab:orange') ax.plot(Xpos[xstring][20] - Xpos[f'X Position_00001'][0], Ypos[ystring][20] - Ypos[f'Y Position_00001'][0], 'x', color='tab:green') ax.plot(Xpos[xstring][50] - Xpos[f'X Position_00001'][0], Ypos[ystring][50] - Ypos[f'Y Position_00001'][0], 'x', color='tab:pink') fig, ax = plt.subplots(1, 1) for i in range(9): xstring = f'X Position_0000{i+1}' zstring = f'Z Position_0000{i+1}' ax.plot(Xpos[xstring][0] - Xpos[f'X Position_00001'][0], Zpos[zstring][0] - Zpos[f'Z Position_00001'][0], 'o', color='tab:blue') ax.plot(Xpos[xstring][10] - Xpos[f'X Position_00001'][0], Zpos[zstring][10] - Zpos[f'Z Position_00001'][0], 'o', color='tab:orange') ax.plot(Xpos[xstring][20] - Xpos[f'X Position_00001'][0], Zpos[zstring][20] - Zpos[f'Z Position_00001'][0], 'o', color='tab:green') ax.plot(Xpos[xstring][50] - Xpos[f'X Position_00001'][0], Zpos[zstring][50] - Zpos[f'Z Position_00001'][0], 'o', color='tab:pink') for i in range(10): xstring = f'X Position_0001{i}' zstring = f'Z Position_0001{i}' ax.plot(Xpos[xstring][0] - Xpos[f'X Position_00001'][0], Zpos[zstring][0] - Zpos[f'Z Position_00001'][0], 'x', color='tab:blue') ax.plot(Xpos[xstring][10] - Xpos[f'X Position_00001'][0], Zpos[zstring][10] - Zpos[f'Z Position_00001'][0], 'x', color='tab:orange') ax.plot(Xpos[xstring][20] - Xpos[f'X Position_00001'][0], Zpos[zstring][20] - Zpos[f'Z Position_00001'][0], 'x', color='tab:green') ax.plot(Xpos[xstring][50] - Xpos[f'X Position_00001'][0], Zpos[zstring][50] - Zpos[f'Z Position_00001'][0], 'x', color='tab:pink') field = hdf['Results']['Number']['Number_00013'] plt.pcolormesh(field[-1].transpose()); plt.plot(251+0.5, 473+0.5, 'rx') plt.colorbar(); plt.xlim(240, 255); plt.ylim(465, 480); print(field[:].max(axis=0).max(axis=0).max(axis=0), field[:].sum(axis=0).sum(axis=0).sum(axis=0), field[-1].sum(axis=0).sum(axis=0)) for i in range(9): nstring = f'Number_0000{i+1}' zstring = f'Z Position_0000{i+1}' print(i, Zpos[zstring][:].max(), hdf['Results']['Number'][nstring][:].sum(axis=0).sum(axis=0).sum(axis=0)) for i in range(10): nstring = f'Number_0001{i}' zstring = f'Z Position_0001{i}' print(i+10, Zpos[zstring][:].max(), hdf['Results']['Number'][nstring][:].sum(axis=0).sum(axis=0).sum(axis=0)) fig, ax = plt.subplots(1, 1) for j in range(243, 251): plt.plot(ds.Oil_Arrival_Time[:, j], label=str(j)); ax.set_xlim(460, 480) ax.legend(); fig, ax = plt.subplots(1, 1) for j in range(240, 248): plt.plot(ds.Beaching_Time[:, j], label=str(j)); ax.set_xlim(470, 490) ax.legend(); fig, ax = plt.subplots(1, 1) ax.pcolormesh(mesh.tmask[0, 0]) ax.set_ylim(460, 485) ax.set_xlim(230, 270) ax.plot([240, 241], [480, 478], 'rx'); it = 17 fig, ax = plt.subplots(1, 1) ax.pcolormesh(mesh.tmask[0, 0]) imin, imax = 470, 485 jmin, jmax = 230, 255 ax.set_ylim(imin, imax) ax.set_xlim(jmin, jmax) for i in range(imin, imax): for j in range(jmin, jmax): if ds.OilConcentration_2D[it, i, j] != 0: # print(i, j, ds.time[it].values, ds.OilConcentration_2D[it, i, j].values) plt.plot(j, i, 'bo') if ds.Beaching_Time[i, j] > ds.time[0].values and ds.Beaching_Time[i, j] <= ds.time[it].values: # print(i, j, ds.time[it].values, ds.Beaching_Time[i, j].values) plt.plot(j, i, 'rx') ds.Dissolution_3D[17, :, imin:imax, jmin:jmax].sum(axis=0).plot(cmap='copper') it = 17 fig, ax = plt.subplots(1, 1) ax.pcolormesh(mesh.tmask[0, 0]) imin, imax = 470, 485 jmin, jmax = 230, 255 ax.set_ylim(imin, imax) ax.set_xlim(jmin, jmax) for i in range(imin, imax): for j in range(jmin, jmax): if ds.OilConcentration_2D[it, i, j] != 0: # print(i, j, ds.time[it].values, ds.OilConcentration_2D[it, i, j].values) plt.plot(j, i, 'bo') if ds.Beaching_Time[i, j] > ds.time[0].values and ds.Beaching_Time[i, j] <= ds.time[it].values: # print(i, j, ds.time[it].values, ds.Beaching_Time[i, j].values) plt.plot(j, i, 'rx') if ds.Dissolution_3D[it, :, i, j].sum() != 0: plt.plot(j, i, 'k+') plt.plot(ds.Dissolution_3D[it, :, 480, 240], mesh.gdepw_1d[0] - 432) plt.pcolormesh(mesh.mbathy[0, imin:imax, jmin:jmax]) plt.colorbar(); it = 20 fig, ax = plt.subplots(1, 1) ax.pcolormesh(mesh.mbathy[0]) imin, imax = 475, 490 jmin, jmax = 230, 255 ax.set_ylim(imin, imax) ax.set_xlim(jmin, jmax) for i in range(imin, imax): for j in range(jmin, jmax): if ds.OilConcentration_2D[it, i, j] != 0: # print(i, j, ds.time[it].values, ds.OilConcentration_2D[it, i, j].values) plt.plot(j, i, 'bo') if ds.Beaching_Time[i, j] > ds.time[0].values and ds.Beaching_Time[i, j] <= ds.time[it].values: # print(i, j, ds.time[it].values, ds.Beaching_Time[i, j].values) plt.plot(j, i, 'rx') if ds.Dissolution_3D[it, :, i, j].sum() != 0: plt.plot(j, i, 'm+') plt.plot(ds.Dissolution_3D[20, :, :, :].sum(axis=1).sum(axis=1), -mesh.gdepw_1d[0, ::-1], 'o-'); it = 2 fig, ax = plt.subplots(1, 1) ax.pcolormesh(mesh.mbathy[0]) imin, imax = 470, 485 jmin, jmax = 230, 255 ax.set_ylim(imin, imax) ax.set_xlim(jmin, jmax) for i in range(imin, imax): for j in range(jmin, jmax): if ds.OilConcentration_2D[it, i, j] != 0: # print(i, j, ds.time[it].values, ds.OilConcentration_2D[it, i, j].values) plt.plot(j, i, 'bo') if ds.Beaching_Time[i, j] > ds.time[0].values and ds.Beaching_Time[i, j] <= ds.time[it].values: # print(i, j, ds.time[it].values, ds.Beaching_Time[i, j].values) plt.plot(j, i, 'rx') if ds.OilConcentration_3D[it, :, i, j].sum() != 0: plt.plot(j, i, 'm+') hdf['Results']['OilSpill']['Data_3D']['Dissolution_3D'].keys() field = hdf['Results']['OilSpill']['Data_3D']['Dissolution_3D']['Dissolution_3D_00031'] for item in field.attrs.keys(): print (item + ":", field.attrs[item]) print (field.attrs["Units"].decode()) field = hdf['Results']['OilSpill']['Data_2D']['Beaching Volume']['Beaching Volume_00031'] for item in field.attrs.keys(): print (item + ":", field.attrs[item]) print (field.attrs["Units"].decode()) print (hdf5_file) for group in hdf5_file.root.Results.OilSpill.Data_2D: print (group) ###Output /data/sallen/results/MIDOSS/Lagrangian_DieselFuel_refined_15jan18-22jan18_Diesel.hdf5
IBM_skillsnetwork/a2_w1_s3_SparkML_SVM.ipynb
###Markdown This notebook is designed to run in a IBM Watson Studio Apache Spark runtime. In case you are running it in an IBM Watson Studio standard runtime or outside Watson Studio, we install Apache Spark in local mode for test purposes only. Please don't use it in production. ###Code !pip install --upgrade pip if not ('sc' in locals() or 'sc' in globals()): print('It seems you are note running in a IBM Watson Studio Apache Spark Notebook. You might be running in a IBM Watson Studio Default Runtime or outside IBM Waston Studio. Therefore installing local Apache Spark environment for you. Please do not use in Production') from pip import main main(['install', 'pyspark==2.4.5']) from pyspark import SparkContext, SparkConf from pyspark.sql import SparkSession sc = SparkContext.getOrCreate(SparkConf().setMaster("local[*]")) spark = SparkSession \ .builder \ .getOrCreate() ###Output _____no_output_____ ###Markdown In case you want to learn how ETL is done, please run the following notebook first and update the file name below accordinglyhttps://github.com/IBM/coursera/blob/master/coursera_ml/a2_w1_s3_ETL.ipynb ###Code # delete files from previous runs !rm -f hmp.parquet* # download the file containing the data in PARQUET format !wget https://github.com/IBM/coursera/raw/master/hmp.parquet # create a dataframe out of it df = spark.read.parquet('hmp.parquet') # register a corresponding query table df.createOrReplaceTempView('df') splits = df.randomSplit([0.8, 0.2]) df_train = splits[0] df_test = splits[1] from pyspark.ml.feature import StringIndexer from pyspark.ml.feature import OneHotEncoder from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import MinMaxScaler indexer = StringIndexer(inputCol="class", outputCol="label") encoder = OneHotEncoder(inputCol="label", outputCol="labelVec") vectorAssembler = VectorAssembler(inputCols=["x","y","z"], outputCol="features") normalizer = MinMaxScaler(inputCol="features", outputCol="features_norm") from pyspark.ml.classification import LinearSVC lsvc = LinearSVC(maxIter=10, regParam=0.1) df.createOrReplaceTempView('df') df_two_class = spark.sql("select * from df where class in ('Use_telephone','Standup_chair')") splits = df_two_class.randomSplit([0.8, 0.2]) df_train = splits[0] df_test = splits[1] from pyspark.ml import Pipeline pipeline = Pipeline(stages=[indexer, encoder, vectorAssembler, normalizer,lsvc]) model = pipeline.fit(df_train) prediction = model.transform(df_train) from pyspark.ml.evaluation import BinaryClassificationEvaluator # Evaluate model evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction") evaluator.evaluate(prediction) prediction = model.transform(df_test) evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction") evaluator.evaluate(prediction) ###Output _____no_output_____
DAY 201 ~ 300/DAY279_[Programmers] 이상한 문자 만들기 (Python).ipynb
###Markdown 2020년 12월 19일 토요일 Programmers - 이상한 문자 만들기 (Python) 문제 : https://programmers.co.kr/learn/courses/30/lessons/12930 블로그 : https://somjang.tistory.com/entry/Programmers-이상한-문자-만들기-Python 첫번째 시도 ###Code def solution(s): s_split = s.split(" ") for k in range(len(s_split)): s_list = list(s_split[k]) for i in range(len(s_list)): if i % 2 == 0: s_list[i] = s_list[i].upper() elif i % 2 == 1: s_list[i] = s_list[i].lower() s_split[k] = "".join(s_list) answer = " ".join(s_split) return answer ###Output _____no_output_____
Session3/1.TextProcessing.ipynb
###Markdown Text MiningText mining is the process of automatically extracting high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning.Typical text mining applications include:- Text classification (or text categorization),- Text clustering, - Sentiment analysis,- Named entity recognition, etc. In this notebook:1. Preprocessing: textual normalization, simple tokenization2. Stopword removal: its importance3. Verify Zipf Law with Oshumed medical abstract collection --- How to use this notebookThis environment is called [*Jupyter Notebook*](http://jupyter.org/).It has two types of *cells*: * Markdown cells (like this one, where you can write notes) * Code cellsRun code cells by pressing **Shift+Enter**. Let's try... ###Code # Run me: press Shift+Enter print("Hello, world!!") ###Output _____no_output_____ ###Markdown This is a hands on session, so this is time you write some of code. Let's try that. ###Code # Write code to print any string... # Then run the code. ###Output _____no_output_____ ###Markdown --- Preprocessing Upper case, PunctuationsA computer does not **require** upper case letters and punctuations. Note: Python already provides a list of punctuations. We simply need to import it. ###Code from string import punctuation s = "Hello, World!!" # Write code to lower case the string s = ... # Write code to remove punctuations # HINT: for loop and for each punctuation use string replace() method for ... s = ... print(s) ###Output _____no_output_____ ###Markdown Tokenization : NLTK[Natural Language Toolkit (NLTK)](http://www.nltk.org/) is a platform to work with human or natural language data using Python.As usual, we will first convert everything to lowercase and remove punctuations. ###Code raw1 = "Grenoble is a city in southeastern France, at the foot of the French Alps, on the banks of Isère." raw2 = "Grenoble is the capital of the department of Isère and is an important scientific centre in France." # Write code here to convert everything in lower case and to remove punctuation. print(raw1) print(raw2) # Again, SHIFT+ENTER to run the code. ###Output _____no_output_____ ###Markdown NLTK already provides us with modules to easily tokenize the text. We will tokenize pieces of raw texts using `word_tokenize` function of NLTK package. ###Code import nltk # Tokenization using NLTK tokens1 = nltk.word_tokenize(raw1) tokens2 = nltk.word_tokenize(raw2) # print the tokens print(tokens1) print(tokens2) ###Output _____no_output_____ ###Markdown We now build a **NLTK Text** object to store tokenized texts. One or more text then can be merged to form a **TextCollection**. This provides many useful operations helpful to statistically analyze a collection of text. ###Code # Build NLTK Text objects text1 = nltk.Text(tokens1) text2 = nltk.Text(tokens2) # A list of Text objects text_list = [text1, text2] # Build NLTK text collection text_collection = nltk.text.TextCollection(text_list) ###Output _____no_output_____ ###Markdown NLTK TextCollection object can be used to calculate basic statistics. 1. count the number of occurances (or term frequency) of a word 2. obtain a frequency distribution of all the words in the textNote: The NLTK Text objects created in the intermediate steps can also be used to calculate similar statistics at document level. ###Code # Frequency of a word freq = text_collection.count("grenoble") print("Frequency of word \'grenoble\' = ", freq) # Frequency distribution freq_dist = nltk.FreqDist(text_collection) freq_dist ###Output _____no_output_____ ###Markdown Let's automate: write a functionUsing above steps, we will now write a function. We will call this function **raw_to_text**. This function will take a list of raw texts and will return a NLTK TextCollection objects, representing the list of input text. ###Code """ Converts a list of raw text to a NLTK TextCollection object. Applies lower-casing and punctuation removal. Returns: text_collection - a NLTK TextCollection object """ def raw_to_text(raw_list): text_list = [] for raw in raw_list: # Write code for lower-casing and punctuation removal # Write code to tokenize and create NLTK Text object # Name the variable 'text' to store the Text object # storing the text in the list text_list.append(text) # Write code to create TextCollection from the list text_list text_collection = nltk.text.TextCollection(text_list) # TO DELETE # return text collection return text_collection ###Output _____no_output_____ ###Markdown Let's test the function with some sample data ###Code raw_list_sample = ["The dog sat on the mat.", "The cat sat on the mat!", "We have a mat in our house."] # Call the above raw_to_text function for the sample text text_collection_sample = ... ###Output _____no_output_____ ###Markdown Like before we can compute the frequency distribution for this collection. ###Code # Write code to compute the frequency 'mat' in the collection. freq = ... print("Frequency of word \'mat\' = ", freq) # Write code to compute and display the frequency distribution of text_collection_sample ###Output _____no_output_____ ###Markdown Something biggerWe will use [**DBPedia** Ontology Classification Dataset](https://drive.google.com/open?id=0Bz8a_Dbh9QhbQ2Vic1kxMmZZQ1k). It includes first paragraphs of Wikipedia articles. Each paragraph is assigned one of **14 categories**. Here is an example of an abstract under *Written Work* catgory:>The Regime: Evil Advances/Before They Were Left Behind is the second prequel novel in the Left Behind series written by Tim LaHaye and Jerry B. Jenkins. It was released on Tuesday November 15 2005. This book covers more events leading up to the first novel Left Behind. It takes place from 9 years to 14 months before the Rapture.In this hands-on we will use 15,000 documents belonging to three categories, namely *Album*, *Film* and *Written Work*.The file **corpus.txt** supplied here, contains 15,000 documents. Each line of the file is a document.Now we will: 1. Load the documents as a list 2. Create a NLTK TextCollection 3. Analyze different counts Note: Each line of the file **corpus.txt** is a document ###Code # Write code to load documents as a list """ Hint 1: open the file using open() Hint 2: use read() to load the content Hint 3: use splitlines() to get separate documents """ raw_docs = ... print("Loaded " + str(len(raw_docs)) + " documents.") # Write code to create a NLTK TextCollection # Hint: use raw_to_text function text_collection = ... # Print total number of words in these documents print("Total number of words = ", len(text_collection)) print("Total number of unique words = ", len(set(text_collection))) ###Output _____no_output_____ ###Markdown Calculate the freq distribution for this text collection of documents. Then let's see the most common words. ###Code # Write code to compute frequency distribution of text_collection freq_dist = ... # Let's see most common 10 words. freq_dist.most_common(10) ###Output _____no_output_____ ###Markdown **Something does not seem right!!** Can you point out what?Let's try by visualizing it. ###Code # importing Python package for plotting import matplotlib.pyplot as plt # To plot plt.subplots(figsize=(12,10)) freq_dist.plot(30, cumulative=True) ###Output _____no_output_____ ###Markdown **Observations:** 1. Just 30 most frequent tokens make up around 260,000 out of 709,460 ($\approx 36.5\%$) 2. Most of these are very common words such as articles, pronouns etc. Stop word filtering Stop words are words which are filtered out before or after processing of natural language data (text). There is no universal stop-word list. Often, stop word lists include short function words, such as "the", "is", "at", "which", and "on". Removing stop-words has been shown to increase the performance of different tasks like search. A file of **stop_words.txt** is included. We will now: 1. Load the contents of the file 'stop_words.txt' where each line is a stop word, and create a stop-word list. 2. Modify the function **raw_to_text** to perform (a) stop-word removal (b) numeric words removal Note: Each line of the file **stop_words.txt** is a stop word. ###Code # Write code to load stop-word list from file 'stop_words.txt' # Hint: use the same strategy you used to load documents stopwords = set(...) """ VERSION 2 Converts a list of raw text to a NLTK TextCollection object. Applies lower-casing, punctuation removal and stop-word removal. Returns: text_collection: a NLTK TextCollection object """ # Write function "raw_to_text_2". """ Hint 1: consult the above function "raw_to_text", Hint 2: add a new block in the function for removing stop words Hint 3: to remove stop words from a of tokens - - create an ampty list to store clean tokens - for each token in the token list: if the token is not in stop word list store it in the clean token list """ ###Output _____no_output_____ ###Markdown Retest our small sample with the new version. ###Code raw_list_sample = ["The dog sat on the mat.", "The cat sat on the mat!", "We have a mat in our house."] # Write code to obtain and see freq_dist_sample with the new raw_to_text_2 # Note: raw_to_text_2 takes two inputs/arguments text_collection_sample = ... freq_dist_sample = ... freq_dist_sample ###Output _____no_output_____ ###Markdown Finally, rerun with the bigger document set and replot the cumulative word frequencies.Recall that we already have the documents loaded in the variable **raw_docs** ###Code # Write code to create a NLTK TextCollection with raw_to_text_2 text_collection = ... # Write code to compute frequency distribution of text_collection freq_dist = ... # Write code to plot the frequencies again ###Output _____no_output_____ ###Markdown Zipf lawVerify whether the dataset follows the Zipf law, by plotting the data on a log-log graph, with the axes being log (rank order) and log (frequency). You expect to obtain an alomost straight line. ###Code import numpy as np import math counts = np.array(list(freq_dist.values())) tokens = np.array(list(freq_dist.keys())) ranks = np.arange(1, len(freq_dist)+1) # Obtaining indices that would sort the array in descending order indices = np.argsort(-counts) frequencies = counts[indices] # Plotting the ranks vs frequencies plt.subplots(figsize=(12,10)) plt.yscale('log') plt.xscale('log') plt.title("Zipf plot for our data") plt.xlabel("Frequency rank of token") plt.ylabel("Absolute frequency of token") plt.grid() plt.plot(ranks, frequencies, 'o', markersize=0.9) for n in list(np.logspace(-0.5, math.log10(len(counts)-1), 17).astype(int)): dummy = plt.text(ranks[n], frequencies[n], " " + tokens[indices[n]], verticalalignment="bottom", horizontalalignment="left") plt.show() ###Output _____no_output_____
notebooks/04-Persistence-model.ipynb
###Markdown Persistence modelThe persistence model is used as a reference model for both the LSTM and the DTW measure.__Remark: Make sure that the previous notebooks have at least ran once to ensure the necessary files exists__ ###Code import sys import numpy as np import pandas as pd sys.path.append('../') from src.data.build_input import controlled_train_test_split from src.dtw.dtw_measure import dtw_measure from src.model.metrics import evaluate ###Output _____no_output_____ ###Markdown Start by reading in the data ###Code startdate = '14-01-2001' enddate = '01-01-2016' data = pd.read_hdf('../data/interim/data.h5', 'data') data = data[startdate:enddate] _, test = controlled_train_test_split(data) output = 'Dst' time_forward = 6 ###Output _____no_output_____ ###Markdown To make the method as accurate as possible, we first divide the data into continuous blocks. ###Code def extract_cont_intervals_from_index(index): r'''Check lookup table for time discontinuities output: Returns list of continouos times inside the lookup table ''' min_size = 10 timeseries = [] p = True series = index while len(series) > 0: # We can assume that the series starts from non-missing values, so the first diff gives sizes of continous intervals diff = pd.date_range(series[0], series[-1], freq='H').difference(series) if len(diff) > 0: if pd.Timedelta(diff[0] - pd.Timedelta('1h') - series[0])/pd.Timedelta('1h') > min_size: v1 = np.datetime64(series[0]) v2 = np.datetime64(diff[0] - pd.Timedelta('1h')) timeseries.append([v1, v2]) if pd.Timedelta(series[-1] - diff[-1] - pd.Timedelta('1h'))/pd.Timedelta('1h') > min_size: v1 = np.datetime64(diff[-1] + pd.Timedelta('1h')) v2 = np.datetime64(series[-1]) timeseries.append([v1, v2]) diff = pd.date_range(diff[0], diff[-1], freq='H').difference(diff) else: # Only when diff is empty v1 = np.datetime64(series[0]) v2 = np.datetime64(series[-1]) timeseries.append([v1, v2]) series = diff return np.array(timeseries) ###Output _____no_output_____ ###Markdown Define the persistence model ###Code def persistence_predict(data, time): '''Forecast a given feature for a given forecast time Input: data: pandas dataframe containing all the to be forecasted features time: time to be forecasted Output: res: panas dataframe ''' res = data.shift(time) return res ###Output _____no_output_____ ###Markdown Now we can apply the dtw measure to every continuous block extracted from the previous method. ###Code def persistence_dtw_measure(data, time_forward): # Allow only one feature at the time assert(data.shape[1] == 1) pers = data.copy() for i in range(time_forward): pers['T_{}'.format(i+1)] = persistence_predict(data, i+1) pers = pers.dropna() # remove NaN-values intervals = extract_cont_intervals_from_index(pers.index) bincounts = np.zeros((time_forward,7)) length = intervals.shape[0] for num, (start, stop) in enumerate(intervals): print('{} out of {} blocks'.format(num+1, length)) month = pers[start:stop] for i in range(time_forward): _, path, _ = dtw_measure(month['T_{}'.format(i+1)].to_numpy(), month.iloc[:,0].to_numpy(), 6) bins, counts = np.unique(abs(path[0, :] - path[1, :]), return_counts=True) bincounts[i, bins] += counts bincounts = pd.DataFrame(data=bincounts, index=np.arange(1, time_forward+1), columns=np.arange(7)) return bincounts ###Output _____no_output_____ ###Markdown The persistence model can also be evaluated with the metrics defined by Liemohn et. al. This method combines both the dtw measure and this evaluation. ###Code def persistence_eval(features, time_forward, dtw=True): r'''Evaluation of the persistence model. This model does the standard metric test, together with a dtw count. The dtw count keeps into consideration discontinuities, splitting the data in continuous pieces first. Evaluates times [1, 2, ..., time_forward] Input: data: Pandas dataframe with DateTime index and to be forecasted features time_forward: Number of hours evaluated dtw: boolean, run dtw measure when true Output: dtw-result is written to a file directly res: Metric evaluation ''' if dtw: bincounts = persistence_dtw_measure(features, time_forward) else: bincounts = None data_all = np.repeat(features.to_numpy()[time_forward+1:-time_forward], time_forward, axis=1) pers_all = np.zeros(data_all.shape) for i, t in enumerate(range(1, 1+time_forward)): persist = persistence_predict(features, t) pers_all[:, t-1] = persist.to_numpy()[time_forward+1:-time_forward, 0] i += 1 res = evaluate(pers_all, data_all) return res, bincounts pers_res, bincounts = persistence_eval(test[[output]], 6) ###Output 1 out of 45 2 out of 45 3 out of 45 4 out of 45 5 out of 45 6 out of 45 7 out of 45 8 out of 45 9 out of 45 10 out of 45 11 out of 45 12 out of 45 13 out of 45 14 out of 45 15 out of 45 16 out of 45 17 out of 45 18 out of 45 19 out of 45 20 out of 45 21 out of 45 22 out of 45 23 out of 45 24 out of 45 25 out of 45 26 out of 45 27 out of 45 28 out of 45 29 out of 45 30 out of 45 31 out of 45 32 out of 45 33 out of 45 34 out of 45 35 out of 45 36 out of 45 37 out of 45 38 out of 45 39 out of 45 40 out of 45 41 out of 45 42 out of 45 43 out of 45 44 out of 45 45 out of 45 ###Markdown Here the results are displayed. The first are the metric results, the second presents the dtw measure results. ###Code new_ind = dict(list(enumerate(['t+{}'.format(i+1) for i in range(6)]))) pd.DataFrame.from_dict(pers_res).rename(index=new_ind) bincounts def reformat_dtw_res(df, filename=None): '''Normalize the result from the dtw measure ''' res = df.div(df.sum(axis=1), axis=0) shifts = np.array(['t+{}h'.format(i+1) for i in np.arange(res.shape[0])]) res['Prediction'] = shifts.T res = res.set_index('Prediction') res.columns = ['{}h'.format(i) for i in res.columns] res = res.apply(lambda x: round(x, 3)) if filename: res.to_csv('{}reformated_{}'.format(path, filename)) return res reformat_dtw_res(bincounts) ###Output _____no_output_____
Day6/5_Lists_Tuples.ipynb
###Markdown Lists--> It is similar to arrays. > It can contain any type of variable of distinct type ###Code # empty list # type your code here3 l=[] print(l) # type your code here1 st = [1,2,3,4] print(st) # type your code here2 st = [1,22.33,"Machine"] print(st) # type your code here print(type(st)) st = ['A','B','C','D','E'] # type your code here4 print(st[0]) print(st[3]) print(st[-1]) print('A' in st) print('X' in st) ###Output A D E True False ###Markdown Lists are mutable. It means we can change an item in a list by accessing it as a part of the assignment statement. ###Code st = ['A','B','C','D','E'] print(st) # type your code here5 st[1]=88 print(st) # type your code here6 'B' in st # List of lists l=[1,2,[100,200,300],22.3,[99,100,[44,32],21],76] # type your code here1 print(l) print(l[0]) print(l[2]) print(l[2][0]) print(l[2][2]) print(l[4][2][1]) # type your code here2 l=(1,2,[100,200,300],22.3,[99,100,[44,32],21],76) print(l[4][2][1]) l=[1,2,3,2,4,5] print(l) # type your code here1.6 l.remove(2) print(l) l.remove(2) print(l) l=[1,2,3,4,5] l.remove(22) print(l) # type your code here1*7 l=[1,2,3,4,5] print(l) del l[1] print(l) # Concatenation l1=[1,2,3] l2=[11,12,13] # type your code here18 l1+l2 ###Output _____no_output_____ ###Markdown Traversing a list-- ###Code names=["Darshan","Python Trainer", "Deep Learning Trainer", "ML Trainer"] # type your code here7 for i in names: print(i) # pop method s=[1,2,3,4,5,6,7,55,44] # type your code here1*-9 s.pop() print(s) # type your code here21 s.pop(1) s # type your code here2*3 l1=[3,2,1,5,4] print(l1) print(l1[:]) print(min(l1)) print(max(l1)) l1.insert(2,999) print(l1) l1.append(777) print(l1) l1.sort() print(l1) l1.reverse() print(l1) l1.clear() print(l1) l = [10,20] c = ["a","b"] print(l) print(c) l.extend(c) print(l) # * means repetition # type your code here2/4 [0]*5 # type your code here2=5 [1,"Lets Upgrade",5]*5 ###Output _____no_output_____ ###Markdown Tuples--> Tuple is similar to a list. However, in tuples, we cannot change the elements after assignment i.e they are immutable.> Each element or value inside the tuple is called an item. ###Code # type your code here2=6 s = ('y','v','angle') print(s) print(type(s)) # empty tuple # type your code here2..8 t = () print(t) print(type(t)) # type your code here3 t = (1.0) print(t) print(type(t)) # Single value tuple must use a __________________ # type your code here t=(1,) print(t) print(type(t)) l = [1.0] print(type(l)) # type your code here3+3 t = (1,2,33.4443,5,6) # type your code here print(t[1:3]) print(t[1:]) print(t[:4]) print(t[::-1]) print(t[-5:-1]) t1 = (1,2,3) t2 = (4,5,6) t1+t2 t1*4 3 in t1 len(t1) max(t1) min(t1) ###Output _____no_output_____ ###Markdown Variable Length Arguments.-- ###Code def var(*args): print(args) # type your code here4%5 var(1) var(1,2,3) var("darshan","Lets Upgrade",32) var() # + concatenation # * repetition t1=(1,2,3) t2=(5,6,4,1) print(t1+t2) print(t1*3) print(len(t1)) print(max(t1)) print(min(t1)) print(tuple([1,2,3,4,5,6])) ###Output (1, 2, 3, 5, 6, 4, 1) (1, 2, 3, 1, 2, 3, 1, 2, 3) 3 3 1 (1, 2, 3, 4, 5, 6)
files/02_HackyHour_2017-03-14/hackyhour-notebook.ipynb
###Markdown What are jupyter-notebooks?* Documents that contain rich text and executable code* Browser based app that allows editing and execution of notebooks* Kernels as "computational engines" that execute the code* (Dashboard as filebrowser for notebooks) Commanding (running) and editing cellsNotebook content is structured in different *cells* of arbitrary sizeEnter *command mode* with __ESC__ key -> navigate between cells, copy & paste content, run cells...Enter *editing mode* with __RETURN__ key -> normal text editing Cell content: markdownMake cell a *markdown* cell with __M__ key (in command mode) -> write headings, bullet points, emphasis, LaTeX... this is a new heading*this is italic text** this is a list of * some* bullet points fancy latex $\Rightarrow\mu\nabla^2\underbrace{\left[\frac{\partial^2w}{\partial X^2} + \frac{\partial^2w}{\partial Y^2} + \frac{\partial^2w}{\partial Z^2}\right.}_{=\nabla^2w} - \frac{\partial}{\partial Z}\underbrace{\left.\left(\frac{\partial u}{\partial X} + \frac{\partial v}{\partial Y} + \frac{\partial w}{\partial Z}\right)\right]}_{\overset{(4)}{=} 0}= g\underbrace{\left(\frac{\partial^2\theta}{\partial Y^2} + \frac{\partial\theta^2}{\partial X^2}\right)}_{=\nabla^2\theta - \frac{\partial^2\theta}{\partial Z^2}}$ Cell content: codeMake cell a *code* cell with __Y__ key -> write normal python code, cells share single namespace over the whole document ###Code #comments and numbers work normally 1 + 1 #strings too s = 'hello hacky people' s #variables can be assigned and will be known to all cells below this one a,b = (10,10) #output without print-statement only works if at the end of a cell print(a+b) #functions and classes can be defined like normal def MyFunction(a,b): return [a+b,a-b,a*b,a/b] MyFunction(a,b) ###Output 20 ###Markdown LibrariesJupyter-notebooks have acess to all python libraries in your python distribution! ###Code import numpy as np c = np.arange(0,16).reshape((4,4)) d = np.ones((4,4)) #numpy arrays work! print('marix c:\n',c) print('matrix d:\n',d) #a is still know from before... see? print('scalar times matrix:\n',a*c) print('matrix times matrix:\n',np.dot(c,d)) #by the way: error messages and tracebacks work as well... :/ import seaborn as sns #get the package via "conda install seaborn" in your terminal import matplotlib.pyplot as plt #allows plots to be shown embedded in the notebook %matplotlib inline #create a beautiful poser-plot x = np.linspace(0, 2 * np.pi, 500) y1 = np.sin(x) y2 = np.sin(3 * x) fig, ax = plt.subplots() nice_plot = ax.fill(x, y1, 'b', x, y2, 'r', alpha=0.3) ###Output _____no_output_____ ###Markdown other nice things ###Code #magic commands are available %timeit(a*b) #run other notebooks or .py files %run polar-chart.ipynb #direct access to docstrings ?np.reshape() ###Output _____no_output_____
MongoDB-MapReduce.ipynb
###Markdown Importing libraries ###Code import pymongo from pymongo import MongoClient import json import requests from bson.code import Code ###Output _____no_output_____ ###Markdown Establishing connetion with mongoDB ###Code client = MongoClient("mongodb://localhost:27017/") ###Output _____no_output_____ ###Markdown Reads "reviews_electronics.16.json" and uploads each review as a separate document to the collection "reviews" in the database "amazon". Creating a database called 'amazon' ###Code amazon_db = client["amazon"] ###Output _____no_output_____ ###Markdown Creating a collection called "reviews" ###Code reviews_collection = amazon_db["reviews"] ###Output _____no_output_____ ###Markdown Loading the data into a list of dictionaries ###Code reviews_list = [] for line in open('reviews_electronics.16.json', 'r'): reviews_list.append(json.loads(line)) type(reviews_list) ###Output _____no_output_____ ###Markdown Saving the data into mongoDB amazon database reviews collection ###Code reviews_collection.insert_many(reviews_list) reviews_list[3] ###Output _____no_output_____ ###Markdown Uses MongoDB's map reduce function to build a new collection "avg_scores" that averages review scores by product ("asin"). Print the first 100 entries of "avg_scores" to screen. Making the Map function for finding average ###Code map_1 = Code( "function () { emit(this.asin, this.overall) }") ###Output _____no_output_____ ###Markdown Making the Reduce function for finding average ###Code reduce_1 = Code("function(asin, overall) { return Array.avg(overall) }") ###Output _____no_output_____ ###Markdown Running the MapReduce function ###Code results_1 = reviews_collection.map_reduce(map_1, reduce_1, out="avg_scores") ###Output _____no_output_____ ###Markdown Checking the collection names in the database ###Code amazon_db.collection_names() resul1_first100 = amazon_db.avg_scores.find({}).limit(100) ###Output _____no_output_____ ###Markdown Printing the first 100 averages ###Code for x in resul1_first100: print('Product = {0} \n Average Score = {1}\n'.format(x['_id'], x['value'])) ###Output Product = 0132793040 Average Score5.0 Product = B00E4KP4W6 Average Score4.545454545454546 Product = B00E4KP8VI Average Score5.0 Product = B00E4KPMC8 Average Score2.0 Product = B00E4KQ5C4 Average Score5.0 Product = B00E4KQ9GG Average Score3.2857142857142856 Product = B00E4KQ9K2 Average Score5.0 Product = B00E4KQD4E Average Score4.0 Product = B00E4KZBX8 Average Score4.0 Product = B00E4KZDJ0 Average Score5.0 Product = B00E4L35DA Average Score4.0 Product = B00E4L3N9Q Average Score4.0 Product = B00E4L48EA Average Score5.0 Product = B00E4L7FLI Average Score1.0 Product = B00E4L7TS2 Average Score4.0 Product = B00E4LAL82 Average Score3.0 Product = B00E4LBZZK Average Score5.0 Product = B00E4LF2Z4 Average Score4.333333333333333 Product = B00E4LFP0G Average Score4.444444444444445 Product = B00E4LFWWW Average Score4.4 Product = B00E4LGTVU Average Score4.195658625514055 Product = B00E4LGTXS Average Score3.923076923076923 Product = B00E4LGVYA Average Score3.272727272727273 Product = B00E4LGWLW Average Score3.5 Product = B00E4LGXL6 Average Score5.0 Product = B00E4LGY88 Average Score3.8421052631578947 Product = B00E4LI86O Average Score1.0 Product = B00E4LJ8VI Average Score1.6666666666666667 Product = B00E4LQ9B0 Average Score1.0 Product = B00E4M2K08 Average Score5.0 Product = B00E4M3KW0 Average Score4.0 Product = B00E4M9H40 Average Score3.3333333333333335 Product = B00E4MC3LO Average Score2.0 Product = B00E4MHBOI Average Score3.0 Product = B00E4ML766 Average Score5.0 Product = B00E4MNXYA Average Score5.0 Product = B00E4MQO8C Average Score4.933333333333334 Product = B00E4MQODW Average Score2.6666666666666665 Product = B00E4MQOE6 Average Score4.611111111111111 Product = B00E4MT07Y Average Score1.6 Product = B00E4MVHTI Average Score3.9 Product = B00E4MYDTY Average Score4.538461538461538 Product = B00E4NC912 Average Score5.0 Product = B00E4O3CD0 Average Score4.0 Product = B00E4O7EO8 Average Score4.2 Product = B00E4OCCJK Average Score5.0 Product = B00E4OCECU Average Score3.0 Product = B00E4OHBNM Average Score4.0 Product = B00E4OHRJ0 Average Score4.0 Product = B00E4OI5H8 Average Score5.0 Product = B00E4OKJKY Average Score5.0 Product = B00E4OKJUE Average Score1.0 Product = B00E4OKZA8 Average Score5.0 Product = B00E4ON1YK Average Score5.0 Product = B00E4OSIO8 Average Score5.0 Product = B00E4PM406 Average Score4.0 Product = B00E4PMDIO Average Score5.0 Product = B00E4POW42 Average Score5.0 Product = B00E4PP8PY Average Score4.0 Product = B00E4QD7D8 Average Score4.0 Product = B00E4QM3TC Average Score1.0 Product = B00E4QX5J4 Average Score2.0 Product = B00E4RD4VC Average Score4.375 Product = B00E4RIYPI Average Score4.5 Product = B00E4RKKVY Average Score4.0 Product = B00E4RS3DG Average Score4.5 Product = B00E4RUZGO Average Score2.0 Product = B00E4RZOQ0 Average Score5.0 Product = B00E4RZQM2 Average Score2.6 Product = B00E4RZU00 Average Score4.0 Product = B00E4RZV6S Average Score3.75 Product = B00E4RZW44 Average Score3.0 Product = B00E4RZYMO Average Score1.0 Product = B00E4S5BQ2 Average Score5.0 Product = B00E4SDU0Q Average Score1.0 Product = B00E4SEBAY Average Score5.0 Product = B00E4SPPHW Average Score3.6666666666666665 Product = B00E4T58NC Average Score2.676470588235294 Product = B00E4T699E Average Score3.0 Product = B00E4T69DK Average Score5.0 Product = B00E4T6MWI Average Score2.0 Product = B00E4T7GP0 Average Score2.0 Product = B00E4T7VOG Average Score5.0 Product = B00E4T8XZC Average Score4.666666666666667 Product = B00E4TADN2 Average Score3.0 Product = B00E4TASKK Average Score3.5 Product = B00E4TBST0 Average Score5.0 Product = B00E4TEKC2 Average Score5.0 Product = B00E4TKYOU Average Score5.0 Product = B00E4TN3MA Average Score1.0 Product = B00E4TOWR0 Average Score3.0 Product = B00E4TV36I Average Score5.0 Product = B00E4TWMWC Average Score1.0 Product = B00E4U83B0 Average Score3.1333333333333333 Product = B00E4UA7SW Average Score4.571428571428571 Product = B00E4UD9TQ Average Score4.666666666666667 Product = B00E4UGIVC Average Score3.0 Product = B00E4UGJV6 Average Score4.0 Product = B00E4UIU1I Average Score5.0 Product = B00E4UVVYG Average Score5.0 ###Markdown Uses MongoDB's map reduce function to build a new collection "weighted_avg_scores" that averages review scores by product ("asin"), weighted by the number of helpful votes (The base weight is 1 and for every additional helpful vote add 1 to weight. e.g. a "[3, 5]" value on "helpful" column should use 3 + 1 = 4 as weight, 3 being the additional votes and 1 being the base weight). Print the first 100 entries of "weighted_avg_scores" to screen. Making the Map function for finding weighted average ###Code map_2 = Code('''function(){ var wtp1=this.helpful[0]+1; var value= { oa: wtp1*this.overall, wt: wtp1 }; emit(this.asin,value); };''') ###Output _____no_output_____ ###Markdown Making the Reduce function for finding weighted average ###Code reduce_2 = Code('''function (key, values) { reducedVal= { oa: 0, wt: 0}; for (var i=0; i<values.length; i++) { reducedVal.oa+=values[i].oa; reducedVal.wt+=values[i].wt; } return reducedVal; };''') ###Output _____no_output_____ ###Markdown Making the Finalize function for finding weighted average ###Code finalize_2 = Code('''function (key, reducedVal) { reducedVal.wtavg= reducedVal.oa/reducedVal.wt; return reducedVal.wtavg; };''') ###Output _____no_output_____ ###Markdown Running the MapReduce function to calculate weighted average ###Code results_2 = reviews_collection.map_reduce(map_2, reduce_2, out="weighted_avg_score", finalize=finalize_2) ###Output _____no_output_____ ###Markdown Checking the collection names in the database ###Code amazon_db.collection_names() result2_first100 = amazon_db.weighted_avg_score.find({}).limit(100) ###Output _____no_output_____ ###Markdown Printing the first 100 averages ###Code for y in result2_first100: print('Product = {0} \n Weighted Average Score = {1}\n'.format(y['_id'], y['value'])) ###Output Product = 0132793040 Weighted Average Score = 5.0 Product = B00E4KP4W6 Weighted Average Score = 4.684210526315789 Product = B00E4KP8VI Weighted Average Score = 5.0 Product = B00E4KPMC8 Weighted Average Score = 2.0 Product = B00E4KQ5C4 Weighted Average Score = 5.0 Product = B00E4KQ9GG Weighted Average Score = 3.6875 Product = B00E4KQ9K2 Weighted Average Score = 5.0 Product = B00E4KQD4E Weighted Average Score = 4.0 Product = B00E4KZBX8 Weighted Average Score = 4.0 Product = B00E4KZDJ0 Weighted Average Score = 5.0 Product = B00E4L35DA Weighted Average Score = 3.0 Product = B00E4L3N9Q Weighted Average Score = 4.0 Product = B00E4L48EA Weighted Average Score = 5.0 Product = B00E4L7FLI Weighted Average Score = 1.0 Product = B00E4L7TS2 Weighted Average Score = 4.0 Product = B00E4LAL82 Weighted Average Score = 3.0 Product = B00E4LBZZK Weighted Average Score = 5.0 Product = B00E4LF2Z4 Weighted Average Score = 4.153846153846154 Product = B00E4LFP0G Weighted Average Score = 4.434782608695652 Product = B00E4LFWWW Weighted Average Score = 4.4 Product = B00E4LGTVU Weighted Average Score = 3.9064516129032256 Product = B00E4LGTXS Weighted Average Score = 4.0 Product = B00E4LGVYA Weighted Average Score = 3.8 Product = B00E4LGWLW Weighted Average Score = 3.8181818181818183 Product = B00E4LGXL6 Weighted Average Score = 5.0 Product = B00E4LGY88 Weighted Average Score = 4.248407643312102 Product = B00E4LI86O Weighted Average Score = 1.0 Product = B00E4LJ8VI Weighted Average Score = 1.6666666666666667 Product = B00E4LQ9B0 Weighted Average Score = 1.0 Product = B00E4M2K08 Weighted Average Score = 5.0 Product = B00E4M3KW0 Weighted Average Score = 4.0 Product = B00E4M9H40 Weighted Average Score = 3.25 Product = B00E4MC3LO Weighted Average Score = 2.0 Product = B00E4MHBOI Weighted Average Score = 3.0 Product = B00E4ML766 Weighted Average Score = 5.0 Product = B00E4MNXYA Weighted Average Score = 5.0 Product = B00E4MQO8C Weighted Average Score = 4.978260869565218 Product = B00E4MQODW Weighted Average Score = 2.6470588235294117 Product = B00E4MQOE6 Weighted Average Score = 4.674418604651163 Product = B00E4MT07Y Weighted Average Score = 1.3125 Product = B00E4MVHTI Weighted Average Score = 4.0 Product = B00E4MYDTY Weighted Average Score = 4.133333333333334 Product = B00E4NC912 Weighted Average Score = 5.0 Product = B00E4O3CD0 Weighted Average Score = 4.0 Product = B00E4O7EO8 Weighted Average Score = 4.230769230769231 Product = B00E4OCCJK Weighted Average Score = 5.0 Product = B00E4OCECU Weighted Average Score = 3.5 Product = B00E4OHBNM Weighted Average Score = 4.0 Product = B00E4OHRJ0 Weighted Average Score = 4.0 Product = B00E4OI5H8 Weighted Average Score = 5.0 Product = B00E4OKJKY Weighted Average Score = 5.0 Product = B00E4OKJUE Weighted Average Score = 1.0 Product = B00E4OKZA8 Weighted Average Score = 5.0 Product = B00E4ON1YK Weighted Average Score = 5.0 Product = B00E4OSIO8 Weighted Average Score = 5.0 Product = B00E4PM406 Weighted Average Score = 4.0 Product = B00E4PMDIO Weighted Average Score = 5.0 Product = B00E4POW42 Weighted Average Score = 5.0 Product = B00E4PP8PY Weighted Average Score = 4.0 Product = B00E4QD7D8 Weighted Average Score = 4.0 Product = B00E4QM3TC Weighted Average Score = 1.0 Product = B00E4QX5J4 Weighted Average Score = 2.0 Product = B00E4RD4VC Weighted Average Score = 4.545454545454546 Product = B00E4RIYPI Weighted Average Score = 4.333333333333333 Product = B00E4RKKVY Weighted Average Score = 4.0 Product = B00E4RS3DG Weighted Average Score = 4.5 Product = B00E4RUZGO Weighted Average Score = 2.2941176470588234 Product = B00E4RZOQ0 Weighted Average Score = 5.0 Product = B00E4RZQM2 Weighted Average Score = 2.4285714285714284 Product = B00E4RZU00 Weighted Average Score = 3.7857142857142856 Product = B00E4RZV6S Weighted Average Score = 3.75 Product = B00E4RZW44 Weighted Average Score = 3.0 Product = B00E4RZYMO Weighted Average Score = 1.0 Product = B00E4S5BQ2 Weighted Average Score = 5.0 Product = B00E4SDU0Q Weighted Average Score = 1.0 Product = B00E4SEBAY Weighted Average Score = 5.0 Product = B00E4SPPHW Weighted Average Score = 2.689655172413793 Product = B00E4T58NC Weighted Average Score = 3.206060606060606 Product = B00E4T699E Weighted Average Score = 3.0 Product = B00E4T69DK Weighted Average Score = 5.0 Product = B00E4T6MWI Weighted Average Score = 2.0 Product = B00E4T7GP0 Weighted Average Score = 2.0 Product = B00E4T7VOG Weighted Average Score = 5.0 Product = B00E4T8XZC Weighted Average Score = 4.75 Product = B00E4TADN2 Weighted Average Score = 3.0 Product = B00E4TASKK Weighted Average Score = 3.5 Product = B00E4TBST0 Weighted Average Score = 5.0 Product = B00E4TEKC2 Weighted Average Score = 5.0 Product = B00E4TKYOU Weighted Average Score = 5.0 Product = B00E4TN3MA Weighted Average Score = 1.0 Product = B00E4TOWR0 Weighted Average Score = 3.0 Product = B00E4TV36I Weighted Average Score = 5.0 Product = B00E4TWMWC Weighted Average Score = 1.0 Product = B00E4U83B0 Weighted Average Score = 2.7 Product = B00E4UA7SW Weighted Average Score = 4.769230769230769 Product = B00E4UD9TQ Weighted Average Score = 4.666666666666667 Product = B00E4UGIVC Weighted Average Score = 3.0 Product = B00E4UGJV6 Weighted Average Score = 4.0 Product = B00E4UIU1I Weighted Average Score = 5.0 Product = B00E4UVVYG Weighted Average Score = 5.0
CTR Prediction/RS_Kaggle_create_train_and_val.ipynb
###Markdown In this notebook we created our train and validation sets on which we trained our models of catboost and xgboost. We got 2 kinds of files - based on newest rows and based on the distribution of the feature user_target_recs Mount drive ###Code from google.colab import drive drive.mount("/content/drive") import os import pandas as pd home_path = "/content/drive/MyDrive/RS_Kaggle_Competition" test_path = home_path + "/" + "test" + "/test_file.csv" test_df = pd.read_csv(test_path) test_df.head() print(f"test shape: {test_df.shape}") # get the distribution of user_target_recs print("user_target_recs histogram:") test_df["user_target_recs"].hist() test_df["user_target_recs"].value_counts() # get the distribution of user_recs print("user_recs_histogram") test_df["user_recs"].hist() test_df["user_recs"].value_counts() ###Output user_recs_histogram ###Markdown Data starting at the 17th of April We take only new data - starting on 17.4.2020 ###Code def get_train_files_paths(path): dir_paths = [ os.path.join(path, dir_name) for dir_name in os.listdir(path) if dir_name.startswith("train")] file_paths = [] for dir_path in dir_paths: curr_dir_file_paths = [ os.path.join(dir_path, file_name) for file_name in os.listdir(dir_path) ] file_paths.extend(curr_dir_file_paths) return file_paths train_file_paths = get_train_files_paths(home_path) def get_data_starting_at(train_file_paths, starting_day=17, max_rows=4000000): df=None i=0 for train_file_path in train_file_paths: curr_df = pd.read_csv(train_file_path) curr_df = curr_df[ pd.to_datetime(curr_df["page_view_start_time"], unit='ms').dt.day >= starting_day] if df is None: df = curr_df else: df = pd.concat([df,curr_df]) print(f"processed file {i}, now have shape: {df.shape}") if df.shape[0] > max_rows: return df del curr_df i+=1 return df train_data = get_data_starting_at(train_file_paths[:-10], starting_day=17) train_data = train_data.iloc[:4000000] val_data = get_data_starting_at(train_file_paths[-10:], starting_day=17, max_rows=1000000) save_train_path = "/content/drive/MyDrive/RS_Kaggle_Competition/train_val_with_distribution/train_new_data.csv" save_val_path = "/content/drive/MyDrive/RS_Kaggle_Competition/train_val_with_distribution/val_new_data.csv" train_data.to_csv(save_train_path) val_data.to_csv(save_val_path) pd.to_datetime(val_data["page_view_start_time"], unit='ms').dt.day.unique() ###Output _____no_output_____ ###Markdown Create train 10 times bigger than test with same dist on user_target_recs ###Code def get_train_files_paths(path): dir_paths = [ os.path.join(path, dir_name) for dir_name in os.listdir(path) if dir_name.startswith("train")] file_paths = [] for dir_path in dir_paths: curr_dir_file_paths = [ os.path.join(dir_path, file_name) for file_name in os.listdir(dir_path) ] file_paths.extend(curr_dir_file_paths) return file_paths train_file_paths = get_train_files_paths(home_path) def reached_desired_dist(df, dist_dict, dist_col): curr_dict = df[dist_col].value_counts() for key,val in dist_dict.items(): if curr_dict[key] < val: return False return True def get_train_df_with_dist(train_file_paths, test_df, dist_col, times=10): values_dict = test_df.value_counts(dist_col) # print(values_dict.keys()) # return values_dict df = None #multiply values by times factor for key, val in values_dict.items(): values_dict[key] = val * times print("needed distribution:") print(values_dict) for train_file_path in train_file_paths: if df is None: df = pd.read_csv(train_file_path) df = df[df[dist_col].isin(values_dict.keys())] else: curr_df = pd.read_csv(train_file_path) for key in values_dict.keys(): curr_key_needed_target_recs = values_dict[key] if df[df[dist_col] == key].shape[0] > curr_key_needed_target_recs: continue else: curr_key_df = curr_df[curr_df[dist_col] == key] df = pd.concat([df, curr_key_df]) if reached_desired_dist(df, values_dict, dist_col): return df print(df[dist_col].value_counts()) return df train_df = get_train_df_with_dist(train_file_paths, test_df, "user_target_recs", times = 15) val_df = get_train_df_with_dist(train_file_paths[-10:], test_df, "user_target_recs", times = 3) print(train_df["user_target_recs"].value_counts(normalize=True)) print(val_df["user_target_recs"].value_counts(normalize=True)) print(test_df["user_target_recs"].value_counts(normalize=True)) save_train_path = "/content/drive/MyDrive/RS_Kaggle_Competition/train_val_with_distribution/train_15_time.csv" save_val_path = "/content/drive/MyDrive/RS_Kaggle_Competition/train_val_with_distribution/val_3_times.csv" train_df.to_csv(save_train_path) val_df.to_csv(save_val_path) ###Output _____no_output_____
examples/Tutorials/Tutorial.ipynb
###Markdown Tutorial Notebook This notebook gives a tutorial on how to use the realpy package to perform reainforcement learning.Here, we use the two algorithms in realpy: 1. Gaussian PRocess Batch Upper Confidence Bound (GP-BUCB) Use a Gaussian Process model to predict expected metric and subsequently select the inputs that are expected to yield the highest metric. The hyperparameter beta can be tuned to exentuate exploration versus exploitation of the input parameter space. 2. Genetic Algorithm (GA) Tests different inputs, or actions, following a genetic algorithm, which maximizes fitness while also including random crossover and mutations.Both algorithms utilize batch mode. The experiment we will test in this tutorial is to mix different concentrations of red, blue, and green dye to acheive a desired UV/ Vis spectrum. ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd import realpy.UCB.ucb as ucb import realpy.genetic.genetic as genetic from sklearn.metrics.pairwise import cosine_similarity import visualization # supressing numpy 1.20 deprecation warnings # (when taking the cosine similarity) import warnings warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown Initialize and process target data ###Code # read in excel file df = pd.read_excel('target_spectra.xlsx') data = np.asarray(df) # get wavelength wavelength = data[:,0] # subtract baseline TARGET = data[:,1] - data[:,2] # peak normalize spectra TARGET = TARGET / np.max(TARGET) # visualizaiton plt.rcParams.update({'font.size': 18}) # plot target spectra fig, ax = plt.subplots(figsize=(6,4)) plt.plot(wavelength, TARGET, 'k-', linewidth=3) # formatting ax.tick_params(direction='out', width=2, length=8) plt.xlabel("Wavelength (nm)") plt.ylabel("Intensity (a.u.)") plt.show() ###Output _____no_output_____ ###Markdown Read in basis spectra for use in virtual testing ###Code # read in excel file df = pd.read_excel('basis_spectra.xlsx') data = np.asarray(df) # get wavelength wavelength = data[:,0] # get colors RED = data[:,1] BLUE = data[:,2] GREEN = data[:,3] # peak normalize spectra RED = RED / np.max(RED) BLUE = BLUE / np.max(BLUE) GREEN = GREEN / np.max(GREEN) # visualizaiton plt.rcParams.update({'font.size': 18}) # plot target spectra fig, ax = plt.subplots(figsize=(6,4)) plt.plot(wavelength, RED, 'r-', linewidth=3) plt.plot(wavelength, GREEN, 'g-', linewidth=3) plt.plot(wavelength, BLUE, 'b-', linewidth=3) # formatting ax.tick_params(direction='out', width=2, length=8) plt.xlabel("Wavelength (nm)") plt.ylabel("Intensity (a.u.)") plt.show() ###Output _____no_output_____ ###Markdown 1. Using the GP-BUCB agent Initialize Environment Requirements:The environment class must have a sample function that takes in a set of actions and the current time step and produces the corresponding set of results. Two example environment classes are included below. 1. Environment_IO This includes functions that read and write data files for actions and results, respectively. Thus, the files can be used as instructions to, for example, an OT2 pipetting robot. This is an example of a environment class that can be used in a physical experiment. 2. Environemt_Virtual Instead of reading and wiritng data files, this class computes the result of the actions via a hueristic and would be an example of a virtual testing environment. For the purpose of this tutorial, we will utilize this environment class. Example environment with I/O ###Code class Environment_IO(object): def __init__(self, target): """Initialize environment with target spectrum.""" self.target = target def get_cos_sim(self, target, y): """Similarity metric to maximize.""" return np.average(cosine_similarity(target.reshape(1, -1), Y=y.reshape(1, -1)).squeeze()) def write_actions(self, actions, time_step): """Write batch of actions to csv file.""" # we are using three dyes # therefore the action is a concentration for each of the 3 dyes df = pd.DataFrame(actions, columns=['1','2','3']) df.to_csv(f'Batch_{time_step + 1}.csv') def spectra_from_conc(self): """Read and write data.""" # waits for experiment to be performed and takes in the filename of the results print("\ncsv file written with robot instructions. Waiting for experiment...") print('What is the csv file name of the experimental results?') file_name = input() if os.path.exists(file_name): # read in excel file df = pd.read_excel(file_name) data = np.asarray(df) # subtract baseline (ignore first colm because it's wavelength) results = data[:,1:-1].squeeze() - data[:,-1] # peak normalize spectra results = results / np.max(results, axis=0) return results elif file_name == 'END' or file_name == 'STOP': warnings.warn("Ending experiment.") else: warnings.warn(f'{file_name} does not exist') def sample(self, xs, time_step=0): """The agent calls this function during each learning step.""" self.write_actions(xs, time_step) results = self.spectra_from_conc() metrics = [] for result in results: metric = self.get_cos_sim(self.target, result) metrics.append(metric) return np.array(metrics) ###Output _____no_output_____ ###Markdown Example environment for virtual testing ###Code class Environment_Virtual(object): def __init__(self, target, red, green, blue): """Initialize environment with target spectrum.""" self.target = target self.red = red self.green = green self.blue = blue def get_cos_sim(self, target, y): """Similarity metric to maximize.""" return np.average(cosine_similarity(target.reshape(1, -1), Y=y.reshape(1, -1)).squeeze()) def spectra_from_conc(self, x): """Use beers law to get spectra.""" # normalize concentrations to add to one x = x / np.max(x) return x[0]*self.red + x[1]*self.blue + x[2]*self.green def sample(self, xs, time_step=None): """The agent calls this function during each learning step.""" metrics = [] for x in xs: result = self.spectra_from_conc(x) metric = self.get_cos_sim(self.target, result) metrics.append(metric) return np.array(metrics) # initializing virtual env = Environment_Virtual(TARGET, RED, GREEN, BLUE) ###Output _____no_output_____ ###Markdown Initialize experimental constraints ###Code #constraints min_conc = 0.05 max_conc = 1 # parameter space N = 20 # grid size # construct param space coeffs = np.linspace(min_conc, max_conc, N) param_space = np.meshgrid(coeffs, coeffs, coeffs) ###Output _____no_output_____ ###Markdown Initialize agent ###Code batch_size = 15 UCB_agent = ucb.BatchGPUCB(batch_size, param_space, env, beta=1.5) ###Output _____no_output_____ ###Markdown Learn ###Code # training loop epochs = 8 for i in range(epochs): UCB_agent.learn() ###Output _____no_output_____ ###Markdown Visualization of Resultsvisualization.py has a few example plotting functions for visualization of learning. ###Code X = np.array(UCB_agent.X) visualization.plot_batch_stack(X, wavelength, TARGET, batch_size, epochs, env) actions = np.array(UCB_agent.X[-1]) Results = np.array([env.spectra_from_conc(action) for action in actions]) visualization.plot_batch(Results, actions, wavelength, TARGET, epochs) visualization.plot_best_spectrum(X, UCB_agent.Y, batch_size, wavelength, TARGET, env) ###Output _____no_output_____ ###Markdown Using the Genetic Algorithm (GA) The first iteration, i.e, generation, will use a Latin hypercube sampling. Thus, the agent will randomle sample in a (hyper)grid of the parameter space. For consistency, we will use the same sampling as the GP-BUCB agent. ###Code # get LH sampling of input space first_generation_actions = UCB_agent.X[0] ###Output _____no_output_____ ###Markdown Initialize agent ###Code # use the same batch_size and Environment_Virtual class as the GP-BUCB agent # the first generation must be the spectra of the first (zeroth iteration) batch ga_agent = genetic.GA(env, batch_size, first_generation_actions) ###Output _____no_output_____ ###Markdown Learn ###Code # same number of epochs as the GP-BUCB agent (6) for i in range(epochs): ga_agent.learn() ###Output _____no_output_____ ###Markdown Visualization of Results ###Code actions = ga_agent.generation Results = [env.spectra_from_conc(action) for action in actions] Results = np.array(Results) visualization.plot_batch(Results, actions, wavelength, TARGET, i+1) actions = np.array(actions) actions = actions.reshape(1, batch_size, 3) visualization.plot_best_spectrum(actions, ga_agent.fitness(), batch_size, wavelength, TARGET, env) ###Output _____no_output_____
PINN/Shrodinger_Equation.ipynb
###Markdown Shrodinger Equation 1-d Shrodinger Equation$$\begin{equation}-\frac{\hbar^2}{2\mu}\frac{\partial^2{\Psi(x, t)}}{\partial x^2} + U(x, t)\Psi(x, t)=i\hbar\frac{\partial\Psi(x, t)}{\partial t}\end{equation}$$ 2-d Shrodinger Equation$$\begin{equation}-\frac{\hbar^2}{2\mu}(\frac{\partial^2{\Psi(x, y, t)}}{\partial x^2}+\frac{\partial^2{\Psi(x, y, t)}}{\partial y^2}) + U(x, y, t)\Psi(x, y, t)=i\hbar\frac{\partial\Psi(x, y, t)}{\partial t}\end{equation}$$ 3-d Shrodinger Equation$$\begin{equation}-\frac{\hbar^2}{2\mu}(\frac{\partial^2{\Psi}}{\partial x^2}+\frac{\partial^2{\Psi}}{\partial y^2}+\frac{\partial^2{\Psi}}{\partial z^2}) + U(x, y, z, t)\Psi=i\hbar\frac{\partial\Psi}{\partial t}\end{equation}$$ Infinite Potential Well(1d) potential energy$$\begin{equation} V(x) = \left\{ \begin{array}{cc} 0, & -\frac{L}{2} < x < \frac{L}{2}, \\ \infin, & otherwise, \end{array} \right.\end{equation}$$where $L$ is the length of the box, the location of the center of the box is 0 and $x$ is the position of the particle. Def PDE of Shrodinger Equation in a infinite potential well$$\begin{equation} \left\{ \begin{array}{cc} i\hbar\frac{\partial\Psi(x, t)}{\partial t}+\frac{\hbar^2}{2}\frac{\partial^2\Psi(x, t)}{\partial x^2}=0 \\ \\ \Psi(x, 0) = Asin(k_n(x+\frac{L}{2})) \\ \\ \Psi(-\frac{L}{2}, t)=0 \\ \\ \Psi(\frac{L}{2}, t)=0 \\ \\ \end{array} \right. , -\frac{L}{2} < x < \frac{L}{2}\end{equation}$$where $k_n=\frac{n\pi}{L}$, $n$ is a positive integer, and $|A|=\sqrt{\frac{2}{L}}$ Finite Difference$$\begin{equation} \begin{array}{cc} \begin{split} \frac{\partial\Psi}{\partial t} &= \frac{i}{2}\frac{\partial^2\Psi}{\partial x^2} \\ &= \frac{i}{2}\frac{\Psi_{j+1}^n-2\Psi_j^n+\Psi_{j-1}^n}{\Delta x^2} \end{split} \end{array}\end{equation}$$obtain,$$\begin{equation} \frac{\Psi_j^{n+1}-\Psi_j^n}{\Delta t} = \frac{i}{2}\frac{\Psi_{j+1}^n-2\Psi_j^n+\Psi_{j-1}^n}{\Delta x^2}\end{equation}$$where $\Psi_j^{n}$ is the wave function value at j-th point when time equal to $n\Delta t$then,$$\begin{equation} \Psi_j^{n+1} = \Psi_j^n+\frac{i\Delta t}{2} \frac{\Psi_{j+1}^n-2\Psi_j^n+\Psi_{j-1}^n}{\Delta x^2}\end{equation}$$matrix$$\begin{equation} \bm{\Psi^{n+1}} = \bm{\Psi^n} + \frac{i\Delta t}{2\Delta x^2} \left[ \begin{array}{cc} -2&1&0&0&\cdots&0&0&0 \\ 1&-2&1&0&\cdots&0&0&0 \\ 0&1&-2&1&\cdots&0&0&0 \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ 0&0&0&0&\cdots&1&-2&1 \\ 0&0&0&0&\cdots&0&1&-2 \\ \end{array} \right] \left[ \begin{array}{cc} \Psi^n_1 \\ \Psi^n_2 \\ \Psi^n_3 \\ \vdots \\ \vdots \\ \Psi^n_{J-1} \\ \Psi^n_J \\ \end{array} \right]\end{equation}$$because $\Psi(-\frac{L}{2}, t)=0$ and $\Psi(\frac{L}{2}, t)=0$obtain$$\begin{equation} \bm{\Psi^{n+1}} = \bm{\Psi^n} + \frac{i\Delta t}{2\Delta x^2} \left[ \begin{array}{cc} 0&0&0&0&\cdots&0&0&0 \\ 1&-2&1&0&\cdots&0&0&0 \\ 0&1&-2&1&\cdots&0&0&0 \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ 0&0&0&0&\cdots&1&-2&1 \\ 0&0&0&0&\cdots&0&0&0 \\ \end{array} \right] \left[ \begin{array}{cc} \Psi^n_1 \\ \Psi^n_2 \\ \Psi^n_3 \\ \vdots \\ \vdots \\ \Psi^n_{J-1} \\ \Psi^n_J \\ \end{array} \right]\end{equation}$$ ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Finite Difference # state num state_num = 1 # box length box_l = 2 # cal time time_total = 2 # time step delta_time = 0.00001 # space step delta_x = 0.1 # time discrete num time_n = int(time_total/delta_time) # space discrete num space_n = int(box_l/delta_x) # result matrix space_point * time_point phi_matrix = np.zeros((int(space_n), int(time_n))).astype(np.complex64) # def A matrix parm_matrix = -2*np.eye(int(space_n)) + np.eye(int(space_n), k=1) + np.eye(int(space_n), k=-1) + 0.j parm_matrix[0, :] = 0 parm_matrix[-1, :] = 0 # init wave phi_matrix[:, 0] = np.sin((state_num*np.pi/box_l)*(np.linspace(-box_l/2, box_l/2, space_n)+box_l/2)) # iter constant_ = 1.j*delta_time/(2*np.power(delta_x, 2)) for i in range(time_n-1): temp_value = phi_matrix[:, i] + constant_ * np.matmul(parm_matrix, phi_matrix[:, i]) phi_matrix[:, i+1] = temp_value print("done...") # plot plt.figure(figsize=(10, 10), dpi=150) time_list = np.linspace(0, time_total, time_n) position_list = np.linspace(-box_l/2, box_l/2, space_n) position_labels = np.around(np.linspace(-box_l/2, box_l/2, 4), 1) # the index position of the tick labels position_ticks = list() for label in position_labels: idx_pos = len(position_list) - np.argmin(np.abs(label-position_list)) position_ticks.append(idx_pos) time_labels = np.around(np.linspace(0, time_total, 4), 1) time_ticks = list() for label in time_labels: idx_pos = np.argmin(np.abs(label-time_list)) time_ticks.append(idx_pos) # real plt.subplot(2, 1, 1) ax = sns.heatmap(np.real(phi_matrix), annot=False) ax.set_xlabel("time") ax.set_ylabel("position") ax.set_yticks(position_ticks) ax.set_xticks(time_ticks) ax.set_title("real part of wave function —— time") ax.set_xticklabels(time_labels) ax.set_yticklabels(position_labels) # imag plt.subplot(2, 1, 2) ax_imag = sns.heatmap(np.imag(phi_matrix), annot=False) ax_imag.set_xlabel("time") ax_imag.set_ylabel("position") ax_imag.set_yticks(position_ticks) ax_imag.set_xticks(time_ticks) ax_imag.set_title("imaginary part of wave function —— time") ax_imag.set_xticklabels(time_labels) ax_imag.set_yticklabels(position_labels) plt.show() ###Output _____no_output_____ ###Markdown Finite Difference Runge-Kutta MethodObviously, the accuracy of finite difference is not enough, and consider to use Runge-Kutta method Fourth Runge-Kutta Method$$\begin{equation} \left\{ \begin{array}{cc} y^{n+1} = y^n + \frac{h}{6}(k_1+2k_2+2k_3+k_4) \\ \\ k_1 = f(y^n, t^n) \\ \\ k_2 = f(y^n+k_1\frac{h}{2}, t^n+\frac{h}{2}) \\ \\ k_3 = f(y^n+k_2\frac{h}{2}, t^n+\frac{h}{2}) \\ \\ k_4 = f(y^n+hk_3, t^n+h) \end{array} \right.\end{equation}$$ Finite difference with Fourth Runge-Kutta Method$$\begin{equation} \begin{split} \frac{\partial\Psi}{\partial t} &= \frac{i}{2}\frac{\Psi_{j+1}^n-2\Psi_j^n+\Psi_{j-1}^n}{\Delta x^2} \\ &= f(\Psi, t) \end{split}\end{equation}$$obtain$$\begin{equation} \left\{ \begin{array}{cc} \begin{split} \Psi^{n+1}_j &= \Psi^n_j + \Delta t k \\ &= \Psi^n_j + \frac{h}{6}(k_1+2k_2+2k_3+k_4) \end{split} \\ \\ h = \Delta t \\ \\ \begin{split} k_{1j} &= f(\Psi^n_j, t^n)\\ &= \frac{i}{2}\frac{\Psi_{j+1}^n-2\Psi_j^n+\Psi_{j-1}^n}{\Delta x^2} \end{split} \\ \\ \begin{split} k_{2j} &= f(\Psi^n_j+k_{1j}\frac{h}{2}, t^n+\frac{h}{2})\\ &= \frac{i}{2}\frac{\Psi_{j+1+k_1\frac{h}{2}}^{n+\frac{h}{2}}-2\Psi_{j+k_1\frac{h}{2}}^{n+\frac{h}{2}}+\Psi_{j-1+k_1\frac{h}{2}}^{n+\frac{h}{2}}}{\Delta x^2}\\ &= \frac{i}{2}\frac{\Psi_{j+1}^{n}+\frac{h}{2}k_{1(j+1)}-2\Psi_{j}^{n}-hk_{1j}+\Psi_{j-1}^{n}+\frac{h}{2}k_{1(j-1)}}{\Delta x^2} \end{split} \\ \\ \begin{split} k_{3j} &= f(\Psi^n_j+k_{2j}\frac{h}{2}, t^n+\frac{h}{2})\\ &= \frac{i}{2}\frac{\Psi_{j+1+k_2\frac{h}{2}}^{n+\frac{h}{2}}-2\Psi_{j+k_2\frac{h}{2}}^{n+\frac{h}{2}}+\Psi_{j-1+k_2\frac{h}{2}}^{n+\frac{h}{2}}}{\Delta x^2}\\ &= \frac{i}{2}\frac{\Psi_{j+1}^{n}+\frac{h}{2}k_{2(j+1)}-2\Psi_{j}^{n}-hk_{2j}+\Psi_{j-1}^{n}+\frac{h}{2}k_{2(j-1)}}{\Delta x^2} \end{split} \\ \\ \begin{split} k_{4j} &= f(\Psi^n_j+hk_{3j}, t^n+h)\\ &= \frac{i}{2}\frac{\Psi_{j+1+hk_3}^{n+h}-2\Psi_{j+hk_3}^{n+h}+\Psi_{j-1+hk_3}^{n+h}}{\Delta x^2}\\ &= \frac{i}{2}\frac{\Psi_{j+1}^{n}+hk_{3(j+1)}-2\Psi_{j}^{n}-2hk_{3j}+\Psi_{j-1}^{n}+hk_{3(j-1)}}{\Delta x^2} \end{split} \end{array} \right.\end{equation}$$matrix$$\begin{equation} \begin{array}{cc} \begin{split} \bm{k_1^n} &= \left[ \begin{array}{cc} f(\Psi^n_1, t^n) \\ f(\Psi^n_2, t^n) \\ \vdots \\ f(\Psi^n_J, t^n) \\ \end{array} \right] \\ &= \frac{i}{2\Delta x^2} \left[ \begin{array}{cc} -2&1&0&0&\cdots&0&0&0 \\ 1&-2&1&0&\cdots&0&0&0 \\ 0&1&-2&1&\cdots&0&0&0 \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ 0&0&0&0&\cdots&1&-2&1 \\ 0&0&0&0&\cdots&0&1&-2 \\ \end{array} \right] \left[ \begin{array}{cc} \Psi^n_1 \\ \Psi^n_2 \\ \Psi^n_3 \\ \vdots \\ \vdots \\ \Psi^n_{J-1} \\ \Psi^n_J \\ \end{array} \right] \end{split} \end{array}\end{equation}$$$$\begin{equation} \begin{split} \bm{k_2^n} &= \left[ \begin{array}{cc} f(\Psi^n_1+k_1\frac{h}{2}, t^n+\frac{h}{2}) \\ f(\Psi^n_2+k_1\frac{h}{2}, t^n+\frac{h}{2}) \\ \vdots \\ f(\Psi^n_J+k_1\frac{h}{2}, t^n+\frac{h}{2}) \\ \end{array} \right] \\ &= \frac{i}{2\Delta x^2} \left[ \begin{array}{cc} -2&1&0&0&\cdots&0&0&0 \\ 1&-2&1&0&\cdots&0&0&0 \\ 0&1&-2&1&\cdots&0&0&0 \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ 0&0&0&0&\cdots&1&-2&1 \\ 0&0&0&0&\cdots&0&1&-2 \\ \end{array} \right] \left( \left[ \begin{array}{cc} \Psi^n_1 \\ \Psi^n_2 \\ \Psi^n_3 \\ \vdots \\ \vdots \\ \Psi^n_{J-1} \\ \Psi^n_J \\ \end{array} \right] + \frac{h}{2}\bm{k_1^n} \right) \end{split}\end{equation}$$$$\begin{equation} \begin{split} \bm{k_3^n} &= \left[ \begin{array}{cc} f(\Psi^n_1+k_2\frac{h}{2}, t^n+\frac{h}{2}) \\ f(\Psi^n_2+k_2\frac{h}{2}, t^n+\frac{h}{2}) \\ \vdots \\ f(\Psi^n_J+k_2\frac{h}{2}, t^n+\frac{h}{2}) \\ \end{array} \right] \\ &= \frac{i}{2\Delta x^2} \left[ \begin{array}{cc} -2&1&0&0&\cdots&0&0&0 \\ 1&-2&1&0&\cdots&0&0&0 \\ 0&1&-2&1&\cdots&0&0&0 \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ 0&0&0&0&\cdots&1&-2&1 \\ 0&0&0&0&\cdots&0&1&-2 \\ \end{array} \right] \left( \left[ \begin{array}{cc} \Psi^n_1 \\ \Psi^n_2 \\ \Psi^n_3 \\ \vdots \\ \vdots \\ \Psi^n_{J-1} \\ \Psi^n_J \\ \end{array} \right] + \frac{h}{2}\bm{k_2^n} \right) \end{split}\end{equation}$$$$\begin{equation} \begin{split} \bm{k_4^n} &= \left[ \begin{array}{cc} f(\Psi^n_1+hk_3, t^n+h) \\ f(\Psi^n_2+hk_3, t^n+h) \\ \vdots \\ f(\Psi^n_J+hk_3, t^n+h) \\ \end{array} \right] \\ &= \frac{i}{2\Delta x^2} \left[ \begin{array}{cc} -2&1&0&0&\cdots&0&0&0 \\ 1&-2&1&0&\cdots&0&0&0 \\ 0&1&-2&1&\cdots&0&0&0 \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots \\ 0&0&0&0&\cdots&1&-2&1 \\ 0&0&0&0&\cdots&0&1&-2 \\ \end{array} \right] \left( \left[ \begin{array}{cc} \Psi^n_1 \\ \Psi^n_2 \\ \Psi^n_3 \\ \vdots \\ \vdots \\ \Psi^n_{J-1} \\ \Psi^n_J \\ \end{array} \right] + h\bm{k_3^n} \right) \end{split}\end{equation}$$$$\begin{equation} \bm{\Psi^{n+1}} = \bm{\Psi^n} + \frac{h}{6}(\bm{k_1^n}+2\bm{k_2^n}+2\bm{k_3^n}+\bm{k_4^n})\end{equation}$$ ###Code # Finite Difference with Fourth Lunge-Kutta Method # state num state_num = 2 # box length box_l = 2 # cal time time_total = 2 # time step delta_time = 2e-5 # space step delta_x = 1e-2 # time discrete num time_n = int(time_total/delta_time) # space discrete num space_n = int(box_l/delta_x) # result matrix space_point * time_point phi_matrix = np.zeros((int(space_n), int(time_n))).astype(np.complex64) # def A matrix parm_matrix = -2*np.eye(int(space_n)) + np.eye(int(space_n), k=1) + np.eye(int(space_n), k=-1) + 0.j parm_matrix[0, :] = 0 parm_matrix[-1, :] = 0 # def k1, k2, k3, k4 # k1 = k_vector_matrix[:, 0] # k2 = k_vector_matrix[:, 1] # k3 = k_vector_matrix[:, 2] # k4 = k_vector_matrix[:, 3] k_vector_matrix = np.zeros((int(space_n), 4)).astype(np.complex64) # init wave phi_matrix[:, 0] = np.sin((state_num*np.pi/box_l)*(np.linspace(-box_l/2, box_l/2, space_n)+box_l/2)) # iter constant_ = 1.j/(2*np.power(delta_x, 2)) for i in range(time_n-1): # k1 k_vector_matrix[:, 0] = constant_ * np.matmul(parm_matrix, phi_matrix[:, i]) # k2 k_vector_matrix[:, 1] = constant_ * (np.matmul(parm_matrix, phi_matrix[:, i]+(delta_time/2)*k_vector_matrix[:, 0])) # k3 k_vector_matrix[:, 2] = constant_ * (np.matmul(parm_matrix, phi_matrix[:, i]+(delta_time/2)*k_vector_matrix[:, 1])) # k4 k_vector_matrix[:, 3] = constant_ * (np.matmul(parm_matrix, phi_matrix[:, i]+(delta_time)*k_vector_matrix[:, 2])) # if i % 1000 == 0: # print(np.max(k_vector_matrix)) phi_matrix[:, i+1] = phi_matrix[:, i] + (delta_time/6)*(k_vector_matrix[:, 0] + 2*k_vector_matrix[:, 1] + 2*k_vector_matrix[:, 2] + k_vector_matrix[:, 3]) print("done...") # plot plt.figure(figsize=(10, 10), dpi=150) draw_time_list = np.linspace(0, time_n-1, min(400, time_n)).astype(np.int32) draw_position_list = np.linspace(0, space_n-1, min(400, space_n)).astype(np.int32) phi_matrix_draw = phi_matrix[draw_position_list, :][:, draw_time_list] time_list = np.linspace(0, time_total, len(draw_time_list)) position_list = np.linspace(-box_l/2, box_l/2, len(draw_position_list)) position_labels = np.around(np.linspace(-box_l/2, box_l/2, 4), 1) # the index position of the tick labels position_ticks = list() for label in position_labels: idx_pos = len(position_list) - np.argmin(np.abs(label-position_list)) position_ticks.append(idx_pos) time_labels = np.around(np.linspace(0, time_total, 4), 1) time_ticks = list() for label in time_labels: idx_pos = np.argmin(np.abs(label-time_list)) time_ticks.append(idx_pos) # real plt.subplot(2, 1, 1) ax = sns.heatmap(np.real(phi_matrix_draw), annot=False) ax.set_xlabel("time") ax.set_ylabel("position") ax.set_yticks(position_ticks) ax.set_xticks(time_ticks) ax.set_title("real part of wave function —— time") ax.set_xticklabels(time_labels) ax.set_yticklabels(position_labels) # imag plt.subplot(2, 1, 2) ax_imag = sns.heatmap(np.imag(phi_matrix_draw), annot=False) ax_imag.set_xlabel("time") ax_imag.set_ylabel("position") ax_imag.set_yticks(position_ticks) ax_imag.set_xticks(time_ticks) ax_imag.set_title("imaginary part of wave function —— time") ax_imag.set_xticklabels(time_labels) ax_imag.set_yticklabels(position_labels) plt.show() ###Output _____no_output_____ ###Markdown PINNUsing PINN to solve the Shrodinger Equation in a infinite potential well model* Inputsposition $x_i$, and time $t_i$* outputthe wave function value $u$ at $(x_i, t_i)$* Conditions * **PDE** $$ \begin{equation} f(x, t) = i \frac{\partial{u}}{\partial{t}} + 2\frac{\partial^2{u}}{\partial{x}^2} = 0, \\ -\frac{L}{2}\leq x \leq \frac{L}{2} \end{equation} $$ * **Boundary Conditions** $$ \begin{equation} \begin{array}{cc} u(-\frac{L}{2}, t)=0 \\ u(\frac{L}{2}, t)=0 \end{array} \end{equation} $$ * **Initial Conditions** $$ \begin{equation} \begin{array}{cc} u(x, 0) = Asin(k_n(x+\frac{L}{2})) \\ k_n = \frac{n\pi}{L} \\ |A|=\sqrt{\frac{2}{L}} \end{array} \end{equation} $$* Loss Function$$\begin{equation} \begin{array}{cc} \mathcal{L}=MSE_b+MSE_0+MSE_f, \\ \\ MSE_b = \frac{1}{|N_b|}\sum_{i=1}^{|N_b|}(|u(-\frac{L}{2}, t^i_b)|^2+|u(\frac{L}{2}, t^i_b)|^2), \\ \\ MSE_0 = \frac{1}{|N_0|}\sum_{i=1}^{|N_0|} |u(x_0^i, 0)-u_0^i|^2, \\ \\ MSE_f = \frac{1}{|N_f|}\sum_{i=1}^{|N_f|} |f(x_f^i, t_f^i)|^2 \end{array}\end{equation}$$where $N_f = \{ (x_f^1, t_f^1), (x_f^2, t_f^2), \cdots, (x_f^{|N_f|}, t_f^{|N_f|}) \}$ is the dataset to calculate the loss of PDE, $|N_f|$ is the total number of $N_f$, $N_0 = \{ (x_0^1, u_0^1), (x_0^2, u_0^2), \cdots, (x_0^{|N_0|}, u_0^{|N_0|}) \}$ denotes the initial data,$|N_0|$ is the total number of $N_0$, $N_b=\{ t^1_b, t^2_b, \cdots, t^{|N_b|}_b \}$ corresponds to the collocation points on the boundary,and $|N_b|$ is the total number of $N_b$,* Optimization MethodIn order to calculate the value of $f(x_f^i, t_f^i)$, we need to obtain the value of $\frac{\partial{u}}{\partial{t}}$ and $\frac{\partial^2{u}}{\partial{x}^2}$, which can not be obtained directly.Consider to use Automatic Differentiation(AD) to obtain these two value, which is an important part of Gradient Descent.* Other Info * Self-Supervised Learning or Supervised Learning? There is no need to provide train data to train PINN model, and the numerical data is only used to calculate the accuracy of PINN outputs ###Code def heatmap_draw_func(input_matrix, time_range, position_range): # plot time_n_raw = len(input_matrix[0, :]) space_n_raw = len(input_matrix[:, 0]) plt.figure(figsize=(10, 10), dpi=150) draw_time_list = np.linspace(0, time_n_raw-1, min(400, time_n_raw)).astype(np.int32) draw_position_list = np.linspace(0, space_n_raw-1, min(400, space_n_raw)).astype(np.int32) phi_matrix_draw = input_matrix[draw_position_list, :][:, draw_time_list] time_list = np.linspace(time_range[0], time_range[1], len(draw_time_list)) position_list = np.linspace(position_range[0], position_range[1], len(draw_position_list)) position_labels = np.around(np.linspace(position_range[0], position_range[1], 4), 1) # the index position of the tick labels position_ticks = list() for label in position_labels: idx_pos = len(position_list) - np.argmin(np.abs(label-position_list)) position_ticks.append(idx_pos) time_labels = np.around(np.linspace(time_range[0], time_range[1], 4), 1) time_ticks = list() for label in time_labels: idx_pos = np.argmin(np.abs(label-time_list)) time_ticks.append(idx_pos) # real plt.subplot(2, 1, 1) ax = sns.heatmap(np.real(phi_matrix_draw), annot=False) ax.set_xlabel("time") ax.set_ylabel("position") ax.set_yticks(position_ticks) ax.set_xticks(time_ticks) ax.set_title("real part of wave function —— time") ax.set_xticklabels(time_labels) ax.set_yticklabels(position_labels) # imag plt.subplot(2, 1, 2) ax_imag = sns.heatmap(np.imag(phi_matrix_draw), annot=False) ax_imag.set_xlabel("time") ax_imag.set_ylabel("position") ax_imag.set_yticks(position_ticks) ax_imag.set_xticks(time_ticks) ax_imag.set_title("imaginary part of wave function —— time") ax_imag.set_xticklabels(time_labels) ax_imag.set_yticklabels(position_labels) plt.show() # PINN # data # boundary_data, initial_data, f_data # obtain from numerical method # boundary data number boundary_data_num = 50 # initial data number initial_data_num = 50 # f data number f_data_num = 2000000 # total num total_initial_num = len(phi_matrix[:, 0]) total_boundary_num = len(phi_matrix[0, :]) * 2 total_f_num = np.prod(np.shape(phi_matrix)) # x and t data time_list = np.linspace(0, time_total, len(phi_matrix[0, :])) position_list = np.linspace(-box_l/2, box_l/2, len(phi_matrix[:, 0])) # obtain the index of test data import random np.random.seed(1024) random.seed(1024) initial_data_index_list = np.random.choice(range(0, total_initial_num), initial_data_num, replace=False) boundary_data_index_list = np.random.choice(range(0, total_boundary_num), boundary_data_num, replace=False) f_data_index_list = np.random.choice(range(0, total_f_num), f_data_num, replace=False) # obtain data # (x, t, u) initial_position = position_list[initial_data_index_list] initial_time = np.zeros_like(initial_data_index_list) initial_data = np.array(list(zip(initial_position, initial_time, phi_matrix[initial_data_index_list, 0])), dtype=np.complex64) # boundary boundary_position_loc_list = (boundary_data_index_list//len(time_list))*-1 boundary_time_loc_list = boundary_data_index_list%len(time_list) boundary_position = position_list[boundary_position_loc_list] boundary_time = time_list[boundary_time_loc_list] boundary_data = np.array(list(zip(boundary_position, boundary_time, phi_matrix[boundary_position_loc_list, boundary_time_loc_list])), dtype=np.complex64) # f f_data_position_loc_list = f_data_index_list//len(time_list) f_data_time_loc_list = f_data_index_list%len(time_list) f_data_position = position_list[f_data_position_loc_list] f_data_time = time_list[f_data_time_loc_list] f_data = np.array(list(zip(f_data_position, f_data_time, phi_matrix[f_data_position_loc_list, f_data_time_loc_list])), dtype=np.complex64) # draw test data test_data_matrix = np.ones_like(phi_matrix).astype(np.complex64)*-1 test_data_matrix[initial_data_index_list, 0] = initial_data[:, 2] test_data_matrix[boundary_position_loc_list, boundary_time_loc_list] = boundary_data[:, 2] test_data_matrix[f_data_position_loc_list, f_data_time_loc_list] = f_data[:, 2] heatmap_draw_func(test_data_matrix, [0, time_total], [-box_l/2, box_l/2]) f_data = f_data[:20000, :] print("data create done...") print("the number of initial data:{}".format(len(initial_data))) print("the number of boundary data:{}".format(len(boundary_data))) print("the number of f data:{}".format(len(f_data))) from torch.utils.data import DataLoader, Dataset import torch from torch import nn from collections import OrderedDict # dataset and dataloader class MyDataset(Dataset): def __init__(self, data_list) -> None: super(MyDataset, self).__init__() self.data_list = data_list def __getitem__(self, item): input_x = self.data_list[item][0] input_t = self.data_list[item][1] true_y_real = self.data_list[item][2] true_y_imag = self.data_list[item][3] return {"input_x": input_x, "input_t": input_t, "true_y": [true_y_real, true_y_imag]} def __len__(self): return len(self.data_list) @staticmethod def collate_fn(batch): input_tensor = torch.cat([torch.unsqueeze([s["input_x"], s["input_t"]], 0) for s in batch], dim=0).type(torch.float32) true_y = torch.as_tensor([s["true_y"] for s in batch]) return {"input": input_tensor, "output": true_y} # model # input (x, t) # output (pred_real, pred_imag, du/dt, d^2u/dx^2) class PINN(nn.Module): def __init__(self): super(PINN, self).__init__() self.pinn_network = nn.Sequential(OrderedDict([ ("layer 1", nn.Linear(2, 100)), ("tanh 1", nn.Tanh()), ("layer 2", nn.Linear(100, 100)), ("tanh 2", nn.Tanh()), ("layer 3", nn.Linear(100, 100)), ("tanh 3", nn.Tanh()), ("layer 4", nn.Linear(100, 100)), ("tanh 4", nn.Tanh()), ("output layer", nn.Linear(100, 2)), ])) def forward(self, x): return self.pinn_network(x) bx = torch.tensor([[1., 2.], [3., 4.], [5., 6.]], requires_grad=True) y = torch.cat((torch.unsqueeze(torch.pow(bx[:, 0], 2)+torch.pow(bx[:, 1], 2), dim=-1), torch.unsqueeze(torch.pow(bx[:, 0], 3)+torch.pow(bx[:, 1], 3), dim=-1)), dim=-1) print(y) print(y.shape, bx.shape) dydx_1 = torch.autograd.grad(y[:, 0], bx, grad_outputs=torch.ones(bx.shape[0]), create_graph=True, retain_graph=True) dydx_2 = torch.autograd.grad(y[:, 1], bx, grad_outputs=torch.ones(bx.shape[0]), create_graph=True, retain_graph=True) print(torch.unsqueeze(dydx_1[0][:, 0], dim=-1).shape) print(dydx_2) print(torch.cat((torch.unsqueeze(dydx_1[0][:, 0], dim=-1), torch.unsqueeze(dydx_2[0][:, 0], dim=-1)), dim=1).shape) dy_2_dx_1 = torch.autograd.grad(dydx_2[0], bx, grad_outputs=torch.ones(bx.shape), create_graph=True, retain_graph=True) print(dy_2_dx_1) # -------------- global params -------------- if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") max_epochs = 100 recorder = dict() recorder["acc"] = list() recorder["loss"] = list() # -------------- data -------------- # data set boundary_dataset = MyDataset(boundary_data) initial_dataset = MyDataset(initial_data) f_dataset = MyDataset(f_data) # data loader boundary_dataloader = DataLoader(dataset=boundary_dataset, batch_size=boundary_data_num, shuffle=True, collate_fn=boundary_dataset.collate_fn) initial_dataloader = DataLoader(dataset=initial_dataset, batch_size=initial_data_num, shuffle=True, collate_fn=initial_dataset.collate_fn) f_data_dataloader = DataLoader(dataset=f_dataset, batch_size=f_data_num, shuffle=True, collate_fn=f_dataset.collate_fn) # -------------- model -------------- pinn_model = PINN().to(device) # -------------- loss and optimizer -------------- params = [p for p in pinn_model.parameters() if p.requires_grad] optimizer = torch.optim.LBFGS(params) criterion = nn.MSELoss(reduction="mean") # train for epoch in range(1, max_epochs+1): pinn_model.train() optimizer.zero_grad() # boundary data for step, batch in enumerate(boundary_dataloader): input_ = batch["input"].to(device) true_output = batch["output"].to(device) pred_ = pinn_model(input_) boundary_loss = criterion(pred_, torch.zeros_like(pred_).to(device)) # initial data for step, batch in enumerate(initial_dataloader): input_ = batch["input"].to(device) true_output = batch["output"].to(device) pred_ = pinn_model(input_) initial_loss = criterion(pred_, true_output) # f data for step, batch in enumerate(f_data_dataloader): input_ = batch["input"].to(device) pred_ = pinn_model(input_) # cal du/dt and du/dx # du/d(input) : (batch, input_len) # du/dt = du/d(input)[:, 1] # du/dx = du/d(input)[:, 0] du_dinput_real = torch.autograd.grad(pred_[:, 0], input_, grad_outputs=torch.ones(input_.shape[0]), create_graph=True, retain_graph=True) du_dinput_imag = torch.autograd.grad(pred_[:, 1], input_, grad_outputs=torch.ones(input_.shape[0]), create_graph=True, retain_graph=True) # cal d^2u/dt^2 and d^2u/dx^2 # d^2u/d(input)^2 : (batch, input_len) # d^u/dt^2 : d^2u/d(input)^2[:, 1] # d^u/dx^2 : d^2u/d(input)^2[:, 0] du_dinput_real_2 = torch.autograd.grad(du_dinput_real[0], input_, grad_outputs=torch.ones(input_.shape), create_graph=True, retain_graph=True) du_dinput_imag_2 = torch.autograd.grad(du_dinput_imag[0], input_, grad_outputs=torch.ones(input_.shape), create_graph=True, retain_graph=True) # obtain du/dt du_dt_real = du_dinput_real[0][:, 1] du_dt_imag = du_dinput_imag[0][:, 1] # obtain d^2u/dx^2 du_dx_2_real = du_dinput_real_2[0][:, 0] du_dx_2_imag = du_dinput_imag_2[0][:, 0] f_func_value_real = torch.unsqueeze(-du_dt_imag + 2*du_dx_2_real, dim=-1) f_func_value_imag = torch.unsqueeze(du_dt_real + 2*du_dx_2_imag, dim=-1) f_func_output = torch.cat((f_func_value_real, f_func_value_imag), dim=-1) f_loss = criterion(f_func_output, torch.zeros_like(f_func_output).to(device)) total_loss = initial_loss + boundary_loss + f_loss total_loss.backward() optimizer.step() if epoch%10 == 0: print("[{}/{}]\t loss:{}".format(epoch, max_epochs, total_loss.item())) ###Output _____no_output_____
dados_desbalanceados_com_random_forest.ipynb
###Markdown Carregamento da base de dados ###Code import pandas as pd import random import numpy as np dataset = pd.read_csv('csv_result-ebay_confianca_completo.csv') dataset.shape dataset.head() dataset['blacklist'] = dataset['blacklist'] == 'S' import seaborn as sns sns.countplot(dataset['reputation']); X = dataset.iloc[:, 0:74].values X.shape X y = dataset.iloc[:, 74].values y.shape y np.unique(y, return_counts=True) ###Output _____no_output_____ ###Markdown Base de treinamento e teste ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, stratify = y) X_train.shape, y_train.shape ###Output _____no_output_____ ###Markdown Classificação com Random Forest ###Code from sklearn.ensemble import RandomForestClassifier modelo = RandomForestClassifier() modelo.fit(X_train, y_train) previsoes = modelo.predict(X_test) from sklearn.metrics import accuracy_score accuracy_score(previsoes, y_test) ###Output _____no_output_____ ###Markdown Subamostragem - undersampling (tomek links) ###Code from imblearn.under_sampling import TomekLinks tl = TomekLinks(return_indices=True, ratio='majority') X_under, y_under, id_under = tl.fit_sample(X,y) X_under.shape, y_under.shape, id_under np.unique(y, return_counts=True) np.unique(y_under, return_counts=True) X_train_u, X_test_u, y_train_u, y_test_u = train_test_split(X_under, y_under, test_size=0.2, stratify=y_under) X_train_u.shape, X_test_u.shape modelo_u = RandomForestClassifier() modelo_u.fit(X_train_u, y_train_u) previsoes_u = modelo_u.predict(X_test_u) accuracy_score(previsoes_u, y_test_u) ###Output _____no_output_____ ###Markdown Sobreamostragem - oversampling (SMOTE) ###Code from imblearn.over_sampling import SMOTE smote = SMOTE(ratio='minority') X_over, y_over = smote.fit_sample(X, y) X_over.shape, y_over.shape np.unique(y, return_counts=True) np.unique(y_over, return_counts=True) sns.countplot(y_over); X_train_o, X_test_o, y_train_o, y_test_o = train_test_split(X_over, y_over, test_size=0.2, stratify=y_over) X_train_o.shape, X_test_o.shape modelo_o = RandomForestClassifier() modelo_o.fit(X_train_o, y_train_o) previsoes_o = modelo_o.predict(X_test_o) accuracy_score(previsoes_o, y_test_o) ###Output _____no_output_____
snippets/Steganography.ipynb
###Markdown 一些隐写相关的代码片段 http://www.epubit.com.cn/article/1041 ###Code from PIL import Image def encodeDataInImage(image, data): evenImage = makeImageEven(image) # 获得最低有效位为 0 的图片副本 binary = ''.join(map(constLenBin,bytearray(data, 'utf-8'))) # 将需要被隐藏的字符串转换成二进制字符串 if len(binary) > len(image.getdata()) * 4: # 如果不可能编码全部数据, 抛出异常 raise Exception("Error: Can't encode more than " + len(evenImage.getdata()) * 4 + " bits in this image. ") encodedPixels = [(r+int(binary[index*4+0]),g+int(binary[index*4+1]),b+int(binary[index*4+2]),t+int(binary[index*4+3])) if index*4 < len(binary) else (r,g,b,t) for index,(r,g,b,t) in enumerate(list(evenImage.getdata()))] # 将 binary 中的二进制字符串信息编码进像素里 encodedImage = Image.new(evenImage.mode, evenImage.size) # 创建新图片以存放编码后的像素 encodedImage.putdata(encodedPixels) # 添加编码后的数据 return encodedImage def makeImageEven(image): pixels = list(image.getdata()) # 得到一个这样的列表: [(r,g,b,t),(r,g,b,t)...] evenPixels = [(r>>1<<1,g>>1<<1,b>>1<<1,t>>1<<1) for [r,g,b,t] in pixels] # 更改所有值为偶数(魔法般的移位) evenImage = Image.new(image.mode, image.size) # 创建一个相同大小的图片副本 evenImage.putdata(evenPixels) # 把上面的像素放入到图片副本 return evenImage def constLenBin(int): binary = "0"*(8-(len(bin(int))-2))+bin(int).replace('0b','') # 去掉 bin() 返回的二进制字符串中的 '0b',并在左边补足 '0' 直到字符串长度为 8 return binary def decodeImage(image): pixels = list(image.getdata()) # 获得像素列表 binary = ''.join([str(int(r>>1<<1!=r))+str(int(g>>1<<1!=g))+str(int(b>>1<<1!=b))+str(int(t>>1<<1!=t)) for (r,g,b,t) in pixels]) # 提取图片中所有最低有效位中的数据 # 找到数据截止处的索引 locationDoubleNull = binary.find('0000000000000000') endIndex = locationDoubleNull+(8-(locationDoubleNull % 8)) if locationDoubleNull%8 != 0 else locationDoubleNull data = binaryToString(binary[0:endIndex]) return data encodeDataInImage(Image.open("coffee.png"), '你好世界,Hello world!') ###Output _____no_output_____
dft_workflow/__misc__/finding_nonconstrained_mistakes/find_unconstr_slabs.ipynb
###Markdown Import Modules ###Code import os import sys import pandas as pd pd.set_option("display.max_columns", None) # pd.set_option('display.max_rows', None) # pd.options.display.max_colwidth = 100 from methods import get_df_jobs_data ###Output _____no_output_____ ###Markdown Read Data ###Code df_jobs_data = get_df_jobs_data() df_jobs_data_i = df_jobs_data[ ~df_jobs_data.final_atoms.isna() ] # job_id_i = "sesepado_97" # df_jobs_data_i = df_jobs_data_i.loc[[job_id_i]] bad_job_ids = [] for job_id_i, row_i in df_jobs_data_i.iterrows(): # ##################################################### final_atoms_i = row_i.final_atoms # ##################################################### # print(job_id_i) has_constraints = False if len(final_atoms_i.constraints) > 0: has_constraints = True if not has_constraints: # print(job_id_i) bad_job_ids.append(job_id_i) if len(bad_job_ids) > 0: print(50 * "ALERT | There are slabs with no constraints!!") # ['vuvukara_45', 'setumaha_18', 'nububewo_52', 'fowonifu_15'] ###Output _____no_output_____ ###Markdown ###Code # if not has_constraints: # print("IDSJSFIDSif") # len(final_atoms_i.constraints) ###Output _____no_output_____
hw2/Plots-for-CartePole-v0.ipynb
###Markdown Small batch, no reward_to_go, no normalize_advantage ###Code infiles = sorted(glob.glob('./data/sb_no_rtg_no_na/CartPole-v0/*.csv'), key=lambda s: int(os.path.basename(s).replace('.csv', ''))) print(len(infiles)) fig, axes = plt.subplots(1, 3, figsize=(14, 4)) axes = axes.ravel() for k, col in enumerate(['avg_ret', 'min_ret', 'max_ret']): ax = axes[k] dfs = [] for f in infiles: _df = pd.read_csv(f) dfs.append(_df[col]) cat_df = pd.concat(dfs, axis=1) # cat_df.columns=np.arange(1, 6) avg = cat_df.mean(axis=1) std = cat_df.std(axis=1) xs = cat_df.index.values + 1 ax.plot(xs, avg) ax.fill_between(xs, avg - std, avg+std, alpha=0.2) ax.set_title(col) ax.grid() ###Output _____no_output_____ ###Markdown Large batch, no reward_to_go, no normalize_advantage ###Code infiles = sorted(glob.glob('./data/lb_no_rtg_no_na/CartPole-v0/*.csv'), key=lambda s: int(os.path.basename(s).replace('.csv', ''))) print(len(infiles)) fig, axes = plt.subplots(1, 3, figsize=(14, 4)) axes = axes.ravel() for k, col in enumerate(['avg_ret', 'min_ret', 'max_ret']): ax = axes[k] dfs = [] for f in infiles: _df = pd.read_csv(f) dfs.append(_df[col]) cat_df = pd.concat(dfs, axis=1) # cat_df.columns=np.arange(1, 6) avg = cat_df.mean(axis=1) std = cat_df.std(axis=1) xs = cat_df.index.values + 1 ax.plot(xs, avg) ax.fill_between(xs, avg - std, avg+std, alpha=0.2) ax.set_title(col) ax.grid() ###Output _____no_output_____ ###Markdown Small batch, reward_to_go, no normalize_advantage ###Code infiles = sorted(glob.glob('./data/sb_rtg_no_na/CartPole-v0/*.csv'), key=lambda s: int(os.path.basename(s).replace('.csv', ''))) print(len(infiles)) fig, axes = plt.subplots(1, 3, figsize=(14, 4)) axes = axes.ravel() for k, col in enumerate(['avg_ret', 'min_ret', 'max_ret']): ax = axes[k] dfs = [] for f in infiles: _df = pd.read_csv(f) dfs.append(_df[col]) cat_df = pd.concat(dfs, axis=1) avg = cat_df.mean(axis=1) std = cat_df.std(axis=1) xs = cat_df.index.values + 1 ax.plot(xs, avg) ax.fill_between(xs, avg - std, avg+std, alpha=0.2) ax.set_title(col) ax.grid() ###Output _____no_output_____ ###Markdown Large batch, reward_to_go, no normalize_advantage ###Code infiles = sorted(glob.glob('./data/lb_rtg_no_na/CartPole-v0/*.csv'), key=lambda s: int(os.path.basename(s).replace('.csv', ''))) print(len(infiles)) fig, axes = plt.subplots(1, 3, figsize=(14, 4)) axes = axes.ravel() for k, col in enumerate(['avg_ret', 'min_ret', 'max_ret']): ax = axes[k] dfs = [] for f in infiles: _df = pd.read_csv(f) dfs.append(_df[col]) cat_df = pd.concat(dfs, axis=1) # cat_df.columns=np.arange(1, 6) avg = cat_df.mean(axis=1) std = cat_df.std(axis=1) xs = cat_df.index.values + 1 ax.plot(xs, avg) ax.fill_between(xs, avg - std, avg+std, alpha=0.2) ax.set_title(col) ax.grid() ###Output _____no_output_____ ###Markdown Small batch, reward_to_go, normalize_advantage ###Code infiles = sorted(glob.glob('./data/sb_rtg_na/CartPole-v0/*.csv'), key=lambda s: int(os.path.basename(s).replace('.csv', ''))) print(len(infiles)) fig, axes = plt.subplots(1, 3, figsize=(14, 4)) axes = axes.ravel() for k, col in enumerate(['avg_ret', 'min_ret', 'max_ret']): ax = axes[k] dfs = [] for f in infiles: _df = pd.read_csv(f) dfs.append(_df[col]) cat_df = pd.concat(dfs, axis=1) avg = cat_df.mean(axis=1) std = cat_df.std(axis=1) xs = cat_df.index.values + 1 ax.plot(xs, avg) ax.fill_between(xs, avg - std, avg+std, alpha=0.2) ax.set_title(col) ax.grid() ###Output _____no_output_____ ###Markdown Large batch, reward_to_go, normalize_advantage ###Code infiles = sorted(glob.glob('./data/lb_rtg_na/CartPole-v0/*.csv'), key=lambda s: int(os.path.basename(s).replace('.csv', ''))) print(len(infiles)) fig, axes = plt.subplots(1, 3, figsize=(14, 4)) axes = axes.ravel() for k, col in enumerate(['avg_ret', 'min_ret', 'max_ret']): ax = axes[k] dfs = [] for f in infiles: _df = pd.read_csv(f) dfs.append(_df[col]) cat_df = pd.concat(dfs, axis=1) avg = cat_df.mean(axis=1) std = cat_df.std(axis=1) xs = cat_df.index.values + 1 ax.plot(xs, avg) ax.fill_between(xs, avg - std, avg+std, alpha=0.2) ax.set_title(col) ax.grid() ###Output _____no_output_____ ###Markdown Q & A reward-to-go and advantage normalization help, but not as apparent as batch size, which makes a huge impact.The empirical results do match theory: with policy gradient, the expected return improves, which is the goal of RL. Small batch, reward_to_go, normalize_advantage, neural network baseline ###Code infiles = sorted(glob.glob('./data/sb_rtg_na_nb/CartPole-v0/*.csv'), key=lambda s: int(os.path.basename(s).replace('.csv', ''))) print(len(infiles)) fig, axes = plt.subplots(1, 3, figsize=(14, 4)) axes = axes.ravel() for k, col in enumerate(['avg_ret', 'min_ret', 'max_ret']): ax = axes[k] dfs = [] for f in infiles: _df = pd.read_csv(f) dfs.append(_df[col]) cat_df = pd.concat(dfs, axis=1) avg = cat_df.mean(axis=1) std = cat_df.std(axis=1) xs = cat_df.index.values + 1 ax.plot(xs, avg) ax.fill_between(xs, avg - std, avg+std, alpha=0.2) ax.set_title(col) ax.grid() ###Output _____no_output_____ ###Markdown Large batch, reward_to_go, normalize_advantage, neural network baseline ###Code infiles = sorted(glob.glob('./data/lb_rtg_na_nb/CartPole-v0/*.csv'), key=lambda s: int(os.path.basename(s).replace('.csv', ''))) print(len(infiles)) fig, axes = plt.subplots(1, 3, figsize=(14, 4)) axes = axes.ravel() for k, col in enumerate(['avg_ret', 'min_ret', 'max_ret']): ax = axes[k] dfs = [] for f in infiles: _df = pd.read_csv(f) dfs.append(_df[col]) cat_df = pd.concat(dfs, axis=1) avg = cat_df.mean(axis=1) std = cat_df.std(axis=1) xs = cat_df.index.values + 1 ax.plot(xs, avg) ax.fill_between(xs, avg - std, avg+std, alpha=0.2) ax.set_title(col) ax.grid() ###Output _____no_output_____
processing/.ipynb_checkpoints/Make_bank_configs_overview_table-checkpoint.ipynb
###Markdown Make bank configs for simulations ###Code <agent identifier="SBSA"> <parameter type="state_variables" name="equity" value="86200249000.0"></parameter> <parameter type="parameters" name="leverage" value="13.0780116888061"></parameter> <parameter type="state_variables" name="debt" value="1127327864000.0"></parameter> <parameter type="parameters" name="m_1" value="0.0245212259042243" label="Cash and gold reserves "></parameter> <parameter type="parameters" name="m_2" value="0.0107197211672673" label="SA Interbank deposits, loans and advances "></parameter> <parameter type="parameters" name="m_3" value="0.00405856934605684" label="Rand Deposits with and loans to foreign banks"></parameter> <parameter type="parameters" name="m_4" value="0.0359414516505725" label="Loans granted under repo agreement"></parameter> <parameter type="parameters" name="m_5" value="0.129182760844701" label="Foreign currency loans and advances d 134),"></parameter> <parameter type="parameters" name="m_6" value="0.0170625845237423" label="Redeemable preference shares"></parameter> <parameter type="parameters" name="m_7" value="0.0296141684852751" label="corporate instalment credit "></parameter> <parameter type="parameters" name="m_8" value="0.0252157207337808" label="household instalment credit "></parameter> <parameter type="parameters" name="m_9" value="0.0690936667241429" label="corporate mortgage"></parameter> <parameter type="parameters" name="m_10" value="0.217515842585181" label="household mortgage"></parameter> <parameter type="parameters" name="m_11" value="0.114607784121438" label="Unsecured lending corporate"></parameter> <parameter type="parameters" name="m_12" value="0.0247813962262941" label="Unsecured lending households"></parameter> <parameter type="parameters" name="m_13" value="0.0589651490010434" label="Other credit (credit card + leasing + Overdarft + factoring debt)"></parameter> <parameter type="parameters" name="m_14" value="0.0412585423144622" label="Central and provincial government bonds"></parameter> <parameter type="parameters" name="m_15" value="0.00466172471770335" label="Other public-sector bonds"></parameter> <parameter type="parameters" name="m_16" value="0.0123382885320927" label="Private sector bonds"></parameter> <parameter type="parameters" name="m_17" value="0.000201706905161743" label="Equity holdings in subsidiaries and joint ventures"></parameter> <parameter type="parameters" name="m_18" value="0.0129940574355693" label="Listed and unlisted equities"></parameter> <parameter type="parameters" name="m_19" value="0.0839139051737815" label="Securitisation/ asset-backed securities"></parameter> <parameter type="parameters" name="m_20" value="0.00454473608062181" label="Derivative instruments"></parameter> <parameter type="parameters" name="m_21" value="0.0408429870466462" label="Treasury bills, SA Reserve Bank bills, Land Bank bills "></parameter> <parameter type="parameters" name="m_22" value="0.00209378503289771" label="Other investments"></parameter> <parameter type="parameters" name="m_23" value="0.0358702254473441" label="Non financial assets"></parameter> </agent> ###Output _____no_output_____ ###Markdown Make overview table ###Code pwd import os import pandas as pd import matplotlib.pyplot as plt import numpy as np import datetime import os import pandas as pd import matplotlib.pyplot as plt import numpy as np import datetime file_list=[] import os os.chdir('/Users/admin/git_repos/ba900/') for filename in os.listdir('./data/output/'): if filename.endswith(".pkl") and '2015' in filename or '2014' in filename: unpickle = './data/output/'+str(filename) print(unpickle) file_list.append(pd.read_pickle(unpickle)) MASTER = pd.concat(file_list) MASTER['time'] = pd.to_datetime(MASTER['time']) MASTER['Value'] = pd.to_numeric(MASTER['Value']) import sys import os import sys sys.path.append("..") from ba900 import assets_to_weights transform=assets_to_weights.tranformer() from_=['ABSA BANK LTD ','THE STANDARD BANK OF S A LTD','FIRSTRAND BANK LIMITED ','NEDBANK LTD ','INVESTEC BANK LTD ',\ 'CITIBANK N.A ','CAPITEC BANK ' , 'AFRICAN BANK LIMITED ','JPMORGAN CHASE BANK ',\ 'THE HONGKONG AND SHANGHAI BANKING CORPORATION LIMITED - JOHANNESBURG BRANCH ','STANDARD CHARTERED BANK ',\ 'CHINA CONSTRUCTION BANK CORPORATION - JHB BRANCH ' ] to_=['ABSA', 'STANDARDBANK', 'FNB','NEDBANK', 'INVESTEC',\ 'CITYBANK','CAPITEC','AfricanB','JPM',\ 'HSBC','CHARTERED','ChinaConstruction'] renamed=transform.relabel_banknames(from_,to_,MASTER) t=transform.get_biggest_banks( "2015", "12", renamed, 10) top10=t.values.tolist() renamed=renamed[renamed.InstitutionDescription.isin(top10)] years = ['2014','2015'] months = ['12','11'] df=transform.get_overview_timeseries(top10,months,years,renamed) # def get_overview_timeseries(banklist, months,years,dfrenamed): # import string # letters = list(string.ascii_uppercase)[:26] # temp1=[] # temp2=[] # temp3=[] # for y in years: # for m in months: # # Get bank totals for each of those strings # for name,l in zip(banklist,letters): # temp1.append(self.get_bank_totals(l,name,y, m, dfrenamed)) # temp2.append(pd.concat(temp1)) # temp3.append(pd.concat(temp2)) # df=pd.concat(temp3) # df=df.drop_duplicates() # return df d=transform.get_bank_totals(l,'FNB','2015', '11', renamed) print(round(df4.iloc[0:1,-29:].sum(axis=1).values[0])) renamed[renamed.InstitutionDescription=='FNB'] # id Name Equity Leverage Debt m1 Cash and gold reserves # A SBSA 86 200 249 000 13.1 1127327864000 2.5% # C FNB 75 526 054 370 12.0 904393561840 2.7% # B ABSA 57 255 883 000 15.2 869270227000 2.8% # D NEDBANK 57 683 474 000 13.0 751035802000 2.9% # E INVESTEC 24 265 229 000 14.5 352780580000 1.9% # F CITYBANK 5 123 291 030 13.9 71388112090 0.8% # G CAPITEC 13 056 412 000 3.7 48913724000 5.8% # H AfricanB 7 466 274 000 6.8 50419037000 2.2% # I JPM 3 246 873 000 16.6 53788923000 0.3% # J HSBC 3 919 312 000 11.7 45886507000 1.9% # K CHARTERED 3 688 896 000 9.4 34731129000 1.7% # L BoCHINA 4 178 651 000 7.5 31464510000 1.1% # M DeutscheB 1 433 355 000 14.9 21321901000 0.1% # N BNP 636 568 000 21.8 13862348000 0.3% # O SOCIETEG 666 836 000 16.6 11058957000 1.3% df3 debt/equity absa_assets['InstitutionDescription'] = absa_assets['InstitutionDescription'].apply(lambda x: x.replace('ABSA BANK LTD ', 'ABSA')) absa_assets # id Name Equity Leverage Debt m1 Cash and gold reserves # A SBSA 86 200 249 000 13.1 1127327864000 2.5% # C FNB 75 526 054 370 12.0 904393561840 2.7% # B ABSA 57 255 883 000 15.2 869270227000 2.8% # D NEDBANK 57 683 474 000 13.0 751035802000 2.9% # E INVESTEC 24 265 229 000 14.5 352780580000 1.9% # F CITYBANK 5 123 291 030 13.9 71388112090 0.8% # G CAPITEC 13 056 412 000 3.7 48913724000 5.8% # H AfricanB 7 466 274 000 6.8 50419037000 2.2% # I JPM 3 246 873 000 16.6 53788923000 0.3% # J HSBC 3 919 312 000 11.7 45886507000 1.9% # K CHARTERED 3 688 896 000 9.4 34731129000 1.7% # L BoCHINA 4 178 651 000 7.5 31464510000 1.1% # M DeutscheB 1 433 355 000 14.9 21321901000 0.1% # N BNP 636 568 000 21.8 13862348000 0.3% # O SOCIETEG 666 836 000 16.6 11058957000 1.3% THE STANDARD BANK OF S A LTD 14 FIRSTRAND BANK LIMITED 14 ABSA BANK LTD 14 NEDBANK LTD 14 INVESTEC BANK LTD 14 CAPITEC BANK 14 THE HONGKONG AND SHANGHAI BANKING CORPORATION ... 14 CITIBANK N.A 14 STANDARD CHARTERED BANK 14 CHINA CONSTRUCTION BANK CORPORATION - ... absa_equity.Value.values[0]+absa_debt.Value.values[0] absa_equity=MASTER[(MASTER['TheYear']=='2008')&(MASTER['TheMonth']=='11')& (MASTER['InstitutionDescription']=='ABSA BANK LTD ')&(MASTER['ItemNumber']=='95')] absa_equity ###Output _____no_output_____
notebooks/pattern_enumeration.ipynb
###Markdown AMPLPY: Pattern EnumerationDocumentation: http://amplpy.readthedocs.ioGitHub Repository: https://github.com/ampl/amplpyPyPI Repository: https://pypi.python.org/pypi/amplpy Imports ###Code from __future__ import print_function from amplpy import AMPL import os ###Output _____no_output_____ ###Markdown Basic pattern-cutting model ###Code with open(os.path.join('models', 'cut.mod'), 'r') as f: print(f.read()) ###Output param nPatterns integer > 0; set PATTERNS = 1..nPatterns; # patterns set WIDTHS; # finished widths param order {WIDTHS} >= 0; # rolls of width j ordered param overrun; # permitted overrun on any width param rolls {WIDTHS,PATTERNS} >= 0 default 0; # rolls of width i in pattern j var Cut {PATTERNS} integer >= 0; # raw rolls to cut in each pattern minimize TotalRawRolls: sum {p in PATTERNS} Cut[p]; subject to FinishedRollLimits {w in WIDTHS}: order[w] <= sum {p in PATTERNS} rolls[w,p] * Cut[p] <= order[w] + overrun; ###Markdown Enumeration routine ###Code from math import floor def patternEnum(roll_width, widths, prefix=[]): max_rep = int(floor(roll_width/widths[0])) if len(widths) == 1: patmat = [prefix+[max_rep]] else: patmat = [] for n in reversed(range(max_rep+1)): patmat += patternEnum(roll_width-n*widths[0], widths[1:], prefix+[n]) return patmat ###Output _____no_output_____ ###Markdown Plotting routine ###Code def cuttingPlot(roll_width, widths, solution): import numpy as np import matplotlib.pyplot as plt ind = np.arange(len(solution)) acc = [0]*len(solution) for p, (patt, rep) in enumerate(solution): for i in range(len(widths)): for j in range(patt[i]): vec = [0]*len(solution) vec[p] = widths[i] plt.bar(ind, vec, width=0.35, bottom=acc) acc[p] += widths[i] plt.title('Solution') plt.xticks(ind, tuple("x {:}".format(rep) for patt, rep in solution)) plt.yticks(np.arange(0, roll_width, 10)) plt.show() ###Output _____no_output_____ ###Markdown Set & generate data ###Code roll_width = 64.5 overrun = 6 orders = { 6.77: 10, 7.56: 40, 17.46: 33, 18.76: 10 } widths = list(sorted(orders.keys(), reverse=True)) patmat = patternEnum(roll_width, widths) ###Output _____no_output_____ ###Markdown Set up AMPL model ###Code # Initialize ampl = AMPL() ampl.read(os.path.join('models', 'cut.mod')) ###Output _____no_output_____ ###Markdown Send data to AMPL (Java/C++ style) ###Code # Send scalar values ampl.getParameter('overrun').set(overrun) ampl.getParameter('nPatterns').set(len(patmat)) # Send order vector ampl.getSet('WIDTHS').setValues(widths) ampl.getParameter('order').setValues(orders) # Send pattern matrix ampl.getParameter('rolls').setValues({ (widths[i], 1+p): patmat[p][i] for i in range(len(widths)) for p in range(len(patmat)) }) ###Output _____no_output_____ ###Markdown Send data to AMPL (alternative style) ###Code # Send scalar values ampl.param['overrun'] = overrun ampl.param['nPatterns'] = len(patmat) # Send order vector ampl.set['WIDTHS'] = widths ampl.param['order'] = orders # Send pattern matrixc ampl.param['rolls'] = { (widths[i], 1+p): patmat[p][i] for i in range(len(widths)) for p in range(len(patmat)) } ###Output _____no_output_____ ###Markdown Solve and report ###Code # Solve ampl.option['solver'] = 'gurobi' ampl.solve() # Retrieve solution cutting_plan = ampl.var['Cut'].getValues() cutvec = list(cutting_plan.getColumn('Cut.val')) # Display solution solution = [ (patmat[p], cutvec[p]) for p in range(len(patmat)) if cutvec[p] > 0 ] cuttingPlot(roll_width, widths, solution) ###Output Gurobi 7.5.1: optimal solution; objective 18 8 simplex iterations 1 branch-and-cut nodes
Big-Data-Clusters/CU2/Public/content/sample/sam002-query-hdfs-in-sql-server.ipynb
###Markdown SAM002 - Storage Pool (2 of 2) - Query HDFS===========================================Description-----------In this 2nd part of the Storage Pool tutorial, you’ll learn how to:- **Create an external table pointing to HDFS data in a big data cluster**- **Join this data with high-value data in the master instance** Common functionsDefine helper functions used in this notebook. ###Code # Define `run` function for transient fault handling, suggestions on error, and scrolling updates on Windows import sys import os import re import json import platform import shlex import shutil import datetime from subprocess import Popen, PIPE from IPython.display import Markdown retry_hints = {} # Output in stderr known to be transient, therefore automatically retry error_hints = {} # Output in stderr where a known SOP/TSG exists which will be HINTed for further help install_hint = {} # The SOP to help install the executable if it cannot be found first_run = True rules = None debug_logging = False def run(cmd, return_output=False, no_output=False, retry_count=0): """Run shell command, stream stdout, print stderr and optionally return output NOTES: 1. Commands that need this kind of ' quoting on Windows e.g.: kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='data-pool')].metadata.name} Need to actually pass in as '"': kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='"'data-pool'"')].metadata.name} The ' quote approach, although correct when pasting into Windows cmd, will hang at the line: `iter(p.stdout.readline, b'')` The shlex.split call does the right thing for each platform, just use the '"' pattern for a ' """ MAX_RETRIES = 5 output = "" retry = False global first_run global rules if first_run: first_run = False rules = load_rules() # When running `azdata sql query` on Windows, replace any \n in """ strings, with " ", otherwise we see: # # ('HY090', '[HY090] [Microsoft][ODBC Driver Manager] Invalid string or buffer length (0) (SQLExecDirectW)') # if platform.system() == "Windows" and cmd.startswith("azdata sql query"): cmd = cmd.replace("\n", " ") # shlex.split is required on bash and for Windows paths with spaces # cmd_actual = shlex.split(cmd) # Store this (i.e. kubectl, python etc.) to support binary context aware error_hints and retries # user_provided_exe_name = cmd_actual[0].lower() # When running python, use the python in the ADS sandbox ({sys.executable}) # if cmd.startswith("python "): cmd_actual[0] = cmd_actual[0].replace("python", sys.executable) # On Mac, when ADS is not launched from terminal, LC_ALL may not be set, which causes pip installs to fail # with: # # UnicodeDecodeError: 'ascii' codec can't decode byte 0xc5 in position 4969: ordinal not in range(128) # # Setting it to a default value of "en_US.UTF-8" enables pip install to complete # if platform.system() == "Darwin" and "LC_ALL" not in os.environ: os.environ["LC_ALL"] = "en_US.UTF-8" # When running `kubectl`, if AZDATA_OPENSHIFT is set, use `oc` # if cmd.startswith("kubectl ") and "AZDATA_OPENSHIFT" in os.environ: cmd_actual[0] = cmd_actual[0].replace("kubectl", "oc") # To aid supportabilty, determine which binary file will actually be executed on the machine # which_binary = None # Special case for CURL on Windows. The version of CURL in Windows System32 does not work to # get JWT tokens, it returns "(56) Failure when receiving data from the peer". If another instance # of CURL exists on the machine use that one. (Unfortunately the curl.exe in System32 is almost # always the first curl.exe in the path, and it can't be uninstalled from System32, so here we # look for the 2nd installation of CURL in the path) if platform.system() == "Windows" and cmd.startswith("curl "): path = os.getenv('PATH') for p in path.split(os.path.pathsep): p = os.path.join(p, "curl.exe") if os.path.exists(p) and os.access(p, os.X_OK): if p.lower().find("system32") == -1: cmd_actual[0] = p which_binary = p break # Find the path based location (shutil.which) of the executable that will be run (and display it to aid supportability), this # seems to be required for .msi installs of azdata.cmd/az.cmd. (otherwise Popen returns FileNotFound) # # NOTE: Bash needs cmd to be the list of the space separated values hence shlex.split. # if which_binary == None: which_binary = shutil.which(cmd_actual[0]) if which_binary == None: if user_provided_exe_name in install_hint and install_hint[user_provided_exe_name] is not None: display(Markdown(f'HINT: Use [{install_hint[user_provided_exe_name][0]}]({install_hint[user_provided_exe_name][1]}) to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") else: cmd_actual[0] = which_binary start_time = datetime.datetime.now().replace(microsecond=0) print(f"START: {cmd} @ {start_time} ({datetime.datetime.utcnow().replace(microsecond=0)} UTC)") print(f" using: {which_binary} ({platform.system()} {platform.release()} on {platform.machine()})") print(f" cwd: {os.getcwd()}") # Command-line tools such as CURL and AZDATA HDFS commands output # scrolling progress bars, which causes Jupyter to hang forever, to # workaround this, use no_output=True # # Work around a infinite hang when a notebook generates a non-zero return code, break out, and do not wait # wait = True try: if no_output: p = Popen(cmd_actual) else: p = Popen(cmd_actual, stdout=PIPE, stderr=PIPE, bufsize=1) with p.stdout: for line in iter(p.stdout.readline, b''): line = line.decode() if return_output: output = output + line else: if cmd.startswith("azdata notebook run"): # Hyperlink the .ipynb file regex = re.compile(' "(.*)"\: "(.*)"') match = regex.match(line) if match: if match.group(1).find("HTML") != -1: display(Markdown(f' - "{match.group(1)}": "{match.group(2)}"')) else: display(Markdown(f' - "{match.group(1)}": "[{match.group(2)}]({match.group(2)})"')) wait = False break # otherwise infinite hang, have not worked out why yet. else: print(line, end='') if rules is not None: apply_expert_rules(line) if wait: p.wait() except FileNotFoundError as e: if install_hint is not None: display(Markdown(f'HINT: Use {install_hint} to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") from e exit_code_workaround = 0 # WORKAROUND: azdata hangs on exception from notebook on p.wait() if not no_output: for line in iter(p.stderr.readline, b''): try: line_decoded = line.decode() except UnicodeDecodeError: # NOTE: Sometimes we get characters back that cannot be decoded(), e.g. # # \xa0 # # For example see this in the response from `az group create`: # # ERROR: Get Token request returned http error: 400 and server # response: {"error":"invalid_grant",# "error_description":"AADSTS700082: # The refresh token has expired due to inactivity.\xa0The token was # issued on 2018-10-25T23:35:11.9832872Z # # which generates the exception: # # UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa0 in position 179: invalid start byte # print("WARNING: Unable to decode stderr line, printing raw bytes:") print(line) line_decoded = "" pass else: # azdata emits a single empty line to stderr when doing an hdfs cp, don't # print this empty "ERR:" as it confuses. # if line_decoded == "": continue print(f"STDERR: {line_decoded}", end='') if line_decoded.startswith("An exception has occurred") or line_decoded.startswith("ERROR: An error occurred while executing the following cell"): exit_code_workaround = 1 # inject HINTs to next TSG/SOP based on output in stderr # if user_provided_exe_name in error_hints: for error_hint in error_hints[user_provided_exe_name]: if line_decoded.find(error_hint[0]) != -1: display(Markdown(f'HINT: Use [{error_hint[1]}]({error_hint[2]}) to resolve this issue.')) # apply expert rules (to run follow-on notebooks), based on output # if rules is not None: apply_expert_rules(line_decoded) # Verify if a transient error, if so automatically retry (recursive) # if user_provided_exe_name in retry_hints: for retry_hint in retry_hints[user_provided_exe_name]: if line_decoded.find(retry_hint) != -1: if retry_count < MAX_RETRIES: print(f"RETRY: {retry_count} (due to: {retry_hint})") retry_count = retry_count + 1 output = run(cmd, return_output=return_output, retry_count=retry_count) if return_output: return output else: return elapsed = datetime.datetime.now().replace(microsecond=0) - start_time # WORKAROUND: We avoid infinite hang above in the `azdata notebook run` failure case, by inferring success (from stdout output), so # don't wait here, if success known above # if wait: if p.returncode != 0: raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(p.returncode)}.\n') else: if exit_code_workaround !=0 : raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(exit_code_workaround)}.\n') print(f'\nSUCCESS: {elapsed}s elapsed.\n') if return_output: return output def load_json(filename): """Load a json file from disk and return the contents""" with open(filename, encoding="utf8") as json_file: return json.load(json_file) def load_rules(): """Load any 'expert rules' from the metadata of this notebook (.ipynb) that should be applied to the stderr of the running executable""" try: # Load this notebook as json to get access to the expert rules in the notebook metadata. # j = load_json("sam002-query-hdfs-in-sql-server.ipynb") except: pass # If the user has renamed the book, we can't load ourself. NOTE: Is there a way in Jupyter, to know your own filename? else: if "metadata" in j and \ "azdata" in j["metadata"] and \ "expert" in j["metadata"]["azdata"] and \ "rules" in j["metadata"]["azdata"]["expert"]: rules = j["metadata"]["azdata"]["expert"]["rules"] rules.sort() # Sort rules, so they run in priority order (the [0] element). Lowest value first. # print (f"EXPERT: There are {len(rules)} rules to evaluate.") return rules def apply_expert_rules(line): """Determine if the stderr line passed in, matches the regular expressions for any of the 'expert rules', if so inject a 'HINT' to the follow-on SOP/TSG to run""" global rules for rule in rules: # rules that have 9 elements are the injected (output) rules (the ones we want). Rules # with only 8 elements are the source (input) rules, which are not expanded (i.e. TSG029, # not ../repair/tsg029-nb-name.ipynb) if len(rule) == 9: notebook = rule[1] cell_type = rule[2] output_type = rule[3] # i.e. stream or error output_type_name = rule[4] # i.e. ename or name output_type_value = rule[5] # i.e. SystemExit or stdout details_name = rule[6] # i.e. evalue or text expression = rule[7].replace("\\*", "*") # Something escaped *, and put a \ in front of it! if debug_logging: print(f"EXPERT: If rule '{expression}' satisfied', run '{notebook}'.") if re.match(expression, line, re.DOTALL): if debug_logging: print("EXPERT: MATCH: name = value: '{0}' = '{1}' matched expression '{2}', therefore HINT '{4}'".format(output_type_name, output_type_value, expression, notebook)) match_found = True display(Markdown(f'HINT: Use [{notebook}]({notebook}) to resolve this issue.')) print('Common functions defined successfully.') # Hints for binary (transient fault) retry, (known) error and install guide # retry_hints = {'kubectl': ['A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond'], 'azdata': ['Endpoint sql-server-master does not exist', 'Endpoint livy does not exist', 'Failed to get state for cluster', 'Endpoint webhdfs does not exist', 'Adaptive Server is unavailable or does not exist', 'Error: Address already in use']} error_hints = {'kubectl': [['no such host', 'TSG010 - Get configuration contexts', '../monitor-k8s/tsg010-get-kubernetes-contexts.ipynb'], ['no such host', 'TSG011 - Restart sparkhistory server', '../repair/tsg011-restart-sparkhistory-server.ipynb'], ['No connection could be made because the target machine actively refused it', 'TSG056 - Kubectl fails with No connection could be made because the target machine actively refused it', '../repair/tsg056-kubectl-no-connection-could-be-made.ipynb']], 'azdata': [['azdata login', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['The token is expired', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Reason: Unauthorized', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Max retries exceeded with url: /api/v1/bdc/endpoints', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Look at the controller logs for more details', 'TSG027 - Observe cluster deployment', '../diagnose/tsg027-observe-bdc-create.ipynb'], ['provided port is already allocated', 'TSG062 - Get tail of all previous container logs for pods in BDC namespace', '../log-files/tsg062-tail-bdc-previous-container-logs.ipynb'], ['Create cluster failed since the existing namespace', 'SOP061 - Delete a big data cluster', '../install/sop061-delete-bdc.ipynb'], ['Failed to complete kube config setup', 'TSG067 - Failed to complete kube config setup', '../repair/tsg067-failed-to-complete-kube-config-setup.ipynb'], ['Error processing command: "ApiError', 'TSG110 - Azdata returns ApiError', '../repair/tsg110-azdata-returns-apierror.ipynb'], ['Error processing command: "ControllerError', 'TSG036 - Controller logs', '../log-analyzers/tsg036-get-controller-logs.ipynb'], ['ERROR: 500', 'TSG046 - Knox gateway logs', '../log-analyzers/tsg046-get-knox-logs.ipynb'], ['Data source name not found and no default driver specified', 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ["Can't open lib 'ODBC Driver 17 for SQL Server", 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ['Control plane upgrade failed. Failed to upgrade controller.', 'TSG108 - View the controller upgrade config map', '../diagnose/tsg108-controller-failed-to-upgrade.ipynb']]} install_hint = {'kubectl': ['SOP036 - Install kubectl command line interface', '../install/sop036-install-kubectl.ipynb'], 'azdata': ['SOP063 - Install azdata CLI (using package manager)', '../install/sop063-packman-install-azdata.ipynb']} ###Output _____no_output_____ ###Markdown Instantiate Kubernetes client ###Code # Instantiate the Python Kubernetes client into 'api' variable import os try: from kubernetes import client, config from kubernetes.stream import stream if "KUBERNETES_SERVICE_PORT" in os.environ and "KUBERNETES_SERVICE_HOST" in os.environ: config.load_incluster_config() else: try: config.load_kube_config() except: display(Markdown(f'HINT: Use [TSG112 - App-Deploy Proxy Nginx Logs](../log-analyzers/tsg112-get-approxy-nginx-logs.ipynb) to resolve this issue.')) raise api = client.CoreV1Api() print('Kubernetes client instantiated') except ImportError: from IPython.display import Markdown display(Markdown(f'HINT: Use [SOP059 - Install Kubernetes Python module](../install/sop059-install-kubernetes-module.ipynb) to resolve this issue.')) raise ###Output _____no_output_____ ###Markdown Get the namespace for the big data clusterGet the namespace of the Big Data Cluster from the Kuberenetes API.**NOTE:**If there is more than one Big Data Cluster in the target Kubernetescluster, then either:- set \[0\] to the correct value for the big data cluster.- set the environment variable AZDATA\_NAMESPACE, before starting Azure Data Studio. ###Code # Place Kubernetes namespace name for BDC into 'namespace' variable if "AZDATA_NAMESPACE" in os.environ: namespace = os.environ["AZDATA_NAMESPACE"] else: try: namespace = api.list_namespace(label_selector='MSSQL_CLUSTER').items[0].metadata.name except IndexError: from IPython.display import Markdown display(Markdown(f'HINT: Use [TSG081 - Get namespaces (Kubernetes)](../monitor-k8s/tsg081-get-kubernetes-namespaces.ipynb) to resolve this issue.')) display(Markdown(f'HINT: Use [TSG010 - Get configuration contexts](../monitor-k8s/tsg010-get-kubernetes-contexts.ipynb) to resolve this issue.')) display(Markdown(f'HINT: Use [SOP011 - Set kubernetes configuration context](../common/sop011-set-kubernetes-context.ipynb) to resolve this issue.')) raise print('The kubernetes namespace for your big data cluster is: ' + namespace) ###Output _____no_output_____ ###Markdown Create an external table to HDFSThe storage pool contains web clickstream data in a .csv file stored inHDFS. Use the following steps to define an external table that canaccess the data in that file. ###Code from IPython.display import Markdown try: %load_ext sql except ModuleNotFoundError: display(Markdown(f'HINT: Use [SOP062 - Install ipython-sql and pyodbc modules](../install/sop062-install-ipython-sql-module.ipynb) to resolve this issue.')) raise import json import base64 controller_username = run(f'kubectl get secret/controller-login-secret -n {namespace} -o jsonpath={{.data.username}}', return_output=True) controller_username = base64.b64decode(controller_username).decode('utf-8') controller_password = run(f'kubectl get secret/controller-login-secret -n {namespace} -o jsonpath={{.data.password}}', return_output=True) controller_password = base64.b64decode(controller_password).decode('utf-8') master_endpoint_details = run('azdata bdc endpoint list --endpoint="sql-server-master"', return_output=True) json = json.loads(master_endpoint_details) sql_master_tcp_and_port = json['endpoint'] %sql mssql+pyodbc://{controller_username}:{controller_password}@{sql_master_tcp_and_port}/master?driver=SQL+Server+Native+Client+11.0&autocommit=True %%sql -- Create the new database if it does not exist already IF NOT EXISTS ( SELECT [name] FROM sys.databases WHERE [name] = N'Testing' ) CREATE DATABASE Testing ###Output _____no_output_____ ###Markdown Run the following Transact-SQL command to change context to the database you created in the master instance ###Code %%sql USE Testing ###Output _____no_output_____ ###Markdown Define the format of the .csv or Parquet file to read from HDFSFor CSV: ###Code %%sql CREATE EXTERNAL FILE FORMAT csv_file WITH ( FORMAT_TYPE = DELIMITEDTEXT, FORMAT_OPTIONS( FIELD_TERMINATOR = ',', STRING_DELIMITER = '"', USE_TYPE_DEFAULT = TRUE) ) ###Output _____no_output_____ ###Markdown For Parquet: ###Code %%sql CREATE EXTERNAL FILE FORMAT PARQUET WITH ( FORMAT_TYPE = PARQUET ) ###Output _____no_output_____ ###Markdown Create an external data source to the storage pool if it does not already exist ###Code %%sql --DROP EXTERNAL DATA SOURCE SqlStoragePool IF NOT EXISTS(SELECT * FROM sys.external_data_sources WHERE name = 'SqlStoragePool') BEGIN CREATE EXTERNAL DATA SOURCE SqlStoragePool WITH (LOCATION = 'sqlhdfs://controller-svc/default') END ###Output _____no_output_____ ###Markdown Create an external table that can read the `/tmp/clickstream_data` from the storage poolThe SQLStoragePool is accesible from the master instance of a big datacluster.For CSV: ###Code %%sql CREATE EXTERNAL TABLE [clickstream_data_table_csv] ("NumberID" BIGINT , "Name" Varchar(120) , "Name2" Varchar(120), "Price" Decimal , "Discount" Decimal , "Money" Decimal, "Money2" Decimal, "Type" Varchar(120), "Space" Varchar(120)) WITH ( DATA_SOURCE = SqlStoragePool, LOCATION = '/tmp/clickstream_data', FILE_FORMAT = csv_file ) ###Output _____no_output_____ ###Markdown For Parquet: ###Code %%sql CREATE EXTERNAL TABLE [clickstream_data_table_parquet] ("NumberID" BIGINT , "Name" Varchar(120) , "Name2" Varchar(120), "Price" BIGINT , "Discount" FLOAT, "Money" FLOAT, "Money2" FLOAT, "Type" Varchar(120), "Space" Varchar(120)) WITH ( DATA_SOURCE = SqlStoragePool, LOCATION = '/tmp/clickstream_data_parquet', FILE_FORMAT = PARQUET ) ###Output _____no_output_____ ###Markdown Query the data1. Run the following query to join the HDFS data in the `clickstream_hdfs` external table with teh relational data in the local database you loaded the data in.For CSV: ###Code %%sql select * from [clickstream_data_table_csv] ###Output _____no_output_____ ###Markdown For Parquet: ###Code %%sql select * from [clickstream_data_table_parquet] ###Output _____no_output_____
SphereMailRU/BD-11/ABDP/hw1.ipynb
###Markdown **Общая информация****Срок сдачи:** 13 марта 2017, 06:00 **Штраф за опоздание:** -2 балла после 06:00 13 марта, -4 балла после 06:00 20 марта, -6 баллов после 06:00 27 мартаПри отправлении ДЗ указывайте фамилию в названии файлаПрисылать ДЗ необходимо в виде ссылки на свой github репозиторий в slack @alkhamushНеобходимо в slack создать таск в приватный чат:/todo Фамилия Имя ссылка на гитхаб @alkhamushПример:/todo Ксения Стройкова https://github.com/stroykova/spheremailru/stroykova_hw1.ipynb @alkhamushИспользуйте данный Ipython Notebook при оформлении домашнего задания. Задание 1 (2 баллов)Реализовать KNN в классе MyKNeighborsClassifier (обязательное условие: точность не ниже sklearn реализации)Разберитесь самостоятельно, какая мера расстояния используется в KNeighborsClassifier дефолтно и реализуйте свой алгоритм именно с этой мерой. Самостоятельно разберитесь, как считается score из KNeighborsClassifier и реализуйте аналог в своём классе. Задание 2 (2 балла)Добиться скорости работы на fit, predict и predict_proba сравнимой со sklearn 4 балла для iris и mnistДля этого используем numpy Задание 3 (2 балла)Для iris найдите такой параметр n_neighbors, при котором выдаётся наилучший score. Нарисуйте график зависимости score от n_neighbors Задание 3 (2 балла)Выполнить требования pep8 Задание 5 (2 балла)Описать для чего нужны следующие библиотеки/классы/функции (список будет ниже) ###Code import numpy as np import matplotlib.pyplot as plt from line_profiler import LineProfiler from sklearn.metrics.pairwise import pairwise_distances import seaborn as sns from sklearn import datasets from sklearn.base import ClassifierMixin from sklearn.datasets import fetch_mldata from sklearn.neighbors.base import NeighborsBase, KNeighborsMixin, SupervisedIntegerMixin from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier %load_ext pycodestyle_magic def profile_print(func_to_call, *args): profiler = LineProfiler() profiler.add_function(func_to_call) profiler.runcall(func_to_call, *args) profiler.print_stats() %%pycodestyle class MyKNeighborsClassifier(NeighborsBase, KNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): def __init__(self, n_neighbors=3): self.n_neighbors = n_neighbors def fit(self, X, y): self.X = np.float64(X) self.classes, self.y = np.unique(y, return_inverse=True) def euclidean_metric(self, v): return np.sqrt(((self.X - v) ** 2).sum(axis=1)) ''' def cnt(self, v): z = np.zeros(self.classes.size) for i in v: z[i] += 1 return z def predict_proba(self, X): # more understandable X = np.float64(X) # euclidean by default, can use multithreading dist = pairwise_distances(X, self.X) ind = np.argsort(dist, axis=1)[:, :self.n_neighbors] return np.apply_along_axis(self.cnt, 1, self.y[ind]) / self.n_neighbors ''' # ''' def predict_proba(self, X): # more quickly X = np.float64(X) # euclidean by default, can use multithreading dist = pairwise_distances(X, self.X) ind = np.argsort(dist, axis=1)[:, :self.n_neighbors] classes = self.y[ind] crange = np.arange(self.classes.shape[0]) clss = classes.reshape((classes.shape[0], 1, classes.shape[1])) crng = crange.reshape((1, crange.shape[0], 1)) counts = np.sum(clss == crng, axis=2) return counts / self.n_neighbors # ''' def predict(self, X): proba = self.predict_proba(X) return self.classes[np.argsort(proba, axis=1)[:, -1]] def score(self, X, y): pred = self.predict(X) return 1 - np.count_nonzero(y - pred) / y.shape[0] ###Output _____no_output_____ ###Markdown **IRIS** ###Code iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.1, stratify=iris.target) clf = KNeighborsClassifier(n_neighbors=17) my_clf = MyKNeighborsClassifier(n_neighbors=17) %time clf.fit(X_train, y_train) %time my_clf.fit(X_train, y_train) %time clf.predict(X_test) %time my_clf.predict(X_test) #profile_print(my_clf.predict, X_test) %time clf.predict_proba(X_test) #%time my_clf.predict_proba(X_test) profile_print(my_clf.predict_proba, X_test) clf.score(X_test, y_test) my_clf.score(X_test, y_test) # Задание 3 # 16 - 17 num_n = 30 num_av = 2000 scm = np.zeros(num_n) sc = np.zeros(num_av) for n in range(1, num_n + 1): print (n) for i in range(num_av): X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.1, stratify=iris.target) my_clf = MyKNeighborsClassifier(n_neighbors=n) my_clf.fit(X_train, y_train) sc[i] = my_clf.score(X_test, y_test) scm[n - 1] = sc.mean() plt.plot(range(1, num_n + 1), scm, 'ro-') plt.show() ###Output 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ###Markdown **MNIST** ###Code mnist = fetch_mldata('MNIST original') X_train, X_test, y_train, y_test = train_test_split(mnist.data, mnist.target, test_size=0.01, stratify=mnist.target) y_train.shape clf = KNeighborsClassifier(n_neighbors=5) my_clf = MyKNeighborsClassifier(n_neighbors=5) %time clf.fit(X_train, y_train) %time my_clf.fit(X_train, y_train) %time clf.predict(X_test) %time my_clf.predict(X_test) %time clf.predict_proba(X_test) #%time my_clf.predict_proba(X_test) %time profile_print(my_clf.predict_proba, X_test) clf.score(X_test, y_test) my_clf.score(X_test, y_test) # n_neighbors = 5 num_n = 30 num_av = 20 scm = np.zeros(num_n) sc = np.zeros(num_av) for n in range(1, num_n + 1): print (n) for i in range(num_av): print (n, ' ', i) X_train, X_test, y_train, y_test = train_test_split(mnist.data, mnist.target, test_size=0.001, stratify=mnist.target) my_clf = MyKNeighborsClassifier(n_neighbors=n) my_clf.fit(X_train, y_train) sc[i] = my_clf.score(X_test, y_test) scm[n - 1] = sc.mean() plt.plot(range(1, num_n + 1), scm, 'ro-') plt.show() print (1) ###Output 1 ###Markdown Задание 5 ###Code # seaborn - красивые и простые в написании графики и визуализация # matplotlib - более сложные в написании и более функциональные, чем seaborn # train_test_split - разбиение данных на обучающую и тестовую часть # Pipelin%load_ext e (from sklearn.pipeline import Pipeline) - конвейерный классификатор # StandardScaler (from sklearn.preprocessing import StandardScaler) - нормировка # ClassifierMixin - общий Mixin для классификаторов, в нем реализован score # NeighborsBase - базовый класс Knn # KNeighborsMixin - Mixin содержащий метод поиска ближайших соседей # SupervisedIntegerMixin - Mixin с функцией fit для установления соответствия # между данными и целевыми переменными ###Output _____no_output_____
Design_Patterns/Examples/Python/Notebook.ipynb
###Markdown Python Objects Everything in Python is an object Almost everything has attributes Let's prove this ###Code i = 1 type(i) i.__doc__ i?? dir(i) ###Output _____no_output_____ ###Markdown Classes Classes are a way to group data and functionality all > under one roof Properties vs. Methods Lets start with a simple example, suppose we want to be able to convert Celsius to Fahrenheit, so we write a class _Example from [here](https://www.programiz.com/python-programming/property)_ Naive Public Class ###Code class Celsius: """Celsius is WAY buttah then fahrenheits """ def __init__(self, temperature = 0): self.temperature = temperature def to_fahrenheit(self): """Convert yo """ return (self.temperature * (9/5)) + 32 c1 = Celsius(temperature=37) c1.temperature c1.to_fahrenheit() c1.to_fahrenheit?? ###Output _____no_output_____ ###Markdown What if we wanted to implement a limit on the temperature, as in, we can't g lower than `-273` celsius Class With Getters and Setters ###Code class Celsius: def __init__(self, temperature = 0): self.set_temperature(temperature) def to_fahrenheit(self): return (self.get_temperature() * (9/5)) + 32 # new update def get_temperature(self): return self._temperature def set_temperature(self, value): if value < -273: raise ValueError("Temperature below -273 is not possible") self._temperature = value ###Output _____no_output_____ ###Markdown Lets make sure the original stuff still works ###Code c2 = Celsius(37) c2.get_temperature() c2.to_fahrenheit() ###Output _____no_output_____ ###Markdown And lets prove our new limit is in place ###Code c3 = Celsius(-277) ###Output _____no_output_____ ###Markdown We see the error happened, which is expected Using Property ###Code class Celsius: def __init__(self, temperature = 0): self.temperature = temperature @property def to_fahrenheit(self): return (self.temperature * (9/5)) + 32 def get_temperature(self): print("Getting value") return self._temperature def set_temperature(self, value): if value < -273: raise ValueError("Temperature below -273 is not possible") print("Setting value") self._temperature = value c6 = Celsius(100) c6.to_fahrenheit c4 = Celsius(37) c4.to_fahrenheit() ###Output _____no_output_____ ###Markdown Initialization Another initialization example ###Code class Car(object): def __init__(self, model, color, company, speed_limit): print("Initialized!") self.color = color self.company = company self.speed_limit = speed_limit self.model = model def start(self): print("Started!") def stop(self): print("Stopped!") def accelarate(self): print("Accelarating!") def change_gear(self, gear_type): print("Gear changed!") car = Car("Camry", "Blue", "Toyota", "110") ###Output _____no_output_____ ###Markdown Create or Extend a Class "Closed for modification, open for extension" Code shouldn't be changed once being used, it should be extended. What if we had to write code to send SMSs?_Example from [here](https://hashedin.com/blog/open-closed-principle-in-python-designing-modules-part-4/)_ Lets say we wrote the following code: ###Code class SmsClient: def send_sms(self, phone_number, message): # send the SMS return ###Output _____no_output_____ ###Markdown And then later we are requested to resend the SMS if delivery failed. We could just change our code to be: ###Code class SmsClient: def send_sms(self, phone_number, message): # send the SMS # retry if failed return ###Output _____no_output_____ ###Markdown But this would be modifying what we already proved worked, instead we can extend our original code ###Code class SmsClientWithRetry(SmsClient): def __init__(self, username, password): super(SmsClient, self).__init__(username, password) def send_sms(self, phone_number, message): # this is the original sending code super(SmsClient, self).send_sms(phone_number, message) # this is our extension # retry if failed ###Output _____no_output_____
line_fitting_matpotlib.ipynb
###Markdown Example of performing linear least squares fitting First we import numpy and matplotlib as usual ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Now, let's generate some random data about a trend line. ###Code #set a random number seed np.random.seed(119) #set number of data points npoints = 50 #set x x = np.linspace(0,10.,npoints) #set slope, intercept, and scatter rms m = 2.0 b = 1.0 sigma = 2.0 #generate y points y = m*x + b + np.random.normal(scale=sigma,size=npoints) ###Output _____no_output_____ ###Markdown Let's just plot the data first ###Code f = plt.figure(figsize=(7,7)) plt.errorbar(x,y,sigma,fmt='o') plt.xlabel('x') plt.ylabel('y') ###Output _____no_output_____ ###Markdown Method 1, polyfit() ###Code m_fit, b_fit = np.polyld(np.polyfit(x, y, 1, w=1./y_err)) #weights with uncertainties print(m_fit, b_fit) y_fit = m_fit * x + b_fit ###Output _____no_output_____