path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
CMIP5-MakeFigs.ipynb
###Markdown Re-create the IPCC_AR5 Figure12.5 from the CMIP5 ts data [IPCC-AR5 Figure 12.5](http://www.climatechange2013.org/images/figures/WGI_AR5_Fig12-5.jpg) Method: load the monthly CMIP5 ts (surface temperature) files, do some data cleaning and plot the figure* this notebook is what I use for general multi-model statistics - not just global means. So the models are regridded toa common 2x2 degree grid and the global mean is only computed when making the figure* the Raw CMIP5 netcdf files were concatenated on our home machine using xarray.mfdataset for each model and scenerio (historical/rcp45/rcp85)* saved in zarr format, using to_zarr* uploaded to the Google Cloud Storage ###Code import xarray as xr import numpy as np %matplotlib inline from glob import glob from os import system import pandas as pd from matplotlib import pyplot as plt from matplotlib import rcParams from pathlib import Path #import xesmf as xe xr.set_options(enable_cftimeindex=True) cloud = False ###Output _____no_output_____ ###Markdown In this next cell are the basic functions (all in one cell so you can collapse it on first read) ###Code if cloud: def listd(fs,path): return fs.ls(path) def openzarr(path): return xr.open_zarr(gcsfs.GCSMap(path)) else: def listd(fs,path): return glob(path+'/*/') def openzarr(path): return xr.open_zarr(path) def find_models(data_fs,base_path,var,scenario): """ Search for all files in path matching the variable and scenario returns: models: list of model names for given scenario """ allmodels = listd(data_fs,base_path) fmodels = [] for model in allmodels: run = listd(data_fs,model) for sce in run: if scenario in sce: model = sce.split("/")[-3] fmodels += [model] umodels = sorted(fmodels) paths = [] for model in umodels: path = base_path + model + '/' + scenario paths += [path] return umodels, paths def get_datasets(var, umodels, paths, toprint=True): """ Load all datasets returns: ds : list of all models for given scenario """ ds = [] for idx, model in enumerate(umodels): path = paths[idx] dss = openzarr(path) start_date = dss.attrs['start_date'] nt = dss.time.shape[0] dss['time'] = to_enso(start_date,nt) ds += [dss[var]] if toprint: fstr = '{:2g}: {:18} , {:12} , nt={:5g},{:5.0f}Mb' print(fstr.format(idx,model,start_date,nt,dss.nbytes/ 1e6)) return ds def find_short(ds, century, umodels, toprint=True): """ Identify models which are useful, finding those which do not span the interval returns: bad_models: list of the bad models """ slist = century.split('-') [start_year, stop_year] = list(map(int, slist)) bad_models =[] for idx, dss in enumerate(ds): model = umodels[idx] tfirst = enso2date(dss.time[0].values) tlast = enso2date(dss.time[-1].values) if (int(str(tfirst)[0:4]) > start_year): print('trouble with model',model,'since start date is past',start_year) bad_models += [model] if (int(str(tlast)[0:4]) < stop_year): print('trouble with model',model,'since stop date is before',stop_year) bad_models += [model] if toprint: fstr = '{:2g}: {:18} , {:12} to {:12}' print(fstr.format(idx,model,tfirst,tlast,)) return bad_models def regrid_all(ds,umodels): """ Define common grid and use xESMF to regrid all datasets returns: data_2x2: a list of datasets on the common grid """ # regrid all lon,lat data to a common 2x2 grid import xesmf as xe ds_out = xr.Dataset({'lat': (['lat'], np.arange(-89,89, 2)), 'lon': (['lon'], np.arange(-179,179,2)), }) data_2x2 =[] for model,dss in zip(umodels,ds): #print(model,'nt=',dss.time.shape[0]) regridder = xe.Regridder(dss, ds_out, 'bilinear', periodic=True, reuse_weights=True ) data_2x2 += [regridder(dss)] return data_2x2 def concat_all(ds_2x2,umodels): """ Concatenates all of the good models into one DataArray """ dsall = xr.concat(ds_2x2,dim='model') #,coords=['time','lat','lon']) dsall['names'] = ('model',umodels) return dsall def compute_global_mean(ds): """ Weights each grid point by the cos(latitude), computes global mean, normalizing by global mean of the weights returns: list of DataArrays: global mean model by model """ coslat = np.cos(np.deg2rad(ds.lat)) d_ones = xr.ones_like(ds) weight_mean = (d_ones*coslat).mean(['lat','lon']) ds_globalmean = ((ds * coslat).mean(['lat','lon'])/weight_mean).compute() return ds_globalmean # N.B. Once cftime is working properly the following functions could be replaced # (we need to be able to use resample ...) def monthly2yearly(century,ds): """ converts a DataArray on a monthly grid to one on a yearly grid, replacing the time grid returns: list of DataArrays: yearly mean model by model """ slist = century.split('-') [start_year, stop_year] = list(map(int, slist)) start = to_enso(str(start_year)+'-01-16')[0] stop = to_enso(str(stop_year)+'-12-16')[0] ds_yearly=[] for idx, dss in enumerate(ds): print('year:',idx) dss = dss.sel(time=slice(start, stop)) num_of_bins = dss.time.shape[0]/12 dnew = dss.groupby_bins('time', num_of_bins).mean('time').compute() dyearly = dnew.rename({'time_bins':'time'}) dyearly['time'] = start_year + np.arange(dyearly.time.shape[0]) ds_yearly += [dyearly] return ds_yearly def to_enso(start_time,nt=1): """ Parse the time grid of a Dataset and replace by an enso time grid (months since 1960). """ import numpy as np # get the reference year from start_time ryear,rmonth,rday = start_time[0:10].split('-') return (int(ryear)-1960)*12 + int(rmonth) - 0.5 + np.arange(0,nt) def enso2date(T0,ryear=1960,leap=True): """ Print the date corresponding to an enso-time (months since 1960). The reference year can be changed. """ norm = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] iy = ryear + int(T0/12) if T0 < 0: iy = iy - 1 res = T0 - (iy - ryear)*12 im = int(res) + 1 if im == 13: im = 1 iy = iy + 1 if leap & (im == 2) & (iy % 4 == 0 ): id = 1 + int(29 * (res - int(res))) else: id = 1 + int(norm[im-1] * (res - int(res))) return str(iy)+'/'+str(im)+'/'+str(id) ###Output _____no_output_____ ###Markdown Connect to Dask Distributed Cluster when done debugging ###Code #from dask.distributed import Client, progress #from dask_kubernetes import KubeCluster #cluster = KubeCluster(n_workers=10) #cluster #client = Client(cluster) #client ###Output _____no_output_____ ###Markdown Lets get started. We need to specify where our data lives in the google file system ###Code if cloud: import gcsfs base_path = 'pangeo-data/CMIP5-ts/' data_fs = gcsfs.GCSFileSystem(project='pangeo-181919', token='anon', access='read_only') else: base_path = '/d1/nhn2/zarr/CMIP5-ts/' data_fs = '' ###Output _____no_output_____ ###Markdown For each scenario and time interval:* make a list of available models* load the datasets for all models* eliminate the models which do not have the full time interval* calculate the annual means* regrid to a global 2x2 degree grid (until we have xesmf, just calculate the global mean)* concatenate the models ###Code %%time var = 'ts' recompute_all = True plot_global = True plot_nino34 = False save_netcdf = True if recompute_all: # Each of the following scenarios and time periods has a different subset of CMIP5 models available # These subsets are different for each variable chosen # YOU CAN PICK AND CHOOSE WHICH TO CALCULATE all = [] all += [['historical','1861-2005']] all += [['historical','1850-1860']] all += [['rcp45','2100-2300']] all += [['rcp45','2006-2099']] all += [['rcp85','2006-2099']] all += [['rcp85','2100-2300']] ds_master = [] # list of datasets for each scenario,century scenario_last = '' for scenario,century in all: print('SCENARIO=',scenario,'TIME RANGE',century) if scenario in scenario_last: print('\n same scenario, re-use ds \n') ds = ds2; models = models2 else: models, paths = find_models(data_fs,base_path,var,scenario) print('total number of models available:',len(models),'\n',models) ds = get_datasets(var, models, paths, toprint=False) ds2 = ds.copy(); models2 = models.copy() scenario_last = scenario bad_models = find_short(ds, century, models, toprint=False) bad_models = sorted(list(set(bad_models))) for model in bad_models: idx = models.index(model) del models[idx],ds[idx] print('\n number of good models with data in the specified time range:',len(models),'\n',models) print('\n calculating annual means') ds_yearly = monthly2yearly(century,ds) print('\n regridding to 2x2 grid') ds_temp = regrid_all(ds_yearly,models) print('\n concatenating time series') dsall = concat_all(ds_temp,models) sctype = scenario+':'+century if save_netcdf: dsall.to_netcdf('ts-'+sctype+'.nc',encoding={'time':{'dtype':'float32'},'lon':{'dtype':'float32'},'lat':{'dtype':'float32'}}) dsall.attrs = [('sctype',sctype)] ds_master += [dsall.to_dataset(name=var)] ###Output SCENARIO= historical TIME RANGE 1861-2005 total number of models available: 49 ['ACCESS1-0', 'ACCESS1-3', 'BNU-ESM', 'CCSM4', 'CESM1-BGC', 'CESM1-CAM5', 'CESM1-CAM5-1-FV2', 'CESM1-FASTCHEM', 'CESM1-WACCM', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS', 'CNRM-CM5-2', 'CSIRO-Mk3-6-0', 'CSIRO-Mk3L-1-2', 'CanCM4', 'CanESM2', 'FGOALS-g2', 'FGOALS-s2', 'FIO-ESM', 'GFDL-CM2p1', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M', 'GISS-E2-H', 'GISS-E2-H-CC', 'GISS-E2-R', 'GISS-E2-R-CC', 'HadCM3', 'HadGEM2-AO', 'HadGEM2-CC', 'HadGEM2-ES', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR', 'IPSL-CM5B-LR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC4h', 'MIROC5', 'MPI-ESM-LR', 'MPI-ESM-MR', 'MPI-ESM-P', 'MRI-CGCM3', 'MRI-ESM1', 'NorESM1-M', 'NorESM1-ME', 'bcc-csm1-1', 'bcc-csm1-1-m', 'inmcm4'] trouble with model CanCM4 since start date is past 1861 trouble with model MIROC4h since start date is past 1861 number of good models with data in the specified time range: 47 ['ACCESS1-0', 'ACCESS1-3', 'BNU-ESM', 'CCSM4', 'CESM1-BGC', 'CESM1-CAM5', 'CESM1-CAM5-1-FV2', 'CESM1-FASTCHEM', 'CESM1-WACCM', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS', 'CNRM-CM5-2', 'CSIRO-Mk3-6-0', 'CSIRO-Mk3L-1-2', 'CanESM2', 'FGOALS-g2', 'FGOALS-s2', 'FIO-ESM', 'GFDL-CM2p1', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M', 'GISS-E2-H', 'GISS-E2-H-CC', 'GISS-E2-R', 'GISS-E2-R-CC', 'HadCM3', 'HadGEM2-AO', 'HadGEM2-CC', 'HadGEM2-ES', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR', 'IPSL-CM5B-LR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC5', 'MPI-ESM-LR', 'MPI-ESM-MR', 'MPI-ESM-P', 'MRI-CGCM3', 'MRI-ESM1', 'NorESM1-M', 'NorESM1-ME', 'bcc-csm1-1', 'bcc-csm1-1-m', 'inmcm4'] calculating annual means year: 0 year: 1 year: 2 year: 3 year: 4 year: 5 year: 6 year: 7 year: 8 year: 9 year: 10 year: 11 year: 12 year: 13 year: 14 year: 15 year: 16 year: 17 year: 18 year: 19 year: 20 year: 21 year: 22 year: 23 year: 24 year: 25 year: 26 year: 27 year: 28 year: 29 year: 30 year: 31 year: 32 year: 33 year: 34 year: 35 year: 36 year: 37 year: 38 year: 39 year: 40 year: 41 year: 42 year: 43 year: 44 year: 45 year: 46 regridding to 2x2 grid Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_48x96_89x179_peri.nc Reuse existing file: bilinear_240x480_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_128x256_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_56x64_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_60x128_89x179_peri.nc Reuse existing file: bilinear_108x128_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_73x96_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_96x96_89x179_peri.nc Reuse existing file: bilinear_143x144_89x179_peri.nc Reuse existing file: bilinear_96x96_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_128x256_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_160x320_89x179_peri.nc Reuse existing file: bilinear_160x320_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_160x320_89x179_peri.nc Reuse existing file: bilinear_120x180_89x179_peri.nc concatenating time series SCENARIO= historical TIME RANGE 1850-1860 same scenario, re-use ds trouble with model CSIRO-Mk3L-1-2 since start date is past 1850 trouble with model CanCM4 since start date is past 1850 trouble with model GFDL-CM2p1 since start date is past 1850 trouble with model GFDL-CM3 since start date is past 1850 trouble with model GFDL-ESM2G since start date is past 1850 trouble with model GFDL-ESM2M since start date is past 1850 trouble with model HadCM3 since start date is past 1850 trouble with model HadGEM2-AO since start date is past 1850 trouble with model HadGEM2-CC since start date is past 1850 trouble with model HadGEM2-ES since start date is past 1850 trouble with model MIROC4h since start date is past 1850 trouble with model MRI-ESM1 since start date is past 1850 number of good models with data in the specified time range: 37 ['ACCESS1-0', 'ACCESS1-3', 'BNU-ESM', 'CCSM4', 'CESM1-BGC', 'CESM1-CAM5', 'CESM1-CAM5-1-FV2', 'CESM1-FASTCHEM', 'CESM1-WACCM', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS', 'CNRM-CM5-2', 'CSIRO-Mk3-6-0', 'CanESM2', 'FGOALS-g2', 'FGOALS-s2', 'FIO-ESM', 'GISS-E2-H', 'GISS-E2-H-CC', 'GISS-E2-R', 'GISS-E2-R-CC', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR', 'IPSL-CM5B-LR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC5', 'MPI-ESM-LR', 'MPI-ESM-MR', 'MPI-ESM-P', 'MRI-CGCM3', 'NorESM1-M', 'NorESM1-ME', 'bcc-csm1-1', 'bcc-csm1-1-m', 'inmcm4'] calculating annual means year: 0 year: 1 year: 2 year: 3 year: 4 year: 5 year: 6 year: 7 year: 8 year: 9 year: 10 year: 11 year: 12 year: 13 year: 14 year: 15 year: 16 year: 17 year: 18 year: 19 year: 20 year: 21 year: 22 year: 23 year: 24 year: 25 year: 26 year: 27 year: 28 year: 29 year: 30 year: 31 year: 32 year: 33 year: 34 year: 35 year: 36 regridding to 2x2 grid Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_48x96_89x179_peri.nc Reuse existing file: bilinear_240x480_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_128x256_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_60x128_89x179_peri.nc Reuse existing file: bilinear_108x128_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_96x96_89x179_peri.nc Reuse existing file: bilinear_143x144_89x179_peri.nc Reuse existing file: bilinear_96x96_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_128x256_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_160x320_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_160x320_89x179_peri.nc Reuse existing file: bilinear_120x180_89x179_peri.nc concatenating time series SCENARIO= rcp45 TIME RANGE 2100-2300 total number of models available: 43 ['ACCESS1-0', 'ACCESS1-3', 'BNU-ESM', 'CCSM4', 'CESM1-BGC', 'CESM1-CAM5', 'CESM1-CAM5-1-FV2', 'CMCC-CM', 'CMCC-CMS', 'CNRM-CM5', 'CSIRO-Mk3-6-0', 'CSIRO-Mk3L-1-2', 'CanCM4', 'CanESM2', 'FGOALS-g2', 'FIO-ESM', 'GFDL-CM2p1', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M', 'GISS-E2-H', 'GISS-E2-H-CC', 'GISS-E2-R', 'GISS-E2-R-CC', 'HadCM3', 'HadGEM2-AO', 'HadGEM2-CC', 'HadGEM2-ES', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR', 'IPSL-CM5B-LR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC4h', 'MIROC5', 'MPI-ESM-LR', 'MPI-ESM-MR', 'MRI-CGCM3', 'NorESM1-M', 'NorESM1-ME', 'bcc-csm1-1', 'bcc-csm1-1-m', 'inmcm4'] trouble with model ACCESS1-0 since stop date is before 2300 trouble with model ACCESS1-3 since stop date is before 2300 trouble with model BNU-ESM since stop date is before 2300 trouble with model CCSM4 since stop date is before 2300 trouble with model CESM1-BGC since stop date is before 2300 trouble with model CESM1-CAM5-1-FV2 since stop date is before 2300 trouble with model CMCC-CM since stop date is before 2300 trouble with model CMCC-CMS since stop date is before 2300 trouble with model CSIRO-Mk3-6-0 since stop date is before 2300 trouble with model CanCM4 since stop date is before 2300 trouble with model FGOALS-g2 since stop date is before 2300 trouble with model FIO-ESM since stop date is before 2300 trouble with model GFDL-CM2p1 since stop date is before 2300 trouble with model GFDL-CM3 since stop date is before 2300 trouble with model GFDL-ESM2G since stop date is before 2300 trouble with model GFDL-ESM2M since stop date is before 2300 trouble with model GISS-E2-H-CC since stop date is before 2300 trouble with model GISS-E2-R-CC since stop date is before 2300 trouble with model HadCM3 since stop date is before 2300 trouble with model HadGEM2-AO since stop date is before 2300 trouble with model HadGEM2-CC since stop date is before 2300 trouble with model HadGEM2-ES since stop date is before 2300 trouble with model IPSL-CM5A-MR since stop date is before 2300 trouble with model IPSL-CM5B-LR since stop date is before 2300 trouble with model MIROC-ESM since stop date is before 2300 trouble with model MIROC-ESM-CHEM since stop date is before 2300 trouble with model MIROC4h since stop date is before 2300 trouble with model MIROC5 since stop date is before 2300 trouble with model MPI-ESM-MR since stop date is before 2300 trouble with model MRI-CGCM3 since stop date is before 2300 trouble with model NorESM1-ME since stop date is before 2300 trouble with model bcc-csm1-1 since stop date is before 2300 trouble with model bcc-csm1-1-m since stop date is before 2300 trouble with model inmcm4 since stop date is before 2300 number of good models with data in the specified time range: 9 ['CESM1-CAM5', 'CNRM-CM5', 'CSIRO-Mk3L-1-2', 'CanESM2', 'GISS-E2-H', 'GISS-E2-R', 'IPSL-CM5A-LR', 'MPI-ESM-LR', 'NorESM1-M'] calculating annual means year: 0 year: 1 year: 2 year: 3 year: 4 year: 5 year: 6 year: 7 year: 8 regridding to 2x2 grid Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_128x256_89x179_peri.nc Reuse existing file: bilinear_56x64_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_96x96_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc concatenating time series SCENARIO= rcp45 TIME RANGE 2006-2099 same scenario, re-use ds trouble with model CanCM4 since stop date is before 2099 trouble with model GFDL-CM2p1 since stop date is before 2099 trouble with model HadCM3 since stop date is before 2099 trouble with model MIROC4h since stop date is before 2099 number of good models with data in the specified time range: 39 ['ACCESS1-0', 'ACCESS1-3', 'BNU-ESM', 'CCSM4', 'CESM1-BGC', 'CESM1-CAM5', 'CESM1-CAM5-1-FV2', 'CMCC-CM', 'CMCC-CMS', 'CNRM-CM5', 'CSIRO-Mk3-6-0', 'CSIRO-Mk3L-1-2', 'CanESM2', 'FGOALS-g2', 'FIO-ESM', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M', 'GISS-E2-H', 'GISS-E2-H-CC', 'GISS-E2-R', 'GISS-E2-R-CC', 'HadGEM2-AO', 'HadGEM2-CC', 'HadGEM2-ES', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR', 'IPSL-CM5B-LR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC5', 'MPI-ESM-LR', 'MPI-ESM-MR', 'MRI-CGCM3', 'NorESM1-M', 'NorESM1-ME', 'bcc-csm1-1', 'bcc-csm1-1-m', 'inmcm4'] calculating annual means year: 0 year: 1 year: 2 year: 3 year: 4 year: 5 year: 6 year: 7 year: 8 year: 9 year: 10 year: 11 year: 12 year: 13 year: 14 year: 15 year: 16 year: 17 year: 18 year: 19 year: 20 year: 21 year: 22 year: 23 year: 24 year: 25 year: 26 year: 27 year: 28 year: 29 year: 30 year: 31 year: 32 year: 33 year: 34 year: 35 year: 36 year: 37 year: 38 regridding to 2x2 grid Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_240x480_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_128x256_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_56x64_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_60x128_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_96x96_89x179_peri.nc Reuse existing file: bilinear_143x144_89x179_peri.nc Reuse existing file: bilinear_96x96_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_128x256_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_160x320_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_160x320_89x179_peri.nc Reuse existing file: bilinear_120x180_89x179_peri.nc concatenating time series SCENARIO= rcp85 TIME RANGE 2006-2099 total number of models available: 40 ['ACCESS1-0', 'ACCESS1-3', 'BNU-ESM', 'CCSM4', 'CESM1-BGC', 'CESM1-CAM5', 'CESM1-CAM5-1-FV2', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS', 'CNRM-CM5', 'CSIRO-Mk3-6-0', 'CanESM2', 'FGOALS-g2', 'FGOALS-s2', 'FIO-ESM', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M', 'GISS-E2-H', 'GISS-E2-H-CC', 'GISS-E2-R', 'GISS-E2-R-CC', 'HadGEM2-AO', 'HadGEM2-CC', 'HadGEM2-ES', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR', 'IPSL-CM5B-LR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC5', 'MPI-ESM-LR', 'MPI-ESM-MR', 'MRI-CGCM3', 'MRI-ESM1', 'NorESM1-M', 'bcc-csm1-1', 'bcc-csm1-1-m', 'inmcm4'] number of good models with data in the specified time range: 40 ['ACCESS1-0', 'ACCESS1-3', 'BNU-ESM', 'CCSM4', 'CESM1-BGC', 'CESM1-CAM5', 'CESM1-CAM5-1-FV2', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS', 'CNRM-CM5', 'CSIRO-Mk3-6-0', 'CanESM2', 'FGOALS-g2', 'FGOALS-s2', 'FIO-ESM', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M', 'GISS-E2-H', 'GISS-E2-H-CC', 'GISS-E2-R', 'GISS-E2-R-CC', 'HadGEM2-AO', 'HadGEM2-CC', 'HadGEM2-ES', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR', 'IPSL-CM5B-LR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC5', 'MPI-ESM-LR', 'MPI-ESM-MR', 'MRI-CGCM3', 'MRI-ESM1', 'NorESM1-M', 'bcc-csm1-1', 'bcc-csm1-1-m', 'inmcm4'] calculating annual means year: 0 year: 1 year: 2 year: 3 year: 4 year: 5 year: 6 year: 7 year: 8 year: 9 year: 10 year: 11 year: 12 year: 13 year: 14 year: 15 year: 16 year: 17 year: 18 year: 19 year: 20 year: 21 year: 22 year: 23 year: 24 year: 25 year: 26 year: 27 year: 28 year: 29 year: 30 year: 31 year: 32 year: 33 year: 34 year: 35 year: 36 year: 37 year: 38 year: 39 regridding to 2x2 grid Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_192x288_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_48x96_89x179_peri.nc Reuse existing file: bilinear_240x480_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_128x256_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_60x128_89x179_peri.nc Reuse existing file: bilinear_108x128_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_96x96_89x179_peri.nc Reuse existing file: bilinear_143x144_89x179_peri.nc Reuse existing file: bilinear_96x96_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_128x256_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_160x320_89x179_peri.nc Reuse existing file: bilinear_160x320_89x179_peri.nc Reuse existing file: bilinear_96x144_89x179_peri.nc Reuse existing file: bilinear_64x128_89x179_peri.nc Reuse existing file: bilinear_160x320_89x179_peri.nc Reuse existing file: bilinear_120x180_89x179_peri.nc concatenating time series SCENARIO= rcp85 TIME RANGE 2100-2300 same scenario, re-use ds trouble with model ACCESS1-0 since stop date is before 2300 trouble with model ACCESS1-3 since stop date is before 2300 trouble with model BNU-ESM since stop date is before 2300 trouble with model CCSM4 since stop date is before 2300 trouble with model CESM1-BGC since stop date is before 2300 trouble with model CESM1-CAM5 since stop date is before 2300 trouble with model CESM1-CAM5-1-FV2 since stop date is before 2300 trouble with model CMCC-CESM since stop date is before 2300 trouble with model CMCC-CM since stop date is before 2300 trouble with model CMCC-CMS since stop date is before 2300 trouble with model CanESM2 since stop date is before 2300 trouble with model FGOALS-g2 since stop date is before 2300 trouble with model FGOALS-s2 since stop date is before 2300 trouble with model FIO-ESM since stop date is before 2300 trouble with model GFDL-CM3 since stop date is before 2300 trouble with model GFDL-ESM2G since stop date is before 2300 trouble with model GFDL-ESM2M since stop date is before 2300 trouble with model GISS-E2-H-CC since stop date is before 2300 trouble with model GISS-E2-R-CC since stop date is before 2300 trouble with model HadGEM2-AO since stop date is before 2300 trouble with model HadGEM2-CC since stop date is before 2300 trouble with model IPSL-CM5A-MR since stop date is before 2300 trouble with model IPSL-CM5B-LR since stop date is before 2300 trouble with model MIROC-ESM since stop date is before 2300 trouble with model MIROC-ESM-CHEM since stop date is before 2300 trouble with model MIROC5 since stop date is before 2300 trouble with model MPI-ESM-MR since stop date is before 2300 trouble with model MRI-CGCM3 since stop date is before 2300 trouble with model MRI-ESM1 since stop date is before 2300 trouble with model NorESM1-M since stop date is before 2300 trouble with model bcc-csm1-1 since stop date is before 2300 trouble with model bcc-csm1-1-m since stop date is before 2300 trouble with model inmcm4 since stop date is before 2300 number of good models with data in the specified time range: 7 ['CNRM-CM5', 'CSIRO-Mk3-6-0', 'GISS-E2-H', 'GISS-E2-R', 'HadGEM2-ES', 'IPSL-CM5A-LR', 'MPI-ESM-LR'] calculating annual means year: 0 year: 1 year: 2 year: 3 year: 4 year: 5 year: 6 regridding to 2x2 grid Reuse existing file: bilinear_128x256_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_90x144_89x179_peri.nc Reuse existing file: bilinear_145x192_89x179_peri.nc Reuse existing file: bilinear_96x96_89x179_peri.nc Reuse existing file: bilinear_96x192_89x179_peri.nc concatenating time series CPU times: user 11min 14s, sys: 24min 53s, total: 36min 8s Wall time: 2min 46s ###Markdown Plot figure ###Code if plot_global: l = ['historical:1850-1860','historical:1861-2005','rcp45:2006-2099','rcp45:2100-2300','rcp85:2006-2099','rcp85:2100-2300'] sctypelist = l; markerlist = l.copy(); colorlist = l.copy(); tnamelist = l.copy(); alphalist = l.copy() for idx,sctype in enumerate(sctypelist): markerlist[idx] = '-'; alphalist[idx] = 0.6 if 'hist' in sctype: colorlist[idx] = 'black'; alphalist[idx] = 0.45; tnamelist[idx] = 'Historical' if '1850-1860' in sctype: markerlist[idx] = '-.' if 'rcp45' in sctype: colorlist[idx] = '#99CCFF'; tnamelist[idx] = 'RCP4.5' if 'rcp85' in sctype: colorlist[idx] = '#CC3333'; tnamelist[idx] = 'RCP8.5' if '2100-2300' in sctype: markerlist[idx] = '-.' # find the climatology dataset: for ds in ds_master: if 'historical:1861-2005' in ds[var].attrs['sctype']: hvar = compute_global_mean(ds).compute() hmodels = hvar.names.values.tolist() # for each model, compute the time mean from the climatology interval: 1986-2005 tgm = hvar.sel(time=slice(1986,2005)).mean('time').load() # calculate the model mean tgm, for use in models which do not have a climatological reference run tgm0 = tgm[var].mean('model') plt.figure(figsize=(10,6)) rcParams.update({'font.size': 16}) for idx,sctype in enumerate(sctypelist): tname = tnamelist[idx];marker=markerlist[idx];color=colorlist[idx];alpha=alphalist[idx] data_exists = False for ds in ds_master: if sctype in ds[var].attrs['sctype']: tvar = compute_global_mean(ds).load() data_exists = True if data_exists: year = tvar.time.values #find the climatology for each models in this scenario:century tclimo = 0*tvar[var].mean('time') for idx,model in enumerate(tvar.names.values): if model in hmodels: hidx = hmodels.index(model) tclimo[idx] = tgm[var][hidx] else: #print('using model mean climo data:',model) tclimo[idx] = tgm0 num_models = tvar[var].shape[0] range5 = 1.64*(tvar - tclimo)[var].std('model') # use std = 1.64 to give 95% and 5% of values tvar_mean = (tvar - tclimo)[var].mean('model') tvar_95 = tvar_mean + range5 tvar_05 = tvar_mean - range5 label = tname+' ('+str(num_models)+' models)' plt.plot(year, tvar_mean, marker, color=color, label=label) plt.fill_between(year, tvar_05, tvar_95, color=color, alpha=alpha) plt.plot((1861, 1861), (-2, 6.2), 'k-', linewidth=1.5, alpha=0.75) plt.plot((2006, 2006), (-2, 6.2), 'k-', linewidth=1.5, alpha=0.75) plt.plot((2100, 2100), (-2, 12), 'k-', linewidth=1.5, alpha=0.75) plt.plot((2200, 2200), (-2, 12), 'k-', linewidth=1.5, alpha=0.75) plt.ylim(-2,12) plt.xlim(1850,2300) vtitle = r'CMIP5 global surface air temperature change $^\degree C$' if var == 'ts': vtitle = r'CMIP5 global surface temperature change $^\degree C$' plt.title(vtitle,fontsize=16) plt.legend(loc='upper left',fontsize='small') figfile = 'global_' + var + '.png' #plt.savefig(figfile) ###Output _____no_output_____
Kernel SHAP vs LIME.ipynb
###Markdown Random draws from 8 guassian rvs ###Code np.random.seed=2 X=np.random.randn(8,1000) ###Output _____no_output_____ ###Markdown Fitting a linear model on the drawn samples ###Code Y=1*X[0,] + 2*X[1,] - 3*X[2,] - 4*X[3,] + 5*X[4,] + 6*X[5,] + 7*X[6,] + 10 * X[7,] plt.plot(X[7,],Y,'o') ###Output _____no_output_____ ###Markdown Splitting the data to train,test,split ###Code sc = StandardScaler() X_std=sc.fit_transform(X.T) df_X_std=pd.DataFrame(data=X_std) test_size=0.30 rand_state=11 q0=-100 q1=np.percentile(Y,25.0) q2=np.percentile(Y,50.0) q3=np.percentile(Y,75.0) q4=100 bins=[q0,q1,q2,q3,q4] y_binned = np.digitize(Y, bins=bins,right=True) X_train, X_dev_test, y_train, y_dev_test = train_test_split(df_X_std,Y,stratify=y_binned, test_size=test_size, shuffle=True,random_state=rand_state) X_dev, X_test, y_dev, y_test = train_test_split(X_dev_test,y_dev_test, test_size=0.5, shuffle=False,random_state=rand_state) ###Output _____no_output_____ ###Markdown Deep model ###Code def coeff_determination(y_true, y_pred): SS_res = K.sum(K.square( y_true-y_pred )) SS_tot = K.sum(K.square( y_true - K.mean(y_true) ) ) return ( 1 - SS_res/(SS_tot + K.epsilon()) ) def model(input_shape): X_input=Input(shape=input_shape) X=Dense(64,name='layer_1',activation='tanh',kernel_initializer = glorot_uniform(seed=0))(X_input) X=Dropout(0.25)(X) X=Dense(64,name='layer_2',activation='tanh',kernel_initializer = glorot_uniform(seed=0))(X) X=Dropout(0.25)(X) # X=Dense(64,name='layer_3',activation='tanh',kernel_initializer = glorot_uniform(seed=0))(X) # X=Dropout(0.25)(X) # X=Dense(64,name='layer_4',activation='tanh',kernel_initializer = glorot_uniform(seed=0))(X) # X=Dropout(0.25)(X) X=Dense(1 ,name='output',activation='linear')(X) model = Model(inputs = X_input, outputs = X, name='PhaseModel') model.summary() return model model1=model((X_std.shape[1],)) Adam=optimizers.Adam(lr=0.0005, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) model1.compile(optimizer=Adam, loss='mean_squared_error', metrics=[coeff_determination]) ###Output _____no_output_____ ###Markdown Training ###Code R2_train=[] R2_dev=[] R2_test=[] for i in range(300): model1.fit(X_train, y_train, batch_size=1000, epochs=50, validation_data=(X_dev, y_dev), shuffle=False, verbose=0) R2_train.append(model1.evaluate(X_train,y_train)[1]) R2_dev.append(model1.evaluate(X_dev,y_dev)[1]) R2_test.append(model1.evaluate(X_test,y_test)[1]) ###Output _____no_output_____ ###Markdown Results $R^2$ ###Code n_epochs=np.arange(len(R2_train)) plt.figure(figsize=(18,12)) plt.plot(n_epochs,R2_train,'--',label='Train') plt.plot(n_epochs[-1],R2_dev[-1],'o',markersize=12,label='Dev') plt.plot(n_epochs[-1],R2_test[-1],'x',markersize=12,label='Test') #plt.ylim((0.5,1)) plt.ylabel(r'$R^2$') plt.xlabel('#Epochs') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Predicted vs true values ###Code y_pred_test=model1.predict(X_test) plt.plot(y_pred_test,y_test,'o') plt.xlabel(r'$Y_{true}$',fontsize=12) plt.ylabel(r'$Y_{predicted}$',fontsize=12) plt.show() ###Output _____no_output_____ ###Markdown Feature importance SHAP explainer ###Code #backgournd=shap.kmeans(X_train,10) backgournd=X_train explainer = shap.KernelExplainer(model1.predict, backgournd) shap_values= explainer.shap_values(X_test.iloc[0:50]) df_shap_values=pd.DataFrame(data=shap_values[0], columns=['var_'+str(i) for i in range(8)], index=['sample_'+str(i) for i in range(shap_values[0].shape[0])]) ###Output _____no_output_____ ###Markdown Local SHAP values (for a single instance) ###Code idx=7 ## Index of the desired sample instance local_shap_vs_true_coef=pd.DataFrame(index=df_shap_values.columns) local_shap_vs_true_coef['SHAP']=df_shap_values.iloc[idx].values/df_shap_values.iloc[idx,0] local_shap_vs_true_coef['True coef']=[1,2,-3,-4,5,6,7,10] local_shap_vs_true_coef.plot(kind='bar',figsize=(18,12)) plt.show() ###Output _____no_output_____ ###Markdown Global SHAP (averaged over X_test) ###Code Global_shap_vs_true_coef=pd.DataFrame(index=df_shap_values.columns) Global_shap_vs_true_coef['SHAP']=df_shap_values.mean(axis=0) Global_shap_vs_true_coef['SHAP']=Global_shap_vs_true_coef['SHAP']/Global_shap_vs_true_coef['SHAP'].iloc[0] Global_shap_vs_true_coef['True coef']=[1,2,-3,-4,5,6,7,10] Global_shap_vs_true_coef.plot(kind='bar',figsize=(18,12)) ###Output _____no_output_____ ###Markdown Global Absolute SHAP (averaged over X_test) ###Code Global_abs_shap_vs_true_coef=pd.DataFrame(index=df_shap_values.columns) Global_abs_shap_vs_true_coef['SHAP']=np.abs(df_shap_values).mean(axis=0) Global_abs_shap_vs_true_coef['SHAP']=Global_abs_shap_vs_true_coef['SHAP']/Global_abs_shap_vs_true_coef['SHAP'].iloc[0] Global_abs_shap_vs_true_coef['True coef']=[1,2,-3,-4,5,6,7,10] Global_abs_shap_vs_true_coef.plot(kind='bar',figsize=(18,12)) ###Output _____no_output_____ ###Markdown Deep SHAP ###Code Deep_background=X_train Deep_exp=shap.DeepExplainer(model1, Deep_background) Deep_shap_values = Deep_exp.shap_values(X_test.values) df_Deep_shap_values=pd.DataFrame(data=Deep_shap_values[0], columns=X_test.columns, index=X_test.index) ###Output _____no_output_____ ###Markdown local Deep SHAP ###Code idx=7 ## Index of the desired sample instance local_shap_vs_true_coef=pd.DataFrame(index=df_Deep_shap_values.columns) local_shap_vs_true_coef['Deep SHAP']=df_Deep_shap_values.iloc[idx].values/df_Deep_shap_values.iloc[idx,0] local_shap_vs_true_coef['True coef']=[1,2,-3,-4,5,6,7,10] local_shap_vs_true_coef.plot(kind='bar',figsize=(18,12)) plt.show() ###Output _____no_output_____ ###Markdown GLobal Deep SHAP ###Code Global_shap_vs_true_coef=pd.DataFrame(index=df_Deep_shap_values.columns) Global_shap_vs_true_coef['Deep SHAP']=df_Deep_shap_values.mean(axis=0) Global_shap_vs_true_coef['Deep SHAP']=Global_shap_vs_true_coef['Deep SHAP']/Global_shap_vs_true_coef['Deep SHAP'].iloc[0] Global_shap_vs_true_coef['True coef']=[1,2,-3,-4,5,6,7,10] Global_shap_vs_true_coef.plot(kind='bar',figsize=(18,12)) ###Output _____no_output_____ ###Markdown Global absolute Deep SHAP ###Code Global_abs_shap_vs_true_coef=pd.DataFrame(index=df_Deep_shap_values.columns) Global_abs_shap_vs_true_coef['Deep SHAP']=np.abs(df_Deep_shap_values).mean(axis=0) Global_abs_shap_vs_true_coef['Deep SHAP']=Global_abs_shap_vs_true_coef['Deep SHAP']/Global_abs_shap_vs_true_coef['Deep SHAP'].iloc[0] Global_abs_shap_vs_true_coef['True coef']=[1,2,-3,-4,5,6,7,10] Global_abs_shap_vs_true_coef.plot(kind='bar',figsize=(18,12)) # def lime_pred(x,model=model1): # out=model.predict(x) # return out.squeeze() # lime_explainer = lime.lime_tabular.LimeTabularExplainer(X_train, feature_names=list(df_X_std.columns), # #class_names=y_train, # verbose=False, # mode='regression', # discretize_continuous=False) # y_true=[] # y_lime=[] # for i in range(0,Y.shape[0],10): # lime_exp = lime_explainer.explain_instance(df_X_std.iloc[i].values, lime_pred) # y_true.append(Y[i]) # y_lime.append(lime_exp.local_pred[0]) # x_dummy=np.arange(-50,50,0.1) # plt.figure(figsize=(18,12)) # plt.plot(y_true,y_lime,'o',alpha=0.5) # plt.plot(x_dummy,x_dummy,'--') # plt.ylabel(r'$Y_{LIME}$') # plt.xlabel(r'$Y_{True}$') # plt.show() ###Output _____no_output_____ ###Markdown Local LIME values (local:for a single data instance) ###Code # exp = lime_explainer.explain_instance(X_test.iloc[3,:], lime_pred) # exp.show_in_notebook(show_table=True) # lime_vals=[val[1] for val in exp.as_list()] # lime_vals.reverse() # lime_vs_true_coef=pd.DataFrame(index=df_shap_values.columns) # lime_vs_true_coef['LIME']=lime_vals # lime_vs_true_coef['True coef']=[1,2,-3,-4,5,6,7,10] # lime_vs_true_coef.plot(kind='bar',figsize=(18,12)) ###Output _____no_output_____ ###Markdown SKATER ###Code # skater_pred_model = InMemoryModel(model1.predict) # interpreter = Interpretation() # interpreter.load_data(df_X_std) # imp=interpreter.feature_importance.feature_importance(skater_pred_model) # plt.bar(n,imp/imp[0]) ###Output _____no_output_____
tests/011_pandapower_speed_test/template.ipynb
###Markdown Create the connection mapping ###Code connections = pandas.DataFrame(columns=['fmu1_id', 'fmu1_path', 'fmu2_id', 'fmu2_path', 'fmu1_parameters', 'fmu2_parameters', 'fmu1_output', 'fmu2_input']) # Connection for each customer nodes = [7, 9, 24] for index in nodes: connections = connections.append( {'fmu1_id': 'PV' + str(index), 'fmu1_path': pv_inverter_path, 'fmu2_id': 'pandapower', 'fmu2_path': pandapower_path, 'fmu1_parameters': pv_inverter_parameters, 'fmu2_parameters': pandapower_parameter, 'fmu1_output': 'P', 'fmu2_input': 'KW_' + str(index)}, ignore_index=True) connections = connections.append( {'fmu1_id': 'PV' + str(index), 'fmu1_path': pv_inverter_path, 'fmu2_id': 'pandapower', 'fmu2_path': pandapower_path, 'fmu1_parameters': pv_inverter_parameters, 'fmu2_parameters': pandapower_parameter, 'fmu1_output': 'Q', 'fmu2_input': 'KVAR_' + str(index)}, ignore_index=True) connections = connections.append( {'fmu1_id': 'pandapower', 'fmu1_path': pandapower_path, 'fmu2_id': 'PV' + str(index), 'fmu2_path': pv_inverter_path, 'fmu1_parameters': pandapower_parameter, 'fmu2_parameters': pv_inverter_parameters, 'fmu1_output': 'Vpu_' + str(index), 'fmu2_input': 'v'}, ignore_index=True) def _sanitize_name(name): """ Make a Modelica valid name. In Modelica, a variable name: Can contain any of the characters {a-z,A-Z,0-9,_}. Cannot start with a number. :param name(str): Variable name to be sanitized. :return: Sanitized variable name. """ # Check if variable has a length > 0 assert(len(name) > 0), 'Require a non-null variable name.' # If variable starts with a number add 'f_'. if(name[0].isdigit()): name = 'f_' + name # Replace all illegal characters with an underscore. g_rexBadIdChars = re.compile(r'[^a-zA-Z0-9_]') name = g_rexBadIdChars.sub('_', name) return name connections['fmu1_output'] = connections['fmu1_output'].apply(lambda x: _sanitize_name(x)) connections['fmu2_input'] = connections['fmu2_input'].apply(lambda x: _sanitize_name(x)) print(tabulate(connections[ ['fmu1_id', 'fmu2_id', 'fmu1_output', 'fmu2_input']].head(), headers='keys', tablefmt='psql')) print(tabulate(connections[ ['fmu1_id', 'fmu2_id', 'fmu1_output', 'fmu2_input']].tail(), headers='keys', tablefmt='psql')) connections.to_excel(connections_filename, index=False) ###Output +----+------------+------------+---------------+--------------+ | | fmu1_id | fmu2_id | fmu1_output | fmu2_input | |----+------------+------------+---------------+--------------| | 0 | PV7 | pandapower | P | KW_7 | | 1 | PV7 | pandapower | Q | KVAR_7 | | 2 | pandapower | PV7 | Vpu_7 | v | | 3 | PV9 | pandapower | P | KW_9 | | 4 | PV9 | pandapower | Q | KVAR_9 | +----+------------+------------+---------------+--------------+ +----+------------+------------+---------------+--------------+ | | fmu1_id | fmu2_id | fmu1_output | fmu2_input | |----+------------+------------+---------------+--------------| | 4 | PV9 | pandapower | Q | KVAR_9 | | 5 | pandapower | PV9 | Vpu_9 | v | | 6 | PV24 | pandapower | P | KW_24 | | 7 | PV24 | pandapower | Q | KVAR_24 | | 8 | pandapower | PV24 | Vpu_24 | v | +----+------------+------------+---------------+--------------+ ###Markdown Launch FMU simulation ###Code if run_simulation: import shlex, subprocess cmd = ("C:/JModelica.org-2.1/setenv.bat && " + " cd " + pandapower_folder + " && " "cyderc " + " --path ./" " --name pandapower" + " --io pandapower.xlsx" + " --fmu_struc python" + " --path_to_simulatortofmu C:/Users/cyder/Desktop/" + "SimulatorToFMU/simulatortofmu/parser/SimulatorToFMU.py") args = shlex.split(cmd) process = subprocess.Popen(args, bufsize=1, universal_newlines=True) process.wait() process.kill() if run_simulation: import os import signal import shlex, subprocess cmd = ("C:/JModelica.org-2.1/setenv.bat && " + "cyders " + " --start " + str(start_s) + " --end " + str(end_s) + " --connections " + connections_filename + " --nb_steps 25" + " --solver " + solver_name + " --rtol " + str(solver_relative_tolerance) + " --atol " + str(solver_absolute_tolerance) + " --result " + 'results/' + result_filename + '.csv') args = shlex.split(cmd) process = subprocess.Popen(args, bufsize=1, universal_newlines=True, creationflags=subprocess.CREATE_NEW_PROCESS_GROUP) process.wait() process.send_signal(signal.CTRL_BREAK_EVENT) process.kill() print('Killed') ###Output Killed ###Markdown Plot results ###Code # Load results results = pandas.read_csv('results/' + result_filename + '.csv') epoch = datetime.datetime.utcfromtimestamp(0) begin_since_epoch = (begin_dt - epoch).total_seconds() results['datetime'] = results['time'].apply( lambda x: datetime.datetime.utcfromtimestamp(begin_since_epoch + x)) results.set_index('datetime', inplace=True, drop=False) print('COLUMNS=') print(results.columns) print('START=') print(results.head(1).index[0]) print('END=') print(results.tail(1).index[0]) # Plot sum of all PVs for P and P curtailled and Q cut = '2016-06-17 01:00:00' fig, axes = plt.subplots(1, 1, figsize=(11, 3)) plt.title('PV generation') for node in nodes: plt.plot(results['datetime'], results['pandapower.KW_' + str(node)] / 1000, linewidth=3, alpha=0.7, label='node ' + str(node)) plt.legend(loc=0) plt.ylabel('PV active power [MW]') plt.xlabel('Time') plt.xlim([cut, end]) plt.show() fig, axes = plt.subplots(1, 1, figsize=(11, 3)) plt.title('Inverter reactive power') for node in nodes: plt.plot(results['datetime'], results['pandapower.KVAR_' + str(node)] / 1000, linewidth=3, alpha=0.7, label='node ' + str(node)) plt.legend(loc=0) plt.ylabel('PV reactive power [MVAR]') plt.xlabel('Time') plt.xlim([cut, end]) plt.show() fig, axes = plt.subplots(1, 1, figsize=(11, 3)) plt.title('PV voltage') for node in nodes: plt.plot(results['datetime'], results['pandapower.Vpu_' + str(node)], linewidth=3, alpha=0.7, label='node ' + str(node)) plt.legend(loc=0) plt.ylabel('PV voltage [p.u.]') plt.xlabel('Time') plt.xlim([cut, end]) plt.ylim([0.95, results[['pandapower.Vpu_' + str(node) for node in nodes]].max().max()]) plt.show() # Load results debug = pandas.read_csv('debug.csv', parse_dates=[1]) epoch = datetime.datetime.utcfromtimestamp(0) begin_since_epoch = (begin_dt - epoch).total_seconds() debug['datetime'] = debug['sim_time'].apply( lambda x: datetime.datetime.utcfromtimestamp(begin_since_epoch + x)) debug.set_index('datetime', inplace=True, drop=False) print('COLUMNS=') print(debug.columns) print('START=') print(debug.head(1).index[0]) print('END=') print(debug.tail(1).index[0]) # Plot time/voltage import matplotlib.dates as mdates print('Number of evaluation=' + str(len(debug))) fig, axes = plt.subplots(1, 1, figsize=(11, 8)) plt.plot(debug['clock'], debug['datetime'], linewidth=3, alpha=0.7) plt.ylabel('Simulation time') plt.xlabel('Computer clock') plt.gcf().autofmt_xdate() myFmt = mdates.DateFormatter('%H:%M') plt.gca().xaxis.set_major_formatter(myFmt) plt.show() fig, axes = plt.subplots(1, 1, figsize=(11, 3)) plt.plot(debug['clock'], debug['KW_7'], linewidth=3, alpha=0.7) plt.plot(debug['clock'], debug['KW_9'], linewidth=3, alpha=0.7) plt.plot(debug['clock'], debug['KW_24'], linewidth=3, alpha=0.7) plt.ylabel('KW') plt.xlabel('Computer clock') plt.legend([17, 31, 24], loc=0) plt.show() fig, axes = plt.subplots(1, 1, figsize=(11, 3)) plt.plot(debug['clock'], debug['Vpu_7'], linewidth=3, alpha=0.7) plt.plot(debug['clock'], debug['Vpu_9'], linewidth=3, alpha=0.7) plt.plot(debug['clock'], debug['Vpu_24'], linewidth=3, alpha=0.7) plt.ylabel('Vpu') plt.xlabel('Computer clock') plt.show() fig, axes = plt.subplots(1, 1, figsize=(11, 3)) plt.plot(debug['clock'], debug['Vpu_7'].diff(), linewidth=3, alpha=0.7) plt.plot(debug['clock'], debug['Vpu_9'].diff(), linewidth=3, alpha=0.7) plt.plot(debug['clock'], debug['Vpu_24'].diff(), linewidth=3, alpha=0.7) plt.ylabel('Vpu Diff') plt.xlabel('Computer clock') plt.show() fig, axes = plt.subplots(1, 1, figsize=(11, 3)) plt.plot(debug['clock'], debug['KVAR_7'], linewidth=3, alpha=0.7) plt.plot(debug['clock'], debug['KVAR_9'], linewidth=3, alpha=0.7) plt.plot(debug['clock'], debug['KVAR_24'], linewidth=3, alpha=0.7) plt.ylabel('KVAR') plt.xlabel('Computer clock') plt.show() ###Output Number of evaluation=33959
tutorial10.ipynb
###Markdown This chapter is about dictionaries. Dictionaries have keys and values. The keys are used to find the values. Here is an interactive mode demonstration of creating a phone numbers dictionary: ###Code #Create a dictionary numbers = {} #Add some numbers numbers["Joe"] = "545-4464" numbers["Jill"] = "979-4654" #Look up a number numbers["Joe"] ###Output _____no_output_____ ###Markdown Here is an example of a program that makes a phone numbers dictionary: ###Code def print_menu(): print('1. Print Phone Numbers') print('2. Add a Phone Number') print('3. Remove a Phone Number') print('4. Lookup a Phone Number') print('5. Quit') print() numbers = {} menu_choice = 0 print_menu() while menu_choice != 5: menu_choice = int(input("Type in a number (1-5):")) if menu_choice == 1: print("Telephone Numbers:") for x in sorted(numbers.keys()): print("Name: ", x, " \tNumber: ", numbers[x]) print() elif menu_choice == 2: print("Add Name and Number") name = input("Name:") phone = input("Number:") numbers[name] = phone elif menu_choice == 3: print("Remove Name and Number") name = input("Name:") if name in numbers: del numbers[name] else: print(name, " was not found") elif menu_choice == 4: print("Lookup Number") name = input("Name:") if name in numbers: print("The number is", numbers[name]) else: print(name, " was not found") elif menu_choice != 5: print_menu() ###Output _____no_output_____ ###Markdown And here is my output: ###Code 1. Print Phone Numbers 2. Add a Phone Number 3. Remove a Phone Number 4. Lookup a Phone Number 5. Quit Type in a number (1-5):2 Add Name and Number Name:Joe Number:545-4464 Type in a number (1-5):2 Add Name and Number Name:Jill Number:979-4654 Type in a number (1-5):2 Add Name and Number Name:Fred Number:132-9874 Type in a number (1-5):1 Telephone Numbers: Name: Fred Number: 132-9874 Name: Jill Number: 979-4654 Name: Joe Number: 545-4464 Type in a number (1-5):4 Lookup Number Name:Joe The number is 545-4464 Type in a number (1-5):3 Remove Name and Number Name:Fred Type in a number (1-5):1 Telephone Numbers: Name: Jill Number: 979-4654 Name: Joe Number: 545-4464 Type in a number (1-5):5 ###Output _____no_output_____ ###Markdown This program is similar to the name list earlier in the the chapter on lists. Here's how the program works. First, the function `print_menu` is defined. `print_menu` just prints a menu that is later used twice in the program. Next comes the funny looking line `numbers = {}`. All that line does is tell Python that numbers is a dictionary. The next few lines just make the menu work. The lines: ###Code for x in sorted(numbers.keys()): print("Name: ", x, " \tNumber: ", numbers[x]) ###Output _____no_output_____ ###Markdown go through the dictionary and print all the information. The function `numbers.keys()` returns a list that is then used by the for loop. The list returned by keys is not in any particular order so if you want it in alphabetic order it must be sorted as is done with the sorted function. Similar to lists the statement `numbers[x]` is used to access a specific member of the dictionary. Of course in this case x is a string. Next the line `numbers[name] = phone` adds a name and phone number to the dictionary. If `name` had already been in the dictionary phone would replace whatever was there before. Next the lines: ###Code if name in numbers: del numbers[name] ###Output _____no_output_____ ###Markdown see if a name is in the dictionary and remove it if it is. The function `name in numbers` returns true if name is in numbers but otherwise returns false. The line del numbers[name] removes the key name and the value associated with that key. The lines: ###Code if name in numbers: print("The number is", numbers[name]) ###Output _____no_output_____ ###Markdown check to see if the dictionary has a certain key and if it does prints out the number associated with it. Lastly, if the menu choice is invalid it reprints the menu for your viewing pleasure.A recap: Dictionaries have keys and values. Keys can be strings ornumbers. Keys point to values. Values can be any type of variable(including lists or even dictionaries (those dictionaries or lists ofcourse can contain dictionaries or lists themselves (scary right? :)))). Here is an example of using a list in a dictionary: ###Code max_points = [25, 25, 50, 25, 100] assignments = ['hw ch 1', 'hw ch 2', 'quiz ', 'hw ch 3', 'test'] students = {'#Max':max_points} def print_menu(): print("1. Add student") print("2. Remove student") print("3. Print grades") print("4. Record grade") print("5. Print Menu") print("6. Exit") def print_all_grades(): print('\t', end=' ') for i in range(len(assignments)): print(assignments[i], '\t', end=' ') print() keys = list(students.keys()) keys.sort() for x in keys: print(x, '\t', end=' ') grades = students[x] print_grades(grades) def print_grades(grades): for i in range(len(grades)): print(grades[i], '\t\t', end=' ') print() print_menu() menu_choice = 0 while menu_choice != 6: print() menu_choice = int(input("Menu Choice (1-6):")) if menu_choice == 1: name = input("Student to add:") students[name] = [0]*len(max_points) elif menu_choice == 2: name = input("Student to remove:") if name in students: del students[name] else: print("Student: ", name, " not found") elif menu_choice == 3: print_all_grades() elif menu_choice == 4: print("Record Grade") name = input("Student:") if name in students: grades = students[name] print("Type in the number of the grade to record") print("Type a 0 (zero) to exit") for i in range(len(assignments)): print(i+1, ' ', assignments[i], '\t', end=' ') print() print_grades(grades) which = 1234 while which != -1: which = int(input("Change which Grade:")) which = which-1 if 0 <= which < len(grades): grade = int(input("Grade:")) grades[which] = grade elif which != -1: print("Invalid Grade Number") else: print("Student not found") elif menu_choice != 6: print_menu() ###Output _____no_output_____ ###Markdown and here is a sample output: ###Code 1. Add student 2. Remove student 3. Print grades 4. Record grade 5. Print Menu 6. Exit Menu Choice (1-6):3 hw ch 1 hw ch 2 quiz hw ch 3 test #Max 25 25 50 25 100 ###Output _____no_output_____ ###Markdown ###Code Menu Choice (1-6):5 1. Add student 2. Remove student 3. Print grades 4. Record grade 5. Print Menu 6. Exit Menu Choice (1-6):1 Student to add:Bill ###Output _____no_output_____ ###Markdown ###Code Menu Choice (1-6):4 Record Grade Student:Bill Type in the number of the grade to record Type a 0 (zero) to exit 1 hw ch 1 2 hw ch 2 3 quiz 4 hw ch 3 5 test 0 0 0 0 0 Change which Grade:1 Grade:25 Change which Grade:2 Grade:24 Change which Grade:3 Grade:45 Change which Grade:4 Grade:23 Change which Grade:5 Grade:95 Change which Grade:0 ###Output _____no_output_____ ###Markdown ###Code Menu Choice (1-6):3 hw ch 1 hw ch 2 quiz hw ch 3 test #Max 25 25 50 25 100 Bill 25 24 45 23 95 Menu Choice (1-6):6 ###Output _____no_output_____ ###Markdown Here's how the program works. Basically, the variable students isa dictionary with the keys being the name of the students and thevalues being their grades. The first two lines just create two lists.The next line `students = {'Max':max_points}` creates a newdictionary with the key `Max` and the value is set to be [25, 25, 50, 25, 100] (since thats what `max_points` was when theassignment is made) (I use the key `Max` since `` is sortedahead of any alphabetic characters). Next, `print_menu` isdefined. Then, the `print_all_grades` function is defined in thelines: ###Code def print_all_grades(): print('\t', end=' ') for i in range(len(assignments)): print(assignments[i], '\t', end=' ') print() keys = list(students.keys()) keys.sort() for x in keys: print(x, '\t', end=' ') grades = students[x] print_grades(grades) ###Output _____no_output_____
notebooks/00_quick_start/naml_synthetic.ipynb
###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. NAML: Neural News Recommendation with Attentive Multi-View LearningNAML \[1\] is a multi-view news recommendation approach. The core of NAML is a news encoder and a user encoder. The newsencoder is composed of a title encoder, a body encoder, a vert encoder and a subvert encoder. The CNN-based title encoder and body encoder learn title and body representations by capturing words semantic information. After getting news title, body, vert and subvert representations, an attention network is used to aggregate those vectors. In the user encoder, we learn representations of users from their browsed news. Besides, we apply additive attention to learn more informative news and user representations by selecting important words and news. Properties of NAML:- NAML is a multi-view neural news recommendation approach.- It uses news title, news body, news vert and news subvert to get news repersentations. And it uses user historical behaviors to learn user representations.- NAML uses additive attention to learn informative news and user representations by selecting important words and news. Data format: train dataOne simple example: `1 0 0 0 0 Impression:0 User:502 CandidateTitle0:17917,36557,47926,32224,24113,48923,19086,5636,3703,0... CandidateBody0:17024,53305,8832,29800,9787,4068,48731,48923,19086,38699,5766,22487,38336,29800,8548,39128,33457,7789,30543,7482,8548,49004,53305,22999,32747,21103,11799,5766,4868,17115,7482,15118,48731,2025,7789,23336,7789,48731,19086,10630,11128,36557,3703,47354,611,7789,19086,5636,51521,30706... CandidateVert0:14... CandidateSubvert0:219... ClickedTitle0:48,33405,35198,5969,5636,35845,850,48731,46799,24113... ClickedBody0:36557,67,34519,24113,8548,48,33405,35198,5969,14340,7053,850,8823,9498,46799,24113,12506,32747,31130,3074,48731,20869,14264,38289,37310,7789,36557,34967,48731,36916,23321,3595,48731,47354,4868,15719,7482,12771,50693,47354,17523,48,20918,17900,35198,48731,20869,1220,14264,7789... ClickedVert0:14... ClickedSubvert0:99... `In general, each line in data file represents one positive instance and n negative instances in a same impression. The format is like: `[label0] ... [labeln] [Impression:i] [User:u] [CandidateTitle0:w1,w2,w3,...] ... [CandidateBody0:w1,w2 ..] ... [CandidateVert0:v] ... [CandidateSubvert0:s] ... [ClickedTitle0:w1,w2,w3,...] ... [ClickedBody0:w1,w2,w3,...] ... [ClickedVert0:v] ... [ClickedSubvert0:s] ...`It contains several parts seperated by space, i.e. label part, Impression part ``, User part ``, CandidateNews part, ClickedHistory part. CandidateNews part describes the target news article we are going to score in this instance. It is represented by (aligned) title words, body words, news vertical index and subvertical index. To take a quick example, a news title may be : `Trump to deliver State of the Union address next week` , then the title words value may be `CandidateTitlei:34,45,334,23,12,987,3456,111,456,432`. ClickedHistory describe the k-th news article the user ever clicked and the format is the same as candidate news. Every clicked news has title words, body words, vertical and subvertical. We use a fixed length to describe an article, if the title or body is less than the fixed length, just pad it with zeros. test dataOne simple example: `1 Impression:0 User:1529 CandidateTitle0:5327,18658,13846,6439,611,50611,0,0,0,0 CandidateBody0:13846,3197,27902,225,5327,45008,29145,7789,509,7395,11502,36557,13846,23680,26492,38072,20507,5636,4247,32747,50132,7482,41049,32747,43022,50611,35979,7789,1191,36557,52870,21622,48148,42737,48731,36557,13846,23680,13173,7482,13848,38072,20507,7789,41675,36875,51461,12348,21045,42160 CandidateVert0:14 CandidateSubvert0:19 ClickedTitle0:9079,3703,32747,8546,19377,50184,32747,24026,40010,49754 ... ClickedBody0:26061,48731,8576,7789,8683,9079,5636,45084,46805,3703,509,43036,11502,28883,9498,18450,32747,8546,33405,35647,50184,7482,41143,8220,43618,38072,35198,43390,28057,32552,45245,10764,16247,4221,41038,36557,43683,46805,7789,29727,2179,51003,34797,897,21045,12974,23382,46287,48731,15206 ... ClickedVert0:14 ... ClickedSubvert0:219 ...`In general, each line in data file represents one instance. The format is like: `[label] [Impression:i] [User:u] [CandidateTitle0:w1,w2,w3,...] [CandidateBody0:w1,w2,w3,...] [CandidateVert0:v] [CandidateSubvert0:s] [ClickedTitle0:w1,w2,w3,...] ... [ClickedBody0:w1,w2,w3,...] ... [ClickedVert0:v] ... [ClickedSubvert0:s] ...` Global settings and imports ###Code import sys sys.path.append("../../") from reco_utils.recommender.deeprec.deeprec_utils import download_deeprec_resources from reco_utils.recommender.newsrec.newsrec_utils import prepare_hparams from reco_utils.recommender.newsrec.models.naml import NAMLModel from reco_utils.recommender.newsrec.io.naml_iterator import NAMLIterator import papermill as pm from tempfile import TemporaryDirectory import tensorflow as tf import os print("System version: {}".format(sys.version)) print("Tensorflow version: {}".format(tf.__version__)) tmpdir = TemporaryDirectory() ###Output /data/anaconda/envs/reco_gpu/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:523: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /data/anaconda/envs/reco_gpu/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:524: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /data/anaconda/envs/reco_gpu/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /data/anaconda/envs/reco_gpu/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /data/anaconda/envs/reco_gpu/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /data/anaconda/envs/reco_gpu/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:532: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) ###Markdown Download and load data ###Code data_path = tmpdir.name yaml_file = os.path.join(data_path, r'naml.yaml') train_file = os.path.join(data_path, r'train.txt') valid_file = os.path.join(data_path, r'test.txt') wordEmb_file = os.path.join(data_path, r'embedding.npy') if not os.path.exists(yaml_file): download_deeprec_resources(r'https://recodatasets.blob.core.windows.net/newsrec/', data_path, 'naml.zip') ###Output 100%|██████████| 72.6k/72.6k [00:04<00:00, 18.0kKB/s] ###Markdown Create hyper-parameters ###Code epochs=5 seed=42 hparams = prepare_hparams(yaml_file, wordEmb_file=wordEmb_file, epochs=epochs) print(hparams) iterator = NAMLIterator ###Output _____no_output_____ ###Markdown Train the NAML model ###Code model = NAMLModel(hparams, iterator, seed=seed) print(model.run_eval(valid_file)) model.fit(train_file, valid_file) res_syn = model.run_eval(valid_file) print(res_syn) pm.record("res_syn", res_syn) ###Output {'group_auc': 0.5599, 'mean_mrr': 0.2027, 'ndcg@5': 0.2065, 'ndcg@10': 0.268}
Labs/Lab2/Romil/grad_desc_scratch.ipynb
###Markdown Preprocessing of data ###Code X_new = preprocessing.scale(X_new) X_b = np.concatenate((np.ones((m,1)),X_new),axis = 1) y.shape X_b.shape ###Output _____no_output_____ ###Markdown Function for gradient descent ###Code def gradient_descent (X,y,theta,learning_rate=0.01,iterations=100): m = len(y) cost_history = np.zeros(iterations) theta_history = np.zeros((iterations,1+1)) for it in range(iterations): prediction = np.dot(X,theta) theta = theta -(1/m)*learning_rate*( X.T.dot((prediction - y))) theta_history[it,:] =theta.T cost_history[it] = cal_cost(theta,X,y) return theta, cost_history, theta_history ###Output _____no_output_____ ###Markdown Loss function ###Code def cal_cost(theta,X,y): m = len(y) predictions = X.dot(theta) cost = (1/2*m) * np.sum(np.square(predictions-y)) return cost ###Output _____no_output_____ ###Markdown Visualization ###Code def plot_graph(slope,c): fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.scatter(X_new, y) x_min, x_max = ax.get_xlim() y_min, y_max = c, c + slope*(x_max-x_min) ax.plot([x_min, x_max], [y_min, y_max], color = 'r') ax.set_xlim([x_min, x_max]) lr =0.01 n_iter = 1000 theta = np.random.randn(2,1) theta,cost_history,theta_history = gradient_descent(X_b,y,theta,lr,n_iter) print('Theta0: {},\nTheta1: {}'.format(theta[0][0],theta[1][0])) print('Final cost/MSE: {}'.format(cost_history[-1])) intercept,coeff = theta[0][0],theta[1][0] plot_graph(coeff,intercept) plt.plot(cost_history) ###Output _____no_output_____
notebooks/train_nn.ipynb
###Markdown [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/alexanderlarin/3dgnn/blob/master/notebooks/train_nn.ipynb) ###Code from google.colab import drive drive.mount('/content/gdrive') !mkdir gdrive/My\ Drive/3dgnn !mkdir gdrive/My\ Drive/3dgnn/datasets !mkdir gdrive/My\ Drive/3dgnn/models !mkdir gdrive/My\ Drive/3dgnn/log !curl http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat --output gdrive/My\ Drive/3dgnn/datasets/nyu_depth_v2_labeled.mat !rm -rf 3dgnn !git clone https://github.com/alexanderlarin/3dgnn.git !cd 3dgnn && git pull import sys import logging sys.path.append('3dgnn') logging.basicConfig(level=logging.INFO, format='[%(levelname)s][%(asctime)s][%(name)s] %(message)s', datefmt="%H:%M:%S", handlers=[logging.FileHandler('gdrive/My Drive/3dgnn/log/3dgnn.txt'), logging.StreamHandler()]) from extract_hha import patch_hha_dataset # If you don't have extracted hha images for the dataset # but now it's strongly recommended do this in your local machine # and upload to gdrive results of calculation # patch_hha_dataset('gdrive/My Drive/3dgnn/datasets/nyu_depth_v2_labeled.mat', # 'gdrive/My Drive/3dgnn/datasets/nyu_depth_v2_patch.mat', mp_chunk_size=16) from train_nn import config, train_nn config.use_gpu = True train_nn('gdrive/My Drive/3dgnn/datasets/nyu_depth_v2_labeled.mat', 'gdrive/My Drive/3dgnn/datasets/hha', 'gdrive/My Drive/3dgnn/models', from_last_check_point=True, check_point_prefix='checkpoint', num_epochs=250, notebook=True) ###Output _____no_output_____
Dacon_airline_0217_ver1.ipynb
###Markdown Label Encoding- missing value 0이 있으므로 Ordinal Encoding은 할 수 없음- 결측치 처리 대신 NaN으로 처리되기를 기대할 수 있음 ###Code le = preprocessing.LabelEncoder() for f in cat_features: df_train[f] = le.fit_transform(df_train[f].astype(str)) df_test[f] = le.fit_transform(df_test[f].astype(str)) print(df_train.shape) print(df_test.shape) df_train.head(2) ###Output (3000, 42) (2000, 41) ###Markdown 상관계수 파악- target이 있는 마지막 줄에 주목- Gate location, Flight Distance는 상관계수가 0에 가까움 -> feature 제거 고려? ###Code tmp_feature_dict = {i: 0 for i in selected_features} del tmp_feature_dict['target'] selected_features = [f for f in tmp_feature_dict.keys()] print(len(selected_features)) corr = df_train[selected_features + ['target']].corr() # Compute the correlation matrix mask = np.triu(np.ones_like(corr, dtype=bool)) # Generate a mask for the upper triangle cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr, mask=mask, cmap=cmap, vmin=-1., vmax=1., center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}) plt.show() remove_features = [] CORR_THRESHOLD = 0.0 for f in corr.columns[:-1]: if np.abs(corr[f]['target']) < CORR_THRESHOLD: remove_features.append(f) print(f'Correlation under {CORR_THRESHOLD}: {len(remove_features)}\n{remove_features}') tmp_features = {k: 0 for k in selected_features} for f in remove_features: if f in selected_features: del tmp_features[f] final_features = [f for f in tmp_features.keys()] del tmp_features print(len(final_features), final_features) train_set = df_train[final_features + ['target']] print(train_set.shape) train_set.head(2) def set_seed(seed=42): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) SEED = 7777 N_SPLITS = 5 N_ESTIMATORS = 5000 params = { 'n_estimators': N_ESTIMATORS, 'n_jobs': -1, 'random_state': SEED, } cbt_params = { 'silent': True, 'n_estimators': N_ESTIMATORS, 'learning_rate': 0.015, 'random_state': SEED, #'depth': 8, #'min_data_in_leaf': 4, #'cat_features': selected_cat_features } models = [] set_seed(SEED) folds = StratifiedKFold(n_splits=N_SPLITS, shuffle=True) for fold, (train_idx, valid_idx) in enumerate(folds.split(train_set[final_features], train_set['target'])): X_train = train_set.loc[train_idx][final_features] y_train = train_set.loc[train_idx]['target'] X_valid = train_set.loc[valid_idx][final_features] y_valid = train_set.loc[valid_idx]['target'] #model = RandomForestClassifier(**params) model = CatBoostClassifier(**cbt_params) model.fit(X_train, y_train) models.append(model) p_valid = model.predict(X_valid) acc = accuracy_score(y_valid, p_valid) print(f'#{fold} Accuracy: {acc}') # grid_param = { # 'n_estimators': [5000], # 'learning_rate': [0.015], # 'depth': [4, 6, 8], # #'min_data_in_leaf': [4, 8, 12, 16], # #'num_leaves': [4, 8, 12, 16], # #'l2_leaf_reg': [1, 3, 5, 7] # } # cbt_clf = CatBoostClassifier(silent = True) # grid_search = GridSearchCV( # estimator = cbt_clf, # param_grid = grid_param, # cv = 5, # n_jobs = 1, # verbose = 3, # scoring='accuracy', # ) # grid_search.fit(train_set[final_features], train_set['target']) # print(grid_search.best_params_) ###Output _____no_output_____ ###Markdown ###Code probs = [] for model in models: prob = model.predict_proba(df_test[final_features]) probs.append(prob) pred = sum(probs) / len(probs) pred = np.argmax(pred, axis=1) df_submit = pd.read_csv('sample_submission.csv') df_submit['target'] = pred df_submit.to_csv('/content/gdrive/MyDrive/Dacon/airline/0217_ver1.csv', index=False) ###Output _____no_output_____
notebooks/Key words in thread_name exploration.ipynb
###Markdown Exploration of key words occurances in thread names notebook ###Code import os import sys from src import data_prepare import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore') post, thread=data_prepare.load_train_data() label_map=data_prepare.load_label_map() thread.head() key_words=pd.Series(label_map.index) key_words key_words[1]="beginner" key_words[6]="king" thread["name"]=thread["thread_name"].apply(lambda x: data_prepare.clean(x)).as_matrix() ###Output _____no_output_____ ###Markdown Let's just try to calculate how efficient it is to look for names themselves in thread names for different classes ###Code num_classes=len(key_words) correct=pd.Series(np.zeros(num_classes),index=label_map.index) over=pd.Series(np.zeros(num_classes),index=label_map.index) under=pd.Series(np.zeros(num_classes),index=label_map.index) al=pd.Series(np.zeros(num_classes),index=label_map.index) for item in thread.itertuples(): label=item.thread_label_id if key_words[label] in item.name: correct[label]+=1 else: under[label]+=1 for index,s in enumerate(key_words): if index==label: continue if s in item.name: over[index]+=1 break al[label]+=1 x = pd.DataFrame({'all':al,'correct':correct,'under': under,'over':over, 'per cent correct':correct/al,'per cent under':under/al, 'per cent over':over/al}, index=correct.index) x x["efficiency"]=(x["correct"]-x["over"])/x['all'] x ###Output _____no_output_____ ###Markdown Not the best metric for efficiency, but it seems like it makes sense to use this kind of raw prediction for classes that score more than 40-50%, especially if they don't have a lot of representatives in the dataset, like cybrid or supernatural ###Code post_test, thread_test=data_prepare.load_test_data() test_stat=pd.Series(np.zeros(13),index=label_map.index) thread_test["name"]=thread_test["thread_name"].apply(lambda x: data_prepare.clean(x)).as_matrix() for item in thread_test.itertuples(): for index,s in enumerate(key_words): if s in item.name: test_stat[index]+=1 test_stat ###Output _____no_output_____
day4_sign.ipynb
###Markdown ###Code import pandas as pd import numpy as np import os import datetime import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPool2D, Dense, Flatten, Dropout from tensorflow.keras.utils import to_categorical import matplotlib.pyplot as plt from skimage import color, exposure from sklearn.metrics import accuracy_score %load_ext tensorboard cd "/content/drive/My Drive/Colab Notebooks/matrix_three_road_signs/" train = pd.read_pickle('data/train.p') test = pd.read_pickle('data/test.p') x_train, y_train = train['features'], train['labels'] x_test, y_test = test['features'], test['labels'] if y_train.ndim == 1: y_train = to_categorical(y_train) if y_test.ndim == 1: y_test = to_categorical(y_test) input_shape = x_train.shape[1:] num_classes = y_train.shape[1] model = Sequential([ Conv2D(filters=64, kernel_size=(3, 3), activation='relu', input_shape=input_shape), Flatten(), Dense(num_classes, activation='softmax'), ]) #model.summary() model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) model.fit(x_train, y_train) def get_cnn_v1(input_shape, num_classes): return Sequential([ Conv2D(filters=64, kernel_size=(3, 3), activation='relu', input_shape=input_shape), Flatten(), Dense(num_classes, activation='softmax'), ]) def train_model(model, x_train, y_train, params_fit={}): model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1) model.fit( x_train, y_train, batch_size=params_fit.get('batch_size', 128), epochs=params_fit.get('epochs', 5), verbose=params_fit.get('verbose', 1), validation_data=params_fit.get('validation_data', (x_train, y_train)), callbacks=[tensorboard_callback] ) return model model = get_cnn_v1(input_shape, num_classes) model_trained = train_model(model, x_train, y_train) df = pd.read_csv('data/signnames.csv') labels_dict = df.to_dict()['b'] y_pred_prob = model_trained.predict(x_test) y_pred_prob y_pred_prob[400] np.argmax( y_pred_prob[400] ) plt.bar(range(43), y_pred_prob[400]) plt.imshow(x_test[400]) def predict(model_trained, x_test, y_test, scoring=accuracy_score): y_test_norm = np.argmax(y_test,axis=1) y_pred_prob = model_trained.predict(x_test) y_pred = np.argmax(y_pred_prob, axis=1) return scoring(y_test_norm, y_pred) predict(model_trained, x_test, y_test) def train_and_predict(model): model_trained = train_model(model, x_train, y_train) return predict(model_trained, x_test, y_test) def get_cnn_v2(input_shape, num_classes): return Sequential([ Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=input_shape), MaxPool2D(), Dropout(0.3), Conv2D(filters=64, kernel_size=(3, 3), activation='relu'), MaxPool2D(), Dropout(0.3), Flatten(), Dense(1024, activation='relu'), Dropout(0.3), Dense(num_classes, activation='softmax'), ]) train_and_predict( get_cnn_v2(input_shape, num_classes)) def get_cnn_v3(input_shape, num_classes): return Sequential([ Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=input_shape), Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=input_shape), MaxPool2D(), Dropout(0.3), Conv2D(filters=64, kernel_size=(3, 3), activation='relu'), Conv2D(filters=64, kernel_size=(3, 3), activation='relu'), MaxPool2D(), Dropout(0.3), Flatten(), Dense(1024, activation='relu'), Dropout(0.3), Dense(num_classes, activation='softmax'), ]) train_and_predict( get_cnn_v3(input_shape, num_classes)) def get_cnn_v4(input_shape, num_classes): return Sequential([ Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=input_shape), Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same'), MaxPool2D(), Dropout(0.3), Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same'), Conv2D(filters=64, kernel_size=(3, 3), activation='relu'), MaxPool2D(), Dropout(0.3), Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same'), Conv2D(filters=64, kernel_size=(3, 3), activation='relu'), MaxPool2D(), Dropout(0.3), Flatten(), Dense(1024, activation='relu'), Dropout(0.3), Dense(num_classes, activation='softmax'), ]) get_cnn_v4(input_shape, num_classes).summary() train_and_predict( get_cnn_v4(input_shape, num_classes)) def get_cnn_v5(input_shape, num_classes): return Sequential([ Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=input_shape), Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same'), MaxPool2D(), Dropout(0.3), Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same'), Conv2D(filters=64, kernel_size=(3, 3), activation='relu'), MaxPool2D(), Dropout(0.3), Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same'), Conv2D(filters=64, kernel_size=(3, 3), activation='relu'), MaxPool2D(), Dropout(0.3), Flatten(), Dense(1024, activation='relu'), Dropout(0.3), Dense(1024, activation='relu'), Dropout(0.3), Dense(num_classes, activation='softmax'), ]) train_and_predict( get_cnn_v5(input_shape, num_classes)) x_train[0].shape color.rgb2gray(x_train[0]).shape plt.imshow(color.rgb2gray(x_train[0])) x_train_gray = color.rgb2gray(x_train).reshape(-1,32,32,1) x_test_gray = color.rgb2gray(x_test).reshape(-1,32,32,1) model = get_cnn_v5((32,32,1), num_classes) model_trained = train_model(model, x_train_gray, y_train, params_fit={}) predict(model_trained,x_test_gray,y_test) plt.imshow(color.rgb2gray(x_train[0]),cmap=plt.get_cmap('gray')) ###Output _____no_output_____
Projects/Project5/CNN_LeNet.ipynb
###Markdown Load Dataset ###Code X = [] y = [] with open("X.pkl", 'rb') as picklefile: X = pickle.load(picklefile) with open("y.pkl", 'rb') as picklefile: y = pickle.load(picklefile) # set folder path folderpath = 'Images/Train/Undistorted/' # load image arrays for filename in os.listdir(folderpath): if filename != '.DS_Store': imagepath = folderpath + filename img = image.load_img(imagepath, target_size=(192,192)) X.append(np.asarray(img)) y.append(0) else: print filename, 'not a pic' import pickle with open('undistorted_X.pkl', 'wb') as picklefile: pickle.dump(X, picklefile) with open('undistorted_y.pkl', 'wb') as picklefile: pickle.dump(y, picklefile) # set folder path folderpath = 'Images/Train/DigitalBlur2/' # load image arrays for filename in os.listdir(folderpath): if filename != '.DS_Store': imagepath = folderpath + filename img = image.load_img(imagepath, target_size=(192,192)) X.append(np.asarray(img)) y.append(1) else: print filename, 'not a pic' len(y) with open('X.pkl', 'wb') as picklefile: pickle.dump(X, picklefile) with open('y.pkl', 'wb') as picklefile: pickle.dump(y, picklefile) X_stacked = np.stack(X) X_norm = X_stacked/255. y_cat = to_categorical(y) X_train, X_test, y_train, y_test = train_test_split(X_norm, y_cat, train_size=2500, random_state=42) # Data augmenter dg = image.ImageDataGenerator(horizontal_flip=True, vertical_flip=True) ###Output _____no_output_____ ###Markdown Load initial model weights ###Code model.load_weights('lenet_weights.h5') ###Output _____no_output_____ ###Markdown Model ###Code cb_es = EarlyStopping(monitor='val_acc', patience=2, verbose=1) cb_mc = ModelCheckpoint('lenet_weights2.h5', monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=True) # Fit generator # play with samples/epoch, nb_epoch, val_samples. model.fit_generator(dg.flow(X_train, y_train), samples_per_epoch=3000, nb_epoch=30, validation_data=dg.flow(X_test, y_test), nb_val_samples=300, callbacks=[cb_es, cb_mc]) ###Output Epoch 1/30 2980/3000 [============================>.] - ETA: 2s - loss: 0.1901 - acc: 0.9460  ###Markdown Test on real pics ###Code clean_pics = [] blurry_pics = [] backBlur_pics = [] # set folder path folderpath = 'Images/clearSamples/' # load image arrays for filename in os.listdir(folderpath): if filename != '.DS_Store': imagepath = folderpath + filename img = image.load_img(imagepath, target_size=(192,192)) clean_pics.append(np.asarray(img)) else: print filename, 'not a pic' # set folder path folderpath = 'Images/natblurSamples/' # load image arrays for filename in os.listdir(folderpath): if filename != '.DS_Store': imagepath = folderpath + filename img = image.load_img(imagepath, target_size=(192,192)) blurry_pics.append(np.asarray(img)) else: print filename, 'not a pic' # set folder path folderpath = 'Images/backBlurSamples/' # load image arrays for filename in os.listdir(folderpath): if filename != '.DS_Store': imagepath = folderpath + filename img = image.load_img(imagepath, target_size=(192,192)) backBlur_pics.append(np.asarray(img)) else: print filename, 'not a pic' len(backBlur_pics) backBlur_pics_array = np.stack(backBlur_pics)/255. len(blurry_pics) clean_pics_array = np.stack(clean_pics)/255. blurry_pics_array = np.stack(blurry_pics)/255. blurry_pics_array.shape model.predict_classes(clean_pics_array) model.predict_proba(clean_pics_array) model.predict_classes(blurry_pics_array) model.predict_proba(blurry_pics_array) model.predict_proba(backBlur_pics_array) plt.imshow(blurry_pics_array[0]) plt.show() model.save('lenet_3rdPass.h5') model.save_weights('test_weights.h5') ###Output _____no_output_____ ###Markdown Test the classifier on the "Background blur only" set ###Code backBlur_pics = [] backBlur_filenames = [] # set folder path folderpath = 'Images/backBlurAll_longIter/' # load image arrays for filename in os.listdir(folderpath): if filename != '.DS_Store': backBlur_filenames.append(filename) imagepath = folderpath + filename img = image.load_img(imagepath, target_size=(192,192)) backBlur_pics.append(np.asarray(img)) else: print filename, 'not a pic' df_backBlur = pd.DataFrame(backBlur_filenames, columns=['filename']) backBlur_pics_array = np.stack(backBlur_pics)/255. df_backBlur['blur_class'] = model.predict_classes(backBlur_pics_array) if not os.path.exists(folderpath+'blurry'): os.mkdir(folderpath+'blurry') for index, row in df_backBlur.iterrows(): if row['blur_class'] == 1: oldpath = folderpath + row['filename'] newpath = folderpath + 'blurry/' + row['filename'] os.rename(oldpath, newpath) ###Output _____no_output_____ ###Markdown Test the classifier on the Naturally Blurred set ###Code natBlur_pics = [] natBlur_filenames = [] # set folder path folderpath = 'Images/natBlurAll_longIter/' # load image arrays for filename in os.listdir(folderpath): if filename != '.DS_Store': natBlur_filenames.append(filename) imagepath = folderpath + filename img = image.load_img(imagepath, target_size=(192,192)) natBlur_pics.append(np.asarray(img)) else: print filename, 'not a pic' df_natBlur = pd.DataFrame(natBlur_filenames, columns=['filename']) natBlur_pics_array = np.stack(natBlur_pics)/255. df_natBlur['blur_class'] = model.predict_classes(natBlur_pics_array) if not os.path.exists(folderpath+'blurry'): os.mkdir(folderpath+'blurry') for index, row in df_natBlur.iterrows(): if row['blur_class'] == 1: oldpath = folderpath + row['filename'] newpath = folderpath + 'blurry/' + row['filename'] os.rename(oldpath, newpath) ###Output _____no_output_____ ###Markdown Test classifier on M3 pics ###Code m3Blur_pics = [] m3Blur_filenames = [] # set folder path folderpath = 'Images/M3Samples/' # load image arrays for filename in os.listdir(folderpath): if filename != '.DS_Store': m3Blur_filenames.append(filename) imagepath = folderpath + filename img = image.load_img(imagepath, target_size=(192,192)) m3Blur_pics.append(np.asarray(img)) else: print filename, 'not a pic' df_m3Blur = pd.DataFrame(m3Blur_filenames, columns=['filename']) m3Blur_pics_array = np.stack(m3Blur_pics)/255. df_m3Blur['blur_class'] = model.predict_classes(m3Blur_pics_array) if not os.path.exists(folderpath+'blurry'): os.mkdir(folderpath+'blurry') for index, row in df_m3Blur.iterrows(): if row['blur_class'] == 1: oldpath = folderpath + row['filename'] newpath = folderpath + 'blurry/' + row['filename'] os.rename(oldpath, newpath) df_m3Blur ###Output _____no_output_____ ###Markdown Test my clear samples ###Code clearSample_pics = [] clearSample_filenames = [] # set folder path folderpath = 'Images/clearSamples/' # load image arrays for filename in os.listdir(folderpath): if filename != '.DS_Store': clearSample_filenames.append(filename) imagepath = folderpath + filename img = image.load_img(imagepath, target_size=(192,192)) clearSample_pics.append(np.asarray(img)) else: print filename, 'not a pic' df_clearSample = pd.DataFrame(clearSample_filenames, columns=['filename']) clearSample_pics_array = np.stack(clearSample_pics)/255. df_clearSample['blur_class'] = model.predict_classes(clearSample_pics_array) if not os.path.exists(folderpath+'blurry'): os.mkdir(folderpath+'blurry') for index, row in df_clearSample.iterrows(): if row['blur_class'] == 1: oldpath = folderpath + row['filename'] newpath = folderpath + 'blurry/' + row['filename'] os.rename(oldpath, newpath) ###Output _____no_output_____ ###Markdown Test my bad samples ###Code blurSample_pics = [] blurSample_filenames = [] # set folder path folderpath = 'Images/natBlurSamples/' # load image arrays for filename in os.listdir(folderpath): if filename != '.DS_Store': blurSample_filenames.append(filename) imagepath = folderpath + filename img = image.load_img(imagepath, target_size=(192,192)) blurSample_pics.append(np.asarray(img)) else: print filename, 'not a pic' df_blurSample = pd.DataFrame(blurSample_filenames, columns=['filename']) blurSample_pics_array = np.stack(blurSample_pics)/255. df_blurSample['blur_class'] = model.predict_classes(blurSample_pics_array) if not os.path.exists(folderpath+'blurry'): os.mkdir(folderpath+'blurry') for index, row in df_blurSample.iterrows(): if row['blur_class'] == 1: oldpath = folderpath + row['filename'] newpath = folderpath + 'blurry/' + row['filename'] os.rename(oldpath, newpath) img = image.load_img('Images/NaturalBlurSet.xlsx', target_size=(192,192)) '.JPG'.lower() ###Output _____no_output_____
en/01_quadratic/quadratic_pizza_task.ipynb
###Markdown Exercise of buying a pizza* topics: quadratic equation, function definition in python, `fsolve()` Task* You go for pizza with your friend.* Menu is clear, smaller pizza costs 100, bigger one which has diameter larger by 10cm, costs 200. Questions* At which diameter d, it pays off to buy 2 smaller pizzas rather than 1 bigger one.* How does the solution change if you do not care about a 1cm dry edge of the pizza? ------ In case this is your first Jupyter Notebook:* Every cell is executed with `Shift-Enter`, once your cursor is in it.* After successul run, a serial number of the execution will appear on the left from the cell* For cell execution and creation of a new cell below, use `Alt-Enter`.* Any text after a symbol is a comment (to annotate your code) and it is ignored by Python* Caution: If you execute a cell which has a hint in the output, the hint will disappear, therefore it is better to use `Alt-Enter`.------ ###Code # import of classical modules as in the introduction import numpy as np import matplotlib.pyplot as plt # advanced feature (save to ignore), which enables to set parameters # for ALL the plots in the notebook at once import matplotlib as mpl mpl.rcParams['figure.figsize'] = [8,6] # graph size mpl.rcParams['lines.linewidth'] = 3 # line width mpl.rcParams['lines.markersize'] = 10 # size of point markers mpl.rcParams['xtick.labelsize'] = 12 # font size of x axis ticks mpl.rcParams['ytick.labelsize'] = 12 # font size of y axis ticks mpl.rcParams['axes.labelsize'] = 'larger' # font size of the axes labels # uncomment the command below to find out all possible parameters of graph you can change/set. # mpl.rcParams.keys() # Our variable (x axis) is the pizza diameter (d) # define an array of reasonable d values ###Output [ 0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 9. 9.5 10. 10.5 11. 11.5 12. 12.5 13. 13.5 14. 14.5 15. 15.5 16. 16.5 17. 17.5 18. 18.5 19. 19.5 20. 20.5 21. 21.5 22. 22.5 23. 23.5 24. 24.5 25. 25.5 26. 26.5 27. 27.5 28. 28.5 29. 29.5 30. 30.5 31. 31.5 32. 32.5 33. 33.5 34. 34.5 35. 35.5 36. 36.5 37. 37.5 38. 38.5 39. 39.5 40. 40.5 41. 41.5 42. 42.5 43. 43.5 44. 44.5 45. 45.5 46. 46.5 47. 47.5 48. 48.5 49. 49.5 50. ] ###Markdown Condition we are solving for is when area of 2 smaller pizzas is larger than area of 1 bigger pizza. $2S_{small}{\gt}S_{big}$* Hopefully the pizzas are circular$ 2{\cdot}\pi\left(\dfrac{d}{2}\right)^2 \gt \pi\left(\dfrac{d+10}{2}\right)^2$After arranging everything on one side, we solve for when the expression is > 0* Note that $\pi$ in Python is written as np.pi ###Code # Calculate functional values for range of d you picked f = # Plot the function, together with x axis as below plt.xlabel('Pizza diameter, d [cm]') plt.ylabel('Area difference (2 smaller - 1 bigger) [cm2]') plt.show() ###Output _____no_output_____ ###Markdown From ~23cm of diameter, it always pays off to buy 2 smaller pizzas.--- Let's calculate the intercept exactly. We have at least two options:1. In the quadratic function intro, we have a method in case we know parameters `a,b,c`, therefore we would need to rearrange our expression on paper first.2. That is not practical for more complicated expressions, therefore Python has a function `fsolve()`* `fsolve()` solves equations numerically, using certain algorithm in a loop approaching progressively the correct solution. ###Code # For using fsolve, we need to import it from scipy.optimize module from scipy.optimize import fsolve ## Into fsolve, we need to pass a function of some variable/variables ## We can do that in the following way: # we define (def) function which calculates area difference (what we plot on y axis) based on input d def area_diff(d): # area_diff is only dependent on d # fill in the expression for area difference diff = return diff # test the function for d=10 ###Output _____no_output_____ ###Markdown This means that for diameter of 10cm, area of 2 smaller pizzas is smaller by $157\,cm^2$ than 1 larger.--- Try different inputs of d on your own * By trial you can find out, when the difference will become positive. * And that is the moment when you want to buy 2 smaller pizzas instead of two smaller ones. ###Code # Let's use FSOLVE by inputing our area_diff to find exact solution. fsolve(area_diff) ## What does this error mean? # FSOLVE needs one required argument x0: which is our first estimate of a solution. # writing fsolve and pressing Shift-Tab, all arguments of the FSOLVE function should show up # try fsolve again and better ###Output _____no_output_____ ###Markdown FSOLVE is mighty instrument* Works on any type of equation, not only quadratic* Solves system of equations too Unfortunately we cannot blindly trust every return (try yourselves):* if your initial guess `x0` is close to the first intercept, `fsolve` will return the second root of the quadratic equation, which is illogical (negative pizza diameter) for our purposes.* If `x0` is close to the APEX of the parabola (`x0=10`), `fsolve()` will be confused whether to go right or left and ultimately is going to fail.* If you are reasonably close with your `x0`, you are safe.--- If you are hungry by now, good job and good apetite. If not, try to extend your solution by considering the dry edge of a pizza...* What if you do not care about the dry edge of the pizza, so that you want to discard it from your calculations?* How is it going to affect your decisions about 2 vs 1 pizzas? ###Code # The easiest way is to adapt our already written functions for area difference. # We do it by adding one free parameter which value stands from thickness of the edge def area_diff(d, edge=0): # edge=0, if we do not provide edge parameter to the function, Python will use predefined value of 0 set by a smart programmer. # fill in the expression for area difference, now dependent on edge as well diff = return diff # Repeat fsolve(), we pass edge parameter as args=1 # Plot both graphs, the original and the one with the edge discarded plt.axhline(0, color='k', lw=0.5) plt.axvline(0, color='k', lw=0.5) plt.xlabel('Pizza diameter, d [cm]') plt.ylabel('Area difference (2 smaller - 1 bigger) [cm2]') plt.legend() plt.show() ###Output _____no_output_____
Trainer-Collaboratories/Fine_Tuning/MobileNetV2/Fine_tuning_MobileNetV2(GAP_256_0,25).ipynb
###Markdown **Import Google Drive** ###Code from google.colab import drive drive.mount('/content/drive') ###Output Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True). ###Markdown **Import Library** ###Code import glob import numpy as np import os import shutil np.random.seed(42) from sklearn.preprocessing import LabelEncoder import cv2 import tensorflow as tf import keras import shutil import random import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.utils import class_weight from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, cohen_kappa_score ###Output Using TensorFlow backend. /usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm ###Markdown **Load Data** ###Code os.chdir('/content/drive/My Drive/Colab Notebooks/DATA RD/') Train = glob.glob('/content/drive/My Drive/Colab Notebooks/DATA RD/DATASETS/Data Split/Train/*') Val=glob.glob('/content/drive/My Drive/Colab Notebooks/DATA RD/DATASETS/Data Split/Validation/*') Test=glob.glob('/content/drive/My Drive/Colab Notebooks/DATA RD/DATASETS/Data Split/Test/*') import matplotlib.image as mpimg for ima in Train[600:601]: img=mpimg.imread(ima) imgplot = plt.imshow(img) plt.show() ###Output _____no_output_____ ###Markdown **Data Preparation** ###Code nrows = 224 ncolumns = 224 channels = 3 def read_and_process_image(list_of_images): X = [] # images y = [] # labels for image in list_of_images: X.append(cv2.resize(cv2.imread(image, cv2.IMREAD_COLOR), (nrows,ncolumns), interpolation=cv2.INTER_CUBIC)) #Read the image #get the labels if 'Normal' in image: y.append(0) elif 'Mild' in image: y.append(1) elif 'Moderate' in image: y.append(2) elif 'Severe' in image: y.append(3) return X, y X_train, y_train = read_and_process_image(Train) X_val, y_val = read_and_process_image(Val) X_test, y_test = read_and_process_image(Test) import seaborn as sns import gc gc.collect() #Convert list to numpy array X_train = np.array(X_train) y_train= np.array(y_train) X_val = np.array(X_val) y_val= np.array(y_val) X_test = np.array(X_test) y_test= np.array(y_test) print('Train:',X_train.shape,y_train.shape) print('Val:',X_val.shape,y_val.shape) print('Test',X_test.shape,y_test.shape) sns.countplot(y_train) plt.title('Total Data Training') sns.countplot(y_val) plt.title('Total Data Validasi') sns.countplot(y_test) plt.title('Total Data Test') y_train_ohe = pd.get_dummies(y_train) y_val_ohe=pd.get_dummies(y_val) y_test_ohe=pd.get_dummies(y_test) y_train_ohe.shape,y_val_ohe.shape,y_test_ohe.shape ###Output _____no_output_____ ###Markdown **Model Parameters** ###Code batch_size = 16 EPOCHS = 100 WARMUP_EPOCHS = 2 LEARNING_RATE = 0.001 WARMUP_LEARNING_RATE = 1e-3 HEIGHT = 224 WIDTH = 224 CANAL = 3 N_CLASSES = 4 ES_PATIENCE = 5 RLROP_PATIENCE = 3 DECAY_DROP = 0.5 ###Output _____no_output_____ ###Markdown **Data Generator** ###Code train_datagen =tf.keras.preprocessing.image.ImageDataGenerator( rotation_range=360, horizontal_flip=True, vertical_flip=True) test_datagen=tf.keras.preprocessing.image.ImageDataGenerator() train_generator = train_datagen.flow(X_train, y_train_ohe, batch_size=batch_size) val_generator = test_datagen.flow(X_val, y_val_ohe, batch_size=batch_size) test_generator = test_datagen.flow(X_test, y_test_ohe, batch_size=batch_size) ###Output _____no_output_____ ###Markdown **Define Model** ###Code IMG_SHAPE = (224, 224, 3) base_model =tf.keras.applications.MobileNetV2(weights='imagenet', include_top=False, input_shape=IMG_SHAPE) x =tf.keras.layers.GlobalAveragePooling2D()(base_model.output) x =tf.keras.layers.Dropout(0.25)(x) x =tf.keras.layers.Dense(256, activation='relu')(x) x =tf.keras.layers.Dropout(0.25)(x) final_output =tf.keras.layers.Dense(N_CLASSES, activation='softmax', name='final_output')(x) model =tf.keras.models.Model(inputs=base_model.inputs,outputs=final_output) ###Output _____no_output_____ ###Markdown **Train Top Layers** ###Code for layer in model.layers: layer.trainable = False for i in range(-5, 0): model.layers[i].trainable = True metric_list = ["accuracy"] optimizer =tf.keras.optimizers.Adam(lr=WARMUP_LEARNING_RATE) model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=metric_list) model.summary() import time start = time.time() STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size STEP_SIZE_VALID = val_generator.n//val_generator.batch_size history_warmup = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=val_generator, validation_steps=STEP_SIZE_VALID, epochs=WARMUP_EPOCHS, verbose=1).history end = time.time() print('Waktu Training:', end - start) ###Output WARNING:tensorflow:From <ipython-input-17-42947d619a66>:13: Model.fit_generator (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version. Instructions for updating: Please use Model.fit, which supports generators. Epoch 1/2 375/375 [==============================] - 67s 178ms/step - loss: 1.0370 - accuracy: 0.5305 - val_loss: 1.0771 - val_accuracy: 0.5397 Epoch 2/2 375/375 [==============================] - 66s 176ms/step - loss: 0.9336 - accuracy: 0.5530 - val_loss: 0.9844 - val_accuracy: 0.5860 Waktu Training: 137.82756233215332 ###Markdown **Train Fine Tuning** ###Code for layer in model.layers: layer.trainable = True es =tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1) rlrop =tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', mode='min', patience=RLROP_PATIENCE, factor=DECAY_DROP, min_lr=1e-6, verbose=1) callback_list = [es] optimizer =tf.keras.optimizers.Adam(lr=LEARNING_RATE) model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=metric_list) model.summary() history_finetunning = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=val_generator, validation_steps=STEP_SIZE_VALID, epochs=EPOCHS, callbacks=callback_list, verbose=1).history ###Output Epoch 1/100 375/375 [==============================] - 69s 184ms/step - loss: 0.7880 - accuracy: 0.6743 - val_loss: 11.8788 - val_accuracy: 0.2520 Epoch 2/100 375/375 [==============================] - 68s 182ms/step - loss: 0.6365 - accuracy: 0.7373 - val_loss: 5.4351 - val_accuracy: 0.3683 Epoch 3/100 375/375 [==============================] - 68s 182ms/step - loss: 0.5762 - accuracy: 0.7635 - val_loss: 1.6380 - val_accuracy: 0.5343 Epoch 4/100 375/375 [==============================] - 68s 181ms/step - loss: 0.5586 - accuracy: 0.7777 - val_loss: 2.3704 - val_accuracy: 0.4731 Epoch 5/100 375/375 [==============================] - 68s 181ms/step - loss: 0.5625 - accuracy: 0.7740 - val_loss: 4.1205 - val_accuracy: 0.4751 Epoch 6/100 375/375 [==============================] - 69s 183ms/step - loss: 0.5386 - accuracy: 0.7882 - val_loss: 1.4705 - val_accuracy: 0.5659 Epoch 7/100 375/375 [==============================] - 68s 183ms/step - loss: 0.5261 - accuracy: 0.7857 - val_loss: 1.6054 - val_accuracy: 0.6082 Epoch 8/100 375/375 [==============================] - 68s 181ms/step - loss: 0.5157 - accuracy: 0.7917 - val_loss: 1.5991 - val_accuracy: 0.5195 Epoch 9/100 375/375 [==============================] - 69s 183ms/step - loss: 0.5026 - accuracy: 0.7978 - val_loss: 2.3484 - val_accuracy: 0.3972 Epoch 10/100 375/375 [==============================] - 68s 183ms/step - loss: 0.4797 - accuracy: 0.8100 - val_loss: 1.9325 - val_accuracy: 0.4664 Epoch 11/100 375/375 [==============================] - ETA: 0s - loss: 0.5003 - accuracy: 0.8013Restoring model weights from the end of the best epoch. 375/375 [==============================] - 68s 182ms/step - loss: 0.5003 - accuracy: 0.8013 - val_loss: 2.9917 - val_accuracy: 0.4832 Epoch 00011: early stopping ###Markdown **Model Graph** ###Code history = {'loss': history_warmup['loss'] + history_finetunning['loss'], 'val_loss': history_warmup['val_loss'] + history_finetunning['val_loss'], 'acc': history_warmup['accuracy'] + history_finetunning['accuracy'], 'val_acc': history_warmup['val_accuracy'] + history_finetunning['val_accuracy']} sns.set_style("whitegrid") fig, (ax1, ax2) = plt.subplots(2, 1, sharex='col', figsize=(20, 18)) ax1.plot(history['loss'], label='Train loss') ax1.plot(history['val_loss'], label='Validation loss') ax1.legend(loc='best') ax1.set_title('Loss') ax2.plot(history['acc'], label='Train accuracy') ax2.plot(history['val_acc'], label='Validation accuracy') ax2.legend(loc='best') ax2.set_title('Accuracy') plt.xlabel('Epochs') sns.despine() plt.show() ###Output _____no_output_____ ###Markdown **Evaluate Model** ###Code loss_Val, acc_Val = model.evaluate(X_val, y_val_ohe,batch_size=1, verbose=1) print("Validation: accuracy = %f ; loss_v = %f" % (acc_Val, loss_Val)) lastFullTrainPred = np.empty((0, N_CLASSES)) lastFullTrainLabels = np.empty((0, N_CLASSES)) lastFullValPred = np.empty((0, N_CLASSES)) lastFullValLabels = np.empty((0, N_CLASSES)) for i in range(STEP_SIZE_TRAIN+1): im, lbl = next(train_generator) scores = model.predict(im, batch_size=train_generator.batch_size) lastFullTrainPred = np.append(lastFullTrainPred, scores, axis=0) lastFullTrainLabels = np.append(lastFullTrainLabels, lbl, axis=0) for i in range(STEP_SIZE_VALID+1): im, lbl = next(val_generator) scores = model.predict(im, batch_size=val_generator.batch_size) lastFullValPred = np.append(lastFullValPred, scores, axis=0) lastFullValLabels = np.append(lastFullValLabels, lbl, axis=0) lastFullComPred = np.concatenate((lastFullTrainPred, lastFullValPred)) lastFullComLabels = np.concatenate((lastFullTrainLabels, lastFullValLabels)) complete_labels = [np.argmax(label) for label in lastFullComLabels] train_preds = [np.argmax(pred) for pred in lastFullTrainPred] train_labels = [np.argmax(label) for label in lastFullTrainLabels] validation_preds = [np.argmax(pred) for pred in lastFullValPred] validation_labels = [np.argmax(label) for label in lastFullValLabels] fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', figsize=(24, 7)) labels = ['0 - No DR', '1 - Mild', '2 - Moderate', '3 - Severe'] train_cnf_matrix = confusion_matrix(train_labels, train_preds) validation_cnf_matrix = confusion_matrix(validation_labels, validation_preds) train_cnf_matrix_norm = train_cnf_matrix.astype('float') / train_cnf_matrix.sum(axis=1)[:, np.newaxis] validation_cnf_matrix_norm = validation_cnf_matrix.astype('float') / validation_cnf_matrix.sum(axis=1)[:, np.newaxis] train_df_cm = pd.DataFrame(train_cnf_matrix_norm, index=labels, columns=labels) validation_df_cm = pd.DataFrame(validation_cnf_matrix_norm, index=labels, columns=labels) sns.heatmap(train_df_cm, annot=True, fmt='.2f', cmap="Blues",ax=ax1).set_title('Train') sns.heatmap(validation_df_cm, annot=True, fmt='.2f', cmap="Blues",ax=ax2).set_title('Validation') plt.show() ###Output _____no_output_____
Chapter6/starspace.ipynb
###Markdown StarSpaceStarSpace [[1]](fn1) is an entity embedding approach which uses a similarity function between entities to construct a prediction task for a neural network. It maps objects of different types into a common vector space where they can be compared to each other. StarSpace can learn word, sentence and document level embeddings, ranking, text classification, embedding graphs, image classification, etc. We will follow the official documentation of StarSpace and implement simple text classification.This notebook requires a working SparSpace program which can be built on any modern Linux or Windows machine as described in the building instructions in the [GitHub repository](https://github.com/facebookresearch/StarSpace). Here, we use the Linux toolchain to build the StarSpace executable. If you run this notebook on Windows, you can use either Visual Studio or tools such as [MinGW with MSYS](http://www.mingw.org/) or [Cygwin](https://www.cygwin.com/) to compile StarSpace.----- [1] Ledell Yu Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and Jason Weston. Starspace: Embed all the things! In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pages 5569–5577, 2018. ---- First of all, we need to ensure that all the required libraries are available. The `-q` parameter is used to suppress long installation reports produced by `pip`. ###Code !pip -q install gensim==3.8.3 !pip -q install matplotlib==3.3.3 !pip -q install scikit-learn==0.23.2 !pip -q install pandas==1.1.4 ###Output _____no_output_____ ###Markdown We clone the source code repository and compile the starspace binary. ###Code import os class StopExecution(Exception): def _render_traceback_(self): pass if os.name == 'nt': print('ERROR: you are running this notebook on a Windows system. Please open the StarSpace Visual Studio solution file (https://github.com/facebookresearch/StarSpace/blob/master/MVS/StarSpace.sln) and build the project.') raise StopExecution else: !git clone [email protected]:facebookresearch/StarSpace.git && cd StarSpace && make ###Output Cloning into 'StarSpace'... remote: Enumerating objects: 5, done. remote: Counting objects: 100% (5/5), done. remote: Compressing objects: 100% (5/5), done. remote: Total 873 (delta 0), reused 0 (delta 0), pack-reused 868 Receiving objects: 100% (873/873), 3.05 MiB | 5.39 MiB/s, done. Resolving deltas: 100% (567/567), done. g++ -pthread -std=gnu++11 -O3 -funroll-loops -g -c src/utils/normalize.cpp g++ -pthread -std=gnu++11 -O3 -funroll-loops -I/usr/local/bin/boost_1_63_0/ -g -c src/dict.cpp g++ -pthread -std=gnu++11 -O3 -funroll-loops -g -c src/utils/args.cpp g++ -pthread -std=gnu++11 -O3 -funroll-loops -I/usr/local/bin/boost_1_63_0/ -g -c src/proj.cpp g++ -pthread -std=gnu++11 -O3 -funroll-loops -I/usr/local/bin/boost_1_63_0/ -g -c src/parser.cpp -o parser.o g++ -pthread -std=gnu++11 -O3 -funroll-loops -I/usr/local/bin/boost_1_63_0/ -g -c src/data.cpp -o data.o g++ -pthread -std=gnu++11 -O3 -funroll-loops -I/usr/local/bin/boost_1_63_0/ -g -c src/model.cpp g++ -pthread -std=gnu++11 -O3 -funroll-loops -I/usr/local/bin/boost_1_63_0/ -g -c src/starspace.cpp g++ -pthread -std=gnu++11 -O3 -funroll-loops -I/usr/local/bin/boost_1_63_0/ -g -c src/doc_parser.cpp -o doc_parser.o g++ -pthread -std=gnu++11 -O3 -funroll-loops -I/usr/local/bin/boost_1_63_0/ -g -c src/doc_data.cpp -o doc_data.o g++ -pthread -std=gnu++11 -O3 -funroll-loops -I/usr/local/bin/boost_1_63_0/ -g -c src/utils/utils.cpp -o utils.o g++ -pthread -std=gnu++11 -O3 -funroll-loops normalize.o dict.o args.o proj.o parser.o data.o model.o starspace.o doc_parser.o doc_data.o utils.o -I/usr/local/bin/boost_1_63_0/ -g src/main.cpp -o starspace ###Markdown The executable is now available as `StarSpace/starspace`. The original bash script (classification_ag_news.sh) for the text classification example is available in the [Starspace GitHub repository](https://github.com/facebookresearch/Starspace/blob/master/examples/classification_ag_news.sh). We reimplement it as a Jupyter notebook. The data is based on [Antonio Gulli's corpus (AG)](http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html) which is a collection of more than 1 million news articles. From this collection, Zhang et al. [[2]](fn2) constructed a smaller corpus, containing only the four largest news categoriess from the original corpus. Each category (i.e. class value) contains 30,000 training instances and 1,900 testing instances. The total number of training samples is 120000 while 7600 samples are reserved for testing. We download, unpack and inspect the corpus.---- [2] Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).---- ###Code import tarfile import requests import os request = requests.get('https://dl.fbaipublicfiles.com/starspace/ag_news_csv.tar.gz') with open("data/ag_news_csv.tar.gz", "wb") as file: file.write(request.content) with tarfile.open('data/ag_news_csv.tar.gz', 'r:gz') as tar: tar.extractall(path='data') print(os.listdir('data/ag_news_csv')) ###Output ['classes.txt', 'test.csv', 'readme.txt', 'train.csv'] ###Markdown There are four classes and each news from the train and test set is classified using the line number of the actual class value. The training data looks as follows. ###Code import pandas as pd pd.set_option('display.max_colwidth', 30) print(pd.read_csv('data/ag_news_csv/classes.txt', names=['categories'])) print(pd.read_csv('data/ag_news_csv/train.csv', names=['category', 'title', 'body']).iloc[:5]) ###Output categories 0 World 1 Sports 2 Business 3 Sci/Tech category title body 0 3 Wall St. Bears Claw Back I... Reuters - Short-sellers, W... 1 3 Carlyle Looks Toward Comme... Reuters - Private investme... 2 3 Oil and Economy Cloud Stoc... Reuters - Soaring crude pr... 3 3 Iraq Halts Oil Exports fro... Reuters - Authorities have... 4 3 Oil prices soar to all-tim... AFP - Tearaway world oil p... ###Markdown We read the data into a Pandas DataFrame object and preprocess the text by converting it to lowercase and replacing a number of characters. The category is prefixed with `__label__` as required for the fastText word embedding file format. The transformed data is randomly shuffled and written into a fastText compatible text file. The four news categories are balanced in the train as well as in the test data. ###Code from pprint import pprint idx2category = {1: '__label__world',2: '__label__sports', 3:'__label__business', 4:'__label__scitech'} def preprocess(df): df = df.replace({'category': idx2category}) df['text'] = df['title'] + ' ' + df['body'] df = df.drop(labels=['title', 'body'], axis=1) df['text'] = df['text'].str.lower() for s, rep in [("'"," ' "), ('"',''), ('.',' . '), ('<br />',' '), (',',' , '), ('(',' ( '), (')',' ) '), ('!',' ! '), ('?',' ? '), (';',' '), (':',' '), ('\\',''), (' ',' ') ]: df['text'] = df['text'].str.replace(s, rep) df = df.sample(frac=1, random_state=42) return df for filename in ['data/ag_news_csv/train.csv','data/ag_news_csv/test.csv']: df = pd.read_csv(filename, names=['category', 'title', 'body']) df = preprocess(df) print('File {}'.format(os.path.split(filename)[1])) pprint(df['category'].value_counts().to_dict()) with open('{}.pp'.format(os.path.splitext(filename)[0]), 'w') as fp: for row in df.itertuples(): fp.write('{} {}\n'.format(row.category, row.text)) ###Output File train.csv {'__label__business': 30000, '__label__scitech': 30000, '__label__sports': 30000, '__label__world': 30000} File test.csv {'__label__business': 1900, '__label__scitech': 1900, '__label__sports': 1900, '__label__world': 1900} ###Markdown We can now run StarSpace on the preprocessed files. The set of parameters is the same as in the example from the StarSpace repository. The `trainMode=0` and `fileFormat='FastText'` combinations defines the mode where the labels are individual words, i.e. the classification task. ###Code !./StarSpace/starspace train \ -trainFile "data/ag_news_csv/train.pp" \ -model "data/ag_news_csv/model" \ -initRandSd 0.01 \ -adagrad false \ -ngrams 1 \ -lr 0.01 \ -epoch 5 \ -thread 20 \ -dim 10 \ -negSearchLimit 5 \ -trainMode 0 \ -label "__label__" \ -similarity "dot" \ -verbose false ###Output Arguments: lr: 0.01 dim: 10 epoch: 5 maxTrainTime: 8640000 validationPatience: 10 saveEveryEpoch: 0 loss: hinge margin: 0.05 similarity: dot maxNegSamples: 10 negSearchLimit: 5 batchSize: 5 thread: 20 minCount: 1 minCountLabel: 1 label: __label__ label: __label__ ngrams: 1 bucket: 2000000 adagrad: 0 trainMode: 0 fileFormat: fastText normalizeText: 0 dropoutLHS: 0 dropoutRHS: 0 useWeight: 0 weightSep: : Start to initialize starspace model. Build dict from input file : data/ag_news_csv/train.pp Read 5M words Number of words in dictionary: 94698 Number of labels in dictionary: 4 Loading data from file : data/ag_news_csv/train.pp Total number of examples loaded : 120000 Training epoch 0: 0.01 0.002 Epoch: 100.0% lr: 0.008117 loss: 0.035385 eta: <1min tot: 0h0m0s (20.0%)0.2% lr: 0.008833 loss: 0.043099 eta: <1min tot: 0h0m0s (12.0%)74.4% lr: 0.008600 loss: 0.039451 eta: <1min tot: 0h0m0s (14.9%)99.7% lr: 0.008117 loss: 0.035413 eta: <1min tot: 0h0m0s (19.9%) ---+++ Epoch 0 Train error : 0.03201538 +++--- ☃ Training epoch 1: 0.008 0.002 Epoch: 100.0% lr: 0.006000 loss: 0.018529 eta: <1min tot: 0h0m0s (40.0%)5.4% lr: 0.006500 loss: 0.019303 eta: <1min tot: 0h0m0s (31.1%)64.9% lr: 0.006317 loss: 0.018866 eta: <1min tot: 0h0m0s (33.0%) ---+++ Epoch 1 Train error : 0.01761493 +++--- ☃ Training epoch 2: 0.006 0.002 Epoch: 100.0% lr: 0.004183 loss: 0.014683 eta: <1min tot: 0h0m1s (60.0%) lr: 0.005900 loss: 0.012627 eta: <1min tot: 0h0m0s (40.9%)14.2% lr: 0.005783 loss: 0.014844 eta: <1min tot: 0h0m0s (42.8%)23.7% lr: 0.005583 loss: 0.015281 eta: <1min tot: 0h0m1s (44.7%)57.0% lr: 0.004950 loss: 0.015072 eta: <1min tot: 0h0m1s (51.4%) ---+++ Epoch 2 Train error : 0.01478347 +++--- ☃ Training epoch 3: 0.004 0.002 Epoch: 100.0% lr: 0.002000 loss: 0.012871 eta: <1min tot: 0h0m1s (80.0%)2% lr: 0.003817 loss: 0.017381 eta: <1min tot: 0h0m1s (60.6%)14.2% lr: 0.003617 loss: 0.012978 eta: <1min tot: 0h0m1s (62.8%)23.7% lr: 0.003433 loss: 0.012063 eta: <1min tot: 0h0m1s (64.7%)53.8% lr: 0.002983 loss: 0.011820 eta: <1min tot: 0h0m1s (70.8%)74.4% lr: 0.002317 loss: 0.012698 eta: <1min tot: 0h0m1s (74.9%) ---+++ Epoch 3 Train error : 0.01287099 +++--- ☃ Training epoch 4: 0.002 0.002 Epoch: 100.0% lr: -0.000000 loss: 0.011717 eta: <1min tot: 0h0m2s (100.0%)r: 0.001867 loss: 0.014404 eta: <1min tot: 0h0m1s (80.9%)15.8% lr: 0.001467 loss: 0.012105 eta: <1min tot: 0h0m1s (83.2%)23.7% lr: 0.001250 loss: 0.012151 eta: <1min tot: 0h0m1s (84.7%)58.6% lr: 0.000533 loss: 0.011196 eta: <1min tot: 0h0m1s (91.7%)69.7% lr: 0.000183 loss: 0.011304 eta: <1min tot: 0h0m2s (93.9%) ---+++ Epoch 4 Train error : 0.01133779 +++--- ☃ Saving model to file : data/ag_news_csv/model Saving model in tsv format : data/ag_news_csv/model.tsv ###Markdown The resulting Starspace model embeddsthe input into a common 10-dimensional space (set by the `-dim 10` setting). We load it into a dataframe and inspect it. As shown in the table below, the model embedds everything into a common space: words that are present in documents but also the categories (the last four rows). In this way, we can now compare entities of different kinds. ###Code pd.read_csv('data/ag_news_csv/model.tsv', sep='\t', header=None, keep_default_na=False) ###Output _____no_output_____ ###Markdown Wen compute predictions and measure the peformance. In the test mode, StarSpace reports the hit@k evaluation metric which tells us how many correct answers are among the top k predictions. We are interested in the most probable category, therefore we use the hit@1 metric (in general, assignment of categories to text can be viewed as a multi-label classification problem). StarSpace achieves the score $hit@1=0.46$ which means that in 46% of test cases the model's first prediction is the correct answer. ###Code !./StarSpace/starspace test \ -model "data/ag_news_csv/model" \ -testFile "data/ag_news_csv/test.pp" \ -ngrams 1 \ -dim 10 \ -label "__label__" \ -thread 10 \ -similarity "dot" \ -trainMode 0 \ -verbose false \ -predictionFile "data/ag_news_csv/test.y" ###Output Arguments: lr: 0.01 dim: 10 epoch: 5 maxTrainTime: 8640000 validationPatience: 10 saveEveryEpoch: 0 loss: hinge margin: 0.05 similarity: dot maxNegSamples: 10 negSearchLimit: 50 batchSize: 5 thread: 10 minCount: 1 minCountLabel: 1 label: __label__ label: __label__ ngrams: 1 bucket: 2000000 adagrad: 1 trainMode: 0 fileFormat: fastText normalizeText: 0 dropoutLHS: 0 dropoutRHS: 0 useWeight: 0 weightSep: : Start to load a trained starspace model. STARSPACE-2018-2 Model loaded. Loading data from file : data/ag_news_csv/test.pp Total number of examples loaded : 7600 Predictions use 4 known labels. ------Loaded model args: Arguments: lr: 0.01 dim: 10 epoch: 5 maxTrainTime: 8640000 validationPatience: 10 saveEveryEpoch: 0 loss: hinge margin: 0.05 similarity: dot maxNegSamples: 10 negSearchLimit: 5 batchSize: 5 thread: 10 minCount: 1 minCountLabel: 1 label: __label__ label: __label__ ngrams: 1 bucket: 2000000 adagrad: 1 trainMode: 0 fileFormat: fastText normalizeText: 0 dropoutLHS: 0 dropoutRHS: 0 useWeight: 0 weightSep: : Predictions use 4 known labels. Evaluation Metrics : hit@1: 0.464737 hit@10: 1 hit@20: 1 hit@50: 1 mean ranks : 1.70079 Total examples : 7600 ###Markdown This result was obtained using the parameters as specified by the authors in the [published example](https://github.com/facebookresearch/Starspace/blob/master/examples/classification_ag_news.sh). The performance (46.4%) differs significantly from the published results [[1]](fn1) where the authors report 91.6% accuracy on the test set for this task using the same number of dimensions (10).On the other hand, our implementation of the baseline classifier based on TF-IDF + SVM presented below shows similar performance (91%) to the BOW + multinomial logistic regression (88.8%) reported in the paper [[3]](fn3).--- [3] Zhang, X., and LeCun, Y. 2015. Text understanding from scratch. arXiv preprint arXiv:1502.01710. ---- ###Code import gensim def to_tfidf(documents, dic=None, tfidf_model=None): documents = [gensim.parsing.preprocessing.preprocess_string(doc) for doc in documents] if dic is None: dic = gensim.corpora.Dictionary(documents) dic.filter_extremes() bows = [dic.doc2bow(doc) for doc in documents] if tfidf_model is None: tfidf_model = gensim.models.tfidfmodel.TfidfModel(dictionary=dic) tfidf_vectors = tfidf_model[bows] return tfidf_vectors, dic, tfidf_model train = pd.read_csv('data/ag_news_csv/train.csv', names=['category', 'title', 'body']) X_train = [x.title + ' ' + x.body for x in train.itertuples()] y_train = [x.category for x in train.itertuples()] test = pd.read_csv('data/ag_news_csv/test.csv', names=['category', 'title', 'body']) X_test = [x.title + ' ' + x.body for x in test.itertuples()] y_test = [x.category for x in test.itertuples()] X_train_tfidf, dic, tfidf_model = to_tfidf(X_train) X_test_tfidf, _, __ = to_tfidf(X_test, dic, tfidf_model) ###Output _____no_output_____ ###Markdown The TF-IDF weighting used with the linear SVM achieves the accuracy of 91%. Because this is a multiclass classification problem, this metric is the same as hit@1, reported by StarSpace. ###Code from sklearn.svm import LinearSVC from sklearn import metrics from sklearn import preprocessing le = preprocessing.LabelEncoder() le.fit(y_train) svc = LinearSVC() svc.fit(gensim.matutils.corpus2csc(X_train_tfidf, num_terms=len(dic)).T, le.transform(y_train)) y_predicted = svc.predict(gensim.matutils.corpus2csc(X_test_tfidf, num_terms=len(dic)).T) print('Accuracy: {:.3f}'.format(metrics.accuracy_score(le.transform(y_test), y_predicted))) ###Output Accuracy: 0.910 ###Markdown We have embeddings for a large number of words, so we can run clustering to see if the embeddings vectors can be used to partition words into four categories. ###Code import numpy as np from sklearn.cluster import KMeans model = pd.read_csv('data/ag_news_csv/model.tsv', sep='\t', header=None, keep_default_na=False) embeddings = model[model.columns[1:]] kmeans = KMeans(n_clusters=4, random_state=12345).fit(embeddings) ###Output _____no_output_____ ###Markdown The three smaller clusters closely match the topics Business, World, and Sci/Tech while the largest cluster is less specific and contains words from all topics. ###Code words_array = model[0].to_numpy() for ci in range(kmeans.n_clusters): cluster_words = np.compress(kmeans.labels_==ci, words_array) print('Cluster {} ({} instances)'.format(ci, len(cluster_words))) print(cluster_words[:100]) print('') ###Output Cluster 0 (1640 instances) ['us' 'company' 'oil' 'inc' 'yesterday' '?' 'corp' 'prices' 'years' 'group' 'season' 'deal' 'sales' 'business' 'billion' 'former' 'washington' 'profit' 'states' '/b&gt' 'b&gt' 'chief' 'american' 'shares' 'take' 'bank' 'third' 'federal' 'companies' 'co' 'maker' 'bid' 'largest' 'industry' 'big' 'giant' '5' 'growth' 'investor' '//www' 'href=http' '/a&gt' 'trade' 'earnings' 'dollar' 'buy' 'gold' 'union' 'amp' 'stock' 'loss' 'agreed' 'months' 'aspx' 'com/fullquote' 'target=/stocks/quickinfo/fullquote&gt' 'like' 'firm' 'air' 'rose' 'executive' 'jobs' 'update' 'price' 'boston' 'economy' 'drug' 'ahead' 'pay' 'near' 'biggest' 'economic' 'peoplesoft' 'car' 'o' 'street' 'work' 'your' 'free' '2005' 'much' '6' 'presidential' 'workers' 'wins' 'america' 'nation' 'share' 'financial' 'fall' 'wall' 'fell' 'lower' 'september' 'crude' 'october' 'chicago' 'job' '11' 'consumer'] Cluster 1 (89619 instances) ['the' ',' 'to' 'a' 'of' 'in' 'and' 's' 'on' 'for' '#39' ')' 'that' 'with' 'as' 'at' 'is' 'its' 'new' 'it' 'said' 'has' 'from' 'an' 'his' 'will' 'after' 'was' 'be' 'over' 'have' 'their' 'are' 'up' 'quot' 'but' 'more' 'first' 'two' 'he' 'world' 'this' '--' 'monday' 'wednesday' 'tuesday' 'out' 'thursday' 'one' 'not' 'against' 'friday' 'into' 'they' 'about' 'last' 'year' 'than' 'who' 'no' 'were' 'been' 'million' 'week' 'had' 'united' 'when' 'could' 'three' 'today' 'time' 'may' 'percent' '1' 'off' 'team' 'next' 'back' 'saturday' 'or' 'can' 'some' 'second' 'state' 'all' 'top' 'day' 'down' 'n' 'international' 'most' 'record' 'victory' 'officials' 'report' 'open' 'end' 'plans' 'court' 'if'] Cluster 2 (1594 instances) ['.' '-' "'" 'iraq' 'york' 'president' 'says' 'sunday' 'would' 'government' 'people' 'which' 'afp' 'win' 'night' 'china' 'minister' 'bush' 'killed' 'city' 'stocks' 'european' 'talks' 'league' 'country' 'reported' 'british' 'japan' 'india' 'police' 'prime' 'iraqi' 'leader' 'hit' 'say' 'baghdad' 'expected' 'election' 'north' 'under' 'war' 'australia' 'military' 'cut' 'nuclear' 'higher' 'un' 'official' 'palestinian' 'sox' 'attack' 'troops' 'russia' 'israeli' 'gaza' 'press' 'west' 'including' 'general' 'man' 'iran' 'football' 'forces' 'athens' 'past' 'europe' 'investors' 'peace' 'canadian' 'six' 'russian' 'beat' 'pakistan' 'held' 'public' 'eu' 'where' 'foreign' 'bomb' 'attacks' 'israel' 'nations' 'championship' 'korea' 'australian' 'kerry' 'leaders' 'french' 'men' 'house' 'death' 'killing' 'darfur' 'leading' 'arafat' 'capital' 'army' 'japanese' 'campaign' 'trial'] Cluster 3 (1849 instances) ['' '(' 'by' 'reuters' 'ap' '&lt' 'u' 'microsoft' 't' 'game' 'security' 'software' 'internet' '2' 'market' 'announced' 'news' '2004' 'service' 'you' 'before' 'technology' 'com' 'search' 'computer' 'space' 'online' 'what' 'network' 'google' 'ibm' 'research' 'according' 'music' 'help' 'while' 'games' 'web' 'san' 'mobile' 'services' '4' 'quarter' 'wireless' 'system' 'data' 'i' 'phone' 'apple' 'oracle' 'windows' 'global' 'intel' 'found' 'users' 'reports' 'released' 'release' 'offer' 'case' 'use' 'uk' 'video' 'pc' 'systems' 'support' 'nasa' 'sun' 'launch' 'linux' 'called' 'digital' 'scientists' 'net' 'program' 'version' 'future' 'center' 'site' 'customers' 'study' 'chip' 'sony' 'management' 'california' 'such' 'making' 'department' 'using' 'grand' 'ceo' 'university' 'tv' 'launched' 'times' 'source' 'server' 'better' 'phones' 'desktop']
GeneralExemplars/Coding Activities for Schools/National Higher/if_for_Higher.ipynb
###Markdown ![Noteable.ac.uk Banner](https://github.com/jstix/mr-noteable/blob/master/Banner%20image/1500x500.jfif?raw=true) If and for statements In blue, the instructions and goals are highlighted. In green, the information is highlighted. In yellow, the exercises are highlighted. In red, the error and alert messages are highlighted. Instructions Click Run on each cell to go through the code in each cell. This will take you through the cell and print out the results. If you wish to see all the outputs at once in the whole notebook, just click Cell and then Run All. Goals After this workshop, the student should get more familiar with the following topics: printing basic statements and commands in Jupyter Notebook performing basic arithmetic calculations in Python improving an existent model of the code recognizing and checking variable types in Python using the if and for statements for basic operations working with prime numbers and writing functions in computer science These objectives are in agreement with the Higher Scottish Curriculum for high-school students. Note This notebook is a revision of the concepts met in the Nat 3, Nat 4 and Nat 5 notebooks. If you feel uncomfortable with the exercises met here, go back to the previous notebooks and make sure you understand the notions. Explore Conditional if statement... Welcome to another session on the Jupyter Notebooks!! Today we will have a better look to the if statement and work with the for condition...we will take them one by one! Let us begin with a revision of if statement. As the name suggests, this instruction is used when only a certain condition is met: Exercise: Take a variable a and check whether it is even or odd ###Code # Write your own code here ###Output _____no_output_____ ###Markdown Exercise: Check whether a number has one, two or three digits. For the beginning, just use an if , an elif and an else condition: ###Code # Write your own code here ###Output _____no_output_____ ###Markdown Exercise: For the above code, try it with some numbers and see what happens. On your model, try using a float number. Note: If the code still works, it means you have already predicted the next step of the notebook: Note: If the code has printed error, it is because you only considered integer numbers, and not floaitng point numbers in our code. Exercise: Inspect the code on the cell below, and check what happens when you run it. ###Code if(a != int(a)): print("You need to plug in an integer number") if(0 < a < 10): print("Integer a has only one digit") elif(10 < a < 99): print("Integer a has two digits") else: print("Integer a has three digits") ###Output _____no_output_____ ###Markdown Exercise: Convince yourself that the whole expression could be rewritten as follows: ###Code if(a != int(a)): print("You need to plug in an integer number") else: if(0 < a < 10): print("Integer a has only one digit") elif(10 < a < 99): print("Integer a has two digits") else: print("Integer a has three digits") ###Output _____no_output_____ ###Markdown Exercise: Can you try and add more conditions for this problem? Hint: There is no correct answer here. The exercise is up to your imagination ###Code # Write your own code here ###Output _____no_output_____ ###Markdown Exercise: Take a number and check if the number is divisible either by two or five: ###Code # Write your own code here ###Output _____no_output_____ ###Markdown Exercise: We will approach, now, a new type of problem. Let us check whether a number is primes, or not. Recall, first of all, what is a prime number. After the revision you have conducted on prime numbers, how can we instruct the computer to check if a number is prime or not? We should take each integer smaller than the number in question, and check if the division gives zero remainder. Note: you can already witness the key words corresponding to for and if statements. Exercise: Inspect the code lines below, debate this with your colleagues, and run the cell: ###Code ok = True # boolean variable to check if the number is prime or not. # if ok is True, then the number is prime N = 28 # the variable of interest to be analysed for i in range(2,N): # take all the numbers from 2 to N if(N % i == 0): # check if the division is exact ok = False # the number is no longer prime ###Output _____no_output_____ ###Markdown Exercise: Now, the computer has already assigned a value to the boolean variable ok . We want to check whether it is equal to True, or False. ###Code if(ok == 1): print("The number " + str(N) + " is prime") else: print("The number " + str(N) + " is not prime") ###Output The number 28 is not prime ###Markdown Predict: What happens if I put the loop from 1 to N? Discuss the idea with your peers and Predict the outcome. Afterwards, just replace 2 with 1 in the code and check the results. Any number is divisible by 1, so all the numbers will be considered prime. Predict: How can I increase the performance of the algorithm described above? How many steps are made (how many variables are there from $ 2 $ to $ N $)? Do I really need to check if, for example, 38 is a multiple of 37, 36, or 29? Is there an integer which is divisible by a number greater than its half in the set of natural numbers? One variable has to be changed in the code above, in order to increase the performance of the algorithm (so that fewer steps have to be made in order to achieve the same valid result) ###Code # Write your own code here ###Output _____no_output_____ ###Markdown Let's play a game: How well do you know your classmates? Talk to each other if you have not done it so far, work out what each person enjoys, and try to make a loop with the habits of your friends. It can look like the example below, but feel free to also come up with examples of your own. ###Code for i in range(3): print(input("The name of my friend is: ")) print(input("His/her favourite game is: ")) print(input("His/her favourite holiday place is: ")) ###Output _____no_output_____ ###Markdown Exercise: Add the following condition to the game: if the name of the person is the same as your name, print: "Wooah!!" . You can also add another condition here: for instance, does the person have another name? You can choose whether to use the elif statement or not. Once again, There is no correct answer to this exercise, the whole point is for you to get more familiarized with coding. Take-away This is it for today, and well done for managing to go through the material!! After this session, you should be more familiar with how simple sentences, numbers and conditional statements can be printed in Python. Moreover, ponder a bit on the for instruction, as it is heavily used in programming. Also, feel free to work more on this notebook using any commands you would like. Note: Always keep a back-up of the notebook, in case the original one is altered. For today's session, this should be enough! See you later!! ###Code print("Bye bye! :D") ###Output _____no_output_____
Closed-Lexical-Classes/.ipynb_checkpoints/2. Closed Classes Analysis-checkpoint.ipynb
###Markdown Goal: Investigate birth and death among closed classes of words1. Load the \*\_CLOSED_CLASSES.json files2. Separate the word from the part of speech and form JSON of form {unigram: {pos:'pos', max: max_usage, median_all: median_all, median_in_use:median_in_use, mean_all: mean_all, mean_in_use:mean_in_use, birth_years: [year1, year2, ...], death_years: [year1, year2, ...]} ...} Where - `max` is the maximum frequency of usage over the entire time period - `me(di)an_all` is the me(di)an of the frequencies of usage at all points in the time interval. - `me(di)an_in_use` is the me(di)an of the frequencies of usage only when actually in use (frequency >0) 3. Concatenate the final dictionaries4. Save as a single JSON Available parts of speech:- _PRON_ pronoun- _DET_ determiner or article- _ADP_ an adposition: either a preposition or a postposition- _CONJ_ conjunction- _PRT_ particle Load the \*\_CLOSED_CLASSES.json files ###Code import json import numpy as np import pandas as pd from tqdm import tqdm import os import re #For the Google POS tagging underscore = re.compile('_{1}') import statistics def open_json(directory,file_path): with open(directory+file_path,'r') as f: ngrams = json.load(f) f.close() return ngrams def normalize(ngrams): years = [str(i) for i in range(1800,2020)] unigram_dict = dict() for word in tqdm(ngrams.keys()): match_count_by_year = [] for year in years: if year in ngrams[word].keys(): match_count_by_year.append(ngrams[word][year]) else: #Zeroes are necessary for smoothing match_count_by_year.append(0) unigram_dict[word] = match_count_by_year return unigram_dict, years def smoothing(unigram_dict, years, smoothing = 5): df = pd.DataFrame.from_dict(unigram_dict #take in the dictionary ).rolling(smoothing,center=True #create frames of size 5 (smoothing value), and replace value in middle ).mean( #average accross those frames ).rename({i:years[i] for i in range(len(years))}, axis = 'index' #rename the indices to years ).dropna() years_map = {i:int(year) for i, year in enumerate(df.index)} ngrams = df.to_dict(orient = 'list') return ngrams, years_map def analyze_birth_and_death(ngrams,years_map): ngrams_analyzed = {} for unigram in tqdm(ngrams.keys()): frequency_list = ngrams[unigram] frequency_in_use_list = [f for f in frequency_list if f>0] if frequency_in_use_list: #only proceed if there is some value that is greater than 0 in the frequency list max_usage = max(frequency_list) median_all = statistics.median(frequency_list) median_in_use = statistics.median(frequency_in_use_list) mean_all = statistics.mean(frequency_list) mean_in_use = statistics.mean(frequency_in_use_list) birth_years, death_years = [],[] for i in range(len(frequency_list)-1): #Birth if frequency_list[i]==0 and frequency_list[i+1]!=0: birth_years.append(years_map[i+1]) #Death if frequency_list[i]!=0 and frequency_list[i+1]==0: death_years.append(years_map[i]) #Disregarding death in the final year if len(birth_years)+len(death_years)>0: #Replace the tagged unigram with the word and place POS separately word_pos = underscore.split(unigram) ngrams_analyzed[word_pos[0]] = {'POS':word_pos[1], 'max_usage':max_usage, 'median_all':median_all, 'median_in_use':median_in_use, 'mean_all':mean_all, 'mean_in_use':mean_in_use, 'birth_years':birth_years, 'death_years':death_years} else: pass #print(unigram,'had no instances of usage after smoothing.') return ngrams_analyzed def save_json(dictionary,directory,file_path): output = file_path+'.json' if len(dictionary)>0: with open(directory+output, 'w') as f_out: json.dump(dictionary, f_out) print('SAVED: ',output,len(dictionary)) else: print('unigram dict empty',output) ###Output _____no_output_____ ###Markdown Run Everything ###Code %%time final_dict = {} directory = '../Ngrams/unigram_data/' files = os.listdir(directory) for file_path in files: if '_CLOSED_CLASSES.json' in file_path: ngrams = open_json(directory,file_path) print('Opened',file_path) unigram_dict, years = normalize(ngrams) print('Normalized') del ngrams ngrams, years_map = smoothing(unigram_dict, years) print('Smoothed') del unigram_dict del years ngrams_analyzed = analyze_birth_and_death(ngrams,years_map) print('Analyzed birth and death') del ngrams del years_map final_dict.update(ngrams_analyzed) del ngrams_analyzed save_json(final_dict,directory,'CLOSED_CLASSES_SORTABLE') ###Output Opened 1-00006-of-00024_CLOSED_CLASSES.json
docs/source/multilabelembeddings.ipynb
###Markdown Multi-label embedding-based classification Multi-label embedding techniques emerged as a response the need to cope with a large label space, but with the rise of computing power they became a method of improving classification quality. Typically the embedding-based multi-label classification starts with embedding the label matrix of the training set in some way, training a regressor for unseen samples to predict their embeddings, and a classifier (sometimes very simple ones) to correct the regression error. Scikit-multilearn provides several multi-label embedders alongisde a general regressor-classifier classification class. Currently available embedding strategies include: - Label Network Embeddings via OpenNE network embedding library, as in the [LNEMLC paper](https://arxiv.org/abs/1812.02956)- Cost-Sensitive Label Embedding with Multidimensional Scaling, as in the [CLEMS paper](https://github.com/ej0cl6/csmlc)- scikit-learn based embeddings such as PCA or [manifold learning approaches](https://scikit-learn.org/stable/modules/manifold.html)Let's start with loading some data: ###Code import numpy import sklearn.metrics as metrics from yyskmultilearn.dataset import load_dataset X_train, y_train, feature_names, label_names = load_dataset('emotions', 'train') X_test, y_test, _, _ = load_dataset('emotions', 'test') ###Output emotions:train - exists, not redownloading emotions:test - exists, not redownloading ###Markdown Label Network EmbeddingsThe label network embeddings approaches require a working tensorflow installation and the OpenNE library. To install them, run the following code:```bashpip install networkx tensorflowgit clone https://github.com/thunlp/OpenNE/pip install -e OpenNE/src``` ![ ](_static/lnemlc.png)For an example we will use the LINE embedding method, one of the most efficient and well-performing state of the art approaches, for the meaning of parameters consult the [OpenNE documentation](). We select `order = 3` which means that the method will take both first and second order proximities between labels for embedding. We select a dimension of 5 times the number of labels, as the linear embeddings tend to need more dimensions for best performance, normalize the label weights to maintain normalized distances in the network and agregate label embedings per sample by summation which is a classical approach. ###Code from yyskmultilearn.embedding import OpenNetworkEmbedder from yyskmultilearn.cluster import LabelCooccurrenceGraphBuilder graph_builder = LabelCooccurrenceGraphBuilder(weighted=True, include_self_edges=False) openne_line_params = dict(batch_size=1000, order=3) embedder = OpenNetworkEmbedder( graph_builder, 'LINE', dimension = 5*y_train.shape[1], aggregation_function = 'add', normalize_weights=True, param_dict = openne_line_params ) ###Output _____no_output_____ ###Markdown We now need to select a regressor and a classifier, we use random forest regressors with MLkNN which is a well working combination often used for multi-label embedding: ###Code from yyskmultilearn.embedding import EmbeddingClassifier from sklearn.ensemble import RandomForestRegressor from yyskmultilearn.adapt import MLkNN clf = EmbeddingClassifier( embedder, RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test) ###Output Pre-procesing for non-uniform negative sampling! Pre-procesing for non-uniform negative sampling! epoch:0 sum of loss:4.97153359652 epoch:0 sum of loss:5.11869335175 epoch:1 sum of loss:4.98133981228 epoch:1 sum of loss:4.97720247507 epoch:2 sum of loss:4.81723511219 epoch:2 sum of loss:5.05428689718 epoch:3 sum of loss:5.09079384804 epoch:3 sum of loss:4.72988516092 epoch:4 sum of loss:5.0347994566 epoch:4 sum of loss:4.95063251257 epoch:5 sum of loss:4.68008613586 epoch:5 sum of loss:4.9329983592 epoch:6 sum of loss:4.74205821753 epoch:6 sum of loss:4.68989795446 epoch:7 sum of loss:4.62912601233 epoch:7 sum of loss:4.81548637152 epoch:8 sum of loss:4.40033769608 epoch:8 sum of loss:4.73801320791 epoch:9 sum of loss:4.61178982258 epoch:9 sum of loss:4.91443294287 ###Markdown Cost-Sensitive Label Embedding with Multidimensional ScalingCLEMS is another well-perfoming method in multi-label embeddings. It uses weighted multi-dimensional scaling to embedd a cost-matrix of unique label combinations. The cost-matrix contains the cost of mistaking a given label combination for another, thus real-valued functions are better ideas than discrete ones. Also, the `is_score` parameter is used to tell the embedder if the cost function is a score (the higher the better) or a loss (the lower the better). Additional params can be also assigned to the weighted scaler. The most efficient parameter for the number of dimensions is equal to number of labels, and is thus enforced here. ###Code from yyskmultilearn.embedding import CLEMS, EmbeddingClassifier from sklearn.ensemble import RandomForestRegressor from yyskmultilearn.adapt import MLkNN dimensional_scaler_params = {'n_jobs': -1} clf = EmbeddingClassifier( CLEMS(metrics.jaccard_similarity_score, is_score=True, params=dimensional_scaler_params), RandomForestRegressor(n_estimators=10, n_jobs=-1), MLkNN(k=1), regressor_per_dimension= True ) clf.fit(X_train, y_train) predictions = clf.predict(X_test) ###Output _____no_output_____ ###Markdown Scikit-learn based embeddersAny scikit-learn embedder can be used for multi-label classification embeddings with scikit-multilearn, just select one and try, here's a spectral embedding approach with 10 dimensions of the embedding space: ###Code from yyskmultilearn.embedding import SKLearnEmbedder, EmbeddingClassifier from sklearn.manifold import SpectralEmbedding from sklearn.ensemble import RandomForestRegressor from yyskmultilearn.adapt import MLkNN clf = EmbeddingClassifier( SKLearnEmbedder(SpectralEmbedding(n_components = 10)), RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test) ###Output _____no_output_____ ###Markdown Multi-label embedding-based classification Multi-label embedding techniques emerged as a response the need to cope with a large label space, but with the rise of computing power they became a method of improving classification quality. Typically the embedding-based multi-label classification starts with embedding the label matrix of the training set in some way, training a regressor for unseen samples to predict their embeddings, and a classifier (sometimes very simple ones) to correct the regression error. Scikit-multilearn provides several multi-label embedders alongisde a general regressor-classifier classification class. Currently available embedding strategies include: - Label Network Embeddings via OpenNE network embedding library, as in the [LNEMLC paper](https://arxiv.org/abs/1812.02956)- Cost-Sensitive Label Embedding with Multidimensional Scaling, as in the [CLEMS paper](https://github.com/ej0cl6/csmlc)- scikit-learn based embeddings such as PCA or [manifold learning approaches](https://scikit-learn.org/stable/modules/manifold.html)Let's start with loading some data: ###Code import numpy import sklearn.metrics as metrics from skmultilearn.dataset import load_dataset X_train, y_train, feature_names, label_names = load_dataset('emotions', 'train') X_test, y_test, _, _ = load_dataset('emotions', 'test') ###Output emotions:train - exists, not redownloading emotions:test - exists, not redownloading ###Markdown Label Network EmbeddingsThe label network embeddings approaches require a working tensorflow installation and the OpenNE library. To install them, run the following code:```bashpip install networkx tensorflowgit clone https://github.com/thunlp/OpenNE/pip install -e OpenNE/src``` ![ ](_static/lnemlc.png)For an example we will use the LINE embedding method, one of the most efficient and well-performing state of the art approaches, for the meaning of parameters consult the [OpenNE documentation](). We select `order = 3` which means that the method will take both first and second order proximities between labels for embedding. We select a dimension of 5 times the number of labels, as the linear embeddings tend to need more dimensions for best performance, normalize the label weights to maintain normalized distances in the network and agregate label embedings per sample by summation which is a classical approach. ###Code from skmultilearn.embedding import OpenNetworkEmbedder from skmultilearn.cluster import LabelCooccurrenceGraphBuilder graph_builder = LabelCooccurrenceGraphBuilder(weighted=True, include_self_edges=False) openne_line_params = dict(batch_size=1000, order=3) embedder = OpenNetworkEmbedder( graph_builder, 'LINE', dimension = 5*y_train.shape[1], aggregation_function = 'add', normalize_weights=True, param_dict = openne_line_params ) ###Output _____no_output_____ ###Markdown We now need to select a regressor and a classifier, we use random forest regressors with MLkNN which is a well working combination often used for multi-label embedding: ###Code from skmultilearn.embedding import EmbeddingClassifier from sklearn.ensemble import RandomForestRegressor from skmultilearn.adapt import MLkNN clf = EmbeddingClassifier( embedder, RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test) ###Output Pre-procesing for non-uniform negative sampling! Pre-procesing for non-uniform negative sampling! epoch:0 sum of loss:4.97153359652 epoch:0 sum of loss:5.11869335175 epoch:1 sum of loss:4.98133981228 epoch:1 sum of loss:4.97720247507 epoch:2 sum of loss:4.81723511219 epoch:2 sum of loss:5.05428689718 epoch:3 sum of loss:5.09079384804 epoch:3 sum of loss:4.72988516092 epoch:4 sum of loss:5.0347994566 epoch:4 sum of loss:4.95063251257 epoch:5 sum of loss:4.68008613586 epoch:5 sum of loss:4.9329983592 epoch:6 sum of loss:4.74205821753 epoch:6 sum of loss:4.68989795446 epoch:7 sum of loss:4.62912601233 epoch:7 sum of loss:4.81548637152 epoch:8 sum of loss:4.40033769608 epoch:8 sum of loss:4.73801320791 epoch:9 sum of loss:4.61178982258 epoch:9 sum of loss:4.91443294287 ###Markdown Cost-Sensitive Label Embedding with Multidimensional ScalingCLEMS is another well-perfoming method in multi-label embeddings. It uses weighted multi-dimensional scaling to embedd a cost-matrix of unique label combinations. The cost-matrix contains the cost of mistaking a given label combination for another, thus real-valued functions are better ideas than discrete ones. Also, the `is_score` parameter is used to tell the embedder if the cost function is a score (the higher the better) or a loss (the lower the better). Additional params can be also assigned to the weighted scaler. The most efficient parameter for the number of dimensions is equal to number of labels, and is thus enforced here. ###Code from skmultilearn.embedding import CLEMS, EmbeddingClassifier from sklearn.ensemble import RandomForestRegressor from skmultilearn.adapt import MLkNN dimensional_scaler_params = {'n_jobs': -1} clf = EmbeddingClassifier( CLEMS(metrics.jaccard_similarity_score, is_score=True, params=dimensional_scaler_params), RandomForestRegressor(n_estimators=10, n_jobs=-1), MLkNN(k=1), regressor_per_dimension= True ) clf.fit(X_train, y_train) predictions = clf.predict(X_test) ###Output _____no_output_____ ###Markdown Scikit-learn based embeddersAny scikit-learn embedder can be used for multi-label classification embeddings with scikit-multilearn, just select one and try, here's a spectral embedding approach with 10 dimensions of the embedding space: ###Code from skmultilearn.embedding import SKLearnEmbedder, EmbeddingClassifier from sklearn.manifold import SpectralEmbedding from sklearn.ensemble import RandomForestRegressor from skmultilearn.adapt import MLkNN clf = EmbeddingClassifier( SKLearnEmbedder(SpectralEmbedding(n_components = 10)), RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test) ###Output _____no_output_____
notebooks/figures_janelia.ipynb
###Markdown Figure 1Overall AAN results, for digits only ###Code # Init the figure fig = plt.figure(figsize=(20, 1), constrained_layout=True) grid = plt.GridSpec(nrows=26, ncols=10, wspace=-.40, hspace=0.4, figure=fig) # Panel 1 - digits plt.subplot(grid[0:18, 0]) medians = [np.median(exp151["correct"]), np.median(exp152["correct"])] plt.scatter(x=np.repeat(0.25, 20), y=exp151["correct"], s=20, color="black", alpha=0.5, marker="o") plt.scatter(x=np.repeat(0.75, 20), y=exp152["correct"], s=20, color="black", alpha=0.5, marker="o") plt.scatter(x=[0.25, 0.75], y=medians, color="red", alpha=1, s=300, linewidth=3, marker="_") plt.xticks(np.array([0.25, 0.75]), ('Astrocytes', 'Neurons')) plt.ylim(0, 1) plt.xlim(0, 1) plt.xticks(rotation=90) plt.ylabel("Correct") # ------------------------------------------------- model_names = ["0.0","0.1", "0.2", "0.3", "0.4", "0.5"] models = [exp155, exp157_s01, exp157_s02, exp158_s03, exp158_s04, exp157_s05, exp157_s06] medians = [ np.median(exp155["correct"]), np.median(exp157_s01["correct"]), np.median(exp157_s02["correct"]), np.median(exp158_s03["correct"]), np.median(exp158_s04["correct"]), np.median(exp157_s05["correct"]), ] plt.subplot(grid[0:5, 3:8]) plt.scatter(x=model_names, y=medians, color="red", alpha=1, s=200, linewidth=3, marker="_") for name, model in zip(model_names, models): plt.scatter(x=np.repeat(name, 20), y=model["correct"], color="black", alpha=0.6, s=20) plt.ylim(0, 1.1) plt.ylabel("") plt.xlabel("Diffusion (std dev)") _ = sns.despine() # ------------------------------------------------- model_names = ["0.0", "0.01", "0.05", "0.1", "0.2"] models = [exp155, exp159_s01, exp159_s05, exp159_s1, exp159_s2] medians = [ np.median(exp155["correct"]), np.median(exp159_s01["correct"]), np.median(exp159_s05["correct"]), np.median(exp159_s1["correct"]), np.median(exp159_s2["correct"]), ] plt.subplot(grid[10:15, 3:8]) plt.scatter(x=model_names, y=medians, color="red", alpha=1, s=200, linewidth=3, marker="_") for name, model in zip(model_names, models): plt.scatter(x=np.repeat(name, 20), y=model["correct"], color="black", alpha=0.6, s=20) plt.ylim(0, 1.1) plt.ylabel("") plt.xlabel("Noise (std dev)") _ = sns.despine() # ------------------------------------------------- model_names = ["0.0", "0.01", "0.05", "0.1", "0.2"] models = [exp155, exp160_p01, exp160_p05, exp160_p1, exp160_p2] medians = [ np.median(exp155["correct"]), np.median(exp160_p01["correct"]), np.median(exp160_p05["correct"]), np.median(exp160_p1["correct"]), np.median(exp160_p2["correct"]), ] plt.subplot(grid[20:25, 3:8]) plt.scatter(x=model_names, y=medians, color="red", alpha=1, s=200, linewidth=3, marker="_") for name, model in zip(model_names, models): plt.scatter(x=np.repeat(name, 20), y=model["correct"], color="black", alpha=0.6, s=20) plt.ylim(0, 1.1) plt.ylabel("") plt.xlabel("p(unstabel)") _ = sns.despine() plt.savefig("figure_janelia_digits.png", bbox_inches="tight") ###Output _____no_output_____
1_EDA_DataPreprocess_v2.ipynb
###Markdown ###Code from google.colab import drive drive.mount('/content/drive') import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown Data Loading ###Code # Stock price data TCS_stock = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockPrice/historical_stock_price_v2_TCS.csv") HDFC_stock = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockPrice/historical_stock_price_v2_HDFC.csv") HUL_stock = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockPrice/historical_stock_price_v2_HUL.csv") MARUTI_stock = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockPrice/historical_stock_price_v2_MARUTI.csv") # Tech Indicators price data TCS_SMA = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/technical_indicator_TCS.BSE_SMA.csv") HDFC_SMA = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/technical_indicator_HDFC.BSE_SMA.csv") HUL_SMA = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/technical_indicator_HINDUNILVR.BSE_SMA.csv") MARUTI_SMA = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/technical_indicator_MARUTI.BSE_SMA.csv") TCS_EMA = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/technical_indicator_TCS.BSE_EMA.csv") HDFC_EMA = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/technical_indicator_HDFC.BSE_EMA.csv") HUL_EMA = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/technical_indicator_HINDUNILVR.BSE_EMA.csv") MARUTI_EMA = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/technical_indicator_MARUTI.BSE_EMA.csv") # Stock Indices nifty_50 = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/NIFTY 50_Data.csv') bse = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/BSE.csv') nifty_it = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/NIFTY IT_Data.csv') nifty_auto = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/NIFTY AUTO_Data.csv') nifty_finance = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/NIFTY FINANCIAL SERVICES_Data.csv') nifty_fmcg = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/NIFTY FMCG_Data.csv') ###Output _____no_output_____ ###Markdown EDA and Data Preprocessing of stock data ###Code TCS_stock.head(), HDFC_stock.head(), HUL_stock.head(), MARUTI_stock.head() TCS_stock.info(), HDFC_stock.info(), HUL_stock.info(), MARUTI_stock.info() # Drop NULL rows TCS_stock.dropna(inplace = True) HUL_stock.dropna(inplace = True) HDFC_stock.dropna(inplace = True) MARUTI_stock.dropna(inplace = True) # Shape after dropping null records TCS_stock.shape, HUL_stock.shape, HDFC_stock.shape, MARUTI_stock.shape TCS_stock['date'].describe() # Change Dtype of Columns TCS_stock["date"] = pd.to_datetime(TCS_stock["date"]) TCS_stock = TCS_stock.astype({"open": float, "volume": float}) HDFC_stock["date"] = pd.to_datetime(HDFC_stock["date"]) HDFC_stock = HDFC_stock.astype({"open": float, "volume": float}) HUL_stock["date"] = pd.to_datetime(HUL_stock["date"]) HUL_stock = HUL_stock.astype({"open": float, "volume": float}) MARUTI_stock["date"] = pd.to_datetime(MARUTI_stock["date"]) MARUTI_stock = MARUTI_stock.astype({"open": float, "volume": float}) # Sort the Database by Date TCS_stock = TCS_stock.sort_values(by = 'date', ignore_index = True) HDFC_stock = HDFC_stock.sort_values(by = 'date', ignore_index = True) HUL_stock = HUL_stock.sort_values(by = 'date', ignore_index = True) MARUTI_stock = MARUTI_stock.sort_values(by = 'date', ignore_index = True) TCS_stock.describe(), HDFC_stock.describe(), HUL_stock.describe(), MARUTI_stock.describe() TCS_stock['adj close'].tail(1), HDFC_stock['adj close'].tail(1), HUL_stock['adj close'].tail(1), MARUTI_stock['adj close'].tail(1) Companies = [TCS_stock, HDFC_stock, HUL_stock, MARUTI_stock] Companies_Title = ["TCS_stock","HDFC_stock","HUL_stock","MARUTI_stock"] # Lets view historical view of the closing prices plt.figure(figsize=(20, 12)) for index, company in enumerate(Companies): plt.subplot(3, 2, index + 1) plt.plot(company["date"], company["adj close"]) plt.title(Companies_Title[index]) plt.ylabel('Adj. Close') # Now lets plot the total volume of stock being traded each day plt.figure(figsize=(20, 12)) for index, company in enumerate(Companies): plt.subplot(3, 2, index + 1) plt.plot(company["date"], company["volume"]) plt.title(Companies_Title[index]) plt.ylabel('volume') ###Output _____no_output_____ ###Markdown Now, we have seen the visualizations for the closing price and volume traded each day, let's go ahead and calculate the moving average of the stock. What was the moving average of the various stocks ? ###Code Moving_Average_Day = [10, 20, 50] for Moving_Average in Moving_Average_Day: for company in Companies: column_name = f'Moving Average for {Moving_Average} days' company[column_name] = company["adj close"].rolling(Moving_Average).mean() plt.figure(figsize=(20, 12)) for index, company in enumerate(Companies): plt.subplot(3, 2, index + 1) plt.plot(company["date"], company["adj close"]) plt.plot(company["date"], company["Moving Average for 10 days"]) plt.plot(company["date"], company["Moving Average for 20 days"]) plt.plot(company["date"], company["Moving Average for 50 days"]) plt.title(Companies_Title[index]) plt.legend(("Adj. Close", "Moving Average for 10 days", "Moving Average for 20 days", "Moving Average for 50 days")) ###Output _____no_output_____ ###Markdown What was the daily return of the stock on average ? Now that we've done some baseline analysis, let's go ahead and dive a little deeper. We're now going to analyze the risk of the stock. In order to do so we'll need to take a closer look at the daily changes of the stock, and not just its absolute value. ###Code # pct_change() function calculates the percentage change between the current and a prior element. # This function by default calculates the percentage change from the immediately previous row. for company in Companies: company["Daily Return"] = company["adj close"].pct_change() plt.figure(figsize=(20, 12)) for index, company in enumerate(Companies): plt.subplot(3, 2, index + 1) plt.plot(company["date"], company["Daily Return"]) plt.title(Companies_Title[index]) plt.ylabel('Daily Return') ###Output _____no_output_____ ###Markdown Now, let's get an overall at the average daily return using a histogram. ###Code # distplot is a deprecated function, so to ignore warnings, the filterwarnings function is used. import warnings warnings.filterwarnings('ignore') plt.figure(figsize=(20, 15)) for index, company in enumerate(Companies): plt.subplot(3, 2, index + 1) sns.distplot(company["Daily Return"].dropna(), color = "purple") plt.title(Companies_Title[index]) ###Output _____no_output_____ ###Markdown Kurtosis is a statistical measure that defines how heavily the tails of a distribution differ from the tails of a normal distribution. In other words kurtosis identifies whether the tails of a given distribution contain extreme values. ###Code print("Kurtosis Value") for index, company in enumerate(Companies): print(f'{Companies_Title[index]}: {company["Daily Return"].kurtosis()}') ###Output Kurtosis Value TCS_stock: 4.606939097631171 HDFC_stock: 6.189191071931482 HUL_stock: 13.80131880548373 MARUTI_stock: 9.984329363446168 ###Markdown The above graph and the positive kurtosis value indicate that getting extreme daily return values is rare. EDA and Data Preprocessing of tech indicators data ###Code TCS_SMA.shape, HDFC_SMA.shape, HUL_SMA.shape, MARUTI_SMA.shape TCS_EMA.shape, HDFC_EMA.shape, HUL_EMA.shape, MARUTI_EMA.shape TCS_SMA.columns # Change Dtype of Columns TCS_SMA["time"] = pd.to_datetime(TCS_SMA["time"]) HDFC_SMA["time"] = pd.to_datetime(HDFC_SMA["time"]) HUL_SMA["time"] = pd.to_datetime(HUL_SMA["time"]) MARUTI_SMA["time"] = pd.to_datetime(MARUTI_SMA["time"]) TCS_EMA["time"] = pd.to_datetime(TCS_EMA["time"]) HDFC_EMA["time"] = pd.to_datetime(HDFC_EMA["time"]) HUL_EMA["time"] = pd.to_datetime(HUL_EMA["time"]) MARUTI_EMA["time"] = pd.to_datetime(MARUTI_SMA["time"]) # Sort the Database by Date TCS_SMA = TCS_SMA.sort_values(by = 'time', ignore_index = True) HDFC_SMA = HDFC_SMA.sort_values(by = 'time', ignore_index = True) HUL_SMA = HUL_SMA.sort_values(by = 'time', ignore_index = True) MARUTI_SMA = MARUTI_SMA.sort_values(by = 'time', ignore_index = True) # Sort the Database by Date TCS_EMA = TCS_EMA.sort_values(by = 'time', ignore_index = True) HDFC_EMA = HDFC_EMA.sort_values(by = 'time', ignore_index = True) HUL_EMA = HUL_EMA.sort_values(by = 'time', ignore_index = True) MARUTI_EMA = MARUTI_EMA.sort_values(by = 'time', ignore_index = True) pd.to_datetime('2019-10-29').month_name() TCS_SMA_sub = TCS_SMA[TCS_SMA["time"].isin(TCS_stock['date'])].copy() HDFC_SMA_sub = HDFC_SMA[HDFC_SMA["time"].isin(HDFC_stock['date'])].copy() HUL_SMA_sub = HUL_SMA[HUL_SMA["time"].isin(HUL_stock['date'])].copy() MARUTI_SMA_sub = MARUTI_SMA[MARUTI_SMA["time"].isin(MARUTI_stock['date'])].copy() TCS_EMA_sub = TCS_EMA[TCS_EMA["time"].isin(TCS_stock['date'])].copy() HDFC_EMA_sub = HDFC_EMA[HDFC_EMA["time"].isin(HDFC_stock['date'])].copy() HUL_EMA_sub = HUL_EMA[HUL_EMA["time"].isin(HUL_stock['date'])].copy() MARUTI_EMA_sub = MARUTI_EMA[MARUTI_EMA["time"].isin(MARUTI_stock['date'])].copy() TCS_SMA_sub['time'].values[:5] (TCS_EMA_sub['time'].values==TCS_stock['date'].values).all() TCS_stock['date'].values[:5] TCS_SMA_sub.shape, HDFC_SMA_sub.shape, HUL_SMA_sub.shape, MARUTI_SMA_sub.shape MARUTI_EMA_sub.columns TCS_SMA_sub.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/TCS_SMA_PreProcessed.csv',index=False) HDFC_SMA_sub.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/HDFC_SMA_PreProcessed.csv',index=False) HUL_SMA_sub.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/HUL_SMA_PreProcessed.csv',index=False) MARUTI_SMA_sub.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/MARUTI_SMA_PreProcessed.csv',index=False) TCS_EMA_sub.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/TCS_EMA_PreProcessed.csv',index=False) HDFC_EMA_sub.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators//HDFC_EMA_PreProcessed.csv',index=False) HUL_EMA_sub.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/HUL_EMA_PreProcessed.csv',index=False) MARUTI_EMA_sub.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/TechIndicators/MARUTI_EMA_PreProcessed.csv',index=False) TCS_stock.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockPrice/TCS_stock_v2_PreProcessed.csv',index=False) HDFC_stock.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockPrice/HDFC_stock_v2_PreProcessed.csv',index=False) HUL_stock.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockPrice/HUL_stock_v2_PreProcessed.csv',index=False) MARUTI_stock.to_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockPrice/MARUTI_stock_v2_PreProcessed.csv',index=False) ###Output _____no_output_____ ###Markdown EDA and Data Preprocessing of tech indicators data ###Code # # Stock Indices # nifty_50 = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/NIFTY 50_Data.csv') # bse = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/BSE.csv') # nifty_it = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/NIFTY IT_Data.csv') # nifty_auto = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/NIFTY AUTO_Data.csv') # nifty_finance = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/NIFTY FINANCIAL SERVICES_Data.csv') # nifty_fmcg = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/Indian/StockIndices/NIFTY FMCG_Data.csv') # nifty_50.shape, bse.shape, nifty_it.shape, nifty_auto.shape, nifty_finance.shape, nifty_fmcg.shape # TCS_EMA.shape, HDFC_EMA.shape, HUL_EMA.shape, MARUTI_EMA.shape ###Output _____no_output_____
Lab2_classification.ipynb
###Markdown Imports ###Code from sentence_transformers import SentenceTransformer, InputExample, losses, models,evaluation from transformers import BertTokenizer from csv import QUOTE_NONE from torch.utils.data import DataLoader,Dataset, TensorDataset import pandas as pd import torch from torch.nn.utils.rnn import pad_sequence import pickle import os ###Output _____no_output_____ ###Markdown Loading the data and explore it ###Code multinli_train = pd.read_json("multinli_1.0/multinli_1.0_train.jsonl", lines=True) multinli_test = pd.read_json("multinli_1.0/multinli_1.0_dev_matched.jsonl", lines=True) # multinli_mismatched = pd.read_json("multinli_1.0/multinli_1.0_dev_mismatched.jsonl", lines=True) multinli_train.head(5) multinli_train_reduced = pd.concat([multinli_train[i] for i in ["gold_label", "sentence1","sentence2"]], axis=1) multinli_test_reduced = pd.concat([multinli_test[i] for i in ["gold_label", "sentence1","sentence2"]], axis=1) multinli_train_reduced.head(5) print(multinli_train_reduced['gold_label'].unique()) print(multinli_test_reduced['gold_label'].unique()) print(multinli_test_reduced.shape) multinli_test_reduced= multinli_test_reduced.loc[multinli_test_reduced["gold_label"] != '-'] multinli_test_reduced.shape multinli_test_reduced.head(5) ###Output _____no_output_____ ###Markdown Trying training the BERT in pytorch (time consuming) ###Code # ''' # This class is adapted from https://towardsdatascience.com/fine-tuning-pre-trained-transformer-models-for-sentence-entailment-d87caf9ec9db # This step is done to tokenize the dataset such as [CLS],[SEP],etc. In addition, marking the position of each sentence. (WE ARE INTERESTED TO GET THE SENTENCE EMBEDDING FIRST --> # then) # ''' # class MNLIDataBert(Dataset): # def __init__(self, train_df, val_df): # self.label_dict = {'entailment': 0, 'contradiction': 1, 'neutral': 2} # self.train_df = train_df # self.val_df = val_df # self.base_path = '/multinli_1.0/' # self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) # Using a pre-trained BERT tokenizer to encode sentences # self.train_data = None # self.val_data = None # self.init_data() # def init_data(self): # self.train_data = self.load_data(self.train_df) # self.val_data = self.load_data(self.val_df) # def load_data(self, df): # MAX_LEN = 512 # token_ids = [] # mask_ids = [] # seg_ids = [] # y = [] # premise_list = df['sentence1'].to_list() # hypothesis_list = df['sentence2'].to_list() # label_list = df['gold_label'].to_list() # for (premise, hypothesis, label) in zip(premise_list, hypothesis_list, label_list): # premise_id = self.tokenizer.encode(premise, add_special_tokens = False) # hypothesis_id = self.tokenizer.encode(hypothesis, add_special_tokens = False) # pair_token_ids = [self.tokenizer.cls_token_id] + premise_id + [self.tokenizer.sep_token_id] + hypothesis_id + [self.tokenizer.sep_token_id] # premise_len = len(premise_id) # hypothesis_len = len(hypothesis_id) # segment_ids = torch.tensor([0] * (premise_len + 2) + [1] * (hypothesis_len + 1)) # sentence 0 and sentence 1 # attention_mask_ids = torch.tensor([1] * (premise_len + hypothesis_len + 3)) # mask padded values # token_ids.append(torch.tensor(pair_token_ids)) # seg_ids.append(segment_ids) # mask_ids.append(attention_mask_ids) # y.append(self.label_dict[label]) # token_ids = pad_sequence(token_ids, batch_first=True) # mask_ids = pad_sequence(mask_ids, batch_first=True) # seg_ids = pad_sequence(seg_ids, batch_first=True) # y = torch.tensor(y) # dataset = TensorDataset(token_ids, mask_ids, seg_ids, y) # print(len(dataset)) # return dataset # def get_data_loaders(self, batch_size=32, shuffle=True): # train_loader = DataLoader( # self.train_data, # shuffle=shuffle, # batch_size=batch_size # ) # val_loader = DataLoader( # self.val_data, # shuffle=shuffle, # batch_size=batch_size # ) # return train_loader, val_loader # mnli_dataset = MNLIDataBert(multinli_train_reduced.head(5), multinli_test_reduced.head(5)) #for pytorch ###Output _____no_output_____ ###Markdown Preparing for training ###Code label_dict = {'entailment': 0, 'contradiction': 1, 'neutral': 2} encoding_dict= {"gold_label": {"entailment":0, "contradiction":1,"neutral":2}} multinli_train_reduced2 = multinli_train_reduced.replace(encoding_dict) multinli_test_reduced2 = multinli_test_reduced.replace(encoding_dict) from sklearn.model_selection import train_test_split multinli_train_reduced2, musltinli_val = train_test_split(multinli_train_reduced2, test_size=0.2) #Define your train examples. You need more than just two examples... sen1 = list(multinli_train_reduced2.sentence1) sen2 = list(multinli_train_reduced2.sentence1) resulting_list = [] for a,b,label in zip(sen1,sen2,list(multinli_train_reduced2.gold_label)): resulting_list.append(InputExample(texts=[a, b], label=label)) #same for val set #Define your train examples. You need more than just two examples... sen1 = list(musltinli_val.sentence1) sen2 = list(musltinli_val.sentence1) resulting_list_val = [] for a,b,label in zip(sen1,sen2,list(musltinli_val.gold_label)): resulting_list_val.append(InputExample(texts=[a, b], label=label)) ###Output _____no_output_____ ###Markdown Training (Bert+maxpooling+Softmax) ###Code word_embedding_model = models.Transformer('bert-base-uncased', max_seq_length=256) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) #Define your train dataset, the dataloader and the train loss train_dataloader = DataLoader(resulting_list, shuffle=True, batch_size=10) val_dataloader= DataLoader(resulting_list_val, shuffle=True, batch_size=10) train_loss = losses.SoftmaxLoss(model,num_labels=3,sentence_embedding_dimension=word_embedding_model.get_word_embedding_dimension()) test_evaluator= evaluation.LabelAccuracyEvaluator(val_dataloader,softmax_model=train_loss,name="classification_evaluation") #Tune the model model.fit(train_objectives=[(train_dataloader, train_loss)],evaluator=test_evaluator, epochs=1, warmup_steps=100, show_progress_bar=True) ###Output Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.bias'] - This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Iteration: 100%|██████████| 1/1 [00:02<00:00, 2.75s/it] Epoch: 100%|██████████| 1/1 [00:03<00:00, 3.09s/it] ###Markdown Testing on the testing set ###Code #Define your test examples sen1 = list(multinli_test_reduced2.sentence1) sen2 = list(multinli_test_reduced2.sentence1) resulting_list_test = [] for a,b,label in zip(sen1,sen2,list(multinli_test_reduced2.gold_label)): resulting_list_test.append(InputExample(texts=[a, b], label=label)) from sentence_transformers import SentenceTransformer, InputExample, losses, models, evaluation test_dataloader= DataLoader(resulting_list_test, shuffle=True, batch_size=10) evaluator = evaluation.LabelAccuracyEvaluator(test_dataloader,softmax_model=train_loss,name="classification_testing") evaluator(model,output_path = "./eval_testset/") ###Output _____no_output_____ ###Markdown END IS HERE >>>>>>>>>>>>>>>>> Start of Combining regression and classificaiton objective ###Code locations = { "train":"stsbenchmark/sts-train.csv", "test":"stsbenchmark/sts-test.csv", "valid":"stsbenchmark/sts-dev.csv" } df = pd.read_csv(locations["train"],sep='\t',header=None,usecols=[4, 5, 6], quoting=QUOTE_NONE,names=["label","sen1","sen2"]) df.label = ((df.label/5) - 0.5) * 2 df.describe() #Define your train examples. You need more than just two examples... def return_suitable_list(location: str, test_case=False): #this makes the dataset production ready df = pd.read_csv(location,sep='\t',header=None,usecols=[4, 5, 6], quoting=QUOTE_NONE,names=["label","sen1","sen2"]) df.label = ((df.label/5) - 0.5) * 2 if test_case: df = df[:5] sen1 = list(df.sen1) sen2 = list(df.sen2) resulting_list = [] for a,b,label in zip(sen1,sen2,list(df.label)): resulting_list.append(InputExample(texts=[a, b], label=label)) return resulting_list ###Output _____no_output_____ ###Markdown Afer saving the model from above (Classification mode used NLI), we train it again but using the regression objective (RUN THIS TO get the model of combining objectives (final result is supposedly better regression model)) ###Code #model = SentenceTransformer(model_save_path) ... < saved model from above OR if you just trained the model from above, you can continue with this normally! train_loss = losses.CosineSimilarityLoss(model) resulting_list_sts_train = return_suitable_list(locations["train"], test_case=False) resulting_list_sts_valid = return_suitable_list(locations["valid"], test_case=False) valid_evaluator= evaluation.EmbeddingSimilarityEvaluator.from_input_examples(resulting_list_sts_valid,name="fine-tuning for 2.3") train_dataloader = DataLoader(resulting_list_sts_train, shuffle=True, batch_size=10) #Tune the model model.fit(train_objectives=[(train_dataloader, train_loss)],evaluator=valid_evaluator, epochs=1, warmup_steps=100, show_progress_bar=True) ###Output Iteration: 100%|██████████| 1/1 [00:02<00:00, 2.42s/it] Epoch: 100%|██████████| 1/1 [00:02<00:00, 2.69s/it] ###Markdown Testing the hypothesis by testing! ###Code evaluator = evaluation.EmbeddingSimilarityEvaluator.from_input_examples(return_suitable_list(locations["test"], test_case=False),name="final testing of 2.3") evaluator(model, output_path = "./eval_testset/") ###Output _____no_output_____ ###Markdown END OF 2.1 >>>>>>>>>>>>> ###Code #some code is from the docs, which you might want to find here --> #https://www.sbert.net/docs/training/overview.html areWeTesting = False #Define the model. We do the basic bert + mean Pooling word_embedding_model = models.Transformer('bert-base-uncased', max_seq_length=256) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) #Define your train dataset, the dataloader and the train loss resulting_list = return_suitable_list(locations["train"], test_case=areWeTesting) train_dataloader = DataLoader(resulting_list, shuffle=True, batch_size=10) train_loss = losses.CosineSimilarityLoss(model) #Tune the model # model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=20, warmup_steps=100, output_path= "./", save_best_model= True, checkpoint_path = "./ckpts/", checkpoint_save_steps = 500) #some code is from the docs, which you might want to find here --> #https://www.sbert.net/docs/training/overview.html #Define the model. We do the basic bert + mean Pooling word_embedding_model = models.Transformer('bert-base-uncased', max_seq_length=256) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) #Define your train dataset, the dataloader and the train loss train_loss = losses.CosineSimilarityLoss(model) #Tune the model model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=1, warmup_steps=100) # #that's actually the sbert one # from sentence_transformers import SentenceTransformer # model = SentenceTransformer('paraphrase-MiniLM-L6-v2') # #Our sentences we like to encode # sentences = ['This framework generates embeddings for each input sentence', # 'Sentences are passed as a list of string.', # 'The quick brown fox jumps over the lazy dog.'] # #Sentences are encoded by calling model.encode() # embeddings = model.encode(sentences) # #Print the embeddings # for sentence, embedding in zip(sentences, embeddings): # print("Sentence:", sentence) # print("Embedding:", embedding) # print("") model sts_train=pd.read_csv("stsbenchmark/sts-train.csv",sep='\t',header=None,usecols=[4, 5, 6], quoting=QUOTE_NONE,names=["label","sen1","sen2"]) #Unlike describe in the assignment the similarity is [0,5], not [1,5] sts_train.describe() # from transformers import BertTokenizer, BertModel # # tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # # model = BertModel.from_pretrained("bert-base-uncased") # word_embedding_model = models.Transformer('bert-base-uncased', max_seq_length=256) # pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) # model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # text = "This fucking thing better works." # encoded_input = tokenizer(text, return_tensors='pt') # print(type(encoded_input)) # output = model(**encoded_input) tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = ["Dummy example, does this shit even work?","oimfowemfo","Replace me by any text you'd like.", "WTF is this"]#"Dummy example, does this shit even work?" encoded_input = tokenizer(text, return_tensors='pt', padding=True) output = model(**encoded_input) output print(type(output)) # #This here should hopefully make meaningful embeddings from BERT(not SBERT) # from transformers import BertTokenizer, BertModel # # tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # # model = BertModel.from_pretrained("bert-base-uncased") # tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # model1 = BertModel.from_pretrained("bert-base-uncased") # model2 = BertModel.from_pretrained("bert-base-uncased") # #load datasets # sts_train=pd.read_csv("stsbenchmark/sts-train.csv",sep='\t',header=None,usecols=[4, 5, 6], quoting=QUOTE_NONE,names=["label","sen1","sen2"]) # sts_test=pd.read_csv("stsbenchmark/sts-test.csv",sep='\t',header=None,usecols=[4, 5, 6], quoting=QUOTE_NONE,names=["label","sen1","sen2"]) # sts_dev=pd.read_csv("stsbenchmark/sts-dev.csv",sep='\t',header=None,usecols=[4, 5, 6], quoting=QUOTE_NONE,names=["label","sen1","sen2"]) # print("loading data ok") # print("starting tokenizing the data") # encoded_input1 = tokenizer(list(sts_train.sen1), return_tensors='pt', padding=True) # output = model1(**encoded_input1) # encoded_input2 = tokenizer(list(sts_train.sen2), return_tensors='pt', padding=True) # output2 = model1(**encoded_input2) # pooling_layer1= models.Pooling(200,pooling_mode_mean_tokens=True) # pooling_layer2= models.Pooling(200,pooling_mode_mean_tokens=True) # final_model1= SentenceTransformer(modules=[model1,pooling_layer1]) # embedding1=final_model1.encode(encoded_input1, batch_size=128, convert_to_numpy=True, show_progress_bar=True) # final_model2= SentenceTransformer(modules=[model2,pooling_layer2]) # embedding2=final_model2.encode(encoded_input2, batch_size=128, convert_to_numpy=True, show_progress_bar=True) # text = ['This fucking thing better works',"Hate this bla bla, what the fuck is this for"] # encoded_input = tokenizer(text, return_tensors='pt', padding=True) # output = final_model1(**encoded_input) # train_sen1_encoding= tokenizer(list(sts_train["sen1"]), padding="max_length", truncation=True) # train_sen2_encoding= tokenizer(list(sts_train["sen2"]), padding="max_length", truncation=True) # sts_train.head(5) # we split the process up here so you can see the difference on the label ###Output _____no_output_____
3. Natural Language Processing in TensorFlow/3. Sequence Models/assignment/C3W3_Assignment.ipynb
###Markdown Week 3: Exploring Overfitting in NLPWelcome to this assignment! During this week you saw different ways to handle sequence-like data. You saw how some Keras' layers such as `GRU`, `Conv` and `LSTM` can be used to tackle problems in this space. Now you will put this knowledge into practice by creating a model architecture that does not overfit.For this assignment you will be using a variation of the [Sentiment140 dataset](http://help.sentiment140.com/home), which contains 1.6 million tweets alongside their respective sentiment (0 for negative and 4 for positive).You will also need to create the helper functions very similar to the ones you coded in previous assignments pre-process data and to tokenize sentences. However the objective of the assignment is to find a model architecture that will not overfit.Let's get started! ###Code import csv import random import pickle import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences import matplotlib.pyplot as plt from scipy.stats import linregress ###Output _____no_output_____ ###Markdown Defining some useful global variablesNext you will define some global variables that will be used throughout the assignment.- `EMBEDDING_DIM`: Dimension of the dense embedding, will be used in the embedding layer of the model. Defaults to 100.- `MAXLEN`: Maximum length of all sequences. Defaults to 16.- `TRUNCATING`: Truncating strategy (truncate either before or after each sequence.). Defaults to 'post'.- `PADDING`: Padding strategy (pad either before or after each sequence.). Defaults to 'post'.- `OOV_TOKEN`: Token to replace out-of-vocabulary words during text_to_sequence calls. Defaults to \"\\\". - `MAX_EXAMPLES`: Max number of examples to use. Defaults to 160000 (10% of the original number of examples) - `TRAINING_SPLIT`: Proportion of data used for training. Defaults to 0.9 **For now leave them unchanged but after submitting your assignment for grading you are encouraged to come back here and play with these parameters to see the impact they have in the classification process.** ###Code EMBEDDING_DIM = 100 MAXLEN = 16 TRUNCATING = 'post' PADDING = 'post' OOV_TOKEN = "<OOV>" MAX_EXAMPLES = 160000 TRAINING_SPLIT = 0.9 ###Output _____no_output_____ ###Markdown Explore the datasetThe dataset is provided in a csv file. Each row of this file contains the following values separated by commas:- target: the polarity of the tweet (0 = negative, 4 = positive)- ids: The id of the tweet- date: the date of the tweet- flag: The query. If there is no query, then this value is NO_QUERY.- user: the user that tweeted- text: the text of the tweetTake a look at the first two examples: ###Code SENTIMENT_CSV = "./data/training_cleaned.csv" with open(SENTIMENT_CSV, 'r') as csvfile: print(f"First data point looks like this:\n\n{csvfile.readline()}") print(f"Second data point looks like this:\n\n{csvfile.readline()}") ###Output First data point looks like this: "0","1467810369","Mon Apr 06 22:19:45 PDT 2009","NO_QUERY","_TheSpecialOne_","@switchfoot http://twitpic.com/2y1zl - Awww, that's a bummer. You shoulda got David Carr of Third Day to do it. ;D" Second data point looks like this: "0","1467810672","Mon Apr 06 22:19:49 PDT 2009","NO_QUERY","scotthamilton","is upset that he can't update his Facebook by texting it... and might cry as a result School today also. Blah!" ###Markdown **Notice that this file does not have a header so you won't need to skip the first row when parsing the file.**For the task at hand you will only need the information of the target and the text, which are the first and last element of each row. Parsing the raw dataNow you need to read the data from the csv file. To do so, complete the `parse_data_from_file` function.A couple of things to note:- You should NOT omit the first line as the file does not contain headers.- There is no need to save the data points as numpy arrays, regular lists is fine.- To read from csv files use `csv.reader` by passing the appropriate arguments.- `csv.reader` returns an iterable that returns each row in every iteration. So the label can be accessed via `row[0]` and the text via `row[5]`.- The labels are originally encoded as strings ('0' representing negative and '4' representing positive). **You need to change this so that the labels are integers and 0 is used for representing negative, while 1 should represent positive.** ###Code def parse_data_from_file(filename): sentences = [] labels = [] with open(filename, 'r') as csvfile: ### START CODE HERE reader = csv.reader(csvfile, delimiter=',') for row in reader: labels.append(0 if row[0] == 0 else 1) sentences.append(row[5]) ### END CODE HERE return sentences, labels # Test your function sentences, labels = parse_data_from_file(SENTIMENT_CSV) print(f"dataset contains {len(sentences)} examples\n") print(f"Text of second example should look like this:\n{sentences[1]}\n") print(f"Text of fourth example should look like this:\n{sentences[3]}") print(f"\nLabels of last 5 examples should look like this:\n{labels[-5:]}") ###Output dataset contains 1600000 examples Text of second example should look like this: is upset that he can't update his Facebook by texting it... and might cry as a result School today also. Blah! Text of fourth example should look like this: my whole body feels itchy and like its on fire Labels of last 5 examples should look like this: [1, 1, 1, 1, 1] ###Markdown ***Expected Output:***```dataset contains 1600000 examplesText of second example should look like this:is upset that he can't update his Facebook by texting it... and might cry as a result School today also. Blah!Text of fourth example should look like this:my whole body feels itchy and like its on fire Labels of last 5 examples should look like this:[1, 1, 1, 1, 1]``` You might have noticed that this dataset contains a lot of examples. In order to keep a low execution time of this assignment you will be using only 10% of the original data. The next cell does this while also randomnizing the datapoints that will be used: ###Code # Bundle the two lists into a single one sentences_and_labels = list(zip(sentences, labels)) # Perform random sampling random.seed(42) sentences_and_labels = random.sample(sentences_and_labels, MAX_EXAMPLES) # Unpack back into separate lists sentences, labels = zip(*sentences_and_labels) print(f"There are {len(sentences)} sentences and {len(labels)} labels after random sampling\n") ###Output There are 160000 sentences and 160000 labels after random sampling ###Markdown ***Expected Output:***```There are 160000 sentences and 160000 labels after random sampling``` Training - Validation SplitNow you will code the `train_val_split`, which given the list of sentences, the list of labels and the proportion of data for the training set, should return the training and validation sentences and labels: ###Code def train_val_split(sentences, labels, training_split): ### START CODE HERE # Compute the number of sentences that will be used for training (should be an integer) train_size = int(len(sentences)*training_split) # Split the sentences and labels into train/validation splits train_sentences = sentences[:train_size] train_labels = labels[:train_size] validation_sentences = sentences[train_size:] validation_labels = labels[train_size:] ### END CODE HERE return train_sentences, validation_sentences, train_labels, validation_labels # Test your function train_sentences, val_sentences, train_labels, val_labels = train_val_split(sentences, labels, TRAINING_SPLIT) print(f"There are {len(train_sentences)} sentences for training.\n") print(f"There are {len(train_labels)} labels for training.\n") print(f"There are {len(val_sentences)} sentences for validation.\n") print(f"There are {len(val_labels)} labels for validation.") ###Output There are 144000 sentences for training. There are 144000 labels for training. There are 16000 sentences for validation. There are 16000 labels for validation. ###Markdown ***Expected Output:***```There are 144000 sentences for training.There are 144000 labels for training.There are 16000 sentences for validation.There are 16000 labels for validation.``` Tokenization - Sequences, truncating and paddingNow that you have sets for training and validation it is time for you to begin the tokenization process.Begin by completing the `fit_tokenizer` function below. This function should return a [Tokenizer](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer) that has been fitted to the training sentences. ###Code def fit_tokenizer(train_sentences, oov_token): ### START CODE HERE # Instantiate the Tokenizer class, passing in the correct values for num_words and oov_token tokenizer = Tokenizer(oov_token=oov_token) # Fit the tokenizer to the training sentences tokenizer.fit_on_texts(train_sentences) ### END CODE HERE return tokenizer # Test your function tokenizer = fit_tokenizer(train_sentences, OOV_TOKEN) word_index = tokenizer.word_index VOCAB_SIZE = len(word_index) print(f"Vocabulary contains {VOCAB_SIZE} words\n") print("<OOV> token included in vocabulary" if "<OOV>" in word_index else "<OOV> token NOT included in vocabulary") print(f"\nindex of word 'i' should be {word_index['i']}") ###Output Vocabulary contains 128293 words <OOV> token included in vocabulary index of word 'i' should be 2 ###Markdown ***Expected Output:***```Vocabulary contains 128293 words token included in vocabularyindex of word 'i' should be 2``` ###Code def seq_pad_and_trunc(sentences, tokenizer, padding, truncating, maxlen): ### START CODE HERE # Convert sentences to sequences sequences = tokenizer.texts_to_sequences(sentences) # Pad the sequences using the correct padding, truncating and maxlen pad_trunc_sequences = pad_sequences(sequences, maxlen=maxlen, padding=padding, truncating=truncating) ### END CODE HERE return pad_trunc_sequences # Test your function train_pad_trunc_seq = seq_pad_and_trunc(train_sentences, tokenizer, PADDING, TRUNCATING, MAXLEN) val_pad_trunc_seq = seq_pad_and_trunc(val_sentences, tokenizer, PADDING, TRUNCATING, MAXLEN) print(f"Padded and truncated training sequences have shape: {train_pad_trunc_seq.shape}\n") print(f"Padded and truncated validation sequences have shape: {val_pad_trunc_seq.shape}") ###Output Padded and truncated training sequences have shape: (144000, 16) Padded and truncated validation sequences have shape: (16000, 16) ###Markdown ***Expected Output:***```Padded and truncated training sequences have shape: (144000, 16)Padded and truncated validation sequences have shape: (16000, 16)``` Remember that the `pad_sequences` function returns numpy arrays, so your training and validation sequences are already in this format.However the labels are still Python lists. Before going forward you should convert them numpy arrays as well. You can do this by running the following cell: ###Code train_labels = np.array(train_labels) val_labels = np.array(val_labels) ###Output _____no_output_____ ###Markdown Using pre-defined EmbeddingsThis time you will not be learning embeddings from your data but you will be using pre-trained word vectors.In particular you will be using the 100 dimension version of [GloVe](https://nlp.stanford.edu/projects/glove/) from Stanford. ###Code # Define path to file containing the embeddings GLOVE_FILE = './data/glove.6B.100d.txt' # Initialize an empty embeddings index dictionary GLOVE_EMBEDDINGS = {} # Read file and fill GLOVE_EMBEDDINGS with its contents with open(GLOVE_FILE) as f: for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') GLOVE_EMBEDDINGS[word] = coefs ###Output _____no_output_____ ###Markdown Now you have access to GloVe's pre-trained word vectors. Isn't that cool?Let's take a look at the vector for the word **dog**: ###Code test_word = 'dog' test_vector = GLOVE_EMBEDDINGS[test_word] print(f"Vector representation of word {test_word} looks like this:\n\n{test_vector}") ###Output Vector representation of word dog looks like this: [ 0.30817 0.30938 0.52803 -0.92543 -0.73671 0.63475 0.44197 0.10262 -0.09142 -0.56607 -0.5327 0.2013 0.7704 -0.13983 0.13727 1.1128 0.89301 -0.17869 -0.0019722 0.57289 0.59479 0.50428 -0.28991 -1.3491 0.42756 1.2748 -1.1613 -0.41084 0.042804 0.54866 0.18897 0.3759 0.58035 0.66975 0.81156 0.93864 -0.51005 -0.070079 0.82819 -0.35346 0.21086 -0.24412 -0.16554 -0.78358 -0.48482 0.38968 -0.86356 -0.016391 0.31984 -0.49246 -0.069363 0.018869 -0.098286 1.3126 -0.12116 -1.2399 -0.091429 0.35294 0.64645 0.089642 0.70294 1.1244 0.38639 0.52084 0.98787 0.79952 -0.34625 0.14095 0.80167 0.20987 -0.86007 -0.15308 0.074523 0.40816 0.019208 0.51587 -0.34428 -0.24525 -0.77984 0.27425 0.22418 0.20164 0.017431 -0.014697 -1.0235 -0.39695 -0.0056188 0.30569 0.31748 0.021404 0.11837 -0.11319 0.42456 0.53405 -0.16717 -0.27185 -0.6255 0.12883 0.62529 -0.52086 ] ###Markdown Feel free to change the `test_word` to see the vector representation of any word you can think of.Also, notice that the dimension of each vector is 100. You can easily double check this by running the following cell: ###Code print(f"Each word vector has shape: {test_vector.shape}") ###Output Each word vector has shape: (100,) ###Markdown Represent the words in your vocabulary using the embeddingsSave the vector representation of each word in the vocabulary in a numpy array.A couple of things to notice:- If a word in your vocabulary is not present in `GLOVE_EMBEDDINGS` the representation for that word is left as a column of zeros.- `word_index` starts counting at 1, because of this you will need to add an extra column at the left-most side of the `EMBEDDINGS_MATRIX` array. This is the reason why you add 1 to `VOCAB_SIZE` in the cell below: ###Code # Initialize an empty numpy array with the appropriate size EMBEDDINGS_MATRIX = np.zeros((VOCAB_SIZE+1, EMBEDDING_DIM)) # Iterate all of the words in the vocabulary and if the vector representation for # each word exists within GloVe's representations, save it in the EMBEDDINGS_MATRIX array for word, i in word_index.items(): embedding_vector = GLOVE_EMBEDDINGS.get(word) if embedding_vector is not None: EMBEDDINGS_MATRIX[i] = embedding_vector ###Output _____no_output_____ ###Markdown Now you have the pre-trained embeddings ready to use! Define a model that does not overfitNow you need to define a model that will handle the problem at hand while not overfitting.A couple of things to note / hints:- The first layer is provided so you can see how the Embedding layer is configured when using pre-trained embeddings- You can try different combinations of layers covered in previous ungraded labs such as: - `Conv1D` - `Dropout` - `GlobalMaxPooling1D` - `MaxPooling1D` - `LSTM` - `Bidirectional(LSTM)`- The last two layers should be `Dense` layers.- There multiple ways of solving this problem. So try an architecture that you think will not overfit.- Try simpler architectures first to avoid long training times. Architectures that are able to solve this problem usually have around 3-4 layers (excluding the last two `Dense` ones)- Include at least one `Dropout` layer to mitigate overfitting. ###Code # GRADED FUNCTION: create_model def create_model(vocab_size, embedding_dim, maxlen, embeddings_matrix): ### START CODE HERE model = tf.keras.Sequential([ # This is how you need to set the Embedding layer when using pre-trained embeddings tf.keras.layers.Embedding(vocab_size+1, embedding_dim, input_length=maxlen, weights=[embeddings_matrix], trainable=False), # tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length=maxlen), tf.keras.layers.Dropout(0.2), # tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)), tf.keras.layers.Conv1D(32, 5, activation='relu'), tf.keras.layers.GlobalMaxPooling1D(), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() ### END CODE HERE return model # Create your untrained model model = create_model(VOCAB_SIZE, EMBEDDING_DIM, MAXLEN, EMBEDDINGS_MATRIX) # Train the model and save the training history history = model.fit(train_pad_trunc_seq, train_labels, epochs=20, validation_data=(val_pad_trunc_seq, val_labels)) ###Output Model: "sequential_14" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding_16 (Embedding) (None, 16, 100) 12829400 dropout_14 (Dropout) (None, 16, 100) 0 conv1d_12 (Conv1D) (None, 12, 32) 16032 global_max_pooling1d_9 (Glo (None, 32) 0 balMaxPooling1D) dense_27 (Dense) (None, 32) 1056 dense_28 (Dense) (None, 1) 33 ================================================================= Total params: 12,846,521 Trainable params: 17,121 Non-trainable params: 12,829,400 _________________________________________________________________ Epoch 1/20 4500/4500 [==============================] - 17s 4ms/step - loss: 0.0014 - accuracy: 0.9997 - val_loss: 2.1434e-06 - val_accuracy: 1.0000 Epoch 2/20 4500/4500 [==============================] - 16s 4ms/step - loss: 6.7361e-07 - accuracy: 1.0000 - val_loss: 1.0282e-07 - val_accuracy: 1.0000 Epoch 3/20 4500/4500 [==============================] - 16s 4ms/step - loss: 3.8523e-08 - accuracy: 1.0000 - val_loss: 8.1522e-09 - val_accuracy: 1.0000 Epoch 4/20 4500/4500 [==============================] - 16s 4ms/step - loss: 3.3134e-09 - accuracy: 1.0000 - val_loss: 8.8144e-10 - val_accuracy: 1.0000 Epoch 5/20 4500/4500 [==============================] - 16s 4ms/step - loss: 4.5257e-10 - accuracy: 1.0000 - val_loss: 2.0377e-10 - val_accuracy: 1.0000 Epoch 6/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.3161e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 7/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.0529e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 8/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.0521e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 9/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.0525e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 10/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.0522e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 11/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.0524e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 12/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.0528e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 13/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.0528e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 14/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.0521e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 15/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.0523e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 16/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.0519e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 17/20 4500/4500 [==============================] - 16s 4ms/step - loss: 1.0522e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 18/20 4500/4500 [==============================] - 17s 4ms/step - loss: 1.0530e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 19/20 4500/4500 [==============================] - 17s 4ms/step - loss: 1.0524e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 Epoch 20/20 4500/4500 [==============================] - 17s 4ms/step - loss: 1.0524e-10 - accuracy: 1.0000 - val_loss: 1.0033e-10 - val_accuracy: 1.0000 ###Markdown **To pass this assignment your `val_loss` (validation loss) should either be flat or decreasing.** Although a flat `val_loss` and a lowering `train_loss` (or just `loss`) also indicate some overfitting what you really want to avoid is having a lowering `train_loss` and an increasing `val_loss`.With this in mind, the following three curves will be acceptable solutions: While the following would not be able to pass the grading: Run the following cell to check your loss curves: ###Code #----------------------------------------------------------- # Retrieve a list of list results on training and test data # sets for each training epoch #----------------------------------------------------------- loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = [*range(20)] #------------------------------------------------ # Plot training and validation loss per epoch #------------------------------------------------ plt.plot(epochs, loss, 'r') plt.plot(epochs, val_loss, 'b') plt.title('Training and validation loss') plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend(["Loss", "Validation Loss"]) plt.show() ###Output _____no_output_____ ###Markdown If you wish so, you can also check the training and validation accuracies of your model: ###Code acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] #------------------------------------------------ # Plot training and validation accuracy per epoch #------------------------------------------------ plt.plot(epochs, acc, 'r') plt.plot(epochs, val_acc, 'b') plt.title('Training and validation accuracy') plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend(["Accuracy", "Validation Accuracy"]) plt.show() ###Output _____no_output_____ ###Markdown A more rigorous way of setting the passing threshold of this assignment is to use the slope of your `val_loss` curve.**To pass this assignment the slope of your `val_loss` curve should be 0.0005 at maximum.** ###Code # Test the slope of your val_loss curve slope, *_ = linregress(epochs, val_loss) print(f"The slope of your validation loss curve is {slope:.5f}") ###Output The slope of your validation loss curve is -0.00000 ###Markdown **If your model generated a validation loss curve that meets the criteria above, run the following cell and then submit your assignment for grading. Otherwise, try with a different architecture.** ###Code with open('history.pkl', 'wb') as f: pickle.dump(history.history, f) ###Output _____no_output_____
examples/reporting/Allegro_Trains_logging_example.ipynb
###Markdown Allegro Trains logging example[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/allegroai/trains/blob/master/examples/reporting/Allegro_Trains_logging_example.ipynb)This example introduces Trains [Logger](https://allegro.ai/docs/logger.html) functionality. Logger is the Trains console log and metric interface.You can find more reporting examples [here](https://github.com/allegroai/trains/tree/master/examples/reporting). ###Code !pip install trains !pip install numpy ###Output _____no_output_____ ###Markdown Create a new TaskCreate a new Task and get a Logger object for the Task.To create a new Task object, call the `Task.init` method providing it with `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). When `Task.init` executes, a link to the Web UI Results page for the newly generated Task will be printed, and the Task will be updated in real time in the Trains demo server.You can read about the `Task` class in the docs [here](https://allegro.ai/docs/task.html).After the Task is created, get a Logger for it. ###Code import numpy as np from trains import Task # Start a new task task = Task.init(project_name="Colab notebooks", task_name="Explicit Logging") # Get the task logger, # You can also call Task.current_task().get_logger() from anywhere in your code. logger = task.get_logger() ###Output _____no_output_____ ###Markdown Explicit scalar loggingUse the [Logger.report_scalar](https://allegro.ai/docs/logger.htmltrains.logger.Logger.report_scalar) method to explicitly log scalars. Scalar plots appear in the Web UI, Results > Scalars tab. ###Code # report two scalar series on the same graph for i in range(10): logger.report_scalar("unified graph", "series A", iteration=i, value=1./(i+1)) logger.report_scalar("unified graph", "series B", iteration=i, value=10./(i+1)) # report two scalar series on two different graphs for i in range(10): logger.report_scalar("graph A", "series A", iteration=i, value=1./(i+1)) logger.report_scalar("graph B", "series B", iteration=i, value=10./(i+1)) ###Output _____no_output_____ ###Markdown Explicit logging of other dataYou can log other data and report the data in a variety of plot types, including histograms, confusion matrices, 2D and 3D scatter diagrams, and surface diagrams. They appear in the Results > Plots tab.For information about the methods to report each type of plot, see the [Logger](https://allegro.ai/docs/logger.html) module. ###Code iteration = 100 # report a single histogram histogram = np.random.randint(10, size=10) logger.report_histogram( "single_histogram", "random histogram", iteration=iteration, values=histogram, xaxis="title x", yaxis="title y", ) # report a two histograms on the same plot histogram1 = np.random.randint(13, size=10) histogram2 = histogram * 0.75 logger.report_histogram( "two_histogram", "series 1", iteration=iteration, values=histogram1, xaxis="title x", yaxis="title y", ) logger.report_histogram( "two_histogram", "series 2", iteration=iteration, values=histogram2, xaxis="title x", yaxis="title y", ) # report confusion matrix confusion = np.random.randint(10, size=(10, 10)) logger.report_matrix( "example_confusion", "ignored", iteration=iteration, matrix=confusion, xaxis="title X", yaxis="title Y", ) scatter2d = np.hstack( (np.atleast_2d(np.arange(0, 10)).T, np.random.randint(10, size=(10, 1))) ) # report 2d scatter plot with markers logger.report_scatter2d( "example_scatter", "series_lines+markers", iteration=iteration, scatter=scatter2d, xaxis="title x", yaxis="title y", mode='lines+markers' ) # report 3d surface surface = np.random.randint(10, size=(10, 10)) logger.report_surface( "example_surface", "series1", iteration=iteration, matrix=surface, xaxis="title X", yaxis="title Y", zaxis="title Z", ) # report 3d scatter plot scatter3d = np.random.randint(10, size=(10, 3)) logger.report_scatter3d( "example_scatter_3d", "series_xyz", iteration=iteration, scatter=scatter3d, xaxis="title x", yaxis="title y", zaxis="title z", ) ###Output _____no_output_____ ###Markdown Explicit debug samples reportingExplicitly report debug samples, including images, audio, and video. Downloading the filesWe use StorageManager to download a local copy of the files. You can use it immediately. Just provide the URL. Cache is enabled by default for all downloaded remote URLs/files.For more information, you can read about the storage manager [here](https://allegro.ai/docs/storage_manager_storagemanager.html). ###Code from trains.storage import StorageManager image_local_copy = StorageManager.get_local_copy( remote_url="https://pytorch.org/tutorials/_static/img/neural-style/picasso.jpg", name="picasso.jpg" ) print("Image location: {}".format(image_local_copy)) video_local_copy = StorageManager.get_local_copy( remote_url="https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_1MB.mp4", name="Big_Buck_Bunny_720_10s_1MB.mp4" ) print("Video location: {}".format(video_local_copy)) audio_local_copy = StorageManager.get_local_copy( remote_url="https://www2.cs.uic.edu/~i101/SoundFiles/PinkPanther30.wav", name="PinkPanther30.wav" ) print("Audio location: {}".format(audio_local_copy)) ###Output _____no_output_____ ###Markdown Report images and mediaUse [Logger.report_image](https://allegro.ai/docs/logger.html?highlight=report_imagetrains.logger.Logger.report_image) and [Logger.report_media](https://allegro.ai/docs/logger.html?highlight=report_mediatrains.logger.Logger.report_media) to report the downloaded samples. The debug samples appear in the Results > Debug Samples tab. ###Code logger.report_image("image", "image from url", iteration=100, local_path=image_local_copy) # Image can be uploaded via 'report_media' too # report video, an already uploaded video media (url) logger.report_media( 'video', 'big bunny', iteration=1, local_path=video_local_copy) # This will actually use the cache and will not download the file again. audio_local_copy_cache = StorageManager.get_local_copy( remote_url="https://www2.cs.uic.edu/~i101/SoundFiles/PinkPanther30.wav", name="PinkPanther30.wav" ) # report audio, report an already uploaded audio media (url) logger.report_media( 'audio', 'pink panther', iteration=1, local_path=audio_local_copy) # reporting html from url to debug samples section logger.report_media("html", "url_html", iteration=1, url="https://allegro.ai/docs/index.html") ###Output _____no_output_____ ###Markdown Explicit text loggingUse [Logger.report_text](https://allegro.ai/docs/logger.html?highlight=report_texttrains.logger.Logger.report_text) to log text message. They appear in Results > Log. ###Code # report text logger.report_text("hello, this is plain text") ###Output _____no_output_____ ###Markdown Flushing the reportsReports are flushed in the background every couple of seconds, and at the end of the process execution.Or, flush the Logger by calling [Logger.flush](https://allegro.ai/docs/logger.html?highlight=report_texttrains.logger.Logger.flush). ###Code logger.flush() ###Output _____no_output_____
Results_Iteration#2.ipynb
###Markdown Analysis of results of iteration 2 This is the notebook for the results of the second iteration of repository analysis. The documentation for this run can be found in the [RepoAnalysis](./RepoAnalysis.ipynb) notebook. In the second iteration, an approach that is based on commit-deltas (from git log) has been used which greatly increased performance and aimed at increasing data density (as no join over ght.raw_patches is necessary anymore).As this run was meant as a way to compare the different analysis methods (thus running on the same data set as the first one), the evaluation is shorter. We expect to see similar effects as in [the first result set](Results_Iteration1.ipynb), but the better data density might also lead to new results.The notebook is structured as follows: Before the data is evaluated, an [overview](General-overview-over-results) over it is gained and it is [joined with and aggregated on](Prepare-for-analysis) author information. The data is then [visualized](Visualization) with boxplots in order to manually compare it to the last run. Finally, [a Mann–Whitney U test](Statistical-Testing) is applied to check for significance between the experiment groups and comre those results to the previous run.All figures generated in this notebook can be found unter [./results/figures_run_2](./results/figures_run_2).Footnote: The result table for this run (`lb_results2`) has been lost after this notebook was created. Data for one repository was lost because of unavailability. This might make the given cardinalities a tiny bit inaccurate compared to the actual data, but should not change the overall results of the run. ###Code %load_ext autoreload %aimport dbUtils import matplotlib.pyplot as pyplot tableName = 'lb_results2' ###Output _____no_output_____ ###Markdown General overview over results First let's get an overview over the structure of the result data before we get into the evaluation. How many tuples are there and how do they look like? There are 530k tuples. Additions and deletions are now embedded into the result table. This table actually is the counterpart for the `lb_deltas` table of result set 1, because it already includes delta information instead of absolute numbers. To compare, the other table includes 292k tuples. This however, cannot yet be fully compared, as the other table also eliminated fork duplicates. ###Code dbUtils.runQuery(''' SELECT * FROM crm20.'''+tableName+''' ''', mute=True) ###Output Time used: 2.827662706375122 ###Markdown How many tuples can we attribute to experiment authors? There are 28k tuples that we can attribute to experiment authors (and thus use for evaluation). This is a lot more than the 16k from iteration 1, which shows that the methodological migrations was a success. ###Code dbUtils.runQuery(''' SELECT DISTINCT lb_results2.sha FROM crm20.lb_results2, ght.commits WHERE lb_results2.sha = commits.sha AND author_id IN (SELECT author_id FROM crm20.lb_experimentusers) ''') ###Output Time used: 3.4830398559570312 ###Markdown Prepare for analysis Add author information and filter for experiment authors Again, author information is joined in to attribute the commit changes to developers. This time, only the experiment users are taken. Note the `DISTINCT` which, together with the removal of the `repoId` column, eliminates duplicates originating from forks. ###Code dbUtils.runQuery(''' DROP MATERIALIZED VIEW IF EXISTS crm20.lb_experimentset2; CREATE MATERIALIZED VIEW crm20.lb_experimentset2 AS ( SELECT DISTINCT lb_results2.sha, lb_results2.timestamp, author_id, additions, deletions, additions + deletions AS changes, loc, cloc, file_count, num_methods, num_lambdas, num_comment_lines, num_reflection, num_snakes, total_indent FROM crm20.lb_results2, ght.commits WHERE lb_results2.sha = commits.sha AND author_id IN (SELECT author_id FROM crm20.lb_experimentusers) ); SELECT * FROM crm20.lb_experimentset2 ''') ###Output Time used: 3.6220011711120605 ###Markdown Create averages for authors As this analysis run will not use the lifecylce approach, averages for each author can safely be calculated. This allows to reflect over the overall code quality of each author and to compare authors of the two groups. ###Code dbUtils.runQuery(''' DROP VIEW IF EXISTS crm20.lb_authoravgs2; CREATE VIEW crm20.lb_authoravgs2 AS ( SELECT author_id, AVG(CAST(loc AS DECIMAL)) AS loc, AVG(CAST(cloc AS DECIMAL)) AS cloc, AVG(CAST(file_count AS DECIMAL)) AS filecount, AVG(CAST(num_methods AS DECIMAL)/changes) AS methods, AVG(CAST(num_lambdas AS DECIMAL)/changes) AS lambdas, AVG(CAST(num_comment_lines AS DECIMAL)/changes) AS commentlines, AVG(CAST(num_reflection AS DECIMAL)/changes) AS reflection, AVG(CAST(num_snakes AS DECIMAL)/changes) AS snakes, AVG(CAST(total_indent AS DECIMAL)/changes) AS indent FROM crm20.lb_experimentset2 WHERE changes > 0 AND changes < 1000 GROUP BY author_id ); SELECT * FROM crm20.lb_authoravgs2 ''', mute=True) ###Output Time used: 0.038674116134643555 ###Markdown Visualization Again to visualize effects, boxplots have been chosen. This is very similar to [Results_Iteration1](Results_Iteration1.ipynb). The following queries extract the respective data sets for both experiment groups ###Code boxDataPolyglot = dbUtils.runQuery(''' SELECT * FROM crm20.lb_authoravgs2 WHERE author_id IN (SELECT author_id FROM crm20.lb_polyglots) ''', mute=True) display(boxDataPolyglot) boxDataControlGroup = dbUtils.runQuery(''' SELECT * FROM crm20.lb_authoravgs2 WHERE author_id IN (SELECT author_id FROM crm20.lb_controlgroup) ''', mute=True) display(boxDataControlGroup) ###Output Time used: 0.034987449645996094 ###Markdown When plotting the data and putting the plots side by side, the results look very similar: Value ranges increased a bit, which is expectable with a bigger dataset, but there were no big notable changes. ###Code for metric in boxDataPolyglot: if metric == 'author_id': continue pyplot.figure(figsize=(15, 5)) pyplot.title('Metric: '+metric) pyplot.boxplot([boxDataPolyglot[metric], boxDataControlGroup[metric]], labels=['polyglot', 'control group']) pyplot.savefig('figures/boxplot_'+metric+'.png') ###Output _____no_output_____ ###Markdown Statistical Testing Again, a Mann–Whitney U test is applies. All metrics that were identified as significant before were identified again, most with better certainties (as would be expected with a strict data superset). One outlyer is comment line density, but this is inside uncertainty boundaries.Interestingly, compared to the first evaluation, snake case density has now been identified as significant. This is not surprising, as the last test already indicated this tendency. However, the next, scaled-up, run will need to confirm this result. ###Code from scipy.stats import mannwhitneyu for metric in boxDataPolyglot: if metric == 'author_id': continue pvalue = mannwhitneyu(boxDataPolyglot[metric], boxDataControlGroup[metric]).pvalue print((metric+': ').ljust(15)+str(pvalue)+'\t '+str(pvalue < 0.05)) ###Output loc: 0.03300520224406583 True cloc: 0.022058035759941794 True filecount: 0.21545100634855147 False methods: 0.0917505570894625 False lambdas: 0.4067688390652851 False commentlines: 0.02077806898728143 True reflection: 0.42879115773327764 False snakes: 0.029028346082374923 True indent: 0.024817833855852296 True
Word_embeddings_colaboratory_8_2_2021.ipynb
###Markdown Loading packages ###Code !pip install fastai --upgrade !pip install dtreeviz !pip install fastbook import fastbook fastbook.setup_book() from fastbook import * from pandas.api.types import is_string_dtype, is_numeric_dtype, is_categorical_dtype from fastai.tabular.all import * from sklearn.ensemble import RandomForestRegressor from sklearn.tree import DecisionTreeRegressor from dtreeviz.trees import * from IPython.display import Image, display_svg, SVG pd.options.display.max_rows = 20 pd.options.display.max_columns = 8 ###Output _____no_output_____ ###Markdown Loading Data ###Code path = "/content/gdrive/MyDrive/archivos_tfm/ch1_train_combination_and_monoTherapy.csv" df = pd.read_csv(path, low_memory=False) df.head(5) df.columns # A little bit of data analysis df.describe() dep_var = 'SYNERGY_SCORE' procs = [Categorify, FillMissing] # We shuffle the data df = df.sample(frac=1).reset_index(drop=True) df[1:5] # We will erase Combination ID as it offers no additional information # We only want perfect samples, so only QA = 1 df_nocomb = df.drop(["COMBINATION_ID"], 1) df_def = df_nocomb[df_nocomb['QA'] == 1] df_def.describe() # We create the train/validation splits dataset_size = df_def.shape[0] cutoff = int(dataset_size * 0.7) train_idx = df_def.index[:cutoff] valid_idx = df_def.index[cutoff:] splits = (list(train_idx),list(valid_idx)) cont,cat = cont_cat_split(df_def, 1, dep_var=dep_var) to = TabularPandas(df_nocomb, procs, cat, cont, y_names=dep_var, splits=splits) len(to.train),len(to.valid) xs,y = to.train.xs,to.train.y valid_xs,valid_y = to.valid.xs,to.valid.y ###Output _____no_output_____ ###Markdown Baseline model: mean and median ###Code train_df = df_def[:cutoff] train_df.describe() ###Output _____no_output_____ ###Markdown Let's see how good it performs a model whose only information is the median ###Code mean = np.mean(train_df["SYNERGY_SCORE"]) median = np.median(train_df["SYNERGY_SCORE"]) print(f" Median = {median} \n Mean = {mean}") ###Output Median = 10.002977 Mean = 12.892230668515133 ###Markdown We create our metrics ###Code def r_mse(pred,y): return round(math.sqrt(((pred-y)**2).mean()), 6) def m_rmse(m, xs, y): return r_mse(m.predict(xs), y) error_mean = r_mse(mean, valid_y) error_median = r_mse(median, valid_y) print(f" Error Median = {error_median} \n Error Mean = {error_mean}") ###Output Error Median = 27.760743 Error Mean = 27.660492 ###Markdown Decision Trees ###Code # Now that we have preprocessed our dataset, we build the tree Tree = DecisionTreeRegressor(max_leaf_nodes=4) Tree.fit(xs, y); draw_tree(Tree, xs, size=10, leaves_parallel=True, precision=2) samp_idx = np.random.permutation(len(y))[:500] dtreeviz(Tree, xs.iloc[samp_idx], y.iloc[samp_idx], xs.columns, dep_var, fontname='DejaVu Sans', scale=1.6, label_fontsize=10, orientation='LR') ###Output /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not have valid feature names, but DecisionTreeRegressor was fitted with feature names "X does not have valid feature names, but" ###Markdown Let's now have the decision tree algorithm build a bigger tree. Here, we are not passing in any stopping criteria such as max_leaf_nodes: ###Code m = DecisionTreeRegressor() m.fit(xs, y); # In the training set m_rmse(m, xs, y) ###Output _____no_output_____ ###Markdown This just means that the model fits well in the training dataset, but we have to check how well it generalizes over unseen data: ###Code m_rmse(m, valid_xs, valid_y) ###Output _____no_output_____ ###Markdown Now we will check for overfitting: ###Code m.get_n_leaves(), len(xs) ###Output _____no_output_____ ###Markdown We see that it has as many leafs as datapoints, let's see what happens if we restrict the model. ###Code m = DecisionTreeRegressor(min_samples_leaf=25) m.fit(to.train.xs, to.train.y) m_rmse(m, xs, y), m_rmse(m, valid_xs, valid_y) m.get_n_leaves() ###Output _____no_output_____ ###Markdown **The RMSE is almost the same as the baseline model. That's not good, let's try some hyperparameter tuning.** ###Code leafs = np.arange(500)+1 error_list = list() for n_leafs in leafs: m = DecisionTreeRegressor(min_samples_leaf=n_leafs) m.fit(to.train.xs, to.train.y) error_list.append( m_rmse(m, valid_xs, valid_y) ) error_list = np.asarray(error_list) best_error = min(error_list) best_leaf = leafs[error_list== min(error_list)][0] print(f"Best number of leafs = {best_leaf} \n Error = {best_error}") ###Output Best number of leafs = 179 Error = 26.609312 ###Markdown Not outstanding, barely better. We should try another algorithm Random Forest ###Code def rf(xs, y, n_estimators=100, max_samples=300, max_features=0.5, min_samples_leaf=5, **kwargs): return RandomForestRegressor(n_jobs=-1, n_estimators=n_estimators, max_samples=max_samples, max_features=max_features, min_samples_leaf=min_samples_leaf, oob_score=True).fit(xs, y) m = rf(xs, y); m_rmse(m, xs, y), m_rmse(m, valid_xs, valid_y) ###Output _____no_output_____ ###Markdown A little better than the Tree regressor, but not that great. Feature importance ###Code def rf_feat_importance(m, df): return pd.DataFrame({'cols':df.columns, 'imp':m.feature_importances_} ).sort_values('imp', ascending=False) fi = rf_feat_importance(m, xs) fi[:10] def plot_fi(fi): return fi.plot('cols', 'imp', 'barh', figsize=(12,7), legend=False) plot_fi(fi[:30]); ###Output _____no_output_____
day 6.ipynb
###Markdown day 6 assignment ###Code class bank: def __init__(self,ownername,balance): self.ownername = ownername self.balance = balance def deposit(self,amount): self.balance +=amount print("your updated balance is :", self.balance) def withdraw(self,amount): if(self.balance>amount): self.balance-=amount print("your updated balance is :", self.balance) else: print("you don't have enough cradit in your account, see you have only",self.balance) khashyap=bank("khashyap21",2000) khashyap.deposit(2000) khashyap.withdraw(4000) khashyap.withdraw(3000) ###Output your updated balance is : 1000 ###Markdown Question 2 ###Code import math class cone: def __init__(self,radius,height): self.radius=radius self.height=height def volume(self): vol = math.pi * (self.radius**2) * (self.height/3) print("Volume of this cone is : ",vol) def surfaceArea(self): area = math.pi* self.radius *(self.radius+(math.sqrt((self.radius**2)+(self.height**2)))) print("Surface area of this cone is ",area) con = cone(3,4) con.volume() con.surfaceArea() ###Output Surface area of this cone is 75.39822368615503
bbdd/Flujo compra aleatorio datos nuevos.ipynb
###Markdown Creación y compra de claves juegos ###Code import mysql.connector import pandas as pd from mysql.connector import errorcode import random from datetime import datetime try: cnx = mysql.connector.connect( host="localhost", user="root", database='stum_for_you', passwd="" ) except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: print("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: print("Database does not exist") else: print(err) cursor = cnx.cursor() for auxiliar in range(0,100): #elegimos un juego cursor.execute("SELECT COUNT(*) FROM juegos") numjuegos = cursor.fetchone()[0] + 1 id_juego = random.randrange(1,numjuegos) sql = """SELECT * FROM juegos WHERE id_juego = %s """ % (id_juego) cursor.execute(sql) juego = cursor.fetchone() #elegimos un proveedor cursor.execute("SELECT COUNT(*) FROM proveedor") numprov = cursor.fetchone()[0] + 1 id_proveedor = random.randrange(1,numprov) sql = """SELECT * FROM proveedor WHERE id_proveedor = %s """ % (id_proveedor) cursor.execute(sql) proveedor = cursor.fetchone() # añadimos a la tabla transacción compra elem = random.randrange(1,100) sql = "INSERT INTO transacciones_compra (precio_total, fecha_compra) VALUES (%s, %s)" descuento = random.randrange(1,10) /10 print(descuento) preciojuego=int(juego[3]*descuento ) #fecha= aleatoriofecha inicio = datetime(2017, 1, 30) final = datetime(2020, 1, 1) fecha = inicio + (final - inicio) * random.random() val = (preciojuego * elem, fecha) cursor.execute(sql,val) cnx.commit() cursor.execute("SELECT MAX(id_transaccion) FROM transacciones_compra") id_transac = cursor.fetchone()[0] # añadimos clave print(elem) for i in range (0, elem) : aux = True while aux : num1 = str(random.randrange(1,999999)) num2 = str(random.randrange(1,9999)) clave = num1.zfill(6) + '-' + num2.zfill(4) sql = """SELECT * FROM claves_juegos WHERE clave = %s """ % (clave) cursor.execute(sql) if(len(cursor.fetchall()) == 0) : aux = False sql = "INSERT INTO claves_juegos (clave, fecha_anexion, id_juego) VALUES (%s, %s, %s)" val = (clave, fecha, id_juego) cursor.execute(sql,val) cnx.commit() cursor.execute("SELECT MAX(id_clave) FROM claves_juegos") id_clave = cursor.fetchone()[0] # añadimos compra sql = "INSERT INTO compra_juegos (id_proveedor, id_transaccion, id_claves_juego, precio) VALUES (%s, %s, %s, %s)" val = (id_proveedor, id_transac, id_clave, preciojuego) cursor.execute(sql,val) cnx.commit() # print("proveedor :" , id_proveedor , "id_transac :" , id_transac ,"id_clave :" , id_clave , "preciojuegoD :" # , preciojuego , "preciojuego :", juego[3]) ###Output 0.7 50 0.9 18 0.7 98 0.5 96 0.7 74 0.5 23 0.3 93 0.4 14 0.5 75 0.8 16 0.7 30 0.2 49 0.4 15 0.5 69 0.5 12 0.7 23 0.6 16 0.8 61 0.1 39 0.8 41 0.9 27 0.8 79 0.6 61 0.5 57 0.4 61 0.5 91 0.6 16 0.6 50 0.6 51 0.7 46 0.4 87 0.3 45 0.3 3 0.2 21 0.7 26 0.2 36 0.7 44 0.9 35 0.8 86 0.1 94 0.5 89 0.1 43 0.4 7 0.4 58 0.5 86 0.1 37 0.5 85 0.9 69 0.2 80 0.8 60 0.8 46 0.8 52 0.2 57 0.8 74 0.5 38 0.2 35 0.1 94 0.9 16 0.7 30 0.7 30 0.1 91 0.8 94 0.8 35 0.9 3 0.6 5 0.7 19 0.9 97 0.9 17 0.4 31 0.4 47 0.9 31 0.5 47 0.8 42 0.2 40 0.5 1 0.8 96 0.9 15 0.4 29 0.8 44 0.6 12 0.3 47 0.9 77 0.2 51 0.2 80 0.4 57 0.6 73 0.9 53 0.7 98 0.3 1 0.7 85 0.1 57 0.9 69 0.5 71 0.9 4 0.4 64 0.7 23 0.2 86 0.7 3 0.9 85 0.9 92 ###Markdown Creación y compra de claves dlcs ###Code import mysql.connector import pandas as pd from mysql.connector import errorcode import random from datetime import datetime try: cnx = mysql.connector.connect( host="localhost", user="root", database='stum_for_you', passwd="" ) except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: print("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: print("Database does not exist") else: print(err) cursor = cnx.cursor() for auxiliar in range(0,70): #elegimos un dlc cursor.execute("SELECT COUNT(*) FROM dlcs") numdlcs = cursor.fetchone()[0] + 1 id_dlc = random.randrange(1,numdlcs) sql = """SELECT * FROM dlcs WHERE id_dlc = %s """ % (id_dlc) cursor.execute(sql) dlc = cursor.fetchone() #elegimos un proveedor cursor.execute("SELECT COUNT(*) FROM proveedor") numprov = cursor.fetchone()[0] + 1 id_proveedor = random.randrange(1,numprov) sql = """SELECT * FROM proveedor WHERE id_proveedor = %s """ % (id_proveedor) cursor.execute(sql) proveedor = cursor.fetchone() # añadimos a la tabla transacción compra elem = random.randrange(1,100) sql = "INSERT INTO transacciones_compra (precio_total, fecha_compra) VALUES (%s, %s)" descuento = random.randrange(1,10) /10 #print(descuento) preciodlc=int(dlc[1]*descuento) #fecha= aleatoriofecha inicio = datetime(2017, 1, 30) final = datetime(2020, 1, 1) fecha = inicio + (final - inicio) * random.random() val = (preciodlc * elem, fecha) cursor.execute(sql,val) cnx.commit() cursor.execute("SELECT MAX(id_transaccion) FROM transacciones_compra") id_transac = cursor.fetchone()[0] # añadimos clave #print(elem) for i in range (0, elem) : aux = True while aux : num1 = str(random.randrange(1,999999)) num2 = str(random.randrange(1,9999)) clave = num1.zfill(6) + '#' + num2.zfill(4) sql = """SELECT * FROM claves_dlc WHERE clave = %s """ % (clave) cursor.execute(sql) if(len(cursor.fetchall()) == 0) : aux = False sql = "INSERT INTO claves_dlc (clave, fecha_anexion, id_dlc) VALUES (%s, %s, %s)" val = (clave, fecha, id_dlc) cursor.execute(sql,val) cnx.commit() cursor.execute("SELECT MAX(id_clave) FROM claves_dlc") id_clave = cursor.fetchone()[0] # añadimos compra sql = "INSERT INTO compra_dlcs (id_proveedor, id_transaccion, id_claves_dlc, precio) VALUES (%s, %s, %s, %s)" val = (id_proveedor, id_transac, id_clave, preciodlc) cursor.execute(sql,val) cnx.commit() #print("proveedor :" , id_proveedor , "id_transac :" , id_transac ,"id_clave :" , id_clave , "precioDLCD :" # , preciodlc , "preciodlc :", dlc[3]) ###Output _____no_output_____
Coordinate Transformation Tutorial.ipynb
###Markdown Coordinate transformations and Error PropagationThe idea is to explore different options to propagate errors from observables ($\alpha$, $\delta$, $\varpi$, $\mu_{\alpha*}$, $\mu_\delta$ and $V_r$) to Cartesian Heliocentric Velocity. In between, we shall see also transformations to intermediate coordinate systems (basically Galactic spherical coordinates).We shall see three ways:- Astropy- PyGaia- GalPy _(soon)_- Python Code __(¡¡WATCH OUT!! Parallax error -> the Jacobian is asuming that distance = 1/plx)__For each one, we will average a thousand executions using _timeit_ package and obtain an estimated time cost. ###Code import timeit import numpy as np """ Test star coordinates & errors """ #J2000 ra=266.40506655 #right ascention in degrees dec=-28.93616241 #declination in degrees plx=4 #parallax in mas pmra=2 #proper motion in alpha* in mas/yr pmdec=3 #proper motion in delta in mas/yr vr=0 #radial velocity in km/s e_ra=0.1 #error in RA in mas e_dec=0.1 #error in DEC in mas e_plx=0.3 #error in plx in mas e_pmra=0.7 #error in PMRA in mas/yr e_pmdec=0.7 #error in PMDEC in mas/yr e_vr=0 #error in Vr in km/s """ Correct values based on NED calculator (ned.ipac.caltech.edu) l=0 degrees b=0 degrees d=250 pc (1/plx) """ ###Output _____no_output_____ ###Markdown 1) Astropy ###Code from astropy import units as u from astropy.coordinates import SkyCoord,Galactocentric from astropy.coordinates import HeliocentricTrueEcliptic,Galactic,LSR,HCRS star=SkyCoord(ra=ra*u.degree, dec=dec*u.degree, distance=(plx*u.mas).to(u.pc, u.parallax()), pm_ra_cosdec=pmra*u.mas/u.yr, pm_dec=pmdec*u.mas/u.yr, radial_velocity=vr*u.km/u.s) star """ Part I: change of coordinates """ #A: ICRS to Galactic star_GAL=star.transform_to(Galactic) tAstro=timeit.timeit(stmt='star.transform_to(Galactic)',globals=globals(),number=1000)/1000 print('Astropy\n\tStar at ({} deg:{} deg) in ICRS ->\ ({}:{}) in Gal.Coord.\n\nTime: {} seconds'.format(ra,de,star_GAL.l,star_GAL.b,tAstro)) #B: ICRS to Galactocentric (http://docs.astropy.org/en/stable/generated/examples/coordinates/plot_galactocentric-frame.html) star_cart = star.transform_to(Galactocentric) tAstro=timeit.timeit(stmt='star.transform_to(Galactocentric)',globals=globals(),number=1000)/1000 print(star_cart.x,star_cart.y,star_cart.z) print(star_cart.v_x,star_cart.v_y,star_cart.v_z) print('Time: {}'.format(tAstro)) """ Part II: error propagation """ #As far as I know, not available -in a suitable way- in version 2.02 ###Output _____no_output_____ ###Markdown 2) PyGaia ###Code import pygaia.astrometry.vectorastrometry as vecast from pygaia.astrometry.coordinates import CoordinateTransformation from pygaia.astrometry.coordinates import Transformations """ Part I: change of coordinates """ #A: ICRS to GAL #define the transformation ICRS2GAL=CoordinateTransformation(Transformations.ICRS2GAL) #use the methods to transform: first the position l,b=ICRS2GAL.transformSkyCoordinates(np.deg2rad(ra),np.deg2rad(dec)) tGaiaCoord=timeit.timeit(stmt='ICRS2GAL.transformSkyCoordinates(np.deg2rad(ra),np.deg2rad(dec))', globals=globals(),number=1000)/1000 #then the proper motions mul,mub=ICRS2GAL.transformProperMotions(np.deg2rad(ra),np.deg2rad(dec),pmra,pmdec) tGaiaPM=timeit.timeit(stmt='ICRS2GAL.transformProperMotions(np.deg2rad(ra),np.deg2rad(dec),pmra,pmdec)', globals=globals(),number=1000)/1000 print('PyGaia\n\tStar at ({} deg:{} deg) in ICRS -> ({} deg:{} deg) in Gal.Coord.\n\nTime: {} seconds'.format( ra,dec,np.rad2deg(l),np.rad2deg(b),tGaiaCoord)) print('PyGaia\n\tStar at ({} mas/yr:{} mas/yr) in ICRS -> ({} mas/yr:{} mas/yr) in Gal.Coord.\n\nTime: {} seconds'.format( pmra,pmdec,mul,mub,tGaiaPM)) #B: GAL to Helio-cartesian #to change to cartesian, we use the module 'vecast' x,y,z,u,v,w=vecast.astrometryToPhaseSpace(l,b,plx,mul,mub,vr) tGaia=timeit.timeit(stmt='vecast.astrometryToPhaseSpace(l,b,plx,mul,mub,vr)', globals=globals(),number=1000)/1000 print('PyGaia\n\tStar at ({} deg:{} deg:{} mas) in GAL -> ({} pc:{} pc:{} pc) in Heliocentric.Coord.\n\nTime:\ {} seconds'.format( np.rad2deg(l),np.rad2deg(b),plx,x,y,z,tGaia)) #A+B:ICRS to Heliocentric Cartesian #full transformation in one function def pygaiachange(ra,dec,plx,pmra,pmdec,vr): """ From observables in ICRS (angles in degrees, plx in mas, proper motion in mas/yr, los velocity in km/s) returns X,Y,Z (in pc) and U,V,W (in km/s).""" import pygaia.astrometry.vectorastrometry as vecast from pygaia.astrometry.coordinates import CoordinateTransformation from pygaia.astrometry.coordinates import Transformations ICRS2GAL=CoordinateTransformation(Transformations.ICRS2GAL) #GAL2ICRS=CoordinateTransformation(Transformations.GAL2ICRS) l,b=ICRS2GAL.transformSkyCoordinates(np.deg2rad(ra),np.deg2rad(dec)) mul,mub=ICRS2GAL.transformProperMotions(np.deg2rad(ra),np.deg2rad(dec),pmra,pmdec) return vecast.astrometryToPhaseSpace(l,b,plx,mul,mub,vr) x,y,z,u,v,w=pygaiachange(ra,dec,plx,pmra,pmdec,vr) tGaia=timeit.timeit(stmt='pygaiachange(ra,dec,plx,pmra,pmdec,vr)', globals=globals(),number=1000)/1000 print('PyGaia\n\tStar at ({} deg:{} deg:{} mas) in ICRS -> ({} pc:{} pc:{} pc) in Heliocentric.Coord.\n\nTime:\ {} seconds'.format( ra,dec,plx,x,y,z,tGaia)) print('PyGaia\n\tStar at ({} mas/yr:{} mas/yr:{} km/s) in ICRS -> ({} kms/s:{} km/s:{} km/s) in Heliocentric.Coord.\n\nTime:\ {} seconds'.format( pmra,pmdec,vr,u,v,w,tGaia)) """ Part II: error propagation (only rotations)""" """ Version 1.2 (December 2016) ++++++++++++++++++++ - Add method to CoordinateTransformation for the transformation of the full (5x5) covariance matrix of the astrometric parameters. - Add keyword to astrometric errors prediction functions that allows to specify an extended mission lifetime. + def transformCovarianceMatrix(self, phi, theta, covmat): + + Transform the astrometric covariance matrix to its representation in the new coordinate system. + + Parameters + ---------- + + phi - The longitude-like angle of the position of the source (radians). + theta - The latitude-like angle of the position of the source (radians). + covmat - Covariance matrix (5x5) of the astrometric parameters. + + Returns + ------- + + covmat_rot - Covariance matrix in its representation in the new coordinate system. + + + c, s = self._getJacobian(phi,theta) + jacobian = identity(5) + jacobian[0][0]=c + jacobian[1][1]=c + jacobian[3][3]=c + jacobian[4][4]=c + jacobian[0][1]=s + jacobian[1][0]=-s + jacobian[3][4]=s + jacobian[4][3]=-s + + return dot( dot(jacobian, covmat), jacobian.transpose() ) + def _getJacobian(self, phi, theta): Calculates the Jacobian for the transformation of the position errors and proper motion errors between coordinate systems. This Jacobian is also the rotation matrix for the transformation of proper motions. See section 1.5.3 of the Hipparcos Explanatory Volume 1 (equation 1.5.20). Parameters ---------- phi - The longitude-like angle of the position of the source (radians). theta - The latitude-like angle of the position of the source (radians). Returns ------- jacobian - The Jacobian matrix corresponding to (phi, theta) and the currently desired coordinate system transformation. p, q, r = normalTriad(phi, theta) # zRot = z-axis of new coordinate system expressed in terms of old system zRot = self.rotationMatrix[2,:] zRotAll = zRot if (p.ndim == 2): for i in range(p.shape[1]-1): zRotAll = vstack((zRotAll,zRot)) pRot = cross(zRotAll, transpose(r)) if (p.ndim == 2): normPRot = sqrt(diag(dot(pRot,transpose(pRot)))) for i in range(pRot.shape[0]): pRot[i,:] = pRot[i,:]/normPRot[i] else: pRot = pRot/norm(pRot) if (p.ndim == 2): return diag(dot(pRot,p)), diag(dot(pRot,q)) else: return dot(pRot,p), dot(pRot,q) """ #Since the transformation is nested inside the 'CoordinateTransformation' method, it is only available for #changes of coordinates defined in 'Transfromations' object. That is: ICRS<->GAL<->Ecliptic ICRS2GAL=CoordinateTransformation(Transformations.ICRS2GAL) help(ICRS2GAL.transformCovarianceMatrix) GALcovMatrix=ICRS2GAL.transformCovarianceMatrix(ra,dec,np.diag([e_ra,e_dec,e_plx,e_pmra,e_pmdec])) print(GALcovMatrix) ###Output [[ 0.1 0. 0. 0. 0. ] [ 0. 0.1 0. 0. 0. ] [ 0. 0. 0.3 0. 0. ] [ 0. 0. 0. 0.7 0. ] [ 0. 0. 0. 0. 0.7]] ###Markdown 3) Python Code ###Code from Jacobian import * """ Part I: change of coordinates """ #A: ICRS to Galactic #position l,b=radec2lb(np.deg2rad(ra),np.deg2rad(de)) tPythonCoord=timeit.timeit(stmt='radec2lb(ra,de)', globals=globals(),number=1000)/1000 #proper motions mul,mub=pmradec2lb(np.deg2rad(ra),np.deg2rad(de),l,b,pmra,pmdec) tPythonPM=timeit.timeit(stmt='pmradec2lb(np.deg2rad(ra),np.deg2rad(de),l,b,pmra,pmdec)', globals=globals(),number=1000)/1000 print('Python Code\n\tStar at ({} deg:{} deg) in ICRS -> ({} deg:{} deg) in Gal.Coord.\n\nTime: {} seconds'.format( ra,de,np.rad2deg(l),np.rad2deg(b),tPythonCoord)) print('Python\n\tStar at ({} mas/yr:{} mas/yr) in ICRS -> ({} kms/s:{} km/s) in Gal.Coord.\n\nTime:\ {} seconds'.format( pmra,pmdec,mul,mub,tPythonPM)) """ Part II: error propagation """ #From ra,dec,plx,pmra,pmdec,vr to l,b,plx,U,V,W J6=Jacob([ra,de,plx,pmra,pmdec,0]) J4=Jacob4([ra,de,plx,pmra,pmdec,0]) print(J6) print(J4) tJ6=timeit.timeit(stmt='Jacob([ra,de,plx,pmra,pmdec,0])', globals=globals(),number=1000)/1000 tJ4=timeit.timeit(stmt='Jacob4([ra,de,plx,pmra,pmdec,0])', globals=globals(),number=1000)/1000 print('Time [s]: ',tJ6,'/',tJ4) print('Time to process Error Propagation: ',tJ4) print('\nOriginal Covariance Matrix: ') cov=np.diag([e_plx,e_pmra,e_pmdec,e_vr])**2 print(cov) print('\nPropagated Covariance Matrix: ') new_cov=J4@[email protected] print(np.round(new_cov,2)) ###Output Time to process Error Propagation: 9.28001142156063e-05 Original Covariance Matrix: [[0.09 0. 0. 0. ] [0. 0.49 0. 0. ] [0. 0. 0.49 0. ] [0. 0. 0. 0. ]] Propagated Covariance Matrix: [[ 0.09 0. -0.1 0. ] [ 0. 0. -0. 0. ] [-0.1 -0. 0.79 -0. ] [ 0. 0. -0. 0.69]]
homework_3-RNN/hw3_1(20206080).ipynb
###Markdown Homework 3 Problem 1 In this homework, you'll learn how to model the sentences with recurrent neural networks(RNNs). We'll provide you with basic skeleton codes for preprocessing sequences and performing sentimental analysis with RNNs. However, provided codes can be improved with some simple modifications. The purpose of this homework is to implement several advanced techniques for improving the performance of vanilla RNNs.First, we'll import required libraries. ###Code !pip install torchtext !pip install spacy !python -m spacy download en import random import time import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.optim as optim from torchtext import data from torchtext import datasets ###Output Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (0.3.1) Requirement already satisfied: torch in /usr/local/lib/python3.6/dist-packages (from torchtext) (1.5.0+cu101) Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext) (4.41.1) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext) (2.23.0) Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from torchtext) (1.18.4) Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from torch->torchtext) (0.16.0) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext) (2020.4.5.1) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext) (1.24.3) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext) (2.9) Requirement already satisfied: spacy in /usr/local/lib/python3.6/dist-packages (2.2.4) Requirement already satisfied: wasabi<1.1.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (0.6.0) Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from spacy) (46.3.0) Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy) (2.0.3) Requirement already satisfied: numpy>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (1.18.4) Requirement already satisfied: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (2.23.0) Requirement already satisfied: srsly<1.1.0,>=1.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy) (1.0.2) Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy) (3.0.2) Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (1.0.2) Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (4.41.1) Requirement already satisfied: thinc==7.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (7.4.0) Requirement already satisfied: catalogue<1.1.0,>=0.0.7 in /usr/local/lib/python3.6/dist-packages (from spacy) (1.0.0) Requirement already satisfied: plac<1.2.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy) (1.1.3) Requirement already satisfied: blis<0.5.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (0.4.1) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (1.24.3) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (2.9) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (2020.4.5.1) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (3.0.4) Requirement already satisfied: importlib-metadata>=0.20; python_version < "3.8" in /usr/local/lib/python3.6/dist-packages (from catalogue<1.1.0,>=0.0.7->spacy) (1.6.0) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata>=0.20; python_version < "3.8"->catalogue<1.1.0,>=0.0.7->spacy) (3.1.0) Requirement already satisfied: en_core_web_sm==2.2.5 from https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.5/en_core_web_sm-2.2.5.tar.gz#egg=en_core_web_sm==2.2.5 in /usr/local/lib/python3.6/dist-packages (2.2.5) Requirement already satisfied: spacy>=2.2.2 in /usr/local/lib/python3.6/dist-packages (from en_core_web_sm==2.2.5) (2.2.4) Requirement already satisfied: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (2.23.0) Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (3.0.2) Requirement already satisfied: srsly<1.1.0,>=1.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (1.0.2) Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (2.0.3) Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (46.3.0) Requirement already satisfied: numpy>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (1.18.4) Requirement already satisfied: blis<0.5.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (0.4.1) Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (1.0.2) Requirement already satisfied: plac<1.2.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (1.1.3) Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (4.41.1) Requirement already satisfied: thinc==7.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (7.4.0) Requirement already satisfied: catalogue<1.1.0,>=0.0.7 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (1.0.0) Requirement already satisfied: wasabi<1.1.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (0.6.0) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_sm==2.2.5) (2020.4.5.1) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_sm==2.2.5) (1.24.3) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_sm==2.2.5) (2.9) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_sm==2.2.5) (3.0.4) Requirement already satisfied: importlib-metadata>=0.20; python_version < "3.8" in /usr/local/lib/python3.6/dist-packages (from catalogue<1.1.0,>=0.0.7->spacy>=2.2.2->en_core_web_sm==2.2.5) (1.6.0) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata>=0.20; python_version < "3.8"->catalogue<1.1.0,>=0.0.7->spacy>=2.2.2->en_core_web_sm==2.2.5) (3.1.0) ✔ Download and installation successful You can now load the model via spacy.load('en_core_web_sm') ✔ Linking successful /usr/local/lib/python3.6/dist-packages/en_core_web_sm --> /usr/local/lib/python3.6/dist-packages/spacy/data/en You can now load the model via spacy.load('en') ###Markdown PreprocessingFor your convenience, we will provide you with the basic preprocessing steps for handling IMDB movie dataset. For more information, see https://pytorch.org/text/ ###Code TEXT = data.Field(tokenize='spacy', include_lengths=True) LABEL = data.LabelField(dtype=torch.float) train_data, test_data = datasets.IMDB.splits(TEXT, LABEL) train_data, valid_data = train_data.split(random_state=random.seed(1234)) print('Number of training examples: {:d}'.format(len(train_data))) print('NUmber of validation examples: {:d}'.format(len(valid_data))) print('Number of testing examples: {:d}'.format(len(test_data))) TEXT.build_vocab(train_data, max_size=25000) LABEL.build_vocab(train_data) # Tokens include <unk> and <pad> print('Unique tokens in text vocabulary: {:d}'.format(len(TEXT.vocab))) # Label is either positive or negative print('Unique tokens in label vocabulary: {:d}'.format(len(LABEL.vocab))) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') batch_size = 64 train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits( (train_data, valid_data, test_data), batch_size=batch_size, sort_within_batch=False, device=device) print(device) # Note that the sequence is padded with <PAD>(=1) tokens after the sequence ends. for batch in train_iterator: text, text_length = batch.text break print(text[:, -1]) print(text[-10:, -1]) print(text_length[-1]) # We will re-load dataset since we already loaded one batch in above cell. device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') batch_size = 64 train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits( (train_data, valid_data, test_data), batch_size=batch_size, sort_within_batch=True, device=device) ###Output _____no_output_____ ###Markdown ProblemsWe will provide you with skeleton codes for training RNNs below. Run this code and you'll notice that the training / validation performance is not better than random guessing (50\~60%).In this homework, you'll have to improve the performance of this network above 80% with several techniques commonly used in RNNs. **Please provide your answer in your report and attach notebook file which contains source code for below techniques.**(a) (3pt) Look at the shape of tensor `hidden` and `embedded`. Have you noticed what is the problem? Explain what is the issue and report the test performance when you fix the issue. (Hint: This is related to the length of sequences. See how sequence is padded. You may use `nn.utils.rnn.pack_padded_sequence`.)(b) (3pt) Use different architectures, such as LSTM or GRU, and report the test performance. "Do not" change hyperparameters from (a), such as batch_size, hidden_dim,...Now, try to use below techniques to further improve the performance of provided source codes. Compare the test performance of each component with/without it.(c) (1pt) For now, the number of layers in RNN is 1. Try to stack more layers, up to 3.(d) (1pt) Use bidirectional RNNs.(e) (1pt) Use dropout for regularization with stacked layers (recommended: 3 layers and dropout rate 0.5).(f) (1pt) Finally, apply all techniques and have an enough time to play with introduced techniques (e.g., changing hyperparameters, train more epochs, try other techniques you know, ...). Report the final test performance with your implementation and hyperparameter choice. Please note that this is not a competition assignment. We will not evaluate your assignment strictly! Simple RNN architecture ###Code class SimpleRNN(nn.Module): def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim, pad_idx): super(SimpleRNN, self).__init__() self.embedding = nn.Embedding(input_dim, embedding_dim, padding_idx=pad_idx) self.rnn = nn.RNN(embedding_dim, hidden_dim) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, text, text_lengths): embedded = self.embedding(text) output, hidden = self.rnn(embedded) hidden = hidden[-1] return self.fc(hidden.squeeze(0)) ###Output _____no_output_____ ###Markdown Simple fixed RNN architecture ###Code class FixedSimpleRNN(nn.Module): def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim, pad_idx): super(FixedSimpleRNN, self).__init__() self.embedding = nn.Embedding(input_dim, embedding_dim, padding_idx=pad_idx) self.rnn = nn.RNN(embedding_dim, hidden_dim) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, text, text_lengths): # text.shape [padded_sentence_size, batch_size] embedded = self.embedding(text) # embedded.shape [padded_sentence_size, batch_size, embedding_dim] packed_seq = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths, enforce_sorted=False) output, hidden = self.rnn(packed_seq) # hidden.shape [num_layers * num_directions, batch_size, hidden_size], num_layers * num_directions = 1 return self.fc(hidden.squeeze(0)) # hidden.squeeze(0) [batch_size, hidden_size] ###Output _____no_output_____ ###Markdown LSTM RNN architecture ###Code class LSTMRNN(nn.Module): def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim, pad_idx): super(LSTMRNN, self).__init__() self.embedding = nn.Embedding(input_dim, embedding_dim, padding_idx=pad_idx) self.lstm = nn.LSTM(embedding_dim, hidden_dim) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, text, text_lengths): embedded = self.embedding(text) packed_seq = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths, enforce_sorted=False) output, (hn, cn) = self.lstm(packed_seq) return self.fc(hn.squeeze(0)) ###Output _____no_output_____ ###Markdown GRU RNN architecture ###Code class GRURNN(nn.Module): def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim, pad_idx): super(GRURNN, self).__init__() self.embedding = nn.Embedding(input_dim, embedding_dim, padding_idx=pad_idx) self.gru = nn.GRU(embedding_dim, hidden_dim) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, text, text_lengths): embedded = self.embedding(text) #[sentect len,batch size,embedding dim] packed_seq = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths, enforce_sorted=False) output, hidden = self.gru(packed_seq) return self.fc(hidden.squeeze(0)) ###Output _____no_output_____ ###Markdown Stacked layers and Dropout RNN architecture ###Code class StackedRNN(nn.Module): def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim, pad_idx, num_layers=1, dropout=0): if num_layers<=0: raise Exception('num_layers must be major than 0') super(StackedRNN, self).__init__() self.embedding = nn.Embedding(input_dim, embedding_dim, padding_idx=pad_idx) self.rnn = nn.RNN(embedding_dim, hidden_dim, num_layers=num_layers, dropout=dropout) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, text, text_lengths): embedded = self.embedding(text) packed_seq = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths, enforce_sorted=False) output, hidden = self.rnn(packed_seq) hidden = hidden[-1] return self.fc(hidden) ###Output _____no_output_____ ###Markdown Bidirectional RNN architecture ###Code class BidirectionalRNN(nn.Module): def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim, pad_idx): super(BidirectionalRNN, self).__init__() self.embedding = nn.Embedding(input_dim, embedding_dim, padding_idx=pad_idx) self.rnn = nn.RNN(embedding_dim, hidden_dim, bidirectional=True) self.fc = nn.Linear(hidden_dim*2, output_dim) def forward(self, text, text_lengths): embedded = self.embedding(text) packed_seq = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths, enforce_sorted=False) output, hidden = self.rnn(packed_seq) conc_hidden = torch.cat((hidden[0], hidden[1]), 1) return self.fc(conc_hidden) ###Output _____no_output_____ ###Markdown Custom RNN architecture ###Code class CustomRNN(nn.Module): def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim, pad_idx): super(CustomRNN, self).__init__() self.embedding = nn.Embedding(input_dim, embedding_dim, padding_idx=pad_idx) self.gru = nn.GRU(embedding_dim, hidden_dim, bidirectional=True) self.fc = nn.Linear(hidden_dim*2, output_dim) def forward(self, text, text_lengths): embedded = self.embedding(text) #[sentect len,batch size,embedding dim] packed_seq = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths, enforce_sorted=False) output, hn = self.gru(packed_seq) conc_hidden = torch.cat([hn[0], hn[1]], 1) return self.fc(conc_hidden) ###Output _____no_output_____ ###Markdown Train ###Code def binary_accuracy(preds, y): rounded_preds = torch.round(torch.sigmoid(preds)) correct = (rounded_preds == y).float() acc = correct.sum() / len(correct) return acc input_dim = len(TEXT.vocab) embedding_dim = 100 hidden_dim = 128 output_dim = 1 num_epochs = 10 val_iter = 1 pad_idx = TEXT.vocab.stoi[TEXT.pad_token] def train(model, pth_path, input_dim = input_dim, embedding_dim = embedding_dim, hidden_dim = hidden_dim, output_dim = output_dim, num_epochs = num_epochs, val_iter = val_iter, pad_idx = pad_idx, lr=0.001): optimizer = optim.Adam(model.parameters(), lr=lr) criterion = nn.BCEWithLogitsLoss().to(device) model = model.to(device) model.train() train_loss = list() train_acc = list() val_loss = list() val_acc = list() best_valid_loss = float('inf') for epoch in range(num_epochs): running_loss = 0 running_acc = 0 start_time = time.time() for batch in train_iterator: text, text_lengths = batch.text predictions = model(text, text_lengths).squeeze(-1) loss = criterion(predictions, batch.label) acc = binary_accuracy(predictions, batch.label) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() running_acc += acc.item() running_loss /= len(train_iterator) running_acc /= len(train_iterator) train_loss.append(running_loss) train_acc.append(running_acc) if epoch % val_iter == 0: model.eval() valid_loss = 0 valid_acc = 0 with torch.no_grad(): for batch in valid_iterator: text, text_lengths = batch.text eval_predictions = model(text, text_lengths).squeeze(1) valid_loss += criterion(eval_predictions, batch.label).item() valid_acc += binary_accuracy(eval_predictions, batch.label).item() model.train() valid_loss /= len(valid_iterator) valid_acc /= len(valid_iterator) val_loss.append(valid_loss) val_acc.append(valid_acc) if valid_loss < best_valid_loss: best_valid_loss = valid_loss torch.save(model.state_dict(), pth_path) training_time = time.time() - start_time print('#####################################') print('Epoch {:d} | Training Time {:.1f}s'.format(epoch+1, training_time)) print('Train Loss: {:.4f}, Train Acc: {:.2f}%'.format(running_loss, running_acc*100)) if epoch % val_iter == 0: print('Valid Loss: {:.4f}, Valid Acc: {:.2f}%'.format(valid_loss, valid_acc*100)) return train_loss, train_acc, val_loss, val_acc def load_model_test_performance(model, model_path): model.load_state_dict(torch.load(model_path)) criterion = nn.BCEWithLogitsLoss().to(device) model.eval() test_loss, test_acc = 0, 0 with torch.no_grad(): for batch in test_iterator: text, text_lengths = batch.text test_preds = model(text, text_lengths).squeeze(1) test_loss += criterion(test_preds, batch.label).item() test_acc += binary_accuracy(test_preds, batch.label).item() test_loss /= len(test_iterator) test_acc /= len(test_iterator) print('Test Loss: {:.4f}, Test Acc: {:.2f}%'.format(test_loss, test_acc*100)) def plot(train_loss, train_acc, val_loss, val_acc): plt.figure(figsize=(10, 5)) plt.title("Training plot") plt.xlabel("epoch") plt.ylabel("loss") plt.grid() plt.plot(range(1, len(train_loss)+1), train_loss, label="training loss") plt.plot(range(1, len(train_acc)+1), train_acc, label="training accuracy") plt.plot(range(1, len(val_loss)+1), val_loss, label="validation loss") plt.plot(range(1, len(val_acc)+1), val_acc, label="validation accuracy") plt.legend() plt.show() model = SimpleRNN(input_dim, embedding_dim, hidden_dim, output_dim, pad_idx) train_loss, train_acc, val_loss, val_acc = train(model, './simplernn.pth') plot(train_loss, train_acc, val_loss, val_acc) load_model_test_performance(model, './simplernn.pth') model = FixedSimpleRNN(input_dim, embedding_dim, hidden_dim, output_dim, pad_idx) train_loss, train_acc, val_loss, val_acc = train(model, './fixedsimplernn.pth') plot(train_loss, train_acc, val_loss, val_acc) load_model_test_performance(model, './fixedsimplernn.pth') model = LSTMRNN(input_dim, embedding_dim, hidden_dim, output_dim, pad_idx) train_loss, train_acc, val_loss, val_acc = train(model, './lstmrnn.pth') plot(train_loss, train_acc, val_loss, val_acc) load_model_test_performance(model, './lstmrnn.pth') model = GRURNN(input_dim, embedding_dim, hidden_dim, output_dim, pad_idx) train_loss, train_acc, val_loss, val_acc = train(model, './grurnn.pth') plot(train_loss, train_acc, val_loss, val_acc) load_model_test_performance(model, './grurnn.pth') model = StackedRNN(input_dim, embedding_dim, hidden_dim, output_dim, pad_idx, num_layers=3) train_loss, train_acc, val_loss, val_acc = train(model, './stackedrnn.pth') plot(train_loss, train_acc, val_loss, val_acc) load_model_test_performance(model, './stackedrnn.pth') model = BidirectionalRNN(input_dim, embedding_dim, hidden_dim, output_dim, pad_idx) train_loss, train_acc, val_loss, val_acc = train(model, './birnn.pth') plot(train_loss, train_acc, val_loss, val_acc) load_model_test_performance(model, './birnn.pth') model = StackedRNN(input_dim, embedding_dim, hidden_dim, output_dim, pad_idx, num_layers=3, dropout=0.5) train_loss, train_acc, val_loss, val_acc = train(model, './droprnn.pth') plot(train_loss, train_acc, val_loss, val_acc) load_model_test_performance(model, './droprnn.pth') model = CustomRNN(input_dim, embedding_dim, hidden_dim, output_dim, pad_idx) train_loss, train_acc, val_loss, val_acc = train(model, './customrnn.pth', hidden_dim = 256, num_epochs = 20, lr=0.0005) plot(train_loss, train_acc, val_loss, val_acc) load_model_test_performance(model, './customrnn.pth') ###Output ##################################### Epoch 1 | Training Time 23.0s Train Loss: 0.6328, Train Acc: 62.62% Valid Loss: 0.5320, Valid Acc: 73.54% ##################################### Epoch 2 | Training Time 23.0s Train Loss: 0.4859, Train Acc: 76.45% Valid Loss: 0.4646, Valid Acc: 77.77% ##################################### Epoch 3 | Training Time 22.8s Train Loss: 0.3996, Train Acc: 82.08% Valid Loss: 0.4029, Valid Acc: 82.12% ##################################### Epoch 4 | Training Time 22.9s Train Loss: 0.3056, Train Acc: 86.95% Valid Loss: 0.4008, Valid Acc: 82.10% ##################################### Epoch 5 | Training Time 22.9s Train Loss: 0.2433, Train Acc: 90.11% Valid Loss: 0.4393, Valid Acc: 81.55% ##################################### Epoch 6 | Training Time 22.8s Train Loss: 0.1941, Train Acc: 92.38% Valid Loss: 0.3832, Valid Acc: 84.43% ##################################### Epoch 7 | Training Time 23.0s Train Loss: 0.1456, Train Acc: 94.64% Valid Loss: 0.3815, Valid Acc: 85.38% ##################################### Epoch 8 | Training Time 22.8s Train Loss: 0.1063, Train Acc: 96.33% Valid Loss: 0.4253, Valid Acc: 85.37% ##################################### Epoch 9 | Training Time 22.8s Train Loss: 0.0804, Train Acc: 97.35% Valid Loss: 0.4920, Valid Acc: 85.18% ##################################### Epoch 10 | Training Time 22.8s Train Loss: 0.0442, Train Acc: 98.71% Valid Loss: 0.5386, Valid Acc: 85.89% ##################################### Epoch 11 | Training Time 22.9s Train Loss: 0.0309, Train Acc: 99.14% Valid Loss: 0.6312, Valid Acc: 85.98% ##################################### Epoch 12 | Training Time 22.9s Train Loss: 0.0231, Train Acc: 99.40% Valid Loss: 0.7306, Valid Acc: 85.14% ##################################### Epoch 13 | Training Time 22.8s Train Loss: 0.0142, Train Acc: 99.65% Valid Loss: 0.6875, Valid Acc: 86.03% ##################################### Epoch 14 | Training Time 22.8s Train Loss: 0.0322, Train Acc: 98.86% Valid Loss: 0.6284, Valid Acc: 78.69% ##################################### Epoch 15 | Training Time 22.9s Train Loss: 0.0585, Train Acc: 97.89% Valid Loss: 0.6660, Valid Acc: 84.27% ##################################### Epoch 16 | Training Time 22.8s Train Loss: 0.0294, Train Acc: 99.02% Valid Loss: 0.6735, Valid Acc: 85.18% ##################################### Epoch 17 | Training Time 22.8s Train Loss: 0.0056, Train Acc: 99.93% Valid Loss: 0.7342, Valid Acc: 86.49% ##################################### Epoch 18 | Training Time 22.6s Train Loss: 0.0016, Train Acc: 99.99% Valid Loss: 0.7694, Valid Acc: 86.41% ##################################### Epoch 19 | Training Time 22.7s Train Loss: 0.0009, Train Acc: 100.00% Valid Loss: 0.8229, Valid Acc: 86.51% ##################################### Epoch 20 | Training Time 22.7s Train Loss: 0.0007, Train Acc: 100.00% Valid Loss: 0.8564, Valid Acc: 86.73%
content/docs/data-science-with-python/labs/python-basics/3-2-Loops.ipynb
###Markdown LOOPS IN PYTHON Table of ContentsFor LoopsWhile Loops Estimated Time Needed: 15 min For Loops Sometimes, you might want to repeat a given operation many times. Repeated executions like this are performed by **loops**. We will look at two types of loops, **for** loops and **while** loops.Before we discuss loops lets discuss the **range** object. It is helpful to think of the range object as an ordered list. For now, let's look at the simplest case. If we would like to generate a sequence that contains three elements ordered from 0 to 2 we simply use the following command: ###Code range(3) ###Output _____no_output_____ ###Markdown :Example of range function. The `for` loopThe **for** loop enables you to execute a code block multiple times. For example, you would use this if you would like to print out every element in a list. Let's try to use a **for** loop to print all the years presented in the list **dates**: This can be done as follows: ###Code dates = [1982,1980,1973] N=len(dates) for i in range(N): print(dates[i]) ###Output _____no_output_____ ###Markdown The code in the indent is executed **N** times, each time the value of **i** is increased by 1 for every execution. The statement executed is to** print** out the value in the list at index **i** as shown here: Example of printing out the elements of a list. In this example we can print out a sequence of numbers from 0 to 7: ###Code for i in range(0,8): print(i) ###Output _____no_output_____ ###Markdown Write a for loop the prints out all the element between -5 and 5 using the range function. Double-click __here__ for the solution.<!-- for i in range(-5,6): print(i) --> In Python we can directly access the elements in the list as follows: ###Code for year in dates: print(year) ###Output _____no_output_____ ###Markdown For each iteration, the value of the variable **years** behaves like the value of **dates[i]** in the first example: Example of a for loop Print the elements of the following list:**Genres=[ 'rock', 'R&B', 'Soundtrack' 'R&B', 'soul', 'pop']**Make sure you follow Python conventions. Double-click __here__ for the solution.<!-- Genres=[ 'rock', 'R&B', 'Soundtrack' 'R&B', 'soul', 'pop']for Genre in Genres: print(Genre) --> We can change the elements in a list: ###Code squares=['red','yellow','green','purple','blue '] for i in range(0,5): print("Before square ",i, 'is', squares[i]) squares[i]='wight' print("After square ",i, 'is', squares[i]) ###Output _____no_output_____ ###Markdown Write a for loop that prints out the following list: squares=['red','yellow','green','purple','blue ']: Double-click __here__ for the solution.<!-- squares=['red','yellow','green','purple','blue ']for square in squares: print(square) --> We can access the index and the elements of a list as follows: ###Code squares=['red','yellow','green','purple','blue '] for i,square in enumerate(squares): print(i,square) ###Output _____no_output_____ ###Markdown While Loops As you can see, the **for** loop is used for a controlled flow of repetition. However, what if we don't know when we want to stop the loop? What if we want to keep executing a code block until a certain condition is met? The **while** loop exists as a tool for repeated execution based on a condition. The code block will keep being executed until the given logical condition returns a **False** boolean value. Let’s say we would like to iterate through list **dates** and stop at the year 1973, then print out the number of iterations. This can be done with the following block of code: ###Code dates = [1982,1980,1973,2000] i=0; year=0 while(year!=1973): year=dates[i] i=i+1 print(year) print("it took ", i ,"repetitions to get out of loop") ###Output _____no_output_____ ###Markdown A while loop iterates merely until the condition in the argument is not met, as shown in the following figure : An Example of indices as negative numbers Write a while loop to display the values of the Rating of an album playlist stored in the list “PlayListRatings”. If the score is less than 6, exit the loop. The list “PlayListRatings” is given by: PlayListRatings = [10,9.5,10, 8,7.5, 5,10, 10]: ###Code PlayListRatings = [10,9.5,10,8,7.5,5,10,10] ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- PlayListRatings = [10,9.5,10, 8,7.5, 5,10, 10]i=0;Rating=100while(Rating>6): Rating=PlayListRatings[i] i=i+1 print(Rating) --> Write a while loop to copy the strings 'orange' of the list 'squares' to the list 'new_squares'. Stop and exit the loop if the value on the list is not 'orange': ###Code squares=['orange','orange','purple','blue ','orange'] new_squares=[]; ###Output _____no_output_____
_notebooks/2021-11-11-nb_chef_recipe_cs_summarization.ipynb
###Markdown Chef Recipe | Extractive summarization with Azure Text Analytics> Use Chef to create summaries with Azure- toc: true- badges: true- comments: true- categories: [recipe, azuretextanalytics, azure, python, jupyter]- hide: false- image: images/social/recipe_cs_summary_text_horizontal.svg ---- Modules Chef{% gist 1bc116f05d09e598a1a2dcfbb0e2fc22 chef.py %} Ingredients{% gist 5c75b7cdea330d15dcd93adbb08648c3 az_cs_summarization.py %} Call graph![Call graph](images/recipe_cs_summary_text_horizontal.svg) ---- Configuration Prerequisites:- Add the .env file in the same folder of the notebook Parameters ###Code gist_user = 'davidefornelli' gist_chef_id = '1bc116f05d09e598a1a2dcfbb0e2fc22' gist_ingredients_id = '5c75b7cdea330d15dcd93adbb08648c3' ingredients_to_import = [ (gist_ingredients_id, 'az_cs_summarization.py') ] texts = [ ''' A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations automatically. Modern computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. A computer system is a "complete" computer that includes the hardware, operating system (main software), and peripheral equipment needed and used for "full" operation. This term may also refer to a group of computers that are linked and function together, such as a computer network or computer cluster. A broad range of industrial and consumer products use computers as control systems. Simple special-purpose devices like microwave ovens and remote controls are included, as are factory devices like industrial robots and computer-aided design, as well as general-purpose devices like personal computers and mobile devices like smartphones. Computers power the Internet, which links hundreds of millions of other computers and users. Early computers were meant to be used only for calculations. Simple manual instruments like the abacus have aided people in doing calculations since ancient times. Early in the Industrial Revolution, some mechanical devices were built to automate long tedious tasks, such as guiding patterns for looms. More sophisticated electrical machines did specialized analog calculations in the early 20th century. The first digital electronic calculating machines were developed during World War II. The first semiconductor transistors in the late 1940s were followed by the silicon-based MOSFET (MOS transistor) and monolithic integrated circuit (IC) chip technologies in the late 1950s, leading to the microprocessor and the microcomputer revolution in the 1970s. The speed, power and versatility of computers have been increasing dramatically ever since then, with transistor counts increasing at a rapid pace (as predicted by Moore's law), leading to the Digital Revolution during the late 20th to early 21st centuries. Conventionally, a modern computer consists of at least one processing element, typically a central processing unit (CPU) in the form of a microprocessor, along with some type of computer memory, typically semiconductor memory chips. The processing element carries out arithmetic and logical operations, and a sequencing and control unit can change the order of operations in response to stored information. Peripheral devices include input devices (keyboards, mice, joystick, etc.), output devices (monitor screens, printers, etc.), and input/output devices that perform both functions (e.g., the 2000s-era touchscreen). Peripheral devices allow information to be retrieved from an external source and they enable the result of operations to be saved and retrieved. ''' ] ###Output _____no_output_____ ###Markdown Configure environment ###Code %pip install httpimport python-dotenv ###Output Requirement already satisfied: httpimport in /home/daforne/repos/github/davidefornelli/cookbook/.venv/lib/python3.7/site-packages (0.7.2) Requirement already satisfied: python-dotenv in /home/daforne/repos/github/davidefornelli/cookbook/.venv/lib/python3.7/site-packages (0.19.2) Note: you may need to restart the kernel to use updated packages. ###Markdown Import chef ###Code import httpimport with httpimport.remote_repo( ['chef'], f"https://gist.githubusercontent.com/{gist_user}/{gist_chef_id}/raw" ): import chef ###Output _____no_output_____ ###Markdown Import ingredients ###Code def ingredients_import(ingredients): for ingredient in ingredients: mod, package = chef.process_gist_ingredient( gist_id=ingredient[0], gist_file=ingredient[1], gist_user=gist_user ) globals()[package] = mod ingredients_import(ingredients=ingredients_to_import) ###Output _____no_output_____ ###Markdown Extract summaries ###Code import os from dotenv import load_dotenv load_dotenv() # Apply summarization summary_text = az_cs_summarization.summarize( texts=texts, cs_endpoint=os.environ['CS_TEXTANALYTICS_ENDPOINT'], cs_key=os.environ['CS_TEXTANALYTICS_KEY'], language='en' ) ###Output _____no_output_____ ###Markdown Results ###Code for sx in summary_text: for s in sx.sentences: print(s.text) ###Output A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations automatically. These programs enable computers to perform a wide range of tasks. A broad range of industrial and consumer products use computers as control systems.
macro_benchmark/SSD_Tensorflow/notebooks/ssd_notebook.ipynb
###Markdown SSD 300 ModelThe SSD 300 network takes 300x300 image inputs. In order to feed any image, the latter is resize to this input shape (i.e.`Resize.WARP_RESIZE`). Note that even though it may change the ratio width / height, the SSD model performs well on resized images (and it is the default behaviour in the original Caffe implementation).SSD anchors correspond to the default bounding boxes encoded in the network. The SSD net output provides offset on the coordinates and dimensions of these anchors. ###Code # Input placeholder. net_shape = (300, 300) data_format = 'NHWC' img_input = tf.placeholder(tf.uint8, shape=(None, None, 3)) # Evaluation pre-processing: resize to SSD net shape. image_pre, labels_pre, bboxes_pre, bbox_img = ssd_vgg_preprocessing.preprocess_for_eval( img_input, None, None, net_shape, data_format, resize=ssd_vgg_preprocessing.Resize.WARP_RESIZE) image_4d = tf.expand_dims(image_pre, 0) # Define the SSD model. reuse = True if 'ssd_net' in locals() else None ssd_net = ssd_vgg_300.SSDNet() with slim.arg_scope(ssd_net.arg_scope(data_format=data_format)): predictions, localisations, _, _ = ssd_net.net(image_4d, is_training=False, reuse=reuse) # Restore SSD model. ckpt_filename = '../checkpoints/ssd_300_vgg.ckpt' # ckpt_filename = '../checkpoints/VGG_VOC0712_SSD_300x300_ft_iter_120000.ckpt' isess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(isess, ckpt_filename) # SSD default anchor boxes. ssd_anchors = ssd_net.anchors(net_shape) ###Output _____no_output_____ ###Markdown Post-processing pipelineThe SSD outputs need to be post-processed to provide proper detections. Namely, we follow these common steps:* Select boxes above a classification threshold;* Clip boxes to the image shape;* Apply the Non-Maximum-Selection algorithm: fuse together boxes whose Jaccard score > threshold;* If necessary, resize bounding boxes to original image shape. ###Code # Main image processing routine. def process_image(img, select_threshold=0.5, nms_threshold=.45, net_shape=(300, 300)): # Run SSD network. rimg, rpredictions, rlocalisations, rbbox_img = isess.run([image_4d, predictions, localisations, bbox_img], feed_dict={img_input: img}) # Get classes and bboxes from the net outputs. rclasses, rscores, rbboxes = np_methods.ssd_bboxes_select( rpredictions, rlocalisations, ssd_anchors, select_threshold=select_threshold, img_shape=net_shape, num_classes=21, decode=True) rbboxes = np_methods.bboxes_clip(rbbox_img, rbboxes) rclasses, rscores, rbboxes = np_methods.bboxes_sort(rclasses, rscores, rbboxes, top_k=400) rclasses, rscores, rbboxes = np_methods.bboxes_nms(rclasses, rscores, rbboxes, nms_threshold=nms_threshold) # Resize bboxes to original image shape. Note: useless for Resize.WARP! rbboxes = np_methods.bboxes_resize(rbbox_img, rbboxes) return rclasses, rscores, rbboxes # Test on some demo image and visualize output. path = '../demo/' image_names = sorted(os.listdir(path)) img = mpimg.imread(path + image_names[-5]) rclasses, rscores, rbboxes = process_image(img) # visualization.bboxes_draw_on_img(img, rclasses, rscores, rbboxes, visualization.colors_plasma) visualization.plt_bboxes(img, rclasses, rscores, rbboxes) ###Output _____no_output_____
ReproducingMLpipelines/Paper1/DataPreprocessing.ipynb
###Markdown Load and transform dataset _**(a)**_. Install Bioconductor biocLite package in order to access the golubEsets library. [golubEsets](https://bioconductor.org/packages/release/data/experiment/manuals/golubEsets/man/golubEsets.pdf) contains the raw data used by Todd Golub in the original paper. ###Code ## Most code is commented in this cell since it is unnecessary and time-consuming to run it everytime. #options(repos='http://cran.rstudio.com/') #source("http://bioconductor.org/biocLite.R") #biocLite("golubEsets") suppressMessages(library(golubEsets)) ###Output _____no_output_____ ###Markdown _**(b)**_. Load the training, testing data from library golubEsets. Also transpose the data to make observations as rows. ###Code #Training data predictor and response data(Golub_Train) golub_train_p = t(exprs(Golub_Train)) golub_train_r =pData(Golub_Train)[, "ALL.AML"] #Testing data predictor data(Golub_Test) golub_test_p = t(exprs(Golub_Test)) golub_test_r = pData(Golub_Test)[, "ALL.AML"] #Show summary rbind(Train = dim(golub_train_p), Test = dim(golub_test_p)) cbind(Train = table(golub_train_r),Test = table(golub_test_r)) ###Output _____no_output_____ ###Markdown _**(c)**_. Perform data preprocessing: thresholding, filtering, logarithmic transformation and normalization as in the paper. The predictor is reduced to 3051 after preprocessing.Most details of step 1(c) are not included in the original paper. We combine the information in paper 2, paper 9 and also a reproduce work done by [Robert Gentleman](http://dept.stat.lsa.umich.edu/~ionides/810/gentleman05.pdf), who confirmed in his work the procedure of thresholding and filtering is the same as in the original paper. One also need to notice that we should use the mean and standard deviation in the training data to normalize the testing data as mentioned in the Appendix A of the paper 2. At the end of this step, there are 3051 predictors left. The resulting dataset are same as the $72\times 3051$ Golub dataset available online. ###Code # Thresholding golub_train_pp = golub_train_p golub_train_pp[golub_train_pp<100] = 100 golub_train_pp[golub_train_pp>16000] = 16000 # Filtering golub_filter = function(x, r = 5, d=500){ minval = min(x) maxval = max(x) (maxval/minval>r)&&(maxval-minval>d) } index = apply(golub_train_pp, 2, golub_filter) golub_index = (1:7129)[index] golub_train_pp = golub_train_pp[, golub_index] golub_test_pp = golub_test_p golub_test_pp[golub_test_pp<100] = 100 golub_test_pp[golub_test_pp>16000] = 16000 golub_test_pp = golub_test_pp[, golub_index] # Log Transformation golub_train_p_trans = log10(golub_train_pp) golub_test_p_trans = log10(golub_test_pp) # Normalization train_m = colMeans(golub_train_p_trans) train_sd = apply(golub_train_p_trans, 2, sd) golub_train_p_trans = t((t(golub_train_p_trans)-train_m)/train_sd) golub_test_p_trans = t((t(golub_test_p_trans)-train_m)/train_sd) golub_train_3051 = golub_train_p_trans golub_train_response = golub_train_r golub_test_3051 = golub_test_p_trans golub_test_response = golub_test_r save(golub_train_3051, golub_train_response, golub_test_3051, golub_test_response, file = "../transformed data/golub3051.rda") ###Output _____no_output_____
.ipynb_checkpoints/Naive_Bayes_CountVectorizer-checkpoint.ipynb
###Markdown ###Code import pandas as pd from nltk.corpus import stopwords from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import CountVectorizer from sklearn import model_selection, naive_bayes, svm from sklearn.metrics import accuracy_score from collections import Counter #[1] Importing dataset dataset = pd.read_json(r"C:\Users\Panos\Desktop\Dissert\Code\Video_Games_5.json", lines=True, encoding='latin-1') dataset = dataset[['reviewText','overall']] #[2] Reduce number of classes ratings = [] for index,entry in enumerate(dataset['overall']): if entry == 1.0 or entry == 2.0: ratings.append(-1) elif entry == 3.0: ratings.append(0) elif entry == 4.0 or entry == 5.0: ratings.append(1) #[3] Cleaning the text import re import nltk from nltk.corpus import stopwords corpus = [] for i in range(0, len(dataset)): review = re.sub('[^a-zA-Z]', ' ', dataset['reviewText'][i]) review = review.lower() review = review.split() review = [word for word in review if not word in set(stopwords.words('english'))] review = ' '.join(review) corpus.append(review) #[4] Prepare Train and Test Data sets Train_X, Test_X, Train_Y, Test_Y = model_selection.train_test_split(corpus,ratings,test_size=0.3) print(Counter(Train_Y).values()) # counts the elements' frequency #[5] Encoding Encoder = LabelEncoder() Train_Y = Encoder.fit_transform(Train_Y) Test_Y = Encoder.fit_transform(Test_Y) #[6] Word Vectorization Count_vect = CountVectorizer(max_features=10000) Count_vect.fit(corpus) Train_X_Count = Count_vect.transform(Train_X) Test_X_Count = Count_vect.transform(Test_X) # the vocabulary that it has learned from the corpus #print(Count_vect.vocabulary_) # the vectorized data #print(Train_X_Count) #[7] Use the Naive Bayes Algorithms to Predict the outcome # fit the training dataset on the NB classifier Naive = naive_bayes.MultinomialNB() Naive.fit(Train_X_Count,Train_Y) # predict the labels on validation dataset predictions_NB = Naive.predict(Test_X_Count) # Use accuracy_score function to get the accuracy print("-----------------------Naive Bayes------------------------\n") print("Naive Bayes Accuracy Score -> ",accuracy_score(predictions_NB, Test_Y)*100) # Making the confusion matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(Test_Y, predictions_NB) print("\n",cm,"\n") # Printing a classification report of different metrics from sklearn.metrics import classification_report my_tags = ['Positive','Neutral','Negative'] print(classification_report(Test_Y, predictions_NB,target_names=my_tags)) # Export reports to files for later visualizations report_NB = classification_report(Test_Y, predictions_NB,target_names=my_tags, output_dict=True) report_NB_df = pd.DataFrame(report_NB).transpose() report_NB_df.to_csv(r'NB_report_CountVect.csv', index = True, float_format="%.3f") ###Output -----------------------Naive Bayes------------------------ Naive Bayes Accuracy Score -> 76.33963241004402 [[ 5213 1521 1736] [ 1742 2975 3825] [ 3117 4511 44894]] precision recall f1-score support Positive 0.52 0.62 0.56 8470 Neutral 0.33 0.35 0.34 8542 Negative 0.89 0.85 0.87 52522 accuracy 0.76 69534 macro avg 0.58 0.61 0.59 69534 weighted avg 0.78 0.76 0.77 69534
Model/09-27-xgb-reg02.ipynb
###Markdown XGBoostinghttps://nbviewer.jupyter.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/xgboost_pdp_ice.ipynb?flush_cache=trueXGBoosting ![XG-Boost-FINAL-01.png]() ###Code import numpy as np # array, vector, matrix calculations import pandas as pd # DataFrame handling ###Output _____no_output_____ ###Markdown Import data and clean ###Code df = pd.read_csv('credit_cards_dataset.csv') X = df.drop(['ID', 'default.payment.next.month'], axis=1).values Y = df['default.payment.next.month'].values from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=42) ###Output _____no_output_____ ###Markdown Setting Parameterhttps://xgboost.readthedocs.io/en/latest/python/python_intro.html ###Code import xgboost as xgb # gradient boosting machines (GBMs) # XGBoost Regressor mod = xgb.XGBRegressor( gamma=1, learning_rate=0.01, max_depth=3, n_estimators=10000, subsample=0.8, random_state=42, verbosity=2 ) mod.fit(X_train, Y_train) mod.save_model('reg01.model') ypred = mod.predict(X_test) ypred[:3] #ypred.reshape(-1,1) import math from sklearn.metrics import mean_squared_error, mean_absolute_error mrse = math.sqrt(mean_squared_error(Y_test, ypred)) print('MRSE (L2 loss): {}'.format(mrse)) mae = mean_absolute_error(Y_test, ypred) print('MAE (L1 loss) : {}'.format(mae)) predictions = np.rint(ypred) #predictions.reshape(-1,1) predictions.sum() predictions.shape from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn import metrics from sklearn.model_selection import GridSearchCV accuracy = accuracy_score(Y_test, predictions) cm = confusion_matrix(Y_test, predictions) precision = precision_score(Y_test, predictions) recall = recall_score(Y_test, predictions) print(accuracy) print(cm) print(precision) print(recall) import matplotlib import matplotlib.pyplot as plt %matplotlib inline import itertools def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.figure() plot_confusion_matrix(cm, classes=['Non_Default','Default'], normalize=False, title='Non Normalized confusion matrix') #plt.show() ###Output _____no_output_____
notebooks/tf2-20ng-bert.ipynb
###Markdown 20 newsgroup text classification with BERT finetuningIn this notebook, we'll use a pre-trained [BERT](https://arxiv.org/abs/1810.04805) model for text classification using TensorFlow 2 / Keras and HuggingFace's [Transformers](https://github.com/huggingface/transformers). This notebook is based on ["Predicting Movie Review Sentiment with BERT on TF Hub"](https://github.com/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb) by Google and ["BERT Fine-Tuning Tutorial with PyTorch"](https://mccormickml.com/2019/07/22/BERT-fine-tuning/) by Chris McCormick.**Note that using a GPU with this notebook is highly recommended.**First, the needed imports. ###Code %matplotlib inline import tensorflow as tf from tensorflow.keras.utils import plot_model from tensorflow.keras.callbacks import TensorBoard from transformers import BertTokenizer, TFBertForSequenceClassification from transformers import __version__ as transformers_version from distutils.version import LooseVersion as LV from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import io, sys, os, datetime import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set() print('Using TensorFlow version:', tf.__version__, 'Keras version:', tf.keras.__version__, 'Transformers version:', transformers_version) assert(LV(tf.__version__) >= LV("2.3.0")) if len(tf.config.list_physical_devices('GPU')): from tensorflow.python.client import device_lib for d in device_lib.list_local_devices(): if d.device_type == 'GPU': print('GPU:', d.physical_device_desc) else: print('No GPU, using CPU instead.') ###Output _____no_output_____ ###Markdown 20 Newsgroups data setNext we'll load the [20 Newsgroups](http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html) data set. The dataset contains 20000 messages collected from 20 different Usenet newsgroups (1000 messages from each group):|[]()|[]()|[]()|[]()|| --- | --- |--- | --- || alt.atheism | soc.religion.christian | comp.windows.x | sci.crypt | | talk.politics.guns | comp.sys.ibm.pc.hardware | rec.autos | sci.electronics | | talk.politics.mideast | comp.graphics | rec.motorcycles | sci.space | | talk.politics.misc | comp.os.ms-windows.misc | rec.sport.baseball | sci.med | | talk.religion.misc | comp.sys.mac.hardware | rec.sport.hockey | misc.forsale | ###Code TEXT_DATA_DIR = "/media/data/20_newsgroup" print('Processing text dataset') texts = [] # list of text samples labels_index = {} # dictionary mapping label name to numeric id labels = [] # list of label ids for name in sorted(os.listdir(TEXT_DATA_DIR)): path = os.path.join(TEXT_DATA_DIR, name) if os.path.isdir(path): label_id = len(labels_index) labels_index[name] = label_id for fname in sorted(os.listdir(path)): if fname.isdigit(): fpath = os.path.join(path, fname) args = {} if sys.version_info < (3,) else {'encoding': 'latin-1'} with open(fpath, **args) as f: t = f.read() i = t.find('\n\n') # skip header if 0 < i: t = t[i:] texts.append(t) labels.append(label_id) labels = np.array(labels) print('Found %s texts.' % len(texts)) ###Output _____no_output_____ ###Markdown We split the data into training, validation, and test sets using scikit-learn's `train_test_split()`. ###Code TEST_SET = 4000 (texts_train, texts_test, labels_train, labels_test) = train_test_split(texts, labels, test_size=TEST_SET, shuffle=True, random_state=42) (texts_train, texts_valid, labels_train, labels_valid) = train_test_split(texts_train, labels_train, shuffle=False, test_size=0.1) print('Length of training texts:', len(texts_train), 'labels:', len(labels_train)) print('Length of validation texts:', len(texts_valid), 'labels:', len(labels_valid)) print('Length of test texts:', len(texts_test), 'labels:', len(labels_test)) ###Output _____no_output_____ ###Markdown BERTNext we specify the pre-trained BERT model we are going to use. The model `"bert-base-uncased"` is the lowercased "base" model (12-layer, 768-hidden, 12-heads, 110M parameters). TokenizationWe load the used vocabulary from the BERT model, and use the BERT tokenizer to convert the messages into tokens that match the data the BERT model was trained on. ###Code BERTMODEL='bert-base-uncased' CACHE_DIR='/media/data/transformers-cache/' tokenizer = BertTokenizer.from_pretrained(BERTMODEL, do_lower_case=True, cache_dir=CACHE_DIR) ###Output _____no_output_____ ###Markdown Next we tokenize all datasets. We set the maximum sequence lengths for our training and test messages as MAX_LEN_TRAIN and MAX_LEN_TEST. The maximum length supported by the used BERT model is 512 tokens. ###Code %%time MAX_LEN_TRAIN, MAX_LEN_TEST = 128, 512 data_train = tokenizer(texts_train, padding=True, truncation=True, return_tensors="tf", max_length=MAX_LEN_TRAIN) data_valid = tokenizer(texts_valid, padding=True, truncation=True, return_tensors="tf", max_length=MAX_LEN_TRAIN) data_test = tokenizer(texts_test, padding=True, truncation=True, return_tensors="tf", max_length=MAX_LEN_TEST) ###Output _____no_output_____ ###Markdown Let us look at the truncated tokenized first training message. ###Code data_train["input_ids"][0] ###Output _____no_output_____ ###Markdown We can also convert the token ids back to tokens. `[CLS]` and `[SEP]` are special tokens required by BERT. ###Code tokenizer.decode(data_train["input_ids"][0]) ###Output _____no_output_____ ###Markdown TF DatasetsLet's now define our TF `Dataset`s for training, validation, and test data. A batch size of 16 or 32 is often recommended for fine-tuning BERT on a specific task. ###Code BATCH_SIZE = 32 dataset_train = tf.data.Dataset.from_tensor_slices((data_train.data, labels_train)) dataset_train = dataset_train.shuffle(len(dataset_train)).batch(BATCH_SIZE) dataset_valid = tf.data.Dataset.from_tensor_slices((data_valid.data, labels_valid)) dataset_valid = dataset_valid.batch(BATCH_SIZE) dataset_test = tf.data.Dataset.from_tensor_slices((data_test.data, labels_test)) dataset_test = dataset_test.batch(BATCH_SIZE) ###Output _____no_output_____ ###Markdown Model initializationWe now load a pretrained BERT model with a single linear classification layer added on top. ###Code model = TFBertForSequenceClassification.from_pretrained(BERTMODEL, cache_dir=CACHE_DIR, num_labels=20) ###Output _____no_output_____ ###Markdown We use Adam as the optimizer, categorical crossentropy as loss, and then compile the model.`LR` is the learning rate for the Adam optimizer (2e-5 to 5e-5 recommended for BERT finetuning). ###Code LR = 2e-5 optimizer = tf.keras.optimizers.Adam(learning_rate=LR, epsilon=1e-08, clipnorm=1.0) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy') model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) print(model.summary()) ###Output _____no_output_____ ###Markdown Learning ###Code logdir = os.path.join(os.getcwd(), "logs", "20ng-bert-"+datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) print('TensorBoard log directory:', logdir) os.makedirs(logdir) callbacks = [TensorBoard(log_dir=logdir)] ###Output _____no_output_____ ###Markdown For fine-tuning BERT on a specific task, 2-4 epochs is often recommended. ###Code %%time EPOCHS = 4 history = model.fit(dataset_train, validation_data=dataset_valid, epochs=EPOCHS, verbose=2, callbacks=callbacks) ###Output _____no_output_____ ###Markdown Let's take a look at loss and accuracy for train and validation sets: ###Code fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,3)) ax1.plot(history.epoch,history.history['loss'], label='training') ax1.plot(history.epoch,history.history['val_loss'], label='validation') ax1.set_title('loss') ax1.set_xlabel('epoch') ax1.legend(loc='best') ax2.plot(history.epoch,history.history['accuracy'], label='training') ax2.plot(history.epoch,history.history['val_accuracy'], label='validation') ax2.set_title('accuracy') ax2.set_xlabel('epoch') ax2.legend(loc='best'); ###Output _____no_output_____ ###Markdown InferenceFor a better measure of the quality of the model, let's see the model accuracy for the test messages. ###Code %%time test_scores = model.evaluate(dataset_test, verbose=2) print("Test set %s: %.2f%%" % (model.metrics_names[1], test_scores[1]*100)) ###Output _____no_output_____ ###Markdown We can also look at classification accuracies separately for each newsgroup, and compute a confusion matrix to see which newsgroups get mixed the most: ###Code test_predictions = model.predict(dataset_test) cm=confusion_matrix(labels_test, np.argmax(test_predictions[0], axis=1), labels=list(range(20))) print('Classification accuracy for each newsgroup:'); print() labels = [l[0] for l in sorted(labels_index.items(), key=lambda x: x[1])] for i,j in enumerate(cm.diagonal()/cm.sum(axis=1)): print("%s: %.4f" % (labels[i].ljust(26), j)) print() print('Confusion matrix (rows: true newsgroup; columns: predicted newsgroup):'); print() np.set_printoptions(linewidth=9999) print(cm); print() plt.figure(figsize=(10,10)) plt.imshow(cm, cmap="gray", interpolation="none") plt.title('Confusion matrix (rows: true newsgroup; columns: predicted newsgroup)') plt.grid(None) tick_marks = np.arange(len(labels)) plt.xticks(tick_marks, labels, rotation=90) plt.yticks(tick_marks, labels); ###Output _____no_output_____
uncertainty/.ipynb_checkpoints/quantile-regression-with-keras-checkpoint.ipynb
###Markdown code, kbd, pre, samp { font-family:'consolas', Lucida Console, SimSun, Fira Code, Monaco !important; font-size: 11pt !important;} ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import lightgbm as lgb from sklearn.metrics import mean_squared_error from tqdm import tqdm import gc def reduce_mem_usage(df, verbose=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024**2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024**2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem)) return df # def autocorrelation(ys, t=1): return np.corrcoef(ys[:-t], ys[t:]) #========================================================================== def preprocess_sales(sales, start=1400, upper=1970): '''process sales data ''' if start is not None: print("dropping...") to_drop = [f"d_{i+1}" for i in range(start-1)] print(sales.shape) sales.drop(to_drop, axis=1, inplace=True) print(sales.shape) #======= print("adding...") new_columns = ['d_%i'%i for i in range(1942, upper, 1)] # 1942-1970 for col in new_columns: sales[col] = np.nan print("melting...") sales = sales.melt(id_vars=["id", "item_id", "dept_id", "cat_id", "store_id", "state_id","scale","start"], var_name='d', value_name='demand') print("generating order") if start is not None: skip = start else: skip = 1 sales["nb"] = sales.index // 42840 + skip return sales #=============================================================== def preprocess_calendar(calendar): '''clean and transform calendar data ''' global maps, mods calendar["event_name"] = calendar["event_name_1"] calendar["event_type"] = calendar["event_type_1"] map1 = {mod:i for i,mod in enumerate(calendar['event_name'].unique())} calendar['event_name'] = calendar['event_name'].map(map1) map2 = {mod:i for i,mod in enumerate(calendar['event_type'].unique())} calendar['event_type'] = calendar['event_type'].map(map2) calendar['nday'] = calendar['date'].str[-2:].astype(int) maps["event_name"] = map1 maps["event_type"] = map2 mods["event_name"] = len(map1) mods["event_type"] = len(map2) calendar["wday"] -=1 calendar["month"] -=1 calendar["year"] -= 2011 mods["month"] = 12 mods["year"] = 6 mods["wday"] = 7 mods['snap_CA'] = 2 mods['snap_TX'] = 2 mods['snap_WI'] = 2 calendar.drop(["event_name_1", "event_name_2", "event_type_1", "event_type_2", "date", "weekday"], axis=1, inplace=True) return calendar #========================================================= def make_dataset(categorize=False ,start=1400, upper= 1970): global maps, mods print("loading calendar...") calendar = pd.read_csv("../input/m5-forecasting-uncertainty/calendar.csv") print("loading sales...") sales = pd.read_csv("../input/walmartadd/sales.csv") cols = ["item_id", "dept_id", "cat_id","store_id","state_id"] if categorize: for col in cols: temp_dct = {mod:i for i, mod in enumerate(sales[col].unique())} mods[col] = len(temp_dct) maps[col] = temp_dct for col in cols: sales[col] = sales[col].map(maps[col]) # sales =preprocess_sales(sales, start=start, upper= upper) calendar = preprocess_calendar(calendar) calendar = reduce_mem_usage(calendar) print("merge with calendar...") sales = sales.merge(calendar, on='d', how='left') del calendar print("reordering...") sales.sort_values(by=["id","nb"], inplace=True) print("re-indexing..") sales.reset_index(inplace=True, drop=True) gc.collect() sales['n_week'] = (sales['nb']-1)//7 sales["nday"] -= 1 mods['nday'] = 31 sales = reduce_mem_usage(sales) gc.collect() return sales #===============================================================================# %%time CATEGORIZE = True; START = 1400; UPPER = 1970; maps = {} mods = {} sales = make_dataset(categorize=CATEGORIZE ,start=START, upper= UPPER) sales["x"] = sales["demand"] / sales["scale"] LAGS = [28, 35, 42, 49, 56, 63] FEATS = [] for lag in tqdm(LAGS): sales[f"x_{lag}"] = sales.groupby("id")["x"].shift(lag) FEATS.append(f"x_{lag}") # #sales.loc[(sales.start>1844)&(sales.nb>1840)&(sales.nb<1850), ['id','start','nb','demand']] #sales.start.max() #1845 print(sales.shape) sales = sales.loc[sales.nb>sales.start] print(sales.shape) nb = sales['nb'].values MAX_LAG = max(LAGS) #tr_mask = np.logical_and(nb>START + MAX_LAG, nb<=1913) tr_mask = np.logical_and(nb>START + MAX_LAG, nb<=1941) # SORRY THIS IS FAKE VALIDATION. I DIDN'T THINK IT WOULD HAVE HAD LIFTED UP MY SCORE LIKE THAT val_mask = np.logical_and(nb>1913, nb<=1941) te_mask = np.logical_and(nb>1941, nb<=1969) scale = sales['scale'].values ids = sales['id'].values #y = sales['demand'].values #ys = y / scale ys = sales['x'].values Z = sales[FEATS].values sv = scale[val_mask] se = scale[te_mask] ids = ids[te_mask] ids = ids.reshape((-1, 28)) ca = sales[['snap_CA']].values tx = sales[['snap_TX']].values wi = sales[['snap_WI']].values wday = sales[['wday']].values month = sales[['month']].values year = sales[['year']].values event = sales[['event_name']].values nday = sales[['nday']].values item = sales[['item_id']].values dept = sales[['dept_id']].values cat = sales[['cat_id']].values store = sales[['store_id']].values state = sales[['state_id']].values def make_data(mask): x = {"snap_CA":ca[mask], "snap_TX":tx[mask], "snap_WI":wi[mask], "wday":wday[mask], "month":month[mask], "year":year[mask], "event":event[mask], "nday":nday[mask], "item":item[mask], "dept":dept[mask], "cat":cat[mask], "store":store[mask], "state":state[mask], "num":Z[mask]} t = ys[mask] return x, t xt, yt = make_data(tr_mask) #train xv, yv = make_data(val_mask) # val xe, ye = make_data(te_mask) # test import tensorflow.keras.layers as L import tensorflow.keras.models as M import tensorflow.keras.backend as K from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping import tensorflow as tf ###Output _____no_output_____ ###Markdown It is a baseline model. Feel free to add your own FE magic !!! ###Code #===== def qloss(y_true, y_pred): # Pinball loss for multiple quantiles qs = [0.005, 0.025, 0.165, 0.250, 0.500, 0.750, 0.835, 0.975, 0.995] q = tf.constant(np.array([qs]), dtype=tf.float32) e = y_true - y_pred v = tf.maximum(q*e, (q-1)*e) return K.mean(v) #============================# def make_model(n_in): num = L.Input((n_in,), name="num") ca = L.Input((1,), name="snap_CA") tx = L.Input((1,), name="snap_TX") wi = L.Input((1,), name="snap_WI") wday = L.Input((1,), name="wday") month = L.Input((1,), name="month") year = L.Input((1,), name="year") event = L.Input((1,), name="event") nday = L.Input((1,), name="nday") item = L.Input((1,), name="item") dept = L.Input((1,), name="dept") cat = L.Input((1,), name="cat") store = L.Input((1,), name="store") state = L.Input((1,), name="state") inp = {"snap_CA":ca, "snap_TX":tx, "snap_WI":wi, "wday":wday, "month":month, "year":year, "event":event, "nday":nday, "item":item, "dept":dept, "cat":cat, "store":store, "state":state, "num":num} # ca_ = L.Embedding(mods["snap_CA"], mods["snap_CA"], name="ca_3d")(ca) tx_ = L.Embedding(mods["snap_TX"], mods["snap_TX"], name="tx_3d")(tx) wi_ = L.Embedding(mods["snap_WI"], mods["snap_WI"], name="wi_3d")(wi) wday_ = L.Embedding(mods["wday"], mods["wday"], name="wday_3d")(wday) month_ = L.Embedding(mods["month"], mods["month"], name="month_3d")(month) year_ = L.Embedding(mods["year"], mods["year"], name="year_3d")(year) event_ = L.Embedding(mods["event_name"], mods["event_name"], name="event_3d")(event) nday_ = L.Embedding(mods["nday"], mods["nday"], name="nday_3d")(nday) item_ = L.Embedding(mods["item_id"], 10, name="item_3d")(item) dept_ = L.Embedding(mods["dept_id"], mods["dept_id"], name="dept_3d")(dept) cat_ = L.Embedding(mods["cat_id"], mods["cat_id"], name="cat_3d")(cat) store_ = L.Embedding(mods["store_id"], mods["store_id"], name="store_3d")(store) state_ = L.Embedding(mods["state_id"], mods["state_id"], name="state_3d")(state) p = [ca_, tx_, wi_, wday_, month_, year_, event_, nday_, item_, dept_, cat_, store_, state_] emb = L.Concatenate(name="embds")(p) context = L.Flatten(name="context")(emb) x = L.Concatenate(name="x1")([context, num]) x = L.Dense(500, activation="relu", name="d1")(x) x = L.Dropout(0.3)(x) x = L.Concatenate(name="m1")([x, context]) x = L.Dense(500, activation="relu", name="d2")(x) x = L.Dropout(0.3)(x) x = L.Concatenate(name="m2")([x, context]) x = L.Dense(500, activation="relu", name="d3")(x) preds = L.Dense(9, activation="linear", name="preds")(x) model = M.Model(inp, preds, name="M1") model.compile(loss=qloss, optimizer="adam") return model net = make_model(len(FEATS)) ckpt = ModelCheckpoint("w.h5", monitor='val_loss', verbose=1, save_best_only=True,mode='min') reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001) es = EarlyStopping(monitor='val_loss', patience=3) print(net.summary()) net.fit(xt, yt, batch_size=50_000, epochs=20, validation_data=(xv, yv), callbacks=[ckpt, reduce_lr, es]) nett = make_model(len(FEATS)) nett.load_weights("w.h5") pv = nett.predict(xv, batch_size=50_000, verbose=1) pe = nett.predict(xe, batch_size=50_000, verbose=1) nett.evaluate(xv, yv, batch_size=50_000) pv = pv.reshape((-1, 28, 9)) pe = pe.reshape((-1, 28, 9)) sv = sv.reshape((-1, 28)) se = se.reshape((-1, 28)) Yv = yv.reshape((-1, 28)) k = np.random.randint(0, 42840) #k = np.random.randint(0, 200) print(ids[k, 0]) plt.plot(np.arange(28, 56), Yv[k], label="true") plt.plot(np.arange(28, 56), pv[k ,:, 3], label="q25") plt.plot(np.arange(28, 56), pv[k ,:, 4], label="q50") plt.plot(np.arange(28, 56), pv[k, :, 5], label="q75") plt.legend(loc="best") plt.show() ###Output _____no_output_____ ###Markdown Prediction ###Code names = [f"F{i+1}" for i in range(28)] piv = pd.DataFrame(ids[:, 0], columns=["id"]) QUANTILES = ["0.005", "0.025", "0.165", "0.250", "0.500", "0.750", "0.835", "0.975", "0.995"] VALID = [] EVAL = [] for i, quantile in tqdm(enumerate(QUANTILES)): t1 = pd.DataFrame(pv[:,:, i]*sv, columns=names) t1 = piv.join(t1) t1["id"] = t1["id"] + f"_{quantile}_validation" t2 = pd.DataFrame(pe[:,:, i]*se, columns=names) t2 = piv.join(t2) t2["id"] = t2["id"] + f"_{quantile}_evaluation" VALID.append(t1) EVAL.append(t2) #============# sub = pd.DataFrame() sub = sub.append(VALID + EVAL) del VALID, EVAL, t1, t2 sub.head() sub.to_csv('./submission_from_keras.csv', index=False) ###Output _____no_output_____
nbs/99_manuscript/lvs/lv116/lv116-cell_types.ipynb
###Markdown Description Generates the figure for top cell types for a specified LV (in Settings section below). Modules loading ###Code %load_ext autoreload %autoreload 2 import re from pathlib import Path import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from data.recount2 import LVAnalysis from utils import chunker import conf ###Output _____no_output_____ ###Markdown Settings ###Code LV_NAME = "LV116" LV_AXIS_THRESHOLD = 3.0 N_TOP_SAMPLES = 400 N_TOP_ATTRS = 25 OUTPUT_FIGURES_DIR = Path( conf.MANUSCRIPT["FIGURES_DIR"], "lvs_analysis", f"{LV_NAME.lower()}" ).resolve() display(OUTPUT_FIGURES_DIR) OUTPUT_FIGURES_DIR.mkdir(parents=True, exist_ok=True) OUTPUT_CELL_TYPE_FILEPATH = OUTPUT_FIGURES_DIR / f"{LV_NAME.lower()}-cell_types.svg" display(OUTPUT_CELL_TYPE_FILEPATH) ###Output _____no_output_____ ###Markdown Load MultiPLIER summary ###Code multiplier_model_summary = pd.read_pickle(conf.MULTIPLIER["MODEL_SUMMARY_FILE"]) multiplier_model_summary.shape multiplier_model_summary.head() ###Output _____no_output_____ ###Markdown Load data Original data ###Code INPUT_SUBSET = "z_score_std" INPUT_STEM = "projection-smultixcan-efo_partial-mashr-zscores" input_filepath = Path( conf.RESULTS["DATA_TRANSFORMATIONS_DIR"], INPUT_SUBSET, f"{INPUT_SUBSET}-{INPUT_STEM}.pkl", ).resolve() display(input_filepath) assert input_filepath.exists(), "Input file does not exist" input_filepath_stem = input_filepath.stem display(input_filepath_stem) data = pd.read_pickle(input_filepath) data.shape data.head() ###Output _____no_output_____ ###Markdown LV data ###Code lv_obj = LVAnalysis(LV_NAME, data) multiplier_model_summary[ multiplier_model_summary["LV index"].isin((LV_NAME[2:],)) & ( (multiplier_model_summary["FDR"] < 0.05) | (multiplier_model_summary["AUC"] >= 0.75) ) ] lv_data = lv_obj.get_experiments_data() lv_data.shape lv_data.head() ###Output _____no_output_____ ###Markdown LV cell types analysis Get top attributes ###Code lv_attrs = lv_obj.get_attributes_variation_score() display(lv_attrs.head(20)) # show those with cell type or tissue in their name _tmp = pd.Series(lv_attrs.index) lv_attrs[ _tmp.str.match( "(?:cell.+type$)|(?:tissue$)|(?:tissue.+type$)", case=False, flags=re.IGNORECASE, ).values ].sort_values(ascending=False) _tmp = lv_data.loc[ :, [ "tissue", "cell type", "cell subtype", "tissue type", LV_NAME, ], ] _tmp_seq = list(chunker(_tmp.sort_values(LV_NAME, ascending=False), 25)) _tmp_seq[1] SELECTED_ATTRIBUTE = "tissue" # it has to be in the order desired for filling nans in the SELECTED_ATTRIBUTE SECOND_ATTRIBUTES = ["cell type", "celltype", "agent"] ###Output _____no_output_____ ###Markdown Get plot data ###Code plot_data = lv_data.loc[:, [SELECTED_ATTRIBUTE] + SECOND_ATTRIBUTES + [LV_NAME]] # if blank/nan, fill cell type column with tissue content _new_column = plot_data[[SELECTED_ATTRIBUTE] + SECOND_ATTRIBUTES].fillna( method="backfill", axis=1 )[SELECTED_ATTRIBUTE] plot_data[SELECTED_ATTRIBUTE] = _new_column plot_data = plot_data.drop(columns=SECOND_ATTRIBUTES) plot_data = plot_data.fillna({SELECTED_ATTRIBUTE: "NOT CATEGORIZED"}) # plot_data = plot_data.dropna(subset=[SELECTED_ATTRIBUTE]) plot_data = plot_data.sort_values(LV_NAME, ascending=False) plot_data.head(20) ###Output _____no_output_____ ###Markdown Customize x-axis values When cell type values are not very clear, customize their names by looking at their specific studies to know exactly what the authors meant. ###Code final_plot_data = plot_data.replace( { SELECTED_ATTRIBUTE: { "whole blood": "Whole blood", "PBMCs": "Peripheral blood mononuclear cells", "monocyte-derived macrophages": "Monocyte-derived macrophages", "peripheral blood monocytes": "Monocytes", "dermal fibroblast": "Dermal fibroblasts", "proximal tubular epithelial cells": "Proximal tubular epithelial cells", "glioblastoma cell line": "Glioblastoma cell line", } } ) _srp_code = "SRP048804" _tmp = final_plot_data.loc[(_srp_code,)].apply( lambda x: x[SELECTED_ATTRIBUTE] + f" ({lv_data.loc[(_srp_code, x.name), 'cell line']})", axis=1, ) final_plot_data.loc[(_srp_code, _tmp.index), SELECTED_ATTRIBUTE] = _tmp.values _srp_code = "SRP045352" _tmp = final_plot_data.loc[(_srp_code,)].apply( lambda x: "Monocytes" + f" ({lv_data.loc[(_srp_code, x.name), 'agent']})", axis=1, ) final_plot_data.loc[(_srp_code, _tmp.index), SELECTED_ATTRIBUTE] = _tmp.values _srp_code = "SRP056733" _tmp = final_plot_data.loc[(_srp_code,)].apply( lambda x: "Macrophages" + f" ({lv_data.loc[(_srp_code, x.name), 'agent']})", axis=1, ) final_plot_data.loc[(_srp_code, _tmp.index), SELECTED_ATTRIBUTE] = _tmp.values _srp_code = "SRP062958" _tmp = final_plot_data.loc[(_srp_code,)].apply( lambda x: x[SELECTED_ATTRIBUTE] + f" ({lv_data.loc[(_srp_code, x.name), 'treatment']})", axis=1, ) final_plot_data.loc[(_srp_code, _tmp.index), SELECTED_ATTRIBUTE] = _tmp.values # # add also tissue information to these projects _srp_code = "SRP015670" _tmp = final_plot_data.loc[(_srp_code,)].apply( lambda x: x[SELECTED_ATTRIBUTE] + f" ({lv_data.loc[(_srp_code, x.name), 'treatment']})", axis=1, ) final_plot_data.loc[(_srp_code, _tmp.index), SELECTED_ATTRIBUTE] = _tmp.values # # add also tissue information to these projects _srp_code = "SRP045500" _tmp = final_plot_data.loc[(_srp_code,)].apply( lambda x: x[SELECTED_ATTRIBUTE] + f" ({lv_data.loc[(_srp_code, x.name), 'diseasestatus']})", axis=1, ) final_plot_data.loc[(_srp_code, _tmp.index), SELECTED_ATTRIBUTE] = _tmp.values # # add also tissue information to these projects _srp_code = "SRP045569" _tmp = final_plot_data.loc[(_srp_code,)].apply( lambda x: x[SELECTED_ATTRIBUTE] + f" ({lv_data.loc[(_srp_code, x.name), 'treatment']})", axis=1, ) final_plot_data.loc[(_srp_code, _tmp.index), SELECTED_ATTRIBUTE] = _tmp.values # # add also tissue information to these projects _srp_code = "SRP062966" _tmp = final_plot_data.loc[(_srp_code,)].apply( lambda x: x[SELECTED_ATTRIBUTE] + f" ({lv_data.loc[(_srp_code, x.name), 'ism']} SLE)", axis=1, ) final_plot_data.loc[(_srp_code, _tmp.index), SELECTED_ATTRIBUTE] = _tmp.values # # add also tissue information to these projects _srp_code = "SRP059039" _tmp = final_plot_data.loc[(_srp_code,)].apply( lambda x: x[SELECTED_ATTRIBUTE] + f" ({lv_data.loc[(_srp_code, x.name), 'group']} cases)", axis=1, ) final_plot_data.loc[(_srp_code, _tmp.index), SELECTED_ATTRIBUTE] = _tmp.values # # add also tissue information to these projects _srp_code = "SRP060370" _tmp = final_plot_data.loc[(_srp_code,)].apply( lambda x: x[SELECTED_ATTRIBUTE] + f" ({lv_data.loc[(_srp_code, x.name), 'treatment']})", axis=1, ) final_plot_data.loc[(_srp_code, _tmp.index), SELECTED_ATTRIBUTE] = _tmp.values final_plot_data = final_plot_data.replace( { SELECTED_ATTRIBUTE: { "\(interferon-alpha\)": "(IFNa)", "\(HSV-1\)": "(HSV)", "\(West Nile virus \(WNV\)\)": "(WNV)", "\(ISM_high SLE\)": "(ISM high SLE)", } }, regex=True, ) ###Output _____no_output_____ ###Markdown Threshold LV values ###Code final_plot_data.loc[ final_plot_data[LV_NAME] > LV_AXIS_THRESHOLD, LV_NAME ] = LV_AXIS_THRESHOLD ###Output _____no_output_____ ###Markdown Delete samples with no tissue/cell type information ###Code final_plot_data = final_plot_data[ final_plot_data[SELECTED_ATTRIBUTE] != "NOT CATEGORIZED" ] ###Output _____no_output_____ ###Markdown Set x-axis order ###Code N_TOP_ATTRS = 15 attr_order = ( final_plot_data.groupby(SELECTED_ATTRIBUTE) .max() .sort_values(LV_NAME, ascending=False) .index[:N_TOP_ATTRS] .tolist() ) len(attr_order) attr_order[:5] ###Output _____no_output_____ ###Markdown Plot ###Code with sns.plotting_context("paper", font_scale=2.0), sns.axes_style("whitegrid"): sns.catplot( data=final_plot_data, y=LV_NAME, x=SELECTED_ATTRIBUTE, order=attr_order, kind="strip", height=5, aspect=3, ) plt.xticks(rotation=45, horizontalalignment="right") plt.xlabel("") plt.savefig( OUTPUT_CELL_TYPE_FILEPATH, bbox_inches="tight", facecolor="white", ) ###Output _____no_output_____ ###Markdown Debug ###Code # with pd.option_context( # "display.max_rows", None, "display.max_columns", None, "display.max_colwidth", None # ): # _tmp = final_plot_data[final_plot_data[SELECTED_ATTRIBUTE].str.contains("Salm")] # display(_tmp) # # what is there in these projects? # with pd.option_context( # "display.max_rows", None, "display.max_columns", None, "display.max_colwidth", None # ): # _tmp = ( # lv_data.loc[["SRP063059"]] # .dropna(how="all", axis=1) # .sort_values(LV_NAME, ascending=False) # ) # display(_tmp) ###Output _____no_output_____
notebooks/automl/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb
###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing.png) Automated Machine Learning_**Classification with Deployment using a Bank Marketing Dataset**_ Contents1. [Introduction](Introduction)1. [Setup](Setup)1. [Train](Train)1. [Results](Results)1. [Deploy](Deploy)1. [Test](Test)1. [Acknowledgements](Acknowledgements) IntroductionIn this example we use the UCI Bank Marketing dataset to showcase how you can use AutoML for a classification problem and deploy it to an Azure Container Instance (ACI). The classification goal is to predict if the client will subscribe to a term deposit with the bank.If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. Please find the ONNX related documentations [here](https://github.com/onnx/onnx).In this notebook you will learn how to:1. Create an experiment using an existing workspace.2. Configure AutoML using `AutoMLConfig`.3. Train the model using local compute with ONNX compatible config on.4. Explore the results, featurization transparency options and save the ONNX model5. Inference with the ONNX model.6. Register the model.7. Create a container image.8. Create an Azure Container Instance (ACI) service.9. Test the ACI service.In addition this notebook showcases the following features- **Blacklisting** certain pipelines- Specifying **target metrics** to indicate stopping criteria- Handling **missing data** in the input SetupAs part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments. ###Code import logging from matplotlib import pyplot as plt import pandas as pd import os import azureml.core from azureml.core.experiment import Experiment from azureml.core.workspace import Workspace from azureml.automl.core.featurization import FeaturizationConfig from azureml.core.dataset import Dataset from azureml.train.automl import AutoMLConfig from azureml.explain.model._internal.explanation_client import ExplanationClient ws = Workspace.from_config() # choose a name for experiment experiment_name = 'automl-classification-bmarketing-all' experiment=Experiment(ws, experiment_name) output = {} output['SDK version'] = azureml.core.VERSION output['Subscription ID'] = ws.subscription_id output['Workspace'] = ws.name output['Resource Group'] = ws.resource_group output['Location'] = ws.location output['Experiment Name'] = experiment.name pd.set_option('display.max_colwidth', -1) outputDf = pd.DataFrame(data = output, index = ['']) outputDf.T ###Output _____no_output_____ ###Markdown Create or Attach existing AmlComputeYou will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource. Creation of AmlCompute takes approximately 5 minutes. If the AmlCompute with that name is already in your workspace this code will skip the creation process.As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota. ###Code from azureml.core.compute import AmlCompute from azureml.core.compute import ComputeTarget # Choose a name for your cluster. amlcompute_cluster_name = "cpu-cluster" found = False # Check if this compute target already exists in the workspace. cts = ws.compute_targets if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute': found = True print('Found existing compute target.') compute_target = cts[amlcompute_cluster_name] if not found: print('Creating a new compute target...') provisioning_config = AmlCompute.provisioning_configuration(vm_size = "STANDARD_D2_V2", # for GPU, use "STANDARD_NC6" #vm_priority = 'lowpriority', # optional max_nodes = 6) # Create the cluster. compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config) print('Checking cluster status...') # Can poll for a minimum number of nodes and for a specific timeout. # If no min_node_count is provided, it will use the scale settings for the cluster. compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20) # For a more detailed view of current AmlCompute status, use get_status(). ###Output _____no_output_____ ###Markdown Data Load DataLeverage azure compute to load the bank marketing dataset as a Tabular Dataset into the dataset variable. Training Data ###Code data = pd.read_csv("https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_train.csv") data.head() # Add missing values in 75% of the lines. import numpy as np missing_rate = 0.75 n_missing_samples = int(np.floor(data.shape[0] * missing_rate)) missing_samples = np.hstack((np.zeros(data.shape[0] - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool))) rng = np.random.RandomState(0) rng.shuffle(missing_samples) missing_features = rng.randint(0, data.shape[1], n_missing_samples) data.values[np.where(missing_samples)[0], missing_features] = np.nan if not os.path.isdir('data'): os.mkdir('data') # Save the train data to a csv to be uploaded to the datastore pd.DataFrame(data).to_csv("data/train_data.csv", index=False) ds = ws.get_default_datastore() ds.upload(src_dir='./data', target_path='bankmarketing', overwrite=True, show_progress=True) # Upload the training data as a tabular dataset for access during training on remote compute train_data = Dataset.Tabular.from_delimited_files(path=ds.path('bankmarketing/train_data.csv')) label = "y" ###Output _____no_output_____ ###Markdown Validation Data ###Code validation_data = "https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_validate.csv" validation_dataset = Dataset.Tabular.from_delimited_files(validation_data) ###Output _____no_output_____ ###Markdown Test Data ###Code test_data = "https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_test.csv" test_dataset = Dataset.Tabular.from_delimited_files(test_data) ###Output _____no_output_____ ###Markdown TrainInstantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.|Property|Description||-|-||**task**|classification or regression or forecasting||**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: accuracyAUC_weightedaverage_precision_score_weightednorm_macro_recallprecision_score_weighted||**iteration_timeout_minutes**|Time limit in minutes for each iteration.||**blacklist_models** or **whitelist_models** |*List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run. Allowed values for **Classification**LogisticRegressionSGDMultinomialNaiveBayesBernoulliNaiveBayesSVMLinearSVMKNNDecisionTreeRandomForestExtremeRandomTreesLightGBMGradientBoostingTensorFlowDNNTensorFlowLinearClassifierAllowed values for **Regression**ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGDRandomForestExtremeRandomTreesLightGBMTensorFlowLinearRegressorTensorFlowDNNAllowed values for **Forecasting**ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGDRandomForestExtremeRandomTreesLightGBMTensorFlowLinearRegressorTensorFlowDNNArimaProphet||**experiment_exit_score**| Value indicating the target for *primary_metric*. Once the target is surpassed the run terminates.||**experiment_timeout_minutes**| Maximum amount of time in minutes that all iterations combined can take before the experiment terminates.||**enable_early_stopping**| Flag to enble early termination if the score is not improving in the short term.||**featurization**| 'auto' / 'off' Indicator for whether featurization step should be done automatically or not. Note: If the input data is sparse, featurization cannot be turned on.||**n_cross_validations**|Number of cross validation splits.||**training_data**|Input dataset, containing both features and label column.||**label_column_name**|The name of the label column.||**model_explainability**|Indicate to explain each trained pipeline or not.|**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-trainprimary-metric) ###Code automl_settings = { "experiment_timeout_minutes" : 20, "enable_early_stopping" : True, "iteration_timeout_minutes": 5, "max_concurrent_iterations": 4, "max_cores_per_iteration": -1, #"n_cross_validations": 2, "primary_metric": 'AUC_weighted', "featurization": 'auto', "verbosity": logging.INFO, } automl_config = AutoMLConfig(task = 'classification', debug_log = 'automl_errors.log', compute_target=compute_target, experiment_exit_score = 0.9984, blacklist_models = ['KNN','LinearSVM'], enable_onnx_compatible_models=True, training_data = train_data, label_column_name = label, validation_data = validation_dataset, model_explainability=True, **automl_settings ) ###Output _____no_output_____ ###Markdown Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while. ###Code remote_run = experiment.submit(automl_config, show_output = False) remote_run ###Output _____no_output_____ ###Markdown Run the following cell to access previous runs. Uncomment the cell below and update the run_id. ###Code #from azureml.train.automl.run import AutoMLRun #experiment_name = 'automl-classification-bmarketing' #experiment = Experiment(ws, experiment_name) #remote_run = AutoMLRun(experiment=experiment, run_id='<run_ID_goes_here') #remote_run # Wait for the remote run to complete remote_run.wait_for_completion() best_run_customized, fitted_model_customized = remote_run.get_output() ###Output _____no_output_____ ###Markdown TransparencyView updated featurization summary ###Code custom_featurizer = fitted_model_customized.named_steps['datatransformer'] df = custom_featurizer.get_featurization_summary() pd.DataFrame(data=df) ###Output _____no_output_____ ###Markdown Set `is_user_friendly=False` to get a more detailed summary for the transforms being applied. ###Code df = custom_featurizer.get_featurization_summary(is_user_friendly=False) pd.DataFrame(data=df) df = custom_featurizer.get_stats_feature_type_summary() pd.DataFrame(data=df) ###Output _____no_output_____ ###Markdown Results ###Code from azureml.widgets import RunDetails RunDetails(remote_run).show() ###Output _____no_output_____ ###Markdown Retrieve the Best Model's explanationRetrieve the explanation from the best_run which includes explanations for engineered features and raw features. Make sure that the run for generating explanations for the best model is completed. ###Code # Wait for the best model explanation run to complete from azureml.train.automl.run import AutoMLRun model_explainability_run_id = remote_run.get_properties().get('ModelExplainRunId') print(model_explainability_run_id) if model_explainability_run_id is not None: model_explainability_run = AutoMLRun(experiment=experiment, run_id=model_explainability_run_id) model_explainability_run.wait_for_completion() # Get the best run object best_run, fitted_model = remote_run.get_output() ###Output _____no_output_____ ###Markdown Download engineered feature importance from artifact storeYou can use ExplanationClient to download the engineered feature explanations from the artifact store of the best_run. ###Code client = ExplanationClient.from_run(best_run) engineered_explanations = client.download_model_explanation(raw=False) exp_data = engineered_explanations.get_feature_importance_dict() exp_data ###Output _____no_output_____ ###Markdown Download raw feature importance from artifact storeYou can use ExplanationClient to download the raw feature explanations from the artifact store of the best_run. ###Code client = ExplanationClient.from_run(best_run) engineered_explanations = client.download_model_explanation(raw=True) exp_data = engineered_explanations.get_feature_importance_dict() exp_data ###Output _____no_output_____ ###Markdown Retrieve the Best ONNX ModelBelow we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*.Set the parameter return_onnx_model=True to retrieve the best ONNX model, instead of the Python model. ###Code best_run, onnx_mdl = remote_run.get_output(return_onnx_model=True) ###Output _____no_output_____ ###Markdown Save the best ONNX model ###Code from azureml.automl.core.onnx_convert import OnnxConverter onnx_fl_path = "./best_model.onnx" OnnxConverter.save_onnx_model(onnx_mdl, onnx_fl_path) ###Output _____no_output_____ ###Markdown Predict with the ONNX model, using onnxruntime package Note: The code will install the onnxruntime==0.4.0 if not installed. Newer versions of the onnxruntime have compatibility issues. ###Code test_df = test_dataset.to_pandas_dataframe() import sys import json from azureml.automl.core.onnx_convert import OnnxConvertConstants from azureml.train.automl import constants if sys.version_info < OnnxConvertConstants.OnnxIncompatiblePythonVersion: python_version_compatible = True else: python_version_compatible = False onnxrt_present = False try: import onnxruntime from azureml.automl.core.onnx_convert import OnnxInferenceHelper from onnxruntime import __version__ as ORT_VER if ORT_VER == '0.4.0': onnxrt_present = True except ImportError: onnxrt_present = False # Install the onnxruntime if the version 0.4.0 is not installed. if not onnxrt_present: print("Installing the onnxruntime version 0.4.0.") !{sys.executable} -m pip install --user --force-reinstall onnxruntime==0.4.0 onnxrt_present = True def get_onnx_res(run): res_path = 'onnx_resource.json' run.download_file(name=constants.MODEL_RESOURCE_PATH_ONNX, output_file_path=res_path) with open(res_path) as f: onnx_res = json.load(f) return onnx_res if onnxrt_present and python_version_compatible: mdl_bytes = onnx_mdl.SerializeToString() onnx_res = get_onnx_res(best_run) onnxrt_helper = OnnxInferenceHelper(mdl_bytes, onnx_res) pred_onnx, pred_prob_onnx = onnxrt_helper.predict(test_df) print(pred_onnx) print(pred_prob_onnx) else: if not python_version_compatible: print('Please use Python version 3.6 or 3.7 to run the inference helper.') if not onnxrt_present: print('Please install the onnxruntime package to do the prediction with ONNX model.') ###Output _____no_output_____ ###Markdown Deploy Retrieve the Best ModelBelow we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*. Widget for Monitoring RunsThe widget will first report a "loading" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details ###Code best_run, fitted_model = remote_run.get_output() import os import shutil sript_folder = os.path.join(os.getcwd(), 'inference') project_folder = '/inference' os.makedirs(project_folder, exist_ok=True) model_name = best_run.properties['model_name'] script_file_name = 'inference/score.py' conda_env_file_name = 'inference/env.yml' best_run.download_file('outputs/scoring_file_v_1_0_0.py', 'inference/score.py') best_run.download_file('outputs/conda_env_v_1_0_0.yml', 'inference/env.yml') ###Output _____no_output_____ ###Markdown Register the Fitted Model for DeploymentIf neither `metric` nor `iteration` are specified in the `register_model` call, the iteration with the best primary metric is registered. ###Code description = 'AutoML Model trained on bank marketing data to predict if a client will subscribe to a term deposit' tags = None model = remote_run.register_model(model_name = model_name, description = description, tags = tags) print(remote_run.model_id) # This will be written to the script file later in the notebook. ###Output _____no_output_____ ###Markdown Deploy the model as a Web Service on Azure Container Instance ###Code from azureml.core.model import InferenceConfig from azureml.core.webservice import AciWebservice from azureml.core.webservice import Webservice from azureml.core.model import Model inference_config = InferenceConfig(runtime = "python", entry_script = script_file_name, conda_file = conda_env_file_name) aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1, tags = {'area': "bmData", 'type': "automl_classification"}, description = 'sample service for Automl Classification') aci_service_name = 'automl-sample-bankmarketing-all' print(aci_service_name) aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig) aci_service.wait_for_deployment(True) print(aci_service.state) ###Output _____no_output_____ ###Markdown Delete a Web ServiceDeletes the specified web service. ###Code #aci_service.delete() ###Output _____no_output_____ ###Markdown Get Logs from a Deployed Web ServiceGets logs from a deployed web service. ###Code #aci_service.get_logs() ###Output _____no_output_____ ###Markdown TestNow that the model is trained, run the test data through the trained model to get the predicted values. ###Code # Load the bank marketing datasets. from numpy import array X_test = test_dataset.drop_columns(columns=['y']) y_test = test_dataset.keep_columns(columns=['y'], validate=True) test_dataset.take(5).to_pandas_dataframe() X_test = X_test.to_pandas_dataframe() y_test = y_test.to_pandas_dataframe() y_pred = fitted_model.predict(X_test) actual = array(y_test) actual = actual[:,0] print(y_pred.shape, " ", actual.shape) ###Output _____no_output_____ ###Markdown Calculate metrics for the predictionNow visualize the data on a scatter plot to show what our truth (actual) values are compared to the predicted values from the trained model that was returned. ###Code %matplotlib notebook test_pred = plt.scatter(actual, y_pred, color='b') test_test = plt.scatter(actual, actual, color='g') plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8) plt.show() ###Output _____no_output_____
notebooks/parrot.ipynb
###Markdown Load test data from "/notebooks/data/output.json" which is a list of json events ###Code import json with open("/notebooks/data/output.json") as f: data = json.loads(f.read()) print(type(data)) ###Output <type 'list'>
AAAI/Learnability/CIN/MLP/ds3/synthetic_type3_MLP_size_100_m_20.ipynb
###Markdown Generate dataset ###Code np.random.seed(12) y = np.random.randint(0,10,5000) idx= [] for i in range(10): print(i,sum(y==i)) idx.append(y==i) x = np.zeros((5000,2)) np.random.seed(12) x[idx[0],:] = np.random.multivariate_normal(mean = [7,4],cov=[[0.1,0],[0,0.1]],size=sum(idx[0])) x[idx[1],:] = np.random.multivariate_normal(mean = [8,6.5],cov=[[0.1,0],[0,0.1]],size=sum(idx[1])) x[idx[2],:] = np.random.multivariate_normal(mean = [5.5,6.5],cov=[[0.1,0],[0,0.1]],size=sum(idx[2])) x[idx[3],:] = np.random.multivariate_normal(mean = [-1,0],cov=[[0.1,0],[0,0.1]],size=sum(idx[3])) x[idx[4],:] = np.random.multivariate_normal(mean = [0,2],cov=[[0.1,0],[0,0.1]],size=sum(idx[4])) x[idx[5],:] = np.random.multivariate_normal(mean = [1,0],cov=[[0.1,0],[0,0.1]],size=sum(idx[5])) x[idx[6],:] = np.random.multivariate_normal(mean = [0,-1],cov=[[0.1,0],[0,0.1]],size=sum(idx[6])) x[idx[7],:] = np.random.multivariate_normal(mean = [0,0],cov=[[0.1,0],[0,0.1]],size=sum(idx[7])) x[idx[8],:] = np.random.multivariate_normal(mean = [-0.5,-0.5],cov=[[0.1,0],[0,0.1]],size=sum(idx[8])) x[idx[9],:] = np.random.multivariate_normal(mean = [0.4,0.2],cov=[[0.1,0],[0,0.1]],size=sum(idx[9])) x[idx[0]][0], x[idx[5]][5] for i in range(10): plt.scatter(x[idx[i],0],x[idx[i],1],label="class_"+str(i)) plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) bg_idx = [ np.where(idx[3] == True)[0], np.where(idx[4] == True)[0], np.where(idx[5] == True)[0], np.where(idx[6] == True)[0], np.where(idx[7] == True)[0], np.where(idx[8] == True)[0], np.where(idx[9] == True)[0]] bg_idx = np.concatenate(bg_idx, axis = 0) bg_idx.shape np.unique(bg_idx).shape x = x - np.mean(x[bg_idx], axis = 0, keepdims = True) np.mean(x[bg_idx], axis = 0, keepdims = True), np.mean(x, axis = 0, keepdims = True) x = x/np.std(x[bg_idx], axis = 0, keepdims = True) np.std(x[bg_idx], axis = 0, keepdims = True), np.std(x, axis = 0, keepdims = True) for i in range(10): plt.scatter(x[idx[i],0],x[idx[i],1],label="class_"+str(i)) plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) foreground_classes = {'class_0','class_1', 'class_2'} background_classes = {'class_3','class_4', 'class_5', 'class_6','class_7', 'class_8', 'class_9'} fg_class = np.random.randint(0,3) fg_idx = np.random.randint(0,m) train_data=[] a = [] fg_instance = np.array([[0.0,0.0]]) bg_instance = np.array([[0.0,0.0]]) for i in range(m): if i == fg_idx: b = np.random.choice(np.where(idx[fg_class]==True)[0],size=1) fg_instance += x[b] a.append(x[b]) print("foreground "+str(fg_class)+" present at " + str(fg_idx)) else: bg_class = np.random.randint(3,10) b = np.random.choice(np.where(idx[bg_class]==True)[0],size=1) bg_instance += x[b] a.append(x[b]) print("background "+str(bg_class)+" present at " + str(i)) a = np.concatenate(a,axis=0) print(a.shape) print(fg_class , fg_idx) a fg_instance bg_instance (fg_instance+bg_instance)/m , m # mosaic_list_of_images =[] # mosaic_label = [] train_label=[] fore_idx=[] train_data = [] for j in range(train_size): np.random.seed(j) fg_instance = torch.zeros([2], dtype=torch.float64) #np.array([[0.0,0.0]]) bg_instance = torch.zeros([2], dtype=torch.float64) #np.array([[0.0,0.0]]) # a=[] for i in range(m): if i == fg_idx: fg_class = np.random.randint(0,3) b = np.random.choice(np.where(idx[fg_class]==True)[0],size=1) fg_instance += x[b] # a.append(x[b]) # print("foreground "+str(fg_class)+" present at " + str(fg_idx)) else: bg_class = np.random.randint(3,10) b = np.random.choice(np.where(idx[bg_class]==True)[0],size=1) bg_instance += x[b] # a.append(x[b]) # print("background "+str(bg_class)+" present at " + str(i)) train_data.append((fg_instance+bg_instance)/m) # a = np.concatenate(a,axis=0) # mosaic_list_of_images.append(np.reshape(a,(2*m,1))) train_label.append(fg_class) fore_idx.append(fg_idx) train_data[0], train_label[0] train_data = torch.stack(train_data, axis=0) train_data.shape, len(train_label) test_label=[] # fore_idx=[] test_data = [] for j in range(1000): np.random.seed(j) fg_instance = torch.zeros([2], dtype=torch.float64) #np.array([[0.0,0.0]]) fg_class = np.random.randint(0,3) b = np.random.choice(np.where(idx[fg_class]==True)[0],size=1) fg_instance += x[b] # a.append(x[b]) # print("foreground "+str(fg_class)+" present at " + str(fg_idx)) test_data.append((fg_instance)/m) # a = np.concatenate(a,axis=0) # mosaic_list_of_images.append(np.reshape(a,(2*m,1))) test_label.append(fg_class) # fore_idx.append(fg_idx) test_data[0], test_label[0] test_data = torch.stack(test_data, axis=0) test_data.shape, len(test_label) x1 = (train_data).numpy() y1 = np.array(train_label) x1[y1==0,0] x1[y1==0,0][:,0] x1[y1==0,0][:,1] x1 = (train_data).numpy() y1 = np.array(train_label) plt.scatter(x1[y1==0,0][:,0], x1[y1==0,0][:,1], label='class 0') plt.scatter(x1[y1==1,0][:,0], x1[y1==1,0][:,1], label='class 1') plt.scatter(x1[y1==2,0][:,0], x1[y1==2,0][:,1], label='class 2') plt.legend() plt.title("dataset4 CIN with alpha = 1/"+str(m)) x1 = (test_data).numpy() y1 = np.array(test_label) plt.scatter(x1[y1==0,0][:,0], x1[y1==0,0][:,1], label='class 0') plt.scatter(x1[y1==1,0][:,0], x1[y1==1,0][:,1], label='class 1') plt.scatter(x1[y1==2,0][:,0], x1[y1==2,0][:,1], label='class 2') plt.legend() plt.title("test dataset4") class MosaicDataset(Dataset): """MosaicDataset dataset.""" def __init__(self, mosaic_list_of_images, mosaic_label): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.mosaic = mosaic_list_of_images self.label = mosaic_label #self.fore_idx = fore_idx def __len__(self): return len(self.label) def __getitem__(self, idx): return self.mosaic[idx] , self.label[idx] #, self.fore_idx[idx] train_data[0].shape, train_data[0] batch = 200 traindata_1 = MosaicDataset(train_data, train_label ) trainloader_1 = DataLoader( traindata_1 , batch_size= batch ,shuffle=True) testdata_1 = MosaicDataset(test_data, test_label ) testloader_1 = DataLoader( testdata_1 , batch_size= batch ,shuffle=False) # testdata_11 = MosaicDataset(test_dataset, labels ) # testloader_11 = DataLoader( testdata_11 , batch_size= batch ,shuffle=False) class Whatnet(nn.Module): def __init__(self): super(Whatnet,self).__init__() self.linear1 = nn.Linear(2,50) self.linear2 = nn.Linear(50,3) torch.nn.init.xavier_normal_(self.linear1.weight) torch.nn.init.zeros_(self.linear1.bias) torch.nn.init.xavier_normal_(self.linear2.weight) torch.nn.init.zeros_(self.linear2.bias) def forward(self,x): x = F.relu(self.linear1(x)) x = (self.linear2(x)) return x[:,0] def calculate_loss(dataloader,model,criter): model.eval() r_loss = 0 with torch.no_grad(): for i, data in enumerate(dataloader, 0): inputs, labels = data inputs, labels = inputs.to("cuda"),labels.to("cuda") outputs = model(inputs) # print(outputs.shape) loss = criter(outputs, labels) r_loss += loss.item() return r_loss/(i+1) def test_all(number, testloader,net): correct = 0 total = 0 out = [] pred = [] with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to("cuda"),labels.to("cuda") out.append(labels.cpu().numpy()) outputs= net(images) _, predicted = torch.max(outputs.data, 1) pred.append(predicted.cpu().numpy()) total += labels.size(0) correct += (predicted == labels).sum().item() pred = np.concatenate(pred, axis = 0) out = np.concatenate(out, axis = 0) print("unique out: ", np.unique(out), "unique pred: ", np.unique(pred) ) print("correct: ", correct, "total ", total) print('Accuracy of the network on the %d test dataset %d: %.2f %%' % (total, number , 100 * correct / total)) def train_all(trainloader, ds_number, testloader_list, lr_list): final_loss = [] for LR in lr_list: print("--"*20, "Learning Rate used is", LR) torch.manual_seed(12) net = Whatnet().double() net = net.to("cuda") criterion_net = nn.CrossEntropyLoss() optimizer_net = optim.Adam(net.parameters(), lr=0.001 ) #, momentum=0.9) acti = [] loss_curi = [] epochs = 1000 running_loss = calculate_loss(trainloader,net,criterion_net) loss_curi.append(running_loss) print('epoch: [%d ] loss: %.3f' %(0,running_loss)) for epoch in range(epochs): # loop over the dataset multiple times ep_lossi = [] running_loss = 0.0 net.train() for i, data in enumerate(trainloader, 0): # get the inputs inputs, labels = data inputs, labels = inputs.to("cuda"),labels.to("cuda") # zero the parameter gradients optimizer_net.zero_grad() # forward + backward + optimize outputs = net(inputs) # print(outputs.shape) loss = criterion_net(outputs, labels) # print statistics running_loss += loss.item() loss.backward() optimizer_net.step() running_loss = calculate_loss(trainloader,net,criterion_net) if(epoch%200 == 0): print('epoch: [%d] loss: %.3f' %(epoch + 1,running_loss)) loss_curi.append(running_loss) #loss per epoch if running_loss<=0.05: print('epoch: [%d] loss: %.3f' %(epoch + 1,running_loss)) break print('Finished Training') correct = 0 total = 0 with torch.no_grad(): for data in trainloader: images, labels = data images, labels = images.to("cuda"), labels.to("cuda") outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the %d train images: %.2f %%' % (total, 100 * correct / total)) for i, j in enumerate(testloader_list): test_all(i+1, j,net) print("--"*40) final_loss.append(loss_curi) return final_loss train_loss_all=[] testloader_list= [ testloader_1] lr_list = [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 ] fin_loss = train_all(trainloader_1, 1, testloader_list, lr_list) train_loss_all.append(fin_loss) %matplotlib inline len(fin_loss) for i,j in enumerate(fin_loss): plt.plot(j,label ="LR = "+str(lr_list[i])) plt.xlabel("Epochs") plt.ylabel("Training_loss") plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) ###Output _____no_output_____
python-scripts/data_analytics_learn/link_pandas/Ex_Files_Pandas_Data/Exercise Files/01_01/Final/.ipynb_checkpoints/Intro to Jupyter-checkpoint.ipynb
###Markdown What is a Jupyter notebook? Application for creating and sharing documents that contain:- live code- equations- visualizations- explanatory textHome page: http://jupyter.org/ Notebook tutorials- [Quick Start Guide](https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/)- [User Documentation](http://jupyter-notebook.readthedocs.io/en/latest/)- [Examples Documentation](http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/examples_index.html)- [Cal Tech](http://bebi103.caltech.edu/2015/tutorials/t0b_intro_to_jupyter_notebooks.html) Notebook Users- students, readers, viewers, learners - read a digital book - interact with a "live" book- notebook developers - create notebooks for students, readers, ... Notebooks contain cells- Code cells - execute computer (Python, or many other languages)- Markdown cells - documentation, "narrative" cells - guide a reader through a notebook Following cells are "live" cells ###Code print ("Hello Jupyter World!; You are helping me learn") (5+7)/4 import numpy as np my_first_array = np.arange(11) print (my_first_array) ###Output [ 0 1 2 3 4 5 6 7 8 9 10]
notebooks/elasticsearch/tmdb/raw-es-commands.ipynb
###Markdown Init Default Feature StoreThe feature store can be removed by sending a DELETE request to `_ltr` endpoint. ###Code url = 'http://{}:9200/_ltr/'.format(host) print(url) requests.delete(url) ###Output _____no_output_____ ###Markdown To initialize the LTR plugin, issue a PUT request to the `_ltr` endpoint. ###Code url = 'http://{}:9200/_ltr/'.format(host) print(url) requests.put(url) ###Output _____no_output_____ ###Markdown Create Feature SetA feature set can be created by issuing a PUT to `_ltr/featureset/[feature_name]` ###Code feature_set = { "featureset": { "features": [ { "name": "title_bm25", "params": [ "keywords" ], "template": { "match": { "title": "{{keywords}}" } } }, { "name": "overview_bm25", "params": [ "keywords" ], "template": { "match": { "overview": "{{keywords}}" } } } ] }, "validation": { "index": "tmdb", "params": { "keywords": "rambo" } } } url = 'http://{}:9200/_ltr/_featureset/my_feature_set'.format(host) print(url) requests.put(url, json=feature_set) ###Output _____no_output_____ ###Markdown Log Some Judged Queries To Build Training Set If we have 4 judged documents: 7555,1370, 1369, and 1368 for keywords rambo:```doc_id, relevant?, keywords1368, 1, rambo1369, 1, rambo1370, 1, rambo7555, 0, rambo```We need to get feature value for each row.To do this, we utilize the logging extension to populate the judgment list with features for training. ###Code search_with_log = { "query": { "bool": { "filter": [ { "sltr": { "_name": "logged_features", "featureset": "my_feature_set", "params": { "keywords": "rambo" } } }, { "terms": { "_id": [ "7555","1370", "1369", "1368" ] } } ] } }, "ext": { "ltr_log": { "log_specs": { "name": "ltr_features", "named_query": "logged_features" } } } } url = 'http://{}:9200/tmdb/_search'.format(host) print(url) resp = requests.get(url, json=search_with_log).json() print(json.dumps(resp['hits']['hits'][0], indent=2)) ###Output _____no_output_____ ###Markdown Training Set Now... ```doc_id, relevant?, keywords, title_bm25, overview_bm251368, 1, rambo, 0, 11.1139431369, 1, rambo, 11.657, 10.081370, 1, rambo, 9.456, 13.2657555, 0, rambo, 6.037, 11.114``` Train a modelWe won't do this here, but if you like you can try out training a model using Ranklib ```cd notebooks/elasticsearch/tmdbjava -jar data/RankyMcRankFace.jar -train data/title_judgments.txt -save data/model.txt``` Uploading a ModelOnce features have been logged and training data has been generated, a model can be pushed into Elasticsearch. The following shows what a request to PUT a new model looks like. ###Code model = """## LambdaMART ## No. of trees = 10 ## No. of leaves = 10 ## No. of threshold candidates = 256 ## Learning rate = 0.1 ## Stop early = 100 <ensemble> <tree id="1" weight="0.1"> <split> <feature> 2 </feature> <threshold> 10.664251 </threshold> <split pos="left"> <feature> 1 </feature> <threshold> 0.0 </threshold> <split pos="left"> <output> -1.8305741548538208 </output> </split> <split pos="right"> <feature> 2 </feature> <threshold> 9.502127 </threshold> <split pos="left"> <feature> 1 </feature> <threshold> 7.0849166 </threshold> <split pos="left"> <output> 0.23645669221878052 </output> </split> <split pos="right"> <output> 1.7593677043914795 </output> </split> </split> <split pos="right"> <output> 1.9719607830047607 </output> </split> </split> </split> <split pos="right"> <feature> 2 </feature> <threshold> 0.0 </threshold> <split pos="left"> <output> 1.3728954792022705 </output> </split> <split pos="right"> <feature> 2 </feature> <threshold> 8.602512 </threshold> <split pos="left"> <feature> 1 </feature> <threshold> 0.0 </threshold> <split pos="left"> <feature> 2 </feature> <threshold> 13.815164 </threshold> <split pos="left"> <output> 1.9401178359985352 </output> </split> <split pos="right"> <output> 1.99532949924469 </output> </split> </split> <split pos="right"> <feature> 1 </feature> <threshold> 11.085816 </threshold> <split pos="left"> <output> 2.0 </output> </split> <split pos="right"> <output> 1.99308180809021 </output> </split> </split> </split> <split pos="right"> <output> 1.9870178699493408 </output> </split> </split> </split> </split> </tree> </ensemble> """ create_model = { "model": { "name": "my_model", "model": { "type": "model/ranklib", "definition": model } } } url = 'http://{}:9200/_ltr/_featureset/my_feature_set/_createmodel'.format(host) print(url) requests.post(url, json=create_model).json() ###Output _____no_output_____ ###Markdown Searching with a ModelNow that a model has been uploaded to Elasticsearch we can use it to re-rank the results of a query. ###Code search = { "query": { "sltr": { "params": { "keywords": "rambo" }, "model": "my_model" } } } url = 'http://{}:9200/tmdb/_search'.format(host) resp = requests.get(url, json=search).json() print(url) for hit in resp['hits']['hits']: print(hit['_source']['title']) ###Output _____no_output_____ ###Markdown Init Default Feature StoreThe feature store can be removed by sending a DELETE request to `_ltr` endpoint. ###Code url = 'http://{}:9200/_ltr/'.format(host) print(url) requests.delete(url) ###Output _____no_output_____ ###Markdown To initialize the LTR plugin, issue a PUT request to the `_ltr` endpoint. ###Code url = 'http://{}:9200/_ltr/'.format(host) print(url) requests.put(url) ###Output _____no_output_____ ###Markdown Create Feature SetA feature set can be created by issuing a PUT to `_ltr/featureset/[feature_name]` ###Code feature_set = { "featureset": { "features": [ { "name": "title_bm25", "params": [ "keywords" ], "template": { "match": { "title": "{{keywords}}" } } }, { "name": "overview_bm25", "params": [ "keywords" ], "template": { "match": { "overview": "{{keywords}}" } } } ] }, "validation": { "index": "tmdb", "params": { "keywords": "rambo" } } } url = 'http://{}:9200/_ltr/_featureset/my_feature_set'.format(host) print(url) requests.put(url, json=feature_set) ###Output _____no_output_____ ###Markdown Log Some Judged Queries To Build Training Set If we have 4 judged documents: 7555,1370, 1369, and 1368 for keywords rambo:```doc_id, relevant?, keywords1368, 1, rambo1369, 1, rambo1370, 1, rambo7555, 0, rambo```We need to get feature value for each row.To do this, we utilize the logging extension to populate the judgment list with features for training. ###Code search_with_log = { "query": { "bool": { "filter": [ { "sltr": { "_name": "logged_features", "featureset": "my_feature_set", "params": { "keywords": "rambo" } } }, { "terms": { "_id": [ "7555","1370", "1369", "1368" ] } } ] } }, "ext": { "ltr_log": { "log_specs": { "name": "ltr_features", "named_query": "logged_features" } } } } url = 'http://{}:9200/tmdb/_search'.format(host) print(url) resp = requests.get(url, json=search_with_log).json() print(json.dumps(resp['hits']['hits'][0], indent=2)) ###Output _____no_output_____ ###Markdown Training Set Now... ```doc_id, relevant?, keywords, title_bm25, overview_bm251368, 1, rambo, 0, 11.1139431369, 1, rambo, 11.657, 10.081370, 1, rambo, 9.456, 13.2657555, 0, rambo, 6.037, 11.114``` Train a modelWe won't do this here, but if you like you can try out training a model using Ranklib ```cd notebooks/elasticsearch/tmdbjava -jar data/RankyMcRankFace.jar -train data/title_judgments.txt -save data/model.txt``` Uploading a ModelOnce features have been logged and training data has been generated, a model can be pushed into Elasticsearch. The following shows what a request to PUT a new model looks like. ###Code model = """## LambdaMART ## No. of trees = 10 ## No. of leaves = 10 ## No. of threshold candidates = 256 ## Learning rate = 0.1 ## Stop early = 100 <ensemble> <tree id="1" weight="0.1"> <split> <feature> 2 </feature> <threshold> 10.664251 </threshold> <split pos="left"> <feature> 1 </feature> <threshold> 0.0 </threshold> <split pos="left"> <output> -1.8305741548538208 </output> </split> <split pos="right"> <feature> 2 </feature> <threshold> 9.502127 </threshold> <split pos="left"> <feature> 1 </feature> <threshold> 7.0849166 </threshold> <split pos="left"> <output> 0.23645669221878052 </output> </split> <split pos="right"> <output> 1.7593677043914795 </output> </split> </split> <split pos="right"> <output> 1.9719607830047607 </output> </split> </split> </split> <split pos="right"> <feature> 2 </feature> <threshold> 0.0 </threshold> <split pos="left"> <output> 1.3728954792022705 </output> </split> <split pos="right"> <feature> 2 </feature> <threshold> 8.602512 </threshold> <split pos="left"> <feature> 1 </feature> <threshold> 0.0 </threshold> <split pos="left"> <feature> 2 </feature> <threshold> 13.815164 </threshold> <split pos="left"> <output> 1.9401178359985352 </output> </split> <split pos="right"> <output> 1.99532949924469 </output> </split> </split> <split pos="right"> <feature> 1 </feature> <threshold> 11.085816 </threshold> <split pos="left"> <output> 2.0 </output> </split> <split pos="right"> <output> 1.99308180809021 </output> </split> </split> </split> <split pos="right"> <output> 1.9870178699493408 </output> </split> </split> </split> </split> </tree> </ensemble> """ create_model = { "model": { "name": "my_model", "model": { "type": "model/ranklib", "definition": model } } } url = 'http://{}:9200/_ltr/_featureset/my_feature_set/_createmodel'.format(host) print(url) requests.post(url, json=create_model).json() ###Output _____no_output_____ ###Markdown Searching with a ModelNow that a model has been uploaded to Elasticsearch we can use it to re-rank the results of a query. ###Code search = { "query": { "sltr": { "params": { "keywords": "rambo" }, "model": "my_model" } } } url = 'http://{}:9200/tmdb/_search'.format(host) resp = requests.get(url, json=search).json() print(url) for hit in resp['hits']['hits']: print(hit['_source']['title']) ###Output _____no_output_____
Moloch DAO Agent-Based Model.ipynb
###Markdown Size of community effect ###Code df_list = [] for n in range(5, 50, 5): row_list = [] params = { "num_nodes": n, # number of DAO members "avg_node_degree": 3, # how many other DAO members is each connected to? "proposal_dimension": 2, # number of categories considered in evaluating the value of the proposal "evaluation_period": 3, # num. time steps for agents to evaluate the proposal "num_proposals": 10 } model = MolochDAO(**params) for i in range(50): model.run() # print(model.votes) percent_passed = sum(model.votes) / len(model.votes) # print(n, i, sum(model.votes) / len(model.votes)) # count how many proposals passed in this simulation run row_list = [n, i, percent_passed] df_list.append(row_list) model.votes = [] # reset and get ready for the next run df_list = pd.DataFrame(df_list, columns = ["num_members", "trial", "pct_proposals_passed"]) df_list.head() plt.rcParams["figure.figsize"] = [22, 12] plt.rcParams["figure.autolayout"] = True # sns.set_style("dark") sns.set(font_scale = 2) plt.style.use("dark_background") # tips = sns.load_dataset("tips") ax = sns.boxplot(x="num_members", y="pct_proposals_passed", palette="pastel", data=df_list) # plt.ylim(5, 30) ax.grid(False) ax.set_xlabel("Number of DAO Members", fontsize = 20) ax.set_ylabel("% Proposals Passed by Community", fontsize = 20) plt.show() for n in range(0, 30, 5): print(n) model_df ###Output _____no_output_____
LSTM_WithRCode.ipynb
###Markdown ###Code import tensorflow as tf # Helper libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from keras.preprocessing.sequence import TimeseriesGenerator from sklearn.preprocessing import MinMaxScaler, StandardScaler import tensorflow as tf from tensorflow.keras import backend from math import ceil import keras import numpy as np import io from google.colab import files class TimeseriesGenerator(keras.utils.Sequence): """Utility class for generating batches of temporal data. This class takes in a sequence of data-points gathered at equal intervals, along with time series parameters such as stride, length of history, etc., to produce batches for training/validation. # Arguments data: Indexable generator (such as list or Numpy array) containing consecutive data points (timesteps). The data should be at 2D, and axis 0 is expected to be the time dimension. targets: Targets corresponding to timesteps in `data`. It should have same length as `data`. length: Length of the output sequences (in number of timesteps). sampling_rate: Period between successive individual timesteps `data[i]`, `data[i-r]`, ... `data[i - length]` are used for create a sample sequence. stride: Period between successive output sequences. For stride `s`, consecutive output samples would be centered around `data[i]`, `data[i+s]`, `data[i+2*s]`, etc. start_index: Data points earlier than `start_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. end_index: Data points later than `end_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. shuffle: Whether to shuffle output samples, or instead draw them in chronological order. reverse: Boolean: if `true`, timesteps in each output sample will be in reverse chronological order. batch_size: Number of timeseries samples in each batch (except maybe the last one). # Returns A [Sequence](/utils/#sequence) instance. # Examples ```python from keras.preprocessing.sequence import TimeseriesGenerator import numpy as np data = np.array([[i] for i in range(50)]) targets = np.array([[i] for i in range(50)]) data_gen = TimeseriesGenerator(data, targets, length=10, sampling_rate=2, batch_size=2) assert len(data_gen) == 20 batch_0 = data_gen[0] x, y = batch_0 assert np.array_equal(x, np.array([[[0], [2], [4], [6], [8]], [[1], [3], [5], [7], [9]]])) assert np.array_equal(y, np.array([[10], [11]])) ``` """ def __init__(self, data, targets, length, sampling_rate=1, stride=1, start_index=0, end_index=None, shuffle=False, reverse=False, batch_size=128): self.data = data self.targets = targets self.length = length self.sampling_rate = sampling_rate self.stride = stride self.start_index = start_index + length if end_index is None: end_index = len(data) - 1 self.end_index = end_index self.shuffle = shuffle self.reverse = reverse self.batch_size = batch_size if self.start_index > self.end_index: raise ValueError('`start_index+length=%i > end_index=%i` ' 'is disallowed, as no part of the sequence ' 'would be left to be used as current step.' % (self.start_index, self.end_index)) def __len__(self): return (self.end_index - self.start_index + self.batch_size * self.stride) // (self.batch_size * self.stride) def _empty_batch(self, num_rows): samples_shape = [num_rows, self.length // self.sampling_rate] samples_shape.extend(self.data.shape[1:]) targets_shape = [num_rows] targets_shape.extend(self.targets.shape[1:]) return np.empty(samples_shape), np.empty(targets_shape) def __getitem__(self, index): if self.shuffle: rows = np.random.randint( self.start_index, self.end_index + 1, size=self.batch_size) else: i = self.start_index + self.batch_size * self.stride * index rows = np.arange(i, min(i + self.batch_size * self.stride, self.end_index + 1), self.stride) samples, targets = self._empty_batch(len(rows)) for j, row in enumerate(rows): indices = range(rows[j] - self.length, rows[j], self.sampling_rate) samples[j] = self.data[indices] targets[j] = self.targets[rows[j]] if self.reverse: return samples[:, ::-1, ...], targets return samples, targets print(tf.__version__) df = pd.read_csv('/content/drive/MyDrive/dfresultWithLocalrateMrbdrateCovidValues2020.csv') df.columns df = df.drop(['LocalRate', 'morbidtyValues'], axis = 1) df.head(15) from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() df[['EP_POV', 'EP_UNEMP', 'EP_PCI', 'EP_NOHSDP', 'EP_AGE65', 'EP_AGE17', 'EP_DISABL', 'EP_SNGPNT', 'EP_MINRTY', 'EP_LIMENG', 'EP_MUNIT', 'EP_MOBILE', 'EP_CROWD', 'EP_NOVEH', 'EP_GROUPQ', 'EP_UNINSUR', 'LST_Day', 'LST_Night', 'NL_Temp', 'NL_Humid ', 'NL_Pres ', 'NL_windu ', 'NL_Lr ', 'NL_Pe ']] = scaler.fit_transform(df[['EP_POV', 'EP_UNEMP', 'EP_PCI', 'EP_NOHSDP', 'EP_AGE65', 'EP_AGE17', 'EP_DISABL', 'EP_SNGPNT', 'EP_MINRTY', 'EP_LIMENG', 'EP_MUNIT', 'EP_MOBILE', 'EP_CROWD', 'EP_NOVEH', 'EP_GROUPQ', 'EP_UNINSUR', 'LST_Day', 'LST_Night', 'NL_Temp', 'NL_Humid ', 'NL_Pres ', 'NL_windu ', 'NL_Lr ', 'NL_Pe ']]) df.head(3150) #df['Dates'] = pd.to_datetime(df['Dates'], infer_datetime_format=True) df = df.drop(['FIPS_Final'], axis=1) #df = df.drop(['Unnamed: 0'], axis=1) print("Done") print(df.shape) #some_values = [18097, 6037] #df_countySeparated = df.loc[df['Counties'].isin(some_values)] df_countySeparated = df df_countySeparated = df_countySeparated[['covidValues', 'EP_POV', 'EP_UNEMP', 'EP_PCI', 'EP_NOHSDP', 'EP_AGE65', 'EP_AGE17', 'EP_DISABL', 'EP_SNGPNT', 'EP_MINRTY', 'EP_LIMENG', 'EP_MUNIT', 'EP_MOBILE', 'EP_CROWD', 'EP_NOVEH', 'EP_GROUPQ', 'EP_UNINSUR', 'LST_Day', 'LST_Night', 'NL_Temp', 'NL_Humid ', 'NL_Pres ', 'NL_windu ', 'NL_Lr ', 'NL_Pe ']] print(df_countySeparated.columns) df_countySeparated.columns print(df_countySeparated.shape) #DMA #df_average7Days = df_countySeparated.groupby(np.arange(len(df_countySeparated))//2).mean() #print(df_average7Days.shape) #df_countySeparated = df_average7Days #print(df_countySeparated.shape) df_countySeparated['covidConfirmedCases_EWM'] = df['covidValues'].ewm(span=48, adjust=False).mean() #df_countySeparated['covidConfirmedCases_EWM'] = df['CovidValues'] df_countySeparated = df_countySeparated[['covidConfirmedCases_EWM', 'EP_POV', 'EP_UNEMP', 'EP_PCI', 'EP_NOHSDP', 'EP_AGE65', 'EP_AGE17', 'EP_DISABL', 'EP_SNGPNT', 'EP_MINRTY', 'EP_LIMENG', 'EP_MUNIT', 'EP_MOBILE', 'EP_CROWD', 'EP_NOVEH', 'EP_GROUPQ', 'EP_UNINSUR', 'LST_Day', 'LST_Night', 'NL_Temp', 'NL_Humid ', 'NL_Pres ', 'NL_windu ', 'NL_Lr ', 'NL_Pe ']] df_countySeparated.columns data_scaled = scaler.fit_transform(df_countySeparated) data_scaled features = data_scaled target = data_scaled[:, 0] x_train, x_test, y_train, y_test = train_test_split(features, target, test_size = 0.3, random_state = 1, shuffle = False) x_train.shape x_test.shape batch_size = 128 win_length = 7 num_features = 27 train_generator = TimeseriesGenerator(x_train, y_train, length = win_length, sampling_rate=1, batch_size=batch_size) test_generator = TimeseriesGenerator(x_test, y_test, length = win_length, sampling_rate=1, batch_size=batch_size) print(train_generator[0][0].shape) print("DoneTillHere") model = tf.keras.Sequential() model.add(tf.keras.layers.LSTM(128, input_shape=(win_length, num_features), return_sequences=True)) model.add(tf.keras.layers.LeakyReLU(alpha = 0.5)) model.add(tf.keras.layers.LSTM(64, return_sequences = True)) model.add(tf.keras.layers.LeakyReLU(alpha = 0.5)) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.LSTM(32, return_sequences = False)) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Dense(1)) """ model.add(tf.keras.layers.LSTM(256, input_shape=(win_length, num_features), return_sequences=True)) model.add(tf.keras.layers.LeakyReLU(alpha = 0.5)) model.add(tf.keras.layers.LSTM(128, return_sequences = True)) model.add(tf.keras.layers.LeakyReLU(alpha = 0.5)) model.add(tf.keras.layers.LSTM(64, return_sequences = True)) model.add(tf.keras.layers.LeakyReLU(alpha = 0.5)) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.LSTM(32, return_sequences = False)) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Dense(1)) """ !pip install eli5 import eli5 from eli5.sklearn import PermutationImportance early_stopping = tf.keras.callbacks.EarlyStopping(monitor = "val_loss", patience = 15, mode='min') model.compile(loss='mean_squared_error', optimizer = 'Adamax', metrics = ['mean_absolute_error']) history = model.fit(train_generator, epochs=3, validation_data = test_generator, shuffle=False) #print(history.history.keys()) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model accuracy') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') #plt.show() model.evaluate_generator(test_generator, verbose=0 ) predictions = model.predict_generator(test_generator) predictions.shape[0] df_pred = pd.concat([pd.DataFrame(predictions), pd.DataFrame(x_test[:, 1:][win_length:])], axis = 1) rev_trans = scaler.inverse_transform(df_pred) df_final = df_countySeparated[predictions.shape[0]*-1:] print(df_final.count) df_final['Covid_Pred'] = rev_trans[:, 0] df_final df_final.reset_index(drop=True, inplace=True) df_final[['covidConfirmedCases_EWM','Covid_Pred']].plot() y_test = df_final.loc[:,'covidConfirmedCases_EWM'] y_pred = df_final.loc[:,'Covid_Pred'] from sklearn.metrics import r2_score # Model Accuracy, how often is the classifier correct? print("Accuracy:",r2_score(y_test, y_pred)) """ from google.colab import files files.download('rporgramLSTMResult.csv') df_final.to_csv("rporgramLSTMResult.csv") """ !pip install shap import shap e = shap.DeepExplainer((model.layers[0].input, model.layers[-1].output),train_generator) print(shap.__version__) ###Output _____no_output_____
notebooks/00.1-data-exploration/frogs/0.0-Frog-vocalizations.ipynb
###Markdown Frog vocalizationsSource:- https://data.mendeley.com/datasets/5j852hzfjs/1folder-763acb9b-e08c-4b56-8426-4d06abdb5d14- https://arxiv.org/abs/1901.02495- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942061/ < a second dataset that is also probably too small- https://data.mendeley.com/datasets/5j852hzfjs/1 ###Code This dataset might not work... ###Output _____no_output_____
notebooks/nbk_04_embeddings_hdbscan.ipynb
###Markdown Preprocessing: ###Code X_array = data.loc[:, data.columns].values X_array.shape # Feature seletion: sel = VarianceThreshold(threshold=0) X_array_sel = sel.fit_transform(X_array) X_array_sel.shape # Normalizing data: x_array_norm = MinMaxScaler().fit_transform(X_array_sel) # pd.DataFrame(x_array_norm) # Standardizing data: x_array_std = StandardScaler().fit_transform(X_array_sel) # pd.DataFrame(x_array_std) # x_array_prep = X_array_sel # x_array_prep = x_array_norm x_array_prep = x_array_std n_components = 30 ###Output _____no_output_____ ###Markdown Embeddings: ###Code methods = OrderedDict() methods['PCA'] = PCA(n_components=n_components) results = pd.DataFrame() metrics_summary = [] for i, (label, method) in enumerate(methods.items()): print(i, label, method) # Performing the embedding algorithm: t0 = time() x_embedded = method.fit_transform(x_array_prep) t1 = time() model = HDBSCAN(min_cluster_size=2, min_samples=1) model.fit(x_embedded) cluster_labels = model.labels_ results[label] = cluster_labels sample_silhouette_values = silhouette_samples(x_embedded, cluster_labels) silhouette_avg = sample_silhouette_values[np.where(cluster_labels >= 0)[0]].mean() n_clusters = len(np.unique(cluster_labels))-1 method_metrics = {'silhouette_avg': silhouette_avg, 'n_clusters': n_clusters, 'n_outliers': sum(cluster_labels == -1)} metrics_summary.append(method_metrics) fig = plt.figure(figsize=(20, 6)) # Plot 1: ax = fig.add_subplot(1, 3, 1) ax.set_title("%s: %d clusters - silhouete_avg: %.2g (%.2g sec)" % (label, n_clusters, silhouette_avg, t1 - t0)) for k in np.unique(cluster_labels): indexes = np.where(cluster_labels == k)[0] if k == -1: plt.scatter(x_embedded[indexes, 0], x_embedded[indexes, 1], alpha=0.5, s=80, label=k, c='k') else: plt.scatter(x_embedded[indexes, 0], x_embedded[indexes, 1], alpha=0.5, s=80, label=k) plt.xlabel('Component 1') plt.ylabel('Component 2') plt.legend(ncol=2) # Plot 2: ax = fig.add_subplot(1, 3, 2) plt.title('Condensed Tree') model.condensed_tree_.plot(select_clusters=True) # Plot 3: ax = fig.add_subplot(1, 3, 3) plt.title('Single Linkage Tree') model.single_linkage_tree_.plot() plt.tight_layout() plt.savefig(f'../imgs/imgs_v2/img_0{i+1}_{label}_plots.png', dpi=100) plt.show() metrics_summary = pd.DataFrame(metrics_summary, index=results.columns) metrics_summary # Presenting all elements of all groups by all methods: all_groups = {} for method in results.columns: print('\n'+method+':') all_groups[method] = {} method_results = results[method].values for val in np.unique(method_results): print(val, results.index[np.where(method_results == val)[0]].values) all_groups[method][val] = list(results.index[np.where(method_results == val)[0]]) all_clusters = [] all_relations = {} # Concatenating the results of all methods: for subject in results.index: related_subjects = [] g_indexes = results.loc[subject, :].values n_out = len(np.where(g_indexes == -1)[0]) if n_out < len(g_indexes)/2: all_partners = [] for method, idx in zip(results.columns, g_indexes): if idx != -1: all_partners += all_groups[method][idx] all_partners = np.array(all_partners) all_partners = all_partners[~(all_partners == subject)] unique, counts = np.unique(all_partners, return_counts=True) for val, c in zip(unique, counts): if c > len(g_indexes)/2: related_subjects.append(val) new_cluster = set(related_subjects + [subject]) if related_subjects and new_cluster not in all_clusters: all_clusters.append(new_cluster) all_relations[subject] = related_subjects print('Subject:', subject, 'related subjects:', related_subjects) related_subjects = {'subject': [], 'related subjects': []} for key, val in all_relations.items(): related_subjects['subject'].append(key) related_subjects['related subjects'].append(val) related_subjects = pd.DataFrame(related_subjects) related_subjects.to_csv('related_subjects.csv') related_subjects for i, cluster in enumerate(all_clusters): print(i+1, cluster) cluster_tags = [] for subject in results.index: tag = -1 for k, cluster in enumerate(all_clusters): if subject in cluster: tag = k break cluster_tags.append(tag) data['cluster_tag'] = cluster_tags data x_pca = PCA(n_components=n_components).fit_transform(x_array_prep) fig = plt.figure(figsize=(20, 8)) ax = fig.add_subplot(121, projection='3d') plt.title('Final Clustering 3D') for k in np.unique(cluster_tags): indexes = np.where(cluster_tags == k)[0] if k == -1: ax.scatter(x_pca[indexes, 0], x_pca[indexes, 1], x_pca[indexes, 2], alpha=0.5, s=80, label=k, c='k') else: ax.scatter(x_pca[indexes, 0], x_pca[indexes, 1], x_pca[indexes, 2], alpha=0.5, s=80, label=k) ax.set_xlabel('Component 1') ax.set_ylabel('Component 2') ax.set_zlabel('Component 3') plt.legend(ncol=2) plt.tight_layout() ax = fig.add_subplot(122) plt.title('Final Clustering 2D') for k in np.unique(cluster_tags): indexes = np.where(cluster_tags == k)[0] if k == -1: plt.scatter(x_pca[indexes, 0], x_pca[indexes, 1], alpha=0.5, s=80, label=k, c='k') else: plt.scatter(x_pca[indexes, 0], x_pca[indexes, 1], alpha=0.5, s=80, label=k) ax.set_xlabel('Component 1') ax.set_ylabel('Component 2') plt.legend(ncol=2) plt.tight_layout() plt.show() ###Output _____no_output_____
Model backlog/Models/[7] - Deep Learning - Batch 256.ipynb
###Markdown Dependencies ###Code import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from keras import optimizers from keras.models import Sequential from keras.callbacks import ReduceLROnPlateau, EarlyStopping from keras.layers import Dense, Dropout, BatchNormalization, Activation from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.model_selection import train_test_split, StratifiedKFold from sklearn.metrics import confusion_matrix, roc_auc_score, recall_score, precision_score # Set seeds to make the experiment more reproducible. from tensorflow import set_random_seed from numpy.random import seed set_random_seed(0) seed(0) %matplotlib inline sns.set_style("whitegrid") warnings.filterwarnings("ignore") ###Output Using TensorFlow backend. ###Markdown Load data ###Code train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') submission = pd.read_csv('../input/sample_submission.csv') print('Train set shape:', train.shape) print('Test set shape:', test.shape) print('Train set overview:') display(train.head()) ###Output Train set shape: (262144, 258) Test set shape: (131073, 257) Train set overview: ###Markdown Preprocess ###Code train['set'] = 0 test['set'] = 1 data = pd.concat([train, test]) # data['count_magic'] = data.groupby(['wheezy-copper-turtle-magic'])['id'].transform('count') data = pd.concat([data, pd.get_dummies(data['wheezy-copper-turtle-magic'], prefix='magic', drop_first=True)], axis=1).drop(['wheezy-copper-turtle-magic'], axis=1) data.drop('id', axis=1, inplace=True) train = data[data['set'] == 0] test = data[data['set'] == 1] labels = train['target'] train.drop(['target', 'set'], axis=1, inplace=True) test.drop(['target', 'set'], axis=1, inplace=True) ###Output _____no_output_____ ###Markdown Normalize data using MinMaxScaler ###Code non_cat_features = list(train.filter(regex='^(?!magic_)')) scaler = MinMaxScaler() train[non_cat_features] = scaler.fit_transform(train[non_cat_features]) test[non_cat_features] = scaler.transform(test[non_cat_features]) ###Output _____no_output_____ ###Markdown Model Model parameters ###Code N_FOLDS = 5 BATCH_SIZE = 256 EPOCHS = 50 LEARNING_RATE = 0.001 ES_PATIENCE = 5 RLROP_PATIENCE = 3 RLROP_FACTOR = 0.5 es = EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1) rlrop = ReduceLROnPlateau(monitor='val_loss', mode='min', patience=RLROP_PATIENCE, factor=RLROP_FACTOR, min_lr=1e-6, verbose=1) callback_list = [es, rlrop] optimizer = optimizers.Adam(lr=LEARNING_RATE) def model_fn(): model = Sequential() model.add(Dense(1024, input_dim=X_train.shape[1])) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(256)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(1, activation="sigmoid")) model.compile(optimizer=optimizer, loss="binary_crossentropy", metrics=['binary_accuracy']) return model X = train.values train_cols = train.columns submission['target'] = 0 train['preds'] = 0 skf = StratifiedKFold(n_splits=N_FOLDS, random_state=0) counter = 0 for train_index, val_index in skf.split(X, labels): counter += 1 print('Fold {}\n'.format(counter)) X_train, X_val = X[train_index], X[val_index] Y_train, Y_val = labels[train_index], labels[val_index] model = model_fn() history = model.fit(X_train, Y_train, validation_data=(X_val, Y_val), callbacks=callback_list, epochs=EPOCHS, batch_size=BATCH_SIZE, verbose=0) train_predictions = model.predict_classes(X_train) val_predictions = model.predict_classes(X_val) train_auc = roc_auc_score(Y_train, train_predictions) * 100 val_auc = roc_auc_score(Y_val, val_predictions) * 100 train_precision = precision_score(Y_train, train_predictions) * 100 val_precision = precision_score(Y_val, val_predictions) * 100 train_recall = recall_score(Y_train, train_predictions) * 100 val_recall = recall_score(Y_val, val_predictions) * 100 print('-----Train----------') print('AUC: %.2f Precision: %.2f Recall: %.2f \n' % (train_auc, train_precision, train_recall)) print('-----Validation-----') print('AUC: %.2f Precision: %.2f Recall: %.2f \n' % (val_auc, val_precision, val_recall)) # Make predictions predictions = model.predict(test) submission['target'] += [x[0] for x in predictions] train['preds'] += [x[0] for x in model.predict_classes(X)] submission['target'] /= N_FOLDS train['preds'] /= N_FOLDS ###Output Fold 1 WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version. Instructions for updating: Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`. WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. Epoch 00004: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257. Epoch 00010: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628. Epoch 00014: ReduceLROnPlateau reducing learning rate to 0.0001250000059371814. Restoring model weights from the end of the best epoch Epoch 00016: early stopping -----Train---------- AUC: 89.19 Precision: 88.96 Recall: 89.49 -----Validation----- AUC: 73.33 Precision: 73.12 Recall: 73.82 Fold 2 Epoch 00011: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05. Epoch 00019: ReduceLROnPlateau reducing learning rate to 3.125000148429535e-05. Epoch 00034: ReduceLROnPlateau reducing learning rate to 1.5625000742147677e-05. Epoch 00042: ReduceLROnPlateau reducing learning rate to 7.812500371073838e-06. -----Train---------- AUC: 88.20 Precision: 90.74 Recall: 85.10 -----Validation----- AUC: 73.16 Precision: 75.47 Recall: 68.66 Fold 3 -----Train---------- AUC: 66.59 Precision: 66.69 Recall: 66.35 -----Validation----- AUC: 60.10 Precision: 60.20 Recall: 59.69 Fold 4 -----Train---------- AUC: 66.46 Precision: 65.96 Recall: 68.10 -----Validation----- AUC: 59.93 Precision: 59.63 Recall: 61.57 Fold 5 -----Train---------- AUC: 66.24 Precision: 66.65 Recall: 65.08 -----Validation----- AUC: 59.93 Precision: 60.20 Recall: 58.71 ###Markdown Model graph loss ###Code fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', figsize=(20, 7)) ax1.plot(history.history['loss'], label='Train loss') ax1.plot(history.history['val_loss'], label='Validation loss') ax1.legend(loc='best') ax1.set_title('Loss') ax2.plot(history.history['binary_accuracy'], label='Train Accuracy') ax2.plot(history.history['val_binary_accuracy'], label='Validation accuracy') ax2.legend(loc='best') ax2.set_title('Accuracy') plt.xlabel('Epochs') sns.despine() plt.show() ###Output _____no_output_____ ###Markdown Model evaluation Confusion matrix ###Code f = plt.subplots(1, 1, figsize=(16, 5), sharex=True) train_cnf_matrix = confusion_matrix(labels, [np.round(x) for x in train['preds']]) train_cnf_matrix_norm = train_cnf_matrix / train_cnf_matrix.sum(axis=1)[:, np.newaxis] train_df_cm = pd.DataFrame(train_cnf_matrix_norm, index=[0, 1], columns=[0, 1]) sns.heatmap(train_df_cm, annot=True, fmt='.2f', cmap="Blues") plt.show() ###Output _____no_output_____ ###Markdown Metrics ROC AUC ###Code print('AUC %.2f' % roc_auc_score(labels, train['preds'])) ###Output AUC 0.86 ###Markdown Test predictions ###Code submission.to_csv('submission.csv', index=False) submission.head(10) ###Output _____no_output_____
resources/aux_notebooks/tf_tutorial_advanced.ipynb
###Markdown Advanced Tensorflow Tutorial![img](https://github.com/yandexdataschool/nlp_course/raw/master/resources/tf_birds_bees.png)A highly subjective list of cool stuff about tensorflow that didn't fit into basic tutorial. Part I: Debugging tensorflowTensorflow error messages are hideous monstrosities with a heart of gold :)If your code breaks, TF will throw a wall of text your way. But you shouldn't be afraid of it. The key skill here is finding the part of error that actually matters: your code. Let's look at an example: ###Code import numpy as np import tensorflow as tf keras, L = tf.keras, tf.keras.layers tf.reset_default_graph() sess = tf.Session() embeddings = tf.Variable(np.random.randn(16, 10).astype('float32')) sequence_ids = tf.placeholder('int32') sequence_emb = tf.gather(embeddings, sequence_ids) mean_emb = tf.reduce_mean(sequence_emb, axis=2) sess.run(tf.global_variables_initializer()) sess.run(mean_emb, {sequence_ids: np.random.randint(32, size=[3, 20])}) sess.run(mean_emb, {sequence_ids: np.random.randint(32, size=20)}) ###Output _____no_output_____ ###Markdown Okay, here's what you should see* First and most important, this is just a traceback. No need to freak out. Keep calm.* Second, it tells us which sess.run caused an error - the second one. Here's the relevant part``` 1 sess.run(tf.global_variables_initializer()) 2 sess.run(mean_emb, {sequence_ids: np.random.randint(32, size=[3, 20])})----> 3 sess.run(mean_emb, {sequence_ids: np.random.randint(32, size=20)})```* Then it tells us which line broke down:``` File "", line 11, in mean_emb = tf.reduce_mean(sequence_emb, axis=2)```* And the error```Invalid reduction dimension (2 for input with 2 dimension(s)```This information should already be sufficient ot find out what happened: we took 1d indices, mapped them to 2d embeddings and now want to averate over axis 2, but embeddings only got axes [0, 1].Let's try a few more: ###Code %%writefile my_rnn_library.py import numpy as np import tensorflow as tf def my_rnn(x_emb, emb_size, hid_size): """ takes x_emb[time, batch, emb_size] and predicts""" W = tf.Variable(np.random.randn(emb_size + hid_size, hid_size).astype('float32'),) h0 = tf.zeros([tf.shape(x_emb)[1], hid_size]) def scan_step(h_t, x_t): rnn_inp = tf.concat([h_t, x_t], axis=1) h_next = tf.tanh(tf.matmul(x_t, W)) return h_next return tf.scan(scan_step, elems=x_emb, initializer=h0) %load_ext autoreload %autoreload 2 # ^-- an extension that reloads .py modules if you change their code import my_rnn_library x = tf.placeholder('float32', [None, None, None]) h = my_rnn_library.my_rnn(x, emb_size=32, hid_size=128) sess.run(tf.global_variables_initializer()) sess.run(h, {x: np.random.randn(10, 3, 32)}) # spoiler: its gonna fail. Your task is to understand what operation failed and how to fix that. ###Output _____no_output_____ ###Markdown Debugging tensorflow: invalid valuesIf your code fails with an error, it's easy to find out what's wrong. However, sometimes there's no error, but your network doesn't train and your loss is equal to NaN or -inf. Or mean squared error is negative. Or ... well, you just know it's wrong.The question is: where is it wrong. There are two strategies: using tf.asserts and good old tinkering. We'll try the old way.The next example contains two errors:* an error with shapes that causes tensorflow * an error that causes tensorflow to return NaN ###Code x = tf.placeholder_with_default(np.random.randn(3, 15, 100).astype('float32'), [None, None, 100]) x_len = tf.placeholder_with_default(np.array([3, 14, 8], dtype='int32'), [None]) logits = L.Dense(256)(x) mask = tf.sequence_mask(x_len, dtype=tf.float32) logits = logits - (1 - mask)[:, :, None] * 1e9 probs = tf.nn.softmax(logits, axis=1) mean_logp = tf.log(tf.reduce_mean(probs, axis=-1)) mean_prob = tf.exp(mean_logp) grads = tf.gradients(mean_prob, [x])[0] grad_norms = tf.reduce_sum(grads ** 2, axis=(1, 2)) ** 0.5 sess.run(tf.global_variables_initializer()) sess.run(grad_norms) # Your quest is as usual: find where's Waldo (NaN). And eliminate it :) ###Output _____no_output_____ ###Markdown Part II: Cool tensorflow features ###Code # for the next section we'll need to reload tensorflow without eager # PLEASE RESTART THE NOTEBOOK! (kernel-restart in jupyter, runtime -> restart in colab) # also if you're in colab, please request GPU-enabled runtime (settings -> notebook settings) ###Output _____no_output_____ ###Markdown 1. Tensorflow EagerWhen you've first seen tensorflow in action, there was a lot of complicated stuff happening: defining operations on placeholders, sessions, variable initializers, etc.Luckily, TF also allows you to write code on the fly much the same way as you did in numpy. It's called __Tensorflow Eager__. ###Code import numpy as np import tensorflow as tf tf.enable_eager_execution() # use tensorflow operations like you would use numpy x = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) y = tf.matmul(x, tf.random_normal([2, 4])) z = tf.nn.softmax(y, axis=1) # every tensor has a value (like numpy arrays) z # ... and can be converted to numpy z.numpy() # you can even mix numpy arrays in tf computations z + np.linspace(0, 4, 4) ###Output _____no_output_____ ###Markdown Training with tf.eagerEager execution has it's own API for automatic gradients. It's called GradientTape. ###Code x = tf.Variable([3.0, 5.0]) with tf.GradientTape() as tape: y = x * x dy_dx = tape.gradient(y, x) print('gradients:', dy_dx) ###Output _____no_output_____ ###Markdown Now let's train some networks. As usual, we'll use keras functional API for the ease of execution. ###Code from keras.datasets.mnist import load_data (X_train, y_train), (X_test, y_test) = load_data() X_train, X_test = X_train.astype('float32') / 255., X_test.astype('float32') / 255. y_train, y_test = y_train.astype('int32'), y_test.astype('int32') keras, L = tf.keras, tf.keras.layers # use these and not just import keras model = keras.models.Sequential([ L.InputLayer(X_train.shape[1:]), L.Flatten(), L.Dense(100), L.Activation('relu'), L.Dense(10) ]) opt = tf.train.AdamOptimizer(learning_rate=1e-3) for i in range(1000): batch = np.random.randint(0, len(X_train), size=100) with tf.GradientTape() as tape: logits = model(X_train[batch]) loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=y_train[batch], logits=logits) loss = tf.reduce_mean(loss) grads = tape.gradient(loss, model.trainable_variables) opt.apply_gradients(zip(grads, model.trainable_variables)) if i % 100 == 0: print('step %i, loss=%.3f' % (i, loss.numpy())) # we can now evaluate our model using any external metrics we want from sklearn.metrics import accuracy_score y_test_pred = model(X_test).numpy().argmax(-1) print("Test acc:", accuracy_score(y_test, y_test_pred)) ###Output _____no_output_____ ###Markdown RTFM:* [tf.eager basics](https://www.tensorflow.org/tutorials/eager/eager_basics)* [tape-based gradients](https://www.tensorflow.org/tutorials/eager/automatic_differentiation)* [training walkthrough](https://www.tensorflow.org/tutorials/eager/custom_training_walkthrough)* You can also embed eager code into normal tensorflow graph with [tf.contrib.eager.py_func](https://www.tensorflow.org/guide/eager) ###Code # Please restart the notebook again ###Output _____no_output_____ ###Markdown 2. TensorboardIf you run more than one experiment, you will eventually have to compare your results. We've already mentioned that this can be done with tensorboard. Ideally, you wanna obtain something like this:![img](https://raw.githubusercontent.com/yandexdataschool/nlp_course/master/resources/lm_acc1.png)_except the training is not finished_If you're not into tensorflow [visdom](https://github.com/facebookresearch/visdom), [tensorboardX](https://github.com/lanpa/tensorboardX) 3. Tensorflow HubMost deep learning applications nowadays depend on some kind of pre-trained network to start from. Be it Keras [applications](https://keras.io/applications/) for computer vision, [gensim](https://github.com/RaRe-Technologies/gensim) for embeddings, and many smaller model zoos dedicated to every particular topic.One such model zoo is Tensorfow Hub, featuring several hot NLP models:* [Universal Sentence Encoder](https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynbscrollTo=MSeY-MUQo2Ha)* [ELMO](https://tfhub.dev/google/elmo/2) ###Code import numpy as np import tensorflow as tf tf.reset_default_graph() sess = tf.Session() !pip3 install --quiet tensorflow-hub import tensorflow_hub as hub model = hub.Module("https://tfhub.dev/google/universal-sentence-encoder/2") sess.run([tf.global_variables_initializer(), tf.tables_initializer()]); sentence_embs = model(["A cat sat on a mat.", "I am the monument to all your sins"]) print(sess.run(sentence_embs)) ###Output _____no_output_____ ###Markdown Part III. Worst practicesThere's a number of things about TF that kind of... ~~sucks~~ in need of improvement.Don't get me wrong, they are all great for their job. Except they can easily be misused with dramatic consequences. __1. TF.contrib is a mess__Tensorflow [contrib](https://www.tensorflow.org/api_docs/python/tf/contrib) is a place where tensorflow holds dozens of sub-libraries dedicated to everything. You name it:* Helper functions for sequence-to-sequence models - [check!](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq)* Wrapper modules for CUDNN RNN operations - [check!](https://github.com/tensorflow/probability)* A full-blown deep learning library? - [check](https://www.tensorflow.org/api_docs/python/tf/contrib/keras)-[check](https://www.tensorflow.org/api_docs/python/tf/contrib/slim)-[check](https://www.tensorflow.org/api_docs/python/tf/contrib/learn)!The catch is that most of the code in tf.contrib was built by independent authors. Sometimes it's poorly supported. Sometimes it's outdated. And it is definitely not designed for full compatibility with one another.For instance LSTM cells from tf.contrib.rnn are not guaranteed to work with tf.keras abstractions. And neither do tf.slim layers fit into keras models.There's a rule of thumb: if the functionality you need is in both tf core and tf.contrib, pick tf core. If it's only in tf.contrib - read through it and maybe play with it on a toy task before integrating it into your larger projects. __2. Pythonic and symbolic loops__Sometimes you want your tensorfow graph to contain loops. The most obvious example is RNN.Tensorflow allows you to define such loops with primitives like [tf.while_loop](https://www.tensorflow.org/api_docs/python/tf/while_loop) and [tf.scan](https://www.tensorflow.org/api_docs/python/tf/scan).If you read the docs, you'll also see other primitives like __tf.map_fn__ and __tf.cond__. It is tempting to use those operations to write python-style code. __But you shouldn't__. Or rather, try hard to have as few of them as possible. Each iteration of symbolic loop introduces a gigantic overhead in computation time. ###Code import numpy as np import tensorflow as tf tf.reset_default_graph() sess = tf.Session() x_ph = tf.placeholder_with_default(np.linspace(-10, 10, 10**4).astype('float32'), [None]) my_square = tf.map_fn(lambda x_i: x_i ** 2, x_ph) my_sum_squares = tf.scan(lambda ctr, x_i: ctr + x_i, elems=my_square, initializer=0.0)[-1] tf_square = x_ph ** 2 tf_sum_squares = tf.reduce_sum(tf_square) print("Symbolic loops:") %time print(sess.run(my_sum_squares)) print("Vector operations:") %time print(sess.run(tf_sum_squares)) ###Output _____no_output_____ ###Markdown __TL;DR:__ use control flow ops sparingly. Few large iterations are okay, many small iterations are not. __3. Control Dependencies__ By default, if your tensorflow graph has two parallel branches of code, there's no way of telling which branch will be executed first. This can cause inconveniences. You may want to explicitly tell tensoflow "Run this op before that one" to save memory or make debug logs prettier.However, you can also use control dependencies to mutate graph state in the middle of execution. DON'T DO THAT unless you absolutely have to. And even then __DON'T DO THAT__.Here's a demotivational example ###Code import tensorflow as tf tf.reset_default_graph() sess = tf.Session() x = tf.Variable(1.0) y1 = x ** 2 add_first = tf.assign_add(x, 1) with tf.control_dependencies([add_first, y1]): y2 = x ** 2 add_second = tf.assign_add(x, 1) with tf.control_dependencies([y2, add_second]): y3 = x ** 2 sess.run(tf.global_variables_initializer()) print('First run:', sess.run([y1, y2, y3])) print('Second run:', sess.run([y1, y2, y3])) # Bonus quest: change as few lines as possible to make it print [1, 4, 9], [9, 16, 25] ###Output _____no_output_____ ###Markdown Part IV: cool stuff that didn't make it into tutorial* [tf.Dataset](https://www.tensorflow.org/api_docs/python/tf/data/Dataset) - an advanced tool for loading and managing data.* Creating new tf ops - [in c++](https://www.tensorflow.org/extend/adding_an_op)* Managing gradient computation with [tf.stop_gradient](https://github.com/tensorflow/fold) and [gradient override map](https://stackoverflow.com/questions/41391718/tensorflows-gradient-override-map-function)* [Gradient checkpointing](https://github.com/openai/gradient-checkpointing/) to backprop through large models in low memory* Tensorflow is available in many other languages. For instance, here's [tf for javascript](https://js.tensorflow.org/) or [tutorial on exporting keras model for an android app](https://medium.com/@thepulkitagarwal/deploying-a-keras-model-on-android-3a8bb83d75ca)* Efficient gpu parallelism with [horovod](https://github.com/uber/horovod) [if we have time] XLA: Tensorflow, compiledWhile tf.eager gives you the freedom to experiment, eventually you'll figure out exactly what you want and you'll need your code to run... faster. Preferably much faster. And on half as much gpu memory so you can increase batch size.Your typical neural network has a lot of operations that are fast to compute but require allocating large amounts of memory. Consider adding bias element-wise to a large tensor and then applying nonlinearity. These operations can be _fused_ together: you don't allocate new memory but perform everything in-place as a single operation.__Warning:__ XLA become included by default starting from tf 1.12; earlier versions will require compiling tensorflow manually **with** XLA support. ###Code # Please restart notebook and make sure you use tensorflow with GPU. # If you don't, the code will work but it XLA will give no performance boost # and actually run slower. import numpy as np import tensorflow as tf keras = tf.contrib.keras L = tf.contrib.keras.layers assert tf.test.is_gpu_available() tf.reset_default_graph() config = tf.ConfigProto() config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 config.gpu_options.per_process_gpu_memory_fraction = 0.5 sess = tf.Session(config=config) with tf.device('/gpu:0'): model = keras.models.Sequential() model.add(L.InputLayer([None, 256])) model.add(L.SimpleRNN(256, return_sequences=True)) model.add(L.SimpleRNN(256)) model.add(L.Dense(100)) x = tf.placeholder_with_default(np.random.randn(1, 1000, 256).astype('float32'), [None, None, 256]) pred = model(x) sess.run(tf.global_variables_initializer()) sess.run(pred); # "warmup run" %timeit sess.run(pred) ###Output _____no_output_____
salinization/dev/07. data-preparation/ben-tre-preparation.ipynb
###Markdown Bottom value: used for missing measurements to avoid zero in 'multiplicative' model of seasonal decompression ###Code bottom_value = 0.01 ###Output _____no_output_____ ###Markdown Read in cleaned dataset ###Code df = pd.read_csv('../../dataset/final/bentre-cleaned.csv', parse_dates=['date']) # set index to time-series based 'date' df.set_index('date', inplace=True) df.index df.info() # sort by date index df.sort_index(inplace=True) df.head(20) # replace zeros with bottom_value df[['min', 'max']] = df[['min', 'max']].replace(0.0, bottom_value) df.tail(20) ###Output _____no_output_____ ###Markdown Experiment: Filling missing dates and interpolating measurements (JUMP TO IMPLEMENTATION)One year worth samples at a specific station ###Code station_code = 'BINHDAI' station_year = 2012 # only need 'code', 'min' and 'max' columns since we are analyzing by one station at a time sdf = df[(df['code'] == station_code) & (df.index.year == station_year)][['code', 'min', 'max']] sdf.info() sdf.head(10) min_date = sdf.index.min() min_date max_date = sdf.index.max() max_date ###Output _____no_output_____ ###Markdown Fill missing dates from the beginning of the year to last entry of the dataset ###Code start_date = f'{station_year}-01-01' end_date = max_date + pd.DateOffset(1) # add one extra day as the upper limit for forward fill in interpolate date_range = pd.date_range(start=start_date, end=end_date, freq='D') date_range #sdf.set_index('date', inplace=True) # no need since 'date' is already index tdf = sdf.reindex(date_range).fillna(np.nan).rename_axis('date').reset_index() # assign station code to new rows tdf['code'] = station_code # set lower limit if it does not have value for forward fill in interpolate if np.isnan(tdf.at[0, 'min']): tdf.at[0, 'min'] = bottom_value if np.isnan(tdf.at[0, 'max']): tdf.at[0, 'max'] = bottom_value # use the extra day as the upper limit for forward fill in interpolate tdf.at[tdf.index[-1], ['min', 'max']] = bottom_value tdf.head(40) tdf.tail(20) # make 'date' as DateTimeIndex again tdf = tdf.set_index('date') tdf.info() ###Output <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 182 entries, 2012-01-01 to 2012-06-30 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 code 182 non-null object 1 min 65 non-null float64 2 max 65 non-null float64 dtypes: float64(2), object(1) memory usage: 5.7+ KB ###Markdown Interpolating missing measurements ###Code # https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html # method: linear, time, quadratic, pchip, akima tdf.interpolate(method ='time', limit_direction ='forward', inplace=True) sdf.plot(title='Original Samples', xlim=[tdf.index.date.min(), tdf.index.date.max()], rot=90, figsize=(18, 5)) tdf.plot(title='Interpolated Samples', rot=90, figsize=(18, 5)); ###Output _____no_output_____ ###Markdown Fill missing dates from last entry of the dataset till the end of the year ###Code start_date = end_date + pd.DateOffset(1) end_date = f'{station_year}-12-31' date_range = pd.date_range(start=start_date, end=end_date, freq='D') date_range ###Output _____no_output_____ ###Markdown bottom value is used as the filler ###Code edf = pd.DataFrame({ 'code': station_code, 'min': bottom_value, 'max': bottom_value }, index=date_range) edf.head() edf.tail() # combine 2 halves of the year back to original station dataframe sdf = pd.concat([tdf, edf]) sdf.info() # make sure frequent is on daily basis sdf.index.freq = 'D' sdf.index sdf.head(40) sdf.tail() sdf.plot(title=f'{station_code} Samples of {station_year}', rot=90, figsize=(18, 5)); ###Output _____no_output_____ ###Markdown Implementation: Filling missing dates and interpolating measurements All years worth samples at each station ###Code # get all station codes station_codes = df['code'].unique() station_codes def fill_interpolate(data, code, year): min_date = data.index.min() max_date = data.index.max() # no annual data if pd.isnull(min_date) and pd.isnull(max_date): return pd.DataFrame({ 'code': code, 'min': bottom_value, 'max': bottom_value }, index=pd.date_range(f'{year}-01-01', f'{year}-12-31', freq='D')) # fill missing dates from the beginning of the year to last entry of the dataset start_date = f'{year}-01-01' end_date = max_date + pd.DateOffset(1) # add one extra day as the upper limit for forward fill in interpolate date_range = pd.date_range(start=start_date, end=end_date, freq='D') data = data.reindex(date_range).fillna(np.nan).rename_axis('date').reset_index() data['code'] = code if np.isnan(data.at[0, 'min']): # set lower limit data.at[0, 'min'] = bottom_value if np.isnan(data.at[0, 'max']): data.at[0, 'max'] = bottom_value data.at[data.index[-1], ['min', 'max']] = bottom_value # use the extra day as the upper limit for forward fill in interpolate # make 'date' as DateTimeIndex again data = data.set_index('date') # fill missing measurements for those newly inserted dates data = data.interpolate(method ='time', limit_direction ='forward') # fill missing dates from last entry of the dataset till the end of the year start_date = end_date + pd.DateOffset(1) end_date = f'{year}-12-31' date_range = pd.date_range(start=start_date, end=end_date, freq='D') return pd.concat([data, pd.DataFrame({ 'code': code, 'min': bottom_value, 'max': bottom_value }, index=date_range)]) start_year = 2002 end_year = 2018 for station_code in station_codes: # filter samples for this station sdf = df[df['code'] == station_code][['code', 'min', 'max']] station_years = sdf.index.year.unique().to_numpy() print(f'Station {station_code} has samples on these years: {station_years}') new_sdf = pd.DataFrame() for station_year in range(start_year, end_year + 1): print(f'Processing station {station_code} on year {station_year}') if new_sdf.empty: new_sdf = fill_interpolate(sdf[sdf.index.year == station_year], station_code, station_year) else: new_sdf = pd.concat([new_sdf, fill_interpolate(sdf[sdf.index.year == station_year], station_code, station_year)]) # save to csv file new_sdf.index.freq = 'D' # make sure the frequency is daily new_sdf.to_csv(f'../../dataset/final/stations/{station_code}.csv', index=True, index_label='date') ###Output Station ANTHUAN has samples on these years: [2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016] Processing station ANTHUAN on year 2002 Processing station ANTHUAN on year 2003 Processing station ANTHUAN on year 2004 Processing station ANTHUAN on year 2005 Processing station ANTHUAN on year 2006 Processing station ANTHUAN on year 2007 Processing station ANTHUAN on year 2008 Processing station ANTHUAN on year 2009 Processing station ANTHUAN on year 2010 Processing station ANTHUAN on year 2011 Processing station ANTHUAN on year 2012 Processing station ANTHUAN on year 2013 Processing station ANTHUAN on year 2014 Processing station ANTHUAN on year 2015 Processing station ANTHUAN on year 2016 Processing station ANTHUAN on year 2017 Processing station ANTHUAN on year 2018 Station LOCTHUAN has samples on these years: [2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2018] Processing station LOCTHUAN on year 2002 Processing station LOCTHUAN on year 2003 Processing station LOCTHUAN on year 2004 Processing station LOCTHUAN on year 2005 Processing station LOCTHUAN on year 2006 Processing station LOCTHUAN on year 2007 Processing station LOCTHUAN on year 2008 Processing station LOCTHUAN on year 2009 Processing station LOCTHUAN on year 2010 Processing station LOCTHUAN on year 2011 Processing station LOCTHUAN on year 2012 Processing station LOCTHUAN on year 2013 Processing station LOCTHUAN on year 2014 Processing station LOCTHUAN on year 2015 Processing station LOCTHUAN on year 2016 Processing station LOCTHUAN on year 2017 Processing station LOCTHUAN on year 2018 Station SONDOC has samples on these years: [2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2018] Processing station SONDOC on year 2002 Processing station SONDOC on year 2003 Processing station SONDOC on year 2004 Processing station SONDOC on year 2005 Processing station SONDOC on year 2006 Processing station SONDOC on year 2007 Processing station SONDOC on year 2008 Processing station SONDOC on year 2009 Processing station SONDOC on year 2010 Processing station SONDOC on year 2011 Processing station SONDOC on year 2012 Processing station SONDOC on year 2013 Processing station SONDOC on year 2014 Processing station SONDOC on year 2015 Processing station SONDOC on year 2016 Processing station SONDOC on year 2017 Processing station SONDOC on year 2018 Station BENTRAI has samples on these years: [2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016] Processing station BENTRAI on year 2002 Processing station BENTRAI on year 2003 Processing station BENTRAI on year 2004 Processing station BENTRAI on year 2005 Processing station BENTRAI on year 2006 Processing station BENTRAI on year 2007 Processing station BENTRAI on year 2008 Processing station BENTRAI on year 2009 Processing station BENTRAI on year 2010 Processing station BENTRAI on year 2011 Processing station BENTRAI on year 2012 Processing station BENTRAI on year 2013 Processing station BENTRAI on year 2014 Processing station BENTRAI on year 2015 Processing station BENTRAI on year 2016 Processing station BENTRAI on year 2017 Processing station BENTRAI on year 2018 Station BINHDAI has samples on these years: [2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016] Processing station BINHDAI on year 2002 Processing station BINHDAI on year 2003 Processing station BINHDAI on year 2004 Processing station BINHDAI on year 2005 Processing station BINHDAI on year 2006 Processing station BINHDAI on year 2007 Processing station BINHDAI on year 2008 Processing station BINHDAI on year 2009 Processing station BINHDAI on year 2010 Processing station BINHDAI on year 2011 Processing station BINHDAI on year 2012 Processing station BINHDAI on year 2013 Processing station BINHDAI on year 2014 Processing station BINHDAI on year 2015 Processing station BINHDAI on year 2016 Processing station BINHDAI on year 2017 Processing station BINHDAI on year 2018 Station GIAOHOA has samples on these years: [2016] Processing station GIAOHOA on year 2002 Processing station GIAOHOA on year 2003 Processing station GIAOHOA on year 2004 Processing station GIAOHOA on year 2005 Processing station GIAOHOA on year 2006 Processing station GIAOHOA on year 2007 Processing station GIAOHOA on year 2008 Processing station GIAOHOA on year 2009 Processing station GIAOHOA on year 2010 Processing station GIAOHOA on year 2011 Processing station GIAOHOA on year 2012 Processing station GIAOHOA on year 2013 Processing station GIAOHOA on year 2014 Processing station GIAOHOA on year 2015 Processing station GIAOHOA on year 2016 Processing station GIAOHOA on year 2017 Processing station GIAOHOA on year 2018 Station MYHOA has samples on these years: [2016 2017] Processing station MYHOA on year 2002 Processing station MYHOA on year 2003 Processing station MYHOA on year 2004 Processing station MYHOA on year 2005 Processing station MYHOA on year 2006 Processing station MYHOA on year 2007 Processing station MYHOA on year 2008 Processing station MYHOA on year 2009 Processing station MYHOA on year 2010 Processing station MYHOA on year 2011 Processing station MYHOA on year 2012 Processing station MYHOA on year 2013 Processing station MYHOA on year 2014 Processing station MYHOA on year 2015 Processing station MYHOA on year 2016 Processing station MYHOA on year 2017 Processing station MYHOA on year 2018 Station HUONGMY has samples on these years: [2016] Processing station HUONGMY on year 2002 Processing station HUONGMY on year 2003 Processing station HUONGMY on year 2004 Processing station HUONGMY on year 2005 Processing station HUONGMY on year 2006 Processing station HUONGMY on year 2007 Processing station HUONGMY on year 2008 Processing station HUONGMY on year 2009 Processing station HUONGMY on year 2010 Processing station HUONGMY on year 2011 Processing station HUONGMY on year 2012 Processing station HUONGMY on year 2013 Processing station HUONGMY on year 2014 Processing station HUONGMY on year 2015 Processing station HUONGMY on year 2016 Processing station HUONGMY on year 2017 Processing station HUONGMY on year 2018 Station PHUOCLONG has samples on these years: [2017 2018] Processing station PHUOCLONG on year 2002 Processing station PHUOCLONG on year 2003 Processing station PHUOCLONG on year 2004 Processing station PHUOCLONG on year 2005 Processing station PHUOCLONG on year 2006 Processing station PHUOCLONG on year 2007 Processing station PHUOCLONG on year 2008 Processing station PHUOCLONG on year 2009 Processing station PHUOCLONG on year 2010 Processing station PHUOCLONG on year 2011 Processing station PHUOCLONG on year 2012 Processing station PHUOCLONG on year 2013 Processing station PHUOCLONG on year 2014 Processing station PHUOCLONG on year 2015 Processing station PHUOCLONG on year 2016 Processing station PHUOCLONG on year 2017 Processing station PHUOCLONG on year 2018 Station VANGQUOITAY has samples on these years: [2017] Processing station VANGQUOITAY on year 2002 Processing station VANGQUOITAY on year 2003 Processing station VANGQUOITAY on year 2004 Processing station VANGQUOITAY on year 2005 Processing station VANGQUOITAY on year 2006 Processing station VANGQUOITAY on year 2007 Processing station VANGQUOITAY on year 2008 Processing station VANGQUOITAY on year 2009 Processing station VANGQUOITAY on year 2010 Processing station VANGQUOITAY on year 2011 Processing station VANGQUOITAY on year 2012 Processing station VANGQUOITAY on year 2013 Processing station VANGQUOITAY on year 2014 Processing station VANGQUOITAY on year 2015 Processing station VANGQUOITAY on year 2016 Processing station VANGQUOITAY on year 2017 Processing station VANGQUOITAY on year 2018 Station CAIHOP has samples on these years: [2017] Processing station CAIHOP on year 2002 Processing station CAIHOP on year 2003 Processing station CAIHOP on year 2004 Processing station CAIHOP on year 2005 Processing station CAIHOP on year 2006 Processing station CAIHOP on year 2007 Processing station CAIHOP on year 2008 Processing station CAIHOP on year 2009 Processing station CAIHOP on year 2010 Processing station CAIHOP on year 2011 Processing station CAIHOP on year 2012 Processing station CAIHOP on year 2013 Processing station CAIHOP on year 2014 Processing station CAIHOP on year 2015 Processing station CAIHOP on year 2016
Traffic_Sign_Classifier_YL.ipynb
###Markdown Self-Driving Car Engineer Nanodegree Deep Learning Project: Build a Traffic Sign Recognition ClassifierIn this notebook, a template is provided for you to implement your functionality in stages, which is required to successfully complete this project. If additional code is required that cannot be included in the notebook, be sure that the Python code is successfully imported and included in your submission if necessary. > **Note**: Once you have completed all of the code implementations, you need to finalize your work by exporting the iPython Notebook as an HTML document. Before exporting the notebook to html, all of the code cells need to have been run so that reviewers can see the final implementation and output. You can then export the notebook by using the menu above and navigating to \n", "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission. In addition to implementing code, there is a writeup to complete. The writeup should be completed in a separate file, which can be either a markdown file or a pdf document. There is a [write up template](https://github.com/udacity/CarND-Traffic-Sign-Classifier-Project/blob/master/writeup_template.md) that can be used to guide the writing process. Completing the code template and writeup template will cover all of the [rubric points](https://review.udacity.com/!/rubrics/481/view) for this project.The [rubric](https://review.udacity.com/!/rubrics/481/view) contains "Stand Out Suggestions" for enhancing the project beyond the minimum requirements. The stand out suggestions are optional. If you decide to pursue the "stand out suggestions", you can include the code in this Ipython notebook and also discuss the results in the writeup file.>**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode. --- Step 0: Load The Data ###Code # Load pickled data import pickle # TODO: Fill this in based on where you saved the training and testing data training_file = './traffic-signs-data/train.p' validation_file= './traffic-signs-data/valid.p' testing_file = './traffic-signs-data/test.p' with open(training_file, mode='rb') as f: train = pickle.load(f) with open(validation_file, mode='rb') as f: valid = pickle.load(f) with open(testing_file, mode='rb') as f: test = pickle.load(f) X_train, y_train = train['features'], train['labels'] X_valid, y_valid = valid['features'], valid['labels'] X_test, y_test = test['features'], test['labels'] ###Output _____no_output_____ ###Markdown --- Step 1: Dataset Summary & ExplorationThe pickled data is a dictionary with 4 key/value pairs:- `'features'` is a 4D array containing raw pixel data of the traffic sign images, (num examples, width, height, channels).- `'labels'` is a 1D array containing the label/class id of the traffic sign. The file `signnames.csv` contains id -> name mappings for each id.- `'sizes'` is a list containing tuples, (width, height) representing the original width and height the image.- `'coords'` is a list containing tuples, (x1, y1, x2, y2) representing coordinates of a bounding box around the sign in the image. **THESE COORDINATES ASSUME THE ORIGINAL IMAGE. THE PICKLED DATA CONTAINS RESIZED VERSIONS (32 by 32) OF THESE IMAGES**Complete the basic data summary below. Use python, numpy and/or pandas methods to calculate the data summary rather than hard coding the results. For example, the [pandas shape method](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.shape.html) might be useful for calculating some of the summary results. Provide a Basic Summary of the Data Set Using Python, Numpy and/or Pandas ###Code ### Replace each question mark with the appropriate value. ### Use python, pandas or numpy methods rather than hard coding the results import numpy as np # TODO: Number of training examples n_train = y_train.shape[0] # TODO: Number of validation examples n_validation = y_valid.shape[0] # TODO: Number of testing examples. n_test = y_test.shape[0] # TODO: What's the shape of an traffic sign image? image_shape = X_train.shape[1:3] # TODO: How many unique classes/labels there are in the dataset. n_classes = len(np.unique(y_train)) print("Number of training examples =", n_train) print("Number of validation examples =", n_validation) print("Number of testing examples =", n_test) print("Image data shape =", image_shape) print("Number of classes =", n_classes) ###Output Number of training examples = 34799 Number of validation examples = 4410 Number of testing examples = 12630 Image data shape = (32, 32) Number of classes = 43 ###Markdown Include an exploratory visualization of the dataset Visualize the German Traffic Signs Dataset using the pickled file(s). This is open ended, suggestions include: plotting traffic sign images, plotting the count of each sign, etc. The [Matplotlib](http://matplotlib.org/) [examples](http://matplotlib.org/examples/index.html) and [gallery](http://matplotlib.org/gallery.html) pages are a great resource for doing visualizations in Python.**NOTE:** It's recommended you start with something simple first. If you wish to do more, come back to it after you've completed the rest of the sections. It can be interesting to look at the distribution of classes in the training, validation and test set. Is the distribution the same? Are there more examples of some classes than others? ###Code ### Data exploration visualization code goes here. ### Feel free to use as many code cells as needed. import matplotlib.pyplot as plt # Visualizations will be shown in the notebook. %matplotlib inline num_bins = n_classes fig, (ax0, ax1, ax2) = plt.subplots(ncols=3, figsize=(16, 4)) ax0.hist(y_train, num_bins) ax1.hist(y_valid, num_bins) ax2.hist(y_test, num_bins) ax0.set_xlabel('classes') ax0.set_ylabel('probability denstiy') ax0.set_title('train data histogram') ax1.set_xlabel('classes') ax1.set_ylabel('probability denstiy') ax1.set_title('validation data histogram') ax2.set_xlabel('classes') ax2.set_ylabel('probability denstiy') ax2.set_title('test data histogram') fig.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown ---- Step 2: Design and Test a Model ArchitectureDesign and implement a deep learning model that learns to recognize traffic signs. Train and test your model on the [German Traffic Sign Dataset](http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset).The LeNet-5 implementation shown in the [classroom](https://classroom.udacity.com/nanodegrees/nd013/parts/fbf77062-5703-404e-b60c-95b78b2f3f9e/modules/6df7ae49-c61c-4bb2-a23e-6527e69209ec/lessons/601ae704-1035-4287-8b11-e2c2716217ad/concepts/d4aca031-508f-4e0b-b493-e7b706120f81) at the end of the CNN lesson is a solid starting point. You'll have to change the number of classes and possibly the preprocessing, but aside from that it's plug and play! With the LeNet-5 solution from the lecture, you should expect a validation set accuracy of about 0.89. To meet specifications, the validation set accuracy will need to be at least 0.93. It is possible to get an even higher accuracy, but 0.93 is the minimum for a successful project submission. There are various aspects to consider when thinking about this problem:- Neural network architecture (is the network over or underfitting?)- Play around preprocessing techniques (normalization, rgb to grayscale, etc)- Number of examples per label (some have more than others).- Generate fake data.Here is an example of a [published baseline model on this problem](http://yann.lecun.com/exdb/publis/pdf/sermanet-ijcnn-11.pdf). It's not required to be familiar with the approach used in the paper but, it's good practice to try to read papers like these. Pre-process the Data Set (normalization, grayscale, etc.) Minimally, the image data should be normalized so that the data has mean zero and equal variance. For image data, `(pixel - 128)/ 128` is a quick way to approximately normalize the data and can be used in this project. Other pre-processing steps are optional. You can try different techniques to see if it improves performance. Use the code cell (or multiple code cells, if necessary) to implement the first step of your project. ###Code ### Preprocess the data here. It is required to normalize the data. Other preprocessing steps could include ### converting to grayscale, etc. ### Feel free to use as many code cells as needed. ### visualize a sample from the dataset import random index = random.randint(0, X_train.shape[0]) img = X_train[index].squeeze() plt.figure(figsize=(1,1)) plt.imshow(img) print (y_train[index]) ### convert RGB images to gray scale import cv2 from numpy import newaxis img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) plt.figure(figsize=(1,1)) plt.imshow(img_gray, cmap = 'gray') ### normalize the grayscale image #img_gray= np.divide(np.subtract(img_gray, 128), 128) img_gray = img_gray[:, :, newaxis] print ('grayscale image shape is : ', img_gray.shape) ### convert all dataset to gray and normalized images def preprocess(img): img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) #img_gray= np.divide(np.subtract(img_gray, 128), 128) img_gray = img_gray[:, :, newaxis] return img_gray print ('original dataset has dimensions of ',X_train.shape, X_valid.shape, X_test.shape) X_train_tmp = [] for idx in range (X_train.shape[0]): img = X_train[idx] X_train_tmp.append(preprocess(img)) X_train_new = np.asarray(X_train_tmp) X_valid_tmp = [] for idx in range (X_valid.shape[0]): img = X_valid[idx] X_valid_tmp.append(preprocess(img)) X_valid_new = np.asarray(X_valid_tmp) X_test_tmp = [] for idx in range (X_test.shape[0]): img = X_test[idx] X_test_tmp.append(preprocess(img)) X_test_new = np.asarray(X_test_tmp) print ('new dataset has dimensions of ', X_train_new.shape, X_valid_new.shape, X_test_new.shape) ### shuffle the training data from sklearn.utils import shuffle X_train, y_train = shuffle(X_train, y_train) ###Output _____no_output_____ ###Markdown Model Architecture ###Code ### Define your architecture here. ### Feel free to use as many code cells as needed. ### setup tensor flow import tensorflow as tf EPOCHS = 50 BATCH_SIZE = 256 from tensorflow.contrib.layers import flatten def LeNet(x): # Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer mu = 0 sigma = 0.1 # Layer 1: Convolutional. Input = 32x32x3. Output = 30x30x8. conv1_W = tf.Variable(tf.truncated_normal(shape=(3, 3, 3, 8), mean = mu, stddev = sigma)) conv1_b = tf.Variable(tf.zeros(8)) conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b # Activation conv1 = tf.nn.relu(conv1) # Layer 2: Convolutional. Input = 30x30x8. Output = 28x28x16. conv2_W = tf.Variable(tf.truncated_normal(shape=(3, 3, 8, 16), mean = mu, stddev = sigma)) conv2_b = tf.Variable(tf.zeros(16)) conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b # Activation conv2 = tf.nn.relu(conv2) # Max Pooling. Input = 28x28x16. Output = 14x14x16. conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # Layer 3: Convolutional. Input = 14x14x16. Output = 12x12x32. conv3_W = tf.Variable(tf.truncated_normal(shape=(3, 3, 16, 32), mean = mu, stddev = sigma)) conv3_b = tf.Variable(tf.zeros(32)) conv3 = tf.nn.conv2d(conv2, conv3_W, strides=[1, 1, 1, 1], padding='VALID') + conv3_b # Activation conv3 = tf.nn.relu(conv3) # Layer 4: Convolutional. Input = 12x12x32. Output = 10x10x32. conv4_W = tf.Variable(tf.truncated_normal(shape=(3, 3, 32, 32), mean = mu, stddev = sigma)) conv4_b = tf.Variable(tf.zeros(32)) conv4 = tf.nn.conv2d(conv3, conv4_W, strides=[1, 1, 1, 1], padding='VALID') + conv4_b # Activation. conv4 = tf.nn.relu(conv4) # Max Pooling. Input = 10x10x32. Output = 5x5x32. conv4 = tf.nn.max_pool(conv4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # Layer 5: Convolutional. Input = 5x5x32. Output = 3x3x32. conv5_W = tf.Variable(tf.truncated_normal(shape=(3, 3, 32, 32), mean = mu, stddev = sigma)) conv5_b = tf.Variable(tf.zeros(32)) conv5 = tf.nn.conv2d(conv4, conv5_W, strides=[1, 1, 1, 1], padding='VALID') + conv5_b # Activation. conv5 = tf.nn.relu(conv5) # Flatten. Input = 3x3x32. Output = 288. fc0 = flatten(conv5) # Fully Connected. Input = 288. Output = 120. fc1_W = tf.Variable(tf.truncated_normal(shape=(288, 120), mean = mu, stddev = sigma)) fc1_b = tf.Variable(tf.zeros(120)) fc1 = tf.matmul(fc0, fc1_W) + fc1_b # Activation. fc1 = tf.nn.relu(fc1) # Fully Connected. Input = 120. Output = 84. fc2_W = tf.Variable(tf.truncated_normal(shape=(120, 84), mean = mu, stddev = sigma)) fc2_b = tf.Variable(tf.zeros(84)) fc2 = tf.matmul(fc1, fc2_W) + fc2_b # Activation. fc2 = tf.nn.relu(fc2) # Fully Connected. Input = 84. Output = 43. fc3_W = tf.Variable(tf.truncated_normal(shape=(84, 43), mean = mu, stddev = sigma)) fc3_b = tf.Variable(tf.zeros(43)) logits = tf.matmul(fc2, fc3_W) + fc3_b return logits ### setup placeholder for features and labels x = tf.placeholder(tf.float32, (None, 32, 32, 3)) y = tf.placeholder(tf.int32, (None)) one_hot_y = tf.one_hot(y, 43) ### setup training pipeline rate = 0.001 logits = LeNet(x) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_y, logits=logits) loss_operation = tf.reduce_mean(cross_entropy) optimizer = tf.train.AdamOptimizer(learning_rate = rate) training_operation = optimizer.minimize(loss_operation) ### setup model evaluation correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_y, 1)) accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver() def evaluate(X_data, y_data): num_examples = len(X_data) total_accuracy = 0 sess = tf.get_default_session() for offset in range(0, num_examples, BATCH_SIZE): batch_x, batch_y = X_data[offset:offset+BATCH_SIZE], y_data[offset:offset+BATCH_SIZE] accuracy = sess.run(accuracy_operation, feed_dict={x: batch_x, y: batch_y}) total_accuracy += (accuracy * len(batch_x)) return total_accuracy / num_examples ###Output _____no_output_____ ###Markdown Train, Validate and Test the Model A validation set can be used to assess how well the model is performing. A low accuracy on the training and validationsets imply underfitting. A high accuracy on the training set but low accuracy on the validation set implies overfitting. ###Code ### Train your model here. ### Calculate and report the accuracy on the training and validation set. ### Once a final model architecture is selected, ### the accuracy on the test set should be calculated and reported as well. ### Feel free to use as many code cells as needed. with tf.Session() as sess: sess.run(tf.global_variables_initializer()) num_examples = len(X_train) print("Training...") print() for i in range(EPOCHS): X_train, y_train = shuffle(X_train, y_train) for offset in range(0, num_examples, BATCH_SIZE): end = offset + BATCH_SIZE batch_x, batch_y = X_train[offset:end], y_train[offset:end] sess.run(training_operation, feed_dict={x: batch_x, y: batch_y}) validation_accuracy = evaluate(X_valid, y_valid) print("EPOCH {} ...".format(i+1)) print("Validation Accuracy = {:.3f}".format(validation_accuracy)) print() saver.save(sess, './lenet') print("Model saved") ### test the model with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('.')) test_accuracy = evaluate(X_test, y_test) print("Test Accuracy = {:.3f}".format(test_accuracy)) ###Output INFO:tensorflow:Restoring parameters from ./lenet Test Accuracy = 0.941 ###Markdown --- Step 3: Test a Model on New ImagesTo give yourself more insight into how your model is working, download at least five pictures of German traffic signs from the web and use your model to predict the traffic sign type.You may find `signnames.csv` useful as it contains mappings from the class id (integer) to the actual sign name. Load and Output the Images ###Code ### Load the images and plot them here. ### Feel free to use as many code cells as needed. import glob import matplotlib.image as mpimg import matplotlib.pyplot as plt import cv2 import numpy as np import os new_img = [] images = glob.glob('test_images/*.jpg') for fname in images: img = mpimg.imread(fname) res = cv2.resize(img, dsize=(32, 32), interpolation=cv2.INTER_CUBIC) new_img.append(res) print (os.path.split(fname)[1]) plt.imshow(res) plt.show() X_test_img = np.asarray(new_img) ###Output 11_Rightofway.jpg ###Markdown Predict the Sign Type for Each Image ###Code ### Run the predictions here and use the model to output the prediction for each image. ### Make sure to pre-process the images with the same pre-processing pipeline used earlier. ### Feel free to use as many code cells as needed. with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('.')) predict = sess.run(logits, feed_dict = {x: X_test_img}) probs=sess.run(tf.nn.softmax(predict)) print ('class ID predictions are: ', np.argmax(probs, 1)) ###Output INFO:tensorflow:Restoring parameters from ./lenet class ID predictions are: [11 17 25 33 12 14] ###Markdown Analyze Performance ###Code ### Calculate the accuracy for these 5 new images. ### For example, if the model predicted 1 out of 5 signs correctly, it's 20% accurate on these new images. y_test_img = np.asarray([11, 17, 25, 33, 12, 14]) print ('class ID truth are: ', y_test_img) with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('.')) test_accuracy = evaluate(X_test_img, y_test_img) print("Test Accuracy = {:.3f}".format(test_accuracy)) ###Output class ID truth are: [11 17 25 33 12 14] INFO:tensorflow:Restoring parameters from ./lenet Test Accuracy = 1.000 ###Markdown Output Top 5 Softmax Probabilities For Each Image Found on the Web For each of the new images, print out the model's softmax probabilities to show the **certainty** of the model's predictions (limit the output to the top 5 probabilities for each image). [`tf.nn.top_k`](https://www.tensorflow.org/versions/r0.12/api_docs/python/nn.htmltop_k) could prove helpful here. The example below demonstrates how tf.nn.top_k can be used to find the top k predictions for each image.`tf.nn.top_k` will return the values and indices (class ids) of the top k predictions. So if k=3, for each sign, it'll return the 3 largest probabilities (out of a possible 43) and the correspoding class ids.Take this numpy array as an example. The values in the array represent predictions. The array contains softmax probabilities for five candidate images with six possible classes. `tf.nn.top_k` is used to choose the three classes with the highest probability:``` (5, 6) arraya = np.array([[ 0.24879643, 0.07032244, 0.12641572, 0.34763842, 0.07893497, 0.12789202], [ 0.28086119, 0.27569815, 0.08594638, 0.0178669 , 0.18063401, 0.15899337], [ 0.26076848, 0.23664738, 0.08020603, 0.07001922, 0.1134371 , 0.23892179], [ 0.11943333, 0.29198961, 0.02605103, 0.26234032, 0.1351348 , 0.16505091], [ 0.09561176, 0.34396535, 0.0643941 , 0.16240774, 0.24206137, 0.09155967]])```Running it through `sess.run(tf.nn.top_k(tf.constant(a), k=3))` produces:```TopKV2(values=array([[ 0.34763842, 0.24879643, 0.12789202], [ 0.28086119, 0.27569815, 0.18063401], [ 0.26076848, 0.23892179, 0.23664738], [ 0.29198961, 0.26234032, 0.16505091], [ 0.34396535, 0.24206137, 0.16240774]]), indices=array([[3, 0, 5], [0, 1, 4], [0, 5, 1], [1, 3, 5], [1, 4, 3]], dtype=int32))```Looking just at the first row we get `[ 0.34763842, 0.24879643, 0.12789202]`, you can confirm these are the 3 largest probabilities in `a`. You'll also notice `[3, 0, 5]` are the corresponding indices. ###Code ### Print out the top five softmax probabilities for the predictions on the German traffic sign images found on the web. ### Feel free to use as many code cells as needed. with tf.Session() as sess: top_5 = sess.run(tf.nn.top_k(tf.constant(probs), k=5)) print (top_5) ###Output TopKV2(values=array([[9.9999940e-01, 3.2776660e-07, 2.9114602e-07, 1.8454999e-08, 4.2180286e-09], [1.0000000e+00, 1.7869048e-14, 9.4393788e-19, 4.0660042e-22, 3.7322572e-22], [9.9862385e-01, 7.8410358e-04, 5.2689260e-04, 2.2095543e-05, 1.4150333e-05], [1.0000000e+00, 8.9690539e-09, 7.5393569e-17, 2.5752147e-18, 1.2876239e-18], [1.0000000e+00, 3.0966429e-21, 2.8721633e-22, 4.7103988e-26, 9.1462706e-27], [9.9999905e-01, 9.4512990e-07, 3.9446906e-08, 1.5406231e-08, 8.9201119e-10]], dtype=float32), indices=array([[11, 33, 27, 25, 12], [17, 22, 14, 34, 29], [25, 1, 23, 38, 31], [33, 39, 29, 18, 26], [12, 9, 26, 13, 36], [14, 4, 1, 0, 25]], dtype=int32)) ###Markdown Project WriteupOnce you have completed the code implementation, document your results in a project writeup using this [template](https://github.com/udacity/CarND-Traffic-Sign-Classifier-Project/blob/master/writeup_template.md) as a guide. The writeup can be in a markdown or pdf file. > **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission. --- Step 4 (Optional): Visualize the Neural Network's State with Test Images This Section is not required to complete but acts as an additional excersise for understaning the output of a neural network's weights. While neural networks can be a great learning device they are often referred to as a black box. We can understand what the weights of a neural network look like better by plotting their feature maps. After successfully training your neural network you can see what it's feature maps look like by plotting the output of the network's weight layers in response to a test stimuli image. From these plotted feature maps, it's possible to see what characteristics of an image the network finds interesting. For a sign, maybe the inner network feature maps react with high activation to the sign's boundary outline or to the contrast in the sign's painted symbol. Provided for you below is the function code that allows you to get the visualization output of any tensorflow weight layer you want. The inputs to the function should be a stimuli image, one used during training or a new one you provided, and then the tensorflow variable name that represents the layer's state during the training process, for instance if you wanted to see what the [LeNet lab's](https://classroom.udacity.com/nanodegrees/nd013/parts/fbf77062-5703-404e-b60c-95b78b2f3f9e/modules/6df7ae49-c61c-4bb2-a23e-6527e69209ec/lessons/601ae704-1035-4287-8b11-e2c2716217ad/concepts/d4aca031-508f-4e0b-b493-e7b706120f81) feature maps looked like for it's second convolutional layer you could enter conv2 as the tf_activation variable.For an example of what feature map outputs look like, check out NVIDIA's results in their paper [End-to-End Deep Learning for Self-Driving Cars](https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/) in the section Visualization of internal CNN State. NVIDIA was able to show that their network's inner weights had high activations to road boundary lines by comparing feature maps from an image with a clear path to one without. Try experimenting with a similar test to show that your trained network's weights are looking for interesting features, whether it's looking at differences in feature maps from images with or without a sign, or even what feature maps look like in a trained network vs a completely untrained one on the same sign image. Your output should look something like this (above) ###Code ### Visualize your network's feature maps here. ### Feel free to use as many code cells as needed. # image_input: the test image being fed into the network to produce the feature maps # tf_activation: should be a tf variable name used during your training procedure that represents the calculated state of a specific weight layer # activation_min/max: can be used to view the activation contrast in more detail, by default matplot sets min and max to the actual min and max values of the output # plt_num: used to plot out multiple different weight feature map sets on the same block, just extend the plt number for each new feature map entry def outputFeatureMap(image_input, tf_activation, activation_min=-1, activation_max=-1 ,plt_num=1): # Here make sure to preprocess your image_input in a way your network expects # with size, normalization, ect if needed # image_input = # Note: x should be the same name as your network's tensorflow data placeholder variable # If you get an error tf_activation is not defined it may be having trouble accessing the variable from inside a function activation = tf_activation.eval(session=sess,feed_dict={x : image_input}) featuremaps = activation.shape[3] plt.figure(plt_num, figsize=(15,15)) for featuremap in range(featuremaps): plt.subplot(6,8, featuremap+1) # sets the number of feature maps to show on each row and column plt.title('FeatureMap ' + str(featuremap)) # displays the feature map number if activation_min != -1 & activation_max != -1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmin =activation_min, vmax=activation_max, cmap="gray") elif activation_max != -1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmax=activation_max, cmap="gray") elif activation_min !=-1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmin=activation_min, cmap="gray") else: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", cmap="gray") ###Output _____no_output_____
Lesson_2/GradientDescent.ipynb
###Markdown Implementing the Gradient Descent AlgorithmIn this lab, we'll implement the basic functions of the Gradient Descent algorithm to find the boundary in a small dataset. First, we'll start with some functions that will help us plot and visualize the data. ###Code import matplotlib.pyplot as plt import numpy as np import pandas as pd #Some helper functions for plotting and drawing lines def plot_points(X, y): admitted = X[np.argwhere(y==1)] rejected = X[np.argwhere(y==0)] plt.scatter([s[0][0] for s in rejected], [s[0][1] for s in rejected], s = 25, color = 'blue', edgecolor = 'k') plt.scatter([s[0][0] for s in admitted], [s[0][1] for s in admitted], s = 25, color = 'red', edgecolor = 'k') def display(m, b, color='g--'): plt.xlim(-0.05,1.05) plt.ylim(-0.05,1.05) x = np.arange(-10, 10, 0.1) plt.plot(x, m*x+b, color) ###Output _____no_output_____ ###Markdown Reading and plotting the data ###Code data = pd.read_csv('data.csv', header=None) X = np.array(data[[0,1]]) y = np.array(data[2]) plot_points(X,y) plt.show() ###Output _____no_output_____ ###Markdown TODO: Implementing the basic functionsHere is your turn to shine. Implement the following formulas, as explained in the text.- Sigmoid activation function$$\sigma(x) = \frac{1}{1+e^{-x}}$$- Output (prediction) formula$$\hat{y} = \sigma(w_1 x_1 + w_2 x_2 + b)$$- Error function$$Error(y, \hat{y}) = - y \log(\hat{y}) - (1-y) \log(1-\hat{y})$$- The function that updates the weights$$ w_i \longrightarrow w_i + \alpha (y - \hat{y}) x_i$$$$ b \longrightarrow b + \alpha (y - \hat{y})$$ ###Code # Implement the following functions # Activation (sigmoid) function def sigmoid(x): return 1 / (1 + np.exp(-x)) def output_formula(features, weights, bias): return sigmoid(np.dot(features, weights) + bias) def error_formula(y, output): return - y*np.log(output) - (1 - y) * np.log(1-output) def update_weights(x, y, weights, bias, learnrate): output = output_formula(x, weights, bias) error = (y - output) weights = weights + learnrate * error * x bias = bias + learnrate * error return weights, bias ###Output _____no_output_____ ###Markdown Training functionThis function will help us iterate the gradient descent algorithm through all the data, for a number of epochs. It will also plot the data, and some of the boundary lines obtained as we run the algorithm. ###Code np.random.seed(44) epochs = 100 learnrate = 0.01 def train(features, targets, epochs, learnrate, graph_lines=False): errors = [] n_records, n_features = features.shape last_loss = None weights = np.random.normal(scale=1 / n_features**.5, size=n_features) bias = 0 for e in range(epochs): del_w = np.zeros(weights.shape) for x, y in zip(features, targets): output = output_formula(x, weights, bias) error = error_formula(y, output) weights, bias = update_weights(x, y, weights, bias, learnrate) # Printing out the log-loss error on the training set out = output_formula(features, weights, bias) loss = np.mean(error_formula(targets, out)) errors.append(loss) if e % (epochs / 10) == 0: print("\n========== Epoch", e,"==========") if last_loss and last_loss < loss: print("Train loss: ", loss, " WARNING - Loss Increasing") else: print("Train loss: ", loss) last_loss = loss predictions = out > 0.5 accuracy = np.mean(predictions == targets) print("Accuracy: ", accuracy) if graph_lines and e % (epochs / 100) == 0: display(-weights[0]/weights[1], -bias/weights[1]) # Plotting the solution boundary plt.title("Solution boundary") display(-weights[0]/weights[1], -bias/weights[1], 'black') # Plotting the data plot_points(features, targets) plt.show() # Plotting the error plt.title("Error Plot") plt.xlabel('Number of epochs') plt.ylabel('Error') plt.plot(errors) plt.show() ###Output _____no_output_____ ###Markdown Time to train the algorithm!When we run the function, we'll obtain the following:- 10 updates with the current training loss and accuracy- A plot of the data and some of the boundary lines obtained. The final one is in black. Notice how the lines get closer and closer to the best fit, as we go through more epochs.- A plot of the error function. Notice how it decreases as we go through more epochs. ###Code train(X, y, epochs, learnrate, True) ###Output ========== Epoch 0 ========== Train loss: 0.7135845195381634 Accuracy: 0.4 ========== Epoch 10 ========== Train loss: 0.6225835210454962 Accuracy: 0.59 ========== Epoch 20 ========== Train loss: 0.5548744083669508 Accuracy: 0.74 ========== Epoch 30 ========== Train loss: 0.501606141872473 Accuracy: 0.84 ========== Epoch 40 ========== Train loss: 0.4593334641861401 Accuracy: 0.86 ========== Epoch 50 ========== Train loss: 0.42525543433469976 Accuracy: 0.93 ========== Epoch 60 ========== Train loss: 0.3973461571671399 Accuracy: 0.93 ========== Epoch 70 ========== Train loss: 0.3741469765239074 Accuracy: 0.93 ========== Epoch 80 ========== Train loss: 0.35459973368161973 Accuracy: 0.94 ========== Epoch 90 ========== Train loss: 0.3379273658879921 Accuracy: 0.94
Use-case_Cancer_detection/.ipynb_checkpoints/Cancer_encoder_e2-Benign-checkpoint.ipynb
###Markdown Imports ###Code import random import pandas as pd import torch from torchvision import datasets, transforms #quanutm lib import pennylane as qml from pennylane import numpy as np from pennylane.optimize import AdamOptimizer import torch from torchvision import datasets, transforms import sys sys.path.append("..") # Adds higher directory to python modules path from qencode.initialize import setAB_amplitude, setAux, setEnt from qencode.encoders import e2_classic from qencode.training_circuits import swap_t from qencode.qubits_arrangement import QubitsArrangement from qencode.utils.mnist import get_dataset ###Output _____no_output_____ ###Markdown Data ###Code df=pd.read_csv("cancer.csv", nrows=500) df.head() df.info() df.describe() #Data seams pretty clean without any nan value ## engineering two new features to have 32 feutures that can be encoded om 5 qubits. over_average = [] under_average = [] mean = {} std = {} for col in df: if col not in ["id","diagnosis" ]: mean[col]=df[col].mean() std[col]=df[col].std() for index,row in df.iterrows(): o_average=0 u_average=0 for col in df: if col not in ["id","diagnosis" ]: if row[col]> mean[col]+2* std[col]: o_average = o_average + 1 if row[col]< mean[col]+2* std[col]: u_average= u_average + 1 over_average.append(o_average) under_average.append(u_average) df["over_average"] = over_average df["under_average"] = under_average df.head() df.describe() for col in df: if col not in ["id","diagnosis" ]: df[col]=df[col]/df[col].max() df.describe() malign=df[df["diagnosis"]=="M"] malign.head() benign=df[df["diagnosis"]!="M"] benign.head() malign.drop(["id","diagnosis","Unnamed: 32"],axis="columns", inplace=True) benign.drop(["id","diagnosis","Unnamed: 32"],axis="columns", inplace=True) malign.head() input_data=benign.to_numpy() input_data ###Output _____no_output_____ ###Markdown Training node ###Code shots = 2500 nr_trash=1 nr_latent=4 nr_ent=0 spec = QubitsArrangement(nr_trash, nr_latent, nr_swap=1, nr_ent=nr_ent) print("Qubits:", spec.qubits) #set up the device dev = qml.device("default.qubit", wires=spec.num_qubits) @qml.qnode(dev) def training_circuit_example(init_params, encoder_params, reinit_state): #initilaization setAB_amplitude(spec, init_params) setAux(spec, reinit_state) setEnt(spec, inputs=[1 / np.sqrt(2), 0, 0, 1 / np.sqrt(2)]) #encoder for params in encoder_params: e2_classic(params, [*spec.latent_qubits, *spec.trash_qubits]) #swap test swap_t(spec) return [qml.probs(i) for i in spec.swap_qubits] ###Output _____no_output_____ ###Markdown Training parameters ###Code epochs = 500 learning_rate = 0.0003 batch_size = 2 num_samples = 0.8 # proportion of the data used for training beta1 = 0.9 beta2 = 0.999 opt = AdamOptimizer(learning_rate, beta1=beta1, beta2=beta2) def fid_func(output): # Implemented as the Fidelity Loss # output[0] because we take the probability that the state after the # SWAP test is ket(0), like the reference state fidelity_loss = 1 / output[0] return fidelity_loss def cost(encoder_params, X): reinit_state = [0 for i in range(2 ** len(spec.aux_qubits))] reinit_state[0] = 1.0 loss = 0.0 for x in X: output = training_circuit_example(init_params=x[0], encoder_params=encoder_params, reinit_state=reinit_state)[0] f = fid_func(output) loss = loss + f return loss / len(X) def fidelity(encoder_params, X): reinit_state = [0 for i in range(2 ** len(spec.aux_qubits))] reinit_state[0] = 1.0 loss = 0.0 for x in X: output = training_circuit_example(init_params=x[0], encoder_params=encoder_params, reinit_state=reinit_state)[0] f = output[0] loss = loss + f return loss / len(X) def iterate_batches(X, batch_size): random.shuffle(X) batch_list = [] batch = [] for x in X: if len(batch) < batch_size: batch.append(x) else: batch_list.append(batch) batch = [] if len(batch) != 0: batch_list.append(batch) return batch_list training_data = [ torch.tensor([input_data[i]]) for i in range(int(len(input_data)*num_samples))] test_data = [torch.tensor([input_data[i]]) for i in range(int(len(input_data)*num_samples),len(input_data))] training_data[0] X_training = training_data X_tes = test_data # initialize random encoder parameters nr_encod_qubits = len(spec.trash_qubits) + len(spec.latent_qubits) nr_par_encoder = 15 * int(nr_encod_qubits*(nr_encod_qubits-1)/2) encoder_params = np.random.uniform(size=(1, nr_par_encoder), requires_grad=True) ###Output _____no_output_____ ###Markdown training ###Code np_malign = malign.to_numpy() malign_data = [ torch.tensor([np_malign[i]]) for i in range(len(malign.to_numpy()))] loss_hist=[] fid_hist=[] loss_hist_test=[] fid_hist_test=[] benign_fid=[] for epoch in range(epochs): batches = iterate_batches(X=training_data, batch_size=batch_size) for xbatch in batches: encoder_params = opt.step(cost, encoder_params, X=xbatch) if epoch%5 == 0: loss_training = cost(encoder_params, X_training ) fidel = fidelity(encoder_params, X_training ) loss_hist.append(loss_training) fid_hist.append(fidel) print("Epoch:{} | Loss:{} | Fidelity:{}".format(epoch, loss_training, fidel)) loss_test = cost(encoder_params, X_tes ) fidel = fidelity(encoder_params, X_tes ) loss_hist_test.append(loss_test) fid_hist_test.append(fidel) print("Test-Epoch:{} | Loss:{} | Fidelity:{}".format(epoch, loss_test, fidel)) b_fidel = fidelity(encoder_params, malign_data ) benign_fid.append(b_fidel) print("malign fid:{}".format(b_fidel)) ###Output C:\Users\tomut\anaconda3\envs\qhack2022\lib\site-packages\pennylane\math\multi_dispatch.py:63: UserWarning: Contains tensors of types {'torch', 'autograd'}; dispatch will prioritize TensorFlow and PyTorch over autograd. Consider replacing Autograd with vanilla NumPy. warnings.warn( ###Markdown Rezults ###Code import matplotlib.pyplot as plt maligig = plt.figure() plt.plot([x for x in range(0,len(loss_hist)*5,5)],np.array(fid_hist),label="train fid") plt.plot([x for x in range(0,len(loss_hist)*5,5)],np.array(fid_hist_test),label="test fid") plt.plot([x for x in range(0,len(loss_hist)*5,5)],np.array(benign_fid),label="malign fid") plt.legend() plt.title("Malign 5-1-5->compression fidelity e2",) plt.xlabel("epoch") plt.ylabel("fid") print("fidelity:",fid_hist[-1]) fig = plt.figure() plt.plot([x for x in range(0,len(loss_hist)*5,5)],np.array(loss_hist),label="train loss") plt.plot([x for x in range(0,len(loss_hist)*5,5)],np.array(loss_hist_test),label="test loss") plt.legend() plt.title("Malign 5-1-5->compression loss e2",) plt.xlabel("epoch") plt.ylabel("loss") print("loss:",loss_hist[-1]) name = "Cancer_encoder_e2" Circuit_prop={ "shots":shots, "nr_trash":nr_trash, "nr_latent":nr_latent ,"nr_ent":nr_ent } Training_param = { "num_samples" : num_samples, "batch_size" :batch_size, "epochs" :epochs, "learning_rate" : learning_rate , "beta1" : beta1, "beta2 ":beta2, "optimizer":"Adam"} performance={"loss_hist":loss_hist, "fid_hist":fid_hist, "loss_hist_test":loss_hist_test, "fid_hist_test":fid_hist_test, "encoder_params":encoder_params} experiment_data={"Circuit_prop":Circuit_prop, "Training_param":Training_param, "performance:":performance, "Name":name} # open file for writing f = open(name+".txt","w") f.write( str(experiment_data) ) ###Output _____no_output_____ ###Markdown Benign performance ###Code np_malign = malign.to_numpy() malign_data = [ torch.tensor([np_malign[i]]) for i in range(len(malign.to_numpy()))] loss = cost(encoder_params, malign_data ) fidel = fidelity(encoder_params, malign_data ) print("Benign results:") print("fidelity=",fidel) print("loss=",loss) ###Output Benign results: fidelity= 0.9891166361994982 loss= 1.011144532784921 ###Markdown Classifyer ###Code malign_flist=[] for b in malign_data: f=fidelity(encoder_params, [b]) malign_flist.append(f.item()) print(min(malign_flist)) print(max(malign_flist)) np_benign= benign.to_numpy() benign_data = [ torch.tensor([np_benign[i]]) for i in range(len(benign.to_numpy()))] benign_flist=[] for b in benign_data: f=fidelity(encoder_params, [b]) benign_flist.append(f.item()) print(min(benign_flist)) print(max(benign_flist)) plt.hist(benign_flist, bins = 100 ,label="benign", color = "skyblue",alpha=0.4) plt.hist(malign_flist, bins =100 ,label="malign",color = "red",alpha=0.4) plt.title("Compression fidelity",) plt.legend() plt.show() split=0.99 print("split:",split) b_e=[] for i in beningn_flist: if i<split: b_e.append(1) else: b_e.append(0) ab_ac=sum(b_e)/len(b_e) print("malign classification accuracy:",ab_ac) m_e=[] for i in malign_flist: if i>split: m_e.append(1) else: m_e.append(0) am_ac=sum(m_e)/len(m_e) print("benign classification accuracy:",am_ac) t_ac=(sum(b_e)+sum(m_e))/(len(b_e)+len(m_e)) print("total accuracy:",t_ac) ###Output _____no_output_____
notebooks/_old/HappelPolyFit.ipynb
###Markdown Find a fitting polynomial for Happel's function ###Code %reset -f import numpy as np import matplotlib.pyplot as plt Porosity = np.linspace(0.01,0.9,200) Solids = 1.0 - Porosity ## Calculate Happel's equation As_Down = 2 - (3*Solids**(1./3.)) + (3*Solids**(5./3.)) - (2*Solids**2.) As_Up = 2 * (1-Solids**(5./3.)) As = As_Up/As_Down ## Fit a polynomial to Happel's equation Fit = np.polyfit(1/Porosity,As,2) reconstructed_As = Fit[0] * (1/Porosity)**2 + Fit[1] * (1/Porosity) + Fit[2] ## Compare the results fig,axs = plt.subplots(1,2,sharey=True,figsize=(10,6),facecolor="white",\ gridspec_kw = {'wspace':0}); ax = axs[0] ax.set(ylabel=r"Happel parameter $A_s$",xlabel=r"$\theta$") ax.plot(Porosity,As,lw=9,c='skyblue',label="Orig. Function") ax.plot(Porosity,reconstructed_As,lw=1,c='k',label="Polyfitted") ax = axs[1] ax.plot(1/Porosity,As,lw=9,c='skyblue',label="Orig. Function") ax.plot(1/Porosity,reconstructed_As,lw=1,c='k',label="Polyfitted") ax.set(xlabel=r"$\dfrac{1}{\theta}$",yscale='log') plt.show() ## Return the coefficients (hardcoded to C++) print("As_Coeffs = ",end='') print(Fit) ###Output As_Coeffs = [ 8.99992117 -7.49203318 0.4119361 ] ###Markdown End of notebook :) ###Code import matplotlib.gridspec as gs from ipywidgets import interact_manual import ipywidgets as widgets ClayDiameter = 5.0E-6 #5.0 um ClayRadio = ClayDiameter/2 alpha = 1.0 d = 0.42/1000 #mm PorositySand = 0.48 SandDiameter = np.array([1.0E-2,1.0E-3,d,1.0E-4]) SandLabels = ["Gravel [10mm]","Sand [1mm]","Jon's [0.42mm]","Fine Sand [0.1mm]"] LineWidths = [1.5,1.5,4,1.5] Ratios = ClayRadio/(SandDiameter/2) fig = plt.figure(figsize=(6,10),facecolor="white"); ax1 = plt.subplot(2,1,1) ax2 = plt.subplot(2,1,2) for i in range(len(Ratios)): Eta = 1.5 * Up/Down * Ratios[i]**2 Lambda = 0.75 * alpha * Eta * Solids / SandDiameter[i] ax1.plot(Porosity,Eta,lw=LineWidths[i]) ax2.plot(Porosity,Lambda,lw=LineWidths[i]) ax1.set_yscale('log') ax2.set_yscale('log') ax1.set_xlim(0.1,0.9) ax2.set_xlim(0.1,0.9) ax1.legend(SandLabels) ax2.legend(SandLabels) ax1.axvline(x=PorositySand,ls="dotted",lw=2,c="gray") ax2.axvline(x=PorositySand,ls="dotted",lw=2,c="gray") ax1.set_xlabel("Porosity $\\theta$ ") ax1.set_ylabel("Filtration Efficiency \n$\\eta_{\\rm di}$ ") ax2.set_xlabel("Porosity $\\theta$ ") ax2.set_ylabel("Filtration Coefficient \n$\\Lambda_{(\\theta)}$ [1/cm] ") plt.show() fig = plt.figure(figsize=(6,6),facecolor="white"); ax2 = plt.subplot(1,1,1) ax2.plot(1/Porosity,As,lw=9,c='skyblue',label="Orig. Function") Fit = np.polyfit(1/Porosity,As,2) X1 = Fit[0] * (1/Porosity)**2 X2 = Fit[1] * (1/Porosity) X3 = Fit[2] ax2.plot(1/Porosity,X1+X2+X3,lw=2,c='red',\ label="Polyfit") ax2.set_xlabel("$\\dfrac{1}{\\theta} = \\dfrac{1}{1-s}$ ",size="large") ax2.set_xlim(0,10) ax2.set_ylabel("$A_s$",size="large") #ax2.annotate("$%.1f \\dfrac{1}{\\theta^2} %.1f \\dfrac{1}{\\theta}$ + %.1f" \ # %(Fit[0],Fit[1],Fit[2]),\ # xy=(7, 30),\ # ha='center',fontsize="large",bbox=dict(facecolor='red', alpha=0.2)) #ax2.annotate("$\\dfrac{3}{2} \\left( \\dfrac{2(1-s^{5/3})}{2-3s^{1/3}+3s^{5/3}-2s^2} \\right)$",\ # xy=(7, 10),\ # ha='center',fontsize="large",bbox=dict(facecolor='blue', alpha=0.1)) ax2.set_yscale('log') ax2.axvline(x=1/PorositySand,ls="dotted",lw=2,c="gray",label="JDS Porosity") ax2.legend(ncol=3) plt.show() print(Fit) fig = plt.figure(figsize=(8,5),facecolor="white"); ax2 = plt.subplot(1,1,1) As = Up/Down ax2.plot(Porosity,As,lw=9,c='skyblue',label="Happel's function") Fit = np.polyfit(1/Porosity,As,2) X1 = Fit[0] * (1/Porosity)**2 X2 = Fit[1] * (1/Porosity) X3 = Fit[2] ax2.plot(Porosity,X1+X2+X3,lw=2,c='red',\ label="Polynomial fit") ax2.set_xlabel("$\\theta = (1-s)$ ",size="large") ax2.set_ylabel("$A_s$",size="large") #ax2.annotate("$%.1f \\dfrac{1}{\\theta^2} %.1f \\dfrac{1}{\\theta}$ + %.1f" \ # %(Fit[0],Fit[1],Fit[2]),\ # xy=(7, 30),\ # ha='center',fontsize="large",bbox=dict(facecolor='red', alpha=0.2)) #ax2.annotate("$\\dfrac{3}{2} \\left( \\dfrac{2(1-s^{5/3})}{2-3s^{1/3}+3s^{5/3}-2s^2} \\right)$",\ # xy=(7, 10),\ # ha='center',fontsize="large",bbox=dict(facecolor='blue', alpha=0.1)) ax2.set_yscale('log') ax2.axvline(x=PorositySand,ls="dotted",lw=2,c="gray",label="JDS Porosity") ax2.legend(ncol=3) ax2.set_xlim(0,0.9) plt.show() EtaLong_1 = np.log(2.4)+np.log(0.55)+np.log(0.475) U = 4.0E-5 #m/s A = 1.0E-20 #J kBoltz = 1.38E-23#1.380649E-23 #J/K Temp = 273.0+25.0 #K rho_clay = 1050 #kg/m3 rho = 997 #kg/m3 g = 9.81 #m/s2 mu = 0.89E-3 #Ns/m D = kBoltz*Temp/(6*np.pi*mu*ClayRadio) print("%.2E"%(D*100*100)) NPe = U*d/D print(NPe) Nvdw = A/(kBoltz*Temp) print(Nvdw) Ngr = 4.0*np.pi/3.0 * (ClayRadio**4) * (rho_clay - rho) * g / (kBoltz*Temp) print(Ngr) fig = plt.figure(figsize=(6,10),facecolor="white"); ax1 = plt.subplot(2,1,1) ax2 = plt.subplot(2,1,2) for i in [2]: NR = Ratios[i] EtaDiff = np.exp( \ np.log(2.4)\ + (1./3.)*np.log(As) - 0.081*np.log(NR)\ - 0.715*np.log(NPe)\ + 0.052*np.log(Nvdw)) EtaInte = np.exp( \ np.log(0.55)\ + np.log(As) + 1.550*np.log(NR)\ - 0.125*np.log(NPe)\ + 0.125*np.log(Nvdw)) EtaGrav = np.exp( \ np.log(0.475)\ - 1.350*np.log(NR)\ - 1.110*np.log(NPe)\ + 0.053*np.log(Nvdw)\ + 1.110*np.log(Ngr)) Eta = EtaDiff + EtaInte + EtaGrav Lambda = 0.75 * alpha * Eta * Solids / (SandDiameter[i]*100) ax1.plot(Porosity,Eta,lw=3,label="$\\eta_{\\rm 0} = \\eta_{\\rm D} + \\eta_{\\rm I} + \\eta_{\\rm G}$",c="black") ax1.plot(Porosity,EtaDiff,lw=3,label="$\\eta_{\\rm D}$") ax1.plot(Porosity,EtaInte,lw=3,label="$\\eta_{\\rm I}$") ax1.axhline(y=EtaGrav,lw=2,label="$\\eta_{\\rm G}$",c="gray") ax2.plot(Porosity,Lambda,lw=LineWidths[i],c="darksalmon") ax1.set_yscale('log') ax2.set_yscale('log') ax1.set_xlim(0,0.9) ax2.set_xlim(0,0.9) ax1.legend(fontsize="large",ncol=1) ax1.axvline(x=PorositySand,ls="dotted",lw=2,c="gray") ax2.axvline(x=PorositySand,ls="dotted",lw=2,c="gray") ax1.set_xlabel("Porosity $\\theta$ ") ax1.set_ylabel("Filtration Efficiency $\\eta$ ") ax2.set_xlabel("Porosity $\\theta$ ") ax2.set_ylabel("Filtration Coefficient $\\Lambda_{(\\theta)}$ [1/cm] ") plt.show() ###Output _____no_output_____
Data_Science/Chapter1_Basic_Python_4_DS.ipynb
###Markdown ---_You are currently looking at **version 1.1** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the [Jupyter Notebook FAQ](https://www.coursera.org/learn/python-data-analysis/resources/0dhYG) course resource._--- The Python Programming Language: Functions `add_numbers` is a function that takes two numbers and adds them together. ###Code def add_numbers(x, y): return x + y add_numbers(1, 2) ###Output _____no_output_____ ###Markdown `add_numbers` updated to take an optional 3rd parameter. Using `print` allows printing of multiple expressions within a single cell. ###Code def add_numbers(x,y,z=None): if (z==None): return x+y else: return x+y+z print(add_numbers(1, 2)) print(add_numbers(1, 2, 3)) ###Output 3 6 ###Markdown `add_numbers` updated to take an optional flag parameter. ###Code def add_numbers(x, y, z=None, flag=False): if (flag): print('Flag is true!') if (z==None): return x + y else: return x + y + z print(add_numbers(1, 2, flag=True)) ###Output Flag is true! 3 ###Markdown Assign function `add_numbers` to variable `a`. ###Code def add_numbers(x,y): return x+y a = add_numbers a(1,2) ###Output _____no_output_____ ###Markdown The Python Programming Language: Types and Sequences Use `type` to return the object's type. ###Code type('This is a string') type(None) type(1) type(1.0) type(add_numbers) ###Output _____no_output_____ ###Markdown Tuples are an immutable data structure (cannot be altered). ###Code x = (1, 'a', 2, 'b') type(x) ###Output _____no_output_____ ###Markdown Lists are a mutable data structure. ###Code x = [1, 'a', 2, 'b'] type(x) ###Output _____no_output_____ ###Markdown Use `append` to append an object to a list. ###Code x.append(3.3) print(x) ###Output [1, 'a', 2, 'b', 3.3] ###Markdown This is an example of how to loop through each item in the list. ###Code for item in x: print(item) ###Output 1 a 2 b 3.3 ###Markdown Or using the indexing operator: ###Code i=0 while( i != len(x) ): print(x[i]) i = i + 1 ###Output 1 a 2 b 3.3 ###Markdown Use `+` to concatenate lists. ###Code [1,2] + [3,4] ###Output _____no_output_____ ###Markdown Use `*` to repeat lists. ###Code [1]*3 ###Output _____no_output_____ ###Markdown Use the `in` operator to check if something is inside a list. ###Code 1 in [1, 2, 3] ###Output _____no_output_____ ###Markdown Now let's look at strings. Use bracket notation to slice a string. ###Code x = 'This is a string' print(x[0]) #first character print(x[0:1]) #first character, but we have explicitly set the end character print(x[0:2]) #first two characters ###Output T T Th ###Markdown This will return the last element of the string. ###Code x[-1] ###Output _____no_output_____ ###Markdown This will return the slice starting from the 4th element from the end and stopping before the 2nd element from the end. ###Code x[-4:-2] ###Output _____no_output_____ ###Markdown This is a slice from the beginning of the string and stopping before the 3rd element. ###Code x[:3] ###Output _____no_output_____ ###Markdown And this is a slice starting from the 4th element of the string and going all the way to the end. ###Code x[3:] firstname = 'Christopher' lastname = 'Brooks' print(firstname + ' ' + lastname) print(firstname*3) print('Chris' in firstname) ###Output Christopher Brooks ChristopherChristopherChristopher True ###Markdown `split` returns a list of all the words in a string, or a list split on a specific character. ###Code firstname = 'Christopher Arthur Hansen Brooks'.split(' ')[0] # [0] selects the first element of the list lastname = 'Christopher Arthur Hansen Brooks'.split(' ')[-1] # [-1] selects the last element of the list print(firstname) print(lastname) ###Output Christopher Brooks ###Markdown Make sure you convert objects to strings before concatenating. ###Code 'Chris' + 2 'Chris' + str(2) ###Output _____no_output_____ ###Markdown Dictionaries associate keys with values. ###Code x = {'Christopher Brooks': '[email protected]', 'Bill Gates': '[email protected]'} x['Christopher Brooks'] # Retrieve a value by using the indexing operator x['Kevyn Collins-Thompson'] = None x['Kevyn Collins-Thompson'] ###Output _____no_output_____ ###Markdown Iterate over all of the keys: ###Code for name in x: print(x[name]) ###Output [email protected] [email protected] None ###Markdown Iterate over all of the values: ###Code for email in x.values(): print(email) ###Output [email protected] [email protected] None ###Markdown Iterate over all of the items in the list: ###Code for name, email in x.items(): print(name) print(email) ###Output Christopher Brooks [email protected] Bill Gates [email protected] Kevyn Collins-Thompson None ###Markdown You can unpack a sequence into different variables: ###Code x = ('Christopher', 'Brooks', '[email protected]') fname, lname, email = x fname lname ###Output _____no_output_____ ###Markdown Make sure the number of values you are unpacking matches the number of variables being assigned. ###Code x = ('Christopher', 'Brooks', '[email protected]', 'Ann Arbor') fname, lname, email = x ###Output _____no_output_____ ###Markdown The Python Programming Language: More on Strings ###Code print('Chris' + 2) print('Chris' + str(2)) ###Output Chris2 ###Markdown Python has a built in method for convenient string formatting. ###Code sales_record = { 'price': 3.24, 'num_items': 4, 'person': 'Chris'} sales_statement = '{} bought {} item(s) at a price of {} each for a total of {}' print(sales_statement.format(sales_record['person'], sales_record['num_items'], sales_record['price'], sales_record['num_items']*sales_record['price'])) ###Output Chris bought 4 item(s) at a price of 3.24 each for a total of 12.96 ###Markdown Reading and Writing CSV files Let's import our datafile mpg.csv, which contains fuel economy data for 234 cars.* mpg : miles per gallon* class : car classification* cty : city mpg* cyl : of cylinders* displ : engine displacement in liters* drv : f = front-wheel drive, r = rear wheel drive, 4 = 4wd* fl : fuel (e = ethanol E85, d = diesel, r = regular, p = premium, c = CNG)* hwy : highway mpg* manufacturer : automobile manufacturer* model : model of car* trans : type of transmission* year : model year ###Code import csv %precision 2 with open('mpg.csv') as csvfile: mpg = list(csv.DictReader(csvfile)) mpg[:3] # The first three dictionaries in our list. ###Output _____no_output_____ ###Markdown `csv.Dictreader` has read in each row of our csv file as a dictionary. `len` shows that our list is comprised of 234 dictionaries. ###Code len(mpg) ###Output _____no_output_____ ###Markdown `keys` gives us the column names of our csv. ###Code mpg[0].keys() ###Output _____no_output_____ ###Markdown This is how to find the average cty fuel economy across all cars. All values in the dictionaries are strings, so we need to convert to float. ###Code sum(float(d['cty']) for d in mpg) / len(mpg) ###Output _____no_output_____ ###Markdown Similarly this is how to find the average hwy fuel economy across all cars. ###Code sum(float(d['hwy']) for d in mpg) / len(mpg) ###Output _____no_output_____ ###Markdown Use `set` to return the unique values for the number of cylinders the cars in our dataset have. ###Code cylinders = set(d['cyl'] for d in mpg) cylinders ###Output _____no_output_____ ###Markdown Here's a more complex example where we are grouping the cars by number of cylinder, and finding the average cty mpg for each group. ###Code CtyMpgByCyl = [] for c in cylinders: # iterate over all the cylinder levels summpg = 0 cyltypecount = 0 for d in mpg: # iterate over all dictionaries if d['cyl'] == c: # if the cylinder level type matches, summpg += float(d['cty']) # add the cty mpg cyltypecount += 1 # increment the count CtyMpgByCyl.append((c, summpg / cyltypecount)) # append the tuple ('cylinder', 'avg mpg') CtyMpgByCyl.sort(key=lambda x: x[0]) CtyMpgByCyl ###Output _____no_output_____ ###Markdown Use `set` to return the unique values for the class types in our dataset. ###Code vehicleclass = set(d['class'] for d in mpg) # what are the class types vehicleclass ###Output _____no_output_____ ###Markdown And here's an example of how to find the average hwy mpg for each class of vehicle in our dataset. ###Code HwyMpgByClass = [] for t in vehicleclass: # iterate over all the vehicle classes summpg = 0 vclasscount = 0 for d in mpg: # iterate over all dictionaries if d['class'] == t: # if the cylinder amount type matches, summpg += float(d['hwy']) # add the hwy mpg vclasscount += 1 # increment the count HwyMpgByClass.append((t, summpg / vclasscount)) # append the tuple ('class', 'avg mpg') HwyMpgByClass.sort(key=lambda x: x[1]) HwyMpgByClass ###Output _____no_output_____ ###Markdown The Python Programming Language: Dates and Times ###Code import datetime as dt import time as tm ###Output _____no_output_____ ###Markdown `time` returns the current time in seconds since the Epoch. (January 1st, 1970) ###Code tm.time() ###Output _____no_output_____ ###Markdown Convert the timestamp to datetime. Handy datetime attributes: ###Code dtnow = dt.datetime.fromtimestamp(tm.time()) dtnow dtnow.year, dtnow.month, dtnow.day, dtnow.hour, dtnow.minute, dtnow.second # get year, month, day, etc.from a datetime ###Output _____no_output_____ ###Markdown `timedelta` is a duration expressing the difference between two dates. ###Code delta = dt.timedelta(days = 100) # create a timedelta of 100 days delta ###Output _____no_output_____ ###Markdown `date.today` returns the current local date. ###Code today = dt.date.today() today - delta # the date 100 days ago today > today-delta # compare dates ###Output _____no_output_____ ###Markdown The Python Programming Language: Objects and map() An example of a class in python: ###Code class Person: department = 'School of Information' #a class variable def set_name(self, new_name): #a method self.name = new_name def set_location(self, new_location): self.location = new_location person = Person() person.set_name('Christopher Brooks') person.set_location('Ann Arbor, MI, USA') print('{} live in {} and works in the department {}'.format(person.name, person.location, person.department)) ###Output Christopher Brooks live in Ann Arbor, MI, USA and works in the department School of Information ###Markdown Here's an example of mapping the `min` function between two lists. ###Code store1 = [10.00, 11.00, 12.34, 2.34] store2 = [9.00, 11.10, 12.34, 2.01] cheapest = map(min, store1, store2) cheapest ###Output _____no_output_____ ###Markdown Now let's iterate through the map object to see the values. ###Code for item in cheapest: print(item) ###Output 9.0 11.0 12.34 2.01 ###Markdown The Python Programming Language: Lambda and List Comprehensions Here's an example of lambda that takes in three parameters and adds the first two. ###Code my_function = lambda a, b, c : a + b my_function(1, 2, 3) ###Output _____no_output_____ ###Markdown Let's iterate from 0 to 999 and return the even numbers. ###Code my_list = [] for number in range(0, 1000): if number % 2 == 0: my_list.append(number) my_list ###Output _____no_output_____ ###Markdown Now the same thing but with list comprehension. ###Code my_list = [number for number in range(0,1000) if number % 2 == 0] my_list ###Output _____no_output_____ ###Markdown The Python Programming Language: Numerical Python (NumPy) ###Code import numpy as np ###Output _____no_output_____ ###Markdown Creating Arrays Create a list and convert it to a numpy array ###Code mylist = [1, 2, 3] x = np.array(mylist) x ###Output _____no_output_____ ###Markdown Or just pass in a list directly ###Code y = np.array([4, 5, 6]) y ###Output _____no_output_____ ###Markdown Pass in a list of lists to create a multidimensional array. ###Code m = np.array([[7, 8, 9], [10, 11, 12]]) m ###Output _____no_output_____ ###Markdown Use the shape method to find the dimensions of the array. (rows, columns) ###Code m.shape ###Output _____no_output_____ ###Markdown `arange` returns evenly spaced values within a given interval. ###Code n = np.arange(0, 30, 2) # start at 0 count up by 2, stop before 30 n ###Output _____no_output_____ ###Markdown `reshape` returns an array with the same data with a new shape. ###Code n = n.reshape(3, 5) # reshape array to be 3x5 n ###Output _____no_output_____ ###Markdown `linspace` returns evenly spaced numbers over a specified interval. ###Code o = np.linspace(0, 4, 9) # return 9 evenly spaced values from 0 to 4 o ###Output _____no_output_____ ###Markdown `resize` changes the shape and size of array in-place. ###Code o.resize(3, 3) o ###Output _____no_output_____ ###Markdown `ones` returns a new array of given shape and type, filled with ones. ###Code np.ones((3, 2)) ###Output _____no_output_____ ###Markdown `zeros` returns a new array of given shape and type, filled with zeros. ###Code np.zeros((2, 3)) ###Output _____no_output_____ ###Markdown `eye` returns a 2-D array with ones on the diagonal and zeros elsewhere. ###Code np.eye(3) ###Output _____no_output_____ ###Markdown `diag` extracts a diagonal or constructs a diagonal array. ###Code np.diag(y) ###Output _____no_output_____ ###Markdown Create an array using repeating list (or see `np.tile`) ###Code np.array([1, 2, 3] * 3) ###Output _____no_output_____ ###Markdown Repeat elements of an array using `repeat`. ###Code np.repeat([1, 2, 3], 3) ###Output _____no_output_____ ###Markdown Combining Arrays ###Code p = np.ones([2, 3], int) p ###Output _____no_output_____ ###Markdown Use `vstack` to stack arrays in sequence vertically (row wise). ###Code np.vstack([p, 2*p]) ###Output _____no_output_____ ###Markdown Use `hstack` to stack arrays in sequence horizontally (column wise). ###Code np.hstack([p, 2*p]) ###Output _____no_output_____ ###Markdown Operations Use `+`, `-`, `*`, `/` and `**` to perform element wise addition, subtraction, multiplication, division and power. ###Code print(x + y) # elementwise addition [1 2 3] + [4 5 6] = [5 7 9] print(x - y) # elementwise subtraction [1 2 3] - [4 5 6] = [-3 -3 -3] print(x * y) # elementwise multiplication [1 2 3] * [4 5 6] = [4 10 18] print(x / y) # elementwise divison [1 2 3] / [4 5 6] = [0.25 0.4 0.5] print(x**2) # elementwise power [1 2 3] ^2 = [1 4 9] ###Output [1 4 9] ###Markdown **Dot Product:** $ \begin{bmatrix}x_1 \ x_2 \ x_3\end{bmatrix}\cdot\begin{bmatrix}y_1 \\ y_2 \\ y_3\end{bmatrix}= x_1 y_1 + x_2 y_2 + x_3 y_3$ ###Code x.dot(y) # dot product 1*4 + 2*5 + 3*6 z = np.array([y, y**2]) print(len(z)) # number of rows of array ###Output 2 ###Markdown Let's look at transposing arrays. Transposing permutes the dimensions of the array. ###Code z = np.array([y, y**2]) z ###Output _____no_output_____ ###Markdown The shape of array `z` is `(2,3)` before transposing. ###Code z.shape ###Output _____no_output_____ ###Markdown Use `.T` to get the transpose. ###Code z.T ###Output _____no_output_____ ###Markdown The number of rows has swapped with the number of columns. ###Code z.T.shape ###Output _____no_output_____ ###Markdown Use `.dtype` to see the data type of the elements in the array. ###Code z.dtype ###Output _____no_output_____ ###Markdown Use `.astype` to cast to a specific type. ###Code z = z.astype('f') z.dtype ###Output _____no_output_____ ###Markdown Math Functions Numpy has many built in math functions that can be performed on arrays. ###Code a = np.array([-4, -2, 1, 3, 5]) a.sum() a.max() a.min() a.mean() a.std() ###Output _____no_output_____ ###Markdown `argmax` and `argmin` return the index of the maximum and minimum values in the array. ###Code a.argmax() a.argmin() ###Output _____no_output_____ ###Markdown Indexing / Slicing ###Code s = np.arange(13)**2 s ###Output _____no_output_____ ###Markdown Use bracket notation to get the value at a specific index. Remember that indexing starts at 0. ###Code s[0], s[4], s[-1] ###Output _____no_output_____ ###Markdown Use `:` to indicate a range. `array[start:stop]`Leaving `start` or `stop` empty will default to the beginning/end of the array. ###Code s[1:5] ###Output _____no_output_____ ###Markdown Use negatives to count from the back. ###Code s[-4:] ###Output _____no_output_____ ###Markdown A second `:` can be used to indicate step-size. `array[start:stop:stepsize]`Here we are starting 5th element from the end, and counting backwards by 2 until the beginning of the array is reached. ###Code s[-5::-2] ###Output _____no_output_____ ###Markdown Let's look at a multidimensional array. ###Code r = np.arange(36) r.resize((6, 6)) r ###Output _____no_output_____ ###Markdown Use bracket notation to slice: `array[row, column]` ###Code r[2, 2] ###Output _____no_output_____ ###Markdown And use : to select a range of rows or columns ###Code r[3, 3:6] ###Output _____no_output_____ ###Markdown Here we are selecting all the rows up to (and not including) row 2, and all the columns up to (and not including) the last column. ###Code r[:2, :-1] ###Output _____no_output_____ ###Markdown This is a slice of the last row, and only every other element. ###Code r[-1, ::2] ###Output _____no_output_____ ###Markdown We can also perform conditional indexing. Here we are selecting values from the array that are greater than 30. (Also see `np.where`) ###Code r[r > 30] ###Output _____no_output_____ ###Markdown Here we are assigning all values in the array that are greater than 30 to the value of 30. ###Code r[r > 30] = 30 r ###Output _____no_output_____ ###Markdown Copying Data Be careful with copying and modifying arrays in NumPy!`r2` is a slice of `r` ###Code r2 = r[:3,:3] r2 r ###Output _____no_output_____ ###Markdown Set this slice's values to zero ([:] selects the entire array) ###Code r2[:] = 0 r2 ###Output _____no_output_____ ###Markdown `r` has also been changed! ###Code r ###Output _____no_output_____ ###Markdown To avoid this, use `r.copy` to create a copy that will not affect the original array ###Code r_copy = r.copy() r_copy ###Output _____no_output_____ ###Markdown Now when r_copy is modified, r will not be changed. ###Code r_copy[:] = 10 print(r_copy, '\n') print(r) ###Output [[10 10 10 10 10 10] [10 10 10 10 10 10] [10 10 10 10 10 10] [10 10 10 10 10 10] [10 10 10 10 10 10] [10 10 10 10 10 10]] [[ 0 0 0 3 4 5] [ 0 0 0 9 10 11] [ 0 0 0 15 16 17] [18 19 20 21 22 23] [24 25 26 27 28 29] [30 30 30 30 30 30]] ###Markdown Iterating Over Arrays Let's create a new 4 by 3 array of random numbers 0-9. ###Code test = np.random.randint(0, 10, (4,3)) test ###Output _____no_output_____ ###Markdown Iterate by row: ###Code for row in test: print(row) ###Output [9 0 6] [2 0 9] [7 5 8] [3 0 3] ###Markdown Iterate by index: ###Code for i in range(len(test)): print(test[i]) ###Output [9 0 6] [2 0 9] [7 5 8] [3 0 3] ###Markdown Iterate by row and index: ###Code for i, row in enumerate(test): print('row', i, 'is', row) ###Output row 0 is [9 0 6] row 1 is [2 0 9] row 2 is [7 5 8] row 3 is [3 0 3] ###Markdown Use `zip` to iterate over multiple iterables. ###Code test2 = test**2 test2 for i, j in zip(test, test2): print(i,'+',j,'=',i+j) ###Output [9 0 6] + [81 0 36] = [90 0 42] [2 0 9] + [ 4 0 81] = [ 6 0 90] [7 5 8] + [49 25 64] = [56 30 72] [3 0 3] + [9 0 9] = [12 0 12]
2020/passport_processing.ipynb
###Markdown Day 4: Passport Processinghttps://adventofcode.com/2020/day/4Passport data is validated in batch files (your puzzle input). Each passport isrepresented as a sequence of `key:value` pairs separated by spaces or newlines.Passports are separated by blank lines.The expected fields are as follows:- `byr` (Birth Year)- `iyr` (Issue Year)- `eyr` (Expiration Year)- `hgt` (Height)- `hcl` (Hair Color)- `ecl` (Eye Color)- `pid` (Passport ID)- `cid` (Country ID)Here is an example batch file containing four passports: ###Code test_batch_file = """ ecl:gry pid:860033327 eyr:2020 hcl:#fffffd byr:1937 iyr:2017 cid:147 hgt:183cm iyr:2013 ecl:amb cid:350 eyr:2023 pid:028048884 hcl:#cfa07d byr:1929 hcl:#ae17e1 iyr:2013 eyr:2024 ecl:brn pid:760753108 byr:1931 hgt:179cm hcl:#cfa07d eyr:2025 pid:166559648 iyr:2011 ecl:brn hgt:59in """ ###Output _____no_output_____ ###Markdown Count the number of **valid** passports - those that have all required fields.Treat `cid` as optional. **In your batch file, how many passports are valid?**According to the above rules, your improved system would report `2` validpassports. ###Code import doctest import re def passports(batch_file): passports = re.split(r'\n{2,}', batch_file) for passport in passports: pairs = re.split(r'\s+', passport) fields = dict(f.split(':') for f in pairs if f) yield fields def has_required_fields(passport): required_fields = {'byr', 'iyr', 'eyr', 'hgt', 'hcl', 'ecl', 'pid'} return set(passport.keys()) >= required_fields def count_valid_passports(batch_file): """ >>> count_valid_passports(test_batch_file) 2 """ return sum(has_required_fields(passport) for passport in passports(batch_file)) doctest.testmod() ###Output _____no_output_____ ###Markdown Part TwoYou can continue to ignore the cid field, but each other field has strict rulesabout what values are valid for automatic validation:- `byr` (Birth Year) - four digits; at least `1920` and at most `2002`.- `iyr` (Issue Year) - four digits; at least `2010` and at most `2020`.- `eyr` (Expiration Year) - four digits; at least `2020` and at most `2030`.- `hgt` (Height) - a number followed by either `cm` or `in`: - If `cm`, the number must be at least `150` and at most `193`. - If `in`, the number must be at least `59` and at most `76`.- `hcl` (Hair Color) - a `` followed by exactly six characters `0`-`9` or `a`-`f`.- `ecl` (Eye Color) - exactly one of: `amb` `blu` `brn` `gry` `grn` `hzl` `oth`.- `pid` (Passport ID) - a nine-digit number, including leading zeroes.- `cid` (Country ID) - ignored, missing or not.Count the number of **valid** passports - those that have all required fields**and valid values**. Continue to treat `cid` as optional. **In your batch file,how many passports are valid?** ###Code def valid_as_year(text, at_least, at_most): if re.match(r'\d{4}$', text): return at_least <= int(text) <= at_most return False def valid_as_height(text): match = re.match(r'(\d+)(cm|in)$', text) if match: height, unit = int(match.group(1)), match.group(2) if unit == 'cm': return 150 <= height <= 193 elif unit == 'in': return 59 <= height <= 76 return False def valid_hair_color(text): return re.match(r'#[0-9a-f]{6}$', text) def valid_eye_color(text): eye_colors = {'amb', 'blu', 'brn', 'gry', 'grn', 'hzl', 'oth'} return text in eye_colors def valid_passport_id(text): return re.match(r'\d{9}$', text) def part_two(batch_file): """ >>> part_two(test_batch_file) 2 """ valid_passports = 0 for passport in passports(batch_file): if not has_required_fields(passport): continue if not valid_as_year(passport['byr'], 1920, 2002): continue if not valid_as_year(passport['iyr'], 2010, 2020): continue if not valid_as_year(passport['eyr'], 2020, 2030): continue if not valid_as_height(passport['hgt']): continue if not valid_hair_color(passport['hcl']): continue if not valid_eye_color(passport['ecl']): continue if not valid_passport_id(passport['pid']): continue valid_passports += 1 return valid_passports doctest.testmod() ###Output _____no_output_____ ###Markdown Running on real input1. Use the file uploader to upload a file2. Re-run the last cell to use the input ###Code from IPython.display import display import ipywidgets as widgets uploader = widgets.FileUpload(accept='.txt', multiple=False) display(uploader) batch_file = list(uploader.value.values())[0]['content'].decode('utf-8') print('[Part 1] valid passports:', count_valid_passports(batch_file)) print('[Part 2] valid passports:', part_two(batch_file)) ###Output _____no_output_____
Praticas-em-Python1/4.3.numpy.ipynb
###Markdown Lógica de Programaçãonumpy ###Code import numpy as np # cria uma matriz unidimensional mt = np.array([12,34,26,18,10]) print(mt) print(type(mt)) #criar o array com um tipo específico # cria o array como float de 64 bits mtfloat = np.array([1, 2, 3], dtype = np.float64) print(mtfloat) print(type(mtfloat)) mtint = np.array([1, 2, 3], dtype = np.int32) print(mtint) print(type(mtint)) #mudar o tipo do array # Podemos transformar tipos de dados de arrays mtnew = np.array([1.4, 3.6, -5.1, 9.42, 4.999999]) print(mtnew) # quando transformamos de float para int os valores são truncados mtnewint = mtnew.astype(np.int32) print(mtnewint) # podemos fazer o inverso também. mt5 = np.array([1, 2, 3, 4]) print(mt5) mt6 = mt5.astype(float) print(mt6) # mais de uma dimensão # cria um matriz bidimensional mt7 = np.array([[7,2,23],[12,27,4],[5,34,23]]) print(mt7) #criar arrays vazios tipificados #empty significa que não são inicializados, não que são vazios vazio = np.empty([3,2], dtype = int) print(vazio) print("-------") # cria uma matriz 4x3 com valores zero zeros = np.zeros([4,3]) print(zeros) print("-------") #com valores igual a um um = np.ones([5,7]) print(um) print("-------") # cria matriz quadrada com diagonal principal com valores 1 e os outros valores zero diagonal = np.eye(5) print(diagonal) #valores aleatórios entre zero e um ale = np.random.random((5)) print(ale) print("-------") #valores aleatórios distr. normal contendo negativos ale2= np.random.randn((5)) print(ale2) print("-------") #valores aleatórios 3 x 4 ale3 = (10*np.random.random((3,4))) print(ale3) #outra forma de gerar aleatórios #uso de semente gnr = np.random.default_rng(1) ale5 = gnr.random(3) print (ale5) #gerar inteiros ale6 = gnr.integers(10, size=(3, 4)) print(ale6) #unique remove repetições j = np.array([11, 12, 13, 14, 15, 16, 17, 12, 13, 11, 18, 19, 20]) j = np.unique(j) print(j) #funções específicas # cria a matriz bidimensional k k = np.array([[17,22,43],[27,25,14],[15,24,32]]) # Mostra a matriz k print(k) # Mostra um elemento específico da matriz k print(k[0][1]) # Mostra o tamanho das dimensões da matriz k print(k.shape) #Funções Matemáticas # Mostra o maior valor da matriz k print(k.max()) # Mostra o menor valor da matriz k print(k.min()) # Mostra a soma dos valores da matriz k print((k.sum())) # Mostra o valor da média dos valores da matriz k print(k.mean()) # Mostra o valor do desvio padrão (standard deviation) dos valores da matiz k print(k.std()) #funções universais, aplicadas a todos os elementos # Mostra o valor da raiz quadrada de todos elementos k1 = np.array([1, 4, 9, 16, 25, 36]) print(np.sqrt(k1)) # Mostra o valor do exponencial de todos elementos print(np.exp(k1)) #extração de elementos m = np.array([1, 2, 3, 4, 5, 6]) # Mostra o elemento da posição 2 print(m[1]) print("-------") # Mostra o array criado a partir da posição 0, dois elementos print(m[0:2]) print("-------") # Mostra o array criado a partir da 2a posição # até todo o restante do array print(m[1:]) print("-------") # Mostra o array criado a partir da antepenúltima #posição até o final print(m[-3:]) #extração de linhas e colunas l = np.array([[4, 5], [6, 1], [7, 4]]) print(l) print("-------") #primeira linha, todas as colunas l_linha_1 = l[0, :] print(l_linha_1) print("-------") #segunda linha l_linha_2 = l[1, :] print(l_linha_2) print("-------") #terceira linha l_linha_3 = l[2, :] print(l_linha_3) print("-------") #todas as linhas, primeira coluna l_coluna_1 = l[:, 0] print(l_coluna_1) print("-------") #todas as linhas, segunda coluna l_coluna_2 = l[:, 1] print(l_coluna_2) #adição e multiplicação de matrizes n = np.array([[1, 2], [3, 4]]) o = np.array([[1, 1], [1, 1]]) res1 = n+o print(res1) print("-------") res2 = n*o print(res2) print("-------") p = np.array([[1, 2], [3, 4], [5, 6]]) q = np.array([[2, 1]]) print(p+q) # transposição, rearranja um conjunto de 15 elementos de 0 a 14 # em 3 linhas e 5 colunas. f = np.arange(15).reshape((3, 5)) # mostra a matrizes transposta entre linha e coluna print(f) print("-------") s = f.T print(s) #outra forma de fazer, mesmo resultado r = np.arange(15).reshape((3, 5)) print(r) print("-------") # rearranja um conjunto de 15 elementos # mostra a matrizes transposta entre linha e coluna s = r.transpose((1,0)) print(s) #expressões lógicas #usando where # criando matriz com valores aleatórios positivos e negativos v = np.random.randn(4, 4) print(v) # criando matriz com valores booleanos baseado no array v x = (v > 0) print(x) # criando matriz com valores -1 e 1 baseado nos valores do array x z = np.where(x > 0, 1, -1) print(z) ###Output [[-4.96563487e-01 -1.51837506e-01 -7.08996776e-01 9.57646480e-01] [-7.96420579e-01 1.24283349e+00 -2.47639930e-01 6.10613056e-01] [-1.00554832e+00 -5.54180920e-01 -1.19975797e-04 3.66623806e-01] [-7.46948885e-01 -2.95980339e+00 -1.09055013e+00 3.64864672e-02]] [[False False False True] [False True False True] [False False False True] [False False False True]] [[-1 -1 -1 1] [-1 1 -1 1] [-1 -1 -1 1] [-1 -1 -1 1]]
1-Introduction/01-defining-data-science/solution/Assignment_1_related_concepts_of_Machine_learning.ipynb
###Markdown Challenge: Analyzing Text about Machine LearningIn this example, let's do a simple exercise that covers all steps of a traditional data science process. You do not have to write any code, you can just click on the cells below to execute them and observe the result. As a challenge, you are encouraged to try this code out with different data. GoalIn this lesson, we have been discussing different concepts related to Machine Learning. Let's try to discover more related concepts by doing some **text mining**. We will start with a text about Machine Learning, extract keywords from it, and then try to visualize the result.As a text, I will use the page on Machine learning from Wikipedia: ###Code url = 'https://en.wikipedia.org/wiki/Machine_learning' ###Output _____no_output_____ ###Markdown Step 1: Getting the DataFirst step in every data science process is getting the data. We will use `requests` library to do that: ###Code import requests text = requests.get(url).content.decode('utf-8') print(text[:1000]) ###Output <!DOCTYPE html> <html class="client-nojs" lang="en" dir="ltr"> <head> <meta charset="UTF-8"/> <title>Machine learning - Wikipedia</title> <script>document.documentElement.className="client-js";RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"7847ff6f-bf40-495a-be9c-eda08a74d936","wgCSPNonce":false,"wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Machine_learning","wgTitle":"Machine learning","wgCurRevisionId":1070537003,"wgRevisionId":1070537003,"wgArticleId":233488,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 errors: missing periodical","CS1 maint: uses authors parameter","CS1 maint: url-status","Articles with short description","Short description ###Markdown Step 2: Transforming the DataThe next step is to convert the data into the form suitable for processing. In our case, we have downloaded HTML source code from the page, and we need to convert it into plain text.There are many ways this can be done. We will use the simplest built-in [HTMLParser](https://docs.python.org/3/library/html.parser.html) object from Python. We need to subclass the `HTMLParser` class and define the code that will collect all text inside HTML tags, except `` and `` tags. ###Code from html.parser import HTMLParser import re import string class MyHTMLParser(HTMLParser): script = False res = "" def handle_starttag(self, tag, attrs): if tag.lower() in ["script","style"]: self.script = True def handle_endtag(self, tag): if tag.lower() in ["script","style"]: self.script = False def handle_data(self, data): if str.strip(data)=="" or self.script: return self.res += ' '+data.replace('[ edit ]','') parser = MyHTMLParser() parser.feed(text) text = parser.res text = re.sub(r'\d+', '', text) text = "".join([char for char in text if char not in string.punctuation]) print(text[:1000]) ###Output Machine learning Wikipedia Machine learning From Wikipedia the free encyclopedia Jump to navigation Jump to search Study of algorithms that improve automatically through experience For the journal see Machine Learning journal Statistical learning redirects here For statistical learning in linguistics see statistical learning in language acquisition Part of a series on Machine learning and data mining Problems Classification Clustering Regression Anomaly detection Data Cleaning AutoML Association rules Reinforcement learning Structured prediction Feature engineering Feature learning Online learning Semisupervised learning Unsupervised learning Learning to rank Grammar induction Supervised learning classification  • regression Decision trees Ensembles Bagging Boosting Random forest k NN Linear regression Naive Bayes Artificial neural networks Logistic regression Perceptron Relevance vector machine RVM Support vector machine SVM Clustering BIRCH CURE Hierarchical k means Expecta ###Markdown Step 3: Getting InsightsThe most important step is to turn our data into some form from which we can draw insights. In our case, we want to extract keywords from the text, and see which keywords are more meaningful.We will use Python library called [RAKE](https://github.com/aneesha/RAKE) for keyword extraction. First, let's install this library in case it is not present: ###Code import sys !{sys.executable} -m pip install nlp_rake ###Output Requirement already satisfied: nlp_rake in /usr/local/lib/python3.7/dist-packages (0.0.2) Requirement already satisfied: regex>=2018.6.6 in /usr/local/lib/python3.7/dist-packages (from nlp_rake) (2019.12.20) Requirement already satisfied: pyrsistent>=0.14.2 in /usr/local/lib/python3.7/dist-packages (from nlp_rake) (0.18.1) Requirement already satisfied: langdetect>=1.0.8 in /usr/local/lib/python3.7/dist-packages (from nlp_rake) (1.0.9) Requirement already satisfied: numpy>=1.14.4 in /usr/local/lib/python3.7/dist-packages (from nlp_rake) (1.19.5) Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from langdetect>=1.0.8->nlp_rake) (1.15.0) ###Markdown The main functionality is available from `Rake` object, which we can customize using some parameters. In our case, we will set the minimum length of a keyword to 5 characters, minimum frequency of a keyword in the document to 3, and maximum number of words in a keyword - to 2. Feel free to play around with other values and observe the result. ###Code import nlp_rake extractor = nlp_rake.Rake(max_words=2,min_freq=3,min_chars=5) res = extractor.apply(text) res ###Output _____no_output_____ ###Markdown We obtained a list terms together with associated degree of importance. As you can see, the most relevant disciplines, such as machine learning and big data, are present in the list at top positions. Step 4: Visualizing the ResultPeople can interpret the data best in the visual form. Thus it often makes sense to visualize the data in order to draw some insights. We can use `matplotlib` library in Python to plot simple distribution of the keywords with their relevance: ###Code import matplotlib.pyplot as plt def plot(pair_list): k,v = zip(*pair_list) plt.bar(range(len(k)),v) plt.xticks(range(len(k)),k,rotation='vertical') plt.show() plot(res) ###Output _____no_output_____ ###Markdown There is, however, even better way to visualize word frequencies - using **Word Cloud**. We will need to install another library to plot the word cloud from our keyword list. ###Code !{sys.executable} -m pip install wordcloud ###Output Requirement already satisfied: wordcloud in /usr/local/lib/python3.7/dist-packages (1.5.0) Requirement already satisfied: pillow in /usr/local/lib/python3.7/dist-packages (from wordcloud) (7.1.2) Requirement already satisfied: numpy>=1.6.1 in /usr/local/lib/python3.7/dist-packages (from wordcloud) (1.19.5) ###Markdown `WordCloud` object is responsible for taking in either original text, or pre-computed list of words with their frequencies, and returns and image, which can then be displayed using `matplotlib`: ###Code from wordcloud import WordCloud import matplotlib.pyplot as plt wc = WordCloud(background_color='white',width=800,height=600) plt.figure(figsize=(15,7)) plt.imshow(wc.generate_from_frequencies({ k:v for k,v in res })) ###Output _____no_output_____ ###Markdown We can also pass in the original text to `WordCloud` - let's see if we are able to get similar result: ###Code plt.figure(figsize=(15,7)) plt.imshow(wc.generate(text)) wc.generate(text).to_file('bd_wordcloud.png') ###Output _____no_output_____
Plagiarism Detection Project/2_Plagiarism_Feature_Engineering.ipynb
###Markdown Plagiarism Detection, Feature EngineeringIn this project, you will be tasked with building a plagiarism detector that examines an answer text file and performs binary classification; labeling that file as either plagiarized or not, depending on how similar that text file is to a provided, source text. Your first task will be to create some features that can then be used to train a classification model. This task will be broken down into a few discrete steps:* Clean and pre-process the data.* Define features for comparing the similarity of an answer text and a source text, and extract similarity features.* Select "good" features, by analyzing the correlations between different features.* Create train/test `.csv` files that hold the relevant features and class labels for train/test data points.In the _next_ notebook, Notebook 3, you'll use the features and `.csv` files you create in _this_ notebook to train a binary classification model in a SageMaker notebook instance.You'll be defining a few different similarity features, as outlined in [this paper](https://s3.amazonaws.com/video.udacity-data.com/topher/2019/January/5c412841_developing-a-corpus-of-plagiarised-short-answers/developing-a-corpus-of-plagiarised-short-answers.pdf), which should help you build a robust plagiarism detector!To complete this notebook, you'll have to complete all given exercises and answer all the questions in this notebook.> All your tasks will be clearly labeled **EXERCISE** and questions as **QUESTION**.It will be up to you to decide on the features to include in your final training and test data.--- Read in the DataThe cell below will download the necessary, project data and extract the files into the folder `data/`.This data is a slightly modified version of a dataset created by Paul Clough (Information Studies) and Mark Stevenson (Computer Science), at the University of Sheffield. You can read all about the data collection and corpus, at [their university webpage](https://ir.shef.ac.uk/cloughie/resources/plagiarism_corpus.html). > **Citation for data**: Clough, P. and Stevenson, M. Developing A Corpus of Plagiarised Short Answers, Language Resources and Evaluation: Special Issue on Plagiarism and Authorship Analysis, In Press. [Download] ###Code # NOTE: # you only need to run this cell if you have not yet downloaded the data # otherwise you may skip this cell or comment it out # !wget https://s3.amazonaws.com/video.udacity-data.com/topher/2019/January/5c4147f9_data/data.zip # !unzip data # import libraries import pandas as pd import numpy as np import os ###Output _____no_output_____ ###Markdown This plagiarism dataset is made of multiple text files; each of these files has characteristics that are is summarized in a `.csv` file named `file_information.csv`, which we can read in using `pandas`. ###Code csv_file = 'data/file_information.csv' plagiarism_df = pd.read_csv(csv_file) # print out the first few rows of data info plagiarism_df.head() ###Output _____no_output_____ ###Markdown Types of PlagiarismEach text file is associated with one **Task** (task A-E) and one **Category** of plagiarism, which you can see in the above DataFrame. Tasks, A-EEach text file contains an answer to one short question; these questions are labeled as tasks A-E. For example, Task A asks the question: "What is inheritance in object oriented programming?" Categories of plagiarism Each text file has an associated plagiarism label/category:**1. Plagiarized categories: `cut`, `light`, and `heavy`.*** These categories represent different levels of plagiarized answer texts. `cut` answers copy directly from a source text, `light` answers are based on the source text but include some light rephrasing, and `heavy` answers are based on the source text, but *heavily* rephrased (and will likely be the most challenging kind of plagiarism to detect). **2. Non-plagiarized category: `non`.** * `non` indicates that an answer is not plagiarized; the Wikipedia source text is not used to create this answer. **3. Special, source text category: `orig`.*** This is a specific category for the original, Wikipedia source text. We will use these files only for comparison purposes. --- Pre-Process the DataIn the next few cells, you'll be tasked with creating a new DataFrame of desired information about all of the files in the `data/` directory. This will prepare the data for feature extraction and for training a binary, plagiarism classifier. EXERCISE: Convert categorical to numerical dataYou'll notice that the `Category` column in the data, contains string or categorical values, and to prepare these for feature extraction, we'll want to convert these into numerical values. Additionally, our goal is to create a binary classifier and so we'll need a binary class label that indicates whether an answer text is plagiarized (1) or not (0). Complete the below function `numerical_dataframe` that reads in a `file_information.csv` file by name, and returns a *new* DataFrame with a numerical `Category` column and a new `Class` column that labels each answer as plagiarized or not. Your function should return a new DataFrame with the following properties:* 4 columns: `File`, `Task`, `Category`, `Class`. The `File` and `Task` columns can remain unchanged from the original `.csv` file.* Convert all `Category` labels to numerical labels according to the following rules (a higher value indicates a higher degree of plagiarism): * 0 = `non` * 1 = `heavy` * 2 = `light` * 3 = `cut` * -1 = `orig`, this is a special value that indicates an original file.* For the new `Class` column * Any answer text that is not plagiarized (`non`) should have the class label `0`. * Any plagiarized answer texts should have the class label `1`. * And any `orig` texts will have a special label `-1`. Expected outputAfter running your function, you should get a DataFrame with rows that looks like the following: ``` File Task Category Class0 g0pA_taska.txt a 0 01 g0pA_taskb.txt b 3 12 g0pA_taskc.txt c 2 13 g0pA_taskd.txt d 1 14 g0pA_taske.txt e 0 0......99 orig_taske.txt e -1 -1``` ###Code # Read in a csv file and return a transformed dataframe def numerical_dataframe(csv_file='data/file_information.csv'): '''Reads in a csv file which is assumed to have `File`, `Category` and `Task` columns. This function does two things: 1) converts `Category` column values to numerical values 2) Adds a new, numerical `Class` label column. The `Class` column will label plagiarized answers as 1 and non-plagiarized as 0. Source texts have a special label, -1. :param csv_file: The directory for the file_information.csv file :return: A dataframe with numerical categories and a new `Class` label column''' # read input csv and create 'Class' column plagiarism_df = pd.read_csv(csv_file) plagiarism_df['Class'] = plagiarism_df['Category'] # create mappings for category labels category_map = {'orig':-1, 'non':0, 'heavy':1, 'light':2, 'cut':3} class_map = {'orig':-1, 'non':0, 'heavy':1, 'light':1, 'cut':1} # convert column values to numerical mappings plagiarism_df = plagiarism_df.replace({'Category':category_map}) plagiarism_df = plagiarism_df.replace({'Class':class_map}) return plagiarism_df ###Output _____no_output_____ ###Markdown Test cellsBelow are a couple of test cells. The first is an informal test where you can check that your code is working as expected by calling your function and printing out the returned result.The **second** cell below is a more rigorous test cell. The goal of a cell like this is to ensure that your code is working as expected, and to form any variables that might be used in _later_ tests/code, in this case, the data frame, `transformed_df`.> The cells in this notebook should be run in chronological order (the order they appear in the notebook). This is especially important for test cells.Often, later cells rely on the functions, imports, or variables defined in earlier cells. For example, some tests rely on previous tests to work.These tests do not test all cases, but they are a great way to check that you are on the right track! ###Code # informal testing, print out the results of a called function # create new `transformed_df` transformed_df = numerical_dataframe(csv_file ='data/file_information.csv') # check work # check that all categories of plagiarism have a class label = 1 transformed_df.head(10) # test cell that creates `transformed_df`, if tests are passed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # importing tests import problem_unittests as tests # test numerical_dataframe function tests.test_numerical_df(numerical_dataframe) # if above test is passed, create NEW `transformed_df` transformed_df = numerical_dataframe(csv_file ='data/file_information.csv') # check work print('\nExample data: ') transformed_df.head() ###Output Tests Passed! Example data: ###Markdown Text Processing & Splitting DataRecall that the goal of this project is to build a plagiarism classifier. At it's heart, this task is a comparison text; one that looks at a given answer and a source text, compares them and predicts whether an answer has plagiarized from the source. To effectively do this comparison, and train a classifier we'll need to do a few more things: pre-process all of our text data and prepare the text files (in this case, the 95 answer files and 5 original source files) to be easily compared, and split our data into a `train` and `test` set that can be used to train a classifier and evaluate it, respectively. To this end, you've been provided code that adds additional information to your `transformed_df` from above. The next two cells need not be changed; they add two additional columns to the `transformed_df`:1. A `Text` column; this holds all the lowercase text for a `File`, with extraneous punctuation removed.2. A `Datatype` column; this is a string value `train`, `test`, or `orig` that labels a data point as part of our train or test setThe details of how these additional columns are created can be found in the `helpers.py` file in the project directory. You're encouraged to read through that file to see exactly how text is processed and how data is split.Run the cells below to get a `complete_df` that has all the information you need to proceed with plagiarism detection and feature engineering. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import helpers # create a text column text_df = helpers.create_text_column(transformed_df) text_df.head() # after running the cell above # check out the processed text for a single file, by row index row_idx = 0 # feel free to change this index sample_text = text_df.iloc[0]['Text'] print('Sample processed text:\n\n', sample_text) ###Output Sample processed text: inheritance is a basic concept of object oriented programming where the basic idea is to create new classes that add extra detail to existing classes this is done by allowing the new classes to reuse the methods and variables of the existing classes and new methods and classes are added to specialise the new class inheritance models the is kind of relationship between entities or objects for example postgraduates and undergraduates are both kinds of student this kind of relationship can be visualised as a tree structure where student would be the more general root node and both postgraduate and undergraduate would be more specialised extensions of the student node or the child nodes in this relationship student would be known as the superclass or parent class whereas postgraduate would be known as the subclass or child class because the postgraduate class extends the student class inheritance can occur on several layers where if visualised would display a larger tree structure for example we could further extend the postgraduate node by adding two extra extended classes to it called msc student and phd student as both these types of student are kinds of postgraduate student this would mean that both the msc student and phd student classes would inherit methods and variables from both the postgraduate and student classes ###Markdown Split data into training and test setsThe next cell will add a `Datatype` column to a given DataFrame to indicate if the record is: * `train` - Training data, for model training.* `test` - Testing data, for model evaluation.* `orig` - The task's original answer from wikipedia. Stratified samplingThe given code uses a helper function which you can view in the `helpers.py` file in the main project directory. This implements [stratified random sampling](https://en.wikipedia.org/wiki/Stratified_sampling) to randomly split data by task & plagiarism amount. Stratified sampling ensures that we get training and test data that is fairly evenly distributed across task & plagiarism combinations. Approximately 26% of the data is held out for testing and 74% of the data is used for training.The function **train_test_dataframe** takes in a DataFrame that it assumes has `Task` and `Category` columns, and, returns a modified frame that indicates which `Datatype` (train, test, or orig) a file falls into. This sampling will change slightly based on a passed in *random_seed*. Due to a small sample size, this stratified random sampling will provide more stable results for a binary plagiarism classifier. Stability here is smaller *variance* in the accuracy of classifier, given a random seed. ###Code random_seed = 1 # can change; set for reproducibility """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import helpers # create new df with Datatype (train, test, orig) column # pass in `text_df` from above to create a complete dataframe, with all the information you need complete_df = helpers.train_test_dataframe(text_df, random_seed=random_seed) # check results complete_df.head(10) ###Output _____no_output_____ ###Markdown Determining PlagiarismNow that you've prepared this data and created a `complete_df` of information, including the text and class associated with each file, you can move on to the task of extracting similarity features that will be useful for plagiarism classification. > Note: The following code exercises, assume that the `complete_df` as it exists now, will **not** have its existing columns modified. The `complete_df` should always include the columns: `['File', 'Task', 'Category', 'Class', 'Text', 'Datatype']`. You can add additional columns, and you can create any new DataFrames you need by copying the parts of the `complete_df` as long as you do not modify the existing values, directly.--- Similarity Features One of the ways we might go about detecting plagiarism, is by computing **similarity features** that measure how similar a given answer text is as compared to the original wikipedia source text (for a specific task, a-e). The similarity features you will use are informed by [this paper on plagiarism detection](https://s3.amazonaws.com/video.udacity-data.com/topher/2019/January/5c412841_developing-a-corpus-of-plagiarised-short-answers/developing-a-corpus-of-plagiarised-short-answers.pdf). > In this paper, researchers created features called **containment** and **longest common subsequence**. Using these features as input, you will train a model to distinguish between plagiarized and not-plagiarized text files. Feature EngineeringLet's talk a bit more about the features we want to include in a plagiarism detection model and how to calculate such features. In the following explanations, I'll refer to a submitted text file as a **Student Answer Text (A)** and the original, wikipedia source file (that we want to compare that answer to) as the **Wikipedia Source Text (S)**. ContainmentYour first task will be to create **containment features**. To understand containment, let's first revisit a definition of [n-grams](https://en.wikipedia.org/wiki/N-gram). An *n-gram* is a sequential word grouping. For example, in a line like "bayes rule gives us a way to combine prior knowledge with new information," a 1-gram is just one word, like "bayes." A 2-gram might be "bayes rule" and a 3-gram might be "combine prior knowledge."> Containment is defined as the **intersection** of the n-gram word count of the Wikipedia Source Text (S) with the n-gram word count of the Student Answer Text (S) *divided* by the n-gram word count of the Student Answer Text.$$ \frac{\sum{count(\text{ngram}_{A}) \cap count(\text{ngram}_{S})}}{\sum{count(\text{ngram}_{A})}} $$If the two texts have no n-grams in common, the containment will be 0, but if _all_ their n-grams intersect then the containment will be 1. Intuitively, you can see how having longer n-gram's in common, might be an indication of cut-and-paste plagiarism. In this project, it will be up to you to decide on the appropriate `n` or several `n`'s to use in your final model. EXERCISE: Create containment featuresGiven the `complete_df` that you've created, you should have all the information you need to compare any Student Answer Text (A) with its appropriate Wikipedia Source Text (S). An answer for task A should be compared to the source text for task A, just as answers to tasks B, C, D, and E should be compared to the corresponding original source text.In this exercise, you'll complete the function, `calculate_containment` which calculates containment based upon the following parameters:* A given DataFrame, `df` (which is assumed to be the `complete_df` from above)* An `answer_filename`, such as 'g0pB_taskd.txt' * An n-gram length, `n` Containment calculationThe general steps to complete this function are as follows:1. From *all* of the text files in a given `df`, create an array of n-gram counts; it is suggested that you use a [CountVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html) for this purpose.2. Get the processed answer and source texts for the given `answer_filename`.3. Calculate the containment between an answer and source text according to the following equation. >$$ \frac{\sum{count(\text{ngram}_{A}) \cap count(\text{ngram}_{S})}}{\sum{count(\text{ngram}_{A})}} $$ 4. Return that containment value.You are encouraged to write any helper functions that you need to complete the function below. ###Code from sklearn.feature_extraction.text import CountVectorizer # Calculate the ngram containment for one answer file/source file pair in a df def calculate_containment(df, n, answer_filename): '''Calculates the containment between a given answer text and its associated source text. This function creates a count of ngrams (of a size, n) for each text file in our data. Then calculates the containment by finding the ngram count for a given answer text, and its associated source text, and calculating the normalized intersection of those counts. :param df: A dataframe with columns, 'File', 'Task', 'Category', 'Class', 'Text', and 'Datatype' :param n: An integer that defines the ngram size :param answer_filename: A filename for an answer text in the df, ex. 'g0pB_taskd.txt' :return: A single containment value that represents the similarity between an answer text and its source text. ''' # Get task number of answer_file_name a_task = df[df['File'] == answer_filename]['Task'].values[0] # Get answer text a_text = df[df['File'] == answer_filename]['Text'].values[0] # Lookup source text s_text = df[(df.Task == a_task) & (df.Class == -1)]['Text'].values[0] # instantiate an ngram counter counts = CountVectorizer(analyzer='word', ngram_range=(n,n)) # create array of n-gram counts for the answer and source text ngrams = counts.fit_transform([a_text, s_text]) # Convert to array ngram_array = ngrams.toarray() # Calculate containment intersect_list = np.amin(ngram_array, axis=0) # Add number of intersections intersection = np.sum(intersect_list) # Add number of n-grams in answer text count_answer = np.sum(ngram_array[0]) containment_val = intersection/count_answer return containment_val ###Output _____no_output_____ ###Markdown Test cellsAfter you've implemented the containment function, you can test out its behavior. The cell below iterates through the first few files, and calculates the original category _and_ containment values for a specified n and file.>If you've implemented this correctly, you should see that the non-plagiarized have low or close to 0 containment values and that plagiarized examples have higher containment values, closer to 1.Note what happens when you change the value of n. I recommend applying your code to multiple files and comparing the resultant containment values. You should see that the highest containment values correspond to files with the highest category (`cut`) of plagiarism level. ###Code # select a value for n n = 3 # indices for first few files test_indices = range(5) # iterate through files and calculate containment category_vals = [] containment_vals = [] for i in test_indices: # get level of plagiarism for a given file index category_vals.append(complete_df.loc[i, 'Category']) # calculate containment for given file and n filename = complete_df.loc[i, 'File'] c = calculate_containment(complete_df, n, filename) containment_vals.append(c) # print out result, does it make sense? print('Original category values: \n', category_vals) print() print(str(n)+'-gram containment values: \n', containment_vals) # run this test cell """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # test containment calculation # params: complete_df from before, and containment function tests.test_containment(complete_df, calculate_containment) ###Output Tests Passed! ###Markdown QUESTION 1: Why can we calculate containment features across *all* data (training & test), prior to splitting the DataFrame for modeling? That is, what about the containment calculation means that the test and training data do not influence each other? **Answer:**Containment values are calculated using the answer and the source text. The source text does not belong to either training or testing data sets so there's no influence from each other. --- Longest Common SubsequenceContainment a good way to find overlap in word usage between two documents; it may help identify cases of cut-and-paste as well as paraphrased levels of plagiarism. Since plagiarism is a fairly complex task with varying levels, it's often useful to include other measures of similarity. The paper also discusses a feature called **longest common subsequence**.> The longest common subsequence is the longest string of words (or letters) that are *the same* between the Wikipedia Source Text (S) and the Student Answer Text (A). This value is also normalized by dividing by the total number of words (or letters) in the Student Answer Text. In this exercise, we'll ask you to calculate the longest common subsequence of words between two texts. EXERCISE: Calculate the longest common subsequenceComplete the function `lcs_norm_word`; this should calculate the *longest common subsequence* of words between a Student Answer Text and corresponding Wikipedia Source Text. It may be helpful to think of this in a concrete example. A Longest Common Subsequence (LCS) problem may look as follows:* Given two texts: text A (answer text) of length n, and string S (original source text) of length m. Our goal is to produce their longest common subsequence of words: the longest sequence of words that appear left-to-right in both texts (though the words don't have to be in continuous order).* Consider: * A = "i think pagerank is a link analysis algorithm used by google that uses a system of weights attached to each element of a hyperlinked set of documents" * S = "pagerank is a link analysis algorithm used by the google internet search engine that assigns a numerical weighting to each element of a hyperlinked set of documents"* In this case, we can see that the start of each sentence of fairly similar, having overlap in the sequence of words, "pagerank is a link analysis algorithm used by" before diverging slightly. Then we **continue moving left -to-right along both texts** until we see the next common sequence; in this case it is only one word, "google". Next we find "that" and "a" and finally the same ending "to each element of a hyperlinked set of documents".* Below, is a clear visual of how these sequences were found, sequentially, in each text.* Now, those words appear in left-to-right order in each document, sequentially, and even though there are some words in between, we count this as the longest common subsequence between the two texts. * If I count up each word that I found in common I get the value 20. **So, LCS has length 20**. * Next, to normalize this value, divide by the total length of the student answer; in this example that length is only 27. **So, the function `lcs_norm_word` should return the value `20/27` or about `0.7408`.**In this way, LCS is a great indicator of cut-and-paste plagiarism or if someone has referenced the same source text multiple times in an answer. LCS, dynamic programmingIf you read through the scenario above, you can see that this algorithm depends on looking at two texts and comparing them word by word. You can solve this problem in multiple ways. First, it may be useful to `.split()` each text into lists of comma separated words to compare. Then, you can iterate through each word in the texts and compare them, adding to your value for LCS as you go. The method I recommend for implementing an efficient LCS algorithm is: using a matrix and dynamic programming. **Dynamic programming** is all about breaking a larger problem into a smaller set of subproblems, and building up a complete result without having to repeat any subproblems. This approach assumes that you can split up a large LCS task into a combination of smaller LCS tasks. Let's look at a simple example that compares letters:* A = "ABCD"* S = "BD"We can see right away that the longest subsequence of _letters_ here is 2 (B and D are in sequence in both strings). And we can calculate this by looking at relationships between each letter in the two strings, A and S.Here, I have a matrix with the letters of A on top and the letters of S on the left side:This starts out as a matrix that has as many columns and rows as letters in the strings S and O **+1** additional row and column, filled with zeros on the top and left sides. So, in this case, instead of a 2x4 matrix it is a 3x5.Now, we can fill this matrix up by breaking it into smaller LCS problems. For example, let's first look at the shortest substrings: the starting letter of A and S. We'll first ask, what is the Longest Common Subsequence between these two letters "A" and "B"? **Here, the answer is zero and we fill in the corresponding grid cell with that value.**Then, we ask the next question, what is the LCS between "AB" and "B"?**Here, we have a match, and can fill in the appropriate value 1**.If we continue, we get to a final matrix that looks as follows, with a **2** in the bottom right corner.The final LCS will be that value **2** *normalized* by the number of n-grams in A. So, our normalized value is 2/4 = **0.5**. The matrix rulesOne thing to notice here is that, you can efficiently fill up this matrix one cell at a time. Each grid cell only depends on the values in the grid cells that are directly on top and to the left of it, or on the diagonal/top-left. The rules are as follows:* Start with a matrix that has one extra row and column of zeros.* As you traverse your string: * If there is a match, fill that grid cell with the value to the top-left of that cell *plus* one. So, in our case, when we found a matching B-B, we added +1 to the value in the top-left of the matching cell, 0. * If there is not a match, take the *maximum* value from either directly to the left or the top cell, and carry that value over to the non-match cell.After completely filling the matrix, **the bottom-right cell will hold the non-normalized LCS value**.This matrix treatment can be applied to a set of words instead of letters. Your function should apply this to the words in two texts and return the normalized LCS value. ###Code # Compute the normalized LCS given an answer text and a source text def lcs_norm_word(answer_text, source_text): '''Computes the longest common subsequence of words in two texts; returns a normalized value. :param answer_text: The pre-processed text for an answer text :param source_text: The pre-processed text for an answer's associated source text :return: A normalized LCS value''' # Split text a_text = answer_text.split() s_text = source_text.split() # Get length of matrix n = len(a_text) m = len(s_text) # create an empty matrix with n x m size matrix_lcs = np.zeros((m+1,n+1), dtype=int) # iterate through each word to find a match for i, s_word in enumerate(s_text, start=1): for j, a_word in enumerate(a_text, start=1): # match if a_word == s_word: matrix_lcs[i][j] = matrix_lcs[i-1][j-1] + 1 else: # no match matrix_lcs[i][j] = max(matrix_lcs[i-1][j], matrix_lcs[i][j-1]) # normalize lcs normalized_lcs = matrix_lcs[m][n] / n return normalized_lcs ###Output _____no_output_____ ###Markdown Test cellsLet's start by testing out your code on the example given in the initial description.In the below cell, we have specified strings A (answer text) and S (original source text). We know that these texts have 20 words in common and the submitted answer is 27 words long, so the normalized, longest common subsequence should be 20/27. ###Code # Run the test scenario from above # does your function return the expected value? A = "i think pagerank is a link analysis algorithm used by google that uses a system of weights attached to each element of a hyperlinked set of documents" S = "pagerank is a link analysis algorithm used by the google internet search engine that assigns a numerical weighting to each element of a hyperlinked set of documents" # calculate LCS lcs = lcs_norm_word(A, S) print('LCS = ', lcs) # expected value test assert lcs==20/27., "Incorrect LCS value, expected about 0.7408, got "+str(lcs) print('Test passed!') ###Output LCS = 0.7407407407407407 Test passed! ###Markdown This next cell runs a more rigorous test. ###Code # run test cell """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # test lcs implementation # params: complete_df from before, and lcs_norm_word function tests.test_lcs(complete_df, lcs_norm_word) ###Output Tests Passed! ###Markdown Finally, take a look at a few resultant values for `lcs_norm_word`. Just like before, you should see that higher values correspond to higher levels of plagiarism. ###Code # test on your own test_indices = range(5) # look at first few files category_vals = [] lcs_norm_vals = [] # iterate through first few docs and calculate LCS for i in test_indices: category_vals.append(complete_df.loc[i, 'Category']) # get texts to compare answer_text = complete_df.loc[i, 'Text'] task = complete_df.loc[i, 'Task'] # we know that source texts have Class = -1 orig_rows = complete_df[(complete_df['Class'] == -1)] orig_row = orig_rows[(orig_rows['Task'] == task)] source_text = orig_row['Text'].values[0] # calculate lcs lcs_val = lcs_norm_word(answer_text, source_text) lcs_norm_vals.append(lcs_val) # print out result, does it make sense? print('Original category values: \n', category_vals) print() print('Normalized LCS values: \n', lcs_norm_vals) ###Output Original category values: [0, 3, 2, 1, 0] Normalized LCS values: [0.1917808219178082, 0.8207547169811321, 0.8464912280701754, 0.3160621761658031, 0.24257425742574257] ###Markdown --- Create All FeaturesNow that you've completed the feature calculation functions, it's time to actually create multiple features and decide on which ones to use in your final model! In the below cells, you're provided two helper functions to help you create multiple features and store those in a DataFrame, `features_df`. Creating multiple containment featuresYour completed `calculate_containment` function will be called in the next cell, which defines the helper function `create_containment_features`. > This function returns a list of containment features, calculated for a given `n` and for *all* files in a df (assumed to the the `complete_df`).For our original files, the containment value is set to a special value, -1.This function gives you the ability to easily create several containment features, of different n-gram lengths, for each of our text files. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # Function returns a list of containment features, calculated for a given n # Should return a list of length 100 for all files in a complete_df def create_containment_features(df, n, column_name=None): containment_values = [] if(column_name==None): column_name = 'c_'+str(n) # c_1, c_2, .. c_n # iterates through dataframe rows for i in df.index: file = df.loc[i, 'File'] # Computes features using calculate_containment function if df.loc[i,'Category'] > -1: c = calculate_containment(df, n, file) containment_values.append(c) # Sets value to -1 for original tasks else: containment_values.append(-1) print(str(n)+'-gram containment features created!') return containment_values ###Output _____no_output_____ ###Markdown Creating LCS featuresBelow, your complete `lcs_norm_word` function is used to create a list of LCS features for all the answer files in a given DataFrame (again, this assumes you are passing in the `complete_df`. It assigns a special value for our original, source files, -1. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # Function creates lcs feature and add it to the dataframe def create_lcs_features(df, column_name='lcs_word'): lcs_values = [] # iterate through files in dataframe for i in df.index: # Computes LCS_norm words feature using function above for answer tasks if df.loc[i,'Category'] > -1: # get texts to compare answer_text = df.loc[i, 'Text'] task = df.loc[i, 'Task'] # we know that source texts have Class = -1 orig_rows = df[(df['Class'] == -1)] orig_row = orig_rows[(orig_rows['Task'] == task)] source_text = orig_row['Text'].values[0] # calculate lcs lcs = lcs_norm_word(answer_text, source_text) lcs_values.append(lcs) # Sets to -1 for original tasks else: lcs_values.append(-1) print('LCS features created!') return lcs_values ###Output _____no_output_____ ###Markdown EXERCISE: Create a features DataFrame by selecting an `ngram_range`The paper suggests calculating the following features: containment *1-gram to 5-gram* and *longest common subsequence*. > In this exercise, you can choose to create even more features, for example from *1-gram to 7-gram* containment features and *longest common subsequence*. You'll want to create at least 6 features to choose from as you think about which to give to your final, classification model. Defining and comparing at least 6 different features allows you to discard any features that seem redundant, and choose to use the best features for your final model!In the below cell **define an n-gram range**; these will be the n's you use to create n-gram containment features. The rest of the feature creation code is provided. ###Code # Define an ngram range ngram_range = range(1,30) # The following code may take a minute to run, depending on your ngram_range """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ features_list = [] # Create features in a features_df all_features = np.zeros((len(ngram_range)+1, len(complete_df))) # Calculate features for containment for ngrams in range i=0 for n in ngram_range: column_name = 'c_'+str(n) features_list.append(column_name) # create containment features all_features[i]=np.squeeze(create_containment_features(complete_df, n)) i+=1 # Calculate features for LCS_Norm Words features_list.append('lcs_word') all_features[i]= np.squeeze(create_lcs_features(complete_df)) # create a features dataframe features_df = pd.DataFrame(np.transpose(all_features), columns=features_list) # Print all features/columns print() print('Features: ', features_list) print() # print some results features_df.head(10) ###Output _____no_output_____ ###Markdown Correlated FeaturesYou should use feature correlation across the *entire* dataset to determine which features are ***too*** **highly-correlated** with each other to include both features in a single model. For this analysis, you can use the *entire* dataset due to the small sample size we have. All of our features try to measure the similarity between two texts. Since our features are designed to measure similarity, it is expected that these features will be highly-correlated. Many classification models, for example a Naive Bayes classifier, rely on the assumption that features are *not* highly correlated; highly-correlated features may over-inflate the importance of a single feature. So, you'll want to choose your features based on which pairings have the lowest correlation. These correlation values range between 0 and 1; from low to high correlation, and are displayed in a [correlation matrix](https://www.displayr.com/what-is-a-correlation-matrix/), below. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # Create correlation matrix for just Features to determine different models to test corr_matrix = features_df.corr().abs().round(2) # display shows all of a dataframe pd.set_option('display.max_columns', 999) display(corr_matrix) ###Output _____no_output_____ ###Markdown EXERCISE: Create selected train/test dataComplete the `train_test_data` function below. This function should take in the following parameters:* `complete_df`: A DataFrame that contains all of our processed text data, file info, datatypes, and class labels* `features_df`: A DataFrame of all calculated features, such as containment for ngrams, n= 1-5, and lcs values for each text file listed in the `complete_df` (this was created in the above cells)* `selected_features`: A list of feature column names, ex. `['c_1', 'lcs_word']`, which will be used to select the final features in creating train/test sets of data.It should return two tuples:* `(train_x, train_y)`, selected training features and their corresponding class labels (0/1)* `(test_x, test_y)`, selected training features and their corresponding class labels (0/1)** Note: x and y should be arrays of feature values and numerical class labels, respectively; not DataFrames.**Looking at the above correlation matrix, you should decide on a **cutoff** correlation value, less than 1.0, to determine which sets of features are *too* highly-correlated to be included in the final training and test data. If you cannot find features that are less correlated than some cutoff value, it is suggested that you increase the number of features (longer n-grams) to choose from or use *only one or two* features in your final model to avoid introducing highly-correlated features.Recall that the `complete_df` has a `Datatype` column that indicates whether data should be `train` or `test` data; this should help you split the data appropriately. ###Code # Takes in dataframes and a list of selected features (column names) # and returns (train_x, train_y), (test_x, test_y) def train_test_data(complete_df, features_df, selected_features): '''Gets selected training and test features from given dataframes, and returns tuples for training and test features and their corresponding class labels. :param complete_df: A dataframe with all of our processed text data, datatypes, and labels :param features_df: A dataframe of all computed, similarity features :param selected_features: An array of selected features that correspond to certain columns in `features_df` :return: training and test features and labels: (train_x, train_y), (test_x, test_y)''' # get the training features train_x = features_df[complete_df.Datatype == 'train'][selected_features].values # And training class labels (0 or 1) train_y = complete_df[complete_df.Datatype == 'train']['Class'].to_numpy() # get the test features and labels test_x = features_df[complete_df.Datatype == 'test'][selected_features].values test_y = complete_df[complete_df.Datatype == 'test']['Class'].to_numpy() return (train_x, train_y), (test_x, test_y) ###Output _____no_output_____ ###Markdown Test cellsBelow, test out your implementation and create the final train/test data. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ test_selection = list(features_df)[:2] # first couple columns as a test # test that the correct train/test data is created (train_x, train_y), (test_x, test_y) = train_test_data(complete_df, features_df, test_selection) # params: generated train/test data tests.test_data_split(train_x, train_y, test_x, test_y) ###Output Tests Passed! ###Markdown EXERCISE: Select "good" featuresIf you passed the test above, you can create your own train/test data, below. Define a list of features you'd like to include in your final mode, `selected_features`; this is a list of the features names you want to include. ###Code # Select your list of features, this should be column names from features_df # ex. ['c_1', 'lcs_word'] selected_features = ['c_15', 'lcs_word'] """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ (train_x, train_y), (test_x, test_y) = train_test_data(complete_df, features_df, selected_features) # check that division of samples seems correct # these should add up to 95 (100 - 5 original files) print('Training size: ', len(train_x)) print('Test size: ', len(test_x)) print() print('Training df sample: \n', train_x[:10]) ###Output Training size: 70 Test size: 25 Training df sample: [[0. 0.19178082] [0.09615385 0.84649123] [0. 0.31606218] [0. 0.24257426] [0. 0.16117216] [0. 0.30165289] [0. 0.48430493] [0. 0.27083333] [0. 0.22395833] [0.39393939 0.9 ]] ###Markdown Question 2: How did you decide on which features to include in your final model? **Answer:**I chose to include LCS_WORD since this is a more complex way to assess text similaries, and included C_15 because this had a correlation of under 90%. --- Creating Final Data FilesNow, you are almost ready to move on to training a model in SageMaker!You'll want to access your train and test data in SageMaker and upload it to S3. In this project, SageMaker will expect the following format for your train/test data:* Training and test data should be saved in one `.csv` file each, ex `train.csv` and `test.csv`* These files should have class labels in the first column and features in the rest of the columnsThis format follows the practice, outlined in the [SageMaker documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html), which reads: "Amazon SageMaker requires that a CSV file doesn't have a header record and that the target variable [class label] is in the first column." EXERCISE: Create csv filesDefine a function that takes in x (features) and y (labels) and saves them to one `.csv` file at the path `data_dir/filename`.It may be useful to use pandas to merge your features and labels into one DataFrame and then convert that into a csv file. You can make sure to get rid of any incomplete rows, in a DataFrame, by using `dropna`. ###Code def make_csv(x, y, filename, data_dir): '''Merges features and labels and converts them into one csv file with labels in the first column. :param x: Data features :param y: Data labels :param file_name: Name of csv file, ex. 'train.csv' :param data_dir: The directory where files will be saved ''' # make data dir, if it does not exist if not os.path.exists(data_dir): os.makedirs(data_dir) data = pd.concat([pd.DataFrame(y), pd.DataFrame(x)], axis=1).dropna(axis=0) save_path = os.path.join(data_dir, filename) data.to_csv(save_path, header=False, index=False) # nothing is returned, but a print statement indicates that the function has run print('Path created: '+str(data_dir)+'/'+str(filename)) ###Output _____no_output_____ ###Markdown Test cellsTest that your code produces the correct format for a `.csv` file, given some text features and labels. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ fake_x = [ [0.39814815, 0.0001, 0.19178082], [0.86936937, 0.44954128, 0.84649123], [0.44086022, 0., 0.22395833] ] fake_y = [0, 1, 1] make_csv(fake_x, fake_y, filename='to_delete.csv', data_dir='test_csv') # read in and test dimensions fake_df = pd.read_csv('test_csv/to_delete.csv', header=None) # check shape assert fake_df.shape==(3, 4), \ 'The file should have as many rows as data_points and as many columns as features+1 (for indices).' # check that first column = labels assert np.all(fake_df.iloc[:,0].values==fake_y), 'First column is not equal to the labels, fake_y.' print('Tests passed!') # delete the test csv file, generated above ! rm -rf test_csv ###Output _____no_output_____ ###Markdown If you've passed the tests above, run the following cell to create `train.csv` and `test.csv` files in a directory that you specify! This will save the data in a local directory. Remember the name of this directory because you will reference it again when uploading this data to S3. ###Code # can change directory, if you want data_dir = 'plagiarism_data' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ make_csv(train_x, train_y, filename='train.csv', data_dir=data_dir) make_csv(test_x, test_y, filename='test.csv', data_dir=data_dir) ###Output Path created: plagiarism_data/train.csv Path created: plagiarism_data/test.csv
notebooks/1_2_basic_regression_tensorflow.ipynb
###Markdown Linear Regression in TensorFlow 1. Import libraries ###Code import tensorflow as tf from tensorflow import keras as K import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split ###Output _____no_output_____ ###Markdown 2. Hyperparameters ###Code EPOCHS = 500 NUM_HIDDEN_UNITS = 64 OUTPUT_DIMENSION = 1 LEARNING_RATE = 0.001 BATCH_SIZE = 32 DISP_FREQ = 100 ###Output _____no_output_____ ###Markdown 3. Load the data ###Code # Load the Boston Housing Prices dataset boston_housing = K.datasets.boston_housing (X_train, y_train), (X_test, y_test) = boston_housing.load_data() num_features = X_train.shape[1] def randomize(x, y): """ Randomizes the order of data samples and their corresponding labels""" permutation = np.random.permutation(y.shape[0]) shuffled_x = x[permutation, :] shuffled_y = y[permutation] return shuffled_x, shuffled_y # Shuffle the training set X_train, y_train = randomize(X_train, y_train) print("Train data size -> input: {}, output: {}".format(X_train.shape, y_train.shape)) print("Test data size: -> input: {}, output: {}".format(X_test.shape, y_test.shape)) ###Output Train data size -> input: (404, 13), output: (404,) Test data size: -> input: (102, 13), output: (102,) ###Markdown 4. Normalize the data ###Code # Test data is *not* used when calculating the mean and std mean = X_train.mean(axis=0) std = X_train.std(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std # Create validation data X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size=0.2) ###Output _____no_output_____ ###Markdown 5. Create the model (i.e. Graph) ###Code # Placeholders for inputs (x) and outputs(y) x = tf.placeholder(tf.float32, shape=[None, num_features], name='X') y = tf.placeholder(tf.float32, shape=[None], name='Y') def DenseLayer(inputs, num_units, layer_name, activation=None): input_dim = inputs.get_shape().as_list()[-1] with tf.variable_scope(layer_name): W = tf.get_variable('W', dtype=tf.float32, shape=[input_dim, num_units], initializer=tf.truncated_normal_initializer(stddev=0.01)) b = tf.get_variable('b', dtype=tf.float32, initializer=tf.constant(0., shape=[num_units], dtype=tf.float32)) logits = tf.matmul(inputs, W) + b if activation: return activation(logits) return logits # Hidden Layer fc1 = DenseLayer(x, NUM_HIDDEN_UNITS, 'FC1', activation=tf.nn.relu) # Output Layer predictions = DenseLayer(fc1, OUTPUT_DIMENSION, 'FC2') # Define the loss function and optimizer loss = tf.reduce_mean(tf.losses.mean_squared_error(labels=y, predictions=tf.squeeze(predictions))) optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE).minimize(loss) # Creating the op for initializing all variables init = tf.global_variables_initializer() ###Output _____no_output_____ ###Markdown 6. Train ###Code def get_next_batch(x, y, start, end): x_batch = x[start:end] y_batch = y[start:end] return x_batch, y_batch sess = tf.InteractiveSession() # Initialize all variables sess.run(init) # Number of training iterations in each epoch NUM_TR_ITERS = int(len(y_train) / BATCH_SIZE) print('------------------------------------') for epoch in range(EPOCHS): # Randomly shuffle the training data at the beginning of each epoch x_train, y_train = randomize(X_train, y_train) for iteration in range(NUM_TR_ITERS): start = iteration * BATCH_SIZE end = (iteration + 1) * BATCH_SIZE x_batch, y_batch = get_next_batch(X_train, y_train, start, end) # Run optimization op (backprop) feed_dict_batch = {x: x_batch, y: y_batch} sess.run(optimizer, feed_dict=feed_dict_batch) if not epoch % DISP_FREQ: # Run validation after every epoch feed_dict_valid = {x: X_valid, y: y_valid} loss_valid = sess.run(loss, feed_dict=feed_dict_valid) print("Epoch: {0}, validation loss: {1:.2f}".format(epoch, loss_valid)) print('------------------------------------') ###Output ------------------------------------ Epoch: 0, validation loss: 644.91 ------------------------------------ Epoch: 100, validation loss: 106.93 ------------------------------------ Epoch: 200, validation loss: 106.98 ------------------------------------ Epoch: 300, validation loss: 108.70 ------------------------------------ Epoch: 400, validation loss: 106.54 ------------------------------------
clasificacion/supervisado/ejemplos/FourClass.ipynb
###Markdown Caso de estudio: Clasificación BinariaEn este documento se presenta un conjunto de datos de pueba conocido como _FourClass_ presentado en la referencia (1) de estedocumento. El propósito es comparar el resultado y eficiencia de los siguientes métodos:- **Clasificador euclidiano**- **Gaussian Naive Bayes**- **k-Nearest Neighbors** _FourClass_Este conjunto de datos cuenta con dos características principales, es un problema de **clasificación binaria**, esto es, solamenteexisten dos clases diferentes dentro del conjunto de datos. Algunas características principales de este conjuto de datos son:- **No** es linealmente separable- Tiene una distribución espacial _irregular_, esto es, no sigue algún patrón específico.- Existen regiones y secciones no conexas, esto es, aunque un subconjunto de datos pertenece a una clase particular no está dentro del mismo conjunto de puntos.Como se puede ver este es un conjunto de puntos difícil de clasificar y es un caso de estudio importante para tanto para analizarcomo para comprender el verdadero alcance de los métodos de clasificación usuales. Precisión de los clasificadoresEn general no se sabe la eficiencia de los clasificadores dado un conjunto de datos; pero normalmente se realizan pruebas con conjuntosde datos que se ha realizado en alguna prueba o experimento. Siempre es útil revisar la literatura para este tipo de problemas. En especial,en este ejemplo existen muchos experimentos realizados para este conjunto de datos pero aquí se van a hacer algunas hipótesis sobre la verdadera**eficiencia** esperada de los clasificadores.- **Clasificador euclidiano:** Dado que este clasificador espera que el conjunto de datos tengan clases _linealmente separables_ se espera que este clasificador tenga la peor precisión de todos los métodos presentados en este documento; existen técnicas alternativas para cambiar este tipo de conjuntos de datos a espacios donde sí sea _linealmente separable_, pero se estudiarán en algún otro documento.- **Gaussian Naive Bayes** Este clasificador espera un conjunto de datos con una alta dimensionalidad, que el conjunto de datos contenga clases provenientes de distribuciones normales Gaussianas entre otras cosas. Este conjunto de datos no contiene ninguna de estas condiciones, por lo que es posible que este clasificador tenga una baja precisión.- **k-Nearest Neighbors** Este clasificador no tiene ninguna condición excepto que no sea un conjunto de datos con alta dimensionalidada tal que el _k-d tree_ que utiliza para la búsqueda de los vecinos más cercanos no se pueda implementar por su baja eficiencia. Por lo tanto se espera que este sea el clasificador con la mejor precisión de todos dado que no depende de la distrución espacial del conjunto de datos. ###Code import matplotlib as mpl mpl.rcParams["figure.figsize"] = (21, 10) import os import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report # Cargar el archivo de datos que está dentro del repositorio datos = np.loadtxt( os.path.relpath("datasets/fourclass.csv", start="intelicompu"), delimiter=",", skiprows=1 ) # Separar los datos y las etiquetas X = datos[:, :-1] # Las etiquetas corresponden a la última fila de los datos y = datos[:, -1] # Graficar los datos plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap="summer") ###Output _____no_output_____ ###Markdown Como se puede ver en la figura, las clases están separadas por color, existen 2 y tal como se describe en la introducción de este documento existen regiones donde los datos no están en el mismo conglomerado de datos según la clase.Claramente no es _linealmente separable_, no se tienen tantos puntos y solamente existen dos características. ###Code # Sustituir el nombre de la clase para evitar ciertos errores y[y == -1] = 0 # Separar los datos para predicción y entrenamiento x_entre, x_prueba, y_entre, y_prueba = train_test_split(X, y, test_size=0.3, random_state=7, shuffle=False) ###Output _____no_output_____ ###Markdown **NOTA:** Se sustituye la clase -1 por 0 para evitar problemas numéricos dentro de las implementaciones de los métodos de clasificación. No siempre es necesario hacer este tipo de modificaciones, depende del conjunto de datos, la persona a cargo de realizar el estudio de los datos, entre otras cosas. Clasificador euclidiano ###Code # Cargar el código que está dentro del directorio %run DiscriminanteLineal.py # Instanciar, entrenar y realizar la clasificación euclidiano = DiscriminanteLineal() euclidiano.entrenamiento(x_entre, y_entre) resultado = euclidiano.prediccion(x_prueba) # Crear el reporte de clasificación print(classification_report(y_prueba, resultado, labels=[0, 1])) ###Output precision recall f1-score support 0 0.73 0.92 0.81 156 1 0.80 0.50 0.61 103 micro avg 0.75 0.75 0.75 259 macro avg 0.77 0.71 0.71 259 weighted avg 0.76 0.75 0.73 259 ###Markdown Precisión y resultadosEl _reporte de clasificación_ para este clasificador produce valores interesantes. Este clasificador puede clasificar correctamente la _clase 0_ cuando se presenta sola, pero cuando tiene que discernir entre la _clase 1_ y la _clase 0_ tiene un bajo desempeño.Este era de esperarse dado que no existe una separación lineal entre las clases, solamente algunas regiones espaciales dentro del conjunto de datos se pueden considerar tal que pasa una línea recta entre ellas, pero en general esto no es cierto.Sin embargo, para ser un clasificador totalmente lineal, tiene un desempeño adecuado pero deficiente. k-Nearest Neighbors ###Code # Cargar el código que está dentro del directorio %run kNearestNeighbors.py # Instanciar, entrenar y realizar la clasificación knn_clf = kNearestNeighbors(num_vecinos=5) knn_clf.entrenamiento(x_entre, y_entre) resultado = knn_clf.predecir(x_prueba) ###Output _____no_output_____ ###Markdown **NOTA:** Sobre el número de vecinos `num_vecinos` se eligió el valor de 5 por coveniencia, sin embargo lo correcto es realizar algún tipo de _validación_ o técnica de ajuste para que este valor sea el que proporcione los mejores resultados de clasificación. ###Code print(classification_report(y_prueba, resultado, labels=[0, 1])) ###Output precision recall f1-score support 0 1.00 1.00 1.00 156 1 1.00 1.00 1.00 103 micro avg 1.00 1.00 1.00 259 macro avg 1.00 1.00 1.00 259 weighted avg 1.00 1.00 1.00 259 ###Markdown Precisión y resultadosComo era de esperarse, este clasificador realiza una clasifición perfecta de los datos. No solamente puede clasificar correctamente entre clases, sino que también puede distinguir entre una y otra. Esto se debe claramente a la naturaleza de este clasificador dado que no requiere de ninguna hipótesis sobre los datos, solamente importa qué tipo de vecino está cerca y a qué clase pertenece. Gaussian Naive Bayes ###Code # Cargar el código que está dentro del directorio %run GNaiveBayes.py # Instanciar, entrenar y realizar la clasificación gnb_clf = GNaiveBayes() gnb_clf.entrenamiento(x_entre, y_entre) resultado = gnb_clf.predecir(x_prueba) # Crear el reporte de clasificación print(classification_report(y_prueba, resultado, labels=[0, 1])) ###Output precision recall f1-score support 0 0.76 0.96 0.85 156 1 0.89 0.54 0.67 103 micro avg 0.79 0.79 0.79 259 macro avg 0.82 0.75 0.76 259 weighted avg 0.81 0.79 0.78 259
tutorials/Certification_Trainings/Healthcare/15.German_Legal_Model.ipynb
###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/15.German_Legal_Model.ipynb) Colab Setup ###Code import json with open('workshop_license_keys_365.json') as f_in: license_keys = json.load(f_in) license_keys.keys() import os # Install java ! apt-get update -qq ! apt-get install -y openjdk-8-jdk-headless -qq > /dev/null os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" os.environ["PATH"] = os.environ["JAVA_HOME"] + "/bin:" + os.environ["PATH"] ! java -version secret = license_keys['SECRET'] os.environ['SPARK_NLP_LICENSE'] = license_keys['SPARK_NLP_LICENSE'] os.environ['AWS_ACCESS_KEY_ID']= license_keys['AWS_ACCESS_KEY_ID'] os.environ['AWS_SECRET_ACCESS_KEY'] = license_keys['AWS_SECRET_ACCESS_KEY'] version = license_keys['PUBLIC_VERSION'] jsl_version = license_keys['JSL_VERSION'] ! pip install --ignore-installed -q pyspark==2.4.4 ! python -m pip install --upgrade spark-nlp-jsl==$jsl_version --extra-index-url https://pypi.johnsnowlabs.com/$secret ! pip install --ignore-installed -q spark-nlp==$version import sparknlp print (sparknlp.version()) import json import os from pyspark.ml import Pipeline from pyspark.sql import SparkSession from sparknlp.annotator import * from sparknlp_jsl.annotator import * from sparknlp.base import * import sparknlp_jsl from pyspark.sql.types import StructType, StructField, StringType import itertools spark = sparknlp_jsl.start(secret) ###Output _____no_output_____ ###Markdown Legal NER The dataset used to train this model is taken from Leitner, et.al (2019)*Leitner, E., Rehm, G., and Moreno-Schneider, J. (2019). Fine-grained Named Entity Recognition in Legal Documents. In Maribel Acosta, et al., editors, Semantic Systems. The Power of AI and Knowledge Graphs. Proceedings of the 15th International Conference (SEMANTiCS2019), number 11702 in Lecture Notes in Computer Science, pages 272–287, Karlsruhe, Germany, 9. Springer. 10/11 September 2019.***Source of the annotated text:**Court decisions from 2017 and 2018 were selected for the dataset, published online by the Federal Ministry of Justice and Consumer Protection. The documents originate from seven federal courts: Federal Labour Court (BAG), Federal Fiscal Court (BFH), Federal Court of Justice (BGH), Federal Patent Court (BPatG), Federal Social Court (BSG), Federal Constitutional Court (BVerfG) and Federal Administrative Court (BVerwG). ![image.png]() **Macro-average prec: 0.9210195, rec: 0.91861916, f1: 0.91981775****Micro-average prec: 0.9833763, rec: 0.9837547, f1: 0.9835655** ###Code documentAssembler = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document") # Sentence Detector annotator, processes various sentences per line sentenceDetector = SentenceDetector()\ .setInputCols(["document"])\ .setOutputCol("sentence")\ # Tokenizer splits words in a relevant format for NLP tokenizer = Tokenizer()\ .setInputCols(["sentence"])\ .setOutputCol("token")\ word_embeddings = WordEmbeddingsModel.pretrained("w2v_cc_300d",'de','clinical/models')\ .setInputCols(["sentence", 'token'])\ .setOutputCol("embeddings")\ .setCaseSensitive(False) legal_ner = NerDLModel.pretrained("ner_legal",'de','clinical/models') \ .setInputCols(["sentence", "token", "embeddings"]) \ .setOutputCol("ner") legal_ner_converter = NerConverterInternal() \ .setInputCols(["sentence", "token", "ner"]) \ .setOutputCol("ner_chunk")\ legal_pred_pipeline = Pipeline( stages = [ documentAssembler, sentenceDetector, tokenizer, word_embeddings, legal_ner, legal_ner_converter ]) empty_df = spark.createDataFrame([['']]).toDF("text") legal_pred_model = legal_pred_pipeline.fit(empty_df) legal_light_model = LightPipeline(legal_pred_model) import pandas as pd def get_ner_df (light_model, text): light_result = light_model.fullAnnotate(text) chunks = [] entities = [] for n in light_result[0]['ner_chunk']: chunks.append(n.result) entities.append(n.metadata['entity']) df = pd.DataFrame({'chunks':chunks, 'entities':entities}) return df text = ''' Jedoch wird der Verkehr darin naheliegend den Namen eines der bekanntesten Flüsse Deutschlands erkennen, welcher als Seitenfluss des Rheins durch Oberfranken, Unterfranken und Südhessen fließt und bei Mainz in den Rhein mündet. Klein , in : Maunz / Schmidt-Bleibtreu / Klein / Bethge , BVerfGG , § 19 Rn. 9 Richtlinien zur Bewertung des Grundvermögens – BewRGr – vom19. I September 1966 (BStBl I, S.890) ''' df = get_ner_df (legal_light_model, text) df ###Output _____no_output_____ ###Markdown German Public NER ###Code from sparknlp.pretrained import PretrainedPipeline public_pipeline = PretrainedPipeline('entity_recognizer_lg','de') text = """William Henry Gates III (* 28. Oktober 1955 in London) ist ein US-amerikanischer Geschäftsmann, Softwareentwickler, Investor und Philanthrop. Er ist bekannt als Mitbegründer der Microsoft Corporation. Während seiner Karriere bei Microsoft war Gates Vorsitzender, Chief Executive Officer (CEO), Präsident und Chief Software Architect und bis Mai 2014 der größte Einzelaktionär. Er ist einer der bekanntesten Unternehmer und Pioniere der Mikrocomputer-Revolution der 1970er und 1980er Jahre. Gates wurde in Seattle, Washington, geboren und wuchs dort auf. 1975 gründete er Microsoft zusammen mit seinem Freund aus Kindertagen, Paul Allen, in Albuquerque, New Mexico. Es entwickelte sich zum weltweit größten Unternehmen für Personal-Computer-Software. Gates leitete das Unternehmen als Chairman und CEO, bis er im Januar 2000 als CEO zurücktrat. Er blieb jedoch Chairman und wurde Chief Software Architect. In den späten neunziger Jahren wurde Gates für seine Geschäftstaktiken kritisiert, die als wettbewerbswidrig angesehen wurden. Diese Meinung wurde durch zahlreiche Gerichtsurteile bestätigt. Im Juni 2006 gab Gates bekannt, dass er eine Teilzeitstelle bei Microsoft und eine Vollzeitstelle bei der Bill & Melinda Gates Foundation, der privaten gemeinnützigen Stiftung, die er und seine Frau Melinda Gates im Jahr 2000 gegründet haben, übernehmen wird. [ 9] Er übertrug seine Aufgaben nach und nach auf Ray Ozzie und Craig Mundie. Im Februar 2014 trat er als Vorsitzender von Microsoft zurück und übernahm eine neue Position als Technologieberater, um den neu ernannten CEO Satya Nadella zu unterstützen. Die Mona Lisa ist ein Ölgemälde aus dem 16. Jahrhundert, das von Leonardo geschaffen wurde. Es findet im Louvre in Paris statt.""" result = public_pipeline.fullAnnotate(text)[0] chunks=[] entities=[] status=[] for n in result['entities']: chunks.append(n.result) entities.append(n.metadata['entity']) df = pd.DataFrame({'chunks':chunks, 'entities':entities}) df ###Output _____no_output_____ ###Markdown Highlight Entities ###Code import random from IPython.core.display import display, HTML def get_color(): r = lambda: random.randint(100,255) return '#%02X%02X%02X' % (r(),r(),r()) from spacy import displacy def display_entities(annotated_text, filter_labels=True): label_list = [] sent_dict_list = [] for n in annotated_text['ner_chunk']: ent = {'start': n.begin, 'end':n.end+1, 'label':n.metadata['entity'].upper()} label_list.append(n.metadata['entity'].upper()) sent_dict_list.append(ent) document_text = [{'text':annotated_text['document'][0].result, 'ents':sent_dict_list,'title':None}] label_list = list(set(label_list)) label_color={} for l in label_list: label_color[l]=get_color() colors = {k:label_color[k] for k in label_list} html_text = displacy.render(document_text, style='ent', jupyter=True, manual=True, options= {"ents": label_list, 'colors': colors}) return html_text text = ''' Jedoch wird der Verkehr darin naheliegend den Namen eines der bekanntesten Flüsse Deutschlands erkennen, welcher als Seitenfluss des Rheins durch Oberfranken, Unterfranken und Südhessen fließt und bei Mainz in den Rhein mündet. Klein , in : Maunz / Schmidt-Bleibtreu / Klein / Bethge , BVerfGG , § 19 Rn. 9 Richtlinien zur Bewertung des Grundvermögens – BewRGr – vom19. I September 1966 (BStBl I, S.890) ''' ann_text = legal_light_model.fullAnnotate(text) display_entities (ann_text[0]) ###Output _____no_output_____
notebooks/week6.ipynb
###Markdown plot statistics from the dataset ###Code # Load data X_train, X_test = dataset.get_X(format=pd.DataFrame) y_train, y_test = dataset.get_y(format=pd.Series) A_train, A_test = dataset.get_sensitive_features(name='race', format=pd.Series) # Combine all training data into a single data frame and glance at a few rows all_train_raw = pd.concat([X_train, A_train, y_train], axis=1) all_test_raw = pd.concat([X_test, A_test, y_test], axis=1) all_data = pd.concat([all_train_raw, all_test_raw], axis=0) X = all_data[['lsat', 'ugpa', 'race']] y = all_data[['pass_bar']] le = preprocessing.LabelEncoder() X.loc[:,'race'] = le.fit_transform(X['race']) scaler = preprocessing.StandardScaler() X.loc[:,['lsat', 'ugpa']] = scaler.fit_transform(X[['lsat', 'ugpa']]) A = X['race'] A_idx = 'race' all_train_grouped = all_data.groupby('race') counts_by_race = all_train_grouped[['lsat']].count().rename( columns={'lsat': 'count'}) quartiles_by_race = all_train_grouped[['lsat', 'ugpa']].quantile([.25, .50, .75]).rename( index={0.25: "25%", 0.5: "50%", 0.75: "75%"}, level=1).unstack() rates_by_race = all_train_grouped[['pass_bar']].mean().rename( columns={'pass_bar': 'pass_bar_rate'}) summary_by_race = pd.concat([counts_by_race, quartiles_by_race, rates_by_race], axis=1) display(summary_by_race) A_p = np.sum(A)/A.shape[0] print(f"{A_p*100}% of the labels for 'race' is 'white'") display(X) X, X_t, y, y_t = train_test_split( X, y, test_size=0.15, random_state=0 ) # pass bar rate should be equal for race='white' or race='balck' def create_tpr_ghat(A_idx, A_val): def tpr_ab(X, y_true, y_pred, delta, n=None): tp_a = tpr_rate(A_idx, 1)(X, y_true, y_pred) tp = tpr_rate(A_idx, 0)(X, y_true, y_pred) if method == 'ttest': bound = abs(ttest_bounds(tp, delta, n) - ttest_bounds(tp_a, delta, n)) else: bound = abs(hoeffdings_bounds(tp, delta, n) - hoeffdings_bounds(tp_a, delta, n)) return bound.upper - 0.3 return tpr_ab A_idx= 2 tpr_ab = ghat_tpr_diff(A_idx, threshold=0.2) #Construct the ghat ghats = [] ghats.append({ 'fn': tpr_ab, 'delta': 0.05 }) method='ttest' op_method = 'Powell' ###Output _____no_output_____ ###Markdown Experiment setup ###Code exp = { 'num_trials': 10 } def get_estimator(name): if name == 'Const Powell': return LogisticRegressionSeldonianModel(X.to_numpy(), y.to_numpy().flatten(), g_hats=ghats, hard_barrier = False) elif name == 'Const CMA-ES': return SeldonianAlgorithmLogRegCMAES(X.to_numpy(), y.to_numpy().flatten(), g_hats=ghats, verbose=True, hard_barrier = False) elif name=='Unconst Powell': return LogisticRegressionSeldonianModel(X.to_numpy(), y.to_numpy().flatten(), g_hats=[]) elif name=='Constrained LogReg CMA-ES BBO optimizer': return LogisticRegressionCMAES(X.to_numpy(), y.to_numpy().flatten(), verbose=True) else: return LogisticRegression(penalty='none') res = { 'Const Powell': { }, 'Const CMA-ES': { }, 'Unconst Powell': { }, 'Unconst CMA-ES': { }, 'Unconst Scikit': { } } for r in res: fr = [] ac = [] ghat = [] print(f"Running for {r}") for t in range(exp['num_trials']): estimator = get_estimator(r) try: estimator.fit() except: estimator.fit(X, y.to_numpy().flatten()) acc = accuracy_score(y_t, estimator.predict(X_t)) ac.append(acc) g = tpr_ab(X_t.to_numpy(), y_t.to_numpy().flatten(), estimator.predict(X_t), delta=0.05, ub=False) fr.append((g > 0.0).astype(int)) ghat.append(g) res[r]['failure_rate'] = np.mean(fr) res[r]['failure_rate_std'] = np.std(fr) res[r]['accuracy'] = np.mean(ac) res[r]['ghat'] = np.mean(ghat) ###Output Running for Const Powell Optimization terminated successfully. Current function value: 0.919456 Iterations: 7 Function evaluations: 560 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 1509.053747 Iterations: 3 Function evaluations: 264 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.951527 Iterations: 8 Function evaluations: 683 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.740105 Iterations: 6 Function evaluations: 648 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.956433 Iterations: 11 Function evaluations: 904 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 20.940549 Iterations: 3 Function evaluations: 401 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 20.626545 Iterations: 3 Function evaluations: 335 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 20.449983 Iterations: 3 Function evaluations: 326 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 21.022932 Iterations: 3 Function evaluations: 399 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.952122 Iterations: 7 Function evaluations: 573 Optimization result: Optimization terminated successfully. Running for Const CMA-ES Max number of iters: 1000 max iterations: 800 Max number of iters: 1000average loss:0.7170843016123776 max iterations: 800 Max number of iters: 1000average loss:0.7050905095318827 max iterations: 800 Max number of iters: 1000average loss:0.6872392779122091 max iterations: 800 Max number of iters: 1000average loss:0.6893379261571025 max iterations: 800 Max number of iters: 1000average loss:0.7119209909663106 max iterations: 800 Max number of iters: 1000average loss:0.6840384167348388 max iterations: 800 Max number of iters: 1000average loss:0.7082727558420707 max iterations: 800 Max number of iters: 1000average loss:0.6946008882119009 max iterations: 800 Max number of iters: 1000average loss:0.7014161277814377 max iterations: 800 Running for Unconst Powellverage loss:0.7126912843142283 Optimization terminated successfully. Current function value: 0.153541 Iterations: 7 Function evaluations: 329 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.153540 Iterations: 7 Function evaluations: 333 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.153542 Iterations: 7 Function evaluations: 328 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.153541 Iterations: 7 Function evaluations: 342 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.153543 Iterations: 7 Function evaluations: 338 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.153541 Iterations: 7 Function evaluations: 331 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.153540 Iterations: 7 Function evaluations: 325 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.153541 Iterations: 6 Function evaluations: 279 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.153542 Iterations: 6 Function evaluations: 276 Optimization result: Optimization terminated successfully. Optimization terminated successfully. Current function value: 0.153540 Iterations: 7 Function evaluations: 344 Optimization result: Optimization terminated successfully. Running for Unconst CMA-ES Running for Unconst Scikit ###Markdown Plot results ###Code res res_n = { 'Const Powell': '[C]Powell', 'Const CMA-ES': '[C]CMAES', 'Unconst Powell': '[UC]Powell', 'Unconst CMA-ES': '[UC]CMAES', 'Unconst Scikit': '[UC]Sklearn' } x = list(res.keys()) for k in res['Const Powell']: plt.bar(list(map(lambda x: res_n[x], x)), list(map(lambda x: res[x][k], res)), width=0.6) plt.title(f"{k} for various estimators [C]- Constrained ; [UC]- Unconstrained") plt.show() ###Output _____no_output_____ ###Markdown $\hat{g}$ result for the constrained optimizer ###Code print(f"mean ghat value: {tpr_ab(X.to_numpy(), y.to_numpy().flatten(), estimator.predict(X), delta=0.05)}") ###Output mean ghat value: 0.6623616497622877 ###Markdown $\hat{g}$ for constrained estimator using CMAES ###Code estimator_cmaes = SeldonianAlgorithmLogRegCMAES(X.to_numpy(), y.to_numpy().flatten(), g_hats=ghats, verbose=True) estimator_cmaes.fit() print(f"\nAccuracy: {balanced_accuracy_score(y, estimator_cmaes.predict(X))}\n") print(f"mean ghat value: {tpr_ab(X.to_numpy(), y.to_numpy().flatten(), estimator_cmaes.predict(X), delta=0.05)}") ###Output Max number of iters: 1000 max iterations: 800 Current evaluation: 800 average loss:0.6927924554145636 Accuracy: 0.32674882812268513 mean ghat value: -0.10744880141361346 ###Markdown $\hat{g}$ for unconstrained optimizer using `scipy.optimize` package ###Code uc_estimator = LogisticRegressionSeldonianModel(X.to_numpy(), y.to_numpy().flatten(), g_hats=[]).fit( opt=op_method) print(f"Accuracy: {balanced_accuracy_score(y, uc_estimator.predict(X))}\n") print(f"mean ghat value: {tpr_ab(X.to_numpy(), y.to_numpy().flatten(), uc_estimator.predict(X), delta=0.05)}") ###Output Optimization terminated successfully. Current function value: 0.153541 Iterations: 10 Function evaluations: 477 Optimization result: Optimization terminated successfully. Accuracy: 0.5305618796351435 mean ghat value: 0.6625296178578743 ###Markdown $\hat{g}$ for unconstrained CMA-ES optimizer ###Code uc_estimator_cmaes = LogisticRegressionCMAES(X.to_numpy(), y.to_numpy().flatten(), verbose=True) uc_estimator_cmaes.fit() print(f"Accuracy: {balanced_accuracy_score(y, uc_estimator_cmaes.predict(X))}\n") print(f"mean ghat value: {tpr_ab(X.to_numpy(), y.to_numpy().flatten(), uc_estimator_cmaes.predict(X), delta=0.05)}") ###Output Max number of iters: 1000 max iterations: 800 Accuracy: 0.528130183873321erage loss:0.15437804313816825 mean ghat value: 0.6623616497622877 ###Markdown Sklearn estimator ###Code logreg_sk = LogisticRegression().fit(X.to_numpy(),y.to_numpy().flatten()) print(f"Accuracy: {balanced_accuracy_score(y, uc_estimator.predict(X))}\n") print(f"mean ghat value: {tpr_ab(X.to_numpy(), y.to_numpy().flatten(), logreg_sk.predict(X), delta=0.05)}") ###Output Accuracy: 0.5305618796351435 mean ghat value: 0.6623616497622877
PRACTICE_Function_v3_QUES.ipynb
###Markdown PRACTICE PROBLEMS ON FUNCTION**[MUST MAINTAIN VARIABLE NAMING CONVENTIONS FOR ALL THE TASKS]****[Solve all the tasks sequentially]** Task 1Write a function called **check_awesomeness** that takes a number as an argument and Checks whether the number is Awesome or not. If the number is Awesome, it returns True. Otherwise False. **Awesome number:** a number where every digit is less than its immediate left digit is called an Awesome number. A single digit number cannot be a awesome number(e.g. 5421 is an Awesome number).==========================================================**Function Call1:**\check_awesomeness(976321)\**Output1:**\True==========================================================**Function Call2:**\check_awesomeness(9766321)\**Output2:**\False==========================================================**Function Call3:**\check_awesomeness(9)\**Output3:**\False==========================================================**Function Call4:**\check_awesomeness(78)\**Output4:**\False==========================================================**Function Call5:**\check_awesomeness(87)\**Output4:**\True ###Code #todo ###Output _____no_output_____ ###Markdown Task 2Write a function called **check_awesome** that takes a list of numbers(integer) as an argument and Prints whether the number is Awesome or not.**Must reuse the check_awesomeness() function.**==========================================================**Function Call1:**\check_awesome([976321, 321, 9763221, 9742, 876, 3211])\**Output1:**\976321 is an awesome number.\321 is a awesome number.\9763221 is a not-so-awesome number.\9742 is an awesome number.\876 is an awesome number.\3211 is a not-so-awesome number.==========================================================**Function Call2:**\check_awesome([97821, 97210, 979210])\**Output2:**\97821 is a not-so-awesome number.\97210 is an awesome number.\979210 is a not-so-awesome number. ###Code #todo ###Output _____no_output_____ ###Markdown Task 3Write a function called **find_max_min** that takes a list of numbers(integers) as a function parameter and finds the numbers with maximum and minimum value. Then returns these two numbers as a **tuple** and prints the results using tuple unpacking in the function call accorrding to the given format. Both valid and invalid numbers should be considered for finding maximum and minimum.[Must use tuple packing & unpacking] ==========================================================**Function Call1:**\find_max_min([976321, 321, 9763221, 9742, 876, 3211, 976321, 9742])\**Output1:**\Returned value from find_max_min() is: (9763221, 321)\Number with maximum value is 9763221\Number with minimum value is 321==========================================================**Function Call2:**\find_max_min([97821, 1, 97210, 963, 979210, 979210])\**Output2:**\Returned value from find_max_min() is: (979210, 1)\Number with maximum value is 979210\Number with minimum value is 1 ###Code #todo ###Output _____no_output_____ ###Markdown Task 4Write a function called **data_cleaning** that takes a string as an argument. Then gets the numbers from the given string and removes all extra spaces. Stores the clean numbers (integers) in a list and **returns** it to the function call.==========================================================**Function Call1:**\data_cleaning("97821, 1 &nbsp;&nbsp;&nbsp; , 97210,&nbsp;&nbsp; 963, &nbsp;&nbsp;&nbsp;979210 , 979210 ")\**Output1:**\Data after cleaning: [97821, 1, 97210, 963, 979210, 979210]==========================================================**Function Call2:**\data_cleaning("976321, 321&nbsp;&nbsp;,&nbsp;&nbsp;&nbsp;9763221, &nbsp;&nbsp;&nbsp;9742, 876,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3211")\**Output2:**\Data after cleaning: [976321, 321, 9763221, 9742, 876, 3211]==========================================================**Function Call3:**\data_cleaning("976321, 321 ,&nbsp;&nbsp;&nbsp; 9763221, 9742, &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;876, &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;3211, 976321&nbsp;&nbsp;&nbsp;&nbsp;, 9742")\**Output3:**\Data after cleaning: [976321, 321, 9763221, 9742, 876, 3211, 976321, 9742] ###Code #todo ###Output _____no_output_____ ###Markdown Task 5Write a function called **grouping_data** that takes a list of numbers(integers) as a function parameter and creates a dictionary where "valid", "invalid", and "duplicate" are the keys. The numbers that falls in those categories are the values.**Valid & Invalid numbers:** A number with a minimum length of 4 and a maximum length of 6 is considered to be valid for this assignment. All the other numbers are considered to be Invalid numbers.\**Duplicate numbers:** If a number appears more than once in the string, then that is a dupliacte number. Both valid and invalid numbers can be duplicates.Lastly, print the dictionary **inside the function** and **return** the dictionary to the function call.==========================================================**Function Call1:**\grouping_data([97821, 1, 97210, 963, 979210, 979210])\**Output1:**\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Data dictionary printing inside the function:\{'valid': [97821, 97210, 979210], 'invalid': [1, 963], 'duplicate': [979210]}\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Returned dictionary: {'valid': [97821, 97210, 979210], 'invalid': [1, 963], 'duplicate': [979210]}\Valid number list obtained from the dictionary: [97821, 97210, 979210]==========================================================**Function Call2:**\grouping_data([976321, 321, 9763221, 9742, 876, 3211])\**Output2:**\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Data dictionary printing inside the function:\{'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': []}\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Returned dictionary: {'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': []}\Valid number list obtained from the dictionary: [976321, 9742, 3211]==========================================================**Function Call3:**\grouping_data([976321, 321, 9763221, 9742, 876, 3211, 976321, 9742])\**Output3:**\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Data dictionary printing inside the function:\{'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': [976321, 9742]}\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Returned dictionary: {'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': [976321, 9742]}\Valid number list obtained from the dictionary: [976321, 9742, 3211] ###Code #todo ###Output _____no_output_____ ###Markdown Task6Write a function called **individual_line_data** that takes a string as an argument. This function should do the following. * clean and prints the data.* group the numbers in a dictionary obtained from the given string.* check whether the **valid numbers** are awesome or not.* find and print the maximum and minimum number among the **valid numbers** obtained from the given string.*Hints:*\You MUST reuse data_cleaning(), grouping_data(), check_awesome() and find_max_min() functions. ==========================================================**Function Call1:**\individual_line_data("97821, 1 &nbsp;&nbsp;&nbsp; , 97210,&nbsp;&nbsp; 963, &nbsp;&nbsp;&nbsp;979210 , 979210 ")\**Output1:**\Data after cleaning: [97821, 1, 97210, 963, 979210, 979210]\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Data dictionary printing inside the function:\{'valid': [97821, 97210, 979210], 'invalid': [1, 963], 'duplicate': [979210]}\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Returned dictionary: {'valid': [97821, 97210, 979210], 'invalid': [1, 963], 'duplicate': [979210]}\Valid number list obtained from the dictionary: [97821, 97210, 979210]\=================================================\^_^ Awesomeness checking of the Valid numbers ^_^\97821 is a not-so-awesome number.\97210 is an awesome number.\979210 is a not-so-awesome number.\=================================================\Returned value from find_max_min() is: (979210, 97210)\Valid number with maximum value is 979210\Valid number with minimum value is 97210**Function Call2:**\individual_line_data("976321, 321&nbsp;&nbsp;,&nbsp;&nbsp;&nbsp;9763221, &nbsp;&nbsp;&nbsp;9742, 876,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3211")\**Output2:**\Data after cleaning: [976321, 321, 9763221, 9742, 876, 3211]\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Data dictionary printing inside the function:\{'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': []}\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Returned dictionary: {'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': []}\Valid number list obtained from the dictionary: [976321, 9742, 3211]\=================================================\^_^ Awesomeness checking of the Valid numbers ^_^\976321 is an awesome number.\9742 is an awesome number.\3211 is a not-so-awesome number.\=================================================\Returned value from find_max_min() is: (976321, 3211)\Valid number with maximum value is 976321\Valid number with minimum value is 3211**Function Call3:**\individual_line_data("976321, 321 ,&nbsp;&nbsp;&nbsp; 9763221, 9742, &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;876, &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;3211, 976321&nbsp;&nbsp;&nbsp;&nbsp;, 9742")\**Output3:**\Data after cleaning: [976321, 321, 9763221, 9742, 876, 3211, 976321, 9742]\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Data dictionary printing inside the function:\{'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': [976321, 9742]}\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Returned dictionary: {'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': [976321, 9742]}\Valid number list obtained from the dictionary: [976321, 9742, 3211]\=================================================\^_^ Awesomeness checking of the Valid numbers ^_^\976321 is an awesome number.\9742 is an awesome number.\3211 is a not-so-awesome number.\=================================================\Returned value from find_max_min() is: (976321, 3211)\Valid number with maximum value is 976321\Valid number with minimum value is 3211 ###Code #todo ###Output _____no_output_____ ###Markdown Task 7Write a function called **number_analysis** that takes a list of strings as an argument and analyse those strings. \**Must reuse the individual_line_data() function.** ###Code #todo ###Output _____no_output_____ ###Markdown Task 8Run the following block of code for seeing the final output of this Problem.**Output:** Printing data for line no: 01 \Data after cleaning: [321, 976322]\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Data dictionary printing inside the function:\{'valid': [976322], 'invalid': [321], 'duplicate': []}\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Returned dictionary: {'valid': [976322], 'invalid': [321], 'duplicate': []}\Valid number list obtained from the dictionary: [976322]\=================================================\^_^ Awesomeness checking of the Valid numbers ^_^\976322 is a not-so-awesome number.\=================================================\Returned value from find_max_min() is: (976322, 976322)\Valid number with maximum value is 976322\Valid number with minimum value is 976322&emsp; Printing data for line no: 02 \Data after cleaning: [97821, 1, 97210, 963, 979210, 979210]\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Data dictionary printing inside the function:\{'valid': [97821, 97210, 979210], 'invalid': [1, 963], 'duplicate': [979210]}\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Returned dictionary: {'valid': [97821, 97210, 979210], 'invalid': [1, 963], 'duplicate': [979210]}\Valid number list obtained from the dictionary: [97821, 97210, 979210]\=================================================\^_^ Awesomeness checking of the Valid numbers ^_^\97821 is a not-so-awesome number.\97210 is an awesome number.\979210 is a not-so-awesome number.\=================================================\Returned value from find_max_min() is: (979210, 97210)\Valid number with maximum value is 979210\Valid number with minimum value is 97210&emsp; Printing data for line no: 03 \Data after cleaning: [976321, 321, 9763221, 9742, 876, 3211]\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Data dictionary printing inside the function:\{'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': []}\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Returned dictionary: {'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': []}\Valid number list obtained from the dictionary: [976321, 9742, 3211]\=================================================\^_^ Awesomeness checking of the Valid numbers ^_^\976321 is an awesome number.\9742 is an awesome number.\3211 is a not-so-awesome number.\=================================================\Returned value from find_max_min() is: (976321, 3211)\Valid number with maximum value is 976321\Valid number with minimum value is 3211&emsp; Printing data for line no: 04 \Data after cleaning: [976321, 321, 9763221, 9742, 876, 3211, 976321, 9742]\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Data dictionary printing inside the function:\{'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': [976321, 9742]}\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\Returned dictionary: {'valid': [976321, 9742, 3211], 'invalid': [321, 9763221, 876], 'duplicate': [976321, 9742]}\Valid number list obtained from the dictionary: [976321, 9742, 3211]\=================================================\^_^ Awesomeness checking of the Valid numbers ^_^\976321 is an awesome number.\9742 is an awesome number.\3211 is a not-so-awesome number.\=================================================\Returned value from find_max_min() is: (976321, 3211)\Valid number with maximum value is 976321\Valid number with minimum value is 3211 ###Code lines_of_data = [ "321 , 976322", "97821, 1 , 97210, 963, 979210 , 979210", "976321, 321 , 9763221, 9742, 876, 3211", "976321, 321 , 9763221, 9742, 876, 3211, 976321, 9742" ] number_analysis(lines_of_data) ###Output _____no_output_____
exemples/HP_exemple.ipynb
###Markdown Test LP Filter Setup ###Code import numpy as np try: from SecondOrderElec import HP from SecondOrderElec.plot import plot_time except ImportError: import sys sys.path.append('../.') from SecondOrderElec import HP from SecondOrderElec.plot import plot_time ###Output _____no_output_____ ###Markdown Let's create some filters ###Code T1 = HP(2, 0.8, 100) T2 = HP(2, 1.5, 100) ###Output _____no_output_____ ###Markdown Let's create a logspace for later ###Code w = np.logspace(1,3,1000) ###Output _____no_output_____ ###Markdown Poles / Zeros ###Code for T in [T1,T2]: T.pzmap() ###Output _____no_output_____ ###Markdown Time Response ###Code t = np.arange(0,0.5,0.001) for T in [T1,T2]: T.step(T=t) for index, T in enumerate([T1,T2]): print("system {}".format(index)) print("wp = {} rad/s".format(T.wp)) print("Tp = {} rad/s".format(T.Tp)) print("R = {}".format(T.R)) ###Output system 0 wp = 59.999999999999986 rad/s Tp = 0.10471975511965981 rad/s R = 4348.4746593769105 system 1 wp = None rad/s Tp = None rad/s R = 0 ###Markdown Frequency Response ###Code for T in [T1,T2]: T.freqresp(w=w) ###Output _____no_output_____ ###Markdown Output ###Code x = np.linspace(0, 1, 1000) y = np.cos(x*0.02)+np.sin(x*100)*0.2 plot_time(x,y) t,s,x = T1.output(U=y, T=x) ###Output _____no_output_____
Week 15 - Numerical Integration/NuMeth_6_Numerical_Integration.ipynb
###Markdown Numerical Integration$_{\text{©D.J. Lopez | 2021 | Computational Methods for Computer Engineers}}$Reviving your integral calculus classes, we will be implementing the fundamental concepts of integration to computational and numerical methods. Numerical integration or the quadrature greatly helps, again, with the field of optimziation and estimation. This module will cover:* The Trapezoidal Rule* Simpson's 1/4 Integration Rule* Simpson's 3/8 Integration Rule* Monte Carlo Simulations/Integration ###Code import numpy as np ###Output _____no_output_____ ###Markdown 6.1 Trapezoidal ruleThe concept behind the Trapezoidal rule is a good review on what is integration and how it can be converted to its numerical and computational implementation.Integration is usually defined as the area under a cruve or area of the function. Like the image below, integration is usually seen as the sum of the areas of the boxes (in this case trapezoids) that make up the area under the curve.![image](https://cdn1.byjus.com/wp-content/uploads/2019/11/Trapezoidal-rule.png)The Trapezoidal rule takes advantage of this concept by summing the areas of those trapezoids. If you would recall, the area of the Trapezoid is given as:$$A_{trapz}=\frac{h(b-a)}{2} \\ _{\text{(Eq. 6.1)}}$$Whereas $A_{trapz}$ is the area of a trapezoid, $a$ is the shorter base, $b$ is the longer base, and $h$ is the height of the Trapezoid. Use the image below as a visual reference.![image](https://upload.wikimedia.org/wikipedia/commons/thumb/1/11/Trapezoid.svg/1200px-Trapezoid.svg.png)In the trapezoidal rule, we can see that the trapezoids are right trapezoids. And we can formally construct the represtnative equation modelling the concept of the trapezoidal rule as:$$\int^b_af(x)dx \approx h\left[ \frac{f(x_0)+f(x_n)}{2} +\sum^{n-1}_{i=1}f(x_i) \right]\\ _{\text{(Eq. 6.2)}}$$For our example, we will mode the equation:$$\int^{\frac{\pi}{2}}_0x\sin(x)dx = 1$$ and $$\int^{10}_0x^2dx = \frac{1000}{3}$$ ###Code f = lambda x : x*np.sin(x) a, b = 0, np.pi/2 n = 5 h = (b-a)/n A= (f(a)+f(b))/2 for i in range(1,n): A += f(a+i*h) S = h*A S h*(0.5*(f(a)+f(b))+np.sum(f(a+h*np.arange(1,n)))) def trapz_rule(func,lb,ub,size): h = (ub-lb)/size return h*(0.5*(func(lb)+func(ub))+np.sum(func(lb+h*np.arange(1,size)))) f = lambda x: x**2 sum = trapz_rule(f, 0,10,1e4) sum ###Output _____no_output_____ ###Markdown Simpson's 1/3 RuleSimpson's 1/3 Rule, unlike the Trapezoidal Rule, computes more than 2 strips of trapezoids at a time. And rather than trapezoids, Simpson's 1/3 rule uses parabolas ($P(x)$) in approximating areas under the curve.![image](http://www.unistudyguides.com/images/thumb/4/44/Simpson%27s_13_Rule_Graph.PNG/300px-Simpson%27s_13_Rule_Graph.PNG)The Simpson's 1/3 Rule cane be formulated as:$$\int^b_af(x)dx \approx \frac{(b-a)}{6}\left(f(a)+4f\frac{(a+b)}{2}+f(b)\right)\\ _{\text{(Eq. 6.3)}}$$It can be discretized as:$$\int^b_af(x)dx \approx \frac{h}{3}\left[f(x_0)+4*\sum^{n-1}_{i\in odd}+f(x_i)+2*\sum^{n-2}_{i\in even}+f(x_n)\right]\\ _{\text{(Eq. 6.4)}}$$ ###Code f = lambda x : x*np.sin(x) a, b = 0, np.pi/2 n = 6 h = (b-a)/n A= (f(a)+f(b)) for i in range(1,n,2): A += 4*f(a+i*h) for i in range(2,n,2): A += 2*f(a+i*h) S = h/3*(A) S def simp_13(func,lb,ub,divs): h = (ub-lb)/divs A = (func(lb)+func(ub))+ \ np.sum(4*func(lb+h*np.arange(1,divs,2)))+ \ np.sum(2*func(lb+h*np.arange(2,divs,2))) S = (h/3)*A return S h = lambda x: x**2 sum = simp_13(h, 0,10,1e4) sum ###Output _____no_output_____ ###Markdown Simpson's 3/8 RuleSimpson's 3/8 rule or Simpson's second rule is ismilar to the 1/3 rule but instead of having a parabolic or quadratic approximation, it uses a cubic approximation.$$\int^b_af(x)dx \approx \frac{(b-a)}{8}\left(f(a)+3f\frac{(2a+b)}{3}+3f\frac{(a+2b)}{3}+f(b)\right)\\ _{\text{(Eq. 6.5)}}$$It can be discretized as:$$\int^b_af(x)dx \approx \frac{3h}{8}\left[f(x_0)+3*\sum^{n-1}_{i=1,4,7,..}+f(x_i)+3*\sum^{n-2}_{i=2,5,8,..}+f(x_i)+2*\sum^{n-3}_{i=3,6,9,..}+f(x_n)\right]\\ _{\text{(Eq. 6.6)}}$$ ###Code def simp_38(func,lb,ub,divs): h = (ub-lb)/divs A = (func(lb)+func(ub))+ \ np.sum(3*(func(lb+h*np.arange(1,divs,3))))+ \ np.sum(3*(func(lb+h*np.arange(2,divs,3))))+ \ np.sum(2*func(lb+h*np.arange(3,divs,3))) S = (3*h/8)*A return S f = lambda x: x*np.sin(x) sum = simp_38(f, 0,np.pi/2,1e4) sum h = lambda x: x**2 sum = simp_38(h, 0,10,1e4) sum ###Output _____no_output_____ ###Markdown Monte Carlo IntegrationThe Monte Carlo Simulation or integration uses a different approach in approximating the area under a curve or function. It differs from the Trapezoidal and Simpson's Rules since it does not use a polynomial for interpolating the curve. The Monte Carlo integration uses the idea of uniform random sampling in a given space and computes the samples that are under the curve of the equation. In this implementation, we will use the most vanilla version of the Monte Carlo integration. We will use the definition of the mean of a function given as:$$\left = \frac{1}{(b-a)}\int^b_af(x)dx \\ _{\text{(Eq. 6.7)}}$$We can then perform algebraic manipulation to solve to isolate the integral of the function:$$(b-a)\left = \int^b_af(x)dx \\ _{\text{(Eq. 6.8)}}$$Then by the definition of means we can use the discretized mean formula and substitute it with $\left$:$$(b-a)\frac{1}{N}\sum^N_{i=0}f(x_i) \approx \int^b_af(x)dx \\ _{\text{(Eq. 6.9)}}$$ ###Code a, b = 0, np.pi/2` n = 1e3 samples = np.random.uniform(a,b,int(n)) f = lambda x: x*np.sin(x) A = np.sum(f(samples)) S = (b-a)/n) S ###Output _____no_output_____ ###Markdown End of Module Activity$\text{Use another notebook to answer the following problems and create a report for the activities in this notebook.}$ 1.) Research on the different numerical integration functions implemented in `scipy`. Explain in your report the function/s with three (3) different functions as examples.2.) Create numerical integration of two sample cases for each of the following functions: higher-order polynomials (degrees greater than 4), trigonometric functions, and logarithmic functions.> a.) Implement the numerical integration techniques used in this notebook including the `scipy` function/s.> b.) Measure and compare the errors of each integration technique to the functions you have created.3.) Research on the "Law of Big Numbers" and explain the law through:> a.) Testing Simpson's 3/8 Rule by initializing the bin sizes to be arbitrarily large. Run this for 100 iterations while decreasing the bin sizes by a factor of 100. Graph the errors using `matplotlib`.> b.) Testing the Monte Carlo Simulation with initializing the sample size from an arbitrarily small size. Run this for 100 iterations while increasing the sample sizes by a factor of 100. Graph the errors using `matplotlib`. ###Code ###Output _____no_output_____
opc_python/hulab/collaboration/feature_preparation.ipynb
###Markdown creates the features matrix with the descriptor data plus morgan adds the squared values as well ###Code from __future__ import print_function import pandas as pd import numpy as np from sklearn import preprocessing from sklearn.linear_model import RandomizedLasso import sys import os # load the descriptors and fill nan values with 0 descriptors = pd.read_csv(os.path.abspath('__file__' + "/../../../../data/molecular_descriptors_data.txt"),sep='\t') descriptors.set_index('CID', inplace=True) descriptors.sort_index(inplace=True) descriptors.fillna(value=0,inplace=True) min_max_scaler = preprocessing.MinMaxScaler() descriptors.ix[:,:]= min_max_scaler.fit_transform(descriptors) # add squared values to the feature vector descriptors_squares = descriptors**2 descriptors_squares.columns = [name + '_2' for name in descriptors.columns] descriptors = pd.concat((descriptors,descriptors_squares),axis=1) #descriptors.reset_index(inplace=1) descriptors.head() # load morgan similarity features morgan = pd.read_csv(os.path.abspath('__file__' + "/../../../../data/morgan_sim.csv"), index_col=0) # convert the column names (CIDs) to strings morgan.columns = [str(name) for name in morgan.columns] # add squared values to the feature vector morgan_squares = morgan **2 # rename features to CID + '_2' morgan_squares.columns = [name + '_2' for name in morgan.columns] # concat morgan = pd.concat((morgan,morgan_squares),axis=1) features = pd.concat((descriptors, morgan),axis=1) features.shape features.head() features.to_csv('features.csv') ###Output _____no_output_____
My notebooks/T8 - 4 - SVM - Face Recognition.ipynb
###Markdown Reconocimiento Facial ###Code from sklearn.datasets import fetch_lfw_people import matplotlib.pyplot as plt import numpy as np faces = fetch_lfw_people(min_faces_per_person=60) print(faces.target_names) print(faces.images.shape) fig, ax = plt.subplots(5,5, figsize=(16,9)) for i, ax_i in enumerate(ax.flat): ax_i.imshow(faces.images[i], cmap="bone") ax_i.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]]) ax from sklearn.svm import SVC from sklearn.decomposition import RandomizedPCA from sklearn.pipeline import make_pipeline pca = RandomizedPCA(n_components=150, whiten=True, random_state=42) svc = SVC(kernel="rbf", class_weight="balanced") model = make_pipeline(pca, svc) from sklearn.cross_validation import train_test_split Xtrain, Xtest, Ytrain, Ytest = train_test_split(faces.data, faces.target, random_state=42) from sklearn.grid_search import GridSearchCV param_grid = { "svc__C": [0.1, 1, 5, 10, 50], "svc__gamma": [0.0001, 0.0005, 0.001, 0.005, 0.01] } grid = GridSearchCV(model, param_grid) %time grid.fit(Xtrain, Ytrain) print(grid.best_params_) classifier = grid.best_estimator_ yfit = classifier.predict(Xtest) fig, ax = plt.subplots(8,6, figsize=(16,9)) for i, ax_i in enumerate(ax.flat): ax_i.imshow(Xtest[i].reshape(62,47), cmap="bone") ax_i.set(xticks=[], yticks=[]) #Vemos si el sistema se ha equivocado identificando a las personas ax_i.set_ylabel(faces.target_names[yfit[i]].split()[-1], color = "black" if yfit[i]==Ytest[i] else "red") fig.suptitle("Predicciones de las imágenes (incorrectas en rojo)", size=15) from sklearn.metrics import classification_report print(classification_report(Ytest, yfit, target_names=faces.target_names)) from sklearn.metrics import confusion_matrix mat = confusion_matrix(Ytest, yfit) import seaborn as sns; sns.set() sns.heatmap(mat.T, square=True, annot=True, fmt="d", cbar=True, xticklabels=faces.target_names, yticklabels=faces.target_names) ###Output _____no_output_____
week_02/Spiced academy Project-Week-2- machine learning DRAFT.ipynb
###Markdown Step 1Read the file train.csv into Python and print a few rows. ###Code import pandas as pd df = pd.read_csv('data/train.csv',index_col = 0) ###Output _____no_output_____ ###Markdown Step 2Calculate the number of surviving/non-surviving passengers and display it as a bar plot. ###Code import matplotlib.pyplot as plt import seaborn as sns # df.groupby('Survived').count() # df_01count = df.groupby('Survived')['Survived'].count() # pd.Series(df_01count) # bar chart # ax = pd.Series(df_01count).plot.bar(subplots=True, label='', figsize = (8, 6)) ###Output _____no_output_____ ###Markdown Step 3Calculate the proportion of surviving 1st class passengers with regards to the total number of 1st class passengers. ###Code # total number of 1st passenger # m = df['Pclass'].count() # % # n = df[(df['Pclass'] == 1) & (df['Survived'] == 1)]['Pclass'].count() # per_1_sur = n/m # print('the % of surviving 1st class passengers with regards to the total number of 1st class passengers is', per_1_sur) ###Output the % of surviving 1st class passengers with regards to the total number of 1st class passengers is 0.1526374859708193 ###Markdown Step 4Create a bar plot with separate bars for male/female passengers and 1st/2nd/3rd class passengers. ###Code # df_02count = df.groupby(['Sex','Pclass'])['Pclass'].count() # pd.Series(df_02count) # bar chart # ax = pd.Series(df_02count).plot.bar(subplots=True, label='', figsize = (8, 6)) #Step 5 #Create a histogram showing the age distribution of passengers. Compare surviving/non-surviving passengers. import seaborn as sns # Plot the histogram thanks to the distplot function # sns.distplot(a=df[df['Survived'] == 1]['Age'], hist=True, kde=True,label='Survived', rug=False) # sns.distplot(a=df[df['Survived'] == 0]['Age'], hist=True, kde=True,label='Vanished',rug=False) # plt.legend() # plt.show() ###Output /home/guo/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) /home/guo/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) ###Markdown Step 6Calculate the average age for survived and drowned passengers separately. ###Code # df_02count = df.groupby(['Survived'])['Age'].mean() # pd.Series(df_02count) ###Output _____no_output_____ ###Markdown Step 7Replace missing age values by the mean age. ###Code plt.figure(figsize=(12, 8)) sns.heatmap(df.isna(), cbar=False) # mean_Age = df.groupby('Survived')['Age'].transform('mean') # print(mean_Age) # compare with origin data # df['Age'] # REPLACE NA values with age of non- and survived passengers # mean_Age = df.groupby('Survived')['Age'].transform('mean') # df['Age'].fillna(mean_Age, inplace=True) # REPLACE NA values with age of non- and survived passengers and ... # mean_Age = df.groupby(['Survived','Sex','Pclass'])['Age'].transform('mean') # df['Age'].fillna(mean_Age, inplace=True) # REPLACE NA values with age of all passengers # df['Age'].fillna(df['Age'].mean(),inplace=True) plt.figure(figsize=(12, 8)) sns.heatmap(df.isna(), cbar=False) ###Output _____no_output_____ ###Markdown Step 8Create a table counting the number of surviving/dead passengers separately for 1st/2nd/3rd class and male/female. ###Code # the order is important for display # df_03count = df.groupby(['Pclass','Sex','Survived'])['Pclass'].count() # pd.Series(df_03count) # pd.DataFrame(df_03count) from sklearn.model_selection import train_test_split as tts from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score import math from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder, MinMaxScaler from sklearn.pipeline import make_pipeline # REPLACE NA values with age of non- and survived passengers and ... mean_Age = df.groupby(['Survived','Sex','Pclass'])['Age'].transform('mean') df['Age'].fillna(mean_Age, inplace=True) import pandas as pd from sklearn.preprocessing import KBinsDiscretizer # transform a numerical column: Age kbins = KBinsDiscretizer(n_bins=10, encode='onehot-dense', strategy='kmeans') columns = df[['Age']] kbins.fit(columns) t = kbins.transform(columns) # fill NA of Age, then scaling # pipeline1 = make_pipeline( # SimpleImputer(strategy='mean_Age'), # KBinsDiscretizer(n_bins=10, encode='onehot-dense', strategy='kmeans') # ) # Cabin data #isolating the rooms and letters df['Cabin_nr'] = df['Cabin'].fillna('Z',inplace=False) df["Deck"] = df["Cabin_nr"].str.slice(0,1) def one_hot_column(df, label, drop_col=False): one_hot = pd.get_dummies(df[label], prefix=label) if drop_col: df = df.drop(label, axis=1) df = df.join(one_hot) return df def one_hot(df, labels, drop_col=False): for label in labels: df = one_hot_column(df, label, drop_col) return df df = one_hot(df, ["Deck"],drop_col=True) df.head(2) # fill NA of Embarked with most frequent values, then binning pipeline2 = make_pipeline( SimpleImputer(strategy='most_frequent'), OneHotEncoder(sparse=False, handle_unknown='ignore') ) #Train-Test Split from sklearn.model_selection import train_test_split X = df.iloc[:, 1:] y = df['Survived'] Xtrain, Xtest,ytrain,ytest = tts(X,y,train_size=0.75,test_size=0.25, random_state=40) Xtrain.shape, Xtest.shape, ytrain.shape, ytest.shape trans = ColumnTransformer([ ('onehot', OneHotEncoder(sparse=False, handle_unknown='ignore'), ['Sex','Pclass']), ('scale', MinMaxScaler(), ['Fare']), ('impute_then_scale', KBinsDiscretizer(n_bins=10, encode='onehot-dense', strategy='kmeans'), ['Age']), ('impute_then_onehot',pipeline2, ['Embarked']), ('do_nothing', 'passthrough', ['SibSp','Parch','Deck_A','Deck_B','Deck_C','Deck_D','Deck_E','Deck_F','Deck_G','Deck_T','Deck_Z']), ]) # fit and transform training data trans.fit(Xtrain) Xtrain_transformed = trans.transform(Xtrain) Xtrain_transformed.shape # fit a log-reg model from sklearn.linear_model import LogisticRegression model = LogisticRegression(max_iter=1000) model.fit(Xtrain_transformed, ytrain) #transform test data set Xtest_transform = trans.transform(Xtest) Xtest_transform.shape #Evaluating metrics from sklearn.metrics import accuracy_score, classification_report # predict ypred = model.predict(Xtrain_transformed) acc = accuracy_score(ytrain,ypred) print('Train accuracy is:', round(acc,3)) print(classification_report(ytrain,ypred)) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(model,Xtrain_transformed,ytrain) #transform test data Xtest_transform = trans.transform(Xtest) Xtest_transform.shape ypred = model.predict(Xtest_transform) acc = accuracy_score(ytest, ypred) print('Test accuracy is:', round(acc,3)) ypred = model.predict(Xtest_transform) acc = accuracy_score(ytest, ypred) print('Test accuracy is:', round(acc,3)) # ROC Curve # from sklearn.metrics import roc_curve # Advanced: ROC Curve # probs = model.predict_proba(Xtrain_transformed) # roc_curve(ytrain, probs, pos_label=2) df.Cabin #Embaked dummy codding pd.get_dummies(df['Embarked']) df = df.join(pd.get_dummies(df.Embarked)) df # dummy codding SEX pd.get_dummies(df['Sex']) df = df.join(pd.get_dummies(df.Sex)) df #isolating the rooms df['Cabin_nr'] = df['Cabin'].fillna('Z',inplace=False) df["Deck"] = df["Cabin_nr"].str.slice(0,1) df["Room"] = df["Cabin_nr"].str.slice(1,5).str.extract("([0-9]+)", expand=False).astype("float") df["Deck"],df['Room'] df['Room'] = df['Room'].fillna('0',inplace=False) # dummy codding Deck pd.get_dummies(df['Deck']) df = df.join(pd.get_dummies(df.Deck)) df def one_hot_column(df, label, drop_col=False): ''' This function will one hot encode the chosen column. Args: df: Pandas dataframe label: Label of the column to encode drop_col: boolean to decide if the chosen column should be dropped Returns: pandas dataframe with the given encoding ''' one_hot = pd.get_dummies(df[label], prefix=label) if drop_col: df = df.drop(label, axis=1) df = df.join(one_hot) return df def one_hot(df, labels, drop_col=False): ''' This function will one hot encode a list of columns. Args: df: Pandas dataframe labels: list of the columns to encode drop_col: boolean to decide if the chosen column should be dropped Returns: pandas dataframe with the given encoding ''' for label in labels: df = one_hot_column(df, label, drop_col) return df df = one_hot(df, ["Deck"],drop_col=True) # carbin data -> boll value df["Cabin_Data"] = df["Cabin"].isnull().apply(lambda x: not x) df = one_hot(df, ["Cabin_Data"],drop_col=True) # not valid for this test, as it represents the availability of data df df['Cabin_nr'] = df['Cabin'].fillna(0) # zero, df # df['Cabin_nr1'] = df['Cabin'].fillna(df.Cabin.isna()) # zero, # df #Cabin dummy codding # convert Cabin to a Boolean # df['cabin'] = df['Cabin_nr'].str[0] # pd.get_dummies(df['cabin']) # Logistic Regression X = df[['Pclass', 'Age', 'SibSp', 'Fare','C','Q','S','female','male', 'Deck_A','Deck_B','Deck_C','Deck_D','Deck_E','Deck_F','Deck_G','Deck_T','Deck_Z']] # input data, independent vars y = df['Survived'] # target data, dependent var X.shape, y.shape Xtrain, Xtest,ytrain,ytest = tts(X,y,train_size=0.75,test_size=0.25, random_state=40) Xtrain.shape, Xtest.shape, ytrain.shape, ytest.shape model = LogisticRegression() model.fit(Xtrain,ytrain) # trains the model model.coef_ model.intercept_ ypred = model.predict(Xtrain) accuracy_score(ytrain,ypred) # --> proportion of correct predictions # evaluate on the test set ypred_test = model.predict(Xtest) accuracy_score(ytest,ypred_test) ###Output _____no_output_____
4. FeedForward Neural Networks/4.3.2mist1layer.ipynb
###Markdown Test Sigmoid, Tanh, and Relu Activations Functions on the MNIST Dataset Table of ContentsIn this lab, you will test sigmoid, tanh, and relu activation functions on the MNIST dataset. Neural Network Module and Training Function Make Some Data Define Several Neural Network, Criterion Function, and Optimizer Test Sigmoid, Tanh, and Relu Analyze ResultsEstimated Time Needed: 25 min Preparation We'll need the following libraries ###Code # Import the libraries we need for this lab # Using the following line code to install the torchvision library # !conda install -y torchvision import torch import torch.nn as nn import torchvision.transforms as transforms import torchvision.datasets as dsets import torch.nn.functional as F import matplotlib.pylab as plt import numpy as np ###Output _____no_output_____ ###Markdown Neural Network Module and Training Function Define the neural network module or class using the sigmoid activation function: ###Code # Build the model with sigmoid function class Net(nn.Module): # Constructor def __init__(self, D_in, H, D_out): super(Net, self).__init__() self.linear1 = nn.Linear(D_in, H) self.linear2 = nn.Linear(H, D_out) # Prediction def forward(self, x): x = torch.sigmoid(self.linear1(x)) x = self.linear2(x) return x ###Output _____no_output_____ ###Markdown Define the neural network module or class using the Tanh activation function: ###Code # Build the model with Tanh function class NetTanh(nn.Module): # Constructor def __init__(self, D_in, H, D_out): super(NetTanh, self).__init__() self.linear1 = nn.Linear(D_in, H) self.linear2 = nn.Linear(H, D_out) # Prediction def forward(self, x): x = torch.tanh(self.linear1(x)) x = self.linear2(x) return x ###Output _____no_output_____ ###Markdown Define the neural network module or class using the Relu activation function: ###Code # Build the model with Relu function class NetRelu(nn.Module): # Constructor def __init__(self, D_in, H, D_out): super(NetRelu, self).__init__() self.linear1 = nn.Linear(D_in, H) self.linear2 = nn.Linear(H, D_out) # Prediction def forward(self, x): x = F.relu(self.linear1(x)) x = self.linear2(x) return x ###Output _____no_output_____ ###Markdown Define a function to train the model. In this case, the function returns a Python dictionary to store the training loss for each iteration and accuracy on the validation data. ###Code # Define the function for training the model def train(model, criterion, train_loader, validation_loader, optimizer, epochs = 100): i = 0 useful_stuff = {'training_loss':[], 'validation_accuracy':[]} for epoch in range(epochs): for i, (x, y) in enumerate(train_loader): optimizer.zero_grad() z = model(x.view(-1, 28 * 28)) loss = criterion(z, y) loss.backward() optimizer.step() useful_stuff['training_loss'].append(loss.data.item()) correct = 0 for x, y in validation_loader: yhat = model(x.view(-1, 28 * 28)) _, label=torch.max(yhat, 1) correct += (label == y).sum().item() accuracy = 100 * (correct / len(validation_dataset)) useful_stuff['validation_accuracy'].append(accuracy) return useful_stuff ###Output _____no_output_____ ###Markdown Make Some Data Load the training dataset by setting the parameters train to True and convert it to a tensor by placing a transform object in the argument transform. ###Code # Create the training dataset train_dataset = dsets.MNIST(root='./data', train=True, download=True, transform=transforms.ToTensor()) ###Output _____no_output_____ ###Markdown Load the testing dataset by setting the parameter train to False and convert it to a tensor by placing a transform object in the argument transform. ###Code # Create the validation dataset validation_dataset = dsets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor()) ###Output _____no_output_____ ###Markdown Create the criterion function: ###Code # Create the criterion function criterion = nn.CrossEntropyLoss() ###Output _____no_output_____ ###Markdown Create the training-data loader and the validation-data loader object: ###Code # Create the training data loader and validation data loader object train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=2000, shuffle=True) validation_loader = torch.utils.data.DataLoader(dataset=validation_dataset, batch_size=5000, shuffle=False) ###Output _____no_output_____ ###Markdown Define the Neural Network, Criterion Function, Optimizer, and Train the Model Create the criterion function: ###Code # Create the criterion function criterion = nn.CrossEntropyLoss() ###Output _____no_output_____ ###Markdown Create the model with 100 hidden neurons: ###Code # Create the model object input_dim = 28 * 28 hidden_dim = 100 output_dim = 10 model = Net(input_dim, hidden_dim, output_dim) ###Output _____no_output_____ ###Markdown Test Sigmoid, Tanh, and Relu Train the network by using the sigmoid activations function: ###Code # Define a training function to train the model def train(model, criterion, train_loader, validation_loader, optimizer, epochs=100): i = 0 useful_stuff = {'training_loss': [],'validation_accuracy': []} for epoch in range(epochs): for i, (x, y) in enumerate(train_loader): optimizer.zero_grad() z = model(x.view(-1, 28 * 28)) loss = criterion(z, y) loss.backward() optimizer.step() #loss for every iteration useful_stuff['training_loss'].append(loss.data.item()) correct = 0 for x, y in validation_loader: #validation yhat = model(x.view(-1, 28 * 28)) _, label = torch.max(yhat, 1) correct += (label == y).sum().item() accuracy = 100 * (correct / len(validation_dataset)) useful_stuff['validation_accuracy'].append(accuracy) return useful_stuff # Train a model with sigmoid function learning_rate = 0.01 optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) training_results = train(model, criterion, train_loader, validation_loader, optimizer, epochs=30) ###Output _____no_output_____ ###Markdown Train the network by using the Tanh activations function: ###Code # Train a model with Tanh function model_Tanh = NetTanh(input_dim, hidden_dim, output_dim) optimizer = torch.optim.SGD(model_Tanh.parameters(), lr=learning_rate) training_results_tanch = train(model_Tanh, criterion, train_loader, validation_loader, optimizer, epochs=30) ###Output _____no_output_____ ###Markdown Train the network by using the Relu activations function: ###Code # Train a model with Relu function modelRelu = NetRelu(input_dim, hidden_dim, output_dim) optimizer = torch.optim.SGD(modelRelu.parameters(), lr=learning_rate) training_results_relu = train(modelRelu,criterion, train_loader, validation_loader, optimizer, epochs=30) ###Output _____no_output_____ ###Markdown Analyze Results Compare the training loss for each activation: ###Code # Compare the training loss plt.plot(training_results_tanch['training_loss'], label='tanh') plt.plot(training_results['training_loss'], label='sigmoid') plt.plot(training_results_relu['training_loss'], label='relu') plt.ylabel('loss') plt.title('training loss iterations') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Compare the validation loss for each model: ###Code # Compare the validation loss plt.plot(training_results_tanch['validation_accuracy'], label='tanh') plt.plot(training_results['validation_accuracy'], label='sigmoid') plt.plot(training_results_relu['validation_accuracy'], label='relu') plt.ylabel('validation accuracy') plt.xlabel('epochs ') plt.legend() plt.show() ###Output _____no_output_____
notebooks/benchmarking/performance_profiling.ipynb
###Markdown Load data ###Code # @time df_spatial, gene_names = Baysor.load_df("../run_results/spacejam2/allen_sm_fish/no_dapi/segmentation.csv"); # df_spatial[!, :x] = round.(Int, 10 .* (df_spatial.x .- minimum(df_spatial.x))); # df_spatial[!, :y] = round.(Int, 10 .* (df_spatial.y .- minimum(df_spatial.y))); # length(gene_names) @time df_spatial, gene_names = Baysor.load_df("../run_results/merfish_moffit/segmentation.csv"); length(gene_names) ###Output _____no_output_____ ###Markdown Molecule clustering Baysor ###Code bench_df = @where(df_spatial, :x .< -3300, :y .< -3300) |> deepcopy; gn_bench = gene_names; # confidence_nn_id = Baysor.default_param_value(:confidence_nn_id, 10); confidence_nn_id = Baysor.default_param_value(:confidence_nn_id, 50); @show confidence_nn_id size(bench_df, 1) bench_clust = BenchmarkGroup(); B.append_confidence!(bench_df, nn_id=confidence_nn_id); bench_clust["confidence"] = @benchmarkable B.append_confidence!($bench_df, nn_id=$confidence_nn_id); adjacent_points, adjacent_weights = B.build_molecule_graph(bench_df, filter=false); bench_clust["mol_graph"] = @benchmarkable B.build_molecule_graph($bench_df, filter=false); for cl in [2, 4, 6, 8, 10] bench_clust["clust_$cl"] = @benchmarkable B.cluster_molecules_on_mrf($bench_df.gene, $adjacent_points, $adjacent_weights, $bench_df.confidence; n_clusters=$cl, max_iters=5000, n_iters_without_update=100, verbose=false); end bench_clust_res = run(bench_clust) bench_res_df = vcat([DataFrame("Key" => k, "Mean time, sec" => mean(v.times) ./ 1e9, "Std time, sec" => std(v.times) ./ 1e9, "Num. samples" => length(v.times)) for (k,v) in bench_clust_res]...) ###Output _____no_output_____ ###Markdown Leiden ###Code using RCall nm_bench = B.neighborhood_count_matrix(bench_df, 50, normalize=false); size(nm_bench) R""" library(pagoda2) library(conos) library(microbenchmark) cm <- as($nm_bench, "dgCMatrix") rownames(cm) <- $gn_bench colnames(cm) <- paste0("c", 1:ncol(cm)) getClusters <- function(cm, verbose=FALSE) { p2 <- Pagoda2$new(cm, trim=5, n.cores=1, verbose=FALSE, log.scale=verbose) p2$calculatePcaReduction(nPcs=50, odgenes=rownames(cm), maxit=1000, verbose=verbose, var.scale=FALSE) p2$makeKnnGraph(k=30, type="PCA", center=T, distance="cosine", weight.type="none", verbose=verbose) p2$getKnnClusters(method=conos::leiden.community, type="PCA", name="leiden", resolution=1.0) return(p2$clusters$PCA$leiden) } b <- microbenchmark( "clustering" = {getClusters(cm)}, times=5, control=list(warmup=1) ) """ ###Output _____no_output_____ ###Markdown Aggregate ###Code leiden_times = rcopy(R"b").time; bench_res_df df1 = hcat(DataFrame("Method" => "MRF", "Num. clusters" => 2:2:10), bench_res_df[[3, 1, 5, 4, 2],2:end]); df2 = vcat(df1, DataFrame("Method" => "Leiden", "Num. clusters" => "Any", "Mean time, sec" => mean(leiden_times) / 1e9, "Std time, sec" => std(leiden_times) / 1e9, "Num. samples" => 5)); df2[:, 3:4] .= round.(df2[:, 3:4], digits=2); df2 CSV.write("plots/clustering_profiling.csv", df2) ###Output _____no_output_____ ###Markdown Color embedding ###Code @time neighb_cm = B.neighborhood_count_matrix(df_spatial, 40); @time color_transformation = B.gene_composition_transformation(neighb_cm, df_spatial.confidence; sample_size=20000, spread=2.0, min_dist=0.1); @time color_emb = B.transform(color_transformation, neighb_cm); bench_emb = BenchmarkGroup(); bench_emb["neighborhood_count_matrix_40"] = @benchmarkable B.neighborhood_count_matrix($df_spatial, 40) bench_emb["gene_composition_transformation_20k"] = @benchmarkable B.gene_composition_transformation(neighb_cm, df_spatial.confidence; sample_size=20000, spread=2.0, min_dist=0.1) bench_emb["transform"] = @benchmarkable B.transform(color_transformation, neighb_cm) bench_emb_res = run(bench_emb) bench_df = vcat([DataFrame("Key" => k, "Mean time, sec" => mean(v.times) ./ 1e9, "Std time, sec" => std(v.times) ./ 1e9, "Num. samples" => length(v.times)) for (k,v) in bench_emb_res]...) ###Output _____no_output_____ ###Markdown Segmentation ###Code bench_segmentation = BenchmarkGroup(); @time df_spatial, gene_names = B.load_df("../run_results/iss_hippo/ca1_no_prior/segmentation.csv"); df_spatial[!, :cell_dapi] = df_spatial.parent_id; dapi_arr = Float16.(Images.load("/home/vpetukhov/data/spatal/iss/hippocampus/CA1/Viktor/CA1DapiBoundaries_4-3_right.tif")); iss = Dict(:df => df_spatial, :gene_names => gene_names, :name => "ISS", :dapi_arr => dapi_arr); B.append_confidence!(df_spatial, (args["prior_segmentation"]===nothing ? nothing : df_spatial.prior_segmentation), nn_id=confidence_nn_id, prior_confidence=args["prior-segmentation-confidence"]) adjacent_points, adjacent_weights = build_molecule_graph(df_spatial, filter=false)[1:2]; mol_clusts = cluster_molecules_on_mrf(df_spatial.gene, adjacent_points, adjacent_weights, df_spatial.confidence; n_clusters=args["n-clusters"], weights_pre_adjusted=true) df_spatial[!, :cluster] = mol_clusts.assignment; bm_data_arr = initial_distribution_arr(df_spatial; n_frames=args["n-frames"], scale=args["scale"], scale_std=args["scale-std"], n_cells_init=args["num-cells-init"], prior_seg_confidence=args["prior-segmentation-confidence"], min_molecules_per_cell=args["min-molecules-per-cell"], confidence_nn_id=0); bm_data = run_bmm_parallel!(bm_data_arr, args["iters"], new_component_frac=args["new-component-fraction"], new_component_weight=args["new-component-weight"], min_molecules_per_cell=args["min-molecules-per-cell"], assignment_history_depth=history_depth); cur_df = deepcopy(iss[:df]); bm_data = B.initial_distribution_arr(cur_df; n_frames=1, scale=14, scale_std="25%", min_molecules_per_cell=3)[1]; @time B.bmm!(bm_data, n_iters=350, new_component_frac=0.3, min_molecules_per_cell=3, assignment_history_depth=30, log_step=100); cur_df[!, :cell] = B.estimate_assignment_by_history(bm_data)[1]; B.plot_comparison_for_cell(cur_df, B.val_range(cur_df.x), B.val_range(cur_df.y), nothing, iss[:dapi_arr]; ms=2.0, bandwidth=5.0, size_mult=0.25, plot_raw_dapi=false) ###Output _____no_output_____ ###Markdown Full run Run ###Code using ProgressMeter dataset_paths = "/home/vpetukhov/spatial/Benchmarking/run_results/" .* ["iss_hippo/ca1_no_prior", "merfish_moffit", "osm_fish", "star_map/vis_1020_cl0", "spacejam2/allen_sm_fish/no_dapi"]; param_dumps = dataset_paths .* "/segmentation_params.dump"; dataset_names = ["iss", "merfish", "osm_fish", "starmap_1020", "allen_smfish"]; param_strings = [open(p) do f readlines(f)[1][16:end-1] end for p in param_dumps]; baysor_path = "/home/vpetukhov/local/bin/baysor"; for i in 2:length(param_strings) # for i in 2:2 dataset = dataset_names[i] params = split(param_strings[i], ' ') out_path = expanduser("/home/vpetukhov/spatial/Benchmarking/run_results/profiling/$dataset/") mkpath(out_path) cmd = `/usr/bin/time -f '%e %U %P %M %t %K' -o ./profiling_output/$dataset.prof -a $baysor_path run --debug -o $out_path $params`; # cmd = `/usr/bin/time -f '%e %U %P %M %t %K' -o ./profiling_output/$dataset.prof -a $baysor_path run --debug --n-clusters=0 -o $out_path $params`; @show cmd println(dataset) @showprogress for ri in 1:5 run(pipeline(cmd, stdout="./profiling_output/$dataset.log", stderr="./profiling_output/$dataset.err", append=true)) run(pipeline(`echo -e \\n\\n\\n ----- RUN $ri ----- \\n\\n\\n`, stdout="./profiling_output/$dataset.log", append=true)) end end ###Output _____no_output_____ ###Markdown Summarize ###Code using DataFrames using Statistics printed_names = ["ISS", "MERFISH", "osmFISH", "STARmap 1020", "Allen smFISH"]; seg_results = dataset_paths .* "/segmentation.csv"; dataset_parameters = hcat([[size(df, 1), length(unique(df.gene))] for df in DataFrame!.(CSV.File.(seg_results))]...); bench_vals = [hcat(split.(readlines("./profiling_output/$ds.prof"), ' ')...) for ds in dataset_names]; mem_vals = hcat([parse.(Float64, x[4,:]) / 1e6 for x in bench_vals]...); cpu_vals = hcat([parse.(Float64, x[1,:]) / 60 for x in bench_vals]...); bench_mat = round.(vcat(mean(cpu_vals, dims=1), std(cpu_vals, dims=1), mean(mem_vals, dims=1), std(mem_vals, dims=1))', digits=2); bench_strs = [["$(r[i[1]]) ± $(r[i[2]])" for r in eachrow(bench_mat)] for i in ((1, 2), (3, 4))]; bench_df = DataFrame("Dataset" => printed_names, "Num. molecules" => dataset_parameters[1,:], "Num. genes" => dataset_parameters[2,:], "CPU time, min" => bench_strs[1], "Max RSS, GB" => bench_strs[2], "Num. samples" => 5) CSV.write("./plots/segmentation_profiling.csv", bench_df) ###Output _____no_output_____ ###Markdown Parameter table ###Code import Pkg: TOML using DataFrames import CSV data_paths = ["Allen smFISH" => "allen_smfish", "ISS" => "iss_hippo", "osmFISH" => "osmfish", "STARmap 1020" => "starmap_vis1020", "MERFISH Hypothalamus" => "merfish_moffit", "MERFISH Gut" => "merfish_membrane"]; prior_subfolders = ["No" => "baysor", "Paper" => "baysor_prior", "DAPI" => "baysor_dapi_prior", "Membrane" => "baysor_membrane_prior"]; p_keys = ["gene-composition-neigborhood", "scale", "prior-segmentation-confidence", "min-molecules-per-gene", "min-molecules-per-cell", "n-clusters", "iters", "force-2d", "x-column", "y-column", "z-column", "gene-column", "prior_segmentation", "nuclei-genes", "cyto-genes"]; path_df = DataFrame([Dict(:Dataset => d, :Prior => pr, :Path => datadir("exp_pro", md, sd, "segmentation_params.dump")) for (d, md) in data_paths for (pr, sd) in prior_subfolders]); path_df = path_df[isfile.(path_df.Path),:]; param_dicts = [OrderedDict(k => get(d, k, "NA") for k in p_keys) for d in TOML.parsefile.(path_df.Path)]; param_df = hcat(path_df[:,[:Dataset, :Prior]], vcat(DataFrame.(param_dicts)...)) CSV.write(plotsdir("parameters.csv"), param_df) ###Output _____no_output_____
codeSheets/SEAS6401/PGAProject/API_Pull_and_Data_Wrangling.ipynb
###Markdown Importing the Players and Tournament Datasets ###Code instance_id = "https://api.sportsdata.io/golf/v2/json/Players?key=" key = "c76c6101adbf4b0abb54a7a6eb5ddbb4" url = f"{instance_id}{key}" response = requests.get( url = url) Players = pd.DataFrame((json.loads(response.text))) #Players.to_csv('/dbfs/FileStore/karbide/Players.txt') instance_id = "https://api.sportsdata.io/golf/v2/json/Tournaments?key=" key = "c76c6101adbf4b0abb54a7a6eb5ddbb4" url = f"{instance_id}{key}" response = requests.get( url = url) Tournaments = pd.DataFrame((json.loads(response.text))) Tournaments["New_Date"] = pd.to_datetime(Tournaments["StartDate"]) Last_Season = Tournaments.loc[Tournaments["New_Date"]>"2020-09-08"] Last_Season = Last_Season.loc[Last_Season["New_Date"]<"2021-09-10"] Last_Season = Last_Season.loc[Last_Season["Name"] != 'QBE Shootout'] #Last_Season.to_csv('/dbfs/FileStore/karbide/Last_Season.txt') ###Output _____no_output_____ ###Markdown Lets pull just the top 150 players ###Code top150 = spark.read.csv("/FileStore/karbide/top150players.csv") top150 = top150.toPandas() top150.columns = ["Id","Name","Rating"] Players['Full Name'] = Players[['FirstName','LastName']].agg(' '.join, axis=1) top150Players = Players.merge(top150, how = "inner", left_on= "Full Name", right_on = "Name") top150Players.shape #we lost some players, lets try to see why top150_list = top150["Name"].tolist() mergedPlayers_list = top150Players["Name"].tolist() dropped = [x for x in top150_list if x not in mergedPlayers_list] droppednames = pd.DataFrame(dropped) droppednames.columns = ["Name"] droppednames[["Name1","Name2","Name3"]] = droppednames["Name"].str.split(" ",2,expand=True) #We lose less players if we use the draft kings names top150Players2 = Players.merge(top150, how = "inner", left_on= "DraftKingsName", right_on = "Name") top150Players2.shape mergedPlayers_list = top150Players2["Name"].tolist() dropped = [x for x in top150_list if x not in mergedPlayers_list] droppednames = pd.DataFrame(dropped) droppednames.columns = ["Name"] droppednames[["Name1","Name2","Name3"]] = droppednames["Name"].str.split(" ",2,expand=True) droppednames #this is not small enough that we can search 1 by 1 print(Players.loc[Players["FirstName"] == 'Erik']) Players.at[4443,'DraftKingsName'] = "Erik van Rooyen" print(Players["DraftKingsName"].loc[Players["LastName"] == 'Lee']) print(top150.loc[top150["Name"]== 'K.H. Lee']) top150.at[58,"Name"] = "Kyoung-Hoon Lee" print(Players["DraftKingsName"].loc[Players["FirstName"] == 'Robert']) Players.at[2688,"DraftKingsName"] = "Robert MacIntyre" print(Players["DraftKingsName"].loc[Players["LastName"] == 'Munoz']) print(top150.loc[top150["Name"]== 'Sebasti�n Mu�oz']) top150.at[66,"Name"] = "Sebastian Munoz" print(Players["DraftKingsName"].loc[Players["LastName"] == 'Davis']) print(top150.loc[top150["Name"]== 'Cam Davis']) top150.at[69,"Name"] = "Cameron Davis" Players.loc[Players["LastName"] == 'Van Tonder'] Players.at[4446,"DraftKingsName"] = "Daniel van Tonder" top150Players2 = Players.merge(top150, how = "inner", left_on= "DraftKingsName", right_on = "Name") top150Players2.shape #now we have all the players #the sport data api requires us to input the player and tournament ID for the hole by hole scores, lets see if we can loop and dowload automatically top150PlayerIDs = top150Players2["PlayerID"].tolist() Tourney_IDs = Last_Season["TournamentID"].tolist() #top150Players2.to_csv('/dbfs/FileStore/karbide/top150playersexpanded.txt') #tournament ID a = 453 #player ID b = 40000047 instance_id = "https://api.sportsdata.io/golf/v2/json/PlayerTournamentStatsByPlayer/" key = "?key=c76c6101adbf4b0abb54a7a6eb5ddbb4" url = f"{instance_id}{a}/{b}{key}" response = requests.get( url = url) test = json.loads(response.text) test2 = test['Rounds'] RoundData = pd.DataFrame(test2) R1Scores = test2[0]["Holes"] R2Scores = test2[1]["Holes"] R3Scores = test2[2]["Holes"] R4Scores = test2[3]["Holes"] R1Scoresdf = pd.DataFrame(R1Scores) def holeScore(data): ScoresSet = data.drop(["PlayerRoundID","Par","Score","HoleInOne","ToPar"], axis = 1) ScoresSet.set_index("Number", inplace = True) HoleScores = ScoresSet[ScoresSet == 1].stack() HoleScoresdf = pd.DataFrame(HoleScores).reset_index() HoleScoresdf.columns = ["Number","Hole_Score","1"] HoleScoresdf.drop(["1"],axis = 1, inplace = True) Scoresdf = data.merge(HoleScoresdf, on = "Number") return(Scoresdf) def numScore(data): data["Hole_ScoreNum"] = [-3 if x == "DoubleEagle" else -2 if x == "Eagle" else -1 if x == "Birdie" else 0 if x == "IsPar" else 1 if x == "Bogey" else 2 if x == "DoubleBogey" else 3 for x in data["Hole_Score"]] R1Scoresdf = holeScore(R1Scoresdf) numScore(R1Scoresdf) roundScore = sum(R1Scoresdf['Hole_ScoreNum']) roundShots = sum(R1Scoresdf['Par'])-roundScore birdies = sum(R1Scoresdf["Birdie"]) def roundSummary(data,roundNum, playerid, tournamentid): roundScore = sum(data['Hole_ScoreNum']) roundShots = sum(data['Par'])+roundScore doubleeagles = sum(data["DoubleEagle"]) eagles = sum(data["Eagle"]) birdies = sum(data["Birdie"]) pars = sum(data["IsPar"]) bogeys = sum(data["Bogey"]) doublebogeys = sum(data['DoubleBogey']) worsethandoublebogeys = sum(data['WorseThanDoubleBogey']) roundID = data["PlayerRoundID"][0] roundStats = pd.DataFrame(np.array([[roundScore,roundShots,doubleeagles,eagles,birdies,pars,bogeys,doublebogeys,worsethandoublebogeys,roundID,roundNum,playerid,tournamentid]]), columns=['RoundScore','RoundShots','DoubleEagles','Eagles','Birdies','Pars','Bogeys','DoubleBogeys','WorseThanDoubleBogeys','PlayerRoundID','RoundNum','PlayerID','TournamentID']) return(roundStats) roundSummary(R1Scoresdf,1,b,a) def dictToDf(scoresDict,playerid,tournamentid): roundDict = scoresDict['Rounds'] rounddf = pd.DataFrame(roundDict) rounddf = rounddf.loc[rounddf["Par"] > 0] rounds = rounddf["Number"].tolist() dfTournamentRounds = pd.DataFrame(columns = ['RoundScore','RoundShots','DoubleEagles','Eagles','Birdies','Pars','Bogeys','DoubleBogeys','WorseThanDoubleBogeys','PlayerRoundID','RoundNum','PlayerID','TournamentID']) dfTournamentHoles = pd.DataFrame(columns = ['PlayerRoundID', 'Number', 'Par', 'Score', 'ToPar', 'HoleInOne','DoubleEagle', 'Eagle', 'Birdie', 'IsPar', 'Bogey', 'DoubleBogey','WorseThanDoubleBogey', 'Round','Hole_Score', 'Hole_ScoreNum', "Player_ID", "Tournament_ID"]) for x in rounds: roundHoles = roundDict[x-1]["Holes"] roundHoles = pd.DataFrame(roundHoles) roundHoles = holeScore(roundHoles) numScore(roundHoles) roundHoles["Round"] = x roundHoles["Player_ID"] = playerid roundHoles["Tournament_ID"] = tournamentid roundstat = roundSummary(roundHoles,x,playerid,tournamentid) dfTournamentRounds = pd.concat([dfTournamentRounds,roundstat]) dfTournamentHoles = pd.concat([dfTournamentHoles,roundHoles]) return(dfTournamentRounds,dfTournamentHoles) # testRounds,testHoles = dictToDf(test,b,a) #print(testHoles.head(20)) #print(testRounds) ###Output _____no_output_____ ###Markdown Testing a condition if the player didnt play in one the tournament/ the dict is empty ###Code # Example of a empty tournament url = f"{instance_id}450/40000047{key}" response = requests.get(url = url) bool(response.text) # Example of a valid tournament url = f"{instance_id}451/40000047{key}" response = requests.get(url = url) bool(response.text) def allTournaments(playerID,tournamentList,key): allTournamentRounds = pd.DataFrame(columns = ['RoundScore','RoundShots','DoubleEagles','Eagles','Birdies','Pars','Bogeys','DoubleBogeys','WorseThanDoubleBogeys','PlayerRoundID','RoundNum','PlayerID','TournamentID']) allTournamentHoles = pd.DataFrame(columns = ['PlayerRoundID', 'Number', 'Par', 'Score', 'ToPar', 'HoleInOne','DoubleEagle', 'Eagle', 'Birdie', 'IsPar', 'Bogey', 'DoubleBogey','WorseThanDoubleBogey', 'Round','Hole_Score', 'Hole_ScoreNum']) key = f"?key={key}" instance_id = "https://api.sportsdata.io/golf/v2/json/PlayerTournamentStatsByPlayer/" for x in tournamentList: url = f"{instance_id}{x}/{playerID}{key}" response = requests.get(url = url) if bool(response.text): importdata = json.loads(response.text) testDict = importdata['Rounds'] if bool(testDict): xroundDf,xholesDf = dictToDf(importdata,playerID,x) allTournamentRounds = pd.concat([allTournamentRounds,xroundDf]) allTournamentHoles = pd.concat([allTournamentHoles,xholesDf]) return(allTournamentRounds,allTournamentHoles) #testRounds,testHoles = allTournaments(b,Tourney_IDs,"c76c6101adbf4b0abb54a7a6eb5ddbb4") def allPlayers(playerList,tournamentList,key): allPlayerRounds = pd.DataFrame(columns = ['RoundScore','RoundShots','DoubleEagles','Eagles','Birdies','Pars','Bogeys','DoubleBogeys','WorseThanDoubleBogeys','PlayerRoundID','RoundNum','PlayerID','TournamentID']) allPlayerHoles = pd.DataFrame(columns = ['PlayerRoundID', 'Number', 'Par', 'Score', 'ToPar', 'HoleInOne','DoubleEagle', 'Eagle', 'Birdie', 'IsPar', 'Bogey', 'DoubleBogey','WorseThanDoubleBogey', 'Round','Hole_Score', 'Hole_ScoreNum']) for i in playerList: yrounds,yholes = allTournaments(i,tournamentList,key) allPlayerRounds = pd.concat([allPlayerRounds,yrounds]) allPlayerHoles = pd.concat([allPlayerHoles,yholes]) return(allPlayerRounds,allPlayerHoles) #RoundsDf, HolesDf = allPlayers(top150PlayerIDs,Tourney_IDs,"c76c6101adbf4b0abb54a7a6eb5ddbb4") #RoundsDf.to_csv('/dbfs/FileStore/karbide/Rounds.txt') #HolesDf.to_csv('/dbfs/FileStore/karbide/Holes.txt') #so I dont have to run the API pull again RoundsDf = pd.read_csv('/dbfs/FileStore/karbide/Rounds.txt') HolesDf = pd.read_csv("/dbfs/FileStore/karbide/Holes.txt") # if a tournament doesnt have at least 100 rounds def dropSmallTournaments(data,threshold): tournamentCounts = data.groupby("TournamentID").size().reset_index(name="counts") bigTournaments = tournamentCounts.loc[tournamentCounts["counts"] > threshold] result = data.merge(bigTournaments, how = "inner", on = "TournamentID") result.drop(["counts"],axis=1) dropTournaments = tournamentCounts.loc[tournamentCounts["counts"] < threshold] dropped = dropTournaments["TournamentID"].tolist() print("Dropped Tournaments") for x in dropped: print(x) return(result) RoundsDf = dropSmallTournaments(RoundsDf,100) RoundsDf.groupby("TournamentID").size().reset_index(name="counts") #RoundsDf.to_csv('/dbfs/FileStore/karbide/Rounds.txt') testRoundDf = pd.read_csv('/dbfs/FileStore/karbide/Rounds.txt') pStats = pd.read_csv('/dbfs/FileStore/karbide/pga_tour_stats_2020.csv') pStats.columns pStats.describe() # I'm going to select ~30 of these stats, then later check for independence pStatsKeep = pStats[['PLAYER NAME',"GIR_PCT_FAIRWAY_BUNKER", "GIR_PCT_FAIRWAY", "GIR_PCT_OVERALL", 'GIR_PCT_OVER_100', 'GIR_PCT_OVER_200', 'GIR_PCT_UNDER_100', 'GREEN_PCT_SCRAMBLE_SAND', 'GREEN_PCT_SCRAMBLE_ROUGH', 'FINISHES_TOP10', 'TEE_AVG_BALL_SPEED', 'TEE_AVG_DRIVING_DISTANCE', 'TEE_DRIVING_ACCURACY_PCT','TEE_AVG_LAUNCH_ANGLE', 'TEE_AVG_LEFT_ROUGH_TENDENCY_PCT', 'TEE_AVG_RIGHT_ROUGH_TENDENCY_PCT', 'TEE_AVG_SPIN_RATE', 'PUTTING_AVG_ONE_PUTTS', 'PUTTING_AVG_TWO_PUTTS', 'PUTTING_AVG_DIST_BIRDIE', "PUTTING_AVG_PUTTS"]] # Average Birdie Putt Distance is currently in feet and inches, can we change this to just inches def split_Dist(item): if item != "nan": spDist = item.split("' ") ft_ = float(spDist[0]) in_ = float(spDist[1].replace("\"","")) return (12*ft_) + in_ pStatsKeep = pStatsKeep.astype({"PUTTING_AVG_DIST_BIRDIE":"str"}) pStatsKeep["PUTTING_AVG_DIST_BIRDIE_INCH"] = pStatsKeep["PUTTING_AVG_DIST_BIRDIE"].apply(lambda x:split_Dist(x)) pStatsKeep.describe() pStatsKeep["FINISHES_TOP10"].fillna(0,inplace = True) pStatsKeep.dropna(inplace = True) pStatsKeep.drop_duplicates(inplace = True) pStatsKeep.groupby("PLAYER NAME").agg({"GIR_PCT_FAIRWAY_BUNKER": "count"}).sort_values("GIR_PCT_FAIRWAY_BUNKER", ascending = False).head(3) # we still have 8 zach johnsons so lets dump him pStatsKeep = pStatsKeep.loc[pStatsKeep["PLAYER NAME"] != "Zach Johnson"] #Now we have to add Player IDs PlayerNames = pd.read_csv("/dbfs/FileStore/karbide/Players.txt") PlayerNames = PlayerNames[["DraftKingsName","PlayerID"]] pStatsKeepIDs = pStatsKeep.merge(PlayerNames, how = "left", left_on = "PLAYER NAME", right_on = "DraftKingsName") pStatsKeepIDsDropped = pStatsKeepIDs.loc[pStatsKeepIDs["PlayerID"].isna()] pStatsKeepIDsDropped["PLAYER NAME"] #again, we have to manually adjust these names PlayerNames2 = pd.read_csv("/dbfs/FileStore/karbide/Players.txt") PlayerNames2 = PlayerNames2[["DraftKingsName","PlayerID","FirstName","LastName"]] print(PlayerNames2.loc[PlayerNames2["FirstName"] == "Ted"]) pStatsKeepIDs.at[5,"PlayerID"] = 40001173 print(PlayerNames2.loc[PlayerNames2["FirstName"] == "Fabian"]) pStatsKeepIDs.at[25,"PlayerID"] = 40000514 print(PlayerNames2.loc[PlayerNames2["LastName"] == "Gordon"]) pStatsKeepIDs.at[36,"PlayerID"] = 40003663 print(PlayerNames2.loc[PlayerNames2["LastName"] == "Ventura"]) pStatsKeepIDs.at[74,"PlayerID"] = 40003179 print(PlayerNames2.loc[PlayerNames2["LastName"] == "Fitzpatrick"]) pStatsKeepIDs.at[136,"PlayerID"] = 40000430 print(PlayerNames2.loc[PlayerNames2["LastName"] == "Pan"]) pStatsKeepIDs.at[140,"PlayerID"] = 40001109 print(PlayerNames2.loc[PlayerNames2["FirstName"] == "Sebastian"]) pStatsKeepIDs.at[161,"PlayerID"] = 40001682 sum(pStatsKeepIDs["PlayerID"].isna()) #now every player has a name and ID #I might consider runnning the API pull again for this list of players pStatsKeepIDs.drop(["DraftKingsName"], axis = 1, inplace = True) pStatsKeepIDs = pStatsKeepIDs.astype({"PlayerID":"int"}) #pStatsKeepIDs.to_csv('/dbfs/FileStore/karbide/PlayerStats.txt') StatPlayers = pStatsKeepIDs["PlayerID"].tolist() #RoundsDf, HolesDf = allPlayers(StatPlayers,Tourney_IDs,"c76c6101adbf4b0abb54a7a6eb5ddbb4") RoundsDf = dropSmallTournaments(RoundsDf,100) #RoundsDf.to_csv('/dbfs/FileStore/karbide/Rounds.txt') #HolesDf.to_csv('/dbfs/FileStore/karbide/Holes.txt') StrokesGained = pd.read_csv("/dbfs/FileStore/karbide/StrokesGained.csv", encoding = 'latin-1') StrokesGained.head() print(StrokesGained.shape()) pIDs = pStatsKeepIDs[["PLAYER NAME", "PlayerID"]] StrokesGainedIDs = StrokesGained.merge(pIDs, how = "inner", on = "PLAYER NAME") #StrokesGainedIDs.to_csv("/dbfs/FileStore/karbide/StrokesGainedIDs.txt") ###Output _____no_output_____
task_06/HW06.ipynb
###Markdown ДЗ №6 - автокодировщики для идентификации аномалий В этом ДЗ вам предстоит применить модель сврточного автокодировщика для идентификации аномалий в данных. Для этого вам потребуется создать сверточный автокодировщик, обучить его и применить к тестовым данным.Основная идея фильтрации аномалий состоит в том, что экземпляры выборки, являющиеся аномалиями, сильно отличаются от всех остальных объектов. Кроме того, их мало по сранению с размером всей выборки.Этот набор факторов приводит к тому, что автокодировщик, обученный на данных тренировочной выборки, будет довольно плохо восстанавливать примеры-аномалии. То есть, значения функции потерь на таких примерах ожидается нетипично высоким. ###Code # Эту ячейку следует выоплнять в окружении, в котором еще не установлены необходимые библиотеки. В подготовленном окружении эту ячейку можно пропустить. !pip3 install torch torchvision numpy matplotlib !pip3 install -U albumentations import numpy as np from scipy import stats %matplotlib inline import matplotlib.pylab as plt import seaborn as sns plt.style.use('ggplot') import torch import torchvision import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from tqdm import tqdm from PIL import Image from skimage.io import imshow from sklearn.model_selection import train_test_split # trying new augmentation library import albumentations as A from albumentations.pytorch.transforms import ToTensorV2 from typing import Tuple, List, Type, Dict, Any device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f'Using {device} device') ###Output Using cuda device ###Markdown Константы ###Code RESIZE_SHAPE = (28, 28) BATCH_SIZE = 256 ###Output _____no_output_____ ###Markdown Свёрточный автокодировщик (convolutional autoencoder, CAE)Данными в этой задаче будут все так же набор рукописных цифр MNIST. Однако некоторые экземпляры тестовой выборки оказываются испорченными. Ваша цель - найти эти экземпляры в предположении, что они представляют собой аномалии.Данные MNIST с дефектами нужно скачать в виде файла по ссылкеПрежде всего следует построить и обучить свёрточный автокодировщик.>Кодирующая часть автокодировщика (encoder, кодировщик) может состоять из сверточных слоев (convolutional layers) и слоев субдискретизации (pooling layers), но может быть и сложнее. Здесь предлагается применить ваши знания относительно возможной структуры сверточных сетей. Кодировщик, будучи обученным, позволяет извлечь скрытое представление (hidden representation, embeddings) входных примеров, содержащее достаточно информации для восстановления этих примеров декодером.> Декодер (decoder) может состоять из слоев типа **transpose convolution** и операций масштабирования (upsampling), но также, как и кодировщик, может быть сложнее. Декодер должен восстанавливать примеры, руководствуюясь их векторами скрытого представления. Скрытое представление (hidden representation, compressed representation)Скрытое представление может содержать семантически насыщенную информацию о входных примерах. С использованием этих данных можно проводить фильтрацию шума в примерах, восстанавливать сами примеры, и иногда даже проводить некоторые операции в семантическом пространстве. ###Code !wget https://www.dropbox.com/s/r7mgjn83y9ygpzq/mnist_corrupted.npz ###Output --2021-05-08 14:10:33-- https://www.dropbox.com/s/r7mgjn83y9ygpzq/mnist_corrupted.npz Resolving www.dropbox.com (www.dropbox.com)... 162.125.3.18, 2620:100:6018:18::a27d:312 Connecting to www.dropbox.com (www.dropbox.com)|162.125.3.18|:443... connected. HTTP request sent, awaiting response... 301 Moved Permanently Location: /s/raw/r7mgjn83y9ygpzq/mnist_corrupted.npz [following] --2021-05-08 14:10:33-- https://www.dropbox.com/s/raw/r7mgjn83y9ygpzq/mnist_corrupted.npz Reusing existing connection to www.dropbox.com:443. HTTP request sent, awaiting response... 302 Found Location: https://uc715f48f47c6ce906f40a5b2b82.dl.dropboxusercontent.com/cd/0/inline/BOEhW2vb4yQEX5LghYRUaeT8l21kBoQ6qxtRc2XZRxNRBsKhA0u-rLhkkXw8bz2ixBypKexWRvgvx_Atyif0bMi8uT8FOX2J9LXBHU344SgSYEEZpsqJobdRZAYFjSb55r6-n3pma-WQWj-Cf2mcA9O3/file# [following] --2021-05-08 14:10:33-- https://uc715f48f47c6ce906f40a5b2b82.dl.dropboxusercontent.com/cd/0/inline/BOEhW2vb4yQEX5LghYRUaeT8l21kBoQ6qxtRc2XZRxNRBsKhA0u-rLhkkXw8bz2ixBypKexWRvgvx_Atyif0bMi8uT8FOX2J9LXBHU344SgSYEEZpsqJobdRZAYFjSb55r6-n3pma-WQWj-Cf2mcA9O3/file Resolving uc715f48f47c6ce906f40a5b2b82.dl.dropboxusercontent.com (uc715f48f47c6ce906f40a5b2b82.dl.dropboxusercontent.com)... 162.125.3.15, 2620:100:6018:15::a27d:30f Connecting to uc715f48f47c6ce906f40a5b2b82.dl.dropboxusercontent.com (uc715f48f47c6ce906f40a5b2b82.dl.dropboxusercontent.com)|162.125.3.15|:443... connected. HTTP request sent, awaiting response... 302 Found Location: /cd/0/inline2/BOE9hUpD4qmU4rCuIzMVvpcdiCmQ2V_ZqiTXuJ-Uhw2UT60T16h-c4Jlb_uq89hGnYtps6ygYLRv9HbhvECK8AkoD7Nks86OT38w_hDbIF_nWwCB48_ZJWkEZsrusjIp3MOgQc5B5R0dQGAQ0UTt771ldkZfHZOUfAvxfDyMD4l00B5aa6plxHZluzWXlocqNl4aVxsa6myJPyWGuHwgiBdmgJOwvO-nHD2SvA3LHb5IZr5TzoefZMVwGxhep7roYw7DiKdscRt3PfdccYXPkxCAFBEafurs6C7O1z4dMSwVGVXpcH0yCwi5ViX-pMDwg7Ncp9o_bAdV7AvBH3GOP6COsbew_4ofE6eTcejzTrmaTYu0_E830GFkv-BgY_enrpU/file [following] --2021-05-08 14:10:34-- https://uc715f48f47c6ce906f40a5b2b82.dl.dropboxusercontent.com/cd/0/inline2/BOE9hUpD4qmU4rCuIzMVvpcdiCmQ2V_ZqiTXuJ-Uhw2UT60T16h-c4Jlb_uq89hGnYtps6ygYLRv9HbhvECK8AkoD7Nks86OT38w_hDbIF_nWwCB48_ZJWkEZsrusjIp3MOgQc5B5R0dQGAQ0UTt771ldkZfHZOUfAvxfDyMD4l00B5aa6plxHZluzWXlocqNl4aVxsa6myJPyWGuHwgiBdmgJOwvO-nHD2SvA3LHb5IZr5TzoefZMVwGxhep7roYw7DiKdscRt3PfdccYXPkxCAFBEafurs6C7O1z4dMSwVGVXpcH0yCwi5ViX-pMDwg7Ncp9o_bAdV7AvBH3GOP6COsbew_4ofE6eTcejzTrmaTYu0_E830GFkv-BgY_enrpU/file Reusing existing connection to uc715f48f47c6ce906f40a5b2b82.dl.dropboxusercontent.com:443. HTTP request sent, awaiting response... 200 OK Length: 54880512 (52M) [application/octet-stream] Saving to: ‘mnist_corrupted.npz’ mnist_corrupted.npz 100%[===================>] 52.34M 71.1MB/s in 0.7s 2021-05-08 14:10:35 (71.1 MB/s) - ‘mnist_corrupted.npz’ saved [54880512/54880512] ###Markdown В предположении, что файл данных `mnist_corrupted.npz` загружен и находится в той же директории, что и этот нотбук, генераторы данных можно описать следующим образом: ###Code class DS(Dataset): def __init__(self, data, transform=None): self.data = data self.transform = transform def __getitem__(self, index): x = self.data[index] if self.transform: x = self.transform(image=x)['image'] return x def __len__(self): return len(self.data) train_val_transforms = A.Compose( [ A.ToFloat(max_value=255), A.Resize(height=RESIZE_SHAPE[0], width=RESIZE_SHAPE[1]), A.Rotate(limit=20), A.RandomBrightness(limit=0.1), ToTensorV2(), ] ) test_transforms = A.Compose( [ A.ToFloat(max_value=255), A.Resize(height=RESIZE_SHAPE[0], width=RESIZE_SHAPE[1]), ToTensorV2(), ] ) mnist = np.load('./mnist_corrupted.npz') train_val_samples = mnist['x_train'] test_samples = mnist['x_test'] train_val_dataset = DS(train_val_samples, train_val_transforms) test_dataset = DS(test_samples, test_transforms) train_dataset, val_dataset = train_test_split(train_val_dataset, test_size=0.10) print(f'size of data for training: {len(train_dataset)}, size of data for validation: {len(val_dataset)}') ###Output size of data for training: 54000, size of data for validation: 6000 ###Markdown Инициализация Dataloader'ов ###Code train_dataloader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True) val_dataloader = DataLoader(dataset=val_dataset, batch_size=BATCH_SIZE, shuffle=True) dataloaders = { 'train': train_dataloader, 'val': val_dataloader, } ###Output _____no_output_____ ###Markdown Визуализация исходных данныхКак и в любой задаче, имеет смысл визуализировать исходные данные, чтобы понимать, с чем мы имеем дело ###Code indices = np.random.randint(0, len(train_val_dataset), size=8) fig, axes = plt.subplots(nrows=1, ncols=8, figsize=(8, 2), dpi=300) for i, ax in enumerate(axes): sample_index = indices[i] sample = train_val_dataset[sample_index] ax.imshow(np.squeeze(sample.cpu().numpy()), cmap='gray') ax.set_xticks([]) ax.set_yticks([]) plt.tight_layout() fig.patch.set_facecolor('white') ###Output _____no_output_____ ###Markdown --- Свёрточный автокодировщик Кодировщик (Encoder)Кодировщик можно реализовать в подходе AlexNet или VGG: сверточные (convolutional) слои чередуются со слоями субдискретизации (pooling). Последние применяются для снижения пространственных размерностей промежуточных представлений входных примеров. Нередко после сверточной части добавляют дополнительные полносвязные слои, позволяющие еще сильнее снизить размерность скрытого представления, извлекаемого кодировщиком.Предлагаемая структура кодировщика не единственно верная. Можно реализовывать и другие. ДекодерДекодер должен преобразовать вектор скрытого представления (тензор ранга 1) в изображение, реконструкцию входного примера. Для этого следует вектор скрытого представления перевести в ранг 2 (например, операцией `.view()`). После этого следует последовательно применять операции Transpose Convolution (`torch.nn.ConvTranspose2d`) и масштабирования (upsampling, а именно `torch.nn.functional.interpolate`). В некоторых случаях применяют `torch.nn.ConvTranspose2d` с аргументом `stride=2` или больше. Однако такое использование может привести в т.н. ["эффекту шахматной доски"](https://distill.pub/2016/deconv-checkerboard/). Рекомендуемым вариантом сейчас считается применение масштабирования типа билинейного или бикубического.Результатом работы декодера должно получиться изображение, по размеру совпадающее с входным примером, то есть, 28x28.Не следует забывать, что одной из целей применения автокодировщиков является снижение размерности примеров с сохранением ключевой информации. Экспериментируйте с количеством слоев и размерностью скрытого представления! Попробуйте снизить его до 2 или вообще до 1. Хорошо ли будут воспроизводиться примеры выборки? Transpose ConvolutionsВ этом ДЗ в декодере предлагается использовать слои типа **transposed convolutional**. Они работают практически так же, как свёрточные слои, но "задом наперед". Например, ядро размером 3x3 в случае свёрточной операции дает в результате одно значение. Операция **transposed convolutional**, наоборот, одно значение входного представления трансформирует в патч размером с его ядро (3x3). В PyTorch есть уже готовая реализация слоев [`nn.ConvTranspose2d`](https://pytorch.org/docs/stable/nn.htmlconvtranspose2d).Повторимся, альтернативой использованию **transposed convolutional layer** с аргументом `stride=2` или больше может быть применение операций изменения размера (resizing) с интерполяцией типа "nearest neighbor", "bilinear" или "bicubic" и применением свёрточной операции к результату. Задание 1: Описать класс нейросети-автокодировщика, описываемой в этом задании. ###Code # define the NN architecture class ConvAutoencoder(nn.Module): def __init__(self, hidden_dim=32): super(ConvAutoencoder, self).__init__() self.embedding = None ## слои кодировщика ## self.enc_conv_1 = nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, stride=1, padding=1) # 4 x 28 x 28 self.enc_pool_1 = nn.MaxPool2d(kernel_size=2, stride=2) # 4 x 14 x 14 self.enc_batch_norm_1 = nn.BatchNorm2d(num_features=4) self.enc_conv_2 = nn.Conv2d(in_channels=4, out_channels=8, kernel_size=3, stride=1, padding=1) # 8 x 14 x 14 self.enc_pool_2 = nn.MaxPool2d(kernel_size=2, stride=2) # 8 x 7 x 7 self.enc_batch_norm_2 = nn.BatchNorm2d(num_features=8) self.flatten = nn.Flatten() # 1 x 392 self.enc_linear_1 = nn.Linear(in_features=392, out_features=hidden_dim) ## слои декодера ## self.de_linear_1 = nn.Linear(in_features=hidden_dim, out_features=392) self.de_conv_1 = nn.ConvTranspose2d(in_channels=8, out_channels=4, kernel_size=3, stride=1, padding=1) self.de_pool_1 = nn.Upsample(scale_factor=2, mode='bilinear') self.de_batch_norm_1 = nn.BatchNorm2d(num_features=4) self.de_conv_2 = nn.ConvTranspose2d(in_channels=4, out_channels=1, kernel_size=3, stride=1, padding=1) self.de_pool_2 = nn.Upsample(scale_factor=2, mode='bilinear') self.de_batch_norm_2 = nn.BatchNorm2d(num_features=1) def forward(self, x): ## операции кодировщика ## original_shape = x.shape x = F.relu(self.enc_conv_1(x)) # 4 x 28 x 28 x = self.enc_pool_1(x) # 4 x 14 x 14 x = self.enc_batch_norm_1(x) # 4 x 14 x 14 x = F.relu(self.enc_conv_2(x)) # 8 x 14 x 14 x = self.enc_pool_2(x) # 8 x 7 x 7 x = self.enc_batch_norm_2(x) # 8 x 7 x 7 x_shape = x.shape x = self.flatten(x) # 1 x 392 self.embedding = F.relu(self.enc_linear_1(x)) # 1 x hidden_dim ## операции декодера ## x = self.de_linear_1(self.embedding) # 1 x 392 x = x.view(*x_shape) # 8 x 7 x 7 x = F.relu(self.de_conv_1(x)) # 4 x 7 x 7 x = self.de_pool_1(x) # 4 x 14 x 14 x = self.de_batch_norm_1(x) # 4 x 14 x 14 x = F.relu(self.de_conv_2(x)) # 1 x 14 x 14 x = self.de_pool_2(x) # 1 x 28 x 28 x = torch.sigmoid(x) # 1 x 28 x 28 assert original_shape == x.shape, f'{original_shape} != {x.shape}' return x model = ConvAutoencoder() print(model) model = model.to(device) ###Output _____no_output_____ ###Markdown Задание 2: Напишите пайплайн для предобработки и аугументации данных.В `torchvision.transforms` есть готовые реализации большинства распространённых техник, если вы хотите добавить что-то своё, вы можете воспользоваться `torchvision.transforms.Lambda` или встроить аугментации на этапе подготовки данных в классе `DS`. Написан выше при помощи `Albumentations` Всегда имеет смысл посмотреть, как происходит предобработка данных, и как происходит обработка данных нейросетью (если это возможно). В этом ДЗ предлагается визуализировать произвольные примеры из обучающей выборки, а также один из произвольных примеров, обработанных только что созданной (но не обученной) моделью. Задание 3: отобразите несколько произвольных примеров обучающей выборки. ###Code NUM = 2 fig, ax = plt.subplots(NUM, NUM, figsize=(7, 7)) plt.subplots_adjust(left=NUM*(-0.2), bottom=NUM*(-0.1)) for i in range(NUM**2): idx = np.random.randint(low=0, high=len(val_dataset)) image = val_dataset[idx] ax[i // NUM, i % NUM].imshow(image.squeeze(), cmap='gray') ax[i // NUM, i % NUM].set_xticks([]) ax[i // NUM, i % NUM].set_yticks([]) ax[i // NUM, i % NUM].grid(False); ###Output _____no_output_____ ###Markdown Задание 4: отобразите один произвольный пример обучающей выборки и результат вычисления нейросети на этом примере. ###Code example_index = int(np.random.randint(0, len(train_dataset), size=1)) example = train_dataset[example_index] ## compute model output for this example; ## Transfer the result to CPU and convrt it from tensor to numpy array example_transformed = model(example.unsqueeze(0).to(device)) fig, ax = plt.subplots(1, 2, figsize=(7, 6)) for i, img in enumerate((example, example_transformed)): img = img.cpu().detach().numpy().squeeze() ax[i].imshow(img, cmap='gray') ax[i].grid(False) ax[i].set_xticks([]) ax[i].set_yticks([]) ###Output _____no_output_____ ###Markdown Обучение моделиТеперь, когда вы реализовали модель и подготовили данные, можно приступить к непосредственному обучению модели.Костяк функции обучения написан ниже, далее вы должны будете реализовать ключевые части этого алгоритма ###Code def train_model(model: torch.nn.Module, train_dataset: torch.utils.data.Dataset, val_dataset: torch.utils.data.Dataset, loss_function: torch.nn.Module = nn.MSELoss(reduction='mean'), metrics_function: torch.nn.Module=nn.L1Loss(reduction='mean'), optimizer_class: Type[torch.optim.Optimizer] = torch.optim.Adam, optimizer_params: Dict = {}, lr_scheduler_class: Any = torch.optim.lr_scheduler.StepLR, lr_scheduler_params: Dict = {}, batch_size = 64, max_epochs = 100, early_stopping_patience = 10 ): metrics = {'loss': [], 'metrics': []} optimizer = optimizer_class(model.parameters(), **optimizer_params) lr_scheduler = lr_scheduler_class(optimizer, **lr_scheduler_params) train_loader = torch.utils.data.DataLoader(train_dataset, shuffle=True, batch_size=batch_size) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size) best_val_loss = None best_epoch = None for epoch in range(max_epochs): print(f'Epoch {epoch+1} of {max_epochs}') train_single_epoch(model, optimizer, loss_function, train_loader) val_metrics = validate_single_epoch(model, loss_function, metrics_function, val_loader) metrics['loss'].append(val_metrics['loss']) metrics['metrics'].append(val_metrics['metrics']) print(f'Validation metrics: \n{val_metrics}') lr_scheduler.step() if best_val_loss is None or best_val_loss > val_metrics['loss']: print(f'Best model yet, saving') best_val_loss = val_metrics['loss'] best_epoch = epoch # torch.save(model, './best_model.pth') if epoch - best_epoch > early_stopping_patience: print('Early stopping triggered') break return metrics ###Output _____no_output_____ ###Markdown Задание 5: Реализуйте функцию, производящую обучение сети на протяжении одной эпохи ( полного прохода по всей обучающей выборке ). На вход будет приходить модель, оптимизатор, функция потерь и объект типа `DataLoader`.> ВНИМАНИЕ!!! В задаче обучения автокодировщика нет меток-цифр. Есть только входные примеры. При итерировании по `data_loader` вы будете получать только сами примеры! Подумайте, что должно выступать в качестве целевой переменной, когда вы вычисляете функцию потерь. ###Code def train_single_epoch(model: torch.nn.Module, optimizer: torch.optim.Optimizer, loss_function: torch.nn.Module, data_loader: torch.utils.data.DataLoader): model.train() for X in data_loader: # send data on correct device type X = X.to(device) # vanish gradient optimizer.zero_grad() # forward-pass X_pred = model(X) # calculating loss value loss = loss_function(X_pred, X) # backward-pass loss.backward() # optimization step optimizer.step() ###Output _____no_output_____ ###Markdown Задание 6: Реализуйте функцию производящую расчёт функции потерь на тестовой выборке. На вход будет приходить модель, функция потерь и DataLoader. На выходе ожидается словарь с вида:```{ 'loss': , 'accuracy': }``` ###Code def validate_single_epoch(model: torch.nn.Module, loss_function: torch.nn.Module, metric_function: torch.nn.Module, data_loader: torch.utils.data.DataLoader): model.eval() test_loss = 0.0 running_loss = 0.0 running_metrics = 0.0 with torch.no_grad(): for X in data_loader: # send data on correct device type X = X.to(device) # forward-pass X_pred = model(X) # accumulating statistics running_loss += loss_function(X_pred, X).item() running_metrics += metric_function(X_pred, X).item() return { 'loss': running_loss / (RESIZE_SHAPE[0]*RESIZE_SHAPE[1]), 'metrics': running_metrics / (RESIZE_SHAPE[0]*RESIZE_SHAPE[1]), } ###Output _____no_output_____ ###Markdown Если вы корректно реализовали все предыдущие шаги и ваша модель имеет достаточное количество обучаемых параметров, то в следующей ячейке должен пойти процесс обучения. Задание 7: придумайте функцию потерь.Обратите внимание, что в предложенном скелетном коде функция потерь по умолчанию прописана неверно. Вы, скорее всего, не сможете обучить автокодировщик с этой функцией потерь. Подумайте, какая должна быть функция потерь при условии, что она должна оценивать качество воспроизведения значений в каждом отдельном пикселе изображения. Впишите в ячейке ниже правильную функцию потерь. Подумайте, можно ли использовать уже предложенную функцию потерь, и что нужно сделать с данными, чтобы с ней можно было обучить вашу модель. **Ответ**:Да, на мой взгляд тоже, кросс-энтропия не подходит для решения задачи, так как по своей задумке, кросс-энтропия используется в том случае, когда ответ алгоритма - вероятность принадлежности классу `y`.Но ведь у нас же, хотя значение пикселя и лежит от нуля до единицы, но не является вероятностью, так как при такой интерпретации, единица отвечала бы тому, что пиксель белый, а ноль - черный. Но на изначальном изображении, яркости пискелей принимают не бинарное значение, а непрерывное в отрезке [0, 1]. Поэтому по своей сути мы решаем задачу *регрессии*, а не классификации.В таком случае, я предлагаю использовать `pixel-wise MSE`.Впрочем, кросс-энтропию тоже можно было бы использовать, если, например, преобразовать исходные данные таким образом, что они принимали бы лишь значения вида 0.0, 0.1, 0.2,... 1.0. Тогда бы это уже была классификация. ###Code metrics = train_model(model, train_dataset=train_dataset, val_dataset=val_dataset, optimizer_params={'lr': 1e-2}, lr_scheduler_params={'step_size': 60}, batch_size=BATCH_SIZE, max_epochs=200) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) ax[0].plot(metrics['loss']) ax[0].set_title('MSE score (loss)') ax[1].plot(metrics['metrics']) ax[1].set_title('MAE score (metric)'); ###Output _____no_output_____ ###Markdown Проверка результатовПосмотрите, как ваш обученный автокодировщик преобразует входные примеры. В ячейке ниже приведен код для отображения произвольной пары пример-реконструкция. ###Code index = int(np.random.randint(0, len(train_dataset), size=1)) sample = train_dataset[index][0] sample_np = np.squeeze(sample.detach().cpu().numpy()) sample_ae = model(sample.view(1,1,28,28).to(device)) sample_ae_np = np.squeeze(sample_ae.detach().cpu().numpy()) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(4, 2), dpi=200) for i, ax in enumerate(axes): img = sample_np if i==0 else sample_ae_np ax.imshow(img, cmap='gray') ax.set_xticks([]) ax.set_yticks([]) plt.tight_layout() fig.patch.set_facecolor('white') plt.imshow(img, cmap='gray') ###Output _____no_output_____ ###Markdown Идентификация аномалий.Идея идентификации аномалий состоит в том, чтобы разделить "обычные" экземпляры и "необычные" по значению функции потерь автокодировщика на этих примерах. Предполагается, что автокодировщик, обученный на обычных примерах не будет способен достаточно точно воспроизвести необычные примеры. То есть, значение функции потерь на необычных экземплярах будет большим. В этом ДЗ предлагается найти все экземпляры-выбросы, встречающиеся в тестовой выборке, руководствуюясь только значениями функции потерь автокодировщика. Для этого на всех объектах тестовой выборки следует вычислить функцию потерь обученного автокодировщика, и определить, какие экземпляры являются аномальными.В качестве решения всего задания следует получить список значений 0 или 1, соответствующих объектам тестовой выборки. Признак `1` означает, что этот объект является аномалией, `0` - означает, что объект обычный.Например, следующий список `[1,1,1,0,0,0,0,0,0,0,1,0]` означает, что в выборке из 12 объектов тестовой выборки аномалиями считаются первые три и предпоследний. Остальные считаются обычными.> ВНИМАНИЕ! Сопоставление при проверке будет производиться только по номерам объектов в тестовой выборке. Поэтому выборку при вычислении функции потерь не следует перемешивать. То есть, при создании загрузчика данных `torch.utils.data.DataLoader` аргумент перемешивания должен быть выключен: `shuffle=False` Задание 8: примените обученную модель автокодировщика к данным тестовой выборки. Вычислите функцию потерь на каждом объекте тестовой выборки. ###Code model.eval() test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False) losses = [] metric = nn.MSELoss() with torch.no_grad(): with tqdm(total=len(test_loader)) as pbar: for data in test_loader: ## здесь следует вычислить значения функции потерь для всех элементов тестовой выборки. data = data.to(device) data_pred = model(data) curr_loss = metric(data_pred, data).item() / (RESIZE_SHAPE[0] * RESIZE_SHAPE[1]) losses.append(curr_loss) pbar.update(1) ###Output 0%| | 0/10000 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:3458: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode) 100%|██████████| 10000/10000 [00:12<00:00, 828.74it/s] ###Markdown Анализ значений функции потерьПроанализируйте распределение значений функции потерь и найдите объекты, на которых она слишком большая. Задание 9:- Отобразите гистограмму значений функции потерь. Сделайте выводы (напишите ТЕКСТ) относительно значений для обычных объектов и аномалий.- Найдите объекты-аномалии, отобразите их.- Вычислите на них обученный вами автокодировщик. Отобразите рядом объекты-аномалии и их реконструкцию, вычисленную вашим автокодировщиком. Я предлагаю сделать следующее: давайте посмотрим на примерную плотность, расчитанную по KDE и оценим ее визуально. Видим, что у нас оооооочень длинный хвост в направлении маленького лосса, что довольно странно.Буквально методом проб и ошибок рассмотрим за границу "доверительного интервала" для лосса квантиль порядка 0.002 и изобразим объекты, лосс на которых меньше этого граничного значения. ###Code plt.figure(figsize=(10, 4)) mean = np.mean(losses) left_border = np.quantile(losses, 0.0019) right_border = mean + 2 * np.std(losses) plt.axvline(x=mean, ymin=0, ymax=1, color='royalblue') plt.axvline(x=left_border, ymin=0, ymax=1, color='aqua') plt.axvline(x=right_border, ymin=0, ymax=1, color='aqua') sns.histplot(losses, kde=True); def tensor2numpy(tensor): img = tensor.numpy() img = np.moveaxis(img, source=(0, 1, 2), destination=(2, 0, 1)).squeeze() return img losses_np = np.array(losses) outliers = np.where(losses_np < (left_border)) outliers fig, ax = plt.subplots(2, int(len(outliers[0])), figsize=(120, 5)) for idx, outlier_idx in enumerate(outliers[0]): data = test_dataset[outlier_idx] img = tensor2numpy(data) data_pred = model(data.unsqueeze(0).to(device)) img_pred = tensor2numpy(data_pred.cpu().detach()) ax[0, idx].imshow(img, cmap='gray') ax[1, idx].imshow(img_pred, cmap='gray') ax[0, idx].set_title(f'image index: {outlier_idx}') ax[0, idx].grid(False) ax[1, idx].grid(False) fig.tight_layout() fig.subplots_adjust(wspace=0.4) fig.patch.set_facecolor('white') ###Output /usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:3458: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode) ###Markdown Как видим, на аномалиях лосс почему-то сильно МЕНЬШЕ, чем на объектах из генеральной совокупности. Причем, что интересно, глянем на гистограмму изображений аномалий, реконструированных через автокодировщик: ###Code index = int(np.random.randint(0, len(outliers[0]), size=1)) sample = test_dataset[outliers[0][index]] sample_np = np.squeeze(sample.detach().cpu().numpy()) sample_ae = model(sample.view(1,1,28,28).to(device)) sample_ae_np = np.squeeze(sample_ae.detach().cpu().numpy()) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(6, 4), dpi=200) axes[0].imshow(sample_np) axes[0].set_title('outlier') axes[1].hist(np.concatenate(sample_ae_np), bins=20); axes[1].set_title('histogram of model(outlier)') ###Output /usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:3458: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode) ###Markdown Как видим, большинство значений в районе 0.5.Пока что для меня это больше загадка, почему автокодировщик именно так реагирует на выбросы, так как все-таки ожидались большие значения лосса. Задание 10: создайте файл маркировки аномалийВ этом задании требуется записать в файл признаки аномальности для всех объектов тестовой выборки в том порядке, в котором эти объекты идут в выборке. Это должен быть просто текстовый файл. В нем не должно быть никаких заголовков, никаких дополнительных символов. Только `0` или `1`пример содержимого файла (для выборки длиной 244 объекта, из которых 6 оказались помечены как аномалии):`0000000000000010000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000001100000000`Финальным решением этого ДЗ является этот файл. Его нужно сдать вместе с ноутбуком с вашим кодом. ###Code final_outliers = np.array([311, 1619, 1774, 3194, 3474, 3592, 3603, 4007, 5367, 5455, 6573, 8284, 8337, 8659, 9170, 9783]) final_outliers.shape answer = np.array([1 if (i in final_outliers) else 0 for i in range(len(test_loader.dataset))]) assert (answer[final_outliers] == np.ones(shape=final_outliers.shape)).all() answer_str = ''.join([str(i) for i in answer]) answer_str f = open("answer.txt", "w") f.write(answer_str) f.close() ###Output _____no_output_____
Sandbox_Testing_Heart Disease.ipynb
###Markdown Predictions ###Code predictions = model.predict(X) print(f"True output: {y[0]}") print(f"Predicted output: {predictions[0]}") print(f"Prediction Error: {predictions[0]-y[0]}") #pd.DataFrame({"Predicted": predictions, "Actual": y, "Error": predictions - y})[["Predicted", "Actual", "Error"]] X_min = X.min() X_max = X.max() y_min_actual = y.min() y_max_actual = y.max() ###Output _____no_output_____ ###Markdown Output from Min / Max ###Code y_min = 0.04178734 + 0.12850252 * X_min y_max = 0.04178734 + 0.12850252 * X_max print(f"Actual Min Value: {y_min_actual}") print(f"Calculated Min Value: {y_min}") print(f"Actual Max Value: {y_max_actual}") print(f"Calculated Max Value: {y_max}") ###Output Actual Min Value: 0 Calculated Min Value: 0.04178734 Actual Max Value: 1 Calculated Max Value: 0.17028986000000002 ###Markdown Prediction based on Min / Max ###Code y_min_predicted = model.predict([[X_min]]) y_max_predicted = model.predict([[X_max]]) print(f"Actual Min Value: {y_min_actual}") print(f"Predicted Min Value: {y_min_predicted}") print(f"Actual Max Value: {y_max_actual}") print(f"Predicted Max Value: {y_max_predicted}") ###Output Actual Min Value: 0 Predicted Min Value: [[0.04178734]] Actual Max Value: 1 Predicted Max Value: [[0.17028986]] ###Markdown Model Fit Illustration ###Code plt.scatter(X, y, c='blue') plt.plot([X_min, X_max], [y_min, y_max], c='red') ###Output _____no_output_____
Nomogram.ipynb
###Markdown Here are the simple examples for plotting nomogram, ROC curves, Calibration curves, and Decision curves in training and test dataset by using R language. ###Code # Library and data library(rms) library(pROC) library(rmda) train <-read.csv("E:/Experiments/YinjunDong/nomogram/EGFR-nomogram.csv") test <-read.csv("E:/Experiments/YinjunDong/nomogram/EGFR-nomogram-test.csv") # Nomogram dd=datadist(train) options(datadist="dd") f1 <- lrm(EGFR~ Rad +Smoking +Type ,data = train,x = TRUE,y = TRUE) nom <- nomogram(f1, fun=plogis,fun.at=c(.001, .01, seq(.1,.9, by=.4)), lp=F, funlabel="EGFR Mutations") plot(nom) # ROC train f2 <- glm(EGFR~ Rad +Smoking +Type ,data = train,family = "binomial") pre <- predict(f2, type='response') plot.roc(train$EGFR, pre, main="ROC Curve", percent=TRUE, print.auc=TRUE, ci=TRUE, ci.type="bars", of="thresholds", thresholds="best", print.thres="best", col="blue" #,identity=TRUE ,legacy.axes=TRUE, print.auc.x=ifelse(50,50), print.auc.y=ifelse(50,50) ) # ROC test pre1 <- predict(f2,newdata = test) plot.roc(test$EGFR, pre1, main="ROC Curve", percent=TRUE, print.auc=TRUE, ci=TRUE, ci.type="bars", of="thresholds", thresholds="best", print.thres="best", col="blue",legacy.axes=TRUE, print.auc.x=ifelse(50,50), print.auc.y=ifelse(50,50) ) # Calibration Curve train rocplot1 <- roc(train$EGFR, pre) ci.auc(rocplot1) cal <- calibrate(f1, method = "boot", B = 1000) plot(cal, xlab = "Nomogram Predicted Mutation", ylab = "Actual Mutation",main = "Calibration Curve") # Calibration Curve test rocplot2 <- roc(test$EGFR,pre1) ci.auc(rocplot2) f3 <- lrm(test$EGFR ~ pre1,x = TRUE,y = TRUE) cal2 <- calibrate(f3, method = "boot", B = 1000) plot(cal2, xlab = "Nomogram Predicted Mutation", ylab = "Actual Mutation",main = "Calibration Curve") # Decision Curve train Rad<- decision_curve(EGFR~ Rad, data = train, family = binomial(link ='logit'), thresholds= seq(0,1, by = 0.01), confidence.intervals =0.95,study.design = 'case-control', population.prevalence = 0.3) Clinical<- decision_curve(EGFR~ Smoking+Type, data = train, family = binomial(link ='logit'), thresholds= seq(0,1, by = 0.01), confidence.intervals =0.95,study.design = 'case-control', population.prevalence = 0.3) clinical_Rad<- decision_curve(EGFR~ Rad +Smoking+Type, data = train, family = binomial(link ='logit'), thresholds = seq(0,1, by = 0.01), confidence.intervals= 0.95,study.design = 'case-control', population.prevalence= 0.3) List<- list(Clinical,Rad,clinical_Rad) plot_decision_curve(List,curve.names= c('Clinical','Rad-Score','Nomogram'), cost.benefit.axis =FALSE,col = c('green','red','blue'), confidence.intervals =FALSE,standardize = FALSE, #legend.position = "none" legend.position = "bottomleft" ) # Decision Curve test Rad1<- decision_curve(EGFR~ Rad, data = test, family = binomial(link ='logit'), thresholds= seq(0,1, by = 0.01), confidence.intervals =0.95,study.design = 'case-control', population.prevalence = 0.3) Clinical1<- decision_curve(EGFR~ Smoking+Type, data = test, family = binomial(link ='logit'), thresholds= seq(0,1, by = 0.01), confidence.intervals =0.95,study.design = 'case-control', population.prevalence = 0.3) clinical_Rad1<- decision_curve(EGFR~ Rad +Smoking+Type, data = test, family = binomial(link ='logit'), thresholds = seq(0,1, by = 0.01), confidence.intervals= 0.95,study.design = 'case-control', population.prevalence= 0.3) List1<- list(Clinical1, Rad1, clinical_Rad1) plot_decision_curve(List1,curve.names= c('Clinical','Rad-Score','Nomogram'), cost.benefit.axis =FALSE,col = c('green','red','blue'), confidence.intervals =FALSE,standardize = FALSE, legend.position = "bottomleft") ###Output Calculating net benefit curves for case-control data. All calculations are done conditional on the outcome prevalence provided. Calculating net benefit curves for case-control data. All calculations are done conditional on the outcome prevalence provided. Note: The data provided is used to both fit a prediction model and to estimate the respective decision curve. This may cause bias in decision curve estimates leading to over-confidence in model performance. Calculating net benefit curves for case-control data. All calculations are done conditional on the outcome prevalence provided. Note: The data provided is used to both fit a prediction model and to estimate the respective decision curve. This may cause bias in decision curve estimates leading to over-confidence in model performance. Note: When multiple decision curves are plotted, decision curves for 'All' are calculated using the prevalence from the first DecisionCurve object in the list provided. ###Markdown Here are the simple examples for plotting nomogram, ROC curves, Calibration curves, and Decision curves in training and test dataset by using R language. ###Code # Library and data library(rms) library(pROC) library(rmda) train <-read.csv("E:/Experiments/YinjunDong/nomogram/EGFR-nomogram.csv") test <-read.csv("E:/Experiments/YinjunDong/nomogram/EGFR-nomogram-test.csv") # Nomogram dd=datadist(train) options(datadist="dd") f1 <- lrm(EGFR~ Rad +Smoking +Type ,data = train,x = TRUE,y = TRUE) nom <- nomogram(f1, fun=plogis,fun.at=c(.001, .01, seq(.1,.9, by=.4)), lp=F, funlabel="EGFR Mutations") plot(nom) # ROC train f2 <- glm(EGFR~ Rad +Smoking +Type ,data = train,family = "binomial") pre <- predict(f2, type='response') plot.roc(train$EGFR, pre, main="ROC Curve", percent=TRUE, print.auc=TRUE, ci=TRUE, ci.type="bars", of="thresholds", thresholds="best", print.thres="best", col="blue" #,identity=TRUE ,legacy.axes=TRUE, print.auc.x=ifelse(50,50), print.auc.y=ifelse(50,50) ) # ROC test pre1 <- predict(f2,newdata = test) plot.roc(test$EGFR, pre1, main="ROC Curve", percent=TRUE, print.auc=TRUE, ci=TRUE, ci.type="bars", of="thresholds", thresholds="best", print.thres="best", col="blue",legacy.axes=TRUE, print.auc.x=ifelse(50,50), print.auc.y=ifelse(50,50) ) # Calibration Curve train rocplot1 <- roc(train$EGFR, pre) ci.auc(rocplot1) cal <- calibrate(f1, method = "boot", B = 1000) plot(cal, xlab = "Nomogram Predicted Survival", ylab = "Actual Survival",main = "Calibration Curve") # Calibration Curve test rocplot2 <- roc(test$EGFR,pre1) ci.auc(rocplot2) f3 <- lrm(test$EGFR ~ pre1,x = TRUE,y = TRUE) cal2 <- calibrate(f3, method = "boot", B = 1000) plot(cal2, xlab = "Nomogram Predicted Survival", ylab = "Actual Survival",main = "Calibration Curve") # Decision Curve train Rad<- decision_curve(EGFR~ Rad, data = train, family = binomial(link ='logit'), thresholds= seq(0,1, by = 0.01), confidence.intervals =0.95,study.design = 'case-control', population.prevalence = 0.3) Clinical<- decision_curve(EGFR~ Smoking+Type, data = train, family = binomial(link ='logit'), thresholds= seq(0,1, by = 0.01), confidence.intervals =0.95,study.design = 'case-control', population.prevalence = 0.3) clinical_Rad<- decision_curve(EGFR~ Rad +Smoking+Type, data = train, family = binomial(link ='logit'), thresholds = seq(0,1, by = 0.01), confidence.intervals= 0.95,study.design = 'case-control', population.prevalence= 0.3) List<- list(Clinical,Rad,clinical_Rad) plot_decision_curve(List,curve.names= c('Clinical','Rad-Score','Nomogram'), cost.benefit.axis =FALSE,col = c('green','red','blue'), confidence.intervals =FALSE,standardize = FALSE, #legend.position = "none" legend.position = "bottomleft" ) # Decision Curve test Rad1<- decision_curve(EGFR~ Rad, data = test, family = binomial(link ='logit'), thresholds= seq(0,1, by = 0.01), confidence.intervals =0.95,study.design = 'case-control', population.prevalence = 0.3) Clinical1<- decision_curve(EGFR~ Smoking+Type, data = test, family = binomial(link ='logit'), thresholds= seq(0,1, by = 0.01), confidence.intervals =0.95,study.design = 'case-control', population.prevalence = 0.3) clinical_Rad1<- decision_curve(EGFR~ Rad +Smoking+Type, data = test, family = binomial(link ='logit'), thresholds = seq(0,1, by = 0.01), confidence.intervals= 0.95,study.design = 'case-control', population.prevalence= 0.3) List1<- list(Clinical1, Rad1, clinical_Rad1) plot_decision_curve(List1,curve.names= c('Clinical','Rad-Score','Nomogram'), cost.benefit.axis =FALSE,col = c('green','red','blue'), confidence.intervals =FALSE,standardize = FALSE, legend.position = "bottomleft") ###Output Calculating net benefit curves for case-control data. All calculations are done conditional on the outcome prevalence provided. Calculating net benefit curves for case-control data. All calculations are done conditional on the outcome prevalence provided. Note: The data provided is used to both fit a prediction model and to estimate the respective decision curve. This may cause bias in decision curve estimates leading to over-confidence in model performance. Calculating net benefit curves for case-control data. All calculations are done conditional on the outcome prevalence provided. Note: The data provided is used to both fit a prediction model and to estimate the respective decision curve. This may cause bias in decision curve estimates leading to over-confidence in model performance. Note: When multiple decision curves are plotted, decision curves for 'All' are calculated using the prevalence from the first DecisionCurve object in the list provided.
kaggle_notebook/exo_1_fetch_datea.ipynb
###Markdown **[SQL Micro-Course Home Page](https://www.kaggle.com/learn/intro-to-sql)**--- IntroductionThe first test of your new data exploration skills uses data describing crime in the city of Chicago.Before you get started, run the following cell. It sets up the automated feedback system to review your answers. ###Code # Set up feedack system from learntools.core import binder binder.bind(globals()) from learntools.sql.ex1 import * print("Setup Complete") ###Output Using Kaggle's public dataset BigQuery integration. Setup Complete ###Markdown Use the next code cell to fetch the dataset. ###Code from google.cloud import bigquery # Create a "Client" object client = bigquery.Client() # Construct a reference to the "chicago_crime" dataset dataset_ref = client.dataset("chicago_crime", project="bigquery-public-data") # API request - fetch the dataset dataset = client.get_dataset(dataset_ref) ###Output Using Kaggle's public dataset BigQuery integration. ###Markdown Exercises 1) Count tables in the datasetHow many tables are in the Chicago Crime dataset? ###Code # List all the tables in the "Chicago Crime" dataset tables = list(client.list_tables(dataset)) # print number of tables print(len(tables)) # print list of tables for table in tables: print(table.table_id) num_tables = len(tables) # Store the answer as num_tables and then run this cell q_1.check() ###Output _____no_output_____ ###Markdown For a hint or the solution, uncomment the appropriate line below. ###Code #q_1.hint() #q_1.solution() ###Output _____no_output_____ ###Markdown 2) Explore the table schemaHow many columns in the `crime` table have `TIMESTAMP` data? ###Code # construct a reference to the "crime" table table_ref = dataset_ref.table("crime") # API request - fetch the table table = client.get_table(table_ref) # Print information on all the columns in the "crime" table in the "Chicago Crime" dataset #table.schema # Preview the first five lines of the "crime" table crime = client.list_rows(table,max_results = 5).to_dataframe() # Preview the types of crime columns crime.info() num_timestamp_fields = 2 # Put your answer here q_2.check() ###Output _____no_output_____ ###Markdown For a hint or the solution, uncomment the appropriate line below. ###Code #q_2.hint() #q_2.solution() ###Output _____no_output_____ ###Markdown 3) Create a crime mapIf you wanted to create a map with a dot at the location of each crime, what are the names of the two fields you likely need to pull out of the `crime` table to plot the crimes on a map? ###Code # Write the code here to explore the data so you can find the answer # Preview the first five lines of the "crime" table client.list_rows(table, max_results = 5).to_dataframe() fields_for_plotting = ['latitude', 'longitude'] # Put your answers here q_3.check() ###Output _____no_output_____ ###Markdown For a hint or the solution, uncomment the appropriate line below. ###Code #q_3.hint() #q_3.solution() ###Output _____no_output_____ ###Markdown Thinking about the question above, there are a few columns that appear to have geographic data. Look at a few values (with the `list_rows()` command) to see if you can determine their relationship. Two columns will still be hard to interpret. But it should be obvious how the `location` column relates to `latitude` and `longitude`. ###Code # block: street # x_coordinate, y_coordinate (other ) # location: made of (latitude, longitude) # maybe also check district, community_area, iucr? ###Output _____no_output_____
notebooks/.ipynb_checkpoints/01_data_collection-checkpoint.ipynb
###Markdown Data Collection--- For this project, I'm building a model to identify periods of coastal upwelling off the coast of Oregon using data collected by the Ocean Observatories Initiatve (OOI). I intend to use environmental variables, such as seawater temperature, salinity, and dissolved oxygen, as features in a classification model, and I'll be labeling my target variable using the CUTI upwelling index. The OOI has several instrument packages off the Washington and Oregon coasts; for this project, I'll be focusing on the Oregon Offshore location, located offshore from Newport, Oregon. The instrument packages found here include a surface mooring that has a bulk meteorology package, a shallow profiler that collects data in the upper ~200 meters of the water column, a stationary platform located at a depth of 200 meters, and a deep profiler that collects data in the lower portion of the water column. ###Code # Imports import numpy as np import sys, os import xarray as xr import pandas as pd import cmocean.cm as cmo import requests import re import datetime as dt import seaborn as sns from netCDF4 import Dataset, num2date, date2num from datetime import datetime, timedelta from numpy import datetime64 as dt64, timedelta64 as td64 from matplotlib import pyplot as plt ###Output _____no_output_____ ###Markdown OOI APIIn order to run this notebook, you'll need to set up an account with the OOI and get a username and temporary token to use for data requests. You can do this here: https://ooinet.oceanobservatories.org/.Once you've made an account, copy and paste your username and token into the cell below. ###Code # enter your OOI API username and token API_USERNAME = 'OOIAPI-xx' # this will be similar to U6ZIZ5UNB1LIMA API_TOKEN = 'xx' # this will be similar to VUO6PXYMNLE ###Output _____no_output_____ ###Markdown Make sure you don't upload your API username and token combination to a public repository! If you accidentally do, you can go to the OOI website and get a new token - do this as soon as possible to prevent your credentials being used without your consent. --- Create output directory Set up an output directory to store the data pulled by this notebook - these files are fairly large, so they won't be saved to this repository. Instead, they'll be stored in a directory called `coastal_upwelling_output` that will be parallel to this repository on your local machine. ###Code parent_dir = os.path.dirname(os.getcwd()) grandparent_dir = os.path.dirname(parent_dir) output_dir = os.path.join(grandparent_dir, 'coastal_upwelling_output') try: os.mkdir(output_dir) except OSError as error: pass print(f'Data will be stored in {output_dir}.') ###Output Data will be stored in C:\Users\Derya\Documents\GitHub\coastal_upwelling_output. ###Markdown --- Pull data Start by looking at just a small selection of the data available:* pull data from the Oregon Offshore location (CE04)* use the surface mooring, 200m platform, and shallow profiler* was going to start with March-June 2017 but ended up pulling data for all of 2017* 2017 had poor continuity for the shallow profiler, so I also ended up pulling data for all of 2018 as well The following two functions were provided by the OOI for requesting and downloading data.`request_data` takes your API username and temporary token and inputs a request for data from the OOI. This function returns the URL where your requested data is stored, but the URl is not populated right away because these requests take time, especially if you request an entire year's worth of data! If you pass these URLs to the `get_data` function right away, you might get nothing but errors because the data isn't ready yet. When it is ready, you'll get an email notification with the same URL in it as is returned by the `request_data` function. Then you'll know it's time to run the next function!The URLs don't expire so you can keep using them if you get the data but don't save it locally to your machine, which I highyl recommend doing. I've saved all the data requests I've done in the file `data_urls.txt` for use again later. ###Code def request_data(reference_designator, method, stream, start_date=None, end_date=None): site = reference_designator[:8] node = reference_designator[9:14] instrument = reference_designator[15:] # Create the request URL api_base_url = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv' data_request_url = '/'.join((api_base_url, site, node, instrument, method, stream)) print(data_request_url) # All of the following are optional, but you should specify a date range params = { 'format': 'application/netcdf', 'include_provenance': 'true', 'include_annotations': 'true' } if start_date: params['beginDT'] = start_date if end_date: params['endDT'] = end_date # Make the data request r = requests.get(data_request_url, params=params, auth=(API_USERNAME, API_TOKEN)) data = r.json() # Return just the THREDDS URL return data['allURLs'][0] ###Output _____no_output_____ ###Markdown `get_data` accesses the URLs provided by the `request_data` function and accesses the .nc folders and OPeNDAP server data files. These files are the standard .netCDF file type, and are initially accessed using xarray, but this function returns them to you as a pandas dataframe. Running `get_data` can take a while if you are getting a lot of data at once. ###Code def get_data(url, variables, deployments=None): # Function to grab all data from specified directory tds_url = 'https://opendap.oceanobservatories.org/thredds/dodsC' dataset = requests.get(url).text ii = re.findall(r'href=[\'"]?([^\'" >]+)', dataset) # x = re.findall(r'(ooi/.*?.nc)', dataset) x = [y for y in ii if y.endswith('.nc')] for i in x: if i.endswith('.nc') == False: x.remove(i) for i in x: try: float(i[-4]) except: x.remove(i) # dataset = [os.path.join(tds_url, i) for i in x] datasets = [os.path.join(tds_url, i.split('=')[-1]).replace("\\","/") for i in x] # remove deployments not in deployment list, if given if deployments is not None: deploy = ['deployment{:04d}'.format(j) for j in deployments] datasets = [k for k in datasets if k.split('/')[-1].split('_')[0] in deploy] # remove collocated data files if necessary catalog_rms = url.split('/')[-2][20:] selected_datasets = [] for d in datasets: if catalog_rms == d.split('/')[-1].split('_20')[0][15:]: selected_datasets.append(d) # create a dictionary to populate with data from the selected datasets data_dict = {'time': np.array([], dtype='datetime64[ns]')} unit_dict = {} for v in variables: data_dict.update({v: np.array([])}) unit_dict.update({v: []}) print('Appending data from files') for sd in selected_datasets: try: url_with_fillmismatch = f'{sd}#fillmismatch' # I had to add this line to get the function to work ds = xr.open_dataset(url_with_fillmismatch, mask_and_scale=False) data_dict['time'] = np.append(data_dict['time'], ds['time'].values) for var in variables: data_dict[var] = np.append(data_dict[var], ds[var].values) units = ds[var].units if units not in unit_dict[var]: unit_dict[var].append(units) except: pass # convert dictionary to a dataframe df = pd.DataFrame(data_dict) df.sort_values(by=['time'], inplace=True) # make sure the timestamps are in ascending order return df, unit_dict ###Output _____no_output_____ ###Markdown You can uncomment the three cells below and run the requests, but you'll need to have entered your own API credentials near the start of the notebook. You only need to run the requests once, because the resulting URLs don't expire. However, requesting a full year's worth of data takes several minutes! The cells below will output a URL right away, but the `get_data()` function won't work until the request is actually fulfilled - you'll get an email from the OOI when your request is completed, and then you'll be able to continue. ###Code # Request data from the bulk meteorology package on the surface mooring # METBK_url = request_data('CE04OSSM-SBD11-06-METBKA000', 'recovered_host', # 'metbk_a_dcl_instrument_recovered', # '2017-01-01T00:00:00.000Z', '2017-12-31T12:00:00.000Z') # print('METBK_url: %s' %METBK_url) # Request data from the CTD-O on the shallow profiler # profiler_url = request_data('CE04OSPS-PC01B-4A-CTDPFA107', 'streamed', 'ctdpf_sbe43_sample', # '2017-01-01T00:00:00.000Z', '2017-12-31T12:00:00.000Z') # print('profiler_url: %s' %profiler_url) # Request data from the CTD-O on the 200 meter platform # platform_url = request_data('CE04OSPS-PC01B-4A-CTDPFA109', 'streamed', # 'ctdpf_optode_sample', # '2017-01-01T00:00:00.000Z', '2017-12-31T12:00:00.000Z') # print('platform_url: %s' %platform_url) ###Output _____no_output_____ ###Markdown Since I used my own credentials to get these URLs, I'm not sure they'll work for you. You may need to enter your own credentials, run the `request_data()` cells above, and replace the URLs below with the output.Here are three URLs that have data for the year 2017. We can use these to load in data files. Putting these URLs into your browser window will bring you to the OPeNDAP server where you can see variable names and descriptions. There are a lot of folders to navigate through, but [here](https://opendap.oceanobservatories.org/thredds/dodsC/ooi/[email protected]/20210422T030848056Z-CE04OSPS-SF01B-2A-CTDPFA107-streamed-ctdpf_sbe43_sample/deployment0004_CE04OSPS-SF01B-2A-CTDPFA107-streamed-ctdpf_sbe43_sample_20170801T160709.510843-20170916T121340.481090.nc.html) is an example of the CTD data, and [here](https://opendap.oceanobservatories.org/thredds/dodsC/ooi/[email protected]/20210422T030752259Z-CE04OSSM-SBD11-06-METBKA000-recovered_host-metbk_a_dcl_instrument_recovered/deployment0006_CE04OSSM-SBD11-04-VELPTA000-recovered_host-velpt_ab_dcl_instrument_recovered_20180403T183000-20180403T183000.nc.html) is an example of the METBK data. You can navigate to these examples by using the URLs below, selecting a .nc folder, and then clicking on the OPeNDAP link. ###Code METBK_2017_url = 'https://opendap.oceanobservatories.org/thredds/catalog/ooi/[email protected]/20210422T030752259Z-CE04OSSM-SBD11-06-METBKA000-recovered_host-metbk_a_dcl_instrument_recovered/catalog.html' profiler_2017_url = 'https://opendap.oceanobservatories.org/thredds/catalog/ooi/[email protected]/20210422T030848056Z-CE04OSPS-SF01B-2A-CTDPFA107-streamed-ctdpf_sbe43_sample/catalog.html' platform_2017_url = 'https://opendap.oceanobservatories.org/thredds/catalog/ooi/[email protected]/20210428T021551666Z-CE04OSPS-PC01B-4A-CTDPFA109-streamed-ctdpf_optode_sample/catalog.html' ###Output _____no_output_____ ###Markdown Get 2017 data Time to actually get the data! The `get_data` function returns a pandas dataframe, so if you'd rather use xarray you can convert the resulting dataframe to a data array or alter the `get_data` function to return xarray data array. ###Code # Specify the variable(s) of interest METBK_2017_var = ['sea_surface_temperature', 'met_windavg_mag_corr_east', 'met_windavg_mag_corr_north'] profiler_2017_var = ['seawater_pressure', 'density', 'practical_salinity', 'seawater_temperature', 'corrected_dissolved_oxygen'] platform_2017_var = ['seawater_pressure', 'density', 'practical_salinity', 'seawater_temperature', 'dissolved_oxygen'] ###Output _____no_output_____ ###Markdown The cell below takes a few minutes to run because the datasets we're getting from the OOI are quite large! ###Code # Get the data! METBK_2017_data, METBK_2017_units = get_data(METBK_2017_url, METBK_2017_var) profiler_2017_data, profiler_2017_units = get_data(profiler_2017_url, profiler_2017_var) platform_2017_data, platform_2017_units = get_data(platform_2017_url, platform_2017_var) # Check the variable units print(METBK_2017_units) print(profiler_2017_units) print(platform_2017_units) # Save the unit dictionaries above in case you accidentally overwrite the output: METBK_2017_units = {'sea_surface_temperature': ['ºC'], 'met_windavg_mag_corr_east': ['m s-1'], 'met_windavg_mag_corr_north': ['m s-1']} profiler_2017_units = {'seawater_pressure': ['dbar'], 'density': ['kg m-3'], 'practical_salinity': ['1'], 'seawater_temperature': ['ºC'], 'corrected_dissolved_oxygen': ['µmol kg-1']} platform_2017_units = {'seawater_pressure': ['dbar'], 'density': ['kg m-3'], 'practical_salinity': ['1'], 'seawater_temperature': ['ºC'], 'dissolved_oxygen': ['µmol kg-1']} ###Output _____no_output_____ ###Markdown Save these data files as `.csv`s so we can use them in the rest of the notebooks. This will take a few minutes! ###Code # Save 2017 dataframes to the output folder parallel to this GitHub repo METBK_2017_data.to_csv('../../coastal_upwelling_output/metbk_data_2017.csv', index=False) profiler_2017_data.to_csv('../../coastal_upwelling_output/profiler_data_2017.csv', index=False) platform_2017_data.to_csv('../../coastal_upwelling_output/platform_data_2017.csv', index=False) ###Output _____no_output_____ ###Markdown --- Get 2018 data The data availability in 2017 wasn't very good for the shallow profiler (it spent quite a number of months stuck near 200 meters), so I want to pull in the 2018 data to see if it's any better. The code below is all the same as the code above - the only differences are the dates that I used in the data requests. ###Code # METBK_url = request_data('CE04OSSM-SBD11-06-METBKA000', 'recovered_host', # 'metbk_a_dcl_instrument_recovered', # '2018-01-01T00:00:00.000Z', '2018-12-31T12:00:00.000Z') # print('METBK_url: %s' %METBK_url) # profiler_url = request_data('CE04OSPS-SF01B-2A-CTDPFA107', 'streamed', 'ctdpf_sbe43_sample', # '2018-01-01T00:00:00.000Z', '2018-12-31T12:00:00.000Z') # print('profiler_url: %s' %profiler_url) # platform_url = request_data('CE04OSPS-PC01B-4A-CTDPFA109', 'streamed', # 'ctdpf_optode_sample', # '2018-01-01T00:00:00.000Z', '2018-12-31T12:00:00.000Z') # print('platform_url: %s' %platform_url) ###Output https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample platform_url: https://opendap.oceanobservatories.org/thredds/catalog/ooi/[email protected]/20210502T005215562Z-CE04OSPS-PC01B-4A-CTDPFA109-streamed-ctdpf_optode_sample/catalog.html ###Markdown Again, all of these URLs and their associated `request_data` inputs are saved in the `data_urls.txt` file in the repo in case you lose them. ###Code METBK_2018_url = 'https://opendap.oceanobservatories.org/thredds/catalog/ooi/[email protected]/20210502T005210982Z-CE04OSSM-SBD11-06-METBKA000-recovered_host-metbk_a_dcl_instrument_recovered/catalog.html' profiler_2018_url = 'https://opendap.oceanobservatories.org/thredds/catalog/ooi/[email protected]/20210502T005211652Z-CE04OSPS-SF01B-2A-CTDPFA107-streamed-ctdpf_sbe43_sample/catalog.html' platform_2018_url = 'https://opendap.oceanobservatories.org/thredds/catalog/ooi/[email protected]/20210502T005215562Z-CE04OSPS-PC01B-4A-CTDPFA109-streamed-ctdpf_optode_sample/catalog.html' # Specify the variable(s) of interest METBK_2018_var = ['sea_surface_temperature', 'met_windavg_mag_corr_east', 'met_windavg_mag_corr_north'] profiler_2018_var = ['seawater_pressure', 'density', 'practical_salinity', 'seawater_temperature', 'corrected_dissolved_oxygen'] platform_2018_var = ['seawater_pressure', 'density', 'practical_salinity', 'seawater_temperature', 'dissolved_oxygen'] ###Output _____no_output_____ ###Markdown For some reason, the platform data was throwing an error in the `get_data()` function for one of the `.nc` files, so I had to go back and add a try/except block to it. This means the platform data collected by this code may not be all of the data available, but I'm not sure what's causing that to happen. ###Code # get the data! METBK_data_2018, METBK_2018_units = get_data(METBK_2018_url, METBK_2018_var) profiler_data_2018, profiler_2018_units = get_data(profiler_2018_url, profiler_2018_var) platform_data_2018, platform_2018_units = get_data(platform_2018_url, platform_2018_var) # check the variable units print(METBK_2018_units) print(profiler_2018_units) print(platform_2018_units) # Save the unit dictionaries above in case you accidentally overwrite the output: METBK_2018_units = {'sea_surface_temperature': ['ºC'], 'met_windavg_mag_corr_east': ['m s-1'], 'met_windavg_mag_corr_north': ['m s-1']} profiler_2018_units = {'seawater_pressure': ['dbar'], 'density': ['kg m-3'], 'practical_salinity': ['1'], 'seawater_temperature': ['ºC'], 'corrected_dissolved_oxygen': ['µmol kg-1']} platform_2018_units = {'seawater_pressure': ['dbar'], 'density': ['kg m-3'], 'practical_salinity': ['1'], 'seawater_temperature': ['ºC'], 'dissolved_oxygen': ['µmol kg-1']} METBK_data_2018 profiler_data_2018 platform_data_2018 ###Output _____no_output_____ ###Markdown Looking at the start and end dates in the dataframe displays above, it doesn't look like the full year of 2018 was covered by any of these instrument packages. How unfortunate! I think the best bet will be to make a model with the 2017 data first, and then come back to the 2018 afterwards and see if there's anything I can do with it in addition. Save these data files as `.csv`s so we can use them in the rest of the notebooks. ###Code # Save 2018 dataframes to the output folder parallel to this GitHub repo METBK_data_2018.to_csv('../../coastal_upwelling_output/metbk_data_2018.csv', index=False) profiler_data_2018.to_csv('../../coastal_upwelling_output/profiler_data_2018.csv', index=False) platform_data_2018.to_csv('../../coastal_upwelling_output/platform_data_2018.csv', index=False) ###Output _____no_output_____
dmu1/dmu1_ml_CDFS-SWIRE/1.10_CANDELS-GOODS-S.ipynb
###Markdown CDFS-SWIRE master catalogue Preparation of CANDELS-GOODS-S dataCANDELS-GOODS-N catalogue: the catalogue comes from `dmu0_CANDELS-GOODS-S`.In the catalogue, we keep:- The identifier (it's unique in the catalogue);- The position;- The stellarity;- The total magnitude.We don't know when the maps have been observed. We will use the year of the reference paper. ###Code from herschelhelp_internal import git_version print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version())) %matplotlib inline #%config InlineBackend.figure_format = 'svg' import matplotlib.pyplot as plt plt.rc('figure', figsize=(10, 6)) from collections import OrderedDict import os from astropy import units as u from astropy.coordinates import SkyCoord from astropy.table import Column, Table import numpy as np from herschelhelp_internal.flagging import gaia_flag_column from herschelhelp_internal.masterlist import nb_astcor_diag_plot, remove_duplicates from herschelhelp_internal.utils import astrometric_correction, flux_to_mag OUT_DIR = os.environ.get('TMP_DIR', "./data_tmp") try: os.makedirs(OUT_DIR) except FileExistsError: pass RA_COL = "candels_ra" DEC_COL = "candels_dec" ###Output _____no_output_____ ###Markdown I - Column selection ###Code imported_columns = OrderedDict({ 'ID': "candels_id", 'RA': "candels_ra", 'DEC': "candels_dec", 'CLASS_STAR': "candels_stellarity", #HST data 'ACS_F435W_FLUX': "f_acs_f435w", 'ACS_F435W_FLUXERR': "ferr_acs_f435w", 'ACS_F606W_FLUX': "f_acs_f606w", 'ACS_F606W_FLUXERR': "ferr_acs_f606w", 'ACS_F775W_FLUX': "f_acs_f775w", 'ACS_F775W_FLUXERR': "ferr_acs_f775w", 'ACS_F814W_FLUX': "f_acs_f814w", 'ACS_F814W_FLUXERR': "ferr_acs_f814w", 'ACS_F850LP_FLUX': "f_acs_f850lp", 'ACS_F850LP_FLUXERR': "ferr_acs_f850lp", 'WFC3_F098M_FLUX': "f_wfc3_f098m", 'WFC3_F098M_FLUXERR': "ferr_wfc3_f098m", 'WFC3_F105W_FLUX': "f_wfc3_f105w", 'WFC3_F105W_FLUXERR': "ferr_wfc3_f105w", 'WFC3_F125W_FLUX': "f_wfc3_f125w", 'WFC3_F125W_FLUXERR': "ferr_wfc3_f125w", 'WFC3_F160W_FLUX': "f_wfc3_f160w", 'WFC3_F160W_FLUXERR': "ferr_wfc3_f160w", #ISAAC? 'ISAAC_KS_FLUX':"f_isaac_k", 'ISAAC_KS_FLUXERR':"ferr_isaac_k", #HAWKI WIRCAM 'HAWKI_KS_FLUX': "f_hawki_k",# 33 WIRCAM_K_FLUX Flux density (in μJy) in the Ks-band (CFHT/WIRCam) (3) 'HAWKI_KS_FLUXERR': "ferr_hawki_k",# 34 WIRCAM_K_FLUXERR #Spitzer/IRAC 'IRAC_CH1_FLUX': "f_candels-irac_i1",# 47 IRAC_CH1_FLUX Flux density (in μJy) in the 3.6μm-band (Spitzer/IRAC) (3) 'IRAC_CH1_FLUXERR': "ferr_candels-irac_i1",# 48 IRAC_CH1_FLUXERR Flux uncertainty (in μJy) in the 3.6μm-band (Spitzer/IRAC) (3) 'IRAC_CH2_FLUX': "f_candels-irac_i2",# 49 IRAC_CH2_FLUX Flux density (in μJy) in the 4.5μm-band (Spitzer/IRAC) (3) 'IRAC_CH2_FLUXERR': "ferr_candels-irac_i2",# 50 IRAC_CH2_FLUXERR Flux uncertainty (in μJy) in the 4.5μm-band (Spitzer/IRAC) (3) 'IRAC_CH3_FLUX': "f_candels-irac_i3",# 51 IRAC_CH3_FLUX Flux density (in μJy) in the 5.8μm-band (Spitzer/IRAC) (3) 'IRAC_CH3_FLUXERR': "ferr_candels-irac_i3",# 52 IRAC_CH3_FLUXERR Flux uncertainty (in μJy) in the 5.8μm-band (Spitzer/IRAC) (3) 'IRAC_CH4_FLUX': "f_candels-irac_i4",# 53 IRAC_CH4_FLUX Flux density (in μJy) in the 8.0μm-band (Spitzer/IRAC) (3) 'IRAC_CH4_FLUXERR': "ferr_candels-irac_i4"# 54 IRAC_CH4_FLUXERR }) catalogue = Table.read("../../dmu0/dmu0_CANDELS-GOODS-S/data/hlsp_candels_hst_wfc3_goodss-tot-multiband_f160w_v1_cat.fits")[list(imported_columns)] for column in imported_columns: catalogue[column].name = imported_columns[column] epoch = 2011 # Clean table metadata catalogue.meta = None # Adding flux and band-flag columns for col in catalogue.colnames: if col.startswith('f_'): errcol = "ferr{}".format(col[1:]) # Some object have a magnitude to 0, we suppose this means missing value mask = np.isclose(catalogue[col], -99.) catalogue[col][mask] = np.nan catalogue[errcol][mask] = np.nan mag, error = flux_to_mag(np.array(catalogue[col])*1.e-6, np.array(catalogue[errcol])*1.e-6) # Fluxes are added in µJy catalogue.add_column(Column(mag, name="m{}".format(col[1:]))) catalogue.add_column(Column(error, name="m{}".format(errcol[1:]))) # Band-flag column if "ap" not in col: catalogue.add_column(Column(np.zeros(len(catalogue), dtype=bool), name="flag{}".format(col[1:]))) catalogue['candels_stellarity'] = catalogue['candels_stellarity'].astype(float) catalogue[:10].show_in_notebook() ###Output _____no_output_____ ###Markdown II - Removal of duplicated sources We remove duplicated objects from the input catalogues. ###Code SORT_COLS = ["ferr_acs_f435w","ferr_acs_f606w","ferr_acs_f775w","ferr_acs_f814w","ferr_acs_f850lp", "ferr_wfc3_f098m","ferr_wfc3_f105w","ferr_wfc3_f125w","ferr_wfc3_f160w", "ferr_isaac_k","ferr_hawki_k", "ferr_candels-irac_i1","ferr_candels-irac_i2","ferr_candels-irac_i3","ferr_candels-irac_i4"] FLAG_NAME = 'candels_flag_cleaned' nb_orig_sources = len(catalogue) catalogue = remove_duplicates(catalogue, RA_COL, DEC_COL, sort_col=SORT_COLS,flag_name=FLAG_NAME) nb_sources = len(catalogue) print("The initial catalogue had {} sources.".format(nb_orig_sources)) print("The cleaned catalogue has {} sources ({} removed).".format(nb_sources, nb_orig_sources - nb_sources)) print("The cleaned catalogue has {} sources flagged as having been cleaned".format(np.sum(catalogue[FLAG_NAME]))) ###Output The initial catalogue had 34930 sources. The cleaned catalogue has 34926 sources (4 removed). The cleaned catalogue has 4 sources flagged as having been cleaned ###Markdown III - Astrometry correctionWe match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results. ###Code gaia = Table.read("../../dmu0/dmu0_GAIA/data/GAIA_CDFS-SWIRE.fits") gaia_coords = SkyCoord(gaia['ra'], gaia['dec']) nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], gaia_coords.ra, gaia_coords.dec) delta_ra, delta_dec = astrometric_correction( SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), gaia_coords ) print("RA correction: {}".format(delta_ra)) print("Dec correction: {}".format(delta_dec)) catalogue[RA_COL].unit = u.deg catalogue[DEC_COL].unit = u.deg catalogue[RA_COL] = catalogue[RA_COL] + delta_ra.to(u.deg) catalogue[DEC_COL] = catalogue[DEC_COL] + delta_dec.to(u.deg) nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], gaia_coords.ra, gaia_coords.dec) ###Output _____no_output_____ ###Markdown IV - Flagging Gaia objects ###Code catalogue.add_column( gaia_flag_column(SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), epoch, gaia) ) GAIA_FLAG_NAME = "candels_flag_gaia" catalogue['flag_gaia'].name = GAIA_FLAG_NAME print("{} sources flagged.".format(np.sum(catalogue[GAIA_FLAG_NAME] > 0))) ###Output 123 sources flagged. ###Markdown V - Saving to disk ###Code catalogue.write("{}/CANDELS.fits".format(OUT_DIR), overwrite=True) ###Output _____no_output_____
win32_outlook_snippets.ipynb
###Markdown Send Mail with Local Outlook ###Code import win32com.client as win32 def sendMail(to,subject,body,attach_path=None): try: outlook = win32.Dispatch('outlook.application') mail = outlook.CreateItem(0) mail.To = to mail.Subject = subject mail.Body = body # mail.HTMLBody = '<h2>HTML Message body</h2>' #this field is optional # To attach a file to the email (optional): if attach_path != None: attachment = attach_path mail.Attachments.Add(attachment) return mail.Send()##Sadly return None except: return False ###Output _____no_output_____ ###Markdown Get mails from inbox / a specific folder ###Code import win32com.client outlook = win32com.client.Dispatch("Outlook.Application").GetNamespace("MAPI") # inbox = outlook.GetDefaultFolder(6).Folders.Item("SubFolderName") ##Read from a particular subfolder inbox = outlook.GetDefaultFolder(6)#Inbox messages = inbox.Items all_mails = [] for mail in messages: all_mails.append(mail) all_mails ###Output _____no_output_____ ###Markdown Save mails to local folder in .msg format ###Code import os import re for message in all_mails: name = str(message.subject) name = name+'.msg' message.SaveAs(os.getcwd()+'//SavedMails//'+name) ###Output _____no_output_____
notebooks/Melbourne_COVID_cases.ipynb
###Markdown Victorian LGA COVID cases timeseries ###Code # import libraries import pandas as pd import numpy as np import requests from bs4 import BeautifulSoup import datetime from datetime import datetime # base url to scarpe base_url = 'https://covidlive.com.au/vic/' # read in list of Victorian LGA names LGAs = pd.read_csv('../data/vic_LGAs.csv') LGAs = LGAs['LGA'].tolist() ###Output _____no_output_____ ###Markdown Scrape the daily COVID data from https://covidlive.com.au/vic/ ###Code # clean LGA names - repalce space with hyphen to append to base url LGA_url = [] for l in LGAs: a = l.replace(" ", "-").lower() LGA_url.append(a) # scrape data from https://covidlive.com.au/vic/ for all LGAs # table structure appears to change frequently # may need to tweak code to account for changes in table structure columns = ["Date", "Cumulative_cases", "Daily_cases", "LGA_name", "Active" "Active_cases_change"] master_df = pd.DataFrame(columns=columns) # iterate over each LGA for i in LGA_url: response = requests.get(base_url + i) soup = BeautifulSoup(response.text, 'html.parser') table = soup.find('table', {'class': 'DAILY-CASES-BY-LGA'}) try: table_rows = table.find_all('tr') print("Retrieved URL " + i) except: print("No data for URL " + i) l = [] for tr in table_rows: td = tr.find_all('td') row = [tr.text for tr in td] l.append(row) df = pd.DataFrame(l, columns=["Date", "-1", "Cumulative_cases", "-2", "Daily_cases", "Active_cases", "-3", "Active_cases_change"]) del df['-1'] del df['-2'] del df['-3'] #del df['Active_cases'] df = df.drop(df.index[0]) df['LGA_name'] = i master_df = pd.concat([master_df, df],ignore_index=True) # delete dirty columns # check the master dataframe del master_df['ActiveActive_cases_change'] del master_df['Active_cases_change'] master_df.head(10) ###Output _____no_output_____ ###Markdown covidlive.com.au formatted digits using a thousands comma which is nice for presentation, but can be a pain when scraping data. When converting to a dataframe, pandas has inferred the data as a string, not numeric. This will need to be cleaned and converted to numeric. ###Code # replace all commas with nothing master_df['Cumulative_cases'] = master_df['Cumulative_cases'].str.replace(",", "") master_df['Active_cases'] = master_df['Active_cases'].str.replace(",", "") # convert columns to numeric master_df['Cumulative_cases'] = pd.to_numeric(master_df['Cumulative_cases']) master_df['Active_cases'] = pd.to_numeric(master_df['Active_cases']) # check the data types master_df.dtypes ###Output _____no_output_____ ###Markdown Check a couple of different LGAs, one single word and one with a hyphen, to ensure the data has been scraped correctly. ###Code # inspect a couple of LGAs to ensure data has been scraped correctly # check Hume master_df[master_df['LGA_name']== "wyndham"].head(5) # check Mount-Alexander master_df[master_df['LGA_name']== "mount-alexander"].head(5) ###Output _____no_output_____ ###Markdown I intend to use the values in the LGA name column as labels. As such, these need to be cleaned (i.e. hyphen removed). ###Code # update LGA where space was replaced with hypen for visualisation, and covert to proper case master_df['LGA_name'] = master_df['LGA_name'].str.replace("-", " ").str.title() # check LGAs updated master_df[master_df['LGA_name'] == "Mount Alexander"].head(5) ###Output _____no_output_____ ###Markdown Next, a flag is created to indentify which LGAs are part of greater Melbourne. While this information could be scraped, it was easier to manually pull these LGAs from https://en.wikipedia.org/wiki/Local_government_areas_of_VictoriaFinally, we run a quick count of LGA by region to check we've classified all LGAs. ###Code # add flag to each LGA indicating if it is metro or reginal greater_melb = ['Melbourne', 'Port Phillip', 'Stonnington', 'Yarra', 'Banyule', 'Bayside', 'Boroondara', 'Darebin', 'Glen Eira', 'Hobsons Bay', 'Kingston', 'Manningham', 'Maribyrnong', 'Monash', 'Moonee Valley', 'Moreland', 'Whitehorse', 'Brimbank', 'Cardinia', 'Casey', 'Frankston', 'Greater Dandenong', 'Hume', 'Knox', 'Maroondah', 'Melton', 'Mornington Peninsula', 'Nillumbik', 'Whittlesea', 'Wyndham', 'Yarra Ranges'] # check count of LGA by region master_df["Region"] = np.where(master_df["LGA_name"].isin(greater_melb), "Greater Melbourne", "Regional") print(master_df.groupby('Region')['LGA_name'].nunique()) # check the flag has been applied to the dataframe master_df[master_df['Region'] == "Greater Melbourne"] ###Output _____no_output_____ ###Markdown Next issue is the date. Currently, the date is represented in dd-mmm format - ideally we need this in a longer format so will convert to yyyy-mm-dd. ###Code # convert date time master_df['Date'] = pd.to_datetime(master_df['Date'], format='%d %b') master_df['Date'] = master_df['Date'].apply(lambda dt: dt.replace(year=2020)) master_df.head() ###Output _____no_output_____ ###Markdown Importing ShapefileThe next section of the notebook brings in the shapefile used to create the base layer of the map. The shapefile was sourced from the ABS: https://www.abs.gov.au/AUSSTATS/[email protected]/DetailsPage/1270.0.55.003July%202016?OpenDocument* Read in the Victorian LGA shapefile* Remove administrative LGAs note used for mapping* Clean LGA names for merge with the master_df ###Code #import libraries import matplotlib.pyplot as plt import geopandas as gpd import shapefile as shp import re # read in the shapefle of all Australian LGAs sf_aus = gpd.read_file('../data/AUS_LGA_SHP/LGA_2020_AUST.shp') sf_aus.head(5) # subset aus shapefile to vic LGAs only vic_sf = sf_aus[sf_aus['STE_NAME16'] == 'Victoria'] # remove LGA without polygons vic_sf = vic_sf[vic_sf['LGA_NAME20'] != 'Migratory - Offshore - Shipping (Vic.)'] vic_sf = vic_sf[vic_sf['LGA_NAME20'] != 'No usual address (Vic.)'] vic_sf = vic_sf[vic_sf['LGA_NAME20'] != 'Unincorporated Vic'] # remove text within parentheses vic_sf['LGA_NAME20'] = vic_sf['LGA_NAME20'].str.replace(r"(\(.+\))", "") # strip remaining whitespace from LGA name vic_sf['LGA_NAME20'] = vic_sf['LGA_NAME20'].str.rstrip() # check LGAs have been cleaned vic_sf[vic_sf['LGA_NAME20'] == "Wyndham"].head() # check the head of the dataframe master_df.head() ###Output _____no_output_____ ###Markdown Merged the COVID data with the shapefileFinally, we merge the COVID data with the VIC shapefile. This methodology was sources from the following TDS blog: https://towardsdatascience.com/lets-make-a-map-using-geopandas-pandas-and-matplotlib-to-make-a-chloropleth-map-dddc31c1983d ###Code # merge the vic_sf and covid data merged = vic_sf.set_index('LGA_NAME20').join(master_df.set_index('LGA_name')) # check the (n) of rows and columns merged.shape # insepct the first few rows merged.head() # clean the data frame # remove rows with missing dates df_plot = merged[merged['Date'].notna()] # subset to only Greater Melbourne LGAs df_plot = df_plot[df_plot['Region'] == 'Greater Melbourne'] # subset to only included required columns df_plot = df_plot[['Cumulative_cases', 'Active_cases','geometry', 'Date', 'Region']] ###Output _____no_output_____ ###Markdown Create a single plotThe next section creates a snapshot plot of a single date to ensure the code works to create the cumulative COID-19 case count for each LGA. The test plot below uses data from 10 August 2020 to generate a single plot.The colour scale can easily be changed to one of many matplotlib default scales. for more info see: https://matplotlib.org/3.1.0/tutorials/colors/colormaps.htmlThe name of the 'colour' variable can be edited to change to the desired colour scale. ###Code # subset the data to a specific day dfa = df_plot[df_plot['Date'] == '2020-08-10'] # colour pallette colour = 'YlOrRd' # set a variable that will call whatever column we want to visualise on the map variable = 'Cumulative_cases' # set the range for the choropleth vmin, vmax = 0, 1600 # create figure and axes for Matplotlib fig, ax = plt.subplots(1, figsize=(14, 8)) dfa.plot(column=variable, cmap=colour, linewidth=0.8, ax=ax, edgecolor='0.8') # remove the axis ax.axis('off') # add a title ax.set_title('Cumulative COVID-19 cases for Greater Melbourne LGAs', fontdict={'fontsize': '18','fontweight' : '3'}) # create an annotation for the data source ax.annotate('Data source: https://covidlive.com.au', xy=(0.1, .08), xycoords='figure fraction', horizontalalignment='left', verticalalignment='top', fontsize=10, color='#555555') # Create colorbar as a legend sm = plt.cm.ScalarMappable(cmap=colour, norm=plt.Normalize(vmin=vmin, vmax=vmax)) sm._A = [] cbar = fig.colorbar(sm) fig.savefig('../plots/single_plot/2020-08-10_cumulative_cases.png', dpi=300) ###Output _____no_output_____ ###Markdown Loop to create plots for each dayFinally we extract all dates from the master df dataframe. This will be used to iterate over each date and subset the dataframe to date [i]. We will generate one plot for each date and output the plot to the destinctation file folder. from there, the pots will be stitched together to create a GIF or video. Again, the bulk of the code to create plots for each day was adapted from: https://towardsdatascience.com/lets-make-a-map-using-geopandas-pandas-and-matplotlib-to-make-a-chloropleth-map-dddc31c1983d ###Code # reformat the dates in the covid data dataframe master_df['Date_only'] = [d.strftime("%Y-%m-%d") for d in master_df['Date']] # extract a list of the unique dates - this will be used to iterate over in the for loop below dates = list(master_df['Date_only'].unique()) # merge the covid data and the shapefile dataframes #merged = vic_sf.set_index('LGA_NAME20').join(master_df.set_index('LGA_name')) #merged = merged[merged['Region'] == 'Greater Melbourne'] # remove NAs, subset to metro, remove columns #df1 = merged[merged['Date'].notna()] #df1 = df1[df1['Region'] == 'Greater Melbourne'] #df1 = df1[['Cumulative_cases', 'Active_cases','geometry', 'Date', 'Region']] # reformat dates #df1['Day'] = df1['Date'].dt.day #df1['Month'] = df1['Date'].dt.month #import calendar #df1['Month'] = df1['Month'].apply(lambda x: calendar.month_abbr[x]) # start the for loop to create one map per day import os import warnings warnings.filterwarnings('ignore') # set the range for the choropleth vmin, vmax = 0, 1500 output_path = '../plots/cumulative_cases' variable = 'Cumulative_cases' i = 1 colour = 'YlOrRd' for date in dates: #subset data to each day data = df_plot[df_plot['Date'] == date] data['Cumulative_cases'] = pd.to_numeric(data['Cumulative_cases']) # create map, UDPATE: added plt.Normalize to keep the legend range the same for all maps fig = data.plot(column=variable, cmap=colour, figsize=(15,8), linewidth=0.8, edgecolor='0.8', vmin=vmin, vmax=vmax, legend=True, norm=plt.Normalize(vmin=vmin, vmax=vmax)) # remove axis of chart fig.axis('off') # add a title fig.set_title('Cumulative COVID-19 cases\nGreater Melbourne - ' + str(date), fontdict={'fontsize': '20','fontweight' : '3'}) # create an annotation for the data source fig.annotate('Data source: https://covidlive.com.au', xy=(0.1, .08), xycoords='figure fraction', horizontalalignment='left', verticalalignment='top', fontsize=10, color='#555555') # this will save the figure as a high-res png in the output path. you can also save as svg if you prefer. filepath = os.path.join(output_path, str(date) +'_covid_cases.jpg') chart = fig.get_figure() chart.savefig(filepath, dpi=350) print("Saved image: " + output_path + str(date) +'_covid_cases.jpg') i = i + 1 ###Output _____no_output_____ ###Markdown Create another set of plots using active cases- We need to create a single plot to make sure we get all the plot features correct before running the loop. - Before that, we need to find the max a min values to ensure the plot colour scale is set to a sensible range - active cases and cumulative cases will have two very different ranges. ###Code # get min and max values active_max = df_plot['Active_cases'].max() active_min = df_plot['Active_cases'].min() # subset the data to a specific day dfa = df_plot[df_plot['Date'] == '2020-08-10'] # colour pallette colour = 'YlOrRd' # set a variable that will call whatever column we want to visualise on the map variable = 'Active_cases' # set the range for the choropleth vmin, vmax = active_min, active_max # create figure and axes for Matplotlib fig, ax = plt.subplots(1, figsize=(14, 8)) dfa.plot(column=variable, cmap=colour, linewidth=0.8, ax=ax, edgecolor='0.8') # remove the axis ax.axis('off') # add a title ax.set_title('Cumulative COVID-19 cases for Greater Melbourne LGAs', fontdict={'fontsize': '18','fontweight' : '3'}) # create an annotation for the data source ax.annotate('Data source: https://covidlive.com.au', xy=(0.1, .08), xycoords='figure fraction', horizontalalignment='left', verticalalignment='top', fontsize=10, color='#555555') # Create colorbar as a legend sm = plt.cm.ScalarMappable(cmap=colour, norm=plt.Normalize(vmin=vmin, vmax=vmax)) sm._A = [] cbar = fig.colorbar(sm) fig.savefig('../plots/single_plot/2020-08-10_active_cases.png', dpi=300) # start the for loop to create one map per day import os import warnings warnings.filterwarnings('ignore') # set the range for the choropleth vmin, vmax = active_min, active_max output_path = '../plots/active_cases' variable = 'Active_cases' i = 1 colour = 'YlOrRd' for date in dates: #subset data to each day data = df_plot[df_plot['Date'] == date] data['Active_cases'] = pd.to_numeric(data['Active_cases']) # create map, UDPATE: added plt.Normalize to keep the legend range the same for all maps fig = data.plot(column=variable, cmap=colour, figsize=(15,8), linewidth=0.8, edgecolor='0.8', vmin=vmin, vmax=vmax, legend=True, norm=plt.Normalize(vmin=vmin, vmax=vmax)) # remove axis of chart fig.axis('off') # add a title fig.set_title('Daily active COVID-19 cases\nGreater Melbourne - ' + str(date), fontdict={'fontsize': '20','fontweight' : '3'}) # create an annotation for the data source fig.annotate('Data source: https://covidlive.com.au', xy=(0.1, .08), xycoords='figure fraction', horizontalalignment='left', verticalalignment='top', fontsize=10, color='#555555') # this will save the figure as a high-res png in the output path. you can also save as svg if you prefer. filepath = os.path.join(output_path, str(date) +'_covid_cases.jpg') chart = fig.get_figure() chart.savefig(filepath, dpi=350) print("Saved image: " + output_path + str(date) +'_covid_cases.jpg') i = i + 1 ###Output _____no_output_____
2020-04-16.solarAnalytics/04.Analysis/2020-05-17.Model_eng.001.MultiLinear.ipynb
###Markdown Model engineering 001: MultiLinearRegressionIn this part of the project to predict the photovoltaic production of solar cells on a roof we are considering a simple regression model - MultiLinearRegression. We will treat this as a regression problem, not taking the temporal aspect, i.e. time series forcasting, into account. Data mining and missing value treatment of weather data from the DarkSky API and data from the photovoltaic system were covered in other notebooks:- Data mining and EDA of weather data: https://kyso.io/heiko/predicting-solar-panel-output-eda-of-photovoltaic-data- Data mining and EDA of photovoltaic data: https://kyso.io/heiko/predicting-solar-panel-output-eda-of-weather-data- Missing value treatment: https://kyso.io/heiko/predicting-solar-panel-output-missing-value-treatment-of-weather-data MethodologyWe will apply multilinear regression by following these steps:1. Load the data into one dataframe2. Select the features we will use for the prediction. We can look at the correlation matrix and remove redundant features that are correlated. Multicollinearity undermines the statistical significance of an independent variable. While it should not have a major impact on the model’s accuracy, it does affect the variance associated with the prediction, as well as, reducing the quality of the interpretation of the independent variables. In other words, the effect your data has on the model isn’t trustworthy. Your explanation of how the model takes the inputs to produce the output will not be reliable. (You can read more about this here: https://towardsdatascience.com/multicollinearity-why-is-it-a-problem-398b010b77ac). We will just drop (one of the) columns that are correlated. We could feature engineer another features that combines the correlated features, but at this point this will not be considered.3. Consider missing values. This is still part of the feature selection process. We remove features that have lots of missing values that we could not interpolate.4. Model selection. We will consider different techniques to determine which features to include in our model. We will use backward eliminiation and forward elimination. Import libraries ###Code import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.compose import ColumnTransformer from sklearn.metrics import r2_score,mean_squared_error import eli5 sns.set() %matplotlib inline %config InlineBackend.figure_format = 'svg' ###Output _____no_output_____ ###Markdown Import datasetLet's begin by importing the datasets for weather and photovoltaic data after missing value treatment. Check the links above for some insights on the data streams and treatment processes. DarkSky - Weather data ###Code df_weather = pd.read_csv('../02.Prepared_data/DarkSky/data_after_missing_value_treatment.csv', parse_dates=['time', 'sunriseTime', 'sunsetTime']) df_weather.head() df_weather.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 929 entries, 0 to 928 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 time 929 non-null datetime64[ns] 1 apparentTemperatureHigh 929 non-null float64 2 apparentTemperatureLow 847 non-null float64 3 cloudCover 744 non-null float64 4 precipProbability 837 non-null float64 5 precipType 839 non-null object 6 sunriseTime 929 non-null datetime64[ns] 7 sunsetTime 929 non-null datetime64[ns] 8 temperatureHigh 929 non-null float64 9 uvIndex 895 non-null float64 10 precipIntensityMax_cm 839 non-null float64 11 sun_uptime 922 non-null float64 dtypes: datetime64[ns](3), float64(8), object(1) memory usage: 87.2+ KB ###Markdown With datetime values in the dataframe, it is always a good idea to check if pandas has correctly parsed the dates. It seems here that no datetime was incorrectly stored as an object datatype in the dataframe, so all good. Solar output data ###Code df_prod = pd.read_csv('../02.Prepared_data/photovoltaic/integrated_daily.csv', parse_dates=['day']) df_prod.head() df_prod.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 624 entries, 0 to 623 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 day 624 non-null datetime64[ns] 1 energy 624 non-null float64 2 season 624 non-null object dtypes: datetime64[ns](1), float64(1), object(1) memory usage: 14.8+ KB ###Markdown Merge datasetsLet's combine all the dataframes. ###Code df = pd.merge(df_prod, df_weather, left_on='day', right_on='time') df = df.set_index('day') # what missing values there are percent_missing = df.isnull().sum() * 100 / len(df) missing_value_df = pd.DataFrame({'column_name': df.columns, 'percent_missing': percent_missing, 'absolute_missing': df.isnull().sum()}) missing_value_df df_prod.shape, df.shape ###Output _____no_output_____ ###Markdown Looks good, we have the two datasets merged. Let us now consider which features we are going to use for our prediction. Feature selectionThis step is non-trivial, but we already know from the correlation matrix that there are some highly correlated values among the temperature columns. ###Code # %matplotlib inline fig, ax = plt.subplots(figsize=(6,5)) sns.heatmap(df_weather.corr(), ax=ax, annot=True, cmap='viridis', fmt="0.2f"); plt.xticks(fontsize=7) plt.yticks(fontsize=7) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Since the `apparentTemperatureHigh` column has no missing values, we will use this column as the temperature information and drop the others. Also we can drop `time`, `sunriseTime`, and `sunSetTime` since they are not relevant further (we know the difference between sunset and rise from the `sun_uptime` column). ###Code df_cleaned = df.drop(columns=['time', 'apparentTemperatureLow', 'temperatureHigh', 'sunriseTime', 'sunsetTime']) df_cleaned.head() # %matplotlib inline fig, ax = plt.subplots(figsize=(6,5)) sns.heatmap(df_cleaned.corr(), ax=ax, annot=True, cmap='viridis', fmt="0.2f"); plt.xticks(fontsize=7) plt.yticks(fontsize=7) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown We can see now that the target column, `energy` is highly positively correlated with the temperature and uptime and moderately negatively correlated with the `cloudCover` column which is not very surprising and agrees with our intuition - when the temperature and sun hours are high, the energy produced during one day will be high and if there are a lot of clouds, there will be less energy produced. Missing valuesWe already know that there are a bunch of missing values in 2018 and they are clumped, so there is nothing to be done about it. We will drop these columns. We will also drop the `cloudCover` column because it has the most missing values and is correlated with the probability for precipitation for which we have more datapoints. That way we do not loose 30% of the data, but only around 15%. ###Code df_cleaned = df_cleaned.drop(columns=['cloudCover']) size_before = df_cleaned.shape[0] df_cleaned = df_cleaned.dropna() size_after = df_cleaned.dropna().shape[0] print(f"Dropped {size_before-size_after} ({100 * (size_before-size_after)/size_before:.2f}%) entries because of missing values. New size is {size_after} entries.") ###Output Dropped 93 (14.90%) entries because of missing values. New size is 531 entries. ###Markdown Export this datasetExporting this dataset makes sense because we can save the analysis steps for other models that we consider and make sure that we use the same baseline for the other models. ###Code df_cleaned.to_csv('../02.Prepared_data/dataset.Model_eng.001.csv', index=False) ###Output _____no_output_____ ###Markdown Select features ###Code # X = df_cleaned.iloc[:, 1:].values X = df_cleaned.iloc[:, 1:] X = X.reset_index(drop=True) # y = df_cleaned.iloc[:, 0].values y = df_cleaned.iloc[:, 0] y = y.reset_index(drop=True) ###Output _____no_output_____ ###Markdown PipelineLet's make our pipeline for the preprocessing here. That allows later some easier changes. ###Code X.head() ###Output _____no_output_____ ###Markdown Numeric features: StandardScalerStandardize features by removing the mean and scaling to unit variance ###Code numeric_features = ['apparentTemperatureHigh', 'precipProbability', 'uvIndex', 'precipIntensityMax_cm', 'sun_uptime'] numeric_transformer = Pipeline(steps=[ ('scaler', StandardScaler())]) ###Output _____no_output_____ ###Markdown Categorical features: OneHotEncoderThis preprocessing step will encode the `season` and `precipType` column values into a vector of length 3. For example, winter will be encoded as [1,0,0], summer as [0,1,0], and so on for the other seasons. ###Code categorical_features = ['season', 'precipType'] categorical_transformer = Pipeline(steps=[ ('onehot', OneHotEncoder())]) preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)]) ###Output _____no_output_____ ###Markdown Model ###Code clf = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', LinearRegression())]) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) ###Output _____no_output_____ ###Markdown FitLet's fit the model to the training data ###Code clf.fit(X_train, y_train); ###Output _____no_output_____ ###Markdown Score (Full model, M0) ###Code def adjR2(R2, n, p): """ Returns the adjusted R2 score using R2 score, n, and p. n: size of dataset p: number of predictors """ return 1-(1-R2)*(n-1)/(n-p-1) y_test_predict = clf.predict(X_test) y_train_predict = clf.predict(X_train) M0_R2 = r2_score(y_test, y_test_predict) M0_R2_train = r2_score(y_train, y_train_predict) n = X_train.shape[0] p = 1 M0_adj_R2 = adjR2(M0_R2, n, p) M0_adj_R2_train = adjR2(M0_R2_train, n, p) print(f"Train dataset -- R2 score: {M0_R2_train:.2f}, adjusted R2: {M0_adj_R2_train:.2f}.") print(f"Test dataset -- R2 score: {M0_R2:.2f}, adjusted R2: {M0_adj_R2:.2f}.") print(f"r2_score: {r2_score(y_test, y_test_predict)}") print(f"MSE: {mean_squared_error(y_test, y_test_predict)}") ###Output Train dataset -- R2 score: 0.77, adjusted R2: 0.77. Test dataset -- R2 score: 0.72, adjusted R2: 0.72. r2_score: 0.7190894719908503 MSE: 54.70055724462856 ###Markdown Feature importanceLet's assess the feature importances that the model has found. ###Code # get importance importance = clf['classifier'].coef_ # get feature names onehot_columns = list(clf.named_steps['preprocessor'].named_transformers_['cat'].named_steps['onehot'].get_feature_names(input_features=categorical_features)) numeric_features_list = list(numeric_features) numeric_features_list.extend(onehot_columns) # summarize feature importance for i,v in enumerate(importance): print('Feature: %0d, Score: %.5f' % (i,v)) # plot feature importance fig, ax = plt.subplots(figsize=(9,5)) plt.bar([x for x in range(len(importance))], importance, align='center') plt.xticks(np.arange(0, len(importance)), numeric_features_list, rotation=90) plt.show() eli5.explain_weights(clf.named_steps['classifier'], top=20, feature_names=numeric_features_list) ###Output _____no_output_____ ###Markdown We see that the temperature and sun uptime have high linear coefficients. For model selection, we will now use forward stepwise selection. Backward eliminationLet's use the p-values to select parameters to stay in the model. For that we will use backward elimination.1. Select significance level to stay in the model. We use $\alpha=0.05$.2. Fit full model with all predictors3. Consider predictor with highest p-value. If that p-value $> \alpha$, go to step 4, otherwise end.4. Remove the predictor with the largest p-value.5. Fit model without this variable, back to step 3. Get the full model ###Code pipe_preprocess = clf.named_steps['preprocessor'] # transform the feature data using the training data X_train_transformed = pipe_preprocess.fit_transform(X_train) X_test_transformed = pipe_preprocess.fit_transform(X_test) # add back the column headers # get feature names onehot_columns = list(clf.named_steps['preprocessor'].named_transformers_['cat'].named_steps['onehot'].get_feature_names(input_features=categorical_features)) numeric_features_list = list(numeric_features) numeric_features_list.extend(onehot_columns) X_train_transformed = pd.DataFrame(X_train_transformed, columns=numeric_features_list, dtype=np.float) X_test_transformed = pd.DataFrame(X_test_transformed, columns=numeric_features_list, dtype=np.float) X_train_transformed_full = X_train_transformed.copy() X_train_transformed.head() ###Output _____no_output_____ ###Markdown This is the full model, let's now implement the backward elimination procedure. ###Code import statsmodels.api as sm alpha = 0.05 # significance level pvals_max = 10 while pvals_max >= alpha: #Adding constant column of ones, mandatory for sm.OLS model X_train_1 = sm.add_constant(X_train_transformed) #Fitting sm.OLS model model = sm.OLS(y_train.values, X_train_1).fit() pvals = model.pvalues.sort_values() # largest pval is at the last position of the series pvals_max = pvals.iloc[-1] col_to_drop = pvals.index[-1] X_train_transformed = X_train_transformed.drop(columns=[col_to_drop]) pvals features = pvals.index.tolist() features = [f for f in features if f is not 'const'] features ###Output _____no_output_____ ###Markdown Using backward elimination we found the features to be used in the model to be:`apparentTemperatureHigh`, `sun_uptime`,`precipProbability`,`precipType_snow`,`precipType_rain`,`season_spring`,`season_winter`,`precipIntensityMax_cm`,`precipType_none` Let's run the regression model with these features. ###Code # drop the features we did not want to consider cols_to_drop = X_train_transformed_full.columns cols_to_drop = [c for c in cols_to_drop if c not in features] X_train_transformed_full = X_train_transformed_full.drop(columns=cols_to_drop) X_test_transformed = X_test_transformed.drop(columns=cols_to_drop) # run model pipe_lm = clf.named_steps['classifier'] pipe_lm.fit(X_train_transformed_full, y_train) y_test_predict = pipe_lm.predict(X_test_transformed) y_train_predict = pipe_lm.predict(X_train_transformed_full) M1_R2 = r2_score(y_test, y_test_predict) M1_R2_train = r2_score(y_train, y_train_predict) n = X_train.shape[0] p = 1 M1_adj_R2 = adjR2(M1_R2, n, p) M1_adj_R2_train = adjR2(M1_R2_train, n, p) print("Backward eliminated model:") print(f"Train dataset -- R2 score: {M1_R2_train:.2f}, adjusted R2: {M1_adj_R2_train:.2f}.") print(f"Test dataset -- R2 score: {M1_R2:.2f}, adjusted R2: {M1_adj_R2:.2f}.") print("Full model:") print(f"Train dataset -- R2 score: {M0_R2_train:.2f}, adjusted R2: {M0_adj_R2_train:.2f}.") print(f"Test dataset -- R2 score: {M0_R2:.2f}, adjusted R2: {M0_adj_R2:.2f}.") ###Output Full model: Train dataset -- R2 score: 0.77, adjusted R2: 0.77. Test dataset -- R2 score: 0.72, adjusted R2: 0.72. ###Markdown We see that from the R2 score, our eliminated model performed worse compared to the full model. Forward stepwise selectionThe approach for forward stepwise selection is the following:1. Start with the null model, $M_0$ that contains no predictors.2. For $k = 1, ... p-1$: a. Consider all $p-k$ models that augment the predictors in $M_k$ with one additional predictor b. Choose the best among these $p-k$ models, call it $M_{k+1}$. Best is defined as having the smallest RSS or highest R$^2$ 3. Select a single best model from among $M_0, ..., M_p$ using crossvalidated prediction error, $C_p$ (AIC), BIC, or adjusted R$^2$. ###Code adjR2s = [] CPs = [] BICs = [] features_good = [] ###Output _____no_output_____ ###Markdown Null model ###Code #Fitting sm.OLS model X_train_tmp = sm.add_constant(X_train)['const'] model = sm.OLS(y_train.values, X_train_tmp).fit() adjR2s.append(model.rsquared_adj) CPs.append(model.aic) BICs.append(model.bic) ###Output _____no_output_____ ###Markdown Forward stepwise selectionTo implement the forward stepwise selection, we first preprocess all the features. ###Code pipe_preprocess = clf.named_steps['preprocessor'] # transform the feature data using the training data X_train_tf = pipe_preprocess.fit_transform(X_train) X_test_tf = pipe_preprocess.fit_transform(X_test) # add back the column headers # get feature names onehot_columns = list(clf.named_steps['preprocessor'].named_transformers_['cat'].named_steps['onehot'].get_feature_names(input_features=categorical_features)) numeric_features_list = list(numeric_features) numeric_features_list.extend(onehot_columns) X_train_tf = pd.DataFrame(X_train_tf, columns=numeric_features_list, dtype=np.float) X_test_tf = pd.DataFrame(X_test_tf, columns=numeric_features_list, dtype=np.float) # features that can be added to the model features = X_train_tf.columns while len(features) > 0: r2 = pd.Series() # rsquared values in this iteration for f in features: features_select = features_good.copy() features_select.append(f) # features to select from the dataframe X_tmp = sm.add_constant(X_train_tf[features_select]) model = sm.OLS(y_train.values, X_tmp).fit() # check if that r2 is higher r2[f] = model.rsquared # feature with maximum r2 gets added to the selected feature list f = r2.sort_values().index[-1] features_good.append(f) # remove the feature from the features for the next iteration features = features.drop(f) # compute metrics from these models X_tmp = sm.add_constant(X_train_tf[features_good]) model = sm.OLS(y_train.values, X_tmp).fit() adjR2s.append(model.rsquared_adj) CPs.append(model.aic) BICs.append(model.bic) adjR2s = np.asarray(adjR2s) CPs = np.asarray(CPs) BICs = np.asarray(BICs) fig, axs = plt.subplots(2, 2, sharex=True) axs[0][0].plot(np.arange(len(adjR2s)), adjR2s, marker='o', color='blue', alpha=0.4) axs[0][0].set_xlabel('Model') axs[0][0].set_ylabel('adjusted R2 Score') adjR2_best = np.argmax(adjR2s) axs[0][0].scatter([adjR2_best], [np.max(adjR2s)], marker='+', s=100, color='black') axs[0][1].plot(np.arange(len(CPs)), CPs, marker='o', color='red', alpha=0.4) axs[0][1].set_xlabel('Model') axs[0][1].set_ylabel('AIC Score') CPs_best = np.argmin(CPs) axs[0][1].scatter([CPs_best], [np.min(CPs)], marker='+', s=100, color='black') axs[1][0].plot(np.arange(len(BICs)), BICs, marker='o', color='orange', alpha=0.4) axs[1][0].set_xlabel('Model') axs[1][0].set_ylabel('BIC Score') BIC_best = np.argmin(BICs) axs[1][0].scatter([BIC_best], [np.min(BICs)], marker='+', s=100, color='black') plt.tight_layout() plt.savefig('model_selection.png', dpi=900) plt.show() adjR2_best, CPs_best, BIC_best ###Output _____no_output_____ ###Markdown On the training data set, the model with 9 or 7 features (index in the list starts at 0) performs best, let's see how that performs on the test dataset. ###Code adjR2s_test = [] CPs_test = [] BICs_test = [] M_adjR2 = features_good[0:adjR2_best+1] # best model from adjusted R2 X_design = sm.add_constant(X_test_tf[M_adjR2]) model = sm.OLS(y_test.values, X_design).fit() adjR2s_test.append(model.rsquared_adj) CPs_test.append(model.aic) BICs_test.append(model.bic) M_CP = features_good[0:CPs_best+1] # best model from CP X_design = sm.add_constant(X_test_tf[M_CP]) model = sm.OLS(y_test.values, X_design).fit() adjR2s_test.append(model.rsquared_adj) CPs_test.append(model.aic) BICs_test.append(model.bic) M_BIC = features_good[0:BIC_best+1] # best model from BIC X_design = sm.add_constant(X_test_tf[M_BIC]) model = sm.OLS(y_test.values, X_design).fit() adjR2s_test.append(model.rsquared_adj) CPs_test.append(model.aic) BICs_test.append(model.bic) # full model X_design = sm.add_constant(X_test_tf) model = sm.OLS(y_test.values, X_design).fit() adjR2s_test.append(model.rsquared_adj) CPs_test.append(model.aic) BICs_test.append(model.bic) adjR2s_test = np.asarray(adjR2s_test) CPs_test = np.asarray(CPs_test) BICs_test = np.asarray(BICs_test) print("Performance on test set: Best model adjusted r2, CP, BIC, full model") print("Adjusted r2:") print(adjR2s_test) print("CP:") print(CPs_test) print("BIC") print(BICs_test) ###Output Performance on test set: Best model adjusted r2, CP, BIC, full model Adjusted r2: [0.72016406 0.72016406 0.71423215 0.74028067] CP: [741.94934462 741.94934462 742.37755474 734.85811558] BIC [768.67763297 768.67763297 763.76018541 764.25923276]
examples/hypothesis.ipynb
###Markdown Using hypothesis to find interesting examplesHypothesis is a powerful and unique library for testing code. It also includes a `find` function for finding examples that satisfy an arbitrary predicate. Here, we will explore some of the neat things that can be found using this function. ###Code from hypothesis import find import dit from dit.abc import * from dit.pid import * from dit.utils.testing import distribution_structures dit.ditParams['repr.print'] = dit.ditParams['print.exact'] = True ###Output _____no_output_____ ###Markdown To illustrate what the distribution source looks like, here we instantiate it with a `size` of 3 and an alphabet of `2`: ###Code a = distribution_structures(size=3, alphabet=2) a.example() ###Output _____no_output_____ ###Markdown Negativity of co-information ###Code def pred(value): return lambda d: dit.multivariate.coinformation(d) < value ce = find(distribution_structures(3, 2), pred(-1e-5)) print(ce) print("The coinformation is: {}".format(dit.multivariate.coinformation(ce))) ce = find(distribution_structures(3, 2), pred(-0.5)) print(ce) print("The coinformation is: {}".format(dit.multivariate.coinformation(ce))) ###Output Class: Distribution Alphabet: (0, 1) for all rvs Base: linear Outcome Class: tuple Outcome Length: 3 RV Names: None x p(x) (0, 0, 0) 1/4 (0, 1, 1) 1/4 (1, 0, 1) 1/4 (1, 1, 0) 1/4 The coinformation is: -1.0 ###Markdown The Gács-Körner common information is bound from above by the dual total correlationAs we will see, hypothesis can not find an example of $K > B$, because one does not exist. ###Code def b_lt_k(d): k = dit.multivariate.gk_common_information(d) b = dit.multivariate.dual_total_correlation(d) return k > b find(distribution_structures(size=3, alphabet=3, uniform=True), b_lt_k) ###Output _____no_output_____ ###Markdown BROJA is not ProjWe know that the BROJA and Proj PID measures are not the same, but the BROJA paper did not provide any simple examples of this. Here, we find one. ###Code ce = find(distribution_structures(3, 2, True), lambda d: PID_BROJA(d) != PID_Proj(d)) ce print(PID_BROJA(ce)) print(PID_Proj(ce)) ###Output +---------+--------+--------+ | I_broja | I_r | pi | +---------+--------+--------+ | {0:1} | 0.5000 | 0.0000 | | {0} | 0.3113 | 0.1887 | | {1} | 0.3113 | 0.1887 | | {0}{1} | 0.1226 | 0.1226 | +---------+--------+--------+ +--------+--------+--------+ | I_proj | I_r | pi | +--------+--------+--------+ | {0:1} | 0.5000 | 0.0425 | | {0} | 0.3113 | 0.1462 | | {1} | 0.3113 | 0.1462 | | {0}{1} | 0.1650 | 0.1650 | +--------+--------+--------+
semester2/notebooks/1.5-writing-functions-solutions.ipynb
###Markdown Writing Functions--- **EXERCISES** _1. Suppose we have the following String variable:_```pythony = "You just called a function on y"```_Please, write a function `f()` in python code that prints the above `y` string variable_. **SOLUTION** ###Code # create a variable y y = "You just called a function on y" def f(y): print(y) # call the function f(y) ###Output You just called a function on y ###Markdown _2. Suppose we have a function that adds 5 to a given integer as following:_```pythondef addFive(x): x = x + 5 return x```_What does this return?_```python5 + addFive(5)``` **SOLUTION** ###Code def addFive(x): x = x + 5 return x 5 + addFive(5) #add 5 to our addFive function ###Output _____no_output_____ ###Markdown _3. Write a function `bmi(height, weight)` that returns the Body Mass Index._ The formula for BMI is kg/m2. **SOLUTION** ###Code def bmi(height,weight): bmi = weight/(height**2) return(bmi) # test your function bmi(187,79) ###Output _____no_output_____
training/dlscore03_train.ipynb
###Markdown Training workflow for DLScore version 3 Changes: PDB ids of the test files are saved in a pickle file to use later for testing purpose. Networks are sorted depending on validation parformance Sensoring method wasn't used ###Code from __future__ import print_function import numpy as np import pandas as pd import keras from keras import metrics from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras import backend as K from keras import regularizers from keras import initializers from keras.callbacks import EarlyStopping from keras.utils.training_utils import multi_gpu_model from keras.utils import plot_model from scipy.stats import pearsonr from sklearn.model_selection import KFold import random import os.path import itertools import pickle import json from tqdm import * import glob import re import csv import multiprocessing as mp from tqdm import * random.seed(12345) # Sensoring outliers def sensoring(test_x, train_y, pred): """ Sensor the predicted data to get rid of outliers """ mn = np.min(train_y) mx = np.max(train_y) pred = np.minimum(pred, mx) pred = np.maximum(pred, mn) return pred def split_data(x, y, pdb_ids, valid_size=0.1, test_size=0.1): """Converts the pandas dataframe into a matrix. Splits the data into train, test and validations set. Returns numpy arrays""" # Load the indices of the non-zero columns. # The same indices need to be used during the evaluation of test data #with open("nonzero_column_indices.pickle", "rb") as f: # non_zero_columns = pickle.load(f) # Filter the zero columns out #data = data[:, non_zero_columns] pdb_ids = np.array(pdb_ids) # Validation set val_count = int(x.shape[0]*valid_size) # Number of examples to take val_ids = np.random.choice(x.shape[0], val_count) # Select rows randomly val_x = x[val_ids, :] val_y = y[val_ids] # Save the pdb ids of the validation set in disk with open('val_pdb_ids.pickle', 'wb') as f: pickle.dump(pdb_ids[val_ids], f) # Remove validation set from data mask = np.ones(x.shape[0], dtype=bool) mask[val_ids] = False x = x[mask, :] y = y[mask] pdb_ids = pdb_ids[mask] # Test set test_count = int(x.shape[0]*test_size) test_ids = np.random.choice(x.shape[0], test_count) test_x = x[test_ids, :] test_y = y[test_ids] # Save the pdb ids of the test set in disk with open('test_pdb_ids.pickle', 'wb') as f: pickle.dump(pdb_ids[test_ids], f) # Remove test set from data mask = np.ones(x.shape[0], dtype=bool) mask[test_ids] = False x = x[mask, :] y = y[mask] return x, y, val_x, val_y, test_x, test_y def train_test_split(x, y, pdb_ids, test_size=0.1): """Converts the pandas dataframe into a matrix. Splits the data into train, test and validations set. Returns numpy arrays""" # Load the indices of the non-zero columns. # The same indices need to be used during the evaluation of test data #with open("nonzero_column_indices.pickle", "rb") as f: # non_zero_columns = pickle.load(f) # Filter the zero columns out #data = data[:, non_zero_columns] pdb_ids = np.array(pdb_ids) # Test set test_count = int(x.shape[0]*test_size) test_ids = np.random.choice(x.shape[0], test_count) test_x = x[test_ids, :] test_y = y[test_ids] # Save the pdb ids of the test set in disk with open('test_pdb_ids.pickle', 'wb') as f: pickle.dump(pdb_ids[test_ids], f) # Remove test set from data mask = np.ones(x.shape[0], dtype=bool) mask[test_ids] = False x = x[mask, :] y = y[mask] return x, y, test_x, test_y # Build the model def get_model(x_size, hidden_layers, dr_rate=0.5, l2_lr=0.01): model = Sequential() model.add(Dense(hidden_layers[0], activation="relu", kernel_initializer='normal', input_shape=(x_size,))) model.add(Dropout(0.2)) for i in range(1, len(hidden_layers)): model.add(Dense(hidden_layers[i], activation="relu", kernel_initializer='normal', kernel_regularizer=regularizers.l2(l2_lr), bias_regularizer=regularizers.l2(l2_lr))) model.add(Dropout(dr_rate)) model.add(Dense(1, activation="linear")) return(model) # def get_hidden_layers(): # x = [128, 256, 512, 768, 1024, 2048] # hl = [] # for i in range(1, len(x)): # hl.extend([p for p in itertools.product(x, repeat=i+1)]) # return hl def run(serial=0): if serial: print('Running in parallel') else: print('Running standalone') # Create the output directory output_dir = "output_0313/" if not os.path.isdir(output_dir): os.mkdir(output_dir) # Preprocess the data pdb_ids = [] x = [] y = [] with open('Data_new.csv', 'r') as f: reader = csv.reader(f) next(reader, None) # Skip the header for row in reader: pdb_ids.append(str(row[0])) x.append([float(i) for i in row[1:349]]) y.append(float(row[349])) x = np.array(x, dtype=np.float32) y = np.array(y, dtype=np.float32) # Normalize the data mean = np.mean(x, axis=0) std = np.std(x, axis=0) + 0.00001 x_n = (x - mean) / std # Write things down transform = {} transform['std'] = std transform['mean'] = mean with open(output_dir + 'transform.pickle', 'wb') as f: pickle.dump(transform, f) # Read the 'best' hidden layers with open("best_hidden_layers.pickle", "rb") as f: hidden_layers = pickle.load(f) # Determine if running all alone or in parts (if in parts, assuming 8) if serial: chunk_size = (len(hidden_layers)//8) + 1 hidden_layers = [hidden_layers[i*chunk_size:i*chunk_size+chunk_size] for i in range(8)][serial-1] # Network parameters epochs = 100 batch_size = 128 keras_callbacks = [EarlyStopping(monitor='val_mean_squared_error', min_delta = 0, patience=20, verbose=0) ] # Split the data into training and test set train_x, train_y, test_x, test_y = train_test_split(x_n, y, pdb_ids, test_size=0.1) #train_x, train_y, val_x, val_y, test_x, test_y = split_data(x_n, y, pdb_ids) pbar = tqdm_notebook(total=len(hidden_layers), desc='GPU: ' + str(serial)) for i in range(len(hidden_layers)): if serial: model_name = 'model_' + str(serial) + '_' + str(i) else: model_name = 'model_' + str(i) # Set dynamic memory allocation in a specific gpu config = K.tf.ConfigProto() config.gpu_options.allow_growth = True if serial: config.gpu_options.visible_device_list = str(serial-1) K.set_session(K.tf.Session(config=config)) # Build the model model = get_model(train_x.shape[1], hidden_layers=hidden_layers[i]) # Save the model with open(output_dir + model_name + ".json", "w") as json_file: json_file.write(model.to_json()) if not serial: # If not running with other instances then use 4 GPUs model = multi_gpu_model(model, gpus=4) model.compile( loss='mean_squared_error', optimizer=keras.optimizers.Adam(lr=0.001), metrics=[metrics.mse]) #Save the initial weights ini_weights = model.get_weights() # 10 fold cross validation kf = KFold(n_splits=10) val_fold_score = 0.0 train_fold_score = 0.0 for _i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): # Reset the weights model.set_weights(ini_weights) # Train the model train_info = model.fit(train_x[train_index], train_y[train_index], batch_size=batch_size, epochs=epochs, shuffle=True, verbose=0, validation_split=0.1, #validation_data=(train_x[valid_index], train_y[valid_index]), callbacks=keras_callbacks) current_val_predict = model.predict(train_x[valid_index]).flatten() current_val_r2 = pearsonr(current_val_predict, train_y[valid_index])[0] # If the current validation score is better then save it if current_val_r2 > val_fold_score: val_fold_score = current_val_r2 # Save the predicted values for both the training set train_predict = model.predict(train_x[train_index]).flatten() train_fold_score = pearsonr(train_predict, train_y[train_index])[0] # Save the training history with open(output_dir + 'history_' + model_name + '_' + str(_i) + '.pickle', 'wb') as f: pickle.dump(train_info.history, f) # Save the results dict_r = {} dict_r['hidden_layers'] = hidden_layers[i] dict_r['pearsonr_train'] = train_fold_score dict_r['pearsonr_valid'] = val_fold_score pred = model.predict(test_x).flatten() dict_r['pearsonr_test'] = pearsonr(pred, test_y)[0] #pred = sensoring(test_x, test_y, model.predict(test_x)).flatten() # Write the result in a file with open(output_dir + 'result_' + model_name + '.pickle', 'wb') as f: pickle.dump(dict_r, f) # Save the model weights model.save_weights(output_dir + "weights_" + model_name + ".h5") # Clear the session and the model from the memory del model K.clear_session() pbar.update() jobs = [mp.Process(target=run, args=(i,)) for i in range(1, 9, 1)] for j in jobs: j.start() ###Output Running in parallel Running in parallel Running in parallel Running in parallel Running in parallel Running in parallel Running in parallel Running in parallel ###Markdown Result Analysis ###Code # Get the network number and pearson coffs. of train, test and validation set in a list (in order) output_dir = 'output_0313/' model_files = sorted(glob.glob(output_dir + 'model_*')) weight_files = sorted(glob.glob(output_dir + 'weights_*')) result_files = sorted(glob.glob(output_dir + 'result_*')) models = [] r2 = [] hidden_layers = [] weights = [] # net_layers = [] for mod, res, w in zip(model_files, result_files, weight_files): models.append(mod) weights.append(w) with open(res, 'rb') as f: r = pickle.load(f) coeff = [r['pearsonr_train'], r['pearsonr_test'], r['pearsonr_valid']] r2.append(coeff) hidden_layers.append(r['hidden_layers']) ###Output _____no_output_____ ###Markdown Sort the indices according to the validation result ###Code r2_ar = np.array(r2) sorted_indices = list((-r2_ar)[:, 2].argsort()) sorted_r2 = [r2[i] for i in sorted_indices] sorted_r2[:5] sorted_models = [models[i] for i in sorted_indices] sorted_models[:5] sorted_weights = [weights[i] for i in sorted_indices] sorted_weights[:5] ###Output _____no_output_____ ###Markdown Save the lists in the disk ###Code with open(output_dir + 'sorted_models.pickle', 'wb') as f: pickle.dump(sorted_models, f) with open(output_dir + 'sorted_r2.pickle', 'wb') as f: pickle.dump(sorted_r2, f) with open(output_dir + 'sorted_weights.pickle', 'wb') as f: pickle.dump(sorted_weights, f) m_sorted_models = [] m_sorted_weights = [] modified_folder = 'dl_networks_03/' for m in sorted_models: m_sorted_models.append(modified_folder+ m[12:]) for w in sorted_weights: m_sorted_weights.append(modified_folder+w[12:]) with open('sorted_models.pickle', 'wb') as f: pickle.dump(m_sorted_models, f) with open('sorted_weights.pickle', 'wb') as f: pickle.dump(m_sorted_weights, f) ###Output _____no_output_____
KEY_Lab_04.ipynb
###Markdown Lab 4: Linear regression using matrix algebra**Data Science for Biologists** &8226; University of Washington &8226; BIOL 419/519 &8226; Winter 2019Course design and lecture material by [Bingni Brunton](https://github.com/bwbrunton) and [Kameron Harris](https://github.com/kharris/). Lab design and materials by [Eleanor Lutz](https://github.com/eleanorlutz/), with helpful comments and suggestions from Bing and Kam. Table of Contents1. Reading in data using the Pandas library2. Review of linear regression 3. Bonus exercises Helpful resources- [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas- [10 minute Pandas tutorial](http://pandas.pydata.org/pandas-docs/stable/getting_started/10min.html)- [Pandas Cheat Sheet](https://datacamp-community-prod.s3.amazonaws.com/9f0f2ae1-8bd8-4302-a67b-e17f3059d9e8) by Python for Data Science- [Importing Data Cheat Sheet](https://datacamp-community-prod.s3.amazonaws.com/50d31142-3de0-4159-89b9-18b718a728ef) by Python for Data Science Data- The data in this lab is from [Tager et al 1983](https://www.nejm.org/doi/full/10.1056/NEJM198309223091204) and was edited for teaching purposes. Lab 4 Part 1: Reading in data using the Pandas libraryThe Pandas library is a powerful tool for working with large datasets. We'll work with Pandas in depth throughout the quarter, so don't worry about understanding every single detail by the end of this lab. Today we'll mainly use Pandas to load in data to use for linear regression practice. A Pandas `dataframe` is a type of object (like a Numpy `array`) that stores information. However, unlike a Numpy `array`, a Pandas `dataframe` can store values of many different types, such as strings or numbers. This can be very useful when working with biology data, which often includes descriptive variables like sex, color, or location. It's conventional to import the Pandas library using the nickname `pd`: ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Also import the other libraries we plan to use today, and set up Matplotlib for inline plotting: ###Code import numpy as np import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Importing data in Pandas In today's lab we'll investigate data from [Tager et al 1983](https://www.nejm.org/doi/full/10.1056/NEJM198309223091204) on the effects of smoking on lung function. The dataset includes 654 children aged 3 to 19. Tager's team collected information on each child's age, sex, and smoking status (non-smoker or smoking). Tager also recorded the child's height in inches, and measured the FEV, or Forced Expiratory Volume (a measure of healthy lung function).In the following code block we'll read in this data from `FEV_data.csv`, located in the `Lab_04` folder. We'll load the data in this file as a variable called `df` (short for "dataframe"). ###Code df = pd.read_csv("./data/Lab_04/FEV_data.csv") ###Output _____no_output_____ ###Markdown Inspecting data in PandasPandas has its own set of useful functions to inspect data. Two examples of these functions are `.head()` and `.tail()`. In each of these functions, we first reference the name of our Pandas dataframe - `df` - and follow this by `.head()` or `.tail()`. `df.head()` prints the first five rows of the `df` dataframe, and `df.tail()` prints the last five rows.**Exercise 1:** Run the code in the block below to look at the output. Then, create a new code block that prints the *last* five rows instead of the first five. ###Code df.head() # Your code here df.tail() ###Output _____no_output_____ ###Markdown Notice that the Pandas dataframe has bold column names at the top of the table. Unlike in Numpy, we can use Pandas column names to directly reference a specific column. For example, `df["ht"]` refers to all values in just the **ht** (or height) column. We can use Numpy functions we already know to find interesting attributes of these columns, such as the median or mean height: ###Code np.median( df["ht"] ) np.mean( df["ht"] ) ###Output _____no_output_____ ###Markdown **Exercise 2:** Print the minimum and maximum age of people in this dataset using the built-in functions `min()` and `max()`. ###Code print( "Minimum age is:", min(df["age"]) ) # df["age"].min() will also work. print( "Maximum age is:", max(df["age"]) ) # df["age"].max() will also work. ###Output Minimum age is: 3 Maximum age is: 19 ###Markdown Describing interesting properties of data in PandasWe can use the Pandas function `describe` to calculate interesting attributes of our dataset. In the output below, you should see a new table with the same columns as `df.head()`. However, instead of showing the original data, we see descriptive variables such as `count` (the number of data points), `mean` (the mean), `std` (the standard deviation), etc. ###Code df.describe(include="all") ###Output _____no_output_____ ###Markdown Cleaning data in PandasWe'll talk more extensively about data hygiene later on in the course, but for now it's sufficient to know that we can use Pandas to filter out problematic data. For example, we can use a logical statement to remove all rows that say "Equipment malfunction" in the comment column. ###Code df = df[df["comments"] != 'Equipment malfunction'] ###Output _____no_output_____ ###Markdown Now when we print the head of the dataset, the problem rows at the 0 and 2 index have been removed (try comparing this to the output of Exercise 1). ###Code df.head() ###Output _____no_output_____ ###Markdown In this lab we'll use least squares linear regression to describe the relationship between different variables in this dataset. For example, let's try to describe the relationship between child age and FEV using the equation ${y = p_1x+p_2}$, where ${x}$ is age and ${y}$ is FEV. To get a rough idea of the data we're working with, plot the ${x}$ age column against the ${y}$ FEV column in Matplotlib: ###Code x = df["age"] y = df["FEV"] plt.scatter(x, y, alpha=0.25, color="blue") plt.xlabel("Age (years)") plt.ylabel("FEV (liters)") plt.title("Relationship of age and forced exhalation volume") plt.show() ###Output _____no_output_____ ###Markdown Lab 4 Part 2 Review of linear regressionIn lecture we used matrix algebra to solve for ${p_1}$ and ${p_2}$ given datasets ${x}$ and ${y}$ and the equation ${y = p_1x + p_2}$. ![Matrix regression figure](figures/regression_1.jpg)Once we make the matrices ${A}$ and ${C}$ in Python, we can solve for ${B}$ (and therefore ${p_1}$ and ${p_2}$) using the Numpy linear algebra library. So if we want to find the least squares regression between ${x}$ = age and ${y}$ = FEV from our dataset, we want ${A}$ and ${C}$ matrices that look like this: ![Matrix regression with data figure](figures/regression_2.jpg)**Exercise 3:** Create a matrix called ${A}$ with the first column containing all ${x}$ values from the `df` age column and the second column containing all 1s. Print ${A}$. ###Code x = df["age"] ones = np.ones(len(x)) A = np.vstack([x, ones]).T print(A) ###Output [[ 8. 1.] [ 9. 1.] [ 9. 1.] ..., [ 18. 1.] [ 16. 1.] [ 15. 1.]] ###Markdown **Exercise 4:** Create a column vector called ${C}$ containing all ${y}$ values from the `df` FEV column. ###Code y = df["FEV"] C = np.vstack(y) ###Output _____no_output_____ ###Markdown Now that we have ${A}$ and ${C}$, we can use Numpy to solve this system of equations. The function `np.linalg.lstsq` solves matrix equations, and returns a variety of different values representing things like the p value and the solution constants. The first item returned is a list of each constant in order. ###Code ps = np.linalg.lstsq(A, C)[0] print(ps) ###Output [[ 0.22178472] [ 0.43570982]] ###Markdown For the matrix equation ${y = p_1x + p_2}$ we just solved, ${p_1}$ is the first constant and ${p_2}$ is the second: ###Code p1 = ps[0] p2 = ps[1] ###Output _____no_output_____ ###Markdown Using these constants we can plot our linear regression line and see how it compares to the actual data. To plot this line, we'll create a Numpy array of ${x}$ values spanning the range of our data, and calculate the predicted ${y}$ value for each ${x}$: ###Code # Create predicted y values for a range of x values xhat = np.arange(min(x), max(x)+1) yhat = p1*xhat + p2 # Plot the actual data plt.scatter(x, y, color="blue", alpha=0.25) # Plot the predicted y values from our regression plt.plot(xhat, yhat, color="black") plt.xlabel("Age (years)") plt.ylabel("FEV (liters)") plt.title("Forced exhalation volume increases with age") plt.show() ###Output _____no_output_____ ###Markdown Working with subsets of data in PandasSo far we have one equation to describe our entire dataset. However, let's say that we're interested in creating two different models - one for smokers and one for non-smokers. We can select just the smokers in this Pandas dataframe by using a logical statement to pick just the rows where the `smoke` column value is `Yes`. This code creates a new Pandas dataframe containing just data from smokers. ###Code df_smokers = df[df["smoke"] == "Yes"] df_smokers.head() ###Output _____no_output_____ ###Markdown **Exercise 5A:** Construct ${A}$ and ${C}$ for data in `df_smokers`. Use ${A}$, ${C}$, and `np.linalg.lstsq` to calculate ${p_1}$ and ${p_2}$ values for ${y = p_1x + p_2}$. Save the ${p_1}$ value as a variable called `p1_smokers`, and save ${p_2}$ as another variable called `p2_smokers`. ###Code x_smokers = df_smokers["age"] y_smokers = df_smokers["FEV"] ones = np.ones(len(x_smokers)) A = np.vstack([x_smokers, ones]).T C = np.vstack(y_smokers) p1_smokers, p2_smokers = np.linalg.lstsq(A, C)[0] print(p1_smokers, p2_smokers) ###Output [ 0.07985574] [ 2.19696626] ###Markdown **Exercise 5B:** Similarly, calculate the least squares regression for data in `df_nonsmokers`. Save ${p_1}$ as `p1_nonsmokers` and ${p_2}$ as `p2_nonsmokers`. ###Code df_nonsmokers = df[df["smoke"] == "No"] df_nonsmokers.head() # Your code here x_nonsmokers = df_nonsmokers["age"] y_nonsmokers = df_nonsmokers["FEV"] ones = np.ones(len(x_nonsmokers)) A = np.vstack([x_nonsmokers, ones]).T C = np.vstack(y_nonsmokers) p1_nonsmokers, p2_nonsmokers = np.linalg.lstsq(A, C)[0] print(p1_nonsmokers, p2_nonsmokers) ###Output [ 0.24233598] [ 0.25715252] ###Markdown **Exercise 5C:** Create a scatterplot that shows the `df_smokers` age and FEV data in red and `df_nonsmokers` in blue. Plot the linear regression line for `df_smokers` in red and `df_nonsmokers` in blue. ###Code # Create a scatterplot of both sets of data plt.scatter(x_smokers, y_smokers, color="red", alpha=0.25, label="Smokers data") plt.scatter(x_nonsmokers, y_nonsmokers, color="blue", alpha=0.25, label="Nonsmokers data") # Plot regression line for smokers only xhat_smokers = np.arange(min(x_smokers), max(x_smokers)+1) yhat_smokers = p1_smokers*xhat_smokers + p2_smokers plt.plot(xhat_smokers, yhat_smokers, color="red", label="Smokers regression") # Plot regression line for nonsmokers only xhat_nonsmokers = np.arange(min(x_nonsmokers), max(x_nonsmokers)+1) yhat_nonsmokers = p1_nonsmokers*xhat_nonsmokers + p2_nonsmokers plt.plot(xhat_nonsmokers, yhat_nonsmokers, color="blue", label="Nonsmokers regression") plt.xlabel("Age (years)") plt.ylabel("FEV (liters)") plt.title("Forced exhalation volume vs age for smokers and nonsmokers") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lab 4 Bonus exercises**Bonus Exercise 1:** The principles we discussed in *Exercise 3* can be used to solve linear regression equations with more than two variables. For example, to find the least squares regression line for the equation ${y = p_1x^2 + p_2x + p_3}$, we would construct the following ${A}$ and ${C}$ matrices: ![Matrix regression with quadratics figure](figures/regression_3.jpg)In Python, create ${A}$ and ${C}$ where ${x}$ is age and ${y}$ is FEV. Use `np.linalg.lstsq` to solve for ${p_1}$, ${p_2}$, and ${p_3}$. Plot the resulting equation alongside the data. ###Code x = df["age"] y = df["FEV"] A = np.vstack([x**2, x, np.ones(len(x))]).T C = np.vstack(y) p1, p2, p3 = np.linalg.lstsq(A, C)[0] xhat = np.arange(min(x), max(x)+1) yhat = p1*xhat**2 + p2*xhat + p3 plt.scatter(x, y, color="blue", alpha=0.25) plt.plot(xhat, yhat, color="black") plt.xlabel("Age (years)") plt.ylabel("FEV (liters)") plt.title("Forced exhalation volume vs age") plt.show() ###Output _____no_output_____ ###Markdown **Bonus Exercise 2:** Create ${A}$ and ${C}$ to solve for ${p_1}$, ${p_2}$, and ${p_3}$ given the equation ${z = p_1x + p_2y + p_3}$ where ${x}$ is age, ${y}$ is height, and ${z}$ is FEV. Make a plot that includes the original data and the fitted regression line. The code to create a 3D matplotlib plot is given to you below. ###Code # your code here to solve for p x = df["age"] y = df["ht"] z = df["FEV"] A = np.vstack([x, y, np.ones(len(x))]).T C = np.vstack(z) bonus_p1, bonus_p2, bonus_p3 = np.linalg.lstsq(A, C)[0] from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(6, 6)) ax = fig.add_subplot(111, projection='3d') # Plot the original data ax.scatter(df["age"], df["ht"], df["FEV"], color="green", alpha=0.25) # Your code here to plot your regression line: xhat = np.linspace(min(x), max(x)+1, 100) yhat = np.linspace(min(y), max(y)+1, 100) zhat = bonus_p1*xhat + bonus_p2*yhat + bonus_p3 ax.plot(xhat, yhat, zhat, color="k", lw=2) ax.set_xlabel("Age (years)") ax.set_ylabel("Height (inches)") ax.set_zlabel("FEV (liters)") plt.show() ###Output _____no_output_____ ###Markdown **Bonus Exercise 3:** Create ${A}$ and ${C}$ to solve for each ${p}$ constant given the equation ${z = p_1x^2 + p_2y^2 + p_3x + p_4y + p_5}$ where ${x}$ is age, ${y}$ is height, and ${z}$ is FEV. Make a 3D plot that includes the original data and the fitted regression line. ###Code x = df["age"] y = df["ht"] z = df["FEV"] A = np.vstack([x**2, y**2, x, y, np.ones(len(x))]).T C = np.vstack(z) p1, p2, p3, p4, p5 = np.linalg.lstsq(A, C)[0] xhat = np.linspace(min(x), max(x)+1, 100) yhat = np.linspace(min(y), max(y)+1, 100) zhat = p1*xhat**2 + p2*yhat**2 + p3*xhat + p4*yhat + p5 fig = plt.figure(figsize=(6, 6)) ax = fig.add_subplot(111, projection='3d') ax.scatter(x, y, z, color="green", alpha=0.25) ax.plot(xhat, yhat, zhat, color="k", lw=2) ax.set_xlabel("Age (years)") ax.set_ylabel("Height (inches)") ax.set_zlabel("FEV (liters)") plt.show() ###Output _____no_output_____
tirgulim/tirgul9/tirgul9_3.ipynb
###Markdown Tirgul 9 - a sample project analysis According to EDA (Exploratory data analysis) & modeling steps:- Wrangling the data- Understanding the data - Preparing the data- Modeling ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_squared_error ###Output _____no_output_____ ###Markdown The DatasetThe dataset contains information on students and their grades in math, reading and writing.[link to the data source](https://www.kaggle.com/spscientist/students-performance-in-exams)We read the data from a github repository ###Code url = 'https://raw.githubusercontent.com/ShaiYona/Data-Science2021B/main/tirgulim/tirgul9/StudentsPerformance.csv' data = pd.read_csv(url) data.tail() ###Output _____no_output_____ ###Markdown 1. Wrangling the data:- Treat missing values (if needed)- Treat column names (if needed)- Treat data types (if needed)- Treat any other weird thing your data might have Treat missing valuesCheck if there are missing values: ###Code data.isnull().sum().sort_values(ascending=False) ###Output _____no_output_____ ###Markdown Apearantly there weren't any 'na's' in the data Fixing data typesCheck if any of the data types need to be fixed: ###Code data.dtypes ###Output _____no_output_____ ###Markdown We'll leave them as objects for now, but might change them later, depending on what we will want to do 2. Understanding the dataLet's see a summary in a pivot table (note that the default is 'mean'): ###Code data.pivot_table(['math score','reading score','writing score' ],'gender') ###Output _____no_output_____ ###Markdown - Looks like the male students are leading in Math, but are behind on Reading and Writing- How many males and how many females? ###Code data['gender'].value_counts() data['gender'].value_counts().plot.pie(autopct='%1.1f%%') ###Output _____no_output_____ ###Markdown Study the differences between males and females: Seperate into two datasets: ###Code female = data.loc[data.gender == 'female'] male = data.loc[data.gender == 'male'] male.head() plt.hist(male['math score'], alpha=0.4, label='male') plt.hist(female['math score'], alpha=0.4, label='female') plt.legend(loc='upper right') plt.hist(male['reading score'], alpha=0.4, label='male') plt.hist(female['reading score'], alpha=0.4, label='female') plt.legend(loc='upper right') plt.hist(male['writing score'], alpha=0.4, label='male') plt.hist(female['writing score'], alpha=0.4, label='female') plt.legend(loc='upper right') ###Output _____no_output_____ ###Markdown We can see that male students tend to have a smaller variance then the female students. Let's calculate the standard deviation and the range of scores ###Code data.groupby('gender').std() ###Output _____no_output_____ ###Markdown Correlation between scores ###Code scoreData = data[['math score','reading score','writing score']] scoreData.tail() scoreData.corr() # cmap='jet' refers to table colors # vmin=0.0 , vmax = 1 indicate the lower and upper bounderies of legend # annot=True display the value of each square sns.heatmap(scoreData.corr(), vmin=0.0 , vmax = 1,cmap='jet' , annot=True) ###Output _____no_output_____ ###Markdown Obeservation: >> The corrolation across subjects is quite high, between reading and writing is near perfect.> ###Code sns.regplot(x='reading score', y='writing score', data=data); ###Output _____no_output_____ ###Markdown > Decreased correlation displays a higher spread ###Code sns.regplot(x='reading score', y='math score', data=data); # ###Output _____no_output_____ ###Markdown Looking at parnetal level of education ###Code parentEducData = data[["parental level of education"]] parentEducData.tail() parentEducData.value_counts() # counts the amount from each categorized value ###Output _____no_output_____ ###Markdown [pie charts docs](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.pie.html) ###Code parentEducData.value_counts().plot.pie(autopct='%1.1f%%') # autopct display percents for each part sns.countplot(x="parental level of education", data=data) ###Output _____no_output_____ ###Markdown --- Project tip: When there are more than 2-3 categories, a countplot is ALWAYS BETTER than a pie plotIt's just much easier to read it.The only problem with our countplot is that the labels ovelap. There are many ways to fix it. Google it. [for example](https://stackoverflow.com/questions/42528921/how-to-prevent-overlapping-x-axis-labels-in-sns-countplot)We'll just adjust the figure size: --- ###Code plt.figure(figsize=(14,6)) sns.countplot(x="parental level of education", data=data) ###Output _____no_output_____ ###Markdown --- Project tip: make sure your plots are readable (like we have just done).You don't need to show both the unreadable version and the readable version. We know you have worked hard and struggled. Present your best!!--- Searching for more correlations Let's add a column with the mean score across all subjects: ###Code data['mean score'] = scoreData.mean(axis=1) data.tail() ###Output _____no_output_____ ###Markdown Let's check - is there any connection between parental level of education and lunch to grades? ###Code EducLunchMean_ScoreData = data[['parental level of education','lunch','mean score']].copy(deep=True) # not shallow/reference copy, change in data will not be affected in EducLucnh<ean EducLunchMean_ScoreData.tail() EducLunchMean_ScoreData.pivot_table('mean score','parental level of education').sort_values("mean score") ###Output _____no_output_____ ###Markdown Don't present in an incomprehensible way. For example (of what NOT to do): ###Code EducLunchMean_ScoreData.groupby('parental level of education')['mean score'].hist(alpha=0.5,legend=True,figsize=(10,10)) # We cannot use 'pivot_table' here since we do not wish to aggregate the data ###Output _____no_output_____ ###Markdown The connection bewtween lunch and student's mean score: ###Code EducLunchMean_ScoreData.pivot_table('mean score','lunch') ###Output _____no_output_____ ###Markdown We can see some connection here ###Code EducLunchMean_ScoreData.groupby('lunch')['mean score'].hist(alpha=0.5,legend=True) ###Output _____no_output_____ ###Markdown Observation:> The lunch type tells us more about the student grades.> Students with a standard lunch do better.> This may say more about the studen't background then about their real abilites The connection between parent education level and lunch type:Turn the lunch into a category Standard = 1free/reduced = 0 ###Code EducLunchMean_ScoreData['lunch_cat'] = EducLunchMean_ScoreData['lunch'].astype('category').cat.codes EducLunchMean_ScoreData ptLunchEduc = EducLunchMean_ScoreData.pivot_table('lunch_cat','parental level of education').sort_values(by='lunch_cat') ptLunchEduc ###Output _____no_output_____ ###Markdown > Observation:> It is interesting to see, that the lunch type is spread more or less equaly between the parent education levels. > Superficially, if lunch represents parents financial level, it was not affected by their education. Project tip:An observation is always better if it is also visual ###Code # We manually orderd the plot according to the degrees order = [5,2,4,3,1,0] plt.figure(figsize=(10,5)) plt.scatter(ptLunchEduc.index[order],ptLunchEduc.values[order]) plt.ylim(0,1) ###Output _____no_output_____ ###Markdown The connection between parents education level and mean score: The mean score grouped by parent's education: ###Code mean_parent = EducLunchMean_ScoreData.groupby('parental level of education')['mean score'].mean() mean_parent ###Output _____no_output_____ ###Markdown In a scatter plot: ###Code # We manually orderd the plot according to the degrees order = [5,2,4,0,1,3] plt.figure(figsize=(10,5)) plt.scatter(mean_parent.index[order],mean_parent.values[order]) ###Output _____no_output_____ ###Markdown Project tip: Think of which figure will present your data in the best wayIn this case - a boxplot is better than a scatter plot Present a boxplot, with rotated labels on x-axis ###Code fig, axes = plt.subplots(figsize=(20, 5), ncols=3) sns.boxplot(ax=axes[0], x='parental level of education', y='reading score', data=data) sns.boxplot(ax=axes[1], x='parental level of education', y='writing score', data=data) sns.boxplot(ax=axes[2], x='parental level of education', y='math score', data=data) for i, ax in enumerate(fig.axes): axes[i].tick_params(axis='x', rotation=45) # chage to y axis and -45 and see what happens #ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Boxplot for mean score ###Code ax = sns.boxplot(x='parental level of education', y='mean score', data=data) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown The connection between education level and lunch type and mean score:The mean score grouped by parent's education: and student's mean score: ###Code EducLunchMean_ScoreData.pivot_table('mean score','parental level of education','lunch',margins=True) ###Output _____no_output_____ ###Markdown - The bottom margin shows the score according to the lunch (free/standard)- The right margin shows the score according to the parents degree- The mean for students with standard lunch is 8.5 points higher! > Observation:> The parent's education level does not have a direct effect on the lunch type. >> The parent's education level does not have a direct effect on the mean score. >> But - the parent's education level combined with the lunch type has an effect on the mean score. 3. Building a model from the data We will try to predict mean score using decision tree, based on gender, race and test preparation. Preparing the data for learning ###Code X = pd.get_dummies(data[['gender','race/ethnicity','lunch','test preparation course']]) y = data[['mean score']] X.head() ###Output _____no_output_____ ###Markdown Remove the reduntant fields ###Code X = X.drop(columns=['gender_male','lunch_standard','test preparation course_none']) X.head() X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=42) y_test.head() print("Train STD of {}".format(y_train.std())) print("Test STD of {}".format(y_test.std())) ###Output Train STD of mean score 13.876059 dtype: float64 Test STD of mean score 15.039556 dtype: float64 ###Markdown Build the model ###Code model = DecisionTreeRegressor(random_state=42) model.fit(X_train,y_train) ###Output _____no_output_____ ###Markdown Evaluation ###Code def eval(x_test,y_test,model): pred = model.predict(x_test) print("MSE: {:.3f}".format(mean_squared_error(pred,y_test,squared=False))) eval(X_test,y_test,model) ###Output MSE: 13.962 ###Markdown Plot the tree[plot_tree docs](https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html) Write a function that plots the tree ###Code import sklearn.tree as tree def plot_tree(tree_model,feat,size=(15,10)): fig = plt.figure(figsize=size) tree.plot_tree(tree_model, feature_names = feat, filled=True, fontsize=15) plt.show() ###Output _____no_output_____ ###Markdown Tree Pruning ###Code model = DecisionTreeRegressor(max_depth=3,random_state=42) model.fit(X_train,y_train) eval(X_test,y_test,model) plot_tree(model,X_test.columns,size=(30,20)) ###Output MSE: 13.899 ###Markdown Let's look at the mean of the train label and the value in root node ###Code y_train.mean() model = DecisionTreeRegressor(min_samples_split=100,random_state=42) model.fit(X_train,y_train) eval(X_test,y_test,model) plot_tree(model,X_test.columns,size=(60,20)) from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor(n_estimators=10000,max_depth=4,max_samples=100,random_state=42) # RandomForestRegressor fits a number of classifying decision trees # n_estimators is the numbers of trees to be used in the forest model.fit(X_train,y_train.values.ravel()) eval(X_test,y_test,model) ###Output MSE: 13.752 ###Markdown Let's check the error percentage The fraction of difference a-b from b is: $\frac{|a-b|}{b} $ ###Code pred=model.predict(X_test) (np.abs(pred-y_test.values.ravel())/y_test.values.ravel()).mean() ###Output _____no_output_____
DAY 1- PYTHON CLASS.ipynb
###Markdown DATA TYPE 1: LIST ###Code lst=["pari", 2, 9.78, [1,2,3]] lst lst[1] lst[-3] lst.append("saha") lst lst.index(9.78) lst.count(2) lst.copy() lst.insert(2,2002) lst lst.pop(-2) lst lst.extend("loo") lst lst.remove(9.78) lst lst.reverse() lst lst.clear() lst ###Output _____no_output_____ ###Markdown DATA TYPE 2: DICT- DICTIONARIES ###Code dit= {"NAME": "PARIJAT", "AGE": "18", "MOTHER": "SONALI SAHA", "FATHER": "PARTHA PRATIM SAHA"} dit dit.get("age") dit.get("AGE") dit.items() dit.keys() dit.pop("MOTHER") dit dit["SCHOOL"]= "DPS" dit type(dit) dit.copy() dit.fromkeys("poo", 54) dit.popitem() dit dit.setdefault("HOMETOWM", "PDP") dit dit.update() dit dit.values() ###Output _____no_output_____ ###Markdown SETS ###Code s= {"PARI","LETSUPGRADE", 1,2,3,4,4,5,6,5,7} s type(s) a={1} a.issubset(s) a.isdisjoint(s) a.intersection(s) a.discard(s) s a.difference(s) s.difference(a) a.intersection_update(s) s s.intersection_update(a) a a.issuperset(s) a.pop() s.pop() s.union(a) s s.copy() s.clear() s ###Output _____no_output_____ ###Markdown TUPLE ###Code t= ("pari", "letsupgrade", "@") t t.count t.count("@") t.index("@") t.count("pari") t.count(4) t.index("letsupgrade") ###Output _____no_output_____ ###Markdown STRING ###Code c = "parijat" c.capitalize() c.count("parijat") c.endswith("p") c.isascii() c.isalnum() c.isdecimal() c.isdigit() c.islower() c.isspace() c.isupper() c.casefold() c.isidentifier() c.replace("parijat", "goodness") c.swapcase() c.find("JAT") c.startswith("p") c.isalpha() c.index("r") c.translate("o") ###Output _____no_output_____
Lecture-Notes/2019/PSS-2019-Day2.ipynb
###Markdown Python course Day 2 ###Code num = 5 print(num) num = num + 1 # compute num + 1 and assign its value to num print(num) num += 1 # num = num + 1 print(num) num++ num -= 1 print(num) num += 10 print(num) num *= 5 num /= 4 num //= 5 print(num) 8 / 3 8 // 3 name = "Devesh" print(name * 3) number = "5" print(number * 3) print (name + 4) print(name + " Very long") print(name - "sh") print("<3" * 80) pi = 3.14 pi += 1 print(pi) is_Sunny = True print(is_Sunny) 5 < 7 5 > 7 5 <= 5 5 >= 5 7 >= 5 5 == 5 5 == 4 x = 3 # assign 3 to x x == 3 # Check whether x is equal to 3 X = 4 # Variable names are case sensitive. X and x are different variables. X == x print (X) print(x) "Devesh" == "Unmesh" name == "Devesh" print(name) name != "Unmesh" num = 4 # .num = 5 # error num2 = 14 #2num = 45 # error number_of_students = 29 #num$ = 6 # error #$num = 7 # error #num-even = 2 # error _num = 5 # number of students = 29 # error ###Output _____no_output_____ ###Markdown * Variable names must start with a letter or an underscore* Variable names cannot contain any special characters (except underscores)* Variable names may contain digits but not at the beginning* Variable names cannot have spaces ###Code number___OfStUdEnTsIn2Thousand19_Sum_Schhool = 29 print(number___OfStUdEnTsIn2Thousand19_Sum_Schhool) name = "Nikita" firstName = "Nikita" # Camel case first_name = "Nikita" # Snake case numberOfStudents = 29 # Camel case number_of_students = 29 # Snake case number_1 = 1 # Snake case number_1 = "string" ###Output _____no_output_____ ###Markdown Conditional statements ###Code it_is_sunny = False if it_is_sunny: print("I will go to a beach") print("And I will swim") print("and then I will bask") else: print("I will play a board game") n = 5 if n > 2: print(n, "is greater than 2") else: print(n, " is less than 2") n = eval(input("Enter a number: ")) if n > 20 and n < 100: print(n, "is between 20 and 100") else: print(n, "is not between 20 and 100") int("5") int("five") num = eval('4') type(num) num = eval('3.14') type(num) num = eval('True') type(num) num = eval('test') "hello" == "hello" "hello" == "hell0" "hello" < "hell0" "A" < "B" "B" < "Z" "A" < "a" ord('A') ord('a') "A" < "a" "B" < "a" print('Hello "Carlien"') print("Hello 'Carlien'") print("Hello \"Carlien\"") "Hello" < "Hell0" ord('o') ord('0') "Carlien" < "Devesh" chr(65) chr(87) chr(56) num_1 = 200 num_2 = 200 num_1 is num_2 num_1 = 2000 num_2 = 2000 num_1 is num_2 num_1 = 200 num_2 = 200 num_1 is num_2 id(num_1) id(num_2) num_1 = 256 num_2 = 256 num_1 is num_2 num_1 = 257 num_2 = 257 num_1 is num_2 id(num_1) id(num_2) dec_1 = 3.14 dec_2 = 3.14 dec_1 is dec_2 # checks for the memory location id(dec_1) id(dec_2) dec_1 == dec_2 # checks for the value ###Output _____no_output_____ ###Markdown Functions ###Code print("Hello") # Call the function with input "Hello" print("Hello" , "World") # # Input to the function is called argument / parameter print("Hi",5,"World") print("Hi"+str(5)+"World") print("Hi",5,"World",sep='-') ?print # ... is ellipses print("a" , 5, 3.14, "hello") print("Hello") print("World") print("Hello", end=":") print("World") # single line comment ''' this is a multiple line comment We are going to define a function Name of the function is greet def is the part of the syntax def is a keyword (reserved word) in the language After the name of the function you have to write parantheses followed by a colon (:) ''' # Function with no input and no output def greet(): print("Hello") greet() # call the function # Function with one argument and no output def greet_at_home(greeting): print(greeting) greet_at_home("Namaste") greet_at_home("Hoi, Goedemiddag") greet_at_home("Ni hao") greet_at_home("Hola") greet_at_home("Terve") greet_at_home("Shalom") greet_at_home("Hey") # Function with 2 arguments and 1 output / return value def add(num_1, num_2): #result = num_1 + num_2 return num_1 + num_2 # this is how you return the output test = 5 + 6 print(test) test = add(5,6) # call of the function print(test) var = add(345, 56) print(var) test = greet_at_home("Hello") print(test) type(test) def square(num): return num ** 2 square(5) print(square(21)) print(square(4)) ###Output 16 ###Markdown Loops ###Code def table(n): print(n * 1) print(n * 2) print(n * 3) print(n * 4) print(n * 5) print(n * 6) print(n * 7) print(n * 8) table(7) for i in range(10): print(i) for i in range(10): print(i+1) for i in range(1,11): print(i) def table(n): for i in range(1,11): print(n*i) table(6) ###Output 6 12 18 24 30 36 42 48 54 60
module1-regression-1/Ofer_Baharav_Copy_of_assignment_regression_classification_1.ipynb
###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 1*--- Regression 1 AssignmentYou'll use another **New York City** real estate dataset. But now you'll **predict how much it costs to rent an apartment**, instead of how much it costs to buy a condo.The data comes from renthop.com, an apartment listing website.- [ ] Look at the data. Choose a feature, and plot its relationship with the target.- [ ] Use scikit-learn for linear regression with one feature. You can follow the [5-step process from Jake VanderPlas](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API).- [ ] Define a function to make new predictions and explain the model coefficient.- [ ] Organize and comment your code.> [Do Not Copy-Paste.](https://docs.google.com/document/d/1ubOw9B3Hfip27hF2ZFnW3a3z9xAgrUDRReOEo-FHCVs/edit) You must type each of these exercises in, manually. If you copy and paste, you might as well not even do them. The point of these exercises is to train your hands, your brain, and your mind in how to read, write, and see code. If you copy-paste, you are cheating yourself out of the effectiveness of the lessons. Stretch Goals- [ ] Do linear regression with two or more features.- [ ] Read [The Discovery of Statistical Regression](https://priceonomics.com/the-discovery-of-statistical-regression/)- [ ] Read [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf), Chapter 2.1: What Is Statistical Learning? ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') # Read New York City apartment rental listing data import pandas as pd df = pd.read_csv(DATA_PATH+'apartments/renthop-nyc.csv') assert df.shape == (49352, 34) # Remove outliers: # the most extreme 1% prices, # the most extreme .1% latitudes, & # the most extreme .1% longitudes df = df[(df['price'] >= 1375) & (df['price'] <= 15500) & (df['latitude'] >=40.57) & (df['latitude'] < 40.99) & (df['longitude'] >= -74.1) & (df['longitude'] <= -73.38)] df.head(2) df.shape df.dtypes df_test = df df_test = df_test.assign(bed_elevator=lambda df: df_test.bedrooms * df_test.elevator) df_copy['bed_elevator'].value_counts() from sklearn.linear_model import LinearRegression model = LinearRegression() # Arrange X features matrix and y target vector features = ['bedrooms'] target = 'price' x = df[features] y = df[target] print(x.shape, y.shape) # makes sure they are equal # Fit the model model.fit(x,y) # Apply model to new data bedrooms = 3 elevators = 3 _test = bedrooms * elevators x_test = [[_test]] y_pred = model.predict(x_test) print(f'Predicted price for (x)bed, (y)elevators NYC apt rent: {y_pred}') model.coef_ model.intercept_ ###Output _____no_output_____
pynq_dpu/notebooks/dpu_mnist_classifier.ipynb
###Markdown DPU example: MNIST Classifier---- Aim/sThis notebook shows how to deploy Convolutional Neural Network (CNN)model for hand-written digit recognition. The network was trained onthe MNIST dataset,quantized using Vitis AI compiler tools, anddeployed on the DPU.Compared to the other notebooks delivered in this folder, this notebookshows how to deploy a **user-trained** DPU model on PYNQ image; i.e.,the model used in this notebook does not come from the model zoo. References* [Train your own DPU models](https://github.com/Xilinx/DPU-PYNQ/tree/master/hosttrain-your-own-dpu-models-from-scratch)* [Vitis AI model zoo](https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo) Last revised* Mar 8, 2021 * Initial revision---- 1. Prepare the overlayWe will download the overlay onto the board. ###Code from pynq_dpu import DpuOverlay overlay = DpuOverlay("dpu.bit") ###Output _____no_output_____ ###Markdown The `load_model()` method will automatically prepare the `graph`which is used by VART. ###Code overlay.load_model("dpu_mnist_classifier.xmodel") ###Output _____no_output_____ ###Markdown Let's import some libraries as well. The `mnist` packagerequires some additional headers for URL requests. ###Code from time import time import numpy as np import mnist import matplotlib.pyplot as plt %matplotlib inline from six.moves import urllib opener = urllib.request.build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0')] urllib.request.install_opener(opener) ###Output _____no_output_____ ###Markdown 2. Load test dataThe `mnist` package enables the following data for users:* `test_images()`: returns test images stored as a numpy array. Each image is a grayscale 28x28 pixels, representing a digit between 0 and 9.* `test_labels()`: returns a list of the true labels stored as numpy array.There are 2 pre-processing steps we need to do to the test images before we can use it:1. The raw numpy array delivered by `mnist` has a data type of uint8 (data ranges from 0 to 255); we need to normalize the elements to floating-point numbers ranging from 0 to 1.2. The VART API will expect each input sample to have 3 dimensions; so we need to expand the original numpy array. ###Code raw_data = mnist.test_images() normalized_data = np.asarray(raw_data/255, dtype=np.float32) test_data = np.expand_dims(normalized_data, axis=3) test_label = mnist.test_labels() print("Total number of test images: {}".format(test_data.shape[0])) print(" Dimension of each picture: {}x{}".format(test_data.shape[1], test_data.shape[2])) plt.imshow(test_data[1,:,:,0], 'gray') plt.title('Label: {}'.format(test_label[1])) plt.axis('off') plt.show() ###Output _____no_output_____ ###Markdown 3. Use VARTNow we should be able to use VART API to do the task. ###Code dpu = overlay.runner inputTensors = dpu.get_input_tensors() outputTensors = dpu.get_output_tensors() shapeIn = tuple(inputTensors[0].dims) shapeOut = tuple(outputTensors[0].dims) outputSize = int(outputTensors[0].get_data_size() / shapeIn[0]) softmax = np.empty(outputSize) ###Output _____no_output_____ ###Markdown We can define a few buffers to store input and output data.They will be reused during multiple runs. ###Code output_data = [np.empty(shapeOut, dtype=np.float32, order="C")] input_data = [np.empty(shapeIn, dtype=np.float32, order="C")] image = input_data[0] ###Output _____no_output_____ ###Markdown We will also define a few functions to calculate softmax. ###Code def calculate_softmax(data): result = np.exp(data) return result ###Output _____no_output_____ ###Markdown 4. Run DPU to make predictionsWe can now classify a couple of digit pictures. For each picture, the classification result (shown as 'Prediction') is displayed on top of the picture. ###Code num_pics = 10 fix, ax = plt.subplots(1, num_pics, figsize=(12,12)) plt.tight_layout() for i in range(num_pics): image[0,...] = test_data[i] job_id = dpu.execute_async(input_data, output_data) dpu.wait(job_id) temp = [j.reshape(1, outputSize) for j in output_data] softmax = calculate_softmax(temp[0][0]) prediction = softmax.argmax() ax[i].set_title('Prediction: {}'.format(prediction)) ax[i].axis('off') ax[i].imshow(test_data[i,:,:,0], 'gray') ###Output _____no_output_____ ###Markdown We can also evaluate on the entire test dataset. ###Code total = test_data.shape[0] predictions = np.empty_like(test_label) print("Classifying {} digit pictures ...".format(total)) start = time() for i in range(total): image[0,...] = test_data[i] job_id = dpu.execute_async(input_data, output_data) dpu.wait(job_id) temp = [j.reshape(1, outputSize) for j in output_data] softmax = calculate_softmax(temp[0][0]) predictions[i] = softmax.argmax() stop = time() correct = np.sum(predictions==test_label) execution_time = stop-start print("Overall accuracy: {}".format(correct/total)) print(" Execution time: {:.4f}s".format(execution_time)) print(" Throughput: {:.4f}FPS".format(total/execution_time)) ###Output Classifying 10000 digit pictures ... Overall accuracy: 0.9871 Execution time: 3.6281s Throughput: 2756.2394FPS ###Markdown 5. Clean upWe will need to remove references to `vart.Runner` and let Python garbage-collectthe unused graph objects. This will make sure we can run other notebooks withoutany issue. ###Code del overlay del dpu ###Output _____no_output_____
0-fachliche-komponenten.ipynb
###Markdown Expertenanalyse mit Software Analytics Intro zur Analyse der Anwendung "Spring Data MongoDB"* Programmierschnittstelle zur Anbindung einer dokumentenbasierten MongoDB-Datenbank an ein Java-Spring-Projekt Gründe für Wahl* bekanntes Open Source Java Projekt, das zum Spring-Framework gehört* Hosting auf GitHub (zur Analyse der GitHub-Issues)* Verwendung von Maven als Build-Management-Tool (anstatt Gradle, das in vielen Spring-Projekten genutzt wird)* nicht zu groß und nicht zu klein* mehrere Hauptentwickler* Git-Historie geht bis ins Jahr 2010 zurück, sodass der Analysezeitraum ca. 10 Jahre umfasst* ca. 2.800 Github-Issues seit 2013* Issues können von allen Git-Nutzern erstellt werden Fragestellung* In welche fachlichen Komponenten lässt sich der Quellcode der Anwendung für die weitere Analyse sinnvoll strukturieren? Datenquelle* Java-Strukturen des Projekts mit jQAssistant gescannt und in Neo4j abfragbar Annahmen* Fachliche Komponenten lassen sich durch die Subpackages von `org.springframework.data.mongodb` aufteilen.* Das Haupt-Subpackage `core` kann nochmals in dessen Subpackages aufgeteilt werden. Validierung* Grafische Übersicht über die existierenden fachlichen Komponenten und deren Anteile am Projekt Implementierung ###Code %%cypher // Alle Artefakte MATCH (a:Main:Artifact) RETURN a.name AS ArtefactName, a.group AS GroupName %%cypher // Java-Artefakte MATCH (a:Java:Main:Artifact) RETURN a.name AS JavaArtefactName, a.group AS GroupName ###Output 1 rows affected. ###Markdown * `spring-data-mongodb` ist das einzige Java-Artefakt, das auch den Anwendungscode enthält.* `spring-data-mongodb-parent` ist das Wurzelverzeichnis, das hauptsächlich Konfigurationsdateien enthält.* `spring-data-mongodb-distribution` enthält Anweisungen zum Bauen einer Distribution.Von den drei Artefakten wird im Folgenden nur das Java-Artefakt `spring-data-mongodb` betrachtet. ###Code %%cypher // Anzahl Java-Typen im Artefakt MATCH (a:Java:Main:Artifact)-[:CONTAINS]->(type:Type:Java) WHERE a.name = "spring-data-mongodb" RETURN a.name AS Artifact, count(type) AS JavaTypesInArtifact %%cypher // Markierung aller SpringDataMongoDb-Knoten // Added 1332 labels MATCH (artifact:Main:Artifact{name: "spring-data-mongodb"}) SET artifact:SpringDataMongoDb WITH artifact MATCH (artifact)-[:CONTAINS]->(c) SET c:SpringDataMongoDb ###Output 0 rows affected. ###Markdown Aufteilung in fachliche Komponenten* Strukturierung soll nach Subpackages von `org.springframework.data.mongodb` sowie Subpackages von `org.springframework.data.mongodb.core` erfolgen, wobei Typen im `core`-Package nicht doppelt gezählt werden sollen.* Die Zuordnung der Klassen (weiter unten) erfolgt daher für das `core`-Package separat nur auf der ersten Ebene.* Anreicherung des Graphen um zusätzliche Knoten je fachlicher Komponente (`BoundedContext`)* Zuordnung aller Typen in Packages mit dem Namen einer fachlichen Komponente zu eben diesem Bounded Context mit `[:CONTAINS]` ###Code %%cypher // Packages, die in mongodb und core enhalten sind MATCH (p:Package:SpringDataMongoDb)-[:CONTAINS]->(bC:Package:SpringDataMongoDb) WHERE p.fqn = "org.springframework.data.mongodb" OR p.fqn = "org.springframework.data.mongodb.core" WITH p, collect(DISTINCT bC.name) AS boundedContexts RETURN p.name AS PackageName, boundedContexts %%cypher // Anlegen eines Knoten je Fachlichkeit // Added 19 labels, created 19 nodes, set 19 properties MATCH (p:Package:SpringDataMongoDb)-[:CONTAINS]->(bC:Package:SpringDataMongoDb) WHERE p.fqn = "org.springframework.data.mongodb" OR p.fqn = "org.springframework.data.mongodb.core" WITH collect(DISTINCT bC.name) AS boundedContexts UNWIND boundedContexts AS boundedContext MERGE (bC:BoundedContext {name: boundedContext}) %%cypher // Zuordnen der Klassen zu den Bounded Contexts (inkl. Subpackages, ohne core-Package) // Created 1024 relationships MATCH (bC:BoundedContext), (p:Package:SpringDataMongoDb)-[:CONTAINS*]->(t:Type:SpringDataMongoDb) WHERE p.name = bC.name AND bC.name <> "core" MERGE (bC)-[:CONTAINS]->(t) RETURN bC.name AS BoundedContext, count(t) AS Size ORDER BY Size DESC %%cypher // Zuordnen der Klassen zu den Bounded Contexts (nur Wurzelebene des core-Packages) // Created 279 relationships MATCH (bC:BoundedContext), (p:Package:SpringDataMongoDb)-[:CONTAINS*1..1]->(t:Type:SpringDataMongoDb) WHERE p.name = bC.name AND bC.name = "core" MERGE (bC)-[:CONTAINS]->(t) RETURN bC.name AS BoundedContext, count(t) AS Size ORDER BY Size DESC ###Output 1 rows affected. ###Markdown Ergebnisse ###Code %%cypher // Prozentualer Anteil der zugeordneten Klassen in Prozent (97%) MATCH (t:Type:SpringDataMongoDb) WITH count(DISTINCT t) AS Total MATCH (:BoundedContext)-[:CONTAINS]->(t:Type:SpringDataMongoDb) RETURN 100 * count(DISTINCT t) / Total AS overage %%cypher // Anzahl SpringDataMongoDb-Typen pro Package MATCH (bC:BoundedContext)-[:CONTAINS*]->(t:Type:SpringDataMongoDb) RETURN bC.name AS BoundedContext, count(DISTINCT t) AS ClassCount ORDER BY ClassCount DESC ###Output 19 rows affected. ###Markdown BoundedContext `core` enthält nur die Typen im eigenen Wurzel-Package. Typen in Subpackages von `core` sind jeweils als eigener BoundedContext aufgeführt. ###Code subdomainSize = %cypher MATCH (bC:BoundedContext)-[:CONTAINS*]->(t:Type:SpringDataMongoDb) \ RETURN bC.name AS BoundedContext, count(DISTINCT t) AS TypeCount df = subdomainSize.get_dataframe() fig = px.pie(df, values='TypeCount', names='BoundedContext', title='Größe der fachlichen Komponenten nach Anzahl enthaltener Typen') fig.show() ###Output 19 rows affected.
SSGAN.ipynb
###Markdown Discriminator and Generator architecture should mirror each other ###Code ############ Defining Discriminator ############ def discriminator(x, dropout_rate = 0., is_training = True, reuse = False): # input x -> n+1 classes with tf.variable_scope('Discriminator', reuse = reuse): # x = ?*64*64*1 print('Discriminator architecture: ') #Layer 1 conv1 = tf.layers.conv2d(x, 128, kernel_size = [4,4], strides = [2,2], padding = 'same', activation = tf.nn.leaky_relu, name = 'conv1') # ?*32*32*128 print(conv1.shape) #No batch-norm for input layer dropout1 = tf.nn.dropout(conv1, dropout_rate) #Layer2 conv2 = tf.layers.conv2d(dropout1, 256, kernel_size = [4,4], strides = [2,2], padding = 'same', activation = tf.nn.leaky_relu, name = 'conv2') # ?*16*16*256 batch2 = tf.layers.batch_normalization(conv2, training = is_training) dropout2 = tf.nn.dropout(batch2, dropout_rate) print(conv2.shape) #Layer3 conv3 = tf.layers.conv2d(dropout2, 512, kernel_size = [4,4], strides = [4,4], padding = 'same', activation = tf.nn.leaky_relu, name = 'conv3') # ?*4*4*512 batch3 = tf.layers.batch_normalization(conv3, training = is_training) dropout3 = tf.nn.dropout(batch3, dropout_rate) print(conv3.shape) # Layer 4 conv4 = tf.layers.conv2d(dropout3, 1024, kernel_size=[3,3], strides=[1,1], padding='valid',activation = tf.nn.leaky_relu, name='conv4') # ?*2*2*1024 # No batch-norm as this layer's op will be used in feature matching loss # No dropout as feature matching needs to be definite on logits print(conv4.shape) # Layer 5 # Note: Applying Global average pooling flatten = tf.reduce_mean(conv4, axis = [1,2]) logits_D = tf.layers.dense(flatten, (1 + num_classes)) out_D = tf.nn.softmax(logits_D) return flatten,logits_D,out_D ############ Defining Generator ############ def generator(z, dropout_rate = 0., is_training = True, reuse = False): # input latent z -> image x with tf.variable_scope('Generator', reuse = reuse): print('\n Generator architecture: ') #Layer 1 deconv1 = tf.layers.conv2d_transpose(z, 512, kernel_size = [4,4], strides = [1,1], padding = 'valid', activation = tf.nn.relu, name = 'deconv1') # ?*4*4*512 batch1 = tf.layers.batch_normalization(deconv1, training = is_training) dropout1 = tf.nn.dropout(batch1, dropout_rate) print(deconv1.shape) #Layer 2 deconv2 = tf.layers.conv2d_transpose(dropout1, 256, kernel_size = [4,4], strides = [4,4], padding = 'same', activation = tf.nn.relu, name = 'deconv2')# ?*16*16*256 batch2 = tf.layers.batch_normalization(deconv2, training = is_training) dropout2 = tf.nn.dropout(batch2, dropout_rate) print(deconv2.shape) #Layer 3 deconv3 = tf.layers.conv2d_transpose(dropout2, 128, kernel_size = [4,4], strides = [2,2], padding = 'same', activation = tf.nn.relu, name = 'deconv3')# ?*32*32*256 batch3 = tf.layers.batch_normalization(deconv3, training = is_training) dropout3 = tf.nn.dropout(batch3, dropout_rate) print(deconv3.shape) #Output layer deconv4 = tf.layers.conv2d_transpose(dropout3, 1, kernel_size = [4,4], strides = [2,2], padding = 'same', activation = None, name = 'deconv4')# ?*64*64*1 out = tf.nn.tanh(deconv4) print(deconv4.shape) return out ############ Building model ############ def build_GAN(x_real, z, dropout_rate, is_training): fake_images = generator(z, dropout_rate, is_training) D_real_features, D_real_logits, D_real_prob = discriminator(x_real, dropout_rate, is_training) D_fake_features, D_fake_logits, D_fake_prob = discriminator(fake_images, dropout_rate, is_training, reuse = True) #Setting reuse=True this time for using variables trained in real batch training return D_real_features, D_real_logits, D_real_prob, D_fake_features, D_fake_logits, D_fake_prob, fake_images ############ Preparing Mask ############ # Preparing a binary label_mask to be multiplied with real labels def get_labeled_mask(labeled_rate, batch_size): labeled_mask = np.zeros([batch_size], dtype = np.float32) labeled_count = np.int(batch_size * labeled_rate) labeled_mask[range(labeled_count)] = 1.0 np.random.shuffle(labeled_mask) return labeled_mask ############ Preparing Extended label ############ def prepare_extended_label(label): # add extra label for fake data extended_label = tf.concat([tf.zeros([tf.shape(label)[0], 1]), label], axis = 1) return extended_label ############ Defining losses ############ # The total loss inculcates D_L_Unsupervised + D_L_Supervised + G_feature_matching loss + G_R/F loss def loss_accuracy(D_real_features, D_real_logit, D_real_prob, D_fake_features, D_fake_logit, D_fake_prob, extended_label, labeled_mask): ### Discriminator loss ### # Supervised loss -> which class the real data belongs to temp = tf.nn.softmax_cross_entropy_with_logits_v2(logits = D_real_logit, labels = extended_label) # Don't confuse labeled_rate with labeled_mask # Labeled_mask and temp are of same size = batch_size where temp is softmax # cross_entropy calculated over whole batch D_L_Supervised = tf.reduce_sum(tf.multiply(temp,labeled_mask)) / tf.reduce_sum(labeled_mask) # Multiplying temp with labeled_mask gives supervised loss on labeled_mask # data only, calculating mean by dividing by no of labeled samples # Unsupervised loss -> R/F D_L_RealUnsupervised = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( logits = D_real_logit[:, 0], labels = tf.zeros_like(D_real_logit[:, 0], dtype=tf.float32))) D_L_FakeUnsupervised = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( logits = D_fake_logit[:, 0], labels = tf.ones_like(D_fake_logit[:, 0], dtype=tf.float32))) D_L = D_L_Supervised + D_L_RealUnsupervised + D_L_FakeUnsupervised ### Generator loss ### # G_L_1 -> Fake data wanna be real G_L_1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( logits = D_fake_logit[:, 0],labels = tf.zeros_like(D_fake_logit[:, 0], dtype=tf.float32))) # G_L_2 -> Feature matching data_moments = tf.reduce_mean(D_real_features, axis = 0) sample_moments = tf.reduce_mean(D_fake_features, axis = 0) G_L_2 = tf.reduce_mean(tf.square(data_moments-sample_moments)) G_L = G_L_1 + G_L_2 prediction = tf.equal(tf.argmax(D_real_prob[:, 1:], 1), tf.argmax(extended_label[:, 1:], 1)) accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32)) return D_L, G_L, accuracy ############ Defining Optimizer ############ def optimizer(D_Loss, G_Loss, learning_rate, beta1): update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): all_vars = tf.trainable_variables() D_vars = [var for var in all_vars if var.name.startswith('Discriminator')] G_vars = [var for var in all_vars if var.name.startswith('Generator')] d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1, name = 'd_optimiser').minimize(D_Loss, var_list=D_vars) g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1, name = 'g_optimiser').minimize(G_Loss, var_list=G_vars) return d_train_opt, g_train_opt ############ Plotting Results ############ def show_result(test_images, num_epoch, show = True, save = False, path = 'result.png'): size_figure_grid = 5 fig, ax = plt.subplots(size_figure_grid, size_figure_grid, figsize=(5, 5)) for i in range(0, size_figure_grid): for j in range(0, size_figure_grid): ax[i, j].get_xaxis().set_visible(False) ax[i, j].get_yaxis().set_visible(False) for k in range(size_figure_grid*size_figure_grid): i = k // size_figure_grid j = k % size_figure_grid ax[i, j].cla() ax[i, j].imshow(np.reshape(test_images[k], (64, 64)), cmap='gray') label = 'Epoch {0}'.format(num_epoch) fig.text(0.5, 0.04, label, ha='center') if save: plt.savefig(path) if show: plt.show() else: plt.close() def show_train_hist(hist, show = False, save = False, path = 'Train_hist.png'): x = range(len(hist['D_losses'])) y1 = hist['D_losses'] y2 = hist['G_losses'] plt.plot(x, y1, label='D_loss') plt.plot(x, y2, label='G_loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend(loc=4) plt.grid(True) plt.tight_layout() if save: plt.savefig(path) if show: plt.show() else: plt.close() ############ TRAINING ############ def train_GAN(batch_size, epochs): train_hist = {} train_hist['D_losses'] = [] train_hist['G_losses'] = [] tf.reset_default_graph() x = tf.placeholder(tf.float32, shape = [None, height ,width, channels], name = 'x') z = tf.placeholder(tf.float32, shape = [None, 1, 1, latent], name = 'z') label = tf.placeholder(tf.float32, name = 'label', shape = [None, num_classes]) labeled_mask = tf.placeholder(tf.float32, name = 'labeled_mask', shape = [None]) dropout_rate = tf.placeholder(tf.float32, name = 'dropout_rate') is_training = tf.placeholder(tf.bool, name = 'is_training') lr_rate = 2e-4 model = build_GAN(x, z, dropout_rate, is_training) D_real_features, D_real_logit, D_real_prob, D_fake_features, D_fake_logit, D_fake_prob, fake_data = model extended_label = prepare_extended_label(label) # Fake_data of size = batch_size*28*28*1 loss_acc = loss_accuracy(D_real_features, D_real_logit, D_real_prob, D_fake_features, D_fake_logit, D_fake_prob, extended_label, labeled_mask) D_L, G_L, accuracy = loss_acc D_optimizer, G_optimizer = optimizer(D_L, G_L, lr_rate, beta1 = 0.5) print ('...Training begins...') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) mnist_data = get_data() no_of_batches = int (mnist_data.train.images.shape[0]/batch_size) + 1 for epoch in range(epochs): train_accuracies, train_D_losses, train_G_losses = [], [], [] for it in range(no_of_batches): batch = mnist_data.train.next_batch(batch_size, shuffle = False) # batch[0] has shape: batch_size*28*28*1 batch_reshaped = tf.image.resize_images(batch[0], [64, 64]).eval() # Reshaping the whole batch into batch_size*64*64*1 for disc/gen architecture batch_z = np.random.normal(0, 1, (batch_size, 1, 1, latent)) mask = get_labeled_mask(labeled_rate, batch_size) train_feed_dict = {x : scale(batch_reshaped), z : batch_z, label : batch[1], labeled_mask : mask, dropout_rate : 0.7, is_training : True} #The label provided in dict are one hot encoded in 10 classes D_optimizer.run(feed_dict = train_feed_dict) G_optimizer.run(feed_dict = train_feed_dict) train_D_loss = D_L.eval(feed_dict = train_feed_dict) train_G_loss = G_L.eval(feed_dict = train_feed_dict) train_accuracy = accuracy.eval(feed_dict = train_feed_dict) train_D_losses.append(train_D_loss) train_G_losses.append(train_G_loss) train_accuracies.append(train_accuracy) print('Batch evaluated: ' +str(it+1)) tr_GL = np.mean(train_G_losses) tr_DL = np.mean(train_D_losses) tr_acc = np.mean(train_accuracies) print ('After epoch: '+ str(epoch+1) + ' Generator loss: ' + str(tr_GL) + ' Discriminator loss: ' + str(tr_DL) + ' Accuracy: ' + str(tr_acc)) gen_samples = fake_data.eval(feed_dict = {z : np.random.normal(0, 1, (25, 1, 1, latent)), dropout_rate : 0.7, is_training : False}) # Dont train batch-norm while plotting => is_training = False test_images = tf.image.resize_images(gen_samples, [64, 64]).eval() show_result(test_images, (epoch + 1), show = True, save = False, path = '') train_hist['D_losses'].append(np.mean(train_D_losses)) train_hist['G_losses'].append(np.mean(train_G_losses)) show_train_hist(train_hist, show=True, save = True, path = 'train_hist.png') sess.close() return train_D_losses,train_G_losses key = train_GAN( 128 , 7) ###Output _____no_output_____
code/AppleWatch Acc Feature Extraction.ipynb
###Markdown Extracting bradykinesia features from downloaded Accelerometer dataThe function requires already downloaded (Apple watch) accelerometry (acc) data, saved in csv-files, per day, per patient. Saved with filenames as in Notebook Data Download (e.g. 'RCS02_10Jun2020_userAcc.csv')The function requires all acc-data files to be in one folder, with the patient-code as a name (e.g. RCS02).The function will extract features per day, write csv files with all features per day, for every day in the defined time span in the function input. ###Code path = os.path.join(os.path.dirname(os.getcwd())) # changed to main folder, instead of results print(path) ###Output /Users/roee/Starr_Lab_Folder/Data_Analysis/medStateDetection/results ###Markdown Load in Accelerometry data, bandpass Filter, and Extract Features ###Code def load_filterWatchData(pt, y0,m0,d0,y1,m1,d1): ''' Input: - pt: patient as string (e.g. 'RCS02') - y0,m0,d0 : start date of desired timeperiod (year, month, date, e.g. 2020, 5, 1) - y1,m1,d1 : end date of desired timeperiod (year, month, date, e.g. 2020, 6, 1) Calculates features per day. Saves features as .csv Returns: one DF with raw AW data, and 1 DF with filtered AW data ''' sr = 50 # sample ratio apple watch accelerometry, used in filter function below bandPassLow = 0 # lower cutoff of bandpass filter bandPassHigh = 3.5 # higher cutoff of bandpass filter filteredData = {} # empty dict to store filtered rcs data # define days in given timespan def datetime_range(start=None, end=None): span = end - start for i in range(span.days + 1): yield start + timedelta(days=i) # create list with datetime dates for every day in timespan datetimeDays = list(datetime_range(start=datetime(y0, m0, d0), end=datetime(y1, m1, d1))) # extract all file 'userAccel.csv'-filenames from specified patient-folder patient_dir_name = os.path.join(path,'data',pt) folderFiles= [s for s in listdir(patient_dir_name) if s[-15:] =='watch_accel.csv'] for fileDay in datetimeDays: # loop over all days in requested timespan # define name of day-file day = fileDay.strftime("%d") # generate 2-digit day code month = fileDay.strftime("%d") # generate 2-digit month code year = fileDay.strftime("%Y") # generate 4-digit year code fileName = '%s_%s%s%s_watch_accel.csv' % (pt,year,month,day) # first pt is for specific pt-folder # check if acc-data file exist in folder, if not: skip day and continue with next if fileName in folderFiles: fileName = fileName # go on else: print('no file for %s' %fileName) continue # skips rest of itiration and takes next iteration # read csv file csv_full_path = os.path.join(path,pt,fileName) rawFile = pd.read_csv(csv_full_path , header=0) ## DATA LOADING timeStamps = [] # create empty list for timestamps timeDelta = [0] # list for time difference per sample vs previous sample (0 for fist) (check for timestamp consistency) for row in np.arange(len(rawFile['time'])): # loop over every sample timeStamps.append(datetime.fromtimestamp(rawFile['time'][row])) # add timestamp to list if row > 0: # add timediff to a list, except for first sample... timeDelta.append((timeStamps[row] - timeStamps[row-1]).total_seconds()) # select only acc axes dat = rawFile[['x','y','z']].rename(columns={"x": "X", "y": "Y", "z": "Z"}) # calculate raw SVM before filtering dat['SVM'] = np.sqrt(dat['X']**2 + dat['Y']**2 + dat['Z']**2 ) dat.insert(loc=0, column='timeStamp', value=timeStamps) # add timestamps as first column # dat is now ready raw acc file ## DATA FILTERING dat = dat.sort_values(by=['timeStamp']).reset_index(drop=True) # sort by timestamp and reset indices # filter raw RCS acc with wrist-feature relevant bandwidths # make new dataframe for filtered data, with same timestamps filtered = pd.DataFrame(data = dat['timeStamp'], columns = ['timeStamp']) for col in ['X' ,'Y', 'Z', 'SVM']: # loop over all acc-data columns to filter # bandpass filter excluding tremor frequencies > 4hz filteredCol = filter_data(np.array(dat[col]),sr,bandPassLow,bandPassHigh,method='iir',verbose='WARNING') # filtered data per column stored in dat, write dat to dataframe column in filtered data DF filtered[col] = filteredCol filteredData[day+month] = filtered return filteredData ###Output _____no_output_____ ###Markdown Feature Extraction ###Code ## Bradykinesia faetures extracted from Github Mahadevan 2020 ## Source: https://github.com/NikhilMahadevan/analyze-tremor-bradykinesia-PD def histogram(signal_x): ''' Calculate histogram of sensor signal. :param signal_x: 1-D numpy array of sensor signal :return: Histogram bin values, descriptor ''' descriptor = np.zeros(3) ncell = np.ceil(np.sqrt(len(signal_x))) max_val = np.nanmax(signal_x.values) min_val = np.nanmin(signal_x.values) delta = (max_val - min_val) / (len(signal_x) - 1) descriptor[0] = min_val - delta / 2 descriptor[1] = max_val + delta / 2 descriptor[2] = ncell h = np.histogram(signal_x, ncell.astype(int), range=(min_val, max_val)) return h[0], descriptor def dominant_frequency(signal_df, sampling_rate, cutoff ): ''' Calculate dominant frequency of sensor signals. :param signal_df: Pandas DataFrame housing desired sensor signals :param sampling_rate: sampling rate of sensor signal :param cutoff: desired cutoff for filter :param channels: channels of signal to measure dominant frequency :return: Pandas DataFrame of calculated dominant frequency for each signal channel ''' dominant_freq_df = pd.DataFrame() signal_x = signal_df padfactor = 1 dim = signal_x.shape nfft = 2 ** ((dim[0] * padfactor).bit_length()) freq_hat = np.fft.fftfreq(nfft) * sampling_rate freq = freq_hat[0: int(nfft / 2)] idx1 = freq <= cutoff idx_cutoff = np.argwhere(idx1) freq = freq[idx_cutoff] sp_hat = np.fft.fft(signal_x, nfft) sp = sp_hat[0: int(nfft / 2)] * np.conjugate(sp_hat[0: int(nfft / 2)]) sp = sp[idx_cutoff] sp_norm = sp / sum(sp) max_freq = freq[sp_norm.argmax()][0] max_freq_val = sp_norm.max().real idx2 = (freq > max_freq - 0.5) * (freq < max_freq + 0.5) idx_freq_range = np.where(idx2)[0] dom_freq_ratio = sp_norm[idx_freq_range].real.sum() # Calculate spectral flatness spectral_flatness = 10.0*np.log10(stats.mstats.gmean(sp_norm)/np.mean(sp_norm)) # Estimate spectral entropy spectral_entropy_estimate = 0 for isess in range(len(sp_norm)): if sp_norm[isess] != 0: logps = np.log2(sp_norm[isess]) else: logps = 0 spectral_entropy_estimate = spectral_entropy_estimate - logps * sp_norm[isess] spectral_entropy_estimate = spectral_entropy_estimate / np.log2(len(sp_norm)) # spectral_entropy_estimate = (spectral_entropy_estimate - 0.5) / (1.5 - spectral_entropy_estimate) dominant_freq_df['_dom_freq_value'] = [max_freq] dominant_freq_df['_dom_freq_magnitude'] = [max_freq_val] dominant_freq_df['_dom_freq_ratio'] = [dom_freq_ratio] dominant_freq_df['_spectral_flatness'] = [spectral_flatness[0].real] dominant_freq_df['_spectral_entropy'] = [spectral_entropy_estimate[0].real] return dominant_freq_df def signal_entropy(windowData): data_norm = windowData/np.std(windowData) h, d = histogram(data_norm) lowerbound = d[0] upperbound = d[1] ncell = int(d[2]) estimate = 0 sigma = 0 count = 0 for n in range(ncell): if h[n] != 0: logf = np.log(h[n]) else: logf = 0 count = count + h[n] estimate = estimate - h[n] * logf sigma = sigma + h[n] * logf ** 2 nbias = -(float(ncell) - 1) / (2 * count) estimate = estimate / count estimate = estimate + np.log(count) + np.log((upperbound - lowerbound) / ncell) - nbias # Scale the entropy estimate to stretch the range estimate = np.exp(estimate ** 2) - np.exp(0) - 1 return estimate def extractFeatures(pt, filteredData, windowLen=60, sr=50): ''' Input: - filteredData = dictionary of filtered acc data, for every day a seperate dataframe filteredData is automatically result of first function. - windowLen = desired window length of features in seconds - sr = sample frequency of recorded accelerometry data, in Hz, AppleWatch accelerometry = 50 Hz. Writes feature dataframes per day to .csv Returns: One dictionary with feature dataframes. ''' tDelta = sr*windowLen # time-delta is factor between filtered data sample rate and desired windowlength # Define all names of feature-labels which will be calculated over all axes totalFeatLabels = [] # one list for all feature names (SVM,X,Y and Z) for axis in ['SVM','X', 'Y', 'Z']: # loop over all axes, calculate features per axis # add list with features for every axis featureList = ['_maxAcc','_iqrAcc', '_90prcAcc','_medianAcc','_meanAcc', '_stddev','_variance','_coefVar','_accRange', '_lowPeaks','_highPeaks', '_time1gAcc','_accEntropy','_jerkRatio', '_RMS', '_specPow_totalu4Hz', '_specPow_low','_specPow_mid', '_specPow_high', '_domFreq_magnitude', '_domFreq_ratio', '_spectral_flatness', '_spectral_entropy',] #'_domFreq_value', (left out, no variation) for feat in featureList: totalFeatLabels.append(axis+feat) # features only for XYZ if np.logical_or(axis == 'X', axis == 'Y'): # ratio RMS only relevant for x y and z totalFeatLabels.append(axis+'_ratioRMS') elif axis == 'Z': totalFeatLabels.append(axis+'_ratioRMS') # features only once calculated, in SVM if axis == 'SVM': for l in ['_spectralVar','_spectralSmoothness1','_spectrallowPeaks', '_spectralSmoothness2','_spectralhighPeaks']: totalFeatLabels.append(axis+l) totalFeatLabels.extend(['crossCor_XY','crossCor_XZ','crossCor_YZ']) ''' TotalFeatLabels is now a list with all feature labels of X,Y,Z,SVM. One dataframe per session will be calculated and afterwards merged into one total feature-dataframe. ''' features = {} # empty dict to store feature-dataframes per day list_days = filteredData.keys() # define days to calculate features for for day in list_days: # loop over every day in filteredData # basis for new feature dataframe is timestamps of filteredData # Add timestamp of beginning of faeture-window to list for feature dataframe timestamps timeStamps = filteredData[day]['timeStamp'][::tDelta] # take every timestamp at beginning of a feature window features[day] = pd.DataFrame(data=timeStamps, columns=['timeStamp']) # create dict with empty lists for all feature-names totalFeatureLists = {} # empty dict to store features in lists for this session for label in totalFeatLabels: totalFeatureLists[label] = [] # CALCULATION OF FEATURES, PER AXIS for axis in ['SVM','X', 'Y', 'Z']: # loop over all axes, calculate features per axis for windowStart in np.arange(0,len(filteredData[day][axis]),tDelta): # iterate over windows of 120 hz * 60 s windowData = filteredData[day][axis][windowStart : windowStart+tDelta] # create windowdata per column and per window ## DISTRIBUTIVE AND DESCRIPTIVE FEATURES FROM TIME DOMAIN # max acceleration (source: Griffiths 2012) maxAcc = np.max(np.abs(windowData)) totalFeatureLists[axis+'_maxAcc'].append(maxAcc) # IQR of acc iqrAcc = scipy.stats.iqr(windowData) totalFeatureLists[axis+'_iqrAcc'].append(iqrAcc) # 90-th percentile acc, (Rispens 2015 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296095/?report=classic ) perc90 = np.percentile(np.abs(windowData), 90) totalFeatureLists[axis+'_90prcAcc'].append(perc90) # median of acc medianAcc = np.median(np.abs(windowData)) totalFeatureLists[axis+'_medianAcc'].append(medianAcc) # mean of acc meanAcc = np.mean(np.abs(windowData)) totalFeatureLists[axis+'_meanAcc'].append(meanAcc) # standard deviation stddev = np.std(np.abs(windowData)) totalFeatureLists[axis+'_stddev'].append(stddev) # variance (var = mean(abs(x - x.mean())**2)) var = np.var(np.abs(windowData)) totalFeatureLists[axis+'_variance'].append(var) # Coefficient of variance (stddev / mean) coefVar = scipy.stats.variation(np.abs(windowData)) totalFeatureLists[axis+'_coefVar'].append(coefVar) # range in signal value; from Mahadevan-Github accRange = windowData.max(skipna=True) - windowData.min(skipna=True) totalFeatureLists[axis+'_accRange'].append( accRange ) # number of acceleration peaks per axes # low threshold peaks: activity indication lowPeaks = len(find_peaks(np.abs(windowData),height=1, threshold=None, distance=600)[0]) # height = required value to be a peak, distance is horizontal distance to allow next peak totalFeatureLists[axis+'_lowPeaks'].append( lowPeaks ) # high threshold peaks: amount of faster activity highPeaks = len(find_peaks(np.abs(windowData),height=3, threshold=None, distance=600)[0]) # height = required value to be a peak, distance is horizontal distance to allow next peak totalFeatureLists[axis+'_highPeaks'].append( highPeaks ) # % time spent in above 1g acceleration time1gAcc = np.sum(np.abs(windowData) > 1)/len(windowData) totalFeatureLists[axis+'_time1gAcc'].append( time1gAcc ) # entropy in accelerometry (source: Mahadevan-github) sigEntropy = signal_entropy(windowData) totalFeatureLists[axis+'_accEntropy'].append(sigEntropy) ## jerk ratio/smoothness; rate of acc-changes (Hogan 2009) acc to Mahadevan, PM aimed for 3-sec windows ampl = np.max(np.abs(windowData)) jerk = windowData.diff(1) * sr #(divided by 1 / sr => multiply with sr) jerkSqSum = np.sum(jerk ** 2) scale = 360 * ampl ** 2 / tDelta / sr meanSqJerk = jerkSqSum / sr / (tDelta / sr * 2) jerkRatio = meanSqJerk / scale totalFeatureLists[axis+'_jerkRatio'].append(jerkRatio) # RMS according to classical definition meanSqAcc = np.mean(np.square(windowData)) rmsAcc = np.sqrt(meanSqAcc) totalFeatureLists[axis+'_RMS'].append(rmsAcc ) # RMS ratio (RMS-axis / RMS-svm) (Sekine '13: https://www.ncbi.nlm.nih.gov/pubmed/24370075) # rms ratio in mediolateral direction is correlated with walking speed if np.logical_or(axis == 'X' , axis == 'Y'): svmRMS = np.sqrt(np.mean(np.square(filteredData[day]['SVM'][windowStart : windowStart+tDelta]))) ratioRMS = rmsAcc / svmRMS totalFeatureLists[axis+'_ratioRMS'].append(ratioRMS) elif axis == 'Z': svmRMS = np.sqrt(np.mean(np.square(filteredData[day]['SVM'][windowStart : windowStart+tDelta]))) ratioRMS = rmsAcc / svmRMS totalFeatureLists[axis+'_ratioRMS'].append(ratioRMS) ## FEATURES FROM SPECTRAL DOMAIN # Griffiths: MSP: not described: mean over whole 0.2-4.0? mean per which bin-width?? svm or axis? freq = np.fft.rfftfreq(len(windowData), d = 1/sr) # define freq's for rfft, resolution (bins/hz) is dependent on windowlength of data lowFreq = np.logical_and(freq < 3.5, freq > 0.0) # select freq's of interest, total = 0-30hz since sr=60 rfft = np.fft.rfft(windowData) # real fast fourier transform (same as fft[freq > 0]) psd = np.log(np.abs(rfft)**2) # log to normalize (rfft gives same barplot as periodogram and fft) ## ??? is PSD correct as squared value of magnitude, log for normalization? psdLow = np.sum(psd[lowFreq]) # sum of psd's between selected freq's totalFeatureLists[axis+'_specPow_totalu4Hz'].append(psdLow) ## Evers (preprint 2020) gait cadence in 0.7 - 1.4 hz and 1.4 - 2.8 hz freqGaitA = np.logical_and(freq < 1.4, freq > 0.7) # select freq's of interest, total = 0-30hz since sr=60 psdGaitA = np.sum(psd[freqGaitA]) # sum of psd's between selected freq's totalFeatureLists[axis+'_specPow_low'].append(psdGaitA) freqGaitB = np.logical_and(freq < 2.8, freq > 1.4) # select freq's of interest, total = 0-30hz since sr=60 psdGaitB = np.sum(psd[freqGaitB]) # sum of psd's between selected freq's totalFeatureLists[axis+'_specPow_mid'].append(psdGaitB) freqGaitC = np.logical_and(freq < 3.5, freq > 2.8) # select freq's of interest, total = 0-30hz since sr=60 psdGaitC = np.sum(psd[freqGaitC]) # sum of psd's between selected freq's totalFeatureLists[axis+'_specPow_high'].append(psdGaitC) # dom freq + ratio + spectral flatness and entropy (source: Mahadevan-github) domFreqValues = dominant_frequency(windowData, sr, 3) # 4 (3) = cutoff for spectrum too analyze # totalFeatureLists[axis+'_domFreq_value'].append( float(domFreqValues['_dom_freq_value'])) totalFeatureLists[axis+'_domFreq_magnitude'].append( float(domFreqValues['_dom_freq_magnitude'])) totalFeatureLists[axis+'_domFreq_ratio'].append(float( domFreqValues['_dom_freq_ratio'])) totalFeatureLists[axis+'_spectral_flatness'].append( float(domFreqValues['_spectral_flatness'])) totalFeatureLists[axis+'_spectral_entropy'].append( float(domFreqValues['_spectral_entropy'])) if axis == 'SVM': # auto-correlation between x-y-z axes crossCorXY = pearsonr(windowData, filteredData[day]['Y'][windowStart : windowStart+tDelta]) crossCorXZ = pearsonr(windowData, filteredData[day]['Z'][windowStart : windowStart+tDelta]) crossCorYZ = pearsonr(filteredData[day]['Y'][windowStart : windowStart+tDelta], filteredData[day]['Z'][windowStart : windowStart+tDelta]) totalFeatureLists['crossCor_XY'].append(crossCorXY[0]) totalFeatureLists['crossCor_XZ'].append(crossCorXZ[0]) totalFeatureLists['crossCor_YZ'].append(crossCorYZ[0]) # spectral variability and approximation of smoothness and PSD-line-length (importance ref by Beck 2019, Balasubramanian 20120) normPSD = psd/psd[0] # normalize PSD by first value DC-normalization (Subramaninian '12') spectralVar = np.var(normPSD[lowFreq]) totalFeatureLists[axis+'_spectralVar'].append(spectralVar) # approximation of spectral length; find_peaks finds all small peaks, # thresholds represent the distance from the peak to the neighbouring points # sum of threshold-values indicates the distances the PSD-line makes to the peaks ind, treshs = find_peaks(normPSD[lowFreq],height=None, threshold=0.05, distance=1) # first value returns peak-indices, second tresholds spectralSmoothness = np.sum(treshs['left_thresholds']+treshs['right_thresholds']) totalFeatureLists[axis+'_spectralSmoothness1'].append(spectralSmoothness) # number of peaks found spectralPeaks = len(ind) totalFeatureLists[axis+'_spectrallowPeaks'].append(spectralPeaks) # same smoothness and peaks, with higher peak-threshold ind, treshs = find_peaks(normPSD[lowFreq],height=None, threshold=0.1, distance=2) # first value returns peak-indices, second tresholds spectralSmoothness = np.sum(treshs['left_thresholds']+treshs['right_thresholds']) totalFeatureLists[axis+'_spectralSmoothness2'].append(spectralSmoothness) # number of peaks found spectralPeaks = len(ind) totalFeatureLists[axis+'_spectralhighPeaks'].append(spectralPeaks) ''' All features are calculated over all axes; now writing all lists with features in to a feature dataframe per session in featureDict''' # fill every column with calculated feature values for col in totalFeatLabels: features[day][col] = totalFeatureLists[col] # save features per patient fileName = '%s_%s%s%s_%isec_features.csv' % (pt, year,month,day, windowLen) csv_full_file_write = os.path.join(path,'results',pt,fileName) features[day].to_csv(csv_full_file_write, index=False) return features # execute data filtering and feature extraction filteredData = load_filterWatchData('RCS02', 2020,6,8, 2020,6,11) features = extractFeatures(pt='RCS02', filteredData=filteredData, ) ###Output no file for RCS02_08Jun2020_userAccel.csv no file for RCS02_09Jun2020_userAccel.csv doch doch
Auto_scripts/Avocado/H2O-avocado.ipynb
###Markdown H2O Avocado Goal : - Create a ML model using Auto-sklearn for the Avocado dataset- Get RMSE over the predictions of these model Imports ###Code import h2o from h2o.estimators.gbm import H2OGradientBoostingEstimator from h2o.automl import H2OAutoML from time import process_time ###Output _____no_output_____ ###Markdown Initialtisation of an internal server used by H2O ###Code h2o.init() ###Output Checking whether there is an H2O instance running at http://localhost:54321 ..... not found. Attempting to start a local H2O server... Java Version: openjdk version "1.8.0_152-release"; OpenJDK Runtime Environment (build 1.8.0_152-release-1056-b12); OpenJDK 64-Bit Server VM (build 25.152-b12, mixed mode) Starting server from /opt/conda/lib/python3.7/site-packages/h2o/backend/bin/h2o.jar Ice root: /tmp/tmp9w15t7cu JVM stdout: /tmp/tmp9w15t7cu/h2o_unknownUser_started_from_python.out JVM stderr: /tmp/tmp9w15t7cu/h2o_unknownUser_started_from_python.err Server is running at http://127.0.0.1:54321 Connecting to H2O server at http://127.0.0.1:54321 ... successful. ###Markdown importing our dataset and defining each column as "factor" or "predictor" ###Code df = h2o.upload_file('../../Data/avocado_price/processed/train.csv') response = "C1" df[response] = df[response].asfactor() predictors=[] for col in df.columns: if col != response: predictors.append(col) ###Output Parse progress: |█████████████████████████████████████████████████████████| 100% ###Markdown Importing our train and test dataset ###Code train = h2o.upload_file('../../Data/avocado_price/processed/train.csv') valid = h2o.upload_file('../../Data/avocado_price/processed/test.csv') ###Output Parse progress: |█████████████████████████████████████████████████████████| 100% Parse progress: |█████████████████████████████████████████████████████████| 100% ###Markdown Creating our model ###Code avocado_gbm = H2OGradientBoostingEstimator() t1_start = process_time() avocado_gbm.train(x = predictors, y = response, training_frame = train, validation_frame = valid) t1_stop = process_time() print("Elapsed time in seconds : ",t1_stop-t1_start) ###Output gbm Model Build progress: |███████████████████████████████████████████████| 100% Elapsed time in seconds : 0.22595822900000018 ###Markdown Getting our informations such as :- Most important features- RMSE ###Code print(avocado_gbm) ###Output Model Details ============= H2OGradientBoostingEstimator : Gradient Boosting Machine Model Key: GBM_model_python_1592829396011_1 Model Summary:
Demo_with_Auto_Keras.ipynb
###Markdown ###Code # 連接並mount自己的雲端硬碟(點選跑出網址複製最後的授權碼貼上並執行) from google.colab import drive drive.mount('/content/drive', force_remount=True) # 切換到指定目錄 SYS_DIR = "/content/drive/My Drive/Colab Notebooks/AutoKerasDemos/" import os if os.path.isdir(SYS_DIR) is False: os.mkdir(SYS_DIR) os.chdir(SYS_DIR) # 安裝安裝AutoKeras !pip3 install autokeras # 安裝 Tensorflow !pip3 install tensorflow # 引入基本函式庫 import autokeras as ak import tensorflow as tf from autokeras import ImageClassifier from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D from sklearn.model_selection import train_test_split from google.colab import files from tensorflow.keras.datasets import mnist from tensorflow.keras.models import load_model # 這裡我要試驗的是手寫辨識Minst, 所以先下載 tensorflow內建的Minst資料集 from tensorflow.keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() # 初始化Image classifier. clf = ak.ImageClassifier(overwrite=True, max_trials=1) # 搜尋出最適合文字辨識的模型 clf.fit(x_train, y_train, epochs=10) # 使用最佳模型進行預測 predicted_y = clf.predict(x_test) print(predicted_y) # 評估一下效果, 發現Accuracy準確率很高. Loss遺失率很低 print(clf.evaluate(x_test, y_test)) # 比較 20 筆 print('prediction:', ' '.join(predicted_y[0:20].ravel())) print('actual :', ' '.join(y_test[0:20].astype(str))) # 匯出模型,下次還能使用 model = clf.export_model() print(type(model)) # 匯出 try: model.save("model_autokeras", save_format="tf") except Exception: model.save("model_autokeras.h5") # 載入模型, 試驗效果 loaded_model = load_model("model_autokeras", custom_objects=ak.CUSTOM_OBJECTS) predicted_y = loaded_model.predict(tf.expand_dims(x_test, -1)) print(predicted_y) # 用實際圖片來測試效果 from skimage import io from skimage.transform import resize import numpy as np import matplotlib.pyplot as plt X_ALL = np.empty((0, 28, 28)) for i in [7,2,3,5]: image1 = io.imread(f'./imgs/{i}.jpg', as_gray=True) plt.imshow(io.imread(f'./imgs/{i}.jpg')) plt.show() image_resized = resize(image1, (28, 28), anti_aliasing=True) X1 = image_resized.reshape(1, 28, 28) #/ 255 X1 = (np.abs(1-X1) * 255).astype(int) X_ALL = np.concatenate([X_ALL, X1]) predictions = loaded_model.predict(X_ALL) for prediction in predictions: print(np.argmax(prediction, axis=0)) ###Output _____no_output_____
Outliers_Removing_Technique.ipynb
###Markdown An Outlier of a dataset defines as a value that is more than 3 standard deviations away from the mean. So removing outliers from a df removes any row in the dataset which contains an outlier. Outlier calculation are performed seperately for each column. ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt plt.style.use('ggplot') from datetime import datetime mpl.rcParams['figure.figsize'] = (12, 7) df = pd.read_csv("https://raw.githubusercontent.com/abidshafee/autoML-tsModel/main/throughput_metrics.csv", parse_dates=['Time'], index_col='Time') df.describe(include='all') df.head() df[['SiteF','SiteE','SiteD','SiteC','SiteB','SiteA']].plot(subplots=True) ###Output _____no_output_____ ###Markdown Detecting Outliers ###Code sns.boxenplot(df['SiteA']) ###Output /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning ###Markdown Removing Outliers ###Code import scipy.stats as sst z_score = sst.zscore(df) abs_z_scores = np.abs(z_score) filter_data = (abs_z_scores<3).all(axis=1) ndf = df[filter_data] ###Output _____no_output_____ ###Markdown Because Outlier of a dataset defines as a value that is more than 3 (std) standard deviations away from the mean ###Code ndf.describe(include='all') ndf.info() sns.boxenplot(ndf['SiteA']) print(df.shape) print(ndf.shape) n_bins = 25 fig, axs = plt.subplots(1, 2, sharey=True, tight_layout=True) # We can set the number of bins with the *bins* keyword argument. axs[0].hist(ndf['SiteA'], bins=n_bins) axs[1].hist(ndf['SiteB'], bins=n_bins) ###Output _____no_output_____ ###Markdown An Outlier of a dataset defines as a value that is more than 3 standard deviations away from the mean. So removing outliers from a df removes any row in the dataset which contains an outlier. Outlier calculation are performed seperately for each column. ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt plt.style.use('ggplot') from datetime import datetime mpl.rcParams['figure.figsize'] = (12, 7) df = pd.read_csv("https://raw.githubusercontent.com/abidshafee/autoML-tsModel/main/throughput_metrics.csv", parse_dates=['Time'], index_col='Time') df.describe(include='all') df.head() df[['SiteF','SiteE','SiteD','SiteC','SiteB','SiteA']].plot(subplots=True) ###Output _____no_output_____ ###Markdown Detecting Outliers ###Code sns.boxenplot(df['SiteA']) ###Output /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning ###Markdown Removing Outliers ###Code import scipy.stats as sst z_score = sst.zscore(df) abs_z_scores = np.abs(z_score) filter_data = (abs_z_scores<3).all(axis=1) ndf = df[filter_data] ###Output _____no_output_____ ###Markdown Because Outlier of a dataset defines as a value that is more than 3 (std) standard deviations away from the mean ###Code ndf.describe(include='all') ndf.info() sns.boxenplot(ndf['SiteA']) print(df.shape) print(ndf.shape) n_bins = 25 fig, axs = plt.subplots(1, 2, sharey=True, tight_layout=True) # We can set the number of bins with the *bins* keyword argument. axs[0].hist(ndf['SiteA'], bins=n_bins) axs[1].hist(ndf['SiteB'], bins=n_bins) ###Output _____no_output_____
conveyor/examples/ml_example/.ipynb_checkpoints/Exploring Iris-checkpoint.ipynb
###Markdown Iris dataset classificationThis is one of a few notebooks designed to showcase how Conveyor can make your work in Jupyter more organized. The objective of this example is to seperate the Iris dataset classification task (covered [here](https://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning.html)) into smaller subtasks, from exploratory data analysis to evaluating different classification strategies. ###Code import numpy as np from sklearn import datasets iris_X, iris_y = datasets.load_iris(return_X_y=True) ###Output _____no_output_____ ###Markdown (From scikit-learn's website) "The iris dataset is a classification task consisting in identifying 3 different types of irises (Setosa, Versicolour, and Virginica) from their petal and sepal length and width." ###Code np.unique(iris_y) # iris_X appears to contain petal and sepal lengths and widths... iris_X[0] # The 0 class is a type of flower iris_y[0] ###Output _____no_output_____ ###Markdown How many of each type of flower does the dataset contain? ###Code class_count = [0]*len(np.unique(iris_y)) for flower_type in iris_y: class_count[flower_type] += 1 class_count ###Output _____no_output_____ ###Markdown Are there any obvious identifying characteristics about each flower's petals? What about sepal and petal areas? ###Code class_data = [iris_X[np.where(iris_y == flower_type)] for flower_type in np.unique(iris_y)] class_areas_avg = [] class_areas = [] for flower_type in range(len(class_data)): flower_avg_dims = np.mean(class_data[flower_type], axis=1) class_areas_avg.append((flower_avg_dims[0]*flower_avg_dims[1], flower_avg_dims[2]*flower_avg_dims[3])) class_areas.append([(x[0]*x[1], x[2]*x[3]) for x in class_data[flower_type]]) # From classes 0 to 1 to 2 the average sizes increase class_areas_avg ###Output _____no_output_____ ###Markdown The average areas seem to be markedly different among the three types of flowers. Do the areas vary much across individual flowers, relative to these values? If so, area will not be a useful indicator for classifying our flowers. ###Code np.var(class_areas, axis=1) ###Output _____no_output_____ ###Markdown Let's get the areas for each flower in the order we see them. ###Code flower_areas = [] for flower_idx in range(len(iris_X)): flower_data = iris_X[flower_idx] flower_areas.append([flower_data[0] * flower_data[1], flower_data[2] * flower_data[3]]) flower_areas ###Output _____no_output_____
data-analysis/pandas/sf_salaries.ipynb
###Markdown SF Salaries ExerciseWelcome to a quick exercise for you to practice your pandas skills! We will be using the [SF Salaries Dataset](https://www.kaggle.com/kaggle/sf-salaries) from Kaggle! Just follow along and complete the tasks outlined in bold below. The tasks will get harder and harder as you go along. ** Import pandas as pd.** ###Code import pandas as pd ###Output _____no_output_____ ###Markdown ** Read Salaries.csv as a dataframe called sal.** ###Code sal = pd.read_csv('Salaries.csv') ###Output _____no_output_____ ###Markdown ** Check the head of the DataFrame. ** ###Code sal.head() ###Output _____no_output_____ ###Markdown ** Use the .info() method to find out how many entries there are.** ###Code sal.info() # 148654 Entries ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 148654 entries, 0 to 148653 Data columns (total 13 columns): Id 148654 non-null int64 EmployeeName 148654 non-null object JobTitle 148654 non-null object BasePay 148045 non-null float64 OvertimePay 148650 non-null float64 OtherPay 148650 non-null float64 Benefits 112491 non-null float64 TotalPay 148654 non-null float64 TotalPayBenefits 148654 non-null float64 Year 148654 non-null int64 Notes 0 non-null float64 Agency 148654 non-null object Status 0 non-null float64 dtypes: float64(8), int64(2), object(3) memory usage: 14.7+ MB ###Markdown **What is the average BasePay ?** ###Code sal['BasePay'].mean() ###Output _____no_output_____ ###Markdown ** What is the highest amount of OvertimePay in the dataset ? ** ###Code sal['OvertimePay'].max() ###Output _____no_output_____ ###Markdown ** What is the job title of JOSEPH DRISCOLL ? Note: Use all caps, otherwise you may get an answer that doesn't match up (there is also a lowercase Joseph Driscoll). ** ###Code sal[sal['EmployeeName']=='JOSEPH DRISCOLL']['JobTitle'] ###Output _____no_output_____ ###Markdown ** How much does JOSEPH DRISCOLL make (including benefits)? ** ###Code sal[sal['EmployeeName']=='JOSEPH DRISCOLL']['TotalPayBenefits'] ###Output _____no_output_____ ###Markdown ** What is the name of highest paid person (including benefits)?** ###Code sal[sal['TotalPayBenefits']== sal['TotalPayBenefits'].max()] #['EmployeeName'] # or # sal.loc[sal['TotalPayBenefits'].idxmax()] ###Output _____no_output_____ ###Markdown ** What is the name of lowest paid person (including benefits)? Do you notice something strange about how much he or she is paid?** ###Code sal[sal['TotalPayBenefits']== sal['TotalPayBenefits'].min()] #['EmployeeName'] # or # sal.loc[sal['TotalPayBenefits'].idxmax()]['EmployeeName'] ## ITS NEGATIVE!! VERY STRANGE ###Output _____no_output_____ ###Markdown ** What was the average (mean) BasePay of all employees per year? (2011-2014) ? ** ###Code sal.groupby('Year').mean()['BasePay'] ###Output _____no_output_____ ###Markdown ** How many unique job titles are there? ** ###Code sal['JobTitle'].nunique() ###Output _____no_output_____ ###Markdown ** What are the top 5 most common jobs? ** ###Code sal['JobTitle'].value_counts().head(5) ###Output _____no_output_____ ###Markdown ** How many Job Titles were represented by only one person in 2013? (e.g. Job Titles with only one occurence in 2013?) ** ###Code sum(sal[sal['Year']==2013]['JobTitle'].value_counts() == 1) # pretty tricky way to do this... ###Output _____no_output_____ ###Markdown ** How many people have the word Chief in their job title? (This is pretty tricky) ** ###Code def chief_string(title): if 'chief' in title.lower(): return True else: return False sum(sal['JobTitle'].apply(lambda x: chief_string(x))) ###Output _____no_output_____ ###Markdown ** Bonus: Is there a correlation between length of the Job Title string and Salary? ** ###Code sal['title_len'] = sal['JobTitle'].apply(len) sal[['title_len','TotalPayBenefits']].corr() # No correlation. ###Output _____no_output_____
mine_domain3.ipynb
###Markdown Mine domain 3. Extract subgroups with high concentration of PHAs ###Code import pickle from copy import deepcopy import numpy as np import pandas as pd from sklearn import neighbors, svm import matplotlib as mpl # Import Asterion modules import read_database as rdb import learn_data as ld import asterion_learn as al import visualize_data as vd # Matplotlib settings for the current notebook %matplotlib inline # font = {'size': 25} font = {'size': 16} mpl.rc('font', **font) ###Output _____no_output_____ ###Markdown ** Load NEAs from the 3-rd domain ** ###Code dirpath = './asteroid_data/' real_datasets = ['haz_real', 'nohaz_real'] gen_datasets = ['haz_gen', 'nohaz_gen'] genu_datasets = ['haz_gen', 'nohaz_gen'] name_sufixes = ['_dom3.p', '_dom3_rest.p'] dumps_real = [dirpath + ds + ns for ns in name_sufixes for ds in real_datasets] dumps_gen = [dirpath + ds + ns for ns in name_sufixes for ds in gen_datasets] dumps_genu = [dirpath + ds + ns for ns in name_sufixes for ds in genu_datasets] haz_real, nohaz_real, haz_real_rest, nohaz_real_rest = map(rdb.loadObject, dumps_real) haz_gen, nohaz_gen, haz_gen_rest, nohaz_gen_rest = map(rdb.loadObject, dumps_gen) haz_genu, nohaz_genu, haz_genu_rest, nohaz_genu_rest = map(rdb.loadObject, dumps_genu) gen_num = sum(map(len, [haz_gen, nohaz_gen])) real_num = sum(map(len, [haz_real, nohaz_real])) print "Number of virtual asteroids in the domain:", gen_num print "Number of real asteroids in the domain:", real_num ###Output Number of virtual asteroids in the domain: 5210 Number of real asteroids in the domain: 86 ###Markdown ** Investigate distributions of NEAs orbital parameters in the 3-rd domain ** ###Code # vd.plot_alldistcombs(haz_gen, nohaz_gen, labels=True) ###Output _____no_output_____ ###Markdown --- Atiras & Atens ###Code haz_gen_extracted_aa = [] nohaz_gen_trapped_aa = [] haz_real_extracted_aa = [] nohaz_real_trapped_aa = [] ###Output _____no_output_____ ###Markdown ** Atiras ** ###Code haz_gen_atiras, haz_gen_atiras_num = rdb.get_atiras(haz_gen) nohaz_gen_atiras, nohaz_gen_atiras_num = rdb.get_atiras(nohaz_gen) atiras_gen_num = haz_gen_atiras_num + nohaz_gen_atiras_num haz_real_atiras, haz_real_atiras_num = rdb.get_atiras(haz_real) nohaz_real_atiras, nohaz_real_atiras_num = rdb.get_atiras(nohaz_real) atiras_real_num = haz_real_atiras_num + nohaz_real_atiras_num print "Number of virtual Atiras:", atiras_gen_num print "Number of real Atiras:", atiras_real_num ###Output Number of virtual Atiras: 17 Number of real Atiras: 1 ###Markdown ** Atens ** ###Code haz_gen_atens, haz_gen_atens_num = rdb.get_atens(haz_gen) nohaz_gen_atens, nohaz_gen_atens_num = rdb.get_atens(nohaz_gen) atens_gen_num = haz_gen_atens_num + nohaz_gen_atens_num haz_real_atens, haz_real_atens_num = rdb.get_atens(haz_real) nohaz_real_atens, nohaz_real_atens_num = rdb.get_atens(nohaz_real) atens_real_num = haz_real_atens_num + nohaz_real_atens_num print "Number of virtual Atens:", atens_gen_num print "Number of real Atens:", atens_real_num ###Output Number of virtual Atens: 546 Number of real Atens: 18 ###Markdown ** Atiras + Atens ** ###Code haz_gen_atiras_atens = pd.concat((haz_gen_atiras, haz_gen_atens)) nohaz_gen_atiras_atens = pd.concat((nohaz_gen_atiras, nohaz_gen_atens)) haz_gen_atiras_atens_num = len(haz_gen_atiras_atens) nohaz_gen_atiras_atens_num = len(nohaz_gen_atiras_atens) atiras_atens_gen_num = haz_gen_atiras_atens_num + nohaz_gen_atiras_atens_num haz_real_atiras_atens = pd.concat((haz_real_atiras, haz_real_atens)) nohaz_real_atiras_atens = pd.concat((nohaz_real_atiras, nohaz_real_atens)) haz_real_atiras_atens_num = len(haz_real_atiras_atens) nohaz_real_atiras_atens_num = len(nohaz_real_atiras_atens) atiras_atens_real_num = haz_real_atiras_atens_num + nohaz_real_atiras_atens_num print "Number of virtual PHAs in the group:", haz_gen_atiras_atens_num print "Number of virtual NHAs in the group:", nohaz_gen_atiras_atens_num print "Number of virtual Atiras and Atens:", atiras_atens_gen_num print "Virtual Atiras and Atens group weight:", float(atiras_atens_gen_num)/gen_num print "Number of real PHAs in the group:", haz_real_atiras_atens_num print "Number of real NHAs in the group:", nohaz_real_atiras_atens_num print "Number of real Atiras and Atens:", atiras_atens_real_num print "Real Atiras and Atens group weight:", float(atiras_atens_real_num)/real_num # vd.display_allparams([haz_gen_atiras_atens, nohaz_gen_atiras_atens], vd.combs, vd.colnames) ###Output _____no_output_____ ###Markdown Split Atiras and Atens by a *w*-*i* surface ** Amplify datasets by their symetric copies over the 'w' parameter ** ###Code haz_gen_atiras_atens_se = ld.add_doublemirror_column(haz_gen_atiras_atens, 'w', 180.0) nohaz_gen_atiras_atens_se = ld.add_doublemirror_column(nohaz_gen_atiras_atens, 'w', 180.0) cutcol = ['w', 'i'] vd.plot_distributions2d(cutcol, haz_gen_atiras_atens_se, nohaz_gen_atiras_atens_se, labels=True) ###Output /usr/lib/pymodules/python2.7/matplotlib/collections.py:548: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison if self._edgecolors == 'face': ###Markdown ** Cut *w* and *i* columns and nomalize datasets** ###Code cutcol = ['w', 'i'] pairs, atiras_atens_wi_sc = ld.cut_normalize(cutcol, [haz_gen_atiras_atens, nohaz_gen_atiras_atens], [haz_real_atiras_atens, nohaz_real_atiras_atens], [haz_gen_atiras_atens_se, nohaz_gen_atiras_atens_se]) haz_gen_cut, nohaz_gen_cut = pairs[0] haz_real_cut, nohaz_real_cut = pairs[1] haz_gen_se_cut, nohaz_gen_se_cut = pairs[2] ###Output _____no_output_____ ###Markdown ** Find decision surface with SVM ** ###Code clf_aa = svm.SVC(gamma=80.0, C=0.4, class_weight={0: 1.1}) xtrain, ytrain = ld.mix_up(haz_gen_se_cut, nohaz_gen_se_cut) clf_aa = clf_aa.fit(xtrain, ytrain) # cutcol = ['w', 'i'] # clf_aa = svm.SVC(gamma=80.0, C=0.4, class_weight={0: 1.1}) #class_weight={0: 1.5} # #(20 0.5), (30 0.1) (200 0.1) # splitres = al.split_by_clf(clf_aa, cutcol, haz_gen_atiras_atens_se, # nohaz_gen_atiras_atens_se, # haz_gen_atiras_atens, # nohaz_gen_atiras_atens) # haz_gen_atiras_atens_wi, nohaz_gen_atiras_atens_wi = splitres[0] # haz_gen_atiras_atens_wi__, nohaz_gen_atiras_atens_wi__ = splitres[1] # haz_gen_aa_wi_sc = splitres[2] ###Output _____no_output_____ ###Markdown ** Estimate split quality for virtual Atiras & Atens ** ###Code predicted_gen = al.clf_split_quality(clf_aa, haz_gen_cut, nohaz_gen_cut) haz_gen_atiras_atens_wi = haz_gen_atiras_atens.iloc[predicted_gen[0]] nohaz_gen_atiras_atens_wi = nohaz_gen_atiras_atens.iloc[predicted_gen[1]] haz_gen_atiras_atens_wi__ = haz_gen_atiras_atens.iloc[predicted_gen[2]] nohaz_gen_atiras_atens_wi__ = nohaz_gen_atiras_atens.iloc[predicted_gen[3]] ###Output purity of PHA region: 0.902097902098 number of PHAs in the PHA region: 129 number of NHAs in the PHA region: 14 purity of NHA region: 0.954761904762 number of PHAs in the NHA region: 19 number of NHAs in the NHA region: 401 fraction of correctly classified PHAs: 0.871621621622 ###Markdown ** Estimate split quality for virtual Atiras & Atens ** ###Code predicted_real = al.clf_split_quality(clf_aa, haz_real_cut, nohaz_real_cut) haz_real_atiras_atens_wi = haz_real_atiras_atens.iloc[predicted_real[0]] nohaz_real_atiras_atens_wi = nohaz_real_atiras_atens.iloc[predicted_real[1]] haz_real_atiras_atens_wi__ = haz_real_atiras_atens.iloc[predicted_real[2]] nohaz_real_atiras_atens_wi__ = nohaz_real_atiras_atens.iloc[predicted_real[3]] ###Output purity of PHA region: 1.0 number of PHAs in the PHA region: 1 number of NHAs in the PHA region: 0 purity of NHA region: 1.0 number of PHAs in the NHA region: 0 number of NHAs in the NHA region: 18 fraction of correctly classified PHAs: 1.0 ###Markdown ** Plot decision surface ** ###Code vd.plot_clf2d(clf_aa, cutcol, haz_cut=haz_gen_cut, nohaz_cut=nohaz_gen_cut, s=6, num=500, scales=atiras_atens_wi_sc, labels=True, cmap='winter', figsize=(8, 8) ) haz_gen_extracted_aa.append(haz_gen_atiras_atens_wi) nohaz_gen_trapped_aa.append(nohaz_gen_atiras_atens_wi) haz_real_extracted_aa.append(haz_real_atiras_atens_wi) nohaz_real_trapped_aa.append(nohaz_real_atiras_atens_wi) ###Output _____no_output_____ ###Markdown Atiras & Atens divisions qualitiy ** Divisions quality for virtual Atiras & Atens ** ###Code vd.print_summary(haz_gen_extracted_aa, nohaz_gen_trapped_aa, haz_gen_atiras_atens, nohaz_gen_atiras_atens, 'virtual') ###Output Number of correctly classified virtual PHAs 129 Number of trapped virtual NHAs: 14 Mass fraction of correctly classified virtual PHAs: 0.871621621622 Mass fraction of trapped virtual NHAs: 0.033734939759 Cummulative purity of the outlined PHA regions: 0.902097902098 ###Markdown ** Divisions quality for real Atiras & Atens ** ###Code vd.print_summary(haz_real_extracted_aa, nohaz_real_trapped_aa, haz_real_atiras_atens, nohaz_real_atiras_atens, 'real') ###Output Number of correctly classified real PHAs 1 Number of trapped real NHAs: 0 Mass fraction of correctly classified real PHAs: 1.0 Mass fraction of trapped real NHAs: 0.0 Cummulative purity of the outlined PHA regions: 1.0 ###Markdown --- Apollos ###Code haz_gen_extracted_ap = [] nohaz_gen_trapped_ap = [] haz_real_extracted_ap = [] nohaz_real_trapped_ap = [] haz_gen_apollo, haz_gen_apollo_num = rdb.get_apollos(haz_gen) nohaz_gen_apollo, nohaz_gen_apollo_num = rdb.get_apollos(nohaz_gen) apollo_gen_num = haz_gen_apollo_num + nohaz_gen_apollo_num haz_real_apollo, haz_real_apollo_num = rdb.get_apollos(haz_real) nohaz_real_apollo, nohaz_real_apollo_num = rdb.get_apollos(nohaz_real) apollo_real_num = haz_real_apollo_num + nohaz_real_apollo_num ###Output _____no_output_____ ###Markdown ** Virtual Apollos ** ###Code print "Number of virtual PHAs in the group:", haz_gen_apollo_num print "Number of virtual NHAs in the group:", nohaz_gen_apollo_num print "Number of virtual Apollo:", apollo_gen_num print "Apollo group weight:", float(apollo_gen_num)/gen_num ###Output Number of virtual PHAs in the group: 2177 Number of virtual NHAs in the group: 2470 Number of virtual Apollo: 4647 Apollo group weight: 0.891938579655 ###Markdown ** Real Apollos ** ###Code print "Number of real PHAs in the group:", haz_real_apollo_num print "Number of real NHAs in the group:", nohaz_real_apollo_num print "Number of real Apollo:", apollo_real_num print "Apollo group weight:", float(apollo_real_num)/real_num # vd.display_allparams([haz_gen_apollo, nohaz_gen_apollo], vd.combs, vd.colnames) ###Output _____no_output_____ ###Markdown Split Apolllos by a *w*-*q*-*i* suarface ** Amplify Apollos by their symmetric copies over the *w* parameter ** ###Code haz_gen_apollo_se = ld.add_doublemirror_column(haz_gen_apollo, 'w', 180.0) nohaz_gen_apollo_se = ld.add_doublemirror_column(nohaz_gen_apollo, 'w', 180.0) cutcol = ['w', 'q'] vd.plot_distributions2d(cutcol, haz_gen_apollo_se, nohaz_gen_apollo_se, labels=True, invertaxes=[0,1]) ###Output _____no_output_____ ###Markdown ** Cut *w*, *q* and *i* columns and nomalize datasets ** ###Code cutcol = ['w', 'q', 'i'] pairs, apollo_wqi_sc = ld.cut_normalize(cutcol, [haz_gen_apollo, nohaz_gen_apollo], [haz_real_apollo, nohaz_real_apollo], [haz_gen_apollo_se, nohaz_gen_apollo_se]) haz_gen_cut, nohaz_gen_cut = pairs[0] haz_real_cut, nohaz_real_cut = pairs[1] haz_gen_se_cut, nohaz_gen_se_cut = pairs[2] ###Output _____no_output_____ ###Markdown ** Prepare *w*-*q* domain mask to exclude out-of-domain points from the plot ** ###Code # genu = pd.concat((haz_genu, nohaz_genu, haz_gen, nohaz_gen)) # genu_rest = pd.concat((haz_genu_rest, nohaz_genu_rest, haz_gen_rest, nohaz_gen_rest)) genu = pd.concat((haz_genu, nohaz_genu)) genu_rest = pd.concat((haz_genu_rest, nohaz_genu_rest)) genu_se = ld.add_doublemirror_column(genu, 'w', 180.0) genu_rest_se = ld.add_doublemirror_column(genu_rest, 'w', 180.0) apollo_wq_sc = apollo_wqi_sc[:2] cutcol_ = ['w', 'q'] clfmask = svm.SVC(gamma=10.0, C=500.0, class_weight={1: 10}) clfmask = al.sgmask_clf2d_fit(clfmask, cutcol_, genu_se, genu_rest_se, apollo_wq_sc) vd.plot_clf2d(clfmask, cutcol_, num=200, figsize=(6,6), scales=apollo_wq_sc, labels=True, cmap='Blues', invertaxes=[0, 1]) ###Output _____no_output_____ ###Markdown ** Train SVM ** ###Code clf_apollo = svm.SVC(gamma=20.0, C=0.5) xtrain, ytrain = ld.mix_up(haz_gen_se_cut, nohaz_gen_se_cut) clf_apollo = clf_apollo.fit(xtrain, ytrain) # cutcol = ['w', 'q', 'i'] # clf_apollo_wqi = svm.SVC(gamma=20.0, C=0.5) # splitres = al.split_by_clf(clf_apollo_wqi, cutcol, haz_gen_apollo_se, # nohaz_gen_apollo_se, # haz_gen_apollo, # nohaz_gen_apollo) # haz_gen_apollo_wqi, nohaz_gen_apollo_wqi = splitres[0] # haz_gen_apollo_wqi__, nohaz_gen_apollo_wqi__ = splitres[1] # haz_gen_apollo_wqi_sc = splitres[2] ###Output _____no_output_____ ###Markdown ** Estimate split quality for virtual Apollos ** ###Code predicted_gen = al.clf_split_quality(clf_apollo, haz_gen_cut, nohaz_gen_cut) haz_gen_apollo_wqi = haz_gen_apollo.iloc[predicted_gen[0]] nohaz_gen_apollo_wqi = nohaz_gen_apollo.iloc[predicted_gen[1]] haz_gen_apollo_wqi__ = haz_gen_apollo.iloc[predicted_gen[2]] nohaz_gen_apollo_wqi__ = nohaz_gen_apollo.iloc[predicted_gen[3]] ###Output purity of PHA region: 0.939252336449 number of PHAs in the PHA region: 2010 number of NHAs in the PHA region: 130 purity of NHA region: 0.93338651775 number of PHAs in the NHA region: 167 number of NHAs in the NHA region: 2340 fraction of correctly classified PHAs: 0.92328892972 ###Markdown ** Estimate split quality for real Apollos ** ###Code predicted_real = al.clf_split_quality(clf_apollo, haz_real_cut, nohaz_real_cut) haz_real_apollo_wqi = haz_real_apollo.iloc[predicted_real[0]] nohaz_real_apollo_wqi = nohaz_real_apollo.iloc[predicted_real[1]] haz_real_apollo_wqi__ = haz_real_apollo.iloc[predicted_real[2]] nohaz_real_apollo_wqi__ = nohaz_real_apollo.iloc[predicted_real[3]] print "Mass fraction of correctly classified PHAs:", float(len(haz_gen_apollo_wqi))/haz_gen_apollo_num print "Mass fraction of trapped NHAs:", float(len(nohaz_gen_apollo_wqi))/nohaz_gen_apollo_num # cutcol = ['w', 'q', 'i'] # clf_masks = [(clfmask, 0)] # labels = [vd.colnames[nm] for nm in cutcol] vd.plot_clf3d(clf_apollo, cutcol, num=250, labels=True, figsize=(9,8), mode='2d', scales=apollo_wqi_sc, clf_masks=[(clfmask, 0)], invertaxes=[0, 1]) haz_gen_extracted_ap.append(haz_gen_apollo_wqi) nohaz_gen_trapped_ap.append(nohaz_gen_apollo_wqi) haz_real_extracted_ap.append(haz_real_apollo_wqi) nohaz_real_trapped_ap.append(nohaz_real_apollo_wqi) ###Output _____no_output_____ ###Markdown Apollo divisions qualitiy ** Divisions quality for virtual Apollos ** ###Code vd.print_summary(haz_gen_extracted_ap, nohaz_gen_trapped_ap, haz_gen_apollo, nohaz_gen_apollo, 'virtual') ###Output Number of correctly classified virtual PHAs 2010 Number of trapped virtual NHAs: 130 Mass fraction of correctly classified virtual PHAs: 0.92328892972 Mass fraction of trapped virtual NHAs: 0.0526315789474 Cummulative purity of the outlined PHA regions: 0.939252336449 ###Markdown ** Divisions quality for real Apollos ** ###Code vd.print_summary(haz_real_extracted_ap, nohaz_real_trapped_ap, haz_real_apollo, nohaz_real_apollo, 'real') ###Output Number of correctly classified real PHAs 34 Number of trapped real NHAs: 1 Mass fraction of correctly classified real PHAs: 0.918918918919 Mass fraction of trapped real NHAs: 0.0333333333333 Cummulative purity of the outlined PHA regions: 0.971428571429 ###Markdown Count down cummulative split quality ** Virtual asteroids ** ###Code haz_gen_extracted = haz_gen_extracted_aa + haz_gen_extracted_ap nohaz_gen_trapped = nohaz_gen_trapped_aa + nohaz_gen_trapped_ap vd.print_summary(haz_gen_extracted, nohaz_gen_trapped, haz_gen, nohaz_gen, 'virtual') ###Output Number of correctly classified virtual PHAs 2139 Number of trapped virtual NHAs: 144 Mass fraction of correctly classified virtual PHAs: 0.92 Mass fraction of trapped virtual NHAs: 0.0499133448873 Cummulative purity of the outlined PHA regions: 0.936925098555 ###Markdown **Real asteroids ** ###Code haz_real_extracted = haz_real_extracted_aa + haz_real_extracted_ap nohaz_real_trapped = nohaz_real_trapped_aa + nohaz_real_trapped_ap vd.print_summary(haz_real_extracted, nohaz_real_trapped, haz_real, nohaz_real, 'real') ###Output Number of correctly classified real PHAs 35 Number of trapped real NHAs: 1 Mass fraction of correctly classified real PHAs: 0.921052631579 Mass fraction of trapped real NHAs: 0.0208333333333 Cummulative purity of the outlined PHA regions: 0.972222222222
log-prog-python/Exercicios_Logging.ipynb
###Markdown LoggingLogging é o processo de registrar eventos que ocorrem ao longo da execução do código. Permiti obter conhecimento sobre o funcionamento de seu código, localizar bugs eotimizar seu script. ###Code import logging ###Output _____no_output_____ ###Markdown Para usar, primeiramente instanciamos um objeto responsável por manipular estes registros através do método logging.getLogger. ###Code logging. log = logging.getLogger("meu-logger") log.info("Hello, world") ###Output _____no_output_____ ###Markdown Níveis de loggingVários tipos de eventos podem surgir e podemos especificar com quais queremos interagir.Se você definir o nível de log para INFO, ele incluirá asmensagens INFO, WARNING, ERROR e CRITICAL. ```* CRITICAL..50* ERROR.....40* WARNING...30* INFO......20* DEBUG.....10* NOTSET.....0``` ###Code log.critical("Registra um log do nível critical") log.error("Registra um log do nível error") log.warning("Registra um log do nível warning") log.info("Registra um log do nível info") log.debug("Registra um log do nível debug") ###Output Registra um log do nível critical Registra um log do nível error Registra um log do nível warning ###Markdown Config básicaUsamos o método basicConfig() para configurar o logging.Parâmetros comuns:* level* filename: especifica o nome do arquivo.* filemode: se o nome do arquivo for fornecido, o arquivo é aberto neste modo. O padrão é **a** , o que significa anexar.* format: este é o formato da mensagem de registro. ###Code import logging logging.basicConfig(level=logging.DEBUG) logging.debug('This will get logged') import logging logging.basicConfig(filename='/content/drive/MyDrive/app.log', filemode='w', format='%(name)s - %(level)') logging.warning('This will get logged to a file') ###Output WARNING:root:This will get logged to a file ###Markdown No link, podemos ver mais informações sobre o métodohttps://docs.python.org/3/library/logging.htmllogging.basicConfigSó podemos chamar o basicConfig(), basicamente, esta função só pode ser chamada uma vez. Caso contrário, precisamos resetar ela para ajustar os parâmetros. ###Code def reset_log(): for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) reset_log() ###Output _____no_output_____ ###Markdown Formatação do Output ###Code import logging logging.basicConfig(format='%(process)d-%(levelname)s-%(message)s') logging.warning('This is a Warning') reset_log() logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO) logging.info('Admin logged in') ###Output 2021-11-12 00:43:34,343 - Admin logged in ###Markdown Registro e Captura de Eventos ###Code reset_log() name = 'John' logging.error('%s raised an error', name) reset_log() a = 5 b = 0 try: c = a / b except Exception as e: logging.error("Exception occurred", exc_info=True) ###Output _____no_output_____
specs/ipyplotly_integration/Overview.ipynb
###Markdown OverviewThis notebook introduces the ipyplotly enhancements to the plotly.py visualization library and demonstrates some of its features. New Features - Traces can be added and updated interactively by simply assigning to properties - The full Traces and Layout API is generated from the plotly schema to provide a great experience for interactive use in the notebook - Data validation covering the full API with clear, informative error messages - Jupyter friendly docstrings on constructor params and properties - Support for setting array properties as numpy arrays. When numpy arrays are used, ipywidgets binary serialization protocol is used to avoid converting these to JSON strings. - Context manager API for animation - Programmatic export of figures to static SVG images (and PNG and PDF with cairosvg installed). Imports ###Code # ipyplotly from plotly.graph_objs import FigureWidget from plotly.callbacks import Points, InputDeviceState # pandas import pandas as pd # numpy import numpy as np # scikit learn from sklearn import datasets # ipywidgets from ipywidgets import HBox, VBox, Button # functools from functools import partial # Load iris dataset iris_data = datasets.load_iris() feature_names = [name.replace(' (cm)', '').replace(' ', '_') for name in iris_data.feature_names] iris_df = pd.DataFrame(iris_data.data, columns=feature_names) iris_class = iris_data.target + 1 iris_df.head() ###Output _____no_output_____ ###Markdown Create and display an empty FigureWidgetA FigureWidget behaves almost identically to a Figure but it is also an ipywidget that can be displayed directly in the notebook without calling `iplot` ###Code f1 = FigureWidget() f1 ###Output _____no_output_____ ###Markdown Tab completion Entering ``f1.add_`` displays add methods for all of the supported trace types ###Code # f1.add_ ###Output _____no_output_____ ###Markdown Entering ``f1.add_scatter()`` displays the names of all of the top-level properties for the scatter trace typeEntering ``f1.add_scatter()`` displays the signature pop-up. Expanding this pop-up reveals the method doc string which contains the descriptions of all of the top level properties ###Code # f1.add_scatter( ###Output _____no_output_____ ###Markdown Add scatter trace ###Code scatt1 = f1.add_scatter(x=iris_df.sepal_length, y=iris_df.petal_width) f1 scatt1.mode? # That's not what we wanted, change the mode to 'markers' scatt1.mode = 'markers' # Set size to 8 scatt1.marker.size = 8 # Color markers by iris class scatt1.marker.color = iris_class # Change colorscale scatt1.marker.cmin = 0.5 scatt1.marker.cmax = 3.5 scatt1.marker.colorscale = [[0, 'red'], [0.33, 'red'], [0.33, 'green'], [0.67, 'green'], [0.67, 'blue'], [1.0, 'blue']] scatt1.marker.showscale = True # Fix up colorscale ticks scatt1.marker.colorbar.ticks = 'outside' scatt1.marker.colorbar.tickvals = [1, 2, 3] scatt1.marker.colorbar.ticktext = iris_data.target_names.tolist() # Set colorscale title scatt1.marker.colorbar.title = 'Species' scatt1.marker.colorbar.titlefont.size = 16 scatt1.marker.colorbar.titlefont.family = 'Rockwell' # Add axis labels f1.layout.xaxis.title = 'sepal_length' f1.layout.yaxis.title = 'petal_width' f1 # Hover info scatt1.text = iris_data.target_names[iris_data.target] scatt1.hoverinfo = 'text+x+y' f1.layout.hovermode = 'closest' f1 ###Output _____no_output_____ ###Markdown Animate marker size change ###Code # Set marker size based on petal_length with f1.batch_animate(duration=1000): scatt1.marker.size = np.sqrt(iris_df.petal_length.values * 50) # Restore constant marker size with f1.batch_animate(duration=1000): scatt1.marker.size = 8 ###Output _____no_output_____ ###Markdown Set drag mode property callbackMake points more transparent when `dragmode` is `zoom` ###Code def set_opacity(marker, layout, dragmode): if dragmode == 'zoom': marker.opacity = 0.5 else: marker.opacity = 1.0 f1.layout.on_change(partial(set_opacity, scatt1.marker), 'dragmode') ###Output _____no_output_____ ###Markdown Configure colorscale for brushing ###Code scatt1.marker.colorbar = None scatt1.marker.colorscale = [[0, 'lightgray'], [0.5, 'lightgray'], [0.5, 'red'], [1, 'red']] scatt1.marker.cmin = -0.5 scatt1.marker.cmax = 1.5 scatt1.marker.colorbar.ticks = 'outside' scatt1.marker.colorbar.tickvals = [0, 1] scatt1.marker.colorbar.ticktext = ['unselected', 'selected'] # Reset colors to zeros (unselected) scatt1.marker.color = np.zeros(iris_class.size) selected = np.zeros(iris_class.size) f1 ###Output _____no_output_____ ###Markdown Configure brushing callback ###Code # Assigning these variables here is not required. But doing so tricks Jupyter into # providing property tab completion on the parameters to the brush function below trace, points, state = scatt1, Points(), InputDeviceState() def brush(trace, points, state): inds = np.array(points.point_inds) if inds.size: selected[inds] = 1 trace.marker.color = selected scatt1.on_selected(brush) ###Output _____no_output_____ ###Markdown Now box or lasso select points on the figure and see them turn red ###Code # Reset brush selected = np.zeros(iris_class.size) scatt1.marker.color = selected ###Output _____no_output_____ ###Markdown Create second plot with different features ###Code f2 = FigureWidget(data=[{'type': 'scatter', 'x': iris_df.petal_length, 'y': iris_df.sepal_width, 'mode': 'markers'}]) f2 # Set axis titles f2.layout.xaxis.title = 'petal_length' f2.layout.yaxis.title = 'sepal_width' # Grab trace reference scatt2 = f2.data[0] # Set marker styles / colorbars to match between figures scatt2.marker = scatt1.marker # Configure brush on both plots to update both plots def brush(trace, points, state): inds = np.array(points.point_inds) if inds.size: selected = scatt1.marker.color.copy() selected[inds] = 1 scatt1.marker.color = selected scatt2.marker.color = selected scatt1.on_selected(brush) scatt2.on_selected(brush) f2.layout.on_change(partial(set_opacity, scatt2.marker), 'dragmode') # Reset brush def reset_brush(btn): selected = np.zeros(iris_class.size) scatt1.marker.color = selected scatt2.marker.color = selected # Create reset button button = Button(description="clear") button.on_click(reset_brush) # Hide colorbar for figure 1 scatt1.marker.showscale = False # Set dragmode to lasso for both plots f1.layout.dragmode = 'lasso' f2.layout.dragmode = 'lasso' # Display two figures and the reset button f1.layout.width = 500 f2.layout.width = 500 VBox([HBox([f1, f2]), button]) # Save figure 2 to a svg image in the exports directory f2.save_image('exports/f2.svg') # Save figure 1 to a pdf in the exports directory (requires cairosvg be installed) # f1.save_image('exports/f1.pdf') ###Output _____no_output_____